xref: /openbmc/linux/fs/btrfs/disk-io.c (revision dbf563ee)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
43 #include "discard.h"
44 #include "space-info.h"
45 
46 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
47 				 BTRFS_HEADER_FLAG_RELOC |\
48 				 BTRFS_SUPER_FLAG_ERROR |\
49 				 BTRFS_SUPER_FLAG_SEEDING |\
50 				 BTRFS_SUPER_FLAG_METADUMP |\
51 				 BTRFS_SUPER_FLAG_METADUMP_V2)
52 
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 				      struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60 					struct extent_io_tree *dirty_pages,
61 					int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63 				       struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66 
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73 	struct bio *bio;
74 	bio_end_io_t *end_io;
75 	void *private;
76 	struct btrfs_fs_info *info;
77 	blk_status_t status;
78 	enum btrfs_wq_endio_type metadata;
79 	struct btrfs_work work;
80 };
81 
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83 
84 int __init btrfs_end_io_wq_init(void)
85 {
86 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 					sizeof(struct btrfs_end_io_wq),
88 					0,
89 					SLAB_MEM_SPREAD,
90 					NULL);
91 	if (!btrfs_end_io_wq_cache)
92 		return -ENOMEM;
93 	return 0;
94 }
95 
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98 	kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100 
101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103 	if (fs_info->csum_shash)
104 		crypto_free_shash(fs_info->csum_shash);
105 }
106 
107 /*
108  * async submit bios are used to offload expensive checksumming
109  * onto the worker threads.  They checksum file and metadata bios
110  * just before they are sent down the IO stack.
111  */
112 struct async_submit_bio {
113 	void *private_data;
114 	struct bio *bio;
115 	extent_submit_bio_start_t *submit_bio_start;
116 	int mirror_num;
117 	/*
118 	 * bio_offset is optional, can be used if the pages in the bio
119 	 * can't tell us where in the file the bio should go
120 	 */
121 	u64 bio_offset;
122 	struct btrfs_work work;
123 	blk_status_t status;
124 };
125 
126 /*
127  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
128  * eb, the lockdep key is determined by the btrfs_root it belongs to and
129  * the level the eb occupies in the tree.
130  *
131  * Different roots are used for different purposes and may nest inside each
132  * other and they require separate keysets.  As lockdep keys should be
133  * static, assign keysets according to the purpose of the root as indicated
134  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
135  * roots have separate keysets.
136  *
137  * Lock-nesting across peer nodes is always done with the immediate parent
138  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
139  * subclass to avoid triggering lockdep warning in such cases.
140  *
141  * The key is set by the readpage_end_io_hook after the buffer has passed
142  * csum validation but before the pages are unlocked.  It is also set by
143  * btrfs_init_new_buffer on freshly allocated blocks.
144  *
145  * We also add a check to make sure the highest level of the tree is the
146  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
147  * needs update as well.
148  */
149 #ifdef CONFIG_DEBUG_LOCK_ALLOC
150 # if BTRFS_MAX_LEVEL != 8
151 #  error
152 # endif
153 
154 static struct btrfs_lockdep_keyset {
155 	u64			id;		/* root objectid */
156 	const char		*name_stem;	/* lock name stem */
157 	char			names[BTRFS_MAX_LEVEL + 1][20];
158 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
159 } btrfs_lockdep_keysets[] = {
160 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
161 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
162 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
163 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
164 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
165 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
166 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
167 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
168 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
169 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
170 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
171 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
172 	{ .id = 0,				.name_stem = "tree"	},
173 };
174 
175 void __init btrfs_init_lockdep(void)
176 {
177 	int i, j;
178 
179 	/* initialize lockdep class names */
180 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182 
183 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184 			snprintf(ks->names[j], sizeof(ks->names[j]),
185 				 "btrfs-%s-%02d", ks->name_stem, j);
186 	}
187 }
188 
189 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 				    int level)
191 {
192 	struct btrfs_lockdep_keyset *ks;
193 
194 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
195 
196 	/* find the matching keyset, id 0 is the default entry */
197 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198 		if (ks->id == objectid)
199 			break;
200 
201 	lockdep_set_class_and_name(&eb->lock,
202 				   &ks->keys[level], ks->names[level]);
203 }
204 
205 #endif
206 
207 /*
208  * extents on the btree inode are pretty simple, there's one extent
209  * that covers the entire device
210  */
211 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
212 				    struct page *page, size_t pg_offset,
213 				    u64 start, u64 len)
214 {
215 	struct extent_map_tree *em_tree = &inode->extent_tree;
216 	struct extent_map *em;
217 	int ret;
218 
219 	read_lock(&em_tree->lock);
220 	em = lookup_extent_mapping(em_tree, start, len);
221 	if (em) {
222 		read_unlock(&em_tree->lock);
223 		goto out;
224 	}
225 	read_unlock(&em_tree->lock);
226 
227 	em = alloc_extent_map();
228 	if (!em) {
229 		em = ERR_PTR(-ENOMEM);
230 		goto out;
231 	}
232 	em->start = 0;
233 	em->len = (u64)-1;
234 	em->block_len = (u64)-1;
235 	em->block_start = 0;
236 
237 	write_lock(&em_tree->lock);
238 	ret = add_extent_mapping(em_tree, em, 0);
239 	if (ret == -EEXIST) {
240 		free_extent_map(em);
241 		em = lookup_extent_mapping(em_tree, start, len);
242 		if (!em)
243 			em = ERR_PTR(-EIO);
244 	} else if (ret) {
245 		free_extent_map(em);
246 		em = ERR_PTR(ret);
247 	}
248 	write_unlock(&em_tree->lock);
249 
250 out:
251 	return em;
252 }
253 
254 /*
255  * Compute the csum of a btree block and store the result to provided buffer.
256  */
257 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
258 {
259 	struct btrfs_fs_info *fs_info = buf->fs_info;
260 	const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
261 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
262 	char *kaddr;
263 	int i;
264 
265 	shash->tfm = fs_info->csum_shash;
266 	crypto_shash_init(shash);
267 	kaddr = page_address(buf->pages[0]);
268 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
269 			    PAGE_SIZE - BTRFS_CSUM_SIZE);
270 
271 	for (i = 1; i < num_pages; i++) {
272 		kaddr = page_address(buf->pages[i]);
273 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
274 	}
275 	memset(result, 0, BTRFS_CSUM_SIZE);
276 	crypto_shash_final(shash, result);
277 }
278 
279 /*
280  * we can't consider a given block up to date unless the transid of the
281  * block matches the transid in the parent node's pointer.  This is how we
282  * detect blocks that either didn't get written at all or got written
283  * in the wrong place.
284  */
285 static int verify_parent_transid(struct extent_io_tree *io_tree,
286 				 struct extent_buffer *eb, u64 parent_transid,
287 				 int atomic)
288 {
289 	struct extent_state *cached_state = NULL;
290 	int ret;
291 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
292 
293 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
294 		return 0;
295 
296 	if (atomic)
297 		return -EAGAIN;
298 
299 	if (need_lock) {
300 		btrfs_tree_read_lock(eb);
301 		btrfs_set_lock_blocking_read(eb);
302 	}
303 
304 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
305 			 &cached_state);
306 	if (extent_buffer_uptodate(eb) &&
307 	    btrfs_header_generation(eb) == parent_transid) {
308 		ret = 0;
309 		goto out;
310 	}
311 	btrfs_err_rl(eb->fs_info,
312 		"parent transid verify failed on %llu wanted %llu found %llu",
313 			eb->start,
314 			parent_transid, btrfs_header_generation(eb));
315 	ret = 1;
316 
317 	/*
318 	 * Things reading via commit roots that don't have normal protection,
319 	 * like send, can have a really old block in cache that may point at a
320 	 * block that has been freed and re-allocated.  So don't clear uptodate
321 	 * if we find an eb that is under IO (dirty/writeback) because we could
322 	 * end up reading in the stale data and then writing it back out and
323 	 * making everybody very sad.
324 	 */
325 	if (!extent_buffer_under_io(eb))
326 		clear_extent_buffer_uptodate(eb);
327 out:
328 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
329 			     &cached_state);
330 	if (need_lock)
331 		btrfs_tree_read_unlock_blocking(eb);
332 	return ret;
333 }
334 
335 static bool btrfs_supported_super_csum(u16 csum_type)
336 {
337 	switch (csum_type) {
338 	case BTRFS_CSUM_TYPE_CRC32:
339 	case BTRFS_CSUM_TYPE_XXHASH:
340 	case BTRFS_CSUM_TYPE_SHA256:
341 	case BTRFS_CSUM_TYPE_BLAKE2:
342 		return true;
343 	default:
344 		return false;
345 	}
346 }
347 
348 /*
349  * Return 0 if the superblock checksum type matches the checksum value of that
350  * algorithm. Pass the raw disk superblock data.
351  */
352 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
353 				  char *raw_disk_sb)
354 {
355 	struct btrfs_super_block *disk_sb =
356 		(struct btrfs_super_block *)raw_disk_sb;
357 	char result[BTRFS_CSUM_SIZE];
358 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
359 
360 	shash->tfm = fs_info->csum_shash;
361 
362 	/*
363 	 * The super_block structure does not span the whole
364 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
365 	 * filled with zeros and is included in the checksum.
366 	 */
367 	crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
368 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
369 
370 	if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
371 		return 1;
372 
373 	return 0;
374 }
375 
376 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
377 			   struct btrfs_key *first_key, u64 parent_transid)
378 {
379 	struct btrfs_fs_info *fs_info = eb->fs_info;
380 	int found_level;
381 	struct btrfs_key found_key;
382 	int ret;
383 
384 	found_level = btrfs_header_level(eb);
385 	if (found_level != level) {
386 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
387 		     KERN_ERR "BTRFS: tree level check failed\n");
388 		btrfs_err(fs_info,
389 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
390 			  eb->start, level, found_level);
391 		return -EIO;
392 	}
393 
394 	if (!first_key)
395 		return 0;
396 
397 	/*
398 	 * For live tree block (new tree blocks in current transaction),
399 	 * we need proper lock context to avoid race, which is impossible here.
400 	 * So we only checks tree blocks which is read from disk, whose
401 	 * generation <= fs_info->last_trans_committed.
402 	 */
403 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
404 		return 0;
405 
406 	/* We have @first_key, so this @eb must have at least one item */
407 	if (btrfs_header_nritems(eb) == 0) {
408 		btrfs_err(fs_info,
409 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
410 			  eb->start);
411 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
412 		return -EUCLEAN;
413 	}
414 
415 	if (found_level)
416 		btrfs_node_key_to_cpu(eb, &found_key, 0);
417 	else
418 		btrfs_item_key_to_cpu(eb, &found_key, 0);
419 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
420 
421 	if (ret) {
422 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
423 		     KERN_ERR "BTRFS: tree first key check failed\n");
424 		btrfs_err(fs_info,
425 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
426 			  eb->start, parent_transid, first_key->objectid,
427 			  first_key->type, first_key->offset,
428 			  found_key.objectid, found_key.type,
429 			  found_key.offset);
430 	}
431 	return ret;
432 }
433 
434 /*
435  * helper to read a given tree block, doing retries as required when
436  * the checksums don't match and we have alternate mirrors to try.
437  *
438  * @parent_transid:	expected transid, skip check if 0
439  * @level:		expected level, mandatory check
440  * @first_key:		expected key of first slot, skip check if NULL
441  */
442 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
443 					  u64 parent_transid, int level,
444 					  struct btrfs_key *first_key)
445 {
446 	struct btrfs_fs_info *fs_info = eb->fs_info;
447 	struct extent_io_tree *io_tree;
448 	int failed = 0;
449 	int ret;
450 	int num_copies = 0;
451 	int mirror_num = 0;
452 	int failed_mirror = 0;
453 
454 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
455 	while (1) {
456 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
457 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
458 		if (!ret) {
459 			if (verify_parent_transid(io_tree, eb,
460 						   parent_transid, 0))
461 				ret = -EIO;
462 			else if (btrfs_verify_level_key(eb, level,
463 						first_key, parent_transid))
464 				ret = -EUCLEAN;
465 			else
466 				break;
467 		}
468 
469 		num_copies = btrfs_num_copies(fs_info,
470 					      eb->start, eb->len);
471 		if (num_copies == 1)
472 			break;
473 
474 		if (!failed_mirror) {
475 			failed = 1;
476 			failed_mirror = eb->read_mirror;
477 		}
478 
479 		mirror_num++;
480 		if (mirror_num == failed_mirror)
481 			mirror_num++;
482 
483 		if (mirror_num > num_copies)
484 			break;
485 	}
486 
487 	if (failed && !ret && failed_mirror)
488 		btrfs_repair_eb_io_failure(eb, failed_mirror);
489 
490 	return ret;
491 }
492 
493 /*
494  * checksum a dirty tree block before IO.  This has extra checks to make sure
495  * we only fill in the checksum field in the first page of a multi-page block
496  */
497 
498 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
499 {
500 	u64 start = page_offset(page);
501 	u64 found_start;
502 	u8 result[BTRFS_CSUM_SIZE];
503 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
504 	struct extent_buffer *eb;
505 	int ret;
506 
507 	eb = (struct extent_buffer *)page->private;
508 	if (page != eb->pages[0])
509 		return 0;
510 
511 	found_start = btrfs_header_bytenr(eb);
512 	/*
513 	 * Please do not consolidate these warnings into a single if.
514 	 * It is useful to know what went wrong.
515 	 */
516 	if (WARN_ON(found_start != start))
517 		return -EUCLEAN;
518 	if (WARN_ON(!PageUptodate(page)))
519 		return -EUCLEAN;
520 
521 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
522 				    offsetof(struct btrfs_header, fsid),
523 				    BTRFS_FSID_SIZE) == 0);
524 
525 	csum_tree_block(eb, result);
526 
527 	if (btrfs_header_level(eb))
528 		ret = btrfs_check_node(eb);
529 	else
530 		ret = btrfs_check_leaf_full(eb);
531 
532 	if (ret < 0) {
533 		btrfs_print_tree(eb, 0);
534 		btrfs_err(fs_info,
535 		"block=%llu write time tree block corruption detected",
536 			  eb->start);
537 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
538 		return ret;
539 	}
540 	write_extent_buffer(eb, result, 0, csum_size);
541 
542 	return 0;
543 }
544 
545 static int check_tree_block_fsid(struct extent_buffer *eb)
546 {
547 	struct btrfs_fs_info *fs_info = eb->fs_info;
548 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
549 	u8 fsid[BTRFS_FSID_SIZE];
550 	int ret = 1;
551 
552 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
553 			   BTRFS_FSID_SIZE);
554 	while (fs_devices) {
555 		u8 *metadata_uuid;
556 
557 		/*
558 		 * Checking the incompat flag is only valid for the current
559 		 * fs. For seed devices it's forbidden to have their uuid
560 		 * changed so reading ->fsid in this case is fine
561 		 */
562 		if (fs_devices == fs_info->fs_devices &&
563 		    btrfs_fs_incompat(fs_info, METADATA_UUID))
564 			metadata_uuid = fs_devices->metadata_uuid;
565 		else
566 			metadata_uuid = fs_devices->fsid;
567 
568 		if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
569 			ret = 0;
570 			break;
571 		}
572 		fs_devices = fs_devices->seed;
573 	}
574 	return ret;
575 }
576 
577 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
578 				      u64 phy_offset, struct page *page,
579 				      u64 start, u64 end, int mirror)
580 {
581 	u64 found_start;
582 	int found_level;
583 	struct extent_buffer *eb;
584 	struct btrfs_fs_info *fs_info;
585 	u16 csum_size;
586 	int ret = 0;
587 	u8 result[BTRFS_CSUM_SIZE];
588 	int reads_done;
589 
590 	if (!page->private)
591 		goto out;
592 
593 	eb = (struct extent_buffer *)page->private;
594 	fs_info = eb->fs_info;
595 	csum_size = btrfs_super_csum_size(fs_info->super_copy);
596 
597 	/* the pending IO might have been the only thing that kept this buffer
598 	 * in memory.  Make sure we have a ref for all this other checks
599 	 */
600 	atomic_inc(&eb->refs);
601 
602 	reads_done = atomic_dec_and_test(&eb->io_pages);
603 	if (!reads_done)
604 		goto err;
605 
606 	eb->read_mirror = mirror;
607 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
608 		ret = -EIO;
609 		goto err;
610 	}
611 
612 	found_start = btrfs_header_bytenr(eb);
613 	if (found_start != eb->start) {
614 		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
615 			     eb->start, found_start);
616 		ret = -EIO;
617 		goto err;
618 	}
619 	if (check_tree_block_fsid(eb)) {
620 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
621 			     eb->start);
622 		ret = -EIO;
623 		goto err;
624 	}
625 	found_level = btrfs_header_level(eb);
626 	if (found_level >= BTRFS_MAX_LEVEL) {
627 		btrfs_err(fs_info, "bad tree block level %d on %llu",
628 			  (int)btrfs_header_level(eb), eb->start);
629 		ret = -EIO;
630 		goto err;
631 	}
632 
633 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
634 				       eb, found_level);
635 
636 	csum_tree_block(eb, result);
637 
638 	if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
639 		u8 val[BTRFS_CSUM_SIZE] = { 0 };
640 
641 		read_extent_buffer(eb, &val, 0, csum_size);
642 		btrfs_warn_rl(fs_info,
643 	"%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
644 			      fs_info->sb->s_id, eb->start,
645 			      CSUM_FMT_VALUE(csum_size, val),
646 			      CSUM_FMT_VALUE(csum_size, result),
647 			      btrfs_header_level(eb));
648 		ret = -EUCLEAN;
649 		goto err;
650 	}
651 
652 	/*
653 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
654 	 * that we don't try and read the other copies of this block, just
655 	 * return -EIO.
656 	 */
657 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
658 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
659 		ret = -EIO;
660 	}
661 
662 	if (found_level > 0 && btrfs_check_node(eb))
663 		ret = -EIO;
664 
665 	if (!ret)
666 		set_extent_buffer_uptodate(eb);
667 	else
668 		btrfs_err(fs_info,
669 			  "block=%llu read time tree block corruption detected",
670 			  eb->start);
671 err:
672 	if (reads_done &&
673 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
674 		btree_readahead_hook(eb, ret);
675 
676 	if (ret) {
677 		/*
678 		 * our io error hook is going to dec the io pages
679 		 * again, we have to make sure it has something
680 		 * to decrement
681 		 */
682 		atomic_inc(&eb->io_pages);
683 		clear_extent_buffer_uptodate(eb);
684 	}
685 	free_extent_buffer(eb);
686 out:
687 	return ret;
688 }
689 
690 static void end_workqueue_bio(struct bio *bio)
691 {
692 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
693 	struct btrfs_fs_info *fs_info;
694 	struct btrfs_workqueue *wq;
695 
696 	fs_info = end_io_wq->info;
697 	end_io_wq->status = bio->bi_status;
698 
699 	if (bio_op(bio) == REQ_OP_WRITE) {
700 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
701 			wq = fs_info->endio_meta_write_workers;
702 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
703 			wq = fs_info->endio_freespace_worker;
704 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
705 			wq = fs_info->endio_raid56_workers;
706 		else
707 			wq = fs_info->endio_write_workers;
708 	} else {
709 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
710 			wq = fs_info->endio_raid56_workers;
711 		else if (end_io_wq->metadata)
712 			wq = fs_info->endio_meta_workers;
713 		else
714 			wq = fs_info->endio_workers;
715 	}
716 
717 	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
718 	btrfs_queue_work(wq, &end_io_wq->work);
719 }
720 
721 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
722 			enum btrfs_wq_endio_type metadata)
723 {
724 	struct btrfs_end_io_wq *end_io_wq;
725 
726 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
727 	if (!end_io_wq)
728 		return BLK_STS_RESOURCE;
729 
730 	end_io_wq->private = bio->bi_private;
731 	end_io_wq->end_io = bio->bi_end_io;
732 	end_io_wq->info = info;
733 	end_io_wq->status = 0;
734 	end_io_wq->bio = bio;
735 	end_io_wq->metadata = metadata;
736 
737 	bio->bi_private = end_io_wq;
738 	bio->bi_end_io = end_workqueue_bio;
739 	return 0;
740 }
741 
742 static void run_one_async_start(struct btrfs_work *work)
743 {
744 	struct async_submit_bio *async;
745 	blk_status_t ret;
746 
747 	async = container_of(work, struct  async_submit_bio, work);
748 	ret = async->submit_bio_start(async->private_data, async->bio,
749 				      async->bio_offset);
750 	if (ret)
751 		async->status = ret;
752 }
753 
754 /*
755  * In order to insert checksums into the metadata in large chunks, we wait
756  * until bio submission time.   All the pages in the bio are checksummed and
757  * sums are attached onto the ordered extent record.
758  *
759  * At IO completion time the csums attached on the ordered extent record are
760  * inserted into the tree.
761  */
762 static void run_one_async_done(struct btrfs_work *work)
763 {
764 	struct async_submit_bio *async;
765 	struct inode *inode;
766 	blk_status_t ret;
767 
768 	async = container_of(work, struct  async_submit_bio, work);
769 	inode = async->private_data;
770 
771 	/* If an error occurred we just want to clean up the bio and move on */
772 	if (async->status) {
773 		async->bio->bi_status = async->status;
774 		bio_endio(async->bio);
775 		return;
776 	}
777 
778 	/*
779 	 * All of the bios that pass through here are from async helpers.
780 	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
781 	 * This changes nothing when cgroups aren't in use.
782 	 */
783 	async->bio->bi_opf |= REQ_CGROUP_PUNT;
784 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
785 	if (ret) {
786 		async->bio->bi_status = ret;
787 		bio_endio(async->bio);
788 	}
789 }
790 
791 static void run_one_async_free(struct btrfs_work *work)
792 {
793 	struct async_submit_bio *async;
794 
795 	async = container_of(work, struct  async_submit_bio, work);
796 	kfree(async);
797 }
798 
799 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
800 				 int mirror_num, unsigned long bio_flags,
801 				 u64 bio_offset, void *private_data,
802 				 extent_submit_bio_start_t *submit_bio_start)
803 {
804 	struct async_submit_bio *async;
805 
806 	async = kmalloc(sizeof(*async), GFP_NOFS);
807 	if (!async)
808 		return BLK_STS_RESOURCE;
809 
810 	async->private_data = private_data;
811 	async->bio = bio;
812 	async->mirror_num = mirror_num;
813 	async->submit_bio_start = submit_bio_start;
814 
815 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
816 			run_one_async_free);
817 
818 	async->bio_offset = bio_offset;
819 
820 	async->status = 0;
821 
822 	if (op_is_sync(bio->bi_opf))
823 		btrfs_set_work_high_priority(&async->work);
824 
825 	btrfs_queue_work(fs_info->workers, &async->work);
826 	return 0;
827 }
828 
829 static blk_status_t btree_csum_one_bio(struct bio *bio)
830 {
831 	struct bio_vec *bvec;
832 	struct btrfs_root *root;
833 	int ret = 0;
834 	struct bvec_iter_all iter_all;
835 
836 	ASSERT(!bio_flagged(bio, BIO_CLONED));
837 	bio_for_each_segment_all(bvec, bio, iter_all) {
838 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
839 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
840 		if (ret)
841 			break;
842 	}
843 
844 	return errno_to_blk_status(ret);
845 }
846 
847 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
848 					     u64 bio_offset)
849 {
850 	/*
851 	 * when we're called for a write, we're already in the async
852 	 * submission context.  Just jump into btrfs_map_bio
853 	 */
854 	return btree_csum_one_bio(bio);
855 }
856 
857 static int check_async_write(struct btrfs_fs_info *fs_info,
858 			     struct btrfs_inode *bi)
859 {
860 	if (atomic_read(&bi->sync_writers))
861 		return 0;
862 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
863 		return 0;
864 	return 1;
865 }
866 
867 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
868 					  int mirror_num,
869 					  unsigned long bio_flags)
870 {
871 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
872 	int async = check_async_write(fs_info, BTRFS_I(inode));
873 	blk_status_t ret;
874 
875 	if (bio_op(bio) != REQ_OP_WRITE) {
876 		/*
877 		 * called for a read, do the setup so that checksum validation
878 		 * can happen in the async kernel threads
879 		 */
880 		ret = btrfs_bio_wq_end_io(fs_info, bio,
881 					  BTRFS_WQ_ENDIO_METADATA);
882 		if (ret)
883 			goto out_w_error;
884 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
885 	} else if (!async) {
886 		ret = btree_csum_one_bio(bio);
887 		if (ret)
888 			goto out_w_error;
889 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
890 	} else {
891 		/*
892 		 * kthread helpers are used to submit writes so that
893 		 * checksumming can happen in parallel across all CPUs
894 		 */
895 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
896 					  0, inode, btree_submit_bio_start);
897 	}
898 
899 	if (ret)
900 		goto out_w_error;
901 	return 0;
902 
903 out_w_error:
904 	bio->bi_status = ret;
905 	bio_endio(bio);
906 	return ret;
907 }
908 
909 #ifdef CONFIG_MIGRATION
910 static int btree_migratepage(struct address_space *mapping,
911 			struct page *newpage, struct page *page,
912 			enum migrate_mode mode)
913 {
914 	/*
915 	 * we can't safely write a btree page from here,
916 	 * we haven't done the locking hook
917 	 */
918 	if (PageDirty(page))
919 		return -EAGAIN;
920 	/*
921 	 * Buffers may be managed in a filesystem specific way.
922 	 * We must have no buffers or drop them.
923 	 */
924 	if (page_has_private(page) &&
925 	    !try_to_release_page(page, GFP_KERNEL))
926 		return -EAGAIN;
927 	return migrate_page(mapping, newpage, page, mode);
928 }
929 #endif
930 
931 
932 static int btree_writepages(struct address_space *mapping,
933 			    struct writeback_control *wbc)
934 {
935 	struct btrfs_fs_info *fs_info;
936 	int ret;
937 
938 	if (wbc->sync_mode == WB_SYNC_NONE) {
939 
940 		if (wbc->for_kupdate)
941 			return 0;
942 
943 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
944 		/* this is a bit racy, but that's ok */
945 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
946 					     BTRFS_DIRTY_METADATA_THRESH,
947 					     fs_info->dirty_metadata_batch);
948 		if (ret < 0)
949 			return 0;
950 	}
951 	return btree_write_cache_pages(mapping, wbc);
952 }
953 
954 static int btree_readpage(struct file *file, struct page *page)
955 {
956 	return extent_read_full_page(page, btree_get_extent, 0);
957 }
958 
959 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
960 {
961 	if (PageWriteback(page) || PageDirty(page))
962 		return 0;
963 
964 	return try_release_extent_buffer(page);
965 }
966 
967 static void btree_invalidatepage(struct page *page, unsigned int offset,
968 				 unsigned int length)
969 {
970 	struct extent_io_tree *tree;
971 	tree = &BTRFS_I(page->mapping->host)->io_tree;
972 	extent_invalidatepage(tree, page, offset);
973 	btree_releasepage(page, GFP_NOFS);
974 	if (PagePrivate(page)) {
975 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
976 			   "page private not zero on page %llu",
977 			   (unsigned long long)page_offset(page));
978 		detach_page_private(page);
979 	}
980 }
981 
982 static int btree_set_page_dirty(struct page *page)
983 {
984 #ifdef DEBUG
985 	struct extent_buffer *eb;
986 
987 	BUG_ON(!PagePrivate(page));
988 	eb = (struct extent_buffer *)page->private;
989 	BUG_ON(!eb);
990 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
991 	BUG_ON(!atomic_read(&eb->refs));
992 	btrfs_assert_tree_locked(eb);
993 #endif
994 	return __set_page_dirty_nobuffers(page);
995 }
996 
997 static const struct address_space_operations btree_aops = {
998 	.readpage	= btree_readpage,
999 	.writepages	= btree_writepages,
1000 	.releasepage	= btree_releasepage,
1001 	.invalidatepage = btree_invalidatepage,
1002 #ifdef CONFIG_MIGRATION
1003 	.migratepage	= btree_migratepage,
1004 #endif
1005 	.set_page_dirty = btree_set_page_dirty,
1006 };
1007 
1008 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1009 {
1010 	struct extent_buffer *buf = NULL;
1011 	int ret;
1012 
1013 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1014 	if (IS_ERR(buf))
1015 		return;
1016 
1017 	ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1018 	if (ret < 0)
1019 		free_extent_buffer_stale(buf);
1020 	else
1021 		free_extent_buffer(buf);
1022 }
1023 
1024 struct extent_buffer *btrfs_find_create_tree_block(
1025 						struct btrfs_fs_info *fs_info,
1026 						u64 bytenr)
1027 {
1028 	if (btrfs_is_testing(fs_info))
1029 		return alloc_test_extent_buffer(fs_info, bytenr);
1030 	return alloc_extent_buffer(fs_info, bytenr);
1031 }
1032 
1033 /*
1034  * Read tree block at logical address @bytenr and do variant basic but critical
1035  * verification.
1036  *
1037  * @parent_transid:	expected transid of this tree block, skip check if 0
1038  * @level:		expected level, mandatory check
1039  * @first_key:		expected key in slot 0, skip check if NULL
1040  */
1041 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1042 				      u64 parent_transid, int level,
1043 				      struct btrfs_key *first_key)
1044 {
1045 	struct extent_buffer *buf = NULL;
1046 	int ret;
1047 
1048 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1049 	if (IS_ERR(buf))
1050 		return buf;
1051 
1052 	ret = btree_read_extent_buffer_pages(buf, parent_transid,
1053 					     level, first_key);
1054 	if (ret) {
1055 		free_extent_buffer_stale(buf);
1056 		return ERR_PTR(ret);
1057 	}
1058 	return buf;
1059 
1060 }
1061 
1062 void btrfs_clean_tree_block(struct extent_buffer *buf)
1063 {
1064 	struct btrfs_fs_info *fs_info = buf->fs_info;
1065 	if (btrfs_header_generation(buf) ==
1066 	    fs_info->running_transaction->transid) {
1067 		btrfs_assert_tree_locked(buf);
1068 
1069 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1070 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1071 						 -buf->len,
1072 						 fs_info->dirty_metadata_batch);
1073 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1074 			btrfs_set_lock_blocking_write(buf);
1075 			clear_extent_buffer_dirty(buf);
1076 		}
1077 	}
1078 }
1079 
1080 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1081 			 u64 objectid)
1082 {
1083 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1084 	root->fs_info = fs_info;
1085 	root->node = NULL;
1086 	root->commit_root = NULL;
1087 	root->state = 0;
1088 	root->orphan_cleanup_state = 0;
1089 
1090 	root->last_trans = 0;
1091 	root->highest_objectid = 0;
1092 	root->nr_delalloc_inodes = 0;
1093 	root->nr_ordered_extents = 0;
1094 	root->inode_tree = RB_ROOT;
1095 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1096 	root->block_rsv = NULL;
1097 
1098 	INIT_LIST_HEAD(&root->dirty_list);
1099 	INIT_LIST_HEAD(&root->root_list);
1100 	INIT_LIST_HEAD(&root->delalloc_inodes);
1101 	INIT_LIST_HEAD(&root->delalloc_root);
1102 	INIT_LIST_HEAD(&root->ordered_extents);
1103 	INIT_LIST_HEAD(&root->ordered_root);
1104 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1105 	INIT_LIST_HEAD(&root->logged_list[0]);
1106 	INIT_LIST_HEAD(&root->logged_list[1]);
1107 	spin_lock_init(&root->inode_lock);
1108 	spin_lock_init(&root->delalloc_lock);
1109 	spin_lock_init(&root->ordered_extent_lock);
1110 	spin_lock_init(&root->accounting_lock);
1111 	spin_lock_init(&root->log_extents_lock[0]);
1112 	spin_lock_init(&root->log_extents_lock[1]);
1113 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1114 	mutex_init(&root->objectid_mutex);
1115 	mutex_init(&root->log_mutex);
1116 	mutex_init(&root->ordered_extent_mutex);
1117 	mutex_init(&root->delalloc_mutex);
1118 	init_waitqueue_head(&root->qgroup_flush_wait);
1119 	init_waitqueue_head(&root->log_writer_wait);
1120 	init_waitqueue_head(&root->log_commit_wait[0]);
1121 	init_waitqueue_head(&root->log_commit_wait[1]);
1122 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1123 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1124 	atomic_set(&root->log_commit[0], 0);
1125 	atomic_set(&root->log_commit[1], 0);
1126 	atomic_set(&root->log_writers, 0);
1127 	atomic_set(&root->log_batch, 0);
1128 	refcount_set(&root->refs, 1);
1129 	atomic_set(&root->snapshot_force_cow, 0);
1130 	atomic_set(&root->nr_swapfiles, 0);
1131 	root->log_transid = 0;
1132 	root->log_transid_committed = -1;
1133 	root->last_log_commit = 0;
1134 	if (!dummy) {
1135 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1136 				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1137 		extent_io_tree_init(fs_info, &root->log_csum_range,
1138 				    IO_TREE_LOG_CSUM_RANGE, NULL);
1139 	}
1140 
1141 	memset(&root->root_key, 0, sizeof(root->root_key));
1142 	memset(&root->root_item, 0, sizeof(root->root_item));
1143 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1144 	root->root_key.objectid = objectid;
1145 	root->anon_dev = 0;
1146 
1147 	spin_lock_init(&root->root_item_lock);
1148 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1149 #ifdef CONFIG_BTRFS_DEBUG
1150 	INIT_LIST_HEAD(&root->leak_list);
1151 	spin_lock(&fs_info->fs_roots_radix_lock);
1152 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1153 	spin_unlock(&fs_info->fs_roots_radix_lock);
1154 #endif
1155 }
1156 
1157 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1158 					   u64 objectid, gfp_t flags)
1159 {
1160 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1161 	if (root)
1162 		__setup_root(root, fs_info, objectid);
1163 	return root;
1164 }
1165 
1166 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1167 /* Should only be used by the testing infrastructure */
1168 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1169 {
1170 	struct btrfs_root *root;
1171 
1172 	if (!fs_info)
1173 		return ERR_PTR(-EINVAL);
1174 
1175 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1176 	if (!root)
1177 		return ERR_PTR(-ENOMEM);
1178 
1179 	/* We don't use the stripesize in selftest, set it as sectorsize */
1180 	root->alloc_bytenr = 0;
1181 
1182 	return root;
1183 }
1184 #endif
1185 
1186 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1187 				     u64 objectid)
1188 {
1189 	struct btrfs_fs_info *fs_info = trans->fs_info;
1190 	struct extent_buffer *leaf;
1191 	struct btrfs_root *tree_root = fs_info->tree_root;
1192 	struct btrfs_root *root;
1193 	struct btrfs_key key;
1194 	unsigned int nofs_flag;
1195 	int ret = 0;
1196 
1197 	/*
1198 	 * We're holding a transaction handle, so use a NOFS memory allocation
1199 	 * context to avoid deadlock if reclaim happens.
1200 	 */
1201 	nofs_flag = memalloc_nofs_save();
1202 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1203 	memalloc_nofs_restore(nofs_flag);
1204 	if (!root)
1205 		return ERR_PTR(-ENOMEM);
1206 
1207 	root->root_key.objectid = objectid;
1208 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1209 	root->root_key.offset = 0;
1210 
1211 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1212 	if (IS_ERR(leaf)) {
1213 		ret = PTR_ERR(leaf);
1214 		leaf = NULL;
1215 		goto fail;
1216 	}
1217 
1218 	root->node = leaf;
1219 	btrfs_mark_buffer_dirty(leaf);
1220 
1221 	root->commit_root = btrfs_root_node(root);
1222 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1223 
1224 	root->root_item.flags = 0;
1225 	root->root_item.byte_limit = 0;
1226 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1227 	btrfs_set_root_generation(&root->root_item, trans->transid);
1228 	btrfs_set_root_level(&root->root_item, 0);
1229 	btrfs_set_root_refs(&root->root_item, 1);
1230 	btrfs_set_root_used(&root->root_item, leaf->len);
1231 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1232 	btrfs_set_root_dirid(&root->root_item, 0);
1233 	if (is_fstree(objectid))
1234 		generate_random_guid(root->root_item.uuid);
1235 	else
1236 		export_guid(root->root_item.uuid, &guid_null);
1237 	root->root_item.drop_level = 0;
1238 
1239 	key.objectid = objectid;
1240 	key.type = BTRFS_ROOT_ITEM_KEY;
1241 	key.offset = 0;
1242 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1243 	if (ret)
1244 		goto fail;
1245 
1246 	btrfs_tree_unlock(leaf);
1247 
1248 	return root;
1249 
1250 fail:
1251 	if (leaf)
1252 		btrfs_tree_unlock(leaf);
1253 	btrfs_put_root(root);
1254 
1255 	return ERR_PTR(ret);
1256 }
1257 
1258 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1259 					 struct btrfs_fs_info *fs_info)
1260 {
1261 	struct btrfs_root *root;
1262 	struct extent_buffer *leaf;
1263 
1264 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1265 	if (!root)
1266 		return ERR_PTR(-ENOMEM);
1267 
1268 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1269 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1270 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1271 
1272 	/*
1273 	 * DON'T set SHAREABLE bit for log trees.
1274 	 *
1275 	 * Log trees are not exposed to user space thus can't be snapshotted,
1276 	 * and they go away before a real commit is actually done.
1277 	 *
1278 	 * They do store pointers to file data extents, and those reference
1279 	 * counts still get updated (along with back refs to the log tree).
1280 	 */
1281 
1282 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1283 			NULL, 0, 0, 0);
1284 	if (IS_ERR(leaf)) {
1285 		btrfs_put_root(root);
1286 		return ERR_CAST(leaf);
1287 	}
1288 
1289 	root->node = leaf;
1290 
1291 	btrfs_mark_buffer_dirty(root->node);
1292 	btrfs_tree_unlock(root->node);
1293 	return root;
1294 }
1295 
1296 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1297 			     struct btrfs_fs_info *fs_info)
1298 {
1299 	struct btrfs_root *log_root;
1300 
1301 	log_root = alloc_log_tree(trans, fs_info);
1302 	if (IS_ERR(log_root))
1303 		return PTR_ERR(log_root);
1304 	WARN_ON(fs_info->log_root_tree);
1305 	fs_info->log_root_tree = log_root;
1306 	return 0;
1307 }
1308 
1309 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1310 		       struct btrfs_root *root)
1311 {
1312 	struct btrfs_fs_info *fs_info = root->fs_info;
1313 	struct btrfs_root *log_root;
1314 	struct btrfs_inode_item *inode_item;
1315 
1316 	log_root = alloc_log_tree(trans, fs_info);
1317 	if (IS_ERR(log_root))
1318 		return PTR_ERR(log_root);
1319 
1320 	log_root->last_trans = trans->transid;
1321 	log_root->root_key.offset = root->root_key.objectid;
1322 
1323 	inode_item = &log_root->root_item.inode;
1324 	btrfs_set_stack_inode_generation(inode_item, 1);
1325 	btrfs_set_stack_inode_size(inode_item, 3);
1326 	btrfs_set_stack_inode_nlink(inode_item, 1);
1327 	btrfs_set_stack_inode_nbytes(inode_item,
1328 				     fs_info->nodesize);
1329 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1330 
1331 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1332 
1333 	WARN_ON(root->log_root);
1334 	root->log_root = log_root;
1335 	root->log_transid = 0;
1336 	root->log_transid_committed = -1;
1337 	root->last_log_commit = 0;
1338 	return 0;
1339 }
1340 
1341 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1342 					struct btrfs_key *key)
1343 {
1344 	struct btrfs_root *root;
1345 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1346 	struct btrfs_path *path;
1347 	u64 generation;
1348 	int ret;
1349 	int level;
1350 
1351 	path = btrfs_alloc_path();
1352 	if (!path)
1353 		return ERR_PTR(-ENOMEM);
1354 
1355 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1356 	if (!root) {
1357 		ret = -ENOMEM;
1358 		goto alloc_fail;
1359 	}
1360 
1361 	ret = btrfs_find_root(tree_root, key, path,
1362 			      &root->root_item, &root->root_key);
1363 	if (ret) {
1364 		if (ret > 0)
1365 			ret = -ENOENT;
1366 		goto find_fail;
1367 	}
1368 
1369 	generation = btrfs_root_generation(&root->root_item);
1370 	level = btrfs_root_level(&root->root_item);
1371 	root->node = read_tree_block(fs_info,
1372 				     btrfs_root_bytenr(&root->root_item),
1373 				     generation, level, NULL);
1374 	if (IS_ERR(root->node)) {
1375 		ret = PTR_ERR(root->node);
1376 		root->node = NULL;
1377 		goto find_fail;
1378 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1379 		ret = -EIO;
1380 		goto find_fail;
1381 	}
1382 	root->commit_root = btrfs_root_node(root);
1383 out:
1384 	btrfs_free_path(path);
1385 	return root;
1386 
1387 find_fail:
1388 	btrfs_put_root(root);
1389 alloc_fail:
1390 	root = ERR_PTR(ret);
1391 	goto out;
1392 }
1393 
1394 /*
1395  * Initialize subvolume root in-memory structure
1396  *
1397  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1398  */
1399 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1400 {
1401 	int ret;
1402 	unsigned int nofs_flag;
1403 
1404 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1405 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1406 					GFP_NOFS);
1407 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1408 		ret = -ENOMEM;
1409 		goto fail;
1410 	}
1411 
1412 	/*
1413 	 * We might be called under a transaction (e.g. indirect backref
1414 	 * resolution) which could deadlock if it triggers memory reclaim
1415 	 */
1416 	nofs_flag = memalloc_nofs_save();
1417 	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1418 	memalloc_nofs_restore(nofs_flag);
1419 	if (ret)
1420 		goto fail;
1421 
1422 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1423 	    root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1424 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1425 		btrfs_check_and_init_root_item(&root->root_item);
1426 	}
1427 
1428 	btrfs_init_free_ino_ctl(root);
1429 	spin_lock_init(&root->ino_cache_lock);
1430 	init_waitqueue_head(&root->ino_cache_wait);
1431 
1432 	/*
1433 	 * Don't assign anonymous block device to roots that are not exposed to
1434 	 * userspace, the id pool is limited to 1M
1435 	 */
1436 	if (is_fstree(root->root_key.objectid) &&
1437 	    btrfs_root_refs(&root->root_item) > 0) {
1438 		if (!anon_dev) {
1439 			ret = get_anon_bdev(&root->anon_dev);
1440 			if (ret)
1441 				goto fail;
1442 		} else {
1443 			root->anon_dev = anon_dev;
1444 		}
1445 	}
1446 
1447 	mutex_lock(&root->objectid_mutex);
1448 	ret = btrfs_find_highest_objectid(root,
1449 					&root->highest_objectid);
1450 	if (ret) {
1451 		mutex_unlock(&root->objectid_mutex);
1452 		goto fail;
1453 	}
1454 
1455 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1456 
1457 	mutex_unlock(&root->objectid_mutex);
1458 
1459 	return 0;
1460 fail:
1461 	/* The caller is responsible to call btrfs_free_fs_root */
1462 	return ret;
1463 }
1464 
1465 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1466 					       u64 root_id)
1467 {
1468 	struct btrfs_root *root;
1469 
1470 	spin_lock(&fs_info->fs_roots_radix_lock);
1471 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1472 				 (unsigned long)root_id);
1473 	if (root)
1474 		root = btrfs_grab_root(root);
1475 	spin_unlock(&fs_info->fs_roots_radix_lock);
1476 	return root;
1477 }
1478 
1479 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1480 			 struct btrfs_root *root)
1481 {
1482 	int ret;
1483 
1484 	ret = radix_tree_preload(GFP_NOFS);
1485 	if (ret)
1486 		return ret;
1487 
1488 	spin_lock(&fs_info->fs_roots_radix_lock);
1489 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1490 				(unsigned long)root->root_key.objectid,
1491 				root);
1492 	if (ret == 0) {
1493 		btrfs_grab_root(root);
1494 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1495 	}
1496 	spin_unlock(&fs_info->fs_roots_radix_lock);
1497 	radix_tree_preload_end();
1498 
1499 	return ret;
1500 }
1501 
1502 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1503 {
1504 #ifdef CONFIG_BTRFS_DEBUG
1505 	struct btrfs_root *root;
1506 
1507 	while (!list_empty(&fs_info->allocated_roots)) {
1508 		root = list_first_entry(&fs_info->allocated_roots,
1509 					struct btrfs_root, leak_list);
1510 		btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1511 			  root->root_key.objectid, root->root_key.offset,
1512 			  refcount_read(&root->refs));
1513 		while (refcount_read(&root->refs) > 1)
1514 			btrfs_put_root(root);
1515 		btrfs_put_root(root);
1516 	}
1517 #endif
1518 }
1519 
1520 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1521 {
1522 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1523 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1524 	percpu_counter_destroy(&fs_info->dio_bytes);
1525 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1526 	btrfs_free_csum_hash(fs_info);
1527 	btrfs_free_stripe_hash_table(fs_info);
1528 	btrfs_free_ref_cache(fs_info);
1529 	kfree(fs_info->balance_ctl);
1530 	kfree(fs_info->delayed_root);
1531 	btrfs_put_root(fs_info->extent_root);
1532 	btrfs_put_root(fs_info->tree_root);
1533 	btrfs_put_root(fs_info->chunk_root);
1534 	btrfs_put_root(fs_info->dev_root);
1535 	btrfs_put_root(fs_info->csum_root);
1536 	btrfs_put_root(fs_info->quota_root);
1537 	btrfs_put_root(fs_info->uuid_root);
1538 	btrfs_put_root(fs_info->free_space_root);
1539 	btrfs_put_root(fs_info->fs_root);
1540 	btrfs_put_root(fs_info->data_reloc_root);
1541 	btrfs_check_leaked_roots(fs_info);
1542 	btrfs_extent_buffer_leak_debug_check(fs_info);
1543 	kfree(fs_info->super_copy);
1544 	kfree(fs_info->super_for_commit);
1545 	kvfree(fs_info);
1546 }
1547 
1548 
1549 /*
1550  * Get an in-memory reference of a root structure.
1551  *
1552  * For essential trees like root/extent tree, we grab it from fs_info directly.
1553  * For subvolume trees, we check the cached filesystem roots first. If not
1554  * found, then read it from disk and add it to cached fs roots.
1555  *
1556  * Caller should release the root by calling btrfs_put_root() after the usage.
1557  *
1558  * NOTE: Reloc and log trees can't be read by this function as they share the
1559  *	 same root objectid.
1560  *
1561  * @objectid:	root id
1562  * @anon_dev:	preallocated anonymous block device number for new roots,
1563  * 		pass 0 for new allocation.
1564  * @check_ref:	whether to check root item references, If true, return -ENOENT
1565  *		for orphan roots
1566  */
1567 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1568 					     u64 objectid, dev_t anon_dev,
1569 					     bool check_ref)
1570 {
1571 	struct btrfs_root *root;
1572 	struct btrfs_path *path;
1573 	struct btrfs_key key;
1574 	int ret;
1575 
1576 	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1577 		return btrfs_grab_root(fs_info->tree_root);
1578 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1579 		return btrfs_grab_root(fs_info->extent_root);
1580 	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1581 		return btrfs_grab_root(fs_info->chunk_root);
1582 	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1583 		return btrfs_grab_root(fs_info->dev_root);
1584 	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1585 		return btrfs_grab_root(fs_info->csum_root);
1586 	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1587 		return btrfs_grab_root(fs_info->quota_root) ?
1588 			fs_info->quota_root : ERR_PTR(-ENOENT);
1589 	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1590 		return btrfs_grab_root(fs_info->uuid_root) ?
1591 			fs_info->uuid_root : ERR_PTR(-ENOENT);
1592 	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1593 		return btrfs_grab_root(fs_info->free_space_root) ?
1594 			fs_info->free_space_root : ERR_PTR(-ENOENT);
1595 again:
1596 	root = btrfs_lookup_fs_root(fs_info, objectid);
1597 	if (root) {
1598 		/* Shouldn't get preallocated anon_dev for cached roots */
1599 		ASSERT(!anon_dev);
1600 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1601 			btrfs_put_root(root);
1602 			return ERR_PTR(-ENOENT);
1603 		}
1604 		return root;
1605 	}
1606 
1607 	key.objectid = objectid;
1608 	key.type = BTRFS_ROOT_ITEM_KEY;
1609 	key.offset = (u64)-1;
1610 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1611 	if (IS_ERR(root))
1612 		return root;
1613 
1614 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1615 		ret = -ENOENT;
1616 		goto fail;
1617 	}
1618 
1619 	ret = btrfs_init_fs_root(root, anon_dev);
1620 	if (ret)
1621 		goto fail;
1622 
1623 	path = btrfs_alloc_path();
1624 	if (!path) {
1625 		ret = -ENOMEM;
1626 		goto fail;
1627 	}
1628 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1629 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1630 	key.offset = objectid;
1631 
1632 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1633 	btrfs_free_path(path);
1634 	if (ret < 0)
1635 		goto fail;
1636 	if (ret == 0)
1637 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1638 
1639 	ret = btrfs_insert_fs_root(fs_info, root);
1640 	if (ret) {
1641 		btrfs_put_root(root);
1642 		if (ret == -EEXIST)
1643 			goto again;
1644 		goto fail;
1645 	}
1646 	return root;
1647 fail:
1648 	btrfs_put_root(root);
1649 	return ERR_PTR(ret);
1650 }
1651 
1652 /*
1653  * Get in-memory reference of a root structure
1654  *
1655  * @objectid:	tree objectid
1656  * @check_ref:	if set, verify that the tree exists and the item has at least
1657  *		one reference
1658  */
1659 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1660 				     u64 objectid, bool check_ref)
1661 {
1662 	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1663 }
1664 
1665 /*
1666  * Get in-memory reference of a root structure, created as new, optionally pass
1667  * the anonymous block device id
1668  *
1669  * @objectid:	tree objectid
1670  * @anon_dev:	if zero, allocate a new anonymous block device or use the
1671  *		parameter value
1672  */
1673 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1674 					 u64 objectid, dev_t anon_dev)
1675 {
1676 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1677 }
1678 
1679 /*
1680  * called by the kthread helper functions to finally call the bio end_io
1681  * functions.  This is where read checksum verification actually happens
1682  */
1683 static void end_workqueue_fn(struct btrfs_work *work)
1684 {
1685 	struct bio *bio;
1686 	struct btrfs_end_io_wq *end_io_wq;
1687 
1688 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1689 	bio = end_io_wq->bio;
1690 
1691 	bio->bi_status = end_io_wq->status;
1692 	bio->bi_private = end_io_wq->private;
1693 	bio->bi_end_io = end_io_wq->end_io;
1694 	bio_endio(bio);
1695 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1696 }
1697 
1698 static int cleaner_kthread(void *arg)
1699 {
1700 	struct btrfs_root *root = arg;
1701 	struct btrfs_fs_info *fs_info = root->fs_info;
1702 	int again;
1703 
1704 	while (1) {
1705 		again = 0;
1706 
1707 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1708 
1709 		/* Make the cleaner go to sleep early. */
1710 		if (btrfs_need_cleaner_sleep(fs_info))
1711 			goto sleep;
1712 
1713 		/*
1714 		 * Do not do anything if we might cause open_ctree() to block
1715 		 * before we have finished mounting the filesystem.
1716 		 */
1717 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1718 			goto sleep;
1719 
1720 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1721 			goto sleep;
1722 
1723 		/*
1724 		 * Avoid the problem that we change the status of the fs
1725 		 * during the above check and trylock.
1726 		 */
1727 		if (btrfs_need_cleaner_sleep(fs_info)) {
1728 			mutex_unlock(&fs_info->cleaner_mutex);
1729 			goto sleep;
1730 		}
1731 
1732 		btrfs_run_delayed_iputs(fs_info);
1733 
1734 		again = btrfs_clean_one_deleted_snapshot(root);
1735 		mutex_unlock(&fs_info->cleaner_mutex);
1736 
1737 		/*
1738 		 * The defragger has dealt with the R/O remount and umount,
1739 		 * needn't do anything special here.
1740 		 */
1741 		btrfs_run_defrag_inodes(fs_info);
1742 
1743 		/*
1744 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1745 		 * with relocation (btrfs_relocate_chunk) and relocation
1746 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1747 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1748 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1749 		 * unused block groups.
1750 		 */
1751 		btrfs_delete_unused_bgs(fs_info);
1752 sleep:
1753 		clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1754 		if (kthread_should_park())
1755 			kthread_parkme();
1756 		if (kthread_should_stop())
1757 			return 0;
1758 		if (!again) {
1759 			set_current_state(TASK_INTERRUPTIBLE);
1760 			schedule();
1761 			__set_current_state(TASK_RUNNING);
1762 		}
1763 	}
1764 }
1765 
1766 static int transaction_kthread(void *arg)
1767 {
1768 	struct btrfs_root *root = arg;
1769 	struct btrfs_fs_info *fs_info = root->fs_info;
1770 	struct btrfs_trans_handle *trans;
1771 	struct btrfs_transaction *cur;
1772 	u64 transid;
1773 	time64_t now;
1774 	unsigned long delay;
1775 	bool cannot_commit;
1776 
1777 	do {
1778 		cannot_commit = false;
1779 		delay = HZ * fs_info->commit_interval;
1780 		mutex_lock(&fs_info->transaction_kthread_mutex);
1781 
1782 		spin_lock(&fs_info->trans_lock);
1783 		cur = fs_info->running_transaction;
1784 		if (!cur) {
1785 			spin_unlock(&fs_info->trans_lock);
1786 			goto sleep;
1787 		}
1788 
1789 		now = ktime_get_seconds();
1790 		if (cur->state < TRANS_STATE_COMMIT_START &&
1791 		    (now < cur->start_time ||
1792 		     now - cur->start_time < fs_info->commit_interval)) {
1793 			spin_unlock(&fs_info->trans_lock);
1794 			delay = HZ * 5;
1795 			goto sleep;
1796 		}
1797 		transid = cur->transid;
1798 		spin_unlock(&fs_info->trans_lock);
1799 
1800 		/* If the file system is aborted, this will always fail. */
1801 		trans = btrfs_attach_transaction(root);
1802 		if (IS_ERR(trans)) {
1803 			if (PTR_ERR(trans) != -ENOENT)
1804 				cannot_commit = true;
1805 			goto sleep;
1806 		}
1807 		if (transid == trans->transid) {
1808 			btrfs_commit_transaction(trans);
1809 		} else {
1810 			btrfs_end_transaction(trans);
1811 		}
1812 sleep:
1813 		wake_up_process(fs_info->cleaner_kthread);
1814 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1815 
1816 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1817 				      &fs_info->fs_state)))
1818 			btrfs_cleanup_transaction(fs_info);
1819 		if (!kthread_should_stop() &&
1820 				(!btrfs_transaction_blocked(fs_info) ||
1821 				 cannot_commit))
1822 			schedule_timeout_interruptible(delay);
1823 	} while (!kthread_should_stop());
1824 	return 0;
1825 }
1826 
1827 /*
1828  * This will find the highest generation in the array of root backups.  The
1829  * index of the highest array is returned, or -EINVAL if we can't find
1830  * anything.
1831  *
1832  * We check to make sure the array is valid by comparing the
1833  * generation of the latest  root in the array with the generation
1834  * in the super block.  If they don't match we pitch it.
1835  */
1836 static int find_newest_super_backup(struct btrfs_fs_info *info)
1837 {
1838 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1839 	u64 cur;
1840 	struct btrfs_root_backup *root_backup;
1841 	int i;
1842 
1843 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1844 		root_backup = info->super_copy->super_roots + i;
1845 		cur = btrfs_backup_tree_root_gen(root_backup);
1846 		if (cur == newest_gen)
1847 			return i;
1848 	}
1849 
1850 	return -EINVAL;
1851 }
1852 
1853 /*
1854  * copy all the root pointers into the super backup array.
1855  * this will bump the backup pointer by one when it is
1856  * done
1857  */
1858 static void backup_super_roots(struct btrfs_fs_info *info)
1859 {
1860 	const int next_backup = info->backup_root_index;
1861 	struct btrfs_root_backup *root_backup;
1862 
1863 	root_backup = info->super_for_commit->super_roots + next_backup;
1864 
1865 	/*
1866 	 * make sure all of our padding and empty slots get zero filled
1867 	 * regardless of which ones we use today
1868 	 */
1869 	memset(root_backup, 0, sizeof(*root_backup));
1870 
1871 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1872 
1873 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1874 	btrfs_set_backup_tree_root_gen(root_backup,
1875 			       btrfs_header_generation(info->tree_root->node));
1876 
1877 	btrfs_set_backup_tree_root_level(root_backup,
1878 			       btrfs_header_level(info->tree_root->node));
1879 
1880 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1881 	btrfs_set_backup_chunk_root_gen(root_backup,
1882 			       btrfs_header_generation(info->chunk_root->node));
1883 	btrfs_set_backup_chunk_root_level(root_backup,
1884 			       btrfs_header_level(info->chunk_root->node));
1885 
1886 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1887 	btrfs_set_backup_extent_root_gen(root_backup,
1888 			       btrfs_header_generation(info->extent_root->node));
1889 	btrfs_set_backup_extent_root_level(root_backup,
1890 			       btrfs_header_level(info->extent_root->node));
1891 
1892 	/*
1893 	 * we might commit during log recovery, which happens before we set
1894 	 * the fs_root.  Make sure it is valid before we fill it in.
1895 	 */
1896 	if (info->fs_root && info->fs_root->node) {
1897 		btrfs_set_backup_fs_root(root_backup,
1898 					 info->fs_root->node->start);
1899 		btrfs_set_backup_fs_root_gen(root_backup,
1900 			       btrfs_header_generation(info->fs_root->node));
1901 		btrfs_set_backup_fs_root_level(root_backup,
1902 			       btrfs_header_level(info->fs_root->node));
1903 	}
1904 
1905 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1906 	btrfs_set_backup_dev_root_gen(root_backup,
1907 			       btrfs_header_generation(info->dev_root->node));
1908 	btrfs_set_backup_dev_root_level(root_backup,
1909 				       btrfs_header_level(info->dev_root->node));
1910 
1911 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1912 	btrfs_set_backup_csum_root_gen(root_backup,
1913 			       btrfs_header_generation(info->csum_root->node));
1914 	btrfs_set_backup_csum_root_level(root_backup,
1915 			       btrfs_header_level(info->csum_root->node));
1916 
1917 	btrfs_set_backup_total_bytes(root_backup,
1918 			     btrfs_super_total_bytes(info->super_copy));
1919 	btrfs_set_backup_bytes_used(root_backup,
1920 			     btrfs_super_bytes_used(info->super_copy));
1921 	btrfs_set_backup_num_devices(root_backup,
1922 			     btrfs_super_num_devices(info->super_copy));
1923 
1924 	/*
1925 	 * if we don't copy this out to the super_copy, it won't get remembered
1926 	 * for the next commit
1927 	 */
1928 	memcpy(&info->super_copy->super_roots,
1929 	       &info->super_for_commit->super_roots,
1930 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1931 }
1932 
1933 /*
1934  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1935  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1936  *
1937  * fs_info - filesystem whose backup roots need to be read
1938  * priority - priority of backup root required
1939  *
1940  * Returns backup root index on success and -EINVAL otherwise.
1941  */
1942 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1943 {
1944 	int backup_index = find_newest_super_backup(fs_info);
1945 	struct btrfs_super_block *super = fs_info->super_copy;
1946 	struct btrfs_root_backup *root_backup;
1947 
1948 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1949 		if (priority == 0)
1950 			return backup_index;
1951 
1952 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1953 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1954 	} else {
1955 		return -EINVAL;
1956 	}
1957 
1958 	root_backup = super->super_roots + backup_index;
1959 
1960 	btrfs_set_super_generation(super,
1961 				   btrfs_backup_tree_root_gen(root_backup));
1962 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1963 	btrfs_set_super_root_level(super,
1964 				   btrfs_backup_tree_root_level(root_backup));
1965 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1966 
1967 	/*
1968 	 * Fixme: the total bytes and num_devices need to match or we should
1969 	 * need a fsck
1970 	 */
1971 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1972 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1973 
1974 	return backup_index;
1975 }
1976 
1977 /* helper to cleanup workers */
1978 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1979 {
1980 	btrfs_destroy_workqueue(fs_info->fixup_workers);
1981 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1982 	btrfs_destroy_workqueue(fs_info->workers);
1983 	btrfs_destroy_workqueue(fs_info->endio_workers);
1984 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1985 	btrfs_destroy_workqueue(fs_info->rmw_workers);
1986 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1987 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1988 	btrfs_destroy_workqueue(fs_info->delayed_workers);
1989 	btrfs_destroy_workqueue(fs_info->caching_workers);
1990 	btrfs_destroy_workqueue(fs_info->readahead_workers);
1991 	btrfs_destroy_workqueue(fs_info->flush_workers);
1992 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1993 	if (fs_info->discard_ctl.discard_workers)
1994 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1995 	/*
1996 	 * Now that all other work queues are destroyed, we can safely destroy
1997 	 * the queues used for metadata I/O, since tasks from those other work
1998 	 * queues can do metadata I/O operations.
1999 	 */
2000 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2001 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2002 }
2003 
2004 static void free_root_extent_buffers(struct btrfs_root *root)
2005 {
2006 	if (root) {
2007 		free_extent_buffer(root->node);
2008 		free_extent_buffer(root->commit_root);
2009 		root->node = NULL;
2010 		root->commit_root = NULL;
2011 	}
2012 }
2013 
2014 /* helper to cleanup tree roots */
2015 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2016 {
2017 	free_root_extent_buffers(info->tree_root);
2018 
2019 	free_root_extent_buffers(info->dev_root);
2020 	free_root_extent_buffers(info->extent_root);
2021 	free_root_extent_buffers(info->csum_root);
2022 	free_root_extent_buffers(info->quota_root);
2023 	free_root_extent_buffers(info->uuid_root);
2024 	free_root_extent_buffers(info->fs_root);
2025 	free_root_extent_buffers(info->data_reloc_root);
2026 	if (free_chunk_root)
2027 		free_root_extent_buffers(info->chunk_root);
2028 	free_root_extent_buffers(info->free_space_root);
2029 }
2030 
2031 void btrfs_put_root(struct btrfs_root *root)
2032 {
2033 	if (!root)
2034 		return;
2035 
2036 	if (refcount_dec_and_test(&root->refs)) {
2037 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2038 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2039 		if (root->anon_dev)
2040 			free_anon_bdev(root->anon_dev);
2041 		btrfs_drew_lock_destroy(&root->snapshot_lock);
2042 		free_root_extent_buffers(root);
2043 		kfree(root->free_ino_ctl);
2044 		kfree(root->free_ino_pinned);
2045 #ifdef CONFIG_BTRFS_DEBUG
2046 		spin_lock(&root->fs_info->fs_roots_radix_lock);
2047 		list_del_init(&root->leak_list);
2048 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2049 #endif
2050 		kfree(root);
2051 	}
2052 }
2053 
2054 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2055 {
2056 	int ret;
2057 	struct btrfs_root *gang[8];
2058 	int i;
2059 
2060 	while (!list_empty(&fs_info->dead_roots)) {
2061 		gang[0] = list_entry(fs_info->dead_roots.next,
2062 				     struct btrfs_root, root_list);
2063 		list_del(&gang[0]->root_list);
2064 
2065 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2066 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2067 		btrfs_put_root(gang[0]);
2068 	}
2069 
2070 	while (1) {
2071 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2072 					     (void **)gang, 0,
2073 					     ARRAY_SIZE(gang));
2074 		if (!ret)
2075 			break;
2076 		for (i = 0; i < ret; i++)
2077 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2078 	}
2079 }
2080 
2081 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2082 {
2083 	mutex_init(&fs_info->scrub_lock);
2084 	atomic_set(&fs_info->scrubs_running, 0);
2085 	atomic_set(&fs_info->scrub_pause_req, 0);
2086 	atomic_set(&fs_info->scrubs_paused, 0);
2087 	atomic_set(&fs_info->scrub_cancel_req, 0);
2088 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2089 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2090 }
2091 
2092 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2093 {
2094 	spin_lock_init(&fs_info->balance_lock);
2095 	mutex_init(&fs_info->balance_mutex);
2096 	atomic_set(&fs_info->balance_pause_req, 0);
2097 	atomic_set(&fs_info->balance_cancel_req, 0);
2098 	fs_info->balance_ctl = NULL;
2099 	init_waitqueue_head(&fs_info->balance_wait_q);
2100 }
2101 
2102 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2103 {
2104 	struct inode *inode = fs_info->btree_inode;
2105 
2106 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2107 	set_nlink(inode, 1);
2108 	/*
2109 	 * we set the i_size on the btree inode to the max possible int.
2110 	 * the real end of the address space is determined by all of
2111 	 * the devices in the system
2112 	 */
2113 	inode->i_size = OFFSET_MAX;
2114 	inode->i_mapping->a_ops = &btree_aops;
2115 
2116 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2117 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2118 			    IO_TREE_INODE_IO, inode);
2119 	BTRFS_I(inode)->io_tree.track_uptodate = false;
2120 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2121 
2122 	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2123 
2124 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2125 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2126 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2127 	btrfs_insert_inode_hash(inode);
2128 }
2129 
2130 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2131 {
2132 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2133 	init_rwsem(&fs_info->dev_replace.rwsem);
2134 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2135 }
2136 
2137 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2138 {
2139 	spin_lock_init(&fs_info->qgroup_lock);
2140 	mutex_init(&fs_info->qgroup_ioctl_lock);
2141 	fs_info->qgroup_tree = RB_ROOT;
2142 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2143 	fs_info->qgroup_seq = 1;
2144 	fs_info->qgroup_ulist = NULL;
2145 	fs_info->qgroup_rescan_running = false;
2146 	mutex_init(&fs_info->qgroup_rescan_lock);
2147 }
2148 
2149 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2150 		struct btrfs_fs_devices *fs_devices)
2151 {
2152 	u32 max_active = fs_info->thread_pool_size;
2153 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2154 
2155 	fs_info->workers =
2156 		btrfs_alloc_workqueue(fs_info, "worker",
2157 				      flags | WQ_HIGHPRI, max_active, 16);
2158 
2159 	fs_info->delalloc_workers =
2160 		btrfs_alloc_workqueue(fs_info, "delalloc",
2161 				      flags, max_active, 2);
2162 
2163 	fs_info->flush_workers =
2164 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2165 				      flags, max_active, 0);
2166 
2167 	fs_info->caching_workers =
2168 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2169 
2170 	fs_info->fixup_workers =
2171 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2172 
2173 	/*
2174 	 * endios are largely parallel and should have a very
2175 	 * low idle thresh
2176 	 */
2177 	fs_info->endio_workers =
2178 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2179 	fs_info->endio_meta_workers =
2180 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2181 				      max_active, 4);
2182 	fs_info->endio_meta_write_workers =
2183 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2184 				      max_active, 2);
2185 	fs_info->endio_raid56_workers =
2186 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2187 				      max_active, 4);
2188 	fs_info->rmw_workers =
2189 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2190 	fs_info->endio_write_workers =
2191 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2192 				      max_active, 2);
2193 	fs_info->endio_freespace_worker =
2194 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2195 				      max_active, 0);
2196 	fs_info->delayed_workers =
2197 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2198 				      max_active, 0);
2199 	fs_info->readahead_workers =
2200 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2201 				      max_active, 2);
2202 	fs_info->qgroup_rescan_workers =
2203 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2204 	fs_info->discard_ctl.discard_workers =
2205 		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2206 
2207 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2208 	      fs_info->flush_workers &&
2209 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2210 	      fs_info->endio_meta_write_workers &&
2211 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2212 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2213 	      fs_info->caching_workers && fs_info->readahead_workers &&
2214 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2215 	      fs_info->qgroup_rescan_workers &&
2216 	      fs_info->discard_ctl.discard_workers)) {
2217 		return -ENOMEM;
2218 	}
2219 
2220 	return 0;
2221 }
2222 
2223 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2224 {
2225 	struct crypto_shash *csum_shash;
2226 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2227 
2228 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2229 
2230 	if (IS_ERR(csum_shash)) {
2231 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2232 			  csum_driver);
2233 		return PTR_ERR(csum_shash);
2234 	}
2235 
2236 	fs_info->csum_shash = csum_shash;
2237 
2238 	return 0;
2239 }
2240 
2241 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2242 			    struct btrfs_fs_devices *fs_devices)
2243 {
2244 	int ret;
2245 	struct btrfs_root *log_tree_root;
2246 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2247 	u64 bytenr = btrfs_super_log_root(disk_super);
2248 	int level = btrfs_super_log_root_level(disk_super);
2249 
2250 	if (fs_devices->rw_devices == 0) {
2251 		btrfs_warn(fs_info, "log replay required on RO media");
2252 		return -EIO;
2253 	}
2254 
2255 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2256 					 GFP_KERNEL);
2257 	if (!log_tree_root)
2258 		return -ENOMEM;
2259 
2260 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2261 					      fs_info->generation + 1,
2262 					      level, NULL);
2263 	if (IS_ERR(log_tree_root->node)) {
2264 		btrfs_warn(fs_info, "failed to read log tree");
2265 		ret = PTR_ERR(log_tree_root->node);
2266 		log_tree_root->node = NULL;
2267 		btrfs_put_root(log_tree_root);
2268 		return ret;
2269 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2270 		btrfs_err(fs_info, "failed to read log tree");
2271 		btrfs_put_root(log_tree_root);
2272 		return -EIO;
2273 	}
2274 	/* returns with log_tree_root freed on success */
2275 	ret = btrfs_recover_log_trees(log_tree_root);
2276 	if (ret) {
2277 		btrfs_handle_fs_error(fs_info, ret,
2278 				      "Failed to recover log tree");
2279 		btrfs_put_root(log_tree_root);
2280 		return ret;
2281 	}
2282 
2283 	if (sb_rdonly(fs_info->sb)) {
2284 		ret = btrfs_commit_super(fs_info);
2285 		if (ret)
2286 			return ret;
2287 	}
2288 
2289 	return 0;
2290 }
2291 
2292 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2293 {
2294 	struct btrfs_root *tree_root = fs_info->tree_root;
2295 	struct btrfs_root *root;
2296 	struct btrfs_key location;
2297 	int ret;
2298 
2299 	BUG_ON(!fs_info->tree_root);
2300 
2301 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2302 	location.type = BTRFS_ROOT_ITEM_KEY;
2303 	location.offset = 0;
2304 
2305 	root = btrfs_read_tree_root(tree_root, &location);
2306 	if (IS_ERR(root)) {
2307 		ret = PTR_ERR(root);
2308 		goto out;
2309 	}
2310 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2311 	fs_info->extent_root = root;
2312 
2313 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2314 	root = btrfs_read_tree_root(tree_root, &location);
2315 	if (IS_ERR(root)) {
2316 		ret = PTR_ERR(root);
2317 		goto out;
2318 	}
2319 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2320 	fs_info->dev_root = root;
2321 	btrfs_init_devices_late(fs_info);
2322 
2323 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2324 	root = btrfs_read_tree_root(tree_root, &location);
2325 	if (IS_ERR(root)) {
2326 		ret = PTR_ERR(root);
2327 		goto out;
2328 	}
2329 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2330 	fs_info->csum_root = root;
2331 
2332 	/*
2333 	 * This tree can share blocks with some other fs tree during relocation
2334 	 * and we need a proper setup by btrfs_get_fs_root
2335 	 */
2336 	root = btrfs_get_fs_root(tree_root->fs_info,
2337 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2338 	if (IS_ERR(root)) {
2339 		ret = PTR_ERR(root);
2340 		goto out;
2341 	}
2342 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2343 	fs_info->data_reloc_root = root;
2344 
2345 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2346 	root = btrfs_read_tree_root(tree_root, &location);
2347 	if (!IS_ERR(root)) {
2348 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2349 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2350 		fs_info->quota_root = root;
2351 	}
2352 
2353 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2354 	root = btrfs_read_tree_root(tree_root, &location);
2355 	if (IS_ERR(root)) {
2356 		ret = PTR_ERR(root);
2357 		if (ret != -ENOENT)
2358 			goto out;
2359 	} else {
2360 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2361 		fs_info->uuid_root = root;
2362 	}
2363 
2364 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2365 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2366 		root = btrfs_read_tree_root(tree_root, &location);
2367 		if (IS_ERR(root)) {
2368 			ret = PTR_ERR(root);
2369 			goto out;
2370 		}
2371 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2372 		fs_info->free_space_root = root;
2373 	}
2374 
2375 	return 0;
2376 out:
2377 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2378 		   location.objectid, ret);
2379 	return ret;
2380 }
2381 
2382 /*
2383  * Real super block validation
2384  * NOTE: super csum type and incompat features will not be checked here.
2385  *
2386  * @sb:		super block to check
2387  * @mirror_num:	the super block number to check its bytenr:
2388  * 		0	the primary (1st) sb
2389  * 		1, 2	2nd and 3rd backup copy
2390  * 	       -1	skip bytenr check
2391  */
2392 static int validate_super(struct btrfs_fs_info *fs_info,
2393 			    struct btrfs_super_block *sb, int mirror_num)
2394 {
2395 	u64 nodesize = btrfs_super_nodesize(sb);
2396 	u64 sectorsize = btrfs_super_sectorsize(sb);
2397 	int ret = 0;
2398 
2399 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2400 		btrfs_err(fs_info, "no valid FS found");
2401 		ret = -EINVAL;
2402 	}
2403 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2404 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2405 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2406 		ret = -EINVAL;
2407 	}
2408 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2409 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2410 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2411 		ret = -EINVAL;
2412 	}
2413 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2414 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2415 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2416 		ret = -EINVAL;
2417 	}
2418 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2419 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2420 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2421 		ret = -EINVAL;
2422 	}
2423 
2424 	/*
2425 	 * Check sectorsize and nodesize first, other check will need it.
2426 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2427 	 */
2428 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2429 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2430 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2431 		ret = -EINVAL;
2432 	}
2433 	/* Only PAGE SIZE is supported yet */
2434 	if (sectorsize != PAGE_SIZE) {
2435 		btrfs_err(fs_info,
2436 			"sectorsize %llu not supported yet, only support %lu",
2437 			sectorsize, PAGE_SIZE);
2438 		ret = -EINVAL;
2439 	}
2440 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2441 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2442 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2443 		ret = -EINVAL;
2444 	}
2445 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2446 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2447 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2448 		ret = -EINVAL;
2449 	}
2450 
2451 	/* Root alignment check */
2452 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2453 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2454 			   btrfs_super_root(sb));
2455 		ret = -EINVAL;
2456 	}
2457 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2458 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2459 			   btrfs_super_chunk_root(sb));
2460 		ret = -EINVAL;
2461 	}
2462 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2463 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2464 			   btrfs_super_log_root(sb));
2465 		ret = -EINVAL;
2466 	}
2467 
2468 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2469 		   BTRFS_FSID_SIZE) != 0) {
2470 		btrfs_err(fs_info,
2471 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2472 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2473 		ret = -EINVAL;
2474 	}
2475 
2476 	/*
2477 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2478 	 * done later
2479 	 */
2480 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2481 		btrfs_err(fs_info, "bytes_used is too small %llu",
2482 			  btrfs_super_bytes_used(sb));
2483 		ret = -EINVAL;
2484 	}
2485 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2486 		btrfs_err(fs_info, "invalid stripesize %u",
2487 			  btrfs_super_stripesize(sb));
2488 		ret = -EINVAL;
2489 	}
2490 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2491 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2492 			   btrfs_super_num_devices(sb));
2493 	if (btrfs_super_num_devices(sb) == 0) {
2494 		btrfs_err(fs_info, "number of devices is 0");
2495 		ret = -EINVAL;
2496 	}
2497 
2498 	if (mirror_num >= 0 &&
2499 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2500 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2501 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2502 		ret = -EINVAL;
2503 	}
2504 
2505 	/*
2506 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2507 	 * and one chunk
2508 	 */
2509 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2510 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2511 			  btrfs_super_sys_array_size(sb),
2512 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2513 		ret = -EINVAL;
2514 	}
2515 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2516 			+ sizeof(struct btrfs_chunk)) {
2517 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2518 			  btrfs_super_sys_array_size(sb),
2519 			  sizeof(struct btrfs_disk_key)
2520 			  + sizeof(struct btrfs_chunk));
2521 		ret = -EINVAL;
2522 	}
2523 
2524 	/*
2525 	 * The generation is a global counter, we'll trust it more than the others
2526 	 * but it's still possible that it's the one that's wrong.
2527 	 */
2528 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2529 		btrfs_warn(fs_info,
2530 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2531 			btrfs_super_generation(sb),
2532 			btrfs_super_chunk_root_generation(sb));
2533 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2534 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2535 		btrfs_warn(fs_info,
2536 			"suspicious: generation < cache_generation: %llu < %llu",
2537 			btrfs_super_generation(sb),
2538 			btrfs_super_cache_generation(sb));
2539 
2540 	return ret;
2541 }
2542 
2543 /*
2544  * Validation of super block at mount time.
2545  * Some checks already done early at mount time, like csum type and incompat
2546  * flags will be skipped.
2547  */
2548 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2549 {
2550 	return validate_super(fs_info, fs_info->super_copy, 0);
2551 }
2552 
2553 /*
2554  * Validation of super block at write time.
2555  * Some checks like bytenr check will be skipped as their values will be
2556  * overwritten soon.
2557  * Extra checks like csum type and incompat flags will be done here.
2558  */
2559 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2560 				      struct btrfs_super_block *sb)
2561 {
2562 	int ret;
2563 
2564 	ret = validate_super(fs_info, sb, -1);
2565 	if (ret < 0)
2566 		goto out;
2567 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2568 		ret = -EUCLEAN;
2569 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2570 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2571 		goto out;
2572 	}
2573 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2574 		ret = -EUCLEAN;
2575 		btrfs_err(fs_info,
2576 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2577 			  btrfs_super_incompat_flags(sb),
2578 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2579 		goto out;
2580 	}
2581 out:
2582 	if (ret < 0)
2583 		btrfs_err(fs_info,
2584 		"super block corruption detected before writing it to disk");
2585 	return ret;
2586 }
2587 
2588 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2589 {
2590 	int backup_index = find_newest_super_backup(fs_info);
2591 	struct btrfs_super_block *sb = fs_info->super_copy;
2592 	struct btrfs_root *tree_root = fs_info->tree_root;
2593 	bool handle_error = false;
2594 	int ret = 0;
2595 	int i;
2596 
2597 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2598 		u64 generation;
2599 		int level;
2600 
2601 		if (handle_error) {
2602 			if (!IS_ERR(tree_root->node))
2603 				free_extent_buffer(tree_root->node);
2604 			tree_root->node = NULL;
2605 
2606 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2607 				break;
2608 
2609 			free_root_pointers(fs_info, 0);
2610 
2611 			/*
2612 			 * Don't use the log in recovery mode, it won't be
2613 			 * valid
2614 			 */
2615 			btrfs_set_super_log_root(sb, 0);
2616 
2617 			/* We can't trust the free space cache either */
2618 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2619 
2620 			ret = read_backup_root(fs_info, i);
2621 			backup_index = ret;
2622 			if (ret < 0)
2623 				return ret;
2624 		}
2625 		generation = btrfs_super_generation(sb);
2626 		level = btrfs_super_root_level(sb);
2627 		tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2628 						  generation, level, NULL);
2629 		if (IS_ERR(tree_root->node) ||
2630 		    !extent_buffer_uptodate(tree_root->node)) {
2631 			handle_error = true;
2632 
2633 			if (IS_ERR(tree_root->node)) {
2634 				ret = PTR_ERR(tree_root->node);
2635 				tree_root->node = NULL;
2636 			} else if (!extent_buffer_uptodate(tree_root->node)) {
2637 				ret = -EUCLEAN;
2638 			}
2639 
2640 			btrfs_warn(fs_info, "failed to read tree root");
2641 			continue;
2642 		}
2643 
2644 		btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2645 		tree_root->commit_root = btrfs_root_node(tree_root);
2646 		btrfs_set_root_refs(&tree_root->root_item, 1);
2647 
2648 		/*
2649 		 * No need to hold btrfs_root::objectid_mutex since the fs
2650 		 * hasn't been fully initialised and we are the only user
2651 		 */
2652 		ret = btrfs_find_highest_objectid(tree_root,
2653 						&tree_root->highest_objectid);
2654 		if (ret < 0) {
2655 			handle_error = true;
2656 			continue;
2657 		}
2658 
2659 		ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2660 
2661 		ret = btrfs_read_roots(fs_info);
2662 		if (ret < 0) {
2663 			handle_error = true;
2664 			continue;
2665 		}
2666 
2667 		/* All successful */
2668 		fs_info->generation = generation;
2669 		fs_info->last_trans_committed = generation;
2670 
2671 		/* Always begin writing backup roots after the one being used */
2672 		if (backup_index < 0) {
2673 			fs_info->backup_root_index = 0;
2674 		} else {
2675 			fs_info->backup_root_index = backup_index + 1;
2676 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2677 		}
2678 		break;
2679 	}
2680 
2681 	return ret;
2682 }
2683 
2684 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2685 {
2686 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2687 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2688 	INIT_LIST_HEAD(&fs_info->trans_list);
2689 	INIT_LIST_HEAD(&fs_info->dead_roots);
2690 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2691 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2692 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2693 	spin_lock_init(&fs_info->delalloc_root_lock);
2694 	spin_lock_init(&fs_info->trans_lock);
2695 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2696 	spin_lock_init(&fs_info->delayed_iput_lock);
2697 	spin_lock_init(&fs_info->defrag_inodes_lock);
2698 	spin_lock_init(&fs_info->super_lock);
2699 	spin_lock_init(&fs_info->buffer_lock);
2700 	spin_lock_init(&fs_info->unused_bgs_lock);
2701 	rwlock_init(&fs_info->tree_mod_log_lock);
2702 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2703 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2704 	mutex_init(&fs_info->reloc_mutex);
2705 	mutex_init(&fs_info->delalloc_root_mutex);
2706 	seqlock_init(&fs_info->profiles_lock);
2707 
2708 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2709 	INIT_LIST_HEAD(&fs_info->space_info);
2710 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2711 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2712 #ifdef CONFIG_BTRFS_DEBUG
2713 	INIT_LIST_HEAD(&fs_info->allocated_roots);
2714 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2715 	spin_lock_init(&fs_info->eb_leak_lock);
2716 #endif
2717 	extent_map_tree_init(&fs_info->mapping_tree);
2718 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2719 			     BTRFS_BLOCK_RSV_GLOBAL);
2720 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2721 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2722 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2723 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2724 			     BTRFS_BLOCK_RSV_DELOPS);
2725 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2726 			     BTRFS_BLOCK_RSV_DELREFS);
2727 
2728 	atomic_set(&fs_info->async_delalloc_pages, 0);
2729 	atomic_set(&fs_info->defrag_running, 0);
2730 	atomic_set(&fs_info->reada_works_cnt, 0);
2731 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2732 	atomic64_set(&fs_info->tree_mod_seq, 0);
2733 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2734 	fs_info->metadata_ratio = 0;
2735 	fs_info->defrag_inodes = RB_ROOT;
2736 	atomic64_set(&fs_info->free_chunk_space, 0);
2737 	fs_info->tree_mod_log = RB_ROOT;
2738 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2739 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2740 	/* readahead state */
2741 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2742 	spin_lock_init(&fs_info->reada_lock);
2743 	btrfs_init_ref_verify(fs_info);
2744 
2745 	fs_info->thread_pool_size = min_t(unsigned long,
2746 					  num_online_cpus() + 2, 8);
2747 
2748 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2749 	spin_lock_init(&fs_info->ordered_root_lock);
2750 
2751 	btrfs_init_scrub(fs_info);
2752 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2753 	fs_info->check_integrity_print_mask = 0;
2754 #endif
2755 	btrfs_init_balance(fs_info);
2756 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2757 
2758 	spin_lock_init(&fs_info->block_group_cache_lock);
2759 	fs_info->block_group_cache_tree = RB_ROOT;
2760 	fs_info->first_logical_byte = (u64)-1;
2761 
2762 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2763 			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2764 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2765 
2766 	mutex_init(&fs_info->ordered_operations_mutex);
2767 	mutex_init(&fs_info->tree_log_mutex);
2768 	mutex_init(&fs_info->chunk_mutex);
2769 	mutex_init(&fs_info->transaction_kthread_mutex);
2770 	mutex_init(&fs_info->cleaner_mutex);
2771 	mutex_init(&fs_info->ro_block_group_mutex);
2772 	init_rwsem(&fs_info->commit_root_sem);
2773 	init_rwsem(&fs_info->cleanup_work_sem);
2774 	init_rwsem(&fs_info->subvol_sem);
2775 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2776 
2777 	btrfs_init_dev_replace_locks(fs_info);
2778 	btrfs_init_qgroup(fs_info);
2779 	btrfs_discard_init(fs_info);
2780 
2781 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2782 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2783 
2784 	init_waitqueue_head(&fs_info->transaction_throttle);
2785 	init_waitqueue_head(&fs_info->transaction_wait);
2786 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2787 	init_waitqueue_head(&fs_info->async_submit_wait);
2788 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2789 
2790 	/* Usable values until the real ones are cached from the superblock */
2791 	fs_info->nodesize = 4096;
2792 	fs_info->sectorsize = 4096;
2793 	fs_info->stripesize = 4096;
2794 
2795 	spin_lock_init(&fs_info->swapfile_pins_lock);
2796 	fs_info->swapfile_pins = RB_ROOT;
2797 
2798 	fs_info->send_in_progress = 0;
2799 }
2800 
2801 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2802 {
2803 	int ret;
2804 
2805 	fs_info->sb = sb;
2806 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2807 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2808 
2809 	ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2810 	if (ret)
2811 		return ret;
2812 
2813 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2814 	if (ret)
2815 		return ret;
2816 
2817 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2818 					(1 + ilog2(nr_cpu_ids));
2819 
2820 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2821 	if (ret)
2822 		return ret;
2823 
2824 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2825 			GFP_KERNEL);
2826 	if (ret)
2827 		return ret;
2828 
2829 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2830 					GFP_KERNEL);
2831 	if (!fs_info->delayed_root)
2832 		return -ENOMEM;
2833 	btrfs_init_delayed_root(fs_info->delayed_root);
2834 
2835 	return btrfs_alloc_stripe_hash_table(fs_info);
2836 }
2837 
2838 static int btrfs_uuid_rescan_kthread(void *data)
2839 {
2840 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2841 	int ret;
2842 
2843 	/*
2844 	 * 1st step is to iterate through the existing UUID tree and
2845 	 * to delete all entries that contain outdated data.
2846 	 * 2nd step is to add all missing entries to the UUID tree.
2847 	 */
2848 	ret = btrfs_uuid_tree_iterate(fs_info);
2849 	if (ret < 0) {
2850 		if (ret != -EINTR)
2851 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2852 				   ret);
2853 		up(&fs_info->uuid_tree_rescan_sem);
2854 		return ret;
2855 	}
2856 	return btrfs_uuid_scan_kthread(data);
2857 }
2858 
2859 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2860 {
2861 	struct task_struct *task;
2862 
2863 	down(&fs_info->uuid_tree_rescan_sem);
2864 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2865 	if (IS_ERR(task)) {
2866 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2867 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2868 		up(&fs_info->uuid_tree_rescan_sem);
2869 		return PTR_ERR(task);
2870 	}
2871 
2872 	return 0;
2873 }
2874 
2875 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2876 		      char *options)
2877 {
2878 	u32 sectorsize;
2879 	u32 nodesize;
2880 	u32 stripesize;
2881 	u64 generation;
2882 	u64 features;
2883 	u16 csum_type;
2884 	struct btrfs_super_block *disk_super;
2885 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2886 	struct btrfs_root *tree_root;
2887 	struct btrfs_root *chunk_root;
2888 	int ret;
2889 	int err = -EINVAL;
2890 	int clear_free_space_tree = 0;
2891 	int level;
2892 
2893 	ret = init_mount_fs_info(fs_info, sb);
2894 	if (ret) {
2895 		err = ret;
2896 		goto fail;
2897 	}
2898 
2899 	/* These need to be init'ed before we start creating inodes and such. */
2900 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2901 				     GFP_KERNEL);
2902 	fs_info->tree_root = tree_root;
2903 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2904 				      GFP_KERNEL);
2905 	fs_info->chunk_root = chunk_root;
2906 	if (!tree_root || !chunk_root) {
2907 		err = -ENOMEM;
2908 		goto fail;
2909 	}
2910 
2911 	fs_info->btree_inode = new_inode(sb);
2912 	if (!fs_info->btree_inode) {
2913 		err = -ENOMEM;
2914 		goto fail;
2915 	}
2916 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2917 	btrfs_init_btree_inode(fs_info);
2918 
2919 	invalidate_bdev(fs_devices->latest_bdev);
2920 
2921 	/*
2922 	 * Read super block and check the signature bytes only
2923 	 */
2924 	disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2925 	if (IS_ERR(disk_super)) {
2926 		err = PTR_ERR(disk_super);
2927 		goto fail_alloc;
2928 	}
2929 
2930 	/*
2931 	 * Verify the type first, if that or the the checksum value are
2932 	 * corrupted, we'll find out
2933 	 */
2934 	csum_type = btrfs_super_csum_type(disk_super);
2935 	if (!btrfs_supported_super_csum(csum_type)) {
2936 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2937 			  csum_type);
2938 		err = -EINVAL;
2939 		btrfs_release_disk_super(disk_super);
2940 		goto fail_alloc;
2941 	}
2942 
2943 	ret = btrfs_init_csum_hash(fs_info, csum_type);
2944 	if (ret) {
2945 		err = ret;
2946 		btrfs_release_disk_super(disk_super);
2947 		goto fail_alloc;
2948 	}
2949 
2950 	/*
2951 	 * We want to check superblock checksum, the type is stored inside.
2952 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2953 	 */
2954 	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2955 		btrfs_err(fs_info, "superblock checksum mismatch");
2956 		err = -EINVAL;
2957 		btrfs_release_disk_super(disk_super);
2958 		goto fail_alloc;
2959 	}
2960 
2961 	/*
2962 	 * super_copy is zeroed at allocation time and we never touch the
2963 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2964 	 * the whole block of INFO_SIZE
2965 	 */
2966 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2967 	btrfs_release_disk_super(disk_super);
2968 
2969 	disk_super = fs_info->super_copy;
2970 
2971 	ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2972 		       BTRFS_FSID_SIZE));
2973 
2974 	if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2975 		ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2976 				fs_info->super_copy->metadata_uuid,
2977 				BTRFS_FSID_SIZE));
2978 	}
2979 
2980 	features = btrfs_super_flags(disk_super);
2981 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2982 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2983 		btrfs_set_super_flags(disk_super, features);
2984 		btrfs_info(fs_info,
2985 			"found metadata UUID change in progress flag, clearing");
2986 	}
2987 
2988 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2989 	       sizeof(*fs_info->super_for_commit));
2990 
2991 	ret = btrfs_validate_mount_super(fs_info);
2992 	if (ret) {
2993 		btrfs_err(fs_info, "superblock contains fatal errors");
2994 		err = -EINVAL;
2995 		goto fail_alloc;
2996 	}
2997 
2998 	if (!btrfs_super_root(disk_super))
2999 		goto fail_alloc;
3000 
3001 	/* check FS state, whether FS is broken. */
3002 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3003 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3004 
3005 	/*
3006 	 * In the long term, we'll store the compression type in the super
3007 	 * block, and it'll be used for per file compression control.
3008 	 */
3009 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3010 
3011 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3012 	if (ret) {
3013 		err = ret;
3014 		goto fail_alloc;
3015 	}
3016 
3017 	features = btrfs_super_incompat_flags(disk_super) &
3018 		~BTRFS_FEATURE_INCOMPAT_SUPP;
3019 	if (features) {
3020 		btrfs_err(fs_info,
3021 		    "cannot mount because of unsupported optional features (%llx)",
3022 		    features);
3023 		err = -EINVAL;
3024 		goto fail_alloc;
3025 	}
3026 
3027 	features = btrfs_super_incompat_flags(disk_super);
3028 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3029 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3030 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3031 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3032 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3033 
3034 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3035 		btrfs_info(fs_info, "has skinny extents");
3036 
3037 	/*
3038 	 * flag our filesystem as having big metadata blocks if
3039 	 * they are bigger than the page size
3040 	 */
3041 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3042 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3043 			btrfs_info(fs_info,
3044 				"flagging fs with big metadata feature");
3045 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3046 	}
3047 
3048 	nodesize = btrfs_super_nodesize(disk_super);
3049 	sectorsize = btrfs_super_sectorsize(disk_super);
3050 	stripesize = sectorsize;
3051 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3052 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3053 
3054 	/* Cache block sizes */
3055 	fs_info->nodesize = nodesize;
3056 	fs_info->sectorsize = sectorsize;
3057 	fs_info->stripesize = stripesize;
3058 
3059 	/*
3060 	 * mixed block groups end up with duplicate but slightly offset
3061 	 * extent buffers for the same range.  It leads to corruptions
3062 	 */
3063 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3064 	    (sectorsize != nodesize)) {
3065 		btrfs_err(fs_info,
3066 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3067 			nodesize, sectorsize);
3068 		goto fail_alloc;
3069 	}
3070 
3071 	/*
3072 	 * Needn't use the lock because there is no other task which will
3073 	 * update the flag.
3074 	 */
3075 	btrfs_set_super_incompat_flags(disk_super, features);
3076 
3077 	features = btrfs_super_compat_ro_flags(disk_super) &
3078 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3079 	if (!sb_rdonly(sb) && features) {
3080 		btrfs_err(fs_info,
3081 	"cannot mount read-write because of unsupported optional features (%llx)",
3082 		       features);
3083 		err = -EINVAL;
3084 		goto fail_alloc;
3085 	}
3086 
3087 	ret = btrfs_init_workqueues(fs_info, fs_devices);
3088 	if (ret) {
3089 		err = ret;
3090 		goto fail_sb_buffer;
3091 	}
3092 
3093 	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3094 	sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3095 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3096 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3097 
3098 	sb->s_blocksize = sectorsize;
3099 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3100 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3101 
3102 	mutex_lock(&fs_info->chunk_mutex);
3103 	ret = btrfs_read_sys_array(fs_info);
3104 	mutex_unlock(&fs_info->chunk_mutex);
3105 	if (ret) {
3106 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3107 		goto fail_sb_buffer;
3108 	}
3109 
3110 	generation = btrfs_super_chunk_root_generation(disk_super);
3111 	level = btrfs_super_chunk_root_level(disk_super);
3112 
3113 	chunk_root->node = read_tree_block(fs_info,
3114 					   btrfs_super_chunk_root(disk_super),
3115 					   generation, level, NULL);
3116 	if (IS_ERR(chunk_root->node) ||
3117 	    !extent_buffer_uptodate(chunk_root->node)) {
3118 		btrfs_err(fs_info, "failed to read chunk root");
3119 		if (!IS_ERR(chunk_root->node))
3120 			free_extent_buffer(chunk_root->node);
3121 		chunk_root->node = NULL;
3122 		goto fail_tree_roots;
3123 	}
3124 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3125 	chunk_root->commit_root = btrfs_root_node(chunk_root);
3126 
3127 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3128 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3129 			   BTRFS_UUID_SIZE);
3130 
3131 	ret = btrfs_read_chunk_tree(fs_info);
3132 	if (ret) {
3133 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3134 		goto fail_tree_roots;
3135 	}
3136 
3137 	/*
3138 	 * Keep the devid that is marked to be the target device for the
3139 	 * device replace procedure
3140 	 */
3141 	btrfs_free_extra_devids(fs_devices, 0);
3142 
3143 	if (!fs_devices->latest_bdev) {
3144 		btrfs_err(fs_info, "failed to read devices");
3145 		goto fail_tree_roots;
3146 	}
3147 
3148 	ret = init_tree_roots(fs_info);
3149 	if (ret)
3150 		goto fail_tree_roots;
3151 
3152 	/*
3153 	 * If we have a uuid root and we're not being told to rescan we need to
3154 	 * check the generation here so we can set the
3155 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3156 	 * transaction during a balance or the log replay without updating the
3157 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3158 	 * even though it was perfectly fine.
3159 	 */
3160 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3161 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3162 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3163 
3164 	ret = btrfs_verify_dev_extents(fs_info);
3165 	if (ret) {
3166 		btrfs_err(fs_info,
3167 			  "failed to verify dev extents against chunks: %d",
3168 			  ret);
3169 		goto fail_block_groups;
3170 	}
3171 	ret = btrfs_recover_balance(fs_info);
3172 	if (ret) {
3173 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3174 		goto fail_block_groups;
3175 	}
3176 
3177 	ret = btrfs_init_dev_stats(fs_info);
3178 	if (ret) {
3179 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3180 		goto fail_block_groups;
3181 	}
3182 
3183 	ret = btrfs_init_dev_replace(fs_info);
3184 	if (ret) {
3185 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3186 		goto fail_block_groups;
3187 	}
3188 
3189 	btrfs_free_extra_devids(fs_devices, 1);
3190 
3191 	ret = btrfs_sysfs_add_fsid(fs_devices);
3192 	if (ret) {
3193 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3194 				ret);
3195 		goto fail_block_groups;
3196 	}
3197 
3198 	ret = btrfs_sysfs_add_mounted(fs_info);
3199 	if (ret) {
3200 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3201 		goto fail_fsdev_sysfs;
3202 	}
3203 
3204 	ret = btrfs_init_space_info(fs_info);
3205 	if (ret) {
3206 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3207 		goto fail_sysfs;
3208 	}
3209 
3210 	ret = btrfs_read_block_groups(fs_info);
3211 	if (ret) {
3212 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3213 		goto fail_sysfs;
3214 	}
3215 
3216 	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3217 		btrfs_warn(fs_info,
3218 		"writable mount is not allowed due to too many missing devices");
3219 		goto fail_sysfs;
3220 	}
3221 
3222 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3223 					       "btrfs-cleaner");
3224 	if (IS_ERR(fs_info->cleaner_kthread))
3225 		goto fail_sysfs;
3226 
3227 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3228 						   tree_root,
3229 						   "btrfs-transaction");
3230 	if (IS_ERR(fs_info->transaction_kthread))
3231 		goto fail_cleaner;
3232 
3233 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3234 	    !fs_info->fs_devices->rotating) {
3235 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3236 	}
3237 
3238 	/*
3239 	 * Mount does not set all options immediately, we can do it now and do
3240 	 * not have to wait for transaction commit
3241 	 */
3242 	btrfs_apply_pending_changes(fs_info);
3243 
3244 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3245 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3246 		ret = btrfsic_mount(fs_info, fs_devices,
3247 				    btrfs_test_opt(fs_info,
3248 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3249 				    1 : 0,
3250 				    fs_info->check_integrity_print_mask);
3251 		if (ret)
3252 			btrfs_warn(fs_info,
3253 				"failed to initialize integrity check module: %d",
3254 				ret);
3255 	}
3256 #endif
3257 	ret = btrfs_read_qgroup_config(fs_info);
3258 	if (ret)
3259 		goto fail_trans_kthread;
3260 
3261 	if (btrfs_build_ref_tree(fs_info))
3262 		btrfs_err(fs_info, "couldn't build ref tree");
3263 
3264 	/* do not make disk changes in broken FS or nologreplay is given */
3265 	if (btrfs_super_log_root(disk_super) != 0 &&
3266 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3267 		btrfs_info(fs_info, "start tree-log replay");
3268 		ret = btrfs_replay_log(fs_info, fs_devices);
3269 		if (ret) {
3270 			err = ret;
3271 			goto fail_qgroup;
3272 		}
3273 	}
3274 
3275 	ret = btrfs_find_orphan_roots(fs_info);
3276 	if (ret)
3277 		goto fail_qgroup;
3278 
3279 	if (!sb_rdonly(sb)) {
3280 		ret = btrfs_cleanup_fs_roots(fs_info);
3281 		if (ret)
3282 			goto fail_qgroup;
3283 
3284 		mutex_lock(&fs_info->cleaner_mutex);
3285 		ret = btrfs_recover_relocation(tree_root);
3286 		mutex_unlock(&fs_info->cleaner_mutex);
3287 		if (ret < 0) {
3288 			btrfs_warn(fs_info, "failed to recover relocation: %d",
3289 					ret);
3290 			err = -EINVAL;
3291 			goto fail_qgroup;
3292 		}
3293 	}
3294 
3295 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3296 	if (IS_ERR(fs_info->fs_root)) {
3297 		err = PTR_ERR(fs_info->fs_root);
3298 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3299 		fs_info->fs_root = NULL;
3300 		goto fail_qgroup;
3301 	}
3302 
3303 	if (sb_rdonly(sb))
3304 		return 0;
3305 
3306 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3307 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3308 		clear_free_space_tree = 1;
3309 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3310 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3311 		btrfs_warn(fs_info, "free space tree is invalid");
3312 		clear_free_space_tree = 1;
3313 	}
3314 
3315 	if (clear_free_space_tree) {
3316 		btrfs_info(fs_info, "clearing free space tree");
3317 		ret = btrfs_clear_free_space_tree(fs_info);
3318 		if (ret) {
3319 			btrfs_warn(fs_info,
3320 				   "failed to clear free space tree: %d", ret);
3321 			close_ctree(fs_info);
3322 			return ret;
3323 		}
3324 	}
3325 
3326 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3327 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3328 		btrfs_info(fs_info, "creating free space tree");
3329 		ret = btrfs_create_free_space_tree(fs_info);
3330 		if (ret) {
3331 			btrfs_warn(fs_info,
3332 				"failed to create free space tree: %d", ret);
3333 			close_ctree(fs_info);
3334 			return ret;
3335 		}
3336 	}
3337 
3338 	down_read(&fs_info->cleanup_work_sem);
3339 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3340 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3341 		up_read(&fs_info->cleanup_work_sem);
3342 		close_ctree(fs_info);
3343 		return ret;
3344 	}
3345 	up_read(&fs_info->cleanup_work_sem);
3346 
3347 	ret = btrfs_resume_balance_async(fs_info);
3348 	if (ret) {
3349 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3350 		close_ctree(fs_info);
3351 		return ret;
3352 	}
3353 
3354 	ret = btrfs_resume_dev_replace_async(fs_info);
3355 	if (ret) {
3356 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3357 		close_ctree(fs_info);
3358 		return ret;
3359 	}
3360 
3361 	btrfs_qgroup_rescan_resume(fs_info);
3362 	btrfs_discard_resume(fs_info);
3363 
3364 	if (!fs_info->uuid_root) {
3365 		btrfs_info(fs_info, "creating UUID tree");
3366 		ret = btrfs_create_uuid_tree(fs_info);
3367 		if (ret) {
3368 			btrfs_warn(fs_info,
3369 				"failed to create the UUID tree: %d", ret);
3370 			close_ctree(fs_info);
3371 			return ret;
3372 		}
3373 	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3374 		   fs_info->generation !=
3375 				btrfs_super_uuid_tree_generation(disk_super)) {
3376 		btrfs_info(fs_info, "checking UUID tree");
3377 		ret = btrfs_check_uuid_tree(fs_info);
3378 		if (ret) {
3379 			btrfs_warn(fs_info,
3380 				"failed to check the UUID tree: %d", ret);
3381 			close_ctree(fs_info);
3382 			return ret;
3383 		}
3384 	}
3385 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3386 
3387 	/*
3388 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3389 	 * no need to keep the flag
3390 	 */
3391 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3392 
3393 	return 0;
3394 
3395 fail_qgroup:
3396 	btrfs_free_qgroup_config(fs_info);
3397 fail_trans_kthread:
3398 	kthread_stop(fs_info->transaction_kthread);
3399 	btrfs_cleanup_transaction(fs_info);
3400 	btrfs_free_fs_roots(fs_info);
3401 fail_cleaner:
3402 	kthread_stop(fs_info->cleaner_kthread);
3403 
3404 	/*
3405 	 * make sure we're done with the btree inode before we stop our
3406 	 * kthreads
3407 	 */
3408 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3409 
3410 fail_sysfs:
3411 	btrfs_sysfs_remove_mounted(fs_info);
3412 
3413 fail_fsdev_sysfs:
3414 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3415 
3416 fail_block_groups:
3417 	btrfs_put_block_group_cache(fs_info);
3418 
3419 fail_tree_roots:
3420 	if (fs_info->data_reloc_root)
3421 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3422 	free_root_pointers(fs_info, true);
3423 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3424 
3425 fail_sb_buffer:
3426 	btrfs_stop_all_workers(fs_info);
3427 	btrfs_free_block_groups(fs_info);
3428 fail_alloc:
3429 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3430 
3431 	iput(fs_info->btree_inode);
3432 fail:
3433 	btrfs_close_devices(fs_info->fs_devices);
3434 	return err;
3435 }
3436 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3437 
3438 static void btrfs_end_super_write(struct bio *bio)
3439 {
3440 	struct btrfs_device *device = bio->bi_private;
3441 	struct bio_vec *bvec;
3442 	struct bvec_iter_all iter_all;
3443 	struct page *page;
3444 
3445 	bio_for_each_segment_all(bvec, bio, iter_all) {
3446 		page = bvec->bv_page;
3447 
3448 		if (bio->bi_status) {
3449 			btrfs_warn_rl_in_rcu(device->fs_info,
3450 				"lost page write due to IO error on %s (%d)",
3451 				rcu_str_deref(device->name),
3452 				blk_status_to_errno(bio->bi_status));
3453 			ClearPageUptodate(page);
3454 			SetPageError(page);
3455 			btrfs_dev_stat_inc_and_print(device,
3456 						     BTRFS_DEV_STAT_WRITE_ERRS);
3457 		} else {
3458 			SetPageUptodate(page);
3459 		}
3460 
3461 		put_page(page);
3462 		unlock_page(page);
3463 	}
3464 
3465 	bio_put(bio);
3466 }
3467 
3468 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3469 						   int copy_num)
3470 {
3471 	struct btrfs_super_block *super;
3472 	struct page *page;
3473 	u64 bytenr;
3474 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3475 
3476 	bytenr = btrfs_sb_offset(copy_num);
3477 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3478 		return ERR_PTR(-EINVAL);
3479 
3480 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3481 	if (IS_ERR(page))
3482 		return ERR_CAST(page);
3483 
3484 	super = page_address(page);
3485 	if (btrfs_super_bytenr(super) != bytenr ||
3486 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3487 		btrfs_release_disk_super(super);
3488 		return ERR_PTR(-EINVAL);
3489 	}
3490 
3491 	return super;
3492 }
3493 
3494 
3495 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3496 {
3497 	struct btrfs_super_block *super, *latest = NULL;
3498 	int i;
3499 	u64 transid = 0;
3500 
3501 	/* we would like to check all the supers, but that would make
3502 	 * a btrfs mount succeed after a mkfs from a different FS.
3503 	 * So, we need to add a special mount option to scan for
3504 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3505 	 */
3506 	for (i = 0; i < 1; i++) {
3507 		super = btrfs_read_dev_one_super(bdev, i);
3508 		if (IS_ERR(super))
3509 			continue;
3510 
3511 		if (!latest || btrfs_super_generation(super) > transid) {
3512 			if (latest)
3513 				btrfs_release_disk_super(super);
3514 
3515 			latest = super;
3516 			transid = btrfs_super_generation(super);
3517 		}
3518 	}
3519 
3520 	return super;
3521 }
3522 
3523 /*
3524  * Write superblock @sb to the @device. Do not wait for completion, all the
3525  * pages we use for writing are locked.
3526  *
3527  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3528  * the expected device size at commit time. Note that max_mirrors must be
3529  * same for write and wait phases.
3530  *
3531  * Return number of errors when page is not found or submission fails.
3532  */
3533 static int write_dev_supers(struct btrfs_device *device,
3534 			    struct btrfs_super_block *sb, int max_mirrors)
3535 {
3536 	struct btrfs_fs_info *fs_info = device->fs_info;
3537 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3538 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3539 	int i;
3540 	int errors = 0;
3541 	u64 bytenr;
3542 
3543 	if (max_mirrors == 0)
3544 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3545 
3546 	shash->tfm = fs_info->csum_shash;
3547 
3548 	for (i = 0; i < max_mirrors; i++) {
3549 		struct page *page;
3550 		struct bio *bio;
3551 		struct btrfs_super_block *disk_super;
3552 
3553 		bytenr = btrfs_sb_offset(i);
3554 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3555 		    device->commit_total_bytes)
3556 			break;
3557 
3558 		btrfs_set_super_bytenr(sb, bytenr);
3559 
3560 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3561 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3562 				    sb->csum);
3563 
3564 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3565 					   GFP_NOFS);
3566 		if (!page) {
3567 			btrfs_err(device->fs_info,
3568 			    "couldn't get super block page for bytenr %llu",
3569 			    bytenr);
3570 			errors++;
3571 			continue;
3572 		}
3573 
3574 		/* Bump the refcount for wait_dev_supers() */
3575 		get_page(page);
3576 
3577 		disk_super = page_address(page);
3578 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3579 
3580 		/*
3581 		 * Directly use bios here instead of relying on the page cache
3582 		 * to do I/O, so we don't lose the ability to do integrity
3583 		 * checking.
3584 		 */
3585 		bio = bio_alloc(GFP_NOFS, 1);
3586 		bio_set_dev(bio, device->bdev);
3587 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3588 		bio->bi_private = device;
3589 		bio->bi_end_io = btrfs_end_super_write;
3590 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3591 			       offset_in_page(bytenr));
3592 
3593 		/*
3594 		 * We FUA only the first super block.  The others we allow to
3595 		 * go down lazy and there's a short window where the on-disk
3596 		 * copies might still contain the older version.
3597 		 */
3598 		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3599 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3600 			bio->bi_opf |= REQ_FUA;
3601 
3602 		btrfsic_submit_bio(bio);
3603 	}
3604 	return errors < i ? 0 : -1;
3605 }
3606 
3607 /*
3608  * Wait for write completion of superblocks done by write_dev_supers,
3609  * @max_mirrors same for write and wait phases.
3610  *
3611  * Return number of errors when page is not found or not marked up to
3612  * date.
3613  */
3614 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3615 {
3616 	int i;
3617 	int errors = 0;
3618 	bool primary_failed = false;
3619 	u64 bytenr;
3620 
3621 	if (max_mirrors == 0)
3622 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3623 
3624 	for (i = 0; i < max_mirrors; i++) {
3625 		struct page *page;
3626 
3627 		bytenr = btrfs_sb_offset(i);
3628 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3629 		    device->commit_total_bytes)
3630 			break;
3631 
3632 		page = find_get_page(device->bdev->bd_inode->i_mapping,
3633 				     bytenr >> PAGE_SHIFT);
3634 		if (!page) {
3635 			errors++;
3636 			if (i == 0)
3637 				primary_failed = true;
3638 			continue;
3639 		}
3640 		/* Page is submitted locked and unlocked once the IO completes */
3641 		wait_on_page_locked(page);
3642 		if (PageError(page)) {
3643 			errors++;
3644 			if (i == 0)
3645 				primary_failed = true;
3646 		}
3647 
3648 		/* Drop our reference */
3649 		put_page(page);
3650 
3651 		/* Drop the reference from the writing run */
3652 		put_page(page);
3653 	}
3654 
3655 	/* log error, force error return */
3656 	if (primary_failed) {
3657 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3658 			  device->devid);
3659 		return -1;
3660 	}
3661 
3662 	return errors < i ? 0 : -1;
3663 }
3664 
3665 /*
3666  * endio for the write_dev_flush, this will wake anyone waiting
3667  * for the barrier when it is done
3668  */
3669 static void btrfs_end_empty_barrier(struct bio *bio)
3670 {
3671 	complete(bio->bi_private);
3672 }
3673 
3674 /*
3675  * Submit a flush request to the device if it supports it. Error handling is
3676  * done in the waiting counterpart.
3677  */
3678 static void write_dev_flush(struct btrfs_device *device)
3679 {
3680 	struct request_queue *q = bdev_get_queue(device->bdev);
3681 	struct bio *bio = device->flush_bio;
3682 
3683 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3684 		return;
3685 
3686 	bio_reset(bio);
3687 	bio->bi_end_io = btrfs_end_empty_barrier;
3688 	bio_set_dev(bio, device->bdev);
3689 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3690 	init_completion(&device->flush_wait);
3691 	bio->bi_private = &device->flush_wait;
3692 
3693 	btrfsic_submit_bio(bio);
3694 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3695 }
3696 
3697 /*
3698  * If the flush bio has been submitted by write_dev_flush, wait for it.
3699  */
3700 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3701 {
3702 	struct bio *bio = device->flush_bio;
3703 
3704 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3705 		return BLK_STS_OK;
3706 
3707 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3708 	wait_for_completion_io(&device->flush_wait);
3709 
3710 	return bio->bi_status;
3711 }
3712 
3713 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3714 {
3715 	if (!btrfs_check_rw_degradable(fs_info, NULL))
3716 		return -EIO;
3717 	return 0;
3718 }
3719 
3720 /*
3721  * send an empty flush down to each device in parallel,
3722  * then wait for them
3723  */
3724 static int barrier_all_devices(struct btrfs_fs_info *info)
3725 {
3726 	struct list_head *head;
3727 	struct btrfs_device *dev;
3728 	int errors_wait = 0;
3729 	blk_status_t ret;
3730 
3731 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3732 	/* send down all the barriers */
3733 	head = &info->fs_devices->devices;
3734 	list_for_each_entry(dev, head, dev_list) {
3735 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3736 			continue;
3737 		if (!dev->bdev)
3738 			continue;
3739 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3740 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3741 			continue;
3742 
3743 		write_dev_flush(dev);
3744 		dev->last_flush_error = BLK_STS_OK;
3745 	}
3746 
3747 	/* wait for all the barriers */
3748 	list_for_each_entry(dev, head, dev_list) {
3749 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3750 			continue;
3751 		if (!dev->bdev) {
3752 			errors_wait++;
3753 			continue;
3754 		}
3755 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3756 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3757 			continue;
3758 
3759 		ret = wait_dev_flush(dev);
3760 		if (ret) {
3761 			dev->last_flush_error = ret;
3762 			btrfs_dev_stat_inc_and_print(dev,
3763 					BTRFS_DEV_STAT_FLUSH_ERRS);
3764 			errors_wait++;
3765 		}
3766 	}
3767 
3768 	if (errors_wait) {
3769 		/*
3770 		 * At some point we need the status of all disks
3771 		 * to arrive at the volume status. So error checking
3772 		 * is being pushed to a separate loop.
3773 		 */
3774 		return check_barrier_error(info);
3775 	}
3776 	return 0;
3777 }
3778 
3779 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3780 {
3781 	int raid_type;
3782 	int min_tolerated = INT_MAX;
3783 
3784 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3785 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3786 		min_tolerated = min_t(int, min_tolerated,
3787 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3788 				    tolerated_failures);
3789 
3790 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3791 		if (raid_type == BTRFS_RAID_SINGLE)
3792 			continue;
3793 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3794 			continue;
3795 		min_tolerated = min_t(int, min_tolerated,
3796 				    btrfs_raid_array[raid_type].
3797 				    tolerated_failures);
3798 	}
3799 
3800 	if (min_tolerated == INT_MAX) {
3801 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3802 		min_tolerated = 0;
3803 	}
3804 
3805 	return min_tolerated;
3806 }
3807 
3808 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3809 {
3810 	struct list_head *head;
3811 	struct btrfs_device *dev;
3812 	struct btrfs_super_block *sb;
3813 	struct btrfs_dev_item *dev_item;
3814 	int ret;
3815 	int do_barriers;
3816 	int max_errors;
3817 	int total_errors = 0;
3818 	u64 flags;
3819 
3820 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3821 
3822 	/*
3823 	 * max_mirrors == 0 indicates we're from commit_transaction,
3824 	 * not from fsync where the tree roots in fs_info have not
3825 	 * been consistent on disk.
3826 	 */
3827 	if (max_mirrors == 0)
3828 		backup_super_roots(fs_info);
3829 
3830 	sb = fs_info->super_for_commit;
3831 	dev_item = &sb->dev_item;
3832 
3833 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3834 	head = &fs_info->fs_devices->devices;
3835 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3836 
3837 	if (do_barriers) {
3838 		ret = barrier_all_devices(fs_info);
3839 		if (ret) {
3840 			mutex_unlock(
3841 				&fs_info->fs_devices->device_list_mutex);
3842 			btrfs_handle_fs_error(fs_info, ret,
3843 					      "errors while submitting device barriers.");
3844 			return ret;
3845 		}
3846 	}
3847 
3848 	list_for_each_entry(dev, head, dev_list) {
3849 		if (!dev->bdev) {
3850 			total_errors++;
3851 			continue;
3852 		}
3853 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3854 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3855 			continue;
3856 
3857 		btrfs_set_stack_device_generation(dev_item, 0);
3858 		btrfs_set_stack_device_type(dev_item, dev->type);
3859 		btrfs_set_stack_device_id(dev_item, dev->devid);
3860 		btrfs_set_stack_device_total_bytes(dev_item,
3861 						   dev->commit_total_bytes);
3862 		btrfs_set_stack_device_bytes_used(dev_item,
3863 						  dev->commit_bytes_used);
3864 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3865 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3866 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3867 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3868 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3869 		       BTRFS_FSID_SIZE);
3870 
3871 		flags = btrfs_super_flags(sb);
3872 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3873 
3874 		ret = btrfs_validate_write_super(fs_info, sb);
3875 		if (ret < 0) {
3876 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3877 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
3878 				"unexpected superblock corruption detected");
3879 			return -EUCLEAN;
3880 		}
3881 
3882 		ret = write_dev_supers(dev, sb, max_mirrors);
3883 		if (ret)
3884 			total_errors++;
3885 	}
3886 	if (total_errors > max_errors) {
3887 		btrfs_err(fs_info, "%d errors while writing supers",
3888 			  total_errors);
3889 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3890 
3891 		/* FUA is masked off if unsupported and can't be the reason */
3892 		btrfs_handle_fs_error(fs_info, -EIO,
3893 				      "%d errors while writing supers",
3894 				      total_errors);
3895 		return -EIO;
3896 	}
3897 
3898 	total_errors = 0;
3899 	list_for_each_entry(dev, head, dev_list) {
3900 		if (!dev->bdev)
3901 			continue;
3902 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3903 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3904 			continue;
3905 
3906 		ret = wait_dev_supers(dev, max_mirrors);
3907 		if (ret)
3908 			total_errors++;
3909 	}
3910 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3911 	if (total_errors > max_errors) {
3912 		btrfs_handle_fs_error(fs_info, -EIO,
3913 				      "%d errors while writing supers",
3914 				      total_errors);
3915 		return -EIO;
3916 	}
3917 	return 0;
3918 }
3919 
3920 /* Drop a fs root from the radix tree and free it. */
3921 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3922 				  struct btrfs_root *root)
3923 {
3924 	bool drop_ref = false;
3925 
3926 	spin_lock(&fs_info->fs_roots_radix_lock);
3927 	radix_tree_delete(&fs_info->fs_roots_radix,
3928 			  (unsigned long)root->root_key.objectid);
3929 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3930 		drop_ref = true;
3931 	spin_unlock(&fs_info->fs_roots_radix_lock);
3932 
3933 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3934 		ASSERT(root->log_root == NULL);
3935 		if (root->reloc_root) {
3936 			btrfs_put_root(root->reloc_root);
3937 			root->reloc_root = NULL;
3938 		}
3939 	}
3940 
3941 	if (root->free_ino_pinned)
3942 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3943 	if (root->free_ino_ctl)
3944 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3945 	if (root->ino_cache_inode) {
3946 		iput(root->ino_cache_inode);
3947 		root->ino_cache_inode = NULL;
3948 	}
3949 	if (drop_ref)
3950 		btrfs_put_root(root);
3951 }
3952 
3953 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3954 {
3955 	u64 root_objectid = 0;
3956 	struct btrfs_root *gang[8];
3957 	int i = 0;
3958 	int err = 0;
3959 	unsigned int ret = 0;
3960 
3961 	while (1) {
3962 		spin_lock(&fs_info->fs_roots_radix_lock);
3963 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3964 					     (void **)gang, root_objectid,
3965 					     ARRAY_SIZE(gang));
3966 		if (!ret) {
3967 			spin_unlock(&fs_info->fs_roots_radix_lock);
3968 			break;
3969 		}
3970 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3971 
3972 		for (i = 0; i < ret; i++) {
3973 			/* Avoid to grab roots in dead_roots */
3974 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3975 				gang[i] = NULL;
3976 				continue;
3977 			}
3978 			/* grab all the search result for later use */
3979 			gang[i] = btrfs_grab_root(gang[i]);
3980 		}
3981 		spin_unlock(&fs_info->fs_roots_radix_lock);
3982 
3983 		for (i = 0; i < ret; i++) {
3984 			if (!gang[i])
3985 				continue;
3986 			root_objectid = gang[i]->root_key.objectid;
3987 			err = btrfs_orphan_cleanup(gang[i]);
3988 			if (err)
3989 				break;
3990 			btrfs_put_root(gang[i]);
3991 		}
3992 		root_objectid++;
3993 	}
3994 
3995 	/* release the uncleaned roots due to error */
3996 	for (; i < ret; i++) {
3997 		if (gang[i])
3998 			btrfs_put_root(gang[i]);
3999 	}
4000 	return err;
4001 }
4002 
4003 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4004 {
4005 	struct btrfs_root *root = fs_info->tree_root;
4006 	struct btrfs_trans_handle *trans;
4007 
4008 	mutex_lock(&fs_info->cleaner_mutex);
4009 	btrfs_run_delayed_iputs(fs_info);
4010 	mutex_unlock(&fs_info->cleaner_mutex);
4011 	wake_up_process(fs_info->cleaner_kthread);
4012 
4013 	/* wait until ongoing cleanup work done */
4014 	down_write(&fs_info->cleanup_work_sem);
4015 	up_write(&fs_info->cleanup_work_sem);
4016 
4017 	trans = btrfs_join_transaction(root);
4018 	if (IS_ERR(trans))
4019 		return PTR_ERR(trans);
4020 	return btrfs_commit_transaction(trans);
4021 }
4022 
4023 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4024 {
4025 	int ret;
4026 
4027 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4028 	/*
4029 	 * We don't want the cleaner to start new transactions, add more delayed
4030 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4031 	 * because that frees the task_struct, and the transaction kthread might
4032 	 * still try to wake up the cleaner.
4033 	 */
4034 	kthread_park(fs_info->cleaner_kthread);
4035 
4036 	/* wait for the qgroup rescan worker to stop */
4037 	btrfs_qgroup_wait_for_completion(fs_info, false);
4038 
4039 	/* wait for the uuid_scan task to finish */
4040 	down(&fs_info->uuid_tree_rescan_sem);
4041 	/* avoid complains from lockdep et al., set sem back to initial state */
4042 	up(&fs_info->uuid_tree_rescan_sem);
4043 
4044 	/* pause restriper - we want to resume on mount */
4045 	btrfs_pause_balance(fs_info);
4046 
4047 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4048 
4049 	btrfs_scrub_cancel(fs_info);
4050 
4051 	/* wait for any defraggers to finish */
4052 	wait_event(fs_info->transaction_wait,
4053 		   (atomic_read(&fs_info->defrag_running) == 0));
4054 
4055 	/* clear out the rbtree of defraggable inodes */
4056 	btrfs_cleanup_defrag_inodes(fs_info);
4057 
4058 	cancel_work_sync(&fs_info->async_reclaim_work);
4059 
4060 	/* Cancel or finish ongoing discard work */
4061 	btrfs_discard_cleanup(fs_info);
4062 
4063 	if (!sb_rdonly(fs_info->sb)) {
4064 		/*
4065 		 * The cleaner kthread is stopped, so do one final pass over
4066 		 * unused block groups.
4067 		 */
4068 		btrfs_delete_unused_bgs(fs_info);
4069 
4070 		/*
4071 		 * There might be existing delayed inode workers still running
4072 		 * and holding an empty delayed inode item. We must wait for
4073 		 * them to complete first because they can create a transaction.
4074 		 * This happens when someone calls btrfs_balance_delayed_items()
4075 		 * and then a transaction commit runs the same delayed nodes
4076 		 * before any delayed worker has done something with the nodes.
4077 		 * We must wait for any worker here and not at transaction
4078 		 * commit time since that could cause a deadlock.
4079 		 * This is a very rare case.
4080 		 */
4081 		btrfs_flush_workqueue(fs_info->delayed_workers);
4082 
4083 		ret = btrfs_commit_super(fs_info);
4084 		if (ret)
4085 			btrfs_err(fs_info, "commit super ret %d", ret);
4086 	}
4087 
4088 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4089 	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4090 		btrfs_error_commit_super(fs_info);
4091 
4092 	kthread_stop(fs_info->transaction_kthread);
4093 	kthread_stop(fs_info->cleaner_kthread);
4094 
4095 	ASSERT(list_empty(&fs_info->delayed_iputs));
4096 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4097 
4098 	if (btrfs_check_quota_leak(fs_info)) {
4099 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4100 		btrfs_err(fs_info, "qgroup reserved space leaked");
4101 	}
4102 
4103 	btrfs_free_qgroup_config(fs_info);
4104 	ASSERT(list_empty(&fs_info->delalloc_roots));
4105 
4106 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4107 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4108 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4109 	}
4110 
4111 	if (percpu_counter_sum(&fs_info->dio_bytes))
4112 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4113 			   percpu_counter_sum(&fs_info->dio_bytes));
4114 
4115 	btrfs_sysfs_remove_mounted(fs_info);
4116 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4117 
4118 	btrfs_put_block_group_cache(fs_info);
4119 
4120 	/*
4121 	 * we must make sure there is not any read request to
4122 	 * submit after we stopping all workers.
4123 	 */
4124 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4125 	btrfs_stop_all_workers(fs_info);
4126 
4127 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4128 	free_root_pointers(fs_info, true);
4129 	btrfs_free_fs_roots(fs_info);
4130 
4131 	/*
4132 	 * We must free the block groups after dropping the fs_roots as we could
4133 	 * have had an IO error and have left over tree log blocks that aren't
4134 	 * cleaned up until the fs roots are freed.  This makes the block group
4135 	 * accounting appear to be wrong because there's pending reserved bytes,
4136 	 * so make sure we do the block group cleanup afterwards.
4137 	 */
4138 	btrfs_free_block_groups(fs_info);
4139 
4140 	iput(fs_info->btree_inode);
4141 
4142 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4143 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4144 		btrfsic_unmount(fs_info->fs_devices);
4145 #endif
4146 
4147 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4148 	btrfs_close_devices(fs_info->fs_devices);
4149 }
4150 
4151 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4152 			  int atomic)
4153 {
4154 	int ret;
4155 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4156 
4157 	ret = extent_buffer_uptodate(buf);
4158 	if (!ret)
4159 		return ret;
4160 
4161 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4162 				    parent_transid, atomic);
4163 	if (ret == -EAGAIN)
4164 		return ret;
4165 	return !ret;
4166 }
4167 
4168 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4169 {
4170 	struct btrfs_fs_info *fs_info;
4171 	struct btrfs_root *root;
4172 	u64 transid = btrfs_header_generation(buf);
4173 	int was_dirty;
4174 
4175 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4176 	/*
4177 	 * This is a fast path so only do this check if we have sanity tests
4178 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4179 	 * outside of the sanity tests.
4180 	 */
4181 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4182 		return;
4183 #endif
4184 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4185 	fs_info = root->fs_info;
4186 	btrfs_assert_tree_locked(buf);
4187 	if (transid != fs_info->generation)
4188 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4189 			buf->start, transid, fs_info->generation);
4190 	was_dirty = set_extent_buffer_dirty(buf);
4191 	if (!was_dirty)
4192 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4193 					 buf->len,
4194 					 fs_info->dirty_metadata_batch);
4195 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4196 	/*
4197 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4198 	 * but item data not updated.
4199 	 * So here we should only check item pointers, not item data.
4200 	 */
4201 	if (btrfs_header_level(buf) == 0 &&
4202 	    btrfs_check_leaf_relaxed(buf)) {
4203 		btrfs_print_leaf(buf);
4204 		ASSERT(0);
4205 	}
4206 #endif
4207 }
4208 
4209 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4210 					int flush_delayed)
4211 {
4212 	/*
4213 	 * looks as though older kernels can get into trouble with
4214 	 * this code, they end up stuck in balance_dirty_pages forever
4215 	 */
4216 	int ret;
4217 
4218 	if (current->flags & PF_MEMALLOC)
4219 		return;
4220 
4221 	if (flush_delayed)
4222 		btrfs_balance_delayed_items(fs_info);
4223 
4224 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4225 				     BTRFS_DIRTY_METADATA_THRESH,
4226 				     fs_info->dirty_metadata_batch);
4227 	if (ret > 0) {
4228 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4229 	}
4230 }
4231 
4232 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4233 {
4234 	__btrfs_btree_balance_dirty(fs_info, 1);
4235 }
4236 
4237 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4238 {
4239 	__btrfs_btree_balance_dirty(fs_info, 0);
4240 }
4241 
4242 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4243 		      struct btrfs_key *first_key)
4244 {
4245 	return btree_read_extent_buffer_pages(buf, parent_transid,
4246 					      level, first_key);
4247 }
4248 
4249 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4250 {
4251 	/* cleanup FS via transaction */
4252 	btrfs_cleanup_transaction(fs_info);
4253 
4254 	mutex_lock(&fs_info->cleaner_mutex);
4255 	btrfs_run_delayed_iputs(fs_info);
4256 	mutex_unlock(&fs_info->cleaner_mutex);
4257 
4258 	down_write(&fs_info->cleanup_work_sem);
4259 	up_write(&fs_info->cleanup_work_sem);
4260 }
4261 
4262 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4263 {
4264 	struct btrfs_root *gang[8];
4265 	u64 root_objectid = 0;
4266 	int ret;
4267 
4268 	spin_lock(&fs_info->fs_roots_radix_lock);
4269 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4270 					     (void **)gang, root_objectid,
4271 					     ARRAY_SIZE(gang))) != 0) {
4272 		int i;
4273 
4274 		for (i = 0; i < ret; i++)
4275 			gang[i] = btrfs_grab_root(gang[i]);
4276 		spin_unlock(&fs_info->fs_roots_radix_lock);
4277 
4278 		for (i = 0; i < ret; i++) {
4279 			if (!gang[i])
4280 				continue;
4281 			root_objectid = gang[i]->root_key.objectid;
4282 			btrfs_free_log(NULL, gang[i]);
4283 			btrfs_put_root(gang[i]);
4284 		}
4285 		root_objectid++;
4286 		spin_lock(&fs_info->fs_roots_radix_lock);
4287 	}
4288 	spin_unlock(&fs_info->fs_roots_radix_lock);
4289 	btrfs_free_log_root_tree(NULL, fs_info);
4290 }
4291 
4292 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4293 {
4294 	struct btrfs_ordered_extent *ordered;
4295 
4296 	spin_lock(&root->ordered_extent_lock);
4297 	/*
4298 	 * This will just short circuit the ordered completion stuff which will
4299 	 * make sure the ordered extent gets properly cleaned up.
4300 	 */
4301 	list_for_each_entry(ordered, &root->ordered_extents,
4302 			    root_extent_list)
4303 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4304 	spin_unlock(&root->ordered_extent_lock);
4305 }
4306 
4307 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4308 {
4309 	struct btrfs_root *root;
4310 	struct list_head splice;
4311 
4312 	INIT_LIST_HEAD(&splice);
4313 
4314 	spin_lock(&fs_info->ordered_root_lock);
4315 	list_splice_init(&fs_info->ordered_roots, &splice);
4316 	while (!list_empty(&splice)) {
4317 		root = list_first_entry(&splice, struct btrfs_root,
4318 					ordered_root);
4319 		list_move_tail(&root->ordered_root,
4320 			       &fs_info->ordered_roots);
4321 
4322 		spin_unlock(&fs_info->ordered_root_lock);
4323 		btrfs_destroy_ordered_extents(root);
4324 
4325 		cond_resched();
4326 		spin_lock(&fs_info->ordered_root_lock);
4327 	}
4328 	spin_unlock(&fs_info->ordered_root_lock);
4329 
4330 	/*
4331 	 * We need this here because if we've been flipped read-only we won't
4332 	 * get sync() from the umount, so we need to make sure any ordered
4333 	 * extents that haven't had their dirty pages IO start writeout yet
4334 	 * actually get run and error out properly.
4335 	 */
4336 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4337 }
4338 
4339 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4340 				      struct btrfs_fs_info *fs_info)
4341 {
4342 	struct rb_node *node;
4343 	struct btrfs_delayed_ref_root *delayed_refs;
4344 	struct btrfs_delayed_ref_node *ref;
4345 	int ret = 0;
4346 
4347 	delayed_refs = &trans->delayed_refs;
4348 
4349 	spin_lock(&delayed_refs->lock);
4350 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4351 		spin_unlock(&delayed_refs->lock);
4352 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4353 		return ret;
4354 	}
4355 
4356 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4357 		struct btrfs_delayed_ref_head *head;
4358 		struct rb_node *n;
4359 		bool pin_bytes = false;
4360 
4361 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4362 				href_node);
4363 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4364 			continue;
4365 
4366 		spin_lock(&head->lock);
4367 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4368 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4369 				       ref_node);
4370 			ref->in_tree = 0;
4371 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4372 			RB_CLEAR_NODE(&ref->ref_node);
4373 			if (!list_empty(&ref->add_list))
4374 				list_del(&ref->add_list);
4375 			atomic_dec(&delayed_refs->num_entries);
4376 			btrfs_put_delayed_ref(ref);
4377 		}
4378 		if (head->must_insert_reserved)
4379 			pin_bytes = true;
4380 		btrfs_free_delayed_extent_op(head->extent_op);
4381 		btrfs_delete_ref_head(delayed_refs, head);
4382 		spin_unlock(&head->lock);
4383 		spin_unlock(&delayed_refs->lock);
4384 		mutex_unlock(&head->mutex);
4385 
4386 		if (pin_bytes) {
4387 			struct btrfs_block_group *cache;
4388 
4389 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4390 			BUG_ON(!cache);
4391 
4392 			spin_lock(&cache->space_info->lock);
4393 			spin_lock(&cache->lock);
4394 			cache->pinned += head->num_bytes;
4395 			btrfs_space_info_update_bytes_pinned(fs_info,
4396 				cache->space_info, head->num_bytes);
4397 			cache->reserved -= head->num_bytes;
4398 			cache->space_info->bytes_reserved -= head->num_bytes;
4399 			spin_unlock(&cache->lock);
4400 			spin_unlock(&cache->space_info->lock);
4401 			percpu_counter_add_batch(
4402 				&cache->space_info->total_bytes_pinned,
4403 				head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4404 
4405 			btrfs_put_block_group(cache);
4406 
4407 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4408 				head->bytenr + head->num_bytes - 1);
4409 		}
4410 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4411 		btrfs_put_delayed_ref_head(head);
4412 		cond_resched();
4413 		spin_lock(&delayed_refs->lock);
4414 	}
4415 	btrfs_qgroup_destroy_extent_records(trans);
4416 
4417 	spin_unlock(&delayed_refs->lock);
4418 
4419 	return ret;
4420 }
4421 
4422 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4423 {
4424 	struct btrfs_inode *btrfs_inode;
4425 	struct list_head splice;
4426 
4427 	INIT_LIST_HEAD(&splice);
4428 
4429 	spin_lock(&root->delalloc_lock);
4430 	list_splice_init(&root->delalloc_inodes, &splice);
4431 
4432 	while (!list_empty(&splice)) {
4433 		struct inode *inode = NULL;
4434 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4435 					       delalloc_inodes);
4436 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4437 		spin_unlock(&root->delalloc_lock);
4438 
4439 		/*
4440 		 * Make sure we get a live inode and that it'll not disappear
4441 		 * meanwhile.
4442 		 */
4443 		inode = igrab(&btrfs_inode->vfs_inode);
4444 		if (inode) {
4445 			invalidate_inode_pages2(inode->i_mapping);
4446 			iput(inode);
4447 		}
4448 		spin_lock(&root->delalloc_lock);
4449 	}
4450 	spin_unlock(&root->delalloc_lock);
4451 }
4452 
4453 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4454 {
4455 	struct btrfs_root *root;
4456 	struct list_head splice;
4457 
4458 	INIT_LIST_HEAD(&splice);
4459 
4460 	spin_lock(&fs_info->delalloc_root_lock);
4461 	list_splice_init(&fs_info->delalloc_roots, &splice);
4462 	while (!list_empty(&splice)) {
4463 		root = list_first_entry(&splice, struct btrfs_root,
4464 					 delalloc_root);
4465 		root = btrfs_grab_root(root);
4466 		BUG_ON(!root);
4467 		spin_unlock(&fs_info->delalloc_root_lock);
4468 
4469 		btrfs_destroy_delalloc_inodes(root);
4470 		btrfs_put_root(root);
4471 
4472 		spin_lock(&fs_info->delalloc_root_lock);
4473 	}
4474 	spin_unlock(&fs_info->delalloc_root_lock);
4475 }
4476 
4477 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4478 					struct extent_io_tree *dirty_pages,
4479 					int mark)
4480 {
4481 	int ret;
4482 	struct extent_buffer *eb;
4483 	u64 start = 0;
4484 	u64 end;
4485 
4486 	while (1) {
4487 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4488 					    mark, NULL);
4489 		if (ret)
4490 			break;
4491 
4492 		clear_extent_bits(dirty_pages, start, end, mark);
4493 		while (start <= end) {
4494 			eb = find_extent_buffer(fs_info, start);
4495 			start += fs_info->nodesize;
4496 			if (!eb)
4497 				continue;
4498 			wait_on_extent_buffer_writeback(eb);
4499 
4500 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4501 					       &eb->bflags))
4502 				clear_extent_buffer_dirty(eb);
4503 			free_extent_buffer_stale(eb);
4504 		}
4505 	}
4506 
4507 	return ret;
4508 }
4509 
4510 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4511 				       struct extent_io_tree *unpin)
4512 {
4513 	u64 start;
4514 	u64 end;
4515 	int ret;
4516 
4517 	while (1) {
4518 		struct extent_state *cached_state = NULL;
4519 
4520 		/*
4521 		 * The btrfs_finish_extent_commit() may get the same range as
4522 		 * ours between find_first_extent_bit and clear_extent_dirty.
4523 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4524 		 * the same extent range.
4525 		 */
4526 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4527 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4528 					    EXTENT_DIRTY, &cached_state);
4529 		if (ret) {
4530 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4531 			break;
4532 		}
4533 
4534 		clear_extent_dirty(unpin, start, end, &cached_state);
4535 		free_extent_state(cached_state);
4536 		btrfs_error_unpin_extent_range(fs_info, start, end);
4537 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4538 		cond_resched();
4539 	}
4540 
4541 	return 0;
4542 }
4543 
4544 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4545 {
4546 	struct inode *inode;
4547 
4548 	inode = cache->io_ctl.inode;
4549 	if (inode) {
4550 		invalidate_inode_pages2(inode->i_mapping);
4551 		BTRFS_I(inode)->generation = 0;
4552 		cache->io_ctl.inode = NULL;
4553 		iput(inode);
4554 	}
4555 	ASSERT(cache->io_ctl.pages == NULL);
4556 	btrfs_put_block_group(cache);
4557 }
4558 
4559 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4560 			     struct btrfs_fs_info *fs_info)
4561 {
4562 	struct btrfs_block_group *cache;
4563 
4564 	spin_lock(&cur_trans->dirty_bgs_lock);
4565 	while (!list_empty(&cur_trans->dirty_bgs)) {
4566 		cache = list_first_entry(&cur_trans->dirty_bgs,
4567 					 struct btrfs_block_group,
4568 					 dirty_list);
4569 
4570 		if (!list_empty(&cache->io_list)) {
4571 			spin_unlock(&cur_trans->dirty_bgs_lock);
4572 			list_del_init(&cache->io_list);
4573 			btrfs_cleanup_bg_io(cache);
4574 			spin_lock(&cur_trans->dirty_bgs_lock);
4575 		}
4576 
4577 		list_del_init(&cache->dirty_list);
4578 		spin_lock(&cache->lock);
4579 		cache->disk_cache_state = BTRFS_DC_ERROR;
4580 		spin_unlock(&cache->lock);
4581 
4582 		spin_unlock(&cur_trans->dirty_bgs_lock);
4583 		btrfs_put_block_group(cache);
4584 		btrfs_delayed_refs_rsv_release(fs_info, 1);
4585 		spin_lock(&cur_trans->dirty_bgs_lock);
4586 	}
4587 	spin_unlock(&cur_trans->dirty_bgs_lock);
4588 
4589 	/*
4590 	 * Refer to the definition of io_bgs member for details why it's safe
4591 	 * to use it without any locking
4592 	 */
4593 	while (!list_empty(&cur_trans->io_bgs)) {
4594 		cache = list_first_entry(&cur_trans->io_bgs,
4595 					 struct btrfs_block_group,
4596 					 io_list);
4597 
4598 		list_del_init(&cache->io_list);
4599 		spin_lock(&cache->lock);
4600 		cache->disk_cache_state = BTRFS_DC_ERROR;
4601 		spin_unlock(&cache->lock);
4602 		btrfs_cleanup_bg_io(cache);
4603 	}
4604 }
4605 
4606 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4607 				   struct btrfs_fs_info *fs_info)
4608 {
4609 	struct btrfs_device *dev, *tmp;
4610 
4611 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4612 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4613 	ASSERT(list_empty(&cur_trans->io_bgs));
4614 
4615 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4616 				 post_commit_list) {
4617 		list_del_init(&dev->post_commit_list);
4618 	}
4619 
4620 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4621 
4622 	cur_trans->state = TRANS_STATE_COMMIT_START;
4623 	wake_up(&fs_info->transaction_blocked_wait);
4624 
4625 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4626 	wake_up(&fs_info->transaction_wait);
4627 
4628 	btrfs_destroy_delayed_inodes(fs_info);
4629 
4630 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4631 				     EXTENT_DIRTY);
4632 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4633 
4634 	cur_trans->state =TRANS_STATE_COMPLETED;
4635 	wake_up(&cur_trans->commit_wait);
4636 }
4637 
4638 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4639 {
4640 	struct btrfs_transaction *t;
4641 
4642 	mutex_lock(&fs_info->transaction_kthread_mutex);
4643 
4644 	spin_lock(&fs_info->trans_lock);
4645 	while (!list_empty(&fs_info->trans_list)) {
4646 		t = list_first_entry(&fs_info->trans_list,
4647 				     struct btrfs_transaction, list);
4648 		if (t->state >= TRANS_STATE_COMMIT_START) {
4649 			refcount_inc(&t->use_count);
4650 			spin_unlock(&fs_info->trans_lock);
4651 			btrfs_wait_for_commit(fs_info, t->transid);
4652 			btrfs_put_transaction(t);
4653 			spin_lock(&fs_info->trans_lock);
4654 			continue;
4655 		}
4656 		if (t == fs_info->running_transaction) {
4657 			t->state = TRANS_STATE_COMMIT_DOING;
4658 			spin_unlock(&fs_info->trans_lock);
4659 			/*
4660 			 * We wait for 0 num_writers since we don't hold a trans
4661 			 * handle open currently for this transaction.
4662 			 */
4663 			wait_event(t->writer_wait,
4664 				   atomic_read(&t->num_writers) == 0);
4665 		} else {
4666 			spin_unlock(&fs_info->trans_lock);
4667 		}
4668 		btrfs_cleanup_one_transaction(t, fs_info);
4669 
4670 		spin_lock(&fs_info->trans_lock);
4671 		if (t == fs_info->running_transaction)
4672 			fs_info->running_transaction = NULL;
4673 		list_del_init(&t->list);
4674 		spin_unlock(&fs_info->trans_lock);
4675 
4676 		btrfs_put_transaction(t);
4677 		trace_btrfs_transaction_commit(fs_info->tree_root);
4678 		spin_lock(&fs_info->trans_lock);
4679 	}
4680 	spin_unlock(&fs_info->trans_lock);
4681 	btrfs_destroy_all_ordered_extents(fs_info);
4682 	btrfs_destroy_delayed_inodes(fs_info);
4683 	btrfs_assert_delayed_root_empty(fs_info);
4684 	btrfs_destroy_all_delalloc_inodes(fs_info);
4685 	btrfs_drop_all_logs(fs_info);
4686 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4687 
4688 	return 0;
4689 }
4690 
4691 static const struct extent_io_ops btree_extent_io_ops = {
4692 	/* mandatory callbacks */
4693 	.submit_bio_hook = btree_submit_bio_hook,
4694 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4695 };
4696