1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "inode-map.h" 33 #include "check-integrity.h" 34 #include "rcu-string.h" 35 #include "dev-replace.h" 36 #include "raid56.h" 37 #include "sysfs.h" 38 #include "qgroup.h" 39 #include "compression.h" 40 #include "tree-checker.h" 41 #include "ref-verify.h" 42 #include "block-group.h" 43 #include "discard.h" 44 #include "space-info.h" 45 46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 47 BTRFS_HEADER_FLAG_RELOC |\ 48 BTRFS_SUPER_FLAG_ERROR |\ 49 BTRFS_SUPER_FLAG_SEEDING |\ 50 BTRFS_SUPER_FLAG_METADUMP |\ 51 BTRFS_SUPER_FLAG_METADUMP_V2) 52 53 static const struct extent_io_ops btree_extent_io_ops; 54 static void end_workqueue_fn(struct btrfs_work *work); 55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 57 struct btrfs_fs_info *fs_info); 58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 60 struct extent_io_tree *dirty_pages, 61 int mark); 62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 63 struct extent_io_tree *pinned_extents); 64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 66 67 /* 68 * btrfs_end_io_wq structs are used to do processing in task context when an IO 69 * is complete. This is used during reads to verify checksums, and it is used 70 * by writes to insert metadata for new file extents after IO is complete. 71 */ 72 struct btrfs_end_io_wq { 73 struct bio *bio; 74 bio_end_io_t *end_io; 75 void *private; 76 struct btrfs_fs_info *info; 77 blk_status_t status; 78 enum btrfs_wq_endio_type metadata; 79 struct btrfs_work work; 80 }; 81 82 static struct kmem_cache *btrfs_end_io_wq_cache; 83 84 int __init btrfs_end_io_wq_init(void) 85 { 86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 87 sizeof(struct btrfs_end_io_wq), 88 0, 89 SLAB_MEM_SPREAD, 90 NULL); 91 if (!btrfs_end_io_wq_cache) 92 return -ENOMEM; 93 return 0; 94 } 95 96 void __cold btrfs_end_io_wq_exit(void) 97 { 98 kmem_cache_destroy(btrfs_end_io_wq_cache); 99 } 100 101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 102 { 103 if (fs_info->csum_shash) 104 crypto_free_shash(fs_info->csum_shash); 105 } 106 107 /* 108 * async submit bios are used to offload expensive checksumming 109 * onto the worker threads. They checksum file and metadata bios 110 * just before they are sent down the IO stack. 111 */ 112 struct async_submit_bio { 113 void *private_data; 114 struct bio *bio; 115 extent_submit_bio_start_t *submit_bio_start; 116 int mirror_num; 117 /* 118 * bio_offset is optional, can be used if the pages in the bio 119 * can't tell us where in the file the bio should go 120 */ 121 u64 bio_offset; 122 struct btrfs_work work; 123 blk_status_t status; 124 }; 125 126 /* 127 * Lockdep class keys for extent_buffer->lock's in this root. For a given 128 * eb, the lockdep key is determined by the btrfs_root it belongs to and 129 * the level the eb occupies in the tree. 130 * 131 * Different roots are used for different purposes and may nest inside each 132 * other and they require separate keysets. As lockdep keys should be 133 * static, assign keysets according to the purpose of the root as indicated 134 * by btrfs_root->root_key.objectid. This ensures that all special purpose 135 * roots have separate keysets. 136 * 137 * Lock-nesting across peer nodes is always done with the immediate parent 138 * node locked thus preventing deadlock. As lockdep doesn't know this, use 139 * subclass to avoid triggering lockdep warning in such cases. 140 * 141 * The key is set by the readpage_end_io_hook after the buffer has passed 142 * csum validation but before the pages are unlocked. It is also set by 143 * btrfs_init_new_buffer on freshly allocated blocks. 144 * 145 * We also add a check to make sure the highest level of the tree is the 146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 147 * needs update as well. 148 */ 149 #ifdef CONFIG_DEBUG_LOCK_ALLOC 150 # if BTRFS_MAX_LEVEL != 8 151 # error 152 # endif 153 154 static struct btrfs_lockdep_keyset { 155 u64 id; /* root objectid */ 156 const char *name_stem; /* lock name stem */ 157 char names[BTRFS_MAX_LEVEL + 1][20]; 158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 159 } btrfs_lockdep_keysets[] = { 160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 172 { .id = 0, .name_stem = "tree" }, 173 }; 174 175 void __init btrfs_init_lockdep(void) 176 { 177 int i, j; 178 179 /* initialize lockdep class names */ 180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 182 183 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 184 snprintf(ks->names[j], sizeof(ks->names[j]), 185 "btrfs-%s-%02d", ks->name_stem, j); 186 } 187 } 188 189 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 190 int level) 191 { 192 struct btrfs_lockdep_keyset *ks; 193 194 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 195 196 /* find the matching keyset, id 0 is the default entry */ 197 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 198 if (ks->id == objectid) 199 break; 200 201 lockdep_set_class_and_name(&eb->lock, 202 &ks->keys[level], ks->names[level]); 203 } 204 205 #endif 206 207 /* 208 * extents on the btree inode are pretty simple, there's one extent 209 * that covers the entire device 210 */ 211 struct extent_map *btree_get_extent(struct btrfs_inode *inode, 212 struct page *page, size_t pg_offset, 213 u64 start, u64 len) 214 { 215 struct extent_map_tree *em_tree = &inode->extent_tree; 216 struct extent_map *em; 217 int ret; 218 219 read_lock(&em_tree->lock); 220 em = lookup_extent_mapping(em_tree, start, len); 221 if (em) { 222 read_unlock(&em_tree->lock); 223 goto out; 224 } 225 read_unlock(&em_tree->lock); 226 227 em = alloc_extent_map(); 228 if (!em) { 229 em = ERR_PTR(-ENOMEM); 230 goto out; 231 } 232 em->start = 0; 233 em->len = (u64)-1; 234 em->block_len = (u64)-1; 235 em->block_start = 0; 236 237 write_lock(&em_tree->lock); 238 ret = add_extent_mapping(em_tree, em, 0); 239 if (ret == -EEXIST) { 240 free_extent_map(em); 241 em = lookup_extent_mapping(em_tree, start, len); 242 if (!em) 243 em = ERR_PTR(-EIO); 244 } else if (ret) { 245 free_extent_map(em); 246 em = ERR_PTR(ret); 247 } 248 write_unlock(&em_tree->lock); 249 250 out: 251 return em; 252 } 253 254 /* 255 * Compute the csum of a btree block and store the result to provided buffer. 256 */ 257 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 258 { 259 struct btrfs_fs_info *fs_info = buf->fs_info; 260 const int num_pages = fs_info->nodesize >> PAGE_SHIFT; 261 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 262 char *kaddr; 263 int i; 264 265 shash->tfm = fs_info->csum_shash; 266 crypto_shash_init(shash); 267 kaddr = page_address(buf->pages[0]); 268 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 269 PAGE_SIZE - BTRFS_CSUM_SIZE); 270 271 for (i = 1; i < num_pages; i++) { 272 kaddr = page_address(buf->pages[i]); 273 crypto_shash_update(shash, kaddr, PAGE_SIZE); 274 } 275 memset(result, 0, BTRFS_CSUM_SIZE); 276 crypto_shash_final(shash, result); 277 } 278 279 /* 280 * we can't consider a given block up to date unless the transid of the 281 * block matches the transid in the parent node's pointer. This is how we 282 * detect blocks that either didn't get written at all or got written 283 * in the wrong place. 284 */ 285 static int verify_parent_transid(struct extent_io_tree *io_tree, 286 struct extent_buffer *eb, u64 parent_transid, 287 int atomic) 288 { 289 struct extent_state *cached_state = NULL; 290 int ret; 291 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 292 293 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 294 return 0; 295 296 if (atomic) 297 return -EAGAIN; 298 299 if (need_lock) { 300 btrfs_tree_read_lock(eb); 301 btrfs_set_lock_blocking_read(eb); 302 } 303 304 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 305 &cached_state); 306 if (extent_buffer_uptodate(eb) && 307 btrfs_header_generation(eb) == parent_transid) { 308 ret = 0; 309 goto out; 310 } 311 btrfs_err_rl(eb->fs_info, 312 "parent transid verify failed on %llu wanted %llu found %llu", 313 eb->start, 314 parent_transid, btrfs_header_generation(eb)); 315 ret = 1; 316 317 /* 318 * Things reading via commit roots that don't have normal protection, 319 * like send, can have a really old block in cache that may point at a 320 * block that has been freed and re-allocated. So don't clear uptodate 321 * if we find an eb that is under IO (dirty/writeback) because we could 322 * end up reading in the stale data and then writing it back out and 323 * making everybody very sad. 324 */ 325 if (!extent_buffer_under_io(eb)) 326 clear_extent_buffer_uptodate(eb); 327 out: 328 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 329 &cached_state); 330 if (need_lock) 331 btrfs_tree_read_unlock_blocking(eb); 332 return ret; 333 } 334 335 static bool btrfs_supported_super_csum(u16 csum_type) 336 { 337 switch (csum_type) { 338 case BTRFS_CSUM_TYPE_CRC32: 339 case BTRFS_CSUM_TYPE_XXHASH: 340 case BTRFS_CSUM_TYPE_SHA256: 341 case BTRFS_CSUM_TYPE_BLAKE2: 342 return true; 343 default: 344 return false; 345 } 346 } 347 348 /* 349 * Return 0 if the superblock checksum type matches the checksum value of that 350 * algorithm. Pass the raw disk superblock data. 351 */ 352 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 353 char *raw_disk_sb) 354 { 355 struct btrfs_super_block *disk_sb = 356 (struct btrfs_super_block *)raw_disk_sb; 357 char result[BTRFS_CSUM_SIZE]; 358 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 359 360 shash->tfm = fs_info->csum_shash; 361 362 /* 363 * The super_block structure does not span the whole 364 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 365 * filled with zeros and is included in the checksum. 366 */ 367 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE, 368 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 369 370 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb))) 371 return 1; 372 373 return 0; 374 } 375 376 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 377 struct btrfs_key *first_key, u64 parent_transid) 378 { 379 struct btrfs_fs_info *fs_info = eb->fs_info; 380 int found_level; 381 struct btrfs_key found_key; 382 int ret; 383 384 found_level = btrfs_header_level(eb); 385 if (found_level != level) { 386 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 387 KERN_ERR "BTRFS: tree level check failed\n"); 388 btrfs_err(fs_info, 389 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 390 eb->start, level, found_level); 391 return -EIO; 392 } 393 394 if (!first_key) 395 return 0; 396 397 /* 398 * For live tree block (new tree blocks in current transaction), 399 * we need proper lock context to avoid race, which is impossible here. 400 * So we only checks tree blocks which is read from disk, whose 401 * generation <= fs_info->last_trans_committed. 402 */ 403 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 404 return 0; 405 406 /* We have @first_key, so this @eb must have at least one item */ 407 if (btrfs_header_nritems(eb) == 0) { 408 btrfs_err(fs_info, 409 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 410 eb->start); 411 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 412 return -EUCLEAN; 413 } 414 415 if (found_level) 416 btrfs_node_key_to_cpu(eb, &found_key, 0); 417 else 418 btrfs_item_key_to_cpu(eb, &found_key, 0); 419 ret = btrfs_comp_cpu_keys(first_key, &found_key); 420 421 if (ret) { 422 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 423 KERN_ERR "BTRFS: tree first key check failed\n"); 424 btrfs_err(fs_info, 425 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 426 eb->start, parent_transid, first_key->objectid, 427 first_key->type, first_key->offset, 428 found_key.objectid, found_key.type, 429 found_key.offset); 430 } 431 return ret; 432 } 433 434 /* 435 * helper to read a given tree block, doing retries as required when 436 * the checksums don't match and we have alternate mirrors to try. 437 * 438 * @parent_transid: expected transid, skip check if 0 439 * @level: expected level, mandatory check 440 * @first_key: expected key of first slot, skip check if NULL 441 */ 442 static int btree_read_extent_buffer_pages(struct extent_buffer *eb, 443 u64 parent_transid, int level, 444 struct btrfs_key *first_key) 445 { 446 struct btrfs_fs_info *fs_info = eb->fs_info; 447 struct extent_io_tree *io_tree; 448 int failed = 0; 449 int ret; 450 int num_copies = 0; 451 int mirror_num = 0; 452 int failed_mirror = 0; 453 454 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 455 while (1) { 456 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 457 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num); 458 if (!ret) { 459 if (verify_parent_transid(io_tree, eb, 460 parent_transid, 0)) 461 ret = -EIO; 462 else if (btrfs_verify_level_key(eb, level, 463 first_key, parent_transid)) 464 ret = -EUCLEAN; 465 else 466 break; 467 } 468 469 num_copies = btrfs_num_copies(fs_info, 470 eb->start, eb->len); 471 if (num_copies == 1) 472 break; 473 474 if (!failed_mirror) { 475 failed = 1; 476 failed_mirror = eb->read_mirror; 477 } 478 479 mirror_num++; 480 if (mirror_num == failed_mirror) 481 mirror_num++; 482 483 if (mirror_num > num_copies) 484 break; 485 } 486 487 if (failed && !ret && failed_mirror) 488 btrfs_repair_eb_io_failure(eb, failed_mirror); 489 490 return ret; 491 } 492 493 /* 494 * checksum a dirty tree block before IO. This has extra checks to make sure 495 * we only fill in the checksum field in the first page of a multi-page block 496 */ 497 498 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 499 { 500 u64 start = page_offset(page); 501 u64 found_start; 502 u8 result[BTRFS_CSUM_SIZE]; 503 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 504 struct extent_buffer *eb; 505 int ret; 506 507 eb = (struct extent_buffer *)page->private; 508 if (page != eb->pages[0]) 509 return 0; 510 511 found_start = btrfs_header_bytenr(eb); 512 /* 513 * Please do not consolidate these warnings into a single if. 514 * It is useful to know what went wrong. 515 */ 516 if (WARN_ON(found_start != start)) 517 return -EUCLEAN; 518 if (WARN_ON(!PageUptodate(page))) 519 return -EUCLEAN; 520 521 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 522 offsetof(struct btrfs_header, fsid), 523 BTRFS_FSID_SIZE) == 0); 524 525 csum_tree_block(eb, result); 526 527 if (btrfs_header_level(eb)) 528 ret = btrfs_check_node(eb); 529 else 530 ret = btrfs_check_leaf_full(eb); 531 532 if (ret < 0) { 533 btrfs_print_tree(eb, 0); 534 btrfs_err(fs_info, 535 "block=%llu write time tree block corruption detected", 536 eb->start); 537 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 538 return ret; 539 } 540 write_extent_buffer(eb, result, 0, csum_size); 541 542 return 0; 543 } 544 545 static int check_tree_block_fsid(struct extent_buffer *eb) 546 { 547 struct btrfs_fs_info *fs_info = eb->fs_info; 548 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 549 u8 fsid[BTRFS_FSID_SIZE]; 550 int ret = 1; 551 552 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 553 BTRFS_FSID_SIZE); 554 while (fs_devices) { 555 u8 *metadata_uuid; 556 557 /* 558 * Checking the incompat flag is only valid for the current 559 * fs. For seed devices it's forbidden to have their uuid 560 * changed so reading ->fsid in this case is fine 561 */ 562 if (fs_devices == fs_info->fs_devices && 563 btrfs_fs_incompat(fs_info, METADATA_UUID)) 564 metadata_uuid = fs_devices->metadata_uuid; 565 else 566 metadata_uuid = fs_devices->fsid; 567 568 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) { 569 ret = 0; 570 break; 571 } 572 fs_devices = fs_devices->seed; 573 } 574 return ret; 575 } 576 577 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 578 u64 phy_offset, struct page *page, 579 u64 start, u64 end, int mirror) 580 { 581 u64 found_start; 582 int found_level; 583 struct extent_buffer *eb; 584 struct btrfs_fs_info *fs_info; 585 u16 csum_size; 586 int ret = 0; 587 u8 result[BTRFS_CSUM_SIZE]; 588 int reads_done; 589 590 if (!page->private) 591 goto out; 592 593 eb = (struct extent_buffer *)page->private; 594 fs_info = eb->fs_info; 595 csum_size = btrfs_super_csum_size(fs_info->super_copy); 596 597 /* the pending IO might have been the only thing that kept this buffer 598 * in memory. Make sure we have a ref for all this other checks 599 */ 600 atomic_inc(&eb->refs); 601 602 reads_done = atomic_dec_and_test(&eb->io_pages); 603 if (!reads_done) 604 goto err; 605 606 eb->read_mirror = mirror; 607 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 608 ret = -EIO; 609 goto err; 610 } 611 612 found_start = btrfs_header_bytenr(eb); 613 if (found_start != eb->start) { 614 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 615 eb->start, found_start); 616 ret = -EIO; 617 goto err; 618 } 619 if (check_tree_block_fsid(eb)) { 620 btrfs_err_rl(fs_info, "bad fsid on block %llu", 621 eb->start); 622 ret = -EIO; 623 goto err; 624 } 625 found_level = btrfs_header_level(eb); 626 if (found_level >= BTRFS_MAX_LEVEL) { 627 btrfs_err(fs_info, "bad tree block level %d on %llu", 628 (int)btrfs_header_level(eb), eb->start); 629 ret = -EIO; 630 goto err; 631 } 632 633 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 634 eb, found_level); 635 636 csum_tree_block(eb, result); 637 638 if (memcmp_extent_buffer(eb, result, 0, csum_size)) { 639 u8 val[BTRFS_CSUM_SIZE] = { 0 }; 640 641 read_extent_buffer(eb, &val, 0, csum_size); 642 btrfs_warn_rl(fs_info, 643 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d", 644 fs_info->sb->s_id, eb->start, 645 CSUM_FMT_VALUE(csum_size, val), 646 CSUM_FMT_VALUE(csum_size, result), 647 btrfs_header_level(eb)); 648 ret = -EUCLEAN; 649 goto err; 650 } 651 652 /* 653 * If this is a leaf block and it is corrupt, set the corrupt bit so 654 * that we don't try and read the other copies of this block, just 655 * return -EIO. 656 */ 657 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 658 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 659 ret = -EIO; 660 } 661 662 if (found_level > 0 && btrfs_check_node(eb)) 663 ret = -EIO; 664 665 if (!ret) 666 set_extent_buffer_uptodate(eb); 667 else 668 btrfs_err(fs_info, 669 "block=%llu read time tree block corruption detected", 670 eb->start); 671 err: 672 if (reads_done && 673 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 674 btree_readahead_hook(eb, ret); 675 676 if (ret) { 677 /* 678 * our io error hook is going to dec the io pages 679 * again, we have to make sure it has something 680 * to decrement 681 */ 682 atomic_inc(&eb->io_pages); 683 clear_extent_buffer_uptodate(eb); 684 } 685 free_extent_buffer(eb); 686 out: 687 return ret; 688 } 689 690 static void end_workqueue_bio(struct bio *bio) 691 { 692 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 693 struct btrfs_fs_info *fs_info; 694 struct btrfs_workqueue *wq; 695 696 fs_info = end_io_wq->info; 697 end_io_wq->status = bio->bi_status; 698 699 if (bio_op(bio) == REQ_OP_WRITE) { 700 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) 701 wq = fs_info->endio_meta_write_workers; 702 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) 703 wq = fs_info->endio_freespace_worker; 704 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 705 wq = fs_info->endio_raid56_workers; 706 else 707 wq = fs_info->endio_write_workers; 708 } else { 709 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 710 wq = fs_info->endio_raid56_workers; 711 else if (end_io_wq->metadata) 712 wq = fs_info->endio_meta_workers; 713 else 714 wq = fs_info->endio_workers; 715 } 716 717 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL); 718 btrfs_queue_work(wq, &end_io_wq->work); 719 } 720 721 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 722 enum btrfs_wq_endio_type metadata) 723 { 724 struct btrfs_end_io_wq *end_io_wq; 725 726 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 727 if (!end_io_wq) 728 return BLK_STS_RESOURCE; 729 730 end_io_wq->private = bio->bi_private; 731 end_io_wq->end_io = bio->bi_end_io; 732 end_io_wq->info = info; 733 end_io_wq->status = 0; 734 end_io_wq->bio = bio; 735 end_io_wq->metadata = metadata; 736 737 bio->bi_private = end_io_wq; 738 bio->bi_end_io = end_workqueue_bio; 739 return 0; 740 } 741 742 static void run_one_async_start(struct btrfs_work *work) 743 { 744 struct async_submit_bio *async; 745 blk_status_t ret; 746 747 async = container_of(work, struct async_submit_bio, work); 748 ret = async->submit_bio_start(async->private_data, async->bio, 749 async->bio_offset); 750 if (ret) 751 async->status = ret; 752 } 753 754 /* 755 * In order to insert checksums into the metadata in large chunks, we wait 756 * until bio submission time. All the pages in the bio are checksummed and 757 * sums are attached onto the ordered extent record. 758 * 759 * At IO completion time the csums attached on the ordered extent record are 760 * inserted into the tree. 761 */ 762 static void run_one_async_done(struct btrfs_work *work) 763 { 764 struct async_submit_bio *async; 765 struct inode *inode; 766 blk_status_t ret; 767 768 async = container_of(work, struct async_submit_bio, work); 769 inode = async->private_data; 770 771 /* If an error occurred we just want to clean up the bio and move on */ 772 if (async->status) { 773 async->bio->bi_status = async->status; 774 bio_endio(async->bio); 775 return; 776 } 777 778 /* 779 * All of the bios that pass through here are from async helpers. 780 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context. 781 * This changes nothing when cgroups aren't in use. 782 */ 783 async->bio->bi_opf |= REQ_CGROUP_PUNT; 784 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num); 785 if (ret) { 786 async->bio->bi_status = ret; 787 bio_endio(async->bio); 788 } 789 } 790 791 static void run_one_async_free(struct btrfs_work *work) 792 { 793 struct async_submit_bio *async; 794 795 async = container_of(work, struct async_submit_bio, work); 796 kfree(async); 797 } 798 799 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 800 int mirror_num, unsigned long bio_flags, 801 u64 bio_offset, void *private_data, 802 extent_submit_bio_start_t *submit_bio_start) 803 { 804 struct async_submit_bio *async; 805 806 async = kmalloc(sizeof(*async), GFP_NOFS); 807 if (!async) 808 return BLK_STS_RESOURCE; 809 810 async->private_data = private_data; 811 async->bio = bio; 812 async->mirror_num = mirror_num; 813 async->submit_bio_start = submit_bio_start; 814 815 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, 816 run_one_async_free); 817 818 async->bio_offset = bio_offset; 819 820 async->status = 0; 821 822 if (op_is_sync(bio->bi_opf)) 823 btrfs_set_work_high_priority(&async->work); 824 825 btrfs_queue_work(fs_info->workers, &async->work); 826 return 0; 827 } 828 829 static blk_status_t btree_csum_one_bio(struct bio *bio) 830 { 831 struct bio_vec *bvec; 832 struct btrfs_root *root; 833 int ret = 0; 834 struct bvec_iter_all iter_all; 835 836 ASSERT(!bio_flagged(bio, BIO_CLONED)); 837 bio_for_each_segment_all(bvec, bio, iter_all) { 838 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 839 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 840 if (ret) 841 break; 842 } 843 844 return errno_to_blk_status(ret); 845 } 846 847 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, 848 u64 bio_offset) 849 { 850 /* 851 * when we're called for a write, we're already in the async 852 * submission context. Just jump into btrfs_map_bio 853 */ 854 return btree_csum_one_bio(bio); 855 } 856 857 static int check_async_write(struct btrfs_fs_info *fs_info, 858 struct btrfs_inode *bi) 859 { 860 if (atomic_read(&bi->sync_writers)) 861 return 0; 862 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 863 return 0; 864 return 1; 865 } 866 867 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio, 868 int mirror_num, 869 unsigned long bio_flags) 870 { 871 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 872 int async = check_async_write(fs_info, BTRFS_I(inode)); 873 blk_status_t ret; 874 875 if (bio_op(bio) != REQ_OP_WRITE) { 876 /* 877 * called for a read, do the setup so that checksum validation 878 * can happen in the async kernel threads 879 */ 880 ret = btrfs_bio_wq_end_io(fs_info, bio, 881 BTRFS_WQ_ENDIO_METADATA); 882 if (ret) 883 goto out_w_error; 884 ret = btrfs_map_bio(fs_info, bio, mirror_num); 885 } else if (!async) { 886 ret = btree_csum_one_bio(bio); 887 if (ret) 888 goto out_w_error; 889 ret = btrfs_map_bio(fs_info, bio, mirror_num); 890 } else { 891 /* 892 * kthread helpers are used to submit writes so that 893 * checksumming can happen in parallel across all CPUs 894 */ 895 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 896 0, inode, btree_submit_bio_start); 897 } 898 899 if (ret) 900 goto out_w_error; 901 return 0; 902 903 out_w_error: 904 bio->bi_status = ret; 905 bio_endio(bio); 906 return ret; 907 } 908 909 #ifdef CONFIG_MIGRATION 910 static int btree_migratepage(struct address_space *mapping, 911 struct page *newpage, struct page *page, 912 enum migrate_mode mode) 913 { 914 /* 915 * we can't safely write a btree page from here, 916 * we haven't done the locking hook 917 */ 918 if (PageDirty(page)) 919 return -EAGAIN; 920 /* 921 * Buffers may be managed in a filesystem specific way. 922 * We must have no buffers or drop them. 923 */ 924 if (page_has_private(page) && 925 !try_to_release_page(page, GFP_KERNEL)) 926 return -EAGAIN; 927 return migrate_page(mapping, newpage, page, mode); 928 } 929 #endif 930 931 932 static int btree_writepages(struct address_space *mapping, 933 struct writeback_control *wbc) 934 { 935 struct btrfs_fs_info *fs_info; 936 int ret; 937 938 if (wbc->sync_mode == WB_SYNC_NONE) { 939 940 if (wbc->for_kupdate) 941 return 0; 942 943 fs_info = BTRFS_I(mapping->host)->root->fs_info; 944 /* this is a bit racy, but that's ok */ 945 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 946 BTRFS_DIRTY_METADATA_THRESH, 947 fs_info->dirty_metadata_batch); 948 if (ret < 0) 949 return 0; 950 } 951 return btree_write_cache_pages(mapping, wbc); 952 } 953 954 static int btree_readpage(struct file *file, struct page *page) 955 { 956 return extent_read_full_page(page, btree_get_extent, 0); 957 } 958 959 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 960 { 961 if (PageWriteback(page) || PageDirty(page)) 962 return 0; 963 964 return try_release_extent_buffer(page); 965 } 966 967 static void btree_invalidatepage(struct page *page, unsigned int offset, 968 unsigned int length) 969 { 970 struct extent_io_tree *tree; 971 tree = &BTRFS_I(page->mapping->host)->io_tree; 972 extent_invalidatepage(tree, page, offset); 973 btree_releasepage(page, GFP_NOFS); 974 if (PagePrivate(page)) { 975 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 976 "page private not zero on page %llu", 977 (unsigned long long)page_offset(page)); 978 detach_page_private(page); 979 } 980 } 981 982 static int btree_set_page_dirty(struct page *page) 983 { 984 #ifdef DEBUG 985 struct extent_buffer *eb; 986 987 BUG_ON(!PagePrivate(page)); 988 eb = (struct extent_buffer *)page->private; 989 BUG_ON(!eb); 990 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 991 BUG_ON(!atomic_read(&eb->refs)); 992 btrfs_assert_tree_locked(eb); 993 #endif 994 return __set_page_dirty_nobuffers(page); 995 } 996 997 static const struct address_space_operations btree_aops = { 998 .readpage = btree_readpage, 999 .writepages = btree_writepages, 1000 .releasepage = btree_releasepage, 1001 .invalidatepage = btree_invalidatepage, 1002 #ifdef CONFIG_MIGRATION 1003 .migratepage = btree_migratepage, 1004 #endif 1005 .set_page_dirty = btree_set_page_dirty, 1006 }; 1007 1008 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1009 { 1010 struct extent_buffer *buf = NULL; 1011 int ret; 1012 1013 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1014 if (IS_ERR(buf)) 1015 return; 1016 1017 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0); 1018 if (ret < 0) 1019 free_extent_buffer_stale(buf); 1020 else 1021 free_extent_buffer(buf); 1022 } 1023 1024 struct extent_buffer *btrfs_find_create_tree_block( 1025 struct btrfs_fs_info *fs_info, 1026 u64 bytenr) 1027 { 1028 if (btrfs_is_testing(fs_info)) 1029 return alloc_test_extent_buffer(fs_info, bytenr); 1030 return alloc_extent_buffer(fs_info, bytenr); 1031 } 1032 1033 /* 1034 * Read tree block at logical address @bytenr and do variant basic but critical 1035 * verification. 1036 * 1037 * @parent_transid: expected transid of this tree block, skip check if 0 1038 * @level: expected level, mandatory check 1039 * @first_key: expected key in slot 0, skip check if NULL 1040 */ 1041 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1042 u64 parent_transid, int level, 1043 struct btrfs_key *first_key) 1044 { 1045 struct extent_buffer *buf = NULL; 1046 int ret; 1047 1048 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1049 if (IS_ERR(buf)) 1050 return buf; 1051 1052 ret = btree_read_extent_buffer_pages(buf, parent_transid, 1053 level, first_key); 1054 if (ret) { 1055 free_extent_buffer_stale(buf); 1056 return ERR_PTR(ret); 1057 } 1058 return buf; 1059 1060 } 1061 1062 void btrfs_clean_tree_block(struct extent_buffer *buf) 1063 { 1064 struct btrfs_fs_info *fs_info = buf->fs_info; 1065 if (btrfs_header_generation(buf) == 1066 fs_info->running_transaction->transid) { 1067 btrfs_assert_tree_locked(buf); 1068 1069 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1070 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1071 -buf->len, 1072 fs_info->dirty_metadata_batch); 1073 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1074 btrfs_set_lock_blocking_write(buf); 1075 clear_extent_buffer_dirty(buf); 1076 } 1077 } 1078 } 1079 1080 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1081 u64 objectid) 1082 { 1083 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1084 root->fs_info = fs_info; 1085 root->node = NULL; 1086 root->commit_root = NULL; 1087 root->state = 0; 1088 root->orphan_cleanup_state = 0; 1089 1090 root->last_trans = 0; 1091 root->highest_objectid = 0; 1092 root->nr_delalloc_inodes = 0; 1093 root->nr_ordered_extents = 0; 1094 root->inode_tree = RB_ROOT; 1095 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1096 root->block_rsv = NULL; 1097 1098 INIT_LIST_HEAD(&root->dirty_list); 1099 INIT_LIST_HEAD(&root->root_list); 1100 INIT_LIST_HEAD(&root->delalloc_inodes); 1101 INIT_LIST_HEAD(&root->delalloc_root); 1102 INIT_LIST_HEAD(&root->ordered_extents); 1103 INIT_LIST_HEAD(&root->ordered_root); 1104 INIT_LIST_HEAD(&root->reloc_dirty_list); 1105 INIT_LIST_HEAD(&root->logged_list[0]); 1106 INIT_LIST_HEAD(&root->logged_list[1]); 1107 spin_lock_init(&root->inode_lock); 1108 spin_lock_init(&root->delalloc_lock); 1109 spin_lock_init(&root->ordered_extent_lock); 1110 spin_lock_init(&root->accounting_lock); 1111 spin_lock_init(&root->log_extents_lock[0]); 1112 spin_lock_init(&root->log_extents_lock[1]); 1113 spin_lock_init(&root->qgroup_meta_rsv_lock); 1114 mutex_init(&root->objectid_mutex); 1115 mutex_init(&root->log_mutex); 1116 mutex_init(&root->ordered_extent_mutex); 1117 mutex_init(&root->delalloc_mutex); 1118 init_waitqueue_head(&root->qgroup_flush_wait); 1119 init_waitqueue_head(&root->log_writer_wait); 1120 init_waitqueue_head(&root->log_commit_wait[0]); 1121 init_waitqueue_head(&root->log_commit_wait[1]); 1122 INIT_LIST_HEAD(&root->log_ctxs[0]); 1123 INIT_LIST_HEAD(&root->log_ctxs[1]); 1124 atomic_set(&root->log_commit[0], 0); 1125 atomic_set(&root->log_commit[1], 0); 1126 atomic_set(&root->log_writers, 0); 1127 atomic_set(&root->log_batch, 0); 1128 refcount_set(&root->refs, 1); 1129 atomic_set(&root->snapshot_force_cow, 0); 1130 atomic_set(&root->nr_swapfiles, 0); 1131 root->log_transid = 0; 1132 root->log_transid_committed = -1; 1133 root->last_log_commit = 0; 1134 if (!dummy) { 1135 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1136 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL); 1137 extent_io_tree_init(fs_info, &root->log_csum_range, 1138 IO_TREE_LOG_CSUM_RANGE, NULL); 1139 } 1140 1141 memset(&root->root_key, 0, sizeof(root->root_key)); 1142 memset(&root->root_item, 0, sizeof(root->root_item)); 1143 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1144 root->root_key.objectid = objectid; 1145 root->anon_dev = 0; 1146 1147 spin_lock_init(&root->root_item_lock); 1148 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1149 #ifdef CONFIG_BTRFS_DEBUG 1150 INIT_LIST_HEAD(&root->leak_list); 1151 spin_lock(&fs_info->fs_roots_radix_lock); 1152 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 1153 spin_unlock(&fs_info->fs_roots_radix_lock); 1154 #endif 1155 } 1156 1157 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1158 u64 objectid, gfp_t flags) 1159 { 1160 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1161 if (root) 1162 __setup_root(root, fs_info, objectid); 1163 return root; 1164 } 1165 1166 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1167 /* Should only be used by the testing infrastructure */ 1168 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1169 { 1170 struct btrfs_root *root; 1171 1172 if (!fs_info) 1173 return ERR_PTR(-EINVAL); 1174 1175 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 1176 if (!root) 1177 return ERR_PTR(-ENOMEM); 1178 1179 /* We don't use the stripesize in selftest, set it as sectorsize */ 1180 root->alloc_bytenr = 0; 1181 1182 return root; 1183 } 1184 #endif 1185 1186 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1187 u64 objectid) 1188 { 1189 struct btrfs_fs_info *fs_info = trans->fs_info; 1190 struct extent_buffer *leaf; 1191 struct btrfs_root *tree_root = fs_info->tree_root; 1192 struct btrfs_root *root; 1193 struct btrfs_key key; 1194 unsigned int nofs_flag; 1195 int ret = 0; 1196 1197 /* 1198 * We're holding a transaction handle, so use a NOFS memory allocation 1199 * context to avoid deadlock if reclaim happens. 1200 */ 1201 nofs_flag = memalloc_nofs_save(); 1202 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1203 memalloc_nofs_restore(nofs_flag); 1204 if (!root) 1205 return ERR_PTR(-ENOMEM); 1206 1207 root->root_key.objectid = objectid; 1208 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1209 root->root_key.offset = 0; 1210 1211 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1212 if (IS_ERR(leaf)) { 1213 ret = PTR_ERR(leaf); 1214 leaf = NULL; 1215 goto fail; 1216 } 1217 1218 root->node = leaf; 1219 btrfs_mark_buffer_dirty(leaf); 1220 1221 root->commit_root = btrfs_root_node(root); 1222 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1223 1224 root->root_item.flags = 0; 1225 root->root_item.byte_limit = 0; 1226 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1227 btrfs_set_root_generation(&root->root_item, trans->transid); 1228 btrfs_set_root_level(&root->root_item, 0); 1229 btrfs_set_root_refs(&root->root_item, 1); 1230 btrfs_set_root_used(&root->root_item, leaf->len); 1231 btrfs_set_root_last_snapshot(&root->root_item, 0); 1232 btrfs_set_root_dirid(&root->root_item, 0); 1233 if (is_fstree(objectid)) 1234 generate_random_guid(root->root_item.uuid); 1235 else 1236 export_guid(root->root_item.uuid, &guid_null); 1237 root->root_item.drop_level = 0; 1238 1239 key.objectid = objectid; 1240 key.type = BTRFS_ROOT_ITEM_KEY; 1241 key.offset = 0; 1242 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1243 if (ret) 1244 goto fail; 1245 1246 btrfs_tree_unlock(leaf); 1247 1248 return root; 1249 1250 fail: 1251 if (leaf) 1252 btrfs_tree_unlock(leaf); 1253 btrfs_put_root(root); 1254 1255 return ERR_PTR(ret); 1256 } 1257 1258 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1259 struct btrfs_fs_info *fs_info) 1260 { 1261 struct btrfs_root *root; 1262 struct extent_buffer *leaf; 1263 1264 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1265 if (!root) 1266 return ERR_PTR(-ENOMEM); 1267 1268 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1269 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1270 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1271 1272 /* 1273 * DON'T set SHAREABLE bit for log trees. 1274 * 1275 * Log trees are not exposed to user space thus can't be snapshotted, 1276 * and they go away before a real commit is actually done. 1277 * 1278 * They do store pointers to file data extents, and those reference 1279 * counts still get updated (along with back refs to the log tree). 1280 */ 1281 1282 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1283 NULL, 0, 0, 0); 1284 if (IS_ERR(leaf)) { 1285 btrfs_put_root(root); 1286 return ERR_CAST(leaf); 1287 } 1288 1289 root->node = leaf; 1290 1291 btrfs_mark_buffer_dirty(root->node); 1292 btrfs_tree_unlock(root->node); 1293 return root; 1294 } 1295 1296 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1297 struct btrfs_fs_info *fs_info) 1298 { 1299 struct btrfs_root *log_root; 1300 1301 log_root = alloc_log_tree(trans, fs_info); 1302 if (IS_ERR(log_root)) 1303 return PTR_ERR(log_root); 1304 WARN_ON(fs_info->log_root_tree); 1305 fs_info->log_root_tree = log_root; 1306 return 0; 1307 } 1308 1309 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1310 struct btrfs_root *root) 1311 { 1312 struct btrfs_fs_info *fs_info = root->fs_info; 1313 struct btrfs_root *log_root; 1314 struct btrfs_inode_item *inode_item; 1315 1316 log_root = alloc_log_tree(trans, fs_info); 1317 if (IS_ERR(log_root)) 1318 return PTR_ERR(log_root); 1319 1320 log_root->last_trans = trans->transid; 1321 log_root->root_key.offset = root->root_key.objectid; 1322 1323 inode_item = &log_root->root_item.inode; 1324 btrfs_set_stack_inode_generation(inode_item, 1); 1325 btrfs_set_stack_inode_size(inode_item, 3); 1326 btrfs_set_stack_inode_nlink(inode_item, 1); 1327 btrfs_set_stack_inode_nbytes(inode_item, 1328 fs_info->nodesize); 1329 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1330 1331 btrfs_set_root_node(&log_root->root_item, log_root->node); 1332 1333 WARN_ON(root->log_root); 1334 root->log_root = log_root; 1335 root->log_transid = 0; 1336 root->log_transid_committed = -1; 1337 root->last_log_commit = 0; 1338 return 0; 1339 } 1340 1341 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1342 struct btrfs_key *key) 1343 { 1344 struct btrfs_root *root; 1345 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1346 struct btrfs_path *path; 1347 u64 generation; 1348 int ret; 1349 int level; 1350 1351 path = btrfs_alloc_path(); 1352 if (!path) 1353 return ERR_PTR(-ENOMEM); 1354 1355 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1356 if (!root) { 1357 ret = -ENOMEM; 1358 goto alloc_fail; 1359 } 1360 1361 ret = btrfs_find_root(tree_root, key, path, 1362 &root->root_item, &root->root_key); 1363 if (ret) { 1364 if (ret > 0) 1365 ret = -ENOENT; 1366 goto find_fail; 1367 } 1368 1369 generation = btrfs_root_generation(&root->root_item); 1370 level = btrfs_root_level(&root->root_item); 1371 root->node = read_tree_block(fs_info, 1372 btrfs_root_bytenr(&root->root_item), 1373 generation, level, NULL); 1374 if (IS_ERR(root->node)) { 1375 ret = PTR_ERR(root->node); 1376 root->node = NULL; 1377 goto find_fail; 1378 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1379 ret = -EIO; 1380 goto find_fail; 1381 } 1382 root->commit_root = btrfs_root_node(root); 1383 out: 1384 btrfs_free_path(path); 1385 return root; 1386 1387 find_fail: 1388 btrfs_put_root(root); 1389 alloc_fail: 1390 root = ERR_PTR(ret); 1391 goto out; 1392 } 1393 1394 /* 1395 * Initialize subvolume root in-memory structure 1396 * 1397 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1398 */ 1399 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1400 { 1401 int ret; 1402 unsigned int nofs_flag; 1403 1404 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1405 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1406 GFP_NOFS); 1407 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1408 ret = -ENOMEM; 1409 goto fail; 1410 } 1411 1412 /* 1413 * We might be called under a transaction (e.g. indirect backref 1414 * resolution) which could deadlock if it triggers memory reclaim 1415 */ 1416 nofs_flag = memalloc_nofs_save(); 1417 ret = btrfs_drew_lock_init(&root->snapshot_lock); 1418 memalloc_nofs_restore(nofs_flag); 1419 if (ret) 1420 goto fail; 1421 1422 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1423 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 1424 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1425 btrfs_check_and_init_root_item(&root->root_item); 1426 } 1427 1428 btrfs_init_free_ino_ctl(root); 1429 spin_lock_init(&root->ino_cache_lock); 1430 init_waitqueue_head(&root->ino_cache_wait); 1431 1432 /* 1433 * Don't assign anonymous block device to roots that are not exposed to 1434 * userspace, the id pool is limited to 1M 1435 */ 1436 if (is_fstree(root->root_key.objectid) && 1437 btrfs_root_refs(&root->root_item) > 0) { 1438 if (!anon_dev) { 1439 ret = get_anon_bdev(&root->anon_dev); 1440 if (ret) 1441 goto fail; 1442 } else { 1443 root->anon_dev = anon_dev; 1444 } 1445 } 1446 1447 mutex_lock(&root->objectid_mutex); 1448 ret = btrfs_find_highest_objectid(root, 1449 &root->highest_objectid); 1450 if (ret) { 1451 mutex_unlock(&root->objectid_mutex); 1452 goto fail; 1453 } 1454 1455 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1456 1457 mutex_unlock(&root->objectid_mutex); 1458 1459 return 0; 1460 fail: 1461 /* The caller is responsible to call btrfs_free_fs_root */ 1462 return ret; 1463 } 1464 1465 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1466 u64 root_id) 1467 { 1468 struct btrfs_root *root; 1469 1470 spin_lock(&fs_info->fs_roots_radix_lock); 1471 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1472 (unsigned long)root_id); 1473 if (root) 1474 root = btrfs_grab_root(root); 1475 spin_unlock(&fs_info->fs_roots_radix_lock); 1476 return root; 1477 } 1478 1479 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1480 struct btrfs_root *root) 1481 { 1482 int ret; 1483 1484 ret = radix_tree_preload(GFP_NOFS); 1485 if (ret) 1486 return ret; 1487 1488 spin_lock(&fs_info->fs_roots_radix_lock); 1489 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1490 (unsigned long)root->root_key.objectid, 1491 root); 1492 if (ret == 0) { 1493 btrfs_grab_root(root); 1494 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1495 } 1496 spin_unlock(&fs_info->fs_roots_radix_lock); 1497 radix_tree_preload_end(); 1498 1499 return ret; 1500 } 1501 1502 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1503 { 1504 #ifdef CONFIG_BTRFS_DEBUG 1505 struct btrfs_root *root; 1506 1507 while (!list_empty(&fs_info->allocated_roots)) { 1508 root = list_first_entry(&fs_info->allocated_roots, 1509 struct btrfs_root, leak_list); 1510 btrfs_err(fs_info, "leaked root %llu-%llu refcount %d", 1511 root->root_key.objectid, root->root_key.offset, 1512 refcount_read(&root->refs)); 1513 while (refcount_read(&root->refs) > 1) 1514 btrfs_put_root(root); 1515 btrfs_put_root(root); 1516 } 1517 #endif 1518 } 1519 1520 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1521 { 1522 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1523 percpu_counter_destroy(&fs_info->delalloc_bytes); 1524 percpu_counter_destroy(&fs_info->dio_bytes); 1525 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1526 btrfs_free_csum_hash(fs_info); 1527 btrfs_free_stripe_hash_table(fs_info); 1528 btrfs_free_ref_cache(fs_info); 1529 kfree(fs_info->balance_ctl); 1530 kfree(fs_info->delayed_root); 1531 btrfs_put_root(fs_info->extent_root); 1532 btrfs_put_root(fs_info->tree_root); 1533 btrfs_put_root(fs_info->chunk_root); 1534 btrfs_put_root(fs_info->dev_root); 1535 btrfs_put_root(fs_info->csum_root); 1536 btrfs_put_root(fs_info->quota_root); 1537 btrfs_put_root(fs_info->uuid_root); 1538 btrfs_put_root(fs_info->free_space_root); 1539 btrfs_put_root(fs_info->fs_root); 1540 btrfs_put_root(fs_info->data_reloc_root); 1541 btrfs_check_leaked_roots(fs_info); 1542 btrfs_extent_buffer_leak_debug_check(fs_info); 1543 kfree(fs_info->super_copy); 1544 kfree(fs_info->super_for_commit); 1545 kvfree(fs_info); 1546 } 1547 1548 1549 /* 1550 * Get an in-memory reference of a root structure. 1551 * 1552 * For essential trees like root/extent tree, we grab it from fs_info directly. 1553 * For subvolume trees, we check the cached filesystem roots first. If not 1554 * found, then read it from disk and add it to cached fs roots. 1555 * 1556 * Caller should release the root by calling btrfs_put_root() after the usage. 1557 * 1558 * NOTE: Reloc and log trees can't be read by this function as they share the 1559 * same root objectid. 1560 * 1561 * @objectid: root id 1562 * @anon_dev: preallocated anonymous block device number for new roots, 1563 * pass 0 for new allocation. 1564 * @check_ref: whether to check root item references, If true, return -ENOENT 1565 * for orphan roots 1566 */ 1567 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1568 u64 objectid, dev_t anon_dev, 1569 bool check_ref) 1570 { 1571 struct btrfs_root *root; 1572 struct btrfs_path *path; 1573 struct btrfs_key key; 1574 int ret; 1575 1576 if (objectid == BTRFS_ROOT_TREE_OBJECTID) 1577 return btrfs_grab_root(fs_info->tree_root); 1578 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 1579 return btrfs_grab_root(fs_info->extent_root); 1580 if (objectid == BTRFS_CHUNK_TREE_OBJECTID) 1581 return btrfs_grab_root(fs_info->chunk_root); 1582 if (objectid == BTRFS_DEV_TREE_OBJECTID) 1583 return btrfs_grab_root(fs_info->dev_root); 1584 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 1585 return btrfs_grab_root(fs_info->csum_root); 1586 if (objectid == BTRFS_QUOTA_TREE_OBJECTID) 1587 return btrfs_grab_root(fs_info->quota_root) ? 1588 fs_info->quota_root : ERR_PTR(-ENOENT); 1589 if (objectid == BTRFS_UUID_TREE_OBJECTID) 1590 return btrfs_grab_root(fs_info->uuid_root) ? 1591 fs_info->uuid_root : ERR_PTR(-ENOENT); 1592 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1593 return btrfs_grab_root(fs_info->free_space_root) ? 1594 fs_info->free_space_root : ERR_PTR(-ENOENT); 1595 again: 1596 root = btrfs_lookup_fs_root(fs_info, objectid); 1597 if (root) { 1598 /* Shouldn't get preallocated anon_dev for cached roots */ 1599 ASSERT(!anon_dev); 1600 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1601 btrfs_put_root(root); 1602 return ERR_PTR(-ENOENT); 1603 } 1604 return root; 1605 } 1606 1607 key.objectid = objectid; 1608 key.type = BTRFS_ROOT_ITEM_KEY; 1609 key.offset = (u64)-1; 1610 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1611 if (IS_ERR(root)) 1612 return root; 1613 1614 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1615 ret = -ENOENT; 1616 goto fail; 1617 } 1618 1619 ret = btrfs_init_fs_root(root, anon_dev); 1620 if (ret) 1621 goto fail; 1622 1623 path = btrfs_alloc_path(); 1624 if (!path) { 1625 ret = -ENOMEM; 1626 goto fail; 1627 } 1628 key.objectid = BTRFS_ORPHAN_OBJECTID; 1629 key.type = BTRFS_ORPHAN_ITEM_KEY; 1630 key.offset = objectid; 1631 1632 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1633 btrfs_free_path(path); 1634 if (ret < 0) 1635 goto fail; 1636 if (ret == 0) 1637 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1638 1639 ret = btrfs_insert_fs_root(fs_info, root); 1640 if (ret) { 1641 btrfs_put_root(root); 1642 if (ret == -EEXIST) 1643 goto again; 1644 goto fail; 1645 } 1646 return root; 1647 fail: 1648 btrfs_put_root(root); 1649 return ERR_PTR(ret); 1650 } 1651 1652 /* 1653 * Get in-memory reference of a root structure 1654 * 1655 * @objectid: tree objectid 1656 * @check_ref: if set, verify that the tree exists and the item has at least 1657 * one reference 1658 */ 1659 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1660 u64 objectid, bool check_ref) 1661 { 1662 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1663 } 1664 1665 /* 1666 * Get in-memory reference of a root structure, created as new, optionally pass 1667 * the anonymous block device id 1668 * 1669 * @objectid: tree objectid 1670 * @anon_dev: if zero, allocate a new anonymous block device or use the 1671 * parameter value 1672 */ 1673 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1674 u64 objectid, dev_t anon_dev) 1675 { 1676 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1677 } 1678 1679 /* 1680 * called by the kthread helper functions to finally call the bio end_io 1681 * functions. This is where read checksum verification actually happens 1682 */ 1683 static void end_workqueue_fn(struct btrfs_work *work) 1684 { 1685 struct bio *bio; 1686 struct btrfs_end_io_wq *end_io_wq; 1687 1688 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1689 bio = end_io_wq->bio; 1690 1691 bio->bi_status = end_io_wq->status; 1692 bio->bi_private = end_io_wq->private; 1693 bio->bi_end_io = end_io_wq->end_io; 1694 bio_endio(bio); 1695 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1696 } 1697 1698 static int cleaner_kthread(void *arg) 1699 { 1700 struct btrfs_root *root = arg; 1701 struct btrfs_fs_info *fs_info = root->fs_info; 1702 int again; 1703 1704 while (1) { 1705 again = 0; 1706 1707 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1708 1709 /* Make the cleaner go to sleep early. */ 1710 if (btrfs_need_cleaner_sleep(fs_info)) 1711 goto sleep; 1712 1713 /* 1714 * Do not do anything if we might cause open_ctree() to block 1715 * before we have finished mounting the filesystem. 1716 */ 1717 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1718 goto sleep; 1719 1720 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1721 goto sleep; 1722 1723 /* 1724 * Avoid the problem that we change the status of the fs 1725 * during the above check and trylock. 1726 */ 1727 if (btrfs_need_cleaner_sleep(fs_info)) { 1728 mutex_unlock(&fs_info->cleaner_mutex); 1729 goto sleep; 1730 } 1731 1732 btrfs_run_delayed_iputs(fs_info); 1733 1734 again = btrfs_clean_one_deleted_snapshot(root); 1735 mutex_unlock(&fs_info->cleaner_mutex); 1736 1737 /* 1738 * The defragger has dealt with the R/O remount and umount, 1739 * needn't do anything special here. 1740 */ 1741 btrfs_run_defrag_inodes(fs_info); 1742 1743 /* 1744 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1745 * with relocation (btrfs_relocate_chunk) and relocation 1746 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1747 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1748 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1749 * unused block groups. 1750 */ 1751 btrfs_delete_unused_bgs(fs_info); 1752 sleep: 1753 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1754 if (kthread_should_park()) 1755 kthread_parkme(); 1756 if (kthread_should_stop()) 1757 return 0; 1758 if (!again) { 1759 set_current_state(TASK_INTERRUPTIBLE); 1760 schedule(); 1761 __set_current_state(TASK_RUNNING); 1762 } 1763 } 1764 } 1765 1766 static int transaction_kthread(void *arg) 1767 { 1768 struct btrfs_root *root = arg; 1769 struct btrfs_fs_info *fs_info = root->fs_info; 1770 struct btrfs_trans_handle *trans; 1771 struct btrfs_transaction *cur; 1772 u64 transid; 1773 time64_t now; 1774 unsigned long delay; 1775 bool cannot_commit; 1776 1777 do { 1778 cannot_commit = false; 1779 delay = HZ * fs_info->commit_interval; 1780 mutex_lock(&fs_info->transaction_kthread_mutex); 1781 1782 spin_lock(&fs_info->trans_lock); 1783 cur = fs_info->running_transaction; 1784 if (!cur) { 1785 spin_unlock(&fs_info->trans_lock); 1786 goto sleep; 1787 } 1788 1789 now = ktime_get_seconds(); 1790 if (cur->state < TRANS_STATE_COMMIT_START && 1791 (now < cur->start_time || 1792 now - cur->start_time < fs_info->commit_interval)) { 1793 spin_unlock(&fs_info->trans_lock); 1794 delay = HZ * 5; 1795 goto sleep; 1796 } 1797 transid = cur->transid; 1798 spin_unlock(&fs_info->trans_lock); 1799 1800 /* If the file system is aborted, this will always fail. */ 1801 trans = btrfs_attach_transaction(root); 1802 if (IS_ERR(trans)) { 1803 if (PTR_ERR(trans) != -ENOENT) 1804 cannot_commit = true; 1805 goto sleep; 1806 } 1807 if (transid == trans->transid) { 1808 btrfs_commit_transaction(trans); 1809 } else { 1810 btrfs_end_transaction(trans); 1811 } 1812 sleep: 1813 wake_up_process(fs_info->cleaner_kthread); 1814 mutex_unlock(&fs_info->transaction_kthread_mutex); 1815 1816 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1817 &fs_info->fs_state))) 1818 btrfs_cleanup_transaction(fs_info); 1819 if (!kthread_should_stop() && 1820 (!btrfs_transaction_blocked(fs_info) || 1821 cannot_commit)) 1822 schedule_timeout_interruptible(delay); 1823 } while (!kthread_should_stop()); 1824 return 0; 1825 } 1826 1827 /* 1828 * This will find the highest generation in the array of root backups. The 1829 * index of the highest array is returned, or -EINVAL if we can't find 1830 * anything. 1831 * 1832 * We check to make sure the array is valid by comparing the 1833 * generation of the latest root in the array with the generation 1834 * in the super block. If they don't match we pitch it. 1835 */ 1836 static int find_newest_super_backup(struct btrfs_fs_info *info) 1837 { 1838 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1839 u64 cur; 1840 struct btrfs_root_backup *root_backup; 1841 int i; 1842 1843 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1844 root_backup = info->super_copy->super_roots + i; 1845 cur = btrfs_backup_tree_root_gen(root_backup); 1846 if (cur == newest_gen) 1847 return i; 1848 } 1849 1850 return -EINVAL; 1851 } 1852 1853 /* 1854 * copy all the root pointers into the super backup array. 1855 * this will bump the backup pointer by one when it is 1856 * done 1857 */ 1858 static void backup_super_roots(struct btrfs_fs_info *info) 1859 { 1860 const int next_backup = info->backup_root_index; 1861 struct btrfs_root_backup *root_backup; 1862 1863 root_backup = info->super_for_commit->super_roots + next_backup; 1864 1865 /* 1866 * make sure all of our padding and empty slots get zero filled 1867 * regardless of which ones we use today 1868 */ 1869 memset(root_backup, 0, sizeof(*root_backup)); 1870 1871 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1872 1873 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1874 btrfs_set_backup_tree_root_gen(root_backup, 1875 btrfs_header_generation(info->tree_root->node)); 1876 1877 btrfs_set_backup_tree_root_level(root_backup, 1878 btrfs_header_level(info->tree_root->node)); 1879 1880 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1881 btrfs_set_backup_chunk_root_gen(root_backup, 1882 btrfs_header_generation(info->chunk_root->node)); 1883 btrfs_set_backup_chunk_root_level(root_backup, 1884 btrfs_header_level(info->chunk_root->node)); 1885 1886 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1887 btrfs_set_backup_extent_root_gen(root_backup, 1888 btrfs_header_generation(info->extent_root->node)); 1889 btrfs_set_backup_extent_root_level(root_backup, 1890 btrfs_header_level(info->extent_root->node)); 1891 1892 /* 1893 * we might commit during log recovery, which happens before we set 1894 * the fs_root. Make sure it is valid before we fill it in. 1895 */ 1896 if (info->fs_root && info->fs_root->node) { 1897 btrfs_set_backup_fs_root(root_backup, 1898 info->fs_root->node->start); 1899 btrfs_set_backup_fs_root_gen(root_backup, 1900 btrfs_header_generation(info->fs_root->node)); 1901 btrfs_set_backup_fs_root_level(root_backup, 1902 btrfs_header_level(info->fs_root->node)); 1903 } 1904 1905 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1906 btrfs_set_backup_dev_root_gen(root_backup, 1907 btrfs_header_generation(info->dev_root->node)); 1908 btrfs_set_backup_dev_root_level(root_backup, 1909 btrfs_header_level(info->dev_root->node)); 1910 1911 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1912 btrfs_set_backup_csum_root_gen(root_backup, 1913 btrfs_header_generation(info->csum_root->node)); 1914 btrfs_set_backup_csum_root_level(root_backup, 1915 btrfs_header_level(info->csum_root->node)); 1916 1917 btrfs_set_backup_total_bytes(root_backup, 1918 btrfs_super_total_bytes(info->super_copy)); 1919 btrfs_set_backup_bytes_used(root_backup, 1920 btrfs_super_bytes_used(info->super_copy)); 1921 btrfs_set_backup_num_devices(root_backup, 1922 btrfs_super_num_devices(info->super_copy)); 1923 1924 /* 1925 * if we don't copy this out to the super_copy, it won't get remembered 1926 * for the next commit 1927 */ 1928 memcpy(&info->super_copy->super_roots, 1929 &info->super_for_commit->super_roots, 1930 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1931 } 1932 1933 /* 1934 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 1935 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1936 * 1937 * fs_info - filesystem whose backup roots need to be read 1938 * priority - priority of backup root required 1939 * 1940 * Returns backup root index on success and -EINVAL otherwise. 1941 */ 1942 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1943 { 1944 int backup_index = find_newest_super_backup(fs_info); 1945 struct btrfs_super_block *super = fs_info->super_copy; 1946 struct btrfs_root_backup *root_backup; 1947 1948 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1949 if (priority == 0) 1950 return backup_index; 1951 1952 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1953 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1954 } else { 1955 return -EINVAL; 1956 } 1957 1958 root_backup = super->super_roots + backup_index; 1959 1960 btrfs_set_super_generation(super, 1961 btrfs_backup_tree_root_gen(root_backup)); 1962 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1963 btrfs_set_super_root_level(super, 1964 btrfs_backup_tree_root_level(root_backup)); 1965 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1966 1967 /* 1968 * Fixme: the total bytes and num_devices need to match or we should 1969 * need a fsck 1970 */ 1971 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1972 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1973 1974 return backup_index; 1975 } 1976 1977 /* helper to cleanup workers */ 1978 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1979 { 1980 btrfs_destroy_workqueue(fs_info->fixup_workers); 1981 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1982 btrfs_destroy_workqueue(fs_info->workers); 1983 btrfs_destroy_workqueue(fs_info->endio_workers); 1984 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 1985 btrfs_destroy_workqueue(fs_info->rmw_workers); 1986 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1987 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1988 btrfs_destroy_workqueue(fs_info->delayed_workers); 1989 btrfs_destroy_workqueue(fs_info->caching_workers); 1990 btrfs_destroy_workqueue(fs_info->readahead_workers); 1991 btrfs_destroy_workqueue(fs_info->flush_workers); 1992 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1993 if (fs_info->discard_ctl.discard_workers) 1994 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1995 /* 1996 * Now that all other work queues are destroyed, we can safely destroy 1997 * the queues used for metadata I/O, since tasks from those other work 1998 * queues can do metadata I/O operations. 1999 */ 2000 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2001 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2002 } 2003 2004 static void free_root_extent_buffers(struct btrfs_root *root) 2005 { 2006 if (root) { 2007 free_extent_buffer(root->node); 2008 free_extent_buffer(root->commit_root); 2009 root->node = NULL; 2010 root->commit_root = NULL; 2011 } 2012 } 2013 2014 /* helper to cleanup tree roots */ 2015 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 2016 { 2017 free_root_extent_buffers(info->tree_root); 2018 2019 free_root_extent_buffers(info->dev_root); 2020 free_root_extent_buffers(info->extent_root); 2021 free_root_extent_buffers(info->csum_root); 2022 free_root_extent_buffers(info->quota_root); 2023 free_root_extent_buffers(info->uuid_root); 2024 free_root_extent_buffers(info->fs_root); 2025 free_root_extent_buffers(info->data_reloc_root); 2026 if (free_chunk_root) 2027 free_root_extent_buffers(info->chunk_root); 2028 free_root_extent_buffers(info->free_space_root); 2029 } 2030 2031 void btrfs_put_root(struct btrfs_root *root) 2032 { 2033 if (!root) 2034 return; 2035 2036 if (refcount_dec_and_test(&root->refs)) { 2037 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2038 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 2039 if (root->anon_dev) 2040 free_anon_bdev(root->anon_dev); 2041 btrfs_drew_lock_destroy(&root->snapshot_lock); 2042 free_root_extent_buffers(root); 2043 kfree(root->free_ino_ctl); 2044 kfree(root->free_ino_pinned); 2045 #ifdef CONFIG_BTRFS_DEBUG 2046 spin_lock(&root->fs_info->fs_roots_radix_lock); 2047 list_del_init(&root->leak_list); 2048 spin_unlock(&root->fs_info->fs_roots_radix_lock); 2049 #endif 2050 kfree(root); 2051 } 2052 } 2053 2054 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2055 { 2056 int ret; 2057 struct btrfs_root *gang[8]; 2058 int i; 2059 2060 while (!list_empty(&fs_info->dead_roots)) { 2061 gang[0] = list_entry(fs_info->dead_roots.next, 2062 struct btrfs_root, root_list); 2063 list_del(&gang[0]->root_list); 2064 2065 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2066 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2067 btrfs_put_root(gang[0]); 2068 } 2069 2070 while (1) { 2071 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2072 (void **)gang, 0, 2073 ARRAY_SIZE(gang)); 2074 if (!ret) 2075 break; 2076 for (i = 0; i < ret; i++) 2077 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2078 } 2079 } 2080 2081 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2082 { 2083 mutex_init(&fs_info->scrub_lock); 2084 atomic_set(&fs_info->scrubs_running, 0); 2085 atomic_set(&fs_info->scrub_pause_req, 0); 2086 atomic_set(&fs_info->scrubs_paused, 0); 2087 atomic_set(&fs_info->scrub_cancel_req, 0); 2088 init_waitqueue_head(&fs_info->scrub_pause_wait); 2089 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2090 } 2091 2092 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2093 { 2094 spin_lock_init(&fs_info->balance_lock); 2095 mutex_init(&fs_info->balance_mutex); 2096 atomic_set(&fs_info->balance_pause_req, 0); 2097 atomic_set(&fs_info->balance_cancel_req, 0); 2098 fs_info->balance_ctl = NULL; 2099 init_waitqueue_head(&fs_info->balance_wait_q); 2100 } 2101 2102 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2103 { 2104 struct inode *inode = fs_info->btree_inode; 2105 2106 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2107 set_nlink(inode, 1); 2108 /* 2109 * we set the i_size on the btree inode to the max possible int. 2110 * the real end of the address space is determined by all of 2111 * the devices in the system 2112 */ 2113 inode->i_size = OFFSET_MAX; 2114 inode->i_mapping->a_ops = &btree_aops; 2115 2116 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2117 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2118 IO_TREE_INODE_IO, inode); 2119 BTRFS_I(inode)->io_tree.track_uptodate = false; 2120 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2121 2122 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2123 2124 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2125 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2126 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2127 btrfs_insert_inode_hash(inode); 2128 } 2129 2130 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2131 { 2132 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2133 init_rwsem(&fs_info->dev_replace.rwsem); 2134 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2135 } 2136 2137 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2138 { 2139 spin_lock_init(&fs_info->qgroup_lock); 2140 mutex_init(&fs_info->qgroup_ioctl_lock); 2141 fs_info->qgroup_tree = RB_ROOT; 2142 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2143 fs_info->qgroup_seq = 1; 2144 fs_info->qgroup_ulist = NULL; 2145 fs_info->qgroup_rescan_running = false; 2146 mutex_init(&fs_info->qgroup_rescan_lock); 2147 } 2148 2149 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2150 struct btrfs_fs_devices *fs_devices) 2151 { 2152 u32 max_active = fs_info->thread_pool_size; 2153 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2154 2155 fs_info->workers = 2156 btrfs_alloc_workqueue(fs_info, "worker", 2157 flags | WQ_HIGHPRI, max_active, 16); 2158 2159 fs_info->delalloc_workers = 2160 btrfs_alloc_workqueue(fs_info, "delalloc", 2161 flags, max_active, 2); 2162 2163 fs_info->flush_workers = 2164 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2165 flags, max_active, 0); 2166 2167 fs_info->caching_workers = 2168 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2169 2170 fs_info->fixup_workers = 2171 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2172 2173 /* 2174 * endios are largely parallel and should have a very 2175 * low idle thresh 2176 */ 2177 fs_info->endio_workers = 2178 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2179 fs_info->endio_meta_workers = 2180 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2181 max_active, 4); 2182 fs_info->endio_meta_write_workers = 2183 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2184 max_active, 2); 2185 fs_info->endio_raid56_workers = 2186 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2187 max_active, 4); 2188 fs_info->rmw_workers = 2189 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2190 fs_info->endio_write_workers = 2191 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2192 max_active, 2); 2193 fs_info->endio_freespace_worker = 2194 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2195 max_active, 0); 2196 fs_info->delayed_workers = 2197 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2198 max_active, 0); 2199 fs_info->readahead_workers = 2200 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2201 max_active, 2); 2202 fs_info->qgroup_rescan_workers = 2203 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2204 fs_info->discard_ctl.discard_workers = 2205 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2206 2207 if (!(fs_info->workers && fs_info->delalloc_workers && 2208 fs_info->flush_workers && 2209 fs_info->endio_workers && fs_info->endio_meta_workers && 2210 fs_info->endio_meta_write_workers && 2211 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2212 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2213 fs_info->caching_workers && fs_info->readahead_workers && 2214 fs_info->fixup_workers && fs_info->delayed_workers && 2215 fs_info->qgroup_rescan_workers && 2216 fs_info->discard_ctl.discard_workers)) { 2217 return -ENOMEM; 2218 } 2219 2220 return 0; 2221 } 2222 2223 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2224 { 2225 struct crypto_shash *csum_shash; 2226 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2227 2228 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2229 2230 if (IS_ERR(csum_shash)) { 2231 btrfs_err(fs_info, "error allocating %s hash for checksum", 2232 csum_driver); 2233 return PTR_ERR(csum_shash); 2234 } 2235 2236 fs_info->csum_shash = csum_shash; 2237 2238 return 0; 2239 } 2240 2241 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2242 struct btrfs_fs_devices *fs_devices) 2243 { 2244 int ret; 2245 struct btrfs_root *log_tree_root; 2246 struct btrfs_super_block *disk_super = fs_info->super_copy; 2247 u64 bytenr = btrfs_super_log_root(disk_super); 2248 int level = btrfs_super_log_root_level(disk_super); 2249 2250 if (fs_devices->rw_devices == 0) { 2251 btrfs_warn(fs_info, "log replay required on RO media"); 2252 return -EIO; 2253 } 2254 2255 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2256 GFP_KERNEL); 2257 if (!log_tree_root) 2258 return -ENOMEM; 2259 2260 log_tree_root->node = read_tree_block(fs_info, bytenr, 2261 fs_info->generation + 1, 2262 level, NULL); 2263 if (IS_ERR(log_tree_root->node)) { 2264 btrfs_warn(fs_info, "failed to read log tree"); 2265 ret = PTR_ERR(log_tree_root->node); 2266 log_tree_root->node = NULL; 2267 btrfs_put_root(log_tree_root); 2268 return ret; 2269 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2270 btrfs_err(fs_info, "failed to read log tree"); 2271 btrfs_put_root(log_tree_root); 2272 return -EIO; 2273 } 2274 /* returns with log_tree_root freed on success */ 2275 ret = btrfs_recover_log_trees(log_tree_root); 2276 if (ret) { 2277 btrfs_handle_fs_error(fs_info, ret, 2278 "Failed to recover log tree"); 2279 btrfs_put_root(log_tree_root); 2280 return ret; 2281 } 2282 2283 if (sb_rdonly(fs_info->sb)) { 2284 ret = btrfs_commit_super(fs_info); 2285 if (ret) 2286 return ret; 2287 } 2288 2289 return 0; 2290 } 2291 2292 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2293 { 2294 struct btrfs_root *tree_root = fs_info->tree_root; 2295 struct btrfs_root *root; 2296 struct btrfs_key location; 2297 int ret; 2298 2299 BUG_ON(!fs_info->tree_root); 2300 2301 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2302 location.type = BTRFS_ROOT_ITEM_KEY; 2303 location.offset = 0; 2304 2305 root = btrfs_read_tree_root(tree_root, &location); 2306 if (IS_ERR(root)) { 2307 ret = PTR_ERR(root); 2308 goto out; 2309 } 2310 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2311 fs_info->extent_root = root; 2312 2313 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2314 root = btrfs_read_tree_root(tree_root, &location); 2315 if (IS_ERR(root)) { 2316 ret = PTR_ERR(root); 2317 goto out; 2318 } 2319 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2320 fs_info->dev_root = root; 2321 btrfs_init_devices_late(fs_info); 2322 2323 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2324 root = btrfs_read_tree_root(tree_root, &location); 2325 if (IS_ERR(root)) { 2326 ret = PTR_ERR(root); 2327 goto out; 2328 } 2329 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2330 fs_info->csum_root = root; 2331 2332 /* 2333 * This tree can share blocks with some other fs tree during relocation 2334 * and we need a proper setup by btrfs_get_fs_root 2335 */ 2336 root = btrfs_get_fs_root(tree_root->fs_info, 2337 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2338 if (IS_ERR(root)) { 2339 ret = PTR_ERR(root); 2340 goto out; 2341 } 2342 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2343 fs_info->data_reloc_root = root; 2344 2345 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2346 root = btrfs_read_tree_root(tree_root, &location); 2347 if (!IS_ERR(root)) { 2348 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2349 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2350 fs_info->quota_root = root; 2351 } 2352 2353 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2354 root = btrfs_read_tree_root(tree_root, &location); 2355 if (IS_ERR(root)) { 2356 ret = PTR_ERR(root); 2357 if (ret != -ENOENT) 2358 goto out; 2359 } else { 2360 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2361 fs_info->uuid_root = root; 2362 } 2363 2364 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2365 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2366 root = btrfs_read_tree_root(tree_root, &location); 2367 if (IS_ERR(root)) { 2368 ret = PTR_ERR(root); 2369 goto out; 2370 } 2371 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2372 fs_info->free_space_root = root; 2373 } 2374 2375 return 0; 2376 out: 2377 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2378 location.objectid, ret); 2379 return ret; 2380 } 2381 2382 /* 2383 * Real super block validation 2384 * NOTE: super csum type and incompat features will not be checked here. 2385 * 2386 * @sb: super block to check 2387 * @mirror_num: the super block number to check its bytenr: 2388 * 0 the primary (1st) sb 2389 * 1, 2 2nd and 3rd backup copy 2390 * -1 skip bytenr check 2391 */ 2392 static int validate_super(struct btrfs_fs_info *fs_info, 2393 struct btrfs_super_block *sb, int mirror_num) 2394 { 2395 u64 nodesize = btrfs_super_nodesize(sb); 2396 u64 sectorsize = btrfs_super_sectorsize(sb); 2397 int ret = 0; 2398 2399 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2400 btrfs_err(fs_info, "no valid FS found"); 2401 ret = -EINVAL; 2402 } 2403 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2404 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2405 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2406 ret = -EINVAL; 2407 } 2408 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2409 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2410 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2411 ret = -EINVAL; 2412 } 2413 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2414 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2415 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2416 ret = -EINVAL; 2417 } 2418 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2419 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2420 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2421 ret = -EINVAL; 2422 } 2423 2424 /* 2425 * Check sectorsize and nodesize first, other check will need it. 2426 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2427 */ 2428 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2429 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2430 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2431 ret = -EINVAL; 2432 } 2433 /* Only PAGE SIZE is supported yet */ 2434 if (sectorsize != PAGE_SIZE) { 2435 btrfs_err(fs_info, 2436 "sectorsize %llu not supported yet, only support %lu", 2437 sectorsize, PAGE_SIZE); 2438 ret = -EINVAL; 2439 } 2440 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2441 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2442 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2443 ret = -EINVAL; 2444 } 2445 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2446 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2447 le32_to_cpu(sb->__unused_leafsize), nodesize); 2448 ret = -EINVAL; 2449 } 2450 2451 /* Root alignment check */ 2452 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2453 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2454 btrfs_super_root(sb)); 2455 ret = -EINVAL; 2456 } 2457 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2458 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2459 btrfs_super_chunk_root(sb)); 2460 ret = -EINVAL; 2461 } 2462 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2463 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2464 btrfs_super_log_root(sb)); 2465 ret = -EINVAL; 2466 } 2467 2468 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2469 BTRFS_FSID_SIZE) != 0) { 2470 btrfs_err(fs_info, 2471 "dev_item UUID does not match metadata fsid: %pU != %pU", 2472 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2473 ret = -EINVAL; 2474 } 2475 2476 /* 2477 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2478 * done later 2479 */ 2480 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2481 btrfs_err(fs_info, "bytes_used is too small %llu", 2482 btrfs_super_bytes_used(sb)); 2483 ret = -EINVAL; 2484 } 2485 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2486 btrfs_err(fs_info, "invalid stripesize %u", 2487 btrfs_super_stripesize(sb)); 2488 ret = -EINVAL; 2489 } 2490 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2491 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2492 btrfs_super_num_devices(sb)); 2493 if (btrfs_super_num_devices(sb) == 0) { 2494 btrfs_err(fs_info, "number of devices is 0"); 2495 ret = -EINVAL; 2496 } 2497 2498 if (mirror_num >= 0 && 2499 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2500 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2501 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2502 ret = -EINVAL; 2503 } 2504 2505 /* 2506 * Obvious sys_chunk_array corruptions, it must hold at least one key 2507 * and one chunk 2508 */ 2509 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2510 btrfs_err(fs_info, "system chunk array too big %u > %u", 2511 btrfs_super_sys_array_size(sb), 2512 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2513 ret = -EINVAL; 2514 } 2515 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2516 + sizeof(struct btrfs_chunk)) { 2517 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2518 btrfs_super_sys_array_size(sb), 2519 sizeof(struct btrfs_disk_key) 2520 + sizeof(struct btrfs_chunk)); 2521 ret = -EINVAL; 2522 } 2523 2524 /* 2525 * The generation is a global counter, we'll trust it more than the others 2526 * but it's still possible that it's the one that's wrong. 2527 */ 2528 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2529 btrfs_warn(fs_info, 2530 "suspicious: generation < chunk_root_generation: %llu < %llu", 2531 btrfs_super_generation(sb), 2532 btrfs_super_chunk_root_generation(sb)); 2533 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2534 && btrfs_super_cache_generation(sb) != (u64)-1) 2535 btrfs_warn(fs_info, 2536 "suspicious: generation < cache_generation: %llu < %llu", 2537 btrfs_super_generation(sb), 2538 btrfs_super_cache_generation(sb)); 2539 2540 return ret; 2541 } 2542 2543 /* 2544 * Validation of super block at mount time. 2545 * Some checks already done early at mount time, like csum type and incompat 2546 * flags will be skipped. 2547 */ 2548 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2549 { 2550 return validate_super(fs_info, fs_info->super_copy, 0); 2551 } 2552 2553 /* 2554 * Validation of super block at write time. 2555 * Some checks like bytenr check will be skipped as their values will be 2556 * overwritten soon. 2557 * Extra checks like csum type and incompat flags will be done here. 2558 */ 2559 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2560 struct btrfs_super_block *sb) 2561 { 2562 int ret; 2563 2564 ret = validate_super(fs_info, sb, -1); 2565 if (ret < 0) 2566 goto out; 2567 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2568 ret = -EUCLEAN; 2569 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2570 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2571 goto out; 2572 } 2573 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2574 ret = -EUCLEAN; 2575 btrfs_err(fs_info, 2576 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2577 btrfs_super_incompat_flags(sb), 2578 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2579 goto out; 2580 } 2581 out: 2582 if (ret < 0) 2583 btrfs_err(fs_info, 2584 "super block corruption detected before writing it to disk"); 2585 return ret; 2586 } 2587 2588 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2589 { 2590 int backup_index = find_newest_super_backup(fs_info); 2591 struct btrfs_super_block *sb = fs_info->super_copy; 2592 struct btrfs_root *tree_root = fs_info->tree_root; 2593 bool handle_error = false; 2594 int ret = 0; 2595 int i; 2596 2597 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2598 u64 generation; 2599 int level; 2600 2601 if (handle_error) { 2602 if (!IS_ERR(tree_root->node)) 2603 free_extent_buffer(tree_root->node); 2604 tree_root->node = NULL; 2605 2606 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2607 break; 2608 2609 free_root_pointers(fs_info, 0); 2610 2611 /* 2612 * Don't use the log in recovery mode, it won't be 2613 * valid 2614 */ 2615 btrfs_set_super_log_root(sb, 0); 2616 2617 /* We can't trust the free space cache either */ 2618 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2619 2620 ret = read_backup_root(fs_info, i); 2621 backup_index = ret; 2622 if (ret < 0) 2623 return ret; 2624 } 2625 generation = btrfs_super_generation(sb); 2626 level = btrfs_super_root_level(sb); 2627 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb), 2628 generation, level, NULL); 2629 if (IS_ERR(tree_root->node) || 2630 !extent_buffer_uptodate(tree_root->node)) { 2631 handle_error = true; 2632 2633 if (IS_ERR(tree_root->node)) { 2634 ret = PTR_ERR(tree_root->node); 2635 tree_root->node = NULL; 2636 } else if (!extent_buffer_uptodate(tree_root->node)) { 2637 ret = -EUCLEAN; 2638 } 2639 2640 btrfs_warn(fs_info, "failed to read tree root"); 2641 continue; 2642 } 2643 2644 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2645 tree_root->commit_root = btrfs_root_node(tree_root); 2646 btrfs_set_root_refs(&tree_root->root_item, 1); 2647 2648 /* 2649 * No need to hold btrfs_root::objectid_mutex since the fs 2650 * hasn't been fully initialised and we are the only user 2651 */ 2652 ret = btrfs_find_highest_objectid(tree_root, 2653 &tree_root->highest_objectid); 2654 if (ret < 0) { 2655 handle_error = true; 2656 continue; 2657 } 2658 2659 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2660 2661 ret = btrfs_read_roots(fs_info); 2662 if (ret < 0) { 2663 handle_error = true; 2664 continue; 2665 } 2666 2667 /* All successful */ 2668 fs_info->generation = generation; 2669 fs_info->last_trans_committed = generation; 2670 2671 /* Always begin writing backup roots after the one being used */ 2672 if (backup_index < 0) { 2673 fs_info->backup_root_index = 0; 2674 } else { 2675 fs_info->backup_root_index = backup_index + 1; 2676 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2677 } 2678 break; 2679 } 2680 2681 return ret; 2682 } 2683 2684 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2685 { 2686 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2687 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2688 INIT_LIST_HEAD(&fs_info->trans_list); 2689 INIT_LIST_HEAD(&fs_info->dead_roots); 2690 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2691 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2692 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2693 spin_lock_init(&fs_info->delalloc_root_lock); 2694 spin_lock_init(&fs_info->trans_lock); 2695 spin_lock_init(&fs_info->fs_roots_radix_lock); 2696 spin_lock_init(&fs_info->delayed_iput_lock); 2697 spin_lock_init(&fs_info->defrag_inodes_lock); 2698 spin_lock_init(&fs_info->super_lock); 2699 spin_lock_init(&fs_info->buffer_lock); 2700 spin_lock_init(&fs_info->unused_bgs_lock); 2701 rwlock_init(&fs_info->tree_mod_log_lock); 2702 mutex_init(&fs_info->unused_bg_unpin_mutex); 2703 mutex_init(&fs_info->delete_unused_bgs_mutex); 2704 mutex_init(&fs_info->reloc_mutex); 2705 mutex_init(&fs_info->delalloc_root_mutex); 2706 seqlock_init(&fs_info->profiles_lock); 2707 2708 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2709 INIT_LIST_HEAD(&fs_info->space_info); 2710 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2711 INIT_LIST_HEAD(&fs_info->unused_bgs); 2712 #ifdef CONFIG_BTRFS_DEBUG 2713 INIT_LIST_HEAD(&fs_info->allocated_roots); 2714 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2715 spin_lock_init(&fs_info->eb_leak_lock); 2716 #endif 2717 extent_map_tree_init(&fs_info->mapping_tree); 2718 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2719 BTRFS_BLOCK_RSV_GLOBAL); 2720 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2721 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2722 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2723 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2724 BTRFS_BLOCK_RSV_DELOPS); 2725 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2726 BTRFS_BLOCK_RSV_DELREFS); 2727 2728 atomic_set(&fs_info->async_delalloc_pages, 0); 2729 atomic_set(&fs_info->defrag_running, 0); 2730 atomic_set(&fs_info->reada_works_cnt, 0); 2731 atomic_set(&fs_info->nr_delayed_iputs, 0); 2732 atomic64_set(&fs_info->tree_mod_seq, 0); 2733 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2734 fs_info->metadata_ratio = 0; 2735 fs_info->defrag_inodes = RB_ROOT; 2736 atomic64_set(&fs_info->free_chunk_space, 0); 2737 fs_info->tree_mod_log = RB_ROOT; 2738 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2739 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2740 /* readahead state */ 2741 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2742 spin_lock_init(&fs_info->reada_lock); 2743 btrfs_init_ref_verify(fs_info); 2744 2745 fs_info->thread_pool_size = min_t(unsigned long, 2746 num_online_cpus() + 2, 8); 2747 2748 INIT_LIST_HEAD(&fs_info->ordered_roots); 2749 spin_lock_init(&fs_info->ordered_root_lock); 2750 2751 btrfs_init_scrub(fs_info); 2752 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2753 fs_info->check_integrity_print_mask = 0; 2754 #endif 2755 btrfs_init_balance(fs_info); 2756 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2757 2758 spin_lock_init(&fs_info->block_group_cache_lock); 2759 fs_info->block_group_cache_tree = RB_ROOT; 2760 fs_info->first_logical_byte = (u64)-1; 2761 2762 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2763 IO_TREE_FS_EXCLUDED_EXTENTS, NULL); 2764 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2765 2766 mutex_init(&fs_info->ordered_operations_mutex); 2767 mutex_init(&fs_info->tree_log_mutex); 2768 mutex_init(&fs_info->chunk_mutex); 2769 mutex_init(&fs_info->transaction_kthread_mutex); 2770 mutex_init(&fs_info->cleaner_mutex); 2771 mutex_init(&fs_info->ro_block_group_mutex); 2772 init_rwsem(&fs_info->commit_root_sem); 2773 init_rwsem(&fs_info->cleanup_work_sem); 2774 init_rwsem(&fs_info->subvol_sem); 2775 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2776 2777 btrfs_init_dev_replace_locks(fs_info); 2778 btrfs_init_qgroup(fs_info); 2779 btrfs_discard_init(fs_info); 2780 2781 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2782 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2783 2784 init_waitqueue_head(&fs_info->transaction_throttle); 2785 init_waitqueue_head(&fs_info->transaction_wait); 2786 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2787 init_waitqueue_head(&fs_info->async_submit_wait); 2788 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2789 2790 /* Usable values until the real ones are cached from the superblock */ 2791 fs_info->nodesize = 4096; 2792 fs_info->sectorsize = 4096; 2793 fs_info->stripesize = 4096; 2794 2795 spin_lock_init(&fs_info->swapfile_pins_lock); 2796 fs_info->swapfile_pins = RB_ROOT; 2797 2798 fs_info->send_in_progress = 0; 2799 } 2800 2801 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2802 { 2803 int ret; 2804 2805 fs_info->sb = sb; 2806 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2807 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2808 2809 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL); 2810 if (ret) 2811 return ret; 2812 2813 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2814 if (ret) 2815 return ret; 2816 2817 fs_info->dirty_metadata_batch = PAGE_SIZE * 2818 (1 + ilog2(nr_cpu_ids)); 2819 2820 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2821 if (ret) 2822 return ret; 2823 2824 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2825 GFP_KERNEL); 2826 if (ret) 2827 return ret; 2828 2829 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2830 GFP_KERNEL); 2831 if (!fs_info->delayed_root) 2832 return -ENOMEM; 2833 btrfs_init_delayed_root(fs_info->delayed_root); 2834 2835 return btrfs_alloc_stripe_hash_table(fs_info); 2836 } 2837 2838 static int btrfs_uuid_rescan_kthread(void *data) 2839 { 2840 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 2841 int ret; 2842 2843 /* 2844 * 1st step is to iterate through the existing UUID tree and 2845 * to delete all entries that contain outdated data. 2846 * 2nd step is to add all missing entries to the UUID tree. 2847 */ 2848 ret = btrfs_uuid_tree_iterate(fs_info); 2849 if (ret < 0) { 2850 if (ret != -EINTR) 2851 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2852 ret); 2853 up(&fs_info->uuid_tree_rescan_sem); 2854 return ret; 2855 } 2856 return btrfs_uuid_scan_kthread(data); 2857 } 2858 2859 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2860 { 2861 struct task_struct *task; 2862 2863 down(&fs_info->uuid_tree_rescan_sem); 2864 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2865 if (IS_ERR(task)) { 2866 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2867 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2868 up(&fs_info->uuid_tree_rescan_sem); 2869 return PTR_ERR(task); 2870 } 2871 2872 return 0; 2873 } 2874 2875 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 2876 char *options) 2877 { 2878 u32 sectorsize; 2879 u32 nodesize; 2880 u32 stripesize; 2881 u64 generation; 2882 u64 features; 2883 u16 csum_type; 2884 struct btrfs_super_block *disk_super; 2885 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2886 struct btrfs_root *tree_root; 2887 struct btrfs_root *chunk_root; 2888 int ret; 2889 int err = -EINVAL; 2890 int clear_free_space_tree = 0; 2891 int level; 2892 2893 ret = init_mount_fs_info(fs_info, sb); 2894 if (ret) { 2895 err = ret; 2896 goto fail; 2897 } 2898 2899 /* These need to be init'ed before we start creating inodes and such. */ 2900 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 2901 GFP_KERNEL); 2902 fs_info->tree_root = tree_root; 2903 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 2904 GFP_KERNEL); 2905 fs_info->chunk_root = chunk_root; 2906 if (!tree_root || !chunk_root) { 2907 err = -ENOMEM; 2908 goto fail; 2909 } 2910 2911 fs_info->btree_inode = new_inode(sb); 2912 if (!fs_info->btree_inode) { 2913 err = -ENOMEM; 2914 goto fail; 2915 } 2916 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2917 btrfs_init_btree_inode(fs_info); 2918 2919 invalidate_bdev(fs_devices->latest_bdev); 2920 2921 /* 2922 * Read super block and check the signature bytes only 2923 */ 2924 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev); 2925 if (IS_ERR(disk_super)) { 2926 err = PTR_ERR(disk_super); 2927 goto fail_alloc; 2928 } 2929 2930 /* 2931 * Verify the type first, if that or the the checksum value are 2932 * corrupted, we'll find out 2933 */ 2934 csum_type = btrfs_super_csum_type(disk_super); 2935 if (!btrfs_supported_super_csum(csum_type)) { 2936 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 2937 csum_type); 2938 err = -EINVAL; 2939 btrfs_release_disk_super(disk_super); 2940 goto fail_alloc; 2941 } 2942 2943 ret = btrfs_init_csum_hash(fs_info, csum_type); 2944 if (ret) { 2945 err = ret; 2946 btrfs_release_disk_super(disk_super); 2947 goto fail_alloc; 2948 } 2949 2950 /* 2951 * We want to check superblock checksum, the type is stored inside. 2952 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2953 */ 2954 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) { 2955 btrfs_err(fs_info, "superblock checksum mismatch"); 2956 err = -EINVAL; 2957 btrfs_release_disk_super(disk_super); 2958 goto fail_alloc; 2959 } 2960 2961 /* 2962 * super_copy is zeroed at allocation time and we never touch the 2963 * following bytes up to INFO_SIZE, the checksum is calculated from 2964 * the whole block of INFO_SIZE 2965 */ 2966 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 2967 btrfs_release_disk_super(disk_super); 2968 2969 disk_super = fs_info->super_copy; 2970 2971 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2972 BTRFS_FSID_SIZE)); 2973 2974 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) { 2975 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid, 2976 fs_info->super_copy->metadata_uuid, 2977 BTRFS_FSID_SIZE)); 2978 } 2979 2980 features = btrfs_super_flags(disk_super); 2981 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 2982 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 2983 btrfs_set_super_flags(disk_super, features); 2984 btrfs_info(fs_info, 2985 "found metadata UUID change in progress flag, clearing"); 2986 } 2987 2988 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2989 sizeof(*fs_info->super_for_commit)); 2990 2991 ret = btrfs_validate_mount_super(fs_info); 2992 if (ret) { 2993 btrfs_err(fs_info, "superblock contains fatal errors"); 2994 err = -EINVAL; 2995 goto fail_alloc; 2996 } 2997 2998 if (!btrfs_super_root(disk_super)) 2999 goto fail_alloc; 3000 3001 /* check FS state, whether FS is broken. */ 3002 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3003 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 3004 3005 /* 3006 * In the long term, we'll store the compression type in the super 3007 * block, and it'll be used for per file compression control. 3008 */ 3009 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3010 3011 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3012 if (ret) { 3013 err = ret; 3014 goto fail_alloc; 3015 } 3016 3017 features = btrfs_super_incompat_flags(disk_super) & 3018 ~BTRFS_FEATURE_INCOMPAT_SUPP; 3019 if (features) { 3020 btrfs_err(fs_info, 3021 "cannot mount because of unsupported optional features (%llx)", 3022 features); 3023 err = -EINVAL; 3024 goto fail_alloc; 3025 } 3026 3027 features = btrfs_super_incompat_flags(disk_super); 3028 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3029 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3030 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3031 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3032 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3033 3034 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 3035 btrfs_info(fs_info, "has skinny extents"); 3036 3037 /* 3038 * flag our filesystem as having big metadata blocks if 3039 * they are bigger than the page size 3040 */ 3041 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 3042 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 3043 btrfs_info(fs_info, 3044 "flagging fs with big metadata feature"); 3045 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3046 } 3047 3048 nodesize = btrfs_super_nodesize(disk_super); 3049 sectorsize = btrfs_super_sectorsize(disk_super); 3050 stripesize = sectorsize; 3051 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3052 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3053 3054 /* Cache block sizes */ 3055 fs_info->nodesize = nodesize; 3056 fs_info->sectorsize = sectorsize; 3057 fs_info->stripesize = stripesize; 3058 3059 /* 3060 * mixed block groups end up with duplicate but slightly offset 3061 * extent buffers for the same range. It leads to corruptions 3062 */ 3063 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3064 (sectorsize != nodesize)) { 3065 btrfs_err(fs_info, 3066 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3067 nodesize, sectorsize); 3068 goto fail_alloc; 3069 } 3070 3071 /* 3072 * Needn't use the lock because there is no other task which will 3073 * update the flag. 3074 */ 3075 btrfs_set_super_incompat_flags(disk_super, features); 3076 3077 features = btrfs_super_compat_ro_flags(disk_super) & 3078 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 3079 if (!sb_rdonly(sb) && features) { 3080 btrfs_err(fs_info, 3081 "cannot mount read-write because of unsupported optional features (%llx)", 3082 features); 3083 err = -EINVAL; 3084 goto fail_alloc; 3085 } 3086 3087 ret = btrfs_init_workqueues(fs_info, fs_devices); 3088 if (ret) { 3089 err = ret; 3090 goto fail_sb_buffer; 3091 } 3092 3093 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 3094 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES; 3095 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3096 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3097 3098 sb->s_blocksize = sectorsize; 3099 sb->s_blocksize_bits = blksize_bits(sectorsize); 3100 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3101 3102 mutex_lock(&fs_info->chunk_mutex); 3103 ret = btrfs_read_sys_array(fs_info); 3104 mutex_unlock(&fs_info->chunk_mutex); 3105 if (ret) { 3106 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3107 goto fail_sb_buffer; 3108 } 3109 3110 generation = btrfs_super_chunk_root_generation(disk_super); 3111 level = btrfs_super_chunk_root_level(disk_super); 3112 3113 chunk_root->node = read_tree_block(fs_info, 3114 btrfs_super_chunk_root(disk_super), 3115 generation, level, NULL); 3116 if (IS_ERR(chunk_root->node) || 3117 !extent_buffer_uptodate(chunk_root->node)) { 3118 btrfs_err(fs_info, "failed to read chunk root"); 3119 if (!IS_ERR(chunk_root->node)) 3120 free_extent_buffer(chunk_root->node); 3121 chunk_root->node = NULL; 3122 goto fail_tree_roots; 3123 } 3124 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 3125 chunk_root->commit_root = btrfs_root_node(chunk_root); 3126 3127 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3128 offsetof(struct btrfs_header, chunk_tree_uuid), 3129 BTRFS_UUID_SIZE); 3130 3131 ret = btrfs_read_chunk_tree(fs_info); 3132 if (ret) { 3133 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3134 goto fail_tree_roots; 3135 } 3136 3137 /* 3138 * Keep the devid that is marked to be the target device for the 3139 * device replace procedure 3140 */ 3141 btrfs_free_extra_devids(fs_devices, 0); 3142 3143 if (!fs_devices->latest_bdev) { 3144 btrfs_err(fs_info, "failed to read devices"); 3145 goto fail_tree_roots; 3146 } 3147 3148 ret = init_tree_roots(fs_info); 3149 if (ret) 3150 goto fail_tree_roots; 3151 3152 /* 3153 * If we have a uuid root and we're not being told to rescan we need to 3154 * check the generation here so we can set the 3155 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3156 * transaction during a balance or the log replay without updating the 3157 * uuid generation, and then if we crash we would rescan the uuid tree, 3158 * even though it was perfectly fine. 3159 */ 3160 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3161 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3162 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3163 3164 ret = btrfs_verify_dev_extents(fs_info); 3165 if (ret) { 3166 btrfs_err(fs_info, 3167 "failed to verify dev extents against chunks: %d", 3168 ret); 3169 goto fail_block_groups; 3170 } 3171 ret = btrfs_recover_balance(fs_info); 3172 if (ret) { 3173 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3174 goto fail_block_groups; 3175 } 3176 3177 ret = btrfs_init_dev_stats(fs_info); 3178 if (ret) { 3179 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3180 goto fail_block_groups; 3181 } 3182 3183 ret = btrfs_init_dev_replace(fs_info); 3184 if (ret) { 3185 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3186 goto fail_block_groups; 3187 } 3188 3189 btrfs_free_extra_devids(fs_devices, 1); 3190 3191 ret = btrfs_sysfs_add_fsid(fs_devices); 3192 if (ret) { 3193 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3194 ret); 3195 goto fail_block_groups; 3196 } 3197 3198 ret = btrfs_sysfs_add_mounted(fs_info); 3199 if (ret) { 3200 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3201 goto fail_fsdev_sysfs; 3202 } 3203 3204 ret = btrfs_init_space_info(fs_info); 3205 if (ret) { 3206 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3207 goto fail_sysfs; 3208 } 3209 3210 ret = btrfs_read_block_groups(fs_info); 3211 if (ret) { 3212 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3213 goto fail_sysfs; 3214 } 3215 3216 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 3217 btrfs_warn(fs_info, 3218 "writable mount is not allowed due to too many missing devices"); 3219 goto fail_sysfs; 3220 } 3221 3222 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3223 "btrfs-cleaner"); 3224 if (IS_ERR(fs_info->cleaner_kthread)) 3225 goto fail_sysfs; 3226 3227 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3228 tree_root, 3229 "btrfs-transaction"); 3230 if (IS_ERR(fs_info->transaction_kthread)) 3231 goto fail_cleaner; 3232 3233 if (!btrfs_test_opt(fs_info, NOSSD) && 3234 !fs_info->fs_devices->rotating) { 3235 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3236 } 3237 3238 /* 3239 * Mount does not set all options immediately, we can do it now and do 3240 * not have to wait for transaction commit 3241 */ 3242 btrfs_apply_pending_changes(fs_info); 3243 3244 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3245 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3246 ret = btrfsic_mount(fs_info, fs_devices, 3247 btrfs_test_opt(fs_info, 3248 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3249 1 : 0, 3250 fs_info->check_integrity_print_mask); 3251 if (ret) 3252 btrfs_warn(fs_info, 3253 "failed to initialize integrity check module: %d", 3254 ret); 3255 } 3256 #endif 3257 ret = btrfs_read_qgroup_config(fs_info); 3258 if (ret) 3259 goto fail_trans_kthread; 3260 3261 if (btrfs_build_ref_tree(fs_info)) 3262 btrfs_err(fs_info, "couldn't build ref tree"); 3263 3264 /* do not make disk changes in broken FS or nologreplay is given */ 3265 if (btrfs_super_log_root(disk_super) != 0 && 3266 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3267 btrfs_info(fs_info, "start tree-log replay"); 3268 ret = btrfs_replay_log(fs_info, fs_devices); 3269 if (ret) { 3270 err = ret; 3271 goto fail_qgroup; 3272 } 3273 } 3274 3275 ret = btrfs_find_orphan_roots(fs_info); 3276 if (ret) 3277 goto fail_qgroup; 3278 3279 if (!sb_rdonly(sb)) { 3280 ret = btrfs_cleanup_fs_roots(fs_info); 3281 if (ret) 3282 goto fail_qgroup; 3283 3284 mutex_lock(&fs_info->cleaner_mutex); 3285 ret = btrfs_recover_relocation(tree_root); 3286 mutex_unlock(&fs_info->cleaner_mutex); 3287 if (ret < 0) { 3288 btrfs_warn(fs_info, "failed to recover relocation: %d", 3289 ret); 3290 err = -EINVAL; 3291 goto fail_qgroup; 3292 } 3293 } 3294 3295 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3296 if (IS_ERR(fs_info->fs_root)) { 3297 err = PTR_ERR(fs_info->fs_root); 3298 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3299 fs_info->fs_root = NULL; 3300 goto fail_qgroup; 3301 } 3302 3303 if (sb_rdonly(sb)) 3304 return 0; 3305 3306 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3307 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3308 clear_free_space_tree = 1; 3309 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3310 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3311 btrfs_warn(fs_info, "free space tree is invalid"); 3312 clear_free_space_tree = 1; 3313 } 3314 3315 if (clear_free_space_tree) { 3316 btrfs_info(fs_info, "clearing free space tree"); 3317 ret = btrfs_clear_free_space_tree(fs_info); 3318 if (ret) { 3319 btrfs_warn(fs_info, 3320 "failed to clear free space tree: %d", ret); 3321 close_ctree(fs_info); 3322 return ret; 3323 } 3324 } 3325 3326 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3327 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3328 btrfs_info(fs_info, "creating free space tree"); 3329 ret = btrfs_create_free_space_tree(fs_info); 3330 if (ret) { 3331 btrfs_warn(fs_info, 3332 "failed to create free space tree: %d", ret); 3333 close_ctree(fs_info); 3334 return ret; 3335 } 3336 } 3337 3338 down_read(&fs_info->cleanup_work_sem); 3339 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3340 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3341 up_read(&fs_info->cleanup_work_sem); 3342 close_ctree(fs_info); 3343 return ret; 3344 } 3345 up_read(&fs_info->cleanup_work_sem); 3346 3347 ret = btrfs_resume_balance_async(fs_info); 3348 if (ret) { 3349 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3350 close_ctree(fs_info); 3351 return ret; 3352 } 3353 3354 ret = btrfs_resume_dev_replace_async(fs_info); 3355 if (ret) { 3356 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3357 close_ctree(fs_info); 3358 return ret; 3359 } 3360 3361 btrfs_qgroup_rescan_resume(fs_info); 3362 btrfs_discard_resume(fs_info); 3363 3364 if (!fs_info->uuid_root) { 3365 btrfs_info(fs_info, "creating UUID tree"); 3366 ret = btrfs_create_uuid_tree(fs_info); 3367 if (ret) { 3368 btrfs_warn(fs_info, 3369 "failed to create the UUID tree: %d", ret); 3370 close_ctree(fs_info); 3371 return ret; 3372 } 3373 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3374 fs_info->generation != 3375 btrfs_super_uuid_tree_generation(disk_super)) { 3376 btrfs_info(fs_info, "checking UUID tree"); 3377 ret = btrfs_check_uuid_tree(fs_info); 3378 if (ret) { 3379 btrfs_warn(fs_info, 3380 "failed to check the UUID tree: %d", ret); 3381 close_ctree(fs_info); 3382 return ret; 3383 } 3384 } 3385 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3386 3387 /* 3388 * backuproot only affect mount behavior, and if open_ctree succeeded, 3389 * no need to keep the flag 3390 */ 3391 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3392 3393 return 0; 3394 3395 fail_qgroup: 3396 btrfs_free_qgroup_config(fs_info); 3397 fail_trans_kthread: 3398 kthread_stop(fs_info->transaction_kthread); 3399 btrfs_cleanup_transaction(fs_info); 3400 btrfs_free_fs_roots(fs_info); 3401 fail_cleaner: 3402 kthread_stop(fs_info->cleaner_kthread); 3403 3404 /* 3405 * make sure we're done with the btree inode before we stop our 3406 * kthreads 3407 */ 3408 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3409 3410 fail_sysfs: 3411 btrfs_sysfs_remove_mounted(fs_info); 3412 3413 fail_fsdev_sysfs: 3414 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3415 3416 fail_block_groups: 3417 btrfs_put_block_group_cache(fs_info); 3418 3419 fail_tree_roots: 3420 if (fs_info->data_reloc_root) 3421 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3422 free_root_pointers(fs_info, true); 3423 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3424 3425 fail_sb_buffer: 3426 btrfs_stop_all_workers(fs_info); 3427 btrfs_free_block_groups(fs_info); 3428 fail_alloc: 3429 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3430 3431 iput(fs_info->btree_inode); 3432 fail: 3433 btrfs_close_devices(fs_info->fs_devices); 3434 return err; 3435 } 3436 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3437 3438 static void btrfs_end_super_write(struct bio *bio) 3439 { 3440 struct btrfs_device *device = bio->bi_private; 3441 struct bio_vec *bvec; 3442 struct bvec_iter_all iter_all; 3443 struct page *page; 3444 3445 bio_for_each_segment_all(bvec, bio, iter_all) { 3446 page = bvec->bv_page; 3447 3448 if (bio->bi_status) { 3449 btrfs_warn_rl_in_rcu(device->fs_info, 3450 "lost page write due to IO error on %s (%d)", 3451 rcu_str_deref(device->name), 3452 blk_status_to_errno(bio->bi_status)); 3453 ClearPageUptodate(page); 3454 SetPageError(page); 3455 btrfs_dev_stat_inc_and_print(device, 3456 BTRFS_DEV_STAT_WRITE_ERRS); 3457 } else { 3458 SetPageUptodate(page); 3459 } 3460 3461 put_page(page); 3462 unlock_page(page); 3463 } 3464 3465 bio_put(bio); 3466 } 3467 3468 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3469 int copy_num) 3470 { 3471 struct btrfs_super_block *super; 3472 struct page *page; 3473 u64 bytenr; 3474 struct address_space *mapping = bdev->bd_inode->i_mapping; 3475 3476 bytenr = btrfs_sb_offset(copy_num); 3477 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3478 return ERR_PTR(-EINVAL); 3479 3480 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3481 if (IS_ERR(page)) 3482 return ERR_CAST(page); 3483 3484 super = page_address(page); 3485 if (btrfs_super_bytenr(super) != bytenr || 3486 btrfs_super_magic(super) != BTRFS_MAGIC) { 3487 btrfs_release_disk_super(super); 3488 return ERR_PTR(-EINVAL); 3489 } 3490 3491 return super; 3492 } 3493 3494 3495 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3496 { 3497 struct btrfs_super_block *super, *latest = NULL; 3498 int i; 3499 u64 transid = 0; 3500 3501 /* we would like to check all the supers, but that would make 3502 * a btrfs mount succeed after a mkfs from a different FS. 3503 * So, we need to add a special mount option to scan for 3504 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3505 */ 3506 for (i = 0; i < 1; i++) { 3507 super = btrfs_read_dev_one_super(bdev, i); 3508 if (IS_ERR(super)) 3509 continue; 3510 3511 if (!latest || btrfs_super_generation(super) > transid) { 3512 if (latest) 3513 btrfs_release_disk_super(super); 3514 3515 latest = super; 3516 transid = btrfs_super_generation(super); 3517 } 3518 } 3519 3520 return super; 3521 } 3522 3523 /* 3524 * Write superblock @sb to the @device. Do not wait for completion, all the 3525 * pages we use for writing are locked. 3526 * 3527 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3528 * the expected device size at commit time. Note that max_mirrors must be 3529 * same for write and wait phases. 3530 * 3531 * Return number of errors when page is not found or submission fails. 3532 */ 3533 static int write_dev_supers(struct btrfs_device *device, 3534 struct btrfs_super_block *sb, int max_mirrors) 3535 { 3536 struct btrfs_fs_info *fs_info = device->fs_info; 3537 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3538 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3539 int i; 3540 int errors = 0; 3541 u64 bytenr; 3542 3543 if (max_mirrors == 0) 3544 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3545 3546 shash->tfm = fs_info->csum_shash; 3547 3548 for (i = 0; i < max_mirrors; i++) { 3549 struct page *page; 3550 struct bio *bio; 3551 struct btrfs_super_block *disk_super; 3552 3553 bytenr = btrfs_sb_offset(i); 3554 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3555 device->commit_total_bytes) 3556 break; 3557 3558 btrfs_set_super_bytenr(sb, bytenr); 3559 3560 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3561 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3562 sb->csum); 3563 3564 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3565 GFP_NOFS); 3566 if (!page) { 3567 btrfs_err(device->fs_info, 3568 "couldn't get super block page for bytenr %llu", 3569 bytenr); 3570 errors++; 3571 continue; 3572 } 3573 3574 /* Bump the refcount for wait_dev_supers() */ 3575 get_page(page); 3576 3577 disk_super = page_address(page); 3578 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3579 3580 /* 3581 * Directly use bios here instead of relying on the page cache 3582 * to do I/O, so we don't lose the ability to do integrity 3583 * checking. 3584 */ 3585 bio = bio_alloc(GFP_NOFS, 1); 3586 bio_set_dev(bio, device->bdev); 3587 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3588 bio->bi_private = device; 3589 bio->bi_end_io = btrfs_end_super_write; 3590 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 3591 offset_in_page(bytenr)); 3592 3593 /* 3594 * We FUA only the first super block. The others we allow to 3595 * go down lazy and there's a short window where the on-disk 3596 * copies might still contain the older version. 3597 */ 3598 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO; 3599 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3600 bio->bi_opf |= REQ_FUA; 3601 3602 btrfsic_submit_bio(bio); 3603 } 3604 return errors < i ? 0 : -1; 3605 } 3606 3607 /* 3608 * Wait for write completion of superblocks done by write_dev_supers, 3609 * @max_mirrors same for write and wait phases. 3610 * 3611 * Return number of errors when page is not found or not marked up to 3612 * date. 3613 */ 3614 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3615 { 3616 int i; 3617 int errors = 0; 3618 bool primary_failed = false; 3619 u64 bytenr; 3620 3621 if (max_mirrors == 0) 3622 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3623 3624 for (i = 0; i < max_mirrors; i++) { 3625 struct page *page; 3626 3627 bytenr = btrfs_sb_offset(i); 3628 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3629 device->commit_total_bytes) 3630 break; 3631 3632 page = find_get_page(device->bdev->bd_inode->i_mapping, 3633 bytenr >> PAGE_SHIFT); 3634 if (!page) { 3635 errors++; 3636 if (i == 0) 3637 primary_failed = true; 3638 continue; 3639 } 3640 /* Page is submitted locked and unlocked once the IO completes */ 3641 wait_on_page_locked(page); 3642 if (PageError(page)) { 3643 errors++; 3644 if (i == 0) 3645 primary_failed = true; 3646 } 3647 3648 /* Drop our reference */ 3649 put_page(page); 3650 3651 /* Drop the reference from the writing run */ 3652 put_page(page); 3653 } 3654 3655 /* log error, force error return */ 3656 if (primary_failed) { 3657 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3658 device->devid); 3659 return -1; 3660 } 3661 3662 return errors < i ? 0 : -1; 3663 } 3664 3665 /* 3666 * endio for the write_dev_flush, this will wake anyone waiting 3667 * for the barrier when it is done 3668 */ 3669 static void btrfs_end_empty_barrier(struct bio *bio) 3670 { 3671 complete(bio->bi_private); 3672 } 3673 3674 /* 3675 * Submit a flush request to the device if it supports it. Error handling is 3676 * done in the waiting counterpart. 3677 */ 3678 static void write_dev_flush(struct btrfs_device *device) 3679 { 3680 struct request_queue *q = bdev_get_queue(device->bdev); 3681 struct bio *bio = device->flush_bio; 3682 3683 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3684 return; 3685 3686 bio_reset(bio); 3687 bio->bi_end_io = btrfs_end_empty_barrier; 3688 bio_set_dev(bio, device->bdev); 3689 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3690 init_completion(&device->flush_wait); 3691 bio->bi_private = &device->flush_wait; 3692 3693 btrfsic_submit_bio(bio); 3694 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3695 } 3696 3697 /* 3698 * If the flush bio has been submitted by write_dev_flush, wait for it. 3699 */ 3700 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3701 { 3702 struct bio *bio = device->flush_bio; 3703 3704 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3705 return BLK_STS_OK; 3706 3707 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3708 wait_for_completion_io(&device->flush_wait); 3709 3710 return bio->bi_status; 3711 } 3712 3713 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3714 { 3715 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3716 return -EIO; 3717 return 0; 3718 } 3719 3720 /* 3721 * send an empty flush down to each device in parallel, 3722 * then wait for them 3723 */ 3724 static int barrier_all_devices(struct btrfs_fs_info *info) 3725 { 3726 struct list_head *head; 3727 struct btrfs_device *dev; 3728 int errors_wait = 0; 3729 blk_status_t ret; 3730 3731 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3732 /* send down all the barriers */ 3733 head = &info->fs_devices->devices; 3734 list_for_each_entry(dev, head, dev_list) { 3735 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3736 continue; 3737 if (!dev->bdev) 3738 continue; 3739 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3740 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3741 continue; 3742 3743 write_dev_flush(dev); 3744 dev->last_flush_error = BLK_STS_OK; 3745 } 3746 3747 /* wait for all the barriers */ 3748 list_for_each_entry(dev, head, dev_list) { 3749 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3750 continue; 3751 if (!dev->bdev) { 3752 errors_wait++; 3753 continue; 3754 } 3755 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3756 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3757 continue; 3758 3759 ret = wait_dev_flush(dev); 3760 if (ret) { 3761 dev->last_flush_error = ret; 3762 btrfs_dev_stat_inc_and_print(dev, 3763 BTRFS_DEV_STAT_FLUSH_ERRS); 3764 errors_wait++; 3765 } 3766 } 3767 3768 if (errors_wait) { 3769 /* 3770 * At some point we need the status of all disks 3771 * to arrive at the volume status. So error checking 3772 * is being pushed to a separate loop. 3773 */ 3774 return check_barrier_error(info); 3775 } 3776 return 0; 3777 } 3778 3779 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3780 { 3781 int raid_type; 3782 int min_tolerated = INT_MAX; 3783 3784 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3785 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3786 min_tolerated = min_t(int, min_tolerated, 3787 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3788 tolerated_failures); 3789 3790 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3791 if (raid_type == BTRFS_RAID_SINGLE) 3792 continue; 3793 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3794 continue; 3795 min_tolerated = min_t(int, min_tolerated, 3796 btrfs_raid_array[raid_type]. 3797 tolerated_failures); 3798 } 3799 3800 if (min_tolerated == INT_MAX) { 3801 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3802 min_tolerated = 0; 3803 } 3804 3805 return min_tolerated; 3806 } 3807 3808 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3809 { 3810 struct list_head *head; 3811 struct btrfs_device *dev; 3812 struct btrfs_super_block *sb; 3813 struct btrfs_dev_item *dev_item; 3814 int ret; 3815 int do_barriers; 3816 int max_errors; 3817 int total_errors = 0; 3818 u64 flags; 3819 3820 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3821 3822 /* 3823 * max_mirrors == 0 indicates we're from commit_transaction, 3824 * not from fsync where the tree roots in fs_info have not 3825 * been consistent on disk. 3826 */ 3827 if (max_mirrors == 0) 3828 backup_super_roots(fs_info); 3829 3830 sb = fs_info->super_for_commit; 3831 dev_item = &sb->dev_item; 3832 3833 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3834 head = &fs_info->fs_devices->devices; 3835 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3836 3837 if (do_barriers) { 3838 ret = barrier_all_devices(fs_info); 3839 if (ret) { 3840 mutex_unlock( 3841 &fs_info->fs_devices->device_list_mutex); 3842 btrfs_handle_fs_error(fs_info, ret, 3843 "errors while submitting device barriers."); 3844 return ret; 3845 } 3846 } 3847 3848 list_for_each_entry(dev, head, dev_list) { 3849 if (!dev->bdev) { 3850 total_errors++; 3851 continue; 3852 } 3853 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3854 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3855 continue; 3856 3857 btrfs_set_stack_device_generation(dev_item, 0); 3858 btrfs_set_stack_device_type(dev_item, dev->type); 3859 btrfs_set_stack_device_id(dev_item, dev->devid); 3860 btrfs_set_stack_device_total_bytes(dev_item, 3861 dev->commit_total_bytes); 3862 btrfs_set_stack_device_bytes_used(dev_item, 3863 dev->commit_bytes_used); 3864 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3865 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3866 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3867 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3868 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 3869 BTRFS_FSID_SIZE); 3870 3871 flags = btrfs_super_flags(sb); 3872 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3873 3874 ret = btrfs_validate_write_super(fs_info, sb); 3875 if (ret < 0) { 3876 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3877 btrfs_handle_fs_error(fs_info, -EUCLEAN, 3878 "unexpected superblock corruption detected"); 3879 return -EUCLEAN; 3880 } 3881 3882 ret = write_dev_supers(dev, sb, max_mirrors); 3883 if (ret) 3884 total_errors++; 3885 } 3886 if (total_errors > max_errors) { 3887 btrfs_err(fs_info, "%d errors while writing supers", 3888 total_errors); 3889 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3890 3891 /* FUA is masked off if unsupported and can't be the reason */ 3892 btrfs_handle_fs_error(fs_info, -EIO, 3893 "%d errors while writing supers", 3894 total_errors); 3895 return -EIO; 3896 } 3897 3898 total_errors = 0; 3899 list_for_each_entry(dev, head, dev_list) { 3900 if (!dev->bdev) 3901 continue; 3902 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3903 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3904 continue; 3905 3906 ret = wait_dev_supers(dev, max_mirrors); 3907 if (ret) 3908 total_errors++; 3909 } 3910 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3911 if (total_errors > max_errors) { 3912 btrfs_handle_fs_error(fs_info, -EIO, 3913 "%d errors while writing supers", 3914 total_errors); 3915 return -EIO; 3916 } 3917 return 0; 3918 } 3919 3920 /* Drop a fs root from the radix tree and free it. */ 3921 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3922 struct btrfs_root *root) 3923 { 3924 bool drop_ref = false; 3925 3926 spin_lock(&fs_info->fs_roots_radix_lock); 3927 radix_tree_delete(&fs_info->fs_roots_radix, 3928 (unsigned long)root->root_key.objectid); 3929 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 3930 drop_ref = true; 3931 spin_unlock(&fs_info->fs_roots_radix_lock); 3932 3933 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3934 ASSERT(root->log_root == NULL); 3935 if (root->reloc_root) { 3936 btrfs_put_root(root->reloc_root); 3937 root->reloc_root = NULL; 3938 } 3939 } 3940 3941 if (root->free_ino_pinned) 3942 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3943 if (root->free_ino_ctl) 3944 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3945 if (root->ino_cache_inode) { 3946 iput(root->ino_cache_inode); 3947 root->ino_cache_inode = NULL; 3948 } 3949 if (drop_ref) 3950 btrfs_put_root(root); 3951 } 3952 3953 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3954 { 3955 u64 root_objectid = 0; 3956 struct btrfs_root *gang[8]; 3957 int i = 0; 3958 int err = 0; 3959 unsigned int ret = 0; 3960 3961 while (1) { 3962 spin_lock(&fs_info->fs_roots_radix_lock); 3963 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3964 (void **)gang, root_objectid, 3965 ARRAY_SIZE(gang)); 3966 if (!ret) { 3967 spin_unlock(&fs_info->fs_roots_radix_lock); 3968 break; 3969 } 3970 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3971 3972 for (i = 0; i < ret; i++) { 3973 /* Avoid to grab roots in dead_roots */ 3974 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3975 gang[i] = NULL; 3976 continue; 3977 } 3978 /* grab all the search result for later use */ 3979 gang[i] = btrfs_grab_root(gang[i]); 3980 } 3981 spin_unlock(&fs_info->fs_roots_radix_lock); 3982 3983 for (i = 0; i < ret; i++) { 3984 if (!gang[i]) 3985 continue; 3986 root_objectid = gang[i]->root_key.objectid; 3987 err = btrfs_orphan_cleanup(gang[i]); 3988 if (err) 3989 break; 3990 btrfs_put_root(gang[i]); 3991 } 3992 root_objectid++; 3993 } 3994 3995 /* release the uncleaned roots due to error */ 3996 for (; i < ret; i++) { 3997 if (gang[i]) 3998 btrfs_put_root(gang[i]); 3999 } 4000 return err; 4001 } 4002 4003 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4004 { 4005 struct btrfs_root *root = fs_info->tree_root; 4006 struct btrfs_trans_handle *trans; 4007 4008 mutex_lock(&fs_info->cleaner_mutex); 4009 btrfs_run_delayed_iputs(fs_info); 4010 mutex_unlock(&fs_info->cleaner_mutex); 4011 wake_up_process(fs_info->cleaner_kthread); 4012 4013 /* wait until ongoing cleanup work done */ 4014 down_write(&fs_info->cleanup_work_sem); 4015 up_write(&fs_info->cleanup_work_sem); 4016 4017 trans = btrfs_join_transaction(root); 4018 if (IS_ERR(trans)) 4019 return PTR_ERR(trans); 4020 return btrfs_commit_transaction(trans); 4021 } 4022 4023 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4024 { 4025 int ret; 4026 4027 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4028 /* 4029 * We don't want the cleaner to start new transactions, add more delayed 4030 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4031 * because that frees the task_struct, and the transaction kthread might 4032 * still try to wake up the cleaner. 4033 */ 4034 kthread_park(fs_info->cleaner_kthread); 4035 4036 /* wait for the qgroup rescan worker to stop */ 4037 btrfs_qgroup_wait_for_completion(fs_info, false); 4038 4039 /* wait for the uuid_scan task to finish */ 4040 down(&fs_info->uuid_tree_rescan_sem); 4041 /* avoid complains from lockdep et al., set sem back to initial state */ 4042 up(&fs_info->uuid_tree_rescan_sem); 4043 4044 /* pause restriper - we want to resume on mount */ 4045 btrfs_pause_balance(fs_info); 4046 4047 btrfs_dev_replace_suspend_for_unmount(fs_info); 4048 4049 btrfs_scrub_cancel(fs_info); 4050 4051 /* wait for any defraggers to finish */ 4052 wait_event(fs_info->transaction_wait, 4053 (atomic_read(&fs_info->defrag_running) == 0)); 4054 4055 /* clear out the rbtree of defraggable inodes */ 4056 btrfs_cleanup_defrag_inodes(fs_info); 4057 4058 cancel_work_sync(&fs_info->async_reclaim_work); 4059 4060 /* Cancel or finish ongoing discard work */ 4061 btrfs_discard_cleanup(fs_info); 4062 4063 if (!sb_rdonly(fs_info->sb)) { 4064 /* 4065 * The cleaner kthread is stopped, so do one final pass over 4066 * unused block groups. 4067 */ 4068 btrfs_delete_unused_bgs(fs_info); 4069 4070 /* 4071 * There might be existing delayed inode workers still running 4072 * and holding an empty delayed inode item. We must wait for 4073 * them to complete first because they can create a transaction. 4074 * This happens when someone calls btrfs_balance_delayed_items() 4075 * and then a transaction commit runs the same delayed nodes 4076 * before any delayed worker has done something with the nodes. 4077 * We must wait for any worker here and not at transaction 4078 * commit time since that could cause a deadlock. 4079 * This is a very rare case. 4080 */ 4081 btrfs_flush_workqueue(fs_info->delayed_workers); 4082 4083 ret = btrfs_commit_super(fs_info); 4084 if (ret) 4085 btrfs_err(fs_info, "commit super ret %d", ret); 4086 } 4087 4088 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 4089 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 4090 btrfs_error_commit_super(fs_info); 4091 4092 kthread_stop(fs_info->transaction_kthread); 4093 kthread_stop(fs_info->cleaner_kthread); 4094 4095 ASSERT(list_empty(&fs_info->delayed_iputs)); 4096 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4097 4098 if (btrfs_check_quota_leak(fs_info)) { 4099 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4100 btrfs_err(fs_info, "qgroup reserved space leaked"); 4101 } 4102 4103 btrfs_free_qgroup_config(fs_info); 4104 ASSERT(list_empty(&fs_info->delalloc_roots)); 4105 4106 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4107 btrfs_info(fs_info, "at unmount delalloc count %lld", 4108 percpu_counter_sum(&fs_info->delalloc_bytes)); 4109 } 4110 4111 if (percpu_counter_sum(&fs_info->dio_bytes)) 4112 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4113 percpu_counter_sum(&fs_info->dio_bytes)); 4114 4115 btrfs_sysfs_remove_mounted(fs_info); 4116 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4117 4118 btrfs_put_block_group_cache(fs_info); 4119 4120 /* 4121 * we must make sure there is not any read request to 4122 * submit after we stopping all workers. 4123 */ 4124 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4125 btrfs_stop_all_workers(fs_info); 4126 4127 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4128 free_root_pointers(fs_info, true); 4129 btrfs_free_fs_roots(fs_info); 4130 4131 /* 4132 * We must free the block groups after dropping the fs_roots as we could 4133 * have had an IO error and have left over tree log blocks that aren't 4134 * cleaned up until the fs roots are freed. This makes the block group 4135 * accounting appear to be wrong because there's pending reserved bytes, 4136 * so make sure we do the block group cleanup afterwards. 4137 */ 4138 btrfs_free_block_groups(fs_info); 4139 4140 iput(fs_info->btree_inode); 4141 4142 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4143 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4144 btrfsic_unmount(fs_info->fs_devices); 4145 #endif 4146 4147 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4148 btrfs_close_devices(fs_info->fs_devices); 4149 } 4150 4151 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4152 int atomic) 4153 { 4154 int ret; 4155 struct inode *btree_inode = buf->pages[0]->mapping->host; 4156 4157 ret = extent_buffer_uptodate(buf); 4158 if (!ret) 4159 return ret; 4160 4161 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4162 parent_transid, atomic); 4163 if (ret == -EAGAIN) 4164 return ret; 4165 return !ret; 4166 } 4167 4168 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4169 { 4170 struct btrfs_fs_info *fs_info; 4171 struct btrfs_root *root; 4172 u64 transid = btrfs_header_generation(buf); 4173 int was_dirty; 4174 4175 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4176 /* 4177 * This is a fast path so only do this check if we have sanity tests 4178 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4179 * outside of the sanity tests. 4180 */ 4181 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4182 return; 4183 #endif 4184 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4185 fs_info = root->fs_info; 4186 btrfs_assert_tree_locked(buf); 4187 if (transid != fs_info->generation) 4188 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4189 buf->start, transid, fs_info->generation); 4190 was_dirty = set_extent_buffer_dirty(buf); 4191 if (!was_dirty) 4192 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4193 buf->len, 4194 fs_info->dirty_metadata_batch); 4195 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4196 /* 4197 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4198 * but item data not updated. 4199 * So here we should only check item pointers, not item data. 4200 */ 4201 if (btrfs_header_level(buf) == 0 && 4202 btrfs_check_leaf_relaxed(buf)) { 4203 btrfs_print_leaf(buf); 4204 ASSERT(0); 4205 } 4206 #endif 4207 } 4208 4209 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4210 int flush_delayed) 4211 { 4212 /* 4213 * looks as though older kernels can get into trouble with 4214 * this code, they end up stuck in balance_dirty_pages forever 4215 */ 4216 int ret; 4217 4218 if (current->flags & PF_MEMALLOC) 4219 return; 4220 4221 if (flush_delayed) 4222 btrfs_balance_delayed_items(fs_info); 4223 4224 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4225 BTRFS_DIRTY_METADATA_THRESH, 4226 fs_info->dirty_metadata_batch); 4227 if (ret > 0) { 4228 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4229 } 4230 } 4231 4232 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4233 { 4234 __btrfs_btree_balance_dirty(fs_info, 1); 4235 } 4236 4237 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4238 { 4239 __btrfs_btree_balance_dirty(fs_info, 0); 4240 } 4241 4242 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4243 struct btrfs_key *first_key) 4244 { 4245 return btree_read_extent_buffer_pages(buf, parent_transid, 4246 level, first_key); 4247 } 4248 4249 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4250 { 4251 /* cleanup FS via transaction */ 4252 btrfs_cleanup_transaction(fs_info); 4253 4254 mutex_lock(&fs_info->cleaner_mutex); 4255 btrfs_run_delayed_iputs(fs_info); 4256 mutex_unlock(&fs_info->cleaner_mutex); 4257 4258 down_write(&fs_info->cleanup_work_sem); 4259 up_write(&fs_info->cleanup_work_sem); 4260 } 4261 4262 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4263 { 4264 struct btrfs_root *gang[8]; 4265 u64 root_objectid = 0; 4266 int ret; 4267 4268 spin_lock(&fs_info->fs_roots_radix_lock); 4269 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4270 (void **)gang, root_objectid, 4271 ARRAY_SIZE(gang))) != 0) { 4272 int i; 4273 4274 for (i = 0; i < ret; i++) 4275 gang[i] = btrfs_grab_root(gang[i]); 4276 spin_unlock(&fs_info->fs_roots_radix_lock); 4277 4278 for (i = 0; i < ret; i++) { 4279 if (!gang[i]) 4280 continue; 4281 root_objectid = gang[i]->root_key.objectid; 4282 btrfs_free_log(NULL, gang[i]); 4283 btrfs_put_root(gang[i]); 4284 } 4285 root_objectid++; 4286 spin_lock(&fs_info->fs_roots_radix_lock); 4287 } 4288 spin_unlock(&fs_info->fs_roots_radix_lock); 4289 btrfs_free_log_root_tree(NULL, fs_info); 4290 } 4291 4292 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4293 { 4294 struct btrfs_ordered_extent *ordered; 4295 4296 spin_lock(&root->ordered_extent_lock); 4297 /* 4298 * This will just short circuit the ordered completion stuff which will 4299 * make sure the ordered extent gets properly cleaned up. 4300 */ 4301 list_for_each_entry(ordered, &root->ordered_extents, 4302 root_extent_list) 4303 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4304 spin_unlock(&root->ordered_extent_lock); 4305 } 4306 4307 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4308 { 4309 struct btrfs_root *root; 4310 struct list_head splice; 4311 4312 INIT_LIST_HEAD(&splice); 4313 4314 spin_lock(&fs_info->ordered_root_lock); 4315 list_splice_init(&fs_info->ordered_roots, &splice); 4316 while (!list_empty(&splice)) { 4317 root = list_first_entry(&splice, struct btrfs_root, 4318 ordered_root); 4319 list_move_tail(&root->ordered_root, 4320 &fs_info->ordered_roots); 4321 4322 spin_unlock(&fs_info->ordered_root_lock); 4323 btrfs_destroy_ordered_extents(root); 4324 4325 cond_resched(); 4326 spin_lock(&fs_info->ordered_root_lock); 4327 } 4328 spin_unlock(&fs_info->ordered_root_lock); 4329 4330 /* 4331 * We need this here because if we've been flipped read-only we won't 4332 * get sync() from the umount, so we need to make sure any ordered 4333 * extents that haven't had their dirty pages IO start writeout yet 4334 * actually get run and error out properly. 4335 */ 4336 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4337 } 4338 4339 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4340 struct btrfs_fs_info *fs_info) 4341 { 4342 struct rb_node *node; 4343 struct btrfs_delayed_ref_root *delayed_refs; 4344 struct btrfs_delayed_ref_node *ref; 4345 int ret = 0; 4346 4347 delayed_refs = &trans->delayed_refs; 4348 4349 spin_lock(&delayed_refs->lock); 4350 if (atomic_read(&delayed_refs->num_entries) == 0) { 4351 spin_unlock(&delayed_refs->lock); 4352 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4353 return ret; 4354 } 4355 4356 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4357 struct btrfs_delayed_ref_head *head; 4358 struct rb_node *n; 4359 bool pin_bytes = false; 4360 4361 head = rb_entry(node, struct btrfs_delayed_ref_head, 4362 href_node); 4363 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4364 continue; 4365 4366 spin_lock(&head->lock); 4367 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4368 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4369 ref_node); 4370 ref->in_tree = 0; 4371 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4372 RB_CLEAR_NODE(&ref->ref_node); 4373 if (!list_empty(&ref->add_list)) 4374 list_del(&ref->add_list); 4375 atomic_dec(&delayed_refs->num_entries); 4376 btrfs_put_delayed_ref(ref); 4377 } 4378 if (head->must_insert_reserved) 4379 pin_bytes = true; 4380 btrfs_free_delayed_extent_op(head->extent_op); 4381 btrfs_delete_ref_head(delayed_refs, head); 4382 spin_unlock(&head->lock); 4383 spin_unlock(&delayed_refs->lock); 4384 mutex_unlock(&head->mutex); 4385 4386 if (pin_bytes) { 4387 struct btrfs_block_group *cache; 4388 4389 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4390 BUG_ON(!cache); 4391 4392 spin_lock(&cache->space_info->lock); 4393 spin_lock(&cache->lock); 4394 cache->pinned += head->num_bytes; 4395 btrfs_space_info_update_bytes_pinned(fs_info, 4396 cache->space_info, head->num_bytes); 4397 cache->reserved -= head->num_bytes; 4398 cache->space_info->bytes_reserved -= head->num_bytes; 4399 spin_unlock(&cache->lock); 4400 spin_unlock(&cache->space_info->lock); 4401 percpu_counter_add_batch( 4402 &cache->space_info->total_bytes_pinned, 4403 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); 4404 4405 btrfs_put_block_group(cache); 4406 4407 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4408 head->bytenr + head->num_bytes - 1); 4409 } 4410 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4411 btrfs_put_delayed_ref_head(head); 4412 cond_resched(); 4413 spin_lock(&delayed_refs->lock); 4414 } 4415 btrfs_qgroup_destroy_extent_records(trans); 4416 4417 spin_unlock(&delayed_refs->lock); 4418 4419 return ret; 4420 } 4421 4422 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4423 { 4424 struct btrfs_inode *btrfs_inode; 4425 struct list_head splice; 4426 4427 INIT_LIST_HEAD(&splice); 4428 4429 spin_lock(&root->delalloc_lock); 4430 list_splice_init(&root->delalloc_inodes, &splice); 4431 4432 while (!list_empty(&splice)) { 4433 struct inode *inode = NULL; 4434 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4435 delalloc_inodes); 4436 __btrfs_del_delalloc_inode(root, btrfs_inode); 4437 spin_unlock(&root->delalloc_lock); 4438 4439 /* 4440 * Make sure we get a live inode and that it'll not disappear 4441 * meanwhile. 4442 */ 4443 inode = igrab(&btrfs_inode->vfs_inode); 4444 if (inode) { 4445 invalidate_inode_pages2(inode->i_mapping); 4446 iput(inode); 4447 } 4448 spin_lock(&root->delalloc_lock); 4449 } 4450 spin_unlock(&root->delalloc_lock); 4451 } 4452 4453 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4454 { 4455 struct btrfs_root *root; 4456 struct list_head splice; 4457 4458 INIT_LIST_HEAD(&splice); 4459 4460 spin_lock(&fs_info->delalloc_root_lock); 4461 list_splice_init(&fs_info->delalloc_roots, &splice); 4462 while (!list_empty(&splice)) { 4463 root = list_first_entry(&splice, struct btrfs_root, 4464 delalloc_root); 4465 root = btrfs_grab_root(root); 4466 BUG_ON(!root); 4467 spin_unlock(&fs_info->delalloc_root_lock); 4468 4469 btrfs_destroy_delalloc_inodes(root); 4470 btrfs_put_root(root); 4471 4472 spin_lock(&fs_info->delalloc_root_lock); 4473 } 4474 spin_unlock(&fs_info->delalloc_root_lock); 4475 } 4476 4477 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4478 struct extent_io_tree *dirty_pages, 4479 int mark) 4480 { 4481 int ret; 4482 struct extent_buffer *eb; 4483 u64 start = 0; 4484 u64 end; 4485 4486 while (1) { 4487 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4488 mark, NULL); 4489 if (ret) 4490 break; 4491 4492 clear_extent_bits(dirty_pages, start, end, mark); 4493 while (start <= end) { 4494 eb = find_extent_buffer(fs_info, start); 4495 start += fs_info->nodesize; 4496 if (!eb) 4497 continue; 4498 wait_on_extent_buffer_writeback(eb); 4499 4500 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4501 &eb->bflags)) 4502 clear_extent_buffer_dirty(eb); 4503 free_extent_buffer_stale(eb); 4504 } 4505 } 4506 4507 return ret; 4508 } 4509 4510 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4511 struct extent_io_tree *unpin) 4512 { 4513 u64 start; 4514 u64 end; 4515 int ret; 4516 4517 while (1) { 4518 struct extent_state *cached_state = NULL; 4519 4520 /* 4521 * The btrfs_finish_extent_commit() may get the same range as 4522 * ours between find_first_extent_bit and clear_extent_dirty. 4523 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4524 * the same extent range. 4525 */ 4526 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4527 ret = find_first_extent_bit(unpin, 0, &start, &end, 4528 EXTENT_DIRTY, &cached_state); 4529 if (ret) { 4530 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4531 break; 4532 } 4533 4534 clear_extent_dirty(unpin, start, end, &cached_state); 4535 free_extent_state(cached_state); 4536 btrfs_error_unpin_extent_range(fs_info, start, end); 4537 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4538 cond_resched(); 4539 } 4540 4541 return 0; 4542 } 4543 4544 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4545 { 4546 struct inode *inode; 4547 4548 inode = cache->io_ctl.inode; 4549 if (inode) { 4550 invalidate_inode_pages2(inode->i_mapping); 4551 BTRFS_I(inode)->generation = 0; 4552 cache->io_ctl.inode = NULL; 4553 iput(inode); 4554 } 4555 ASSERT(cache->io_ctl.pages == NULL); 4556 btrfs_put_block_group(cache); 4557 } 4558 4559 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4560 struct btrfs_fs_info *fs_info) 4561 { 4562 struct btrfs_block_group *cache; 4563 4564 spin_lock(&cur_trans->dirty_bgs_lock); 4565 while (!list_empty(&cur_trans->dirty_bgs)) { 4566 cache = list_first_entry(&cur_trans->dirty_bgs, 4567 struct btrfs_block_group, 4568 dirty_list); 4569 4570 if (!list_empty(&cache->io_list)) { 4571 spin_unlock(&cur_trans->dirty_bgs_lock); 4572 list_del_init(&cache->io_list); 4573 btrfs_cleanup_bg_io(cache); 4574 spin_lock(&cur_trans->dirty_bgs_lock); 4575 } 4576 4577 list_del_init(&cache->dirty_list); 4578 spin_lock(&cache->lock); 4579 cache->disk_cache_state = BTRFS_DC_ERROR; 4580 spin_unlock(&cache->lock); 4581 4582 spin_unlock(&cur_trans->dirty_bgs_lock); 4583 btrfs_put_block_group(cache); 4584 btrfs_delayed_refs_rsv_release(fs_info, 1); 4585 spin_lock(&cur_trans->dirty_bgs_lock); 4586 } 4587 spin_unlock(&cur_trans->dirty_bgs_lock); 4588 4589 /* 4590 * Refer to the definition of io_bgs member for details why it's safe 4591 * to use it without any locking 4592 */ 4593 while (!list_empty(&cur_trans->io_bgs)) { 4594 cache = list_first_entry(&cur_trans->io_bgs, 4595 struct btrfs_block_group, 4596 io_list); 4597 4598 list_del_init(&cache->io_list); 4599 spin_lock(&cache->lock); 4600 cache->disk_cache_state = BTRFS_DC_ERROR; 4601 spin_unlock(&cache->lock); 4602 btrfs_cleanup_bg_io(cache); 4603 } 4604 } 4605 4606 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4607 struct btrfs_fs_info *fs_info) 4608 { 4609 struct btrfs_device *dev, *tmp; 4610 4611 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4612 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4613 ASSERT(list_empty(&cur_trans->io_bgs)); 4614 4615 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4616 post_commit_list) { 4617 list_del_init(&dev->post_commit_list); 4618 } 4619 4620 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4621 4622 cur_trans->state = TRANS_STATE_COMMIT_START; 4623 wake_up(&fs_info->transaction_blocked_wait); 4624 4625 cur_trans->state = TRANS_STATE_UNBLOCKED; 4626 wake_up(&fs_info->transaction_wait); 4627 4628 btrfs_destroy_delayed_inodes(fs_info); 4629 4630 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4631 EXTENT_DIRTY); 4632 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4633 4634 cur_trans->state =TRANS_STATE_COMPLETED; 4635 wake_up(&cur_trans->commit_wait); 4636 } 4637 4638 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4639 { 4640 struct btrfs_transaction *t; 4641 4642 mutex_lock(&fs_info->transaction_kthread_mutex); 4643 4644 spin_lock(&fs_info->trans_lock); 4645 while (!list_empty(&fs_info->trans_list)) { 4646 t = list_first_entry(&fs_info->trans_list, 4647 struct btrfs_transaction, list); 4648 if (t->state >= TRANS_STATE_COMMIT_START) { 4649 refcount_inc(&t->use_count); 4650 spin_unlock(&fs_info->trans_lock); 4651 btrfs_wait_for_commit(fs_info, t->transid); 4652 btrfs_put_transaction(t); 4653 spin_lock(&fs_info->trans_lock); 4654 continue; 4655 } 4656 if (t == fs_info->running_transaction) { 4657 t->state = TRANS_STATE_COMMIT_DOING; 4658 spin_unlock(&fs_info->trans_lock); 4659 /* 4660 * We wait for 0 num_writers since we don't hold a trans 4661 * handle open currently for this transaction. 4662 */ 4663 wait_event(t->writer_wait, 4664 atomic_read(&t->num_writers) == 0); 4665 } else { 4666 spin_unlock(&fs_info->trans_lock); 4667 } 4668 btrfs_cleanup_one_transaction(t, fs_info); 4669 4670 spin_lock(&fs_info->trans_lock); 4671 if (t == fs_info->running_transaction) 4672 fs_info->running_transaction = NULL; 4673 list_del_init(&t->list); 4674 spin_unlock(&fs_info->trans_lock); 4675 4676 btrfs_put_transaction(t); 4677 trace_btrfs_transaction_commit(fs_info->tree_root); 4678 spin_lock(&fs_info->trans_lock); 4679 } 4680 spin_unlock(&fs_info->trans_lock); 4681 btrfs_destroy_all_ordered_extents(fs_info); 4682 btrfs_destroy_delayed_inodes(fs_info); 4683 btrfs_assert_delayed_root_empty(fs_info); 4684 btrfs_destroy_all_delalloc_inodes(fs_info); 4685 btrfs_drop_all_logs(fs_info); 4686 mutex_unlock(&fs_info->transaction_kthread_mutex); 4687 4688 return 0; 4689 } 4690 4691 static const struct extent_io_ops btree_extent_io_ops = { 4692 /* mandatory callbacks */ 4693 .submit_bio_hook = btree_submit_bio_hook, 4694 .readpage_end_io_hook = btree_readpage_end_io_hook, 4695 }; 4696