1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/buffer_head.h> 11 #include <linux/workqueue.h> 12 #include <linux/kthread.h> 13 #include <linux/slab.h> 14 #include <linux/migrate.h> 15 #include <linux/ratelimit.h> 16 #include <linux/uuid.h> 17 #include <linux/semaphore.h> 18 #include <linux/error-injection.h> 19 #include <linux/crc32c.h> 20 #include <asm/unaligned.h> 21 #include "ctree.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "btrfs_inode.h" 25 #include "volumes.h" 26 #include "print-tree.h" 27 #include "locking.h" 28 #include "tree-log.h" 29 #include "free-space-cache.h" 30 #include "free-space-tree.h" 31 #include "inode-map.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 42 #ifdef CONFIG_X86 43 #include <asm/cpufeature.h> 44 #endif 45 46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 47 BTRFS_HEADER_FLAG_RELOC |\ 48 BTRFS_SUPER_FLAG_ERROR |\ 49 BTRFS_SUPER_FLAG_SEEDING |\ 50 BTRFS_SUPER_FLAG_METADUMP |\ 51 BTRFS_SUPER_FLAG_METADUMP_V2) 52 53 static const struct extent_io_ops btree_extent_io_ops; 54 static void end_workqueue_fn(struct btrfs_work *work); 55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 57 struct btrfs_fs_info *fs_info); 58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 60 struct extent_io_tree *dirty_pages, 61 int mark); 62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 63 struct extent_io_tree *pinned_extents); 64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 66 67 /* 68 * btrfs_end_io_wq structs are used to do processing in task context when an IO 69 * is complete. This is used during reads to verify checksums, and it is used 70 * by writes to insert metadata for new file extents after IO is complete. 71 */ 72 struct btrfs_end_io_wq { 73 struct bio *bio; 74 bio_end_io_t *end_io; 75 void *private; 76 struct btrfs_fs_info *info; 77 blk_status_t status; 78 enum btrfs_wq_endio_type metadata; 79 struct btrfs_work work; 80 }; 81 82 static struct kmem_cache *btrfs_end_io_wq_cache; 83 84 int __init btrfs_end_io_wq_init(void) 85 { 86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 87 sizeof(struct btrfs_end_io_wq), 88 0, 89 SLAB_MEM_SPREAD, 90 NULL); 91 if (!btrfs_end_io_wq_cache) 92 return -ENOMEM; 93 return 0; 94 } 95 96 void __cold btrfs_end_io_wq_exit(void) 97 { 98 kmem_cache_destroy(btrfs_end_io_wq_cache); 99 } 100 101 /* 102 * async submit bios are used to offload expensive checksumming 103 * onto the worker threads. They checksum file and metadata bios 104 * just before they are sent down the IO stack. 105 */ 106 struct async_submit_bio { 107 void *private_data; 108 struct bio *bio; 109 extent_submit_bio_start_t *submit_bio_start; 110 int mirror_num; 111 /* 112 * bio_offset is optional, can be used if the pages in the bio 113 * can't tell us where in the file the bio should go 114 */ 115 u64 bio_offset; 116 struct btrfs_work work; 117 blk_status_t status; 118 }; 119 120 /* 121 * Lockdep class keys for extent_buffer->lock's in this root. For a given 122 * eb, the lockdep key is determined by the btrfs_root it belongs to and 123 * the level the eb occupies in the tree. 124 * 125 * Different roots are used for different purposes and may nest inside each 126 * other and they require separate keysets. As lockdep keys should be 127 * static, assign keysets according to the purpose of the root as indicated 128 * by btrfs_root->root_key.objectid. This ensures that all special purpose 129 * roots have separate keysets. 130 * 131 * Lock-nesting across peer nodes is always done with the immediate parent 132 * node locked thus preventing deadlock. As lockdep doesn't know this, use 133 * subclass to avoid triggering lockdep warning in such cases. 134 * 135 * The key is set by the readpage_end_io_hook after the buffer has passed 136 * csum validation but before the pages are unlocked. It is also set by 137 * btrfs_init_new_buffer on freshly allocated blocks. 138 * 139 * We also add a check to make sure the highest level of the tree is the 140 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 141 * needs update as well. 142 */ 143 #ifdef CONFIG_DEBUG_LOCK_ALLOC 144 # if BTRFS_MAX_LEVEL != 8 145 # error 146 # endif 147 148 static struct btrfs_lockdep_keyset { 149 u64 id; /* root objectid */ 150 const char *name_stem; /* lock name stem */ 151 char names[BTRFS_MAX_LEVEL + 1][20]; 152 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 153 } btrfs_lockdep_keysets[] = { 154 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 155 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 156 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 157 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 158 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 159 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 160 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 161 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 162 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 163 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 164 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 165 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 166 { .id = 0, .name_stem = "tree" }, 167 }; 168 169 void __init btrfs_init_lockdep(void) 170 { 171 int i, j; 172 173 /* initialize lockdep class names */ 174 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 175 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 176 177 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 178 snprintf(ks->names[j], sizeof(ks->names[j]), 179 "btrfs-%s-%02d", ks->name_stem, j); 180 } 181 } 182 183 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 184 int level) 185 { 186 struct btrfs_lockdep_keyset *ks; 187 188 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 189 190 /* find the matching keyset, id 0 is the default entry */ 191 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 192 if (ks->id == objectid) 193 break; 194 195 lockdep_set_class_and_name(&eb->lock, 196 &ks->keys[level], ks->names[level]); 197 } 198 199 #endif 200 201 /* 202 * extents on the btree inode are pretty simple, there's one extent 203 * that covers the entire device 204 */ 205 struct extent_map *btree_get_extent(struct btrfs_inode *inode, 206 struct page *page, size_t pg_offset, u64 start, u64 len, 207 int create) 208 { 209 struct btrfs_fs_info *fs_info = inode->root->fs_info; 210 struct extent_map_tree *em_tree = &inode->extent_tree; 211 struct extent_map *em; 212 int ret; 213 214 read_lock(&em_tree->lock); 215 em = lookup_extent_mapping(em_tree, start, len); 216 if (em) { 217 em->bdev = fs_info->fs_devices->latest_bdev; 218 read_unlock(&em_tree->lock); 219 goto out; 220 } 221 read_unlock(&em_tree->lock); 222 223 em = alloc_extent_map(); 224 if (!em) { 225 em = ERR_PTR(-ENOMEM); 226 goto out; 227 } 228 em->start = 0; 229 em->len = (u64)-1; 230 em->block_len = (u64)-1; 231 em->block_start = 0; 232 em->bdev = fs_info->fs_devices->latest_bdev; 233 234 write_lock(&em_tree->lock); 235 ret = add_extent_mapping(em_tree, em, 0); 236 if (ret == -EEXIST) { 237 free_extent_map(em); 238 em = lookup_extent_mapping(em_tree, start, len); 239 if (!em) 240 em = ERR_PTR(-EIO); 241 } else if (ret) { 242 free_extent_map(em); 243 em = ERR_PTR(ret); 244 } 245 write_unlock(&em_tree->lock); 246 247 out: 248 return em; 249 } 250 251 u32 btrfs_csum_data(const char *data, u32 seed, size_t len) 252 { 253 return crc32c(seed, data, len); 254 } 255 256 void btrfs_csum_final(u32 crc, u8 *result) 257 { 258 put_unaligned_le32(~crc, result); 259 } 260 261 /* 262 * compute the csum for a btree block, and either verify it or write it 263 * into the csum field of the block. 264 */ 265 static int csum_tree_block(struct btrfs_fs_info *fs_info, 266 struct extent_buffer *buf, 267 int verify) 268 { 269 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 270 char result[BTRFS_CSUM_SIZE]; 271 unsigned long len; 272 unsigned long cur_len; 273 unsigned long offset = BTRFS_CSUM_SIZE; 274 char *kaddr; 275 unsigned long map_start; 276 unsigned long map_len; 277 int err; 278 u32 crc = ~(u32)0; 279 280 len = buf->len - offset; 281 while (len > 0) { 282 err = map_private_extent_buffer(buf, offset, 32, 283 &kaddr, &map_start, &map_len); 284 if (err) 285 return err; 286 cur_len = min(len, map_len - (offset - map_start)); 287 crc = btrfs_csum_data(kaddr + offset - map_start, 288 crc, cur_len); 289 len -= cur_len; 290 offset += cur_len; 291 } 292 memset(result, 0, BTRFS_CSUM_SIZE); 293 294 btrfs_csum_final(crc, result); 295 296 if (verify) { 297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 298 u32 val; 299 u32 found = 0; 300 memcpy(&found, result, csum_size); 301 302 read_extent_buffer(buf, &val, 0, csum_size); 303 btrfs_warn_rl(fs_info, 304 "%s checksum verify failed on %llu wanted %X found %X level %d", 305 fs_info->sb->s_id, buf->start, 306 val, found, btrfs_header_level(buf)); 307 return -EUCLEAN; 308 } 309 } else { 310 write_extent_buffer(buf, result, 0, csum_size); 311 } 312 313 return 0; 314 } 315 316 /* 317 * we can't consider a given block up to date unless the transid of the 318 * block matches the transid in the parent node's pointer. This is how we 319 * detect blocks that either didn't get written at all or got written 320 * in the wrong place. 321 */ 322 static int verify_parent_transid(struct extent_io_tree *io_tree, 323 struct extent_buffer *eb, u64 parent_transid, 324 int atomic) 325 { 326 struct extent_state *cached_state = NULL; 327 int ret; 328 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 329 330 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 331 return 0; 332 333 if (atomic) 334 return -EAGAIN; 335 336 if (need_lock) { 337 btrfs_tree_read_lock(eb); 338 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 339 } 340 341 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 342 &cached_state); 343 if (extent_buffer_uptodate(eb) && 344 btrfs_header_generation(eb) == parent_transid) { 345 ret = 0; 346 goto out; 347 } 348 btrfs_err_rl(eb->fs_info, 349 "parent transid verify failed on %llu wanted %llu found %llu", 350 eb->start, 351 parent_transid, btrfs_header_generation(eb)); 352 ret = 1; 353 354 /* 355 * Things reading via commit roots that don't have normal protection, 356 * like send, can have a really old block in cache that may point at a 357 * block that has been freed and re-allocated. So don't clear uptodate 358 * if we find an eb that is under IO (dirty/writeback) because we could 359 * end up reading in the stale data and then writing it back out and 360 * making everybody very sad. 361 */ 362 if (!extent_buffer_under_io(eb)) 363 clear_extent_buffer_uptodate(eb); 364 out: 365 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 366 &cached_state); 367 if (need_lock) 368 btrfs_tree_read_unlock_blocking(eb); 369 return ret; 370 } 371 372 /* 373 * Return 0 if the superblock checksum type matches the checksum value of that 374 * algorithm. Pass the raw disk superblock data. 375 */ 376 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 377 char *raw_disk_sb) 378 { 379 struct btrfs_super_block *disk_sb = 380 (struct btrfs_super_block *)raw_disk_sb; 381 u16 csum_type = btrfs_super_csum_type(disk_sb); 382 int ret = 0; 383 384 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 385 u32 crc = ~(u32)0; 386 char result[sizeof(crc)]; 387 388 /* 389 * The super_block structure does not span the whole 390 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 391 * is filled with zeros and is included in the checksum. 392 */ 393 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 394 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 395 btrfs_csum_final(crc, result); 396 397 if (memcmp(raw_disk_sb, result, sizeof(result))) 398 ret = 1; 399 } 400 401 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 402 btrfs_err(fs_info, "unsupported checksum algorithm %u", 403 csum_type); 404 ret = 1; 405 } 406 407 return ret; 408 } 409 410 static int verify_level_key(struct btrfs_fs_info *fs_info, 411 struct extent_buffer *eb, int level, 412 struct btrfs_key *first_key, u64 parent_transid) 413 { 414 int found_level; 415 struct btrfs_key found_key; 416 int ret; 417 418 found_level = btrfs_header_level(eb); 419 if (found_level != level) { 420 #ifdef CONFIG_BTRFS_DEBUG 421 WARN_ON(1); 422 btrfs_err(fs_info, 423 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 424 eb->start, level, found_level); 425 #endif 426 return -EIO; 427 } 428 429 if (!first_key) 430 return 0; 431 432 /* 433 * For live tree block (new tree blocks in current transaction), 434 * we need proper lock context to avoid race, which is impossible here. 435 * So we only checks tree blocks which is read from disk, whose 436 * generation <= fs_info->last_trans_committed. 437 */ 438 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 439 return 0; 440 if (found_level) 441 btrfs_node_key_to_cpu(eb, &found_key, 0); 442 else 443 btrfs_item_key_to_cpu(eb, &found_key, 0); 444 ret = btrfs_comp_cpu_keys(first_key, &found_key); 445 446 #ifdef CONFIG_BTRFS_DEBUG 447 if (ret) { 448 WARN_ON(1); 449 btrfs_err(fs_info, 450 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 451 eb->start, parent_transid, first_key->objectid, 452 first_key->type, first_key->offset, 453 found_key.objectid, found_key.type, 454 found_key.offset); 455 } 456 #endif 457 return ret; 458 } 459 460 /* 461 * helper to read a given tree block, doing retries as required when 462 * the checksums don't match and we have alternate mirrors to try. 463 * 464 * @parent_transid: expected transid, skip check if 0 465 * @level: expected level, mandatory check 466 * @first_key: expected key of first slot, skip check if NULL 467 */ 468 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info, 469 struct extent_buffer *eb, 470 u64 parent_transid, int level, 471 struct btrfs_key *first_key) 472 { 473 struct extent_io_tree *io_tree; 474 int failed = 0; 475 int ret; 476 int num_copies = 0; 477 int mirror_num = 0; 478 int failed_mirror = 0; 479 480 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 481 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 482 while (1) { 483 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE, 484 mirror_num); 485 if (!ret) { 486 if (verify_parent_transid(io_tree, eb, 487 parent_transid, 0)) 488 ret = -EIO; 489 else if (verify_level_key(fs_info, eb, level, 490 first_key, parent_transid)) 491 ret = -EUCLEAN; 492 else 493 break; 494 } 495 496 /* 497 * This buffer's crc is fine, but its contents are corrupted, so 498 * there is no reason to read the other copies, they won't be 499 * any less wrong. 500 */ 501 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags) || 502 ret == -EUCLEAN) 503 break; 504 505 num_copies = btrfs_num_copies(fs_info, 506 eb->start, eb->len); 507 if (num_copies == 1) 508 break; 509 510 if (!failed_mirror) { 511 failed = 1; 512 failed_mirror = eb->read_mirror; 513 } 514 515 mirror_num++; 516 if (mirror_num == failed_mirror) 517 mirror_num++; 518 519 if (mirror_num > num_copies) 520 break; 521 } 522 523 if (failed && !ret && failed_mirror) 524 repair_eb_io_failure(fs_info, eb, failed_mirror); 525 526 return ret; 527 } 528 529 /* 530 * checksum a dirty tree block before IO. This has extra checks to make sure 531 * we only fill in the checksum field in the first page of a multi-page block 532 */ 533 534 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 535 { 536 u64 start = page_offset(page); 537 u64 found_start; 538 struct extent_buffer *eb; 539 540 eb = (struct extent_buffer *)page->private; 541 if (page != eb->pages[0]) 542 return 0; 543 544 found_start = btrfs_header_bytenr(eb); 545 /* 546 * Please do not consolidate these warnings into a single if. 547 * It is useful to know what went wrong. 548 */ 549 if (WARN_ON(found_start != start)) 550 return -EUCLEAN; 551 if (WARN_ON(!PageUptodate(page))) 552 return -EUCLEAN; 553 554 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid, 555 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 556 557 return csum_tree_block(fs_info, eb, 0); 558 } 559 560 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 561 struct extent_buffer *eb) 562 { 563 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 564 u8 fsid[BTRFS_FSID_SIZE]; 565 int ret = 1; 566 567 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 568 while (fs_devices) { 569 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 570 ret = 0; 571 break; 572 } 573 fs_devices = fs_devices->seed; 574 } 575 return ret; 576 } 577 578 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 579 u64 phy_offset, struct page *page, 580 u64 start, u64 end, int mirror) 581 { 582 u64 found_start; 583 int found_level; 584 struct extent_buffer *eb; 585 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 586 struct btrfs_fs_info *fs_info = root->fs_info; 587 int ret = 0; 588 int reads_done; 589 590 if (!page->private) 591 goto out; 592 593 eb = (struct extent_buffer *)page->private; 594 595 /* the pending IO might have been the only thing that kept this buffer 596 * in memory. Make sure we have a ref for all this other checks 597 */ 598 extent_buffer_get(eb); 599 600 reads_done = atomic_dec_and_test(&eb->io_pages); 601 if (!reads_done) 602 goto err; 603 604 eb->read_mirror = mirror; 605 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 606 ret = -EIO; 607 goto err; 608 } 609 610 found_start = btrfs_header_bytenr(eb); 611 if (found_start != eb->start) { 612 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 613 eb->start, found_start); 614 ret = -EIO; 615 goto err; 616 } 617 if (check_tree_block_fsid(fs_info, eb)) { 618 btrfs_err_rl(fs_info, "bad fsid on block %llu", 619 eb->start); 620 ret = -EIO; 621 goto err; 622 } 623 found_level = btrfs_header_level(eb); 624 if (found_level >= BTRFS_MAX_LEVEL) { 625 btrfs_err(fs_info, "bad tree block level %d on %llu", 626 (int)btrfs_header_level(eb), eb->start); 627 ret = -EIO; 628 goto err; 629 } 630 631 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 632 eb, found_level); 633 634 ret = csum_tree_block(fs_info, eb, 1); 635 if (ret) 636 goto err; 637 638 /* 639 * If this is a leaf block and it is corrupt, set the corrupt bit so 640 * that we don't try and read the other copies of this block, just 641 * return -EIO. 642 */ 643 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) { 644 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 645 ret = -EIO; 646 } 647 648 if (found_level > 0 && btrfs_check_node(fs_info, eb)) 649 ret = -EIO; 650 651 if (!ret) 652 set_extent_buffer_uptodate(eb); 653 err: 654 if (reads_done && 655 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 656 btree_readahead_hook(eb, ret); 657 658 if (ret) { 659 /* 660 * our io error hook is going to dec the io pages 661 * again, we have to make sure it has something 662 * to decrement 663 */ 664 atomic_inc(&eb->io_pages); 665 clear_extent_buffer_uptodate(eb); 666 } 667 free_extent_buffer(eb); 668 out: 669 return ret; 670 } 671 672 static int btree_io_failed_hook(struct page *page, int failed_mirror) 673 { 674 struct extent_buffer *eb; 675 676 eb = (struct extent_buffer *)page->private; 677 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 678 eb->read_mirror = failed_mirror; 679 atomic_dec(&eb->io_pages); 680 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 681 btree_readahead_hook(eb, -EIO); 682 return -EIO; /* we fixed nothing */ 683 } 684 685 static void end_workqueue_bio(struct bio *bio) 686 { 687 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 688 struct btrfs_fs_info *fs_info; 689 struct btrfs_workqueue *wq; 690 btrfs_work_func_t func; 691 692 fs_info = end_io_wq->info; 693 end_io_wq->status = bio->bi_status; 694 695 if (bio_op(bio) == REQ_OP_WRITE) { 696 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 697 wq = fs_info->endio_meta_write_workers; 698 func = btrfs_endio_meta_write_helper; 699 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 700 wq = fs_info->endio_freespace_worker; 701 func = btrfs_freespace_write_helper; 702 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 703 wq = fs_info->endio_raid56_workers; 704 func = btrfs_endio_raid56_helper; 705 } else { 706 wq = fs_info->endio_write_workers; 707 func = btrfs_endio_write_helper; 708 } 709 } else { 710 if (unlikely(end_io_wq->metadata == 711 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 712 wq = fs_info->endio_repair_workers; 713 func = btrfs_endio_repair_helper; 714 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 715 wq = fs_info->endio_raid56_workers; 716 func = btrfs_endio_raid56_helper; 717 } else if (end_io_wq->metadata) { 718 wq = fs_info->endio_meta_workers; 719 func = btrfs_endio_meta_helper; 720 } else { 721 wq = fs_info->endio_workers; 722 func = btrfs_endio_helper; 723 } 724 } 725 726 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 727 btrfs_queue_work(wq, &end_io_wq->work); 728 } 729 730 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 731 enum btrfs_wq_endio_type metadata) 732 { 733 struct btrfs_end_io_wq *end_io_wq; 734 735 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 736 if (!end_io_wq) 737 return BLK_STS_RESOURCE; 738 739 end_io_wq->private = bio->bi_private; 740 end_io_wq->end_io = bio->bi_end_io; 741 end_io_wq->info = info; 742 end_io_wq->status = 0; 743 end_io_wq->bio = bio; 744 end_io_wq->metadata = metadata; 745 746 bio->bi_private = end_io_wq; 747 bio->bi_end_io = end_workqueue_bio; 748 return 0; 749 } 750 751 static void run_one_async_start(struct btrfs_work *work) 752 { 753 struct async_submit_bio *async; 754 blk_status_t ret; 755 756 async = container_of(work, struct async_submit_bio, work); 757 ret = async->submit_bio_start(async->private_data, async->bio, 758 async->bio_offset); 759 if (ret) 760 async->status = ret; 761 } 762 763 static void run_one_async_done(struct btrfs_work *work) 764 { 765 struct async_submit_bio *async; 766 767 async = container_of(work, struct async_submit_bio, work); 768 769 /* If an error occurred we just want to clean up the bio and move on */ 770 if (async->status) { 771 async->bio->bi_status = async->status; 772 bio_endio(async->bio); 773 return; 774 } 775 776 btrfs_submit_bio_done(async->private_data, async->bio, async->mirror_num); 777 } 778 779 static void run_one_async_free(struct btrfs_work *work) 780 { 781 struct async_submit_bio *async; 782 783 async = container_of(work, struct async_submit_bio, work); 784 kfree(async); 785 } 786 787 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 788 int mirror_num, unsigned long bio_flags, 789 u64 bio_offset, void *private_data, 790 extent_submit_bio_start_t *submit_bio_start) 791 { 792 struct async_submit_bio *async; 793 794 async = kmalloc(sizeof(*async), GFP_NOFS); 795 if (!async) 796 return BLK_STS_RESOURCE; 797 798 async->private_data = private_data; 799 async->bio = bio; 800 async->mirror_num = mirror_num; 801 async->submit_bio_start = submit_bio_start; 802 803 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 804 run_one_async_done, run_one_async_free); 805 806 async->bio_offset = bio_offset; 807 808 async->status = 0; 809 810 if (op_is_sync(bio->bi_opf)) 811 btrfs_set_work_high_priority(&async->work); 812 813 btrfs_queue_work(fs_info->workers, &async->work); 814 return 0; 815 } 816 817 static blk_status_t btree_csum_one_bio(struct bio *bio) 818 { 819 struct bio_vec *bvec; 820 struct btrfs_root *root; 821 int i, ret = 0; 822 823 ASSERT(!bio_flagged(bio, BIO_CLONED)); 824 bio_for_each_segment_all(bvec, bio, i) { 825 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 826 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 827 if (ret) 828 break; 829 } 830 831 return errno_to_blk_status(ret); 832 } 833 834 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, 835 u64 bio_offset) 836 { 837 /* 838 * when we're called for a write, we're already in the async 839 * submission context. Just jump into btrfs_map_bio 840 */ 841 return btree_csum_one_bio(bio); 842 } 843 844 static int check_async_write(struct btrfs_inode *bi) 845 { 846 if (atomic_read(&bi->sync_writers)) 847 return 0; 848 #ifdef CONFIG_X86 849 if (static_cpu_has(X86_FEATURE_XMM4_2)) 850 return 0; 851 #endif 852 return 1; 853 } 854 855 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio, 856 int mirror_num, unsigned long bio_flags, 857 u64 bio_offset) 858 { 859 struct inode *inode = private_data; 860 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 861 int async = check_async_write(BTRFS_I(inode)); 862 blk_status_t ret; 863 864 if (bio_op(bio) != REQ_OP_WRITE) { 865 /* 866 * called for a read, do the setup so that checksum validation 867 * can happen in the async kernel threads 868 */ 869 ret = btrfs_bio_wq_end_io(fs_info, bio, 870 BTRFS_WQ_ENDIO_METADATA); 871 if (ret) 872 goto out_w_error; 873 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 874 } else if (!async) { 875 ret = btree_csum_one_bio(bio); 876 if (ret) 877 goto out_w_error; 878 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 879 } else { 880 /* 881 * kthread helpers are used to submit writes so that 882 * checksumming can happen in parallel across all CPUs 883 */ 884 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 885 bio_offset, private_data, 886 btree_submit_bio_start); 887 } 888 889 if (ret) 890 goto out_w_error; 891 return 0; 892 893 out_w_error: 894 bio->bi_status = ret; 895 bio_endio(bio); 896 return ret; 897 } 898 899 #ifdef CONFIG_MIGRATION 900 static int btree_migratepage(struct address_space *mapping, 901 struct page *newpage, struct page *page, 902 enum migrate_mode mode) 903 { 904 /* 905 * we can't safely write a btree page from here, 906 * we haven't done the locking hook 907 */ 908 if (PageDirty(page)) 909 return -EAGAIN; 910 /* 911 * Buffers may be managed in a filesystem specific way. 912 * We must have no buffers or drop them. 913 */ 914 if (page_has_private(page) && 915 !try_to_release_page(page, GFP_KERNEL)) 916 return -EAGAIN; 917 return migrate_page(mapping, newpage, page, mode); 918 } 919 #endif 920 921 922 static int btree_writepages(struct address_space *mapping, 923 struct writeback_control *wbc) 924 { 925 struct btrfs_fs_info *fs_info; 926 int ret; 927 928 if (wbc->sync_mode == WB_SYNC_NONE) { 929 930 if (wbc->for_kupdate) 931 return 0; 932 933 fs_info = BTRFS_I(mapping->host)->root->fs_info; 934 /* this is a bit racy, but that's ok */ 935 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 936 BTRFS_DIRTY_METADATA_THRESH, 937 fs_info->dirty_metadata_batch); 938 if (ret < 0) 939 return 0; 940 } 941 return btree_write_cache_pages(mapping, wbc); 942 } 943 944 static int btree_readpage(struct file *file, struct page *page) 945 { 946 struct extent_io_tree *tree; 947 tree = &BTRFS_I(page->mapping->host)->io_tree; 948 return extent_read_full_page(tree, page, btree_get_extent, 0); 949 } 950 951 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 952 { 953 if (PageWriteback(page) || PageDirty(page)) 954 return 0; 955 956 return try_release_extent_buffer(page); 957 } 958 959 static void btree_invalidatepage(struct page *page, unsigned int offset, 960 unsigned int length) 961 { 962 struct extent_io_tree *tree; 963 tree = &BTRFS_I(page->mapping->host)->io_tree; 964 extent_invalidatepage(tree, page, offset); 965 btree_releasepage(page, GFP_NOFS); 966 if (PagePrivate(page)) { 967 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 968 "page private not zero on page %llu", 969 (unsigned long long)page_offset(page)); 970 ClearPagePrivate(page); 971 set_page_private(page, 0); 972 put_page(page); 973 } 974 } 975 976 static int btree_set_page_dirty(struct page *page) 977 { 978 #ifdef DEBUG 979 struct extent_buffer *eb; 980 981 BUG_ON(!PagePrivate(page)); 982 eb = (struct extent_buffer *)page->private; 983 BUG_ON(!eb); 984 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 985 BUG_ON(!atomic_read(&eb->refs)); 986 btrfs_assert_tree_locked(eb); 987 #endif 988 return __set_page_dirty_nobuffers(page); 989 } 990 991 static const struct address_space_operations btree_aops = { 992 .readpage = btree_readpage, 993 .writepages = btree_writepages, 994 .releasepage = btree_releasepage, 995 .invalidatepage = btree_invalidatepage, 996 #ifdef CONFIG_MIGRATION 997 .migratepage = btree_migratepage, 998 #endif 999 .set_page_dirty = btree_set_page_dirty, 1000 }; 1001 1002 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1003 { 1004 struct extent_buffer *buf = NULL; 1005 struct inode *btree_inode = fs_info->btree_inode; 1006 1007 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1008 if (IS_ERR(buf)) 1009 return; 1010 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1011 buf, WAIT_NONE, 0); 1012 free_extent_buffer(buf); 1013 } 1014 1015 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr, 1016 int mirror_num, struct extent_buffer **eb) 1017 { 1018 struct extent_buffer *buf = NULL; 1019 struct inode *btree_inode = fs_info->btree_inode; 1020 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1021 int ret; 1022 1023 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1024 if (IS_ERR(buf)) 1025 return 0; 1026 1027 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1028 1029 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK, 1030 mirror_num); 1031 if (ret) { 1032 free_extent_buffer(buf); 1033 return ret; 1034 } 1035 1036 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1037 free_extent_buffer(buf); 1038 return -EIO; 1039 } else if (extent_buffer_uptodate(buf)) { 1040 *eb = buf; 1041 } else { 1042 free_extent_buffer(buf); 1043 } 1044 return 0; 1045 } 1046 1047 struct extent_buffer *btrfs_find_create_tree_block( 1048 struct btrfs_fs_info *fs_info, 1049 u64 bytenr) 1050 { 1051 if (btrfs_is_testing(fs_info)) 1052 return alloc_test_extent_buffer(fs_info, bytenr); 1053 return alloc_extent_buffer(fs_info, bytenr); 1054 } 1055 1056 1057 int btrfs_write_tree_block(struct extent_buffer *buf) 1058 { 1059 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1060 buf->start + buf->len - 1); 1061 } 1062 1063 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1064 { 1065 filemap_fdatawait_range(buf->pages[0]->mapping, 1066 buf->start, buf->start + buf->len - 1); 1067 } 1068 1069 /* 1070 * Read tree block at logical address @bytenr and do variant basic but critical 1071 * verification. 1072 * 1073 * @parent_transid: expected transid of this tree block, skip check if 0 1074 * @level: expected level, mandatory check 1075 * @first_key: expected key in slot 0, skip check if NULL 1076 */ 1077 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1078 u64 parent_transid, int level, 1079 struct btrfs_key *first_key) 1080 { 1081 struct extent_buffer *buf = NULL; 1082 int ret; 1083 1084 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1085 if (IS_ERR(buf)) 1086 return buf; 1087 1088 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid, 1089 level, first_key); 1090 if (ret) { 1091 free_extent_buffer(buf); 1092 return ERR_PTR(ret); 1093 } 1094 return buf; 1095 1096 } 1097 1098 void clean_tree_block(struct btrfs_fs_info *fs_info, 1099 struct extent_buffer *buf) 1100 { 1101 if (btrfs_header_generation(buf) == 1102 fs_info->running_transaction->transid) { 1103 btrfs_assert_tree_locked(buf); 1104 1105 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1106 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1107 -buf->len, 1108 fs_info->dirty_metadata_batch); 1109 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1110 btrfs_set_lock_blocking(buf); 1111 clear_extent_buffer_dirty(buf); 1112 } 1113 } 1114 } 1115 1116 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1117 { 1118 struct btrfs_subvolume_writers *writers; 1119 int ret; 1120 1121 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1122 if (!writers) 1123 return ERR_PTR(-ENOMEM); 1124 1125 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS); 1126 if (ret < 0) { 1127 kfree(writers); 1128 return ERR_PTR(ret); 1129 } 1130 1131 init_waitqueue_head(&writers->wait); 1132 return writers; 1133 } 1134 1135 static void 1136 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1137 { 1138 percpu_counter_destroy(&writers->counter); 1139 kfree(writers); 1140 } 1141 1142 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1143 u64 objectid) 1144 { 1145 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1146 root->node = NULL; 1147 root->commit_root = NULL; 1148 root->state = 0; 1149 root->orphan_cleanup_state = 0; 1150 1151 root->last_trans = 0; 1152 root->highest_objectid = 0; 1153 root->nr_delalloc_inodes = 0; 1154 root->nr_ordered_extents = 0; 1155 root->inode_tree = RB_ROOT; 1156 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1157 root->block_rsv = NULL; 1158 1159 INIT_LIST_HEAD(&root->dirty_list); 1160 INIT_LIST_HEAD(&root->root_list); 1161 INIT_LIST_HEAD(&root->delalloc_inodes); 1162 INIT_LIST_HEAD(&root->delalloc_root); 1163 INIT_LIST_HEAD(&root->ordered_extents); 1164 INIT_LIST_HEAD(&root->ordered_root); 1165 INIT_LIST_HEAD(&root->logged_list[0]); 1166 INIT_LIST_HEAD(&root->logged_list[1]); 1167 spin_lock_init(&root->inode_lock); 1168 spin_lock_init(&root->delalloc_lock); 1169 spin_lock_init(&root->ordered_extent_lock); 1170 spin_lock_init(&root->accounting_lock); 1171 spin_lock_init(&root->log_extents_lock[0]); 1172 spin_lock_init(&root->log_extents_lock[1]); 1173 spin_lock_init(&root->qgroup_meta_rsv_lock); 1174 mutex_init(&root->objectid_mutex); 1175 mutex_init(&root->log_mutex); 1176 mutex_init(&root->ordered_extent_mutex); 1177 mutex_init(&root->delalloc_mutex); 1178 init_waitqueue_head(&root->log_writer_wait); 1179 init_waitqueue_head(&root->log_commit_wait[0]); 1180 init_waitqueue_head(&root->log_commit_wait[1]); 1181 INIT_LIST_HEAD(&root->log_ctxs[0]); 1182 INIT_LIST_HEAD(&root->log_ctxs[1]); 1183 atomic_set(&root->log_commit[0], 0); 1184 atomic_set(&root->log_commit[1], 0); 1185 atomic_set(&root->log_writers, 0); 1186 atomic_set(&root->log_batch, 0); 1187 refcount_set(&root->refs, 1); 1188 atomic_set(&root->will_be_snapshotted, 0); 1189 atomic_set(&root->snapshot_force_cow, 0); 1190 root->log_transid = 0; 1191 root->log_transid_committed = -1; 1192 root->last_log_commit = 0; 1193 if (!dummy) 1194 extent_io_tree_init(&root->dirty_log_pages, NULL); 1195 1196 memset(&root->root_key, 0, sizeof(root->root_key)); 1197 memset(&root->root_item, 0, sizeof(root->root_item)); 1198 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1199 if (!dummy) 1200 root->defrag_trans_start = fs_info->generation; 1201 else 1202 root->defrag_trans_start = 0; 1203 root->root_key.objectid = objectid; 1204 root->anon_dev = 0; 1205 1206 spin_lock_init(&root->root_item_lock); 1207 } 1208 1209 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1210 gfp_t flags) 1211 { 1212 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1213 if (root) 1214 root->fs_info = fs_info; 1215 return root; 1216 } 1217 1218 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1219 /* Should only be used by the testing infrastructure */ 1220 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1221 { 1222 struct btrfs_root *root; 1223 1224 if (!fs_info) 1225 return ERR_PTR(-EINVAL); 1226 1227 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1228 if (!root) 1229 return ERR_PTR(-ENOMEM); 1230 1231 /* We don't use the stripesize in selftest, set it as sectorsize */ 1232 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 1233 root->alloc_bytenr = 0; 1234 1235 return root; 1236 } 1237 #endif 1238 1239 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1240 struct btrfs_fs_info *fs_info, 1241 u64 objectid) 1242 { 1243 struct extent_buffer *leaf; 1244 struct btrfs_root *tree_root = fs_info->tree_root; 1245 struct btrfs_root *root; 1246 struct btrfs_key key; 1247 int ret = 0; 1248 uuid_le uuid = NULL_UUID_LE; 1249 1250 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1251 if (!root) 1252 return ERR_PTR(-ENOMEM); 1253 1254 __setup_root(root, fs_info, objectid); 1255 root->root_key.objectid = objectid; 1256 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1257 root->root_key.offset = 0; 1258 1259 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1260 if (IS_ERR(leaf)) { 1261 ret = PTR_ERR(leaf); 1262 leaf = NULL; 1263 goto fail; 1264 } 1265 1266 root->node = leaf; 1267 btrfs_mark_buffer_dirty(leaf); 1268 1269 root->commit_root = btrfs_root_node(root); 1270 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1271 1272 root->root_item.flags = 0; 1273 root->root_item.byte_limit = 0; 1274 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1275 btrfs_set_root_generation(&root->root_item, trans->transid); 1276 btrfs_set_root_level(&root->root_item, 0); 1277 btrfs_set_root_refs(&root->root_item, 1); 1278 btrfs_set_root_used(&root->root_item, leaf->len); 1279 btrfs_set_root_last_snapshot(&root->root_item, 0); 1280 btrfs_set_root_dirid(&root->root_item, 0); 1281 if (is_fstree(objectid)) 1282 uuid_le_gen(&uuid); 1283 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1284 root->root_item.drop_level = 0; 1285 1286 key.objectid = objectid; 1287 key.type = BTRFS_ROOT_ITEM_KEY; 1288 key.offset = 0; 1289 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1290 if (ret) 1291 goto fail; 1292 1293 btrfs_tree_unlock(leaf); 1294 1295 return root; 1296 1297 fail: 1298 if (leaf) { 1299 btrfs_tree_unlock(leaf); 1300 free_extent_buffer(root->commit_root); 1301 free_extent_buffer(leaf); 1302 } 1303 kfree(root); 1304 1305 return ERR_PTR(ret); 1306 } 1307 1308 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1309 struct btrfs_fs_info *fs_info) 1310 { 1311 struct btrfs_root *root; 1312 struct extent_buffer *leaf; 1313 1314 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1315 if (!root) 1316 return ERR_PTR(-ENOMEM); 1317 1318 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1319 1320 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1321 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1322 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1323 1324 /* 1325 * DON'T set REF_COWS for log trees 1326 * 1327 * log trees do not get reference counted because they go away 1328 * before a real commit is actually done. They do store pointers 1329 * to file data extents, and those reference counts still get 1330 * updated (along with back refs to the log tree). 1331 */ 1332 1333 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1334 NULL, 0, 0, 0); 1335 if (IS_ERR(leaf)) { 1336 kfree(root); 1337 return ERR_CAST(leaf); 1338 } 1339 1340 root->node = leaf; 1341 1342 btrfs_mark_buffer_dirty(root->node); 1343 btrfs_tree_unlock(root->node); 1344 return root; 1345 } 1346 1347 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1348 struct btrfs_fs_info *fs_info) 1349 { 1350 struct btrfs_root *log_root; 1351 1352 log_root = alloc_log_tree(trans, fs_info); 1353 if (IS_ERR(log_root)) 1354 return PTR_ERR(log_root); 1355 WARN_ON(fs_info->log_root_tree); 1356 fs_info->log_root_tree = log_root; 1357 return 0; 1358 } 1359 1360 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1361 struct btrfs_root *root) 1362 { 1363 struct btrfs_fs_info *fs_info = root->fs_info; 1364 struct btrfs_root *log_root; 1365 struct btrfs_inode_item *inode_item; 1366 1367 log_root = alloc_log_tree(trans, fs_info); 1368 if (IS_ERR(log_root)) 1369 return PTR_ERR(log_root); 1370 1371 log_root->last_trans = trans->transid; 1372 log_root->root_key.offset = root->root_key.objectid; 1373 1374 inode_item = &log_root->root_item.inode; 1375 btrfs_set_stack_inode_generation(inode_item, 1); 1376 btrfs_set_stack_inode_size(inode_item, 3); 1377 btrfs_set_stack_inode_nlink(inode_item, 1); 1378 btrfs_set_stack_inode_nbytes(inode_item, 1379 fs_info->nodesize); 1380 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1381 1382 btrfs_set_root_node(&log_root->root_item, log_root->node); 1383 1384 WARN_ON(root->log_root); 1385 root->log_root = log_root; 1386 root->log_transid = 0; 1387 root->log_transid_committed = -1; 1388 root->last_log_commit = 0; 1389 return 0; 1390 } 1391 1392 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1393 struct btrfs_key *key) 1394 { 1395 struct btrfs_root *root; 1396 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1397 struct btrfs_path *path; 1398 u64 generation; 1399 int ret; 1400 int level; 1401 1402 path = btrfs_alloc_path(); 1403 if (!path) 1404 return ERR_PTR(-ENOMEM); 1405 1406 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1407 if (!root) { 1408 ret = -ENOMEM; 1409 goto alloc_fail; 1410 } 1411 1412 __setup_root(root, fs_info, key->objectid); 1413 1414 ret = btrfs_find_root(tree_root, key, path, 1415 &root->root_item, &root->root_key); 1416 if (ret) { 1417 if (ret > 0) 1418 ret = -ENOENT; 1419 goto find_fail; 1420 } 1421 1422 generation = btrfs_root_generation(&root->root_item); 1423 level = btrfs_root_level(&root->root_item); 1424 root->node = read_tree_block(fs_info, 1425 btrfs_root_bytenr(&root->root_item), 1426 generation, level, NULL); 1427 if (IS_ERR(root->node)) { 1428 ret = PTR_ERR(root->node); 1429 goto find_fail; 1430 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1431 ret = -EIO; 1432 free_extent_buffer(root->node); 1433 goto find_fail; 1434 } 1435 root->commit_root = btrfs_root_node(root); 1436 out: 1437 btrfs_free_path(path); 1438 return root; 1439 1440 find_fail: 1441 kfree(root); 1442 alloc_fail: 1443 root = ERR_PTR(ret); 1444 goto out; 1445 } 1446 1447 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1448 struct btrfs_key *location) 1449 { 1450 struct btrfs_root *root; 1451 1452 root = btrfs_read_tree_root(tree_root, location); 1453 if (IS_ERR(root)) 1454 return root; 1455 1456 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1457 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1458 btrfs_check_and_init_root_item(&root->root_item); 1459 } 1460 1461 return root; 1462 } 1463 1464 int btrfs_init_fs_root(struct btrfs_root *root) 1465 { 1466 int ret; 1467 struct btrfs_subvolume_writers *writers; 1468 1469 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1470 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1471 GFP_NOFS); 1472 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1473 ret = -ENOMEM; 1474 goto fail; 1475 } 1476 1477 writers = btrfs_alloc_subvolume_writers(); 1478 if (IS_ERR(writers)) { 1479 ret = PTR_ERR(writers); 1480 goto fail; 1481 } 1482 root->subv_writers = writers; 1483 1484 btrfs_init_free_ino_ctl(root); 1485 spin_lock_init(&root->ino_cache_lock); 1486 init_waitqueue_head(&root->ino_cache_wait); 1487 1488 ret = get_anon_bdev(&root->anon_dev); 1489 if (ret) 1490 goto fail; 1491 1492 mutex_lock(&root->objectid_mutex); 1493 ret = btrfs_find_highest_objectid(root, 1494 &root->highest_objectid); 1495 if (ret) { 1496 mutex_unlock(&root->objectid_mutex); 1497 goto fail; 1498 } 1499 1500 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1501 1502 mutex_unlock(&root->objectid_mutex); 1503 1504 return 0; 1505 fail: 1506 /* The caller is responsible to call btrfs_free_fs_root */ 1507 return ret; 1508 } 1509 1510 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1511 u64 root_id) 1512 { 1513 struct btrfs_root *root; 1514 1515 spin_lock(&fs_info->fs_roots_radix_lock); 1516 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1517 (unsigned long)root_id); 1518 spin_unlock(&fs_info->fs_roots_radix_lock); 1519 return root; 1520 } 1521 1522 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1523 struct btrfs_root *root) 1524 { 1525 int ret; 1526 1527 ret = radix_tree_preload(GFP_NOFS); 1528 if (ret) 1529 return ret; 1530 1531 spin_lock(&fs_info->fs_roots_radix_lock); 1532 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1533 (unsigned long)root->root_key.objectid, 1534 root); 1535 if (ret == 0) 1536 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1537 spin_unlock(&fs_info->fs_roots_radix_lock); 1538 radix_tree_preload_end(); 1539 1540 return ret; 1541 } 1542 1543 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1544 struct btrfs_key *location, 1545 bool check_ref) 1546 { 1547 struct btrfs_root *root; 1548 struct btrfs_path *path; 1549 struct btrfs_key key; 1550 int ret; 1551 1552 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1553 return fs_info->tree_root; 1554 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1555 return fs_info->extent_root; 1556 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1557 return fs_info->chunk_root; 1558 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1559 return fs_info->dev_root; 1560 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1561 return fs_info->csum_root; 1562 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1563 return fs_info->quota_root ? fs_info->quota_root : 1564 ERR_PTR(-ENOENT); 1565 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1566 return fs_info->uuid_root ? fs_info->uuid_root : 1567 ERR_PTR(-ENOENT); 1568 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1569 return fs_info->free_space_root ? fs_info->free_space_root : 1570 ERR_PTR(-ENOENT); 1571 again: 1572 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1573 if (root) { 1574 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1575 return ERR_PTR(-ENOENT); 1576 return root; 1577 } 1578 1579 root = btrfs_read_fs_root(fs_info->tree_root, location); 1580 if (IS_ERR(root)) 1581 return root; 1582 1583 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1584 ret = -ENOENT; 1585 goto fail; 1586 } 1587 1588 ret = btrfs_init_fs_root(root); 1589 if (ret) 1590 goto fail; 1591 1592 path = btrfs_alloc_path(); 1593 if (!path) { 1594 ret = -ENOMEM; 1595 goto fail; 1596 } 1597 key.objectid = BTRFS_ORPHAN_OBJECTID; 1598 key.type = BTRFS_ORPHAN_ITEM_KEY; 1599 key.offset = location->objectid; 1600 1601 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1602 btrfs_free_path(path); 1603 if (ret < 0) 1604 goto fail; 1605 if (ret == 0) 1606 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1607 1608 ret = btrfs_insert_fs_root(fs_info, root); 1609 if (ret) { 1610 if (ret == -EEXIST) { 1611 btrfs_free_fs_root(root); 1612 goto again; 1613 } 1614 goto fail; 1615 } 1616 return root; 1617 fail: 1618 btrfs_free_fs_root(root); 1619 return ERR_PTR(ret); 1620 } 1621 1622 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1623 { 1624 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1625 int ret = 0; 1626 struct btrfs_device *device; 1627 struct backing_dev_info *bdi; 1628 1629 rcu_read_lock(); 1630 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1631 if (!device->bdev) 1632 continue; 1633 bdi = device->bdev->bd_bdi; 1634 if (bdi_congested(bdi, bdi_bits)) { 1635 ret = 1; 1636 break; 1637 } 1638 } 1639 rcu_read_unlock(); 1640 return ret; 1641 } 1642 1643 /* 1644 * called by the kthread helper functions to finally call the bio end_io 1645 * functions. This is where read checksum verification actually happens 1646 */ 1647 static void end_workqueue_fn(struct btrfs_work *work) 1648 { 1649 struct bio *bio; 1650 struct btrfs_end_io_wq *end_io_wq; 1651 1652 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1653 bio = end_io_wq->bio; 1654 1655 bio->bi_status = end_io_wq->status; 1656 bio->bi_private = end_io_wq->private; 1657 bio->bi_end_io = end_io_wq->end_io; 1658 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1659 bio_endio(bio); 1660 } 1661 1662 static int cleaner_kthread(void *arg) 1663 { 1664 struct btrfs_root *root = arg; 1665 struct btrfs_fs_info *fs_info = root->fs_info; 1666 int again; 1667 1668 while (1) { 1669 again = 0; 1670 1671 /* Make the cleaner go to sleep early. */ 1672 if (btrfs_need_cleaner_sleep(fs_info)) 1673 goto sleep; 1674 1675 /* 1676 * Do not do anything if we might cause open_ctree() to block 1677 * before we have finished mounting the filesystem. 1678 */ 1679 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1680 goto sleep; 1681 1682 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1683 goto sleep; 1684 1685 /* 1686 * Avoid the problem that we change the status of the fs 1687 * during the above check and trylock. 1688 */ 1689 if (btrfs_need_cleaner_sleep(fs_info)) { 1690 mutex_unlock(&fs_info->cleaner_mutex); 1691 goto sleep; 1692 } 1693 1694 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 1695 btrfs_run_delayed_iputs(fs_info); 1696 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 1697 1698 again = btrfs_clean_one_deleted_snapshot(root); 1699 mutex_unlock(&fs_info->cleaner_mutex); 1700 1701 /* 1702 * The defragger has dealt with the R/O remount and umount, 1703 * needn't do anything special here. 1704 */ 1705 btrfs_run_defrag_inodes(fs_info); 1706 1707 /* 1708 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1709 * with relocation (btrfs_relocate_chunk) and relocation 1710 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1711 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1712 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1713 * unused block groups. 1714 */ 1715 btrfs_delete_unused_bgs(fs_info); 1716 sleep: 1717 if (kthread_should_park()) 1718 kthread_parkme(); 1719 if (kthread_should_stop()) 1720 return 0; 1721 if (!again) { 1722 set_current_state(TASK_INTERRUPTIBLE); 1723 schedule(); 1724 __set_current_state(TASK_RUNNING); 1725 } 1726 } 1727 } 1728 1729 static int transaction_kthread(void *arg) 1730 { 1731 struct btrfs_root *root = arg; 1732 struct btrfs_fs_info *fs_info = root->fs_info; 1733 struct btrfs_trans_handle *trans; 1734 struct btrfs_transaction *cur; 1735 u64 transid; 1736 time64_t now; 1737 unsigned long delay; 1738 bool cannot_commit; 1739 1740 do { 1741 cannot_commit = false; 1742 delay = HZ * fs_info->commit_interval; 1743 mutex_lock(&fs_info->transaction_kthread_mutex); 1744 1745 spin_lock(&fs_info->trans_lock); 1746 cur = fs_info->running_transaction; 1747 if (!cur) { 1748 spin_unlock(&fs_info->trans_lock); 1749 goto sleep; 1750 } 1751 1752 now = ktime_get_seconds(); 1753 if (cur->state < TRANS_STATE_BLOCKED && 1754 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) && 1755 (now < cur->start_time || 1756 now - cur->start_time < fs_info->commit_interval)) { 1757 spin_unlock(&fs_info->trans_lock); 1758 delay = HZ * 5; 1759 goto sleep; 1760 } 1761 transid = cur->transid; 1762 spin_unlock(&fs_info->trans_lock); 1763 1764 /* If the file system is aborted, this will always fail. */ 1765 trans = btrfs_attach_transaction(root); 1766 if (IS_ERR(trans)) { 1767 if (PTR_ERR(trans) != -ENOENT) 1768 cannot_commit = true; 1769 goto sleep; 1770 } 1771 if (transid == trans->transid) { 1772 btrfs_commit_transaction(trans); 1773 } else { 1774 btrfs_end_transaction(trans); 1775 } 1776 sleep: 1777 wake_up_process(fs_info->cleaner_kthread); 1778 mutex_unlock(&fs_info->transaction_kthread_mutex); 1779 1780 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1781 &fs_info->fs_state))) 1782 btrfs_cleanup_transaction(fs_info); 1783 if (!kthread_should_stop() && 1784 (!btrfs_transaction_blocked(fs_info) || 1785 cannot_commit)) 1786 schedule_timeout_interruptible(delay); 1787 } while (!kthread_should_stop()); 1788 return 0; 1789 } 1790 1791 /* 1792 * this will find the highest generation in the array of 1793 * root backups. The index of the highest array is returned, 1794 * or -1 if we can't find anything. 1795 * 1796 * We check to make sure the array is valid by comparing the 1797 * generation of the latest root in the array with the generation 1798 * in the super block. If they don't match we pitch it. 1799 */ 1800 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1801 { 1802 u64 cur; 1803 int newest_index = -1; 1804 struct btrfs_root_backup *root_backup; 1805 int i; 1806 1807 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1808 root_backup = info->super_copy->super_roots + i; 1809 cur = btrfs_backup_tree_root_gen(root_backup); 1810 if (cur == newest_gen) 1811 newest_index = i; 1812 } 1813 1814 /* check to see if we actually wrapped around */ 1815 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1816 root_backup = info->super_copy->super_roots; 1817 cur = btrfs_backup_tree_root_gen(root_backup); 1818 if (cur == newest_gen) 1819 newest_index = 0; 1820 } 1821 return newest_index; 1822 } 1823 1824 1825 /* 1826 * find the oldest backup so we know where to store new entries 1827 * in the backup array. This will set the backup_root_index 1828 * field in the fs_info struct 1829 */ 1830 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1831 u64 newest_gen) 1832 { 1833 int newest_index = -1; 1834 1835 newest_index = find_newest_super_backup(info, newest_gen); 1836 /* if there was garbage in there, just move along */ 1837 if (newest_index == -1) { 1838 info->backup_root_index = 0; 1839 } else { 1840 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1841 } 1842 } 1843 1844 /* 1845 * copy all the root pointers into the super backup array. 1846 * this will bump the backup pointer by one when it is 1847 * done 1848 */ 1849 static void backup_super_roots(struct btrfs_fs_info *info) 1850 { 1851 int next_backup; 1852 struct btrfs_root_backup *root_backup; 1853 int last_backup; 1854 1855 next_backup = info->backup_root_index; 1856 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1857 BTRFS_NUM_BACKUP_ROOTS; 1858 1859 /* 1860 * just overwrite the last backup if we're at the same generation 1861 * this happens only at umount 1862 */ 1863 root_backup = info->super_for_commit->super_roots + last_backup; 1864 if (btrfs_backup_tree_root_gen(root_backup) == 1865 btrfs_header_generation(info->tree_root->node)) 1866 next_backup = last_backup; 1867 1868 root_backup = info->super_for_commit->super_roots + next_backup; 1869 1870 /* 1871 * make sure all of our padding and empty slots get zero filled 1872 * regardless of which ones we use today 1873 */ 1874 memset(root_backup, 0, sizeof(*root_backup)); 1875 1876 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1877 1878 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1879 btrfs_set_backup_tree_root_gen(root_backup, 1880 btrfs_header_generation(info->tree_root->node)); 1881 1882 btrfs_set_backup_tree_root_level(root_backup, 1883 btrfs_header_level(info->tree_root->node)); 1884 1885 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1886 btrfs_set_backup_chunk_root_gen(root_backup, 1887 btrfs_header_generation(info->chunk_root->node)); 1888 btrfs_set_backup_chunk_root_level(root_backup, 1889 btrfs_header_level(info->chunk_root->node)); 1890 1891 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1892 btrfs_set_backup_extent_root_gen(root_backup, 1893 btrfs_header_generation(info->extent_root->node)); 1894 btrfs_set_backup_extent_root_level(root_backup, 1895 btrfs_header_level(info->extent_root->node)); 1896 1897 /* 1898 * we might commit during log recovery, which happens before we set 1899 * the fs_root. Make sure it is valid before we fill it in. 1900 */ 1901 if (info->fs_root && info->fs_root->node) { 1902 btrfs_set_backup_fs_root(root_backup, 1903 info->fs_root->node->start); 1904 btrfs_set_backup_fs_root_gen(root_backup, 1905 btrfs_header_generation(info->fs_root->node)); 1906 btrfs_set_backup_fs_root_level(root_backup, 1907 btrfs_header_level(info->fs_root->node)); 1908 } 1909 1910 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1911 btrfs_set_backup_dev_root_gen(root_backup, 1912 btrfs_header_generation(info->dev_root->node)); 1913 btrfs_set_backup_dev_root_level(root_backup, 1914 btrfs_header_level(info->dev_root->node)); 1915 1916 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1917 btrfs_set_backup_csum_root_gen(root_backup, 1918 btrfs_header_generation(info->csum_root->node)); 1919 btrfs_set_backup_csum_root_level(root_backup, 1920 btrfs_header_level(info->csum_root->node)); 1921 1922 btrfs_set_backup_total_bytes(root_backup, 1923 btrfs_super_total_bytes(info->super_copy)); 1924 btrfs_set_backup_bytes_used(root_backup, 1925 btrfs_super_bytes_used(info->super_copy)); 1926 btrfs_set_backup_num_devices(root_backup, 1927 btrfs_super_num_devices(info->super_copy)); 1928 1929 /* 1930 * if we don't copy this out to the super_copy, it won't get remembered 1931 * for the next commit 1932 */ 1933 memcpy(&info->super_copy->super_roots, 1934 &info->super_for_commit->super_roots, 1935 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1936 } 1937 1938 /* 1939 * this copies info out of the root backup array and back into 1940 * the in-memory super block. It is meant to help iterate through 1941 * the array, so you send it the number of backups you've already 1942 * tried and the last backup index you used. 1943 * 1944 * this returns -1 when it has tried all the backups 1945 */ 1946 static noinline int next_root_backup(struct btrfs_fs_info *info, 1947 struct btrfs_super_block *super, 1948 int *num_backups_tried, int *backup_index) 1949 { 1950 struct btrfs_root_backup *root_backup; 1951 int newest = *backup_index; 1952 1953 if (*num_backups_tried == 0) { 1954 u64 gen = btrfs_super_generation(super); 1955 1956 newest = find_newest_super_backup(info, gen); 1957 if (newest == -1) 1958 return -1; 1959 1960 *backup_index = newest; 1961 *num_backups_tried = 1; 1962 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1963 /* we've tried all the backups, all done */ 1964 return -1; 1965 } else { 1966 /* jump to the next oldest backup */ 1967 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1968 BTRFS_NUM_BACKUP_ROOTS; 1969 *backup_index = newest; 1970 *num_backups_tried += 1; 1971 } 1972 root_backup = super->super_roots + newest; 1973 1974 btrfs_set_super_generation(super, 1975 btrfs_backup_tree_root_gen(root_backup)); 1976 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1977 btrfs_set_super_root_level(super, 1978 btrfs_backup_tree_root_level(root_backup)); 1979 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1980 1981 /* 1982 * fixme: the total bytes and num_devices need to match or we should 1983 * need a fsck 1984 */ 1985 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1986 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1987 return 0; 1988 } 1989 1990 /* helper to cleanup workers */ 1991 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1992 { 1993 btrfs_destroy_workqueue(fs_info->fixup_workers); 1994 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1995 btrfs_destroy_workqueue(fs_info->workers); 1996 btrfs_destroy_workqueue(fs_info->endio_workers); 1997 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 1998 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 1999 btrfs_destroy_workqueue(fs_info->rmw_workers); 2000 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2001 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2002 btrfs_destroy_workqueue(fs_info->submit_workers); 2003 btrfs_destroy_workqueue(fs_info->delayed_workers); 2004 btrfs_destroy_workqueue(fs_info->caching_workers); 2005 btrfs_destroy_workqueue(fs_info->readahead_workers); 2006 btrfs_destroy_workqueue(fs_info->flush_workers); 2007 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2008 btrfs_destroy_workqueue(fs_info->extent_workers); 2009 /* 2010 * Now that all other work queues are destroyed, we can safely destroy 2011 * the queues used for metadata I/O, since tasks from those other work 2012 * queues can do metadata I/O operations. 2013 */ 2014 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2015 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2016 } 2017 2018 static void free_root_extent_buffers(struct btrfs_root *root) 2019 { 2020 if (root) { 2021 free_extent_buffer(root->node); 2022 free_extent_buffer(root->commit_root); 2023 root->node = NULL; 2024 root->commit_root = NULL; 2025 } 2026 } 2027 2028 /* helper to cleanup tree roots */ 2029 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2030 { 2031 free_root_extent_buffers(info->tree_root); 2032 2033 free_root_extent_buffers(info->dev_root); 2034 free_root_extent_buffers(info->extent_root); 2035 free_root_extent_buffers(info->csum_root); 2036 free_root_extent_buffers(info->quota_root); 2037 free_root_extent_buffers(info->uuid_root); 2038 if (chunk_root) 2039 free_root_extent_buffers(info->chunk_root); 2040 free_root_extent_buffers(info->free_space_root); 2041 } 2042 2043 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2044 { 2045 int ret; 2046 struct btrfs_root *gang[8]; 2047 int i; 2048 2049 while (!list_empty(&fs_info->dead_roots)) { 2050 gang[0] = list_entry(fs_info->dead_roots.next, 2051 struct btrfs_root, root_list); 2052 list_del(&gang[0]->root_list); 2053 2054 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2055 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2056 } else { 2057 free_extent_buffer(gang[0]->node); 2058 free_extent_buffer(gang[0]->commit_root); 2059 btrfs_put_fs_root(gang[0]); 2060 } 2061 } 2062 2063 while (1) { 2064 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2065 (void **)gang, 0, 2066 ARRAY_SIZE(gang)); 2067 if (!ret) 2068 break; 2069 for (i = 0; i < ret; i++) 2070 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2071 } 2072 2073 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2074 btrfs_free_log_root_tree(NULL, fs_info); 2075 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 2076 } 2077 } 2078 2079 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2080 { 2081 mutex_init(&fs_info->scrub_lock); 2082 atomic_set(&fs_info->scrubs_running, 0); 2083 atomic_set(&fs_info->scrub_pause_req, 0); 2084 atomic_set(&fs_info->scrubs_paused, 0); 2085 atomic_set(&fs_info->scrub_cancel_req, 0); 2086 init_waitqueue_head(&fs_info->scrub_pause_wait); 2087 fs_info->scrub_workers_refcnt = 0; 2088 } 2089 2090 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2091 { 2092 spin_lock_init(&fs_info->balance_lock); 2093 mutex_init(&fs_info->balance_mutex); 2094 atomic_set(&fs_info->balance_pause_req, 0); 2095 atomic_set(&fs_info->balance_cancel_req, 0); 2096 fs_info->balance_ctl = NULL; 2097 init_waitqueue_head(&fs_info->balance_wait_q); 2098 } 2099 2100 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2101 { 2102 struct inode *inode = fs_info->btree_inode; 2103 2104 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2105 set_nlink(inode, 1); 2106 /* 2107 * we set the i_size on the btree inode to the max possible int. 2108 * the real end of the address space is determined by all of 2109 * the devices in the system 2110 */ 2111 inode->i_size = OFFSET_MAX; 2112 inode->i_mapping->a_ops = &btree_aops; 2113 2114 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2115 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode); 2116 BTRFS_I(inode)->io_tree.track_uptodate = 0; 2117 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2118 2119 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2120 2121 BTRFS_I(inode)->root = fs_info->tree_root; 2122 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2123 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2124 btrfs_insert_inode_hash(inode); 2125 } 2126 2127 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2128 { 2129 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2130 rwlock_init(&fs_info->dev_replace.lock); 2131 atomic_set(&fs_info->dev_replace.blocking_readers, 0); 2132 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2133 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq); 2134 } 2135 2136 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2137 { 2138 spin_lock_init(&fs_info->qgroup_lock); 2139 mutex_init(&fs_info->qgroup_ioctl_lock); 2140 fs_info->qgroup_tree = RB_ROOT; 2141 fs_info->qgroup_op_tree = RB_ROOT; 2142 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2143 fs_info->qgroup_seq = 1; 2144 fs_info->qgroup_ulist = NULL; 2145 fs_info->qgroup_rescan_running = false; 2146 mutex_init(&fs_info->qgroup_rescan_lock); 2147 } 2148 2149 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2150 struct btrfs_fs_devices *fs_devices) 2151 { 2152 u32 max_active = fs_info->thread_pool_size; 2153 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2154 2155 fs_info->workers = 2156 btrfs_alloc_workqueue(fs_info, "worker", 2157 flags | WQ_HIGHPRI, max_active, 16); 2158 2159 fs_info->delalloc_workers = 2160 btrfs_alloc_workqueue(fs_info, "delalloc", 2161 flags, max_active, 2); 2162 2163 fs_info->flush_workers = 2164 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2165 flags, max_active, 0); 2166 2167 fs_info->caching_workers = 2168 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2169 2170 /* 2171 * a higher idle thresh on the submit workers makes it much more 2172 * likely that bios will be send down in a sane order to the 2173 * devices 2174 */ 2175 fs_info->submit_workers = 2176 btrfs_alloc_workqueue(fs_info, "submit", flags, 2177 min_t(u64, fs_devices->num_devices, 2178 max_active), 64); 2179 2180 fs_info->fixup_workers = 2181 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2182 2183 /* 2184 * endios are largely parallel and should have a very 2185 * low idle thresh 2186 */ 2187 fs_info->endio_workers = 2188 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2189 fs_info->endio_meta_workers = 2190 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2191 max_active, 4); 2192 fs_info->endio_meta_write_workers = 2193 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2194 max_active, 2); 2195 fs_info->endio_raid56_workers = 2196 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2197 max_active, 4); 2198 fs_info->endio_repair_workers = 2199 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2200 fs_info->rmw_workers = 2201 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2202 fs_info->endio_write_workers = 2203 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2204 max_active, 2); 2205 fs_info->endio_freespace_worker = 2206 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2207 max_active, 0); 2208 fs_info->delayed_workers = 2209 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2210 max_active, 0); 2211 fs_info->readahead_workers = 2212 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2213 max_active, 2); 2214 fs_info->qgroup_rescan_workers = 2215 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2216 fs_info->extent_workers = 2217 btrfs_alloc_workqueue(fs_info, "extent-refs", flags, 2218 min_t(u64, fs_devices->num_devices, 2219 max_active), 8); 2220 2221 if (!(fs_info->workers && fs_info->delalloc_workers && 2222 fs_info->submit_workers && fs_info->flush_workers && 2223 fs_info->endio_workers && fs_info->endio_meta_workers && 2224 fs_info->endio_meta_write_workers && 2225 fs_info->endio_repair_workers && 2226 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2227 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2228 fs_info->caching_workers && fs_info->readahead_workers && 2229 fs_info->fixup_workers && fs_info->delayed_workers && 2230 fs_info->extent_workers && 2231 fs_info->qgroup_rescan_workers)) { 2232 return -ENOMEM; 2233 } 2234 2235 return 0; 2236 } 2237 2238 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2239 struct btrfs_fs_devices *fs_devices) 2240 { 2241 int ret; 2242 struct btrfs_root *log_tree_root; 2243 struct btrfs_super_block *disk_super = fs_info->super_copy; 2244 u64 bytenr = btrfs_super_log_root(disk_super); 2245 int level = btrfs_super_log_root_level(disk_super); 2246 2247 if (fs_devices->rw_devices == 0) { 2248 btrfs_warn(fs_info, "log replay required on RO media"); 2249 return -EIO; 2250 } 2251 2252 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2253 if (!log_tree_root) 2254 return -ENOMEM; 2255 2256 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2257 2258 log_tree_root->node = read_tree_block(fs_info, bytenr, 2259 fs_info->generation + 1, 2260 level, NULL); 2261 if (IS_ERR(log_tree_root->node)) { 2262 btrfs_warn(fs_info, "failed to read log tree"); 2263 ret = PTR_ERR(log_tree_root->node); 2264 kfree(log_tree_root); 2265 return ret; 2266 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2267 btrfs_err(fs_info, "failed to read log tree"); 2268 free_extent_buffer(log_tree_root->node); 2269 kfree(log_tree_root); 2270 return -EIO; 2271 } 2272 /* returns with log_tree_root freed on success */ 2273 ret = btrfs_recover_log_trees(log_tree_root); 2274 if (ret) { 2275 btrfs_handle_fs_error(fs_info, ret, 2276 "Failed to recover log tree"); 2277 free_extent_buffer(log_tree_root->node); 2278 kfree(log_tree_root); 2279 return ret; 2280 } 2281 2282 if (sb_rdonly(fs_info->sb)) { 2283 ret = btrfs_commit_super(fs_info); 2284 if (ret) 2285 return ret; 2286 } 2287 2288 return 0; 2289 } 2290 2291 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2292 { 2293 struct btrfs_root *tree_root = fs_info->tree_root; 2294 struct btrfs_root *root; 2295 struct btrfs_key location; 2296 int ret; 2297 2298 BUG_ON(!fs_info->tree_root); 2299 2300 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2301 location.type = BTRFS_ROOT_ITEM_KEY; 2302 location.offset = 0; 2303 2304 root = btrfs_read_tree_root(tree_root, &location); 2305 if (IS_ERR(root)) { 2306 ret = PTR_ERR(root); 2307 goto out; 2308 } 2309 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2310 fs_info->extent_root = root; 2311 2312 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2313 root = btrfs_read_tree_root(tree_root, &location); 2314 if (IS_ERR(root)) { 2315 ret = PTR_ERR(root); 2316 goto out; 2317 } 2318 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2319 fs_info->dev_root = root; 2320 btrfs_init_devices_late(fs_info); 2321 2322 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2323 root = btrfs_read_tree_root(tree_root, &location); 2324 if (IS_ERR(root)) { 2325 ret = PTR_ERR(root); 2326 goto out; 2327 } 2328 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2329 fs_info->csum_root = root; 2330 2331 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2332 root = btrfs_read_tree_root(tree_root, &location); 2333 if (!IS_ERR(root)) { 2334 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2335 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2336 fs_info->quota_root = root; 2337 } 2338 2339 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2340 root = btrfs_read_tree_root(tree_root, &location); 2341 if (IS_ERR(root)) { 2342 ret = PTR_ERR(root); 2343 if (ret != -ENOENT) 2344 goto out; 2345 } else { 2346 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2347 fs_info->uuid_root = root; 2348 } 2349 2350 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2351 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2352 root = btrfs_read_tree_root(tree_root, &location); 2353 if (IS_ERR(root)) { 2354 ret = PTR_ERR(root); 2355 goto out; 2356 } 2357 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2358 fs_info->free_space_root = root; 2359 } 2360 2361 return 0; 2362 out: 2363 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2364 location.objectid, ret); 2365 return ret; 2366 } 2367 2368 /* 2369 * Real super block validation 2370 * NOTE: super csum type and incompat features will not be checked here. 2371 * 2372 * @sb: super block to check 2373 * @mirror_num: the super block number to check its bytenr: 2374 * 0 the primary (1st) sb 2375 * 1, 2 2nd and 3rd backup copy 2376 * -1 skip bytenr check 2377 */ 2378 static int validate_super(struct btrfs_fs_info *fs_info, 2379 struct btrfs_super_block *sb, int mirror_num) 2380 { 2381 u64 nodesize = btrfs_super_nodesize(sb); 2382 u64 sectorsize = btrfs_super_sectorsize(sb); 2383 int ret = 0; 2384 2385 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2386 btrfs_err(fs_info, "no valid FS found"); 2387 ret = -EINVAL; 2388 } 2389 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2390 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2391 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2392 ret = -EINVAL; 2393 } 2394 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2395 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2396 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2397 ret = -EINVAL; 2398 } 2399 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2400 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2401 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2402 ret = -EINVAL; 2403 } 2404 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2405 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2406 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2407 ret = -EINVAL; 2408 } 2409 2410 /* 2411 * Check sectorsize and nodesize first, other check will need it. 2412 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2413 */ 2414 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2415 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2416 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2417 ret = -EINVAL; 2418 } 2419 /* Only PAGE SIZE is supported yet */ 2420 if (sectorsize != PAGE_SIZE) { 2421 btrfs_err(fs_info, 2422 "sectorsize %llu not supported yet, only support %lu", 2423 sectorsize, PAGE_SIZE); 2424 ret = -EINVAL; 2425 } 2426 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2427 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2428 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2429 ret = -EINVAL; 2430 } 2431 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2432 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2433 le32_to_cpu(sb->__unused_leafsize), nodesize); 2434 ret = -EINVAL; 2435 } 2436 2437 /* Root alignment check */ 2438 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2439 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2440 btrfs_super_root(sb)); 2441 ret = -EINVAL; 2442 } 2443 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2444 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2445 btrfs_super_chunk_root(sb)); 2446 ret = -EINVAL; 2447 } 2448 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2449 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2450 btrfs_super_log_root(sb)); 2451 ret = -EINVAL; 2452 } 2453 2454 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) { 2455 btrfs_err(fs_info, 2456 "dev_item UUID does not match fsid: %pU != %pU", 2457 fs_info->fsid, sb->dev_item.fsid); 2458 ret = -EINVAL; 2459 } 2460 2461 /* 2462 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2463 * done later 2464 */ 2465 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2466 btrfs_err(fs_info, "bytes_used is too small %llu", 2467 btrfs_super_bytes_used(sb)); 2468 ret = -EINVAL; 2469 } 2470 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2471 btrfs_err(fs_info, "invalid stripesize %u", 2472 btrfs_super_stripesize(sb)); 2473 ret = -EINVAL; 2474 } 2475 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2476 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2477 btrfs_super_num_devices(sb)); 2478 if (btrfs_super_num_devices(sb) == 0) { 2479 btrfs_err(fs_info, "number of devices is 0"); 2480 ret = -EINVAL; 2481 } 2482 2483 if (mirror_num >= 0 && 2484 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2485 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2486 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2487 ret = -EINVAL; 2488 } 2489 2490 /* 2491 * Obvious sys_chunk_array corruptions, it must hold at least one key 2492 * and one chunk 2493 */ 2494 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2495 btrfs_err(fs_info, "system chunk array too big %u > %u", 2496 btrfs_super_sys_array_size(sb), 2497 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2498 ret = -EINVAL; 2499 } 2500 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2501 + sizeof(struct btrfs_chunk)) { 2502 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2503 btrfs_super_sys_array_size(sb), 2504 sizeof(struct btrfs_disk_key) 2505 + sizeof(struct btrfs_chunk)); 2506 ret = -EINVAL; 2507 } 2508 2509 /* 2510 * The generation is a global counter, we'll trust it more than the others 2511 * but it's still possible that it's the one that's wrong. 2512 */ 2513 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2514 btrfs_warn(fs_info, 2515 "suspicious: generation < chunk_root_generation: %llu < %llu", 2516 btrfs_super_generation(sb), 2517 btrfs_super_chunk_root_generation(sb)); 2518 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2519 && btrfs_super_cache_generation(sb) != (u64)-1) 2520 btrfs_warn(fs_info, 2521 "suspicious: generation < cache_generation: %llu < %llu", 2522 btrfs_super_generation(sb), 2523 btrfs_super_cache_generation(sb)); 2524 2525 return ret; 2526 } 2527 2528 /* 2529 * Validation of super block at mount time. 2530 * Some checks already done early at mount time, like csum type and incompat 2531 * flags will be skipped. 2532 */ 2533 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2534 { 2535 return validate_super(fs_info, fs_info->super_copy, 0); 2536 } 2537 2538 /* 2539 * Validation of super block at write time. 2540 * Some checks like bytenr check will be skipped as their values will be 2541 * overwritten soon. 2542 * Extra checks like csum type and incompat flags will be done here. 2543 */ 2544 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2545 struct btrfs_super_block *sb) 2546 { 2547 int ret; 2548 2549 ret = validate_super(fs_info, sb, -1); 2550 if (ret < 0) 2551 goto out; 2552 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) { 2553 ret = -EUCLEAN; 2554 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2555 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2556 goto out; 2557 } 2558 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2559 ret = -EUCLEAN; 2560 btrfs_err(fs_info, 2561 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2562 btrfs_super_incompat_flags(sb), 2563 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2564 goto out; 2565 } 2566 out: 2567 if (ret < 0) 2568 btrfs_err(fs_info, 2569 "super block corruption detected before writing it to disk"); 2570 return ret; 2571 } 2572 2573 int open_ctree(struct super_block *sb, 2574 struct btrfs_fs_devices *fs_devices, 2575 char *options) 2576 { 2577 u32 sectorsize; 2578 u32 nodesize; 2579 u32 stripesize; 2580 u64 generation; 2581 u64 features; 2582 struct btrfs_key location; 2583 struct buffer_head *bh; 2584 struct btrfs_super_block *disk_super; 2585 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2586 struct btrfs_root *tree_root; 2587 struct btrfs_root *chunk_root; 2588 int ret; 2589 int err = -EINVAL; 2590 int num_backups_tried = 0; 2591 int backup_index = 0; 2592 int clear_free_space_tree = 0; 2593 int level; 2594 2595 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2596 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2597 if (!tree_root || !chunk_root) { 2598 err = -ENOMEM; 2599 goto fail; 2600 } 2601 2602 ret = init_srcu_struct(&fs_info->subvol_srcu); 2603 if (ret) { 2604 err = ret; 2605 goto fail; 2606 } 2607 2608 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2609 if (ret) { 2610 err = ret; 2611 goto fail_srcu; 2612 } 2613 fs_info->dirty_metadata_batch = PAGE_SIZE * 2614 (1 + ilog2(nr_cpu_ids)); 2615 2616 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2617 if (ret) { 2618 err = ret; 2619 goto fail_dirty_metadata_bytes; 2620 } 2621 2622 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2623 GFP_KERNEL); 2624 if (ret) { 2625 err = ret; 2626 goto fail_delalloc_bytes; 2627 } 2628 2629 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2630 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2631 INIT_LIST_HEAD(&fs_info->trans_list); 2632 INIT_LIST_HEAD(&fs_info->dead_roots); 2633 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2634 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2635 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2636 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs); 2637 spin_lock_init(&fs_info->pending_raid_kobjs_lock); 2638 spin_lock_init(&fs_info->delalloc_root_lock); 2639 spin_lock_init(&fs_info->trans_lock); 2640 spin_lock_init(&fs_info->fs_roots_radix_lock); 2641 spin_lock_init(&fs_info->delayed_iput_lock); 2642 spin_lock_init(&fs_info->defrag_inodes_lock); 2643 spin_lock_init(&fs_info->tree_mod_seq_lock); 2644 spin_lock_init(&fs_info->super_lock); 2645 spin_lock_init(&fs_info->qgroup_op_lock); 2646 spin_lock_init(&fs_info->buffer_lock); 2647 spin_lock_init(&fs_info->unused_bgs_lock); 2648 rwlock_init(&fs_info->tree_mod_log_lock); 2649 mutex_init(&fs_info->unused_bg_unpin_mutex); 2650 mutex_init(&fs_info->delete_unused_bgs_mutex); 2651 mutex_init(&fs_info->reloc_mutex); 2652 mutex_init(&fs_info->delalloc_root_mutex); 2653 mutex_init(&fs_info->cleaner_delayed_iput_mutex); 2654 seqlock_init(&fs_info->profiles_lock); 2655 2656 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2657 INIT_LIST_HEAD(&fs_info->space_info); 2658 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2659 INIT_LIST_HEAD(&fs_info->unused_bgs); 2660 btrfs_mapping_init(&fs_info->mapping_tree); 2661 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2662 BTRFS_BLOCK_RSV_GLOBAL); 2663 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2664 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2665 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2666 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2667 BTRFS_BLOCK_RSV_DELOPS); 2668 atomic_set(&fs_info->async_delalloc_pages, 0); 2669 atomic_set(&fs_info->defrag_running, 0); 2670 atomic_set(&fs_info->qgroup_op_seq, 0); 2671 atomic_set(&fs_info->reada_works_cnt, 0); 2672 atomic64_set(&fs_info->tree_mod_seq, 0); 2673 fs_info->sb = sb; 2674 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2675 fs_info->metadata_ratio = 0; 2676 fs_info->defrag_inodes = RB_ROOT; 2677 atomic64_set(&fs_info->free_chunk_space, 0); 2678 fs_info->tree_mod_log = RB_ROOT; 2679 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2680 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2681 /* readahead state */ 2682 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2683 spin_lock_init(&fs_info->reada_lock); 2684 btrfs_init_ref_verify(fs_info); 2685 2686 fs_info->thread_pool_size = min_t(unsigned long, 2687 num_online_cpus() + 2, 8); 2688 2689 INIT_LIST_HEAD(&fs_info->ordered_roots); 2690 spin_lock_init(&fs_info->ordered_root_lock); 2691 2692 fs_info->btree_inode = new_inode(sb); 2693 if (!fs_info->btree_inode) { 2694 err = -ENOMEM; 2695 goto fail_bio_counter; 2696 } 2697 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2698 2699 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2700 GFP_KERNEL); 2701 if (!fs_info->delayed_root) { 2702 err = -ENOMEM; 2703 goto fail_iput; 2704 } 2705 btrfs_init_delayed_root(fs_info->delayed_root); 2706 2707 btrfs_init_scrub(fs_info); 2708 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2709 fs_info->check_integrity_print_mask = 0; 2710 #endif 2711 btrfs_init_balance(fs_info); 2712 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2713 2714 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2715 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2716 2717 btrfs_init_btree_inode(fs_info); 2718 2719 spin_lock_init(&fs_info->block_group_cache_lock); 2720 fs_info->block_group_cache_tree = RB_ROOT; 2721 fs_info->first_logical_byte = (u64)-1; 2722 2723 extent_io_tree_init(&fs_info->freed_extents[0], NULL); 2724 extent_io_tree_init(&fs_info->freed_extents[1], NULL); 2725 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2726 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2727 2728 mutex_init(&fs_info->ordered_operations_mutex); 2729 mutex_init(&fs_info->tree_log_mutex); 2730 mutex_init(&fs_info->chunk_mutex); 2731 mutex_init(&fs_info->transaction_kthread_mutex); 2732 mutex_init(&fs_info->cleaner_mutex); 2733 mutex_init(&fs_info->ro_block_group_mutex); 2734 init_rwsem(&fs_info->commit_root_sem); 2735 init_rwsem(&fs_info->cleanup_work_sem); 2736 init_rwsem(&fs_info->subvol_sem); 2737 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2738 2739 btrfs_init_dev_replace_locks(fs_info); 2740 btrfs_init_qgroup(fs_info); 2741 2742 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2743 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2744 2745 init_waitqueue_head(&fs_info->transaction_throttle); 2746 init_waitqueue_head(&fs_info->transaction_wait); 2747 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2748 init_waitqueue_head(&fs_info->async_submit_wait); 2749 2750 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2751 2752 /* Usable values until the real ones are cached from the superblock */ 2753 fs_info->nodesize = 4096; 2754 fs_info->sectorsize = 4096; 2755 fs_info->stripesize = 4096; 2756 2757 ret = btrfs_alloc_stripe_hash_table(fs_info); 2758 if (ret) { 2759 err = ret; 2760 goto fail_alloc; 2761 } 2762 2763 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 2764 2765 invalidate_bdev(fs_devices->latest_bdev); 2766 2767 /* 2768 * Read super block and check the signature bytes only 2769 */ 2770 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2771 if (IS_ERR(bh)) { 2772 err = PTR_ERR(bh); 2773 goto fail_alloc; 2774 } 2775 2776 /* 2777 * We want to check superblock checksum, the type is stored inside. 2778 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2779 */ 2780 if (btrfs_check_super_csum(fs_info, bh->b_data)) { 2781 btrfs_err(fs_info, "superblock checksum mismatch"); 2782 err = -EINVAL; 2783 brelse(bh); 2784 goto fail_alloc; 2785 } 2786 2787 /* 2788 * super_copy is zeroed at allocation time and we never touch the 2789 * following bytes up to INFO_SIZE, the checksum is calculated from 2790 * the whole block of INFO_SIZE 2791 */ 2792 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2793 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2794 sizeof(*fs_info->super_for_commit)); 2795 brelse(bh); 2796 2797 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2798 2799 ret = btrfs_validate_mount_super(fs_info); 2800 if (ret) { 2801 btrfs_err(fs_info, "superblock contains fatal errors"); 2802 err = -EINVAL; 2803 goto fail_alloc; 2804 } 2805 2806 disk_super = fs_info->super_copy; 2807 if (!btrfs_super_root(disk_super)) 2808 goto fail_alloc; 2809 2810 /* check FS state, whether FS is broken. */ 2811 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2812 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2813 2814 /* 2815 * run through our array of backup supers and setup 2816 * our ring pointer to the oldest one 2817 */ 2818 generation = btrfs_super_generation(disk_super); 2819 find_oldest_super_backup(fs_info, generation); 2820 2821 /* 2822 * In the long term, we'll store the compression type in the super 2823 * block, and it'll be used for per file compression control. 2824 */ 2825 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2826 2827 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2828 if (ret) { 2829 err = ret; 2830 goto fail_alloc; 2831 } 2832 2833 features = btrfs_super_incompat_flags(disk_super) & 2834 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2835 if (features) { 2836 btrfs_err(fs_info, 2837 "cannot mount because of unsupported optional features (%llx)", 2838 features); 2839 err = -EINVAL; 2840 goto fail_alloc; 2841 } 2842 2843 features = btrfs_super_incompat_flags(disk_super); 2844 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2845 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2846 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2847 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 2848 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 2849 2850 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2851 btrfs_info(fs_info, "has skinny extents"); 2852 2853 /* 2854 * flag our filesystem as having big metadata blocks if 2855 * they are bigger than the page size 2856 */ 2857 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2858 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2859 btrfs_info(fs_info, 2860 "flagging fs with big metadata feature"); 2861 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2862 } 2863 2864 nodesize = btrfs_super_nodesize(disk_super); 2865 sectorsize = btrfs_super_sectorsize(disk_super); 2866 stripesize = sectorsize; 2867 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2868 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2869 2870 /* Cache block sizes */ 2871 fs_info->nodesize = nodesize; 2872 fs_info->sectorsize = sectorsize; 2873 fs_info->stripesize = stripesize; 2874 2875 /* 2876 * mixed block groups end up with duplicate but slightly offset 2877 * extent buffers for the same range. It leads to corruptions 2878 */ 2879 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2880 (sectorsize != nodesize)) { 2881 btrfs_err(fs_info, 2882 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2883 nodesize, sectorsize); 2884 goto fail_alloc; 2885 } 2886 2887 /* 2888 * Needn't use the lock because there is no other task which will 2889 * update the flag. 2890 */ 2891 btrfs_set_super_incompat_flags(disk_super, features); 2892 2893 features = btrfs_super_compat_ro_flags(disk_super) & 2894 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2895 if (!sb_rdonly(sb) && features) { 2896 btrfs_err(fs_info, 2897 "cannot mount read-write because of unsupported optional features (%llx)", 2898 features); 2899 err = -EINVAL; 2900 goto fail_alloc; 2901 } 2902 2903 ret = btrfs_init_workqueues(fs_info, fs_devices); 2904 if (ret) { 2905 err = ret; 2906 goto fail_sb_buffer; 2907 } 2908 2909 sb->s_bdi->congested_fn = btrfs_congested_fn; 2910 sb->s_bdi->congested_data = fs_info; 2911 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 2912 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE; 2913 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 2914 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 2915 2916 sb->s_blocksize = sectorsize; 2917 sb->s_blocksize_bits = blksize_bits(sectorsize); 2918 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE); 2919 2920 mutex_lock(&fs_info->chunk_mutex); 2921 ret = btrfs_read_sys_array(fs_info); 2922 mutex_unlock(&fs_info->chunk_mutex); 2923 if (ret) { 2924 btrfs_err(fs_info, "failed to read the system array: %d", ret); 2925 goto fail_sb_buffer; 2926 } 2927 2928 generation = btrfs_super_chunk_root_generation(disk_super); 2929 level = btrfs_super_chunk_root_level(disk_super); 2930 2931 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2932 2933 chunk_root->node = read_tree_block(fs_info, 2934 btrfs_super_chunk_root(disk_super), 2935 generation, level, NULL); 2936 if (IS_ERR(chunk_root->node) || 2937 !extent_buffer_uptodate(chunk_root->node)) { 2938 btrfs_err(fs_info, "failed to read chunk root"); 2939 if (!IS_ERR(chunk_root->node)) 2940 free_extent_buffer(chunk_root->node); 2941 chunk_root->node = NULL; 2942 goto fail_tree_roots; 2943 } 2944 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2945 chunk_root->commit_root = btrfs_root_node(chunk_root); 2946 2947 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2948 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2949 2950 ret = btrfs_read_chunk_tree(fs_info); 2951 if (ret) { 2952 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 2953 goto fail_tree_roots; 2954 } 2955 2956 /* 2957 * Keep the devid that is marked to be the target device for the 2958 * device replace procedure 2959 */ 2960 btrfs_free_extra_devids(fs_devices, 0); 2961 2962 if (!fs_devices->latest_bdev) { 2963 btrfs_err(fs_info, "failed to read devices"); 2964 goto fail_tree_roots; 2965 } 2966 2967 retry_root_backup: 2968 generation = btrfs_super_generation(disk_super); 2969 level = btrfs_super_root_level(disk_super); 2970 2971 tree_root->node = read_tree_block(fs_info, 2972 btrfs_super_root(disk_super), 2973 generation, level, NULL); 2974 if (IS_ERR(tree_root->node) || 2975 !extent_buffer_uptodate(tree_root->node)) { 2976 btrfs_warn(fs_info, "failed to read tree root"); 2977 if (!IS_ERR(tree_root->node)) 2978 free_extent_buffer(tree_root->node); 2979 tree_root->node = NULL; 2980 goto recovery_tree_root; 2981 } 2982 2983 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2984 tree_root->commit_root = btrfs_root_node(tree_root); 2985 btrfs_set_root_refs(&tree_root->root_item, 1); 2986 2987 mutex_lock(&tree_root->objectid_mutex); 2988 ret = btrfs_find_highest_objectid(tree_root, 2989 &tree_root->highest_objectid); 2990 if (ret) { 2991 mutex_unlock(&tree_root->objectid_mutex); 2992 goto recovery_tree_root; 2993 } 2994 2995 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2996 2997 mutex_unlock(&tree_root->objectid_mutex); 2998 2999 ret = btrfs_read_roots(fs_info); 3000 if (ret) 3001 goto recovery_tree_root; 3002 3003 fs_info->generation = generation; 3004 fs_info->last_trans_committed = generation; 3005 3006 ret = btrfs_verify_dev_extents(fs_info); 3007 if (ret) { 3008 btrfs_err(fs_info, 3009 "failed to verify dev extents against chunks: %d", 3010 ret); 3011 goto fail_block_groups; 3012 } 3013 ret = btrfs_recover_balance(fs_info); 3014 if (ret) { 3015 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3016 goto fail_block_groups; 3017 } 3018 3019 ret = btrfs_init_dev_stats(fs_info); 3020 if (ret) { 3021 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3022 goto fail_block_groups; 3023 } 3024 3025 ret = btrfs_init_dev_replace(fs_info); 3026 if (ret) { 3027 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3028 goto fail_block_groups; 3029 } 3030 3031 btrfs_free_extra_devids(fs_devices, 1); 3032 3033 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 3034 if (ret) { 3035 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3036 ret); 3037 goto fail_block_groups; 3038 } 3039 3040 ret = btrfs_sysfs_add_device(fs_devices); 3041 if (ret) { 3042 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 3043 ret); 3044 goto fail_fsdev_sysfs; 3045 } 3046 3047 ret = btrfs_sysfs_add_mounted(fs_info); 3048 if (ret) { 3049 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3050 goto fail_fsdev_sysfs; 3051 } 3052 3053 ret = btrfs_init_space_info(fs_info); 3054 if (ret) { 3055 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3056 goto fail_sysfs; 3057 } 3058 3059 ret = btrfs_read_block_groups(fs_info); 3060 if (ret) { 3061 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3062 goto fail_sysfs; 3063 } 3064 3065 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 3066 btrfs_warn(fs_info, 3067 "writeable mount is not allowed due to too many missing devices"); 3068 goto fail_sysfs; 3069 } 3070 3071 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3072 "btrfs-cleaner"); 3073 if (IS_ERR(fs_info->cleaner_kthread)) 3074 goto fail_sysfs; 3075 3076 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3077 tree_root, 3078 "btrfs-transaction"); 3079 if (IS_ERR(fs_info->transaction_kthread)) 3080 goto fail_cleaner; 3081 3082 if (!btrfs_test_opt(fs_info, NOSSD) && 3083 !fs_info->fs_devices->rotating) { 3084 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3085 } 3086 3087 /* 3088 * Mount does not set all options immediately, we can do it now and do 3089 * not have to wait for transaction commit 3090 */ 3091 btrfs_apply_pending_changes(fs_info); 3092 3093 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3094 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3095 ret = btrfsic_mount(fs_info, fs_devices, 3096 btrfs_test_opt(fs_info, 3097 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3098 1 : 0, 3099 fs_info->check_integrity_print_mask); 3100 if (ret) 3101 btrfs_warn(fs_info, 3102 "failed to initialize integrity check module: %d", 3103 ret); 3104 } 3105 #endif 3106 ret = btrfs_read_qgroup_config(fs_info); 3107 if (ret) 3108 goto fail_trans_kthread; 3109 3110 if (btrfs_build_ref_tree(fs_info)) 3111 btrfs_err(fs_info, "couldn't build ref tree"); 3112 3113 /* do not make disk changes in broken FS or nologreplay is given */ 3114 if (btrfs_super_log_root(disk_super) != 0 && 3115 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3116 ret = btrfs_replay_log(fs_info, fs_devices); 3117 if (ret) { 3118 err = ret; 3119 goto fail_qgroup; 3120 } 3121 } 3122 3123 ret = btrfs_find_orphan_roots(fs_info); 3124 if (ret) 3125 goto fail_qgroup; 3126 3127 if (!sb_rdonly(sb)) { 3128 ret = btrfs_cleanup_fs_roots(fs_info); 3129 if (ret) 3130 goto fail_qgroup; 3131 3132 mutex_lock(&fs_info->cleaner_mutex); 3133 ret = btrfs_recover_relocation(tree_root); 3134 mutex_unlock(&fs_info->cleaner_mutex); 3135 if (ret < 0) { 3136 btrfs_warn(fs_info, "failed to recover relocation: %d", 3137 ret); 3138 err = -EINVAL; 3139 goto fail_qgroup; 3140 } 3141 } 3142 3143 location.objectid = BTRFS_FS_TREE_OBJECTID; 3144 location.type = BTRFS_ROOT_ITEM_KEY; 3145 location.offset = 0; 3146 3147 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3148 if (IS_ERR(fs_info->fs_root)) { 3149 err = PTR_ERR(fs_info->fs_root); 3150 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3151 goto fail_qgroup; 3152 } 3153 3154 if (sb_rdonly(sb)) 3155 return 0; 3156 3157 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3158 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3159 clear_free_space_tree = 1; 3160 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3161 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3162 btrfs_warn(fs_info, "free space tree is invalid"); 3163 clear_free_space_tree = 1; 3164 } 3165 3166 if (clear_free_space_tree) { 3167 btrfs_info(fs_info, "clearing free space tree"); 3168 ret = btrfs_clear_free_space_tree(fs_info); 3169 if (ret) { 3170 btrfs_warn(fs_info, 3171 "failed to clear free space tree: %d", ret); 3172 close_ctree(fs_info); 3173 return ret; 3174 } 3175 } 3176 3177 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3178 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3179 btrfs_info(fs_info, "creating free space tree"); 3180 ret = btrfs_create_free_space_tree(fs_info); 3181 if (ret) { 3182 btrfs_warn(fs_info, 3183 "failed to create free space tree: %d", ret); 3184 close_ctree(fs_info); 3185 return ret; 3186 } 3187 } 3188 3189 down_read(&fs_info->cleanup_work_sem); 3190 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3191 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3192 up_read(&fs_info->cleanup_work_sem); 3193 close_ctree(fs_info); 3194 return ret; 3195 } 3196 up_read(&fs_info->cleanup_work_sem); 3197 3198 ret = btrfs_resume_balance_async(fs_info); 3199 if (ret) { 3200 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3201 close_ctree(fs_info); 3202 return ret; 3203 } 3204 3205 ret = btrfs_resume_dev_replace_async(fs_info); 3206 if (ret) { 3207 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3208 close_ctree(fs_info); 3209 return ret; 3210 } 3211 3212 btrfs_qgroup_rescan_resume(fs_info); 3213 3214 if (!fs_info->uuid_root) { 3215 btrfs_info(fs_info, "creating UUID tree"); 3216 ret = btrfs_create_uuid_tree(fs_info); 3217 if (ret) { 3218 btrfs_warn(fs_info, 3219 "failed to create the UUID tree: %d", ret); 3220 close_ctree(fs_info); 3221 return ret; 3222 } 3223 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3224 fs_info->generation != 3225 btrfs_super_uuid_tree_generation(disk_super)) { 3226 btrfs_info(fs_info, "checking UUID tree"); 3227 ret = btrfs_check_uuid_tree(fs_info); 3228 if (ret) { 3229 btrfs_warn(fs_info, 3230 "failed to check the UUID tree: %d", ret); 3231 close_ctree(fs_info); 3232 return ret; 3233 } 3234 } else { 3235 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3236 } 3237 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3238 3239 /* 3240 * backuproot only affect mount behavior, and if open_ctree succeeded, 3241 * no need to keep the flag 3242 */ 3243 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3244 3245 return 0; 3246 3247 fail_qgroup: 3248 btrfs_free_qgroup_config(fs_info); 3249 fail_trans_kthread: 3250 kthread_stop(fs_info->transaction_kthread); 3251 btrfs_cleanup_transaction(fs_info); 3252 btrfs_free_fs_roots(fs_info); 3253 fail_cleaner: 3254 kthread_stop(fs_info->cleaner_kthread); 3255 3256 /* 3257 * make sure we're done with the btree inode before we stop our 3258 * kthreads 3259 */ 3260 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3261 3262 fail_sysfs: 3263 btrfs_sysfs_remove_mounted(fs_info); 3264 3265 fail_fsdev_sysfs: 3266 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3267 3268 fail_block_groups: 3269 btrfs_put_block_group_cache(fs_info); 3270 3271 fail_tree_roots: 3272 free_root_pointers(fs_info, 1); 3273 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3274 3275 fail_sb_buffer: 3276 btrfs_stop_all_workers(fs_info); 3277 btrfs_free_block_groups(fs_info); 3278 fail_alloc: 3279 fail_iput: 3280 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3281 3282 iput(fs_info->btree_inode); 3283 fail_bio_counter: 3284 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 3285 fail_delalloc_bytes: 3286 percpu_counter_destroy(&fs_info->delalloc_bytes); 3287 fail_dirty_metadata_bytes: 3288 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3289 fail_srcu: 3290 cleanup_srcu_struct(&fs_info->subvol_srcu); 3291 fail: 3292 btrfs_free_stripe_hash_table(fs_info); 3293 btrfs_close_devices(fs_info->fs_devices); 3294 return err; 3295 3296 recovery_tree_root: 3297 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 3298 goto fail_tree_roots; 3299 3300 free_root_pointers(fs_info, 0); 3301 3302 /* don't use the log in recovery mode, it won't be valid */ 3303 btrfs_set_super_log_root(disk_super, 0); 3304 3305 /* we can't trust the free space cache either */ 3306 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3307 3308 ret = next_root_backup(fs_info, fs_info->super_copy, 3309 &num_backups_tried, &backup_index); 3310 if (ret == -1) 3311 goto fail_block_groups; 3312 goto retry_root_backup; 3313 } 3314 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3315 3316 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3317 { 3318 if (uptodate) { 3319 set_buffer_uptodate(bh); 3320 } else { 3321 struct btrfs_device *device = (struct btrfs_device *) 3322 bh->b_private; 3323 3324 btrfs_warn_rl_in_rcu(device->fs_info, 3325 "lost page write due to IO error on %s", 3326 rcu_str_deref(device->name)); 3327 /* note, we don't set_buffer_write_io_error because we have 3328 * our own ways of dealing with the IO errors 3329 */ 3330 clear_buffer_uptodate(bh); 3331 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3332 } 3333 unlock_buffer(bh); 3334 put_bh(bh); 3335 } 3336 3337 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3338 struct buffer_head **bh_ret) 3339 { 3340 struct buffer_head *bh; 3341 struct btrfs_super_block *super; 3342 u64 bytenr; 3343 3344 bytenr = btrfs_sb_offset(copy_num); 3345 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3346 return -EINVAL; 3347 3348 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE); 3349 /* 3350 * If we fail to read from the underlying devices, as of now 3351 * the best option we have is to mark it EIO. 3352 */ 3353 if (!bh) 3354 return -EIO; 3355 3356 super = (struct btrfs_super_block *)bh->b_data; 3357 if (btrfs_super_bytenr(super) != bytenr || 3358 btrfs_super_magic(super) != BTRFS_MAGIC) { 3359 brelse(bh); 3360 return -EINVAL; 3361 } 3362 3363 *bh_ret = bh; 3364 return 0; 3365 } 3366 3367 3368 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3369 { 3370 struct buffer_head *bh; 3371 struct buffer_head *latest = NULL; 3372 struct btrfs_super_block *super; 3373 int i; 3374 u64 transid = 0; 3375 int ret = -EINVAL; 3376 3377 /* we would like to check all the supers, but that would make 3378 * a btrfs mount succeed after a mkfs from a different FS. 3379 * So, we need to add a special mount option to scan for 3380 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3381 */ 3382 for (i = 0; i < 1; i++) { 3383 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3384 if (ret) 3385 continue; 3386 3387 super = (struct btrfs_super_block *)bh->b_data; 3388 3389 if (!latest || btrfs_super_generation(super) > transid) { 3390 brelse(latest); 3391 latest = bh; 3392 transid = btrfs_super_generation(super); 3393 } else { 3394 brelse(bh); 3395 } 3396 } 3397 3398 if (!latest) 3399 return ERR_PTR(ret); 3400 3401 return latest; 3402 } 3403 3404 /* 3405 * Write superblock @sb to the @device. Do not wait for completion, all the 3406 * buffer heads we write are pinned. 3407 * 3408 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3409 * the expected device size at commit time. Note that max_mirrors must be 3410 * same for write and wait phases. 3411 * 3412 * Return number of errors when buffer head is not found or submission fails. 3413 */ 3414 static int write_dev_supers(struct btrfs_device *device, 3415 struct btrfs_super_block *sb, int max_mirrors) 3416 { 3417 struct buffer_head *bh; 3418 int i; 3419 int ret; 3420 int errors = 0; 3421 u32 crc; 3422 u64 bytenr; 3423 int op_flags; 3424 3425 if (max_mirrors == 0) 3426 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3427 3428 for (i = 0; i < max_mirrors; i++) { 3429 bytenr = btrfs_sb_offset(i); 3430 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3431 device->commit_total_bytes) 3432 break; 3433 3434 btrfs_set_super_bytenr(sb, bytenr); 3435 3436 crc = ~(u32)0; 3437 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc, 3438 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 3439 btrfs_csum_final(crc, sb->csum); 3440 3441 /* One reference for us, and we leave it for the caller */ 3442 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, 3443 BTRFS_SUPER_INFO_SIZE); 3444 if (!bh) { 3445 btrfs_err(device->fs_info, 3446 "couldn't get super buffer head for bytenr %llu", 3447 bytenr); 3448 errors++; 3449 continue; 3450 } 3451 3452 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3453 3454 /* one reference for submit_bh */ 3455 get_bh(bh); 3456 3457 set_buffer_uptodate(bh); 3458 lock_buffer(bh); 3459 bh->b_end_io = btrfs_end_buffer_write_sync; 3460 bh->b_private = device; 3461 3462 /* 3463 * we fua the first super. The others we allow 3464 * to go down lazy. 3465 */ 3466 op_flags = REQ_SYNC | REQ_META | REQ_PRIO; 3467 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3468 op_flags |= REQ_FUA; 3469 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh); 3470 if (ret) 3471 errors++; 3472 } 3473 return errors < i ? 0 : -1; 3474 } 3475 3476 /* 3477 * Wait for write completion of superblocks done by write_dev_supers, 3478 * @max_mirrors same for write and wait phases. 3479 * 3480 * Return number of errors when buffer head is not found or not marked up to 3481 * date. 3482 */ 3483 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3484 { 3485 struct buffer_head *bh; 3486 int i; 3487 int errors = 0; 3488 bool primary_failed = false; 3489 u64 bytenr; 3490 3491 if (max_mirrors == 0) 3492 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3493 3494 for (i = 0; i < max_mirrors; i++) { 3495 bytenr = btrfs_sb_offset(i); 3496 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3497 device->commit_total_bytes) 3498 break; 3499 3500 bh = __find_get_block(device->bdev, 3501 bytenr / BTRFS_BDEV_BLOCKSIZE, 3502 BTRFS_SUPER_INFO_SIZE); 3503 if (!bh) { 3504 errors++; 3505 if (i == 0) 3506 primary_failed = true; 3507 continue; 3508 } 3509 wait_on_buffer(bh); 3510 if (!buffer_uptodate(bh)) { 3511 errors++; 3512 if (i == 0) 3513 primary_failed = true; 3514 } 3515 3516 /* drop our reference */ 3517 brelse(bh); 3518 3519 /* drop the reference from the writing run */ 3520 brelse(bh); 3521 } 3522 3523 /* log error, force error return */ 3524 if (primary_failed) { 3525 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3526 device->devid); 3527 return -1; 3528 } 3529 3530 return errors < i ? 0 : -1; 3531 } 3532 3533 /* 3534 * endio for the write_dev_flush, this will wake anyone waiting 3535 * for the barrier when it is done 3536 */ 3537 static void btrfs_end_empty_barrier(struct bio *bio) 3538 { 3539 complete(bio->bi_private); 3540 } 3541 3542 /* 3543 * Submit a flush request to the device if it supports it. Error handling is 3544 * done in the waiting counterpart. 3545 */ 3546 static void write_dev_flush(struct btrfs_device *device) 3547 { 3548 struct request_queue *q = bdev_get_queue(device->bdev); 3549 struct bio *bio = device->flush_bio; 3550 3551 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3552 return; 3553 3554 bio_reset(bio); 3555 bio->bi_end_io = btrfs_end_empty_barrier; 3556 bio_set_dev(bio, device->bdev); 3557 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3558 init_completion(&device->flush_wait); 3559 bio->bi_private = &device->flush_wait; 3560 3561 btrfsic_submit_bio(bio); 3562 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3563 } 3564 3565 /* 3566 * If the flush bio has been submitted by write_dev_flush, wait for it. 3567 */ 3568 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3569 { 3570 struct bio *bio = device->flush_bio; 3571 3572 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3573 return BLK_STS_OK; 3574 3575 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3576 wait_for_completion_io(&device->flush_wait); 3577 3578 return bio->bi_status; 3579 } 3580 3581 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3582 { 3583 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3584 return -EIO; 3585 return 0; 3586 } 3587 3588 /* 3589 * send an empty flush down to each device in parallel, 3590 * then wait for them 3591 */ 3592 static int barrier_all_devices(struct btrfs_fs_info *info) 3593 { 3594 struct list_head *head; 3595 struct btrfs_device *dev; 3596 int errors_wait = 0; 3597 blk_status_t ret; 3598 3599 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3600 /* send down all the barriers */ 3601 head = &info->fs_devices->devices; 3602 list_for_each_entry(dev, head, dev_list) { 3603 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3604 continue; 3605 if (!dev->bdev) 3606 continue; 3607 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3608 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3609 continue; 3610 3611 write_dev_flush(dev); 3612 dev->last_flush_error = BLK_STS_OK; 3613 } 3614 3615 /* wait for all the barriers */ 3616 list_for_each_entry(dev, head, dev_list) { 3617 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3618 continue; 3619 if (!dev->bdev) { 3620 errors_wait++; 3621 continue; 3622 } 3623 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3624 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3625 continue; 3626 3627 ret = wait_dev_flush(dev); 3628 if (ret) { 3629 dev->last_flush_error = ret; 3630 btrfs_dev_stat_inc_and_print(dev, 3631 BTRFS_DEV_STAT_FLUSH_ERRS); 3632 errors_wait++; 3633 } 3634 } 3635 3636 if (errors_wait) { 3637 /* 3638 * At some point we need the status of all disks 3639 * to arrive at the volume status. So error checking 3640 * is being pushed to a separate loop. 3641 */ 3642 return check_barrier_error(info); 3643 } 3644 return 0; 3645 } 3646 3647 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3648 { 3649 int raid_type; 3650 int min_tolerated = INT_MAX; 3651 3652 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3653 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3654 min_tolerated = min(min_tolerated, 3655 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3656 tolerated_failures); 3657 3658 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3659 if (raid_type == BTRFS_RAID_SINGLE) 3660 continue; 3661 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3662 continue; 3663 min_tolerated = min(min_tolerated, 3664 btrfs_raid_array[raid_type]. 3665 tolerated_failures); 3666 } 3667 3668 if (min_tolerated == INT_MAX) { 3669 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3670 min_tolerated = 0; 3671 } 3672 3673 return min_tolerated; 3674 } 3675 3676 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3677 { 3678 struct list_head *head; 3679 struct btrfs_device *dev; 3680 struct btrfs_super_block *sb; 3681 struct btrfs_dev_item *dev_item; 3682 int ret; 3683 int do_barriers; 3684 int max_errors; 3685 int total_errors = 0; 3686 u64 flags; 3687 3688 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3689 3690 /* 3691 * max_mirrors == 0 indicates we're from commit_transaction, 3692 * not from fsync where the tree roots in fs_info have not 3693 * been consistent on disk. 3694 */ 3695 if (max_mirrors == 0) 3696 backup_super_roots(fs_info); 3697 3698 sb = fs_info->super_for_commit; 3699 dev_item = &sb->dev_item; 3700 3701 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3702 head = &fs_info->fs_devices->devices; 3703 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3704 3705 if (do_barriers) { 3706 ret = barrier_all_devices(fs_info); 3707 if (ret) { 3708 mutex_unlock( 3709 &fs_info->fs_devices->device_list_mutex); 3710 btrfs_handle_fs_error(fs_info, ret, 3711 "errors while submitting device barriers."); 3712 return ret; 3713 } 3714 } 3715 3716 list_for_each_entry(dev, head, dev_list) { 3717 if (!dev->bdev) { 3718 total_errors++; 3719 continue; 3720 } 3721 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3722 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3723 continue; 3724 3725 btrfs_set_stack_device_generation(dev_item, 0); 3726 btrfs_set_stack_device_type(dev_item, dev->type); 3727 btrfs_set_stack_device_id(dev_item, dev->devid); 3728 btrfs_set_stack_device_total_bytes(dev_item, 3729 dev->commit_total_bytes); 3730 btrfs_set_stack_device_bytes_used(dev_item, 3731 dev->commit_bytes_used); 3732 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3733 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3734 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3735 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3736 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE); 3737 3738 flags = btrfs_super_flags(sb); 3739 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3740 3741 ret = btrfs_validate_write_super(fs_info, sb); 3742 if (ret < 0) { 3743 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3744 btrfs_handle_fs_error(fs_info, -EUCLEAN, 3745 "unexpected superblock corruption detected"); 3746 return -EUCLEAN; 3747 } 3748 3749 ret = write_dev_supers(dev, sb, max_mirrors); 3750 if (ret) 3751 total_errors++; 3752 } 3753 if (total_errors > max_errors) { 3754 btrfs_err(fs_info, "%d errors while writing supers", 3755 total_errors); 3756 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3757 3758 /* FUA is masked off if unsupported and can't be the reason */ 3759 btrfs_handle_fs_error(fs_info, -EIO, 3760 "%d errors while writing supers", 3761 total_errors); 3762 return -EIO; 3763 } 3764 3765 total_errors = 0; 3766 list_for_each_entry(dev, head, dev_list) { 3767 if (!dev->bdev) 3768 continue; 3769 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3770 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3771 continue; 3772 3773 ret = wait_dev_supers(dev, max_mirrors); 3774 if (ret) 3775 total_errors++; 3776 } 3777 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3778 if (total_errors > max_errors) { 3779 btrfs_handle_fs_error(fs_info, -EIO, 3780 "%d errors while writing supers", 3781 total_errors); 3782 return -EIO; 3783 } 3784 return 0; 3785 } 3786 3787 /* Drop a fs root from the radix tree and free it. */ 3788 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3789 struct btrfs_root *root) 3790 { 3791 spin_lock(&fs_info->fs_roots_radix_lock); 3792 radix_tree_delete(&fs_info->fs_roots_radix, 3793 (unsigned long)root->root_key.objectid); 3794 spin_unlock(&fs_info->fs_roots_radix_lock); 3795 3796 if (btrfs_root_refs(&root->root_item) == 0) 3797 synchronize_srcu(&fs_info->subvol_srcu); 3798 3799 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3800 btrfs_free_log(NULL, root); 3801 if (root->reloc_root) { 3802 free_extent_buffer(root->reloc_root->node); 3803 free_extent_buffer(root->reloc_root->commit_root); 3804 btrfs_put_fs_root(root->reloc_root); 3805 root->reloc_root = NULL; 3806 } 3807 } 3808 3809 if (root->free_ino_pinned) 3810 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3811 if (root->free_ino_ctl) 3812 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3813 btrfs_free_fs_root(root); 3814 } 3815 3816 void btrfs_free_fs_root(struct btrfs_root *root) 3817 { 3818 iput(root->ino_cache_inode); 3819 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3820 if (root->anon_dev) 3821 free_anon_bdev(root->anon_dev); 3822 if (root->subv_writers) 3823 btrfs_free_subvolume_writers(root->subv_writers); 3824 free_extent_buffer(root->node); 3825 free_extent_buffer(root->commit_root); 3826 kfree(root->free_ino_ctl); 3827 kfree(root->free_ino_pinned); 3828 btrfs_put_fs_root(root); 3829 } 3830 3831 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3832 { 3833 u64 root_objectid = 0; 3834 struct btrfs_root *gang[8]; 3835 int i = 0; 3836 int err = 0; 3837 unsigned int ret = 0; 3838 int index; 3839 3840 while (1) { 3841 index = srcu_read_lock(&fs_info->subvol_srcu); 3842 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3843 (void **)gang, root_objectid, 3844 ARRAY_SIZE(gang)); 3845 if (!ret) { 3846 srcu_read_unlock(&fs_info->subvol_srcu, index); 3847 break; 3848 } 3849 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3850 3851 for (i = 0; i < ret; i++) { 3852 /* Avoid to grab roots in dead_roots */ 3853 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3854 gang[i] = NULL; 3855 continue; 3856 } 3857 /* grab all the search result for later use */ 3858 gang[i] = btrfs_grab_fs_root(gang[i]); 3859 } 3860 srcu_read_unlock(&fs_info->subvol_srcu, index); 3861 3862 for (i = 0; i < ret; i++) { 3863 if (!gang[i]) 3864 continue; 3865 root_objectid = gang[i]->root_key.objectid; 3866 err = btrfs_orphan_cleanup(gang[i]); 3867 if (err) 3868 break; 3869 btrfs_put_fs_root(gang[i]); 3870 } 3871 root_objectid++; 3872 } 3873 3874 /* release the uncleaned roots due to error */ 3875 for (; i < ret; i++) { 3876 if (gang[i]) 3877 btrfs_put_fs_root(gang[i]); 3878 } 3879 return err; 3880 } 3881 3882 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3883 { 3884 struct btrfs_root *root = fs_info->tree_root; 3885 struct btrfs_trans_handle *trans; 3886 3887 mutex_lock(&fs_info->cleaner_mutex); 3888 btrfs_run_delayed_iputs(fs_info); 3889 mutex_unlock(&fs_info->cleaner_mutex); 3890 wake_up_process(fs_info->cleaner_kthread); 3891 3892 /* wait until ongoing cleanup work done */ 3893 down_write(&fs_info->cleanup_work_sem); 3894 up_write(&fs_info->cleanup_work_sem); 3895 3896 trans = btrfs_join_transaction(root); 3897 if (IS_ERR(trans)) 3898 return PTR_ERR(trans); 3899 return btrfs_commit_transaction(trans); 3900 } 3901 3902 void close_ctree(struct btrfs_fs_info *fs_info) 3903 { 3904 int ret; 3905 3906 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3907 /* 3908 * We don't want the cleaner to start new transactions, add more delayed 3909 * iputs, etc. while we're closing. We can't use kthread_stop() yet 3910 * because that frees the task_struct, and the transaction kthread might 3911 * still try to wake up the cleaner. 3912 */ 3913 kthread_park(fs_info->cleaner_kthread); 3914 3915 /* wait for the qgroup rescan worker to stop */ 3916 btrfs_qgroup_wait_for_completion(fs_info, false); 3917 3918 /* wait for the uuid_scan task to finish */ 3919 down(&fs_info->uuid_tree_rescan_sem); 3920 /* avoid complains from lockdep et al., set sem back to initial state */ 3921 up(&fs_info->uuid_tree_rescan_sem); 3922 3923 /* pause restriper - we want to resume on mount */ 3924 btrfs_pause_balance(fs_info); 3925 3926 btrfs_dev_replace_suspend_for_unmount(fs_info); 3927 3928 btrfs_scrub_cancel(fs_info); 3929 3930 /* wait for any defraggers to finish */ 3931 wait_event(fs_info->transaction_wait, 3932 (atomic_read(&fs_info->defrag_running) == 0)); 3933 3934 /* clear out the rbtree of defraggable inodes */ 3935 btrfs_cleanup_defrag_inodes(fs_info); 3936 3937 cancel_work_sync(&fs_info->async_reclaim_work); 3938 3939 if (!sb_rdonly(fs_info->sb)) { 3940 /* 3941 * The cleaner kthread is stopped, so do one final pass over 3942 * unused block groups. 3943 */ 3944 btrfs_delete_unused_bgs(fs_info); 3945 3946 ret = btrfs_commit_super(fs_info); 3947 if (ret) 3948 btrfs_err(fs_info, "commit super ret %d", ret); 3949 } 3950 3951 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 3952 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 3953 btrfs_error_commit_super(fs_info); 3954 3955 kthread_stop(fs_info->transaction_kthread); 3956 kthread_stop(fs_info->cleaner_kthread); 3957 3958 ASSERT(list_empty(&fs_info->delayed_iputs)); 3959 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 3960 3961 btrfs_free_qgroup_config(fs_info); 3962 ASSERT(list_empty(&fs_info->delalloc_roots)); 3963 3964 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3965 btrfs_info(fs_info, "at unmount delalloc count %lld", 3966 percpu_counter_sum(&fs_info->delalloc_bytes)); 3967 } 3968 3969 btrfs_sysfs_remove_mounted(fs_info); 3970 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3971 3972 btrfs_free_fs_roots(fs_info); 3973 3974 btrfs_put_block_group_cache(fs_info); 3975 3976 /* 3977 * we must make sure there is not any read request to 3978 * submit after we stopping all workers. 3979 */ 3980 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3981 btrfs_stop_all_workers(fs_info); 3982 3983 btrfs_free_block_groups(fs_info); 3984 3985 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 3986 free_root_pointers(fs_info, 1); 3987 3988 iput(fs_info->btree_inode); 3989 3990 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3991 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 3992 btrfsic_unmount(fs_info->fs_devices); 3993 #endif 3994 3995 btrfs_close_devices(fs_info->fs_devices); 3996 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3997 3998 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3999 percpu_counter_destroy(&fs_info->delalloc_bytes); 4000 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 4001 cleanup_srcu_struct(&fs_info->subvol_srcu); 4002 4003 btrfs_free_stripe_hash_table(fs_info); 4004 btrfs_free_ref_cache(fs_info); 4005 4006 while (!list_empty(&fs_info->pinned_chunks)) { 4007 struct extent_map *em; 4008 4009 em = list_first_entry(&fs_info->pinned_chunks, 4010 struct extent_map, list); 4011 list_del_init(&em->list); 4012 free_extent_map(em); 4013 } 4014 } 4015 4016 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4017 int atomic) 4018 { 4019 int ret; 4020 struct inode *btree_inode = buf->pages[0]->mapping->host; 4021 4022 ret = extent_buffer_uptodate(buf); 4023 if (!ret) 4024 return ret; 4025 4026 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4027 parent_transid, atomic); 4028 if (ret == -EAGAIN) 4029 return ret; 4030 return !ret; 4031 } 4032 4033 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4034 { 4035 struct btrfs_fs_info *fs_info; 4036 struct btrfs_root *root; 4037 u64 transid = btrfs_header_generation(buf); 4038 int was_dirty; 4039 4040 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4041 /* 4042 * This is a fast path so only do this check if we have sanity tests 4043 * enabled. Normal people shouldn't be using umapped buffers as dirty 4044 * outside of the sanity tests. 4045 */ 4046 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4047 return; 4048 #endif 4049 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4050 fs_info = root->fs_info; 4051 btrfs_assert_tree_locked(buf); 4052 if (transid != fs_info->generation) 4053 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4054 buf->start, transid, fs_info->generation); 4055 was_dirty = set_extent_buffer_dirty(buf); 4056 if (!was_dirty) 4057 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4058 buf->len, 4059 fs_info->dirty_metadata_batch); 4060 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4061 /* 4062 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4063 * but item data not updated. 4064 * So here we should only check item pointers, not item data. 4065 */ 4066 if (btrfs_header_level(buf) == 0 && 4067 btrfs_check_leaf_relaxed(fs_info, buf)) { 4068 btrfs_print_leaf(buf); 4069 ASSERT(0); 4070 } 4071 #endif 4072 } 4073 4074 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4075 int flush_delayed) 4076 { 4077 /* 4078 * looks as though older kernels can get into trouble with 4079 * this code, they end up stuck in balance_dirty_pages forever 4080 */ 4081 int ret; 4082 4083 if (current->flags & PF_MEMALLOC) 4084 return; 4085 4086 if (flush_delayed) 4087 btrfs_balance_delayed_items(fs_info); 4088 4089 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4090 BTRFS_DIRTY_METADATA_THRESH, 4091 fs_info->dirty_metadata_batch); 4092 if (ret > 0) { 4093 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4094 } 4095 } 4096 4097 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4098 { 4099 __btrfs_btree_balance_dirty(fs_info, 1); 4100 } 4101 4102 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4103 { 4104 __btrfs_btree_balance_dirty(fs_info, 0); 4105 } 4106 4107 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4108 struct btrfs_key *first_key) 4109 { 4110 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4111 struct btrfs_fs_info *fs_info = root->fs_info; 4112 4113 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid, 4114 level, first_key); 4115 } 4116 4117 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4118 { 4119 /* cleanup FS via transaction */ 4120 btrfs_cleanup_transaction(fs_info); 4121 4122 mutex_lock(&fs_info->cleaner_mutex); 4123 btrfs_run_delayed_iputs(fs_info); 4124 mutex_unlock(&fs_info->cleaner_mutex); 4125 4126 down_write(&fs_info->cleanup_work_sem); 4127 up_write(&fs_info->cleanup_work_sem); 4128 } 4129 4130 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4131 { 4132 struct btrfs_ordered_extent *ordered; 4133 4134 spin_lock(&root->ordered_extent_lock); 4135 /* 4136 * This will just short circuit the ordered completion stuff which will 4137 * make sure the ordered extent gets properly cleaned up. 4138 */ 4139 list_for_each_entry(ordered, &root->ordered_extents, 4140 root_extent_list) 4141 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4142 spin_unlock(&root->ordered_extent_lock); 4143 } 4144 4145 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4146 { 4147 struct btrfs_root *root; 4148 struct list_head splice; 4149 4150 INIT_LIST_HEAD(&splice); 4151 4152 spin_lock(&fs_info->ordered_root_lock); 4153 list_splice_init(&fs_info->ordered_roots, &splice); 4154 while (!list_empty(&splice)) { 4155 root = list_first_entry(&splice, struct btrfs_root, 4156 ordered_root); 4157 list_move_tail(&root->ordered_root, 4158 &fs_info->ordered_roots); 4159 4160 spin_unlock(&fs_info->ordered_root_lock); 4161 btrfs_destroy_ordered_extents(root); 4162 4163 cond_resched(); 4164 spin_lock(&fs_info->ordered_root_lock); 4165 } 4166 spin_unlock(&fs_info->ordered_root_lock); 4167 } 4168 4169 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4170 struct btrfs_fs_info *fs_info) 4171 { 4172 struct rb_node *node; 4173 struct btrfs_delayed_ref_root *delayed_refs; 4174 struct btrfs_delayed_ref_node *ref; 4175 int ret = 0; 4176 4177 delayed_refs = &trans->delayed_refs; 4178 4179 spin_lock(&delayed_refs->lock); 4180 if (atomic_read(&delayed_refs->num_entries) == 0) { 4181 spin_unlock(&delayed_refs->lock); 4182 btrfs_info(fs_info, "delayed_refs has NO entry"); 4183 return ret; 4184 } 4185 4186 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4187 struct btrfs_delayed_ref_head *head; 4188 struct rb_node *n; 4189 bool pin_bytes = false; 4190 4191 head = rb_entry(node, struct btrfs_delayed_ref_head, 4192 href_node); 4193 if (!mutex_trylock(&head->mutex)) { 4194 refcount_inc(&head->refs); 4195 spin_unlock(&delayed_refs->lock); 4196 4197 mutex_lock(&head->mutex); 4198 mutex_unlock(&head->mutex); 4199 btrfs_put_delayed_ref_head(head); 4200 spin_lock(&delayed_refs->lock); 4201 continue; 4202 } 4203 spin_lock(&head->lock); 4204 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4205 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4206 ref_node); 4207 ref->in_tree = 0; 4208 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4209 RB_CLEAR_NODE(&ref->ref_node); 4210 if (!list_empty(&ref->add_list)) 4211 list_del(&ref->add_list); 4212 atomic_dec(&delayed_refs->num_entries); 4213 btrfs_put_delayed_ref(ref); 4214 } 4215 if (head->must_insert_reserved) 4216 pin_bytes = true; 4217 btrfs_free_delayed_extent_op(head->extent_op); 4218 delayed_refs->num_heads--; 4219 if (head->processing == 0) 4220 delayed_refs->num_heads_ready--; 4221 atomic_dec(&delayed_refs->num_entries); 4222 rb_erase_cached(&head->href_node, &delayed_refs->href_root); 4223 RB_CLEAR_NODE(&head->href_node); 4224 spin_unlock(&head->lock); 4225 spin_unlock(&delayed_refs->lock); 4226 mutex_unlock(&head->mutex); 4227 4228 if (pin_bytes) 4229 btrfs_pin_extent(fs_info, head->bytenr, 4230 head->num_bytes, 1); 4231 btrfs_put_delayed_ref_head(head); 4232 cond_resched(); 4233 spin_lock(&delayed_refs->lock); 4234 } 4235 4236 spin_unlock(&delayed_refs->lock); 4237 4238 return ret; 4239 } 4240 4241 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4242 { 4243 struct btrfs_inode *btrfs_inode; 4244 struct list_head splice; 4245 4246 INIT_LIST_HEAD(&splice); 4247 4248 spin_lock(&root->delalloc_lock); 4249 list_splice_init(&root->delalloc_inodes, &splice); 4250 4251 while (!list_empty(&splice)) { 4252 struct inode *inode = NULL; 4253 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4254 delalloc_inodes); 4255 __btrfs_del_delalloc_inode(root, btrfs_inode); 4256 spin_unlock(&root->delalloc_lock); 4257 4258 /* 4259 * Make sure we get a live inode and that it'll not disappear 4260 * meanwhile. 4261 */ 4262 inode = igrab(&btrfs_inode->vfs_inode); 4263 if (inode) { 4264 invalidate_inode_pages2(inode->i_mapping); 4265 iput(inode); 4266 } 4267 spin_lock(&root->delalloc_lock); 4268 } 4269 spin_unlock(&root->delalloc_lock); 4270 } 4271 4272 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4273 { 4274 struct btrfs_root *root; 4275 struct list_head splice; 4276 4277 INIT_LIST_HEAD(&splice); 4278 4279 spin_lock(&fs_info->delalloc_root_lock); 4280 list_splice_init(&fs_info->delalloc_roots, &splice); 4281 while (!list_empty(&splice)) { 4282 root = list_first_entry(&splice, struct btrfs_root, 4283 delalloc_root); 4284 root = btrfs_grab_fs_root(root); 4285 BUG_ON(!root); 4286 spin_unlock(&fs_info->delalloc_root_lock); 4287 4288 btrfs_destroy_delalloc_inodes(root); 4289 btrfs_put_fs_root(root); 4290 4291 spin_lock(&fs_info->delalloc_root_lock); 4292 } 4293 spin_unlock(&fs_info->delalloc_root_lock); 4294 } 4295 4296 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4297 struct extent_io_tree *dirty_pages, 4298 int mark) 4299 { 4300 int ret; 4301 struct extent_buffer *eb; 4302 u64 start = 0; 4303 u64 end; 4304 4305 while (1) { 4306 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4307 mark, NULL); 4308 if (ret) 4309 break; 4310 4311 clear_extent_bits(dirty_pages, start, end, mark); 4312 while (start <= end) { 4313 eb = find_extent_buffer(fs_info, start); 4314 start += fs_info->nodesize; 4315 if (!eb) 4316 continue; 4317 wait_on_extent_buffer_writeback(eb); 4318 4319 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4320 &eb->bflags)) 4321 clear_extent_buffer_dirty(eb); 4322 free_extent_buffer_stale(eb); 4323 } 4324 } 4325 4326 return ret; 4327 } 4328 4329 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4330 struct extent_io_tree *pinned_extents) 4331 { 4332 struct extent_io_tree *unpin; 4333 u64 start; 4334 u64 end; 4335 int ret; 4336 bool loop = true; 4337 4338 unpin = pinned_extents; 4339 again: 4340 while (1) { 4341 /* 4342 * The btrfs_finish_extent_commit() may get the same range as 4343 * ours between find_first_extent_bit and clear_extent_dirty. 4344 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4345 * the same extent range. 4346 */ 4347 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4348 ret = find_first_extent_bit(unpin, 0, &start, &end, 4349 EXTENT_DIRTY, NULL); 4350 if (ret) { 4351 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4352 break; 4353 } 4354 4355 clear_extent_dirty(unpin, start, end); 4356 btrfs_error_unpin_extent_range(fs_info, start, end); 4357 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4358 cond_resched(); 4359 } 4360 4361 if (loop) { 4362 if (unpin == &fs_info->freed_extents[0]) 4363 unpin = &fs_info->freed_extents[1]; 4364 else 4365 unpin = &fs_info->freed_extents[0]; 4366 loop = false; 4367 goto again; 4368 } 4369 4370 return 0; 4371 } 4372 4373 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) 4374 { 4375 struct inode *inode; 4376 4377 inode = cache->io_ctl.inode; 4378 if (inode) { 4379 invalidate_inode_pages2(inode->i_mapping); 4380 BTRFS_I(inode)->generation = 0; 4381 cache->io_ctl.inode = NULL; 4382 iput(inode); 4383 } 4384 btrfs_put_block_group(cache); 4385 } 4386 4387 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4388 struct btrfs_fs_info *fs_info) 4389 { 4390 struct btrfs_block_group_cache *cache; 4391 4392 spin_lock(&cur_trans->dirty_bgs_lock); 4393 while (!list_empty(&cur_trans->dirty_bgs)) { 4394 cache = list_first_entry(&cur_trans->dirty_bgs, 4395 struct btrfs_block_group_cache, 4396 dirty_list); 4397 4398 if (!list_empty(&cache->io_list)) { 4399 spin_unlock(&cur_trans->dirty_bgs_lock); 4400 list_del_init(&cache->io_list); 4401 btrfs_cleanup_bg_io(cache); 4402 spin_lock(&cur_trans->dirty_bgs_lock); 4403 } 4404 4405 list_del_init(&cache->dirty_list); 4406 spin_lock(&cache->lock); 4407 cache->disk_cache_state = BTRFS_DC_ERROR; 4408 spin_unlock(&cache->lock); 4409 4410 spin_unlock(&cur_trans->dirty_bgs_lock); 4411 btrfs_put_block_group(cache); 4412 spin_lock(&cur_trans->dirty_bgs_lock); 4413 } 4414 spin_unlock(&cur_trans->dirty_bgs_lock); 4415 4416 /* 4417 * Refer to the definition of io_bgs member for details why it's safe 4418 * to use it without any locking 4419 */ 4420 while (!list_empty(&cur_trans->io_bgs)) { 4421 cache = list_first_entry(&cur_trans->io_bgs, 4422 struct btrfs_block_group_cache, 4423 io_list); 4424 4425 list_del_init(&cache->io_list); 4426 spin_lock(&cache->lock); 4427 cache->disk_cache_state = BTRFS_DC_ERROR; 4428 spin_unlock(&cache->lock); 4429 btrfs_cleanup_bg_io(cache); 4430 } 4431 } 4432 4433 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4434 struct btrfs_fs_info *fs_info) 4435 { 4436 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4437 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4438 ASSERT(list_empty(&cur_trans->io_bgs)); 4439 4440 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4441 4442 cur_trans->state = TRANS_STATE_COMMIT_START; 4443 wake_up(&fs_info->transaction_blocked_wait); 4444 4445 cur_trans->state = TRANS_STATE_UNBLOCKED; 4446 wake_up(&fs_info->transaction_wait); 4447 4448 btrfs_destroy_delayed_inodes(fs_info); 4449 btrfs_assert_delayed_root_empty(fs_info); 4450 4451 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4452 EXTENT_DIRTY); 4453 btrfs_destroy_pinned_extent(fs_info, 4454 fs_info->pinned_extents); 4455 4456 cur_trans->state =TRANS_STATE_COMPLETED; 4457 wake_up(&cur_trans->commit_wait); 4458 } 4459 4460 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4461 { 4462 struct btrfs_transaction *t; 4463 4464 mutex_lock(&fs_info->transaction_kthread_mutex); 4465 4466 spin_lock(&fs_info->trans_lock); 4467 while (!list_empty(&fs_info->trans_list)) { 4468 t = list_first_entry(&fs_info->trans_list, 4469 struct btrfs_transaction, list); 4470 if (t->state >= TRANS_STATE_COMMIT_START) { 4471 refcount_inc(&t->use_count); 4472 spin_unlock(&fs_info->trans_lock); 4473 btrfs_wait_for_commit(fs_info, t->transid); 4474 btrfs_put_transaction(t); 4475 spin_lock(&fs_info->trans_lock); 4476 continue; 4477 } 4478 if (t == fs_info->running_transaction) { 4479 t->state = TRANS_STATE_COMMIT_DOING; 4480 spin_unlock(&fs_info->trans_lock); 4481 /* 4482 * We wait for 0 num_writers since we don't hold a trans 4483 * handle open currently for this transaction. 4484 */ 4485 wait_event(t->writer_wait, 4486 atomic_read(&t->num_writers) == 0); 4487 } else { 4488 spin_unlock(&fs_info->trans_lock); 4489 } 4490 btrfs_cleanup_one_transaction(t, fs_info); 4491 4492 spin_lock(&fs_info->trans_lock); 4493 if (t == fs_info->running_transaction) 4494 fs_info->running_transaction = NULL; 4495 list_del_init(&t->list); 4496 spin_unlock(&fs_info->trans_lock); 4497 4498 btrfs_put_transaction(t); 4499 trace_btrfs_transaction_commit(fs_info->tree_root); 4500 spin_lock(&fs_info->trans_lock); 4501 } 4502 spin_unlock(&fs_info->trans_lock); 4503 btrfs_destroy_all_ordered_extents(fs_info); 4504 btrfs_destroy_delayed_inodes(fs_info); 4505 btrfs_assert_delayed_root_empty(fs_info); 4506 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 4507 btrfs_destroy_all_delalloc_inodes(fs_info); 4508 mutex_unlock(&fs_info->transaction_kthread_mutex); 4509 4510 return 0; 4511 } 4512 4513 static const struct extent_io_ops btree_extent_io_ops = { 4514 /* mandatory callbacks */ 4515 .submit_bio_hook = btree_submit_bio_hook, 4516 .readpage_end_io_hook = btree_readpage_end_io_hook, 4517 .readpage_io_failed_hook = btree_io_failed_hook, 4518 4519 /* optional callbacks */ 4520 }; 4521