1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/buffer_head.h> 11 #include <linux/workqueue.h> 12 #include <linux/kthread.h> 13 #include <linux/slab.h> 14 #include <linux/migrate.h> 15 #include <linux/ratelimit.h> 16 #include <linux/uuid.h> 17 #include <linux/semaphore.h> 18 #include <linux/error-injection.h> 19 #include <linux/crc32c.h> 20 #include <linux/sched/mm.h> 21 #include <asm/unaligned.h> 22 #include <crypto/hash.h> 23 #include "ctree.h" 24 #include "disk-io.h" 25 #include "transaction.h" 26 #include "btrfs_inode.h" 27 #include "volumes.h" 28 #include "print-tree.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "free-space-cache.h" 32 #include "free-space-tree.h" 33 #include "inode-map.h" 34 #include "check-integrity.h" 35 #include "rcu-string.h" 36 #include "dev-replace.h" 37 #include "raid56.h" 38 #include "sysfs.h" 39 #include "qgroup.h" 40 #include "compression.h" 41 #include "tree-checker.h" 42 #include "ref-verify.h" 43 #include "block-group.h" 44 45 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 46 BTRFS_HEADER_FLAG_RELOC |\ 47 BTRFS_SUPER_FLAG_ERROR |\ 48 BTRFS_SUPER_FLAG_SEEDING |\ 49 BTRFS_SUPER_FLAG_METADUMP |\ 50 BTRFS_SUPER_FLAG_METADUMP_V2) 51 52 static const struct extent_io_ops btree_extent_io_ops; 53 static void end_workqueue_fn(struct btrfs_work *work); 54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 56 struct btrfs_fs_info *fs_info); 57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 59 struct extent_io_tree *dirty_pages, 60 int mark); 61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 62 struct extent_io_tree *pinned_extents); 63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 65 66 /* 67 * btrfs_end_io_wq structs are used to do processing in task context when an IO 68 * is complete. This is used during reads to verify checksums, and it is used 69 * by writes to insert metadata for new file extents after IO is complete. 70 */ 71 struct btrfs_end_io_wq { 72 struct bio *bio; 73 bio_end_io_t *end_io; 74 void *private; 75 struct btrfs_fs_info *info; 76 blk_status_t status; 77 enum btrfs_wq_endio_type metadata; 78 struct btrfs_work work; 79 }; 80 81 static struct kmem_cache *btrfs_end_io_wq_cache; 82 83 int __init btrfs_end_io_wq_init(void) 84 { 85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 86 sizeof(struct btrfs_end_io_wq), 87 0, 88 SLAB_MEM_SPREAD, 89 NULL); 90 if (!btrfs_end_io_wq_cache) 91 return -ENOMEM; 92 return 0; 93 } 94 95 void __cold btrfs_end_io_wq_exit(void) 96 { 97 kmem_cache_destroy(btrfs_end_io_wq_cache); 98 } 99 100 /* 101 * async submit bios are used to offload expensive checksumming 102 * onto the worker threads. They checksum file and metadata bios 103 * just before they are sent down the IO stack. 104 */ 105 struct async_submit_bio { 106 void *private_data; 107 struct bio *bio; 108 extent_submit_bio_start_t *submit_bio_start; 109 int mirror_num; 110 /* 111 * bio_offset is optional, can be used if the pages in the bio 112 * can't tell us where in the file the bio should go 113 */ 114 u64 bio_offset; 115 struct btrfs_work work; 116 blk_status_t status; 117 }; 118 119 /* 120 * Lockdep class keys for extent_buffer->lock's in this root. For a given 121 * eb, the lockdep key is determined by the btrfs_root it belongs to and 122 * the level the eb occupies in the tree. 123 * 124 * Different roots are used for different purposes and may nest inside each 125 * other and they require separate keysets. As lockdep keys should be 126 * static, assign keysets according to the purpose of the root as indicated 127 * by btrfs_root->root_key.objectid. This ensures that all special purpose 128 * roots have separate keysets. 129 * 130 * Lock-nesting across peer nodes is always done with the immediate parent 131 * node locked thus preventing deadlock. As lockdep doesn't know this, use 132 * subclass to avoid triggering lockdep warning in such cases. 133 * 134 * The key is set by the readpage_end_io_hook after the buffer has passed 135 * csum validation but before the pages are unlocked. It is also set by 136 * btrfs_init_new_buffer on freshly allocated blocks. 137 * 138 * We also add a check to make sure the highest level of the tree is the 139 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 140 * needs update as well. 141 */ 142 #ifdef CONFIG_DEBUG_LOCK_ALLOC 143 # if BTRFS_MAX_LEVEL != 8 144 # error 145 # endif 146 147 static struct btrfs_lockdep_keyset { 148 u64 id; /* root objectid */ 149 const char *name_stem; /* lock name stem */ 150 char names[BTRFS_MAX_LEVEL + 1][20]; 151 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 152 } btrfs_lockdep_keysets[] = { 153 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 154 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 155 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 156 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 157 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 158 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 159 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 160 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 161 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 162 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 163 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 164 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 165 { .id = 0, .name_stem = "tree" }, 166 }; 167 168 void __init btrfs_init_lockdep(void) 169 { 170 int i, j; 171 172 /* initialize lockdep class names */ 173 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 174 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 175 176 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 177 snprintf(ks->names[j], sizeof(ks->names[j]), 178 "btrfs-%s-%02d", ks->name_stem, j); 179 } 180 } 181 182 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 183 int level) 184 { 185 struct btrfs_lockdep_keyset *ks; 186 187 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 188 189 /* find the matching keyset, id 0 is the default entry */ 190 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 191 if (ks->id == objectid) 192 break; 193 194 lockdep_set_class_and_name(&eb->lock, 195 &ks->keys[level], ks->names[level]); 196 } 197 198 #endif 199 200 /* 201 * extents on the btree inode are pretty simple, there's one extent 202 * that covers the entire device 203 */ 204 struct extent_map *btree_get_extent(struct btrfs_inode *inode, 205 struct page *page, size_t pg_offset, u64 start, u64 len, 206 int create) 207 { 208 struct btrfs_fs_info *fs_info = inode->root->fs_info; 209 struct extent_map_tree *em_tree = &inode->extent_tree; 210 struct extent_map *em; 211 int ret; 212 213 read_lock(&em_tree->lock); 214 em = lookup_extent_mapping(em_tree, start, len); 215 if (em) { 216 em->bdev = fs_info->fs_devices->latest_bdev; 217 read_unlock(&em_tree->lock); 218 goto out; 219 } 220 read_unlock(&em_tree->lock); 221 222 em = alloc_extent_map(); 223 if (!em) { 224 em = ERR_PTR(-ENOMEM); 225 goto out; 226 } 227 em->start = 0; 228 em->len = (u64)-1; 229 em->block_len = (u64)-1; 230 em->block_start = 0; 231 em->bdev = fs_info->fs_devices->latest_bdev; 232 233 write_lock(&em_tree->lock); 234 ret = add_extent_mapping(em_tree, em, 0); 235 if (ret == -EEXIST) { 236 free_extent_map(em); 237 em = lookup_extent_mapping(em_tree, start, len); 238 if (!em) 239 em = ERR_PTR(-EIO); 240 } else if (ret) { 241 free_extent_map(em); 242 em = ERR_PTR(ret); 243 } 244 write_unlock(&em_tree->lock); 245 246 out: 247 return em; 248 } 249 250 /* 251 * Compute the csum of a btree block and store the result to provided buffer. 252 * 253 * Returns error if the extent buffer cannot be mapped. 254 */ 255 static int csum_tree_block(struct extent_buffer *buf, u8 *result) 256 { 257 struct btrfs_fs_info *fs_info = buf->fs_info; 258 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 259 unsigned long len; 260 unsigned long cur_len; 261 unsigned long offset = BTRFS_CSUM_SIZE; 262 char *kaddr; 263 unsigned long map_start; 264 unsigned long map_len; 265 int err; 266 267 shash->tfm = fs_info->csum_shash; 268 crypto_shash_init(shash); 269 270 len = buf->len - offset; 271 272 while (len > 0) { 273 /* 274 * Note: we don't need to check for the err == 1 case here, as 275 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)' 276 * and 'min_len = 32' and the currently implemented mapping 277 * algorithm we cannot cross a page boundary. 278 */ 279 err = map_private_extent_buffer(buf, offset, 32, 280 &kaddr, &map_start, &map_len); 281 if (WARN_ON(err)) 282 return err; 283 cur_len = min(len, map_len - (offset - map_start)); 284 crypto_shash_update(shash, kaddr + offset - map_start, cur_len); 285 len -= cur_len; 286 offset += cur_len; 287 } 288 memset(result, 0, BTRFS_CSUM_SIZE); 289 290 crypto_shash_final(shash, result); 291 292 return 0; 293 } 294 295 /* 296 * we can't consider a given block up to date unless the transid of the 297 * block matches the transid in the parent node's pointer. This is how we 298 * detect blocks that either didn't get written at all or got written 299 * in the wrong place. 300 */ 301 static int verify_parent_transid(struct extent_io_tree *io_tree, 302 struct extent_buffer *eb, u64 parent_transid, 303 int atomic) 304 { 305 struct extent_state *cached_state = NULL; 306 int ret; 307 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 308 309 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 310 return 0; 311 312 if (atomic) 313 return -EAGAIN; 314 315 if (need_lock) { 316 btrfs_tree_read_lock(eb); 317 btrfs_set_lock_blocking_read(eb); 318 } 319 320 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 321 &cached_state); 322 if (extent_buffer_uptodate(eb) && 323 btrfs_header_generation(eb) == parent_transid) { 324 ret = 0; 325 goto out; 326 } 327 btrfs_err_rl(eb->fs_info, 328 "parent transid verify failed on %llu wanted %llu found %llu", 329 eb->start, 330 parent_transid, btrfs_header_generation(eb)); 331 ret = 1; 332 333 /* 334 * Things reading via commit roots that don't have normal protection, 335 * like send, can have a really old block in cache that may point at a 336 * block that has been freed and re-allocated. So don't clear uptodate 337 * if we find an eb that is under IO (dirty/writeback) because we could 338 * end up reading in the stale data and then writing it back out and 339 * making everybody very sad. 340 */ 341 if (!extent_buffer_under_io(eb)) 342 clear_extent_buffer_uptodate(eb); 343 out: 344 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 345 &cached_state); 346 if (need_lock) 347 btrfs_tree_read_unlock_blocking(eb); 348 return ret; 349 } 350 351 static bool btrfs_supported_super_csum(u16 csum_type) 352 { 353 switch (csum_type) { 354 case BTRFS_CSUM_TYPE_CRC32: 355 return true; 356 default: 357 return false; 358 } 359 } 360 361 /* 362 * Return 0 if the superblock checksum type matches the checksum value of that 363 * algorithm. Pass the raw disk superblock data. 364 */ 365 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 366 char *raw_disk_sb) 367 { 368 struct btrfs_super_block *disk_sb = 369 (struct btrfs_super_block *)raw_disk_sb; 370 char result[BTRFS_CSUM_SIZE]; 371 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 372 373 shash->tfm = fs_info->csum_shash; 374 crypto_shash_init(shash); 375 376 /* 377 * The super_block structure does not span the whole 378 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 379 * filled with zeros and is included in the checksum. 380 */ 381 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE, 382 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 383 crypto_shash_final(shash, result); 384 385 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb))) 386 return 1; 387 388 return 0; 389 } 390 391 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 392 struct btrfs_key *first_key, u64 parent_transid) 393 { 394 struct btrfs_fs_info *fs_info = eb->fs_info; 395 int found_level; 396 struct btrfs_key found_key; 397 int ret; 398 399 found_level = btrfs_header_level(eb); 400 if (found_level != level) { 401 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 402 KERN_ERR "BTRFS: tree level check failed\n"); 403 btrfs_err(fs_info, 404 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 405 eb->start, level, found_level); 406 return -EIO; 407 } 408 409 if (!first_key) 410 return 0; 411 412 /* 413 * For live tree block (new tree blocks in current transaction), 414 * we need proper lock context to avoid race, which is impossible here. 415 * So we only checks tree blocks which is read from disk, whose 416 * generation <= fs_info->last_trans_committed. 417 */ 418 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 419 return 0; 420 421 /* We have @first_key, so this @eb must have at least one item */ 422 if (btrfs_header_nritems(eb) == 0) { 423 btrfs_err(fs_info, 424 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 425 eb->start); 426 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 427 return -EUCLEAN; 428 } 429 430 if (found_level) 431 btrfs_node_key_to_cpu(eb, &found_key, 0); 432 else 433 btrfs_item_key_to_cpu(eb, &found_key, 0); 434 ret = btrfs_comp_cpu_keys(first_key, &found_key); 435 436 if (ret) { 437 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 438 KERN_ERR "BTRFS: tree first key check failed\n"); 439 btrfs_err(fs_info, 440 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 441 eb->start, parent_transid, first_key->objectid, 442 first_key->type, first_key->offset, 443 found_key.objectid, found_key.type, 444 found_key.offset); 445 } 446 return ret; 447 } 448 449 /* 450 * helper to read a given tree block, doing retries as required when 451 * the checksums don't match and we have alternate mirrors to try. 452 * 453 * @parent_transid: expected transid, skip check if 0 454 * @level: expected level, mandatory check 455 * @first_key: expected key of first slot, skip check if NULL 456 */ 457 static int btree_read_extent_buffer_pages(struct extent_buffer *eb, 458 u64 parent_transid, int level, 459 struct btrfs_key *first_key) 460 { 461 struct btrfs_fs_info *fs_info = eb->fs_info; 462 struct extent_io_tree *io_tree; 463 int failed = 0; 464 int ret; 465 int num_copies = 0; 466 int mirror_num = 0; 467 int failed_mirror = 0; 468 469 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 470 while (1) { 471 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 472 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num); 473 if (!ret) { 474 if (verify_parent_transid(io_tree, eb, 475 parent_transid, 0)) 476 ret = -EIO; 477 else if (btrfs_verify_level_key(eb, level, 478 first_key, parent_transid)) 479 ret = -EUCLEAN; 480 else 481 break; 482 } 483 484 num_copies = btrfs_num_copies(fs_info, 485 eb->start, eb->len); 486 if (num_copies == 1) 487 break; 488 489 if (!failed_mirror) { 490 failed = 1; 491 failed_mirror = eb->read_mirror; 492 } 493 494 mirror_num++; 495 if (mirror_num == failed_mirror) 496 mirror_num++; 497 498 if (mirror_num > num_copies) 499 break; 500 } 501 502 if (failed && !ret && failed_mirror) 503 btrfs_repair_eb_io_failure(eb, failed_mirror); 504 505 return ret; 506 } 507 508 /* 509 * checksum a dirty tree block before IO. This has extra checks to make sure 510 * we only fill in the checksum field in the first page of a multi-page block 511 */ 512 513 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 514 { 515 u64 start = page_offset(page); 516 u64 found_start; 517 u8 result[BTRFS_CSUM_SIZE]; 518 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 519 struct extent_buffer *eb; 520 int ret; 521 522 eb = (struct extent_buffer *)page->private; 523 if (page != eb->pages[0]) 524 return 0; 525 526 found_start = btrfs_header_bytenr(eb); 527 /* 528 * Please do not consolidate these warnings into a single if. 529 * It is useful to know what went wrong. 530 */ 531 if (WARN_ON(found_start != start)) 532 return -EUCLEAN; 533 if (WARN_ON(!PageUptodate(page))) 534 return -EUCLEAN; 535 536 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 537 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 538 539 if (csum_tree_block(eb, result)) 540 return -EINVAL; 541 542 if (btrfs_header_level(eb)) 543 ret = btrfs_check_node(eb); 544 else 545 ret = btrfs_check_leaf_full(eb); 546 547 if (ret < 0) { 548 btrfs_err(fs_info, 549 "block=%llu write time tree block corruption detected", 550 eb->start); 551 return ret; 552 } 553 write_extent_buffer(eb, result, 0, csum_size); 554 555 return 0; 556 } 557 558 static int check_tree_block_fsid(struct extent_buffer *eb) 559 { 560 struct btrfs_fs_info *fs_info = eb->fs_info; 561 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 562 u8 fsid[BTRFS_FSID_SIZE]; 563 int ret = 1; 564 565 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 566 while (fs_devices) { 567 u8 *metadata_uuid; 568 569 /* 570 * Checking the incompat flag is only valid for the current 571 * fs. For seed devices it's forbidden to have their uuid 572 * changed so reading ->fsid in this case is fine 573 */ 574 if (fs_devices == fs_info->fs_devices && 575 btrfs_fs_incompat(fs_info, METADATA_UUID)) 576 metadata_uuid = fs_devices->metadata_uuid; 577 else 578 metadata_uuid = fs_devices->fsid; 579 580 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) { 581 ret = 0; 582 break; 583 } 584 fs_devices = fs_devices->seed; 585 } 586 return ret; 587 } 588 589 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 590 u64 phy_offset, struct page *page, 591 u64 start, u64 end, int mirror) 592 { 593 u64 found_start; 594 int found_level; 595 struct extent_buffer *eb; 596 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 597 struct btrfs_fs_info *fs_info = root->fs_info; 598 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 599 int ret = 0; 600 u8 result[BTRFS_CSUM_SIZE]; 601 int reads_done; 602 603 if (!page->private) 604 goto out; 605 606 eb = (struct extent_buffer *)page->private; 607 608 /* the pending IO might have been the only thing that kept this buffer 609 * in memory. Make sure we have a ref for all this other checks 610 */ 611 extent_buffer_get(eb); 612 613 reads_done = atomic_dec_and_test(&eb->io_pages); 614 if (!reads_done) 615 goto err; 616 617 eb->read_mirror = mirror; 618 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 619 ret = -EIO; 620 goto err; 621 } 622 623 found_start = btrfs_header_bytenr(eb); 624 if (found_start != eb->start) { 625 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 626 eb->start, found_start); 627 ret = -EIO; 628 goto err; 629 } 630 if (check_tree_block_fsid(eb)) { 631 btrfs_err_rl(fs_info, "bad fsid on block %llu", 632 eb->start); 633 ret = -EIO; 634 goto err; 635 } 636 found_level = btrfs_header_level(eb); 637 if (found_level >= BTRFS_MAX_LEVEL) { 638 btrfs_err(fs_info, "bad tree block level %d on %llu", 639 (int)btrfs_header_level(eb), eb->start); 640 ret = -EIO; 641 goto err; 642 } 643 644 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 645 eb, found_level); 646 647 ret = csum_tree_block(eb, result); 648 if (ret) 649 goto err; 650 651 if (memcmp_extent_buffer(eb, result, 0, csum_size)) { 652 u32 val; 653 u32 found = 0; 654 655 memcpy(&found, result, csum_size); 656 657 read_extent_buffer(eb, &val, 0, csum_size); 658 btrfs_warn_rl(fs_info, 659 "%s checksum verify failed on %llu wanted %x found %x level %d", 660 fs_info->sb->s_id, eb->start, 661 val, found, btrfs_header_level(eb)); 662 ret = -EUCLEAN; 663 goto err; 664 } 665 666 /* 667 * If this is a leaf block and it is corrupt, set the corrupt bit so 668 * that we don't try and read the other copies of this block, just 669 * return -EIO. 670 */ 671 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 672 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 673 ret = -EIO; 674 } 675 676 if (found_level > 0 && btrfs_check_node(eb)) 677 ret = -EIO; 678 679 if (!ret) 680 set_extent_buffer_uptodate(eb); 681 else 682 btrfs_err(fs_info, 683 "block=%llu read time tree block corruption detected", 684 eb->start); 685 err: 686 if (reads_done && 687 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 688 btree_readahead_hook(eb, ret); 689 690 if (ret) { 691 /* 692 * our io error hook is going to dec the io pages 693 * again, we have to make sure it has something 694 * to decrement 695 */ 696 atomic_inc(&eb->io_pages); 697 clear_extent_buffer_uptodate(eb); 698 } 699 free_extent_buffer(eb); 700 out: 701 return ret; 702 } 703 704 static void end_workqueue_bio(struct bio *bio) 705 { 706 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 707 struct btrfs_fs_info *fs_info; 708 struct btrfs_workqueue *wq; 709 btrfs_work_func_t func; 710 711 fs_info = end_io_wq->info; 712 end_io_wq->status = bio->bi_status; 713 714 if (bio_op(bio) == REQ_OP_WRITE) { 715 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 716 wq = fs_info->endio_meta_write_workers; 717 func = btrfs_endio_meta_write_helper; 718 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 719 wq = fs_info->endio_freespace_worker; 720 func = btrfs_freespace_write_helper; 721 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 722 wq = fs_info->endio_raid56_workers; 723 func = btrfs_endio_raid56_helper; 724 } else { 725 wq = fs_info->endio_write_workers; 726 func = btrfs_endio_write_helper; 727 } 728 } else { 729 if (unlikely(end_io_wq->metadata == 730 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 731 wq = fs_info->endio_repair_workers; 732 func = btrfs_endio_repair_helper; 733 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 734 wq = fs_info->endio_raid56_workers; 735 func = btrfs_endio_raid56_helper; 736 } else if (end_io_wq->metadata) { 737 wq = fs_info->endio_meta_workers; 738 func = btrfs_endio_meta_helper; 739 } else { 740 wq = fs_info->endio_workers; 741 func = btrfs_endio_helper; 742 } 743 } 744 745 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 746 btrfs_queue_work(wq, &end_io_wq->work); 747 } 748 749 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 750 enum btrfs_wq_endio_type metadata) 751 { 752 struct btrfs_end_io_wq *end_io_wq; 753 754 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 755 if (!end_io_wq) 756 return BLK_STS_RESOURCE; 757 758 end_io_wq->private = bio->bi_private; 759 end_io_wq->end_io = bio->bi_end_io; 760 end_io_wq->info = info; 761 end_io_wq->status = 0; 762 end_io_wq->bio = bio; 763 end_io_wq->metadata = metadata; 764 765 bio->bi_private = end_io_wq; 766 bio->bi_end_io = end_workqueue_bio; 767 return 0; 768 } 769 770 static void run_one_async_start(struct btrfs_work *work) 771 { 772 struct async_submit_bio *async; 773 blk_status_t ret; 774 775 async = container_of(work, struct async_submit_bio, work); 776 ret = async->submit_bio_start(async->private_data, async->bio, 777 async->bio_offset); 778 if (ret) 779 async->status = ret; 780 } 781 782 /* 783 * In order to insert checksums into the metadata in large chunks, we wait 784 * until bio submission time. All the pages in the bio are checksummed and 785 * sums are attached onto the ordered extent record. 786 * 787 * At IO completion time the csums attached on the ordered extent record are 788 * inserted into the tree. 789 */ 790 static void run_one_async_done(struct btrfs_work *work) 791 { 792 struct async_submit_bio *async; 793 struct inode *inode; 794 blk_status_t ret; 795 796 async = container_of(work, struct async_submit_bio, work); 797 inode = async->private_data; 798 799 /* If an error occurred we just want to clean up the bio and move on */ 800 if (async->status) { 801 async->bio->bi_status = async->status; 802 bio_endio(async->bio); 803 return; 804 } 805 806 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, 807 async->mirror_num, 1); 808 if (ret) { 809 async->bio->bi_status = ret; 810 bio_endio(async->bio); 811 } 812 } 813 814 static void run_one_async_free(struct btrfs_work *work) 815 { 816 struct async_submit_bio *async; 817 818 async = container_of(work, struct async_submit_bio, work); 819 kfree(async); 820 } 821 822 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 823 int mirror_num, unsigned long bio_flags, 824 u64 bio_offset, void *private_data, 825 extent_submit_bio_start_t *submit_bio_start) 826 { 827 struct async_submit_bio *async; 828 829 async = kmalloc(sizeof(*async), GFP_NOFS); 830 if (!async) 831 return BLK_STS_RESOURCE; 832 833 async->private_data = private_data; 834 async->bio = bio; 835 async->mirror_num = mirror_num; 836 async->submit_bio_start = submit_bio_start; 837 838 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 839 run_one_async_done, run_one_async_free); 840 841 async->bio_offset = bio_offset; 842 843 async->status = 0; 844 845 if (op_is_sync(bio->bi_opf)) 846 btrfs_set_work_high_priority(&async->work); 847 848 btrfs_queue_work(fs_info->workers, &async->work); 849 return 0; 850 } 851 852 static blk_status_t btree_csum_one_bio(struct bio *bio) 853 { 854 struct bio_vec *bvec; 855 struct btrfs_root *root; 856 int ret = 0; 857 struct bvec_iter_all iter_all; 858 859 ASSERT(!bio_flagged(bio, BIO_CLONED)); 860 bio_for_each_segment_all(bvec, bio, iter_all) { 861 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 862 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 863 if (ret) 864 break; 865 } 866 867 return errno_to_blk_status(ret); 868 } 869 870 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, 871 u64 bio_offset) 872 { 873 /* 874 * when we're called for a write, we're already in the async 875 * submission context. Just jump into btrfs_map_bio 876 */ 877 return btree_csum_one_bio(bio); 878 } 879 880 static int check_async_write(struct btrfs_fs_info *fs_info, 881 struct btrfs_inode *bi) 882 { 883 if (atomic_read(&bi->sync_writers)) 884 return 0; 885 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 886 return 0; 887 return 1; 888 } 889 890 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio, 891 int mirror_num, 892 unsigned long bio_flags) 893 { 894 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 895 int async = check_async_write(fs_info, BTRFS_I(inode)); 896 blk_status_t ret; 897 898 if (bio_op(bio) != REQ_OP_WRITE) { 899 /* 900 * called for a read, do the setup so that checksum validation 901 * can happen in the async kernel threads 902 */ 903 ret = btrfs_bio_wq_end_io(fs_info, bio, 904 BTRFS_WQ_ENDIO_METADATA); 905 if (ret) 906 goto out_w_error; 907 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 908 } else if (!async) { 909 ret = btree_csum_one_bio(bio); 910 if (ret) 911 goto out_w_error; 912 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 913 } else { 914 /* 915 * kthread helpers are used to submit writes so that 916 * checksumming can happen in parallel across all CPUs 917 */ 918 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 919 0, inode, btree_submit_bio_start); 920 } 921 922 if (ret) 923 goto out_w_error; 924 return 0; 925 926 out_w_error: 927 bio->bi_status = ret; 928 bio_endio(bio); 929 return ret; 930 } 931 932 #ifdef CONFIG_MIGRATION 933 static int btree_migratepage(struct address_space *mapping, 934 struct page *newpage, struct page *page, 935 enum migrate_mode mode) 936 { 937 /* 938 * we can't safely write a btree page from here, 939 * we haven't done the locking hook 940 */ 941 if (PageDirty(page)) 942 return -EAGAIN; 943 /* 944 * Buffers may be managed in a filesystem specific way. 945 * We must have no buffers or drop them. 946 */ 947 if (page_has_private(page) && 948 !try_to_release_page(page, GFP_KERNEL)) 949 return -EAGAIN; 950 return migrate_page(mapping, newpage, page, mode); 951 } 952 #endif 953 954 955 static int btree_writepages(struct address_space *mapping, 956 struct writeback_control *wbc) 957 { 958 struct btrfs_fs_info *fs_info; 959 int ret; 960 961 if (wbc->sync_mode == WB_SYNC_NONE) { 962 963 if (wbc->for_kupdate) 964 return 0; 965 966 fs_info = BTRFS_I(mapping->host)->root->fs_info; 967 /* this is a bit racy, but that's ok */ 968 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 969 BTRFS_DIRTY_METADATA_THRESH, 970 fs_info->dirty_metadata_batch); 971 if (ret < 0) 972 return 0; 973 } 974 return btree_write_cache_pages(mapping, wbc); 975 } 976 977 static int btree_readpage(struct file *file, struct page *page) 978 { 979 struct extent_io_tree *tree; 980 tree = &BTRFS_I(page->mapping->host)->io_tree; 981 return extent_read_full_page(tree, page, btree_get_extent, 0); 982 } 983 984 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 985 { 986 if (PageWriteback(page) || PageDirty(page)) 987 return 0; 988 989 return try_release_extent_buffer(page); 990 } 991 992 static void btree_invalidatepage(struct page *page, unsigned int offset, 993 unsigned int length) 994 { 995 struct extent_io_tree *tree; 996 tree = &BTRFS_I(page->mapping->host)->io_tree; 997 extent_invalidatepage(tree, page, offset); 998 btree_releasepage(page, GFP_NOFS); 999 if (PagePrivate(page)) { 1000 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1001 "page private not zero on page %llu", 1002 (unsigned long long)page_offset(page)); 1003 ClearPagePrivate(page); 1004 set_page_private(page, 0); 1005 put_page(page); 1006 } 1007 } 1008 1009 static int btree_set_page_dirty(struct page *page) 1010 { 1011 #ifdef DEBUG 1012 struct extent_buffer *eb; 1013 1014 BUG_ON(!PagePrivate(page)); 1015 eb = (struct extent_buffer *)page->private; 1016 BUG_ON(!eb); 1017 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1018 BUG_ON(!atomic_read(&eb->refs)); 1019 btrfs_assert_tree_locked(eb); 1020 #endif 1021 return __set_page_dirty_nobuffers(page); 1022 } 1023 1024 static const struct address_space_operations btree_aops = { 1025 .readpage = btree_readpage, 1026 .writepages = btree_writepages, 1027 .releasepage = btree_releasepage, 1028 .invalidatepage = btree_invalidatepage, 1029 #ifdef CONFIG_MIGRATION 1030 .migratepage = btree_migratepage, 1031 #endif 1032 .set_page_dirty = btree_set_page_dirty, 1033 }; 1034 1035 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1036 { 1037 struct extent_buffer *buf = NULL; 1038 int ret; 1039 1040 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1041 if (IS_ERR(buf)) 1042 return; 1043 1044 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0); 1045 if (ret < 0) 1046 free_extent_buffer_stale(buf); 1047 else 1048 free_extent_buffer(buf); 1049 } 1050 1051 struct extent_buffer *btrfs_find_create_tree_block( 1052 struct btrfs_fs_info *fs_info, 1053 u64 bytenr) 1054 { 1055 if (btrfs_is_testing(fs_info)) 1056 return alloc_test_extent_buffer(fs_info, bytenr); 1057 return alloc_extent_buffer(fs_info, bytenr); 1058 } 1059 1060 /* 1061 * Read tree block at logical address @bytenr and do variant basic but critical 1062 * verification. 1063 * 1064 * @parent_transid: expected transid of this tree block, skip check if 0 1065 * @level: expected level, mandatory check 1066 * @first_key: expected key in slot 0, skip check if NULL 1067 */ 1068 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1069 u64 parent_transid, int level, 1070 struct btrfs_key *first_key) 1071 { 1072 struct extent_buffer *buf = NULL; 1073 int ret; 1074 1075 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1076 if (IS_ERR(buf)) 1077 return buf; 1078 1079 ret = btree_read_extent_buffer_pages(buf, parent_transid, 1080 level, first_key); 1081 if (ret) { 1082 free_extent_buffer_stale(buf); 1083 return ERR_PTR(ret); 1084 } 1085 return buf; 1086 1087 } 1088 1089 void btrfs_clean_tree_block(struct extent_buffer *buf) 1090 { 1091 struct btrfs_fs_info *fs_info = buf->fs_info; 1092 if (btrfs_header_generation(buf) == 1093 fs_info->running_transaction->transid) { 1094 btrfs_assert_tree_locked(buf); 1095 1096 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1097 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1098 -buf->len, 1099 fs_info->dirty_metadata_batch); 1100 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1101 btrfs_set_lock_blocking_write(buf); 1102 clear_extent_buffer_dirty(buf); 1103 } 1104 } 1105 } 1106 1107 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1108 { 1109 struct btrfs_subvolume_writers *writers; 1110 int ret; 1111 1112 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1113 if (!writers) 1114 return ERR_PTR(-ENOMEM); 1115 1116 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS); 1117 if (ret < 0) { 1118 kfree(writers); 1119 return ERR_PTR(ret); 1120 } 1121 1122 init_waitqueue_head(&writers->wait); 1123 return writers; 1124 } 1125 1126 static void 1127 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1128 { 1129 percpu_counter_destroy(&writers->counter); 1130 kfree(writers); 1131 } 1132 1133 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1134 u64 objectid) 1135 { 1136 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1137 root->node = NULL; 1138 root->commit_root = NULL; 1139 root->state = 0; 1140 root->orphan_cleanup_state = 0; 1141 1142 root->last_trans = 0; 1143 root->highest_objectid = 0; 1144 root->nr_delalloc_inodes = 0; 1145 root->nr_ordered_extents = 0; 1146 root->inode_tree = RB_ROOT; 1147 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1148 root->block_rsv = NULL; 1149 1150 INIT_LIST_HEAD(&root->dirty_list); 1151 INIT_LIST_HEAD(&root->root_list); 1152 INIT_LIST_HEAD(&root->delalloc_inodes); 1153 INIT_LIST_HEAD(&root->delalloc_root); 1154 INIT_LIST_HEAD(&root->ordered_extents); 1155 INIT_LIST_HEAD(&root->ordered_root); 1156 INIT_LIST_HEAD(&root->reloc_dirty_list); 1157 INIT_LIST_HEAD(&root->logged_list[0]); 1158 INIT_LIST_HEAD(&root->logged_list[1]); 1159 spin_lock_init(&root->inode_lock); 1160 spin_lock_init(&root->delalloc_lock); 1161 spin_lock_init(&root->ordered_extent_lock); 1162 spin_lock_init(&root->accounting_lock); 1163 spin_lock_init(&root->log_extents_lock[0]); 1164 spin_lock_init(&root->log_extents_lock[1]); 1165 spin_lock_init(&root->qgroup_meta_rsv_lock); 1166 mutex_init(&root->objectid_mutex); 1167 mutex_init(&root->log_mutex); 1168 mutex_init(&root->ordered_extent_mutex); 1169 mutex_init(&root->delalloc_mutex); 1170 init_waitqueue_head(&root->log_writer_wait); 1171 init_waitqueue_head(&root->log_commit_wait[0]); 1172 init_waitqueue_head(&root->log_commit_wait[1]); 1173 INIT_LIST_HEAD(&root->log_ctxs[0]); 1174 INIT_LIST_HEAD(&root->log_ctxs[1]); 1175 atomic_set(&root->log_commit[0], 0); 1176 atomic_set(&root->log_commit[1], 0); 1177 atomic_set(&root->log_writers, 0); 1178 atomic_set(&root->log_batch, 0); 1179 refcount_set(&root->refs, 1); 1180 atomic_set(&root->will_be_snapshotted, 0); 1181 atomic_set(&root->snapshot_force_cow, 0); 1182 atomic_set(&root->nr_swapfiles, 0); 1183 root->log_transid = 0; 1184 root->log_transid_committed = -1; 1185 root->last_log_commit = 0; 1186 if (!dummy) 1187 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1188 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL); 1189 1190 memset(&root->root_key, 0, sizeof(root->root_key)); 1191 memset(&root->root_item, 0, sizeof(root->root_item)); 1192 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1193 if (!dummy) 1194 root->defrag_trans_start = fs_info->generation; 1195 else 1196 root->defrag_trans_start = 0; 1197 root->root_key.objectid = objectid; 1198 root->anon_dev = 0; 1199 1200 spin_lock_init(&root->root_item_lock); 1201 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1202 } 1203 1204 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1205 gfp_t flags) 1206 { 1207 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1208 if (root) 1209 root->fs_info = fs_info; 1210 return root; 1211 } 1212 1213 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1214 /* Should only be used by the testing infrastructure */ 1215 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1216 { 1217 struct btrfs_root *root; 1218 1219 if (!fs_info) 1220 return ERR_PTR(-EINVAL); 1221 1222 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1223 if (!root) 1224 return ERR_PTR(-ENOMEM); 1225 1226 /* We don't use the stripesize in selftest, set it as sectorsize */ 1227 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 1228 root->alloc_bytenr = 0; 1229 1230 return root; 1231 } 1232 #endif 1233 1234 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1235 u64 objectid) 1236 { 1237 struct btrfs_fs_info *fs_info = trans->fs_info; 1238 struct extent_buffer *leaf; 1239 struct btrfs_root *tree_root = fs_info->tree_root; 1240 struct btrfs_root *root; 1241 struct btrfs_key key; 1242 unsigned int nofs_flag; 1243 int ret = 0; 1244 uuid_le uuid = NULL_UUID_LE; 1245 1246 /* 1247 * We're holding a transaction handle, so use a NOFS memory allocation 1248 * context to avoid deadlock if reclaim happens. 1249 */ 1250 nofs_flag = memalloc_nofs_save(); 1251 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1252 memalloc_nofs_restore(nofs_flag); 1253 if (!root) 1254 return ERR_PTR(-ENOMEM); 1255 1256 __setup_root(root, fs_info, objectid); 1257 root->root_key.objectid = objectid; 1258 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1259 root->root_key.offset = 0; 1260 1261 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1262 if (IS_ERR(leaf)) { 1263 ret = PTR_ERR(leaf); 1264 leaf = NULL; 1265 goto fail; 1266 } 1267 1268 root->node = leaf; 1269 btrfs_mark_buffer_dirty(leaf); 1270 1271 root->commit_root = btrfs_root_node(root); 1272 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1273 1274 root->root_item.flags = 0; 1275 root->root_item.byte_limit = 0; 1276 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1277 btrfs_set_root_generation(&root->root_item, trans->transid); 1278 btrfs_set_root_level(&root->root_item, 0); 1279 btrfs_set_root_refs(&root->root_item, 1); 1280 btrfs_set_root_used(&root->root_item, leaf->len); 1281 btrfs_set_root_last_snapshot(&root->root_item, 0); 1282 btrfs_set_root_dirid(&root->root_item, 0); 1283 if (is_fstree(objectid)) 1284 uuid_le_gen(&uuid); 1285 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1286 root->root_item.drop_level = 0; 1287 1288 key.objectid = objectid; 1289 key.type = BTRFS_ROOT_ITEM_KEY; 1290 key.offset = 0; 1291 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1292 if (ret) 1293 goto fail; 1294 1295 btrfs_tree_unlock(leaf); 1296 1297 return root; 1298 1299 fail: 1300 if (leaf) { 1301 btrfs_tree_unlock(leaf); 1302 free_extent_buffer(root->commit_root); 1303 free_extent_buffer(leaf); 1304 } 1305 kfree(root); 1306 1307 return ERR_PTR(ret); 1308 } 1309 1310 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1311 struct btrfs_fs_info *fs_info) 1312 { 1313 struct btrfs_root *root; 1314 struct extent_buffer *leaf; 1315 1316 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1317 if (!root) 1318 return ERR_PTR(-ENOMEM); 1319 1320 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1321 1322 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1323 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1324 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1325 1326 /* 1327 * DON'T set REF_COWS for log trees 1328 * 1329 * log trees do not get reference counted because they go away 1330 * before a real commit is actually done. They do store pointers 1331 * to file data extents, and those reference counts still get 1332 * updated (along with back refs to the log tree). 1333 */ 1334 1335 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1336 NULL, 0, 0, 0); 1337 if (IS_ERR(leaf)) { 1338 kfree(root); 1339 return ERR_CAST(leaf); 1340 } 1341 1342 root->node = leaf; 1343 1344 btrfs_mark_buffer_dirty(root->node); 1345 btrfs_tree_unlock(root->node); 1346 return root; 1347 } 1348 1349 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1350 struct btrfs_fs_info *fs_info) 1351 { 1352 struct btrfs_root *log_root; 1353 1354 log_root = alloc_log_tree(trans, fs_info); 1355 if (IS_ERR(log_root)) 1356 return PTR_ERR(log_root); 1357 WARN_ON(fs_info->log_root_tree); 1358 fs_info->log_root_tree = log_root; 1359 return 0; 1360 } 1361 1362 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1363 struct btrfs_root *root) 1364 { 1365 struct btrfs_fs_info *fs_info = root->fs_info; 1366 struct btrfs_root *log_root; 1367 struct btrfs_inode_item *inode_item; 1368 1369 log_root = alloc_log_tree(trans, fs_info); 1370 if (IS_ERR(log_root)) 1371 return PTR_ERR(log_root); 1372 1373 log_root->last_trans = trans->transid; 1374 log_root->root_key.offset = root->root_key.objectid; 1375 1376 inode_item = &log_root->root_item.inode; 1377 btrfs_set_stack_inode_generation(inode_item, 1); 1378 btrfs_set_stack_inode_size(inode_item, 3); 1379 btrfs_set_stack_inode_nlink(inode_item, 1); 1380 btrfs_set_stack_inode_nbytes(inode_item, 1381 fs_info->nodesize); 1382 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1383 1384 btrfs_set_root_node(&log_root->root_item, log_root->node); 1385 1386 WARN_ON(root->log_root); 1387 root->log_root = log_root; 1388 root->log_transid = 0; 1389 root->log_transid_committed = -1; 1390 root->last_log_commit = 0; 1391 return 0; 1392 } 1393 1394 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1395 struct btrfs_key *key) 1396 { 1397 struct btrfs_root *root; 1398 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1399 struct btrfs_path *path; 1400 u64 generation; 1401 int ret; 1402 int level; 1403 1404 path = btrfs_alloc_path(); 1405 if (!path) 1406 return ERR_PTR(-ENOMEM); 1407 1408 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1409 if (!root) { 1410 ret = -ENOMEM; 1411 goto alloc_fail; 1412 } 1413 1414 __setup_root(root, fs_info, key->objectid); 1415 1416 ret = btrfs_find_root(tree_root, key, path, 1417 &root->root_item, &root->root_key); 1418 if (ret) { 1419 if (ret > 0) 1420 ret = -ENOENT; 1421 goto find_fail; 1422 } 1423 1424 generation = btrfs_root_generation(&root->root_item); 1425 level = btrfs_root_level(&root->root_item); 1426 root->node = read_tree_block(fs_info, 1427 btrfs_root_bytenr(&root->root_item), 1428 generation, level, NULL); 1429 if (IS_ERR(root->node)) { 1430 ret = PTR_ERR(root->node); 1431 goto find_fail; 1432 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1433 ret = -EIO; 1434 free_extent_buffer(root->node); 1435 goto find_fail; 1436 } 1437 root->commit_root = btrfs_root_node(root); 1438 out: 1439 btrfs_free_path(path); 1440 return root; 1441 1442 find_fail: 1443 kfree(root); 1444 alloc_fail: 1445 root = ERR_PTR(ret); 1446 goto out; 1447 } 1448 1449 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1450 struct btrfs_key *location) 1451 { 1452 struct btrfs_root *root; 1453 1454 root = btrfs_read_tree_root(tree_root, location); 1455 if (IS_ERR(root)) 1456 return root; 1457 1458 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1459 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1460 btrfs_check_and_init_root_item(&root->root_item); 1461 } 1462 1463 return root; 1464 } 1465 1466 int btrfs_init_fs_root(struct btrfs_root *root) 1467 { 1468 int ret; 1469 struct btrfs_subvolume_writers *writers; 1470 1471 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1472 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1473 GFP_NOFS); 1474 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1475 ret = -ENOMEM; 1476 goto fail; 1477 } 1478 1479 writers = btrfs_alloc_subvolume_writers(); 1480 if (IS_ERR(writers)) { 1481 ret = PTR_ERR(writers); 1482 goto fail; 1483 } 1484 root->subv_writers = writers; 1485 1486 btrfs_init_free_ino_ctl(root); 1487 spin_lock_init(&root->ino_cache_lock); 1488 init_waitqueue_head(&root->ino_cache_wait); 1489 1490 ret = get_anon_bdev(&root->anon_dev); 1491 if (ret) 1492 goto fail; 1493 1494 mutex_lock(&root->objectid_mutex); 1495 ret = btrfs_find_highest_objectid(root, 1496 &root->highest_objectid); 1497 if (ret) { 1498 mutex_unlock(&root->objectid_mutex); 1499 goto fail; 1500 } 1501 1502 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1503 1504 mutex_unlock(&root->objectid_mutex); 1505 1506 return 0; 1507 fail: 1508 /* The caller is responsible to call btrfs_free_fs_root */ 1509 return ret; 1510 } 1511 1512 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1513 u64 root_id) 1514 { 1515 struct btrfs_root *root; 1516 1517 spin_lock(&fs_info->fs_roots_radix_lock); 1518 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1519 (unsigned long)root_id); 1520 spin_unlock(&fs_info->fs_roots_radix_lock); 1521 return root; 1522 } 1523 1524 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1525 struct btrfs_root *root) 1526 { 1527 int ret; 1528 1529 ret = radix_tree_preload(GFP_NOFS); 1530 if (ret) 1531 return ret; 1532 1533 spin_lock(&fs_info->fs_roots_radix_lock); 1534 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1535 (unsigned long)root->root_key.objectid, 1536 root); 1537 if (ret == 0) 1538 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1539 spin_unlock(&fs_info->fs_roots_radix_lock); 1540 radix_tree_preload_end(); 1541 1542 return ret; 1543 } 1544 1545 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1546 struct btrfs_key *location, 1547 bool check_ref) 1548 { 1549 struct btrfs_root *root; 1550 struct btrfs_path *path; 1551 struct btrfs_key key; 1552 int ret; 1553 1554 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1555 return fs_info->tree_root; 1556 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1557 return fs_info->extent_root; 1558 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1559 return fs_info->chunk_root; 1560 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1561 return fs_info->dev_root; 1562 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1563 return fs_info->csum_root; 1564 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1565 return fs_info->quota_root ? fs_info->quota_root : 1566 ERR_PTR(-ENOENT); 1567 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1568 return fs_info->uuid_root ? fs_info->uuid_root : 1569 ERR_PTR(-ENOENT); 1570 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1571 return fs_info->free_space_root ? fs_info->free_space_root : 1572 ERR_PTR(-ENOENT); 1573 again: 1574 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1575 if (root) { 1576 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1577 return ERR_PTR(-ENOENT); 1578 return root; 1579 } 1580 1581 root = btrfs_read_fs_root(fs_info->tree_root, location); 1582 if (IS_ERR(root)) 1583 return root; 1584 1585 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1586 ret = -ENOENT; 1587 goto fail; 1588 } 1589 1590 ret = btrfs_init_fs_root(root); 1591 if (ret) 1592 goto fail; 1593 1594 path = btrfs_alloc_path(); 1595 if (!path) { 1596 ret = -ENOMEM; 1597 goto fail; 1598 } 1599 key.objectid = BTRFS_ORPHAN_OBJECTID; 1600 key.type = BTRFS_ORPHAN_ITEM_KEY; 1601 key.offset = location->objectid; 1602 1603 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1604 btrfs_free_path(path); 1605 if (ret < 0) 1606 goto fail; 1607 if (ret == 0) 1608 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1609 1610 ret = btrfs_insert_fs_root(fs_info, root); 1611 if (ret) { 1612 if (ret == -EEXIST) { 1613 btrfs_free_fs_root(root); 1614 goto again; 1615 } 1616 goto fail; 1617 } 1618 return root; 1619 fail: 1620 btrfs_free_fs_root(root); 1621 return ERR_PTR(ret); 1622 } 1623 1624 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1625 { 1626 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1627 int ret = 0; 1628 struct btrfs_device *device; 1629 struct backing_dev_info *bdi; 1630 1631 rcu_read_lock(); 1632 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1633 if (!device->bdev) 1634 continue; 1635 bdi = device->bdev->bd_bdi; 1636 if (bdi_congested(bdi, bdi_bits)) { 1637 ret = 1; 1638 break; 1639 } 1640 } 1641 rcu_read_unlock(); 1642 return ret; 1643 } 1644 1645 /* 1646 * called by the kthread helper functions to finally call the bio end_io 1647 * functions. This is where read checksum verification actually happens 1648 */ 1649 static void end_workqueue_fn(struct btrfs_work *work) 1650 { 1651 struct bio *bio; 1652 struct btrfs_end_io_wq *end_io_wq; 1653 1654 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1655 bio = end_io_wq->bio; 1656 1657 bio->bi_status = end_io_wq->status; 1658 bio->bi_private = end_io_wq->private; 1659 bio->bi_end_io = end_io_wq->end_io; 1660 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1661 bio_endio(bio); 1662 } 1663 1664 static int cleaner_kthread(void *arg) 1665 { 1666 struct btrfs_root *root = arg; 1667 struct btrfs_fs_info *fs_info = root->fs_info; 1668 int again; 1669 1670 while (1) { 1671 again = 0; 1672 1673 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1674 1675 /* Make the cleaner go to sleep early. */ 1676 if (btrfs_need_cleaner_sleep(fs_info)) 1677 goto sleep; 1678 1679 /* 1680 * Do not do anything if we might cause open_ctree() to block 1681 * before we have finished mounting the filesystem. 1682 */ 1683 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1684 goto sleep; 1685 1686 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1687 goto sleep; 1688 1689 /* 1690 * Avoid the problem that we change the status of the fs 1691 * during the above check and trylock. 1692 */ 1693 if (btrfs_need_cleaner_sleep(fs_info)) { 1694 mutex_unlock(&fs_info->cleaner_mutex); 1695 goto sleep; 1696 } 1697 1698 btrfs_run_delayed_iputs(fs_info); 1699 1700 again = btrfs_clean_one_deleted_snapshot(root); 1701 mutex_unlock(&fs_info->cleaner_mutex); 1702 1703 /* 1704 * The defragger has dealt with the R/O remount and umount, 1705 * needn't do anything special here. 1706 */ 1707 btrfs_run_defrag_inodes(fs_info); 1708 1709 /* 1710 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1711 * with relocation (btrfs_relocate_chunk) and relocation 1712 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1713 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1714 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1715 * unused block groups. 1716 */ 1717 btrfs_delete_unused_bgs(fs_info); 1718 sleep: 1719 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1720 if (kthread_should_park()) 1721 kthread_parkme(); 1722 if (kthread_should_stop()) 1723 return 0; 1724 if (!again) { 1725 set_current_state(TASK_INTERRUPTIBLE); 1726 schedule(); 1727 __set_current_state(TASK_RUNNING); 1728 } 1729 } 1730 } 1731 1732 static int transaction_kthread(void *arg) 1733 { 1734 struct btrfs_root *root = arg; 1735 struct btrfs_fs_info *fs_info = root->fs_info; 1736 struct btrfs_trans_handle *trans; 1737 struct btrfs_transaction *cur; 1738 u64 transid; 1739 time64_t now; 1740 unsigned long delay; 1741 bool cannot_commit; 1742 1743 do { 1744 cannot_commit = false; 1745 delay = HZ * fs_info->commit_interval; 1746 mutex_lock(&fs_info->transaction_kthread_mutex); 1747 1748 spin_lock(&fs_info->trans_lock); 1749 cur = fs_info->running_transaction; 1750 if (!cur) { 1751 spin_unlock(&fs_info->trans_lock); 1752 goto sleep; 1753 } 1754 1755 now = ktime_get_seconds(); 1756 if (cur->state < TRANS_STATE_BLOCKED && 1757 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) && 1758 (now < cur->start_time || 1759 now - cur->start_time < fs_info->commit_interval)) { 1760 spin_unlock(&fs_info->trans_lock); 1761 delay = HZ * 5; 1762 goto sleep; 1763 } 1764 transid = cur->transid; 1765 spin_unlock(&fs_info->trans_lock); 1766 1767 /* If the file system is aborted, this will always fail. */ 1768 trans = btrfs_attach_transaction(root); 1769 if (IS_ERR(trans)) { 1770 if (PTR_ERR(trans) != -ENOENT) 1771 cannot_commit = true; 1772 goto sleep; 1773 } 1774 if (transid == trans->transid) { 1775 btrfs_commit_transaction(trans); 1776 } else { 1777 btrfs_end_transaction(trans); 1778 } 1779 sleep: 1780 wake_up_process(fs_info->cleaner_kthread); 1781 mutex_unlock(&fs_info->transaction_kthread_mutex); 1782 1783 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1784 &fs_info->fs_state))) 1785 btrfs_cleanup_transaction(fs_info); 1786 if (!kthread_should_stop() && 1787 (!btrfs_transaction_blocked(fs_info) || 1788 cannot_commit)) 1789 schedule_timeout_interruptible(delay); 1790 } while (!kthread_should_stop()); 1791 return 0; 1792 } 1793 1794 /* 1795 * this will find the highest generation in the array of 1796 * root backups. The index of the highest array is returned, 1797 * or -1 if we can't find anything. 1798 * 1799 * We check to make sure the array is valid by comparing the 1800 * generation of the latest root in the array with the generation 1801 * in the super block. If they don't match we pitch it. 1802 */ 1803 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1804 { 1805 u64 cur; 1806 int newest_index = -1; 1807 struct btrfs_root_backup *root_backup; 1808 int i; 1809 1810 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1811 root_backup = info->super_copy->super_roots + i; 1812 cur = btrfs_backup_tree_root_gen(root_backup); 1813 if (cur == newest_gen) 1814 newest_index = i; 1815 } 1816 1817 /* check to see if we actually wrapped around */ 1818 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1819 root_backup = info->super_copy->super_roots; 1820 cur = btrfs_backup_tree_root_gen(root_backup); 1821 if (cur == newest_gen) 1822 newest_index = 0; 1823 } 1824 return newest_index; 1825 } 1826 1827 1828 /* 1829 * find the oldest backup so we know where to store new entries 1830 * in the backup array. This will set the backup_root_index 1831 * field in the fs_info struct 1832 */ 1833 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1834 u64 newest_gen) 1835 { 1836 int newest_index = -1; 1837 1838 newest_index = find_newest_super_backup(info, newest_gen); 1839 /* if there was garbage in there, just move along */ 1840 if (newest_index == -1) { 1841 info->backup_root_index = 0; 1842 } else { 1843 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1844 } 1845 } 1846 1847 /* 1848 * copy all the root pointers into the super backup array. 1849 * this will bump the backup pointer by one when it is 1850 * done 1851 */ 1852 static void backup_super_roots(struct btrfs_fs_info *info) 1853 { 1854 int next_backup; 1855 struct btrfs_root_backup *root_backup; 1856 int last_backup; 1857 1858 next_backup = info->backup_root_index; 1859 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1860 BTRFS_NUM_BACKUP_ROOTS; 1861 1862 /* 1863 * just overwrite the last backup if we're at the same generation 1864 * this happens only at umount 1865 */ 1866 root_backup = info->super_for_commit->super_roots + last_backup; 1867 if (btrfs_backup_tree_root_gen(root_backup) == 1868 btrfs_header_generation(info->tree_root->node)) 1869 next_backup = last_backup; 1870 1871 root_backup = info->super_for_commit->super_roots + next_backup; 1872 1873 /* 1874 * make sure all of our padding and empty slots get zero filled 1875 * regardless of which ones we use today 1876 */ 1877 memset(root_backup, 0, sizeof(*root_backup)); 1878 1879 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1880 1881 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1882 btrfs_set_backup_tree_root_gen(root_backup, 1883 btrfs_header_generation(info->tree_root->node)); 1884 1885 btrfs_set_backup_tree_root_level(root_backup, 1886 btrfs_header_level(info->tree_root->node)); 1887 1888 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1889 btrfs_set_backup_chunk_root_gen(root_backup, 1890 btrfs_header_generation(info->chunk_root->node)); 1891 btrfs_set_backup_chunk_root_level(root_backup, 1892 btrfs_header_level(info->chunk_root->node)); 1893 1894 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1895 btrfs_set_backup_extent_root_gen(root_backup, 1896 btrfs_header_generation(info->extent_root->node)); 1897 btrfs_set_backup_extent_root_level(root_backup, 1898 btrfs_header_level(info->extent_root->node)); 1899 1900 /* 1901 * we might commit during log recovery, which happens before we set 1902 * the fs_root. Make sure it is valid before we fill it in. 1903 */ 1904 if (info->fs_root && info->fs_root->node) { 1905 btrfs_set_backup_fs_root(root_backup, 1906 info->fs_root->node->start); 1907 btrfs_set_backup_fs_root_gen(root_backup, 1908 btrfs_header_generation(info->fs_root->node)); 1909 btrfs_set_backup_fs_root_level(root_backup, 1910 btrfs_header_level(info->fs_root->node)); 1911 } 1912 1913 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1914 btrfs_set_backup_dev_root_gen(root_backup, 1915 btrfs_header_generation(info->dev_root->node)); 1916 btrfs_set_backup_dev_root_level(root_backup, 1917 btrfs_header_level(info->dev_root->node)); 1918 1919 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1920 btrfs_set_backup_csum_root_gen(root_backup, 1921 btrfs_header_generation(info->csum_root->node)); 1922 btrfs_set_backup_csum_root_level(root_backup, 1923 btrfs_header_level(info->csum_root->node)); 1924 1925 btrfs_set_backup_total_bytes(root_backup, 1926 btrfs_super_total_bytes(info->super_copy)); 1927 btrfs_set_backup_bytes_used(root_backup, 1928 btrfs_super_bytes_used(info->super_copy)); 1929 btrfs_set_backup_num_devices(root_backup, 1930 btrfs_super_num_devices(info->super_copy)); 1931 1932 /* 1933 * if we don't copy this out to the super_copy, it won't get remembered 1934 * for the next commit 1935 */ 1936 memcpy(&info->super_copy->super_roots, 1937 &info->super_for_commit->super_roots, 1938 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1939 } 1940 1941 /* 1942 * this copies info out of the root backup array and back into 1943 * the in-memory super block. It is meant to help iterate through 1944 * the array, so you send it the number of backups you've already 1945 * tried and the last backup index you used. 1946 * 1947 * this returns -1 when it has tried all the backups 1948 */ 1949 static noinline int next_root_backup(struct btrfs_fs_info *info, 1950 struct btrfs_super_block *super, 1951 int *num_backups_tried, int *backup_index) 1952 { 1953 struct btrfs_root_backup *root_backup; 1954 int newest = *backup_index; 1955 1956 if (*num_backups_tried == 0) { 1957 u64 gen = btrfs_super_generation(super); 1958 1959 newest = find_newest_super_backup(info, gen); 1960 if (newest == -1) 1961 return -1; 1962 1963 *backup_index = newest; 1964 *num_backups_tried = 1; 1965 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1966 /* we've tried all the backups, all done */ 1967 return -1; 1968 } else { 1969 /* jump to the next oldest backup */ 1970 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1971 BTRFS_NUM_BACKUP_ROOTS; 1972 *backup_index = newest; 1973 *num_backups_tried += 1; 1974 } 1975 root_backup = super->super_roots + newest; 1976 1977 btrfs_set_super_generation(super, 1978 btrfs_backup_tree_root_gen(root_backup)); 1979 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1980 btrfs_set_super_root_level(super, 1981 btrfs_backup_tree_root_level(root_backup)); 1982 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1983 1984 /* 1985 * fixme: the total bytes and num_devices need to match or we should 1986 * need a fsck 1987 */ 1988 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1989 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1990 return 0; 1991 } 1992 1993 /* helper to cleanup workers */ 1994 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1995 { 1996 btrfs_destroy_workqueue(fs_info->fixup_workers); 1997 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1998 btrfs_destroy_workqueue(fs_info->workers); 1999 btrfs_destroy_workqueue(fs_info->endio_workers); 2000 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2001 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2002 btrfs_destroy_workqueue(fs_info->rmw_workers); 2003 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2004 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2005 btrfs_destroy_workqueue(fs_info->submit_workers); 2006 btrfs_destroy_workqueue(fs_info->delayed_workers); 2007 btrfs_destroy_workqueue(fs_info->caching_workers); 2008 btrfs_destroy_workqueue(fs_info->readahead_workers); 2009 btrfs_destroy_workqueue(fs_info->flush_workers); 2010 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2011 /* 2012 * Now that all other work queues are destroyed, we can safely destroy 2013 * the queues used for metadata I/O, since tasks from those other work 2014 * queues can do metadata I/O operations. 2015 */ 2016 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2017 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2018 } 2019 2020 static void free_root_extent_buffers(struct btrfs_root *root) 2021 { 2022 if (root) { 2023 free_extent_buffer(root->node); 2024 free_extent_buffer(root->commit_root); 2025 root->node = NULL; 2026 root->commit_root = NULL; 2027 } 2028 } 2029 2030 /* helper to cleanup tree roots */ 2031 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2032 { 2033 free_root_extent_buffers(info->tree_root); 2034 2035 free_root_extent_buffers(info->dev_root); 2036 free_root_extent_buffers(info->extent_root); 2037 free_root_extent_buffers(info->csum_root); 2038 free_root_extent_buffers(info->quota_root); 2039 free_root_extent_buffers(info->uuid_root); 2040 if (chunk_root) 2041 free_root_extent_buffers(info->chunk_root); 2042 free_root_extent_buffers(info->free_space_root); 2043 } 2044 2045 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2046 { 2047 int ret; 2048 struct btrfs_root *gang[8]; 2049 int i; 2050 2051 while (!list_empty(&fs_info->dead_roots)) { 2052 gang[0] = list_entry(fs_info->dead_roots.next, 2053 struct btrfs_root, root_list); 2054 list_del(&gang[0]->root_list); 2055 2056 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2057 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2058 } else { 2059 free_extent_buffer(gang[0]->node); 2060 free_extent_buffer(gang[0]->commit_root); 2061 btrfs_put_fs_root(gang[0]); 2062 } 2063 } 2064 2065 while (1) { 2066 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2067 (void **)gang, 0, 2068 ARRAY_SIZE(gang)); 2069 if (!ret) 2070 break; 2071 for (i = 0; i < ret; i++) 2072 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2073 } 2074 2075 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2076 btrfs_free_log_root_tree(NULL, fs_info); 2077 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 2078 } 2079 } 2080 2081 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2082 { 2083 mutex_init(&fs_info->scrub_lock); 2084 atomic_set(&fs_info->scrubs_running, 0); 2085 atomic_set(&fs_info->scrub_pause_req, 0); 2086 atomic_set(&fs_info->scrubs_paused, 0); 2087 atomic_set(&fs_info->scrub_cancel_req, 0); 2088 init_waitqueue_head(&fs_info->scrub_pause_wait); 2089 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2090 } 2091 2092 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2093 { 2094 spin_lock_init(&fs_info->balance_lock); 2095 mutex_init(&fs_info->balance_mutex); 2096 atomic_set(&fs_info->balance_pause_req, 0); 2097 atomic_set(&fs_info->balance_cancel_req, 0); 2098 fs_info->balance_ctl = NULL; 2099 init_waitqueue_head(&fs_info->balance_wait_q); 2100 } 2101 2102 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2103 { 2104 struct inode *inode = fs_info->btree_inode; 2105 2106 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2107 set_nlink(inode, 1); 2108 /* 2109 * we set the i_size on the btree inode to the max possible int. 2110 * the real end of the address space is determined by all of 2111 * the devices in the system 2112 */ 2113 inode->i_size = OFFSET_MAX; 2114 inode->i_mapping->a_ops = &btree_aops; 2115 2116 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2117 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2118 IO_TREE_INODE_IO, inode); 2119 BTRFS_I(inode)->io_tree.track_uptodate = false; 2120 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2121 2122 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2123 2124 BTRFS_I(inode)->root = fs_info->tree_root; 2125 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2126 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2127 btrfs_insert_inode_hash(inode); 2128 } 2129 2130 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2131 { 2132 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2133 init_rwsem(&fs_info->dev_replace.rwsem); 2134 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2135 } 2136 2137 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2138 { 2139 spin_lock_init(&fs_info->qgroup_lock); 2140 mutex_init(&fs_info->qgroup_ioctl_lock); 2141 fs_info->qgroup_tree = RB_ROOT; 2142 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2143 fs_info->qgroup_seq = 1; 2144 fs_info->qgroup_ulist = NULL; 2145 fs_info->qgroup_rescan_running = false; 2146 mutex_init(&fs_info->qgroup_rescan_lock); 2147 } 2148 2149 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2150 struct btrfs_fs_devices *fs_devices) 2151 { 2152 u32 max_active = fs_info->thread_pool_size; 2153 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2154 2155 fs_info->workers = 2156 btrfs_alloc_workqueue(fs_info, "worker", 2157 flags | WQ_HIGHPRI, max_active, 16); 2158 2159 fs_info->delalloc_workers = 2160 btrfs_alloc_workqueue(fs_info, "delalloc", 2161 flags, max_active, 2); 2162 2163 fs_info->flush_workers = 2164 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2165 flags, max_active, 0); 2166 2167 fs_info->caching_workers = 2168 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2169 2170 /* 2171 * a higher idle thresh on the submit workers makes it much more 2172 * likely that bios will be send down in a sane order to the 2173 * devices 2174 */ 2175 fs_info->submit_workers = 2176 btrfs_alloc_workqueue(fs_info, "submit", flags, 2177 min_t(u64, fs_devices->num_devices, 2178 max_active), 64); 2179 2180 fs_info->fixup_workers = 2181 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2182 2183 /* 2184 * endios are largely parallel and should have a very 2185 * low idle thresh 2186 */ 2187 fs_info->endio_workers = 2188 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2189 fs_info->endio_meta_workers = 2190 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2191 max_active, 4); 2192 fs_info->endio_meta_write_workers = 2193 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2194 max_active, 2); 2195 fs_info->endio_raid56_workers = 2196 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2197 max_active, 4); 2198 fs_info->endio_repair_workers = 2199 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2200 fs_info->rmw_workers = 2201 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2202 fs_info->endio_write_workers = 2203 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2204 max_active, 2); 2205 fs_info->endio_freespace_worker = 2206 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2207 max_active, 0); 2208 fs_info->delayed_workers = 2209 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2210 max_active, 0); 2211 fs_info->readahead_workers = 2212 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2213 max_active, 2); 2214 fs_info->qgroup_rescan_workers = 2215 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2216 2217 if (!(fs_info->workers && fs_info->delalloc_workers && 2218 fs_info->submit_workers && fs_info->flush_workers && 2219 fs_info->endio_workers && fs_info->endio_meta_workers && 2220 fs_info->endio_meta_write_workers && 2221 fs_info->endio_repair_workers && 2222 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2223 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2224 fs_info->caching_workers && fs_info->readahead_workers && 2225 fs_info->fixup_workers && fs_info->delayed_workers && 2226 fs_info->qgroup_rescan_workers)) { 2227 return -ENOMEM; 2228 } 2229 2230 return 0; 2231 } 2232 2233 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2234 { 2235 struct crypto_shash *csum_shash; 2236 const char *csum_name = btrfs_super_csum_name(csum_type); 2237 2238 csum_shash = crypto_alloc_shash(csum_name, 0, 0); 2239 2240 if (IS_ERR(csum_shash)) { 2241 btrfs_err(fs_info, "error allocating %s hash for checksum", 2242 csum_name); 2243 return PTR_ERR(csum_shash); 2244 } 2245 2246 fs_info->csum_shash = csum_shash; 2247 2248 return 0; 2249 } 2250 2251 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 2252 { 2253 crypto_free_shash(fs_info->csum_shash); 2254 } 2255 2256 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2257 struct btrfs_fs_devices *fs_devices) 2258 { 2259 int ret; 2260 struct btrfs_root *log_tree_root; 2261 struct btrfs_super_block *disk_super = fs_info->super_copy; 2262 u64 bytenr = btrfs_super_log_root(disk_super); 2263 int level = btrfs_super_log_root_level(disk_super); 2264 2265 if (fs_devices->rw_devices == 0) { 2266 btrfs_warn(fs_info, "log replay required on RO media"); 2267 return -EIO; 2268 } 2269 2270 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2271 if (!log_tree_root) 2272 return -ENOMEM; 2273 2274 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2275 2276 log_tree_root->node = read_tree_block(fs_info, bytenr, 2277 fs_info->generation + 1, 2278 level, NULL); 2279 if (IS_ERR(log_tree_root->node)) { 2280 btrfs_warn(fs_info, "failed to read log tree"); 2281 ret = PTR_ERR(log_tree_root->node); 2282 kfree(log_tree_root); 2283 return ret; 2284 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2285 btrfs_err(fs_info, "failed to read log tree"); 2286 free_extent_buffer(log_tree_root->node); 2287 kfree(log_tree_root); 2288 return -EIO; 2289 } 2290 /* returns with log_tree_root freed on success */ 2291 ret = btrfs_recover_log_trees(log_tree_root); 2292 if (ret) { 2293 btrfs_handle_fs_error(fs_info, ret, 2294 "Failed to recover log tree"); 2295 free_extent_buffer(log_tree_root->node); 2296 kfree(log_tree_root); 2297 return ret; 2298 } 2299 2300 if (sb_rdonly(fs_info->sb)) { 2301 ret = btrfs_commit_super(fs_info); 2302 if (ret) 2303 return ret; 2304 } 2305 2306 return 0; 2307 } 2308 2309 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2310 { 2311 struct btrfs_root *tree_root = fs_info->tree_root; 2312 struct btrfs_root *root; 2313 struct btrfs_key location; 2314 int ret; 2315 2316 BUG_ON(!fs_info->tree_root); 2317 2318 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2319 location.type = BTRFS_ROOT_ITEM_KEY; 2320 location.offset = 0; 2321 2322 root = btrfs_read_tree_root(tree_root, &location); 2323 if (IS_ERR(root)) { 2324 ret = PTR_ERR(root); 2325 goto out; 2326 } 2327 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2328 fs_info->extent_root = root; 2329 2330 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2331 root = btrfs_read_tree_root(tree_root, &location); 2332 if (IS_ERR(root)) { 2333 ret = PTR_ERR(root); 2334 goto out; 2335 } 2336 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2337 fs_info->dev_root = root; 2338 btrfs_init_devices_late(fs_info); 2339 2340 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2341 root = btrfs_read_tree_root(tree_root, &location); 2342 if (IS_ERR(root)) { 2343 ret = PTR_ERR(root); 2344 goto out; 2345 } 2346 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2347 fs_info->csum_root = root; 2348 2349 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2350 root = btrfs_read_tree_root(tree_root, &location); 2351 if (!IS_ERR(root)) { 2352 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2353 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2354 fs_info->quota_root = root; 2355 } 2356 2357 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2358 root = btrfs_read_tree_root(tree_root, &location); 2359 if (IS_ERR(root)) { 2360 ret = PTR_ERR(root); 2361 if (ret != -ENOENT) 2362 goto out; 2363 } else { 2364 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2365 fs_info->uuid_root = root; 2366 } 2367 2368 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2369 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2370 root = btrfs_read_tree_root(tree_root, &location); 2371 if (IS_ERR(root)) { 2372 ret = PTR_ERR(root); 2373 goto out; 2374 } 2375 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2376 fs_info->free_space_root = root; 2377 } 2378 2379 return 0; 2380 out: 2381 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2382 location.objectid, ret); 2383 return ret; 2384 } 2385 2386 /* 2387 * Real super block validation 2388 * NOTE: super csum type and incompat features will not be checked here. 2389 * 2390 * @sb: super block to check 2391 * @mirror_num: the super block number to check its bytenr: 2392 * 0 the primary (1st) sb 2393 * 1, 2 2nd and 3rd backup copy 2394 * -1 skip bytenr check 2395 */ 2396 static int validate_super(struct btrfs_fs_info *fs_info, 2397 struct btrfs_super_block *sb, int mirror_num) 2398 { 2399 u64 nodesize = btrfs_super_nodesize(sb); 2400 u64 sectorsize = btrfs_super_sectorsize(sb); 2401 int ret = 0; 2402 2403 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2404 btrfs_err(fs_info, "no valid FS found"); 2405 ret = -EINVAL; 2406 } 2407 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2408 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2409 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2410 ret = -EINVAL; 2411 } 2412 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2413 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2414 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2415 ret = -EINVAL; 2416 } 2417 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2418 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2419 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2420 ret = -EINVAL; 2421 } 2422 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2423 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2424 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2425 ret = -EINVAL; 2426 } 2427 2428 /* 2429 * Check sectorsize and nodesize first, other check will need it. 2430 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2431 */ 2432 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2433 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2434 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2435 ret = -EINVAL; 2436 } 2437 /* Only PAGE SIZE is supported yet */ 2438 if (sectorsize != PAGE_SIZE) { 2439 btrfs_err(fs_info, 2440 "sectorsize %llu not supported yet, only support %lu", 2441 sectorsize, PAGE_SIZE); 2442 ret = -EINVAL; 2443 } 2444 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2445 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2446 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2447 ret = -EINVAL; 2448 } 2449 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2450 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2451 le32_to_cpu(sb->__unused_leafsize), nodesize); 2452 ret = -EINVAL; 2453 } 2454 2455 /* Root alignment check */ 2456 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2457 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2458 btrfs_super_root(sb)); 2459 ret = -EINVAL; 2460 } 2461 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2462 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2463 btrfs_super_chunk_root(sb)); 2464 ret = -EINVAL; 2465 } 2466 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2467 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2468 btrfs_super_log_root(sb)); 2469 ret = -EINVAL; 2470 } 2471 2472 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2473 BTRFS_FSID_SIZE) != 0) { 2474 btrfs_err(fs_info, 2475 "dev_item UUID does not match metadata fsid: %pU != %pU", 2476 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2477 ret = -EINVAL; 2478 } 2479 2480 /* 2481 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2482 * done later 2483 */ 2484 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2485 btrfs_err(fs_info, "bytes_used is too small %llu", 2486 btrfs_super_bytes_used(sb)); 2487 ret = -EINVAL; 2488 } 2489 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2490 btrfs_err(fs_info, "invalid stripesize %u", 2491 btrfs_super_stripesize(sb)); 2492 ret = -EINVAL; 2493 } 2494 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2495 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2496 btrfs_super_num_devices(sb)); 2497 if (btrfs_super_num_devices(sb) == 0) { 2498 btrfs_err(fs_info, "number of devices is 0"); 2499 ret = -EINVAL; 2500 } 2501 2502 if (mirror_num >= 0 && 2503 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2504 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2505 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2506 ret = -EINVAL; 2507 } 2508 2509 /* 2510 * Obvious sys_chunk_array corruptions, it must hold at least one key 2511 * and one chunk 2512 */ 2513 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2514 btrfs_err(fs_info, "system chunk array too big %u > %u", 2515 btrfs_super_sys_array_size(sb), 2516 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2517 ret = -EINVAL; 2518 } 2519 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2520 + sizeof(struct btrfs_chunk)) { 2521 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2522 btrfs_super_sys_array_size(sb), 2523 sizeof(struct btrfs_disk_key) 2524 + sizeof(struct btrfs_chunk)); 2525 ret = -EINVAL; 2526 } 2527 2528 /* 2529 * The generation is a global counter, we'll trust it more than the others 2530 * but it's still possible that it's the one that's wrong. 2531 */ 2532 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2533 btrfs_warn(fs_info, 2534 "suspicious: generation < chunk_root_generation: %llu < %llu", 2535 btrfs_super_generation(sb), 2536 btrfs_super_chunk_root_generation(sb)); 2537 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2538 && btrfs_super_cache_generation(sb) != (u64)-1) 2539 btrfs_warn(fs_info, 2540 "suspicious: generation < cache_generation: %llu < %llu", 2541 btrfs_super_generation(sb), 2542 btrfs_super_cache_generation(sb)); 2543 2544 return ret; 2545 } 2546 2547 /* 2548 * Validation of super block at mount time. 2549 * Some checks already done early at mount time, like csum type and incompat 2550 * flags will be skipped. 2551 */ 2552 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2553 { 2554 return validate_super(fs_info, fs_info->super_copy, 0); 2555 } 2556 2557 /* 2558 * Validation of super block at write time. 2559 * Some checks like bytenr check will be skipped as their values will be 2560 * overwritten soon. 2561 * Extra checks like csum type and incompat flags will be done here. 2562 */ 2563 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2564 struct btrfs_super_block *sb) 2565 { 2566 int ret; 2567 2568 ret = validate_super(fs_info, sb, -1); 2569 if (ret < 0) 2570 goto out; 2571 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2572 ret = -EUCLEAN; 2573 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2574 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2575 goto out; 2576 } 2577 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2578 ret = -EUCLEAN; 2579 btrfs_err(fs_info, 2580 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2581 btrfs_super_incompat_flags(sb), 2582 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2583 goto out; 2584 } 2585 out: 2586 if (ret < 0) 2587 btrfs_err(fs_info, 2588 "super block corruption detected before writing it to disk"); 2589 return ret; 2590 } 2591 2592 int open_ctree(struct super_block *sb, 2593 struct btrfs_fs_devices *fs_devices, 2594 char *options) 2595 { 2596 u32 sectorsize; 2597 u32 nodesize; 2598 u32 stripesize; 2599 u64 generation; 2600 u64 features; 2601 u16 csum_type; 2602 struct btrfs_key location; 2603 struct buffer_head *bh; 2604 struct btrfs_super_block *disk_super; 2605 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2606 struct btrfs_root *tree_root; 2607 struct btrfs_root *chunk_root; 2608 int ret; 2609 int err = -EINVAL; 2610 int num_backups_tried = 0; 2611 int backup_index = 0; 2612 int clear_free_space_tree = 0; 2613 int level; 2614 2615 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2616 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2617 if (!tree_root || !chunk_root) { 2618 err = -ENOMEM; 2619 goto fail; 2620 } 2621 2622 ret = init_srcu_struct(&fs_info->subvol_srcu); 2623 if (ret) { 2624 err = ret; 2625 goto fail; 2626 } 2627 2628 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL); 2629 if (ret) { 2630 err = ret; 2631 goto fail_srcu; 2632 } 2633 2634 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2635 if (ret) { 2636 err = ret; 2637 goto fail_dio_bytes; 2638 } 2639 fs_info->dirty_metadata_batch = PAGE_SIZE * 2640 (1 + ilog2(nr_cpu_ids)); 2641 2642 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2643 if (ret) { 2644 err = ret; 2645 goto fail_dirty_metadata_bytes; 2646 } 2647 2648 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2649 GFP_KERNEL); 2650 if (ret) { 2651 err = ret; 2652 goto fail_delalloc_bytes; 2653 } 2654 2655 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2656 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2657 INIT_LIST_HEAD(&fs_info->trans_list); 2658 INIT_LIST_HEAD(&fs_info->dead_roots); 2659 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2660 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2661 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2662 spin_lock_init(&fs_info->delalloc_root_lock); 2663 spin_lock_init(&fs_info->trans_lock); 2664 spin_lock_init(&fs_info->fs_roots_radix_lock); 2665 spin_lock_init(&fs_info->delayed_iput_lock); 2666 spin_lock_init(&fs_info->defrag_inodes_lock); 2667 spin_lock_init(&fs_info->tree_mod_seq_lock); 2668 spin_lock_init(&fs_info->super_lock); 2669 spin_lock_init(&fs_info->buffer_lock); 2670 spin_lock_init(&fs_info->unused_bgs_lock); 2671 rwlock_init(&fs_info->tree_mod_log_lock); 2672 mutex_init(&fs_info->unused_bg_unpin_mutex); 2673 mutex_init(&fs_info->delete_unused_bgs_mutex); 2674 mutex_init(&fs_info->reloc_mutex); 2675 mutex_init(&fs_info->delalloc_root_mutex); 2676 seqlock_init(&fs_info->profiles_lock); 2677 2678 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2679 INIT_LIST_HEAD(&fs_info->space_info); 2680 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2681 INIT_LIST_HEAD(&fs_info->unused_bgs); 2682 extent_map_tree_init(&fs_info->mapping_tree); 2683 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2684 BTRFS_BLOCK_RSV_GLOBAL); 2685 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2686 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2687 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2688 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2689 BTRFS_BLOCK_RSV_DELOPS); 2690 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2691 BTRFS_BLOCK_RSV_DELREFS); 2692 2693 atomic_set(&fs_info->async_delalloc_pages, 0); 2694 atomic_set(&fs_info->defrag_running, 0); 2695 atomic_set(&fs_info->reada_works_cnt, 0); 2696 atomic_set(&fs_info->nr_delayed_iputs, 0); 2697 atomic64_set(&fs_info->tree_mod_seq, 0); 2698 fs_info->sb = sb; 2699 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2700 fs_info->metadata_ratio = 0; 2701 fs_info->defrag_inodes = RB_ROOT; 2702 atomic64_set(&fs_info->free_chunk_space, 0); 2703 fs_info->tree_mod_log = RB_ROOT; 2704 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2705 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2706 /* readahead state */ 2707 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2708 spin_lock_init(&fs_info->reada_lock); 2709 btrfs_init_ref_verify(fs_info); 2710 2711 fs_info->thread_pool_size = min_t(unsigned long, 2712 num_online_cpus() + 2, 8); 2713 2714 INIT_LIST_HEAD(&fs_info->ordered_roots); 2715 spin_lock_init(&fs_info->ordered_root_lock); 2716 2717 fs_info->btree_inode = new_inode(sb); 2718 if (!fs_info->btree_inode) { 2719 err = -ENOMEM; 2720 goto fail_bio_counter; 2721 } 2722 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2723 2724 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2725 GFP_KERNEL); 2726 if (!fs_info->delayed_root) { 2727 err = -ENOMEM; 2728 goto fail_iput; 2729 } 2730 btrfs_init_delayed_root(fs_info->delayed_root); 2731 2732 btrfs_init_scrub(fs_info); 2733 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2734 fs_info->check_integrity_print_mask = 0; 2735 #endif 2736 btrfs_init_balance(fs_info); 2737 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2738 2739 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2740 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2741 2742 btrfs_init_btree_inode(fs_info); 2743 2744 spin_lock_init(&fs_info->block_group_cache_lock); 2745 fs_info->block_group_cache_tree = RB_ROOT; 2746 fs_info->first_logical_byte = (u64)-1; 2747 2748 extent_io_tree_init(fs_info, &fs_info->freed_extents[0], 2749 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL); 2750 extent_io_tree_init(fs_info, &fs_info->freed_extents[1], 2751 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL); 2752 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2753 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2754 2755 mutex_init(&fs_info->ordered_operations_mutex); 2756 mutex_init(&fs_info->tree_log_mutex); 2757 mutex_init(&fs_info->chunk_mutex); 2758 mutex_init(&fs_info->transaction_kthread_mutex); 2759 mutex_init(&fs_info->cleaner_mutex); 2760 mutex_init(&fs_info->ro_block_group_mutex); 2761 init_rwsem(&fs_info->commit_root_sem); 2762 init_rwsem(&fs_info->cleanup_work_sem); 2763 init_rwsem(&fs_info->subvol_sem); 2764 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2765 2766 btrfs_init_dev_replace_locks(fs_info); 2767 btrfs_init_qgroup(fs_info); 2768 2769 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2770 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2771 2772 init_waitqueue_head(&fs_info->transaction_throttle); 2773 init_waitqueue_head(&fs_info->transaction_wait); 2774 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2775 init_waitqueue_head(&fs_info->async_submit_wait); 2776 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2777 2778 /* Usable values until the real ones are cached from the superblock */ 2779 fs_info->nodesize = 4096; 2780 fs_info->sectorsize = 4096; 2781 fs_info->stripesize = 4096; 2782 2783 spin_lock_init(&fs_info->swapfile_pins_lock); 2784 fs_info->swapfile_pins = RB_ROOT; 2785 2786 fs_info->send_in_progress = 0; 2787 2788 ret = btrfs_alloc_stripe_hash_table(fs_info); 2789 if (ret) { 2790 err = ret; 2791 goto fail_alloc; 2792 } 2793 2794 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 2795 2796 invalidate_bdev(fs_devices->latest_bdev); 2797 2798 /* 2799 * Read super block and check the signature bytes only 2800 */ 2801 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2802 if (IS_ERR(bh)) { 2803 err = PTR_ERR(bh); 2804 goto fail_alloc; 2805 } 2806 2807 /* 2808 * Verify the type first, if that or the the checksum value are 2809 * corrupted, we'll find out 2810 */ 2811 csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data); 2812 if (!btrfs_supported_super_csum(csum_type)) { 2813 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 2814 csum_type); 2815 err = -EINVAL; 2816 brelse(bh); 2817 goto fail_alloc; 2818 } 2819 2820 ret = btrfs_init_csum_hash(fs_info, csum_type); 2821 if (ret) { 2822 err = ret; 2823 goto fail_alloc; 2824 } 2825 2826 /* 2827 * We want to check superblock checksum, the type is stored inside. 2828 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2829 */ 2830 if (btrfs_check_super_csum(fs_info, bh->b_data)) { 2831 btrfs_err(fs_info, "superblock checksum mismatch"); 2832 err = -EINVAL; 2833 brelse(bh); 2834 goto fail_csum; 2835 } 2836 2837 /* 2838 * super_copy is zeroed at allocation time and we never touch the 2839 * following bytes up to INFO_SIZE, the checksum is calculated from 2840 * the whole block of INFO_SIZE 2841 */ 2842 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2843 brelse(bh); 2844 2845 disk_super = fs_info->super_copy; 2846 2847 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2848 BTRFS_FSID_SIZE)); 2849 2850 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) { 2851 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid, 2852 fs_info->super_copy->metadata_uuid, 2853 BTRFS_FSID_SIZE)); 2854 } 2855 2856 features = btrfs_super_flags(disk_super); 2857 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 2858 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 2859 btrfs_set_super_flags(disk_super, features); 2860 btrfs_info(fs_info, 2861 "found metadata UUID change in progress flag, clearing"); 2862 } 2863 2864 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2865 sizeof(*fs_info->super_for_commit)); 2866 2867 ret = btrfs_validate_mount_super(fs_info); 2868 if (ret) { 2869 btrfs_err(fs_info, "superblock contains fatal errors"); 2870 err = -EINVAL; 2871 goto fail_csum; 2872 } 2873 2874 if (!btrfs_super_root(disk_super)) 2875 goto fail_csum; 2876 2877 /* check FS state, whether FS is broken. */ 2878 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2879 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2880 2881 /* 2882 * run through our array of backup supers and setup 2883 * our ring pointer to the oldest one 2884 */ 2885 generation = btrfs_super_generation(disk_super); 2886 find_oldest_super_backup(fs_info, generation); 2887 2888 /* 2889 * In the long term, we'll store the compression type in the super 2890 * block, and it'll be used for per file compression control. 2891 */ 2892 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2893 2894 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2895 if (ret) { 2896 err = ret; 2897 goto fail_csum; 2898 } 2899 2900 features = btrfs_super_incompat_flags(disk_super) & 2901 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2902 if (features) { 2903 btrfs_err(fs_info, 2904 "cannot mount because of unsupported optional features (%llx)", 2905 features); 2906 err = -EINVAL; 2907 goto fail_csum; 2908 } 2909 2910 features = btrfs_super_incompat_flags(disk_super); 2911 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2912 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2913 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2914 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 2915 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 2916 2917 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2918 btrfs_info(fs_info, "has skinny extents"); 2919 2920 /* 2921 * flag our filesystem as having big metadata blocks if 2922 * they are bigger than the page size 2923 */ 2924 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2925 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2926 btrfs_info(fs_info, 2927 "flagging fs with big metadata feature"); 2928 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2929 } 2930 2931 nodesize = btrfs_super_nodesize(disk_super); 2932 sectorsize = btrfs_super_sectorsize(disk_super); 2933 stripesize = sectorsize; 2934 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2935 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2936 2937 /* Cache block sizes */ 2938 fs_info->nodesize = nodesize; 2939 fs_info->sectorsize = sectorsize; 2940 fs_info->stripesize = stripesize; 2941 2942 /* 2943 * mixed block groups end up with duplicate but slightly offset 2944 * extent buffers for the same range. It leads to corruptions 2945 */ 2946 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2947 (sectorsize != nodesize)) { 2948 btrfs_err(fs_info, 2949 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2950 nodesize, sectorsize); 2951 goto fail_csum; 2952 } 2953 2954 /* 2955 * Needn't use the lock because there is no other task which will 2956 * update the flag. 2957 */ 2958 btrfs_set_super_incompat_flags(disk_super, features); 2959 2960 features = btrfs_super_compat_ro_flags(disk_super) & 2961 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2962 if (!sb_rdonly(sb) && features) { 2963 btrfs_err(fs_info, 2964 "cannot mount read-write because of unsupported optional features (%llx)", 2965 features); 2966 err = -EINVAL; 2967 goto fail_csum; 2968 } 2969 2970 ret = btrfs_init_workqueues(fs_info, fs_devices); 2971 if (ret) { 2972 err = ret; 2973 goto fail_sb_buffer; 2974 } 2975 2976 sb->s_bdi->congested_fn = btrfs_congested_fn; 2977 sb->s_bdi->congested_data = fs_info; 2978 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 2979 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES; 2980 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 2981 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 2982 2983 sb->s_blocksize = sectorsize; 2984 sb->s_blocksize_bits = blksize_bits(sectorsize); 2985 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 2986 2987 mutex_lock(&fs_info->chunk_mutex); 2988 ret = btrfs_read_sys_array(fs_info); 2989 mutex_unlock(&fs_info->chunk_mutex); 2990 if (ret) { 2991 btrfs_err(fs_info, "failed to read the system array: %d", ret); 2992 goto fail_sb_buffer; 2993 } 2994 2995 generation = btrfs_super_chunk_root_generation(disk_super); 2996 level = btrfs_super_chunk_root_level(disk_super); 2997 2998 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2999 3000 chunk_root->node = read_tree_block(fs_info, 3001 btrfs_super_chunk_root(disk_super), 3002 generation, level, NULL); 3003 if (IS_ERR(chunk_root->node) || 3004 !extent_buffer_uptodate(chunk_root->node)) { 3005 btrfs_err(fs_info, "failed to read chunk root"); 3006 if (!IS_ERR(chunk_root->node)) 3007 free_extent_buffer(chunk_root->node); 3008 chunk_root->node = NULL; 3009 goto fail_tree_roots; 3010 } 3011 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 3012 chunk_root->commit_root = btrfs_root_node(chunk_root); 3013 3014 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3015 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 3016 3017 ret = btrfs_read_chunk_tree(fs_info); 3018 if (ret) { 3019 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3020 goto fail_tree_roots; 3021 } 3022 3023 /* 3024 * Keep the devid that is marked to be the target device for the 3025 * device replace procedure 3026 */ 3027 btrfs_free_extra_devids(fs_devices, 0); 3028 3029 if (!fs_devices->latest_bdev) { 3030 btrfs_err(fs_info, "failed to read devices"); 3031 goto fail_tree_roots; 3032 } 3033 3034 retry_root_backup: 3035 generation = btrfs_super_generation(disk_super); 3036 level = btrfs_super_root_level(disk_super); 3037 3038 tree_root->node = read_tree_block(fs_info, 3039 btrfs_super_root(disk_super), 3040 generation, level, NULL); 3041 if (IS_ERR(tree_root->node) || 3042 !extent_buffer_uptodate(tree_root->node)) { 3043 btrfs_warn(fs_info, "failed to read tree root"); 3044 if (!IS_ERR(tree_root->node)) 3045 free_extent_buffer(tree_root->node); 3046 tree_root->node = NULL; 3047 goto recovery_tree_root; 3048 } 3049 3050 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 3051 tree_root->commit_root = btrfs_root_node(tree_root); 3052 btrfs_set_root_refs(&tree_root->root_item, 1); 3053 3054 mutex_lock(&tree_root->objectid_mutex); 3055 ret = btrfs_find_highest_objectid(tree_root, 3056 &tree_root->highest_objectid); 3057 if (ret) { 3058 mutex_unlock(&tree_root->objectid_mutex); 3059 goto recovery_tree_root; 3060 } 3061 3062 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 3063 3064 mutex_unlock(&tree_root->objectid_mutex); 3065 3066 ret = btrfs_read_roots(fs_info); 3067 if (ret) 3068 goto recovery_tree_root; 3069 3070 fs_info->generation = generation; 3071 fs_info->last_trans_committed = generation; 3072 3073 ret = btrfs_verify_dev_extents(fs_info); 3074 if (ret) { 3075 btrfs_err(fs_info, 3076 "failed to verify dev extents against chunks: %d", 3077 ret); 3078 goto fail_block_groups; 3079 } 3080 ret = btrfs_recover_balance(fs_info); 3081 if (ret) { 3082 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3083 goto fail_block_groups; 3084 } 3085 3086 ret = btrfs_init_dev_stats(fs_info); 3087 if (ret) { 3088 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3089 goto fail_block_groups; 3090 } 3091 3092 ret = btrfs_init_dev_replace(fs_info); 3093 if (ret) { 3094 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3095 goto fail_block_groups; 3096 } 3097 3098 btrfs_free_extra_devids(fs_devices, 1); 3099 3100 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 3101 if (ret) { 3102 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3103 ret); 3104 goto fail_block_groups; 3105 } 3106 3107 ret = btrfs_sysfs_add_device(fs_devices); 3108 if (ret) { 3109 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 3110 ret); 3111 goto fail_fsdev_sysfs; 3112 } 3113 3114 ret = btrfs_sysfs_add_mounted(fs_info); 3115 if (ret) { 3116 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3117 goto fail_fsdev_sysfs; 3118 } 3119 3120 ret = btrfs_init_space_info(fs_info); 3121 if (ret) { 3122 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3123 goto fail_sysfs; 3124 } 3125 3126 ret = btrfs_read_block_groups(fs_info); 3127 if (ret) { 3128 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3129 goto fail_sysfs; 3130 } 3131 3132 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 3133 btrfs_warn(fs_info, 3134 "writable mount is not allowed due to too many missing devices"); 3135 goto fail_sysfs; 3136 } 3137 3138 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3139 "btrfs-cleaner"); 3140 if (IS_ERR(fs_info->cleaner_kthread)) 3141 goto fail_sysfs; 3142 3143 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3144 tree_root, 3145 "btrfs-transaction"); 3146 if (IS_ERR(fs_info->transaction_kthread)) 3147 goto fail_cleaner; 3148 3149 if (!btrfs_test_opt(fs_info, NOSSD) && 3150 !fs_info->fs_devices->rotating) { 3151 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3152 } 3153 3154 /* 3155 * Mount does not set all options immediately, we can do it now and do 3156 * not have to wait for transaction commit 3157 */ 3158 btrfs_apply_pending_changes(fs_info); 3159 3160 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3161 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3162 ret = btrfsic_mount(fs_info, fs_devices, 3163 btrfs_test_opt(fs_info, 3164 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3165 1 : 0, 3166 fs_info->check_integrity_print_mask); 3167 if (ret) 3168 btrfs_warn(fs_info, 3169 "failed to initialize integrity check module: %d", 3170 ret); 3171 } 3172 #endif 3173 ret = btrfs_read_qgroup_config(fs_info); 3174 if (ret) 3175 goto fail_trans_kthread; 3176 3177 if (btrfs_build_ref_tree(fs_info)) 3178 btrfs_err(fs_info, "couldn't build ref tree"); 3179 3180 /* do not make disk changes in broken FS or nologreplay is given */ 3181 if (btrfs_super_log_root(disk_super) != 0 && 3182 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3183 ret = btrfs_replay_log(fs_info, fs_devices); 3184 if (ret) { 3185 err = ret; 3186 goto fail_qgroup; 3187 } 3188 } 3189 3190 ret = btrfs_find_orphan_roots(fs_info); 3191 if (ret) 3192 goto fail_qgroup; 3193 3194 if (!sb_rdonly(sb)) { 3195 ret = btrfs_cleanup_fs_roots(fs_info); 3196 if (ret) 3197 goto fail_qgroup; 3198 3199 mutex_lock(&fs_info->cleaner_mutex); 3200 ret = btrfs_recover_relocation(tree_root); 3201 mutex_unlock(&fs_info->cleaner_mutex); 3202 if (ret < 0) { 3203 btrfs_warn(fs_info, "failed to recover relocation: %d", 3204 ret); 3205 err = -EINVAL; 3206 goto fail_qgroup; 3207 } 3208 } 3209 3210 location.objectid = BTRFS_FS_TREE_OBJECTID; 3211 location.type = BTRFS_ROOT_ITEM_KEY; 3212 location.offset = 0; 3213 3214 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3215 if (IS_ERR(fs_info->fs_root)) { 3216 err = PTR_ERR(fs_info->fs_root); 3217 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3218 goto fail_qgroup; 3219 } 3220 3221 if (sb_rdonly(sb)) 3222 return 0; 3223 3224 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3225 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3226 clear_free_space_tree = 1; 3227 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3228 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3229 btrfs_warn(fs_info, "free space tree is invalid"); 3230 clear_free_space_tree = 1; 3231 } 3232 3233 if (clear_free_space_tree) { 3234 btrfs_info(fs_info, "clearing free space tree"); 3235 ret = btrfs_clear_free_space_tree(fs_info); 3236 if (ret) { 3237 btrfs_warn(fs_info, 3238 "failed to clear free space tree: %d", ret); 3239 close_ctree(fs_info); 3240 return ret; 3241 } 3242 } 3243 3244 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3245 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3246 btrfs_info(fs_info, "creating free space tree"); 3247 ret = btrfs_create_free_space_tree(fs_info); 3248 if (ret) { 3249 btrfs_warn(fs_info, 3250 "failed to create free space tree: %d", ret); 3251 close_ctree(fs_info); 3252 return ret; 3253 } 3254 } 3255 3256 down_read(&fs_info->cleanup_work_sem); 3257 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3258 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3259 up_read(&fs_info->cleanup_work_sem); 3260 close_ctree(fs_info); 3261 return ret; 3262 } 3263 up_read(&fs_info->cleanup_work_sem); 3264 3265 ret = btrfs_resume_balance_async(fs_info); 3266 if (ret) { 3267 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3268 close_ctree(fs_info); 3269 return ret; 3270 } 3271 3272 ret = btrfs_resume_dev_replace_async(fs_info); 3273 if (ret) { 3274 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3275 close_ctree(fs_info); 3276 return ret; 3277 } 3278 3279 btrfs_qgroup_rescan_resume(fs_info); 3280 3281 if (!fs_info->uuid_root) { 3282 btrfs_info(fs_info, "creating UUID tree"); 3283 ret = btrfs_create_uuid_tree(fs_info); 3284 if (ret) { 3285 btrfs_warn(fs_info, 3286 "failed to create the UUID tree: %d", ret); 3287 close_ctree(fs_info); 3288 return ret; 3289 } 3290 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3291 fs_info->generation != 3292 btrfs_super_uuid_tree_generation(disk_super)) { 3293 btrfs_info(fs_info, "checking UUID tree"); 3294 ret = btrfs_check_uuid_tree(fs_info); 3295 if (ret) { 3296 btrfs_warn(fs_info, 3297 "failed to check the UUID tree: %d", ret); 3298 close_ctree(fs_info); 3299 return ret; 3300 } 3301 } else { 3302 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3303 } 3304 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3305 3306 /* 3307 * backuproot only affect mount behavior, and if open_ctree succeeded, 3308 * no need to keep the flag 3309 */ 3310 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3311 3312 return 0; 3313 3314 fail_qgroup: 3315 btrfs_free_qgroup_config(fs_info); 3316 fail_trans_kthread: 3317 kthread_stop(fs_info->transaction_kthread); 3318 btrfs_cleanup_transaction(fs_info); 3319 btrfs_free_fs_roots(fs_info); 3320 fail_cleaner: 3321 kthread_stop(fs_info->cleaner_kthread); 3322 3323 /* 3324 * make sure we're done with the btree inode before we stop our 3325 * kthreads 3326 */ 3327 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3328 3329 fail_sysfs: 3330 btrfs_sysfs_remove_mounted(fs_info); 3331 3332 fail_fsdev_sysfs: 3333 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3334 3335 fail_block_groups: 3336 btrfs_put_block_group_cache(fs_info); 3337 3338 fail_tree_roots: 3339 free_root_pointers(fs_info, 1); 3340 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3341 3342 fail_sb_buffer: 3343 btrfs_stop_all_workers(fs_info); 3344 btrfs_free_block_groups(fs_info); 3345 fail_csum: 3346 btrfs_free_csum_hash(fs_info); 3347 fail_alloc: 3348 fail_iput: 3349 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3350 3351 iput(fs_info->btree_inode); 3352 fail_bio_counter: 3353 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 3354 fail_delalloc_bytes: 3355 percpu_counter_destroy(&fs_info->delalloc_bytes); 3356 fail_dirty_metadata_bytes: 3357 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3358 fail_dio_bytes: 3359 percpu_counter_destroy(&fs_info->dio_bytes); 3360 fail_srcu: 3361 cleanup_srcu_struct(&fs_info->subvol_srcu); 3362 fail: 3363 btrfs_free_stripe_hash_table(fs_info); 3364 btrfs_close_devices(fs_info->fs_devices); 3365 return err; 3366 3367 recovery_tree_root: 3368 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 3369 goto fail_tree_roots; 3370 3371 free_root_pointers(fs_info, 0); 3372 3373 /* don't use the log in recovery mode, it won't be valid */ 3374 btrfs_set_super_log_root(disk_super, 0); 3375 3376 /* we can't trust the free space cache either */ 3377 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3378 3379 ret = next_root_backup(fs_info, fs_info->super_copy, 3380 &num_backups_tried, &backup_index); 3381 if (ret == -1) 3382 goto fail_block_groups; 3383 goto retry_root_backup; 3384 } 3385 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3386 3387 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3388 { 3389 if (uptodate) { 3390 set_buffer_uptodate(bh); 3391 } else { 3392 struct btrfs_device *device = (struct btrfs_device *) 3393 bh->b_private; 3394 3395 btrfs_warn_rl_in_rcu(device->fs_info, 3396 "lost page write due to IO error on %s", 3397 rcu_str_deref(device->name)); 3398 /* note, we don't set_buffer_write_io_error because we have 3399 * our own ways of dealing with the IO errors 3400 */ 3401 clear_buffer_uptodate(bh); 3402 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3403 } 3404 unlock_buffer(bh); 3405 put_bh(bh); 3406 } 3407 3408 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3409 struct buffer_head **bh_ret) 3410 { 3411 struct buffer_head *bh; 3412 struct btrfs_super_block *super; 3413 u64 bytenr; 3414 3415 bytenr = btrfs_sb_offset(copy_num); 3416 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3417 return -EINVAL; 3418 3419 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE); 3420 /* 3421 * If we fail to read from the underlying devices, as of now 3422 * the best option we have is to mark it EIO. 3423 */ 3424 if (!bh) 3425 return -EIO; 3426 3427 super = (struct btrfs_super_block *)bh->b_data; 3428 if (btrfs_super_bytenr(super) != bytenr || 3429 btrfs_super_magic(super) != BTRFS_MAGIC) { 3430 brelse(bh); 3431 return -EINVAL; 3432 } 3433 3434 *bh_ret = bh; 3435 return 0; 3436 } 3437 3438 3439 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3440 { 3441 struct buffer_head *bh; 3442 struct buffer_head *latest = NULL; 3443 struct btrfs_super_block *super; 3444 int i; 3445 u64 transid = 0; 3446 int ret = -EINVAL; 3447 3448 /* we would like to check all the supers, but that would make 3449 * a btrfs mount succeed after a mkfs from a different FS. 3450 * So, we need to add a special mount option to scan for 3451 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3452 */ 3453 for (i = 0; i < 1; i++) { 3454 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3455 if (ret) 3456 continue; 3457 3458 super = (struct btrfs_super_block *)bh->b_data; 3459 3460 if (!latest || btrfs_super_generation(super) > transid) { 3461 brelse(latest); 3462 latest = bh; 3463 transid = btrfs_super_generation(super); 3464 } else { 3465 brelse(bh); 3466 } 3467 } 3468 3469 if (!latest) 3470 return ERR_PTR(ret); 3471 3472 return latest; 3473 } 3474 3475 /* 3476 * Write superblock @sb to the @device. Do not wait for completion, all the 3477 * buffer heads we write are pinned. 3478 * 3479 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3480 * the expected device size at commit time. Note that max_mirrors must be 3481 * same for write and wait phases. 3482 * 3483 * Return number of errors when buffer head is not found or submission fails. 3484 */ 3485 static int write_dev_supers(struct btrfs_device *device, 3486 struct btrfs_super_block *sb, int max_mirrors) 3487 { 3488 struct btrfs_fs_info *fs_info = device->fs_info; 3489 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3490 struct buffer_head *bh; 3491 int i; 3492 int ret; 3493 int errors = 0; 3494 u64 bytenr; 3495 int op_flags; 3496 3497 if (max_mirrors == 0) 3498 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3499 3500 shash->tfm = fs_info->csum_shash; 3501 3502 for (i = 0; i < max_mirrors; i++) { 3503 bytenr = btrfs_sb_offset(i); 3504 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3505 device->commit_total_bytes) 3506 break; 3507 3508 btrfs_set_super_bytenr(sb, bytenr); 3509 3510 crypto_shash_init(shash); 3511 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3512 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 3513 crypto_shash_final(shash, sb->csum); 3514 3515 /* One reference for us, and we leave it for the caller */ 3516 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, 3517 BTRFS_SUPER_INFO_SIZE); 3518 if (!bh) { 3519 btrfs_err(device->fs_info, 3520 "couldn't get super buffer head for bytenr %llu", 3521 bytenr); 3522 errors++; 3523 continue; 3524 } 3525 3526 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3527 3528 /* one reference for submit_bh */ 3529 get_bh(bh); 3530 3531 set_buffer_uptodate(bh); 3532 lock_buffer(bh); 3533 bh->b_end_io = btrfs_end_buffer_write_sync; 3534 bh->b_private = device; 3535 3536 /* 3537 * we fua the first super. The others we allow 3538 * to go down lazy. 3539 */ 3540 op_flags = REQ_SYNC | REQ_META | REQ_PRIO; 3541 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3542 op_flags |= REQ_FUA; 3543 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh); 3544 if (ret) 3545 errors++; 3546 } 3547 return errors < i ? 0 : -1; 3548 } 3549 3550 /* 3551 * Wait for write completion of superblocks done by write_dev_supers, 3552 * @max_mirrors same for write and wait phases. 3553 * 3554 * Return number of errors when buffer head is not found or not marked up to 3555 * date. 3556 */ 3557 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3558 { 3559 struct buffer_head *bh; 3560 int i; 3561 int errors = 0; 3562 bool primary_failed = false; 3563 u64 bytenr; 3564 3565 if (max_mirrors == 0) 3566 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3567 3568 for (i = 0; i < max_mirrors; i++) { 3569 bytenr = btrfs_sb_offset(i); 3570 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3571 device->commit_total_bytes) 3572 break; 3573 3574 bh = __find_get_block(device->bdev, 3575 bytenr / BTRFS_BDEV_BLOCKSIZE, 3576 BTRFS_SUPER_INFO_SIZE); 3577 if (!bh) { 3578 errors++; 3579 if (i == 0) 3580 primary_failed = true; 3581 continue; 3582 } 3583 wait_on_buffer(bh); 3584 if (!buffer_uptodate(bh)) { 3585 errors++; 3586 if (i == 0) 3587 primary_failed = true; 3588 } 3589 3590 /* drop our reference */ 3591 brelse(bh); 3592 3593 /* drop the reference from the writing run */ 3594 brelse(bh); 3595 } 3596 3597 /* log error, force error return */ 3598 if (primary_failed) { 3599 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3600 device->devid); 3601 return -1; 3602 } 3603 3604 return errors < i ? 0 : -1; 3605 } 3606 3607 /* 3608 * endio for the write_dev_flush, this will wake anyone waiting 3609 * for the barrier when it is done 3610 */ 3611 static void btrfs_end_empty_barrier(struct bio *bio) 3612 { 3613 complete(bio->bi_private); 3614 } 3615 3616 /* 3617 * Submit a flush request to the device if it supports it. Error handling is 3618 * done in the waiting counterpart. 3619 */ 3620 static void write_dev_flush(struct btrfs_device *device) 3621 { 3622 struct request_queue *q = bdev_get_queue(device->bdev); 3623 struct bio *bio = device->flush_bio; 3624 3625 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3626 return; 3627 3628 bio_reset(bio); 3629 bio->bi_end_io = btrfs_end_empty_barrier; 3630 bio_set_dev(bio, device->bdev); 3631 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3632 init_completion(&device->flush_wait); 3633 bio->bi_private = &device->flush_wait; 3634 3635 btrfsic_submit_bio(bio); 3636 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3637 } 3638 3639 /* 3640 * If the flush bio has been submitted by write_dev_flush, wait for it. 3641 */ 3642 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3643 { 3644 struct bio *bio = device->flush_bio; 3645 3646 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3647 return BLK_STS_OK; 3648 3649 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3650 wait_for_completion_io(&device->flush_wait); 3651 3652 return bio->bi_status; 3653 } 3654 3655 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3656 { 3657 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3658 return -EIO; 3659 return 0; 3660 } 3661 3662 /* 3663 * send an empty flush down to each device in parallel, 3664 * then wait for them 3665 */ 3666 static int barrier_all_devices(struct btrfs_fs_info *info) 3667 { 3668 struct list_head *head; 3669 struct btrfs_device *dev; 3670 int errors_wait = 0; 3671 blk_status_t ret; 3672 3673 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3674 /* send down all the barriers */ 3675 head = &info->fs_devices->devices; 3676 list_for_each_entry(dev, head, dev_list) { 3677 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3678 continue; 3679 if (!dev->bdev) 3680 continue; 3681 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3682 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3683 continue; 3684 3685 write_dev_flush(dev); 3686 dev->last_flush_error = BLK_STS_OK; 3687 } 3688 3689 /* wait for all the barriers */ 3690 list_for_each_entry(dev, head, dev_list) { 3691 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3692 continue; 3693 if (!dev->bdev) { 3694 errors_wait++; 3695 continue; 3696 } 3697 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3698 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3699 continue; 3700 3701 ret = wait_dev_flush(dev); 3702 if (ret) { 3703 dev->last_flush_error = ret; 3704 btrfs_dev_stat_inc_and_print(dev, 3705 BTRFS_DEV_STAT_FLUSH_ERRS); 3706 errors_wait++; 3707 } 3708 } 3709 3710 if (errors_wait) { 3711 /* 3712 * At some point we need the status of all disks 3713 * to arrive at the volume status. So error checking 3714 * is being pushed to a separate loop. 3715 */ 3716 return check_barrier_error(info); 3717 } 3718 return 0; 3719 } 3720 3721 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3722 { 3723 int raid_type; 3724 int min_tolerated = INT_MAX; 3725 3726 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3727 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3728 min_tolerated = min_t(int, min_tolerated, 3729 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3730 tolerated_failures); 3731 3732 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3733 if (raid_type == BTRFS_RAID_SINGLE) 3734 continue; 3735 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3736 continue; 3737 min_tolerated = min_t(int, min_tolerated, 3738 btrfs_raid_array[raid_type]. 3739 tolerated_failures); 3740 } 3741 3742 if (min_tolerated == INT_MAX) { 3743 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3744 min_tolerated = 0; 3745 } 3746 3747 return min_tolerated; 3748 } 3749 3750 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3751 { 3752 struct list_head *head; 3753 struct btrfs_device *dev; 3754 struct btrfs_super_block *sb; 3755 struct btrfs_dev_item *dev_item; 3756 int ret; 3757 int do_barriers; 3758 int max_errors; 3759 int total_errors = 0; 3760 u64 flags; 3761 3762 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3763 3764 /* 3765 * max_mirrors == 0 indicates we're from commit_transaction, 3766 * not from fsync where the tree roots in fs_info have not 3767 * been consistent on disk. 3768 */ 3769 if (max_mirrors == 0) 3770 backup_super_roots(fs_info); 3771 3772 sb = fs_info->super_for_commit; 3773 dev_item = &sb->dev_item; 3774 3775 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3776 head = &fs_info->fs_devices->devices; 3777 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3778 3779 if (do_barriers) { 3780 ret = barrier_all_devices(fs_info); 3781 if (ret) { 3782 mutex_unlock( 3783 &fs_info->fs_devices->device_list_mutex); 3784 btrfs_handle_fs_error(fs_info, ret, 3785 "errors while submitting device barriers."); 3786 return ret; 3787 } 3788 } 3789 3790 list_for_each_entry(dev, head, dev_list) { 3791 if (!dev->bdev) { 3792 total_errors++; 3793 continue; 3794 } 3795 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3796 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3797 continue; 3798 3799 btrfs_set_stack_device_generation(dev_item, 0); 3800 btrfs_set_stack_device_type(dev_item, dev->type); 3801 btrfs_set_stack_device_id(dev_item, dev->devid); 3802 btrfs_set_stack_device_total_bytes(dev_item, 3803 dev->commit_total_bytes); 3804 btrfs_set_stack_device_bytes_used(dev_item, 3805 dev->commit_bytes_used); 3806 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3807 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3808 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3809 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3810 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 3811 BTRFS_FSID_SIZE); 3812 3813 flags = btrfs_super_flags(sb); 3814 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3815 3816 ret = btrfs_validate_write_super(fs_info, sb); 3817 if (ret < 0) { 3818 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3819 btrfs_handle_fs_error(fs_info, -EUCLEAN, 3820 "unexpected superblock corruption detected"); 3821 return -EUCLEAN; 3822 } 3823 3824 ret = write_dev_supers(dev, sb, max_mirrors); 3825 if (ret) 3826 total_errors++; 3827 } 3828 if (total_errors > max_errors) { 3829 btrfs_err(fs_info, "%d errors while writing supers", 3830 total_errors); 3831 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3832 3833 /* FUA is masked off if unsupported and can't be the reason */ 3834 btrfs_handle_fs_error(fs_info, -EIO, 3835 "%d errors while writing supers", 3836 total_errors); 3837 return -EIO; 3838 } 3839 3840 total_errors = 0; 3841 list_for_each_entry(dev, head, dev_list) { 3842 if (!dev->bdev) 3843 continue; 3844 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3845 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3846 continue; 3847 3848 ret = wait_dev_supers(dev, max_mirrors); 3849 if (ret) 3850 total_errors++; 3851 } 3852 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3853 if (total_errors > max_errors) { 3854 btrfs_handle_fs_error(fs_info, -EIO, 3855 "%d errors while writing supers", 3856 total_errors); 3857 return -EIO; 3858 } 3859 return 0; 3860 } 3861 3862 /* Drop a fs root from the radix tree and free it. */ 3863 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3864 struct btrfs_root *root) 3865 { 3866 spin_lock(&fs_info->fs_roots_radix_lock); 3867 radix_tree_delete(&fs_info->fs_roots_radix, 3868 (unsigned long)root->root_key.objectid); 3869 spin_unlock(&fs_info->fs_roots_radix_lock); 3870 3871 if (btrfs_root_refs(&root->root_item) == 0) 3872 synchronize_srcu(&fs_info->subvol_srcu); 3873 3874 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3875 btrfs_free_log(NULL, root); 3876 if (root->reloc_root) { 3877 free_extent_buffer(root->reloc_root->node); 3878 free_extent_buffer(root->reloc_root->commit_root); 3879 btrfs_put_fs_root(root->reloc_root); 3880 root->reloc_root = NULL; 3881 } 3882 } 3883 3884 if (root->free_ino_pinned) 3885 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3886 if (root->free_ino_ctl) 3887 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3888 btrfs_free_fs_root(root); 3889 } 3890 3891 void btrfs_free_fs_root(struct btrfs_root *root) 3892 { 3893 iput(root->ino_cache_inode); 3894 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3895 if (root->anon_dev) 3896 free_anon_bdev(root->anon_dev); 3897 if (root->subv_writers) 3898 btrfs_free_subvolume_writers(root->subv_writers); 3899 free_extent_buffer(root->node); 3900 free_extent_buffer(root->commit_root); 3901 kfree(root->free_ino_ctl); 3902 kfree(root->free_ino_pinned); 3903 btrfs_put_fs_root(root); 3904 } 3905 3906 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3907 { 3908 u64 root_objectid = 0; 3909 struct btrfs_root *gang[8]; 3910 int i = 0; 3911 int err = 0; 3912 unsigned int ret = 0; 3913 int index; 3914 3915 while (1) { 3916 index = srcu_read_lock(&fs_info->subvol_srcu); 3917 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3918 (void **)gang, root_objectid, 3919 ARRAY_SIZE(gang)); 3920 if (!ret) { 3921 srcu_read_unlock(&fs_info->subvol_srcu, index); 3922 break; 3923 } 3924 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3925 3926 for (i = 0; i < ret; i++) { 3927 /* Avoid to grab roots in dead_roots */ 3928 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3929 gang[i] = NULL; 3930 continue; 3931 } 3932 /* grab all the search result for later use */ 3933 gang[i] = btrfs_grab_fs_root(gang[i]); 3934 } 3935 srcu_read_unlock(&fs_info->subvol_srcu, index); 3936 3937 for (i = 0; i < ret; i++) { 3938 if (!gang[i]) 3939 continue; 3940 root_objectid = gang[i]->root_key.objectid; 3941 err = btrfs_orphan_cleanup(gang[i]); 3942 if (err) 3943 break; 3944 btrfs_put_fs_root(gang[i]); 3945 } 3946 root_objectid++; 3947 } 3948 3949 /* release the uncleaned roots due to error */ 3950 for (; i < ret; i++) { 3951 if (gang[i]) 3952 btrfs_put_fs_root(gang[i]); 3953 } 3954 return err; 3955 } 3956 3957 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3958 { 3959 struct btrfs_root *root = fs_info->tree_root; 3960 struct btrfs_trans_handle *trans; 3961 3962 mutex_lock(&fs_info->cleaner_mutex); 3963 btrfs_run_delayed_iputs(fs_info); 3964 mutex_unlock(&fs_info->cleaner_mutex); 3965 wake_up_process(fs_info->cleaner_kthread); 3966 3967 /* wait until ongoing cleanup work done */ 3968 down_write(&fs_info->cleanup_work_sem); 3969 up_write(&fs_info->cleanup_work_sem); 3970 3971 trans = btrfs_join_transaction(root); 3972 if (IS_ERR(trans)) 3973 return PTR_ERR(trans); 3974 return btrfs_commit_transaction(trans); 3975 } 3976 3977 void close_ctree(struct btrfs_fs_info *fs_info) 3978 { 3979 int ret; 3980 3981 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3982 /* 3983 * We don't want the cleaner to start new transactions, add more delayed 3984 * iputs, etc. while we're closing. We can't use kthread_stop() yet 3985 * because that frees the task_struct, and the transaction kthread might 3986 * still try to wake up the cleaner. 3987 */ 3988 kthread_park(fs_info->cleaner_kthread); 3989 3990 /* wait for the qgroup rescan worker to stop */ 3991 btrfs_qgroup_wait_for_completion(fs_info, false); 3992 3993 /* wait for the uuid_scan task to finish */ 3994 down(&fs_info->uuid_tree_rescan_sem); 3995 /* avoid complains from lockdep et al., set sem back to initial state */ 3996 up(&fs_info->uuid_tree_rescan_sem); 3997 3998 /* pause restriper - we want to resume on mount */ 3999 btrfs_pause_balance(fs_info); 4000 4001 btrfs_dev_replace_suspend_for_unmount(fs_info); 4002 4003 btrfs_scrub_cancel(fs_info); 4004 4005 /* wait for any defraggers to finish */ 4006 wait_event(fs_info->transaction_wait, 4007 (atomic_read(&fs_info->defrag_running) == 0)); 4008 4009 /* clear out the rbtree of defraggable inodes */ 4010 btrfs_cleanup_defrag_inodes(fs_info); 4011 4012 cancel_work_sync(&fs_info->async_reclaim_work); 4013 4014 if (!sb_rdonly(fs_info->sb)) { 4015 /* 4016 * The cleaner kthread is stopped, so do one final pass over 4017 * unused block groups. 4018 */ 4019 btrfs_delete_unused_bgs(fs_info); 4020 4021 ret = btrfs_commit_super(fs_info); 4022 if (ret) 4023 btrfs_err(fs_info, "commit super ret %d", ret); 4024 } 4025 4026 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 4027 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 4028 btrfs_error_commit_super(fs_info); 4029 4030 kthread_stop(fs_info->transaction_kthread); 4031 kthread_stop(fs_info->cleaner_kthread); 4032 4033 ASSERT(list_empty(&fs_info->delayed_iputs)); 4034 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4035 4036 btrfs_free_qgroup_config(fs_info); 4037 ASSERT(list_empty(&fs_info->delalloc_roots)); 4038 4039 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4040 btrfs_info(fs_info, "at unmount delalloc count %lld", 4041 percpu_counter_sum(&fs_info->delalloc_bytes)); 4042 } 4043 4044 if (percpu_counter_sum(&fs_info->dio_bytes)) 4045 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4046 percpu_counter_sum(&fs_info->dio_bytes)); 4047 4048 btrfs_sysfs_remove_mounted(fs_info); 4049 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4050 4051 btrfs_free_fs_roots(fs_info); 4052 4053 btrfs_put_block_group_cache(fs_info); 4054 4055 /* 4056 * we must make sure there is not any read request to 4057 * submit after we stopping all workers. 4058 */ 4059 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4060 btrfs_stop_all_workers(fs_info); 4061 4062 btrfs_free_block_groups(fs_info); 4063 4064 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4065 free_root_pointers(fs_info, 1); 4066 4067 iput(fs_info->btree_inode); 4068 4069 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4070 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4071 btrfsic_unmount(fs_info->fs_devices); 4072 #endif 4073 4074 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4075 btrfs_close_devices(fs_info->fs_devices); 4076 4077 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 4078 percpu_counter_destroy(&fs_info->delalloc_bytes); 4079 percpu_counter_destroy(&fs_info->dio_bytes); 4080 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 4081 cleanup_srcu_struct(&fs_info->subvol_srcu); 4082 4083 btrfs_free_csum_hash(fs_info); 4084 btrfs_free_stripe_hash_table(fs_info); 4085 btrfs_free_ref_cache(fs_info); 4086 } 4087 4088 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4089 int atomic) 4090 { 4091 int ret; 4092 struct inode *btree_inode = buf->pages[0]->mapping->host; 4093 4094 ret = extent_buffer_uptodate(buf); 4095 if (!ret) 4096 return ret; 4097 4098 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4099 parent_transid, atomic); 4100 if (ret == -EAGAIN) 4101 return ret; 4102 return !ret; 4103 } 4104 4105 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4106 { 4107 struct btrfs_fs_info *fs_info; 4108 struct btrfs_root *root; 4109 u64 transid = btrfs_header_generation(buf); 4110 int was_dirty; 4111 4112 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4113 /* 4114 * This is a fast path so only do this check if we have sanity tests 4115 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4116 * outside of the sanity tests. 4117 */ 4118 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4119 return; 4120 #endif 4121 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4122 fs_info = root->fs_info; 4123 btrfs_assert_tree_locked(buf); 4124 if (transid != fs_info->generation) 4125 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4126 buf->start, transid, fs_info->generation); 4127 was_dirty = set_extent_buffer_dirty(buf); 4128 if (!was_dirty) 4129 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4130 buf->len, 4131 fs_info->dirty_metadata_batch); 4132 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4133 /* 4134 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4135 * but item data not updated. 4136 * So here we should only check item pointers, not item data. 4137 */ 4138 if (btrfs_header_level(buf) == 0 && 4139 btrfs_check_leaf_relaxed(buf)) { 4140 btrfs_print_leaf(buf); 4141 ASSERT(0); 4142 } 4143 #endif 4144 } 4145 4146 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4147 int flush_delayed) 4148 { 4149 /* 4150 * looks as though older kernels can get into trouble with 4151 * this code, they end up stuck in balance_dirty_pages forever 4152 */ 4153 int ret; 4154 4155 if (current->flags & PF_MEMALLOC) 4156 return; 4157 4158 if (flush_delayed) 4159 btrfs_balance_delayed_items(fs_info); 4160 4161 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4162 BTRFS_DIRTY_METADATA_THRESH, 4163 fs_info->dirty_metadata_batch); 4164 if (ret > 0) { 4165 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4166 } 4167 } 4168 4169 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4170 { 4171 __btrfs_btree_balance_dirty(fs_info, 1); 4172 } 4173 4174 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4175 { 4176 __btrfs_btree_balance_dirty(fs_info, 0); 4177 } 4178 4179 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4180 struct btrfs_key *first_key) 4181 { 4182 return btree_read_extent_buffer_pages(buf, parent_transid, 4183 level, first_key); 4184 } 4185 4186 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4187 { 4188 /* cleanup FS via transaction */ 4189 btrfs_cleanup_transaction(fs_info); 4190 4191 mutex_lock(&fs_info->cleaner_mutex); 4192 btrfs_run_delayed_iputs(fs_info); 4193 mutex_unlock(&fs_info->cleaner_mutex); 4194 4195 down_write(&fs_info->cleanup_work_sem); 4196 up_write(&fs_info->cleanup_work_sem); 4197 } 4198 4199 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4200 { 4201 struct btrfs_ordered_extent *ordered; 4202 4203 spin_lock(&root->ordered_extent_lock); 4204 /* 4205 * This will just short circuit the ordered completion stuff which will 4206 * make sure the ordered extent gets properly cleaned up. 4207 */ 4208 list_for_each_entry(ordered, &root->ordered_extents, 4209 root_extent_list) 4210 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4211 spin_unlock(&root->ordered_extent_lock); 4212 } 4213 4214 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4215 { 4216 struct btrfs_root *root; 4217 struct list_head splice; 4218 4219 INIT_LIST_HEAD(&splice); 4220 4221 spin_lock(&fs_info->ordered_root_lock); 4222 list_splice_init(&fs_info->ordered_roots, &splice); 4223 while (!list_empty(&splice)) { 4224 root = list_first_entry(&splice, struct btrfs_root, 4225 ordered_root); 4226 list_move_tail(&root->ordered_root, 4227 &fs_info->ordered_roots); 4228 4229 spin_unlock(&fs_info->ordered_root_lock); 4230 btrfs_destroy_ordered_extents(root); 4231 4232 cond_resched(); 4233 spin_lock(&fs_info->ordered_root_lock); 4234 } 4235 spin_unlock(&fs_info->ordered_root_lock); 4236 4237 /* 4238 * We need this here because if we've been flipped read-only we won't 4239 * get sync() from the umount, so we need to make sure any ordered 4240 * extents that haven't had their dirty pages IO start writeout yet 4241 * actually get run and error out properly. 4242 */ 4243 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4244 } 4245 4246 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4247 struct btrfs_fs_info *fs_info) 4248 { 4249 struct rb_node *node; 4250 struct btrfs_delayed_ref_root *delayed_refs; 4251 struct btrfs_delayed_ref_node *ref; 4252 int ret = 0; 4253 4254 delayed_refs = &trans->delayed_refs; 4255 4256 spin_lock(&delayed_refs->lock); 4257 if (atomic_read(&delayed_refs->num_entries) == 0) { 4258 spin_unlock(&delayed_refs->lock); 4259 btrfs_info(fs_info, "delayed_refs has NO entry"); 4260 return ret; 4261 } 4262 4263 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4264 struct btrfs_delayed_ref_head *head; 4265 struct rb_node *n; 4266 bool pin_bytes = false; 4267 4268 head = rb_entry(node, struct btrfs_delayed_ref_head, 4269 href_node); 4270 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4271 continue; 4272 4273 spin_lock(&head->lock); 4274 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4275 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4276 ref_node); 4277 ref->in_tree = 0; 4278 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4279 RB_CLEAR_NODE(&ref->ref_node); 4280 if (!list_empty(&ref->add_list)) 4281 list_del(&ref->add_list); 4282 atomic_dec(&delayed_refs->num_entries); 4283 btrfs_put_delayed_ref(ref); 4284 } 4285 if (head->must_insert_reserved) 4286 pin_bytes = true; 4287 btrfs_free_delayed_extent_op(head->extent_op); 4288 btrfs_delete_ref_head(delayed_refs, head); 4289 spin_unlock(&head->lock); 4290 spin_unlock(&delayed_refs->lock); 4291 mutex_unlock(&head->mutex); 4292 4293 if (pin_bytes) 4294 btrfs_pin_extent(fs_info, head->bytenr, 4295 head->num_bytes, 1); 4296 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4297 btrfs_put_delayed_ref_head(head); 4298 cond_resched(); 4299 spin_lock(&delayed_refs->lock); 4300 } 4301 4302 spin_unlock(&delayed_refs->lock); 4303 4304 return ret; 4305 } 4306 4307 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4308 { 4309 struct btrfs_inode *btrfs_inode; 4310 struct list_head splice; 4311 4312 INIT_LIST_HEAD(&splice); 4313 4314 spin_lock(&root->delalloc_lock); 4315 list_splice_init(&root->delalloc_inodes, &splice); 4316 4317 while (!list_empty(&splice)) { 4318 struct inode *inode = NULL; 4319 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4320 delalloc_inodes); 4321 __btrfs_del_delalloc_inode(root, btrfs_inode); 4322 spin_unlock(&root->delalloc_lock); 4323 4324 /* 4325 * Make sure we get a live inode and that it'll not disappear 4326 * meanwhile. 4327 */ 4328 inode = igrab(&btrfs_inode->vfs_inode); 4329 if (inode) { 4330 invalidate_inode_pages2(inode->i_mapping); 4331 iput(inode); 4332 } 4333 spin_lock(&root->delalloc_lock); 4334 } 4335 spin_unlock(&root->delalloc_lock); 4336 } 4337 4338 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4339 { 4340 struct btrfs_root *root; 4341 struct list_head splice; 4342 4343 INIT_LIST_HEAD(&splice); 4344 4345 spin_lock(&fs_info->delalloc_root_lock); 4346 list_splice_init(&fs_info->delalloc_roots, &splice); 4347 while (!list_empty(&splice)) { 4348 root = list_first_entry(&splice, struct btrfs_root, 4349 delalloc_root); 4350 root = btrfs_grab_fs_root(root); 4351 BUG_ON(!root); 4352 spin_unlock(&fs_info->delalloc_root_lock); 4353 4354 btrfs_destroy_delalloc_inodes(root); 4355 btrfs_put_fs_root(root); 4356 4357 spin_lock(&fs_info->delalloc_root_lock); 4358 } 4359 spin_unlock(&fs_info->delalloc_root_lock); 4360 } 4361 4362 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4363 struct extent_io_tree *dirty_pages, 4364 int mark) 4365 { 4366 int ret; 4367 struct extent_buffer *eb; 4368 u64 start = 0; 4369 u64 end; 4370 4371 while (1) { 4372 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4373 mark, NULL); 4374 if (ret) 4375 break; 4376 4377 clear_extent_bits(dirty_pages, start, end, mark); 4378 while (start <= end) { 4379 eb = find_extent_buffer(fs_info, start); 4380 start += fs_info->nodesize; 4381 if (!eb) 4382 continue; 4383 wait_on_extent_buffer_writeback(eb); 4384 4385 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4386 &eb->bflags)) 4387 clear_extent_buffer_dirty(eb); 4388 free_extent_buffer_stale(eb); 4389 } 4390 } 4391 4392 return ret; 4393 } 4394 4395 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4396 struct extent_io_tree *pinned_extents) 4397 { 4398 struct extent_io_tree *unpin; 4399 u64 start; 4400 u64 end; 4401 int ret; 4402 bool loop = true; 4403 4404 unpin = pinned_extents; 4405 again: 4406 while (1) { 4407 struct extent_state *cached_state = NULL; 4408 4409 /* 4410 * The btrfs_finish_extent_commit() may get the same range as 4411 * ours between find_first_extent_bit and clear_extent_dirty. 4412 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4413 * the same extent range. 4414 */ 4415 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4416 ret = find_first_extent_bit(unpin, 0, &start, &end, 4417 EXTENT_DIRTY, &cached_state); 4418 if (ret) { 4419 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4420 break; 4421 } 4422 4423 clear_extent_dirty(unpin, start, end, &cached_state); 4424 free_extent_state(cached_state); 4425 btrfs_error_unpin_extent_range(fs_info, start, end); 4426 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4427 cond_resched(); 4428 } 4429 4430 if (loop) { 4431 if (unpin == &fs_info->freed_extents[0]) 4432 unpin = &fs_info->freed_extents[1]; 4433 else 4434 unpin = &fs_info->freed_extents[0]; 4435 loop = false; 4436 goto again; 4437 } 4438 4439 return 0; 4440 } 4441 4442 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) 4443 { 4444 struct inode *inode; 4445 4446 inode = cache->io_ctl.inode; 4447 if (inode) { 4448 invalidate_inode_pages2(inode->i_mapping); 4449 BTRFS_I(inode)->generation = 0; 4450 cache->io_ctl.inode = NULL; 4451 iput(inode); 4452 } 4453 btrfs_put_block_group(cache); 4454 } 4455 4456 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4457 struct btrfs_fs_info *fs_info) 4458 { 4459 struct btrfs_block_group_cache *cache; 4460 4461 spin_lock(&cur_trans->dirty_bgs_lock); 4462 while (!list_empty(&cur_trans->dirty_bgs)) { 4463 cache = list_first_entry(&cur_trans->dirty_bgs, 4464 struct btrfs_block_group_cache, 4465 dirty_list); 4466 4467 if (!list_empty(&cache->io_list)) { 4468 spin_unlock(&cur_trans->dirty_bgs_lock); 4469 list_del_init(&cache->io_list); 4470 btrfs_cleanup_bg_io(cache); 4471 spin_lock(&cur_trans->dirty_bgs_lock); 4472 } 4473 4474 list_del_init(&cache->dirty_list); 4475 spin_lock(&cache->lock); 4476 cache->disk_cache_state = BTRFS_DC_ERROR; 4477 spin_unlock(&cache->lock); 4478 4479 spin_unlock(&cur_trans->dirty_bgs_lock); 4480 btrfs_put_block_group(cache); 4481 btrfs_delayed_refs_rsv_release(fs_info, 1); 4482 spin_lock(&cur_trans->dirty_bgs_lock); 4483 } 4484 spin_unlock(&cur_trans->dirty_bgs_lock); 4485 4486 /* 4487 * Refer to the definition of io_bgs member for details why it's safe 4488 * to use it without any locking 4489 */ 4490 while (!list_empty(&cur_trans->io_bgs)) { 4491 cache = list_first_entry(&cur_trans->io_bgs, 4492 struct btrfs_block_group_cache, 4493 io_list); 4494 4495 list_del_init(&cache->io_list); 4496 spin_lock(&cache->lock); 4497 cache->disk_cache_state = BTRFS_DC_ERROR; 4498 spin_unlock(&cache->lock); 4499 btrfs_cleanup_bg_io(cache); 4500 } 4501 } 4502 4503 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4504 struct btrfs_fs_info *fs_info) 4505 { 4506 struct btrfs_device *dev, *tmp; 4507 4508 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4509 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4510 ASSERT(list_empty(&cur_trans->io_bgs)); 4511 4512 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4513 post_commit_list) { 4514 list_del_init(&dev->post_commit_list); 4515 } 4516 4517 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4518 4519 cur_trans->state = TRANS_STATE_COMMIT_START; 4520 wake_up(&fs_info->transaction_blocked_wait); 4521 4522 cur_trans->state = TRANS_STATE_UNBLOCKED; 4523 wake_up(&fs_info->transaction_wait); 4524 4525 btrfs_destroy_delayed_inodes(fs_info); 4526 btrfs_assert_delayed_root_empty(fs_info); 4527 4528 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4529 EXTENT_DIRTY); 4530 btrfs_destroy_pinned_extent(fs_info, 4531 fs_info->pinned_extents); 4532 4533 cur_trans->state =TRANS_STATE_COMPLETED; 4534 wake_up(&cur_trans->commit_wait); 4535 } 4536 4537 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4538 { 4539 struct btrfs_transaction *t; 4540 4541 mutex_lock(&fs_info->transaction_kthread_mutex); 4542 4543 spin_lock(&fs_info->trans_lock); 4544 while (!list_empty(&fs_info->trans_list)) { 4545 t = list_first_entry(&fs_info->trans_list, 4546 struct btrfs_transaction, list); 4547 if (t->state >= TRANS_STATE_COMMIT_START) { 4548 refcount_inc(&t->use_count); 4549 spin_unlock(&fs_info->trans_lock); 4550 btrfs_wait_for_commit(fs_info, t->transid); 4551 btrfs_put_transaction(t); 4552 spin_lock(&fs_info->trans_lock); 4553 continue; 4554 } 4555 if (t == fs_info->running_transaction) { 4556 t->state = TRANS_STATE_COMMIT_DOING; 4557 spin_unlock(&fs_info->trans_lock); 4558 /* 4559 * We wait for 0 num_writers since we don't hold a trans 4560 * handle open currently for this transaction. 4561 */ 4562 wait_event(t->writer_wait, 4563 atomic_read(&t->num_writers) == 0); 4564 } else { 4565 spin_unlock(&fs_info->trans_lock); 4566 } 4567 btrfs_cleanup_one_transaction(t, fs_info); 4568 4569 spin_lock(&fs_info->trans_lock); 4570 if (t == fs_info->running_transaction) 4571 fs_info->running_transaction = NULL; 4572 list_del_init(&t->list); 4573 spin_unlock(&fs_info->trans_lock); 4574 4575 btrfs_put_transaction(t); 4576 trace_btrfs_transaction_commit(fs_info->tree_root); 4577 spin_lock(&fs_info->trans_lock); 4578 } 4579 spin_unlock(&fs_info->trans_lock); 4580 btrfs_destroy_all_ordered_extents(fs_info); 4581 btrfs_destroy_delayed_inodes(fs_info); 4582 btrfs_assert_delayed_root_empty(fs_info); 4583 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 4584 btrfs_destroy_all_delalloc_inodes(fs_info); 4585 mutex_unlock(&fs_info->transaction_kthread_mutex); 4586 4587 return 0; 4588 } 4589 4590 static const struct extent_io_ops btree_extent_io_ops = { 4591 /* mandatory callbacks */ 4592 .submit_bio_hook = btree_submit_bio_hook, 4593 .readpage_end_io_hook = btree_readpage_end_io_hook, 4594 }; 4595