xref: /openbmc/linux/fs/btrfs/disk-io.c (revision d2999e1b)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52 #include "qgroup.h"
53 
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57 
58 static struct extent_io_ops btree_extent_io_ops;
59 static void end_workqueue_fn(struct btrfs_work *work);
60 static void free_fs_root(struct btrfs_root *root);
61 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
62 				    int read_only);
63 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
64 					     struct btrfs_root *root);
65 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
66 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
67 				      struct btrfs_root *root);
68 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
69 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
70 					struct extent_io_tree *dirty_pages,
71 					int mark);
72 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
73 				       struct extent_io_tree *pinned_extents);
74 static int btrfs_cleanup_transaction(struct btrfs_root *root);
75 static void btrfs_error_commit_super(struct btrfs_root *root);
76 
77 /*
78  * end_io_wq structs are used to do processing in task context when an IO is
79  * complete.  This is used during reads to verify checksums, and it is used
80  * by writes to insert metadata for new file extents after IO is complete.
81  */
82 struct end_io_wq {
83 	struct bio *bio;
84 	bio_end_io_t *end_io;
85 	void *private;
86 	struct btrfs_fs_info *info;
87 	int error;
88 	int metadata;
89 	struct list_head list;
90 	struct btrfs_work work;
91 };
92 
93 /*
94  * async submit bios are used to offload expensive checksumming
95  * onto the worker threads.  They checksum file and metadata bios
96  * just before they are sent down the IO stack.
97  */
98 struct async_submit_bio {
99 	struct inode *inode;
100 	struct bio *bio;
101 	struct list_head list;
102 	extent_submit_bio_hook_t *submit_bio_start;
103 	extent_submit_bio_hook_t *submit_bio_done;
104 	int rw;
105 	int mirror_num;
106 	unsigned long bio_flags;
107 	/*
108 	 * bio_offset is optional, can be used if the pages in the bio
109 	 * can't tell us where in the file the bio should go
110 	 */
111 	u64 bio_offset;
112 	struct btrfs_work work;
113 	int error;
114 };
115 
116 /*
117  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
118  * eb, the lockdep key is determined by the btrfs_root it belongs to and
119  * the level the eb occupies in the tree.
120  *
121  * Different roots are used for different purposes and may nest inside each
122  * other and they require separate keysets.  As lockdep keys should be
123  * static, assign keysets according to the purpose of the root as indicated
124  * by btrfs_root->objectid.  This ensures that all special purpose roots
125  * have separate keysets.
126  *
127  * Lock-nesting across peer nodes is always done with the immediate parent
128  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
129  * subclass to avoid triggering lockdep warning in such cases.
130  *
131  * The key is set by the readpage_end_io_hook after the buffer has passed
132  * csum validation but before the pages are unlocked.  It is also set by
133  * btrfs_init_new_buffer on freshly allocated blocks.
134  *
135  * We also add a check to make sure the highest level of the tree is the
136  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
137  * needs update as well.
138  */
139 #ifdef CONFIG_DEBUG_LOCK_ALLOC
140 # if BTRFS_MAX_LEVEL != 8
141 #  error
142 # endif
143 
144 static struct btrfs_lockdep_keyset {
145 	u64			id;		/* root objectid */
146 	const char		*name_stem;	/* lock name stem */
147 	char			names[BTRFS_MAX_LEVEL + 1][20];
148 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
149 } btrfs_lockdep_keysets[] = {
150 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
151 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
152 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
153 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
154 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
155 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
156 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
157 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
158 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
159 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
160 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
161 	{ .id = 0,				.name_stem = "tree"	},
162 };
163 
164 void __init btrfs_init_lockdep(void)
165 {
166 	int i, j;
167 
168 	/* initialize lockdep class names */
169 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
170 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
171 
172 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
173 			snprintf(ks->names[j], sizeof(ks->names[j]),
174 				 "btrfs-%s-%02d", ks->name_stem, j);
175 	}
176 }
177 
178 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
179 				    int level)
180 {
181 	struct btrfs_lockdep_keyset *ks;
182 
183 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
184 
185 	/* find the matching keyset, id 0 is the default entry */
186 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
187 		if (ks->id == objectid)
188 			break;
189 
190 	lockdep_set_class_and_name(&eb->lock,
191 				   &ks->keys[level], ks->names[level]);
192 }
193 
194 #endif
195 
196 /*
197  * extents on the btree inode are pretty simple, there's one extent
198  * that covers the entire device
199  */
200 static struct extent_map *btree_get_extent(struct inode *inode,
201 		struct page *page, size_t pg_offset, u64 start, u64 len,
202 		int create)
203 {
204 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
205 	struct extent_map *em;
206 	int ret;
207 
208 	read_lock(&em_tree->lock);
209 	em = lookup_extent_mapping(em_tree, start, len);
210 	if (em) {
211 		em->bdev =
212 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
213 		read_unlock(&em_tree->lock);
214 		goto out;
215 	}
216 	read_unlock(&em_tree->lock);
217 
218 	em = alloc_extent_map();
219 	if (!em) {
220 		em = ERR_PTR(-ENOMEM);
221 		goto out;
222 	}
223 	em->start = 0;
224 	em->len = (u64)-1;
225 	em->block_len = (u64)-1;
226 	em->block_start = 0;
227 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
228 
229 	write_lock(&em_tree->lock);
230 	ret = add_extent_mapping(em_tree, em, 0);
231 	if (ret == -EEXIST) {
232 		free_extent_map(em);
233 		em = lookup_extent_mapping(em_tree, start, len);
234 		if (!em)
235 			em = ERR_PTR(-EIO);
236 	} else if (ret) {
237 		free_extent_map(em);
238 		em = ERR_PTR(ret);
239 	}
240 	write_unlock(&em_tree->lock);
241 
242 out:
243 	return em;
244 }
245 
246 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
247 {
248 	return btrfs_crc32c(seed, data, len);
249 }
250 
251 void btrfs_csum_final(u32 crc, char *result)
252 {
253 	put_unaligned_le32(~crc, result);
254 }
255 
256 /*
257  * compute the csum for a btree block, and either verify it or write it
258  * into the csum field of the block.
259  */
260 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
261 			   int verify)
262 {
263 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
264 	char *result = NULL;
265 	unsigned long len;
266 	unsigned long cur_len;
267 	unsigned long offset = BTRFS_CSUM_SIZE;
268 	char *kaddr;
269 	unsigned long map_start;
270 	unsigned long map_len;
271 	int err;
272 	u32 crc = ~(u32)0;
273 	unsigned long inline_result;
274 
275 	len = buf->len - offset;
276 	while (len > 0) {
277 		err = map_private_extent_buffer(buf, offset, 32,
278 					&kaddr, &map_start, &map_len);
279 		if (err)
280 			return 1;
281 		cur_len = min(len, map_len - (offset - map_start));
282 		crc = btrfs_csum_data(kaddr + offset - map_start,
283 				      crc, cur_len);
284 		len -= cur_len;
285 		offset += cur_len;
286 	}
287 	if (csum_size > sizeof(inline_result)) {
288 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
289 		if (!result)
290 			return 1;
291 	} else {
292 		result = (char *)&inline_result;
293 	}
294 
295 	btrfs_csum_final(crc, result);
296 
297 	if (verify) {
298 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
299 			u32 val;
300 			u32 found = 0;
301 			memcpy(&found, result, csum_size);
302 
303 			read_extent_buffer(buf, &val, 0, csum_size);
304 			printk_ratelimited(KERN_INFO
305 				"BTRFS: %s checksum verify failed on %llu wanted %X found %X "
306 				"level %d\n",
307 				root->fs_info->sb->s_id, buf->start,
308 				val, found, btrfs_header_level(buf));
309 			if (result != (char *)&inline_result)
310 				kfree(result);
311 			return 1;
312 		}
313 	} else {
314 		write_extent_buffer(buf, result, 0, csum_size);
315 	}
316 	if (result != (char *)&inline_result)
317 		kfree(result);
318 	return 0;
319 }
320 
321 /*
322  * we can't consider a given block up to date unless the transid of the
323  * block matches the transid in the parent node's pointer.  This is how we
324  * detect blocks that either didn't get written at all or got written
325  * in the wrong place.
326  */
327 static int verify_parent_transid(struct extent_io_tree *io_tree,
328 				 struct extent_buffer *eb, u64 parent_transid,
329 				 int atomic)
330 {
331 	struct extent_state *cached_state = NULL;
332 	int ret;
333 	bool need_lock = (current->journal_info ==
334 			  (void *)BTRFS_SEND_TRANS_STUB);
335 
336 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
337 		return 0;
338 
339 	if (atomic)
340 		return -EAGAIN;
341 
342 	if (need_lock) {
343 		btrfs_tree_read_lock(eb);
344 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
345 	}
346 
347 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
348 			 0, &cached_state);
349 	if (extent_buffer_uptodate(eb) &&
350 	    btrfs_header_generation(eb) == parent_transid) {
351 		ret = 0;
352 		goto out;
353 	}
354 	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
355 		       "found %llu\n",
356 		       eb->start, parent_transid, btrfs_header_generation(eb));
357 	ret = 1;
358 
359 	/*
360 	 * Things reading via commit roots that don't have normal protection,
361 	 * like send, can have a really old block in cache that may point at a
362 	 * block that has been free'd and re-allocated.  So don't clear uptodate
363 	 * if we find an eb that is under IO (dirty/writeback) because we could
364 	 * end up reading in the stale data and then writing it back out and
365 	 * making everybody very sad.
366 	 */
367 	if (!extent_buffer_under_io(eb))
368 		clear_extent_buffer_uptodate(eb);
369 out:
370 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
371 			     &cached_state, GFP_NOFS);
372 	btrfs_tree_read_unlock_blocking(eb);
373 	return ret;
374 }
375 
376 /*
377  * Return 0 if the superblock checksum type matches the checksum value of that
378  * algorithm. Pass the raw disk superblock data.
379  */
380 static int btrfs_check_super_csum(char *raw_disk_sb)
381 {
382 	struct btrfs_super_block *disk_sb =
383 		(struct btrfs_super_block *)raw_disk_sb;
384 	u16 csum_type = btrfs_super_csum_type(disk_sb);
385 	int ret = 0;
386 
387 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
388 		u32 crc = ~(u32)0;
389 		const int csum_size = sizeof(crc);
390 		char result[csum_size];
391 
392 		/*
393 		 * The super_block structure does not span the whole
394 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
395 		 * is filled with zeros and is included in the checkum.
396 		 */
397 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
398 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
399 		btrfs_csum_final(crc, result);
400 
401 		if (memcmp(raw_disk_sb, result, csum_size))
402 			ret = 1;
403 
404 		if (ret && btrfs_super_generation(disk_sb) < 10) {
405 			printk(KERN_WARNING
406 				"BTRFS: super block crcs don't match, older mkfs detected\n");
407 			ret = 0;
408 		}
409 	}
410 
411 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
412 		printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
413 				csum_type);
414 		ret = 1;
415 	}
416 
417 	return ret;
418 }
419 
420 /*
421  * helper to read a given tree block, doing retries as required when
422  * the checksums don't match and we have alternate mirrors to try.
423  */
424 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
425 					  struct extent_buffer *eb,
426 					  u64 start, u64 parent_transid)
427 {
428 	struct extent_io_tree *io_tree;
429 	int failed = 0;
430 	int ret;
431 	int num_copies = 0;
432 	int mirror_num = 0;
433 	int failed_mirror = 0;
434 
435 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
436 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
437 	while (1) {
438 		ret = read_extent_buffer_pages(io_tree, eb, start,
439 					       WAIT_COMPLETE,
440 					       btree_get_extent, mirror_num);
441 		if (!ret) {
442 			if (!verify_parent_transid(io_tree, eb,
443 						   parent_transid, 0))
444 				break;
445 			else
446 				ret = -EIO;
447 		}
448 
449 		/*
450 		 * This buffer's crc is fine, but its contents are corrupted, so
451 		 * there is no reason to read the other copies, they won't be
452 		 * any less wrong.
453 		 */
454 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
455 			break;
456 
457 		num_copies = btrfs_num_copies(root->fs_info,
458 					      eb->start, eb->len);
459 		if (num_copies == 1)
460 			break;
461 
462 		if (!failed_mirror) {
463 			failed = 1;
464 			failed_mirror = eb->read_mirror;
465 		}
466 
467 		mirror_num++;
468 		if (mirror_num == failed_mirror)
469 			mirror_num++;
470 
471 		if (mirror_num > num_copies)
472 			break;
473 	}
474 
475 	if (failed && !ret && failed_mirror)
476 		repair_eb_io_failure(root, eb, failed_mirror);
477 
478 	return ret;
479 }
480 
481 /*
482  * checksum a dirty tree block before IO.  This has extra checks to make sure
483  * we only fill in the checksum field in the first page of a multi-page block
484  */
485 
486 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
487 {
488 	u64 start = page_offset(page);
489 	u64 found_start;
490 	struct extent_buffer *eb;
491 
492 	eb = (struct extent_buffer *)page->private;
493 	if (page != eb->pages[0])
494 		return 0;
495 	found_start = btrfs_header_bytenr(eb);
496 	if (WARN_ON(found_start != start || !PageUptodate(page)))
497 		return 0;
498 	csum_tree_block(root, eb, 0);
499 	return 0;
500 }
501 
502 static int check_tree_block_fsid(struct btrfs_root *root,
503 				 struct extent_buffer *eb)
504 {
505 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
506 	u8 fsid[BTRFS_UUID_SIZE];
507 	int ret = 1;
508 
509 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
510 	while (fs_devices) {
511 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
512 			ret = 0;
513 			break;
514 		}
515 		fs_devices = fs_devices->seed;
516 	}
517 	return ret;
518 }
519 
520 #define CORRUPT(reason, eb, root, slot)				\
521 	btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"	\
522 		   "root=%llu, slot=%d", reason,			\
523 	       btrfs_header_bytenr(eb),	root->objectid, slot)
524 
525 static noinline int check_leaf(struct btrfs_root *root,
526 			       struct extent_buffer *leaf)
527 {
528 	struct btrfs_key key;
529 	struct btrfs_key leaf_key;
530 	u32 nritems = btrfs_header_nritems(leaf);
531 	int slot;
532 
533 	if (nritems == 0)
534 		return 0;
535 
536 	/* Check the 0 item */
537 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
538 	    BTRFS_LEAF_DATA_SIZE(root)) {
539 		CORRUPT("invalid item offset size pair", leaf, root, 0);
540 		return -EIO;
541 	}
542 
543 	/*
544 	 * Check to make sure each items keys are in the correct order and their
545 	 * offsets make sense.  We only have to loop through nritems-1 because
546 	 * we check the current slot against the next slot, which verifies the
547 	 * next slot's offset+size makes sense and that the current's slot
548 	 * offset is correct.
549 	 */
550 	for (slot = 0; slot < nritems - 1; slot++) {
551 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
552 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
553 
554 		/* Make sure the keys are in the right order */
555 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
556 			CORRUPT("bad key order", leaf, root, slot);
557 			return -EIO;
558 		}
559 
560 		/*
561 		 * Make sure the offset and ends are right, remember that the
562 		 * item data starts at the end of the leaf and grows towards the
563 		 * front.
564 		 */
565 		if (btrfs_item_offset_nr(leaf, slot) !=
566 			btrfs_item_end_nr(leaf, slot + 1)) {
567 			CORRUPT("slot offset bad", leaf, root, slot);
568 			return -EIO;
569 		}
570 
571 		/*
572 		 * Check to make sure that we don't point outside of the leaf,
573 		 * just incase all the items are consistent to eachother, but
574 		 * all point outside of the leaf.
575 		 */
576 		if (btrfs_item_end_nr(leaf, slot) >
577 		    BTRFS_LEAF_DATA_SIZE(root)) {
578 			CORRUPT("slot end outside of leaf", leaf, root, slot);
579 			return -EIO;
580 		}
581 	}
582 
583 	return 0;
584 }
585 
586 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
587 				      u64 phy_offset, struct page *page,
588 				      u64 start, u64 end, int mirror)
589 {
590 	u64 found_start;
591 	int found_level;
592 	struct extent_buffer *eb;
593 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
594 	int ret = 0;
595 	int reads_done;
596 
597 	if (!page->private)
598 		goto out;
599 
600 	eb = (struct extent_buffer *)page->private;
601 
602 	/* the pending IO might have been the only thing that kept this buffer
603 	 * in memory.  Make sure we have a ref for all this other checks
604 	 */
605 	extent_buffer_get(eb);
606 
607 	reads_done = atomic_dec_and_test(&eb->io_pages);
608 	if (!reads_done)
609 		goto err;
610 
611 	eb->read_mirror = mirror;
612 	if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
613 		ret = -EIO;
614 		goto err;
615 	}
616 
617 	found_start = btrfs_header_bytenr(eb);
618 	if (found_start != eb->start) {
619 		printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
620 			       "%llu %llu\n",
621 			       found_start, eb->start);
622 		ret = -EIO;
623 		goto err;
624 	}
625 	if (check_tree_block_fsid(root, eb)) {
626 		printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
627 			       eb->start);
628 		ret = -EIO;
629 		goto err;
630 	}
631 	found_level = btrfs_header_level(eb);
632 	if (found_level >= BTRFS_MAX_LEVEL) {
633 		btrfs_info(root->fs_info, "bad tree block level %d",
634 			   (int)btrfs_header_level(eb));
635 		ret = -EIO;
636 		goto err;
637 	}
638 
639 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
640 				       eb, found_level);
641 
642 	ret = csum_tree_block(root, eb, 1);
643 	if (ret) {
644 		ret = -EIO;
645 		goto err;
646 	}
647 
648 	/*
649 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
650 	 * that we don't try and read the other copies of this block, just
651 	 * return -EIO.
652 	 */
653 	if (found_level == 0 && check_leaf(root, eb)) {
654 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
655 		ret = -EIO;
656 	}
657 
658 	if (!ret)
659 		set_extent_buffer_uptodate(eb);
660 err:
661 	if (reads_done &&
662 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
663 		btree_readahead_hook(root, eb, eb->start, ret);
664 
665 	if (ret) {
666 		/*
667 		 * our io error hook is going to dec the io pages
668 		 * again, we have to make sure it has something
669 		 * to decrement
670 		 */
671 		atomic_inc(&eb->io_pages);
672 		clear_extent_buffer_uptodate(eb);
673 	}
674 	free_extent_buffer(eb);
675 out:
676 	return ret;
677 }
678 
679 static int btree_io_failed_hook(struct page *page, int failed_mirror)
680 {
681 	struct extent_buffer *eb;
682 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
683 
684 	eb = (struct extent_buffer *)page->private;
685 	set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
686 	eb->read_mirror = failed_mirror;
687 	atomic_dec(&eb->io_pages);
688 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
689 		btree_readahead_hook(root, eb, eb->start, -EIO);
690 	return -EIO;	/* we fixed nothing */
691 }
692 
693 static void end_workqueue_bio(struct bio *bio, int err)
694 {
695 	struct end_io_wq *end_io_wq = bio->bi_private;
696 	struct btrfs_fs_info *fs_info;
697 
698 	fs_info = end_io_wq->info;
699 	end_io_wq->error = err;
700 	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
701 
702 	if (bio->bi_rw & REQ_WRITE) {
703 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
704 			btrfs_queue_work(fs_info->endio_meta_write_workers,
705 					 &end_io_wq->work);
706 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
707 			btrfs_queue_work(fs_info->endio_freespace_worker,
708 					 &end_io_wq->work);
709 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
710 			btrfs_queue_work(fs_info->endio_raid56_workers,
711 					 &end_io_wq->work);
712 		else
713 			btrfs_queue_work(fs_info->endio_write_workers,
714 					 &end_io_wq->work);
715 	} else {
716 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
717 			btrfs_queue_work(fs_info->endio_raid56_workers,
718 					 &end_io_wq->work);
719 		else if (end_io_wq->metadata)
720 			btrfs_queue_work(fs_info->endio_meta_workers,
721 					 &end_io_wq->work);
722 		else
723 			btrfs_queue_work(fs_info->endio_workers,
724 					 &end_io_wq->work);
725 	}
726 }
727 
728 /*
729  * For the metadata arg you want
730  *
731  * 0 - if data
732  * 1 - if normal metadta
733  * 2 - if writing to the free space cache area
734  * 3 - raid parity work
735  */
736 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
737 			int metadata)
738 {
739 	struct end_io_wq *end_io_wq;
740 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
741 	if (!end_io_wq)
742 		return -ENOMEM;
743 
744 	end_io_wq->private = bio->bi_private;
745 	end_io_wq->end_io = bio->bi_end_io;
746 	end_io_wq->info = info;
747 	end_io_wq->error = 0;
748 	end_io_wq->bio = bio;
749 	end_io_wq->metadata = metadata;
750 
751 	bio->bi_private = end_io_wq;
752 	bio->bi_end_io = end_workqueue_bio;
753 	return 0;
754 }
755 
756 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
757 {
758 	unsigned long limit = min_t(unsigned long,
759 				    info->thread_pool_size,
760 				    info->fs_devices->open_devices);
761 	return 256 * limit;
762 }
763 
764 static void run_one_async_start(struct btrfs_work *work)
765 {
766 	struct async_submit_bio *async;
767 	int ret;
768 
769 	async = container_of(work, struct  async_submit_bio, work);
770 	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
771 				      async->mirror_num, async->bio_flags,
772 				      async->bio_offset);
773 	if (ret)
774 		async->error = ret;
775 }
776 
777 static void run_one_async_done(struct btrfs_work *work)
778 {
779 	struct btrfs_fs_info *fs_info;
780 	struct async_submit_bio *async;
781 	int limit;
782 
783 	async = container_of(work, struct  async_submit_bio, work);
784 	fs_info = BTRFS_I(async->inode)->root->fs_info;
785 
786 	limit = btrfs_async_submit_limit(fs_info);
787 	limit = limit * 2 / 3;
788 
789 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
790 	    waitqueue_active(&fs_info->async_submit_wait))
791 		wake_up(&fs_info->async_submit_wait);
792 
793 	/* If an error occured we just want to clean up the bio and move on */
794 	if (async->error) {
795 		bio_endio(async->bio, async->error);
796 		return;
797 	}
798 
799 	async->submit_bio_done(async->inode, async->rw, async->bio,
800 			       async->mirror_num, async->bio_flags,
801 			       async->bio_offset);
802 }
803 
804 static void run_one_async_free(struct btrfs_work *work)
805 {
806 	struct async_submit_bio *async;
807 
808 	async = container_of(work, struct  async_submit_bio, work);
809 	kfree(async);
810 }
811 
812 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
813 			int rw, struct bio *bio, int mirror_num,
814 			unsigned long bio_flags,
815 			u64 bio_offset,
816 			extent_submit_bio_hook_t *submit_bio_start,
817 			extent_submit_bio_hook_t *submit_bio_done)
818 {
819 	struct async_submit_bio *async;
820 
821 	async = kmalloc(sizeof(*async), GFP_NOFS);
822 	if (!async)
823 		return -ENOMEM;
824 
825 	async->inode = inode;
826 	async->rw = rw;
827 	async->bio = bio;
828 	async->mirror_num = mirror_num;
829 	async->submit_bio_start = submit_bio_start;
830 	async->submit_bio_done = submit_bio_done;
831 
832 	btrfs_init_work(&async->work, run_one_async_start,
833 			run_one_async_done, run_one_async_free);
834 
835 	async->bio_flags = bio_flags;
836 	async->bio_offset = bio_offset;
837 
838 	async->error = 0;
839 
840 	atomic_inc(&fs_info->nr_async_submits);
841 
842 	if (rw & REQ_SYNC)
843 		btrfs_set_work_high_priority(&async->work);
844 
845 	btrfs_queue_work(fs_info->workers, &async->work);
846 
847 	while (atomic_read(&fs_info->async_submit_draining) &&
848 	      atomic_read(&fs_info->nr_async_submits)) {
849 		wait_event(fs_info->async_submit_wait,
850 			   (atomic_read(&fs_info->nr_async_submits) == 0));
851 	}
852 
853 	return 0;
854 }
855 
856 static int btree_csum_one_bio(struct bio *bio)
857 {
858 	struct bio_vec *bvec;
859 	struct btrfs_root *root;
860 	int i, ret = 0;
861 
862 	bio_for_each_segment_all(bvec, bio, i) {
863 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
864 		ret = csum_dirty_buffer(root, bvec->bv_page);
865 		if (ret)
866 			break;
867 	}
868 
869 	return ret;
870 }
871 
872 static int __btree_submit_bio_start(struct inode *inode, int rw,
873 				    struct bio *bio, int mirror_num,
874 				    unsigned long bio_flags,
875 				    u64 bio_offset)
876 {
877 	/*
878 	 * when we're called for a write, we're already in the async
879 	 * submission context.  Just jump into btrfs_map_bio
880 	 */
881 	return btree_csum_one_bio(bio);
882 }
883 
884 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
885 				 int mirror_num, unsigned long bio_flags,
886 				 u64 bio_offset)
887 {
888 	int ret;
889 
890 	/*
891 	 * when we're called for a write, we're already in the async
892 	 * submission context.  Just jump into btrfs_map_bio
893 	 */
894 	ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
895 	if (ret)
896 		bio_endio(bio, ret);
897 	return ret;
898 }
899 
900 static int check_async_write(struct inode *inode, unsigned long bio_flags)
901 {
902 	if (bio_flags & EXTENT_BIO_TREE_LOG)
903 		return 0;
904 #ifdef CONFIG_X86
905 	if (cpu_has_xmm4_2)
906 		return 0;
907 #endif
908 	return 1;
909 }
910 
911 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
912 				 int mirror_num, unsigned long bio_flags,
913 				 u64 bio_offset)
914 {
915 	int async = check_async_write(inode, bio_flags);
916 	int ret;
917 
918 	if (!(rw & REQ_WRITE)) {
919 		/*
920 		 * called for a read, do the setup so that checksum validation
921 		 * can happen in the async kernel threads
922 		 */
923 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
924 					  bio, 1);
925 		if (ret)
926 			goto out_w_error;
927 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
928 				    mirror_num, 0);
929 	} else if (!async) {
930 		ret = btree_csum_one_bio(bio);
931 		if (ret)
932 			goto out_w_error;
933 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
934 				    mirror_num, 0);
935 	} else {
936 		/*
937 		 * kthread helpers are used to submit writes so that
938 		 * checksumming can happen in parallel across all CPUs
939 		 */
940 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
941 					  inode, rw, bio, mirror_num, 0,
942 					  bio_offset,
943 					  __btree_submit_bio_start,
944 					  __btree_submit_bio_done);
945 	}
946 
947 	if (ret) {
948 out_w_error:
949 		bio_endio(bio, ret);
950 	}
951 	return ret;
952 }
953 
954 #ifdef CONFIG_MIGRATION
955 static int btree_migratepage(struct address_space *mapping,
956 			struct page *newpage, struct page *page,
957 			enum migrate_mode mode)
958 {
959 	/*
960 	 * we can't safely write a btree page from here,
961 	 * we haven't done the locking hook
962 	 */
963 	if (PageDirty(page))
964 		return -EAGAIN;
965 	/*
966 	 * Buffers may be managed in a filesystem specific way.
967 	 * We must have no buffers or drop them.
968 	 */
969 	if (page_has_private(page) &&
970 	    !try_to_release_page(page, GFP_KERNEL))
971 		return -EAGAIN;
972 	return migrate_page(mapping, newpage, page, mode);
973 }
974 #endif
975 
976 
977 static int btree_writepages(struct address_space *mapping,
978 			    struct writeback_control *wbc)
979 {
980 	struct btrfs_fs_info *fs_info;
981 	int ret;
982 
983 	if (wbc->sync_mode == WB_SYNC_NONE) {
984 
985 		if (wbc->for_kupdate)
986 			return 0;
987 
988 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
989 		/* this is a bit racy, but that's ok */
990 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
991 					     BTRFS_DIRTY_METADATA_THRESH);
992 		if (ret < 0)
993 			return 0;
994 	}
995 	return btree_write_cache_pages(mapping, wbc);
996 }
997 
998 static int btree_readpage(struct file *file, struct page *page)
999 {
1000 	struct extent_io_tree *tree;
1001 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1002 	return extent_read_full_page(tree, page, btree_get_extent, 0);
1003 }
1004 
1005 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1006 {
1007 	if (PageWriteback(page) || PageDirty(page))
1008 		return 0;
1009 
1010 	return try_release_extent_buffer(page);
1011 }
1012 
1013 static void btree_invalidatepage(struct page *page, unsigned int offset,
1014 				 unsigned int length)
1015 {
1016 	struct extent_io_tree *tree;
1017 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1018 	extent_invalidatepage(tree, page, offset);
1019 	btree_releasepage(page, GFP_NOFS);
1020 	if (PagePrivate(page)) {
1021 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1022 			   "page private not zero on page %llu",
1023 			   (unsigned long long)page_offset(page));
1024 		ClearPagePrivate(page);
1025 		set_page_private(page, 0);
1026 		page_cache_release(page);
1027 	}
1028 }
1029 
1030 static int btree_set_page_dirty(struct page *page)
1031 {
1032 #ifdef DEBUG
1033 	struct extent_buffer *eb;
1034 
1035 	BUG_ON(!PagePrivate(page));
1036 	eb = (struct extent_buffer *)page->private;
1037 	BUG_ON(!eb);
1038 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1039 	BUG_ON(!atomic_read(&eb->refs));
1040 	btrfs_assert_tree_locked(eb);
1041 #endif
1042 	return __set_page_dirty_nobuffers(page);
1043 }
1044 
1045 static const struct address_space_operations btree_aops = {
1046 	.readpage	= btree_readpage,
1047 	.writepages	= btree_writepages,
1048 	.releasepage	= btree_releasepage,
1049 	.invalidatepage = btree_invalidatepage,
1050 #ifdef CONFIG_MIGRATION
1051 	.migratepage	= btree_migratepage,
1052 #endif
1053 	.set_page_dirty = btree_set_page_dirty,
1054 };
1055 
1056 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1057 			 u64 parent_transid)
1058 {
1059 	struct extent_buffer *buf = NULL;
1060 	struct inode *btree_inode = root->fs_info->btree_inode;
1061 	int ret = 0;
1062 
1063 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1064 	if (!buf)
1065 		return 0;
1066 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1067 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1068 	free_extent_buffer(buf);
1069 	return ret;
1070 }
1071 
1072 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1073 			 int mirror_num, struct extent_buffer **eb)
1074 {
1075 	struct extent_buffer *buf = NULL;
1076 	struct inode *btree_inode = root->fs_info->btree_inode;
1077 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1078 	int ret;
1079 
1080 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1081 	if (!buf)
1082 		return 0;
1083 
1084 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1085 
1086 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1087 				       btree_get_extent, mirror_num);
1088 	if (ret) {
1089 		free_extent_buffer(buf);
1090 		return ret;
1091 	}
1092 
1093 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1094 		free_extent_buffer(buf);
1095 		return -EIO;
1096 	} else if (extent_buffer_uptodate(buf)) {
1097 		*eb = buf;
1098 	} else {
1099 		free_extent_buffer(buf);
1100 	}
1101 	return 0;
1102 }
1103 
1104 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1105 					    u64 bytenr, u32 blocksize)
1106 {
1107 	return find_extent_buffer(root->fs_info, bytenr);
1108 }
1109 
1110 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1111 						 u64 bytenr, u32 blocksize)
1112 {
1113 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1114 	if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
1115 		return alloc_test_extent_buffer(root->fs_info, bytenr,
1116 						blocksize);
1117 #endif
1118 	return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1119 }
1120 
1121 
1122 int btrfs_write_tree_block(struct extent_buffer *buf)
1123 {
1124 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1125 					buf->start + buf->len - 1);
1126 }
1127 
1128 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1129 {
1130 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1131 				       buf->start, buf->start + buf->len - 1);
1132 }
1133 
1134 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1135 				      u32 blocksize, u64 parent_transid)
1136 {
1137 	struct extent_buffer *buf = NULL;
1138 	int ret;
1139 
1140 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1141 	if (!buf)
1142 		return NULL;
1143 
1144 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1145 	if (ret) {
1146 		free_extent_buffer(buf);
1147 		return NULL;
1148 	}
1149 	return buf;
1150 
1151 }
1152 
1153 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1154 		      struct extent_buffer *buf)
1155 {
1156 	struct btrfs_fs_info *fs_info = root->fs_info;
1157 
1158 	if (btrfs_header_generation(buf) ==
1159 	    fs_info->running_transaction->transid) {
1160 		btrfs_assert_tree_locked(buf);
1161 
1162 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1163 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1164 					     -buf->len,
1165 					     fs_info->dirty_metadata_batch);
1166 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1167 			btrfs_set_lock_blocking(buf);
1168 			clear_extent_buffer_dirty(buf);
1169 		}
1170 	}
1171 }
1172 
1173 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1174 {
1175 	struct btrfs_subvolume_writers *writers;
1176 	int ret;
1177 
1178 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1179 	if (!writers)
1180 		return ERR_PTR(-ENOMEM);
1181 
1182 	ret = percpu_counter_init(&writers->counter, 0);
1183 	if (ret < 0) {
1184 		kfree(writers);
1185 		return ERR_PTR(ret);
1186 	}
1187 
1188 	init_waitqueue_head(&writers->wait);
1189 	return writers;
1190 }
1191 
1192 static void
1193 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1194 {
1195 	percpu_counter_destroy(&writers->counter);
1196 	kfree(writers);
1197 }
1198 
1199 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1200 			 u32 stripesize, struct btrfs_root *root,
1201 			 struct btrfs_fs_info *fs_info,
1202 			 u64 objectid)
1203 {
1204 	root->node = NULL;
1205 	root->commit_root = NULL;
1206 	root->sectorsize = sectorsize;
1207 	root->nodesize = nodesize;
1208 	root->leafsize = leafsize;
1209 	root->stripesize = stripesize;
1210 	root->state = 0;
1211 	root->orphan_cleanup_state = 0;
1212 
1213 	root->objectid = objectid;
1214 	root->last_trans = 0;
1215 	root->highest_objectid = 0;
1216 	root->nr_delalloc_inodes = 0;
1217 	root->nr_ordered_extents = 0;
1218 	root->name = NULL;
1219 	root->inode_tree = RB_ROOT;
1220 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1221 	root->block_rsv = NULL;
1222 	root->orphan_block_rsv = NULL;
1223 
1224 	INIT_LIST_HEAD(&root->dirty_list);
1225 	INIT_LIST_HEAD(&root->root_list);
1226 	INIT_LIST_HEAD(&root->delalloc_inodes);
1227 	INIT_LIST_HEAD(&root->delalloc_root);
1228 	INIT_LIST_HEAD(&root->ordered_extents);
1229 	INIT_LIST_HEAD(&root->ordered_root);
1230 	INIT_LIST_HEAD(&root->logged_list[0]);
1231 	INIT_LIST_HEAD(&root->logged_list[1]);
1232 	spin_lock_init(&root->orphan_lock);
1233 	spin_lock_init(&root->inode_lock);
1234 	spin_lock_init(&root->delalloc_lock);
1235 	spin_lock_init(&root->ordered_extent_lock);
1236 	spin_lock_init(&root->accounting_lock);
1237 	spin_lock_init(&root->log_extents_lock[0]);
1238 	spin_lock_init(&root->log_extents_lock[1]);
1239 	mutex_init(&root->objectid_mutex);
1240 	mutex_init(&root->log_mutex);
1241 	mutex_init(&root->ordered_extent_mutex);
1242 	mutex_init(&root->delalloc_mutex);
1243 	init_waitqueue_head(&root->log_writer_wait);
1244 	init_waitqueue_head(&root->log_commit_wait[0]);
1245 	init_waitqueue_head(&root->log_commit_wait[1]);
1246 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1247 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1248 	atomic_set(&root->log_commit[0], 0);
1249 	atomic_set(&root->log_commit[1], 0);
1250 	atomic_set(&root->log_writers, 0);
1251 	atomic_set(&root->log_batch, 0);
1252 	atomic_set(&root->orphan_inodes, 0);
1253 	atomic_set(&root->refs, 1);
1254 	atomic_set(&root->will_be_snapshoted, 0);
1255 	root->log_transid = 0;
1256 	root->log_transid_committed = -1;
1257 	root->last_log_commit = 0;
1258 	if (fs_info)
1259 		extent_io_tree_init(&root->dirty_log_pages,
1260 				     fs_info->btree_inode->i_mapping);
1261 
1262 	memset(&root->root_key, 0, sizeof(root->root_key));
1263 	memset(&root->root_item, 0, sizeof(root->root_item));
1264 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1265 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1266 	if (fs_info)
1267 		root->defrag_trans_start = fs_info->generation;
1268 	else
1269 		root->defrag_trans_start = 0;
1270 	init_completion(&root->kobj_unregister);
1271 	root->root_key.objectid = objectid;
1272 	root->anon_dev = 0;
1273 
1274 	spin_lock_init(&root->root_item_lock);
1275 }
1276 
1277 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1278 {
1279 	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1280 	if (root)
1281 		root->fs_info = fs_info;
1282 	return root;
1283 }
1284 
1285 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1286 /* Should only be used by the testing infrastructure */
1287 struct btrfs_root *btrfs_alloc_dummy_root(void)
1288 {
1289 	struct btrfs_root *root;
1290 
1291 	root = btrfs_alloc_root(NULL);
1292 	if (!root)
1293 		return ERR_PTR(-ENOMEM);
1294 	__setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1295 	set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1296 	root->alloc_bytenr = 0;
1297 
1298 	return root;
1299 }
1300 #endif
1301 
1302 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1303 				     struct btrfs_fs_info *fs_info,
1304 				     u64 objectid)
1305 {
1306 	struct extent_buffer *leaf;
1307 	struct btrfs_root *tree_root = fs_info->tree_root;
1308 	struct btrfs_root *root;
1309 	struct btrfs_key key;
1310 	int ret = 0;
1311 	uuid_le uuid;
1312 
1313 	root = btrfs_alloc_root(fs_info);
1314 	if (!root)
1315 		return ERR_PTR(-ENOMEM);
1316 
1317 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1318 		     tree_root->sectorsize, tree_root->stripesize,
1319 		     root, fs_info, objectid);
1320 	root->root_key.objectid = objectid;
1321 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1322 	root->root_key.offset = 0;
1323 
1324 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1325 				      0, objectid, NULL, 0, 0, 0);
1326 	if (IS_ERR(leaf)) {
1327 		ret = PTR_ERR(leaf);
1328 		leaf = NULL;
1329 		goto fail;
1330 	}
1331 
1332 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1333 	btrfs_set_header_bytenr(leaf, leaf->start);
1334 	btrfs_set_header_generation(leaf, trans->transid);
1335 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1336 	btrfs_set_header_owner(leaf, objectid);
1337 	root->node = leaf;
1338 
1339 	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1340 			    BTRFS_FSID_SIZE);
1341 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1342 			    btrfs_header_chunk_tree_uuid(leaf),
1343 			    BTRFS_UUID_SIZE);
1344 	btrfs_mark_buffer_dirty(leaf);
1345 
1346 	root->commit_root = btrfs_root_node(root);
1347 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1348 
1349 	root->root_item.flags = 0;
1350 	root->root_item.byte_limit = 0;
1351 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1352 	btrfs_set_root_generation(&root->root_item, trans->transid);
1353 	btrfs_set_root_level(&root->root_item, 0);
1354 	btrfs_set_root_refs(&root->root_item, 1);
1355 	btrfs_set_root_used(&root->root_item, leaf->len);
1356 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1357 	btrfs_set_root_dirid(&root->root_item, 0);
1358 	uuid_le_gen(&uuid);
1359 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1360 	root->root_item.drop_level = 0;
1361 
1362 	key.objectid = objectid;
1363 	key.type = BTRFS_ROOT_ITEM_KEY;
1364 	key.offset = 0;
1365 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1366 	if (ret)
1367 		goto fail;
1368 
1369 	btrfs_tree_unlock(leaf);
1370 
1371 	return root;
1372 
1373 fail:
1374 	if (leaf) {
1375 		btrfs_tree_unlock(leaf);
1376 		free_extent_buffer(root->commit_root);
1377 		free_extent_buffer(leaf);
1378 	}
1379 	kfree(root);
1380 
1381 	return ERR_PTR(ret);
1382 }
1383 
1384 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1385 					 struct btrfs_fs_info *fs_info)
1386 {
1387 	struct btrfs_root *root;
1388 	struct btrfs_root *tree_root = fs_info->tree_root;
1389 	struct extent_buffer *leaf;
1390 
1391 	root = btrfs_alloc_root(fs_info);
1392 	if (!root)
1393 		return ERR_PTR(-ENOMEM);
1394 
1395 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1396 		     tree_root->sectorsize, tree_root->stripesize,
1397 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1398 
1399 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1400 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1401 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1402 
1403 	/*
1404 	 * DON'T set REF_COWS for log trees
1405 	 *
1406 	 * log trees do not get reference counted because they go away
1407 	 * before a real commit is actually done.  They do store pointers
1408 	 * to file data extents, and those reference counts still get
1409 	 * updated (along with back refs to the log tree).
1410 	 */
1411 
1412 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1413 				      BTRFS_TREE_LOG_OBJECTID, NULL,
1414 				      0, 0, 0);
1415 	if (IS_ERR(leaf)) {
1416 		kfree(root);
1417 		return ERR_CAST(leaf);
1418 	}
1419 
1420 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1421 	btrfs_set_header_bytenr(leaf, leaf->start);
1422 	btrfs_set_header_generation(leaf, trans->transid);
1423 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1424 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1425 	root->node = leaf;
1426 
1427 	write_extent_buffer(root->node, root->fs_info->fsid,
1428 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
1429 	btrfs_mark_buffer_dirty(root->node);
1430 	btrfs_tree_unlock(root->node);
1431 	return root;
1432 }
1433 
1434 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1435 			     struct btrfs_fs_info *fs_info)
1436 {
1437 	struct btrfs_root *log_root;
1438 
1439 	log_root = alloc_log_tree(trans, fs_info);
1440 	if (IS_ERR(log_root))
1441 		return PTR_ERR(log_root);
1442 	WARN_ON(fs_info->log_root_tree);
1443 	fs_info->log_root_tree = log_root;
1444 	return 0;
1445 }
1446 
1447 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1448 		       struct btrfs_root *root)
1449 {
1450 	struct btrfs_root *log_root;
1451 	struct btrfs_inode_item *inode_item;
1452 
1453 	log_root = alloc_log_tree(trans, root->fs_info);
1454 	if (IS_ERR(log_root))
1455 		return PTR_ERR(log_root);
1456 
1457 	log_root->last_trans = trans->transid;
1458 	log_root->root_key.offset = root->root_key.objectid;
1459 
1460 	inode_item = &log_root->root_item.inode;
1461 	btrfs_set_stack_inode_generation(inode_item, 1);
1462 	btrfs_set_stack_inode_size(inode_item, 3);
1463 	btrfs_set_stack_inode_nlink(inode_item, 1);
1464 	btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1465 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1466 
1467 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1468 
1469 	WARN_ON(root->log_root);
1470 	root->log_root = log_root;
1471 	root->log_transid = 0;
1472 	root->log_transid_committed = -1;
1473 	root->last_log_commit = 0;
1474 	return 0;
1475 }
1476 
1477 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1478 					       struct btrfs_key *key)
1479 {
1480 	struct btrfs_root *root;
1481 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1482 	struct btrfs_path *path;
1483 	u64 generation;
1484 	u32 blocksize;
1485 	int ret;
1486 
1487 	path = btrfs_alloc_path();
1488 	if (!path)
1489 		return ERR_PTR(-ENOMEM);
1490 
1491 	root = btrfs_alloc_root(fs_info);
1492 	if (!root) {
1493 		ret = -ENOMEM;
1494 		goto alloc_fail;
1495 	}
1496 
1497 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1498 		     tree_root->sectorsize, tree_root->stripesize,
1499 		     root, fs_info, key->objectid);
1500 
1501 	ret = btrfs_find_root(tree_root, key, path,
1502 			      &root->root_item, &root->root_key);
1503 	if (ret) {
1504 		if (ret > 0)
1505 			ret = -ENOENT;
1506 		goto find_fail;
1507 	}
1508 
1509 	generation = btrfs_root_generation(&root->root_item);
1510 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1511 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1512 				     blocksize, generation);
1513 	if (!root->node) {
1514 		ret = -ENOMEM;
1515 		goto find_fail;
1516 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1517 		ret = -EIO;
1518 		goto read_fail;
1519 	}
1520 	root->commit_root = btrfs_root_node(root);
1521 out:
1522 	btrfs_free_path(path);
1523 	return root;
1524 
1525 read_fail:
1526 	free_extent_buffer(root->node);
1527 find_fail:
1528 	kfree(root);
1529 alloc_fail:
1530 	root = ERR_PTR(ret);
1531 	goto out;
1532 }
1533 
1534 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1535 				      struct btrfs_key *location)
1536 {
1537 	struct btrfs_root *root;
1538 
1539 	root = btrfs_read_tree_root(tree_root, location);
1540 	if (IS_ERR(root))
1541 		return root;
1542 
1543 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1544 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1545 		btrfs_check_and_init_root_item(&root->root_item);
1546 	}
1547 
1548 	return root;
1549 }
1550 
1551 int btrfs_init_fs_root(struct btrfs_root *root)
1552 {
1553 	int ret;
1554 	struct btrfs_subvolume_writers *writers;
1555 
1556 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1557 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1558 					GFP_NOFS);
1559 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1560 		ret = -ENOMEM;
1561 		goto fail;
1562 	}
1563 
1564 	writers = btrfs_alloc_subvolume_writers();
1565 	if (IS_ERR(writers)) {
1566 		ret = PTR_ERR(writers);
1567 		goto fail;
1568 	}
1569 	root->subv_writers = writers;
1570 
1571 	btrfs_init_free_ino_ctl(root);
1572 	spin_lock_init(&root->cache_lock);
1573 	init_waitqueue_head(&root->cache_wait);
1574 
1575 	ret = get_anon_bdev(&root->anon_dev);
1576 	if (ret)
1577 		goto free_writers;
1578 	return 0;
1579 
1580 free_writers:
1581 	btrfs_free_subvolume_writers(root->subv_writers);
1582 fail:
1583 	kfree(root->free_ino_ctl);
1584 	kfree(root->free_ino_pinned);
1585 	return ret;
1586 }
1587 
1588 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1589 					       u64 root_id)
1590 {
1591 	struct btrfs_root *root;
1592 
1593 	spin_lock(&fs_info->fs_roots_radix_lock);
1594 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1595 				 (unsigned long)root_id);
1596 	spin_unlock(&fs_info->fs_roots_radix_lock);
1597 	return root;
1598 }
1599 
1600 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1601 			 struct btrfs_root *root)
1602 {
1603 	int ret;
1604 
1605 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1606 	if (ret)
1607 		return ret;
1608 
1609 	spin_lock(&fs_info->fs_roots_radix_lock);
1610 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1611 				(unsigned long)root->root_key.objectid,
1612 				root);
1613 	if (ret == 0)
1614 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1615 	spin_unlock(&fs_info->fs_roots_radix_lock);
1616 	radix_tree_preload_end();
1617 
1618 	return ret;
1619 }
1620 
1621 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1622 				     struct btrfs_key *location,
1623 				     bool check_ref)
1624 {
1625 	struct btrfs_root *root;
1626 	int ret;
1627 
1628 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1629 		return fs_info->tree_root;
1630 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1631 		return fs_info->extent_root;
1632 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1633 		return fs_info->chunk_root;
1634 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1635 		return fs_info->dev_root;
1636 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1637 		return fs_info->csum_root;
1638 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1639 		return fs_info->quota_root ? fs_info->quota_root :
1640 					     ERR_PTR(-ENOENT);
1641 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1642 		return fs_info->uuid_root ? fs_info->uuid_root :
1643 					    ERR_PTR(-ENOENT);
1644 again:
1645 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1646 	if (root) {
1647 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1648 			return ERR_PTR(-ENOENT);
1649 		return root;
1650 	}
1651 
1652 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1653 	if (IS_ERR(root))
1654 		return root;
1655 
1656 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1657 		ret = -ENOENT;
1658 		goto fail;
1659 	}
1660 
1661 	ret = btrfs_init_fs_root(root);
1662 	if (ret)
1663 		goto fail;
1664 
1665 	ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1666 			location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1667 	if (ret < 0)
1668 		goto fail;
1669 	if (ret == 0)
1670 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1671 
1672 	ret = btrfs_insert_fs_root(fs_info, root);
1673 	if (ret) {
1674 		if (ret == -EEXIST) {
1675 			free_fs_root(root);
1676 			goto again;
1677 		}
1678 		goto fail;
1679 	}
1680 	return root;
1681 fail:
1682 	free_fs_root(root);
1683 	return ERR_PTR(ret);
1684 }
1685 
1686 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1687 {
1688 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1689 	int ret = 0;
1690 	struct btrfs_device *device;
1691 	struct backing_dev_info *bdi;
1692 
1693 	rcu_read_lock();
1694 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1695 		if (!device->bdev)
1696 			continue;
1697 		bdi = blk_get_backing_dev_info(device->bdev);
1698 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1699 			ret = 1;
1700 			break;
1701 		}
1702 	}
1703 	rcu_read_unlock();
1704 	return ret;
1705 }
1706 
1707 /*
1708  * If this fails, caller must call bdi_destroy() to get rid of the
1709  * bdi again.
1710  */
1711 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1712 {
1713 	int err;
1714 
1715 	bdi->capabilities = BDI_CAP_MAP_COPY;
1716 	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1717 	if (err)
1718 		return err;
1719 
1720 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1721 	bdi->congested_fn	= btrfs_congested_fn;
1722 	bdi->congested_data	= info;
1723 	return 0;
1724 }
1725 
1726 /*
1727  * called by the kthread helper functions to finally call the bio end_io
1728  * functions.  This is where read checksum verification actually happens
1729  */
1730 static void end_workqueue_fn(struct btrfs_work *work)
1731 {
1732 	struct bio *bio;
1733 	struct end_io_wq *end_io_wq;
1734 	int error;
1735 
1736 	end_io_wq = container_of(work, struct end_io_wq, work);
1737 	bio = end_io_wq->bio;
1738 
1739 	error = end_io_wq->error;
1740 	bio->bi_private = end_io_wq->private;
1741 	bio->bi_end_io = end_io_wq->end_io;
1742 	kfree(end_io_wq);
1743 	bio_endio_nodec(bio, error);
1744 }
1745 
1746 static int cleaner_kthread(void *arg)
1747 {
1748 	struct btrfs_root *root = arg;
1749 	int again;
1750 
1751 	do {
1752 		again = 0;
1753 
1754 		/* Make the cleaner go to sleep early. */
1755 		if (btrfs_need_cleaner_sleep(root))
1756 			goto sleep;
1757 
1758 		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1759 			goto sleep;
1760 
1761 		/*
1762 		 * Avoid the problem that we change the status of the fs
1763 		 * during the above check and trylock.
1764 		 */
1765 		if (btrfs_need_cleaner_sleep(root)) {
1766 			mutex_unlock(&root->fs_info->cleaner_mutex);
1767 			goto sleep;
1768 		}
1769 
1770 		btrfs_run_delayed_iputs(root);
1771 		again = btrfs_clean_one_deleted_snapshot(root);
1772 		mutex_unlock(&root->fs_info->cleaner_mutex);
1773 
1774 		/*
1775 		 * The defragger has dealt with the R/O remount and umount,
1776 		 * needn't do anything special here.
1777 		 */
1778 		btrfs_run_defrag_inodes(root->fs_info);
1779 sleep:
1780 		if (!try_to_freeze() && !again) {
1781 			set_current_state(TASK_INTERRUPTIBLE);
1782 			if (!kthread_should_stop())
1783 				schedule();
1784 			__set_current_state(TASK_RUNNING);
1785 		}
1786 	} while (!kthread_should_stop());
1787 	return 0;
1788 }
1789 
1790 static int transaction_kthread(void *arg)
1791 {
1792 	struct btrfs_root *root = arg;
1793 	struct btrfs_trans_handle *trans;
1794 	struct btrfs_transaction *cur;
1795 	u64 transid;
1796 	unsigned long now;
1797 	unsigned long delay;
1798 	bool cannot_commit;
1799 
1800 	do {
1801 		cannot_commit = false;
1802 		delay = HZ * root->fs_info->commit_interval;
1803 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1804 
1805 		spin_lock(&root->fs_info->trans_lock);
1806 		cur = root->fs_info->running_transaction;
1807 		if (!cur) {
1808 			spin_unlock(&root->fs_info->trans_lock);
1809 			goto sleep;
1810 		}
1811 
1812 		now = get_seconds();
1813 		if (cur->state < TRANS_STATE_BLOCKED &&
1814 		    (now < cur->start_time ||
1815 		     now - cur->start_time < root->fs_info->commit_interval)) {
1816 			spin_unlock(&root->fs_info->trans_lock);
1817 			delay = HZ * 5;
1818 			goto sleep;
1819 		}
1820 		transid = cur->transid;
1821 		spin_unlock(&root->fs_info->trans_lock);
1822 
1823 		/* If the file system is aborted, this will always fail. */
1824 		trans = btrfs_attach_transaction(root);
1825 		if (IS_ERR(trans)) {
1826 			if (PTR_ERR(trans) != -ENOENT)
1827 				cannot_commit = true;
1828 			goto sleep;
1829 		}
1830 		if (transid == trans->transid) {
1831 			btrfs_commit_transaction(trans, root);
1832 		} else {
1833 			btrfs_end_transaction(trans, root);
1834 		}
1835 sleep:
1836 		wake_up_process(root->fs_info->cleaner_kthread);
1837 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1838 
1839 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1840 				      &root->fs_info->fs_state)))
1841 			btrfs_cleanup_transaction(root);
1842 		if (!try_to_freeze()) {
1843 			set_current_state(TASK_INTERRUPTIBLE);
1844 			if (!kthread_should_stop() &&
1845 			    (!btrfs_transaction_blocked(root->fs_info) ||
1846 			     cannot_commit))
1847 				schedule_timeout(delay);
1848 			__set_current_state(TASK_RUNNING);
1849 		}
1850 	} while (!kthread_should_stop());
1851 	return 0;
1852 }
1853 
1854 /*
1855  * this will find the highest generation in the array of
1856  * root backups.  The index of the highest array is returned,
1857  * or -1 if we can't find anything.
1858  *
1859  * We check to make sure the array is valid by comparing the
1860  * generation of the latest  root in the array with the generation
1861  * in the super block.  If they don't match we pitch it.
1862  */
1863 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1864 {
1865 	u64 cur;
1866 	int newest_index = -1;
1867 	struct btrfs_root_backup *root_backup;
1868 	int i;
1869 
1870 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1871 		root_backup = info->super_copy->super_roots + i;
1872 		cur = btrfs_backup_tree_root_gen(root_backup);
1873 		if (cur == newest_gen)
1874 			newest_index = i;
1875 	}
1876 
1877 	/* check to see if we actually wrapped around */
1878 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1879 		root_backup = info->super_copy->super_roots;
1880 		cur = btrfs_backup_tree_root_gen(root_backup);
1881 		if (cur == newest_gen)
1882 			newest_index = 0;
1883 	}
1884 	return newest_index;
1885 }
1886 
1887 
1888 /*
1889  * find the oldest backup so we know where to store new entries
1890  * in the backup array.  This will set the backup_root_index
1891  * field in the fs_info struct
1892  */
1893 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1894 				     u64 newest_gen)
1895 {
1896 	int newest_index = -1;
1897 
1898 	newest_index = find_newest_super_backup(info, newest_gen);
1899 	/* if there was garbage in there, just move along */
1900 	if (newest_index == -1) {
1901 		info->backup_root_index = 0;
1902 	} else {
1903 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1904 	}
1905 }
1906 
1907 /*
1908  * copy all the root pointers into the super backup array.
1909  * this will bump the backup pointer by one when it is
1910  * done
1911  */
1912 static void backup_super_roots(struct btrfs_fs_info *info)
1913 {
1914 	int next_backup;
1915 	struct btrfs_root_backup *root_backup;
1916 	int last_backup;
1917 
1918 	next_backup = info->backup_root_index;
1919 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1920 		BTRFS_NUM_BACKUP_ROOTS;
1921 
1922 	/*
1923 	 * just overwrite the last backup if we're at the same generation
1924 	 * this happens only at umount
1925 	 */
1926 	root_backup = info->super_for_commit->super_roots + last_backup;
1927 	if (btrfs_backup_tree_root_gen(root_backup) ==
1928 	    btrfs_header_generation(info->tree_root->node))
1929 		next_backup = last_backup;
1930 
1931 	root_backup = info->super_for_commit->super_roots + next_backup;
1932 
1933 	/*
1934 	 * make sure all of our padding and empty slots get zero filled
1935 	 * regardless of which ones we use today
1936 	 */
1937 	memset(root_backup, 0, sizeof(*root_backup));
1938 
1939 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1940 
1941 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1942 	btrfs_set_backup_tree_root_gen(root_backup,
1943 			       btrfs_header_generation(info->tree_root->node));
1944 
1945 	btrfs_set_backup_tree_root_level(root_backup,
1946 			       btrfs_header_level(info->tree_root->node));
1947 
1948 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1949 	btrfs_set_backup_chunk_root_gen(root_backup,
1950 			       btrfs_header_generation(info->chunk_root->node));
1951 	btrfs_set_backup_chunk_root_level(root_backup,
1952 			       btrfs_header_level(info->chunk_root->node));
1953 
1954 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1955 	btrfs_set_backup_extent_root_gen(root_backup,
1956 			       btrfs_header_generation(info->extent_root->node));
1957 	btrfs_set_backup_extent_root_level(root_backup,
1958 			       btrfs_header_level(info->extent_root->node));
1959 
1960 	/*
1961 	 * we might commit during log recovery, which happens before we set
1962 	 * the fs_root.  Make sure it is valid before we fill it in.
1963 	 */
1964 	if (info->fs_root && info->fs_root->node) {
1965 		btrfs_set_backup_fs_root(root_backup,
1966 					 info->fs_root->node->start);
1967 		btrfs_set_backup_fs_root_gen(root_backup,
1968 			       btrfs_header_generation(info->fs_root->node));
1969 		btrfs_set_backup_fs_root_level(root_backup,
1970 			       btrfs_header_level(info->fs_root->node));
1971 	}
1972 
1973 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1974 	btrfs_set_backup_dev_root_gen(root_backup,
1975 			       btrfs_header_generation(info->dev_root->node));
1976 	btrfs_set_backup_dev_root_level(root_backup,
1977 				       btrfs_header_level(info->dev_root->node));
1978 
1979 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1980 	btrfs_set_backup_csum_root_gen(root_backup,
1981 			       btrfs_header_generation(info->csum_root->node));
1982 	btrfs_set_backup_csum_root_level(root_backup,
1983 			       btrfs_header_level(info->csum_root->node));
1984 
1985 	btrfs_set_backup_total_bytes(root_backup,
1986 			     btrfs_super_total_bytes(info->super_copy));
1987 	btrfs_set_backup_bytes_used(root_backup,
1988 			     btrfs_super_bytes_used(info->super_copy));
1989 	btrfs_set_backup_num_devices(root_backup,
1990 			     btrfs_super_num_devices(info->super_copy));
1991 
1992 	/*
1993 	 * if we don't copy this out to the super_copy, it won't get remembered
1994 	 * for the next commit
1995 	 */
1996 	memcpy(&info->super_copy->super_roots,
1997 	       &info->super_for_commit->super_roots,
1998 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1999 }
2000 
2001 /*
2002  * this copies info out of the root backup array and back into
2003  * the in-memory super block.  It is meant to help iterate through
2004  * the array, so you send it the number of backups you've already
2005  * tried and the last backup index you used.
2006  *
2007  * this returns -1 when it has tried all the backups
2008  */
2009 static noinline int next_root_backup(struct btrfs_fs_info *info,
2010 				     struct btrfs_super_block *super,
2011 				     int *num_backups_tried, int *backup_index)
2012 {
2013 	struct btrfs_root_backup *root_backup;
2014 	int newest = *backup_index;
2015 
2016 	if (*num_backups_tried == 0) {
2017 		u64 gen = btrfs_super_generation(super);
2018 
2019 		newest = find_newest_super_backup(info, gen);
2020 		if (newest == -1)
2021 			return -1;
2022 
2023 		*backup_index = newest;
2024 		*num_backups_tried = 1;
2025 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2026 		/* we've tried all the backups, all done */
2027 		return -1;
2028 	} else {
2029 		/* jump to the next oldest backup */
2030 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2031 			BTRFS_NUM_BACKUP_ROOTS;
2032 		*backup_index = newest;
2033 		*num_backups_tried += 1;
2034 	}
2035 	root_backup = super->super_roots + newest;
2036 
2037 	btrfs_set_super_generation(super,
2038 				   btrfs_backup_tree_root_gen(root_backup));
2039 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2040 	btrfs_set_super_root_level(super,
2041 				   btrfs_backup_tree_root_level(root_backup));
2042 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2043 
2044 	/*
2045 	 * fixme: the total bytes and num_devices need to match or we should
2046 	 * need a fsck
2047 	 */
2048 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2049 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2050 	return 0;
2051 }
2052 
2053 /* helper to cleanup workers */
2054 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2055 {
2056 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2057 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2058 	btrfs_destroy_workqueue(fs_info->workers);
2059 	btrfs_destroy_workqueue(fs_info->endio_workers);
2060 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2061 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2062 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2063 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2064 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2065 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2066 	btrfs_destroy_workqueue(fs_info->submit_workers);
2067 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2068 	btrfs_destroy_workqueue(fs_info->caching_workers);
2069 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2070 	btrfs_destroy_workqueue(fs_info->flush_workers);
2071 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2072 	btrfs_destroy_workqueue(fs_info->extent_workers);
2073 }
2074 
2075 static void free_root_extent_buffers(struct btrfs_root *root)
2076 {
2077 	if (root) {
2078 		free_extent_buffer(root->node);
2079 		free_extent_buffer(root->commit_root);
2080 		root->node = NULL;
2081 		root->commit_root = NULL;
2082 	}
2083 }
2084 
2085 /* helper to cleanup tree roots */
2086 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2087 {
2088 	free_root_extent_buffers(info->tree_root);
2089 
2090 	free_root_extent_buffers(info->dev_root);
2091 	free_root_extent_buffers(info->extent_root);
2092 	free_root_extent_buffers(info->csum_root);
2093 	free_root_extent_buffers(info->quota_root);
2094 	free_root_extent_buffers(info->uuid_root);
2095 	if (chunk_root)
2096 		free_root_extent_buffers(info->chunk_root);
2097 }
2098 
2099 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2100 {
2101 	int ret;
2102 	struct btrfs_root *gang[8];
2103 	int i;
2104 
2105 	while (!list_empty(&fs_info->dead_roots)) {
2106 		gang[0] = list_entry(fs_info->dead_roots.next,
2107 				     struct btrfs_root, root_list);
2108 		list_del(&gang[0]->root_list);
2109 
2110 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2111 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2112 		} else {
2113 			free_extent_buffer(gang[0]->node);
2114 			free_extent_buffer(gang[0]->commit_root);
2115 			btrfs_put_fs_root(gang[0]);
2116 		}
2117 	}
2118 
2119 	while (1) {
2120 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2121 					     (void **)gang, 0,
2122 					     ARRAY_SIZE(gang));
2123 		if (!ret)
2124 			break;
2125 		for (i = 0; i < ret; i++)
2126 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2127 	}
2128 
2129 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2130 		btrfs_free_log_root_tree(NULL, fs_info);
2131 		btrfs_destroy_pinned_extent(fs_info->tree_root,
2132 					    fs_info->pinned_extents);
2133 	}
2134 }
2135 
2136 int open_ctree(struct super_block *sb,
2137 	       struct btrfs_fs_devices *fs_devices,
2138 	       char *options)
2139 {
2140 	u32 sectorsize;
2141 	u32 nodesize;
2142 	u32 leafsize;
2143 	u32 blocksize;
2144 	u32 stripesize;
2145 	u64 generation;
2146 	u64 features;
2147 	struct btrfs_key location;
2148 	struct buffer_head *bh;
2149 	struct btrfs_super_block *disk_super;
2150 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2151 	struct btrfs_root *tree_root;
2152 	struct btrfs_root *extent_root;
2153 	struct btrfs_root *csum_root;
2154 	struct btrfs_root *chunk_root;
2155 	struct btrfs_root *dev_root;
2156 	struct btrfs_root *quota_root;
2157 	struct btrfs_root *uuid_root;
2158 	struct btrfs_root *log_tree_root;
2159 	int ret;
2160 	int err = -EINVAL;
2161 	int num_backups_tried = 0;
2162 	int backup_index = 0;
2163 	int max_active;
2164 	int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2165 	bool create_uuid_tree;
2166 	bool check_uuid_tree;
2167 
2168 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2169 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2170 	if (!tree_root || !chunk_root) {
2171 		err = -ENOMEM;
2172 		goto fail;
2173 	}
2174 
2175 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2176 	if (ret) {
2177 		err = ret;
2178 		goto fail;
2179 	}
2180 
2181 	ret = setup_bdi(fs_info, &fs_info->bdi);
2182 	if (ret) {
2183 		err = ret;
2184 		goto fail_srcu;
2185 	}
2186 
2187 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2188 	if (ret) {
2189 		err = ret;
2190 		goto fail_bdi;
2191 	}
2192 	fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2193 					(1 + ilog2(nr_cpu_ids));
2194 
2195 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2196 	if (ret) {
2197 		err = ret;
2198 		goto fail_dirty_metadata_bytes;
2199 	}
2200 
2201 	ret = percpu_counter_init(&fs_info->bio_counter, 0);
2202 	if (ret) {
2203 		err = ret;
2204 		goto fail_delalloc_bytes;
2205 	}
2206 
2207 	fs_info->btree_inode = new_inode(sb);
2208 	if (!fs_info->btree_inode) {
2209 		err = -ENOMEM;
2210 		goto fail_bio_counter;
2211 	}
2212 
2213 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2214 
2215 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2216 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2217 	INIT_LIST_HEAD(&fs_info->trans_list);
2218 	INIT_LIST_HEAD(&fs_info->dead_roots);
2219 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2220 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2221 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2222 	spin_lock_init(&fs_info->delalloc_root_lock);
2223 	spin_lock_init(&fs_info->trans_lock);
2224 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2225 	spin_lock_init(&fs_info->delayed_iput_lock);
2226 	spin_lock_init(&fs_info->defrag_inodes_lock);
2227 	spin_lock_init(&fs_info->free_chunk_lock);
2228 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2229 	spin_lock_init(&fs_info->super_lock);
2230 	spin_lock_init(&fs_info->qgroup_op_lock);
2231 	spin_lock_init(&fs_info->buffer_lock);
2232 	rwlock_init(&fs_info->tree_mod_log_lock);
2233 	mutex_init(&fs_info->reloc_mutex);
2234 	mutex_init(&fs_info->delalloc_root_mutex);
2235 	seqlock_init(&fs_info->profiles_lock);
2236 
2237 	init_completion(&fs_info->kobj_unregister);
2238 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2239 	INIT_LIST_HEAD(&fs_info->space_info);
2240 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2241 	btrfs_mapping_init(&fs_info->mapping_tree);
2242 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2243 			     BTRFS_BLOCK_RSV_GLOBAL);
2244 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2245 			     BTRFS_BLOCK_RSV_DELALLOC);
2246 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2247 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2248 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2249 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2250 			     BTRFS_BLOCK_RSV_DELOPS);
2251 	atomic_set(&fs_info->nr_async_submits, 0);
2252 	atomic_set(&fs_info->async_delalloc_pages, 0);
2253 	atomic_set(&fs_info->async_submit_draining, 0);
2254 	atomic_set(&fs_info->nr_async_bios, 0);
2255 	atomic_set(&fs_info->defrag_running, 0);
2256 	atomic_set(&fs_info->qgroup_op_seq, 0);
2257 	atomic64_set(&fs_info->tree_mod_seq, 0);
2258 	fs_info->sb = sb;
2259 	fs_info->max_inline = 8192 * 1024;
2260 	fs_info->metadata_ratio = 0;
2261 	fs_info->defrag_inodes = RB_ROOT;
2262 	fs_info->free_chunk_space = 0;
2263 	fs_info->tree_mod_log = RB_ROOT;
2264 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2265 	fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2266 	/* readahead state */
2267 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2268 	spin_lock_init(&fs_info->reada_lock);
2269 
2270 	fs_info->thread_pool_size = min_t(unsigned long,
2271 					  num_online_cpus() + 2, 8);
2272 
2273 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2274 	spin_lock_init(&fs_info->ordered_root_lock);
2275 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2276 					GFP_NOFS);
2277 	if (!fs_info->delayed_root) {
2278 		err = -ENOMEM;
2279 		goto fail_iput;
2280 	}
2281 	btrfs_init_delayed_root(fs_info->delayed_root);
2282 
2283 	mutex_init(&fs_info->scrub_lock);
2284 	atomic_set(&fs_info->scrubs_running, 0);
2285 	atomic_set(&fs_info->scrub_pause_req, 0);
2286 	atomic_set(&fs_info->scrubs_paused, 0);
2287 	atomic_set(&fs_info->scrub_cancel_req, 0);
2288 	init_waitqueue_head(&fs_info->replace_wait);
2289 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2290 	fs_info->scrub_workers_refcnt = 0;
2291 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2292 	fs_info->check_integrity_print_mask = 0;
2293 #endif
2294 
2295 	spin_lock_init(&fs_info->balance_lock);
2296 	mutex_init(&fs_info->balance_mutex);
2297 	atomic_set(&fs_info->balance_running, 0);
2298 	atomic_set(&fs_info->balance_pause_req, 0);
2299 	atomic_set(&fs_info->balance_cancel_req, 0);
2300 	fs_info->balance_ctl = NULL;
2301 	init_waitqueue_head(&fs_info->balance_wait_q);
2302 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2303 
2304 	sb->s_blocksize = 4096;
2305 	sb->s_blocksize_bits = blksize_bits(4096);
2306 	sb->s_bdi = &fs_info->bdi;
2307 
2308 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2309 	set_nlink(fs_info->btree_inode, 1);
2310 	/*
2311 	 * we set the i_size on the btree inode to the max possible int.
2312 	 * the real end of the address space is determined by all of
2313 	 * the devices in the system
2314 	 */
2315 	fs_info->btree_inode->i_size = OFFSET_MAX;
2316 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2317 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2318 
2319 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2320 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2321 			     fs_info->btree_inode->i_mapping);
2322 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2323 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2324 
2325 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2326 
2327 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2328 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2329 	       sizeof(struct btrfs_key));
2330 	set_bit(BTRFS_INODE_DUMMY,
2331 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2332 	btrfs_insert_inode_hash(fs_info->btree_inode);
2333 
2334 	spin_lock_init(&fs_info->block_group_cache_lock);
2335 	fs_info->block_group_cache_tree = RB_ROOT;
2336 	fs_info->first_logical_byte = (u64)-1;
2337 
2338 	extent_io_tree_init(&fs_info->freed_extents[0],
2339 			     fs_info->btree_inode->i_mapping);
2340 	extent_io_tree_init(&fs_info->freed_extents[1],
2341 			     fs_info->btree_inode->i_mapping);
2342 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2343 	fs_info->do_barriers = 1;
2344 
2345 
2346 	mutex_init(&fs_info->ordered_operations_mutex);
2347 	mutex_init(&fs_info->ordered_extent_flush_mutex);
2348 	mutex_init(&fs_info->tree_log_mutex);
2349 	mutex_init(&fs_info->chunk_mutex);
2350 	mutex_init(&fs_info->transaction_kthread_mutex);
2351 	mutex_init(&fs_info->cleaner_mutex);
2352 	mutex_init(&fs_info->volume_mutex);
2353 	init_rwsem(&fs_info->commit_root_sem);
2354 	init_rwsem(&fs_info->cleanup_work_sem);
2355 	init_rwsem(&fs_info->subvol_sem);
2356 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2357 	fs_info->dev_replace.lock_owner = 0;
2358 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2359 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2360 	mutex_init(&fs_info->dev_replace.lock_management_lock);
2361 	mutex_init(&fs_info->dev_replace.lock);
2362 
2363 	spin_lock_init(&fs_info->qgroup_lock);
2364 	mutex_init(&fs_info->qgroup_ioctl_lock);
2365 	fs_info->qgroup_tree = RB_ROOT;
2366 	fs_info->qgroup_op_tree = RB_ROOT;
2367 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2368 	fs_info->qgroup_seq = 1;
2369 	fs_info->quota_enabled = 0;
2370 	fs_info->pending_quota_state = 0;
2371 	fs_info->qgroup_ulist = NULL;
2372 	mutex_init(&fs_info->qgroup_rescan_lock);
2373 
2374 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2375 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2376 
2377 	init_waitqueue_head(&fs_info->transaction_throttle);
2378 	init_waitqueue_head(&fs_info->transaction_wait);
2379 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2380 	init_waitqueue_head(&fs_info->async_submit_wait);
2381 
2382 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2383 	if (ret) {
2384 		err = ret;
2385 		goto fail_alloc;
2386 	}
2387 
2388 	__setup_root(4096, 4096, 4096, 4096, tree_root,
2389 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2390 
2391 	invalidate_bdev(fs_devices->latest_bdev);
2392 
2393 	/*
2394 	 * Read super block and check the signature bytes only
2395 	 */
2396 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2397 	if (!bh) {
2398 		err = -EINVAL;
2399 		goto fail_alloc;
2400 	}
2401 
2402 	/*
2403 	 * We want to check superblock checksum, the type is stored inside.
2404 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2405 	 */
2406 	if (btrfs_check_super_csum(bh->b_data)) {
2407 		printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2408 		err = -EINVAL;
2409 		goto fail_alloc;
2410 	}
2411 
2412 	/*
2413 	 * super_copy is zeroed at allocation time and we never touch the
2414 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2415 	 * the whole block of INFO_SIZE
2416 	 */
2417 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2418 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2419 	       sizeof(*fs_info->super_for_commit));
2420 	brelse(bh);
2421 
2422 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2423 
2424 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2425 	if (ret) {
2426 		printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2427 		err = -EINVAL;
2428 		goto fail_alloc;
2429 	}
2430 
2431 	disk_super = fs_info->super_copy;
2432 	if (!btrfs_super_root(disk_super))
2433 		goto fail_alloc;
2434 
2435 	/* check FS state, whether FS is broken. */
2436 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2437 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2438 
2439 	/*
2440 	 * run through our array of backup supers and setup
2441 	 * our ring pointer to the oldest one
2442 	 */
2443 	generation = btrfs_super_generation(disk_super);
2444 	find_oldest_super_backup(fs_info, generation);
2445 
2446 	/*
2447 	 * In the long term, we'll store the compression type in the super
2448 	 * block, and it'll be used for per file compression control.
2449 	 */
2450 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2451 
2452 	ret = btrfs_parse_options(tree_root, options);
2453 	if (ret) {
2454 		err = ret;
2455 		goto fail_alloc;
2456 	}
2457 
2458 	features = btrfs_super_incompat_flags(disk_super) &
2459 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2460 	if (features) {
2461 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2462 		       "unsupported optional features (%Lx).\n",
2463 		       features);
2464 		err = -EINVAL;
2465 		goto fail_alloc;
2466 	}
2467 
2468 	if (btrfs_super_leafsize(disk_super) !=
2469 	    btrfs_super_nodesize(disk_super)) {
2470 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2471 		       "blocksizes don't match.  node %d leaf %d\n",
2472 		       btrfs_super_nodesize(disk_super),
2473 		       btrfs_super_leafsize(disk_super));
2474 		err = -EINVAL;
2475 		goto fail_alloc;
2476 	}
2477 	if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2478 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2479 		       "blocksize (%d) was too large\n",
2480 		       btrfs_super_leafsize(disk_super));
2481 		err = -EINVAL;
2482 		goto fail_alloc;
2483 	}
2484 
2485 	features = btrfs_super_incompat_flags(disk_super);
2486 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2487 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2488 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2489 
2490 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2491 		printk(KERN_ERR "BTRFS: has skinny extents\n");
2492 
2493 	/*
2494 	 * flag our filesystem as having big metadata blocks if
2495 	 * they are bigger than the page size
2496 	 */
2497 	if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2498 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2499 			printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2500 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2501 	}
2502 
2503 	nodesize = btrfs_super_nodesize(disk_super);
2504 	leafsize = btrfs_super_leafsize(disk_super);
2505 	sectorsize = btrfs_super_sectorsize(disk_super);
2506 	stripesize = btrfs_super_stripesize(disk_super);
2507 	fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2508 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2509 
2510 	/*
2511 	 * mixed block groups end up with duplicate but slightly offset
2512 	 * extent buffers for the same range.  It leads to corruptions
2513 	 */
2514 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2515 	    (sectorsize != leafsize)) {
2516 		printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2517 				"are not allowed for mixed block groups on %s\n",
2518 				sb->s_id);
2519 		goto fail_alloc;
2520 	}
2521 
2522 	/*
2523 	 * Needn't use the lock because there is no other task which will
2524 	 * update the flag.
2525 	 */
2526 	btrfs_set_super_incompat_flags(disk_super, features);
2527 
2528 	features = btrfs_super_compat_ro_flags(disk_super) &
2529 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2530 	if (!(sb->s_flags & MS_RDONLY) && features) {
2531 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2532 		       "unsupported option features (%Lx).\n",
2533 		       features);
2534 		err = -EINVAL;
2535 		goto fail_alloc;
2536 	}
2537 
2538 	max_active = fs_info->thread_pool_size;
2539 
2540 	fs_info->workers =
2541 		btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2542 				      max_active, 16);
2543 
2544 	fs_info->delalloc_workers =
2545 		btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2546 
2547 	fs_info->flush_workers =
2548 		btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2549 
2550 	fs_info->caching_workers =
2551 		btrfs_alloc_workqueue("cache", flags, max_active, 0);
2552 
2553 	/*
2554 	 * a higher idle thresh on the submit workers makes it much more
2555 	 * likely that bios will be send down in a sane order to the
2556 	 * devices
2557 	 */
2558 	fs_info->submit_workers =
2559 		btrfs_alloc_workqueue("submit", flags,
2560 				      min_t(u64, fs_devices->num_devices,
2561 					    max_active), 64);
2562 
2563 	fs_info->fixup_workers =
2564 		btrfs_alloc_workqueue("fixup", flags, 1, 0);
2565 
2566 	/*
2567 	 * endios are largely parallel and should have a very
2568 	 * low idle thresh
2569 	 */
2570 	fs_info->endio_workers =
2571 		btrfs_alloc_workqueue("endio", flags, max_active, 4);
2572 	fs_info->endio_meta_workers =
2573 		btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2574 	fs_info->endio_meta_write_workers =
2575 		btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2576 	fs_info->endio_raid56_workers =
2577 		btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2578 	fs_info->rmw_workers =
2579 		btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2580 	fs_info->endio_write_workers =
2581 		btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2582 	fs_info->endio_freespace_worker =
2583 		btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2584 	fs_info->delayed_workers =
2585 		btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2586 	fs_info->readahead_workers =
2587 		btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2588 	fs_info->qgroup_rescan_workers =
2589 		btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2590 	fs_info->extent_workers =
2591 		btrfs_alloc_workqueue("extent-refs", flags,
2592 				      min_t(u64, fs_devices->num_devices,
2593 					    max_active), 8);
2594 
2595 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2596 	      fs_info->submit_workers && fs_info->flush_workers &&
2597 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2598 	      fs_info->endio_meta_write_workers &&
2599 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2600 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2601 	      fs_info->caching_workers && fs_info->readahead_workers &&
2602 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2603 	      fs_info->fixup_workers && fs_info->extent_workers &&
2604 	      fs_info->qgroup_rescan_workers)) {
2605 		err = -ENOMEM;
2606 		goto fail_sb_buffer;
2607 	}
2608 
2609 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2610 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2611 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2612 
2613 	tree_root->nodesize = nodesize;
2614 	tree_root->leafsize = leafsize;
2615 	tree_root->sectorsize = sectorsize;
2616 	tree_root->stripesize = stripesize;
2617 
2618 	sb->s_blocksize = sectorsize;
2619 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2620 
2621 	if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2622 		printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2623 		goto fail_sb_buffer;
2624 	}
2625 
2626 	if (sectorsize != PAGE_SIZE) {
2627 		printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2628 		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2629 		goto fail_sb_buffer;
2630 	}
2631 
2632 	mutex_lock(&fs_info->chunk_mutex);
2633 	ret = btrfs_read_sys_array(tree_root);
2634 	mutex_unlock(&fs_info->chunk_mutex);
2635 	if (ret) {
2636 		printk(KERN_WARNING "BTRFS: failed to read the system "
2637 		       "array on %s\n", sb->s_id);
2638 		goto fail_sb_buffer;
2639 	}
2640 
2641 	blocksize = btrfs_level_size(tree_root,
2642 				     btrfs_super_chunk_root_level(disk_super));
2643 	generation = btrfs_super_chunk_root_generation(disk_super);
2644 
2645 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
2646 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2647 
2648 	chunk_root->node = read_tree_block(chunk_root,
2649 					   btrfs_super_chunk_root(disk_super),
2650 					   blocksize, generation);
2651 	if (!chunk_root->node ||
2652 	    !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2653 		printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2654 		       sb->s_id);
2655 		goto fail_tree_roots;
2656 	}
2657 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2658 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2659 
2660 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2661 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2662 
2663 	ret = btrfs_read_chunk_tree(chunk_root);
2664 	if (ret) {
2665 		printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2666 		       sb->s_id);
2667 		goto fail_tree_roots;
2668 	}
2669 
2670 	/*
2671 	 * keep the device that is marked to be the target device for the
2672 	 * dev_replace procedure
2673 	 */
2674 	btrfs_close_extra_devices(fs_info, fs_devices, 0);
2675 
2676 	if (!fs_devices->latest_bdev) {
2677 		printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2678 		       sb->s_id);
2679 		goto fail_tree_roots;
2680 	}
2681 
2682 retry_root_backup:
2683 	blocksize = btrfs_level_size(tree_root,
2684 				     btrfs_super_root_level(disk_super));
2685 	generation = btrfs_super_generation(disk_super);
2686 
2687 	tree_root->node = read_tree_block(tree_root,
2688 					  btrfs_super_root(disk_super),
2689 					  blocksize, generation);
2690 	if (!tree_root->node ||
2691 	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2692 		printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2693 		       sb->s_id);
2694 
2695 		goto recovery_tree_root;
2696 	}
2697 
2698 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2699 	tree_root->commit_root = btrfs_root_node(tree_root);
2700 	btrfs_set_root_refs(&tree_root->root_item, 1);
2701 
2702 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2703 	location.type = BTRFS_ROOT_ITEM_KEY;
2704 	location.offset = 0;
2705 
2706 	extent_root = btrfs_read_tree_root(tree_root, &location);
2707 	if (IS_ERR(extent_root)) {
2708 		ret = PTR_ERR(extent_root);
2709 		goto recovery_tree_root;
2710 	}
2711 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
2712 	fs_info->extent_root = extent_root;
2713 
2714 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2715 	dev_root = btrfs_read_tree_root(tree_root, &location);
2716 	if (IS_ERR(dev_root)) {
2717 		ret = PTR_ERR(dev_root);
2718 		goto recovery_tree_root;
2719 	}
2720 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
2721 	fs_info->dev_root = dev_root;
2722 	btrfs_init_devices_late(fs_info);
2723 
2724 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2725 	csum_root = btrfs_read_tree_root(tree_root, &location);
2726 	if (IS_ERR(csum_root)) {
2727 		ret = PTR_ERR(csum_root);
2728 		goto recovery_tree_root;
2729 	}
2730 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
2731 	fs_info->csum_root = csum_root;
2732 
2733 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2734 	quota_root = btrfs_read_tree_root(tree_root, &location);
2735 	if (!IS_ERR(quota_root)) {
2736 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
2737 		fs_info->quota_enabled = 1;
2738 		fs_info->pending_quota_state = 1;
2739 		fs_info->quota_root = quota_root;
2740 	}
2741 
2742 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2743 	uuid_root = btrfs_read_tree_root(tree_root, &location);
2744 	if (IS_ERR(uuid_root)) {
2745 		ret = PTR_ERR(uuid_root);
2746 		if (ret != -ENOENT)
2747 			goto recovery_tree_root;
2748 		create_uuid_tree = true;
2749 		check_uuid_tree = false;
2750 	} else {
2751 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
2752 		fs_info->uuid_root = uuid_root;
2753 		create_uuid_tree = false;
2754 		check_uuid_tree =
2755 		    generation != btrfs_super_uuid_tree_generation(disk_super);
2756 	}
2757 
2758 	fs_info->generation = generation;
2759 	fs_info->last_trans_committed = generation;
2760 
2761 	ret = btrfs_recover_balance(fs_info);
2762 	if (ret) {
2763 		printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2764 		goto fail_block_groups;
2765 	}
2766 
2767 	ret = btrfs_init_dev_stats(fs_info);
2768 	if (ret) {
2769 		printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2770 		       ret);
2771 		goto fail_block_groups;
2772 	}
2773 
2774 	ret = btrfs_init_dev_replace(fs_info);
2775 	if (ret) {
2776 		pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2777 		goto fail_block_groups;
2778 	}
2779 
2780 	btrfs_close_extra_devices(fs_info, fs_devices, 1);
2781 
2782 	ret = btrfs_sysfs_add_one(fs_info);
2783 	if (ret) {
2784 		pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2785 		goto fail_block_groups;
2786 	}
2787 
2788 	ret = btrfs_init_space_info(fs_info);
2789 	if (ret) {
2790 		printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2791 		goto fail_sysfs;
2792 	}
2793 
2794 	ret = btrfs_read_block_groups(extent_root);
2795 	if (ret) {
2796 		printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2797 		goto fail_sysfs;
2798 	}
2799 	fs_info->num_tolerated_disk_barrier_failures =
2800 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2801 	if (fs_info->fs_devices->missing_devices >
2802 	     fs_info->num_tolerated_disk_barrier_failures &&
2803 	    !(sb->s_flags & MS_RDONLY)) {
2804 		printk(KERN_WARNING "BTRFS: "
2805 			"too many missing devices, writeable mount is not allowed\n");
2806 		goto fail_sysfs;
2807 	}
2808 
2809 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2810 					       "btrfs-cleaner");
2811 	if (IS_ERR(fs_info->cleaner_kthread))
2812 		goto fail_sysfs;
2813 
2814 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2815 						   tree_root,
2816 						   "btrfs-transaction");
2817 	if (IS_ERR(fs_info->transaction_kthread))
2818 		goto fail_cleaner;
2819 
2820 	if (!btrfs_test_opt(tree_root, SSD) &&
2821 	    !btrfs_test_opt(tree_root, NOSSD) &&
2822 	    !fs_info->fs_devices->rotating) {
2823 		printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2824 		       "mode\n");
2825 		btrfs_set_opt(fs_info->mount_opt, SSD);
2826 	}
2827 
2828 	/* Set the real inode map cache flag */
2829 	if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2830 		btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2831 
2832 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2833 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2834 		ret = btrfsic_mount(tree_root, fs_devices,
2835 				    btrfs_test_opt(tree_root,
2836 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2837 				    1 : 0,
2838 				    fs_info->check_integrity_print_mask);
2839 		if (ret)
2840 			printk(KERN_WARNING "BTRFS: failed to initialize"
2841 			       " integrity check module %s\n", sb->s_id);
2842 	}
2843 #endif
2844 	ret = btrfs_read_qgroup_config(fs_info);
2845 	if (ret)
2846 		goto fail_trans_kthread;
2847 
2848 	/* do not make disk changes in broken FS */
2849 	if (btrfs_super_log_root(disk_super) != 0) {
2850 		u64 bytenr = btrfs_super_log_root(disk_super);
2851 
2852 		if (fs_devices->rw_devices == 0) {
2853 			printk(KERN_WARNING "BTRFS: log replay required "
2854 			       "on RO media\n");
2855 			err = -EIO;
2856 			goto fail_qgroup;
2857 		}
2858 		blocksize =
2859 		     btrfs_level_size(tree_root,
2860 				      btrfs_super_log_root_level(disk_super));
2861 
2862 		log_tree_root = btrfs_alloc_root(fs_info);
2863 		if (!log_tree_root) {
2864 			err = -ENOMEM;
2865 			goto fail_qgroup;
2866 		}
2867 
2868 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2869 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2870 
2871 		log_tree_root->node = read_tree_block(tree_root, bytenr,
2872 						      blocksize,
2873 						      generation + 1);
2874 		if (!log_tree_root->node ||
2875 		    !extent_buffer_uptodate(log_tree_root->node)) {
2876 			printk(KERN_ERR "BTRFS: failed to read log tree\n");
2877 			free_extent_buffer(log_tree_root->node);
2878 			kfree(log_tree_root);
2879 			goto fail_qgroup;
2880 		}
2881 		/* returns with log_tree_root freed on success */
2882 		ret = btrfs_recover_log_trees(log_tree_root);
2883 		if (ret) {
2884 			btrfs_error(tree_root->fs_info, ret,
2885 				    "Failed to recover log tree");
2886 			free_extent_buffer(log_tree_root->node);
2887 			kfree(log_tree_root);
2888 			goto fail_qgroup;
2889 		}
2890 
2891 		if (sb->s_flags & MS_RDONLY) {
2892 			ret = btrfs_commit_super(tree_root);
2893 			if (ret)
2894 				goto fail_qgroup;
2895 		}
2896 	}
2897 
2898 	ret = btrfs_find_orphan_roots(tree_root);
2899 	if (ret)
2900 		goto fail_qgroup;
2901 
2902 	if (!(sb->s_flags & MS_RDONLY)) {
2903 		ret = btrfs_cleanup_fs_roots(fs_info);
2904 		if (ret)
2905 			goto fail_qgroup;
2906 
2907 		ret = btrfs_recover_relocation(tree_root);
2908 		if (ret < 0) {
2909 			printk(KERN_WARNING
2910 			       "BTRFS: failed to recover relocation\n");
2911 			err = -EINVAL;
2912 			goto fail_qgroup;
2913 		}
2914 	}
2915 
2916 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2917 	location.type = BTRFS_ROOT_ITEM_KEY;
2918 	location.offset = 0;
2919 
2920 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2921 	if (IS_ERR(fs_info->fs_root)) {
2922 		err = PTR_ERR(fs_info->fs_root);
2923 		goto fail_qgroup;
2924 	}
2925 
2926 	if (sb->s_flags & MS_RDONLY)
2927 		return 0;
2928 
2929 	down_read(&fs_info->cleanup_work_sem);
2930 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2931 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2932 		up_read(&fs_info->cleanup_work_sem);
2933 		close_ctree(tree_root);
2934 		return ret;
2935 	}
2936 	up_read(&fs_info->cleanup_work_sem);
2937 
2938 	ret = btrfs_resume_balance_async(fs_info);
2939 	if (ret) {
2940 		printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2941 		close_ctree(tree_root);
2942 		return ret;
2943 	}
2944 
2945 	ret = btrfs_resume_dev_replace_async(fs_info);
2946 	if (ret) {
2947 		pr_warn("BTRFS: failed to resume dev_replace\n");
2948 		close_ctree(tree_root);
2949 		return ret;
2950 	}
2951 
2952 	btrfs_qgroup_rescan_resume(fs_info);
2953 
2954 	if (create_uuid_tree) {
2955 		pr_info("BTRFS: creating UUID tree\n");
2956 		ret = btrfs_create_uuid_tree(fs_info);
2957 		if (ret) {
2958 			pr_warn("BTRFS: failed to create the UUID tree %d\n",
2959 				ret);
2960 			close_ctree(tree_root);
2961 			return ret;
2962 		}
2963 	} else if (check_uuid_tree ||
2964 		   btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2965 		pr_info("BTRFS: checking UUID tree\n");
2966 		ret = btrfs_check_uuid_tree(fs_info);
2967 		if (ret) {
2968 			pr_warn("BTRFS: failed to check the UUID tree %d\n",
2969 				ret);
2970 			close_ctree(tree_root);
2971 			return ret;
2972 		}
2973 	} else {
2974 		fs_info->update_uuid_tree_gen = 1;
2975 	}
2976 
2977 	return 0;
2978 
2979 fail_qgroup:
2980 	btrfs_free_qgroup_config(fs_info);
2981 fail_trans_kthread:
2982 	kthread_stop(fs_info->transaction_kthread);
2983 	btrfs_cleanup_transaction(fs_info->tree_root);
2984 	btrfs_free_fs_roots(fs_info);
2985 fail_cleaner:
2986 	kthread_stop(fs_info->cleaner_kthread);
2987 
2988 	/*
2989 	 * make sure we're done with the btree inode before we stop our
2990 	 * kthreads
2991 	 */
2992 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2993 
2994 fail_sysfs:
2995 	btrfs_sysfs_remove_one(fs_info);
2996 
2997 fail_block_groups:
2998 	btrfs_put_block_group_cache(fs_info);
2999 	btrfs_free_block_groups(fs_info);
3000 
3001 fail_tree_roots:
3002 	free_root_pointers(fs_info, 1);
3003 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3004 
3005 fail_sb_buffer:
3006 	btrfs_stop_all_workers(fs_info);
3007 fail_alloc:
3008 fail_iput:
3009 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3010 
3011 	iput(fs_info->btree_inode);
3012 fail_bio_counter:
3013 	percpu_counter_destroy(&fs_info->bio_counter);
3014 fail_delalloc_bytes:
3015 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3016 fail_dirty_metadata_bytes:
3017 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3018 fail_bdi:
3019 	bdi_destroy(&fs_info->bdi);
3020 fail_srcu:
3021 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3022 fail:
3023 	btrfs_free_stripe_hash_table(fs_info);
3024 	btrfs_close_devices(fs_info->fs_devices);
3025 	return err;
3026 
3027 recovery_tree_root:
3028 	if (!btrfs_test_opt(tree_root, RECOVERY))
3029 		goto fail_tree_roots;
3030 
3031 	free_root_pointers(fs_info, 0);
3032 
3033 	/* don't use the log in recovery mode, it won't be valid */
3034 	btrfs_set_super_log_root(disk_super, 0);
3035 
3036 	/* we can't trust the free space cache either */
3037 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3038 
3039 	ret = next_root_backup(fs_info, fs_info->super_copy,
3040 			       &num_backups_tried, &backup_index);
3041 	if (ret == -1)
3042 		goto fail_block_groups;
3043 	goto retry_root_backup;
3044 }
3045 
3046 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3047 {
3048 	if (uptodate) {
3049 		set_buffer_uptodate(bh);
3050 	} else {
3051 		struct btrfs_device *device = (struct btrfs_device *)
3052 			bh->b_private;
3053 
3054 		printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3055 					  "I/O error on %s\n",
3056 					  rcu_str_deref(device->name));
3057 		/* note, we dont' set_buffer_write_io_error because we have
3058 		 * our own ways of dealing with the IO errors
3059 		 */
3060 		clear_buffer_uptodate(bh);
3061 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3062 	}
3063 	unlock_buffer(bh);
3064 	put_bh(bh);
3065 }
3066 
3067 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3068 {
3069 	struct buffer_head *bh;
3070 	struct buffer_head *latest = NULL;
3071 	struct btrfs_super_block *super;
3072 	int i;
3073 	u64 transid = 0;
3074 	u64 bytenr;
3075 
3076 	/* we would like to check all the supers, but that would make
3077 	 * a btrfs mount succeed after a mkfs from a different FS.
3078 	 * So, we need to add a special mount option to scan for
3079 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3080 	 */
3081 	for (i = 0; i < 1; i++) {
3082 		bytenr = btrfs_sb_offset(i);
3083 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3084 					i_size_read(bdev->bd_inode))
3085 			break;
3086 		bh = __bread(bdev, bytenr / 4096,
3087 					BTRFS_SUPER_INFO_SIZE);
3088 		if (!bh)
3089 			continue;
3090 
3091 		super = (struct btrfs_super_block *)bh->b_data;
3092 		if (btrfs_super_bytenr(super) != bytenr ||
3093 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3094 			brelse(bh);
3095 			continue;
3096 		}
3097 
3098 		if (!latest || btrfs_super_generation(super) > transid) {
3099 			brelse(latest);
3100 			latest = bh;
3101 			transid = btrfs_super_generation(super);
3102 		} else {
3103 			brelse(bh);
3104 		}
3105 	}
3106 	return latest;
3107 }
3108 
3109 /*
3110  * this should be called twice, once with wait == 0 and
3111  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3112  * we write are pinned.
3113  *
3114  * They are released when wait == 1 is done.
3115  * max_mirrors must be the same for both runs, and it indicates how
3116  * many supers on this one device should be written.
3117  *
3118  * max_mirrors == 0 means to write them all.
3119  */
3120 static int write_dev_supers(struct btrfs_device *device,
3121 			    struct btrfs_super_block *sb,
3122 			    int do_barriers, int wait, int max_mirrors)
3123 {
3124 	struct buffer_head *bh;
3125 	int i;
3126 	int ret;
3127 	int errors = 0;
3128 	u32 crc;
3129 	u64 bytenr;
3130 
3131 	if (max_mirrors == 0)
3132 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3133 
3134 	for (i = 0; i < max_mirrors; i++) {
3135 		bytenr = btrfs_sb_offset(i);
3136 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3137 			break;
3138 
3139 		if (wait) {
3140 			bh = __find_get_block(device->bdev, bytenr / 4096,
3141 					      BTRFS_SUPER_INFO_SIZE);
3142 			if (!bh) {
3143 				errors++;
3144 				continue;
3145 			}
3146 			wait_on_buffer(bh);
3147 			if (!buffer_uptodate(bh))
3148 				errors++;
3149 
3150 			/* drop our reference */
3151 			brelse(bh);
3152 
3153 			/* drop the reference from the wait == 0 run */
3154 			brelse(bh);
3155 			continue;
3156 		} else {
3157 			btrfs_set_super_bytenr(sb, bytenr);
3158 
3159 			crc = ~(u32)0;
3160 			crc = btrfs_csum_data((char *)sb +
3161 					      BTRFS_CSUM_SIZE, crc,
3162 					      BTRFS_SUPER_INFO_SIZE -
3163 					      BTRFS_CSUM_SIZE);
3164 			btrfs_csum_final(crc, sb->csum);
3165 
3166 			/*
3167 			 * one reference for us, and we leave it for the
3168 			 * caller
3169 			 */
3170 			bh = __getblk(device->bdev, bytenr / 4096,
3171 				      BTRFS_SUPER_INFO_SIZE);
3172 			if (!bh) {
3173 				printk(KERN_ERR "BTRFS: couldn't get super "
3174 				       "buffer head for bytenr %Lu\n", bytenr);
3175 				errors++;
3176 				continue;
3177 			}
3178 
3179 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3180 
3181 			/* one reference for submit_bh */
3182 			get_bh(bh);
3183 
3184 			set_buffer_uptodate(bh);
3185 			lock_buffer(bh);
3186 			bh->b_end_io = btrfs_end_buffer_write_sync;
3187 			bh->b_private = device;
3188 		}
3189 
3190 		/*
3191 		 * we fua the first super.  The others we allow
3192 		 * to go down lazy.
3193 		 */
3194 		if (i == 0)
3195 			ret = btrfsic_submit_bh(WRITE_FUA, bh);
3196 		else
3197 			ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3198 		if (ret)
3199 			errors++;
3200 	}
3201 	return errors < i ? 0 : -1;
3202 }
3203 
3204 /*
3205  * endio for the write_dev_flush, this will wake anyone waiting
3206  * for the barrier when it is done
3207  */
3208 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3209 {
3210 	if (err) {
3211 		if (err == -EOPNOTSUPP)
3212 			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3213 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
3214 	}
3215 	if (bio->bi_private)
3216 		complete(bio->bi_private);
3217 	bio_put(bio);
3218 }
3219 
3220 /*
3221  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3222  * sent down.  With wait == 1, it waits for the previous flush.
3223  *
3224  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3225  * capable
3226  */
3227 static int write_dev_flush(struct btrfs_device *device, int wait)
3228 {
3229 	struct bio *bio;
3230 	int ret = 0;
3231 
3232 	if (device->nobarriers)
3233 		return 0;
3234 
3235 	if (wait) {
3236 		bio = device->flush_bio;
3237 		if (!bio)
3238 			return 0;
3239 
3240 		wait_for_completion(&device->flush_wait);
3241 
3242 		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3243 			printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3244 				      rcu_str_deref(device->name));
3245 			device->nobarriers = 1;
3246 		} else if (!bio_flagged(bio, BIO_UPTODATE)) {
3247 			ret = -EIO;
3248 			btrfs_dev_stat_inc_and_print(device,
3249 				BTRFS_DEV_STAT_FLUSH_ERRS);
3250 		}
3251 
3252 		/* drop the reference from the wait == 0 run */
3253 		bio_put(bio);
3254 		device->flush_bio = NULL;
3255 
3256 		return ret;
3257 	}
3258 
3259 	/*
3260 	 * one reference for us, and we leave it for the
3261 	 * caller
3262 	 */
3263 	device->flush_bio = NULL;
3264 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3265 	if (!bio)
3266 		return -ENOMEM;
3267 
3268 	bio->bi_end_io = btrfs_end_empty_barrier;
3269 	bio->bi_bdev = device->bdev;
3270 	init_completion(&device->flush_wait);
3271 	bio->bi_private = &device->flush_wait;
3272 	device->flush_bio = bio;
3273 
3274 	bio_get(bio);
3275 	btrfsic_submit_bio(WRITE_FLUSH, bio);
3276 
3277 	return 0;
3278 }
3279 
3280 /*
3281  * send an empty flush down to each device in parallel,
3282  * then wait for them
3283  */
3284 static int barrier_all_devices(struct btrfs_fs_info *info)
3285 {
3286 	struct list_head *head;
3287 	struct btrfs_device *dev;
3288 	int errors_send = 0;
3289 	int errors_wait = 0;
3290 	int ret;
3291 
3292 	/* send down all the barriers */
3293 	head = &info->fs_devices->devices;
3294 	list_for_each_entry_rcu(dev, head, dev_list) {
3295 		if (dev->missing)
3296 			continue;
3297 		if (!dev->bdev) {
3298 			errors_send++;
3299 			continue;
3300 		}
3301 		if (!dev->in_fs_metadata || !dev->writeable)
3302 			continue;
3303 
3304 		ret = write_dev_flush(dev, 0);
3305 		if (ret)
3306 			errors_send++;
3307 	}
3308 
3309 	/* wait for all the barriers */
3310 	list_for_each_entry_rcu(dev, head, dev_list) {
3311 		if (dev->missing)
3312 			continue;
3313 		if (!dev->bdev) {
3314 			errors_wait++;
3315 			continue;
3316 		}
3317 		if (!dev->in_fs_metadata || !dev->writeable)
3318 			continue;
3319 
3320 		ret = write_dev_flush(dev, 1);
3321 		if (ret)
3322 			errors_wait++;
3323 	}
3324 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3325 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3326 		return -EIO;
3327 	return 0;
3328 }
3329 
3330 int btrfs_calc_num_tolerated_disk_barrier_failures(
3331 	struct btrfs_fs_info *fs_info)
3332 {
3333 	struct btrfs_ioctl_space_info space;
3334 	struct btrfs_space_info *sinfo;
3335 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3336 		       BTRFS_BLOCK_GROUP_SYSTEM,
3337 		       BTRFS_BLOCK_GROUP_METADATA,
3338 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3339 	int num_types = 4;
3340 	int i;
3341 	int c;
3342 	int num_tolerated_disk_barrier_failures =
3343 		(int)fs_info->fs_devices->num_devices;
3344 
3345 	for (i = 0; i < num_types; i++) {
3346 		struct btrfs_space_info *tmp;
3347 
3348 		sinfo = NULL;
3349 		rcu_read_lock();
3350 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3351 			if (tmp->flags == types[i]) {
3352 				sinfo = tmp;
3353 				break;
3354 			}
3355 		}
3356 		rcu_read_unlock();
3357 
3358 		if (!sinfo)
3359 			continue;
3360 
3361 		down_read(&sinfo->groups_sem);
3362 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3363 			if (!list_empty(&sinfo->block_groups[c])) {
3364 				u64 flags;
3365 
3366 				btrfs_get_block_group_info(
3367 					&sinfo->block_groups[c], &space);
3368 				if (space.total_bytes == 0 ||
3369 				    space.used_bytes == 0)
3370 					continue;
3371 				flags = space.flags;
3372 				/*
3373 				 * return
3374 				 * 0: if dup, single or RAID0 is configured for
3375 				 *    any of metadata, system or data, else
3376 				 * 1: if RAID5 is configured, or if RAID1 or
3377 				 *    RAID10 is configured and only two mirrors
3378 				 *    are used, else
3379 				 * 2: if RAID6 is configured, else
3380 				 * num_mirrors - 1: if RAID1 or RAID10 is
3381 				 *                  configured and more than
3382 				 *                  2 mirrors are used.
3383 				 */
3384 				if (num_tolerated_disk_barrier_failures > 0 &&
3385 				    ((flags & (BTRFS_BLOCK_GROUP_DUP |
3386 					       BTRFS_BLOCK_GROUP_RAID0)) ||
3387 				     ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3388 				      == 0)))
3389 					num_tolerated_disk_barrier_failures = 0;
3390 				else if (num_tolerated_disk_barrier_failures > 1) {
3391 					if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3392 					    BTRFS_BLOCK_GROUP_RAID5 |
3393 					    BTRFS_BLOCK_GROUP_RAID10)) {
3394 						num_tolerated_disk_barrier_failures = 1;
3395 					} else if (flags &
3396 						   BTRFS_BLOCK_GROUP_RAID6) {
3397 						num_tolerated_disk_barrier_failures = 2;
3398 					}
3399 				}
3400 			}
3401 		}
3402 		up_read(&sinfo->groups_sem);
3403 	}
3404 
3405 	return num_tolerated_disk_barrier_failures;
3406 }
3407 
3408 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3409 {
3410 	struct list_head *head;
3411 	struct btrfs_device *dev;
3412 	struct btrfs_super_block *sb;
3413 	struct btrfs_dev_item *dev_item;
3414 	int ret;
3415 	int do_barriers;
3416 	int max_errors;
3417 	int total_errors = 0;
3418 	u64 flags;
3419 
3420 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3421 	backup_super_roots(root->fs_info);
3422 
3423 	sb = root->fs_info->super_for_commit;
3424 	dev_item = &sb->dev_item;
3425 
3426 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3427 	head = &root->fs_info->fs_devices->devices;
3428 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3429 
3430 	if (do_barriers) {
3431 		ret = barrier_all_devices(root->fs_info);
3432 		if (ret) {
3433 			mutex_unlock(
3434 				&root->fs_info->fs_devices->device_list_mutex);
3435 			btrfs_error(root->fs_info, ret,
3436 				    "errors while submitting device barriers.");
3437 			return ret;
3438 		}
3439 	}
3440 
3441 	list_for_each_entry_rcu(dev, head, dev_list) {
3442 		if (!dev->bdev) {
3443 			total_errors++;
3444 			continue;
3445 		}
3446 		if (!dev->in_fs_metadata || !dev->writeable)
3447 			continue;
3448 
3449 		btrfs_set_stack_device_generation(dev_item, 0);
3450 		btrfs_set_stack_device_type(dev_item, dev->type);
3451 		btrfs_set_stack_device_id(dev_item, dev->devid);
3452 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3453 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3454 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3455 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3456 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3457 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3458 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3459 
3460 		flags = btrfs_super_flags(sb);
3461 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3462 
3463 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3464 		if (ret)
3465 			total_errors++;
3466 	}
3467 	if (total_errors > max_errors) {
3468 		btrfs_err(root->fs_info, "%d errors while writing supers",
3469 		       total_errors);
3470 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3471 
3472 		/* FUA is masked off if unsupported and can't be the reason */
3473 		btrfs_error(root->fs_info, -EIO,
3474 			    "%d errors while writing supers", total_errors);
3475 		return -EIO;
3476 	}
3477 
3478 	total_errors = 0;
3479 	list_for_each_entry_rcu(dev, head, dev_list) {
3480 		if (!dev->bdev)
3481 			continue;
3482 		if (!dev->in_fs_metadata || !dev->writeable)
3483 			continue;
3484 
3485 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3486 		if (ret)
3487 			total_errors++;
3488 	}
3489 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3490 	if (total_errors > max_errors) {
3491 		btrfs_error(root->fs_info, -EIO,
3492 			    "%d errors while writing supers", total_errors);
3493 		return -EIO;
3494 	}
3495 	return 0;
3496 }
3497 
3498 int write_ctree_super(struct btrfs_trans_handle *trans,
3499 		      struct btrfs_root *root, int max_mirrors)
3500 {
3501 	return write_all_supers(root, max_mirrors);
3502 }
3503 
3504 /* Drop a fs root from the radix tree and free it. */
3505 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3506 				  struct btrfs_root *root)
3507 {
3508 	spin_lock(&fs_info->fs_roots_radix_lock);
3509 	radix_tree_delete(&fs_info->fs_roots_radix,
3510 			  (unsigned long)root->root_key.objectid);
3511 	spin_unlock(&fs_info->fs_roots_radix_lock);
3512 
3513 	if (btrfs_root_refs(&root->root_item) == 0)
3514 		synchronize_srcu(&fs_info->subvol_srcu);
3515 
3516 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3517 		btrfs_free_log(NULL, root);
3518 
3519 	if (root->free_ino_pinned)
3520 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3521 	if (root->free_ino_ctl)
3522 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3523 	free_fs_root(root);
3524 }
3525 
3526 static void free_fs_root(struct btrfs_root *root)
3527 {
3528 	iput(root->cache_inode);
3529 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3530 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3531 	root->orphan_block_rsv = NULL;
3532 	if (root->anon_dev)
3533 		free_anon_bdev(root->anon_dev);
3534 	if (root->subv_writers)
3535 		btrfs_free_subvolume_writers(root->subv_writers);
3536 	free_extent_buffer(root->node);
3537 	free_extent_buffer(root->commit_root);
3538 	kfree(root->free_ino_ctl);
3539 	kfree(root->free_ino_pinned);
3540 	kfree(root->name);
3541 	btrfs_put_fs_root(root);
3542 }
3543 
3544 void btrfs_free_fs_root(struct btrfs_root *root)
3545 {
3546 	free_fs_root(root);
3547 }
3548 
3549 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3550 {
3551 	u64 root_objectid = 0;
3552 	struct btrfs_root *gang[8];
3553 	int i = 0;
3554 	int err = 0;
3555 	unsigned int ret = 0;
3556 	int index;
3557 
3558 	while (1) {
3559 		index = srcu_read_lock(&fs_info->subvol_srcu);
3560 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3561 					     (void **)gang, root_objectid,
3562 					     ARRAY_SIZE(gang));
3563 		if (!ret) {
3564 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3565 			break;
3566 		}
3567 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3568 
3569 		for (i = 0; i < ret; i++) {
3570 			/* Avoid to grab roots in dead_roots */
3571 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3572 				gang[i] = NULL;
3573 				continue;
3574 			}
3575 			/* grab all the search result for later use */
3576 			gang[i] = btrfs_grab_fs_root(gang[i]);
3577 		}
3578 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3579 
3580 		for (i = 0; i < ret; i++) {
3581 			if (!gang[i])
3582 				continue;
3583 			root_objectid = gang[i]->root_key.objectid;
3584 			err = btrfs_orphan_cleanup(gang[i]);
3585 			if (err)
3586 				break;
3587 			btrfs_put_fs_root(gang[i]);
3588 		}
3589 		root_objectid++;
3590 	}
3591 
3592 	/* release the uncleaned roots due to error */
3593 	for (; i < ret; i++) {
3594 		if (gang[i])
3595 			btrfs_put_fs_root(gang[i]);
3596 	}
3597 	return err;
3598 }
3599 
3600 int btrfs_commit_super(struct btrfs_root *root)
3601 {
3602 	struct btrfs_trans_handle *trans;
3603 
3604 	mutex_lock(&root->fs_info->cleaner_mutex);
3605 	btrfs_run_delayed_iputs(root);
3606 	mutex_unlock(&root->fs_info->cleaner_mutex);
3607 	wake_up_process(root->fs_info->cleaner_kthread);
3608 
3609 	/* wait until ongoing cleanup work done */
3610 	down_write(&root->fs_info->cleanup_work_sem);
3611 	up_write(&root->fs_info->cleanup_work_sem);
3612 
3613 	trans = btrfs_join_transaction(root);
3614 	if (IS_ERR(trans))
3615 		return PTR_ERR(trans);
3616 	return btrfs_commit_transaction(trans, root);
3617 }
3618 
3619 int close_ctree(struct btrfs_root *root)
3620 {
3621 	struct btrfs_fs_info *fs_info = root->fs_info;
3622 	int ret;
3623 
3624 	fs_info->closing = 1;
3625 	smp_mb();
3626 
3627 	/* wait for the uuid_scan task to finish */
3628 	down(&fs_info->uuid_tree_rescan_sem);
3629 	/* avoid complains from lockdep et al., set sem back to initial state */
3630 	up(&fs_info->uuid_tree_rescan_sem);
3631 
3632 	/* pause restriper - we want to resume on mount */
3633 	btrfs_pause_balance(fs_info);
3634 
3635 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3636 
3637 	btrfs_scrub_cancel(fs_info);
3638 
3639 	/* wait for any defraggers to finish */
3640 	wait_event(fs_info->transaction_wait,
3641 		   (atomic_read(&fs_info->defrag_running) == 0));
3642 
3643 	/* clear out the rbtree of defraggable inodes */
3644 	btrfs_cleanup_defrag_inodes(fs_info);
3645 
3646 	cancel_work_sync(&fs_info->async_reclaim_work);
3647 
3648 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3649 		ret = btrfs_commit_super(root);
3650 		if (ret)
3651 			btrfs_err(root->fs_info, "commit super ret %d", ret);
3652 	}
3653 
3654 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3655 		btrfs_error_commit_super(root);
3656 
3657 	kthread_stop(fs_info->transaction_kthread);
3658 	kthread_stop(fs_info->cleaner_kthread);
3659 
3660 	fs_info->closing = 2;
3661 	smp_mb();
3662 
3663 	btrfs_free_qgroup_config(root->fs_info);
3664 
3665 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3666 		btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3667 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3668 	}
3669 
3670 	btrfs_sysfs_remove_one(fs_info);
3671 
3672 	btrfs_free_fs_roots(fs_info);
3673 
3674 	btrfs_put_block_group_cache(fs_info);
3675 
3676 	btrfs_free_block_groups(fs_info);
3677 
3678 	/*
3679 	 * we must make sure there is not any read request to
3680 	 * submit after we stopping all workers.
3681 	 */
3682 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3683 	btrfs_stop_all_workers(fs_info);
3684 
3685 	free_root_pointers(fs_info, 1);
3686 
3687 	iput(fs_info->btree_inode);
3688 
3689 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3690 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3691 		btrfsic_unmount(root, fs_info->fs_devices);
3692 #endif
3693 
3694 	btrfs_close_devices(fs_info->fs_devices);
3695 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3696 
3697 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3698 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3699 	percpu_counter_destroy(&fs_info->bio_counter);
3700 	bdi_destroy(&fs_info->bdi);
3701 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3702 
3703 	btrfs_free_stripe_hash_table(fs_info);
3704 
3705 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3706 	root->orphan_block_rsv = NULL;
3707 
3708 	return 0;
3709 }
3710 
3711 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3712 			  int atomic)
3713 {
3714 	int ret;
3715 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3716 
3717 	ret = extent_buffer_uptodate(buf);
3718 	if (!ret)
3719 		return ret;
3720 
3721 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3722 				    parent_transid, atomic);
3723 	if (ret == -EAGAIN)
3724 		return ret;
3725 	return !ret;
3726 }
3727 
3728 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3729 {
3730 	return set_extent_buffer_uptodate(buf);
3731 }
3732 
3733 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3734 {
3735 	struct btrfs_root *root;
3736 	u64 transid = btrfs_header_generation(buf);
3737 	int was_dirty;
3738 
3739 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3740 	/*
3741 	 * This is a fast path so only do this check if we have sanity tests
3742 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3743 	 * outside of the sanity tests.
3744 	 */
3745 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3746 		return;
3747 #endif
3748 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3749 	btrfs_assert_tree_locked(buf);
3750 	if (transid != root->fs_info->generation)
3751 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3752 		       "found %llu running %llu\n",
3753 			buf->start, transid, root->fs_info->generation);
3754 	was_dirty = set_extent_buffer_dirty(buf);
3755 	if (!was_dirty)
3756 		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3757 				     buf->len,
3758 				     root->fs_info->dirty_metadata_batch);
3759 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3760 	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3761 		btrfs_print_leaf(root, buf);
3762 		ASSERT(0);
3763 	}
3764 #endif
3765 }
3766 
3767 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3768 					int flush_delayed)
3769 {
3770 	/*
3771 	 * looks as though older kernels can get into trouble with
3772 	 * this code, they end up stuck in balance_dirty_pages forever
3773 	 */
3774 	int ret;
3775 
3776 	if (current->flags & PF_MEMALLOC)
3777 		return;
3778 
3779 	if (flush_delayed)
3780 		btrfs_balance_delayed_items(root);
3781 
3782 	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3783 				     BTRFS_DIRTY_METADATA_THRESH);
3784 	if (ret > 0) {
3785 		balance_dirty_pages_ratelimited(
3786 				   root->fs_info->btree_inode->i_mapping);
3787 	}
3788 	return;
3789 }
3790 
3791 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3792 {
3793 	__btrfs_btree_balance_dirty(root, 1);
3794 }
3795 
3796 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3797 {
3798 	__btrfs_btree_balance_dirty(root, 0);
3799 }
3800 
3801 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3802 {
3803 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3804 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3805 }
3806 
3807 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3808 			      int read_only)
3809 {
3810 	/*
3811 	 * Placeholder for checks
3812 	 */
3813 	return 0;
3814 }
3815 
3816 static void btrfs_error_commit_super(struct btrfs_root *root)
3817 {
3818 	mutex_lock(&root->fs_info->cleaner_mutex);
3819 	btrfs_run_delayed_iputs(root);
3820 	mutex_unlock(&root->fs_info->cleaner_mutex);
3821 
3822 	down_write(&root->fs_info->cleanup_work_sem);
3823 	up_write(&root->fs_info->cleanup_work_sem);
3824 
3825 	/* cleanup FS via transaction */
3826 	btrfs_cleanup_transaction(root);
3827 }
3828 
3829 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3830 					     struct btrfs_root *root)
3831 {
3832 	struct btrfs_inode *btrfs_inode;
3833 	struct list_head splice;
3834 
3835 	INIT_LIST_HEAD(&splice);
3836 
3837 	mutex_lock(&root->fs_info->ordered_operations_mutex);
3838 	spin_lock(&root->fs_info->ordered_root_lock);
3839 
3840 	list_splice_init(&t->ordered_operations, &splice);
3841 	while (!list_empty(&splice)) {
3842 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3843 					 ordered_operations);
3844 
3845 		list_del_init(&btrfs_inode->ordered_operations);
3846 		spin_unlock(&root->fs_info->ordered_root_lock);
3847 
3848 		btrfs_invalidate_inodes(btrfs_inode->root);
3849 
3850 		spin_lock(&root->fs_info->ordered_root_lock);
3851 	}
3852 
3853 	spin_unlock(&root->fs_info->ordered_root_lock);
3854 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
3855 }
3856 
3857 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3858 {
3859 	struct btrfs_ordered_extent *ordered;
3860 
3861 	spin_lock(&root->ordered_extent_lock);
3862 	/*
3863 	 * This will just short circuit the ordered completion stuff which will
3864 	 * make sure the ordered extent gets properly cleaned up.
3865 	 */
3866 	list_for_each_entry(ordered, &root->ordered_extents,
3867 			    root_extent_list)
3868 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3869 	spin_unlock(&root->ordered_extent_lock);
3870 }
3871 
3872 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3873 {
3874 	struct btrfs_root *root;
3875 	struct list_head splice;
3876 
3877 	INIT_LIST_HEAD(&splice);
3878 
3879 	spin_lock(&fs_info->ordered_root_lock);
3880 	list_splice_init(&fs_info->ordered_roots, &splice);
3881 	while (!list_empty(&splice)) {
3882 		root = list_first_entry(&splice, struct btrfs_root,
3883 					ordered_root);
3884 		list_move_tail(&root->ordered_root,
3885 			       &fs_info->ordered_roots);
3886 
3887 		spin_unlock(&fs_info->ordered_root_lock);
3888 		btrfs_destroy_ordered_extents(root);
3889 
3890 		cond_resched();
3891 		spin_lock(&fs_info->ordered_root_lock);
3892 	}
3893 	spin_unlock(&fs_info->ordered_root_lock);
3894 }
3895 
3896 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3897 				      struct btrfs_root *root)
3898 {
3899 	struct rb_node *node;
3900 	struct btrfs_delayed_ref_root *delayed_refs;
3901 	struct btrfs_delayed_ref_node *ref;
3902 	int ret = 0;
3903 
3904 	delayed_refs = &trans->delayed_refs;
3905 
3906 	spin_lock(&delayed_refs->lock);
3907 	if (atomic_read(&delayed_refs->num_entries) == 0) {
3908 		spin_unlock(&delayed_refs->lock);
3909 		btrfs_info(root->fs_info, "delayed_refs has NO entry");
3910 		return ret;
3911 	}
3912 
3913 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3914 		struct btrfs_delayed_ref_head *head;
3915 		bool pin_bytes = false;
3916 
3917 		head = rb_entry(node, struct btrfs_delayed_ref_head,
3918 				href_node);
3919 		if (!mutex_trylock(&head->mutex)) {
3920 			atomic_inc(&head->node.refs);
3921 			spin_unlock(&delayed_refs->lock);
3922 
3923 			mutex_lock(&head->mutex);
3924 			mutex_unlock(&head->mutex);
3925 			btrfs_put_delayed_ref(&head->node);
3926 			spin_lock(&delayed_refs->lock);
3927 			continue;
3928 		}
3929 		spin_lock(&head->lock);
3930 		while ((node = rb_first(&head->ref_root)) != NULL) {
3931 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
3932 				       rb_node);
3933 			ref->in_tree = 0;
3934 			rb_erase(&ref->rb_node, &head->ref_root);
3935 			atomic_dec(&delayed_refs->num_entries);
3936 			btrfs_put_delayed_ref(ref);
3937 		}
3938 		if (head->must_insert_reserved)
3939 			pin_bytes = true;
3940 		btrfs_free_delayed_extent_op(head->extent_op);
3941 		delayed_refs->num_heads--;
3942 		if (head->processing == 0)
3943 			delayed_refs->num_heads_ready--;
3944 		atomic_dec(&delayed_refs->num_entries);
3945 		head->node.in_tree = 0;
3946 		rb_erase(&head->href_node, &delayed_refs->href_root);
3947 		spin_unlock(&head->lock);
3948 		spin_unlock(&delayed_refs->lock);
3949 		mutex_unlock(&head->mutex);
3950 
3951 		if (pin_bytes)
3952 			btrfs_pin_extent(root, head->node.bytenr,
3953 					 head->node.num_bytes, 1);
3954 		btrfs_put_delayed_ref(&head->node);
3955 		cond_resched();
3956 		spin_lock(&delayed_refs->lock);
3957 	}
3958 
3959 	spin_unlock(&delayed_refs->lock);
3960 
3961 	return ret;
3962 }
3963 
3964 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3965 {
3966 	struct btrfs_inode *btrfs_inode;
3967 	struct list_head splice;
3968 
3969 	INIT_LIST_HEAD(&splice);
3970 
3971 	spin_lock(&root->delalloc_lock);
3972 	list_splice_init(&root->delalloc_inodes, &splice);
3973 
3974 	while (!list_empty(&splice)) {
3975 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3976 					       delalloc_inodes);
3977 
3978 		list_del_init(&btrfs_inode->delalloc_inodes);
3979 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3980 			  &btrfs_inode->runtime_flags);
3981 		spin_unlock(&root->delalloc_lock);
3982 
3983 		btrfs_invalidate_inodes(btrfs_inode->root);
3984 
3985 		spin_lock(&root->delalloc_lock);
3986 	}
3987 
3988 	spin_unlock(&root->delalloc_lock);
3989 }
3990 
3991 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3992 {
3993 	struct btrfs_root *root;
3994 	struct list_head splice;
3995 
3996 	INIT_LIST_HEAD(&splice);
3997 
3998 	spin_lock(&fs_info->delalloc_root_lock);
3999 	list_splice_init(&fs_info->delalloc_roots, &splice);
4000 	while (!list_empty(&splice)) {
4001 		root = list_first_entry(&splice, struct btrfs_root,
4002 					 delalloc_root);
4003 		list_del_init(&root->delalloc_root);
4004 		root = btrfs_grab_fs_root(root);
4005 		BUG_ON(!root);
4006 		spin_unlock(&fs_info->delalloc_root_lock);
4007 
4008 		btrfs_destroy_delalloc_inodes(root);
4009 		btrfs_put_fs_root(root);
4010 
4011 		spin_lock(&fs_info->delalloc_root_lock);
4012 	}
4013 	spin_unlock(&fs_info->delalloc_root_lock);
4014 }
4015 
4016 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4017 					struct extent_io_tree *dirty_pages,
4018 					int mark)
4019 {
4020 	int ret;
4021 	struct extent_buffer *eb;
4022 	u64 start = 0;
4023 	u64 end;
4024 
4025 	while (1) {
4026 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4027 					    mark, NULL);
4028 		if (ret)
4029 			break;
4030 
4031 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4032 		while (start <= end) {
4033 			eb = btrfs_find_tree_block(root, start,
4034 						   root->leafsize);
4035 			start += root->leafsize;
4036 			if (!eb)
4037 				continue;
4038 			wait_on_extent_buffer_writeback(eb);
4039 
4040 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4041 					       &eb->bflags))
4042 				clear_extent_buffer_dirty(eb);
4043 			free_extent_buffer_stale(eb);
4044 		}
4045 	}
4046 
4047 	return ret;
4048 }
4049 
4050 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4051 				       struct extent_io_tree *pinned_extents)
4052 {
4053 	struct extent_io_tree *unpin;
4054 	u64 start;
4055 	u64 end;
4056 	int ret;
4057 	bool loop = true;
4058 
4059 	unpin = pinned_extents;
4060 again:
4061 	while (1) {
4062 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4063 					    EXTENT_DIRTY, NULL);
4064 		if (ret)
4065 			break;
4066 
4067 		/* opt_discard */
4068 		if (btrfs_test_opt(root, DISCARD))
4069 			ret = btrfs_error_discard_extent(root, start,
4070 							 end + 1 - start,
4071 							 NULL);
4072 
4073 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4074 		btrfs_error_unpin_extent_range(root, start, end);
4075 		cond_resched();
4076 	}
4077 
4078 	if (loop) {
4079 		if (unpin == &root->fs_info->freed_extents[0])
4080 			unpin = &root->fs_info->freed_extents[1];
4081 		else
4082 			unpin = &root->fs_info->freed_extents[0];
4083 		loop = false;
4084 		goto again;
4085 	}
4086 
4087 	return 0;
4088 }
4089 
4090 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4091 				   struct btrfs_root *root)
4092 {
4093 	btrfs_destroy_ordered_operations(cur_trans, root);
4094 
4095 	btrfs_destroy_delayed_refs(cur_trans, root);
4096 
4097 	cur_trans->state = TRANS_STATE_COMMIT_START;
4098 	wake_up(&root->fs_info->transaction_blocked_wait);
4099 
4100 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4101 	wake_up(&root->fs_info->transaction_wait);
4102 
4103 	btrfs_destroy_delayed_inodes(root);
4104 	btrfs_assert_delayed_root_empty(root);
4105 
4106 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4107 				     EXTENT_DIRTY);
4108 	btrfs_destroy_pinned_extent(root,
4109 				    root->fs_info->pinned_extents);
4110 
4111 	cur_trans->state =TRANS_STATE_COMPLETED;
4112 	wake_up(&cur_trans->commit_wait);
4113 
4114 	/*
4115 	memset(cur_trans, 0, sizeof(*cur_trans));
4116 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4117 	*/
4118 }
4119 
4120 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4121 {
4122 	struct btrfs_transaction *t;
4123 
4124 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
4125 
4126 	spin_lock(&root->fs_info->trans_lock);
4127 	while (!list_empty(&root->fs_info->trans_list)) {
4128 		t = list_first_entry(&root->fs_info->trans_list,
4129 				     struct btrfs_transaction, list);
4130 		if (t->state >= TRANS_STATE_COMMIT_START) {
4131 			atomic_inc(&t->use_count);
4132 			spin_unlock(&root->fs_info->trans_lock);
4133 			btrfs_wait_for_commit(root, t->transid);
4134 			btrfs_put_transaction(t);
4135 			spin_lock(&root->fs_info->trans_lock);
4136 			continue;
4137 		}
4138 		if (t == root->fs_info->running_transaction) {
4139 			t->state = TRANS_STATE_COMMIT_DOING;
4140 			spin_unlock(&root->fs_info->trans_lock);
4141 			/*
4142 			 * We wait for 0 num_writers since we don't hold a trans
4143 			 * handle open currently for this transaction.
4144 			 */
4145 			wait_event(t->writer_wait,
4146 				   atomic_read(&t->num_writers) == 0);
4147 		} else {
4148 			spin_unlock(&root->fs_info->trans_lock);
4149 		}
4150 		btrfs_cleanup_one_transaction(t, root);
4151 
4152 		spin_lock(&root->fs_info->trans_lock);
4153 		if (t == root->fs_info->running_transaction)
4154 			root->fs_info->running_transaction = NULL;
4155 		list_del_init(&t->list);
4156 		spin_unlock(&root->fs_info->trans_lock);
4157 
4158 		btrfs_put_transaction(t);
4159 		trace_btrfs_transaction_commit(root);
4160 		spin_lock(&root->fs_info->trans_lock);
4161 	}
4162 	spin_unlock(&root->fs_info->trans_lock);
4163 	btrfs_destroy_all_ordered_extents(root->fs_info);
4164 	btrfs_destroy_delayed_inodes(root);
4165 	btrfs_assert_delayed_root_empty(root);
4166 	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4167 	btrfs_destroy_all_delalloc_inodes(root->fs_info);
4168 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4169 
4170 	return 0;
4171 }
4172 
4173 static struct extent_io_ops btree_extent_io_ops = {
4174 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4175 	.readpage_io_failed_hook = btree_io_failed_hook,
4176 	.submit_bio_hook = btree_submit_bio_hook,
4177 	/* note we're sharing with inode.c for the merge bio hook */
4178 	.merge_bio_hook = btrfs_merge_bio_hook,
4179 };
4180