1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/slab.h> 29 #include <linux/migrate.h> 30 #include <linux/ratelimit.h> 31 #include <linux/uuid.h> 32 #include <linux/semaphore.h> 33 #include <asm/unaligned.h> 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "hash.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "locking.h" 42 #include "tree-log.h" 43 #include "free-space-cache.h" 44 #include "free-space-tree.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 #include "dev-replace.h" 49 #include "raid56.h" 50 #include "sysfs.h" 51 #include "qgroup.h" 52 #include "compression.h" 53 54 #ifdef CONFIG_X86 55 #include <asm/cpufeature.h> 56 #endif 57 58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 59 BTRFS_HEADER_FLAG_RELOC |\ 60 BTRFS_SUPER_FLAG_ERROR |\ 61 BTRFS_SUPER_FLAG_SEEDING |\ 62 BTRFS_SUPER_FLAG_METADUMP) 63 64 static const struct extent_io_ops btree_extent_io_ops; 65 static void end_workqueue_fn(struct btrfs_work *work); 66 static void free_fs_root(struct btrfs_root *root); 67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info); 68 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 69 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 70 struct btrfs_fs_info *fs_info); 71 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 72 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 73 struct extent_io_tree *dirty_pages, 74 int mark); 75 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 76 struct extent_io_tree *pinned_extents); 77 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 78 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 79 80 /* 81 * btrfs_end_io_wq structs are used to do processing in task context when an IO 82 * is complete. This is used during reads to verify checksums, and it is used 83 * by writes to insert metadata for new file extents after IO is complete. 84 */ 85 struct btrfs_end_io_wq { 86 struct bio *bio; 87 bio_end_io_t *end_io; 88 void *private; 89 struct btrfs_fs_info *info; 90 int error; 91 enum btrfs_wq_endio_type metadata; 92 struct list_head list; 93 struct btrfs_work work; 94 }; 95 96 static struct kmem_cache *btrfs_end_io_wq_cache; 97 98 int __init btrfs_end_io_wq_init(void) 99 { 100 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 101 sizeof(struct btrfs_end_io_wq), 102 0, 103 SLAB_MEM_SPREAD, 104 NULL); 105 if (!btrfs_end_io_wq_cache) 106 return -ENOMEM; 107 return 0; 108 } 109 110 void btrfs_end_io_wq_exit(void) 111 { 112 kmem_cache_destroy(btrfs_end_io_wq_cache); 113 } 114 115 /* 116 * async submit bios are used to offload expensive checksumming 117 * onto the worker threads. They checksum file and metadata bios 118 * just before they are sent down the IO stack. 119 */ 120 struct async_submit_bio { 121 struct inode *inode; 122 struct bio *bio; 123 struct list_head list; 124 extent_submit_bio_hook_t *submit_bio_start; 125 extent_submit_bio_hook_t *submit_bio_done; 126 int mirror_num; 127 unsigned long bio_flags; 128 /* 129 * bio_offset is optional, can be used if the pages in the bio 130 * can't tell us where in the file the bio should go 131 */ 132 u64 bio_offset; 133 struct btrfs_work work; 134 int error; 135 }; 136 137 /* 138 * Lockdep class keys for extent_buffer->lock's in this root. For a given 139 * eb, the lockdep key is determined by the btrfs_root it belongs to and 140 * the level the eb occupies in the tree. 141 * 142 * Different roots are used for different purposes and may nest inside each 143 * other and they require separate keysets. As lockdep keys should be 144 * static, assign keysets according to the purpose of the root as indicated 145 * by btrfs_root->objectid. This ensures that all special purpose roots 146 * have separate keysets. 147 * 148 * Lock-nesting across peer nodes is always done with the immediate parent 149 * node locked thus preventing deadlock. As lockdep doesn't know this, use 150 * subclass to avoid triggering lockdep warning in such cases. 151 * 152 * The key is set by the readpage_end_io_hook after the buffer has passed 153 * csum validation but before the pages are unlocked. It is also set by 154 * btrfs_init_new_buffer on freshly allocated blocks. 155 * 156 * We also add a check to make sure the highest level of the tree is the 157 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 158 * needs update as well. 159 */ 160 #ifdef CONFIG_DEBUG_LOCK_ALLOC 161 # if BTRFS_MAX_LEVEL != 8 162 # error 163 # endif 164 165 static struct btrfs_lockdep_keyset { 166 u64 id; /* root objectid */ 167 const char *name_stem; /* lock name stem */ 168 char names[BTRFS_MAX_LEVEL + 1][20]; 169 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 170 } btrfs_lockdep_keysets[] = { 171 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 172 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 173 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 174 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 175 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 176 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 177 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 178 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 179 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 180 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 181 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 182 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 183 { .id = 0, .name_stem = "tree" }, 184 }; 185 186 void __init btrfs_init_lockdep(void) 187 { 188 int i, j; 189 190 /* initialize lockdep class names */ 191 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 192 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 193 194 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 195 snprintf(ks->names[j], sizeof(ks->names[j]), 196 "btrfs-%s-%02d", ks->name_stem, j); 197 } 198 } 199 200 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 201 int level) 202 { 203 struct btrfs_lockdep_keyset *ks; 204 205 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 206 207 /* find the matching keyset, id 0 is the default entry */ 208 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 209 if (ks->id == objectid) 210 break; 211 212 lockdep_set_class_and_name(&eb->lock, 213 &ks->keys[level], ks->names[level]); 214 } 215 216 #endif 217 218 /* 219 * extents on the btree inode are pretty simple, there's one extent 220 * that covers the entire device 221 */ 222 static struct extent_map *btree_get_extent(struct btrfs_inode *inode, 223 struct page *page, size_t pg_offset, u64 start, u64 len, 224 int create) 225 { 226 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 227 struct extent_map_tree *em_tree = &inode->extent_tree; 228 struct extent_map *em; 229 int ret; 230 231 read_lock(&em_tree->lock); 232 em = lookup_extent_mapping(em_tree, start, len); 233 if (em) { 234 em->bdev = fs_info->fs_devices->latest_bdev; 235 read_unlock(&em_tree->lock); 236 goto out; 237 } 238 read_unlock(&em_tree->lock); 239 240 em = alloc_extent_map(); 241 if (!em) { 242 em = ERR_PTR(-ENOMEM); 243 goto out; 244 } 245 em->start = 0; 246 em->len = (u64)-1; 247 em->block_len = (u64)-1; 248 em->block_start = 0; 249 em->bdev = fs_info->fs_devices->latest_bdev; 250 251 write_lock(&em_tree->lock); 252 ret = add_extent_mapping(em_tree, em, 0); 253 if (ret == -EEXIST) { 254 free_extent_map(em); 255 em = lookup_extent_mapping(em_tree, start, len); 256 if (!em) 257 em = ERR_PTR(-EIO); 258 } else if (ret) { 259 free_extent_map(em); 260 em = ERR_PTR(ret); 261 } 262 write_unlock(&em_tree->lock); 263 264 out: 265 return em; 266 } 267 268 u32 btrfs_csum_data(const char *data, u32 seed, size_t len) 269 { 270 return btrfs_crc32c(seed, data, len); 271 } 272 273 void btrfs_csum_final(u32 crc, u8 *result) 274 { 275 put_unaligned_le32(~crc, result); 276 } 277 278 /* 279 * compute the csum for a btree block, and either verify it or write it 280 * into the csum field of the block. 281 */ 282 static int csum_tree_block(struct btrfs_fs_info *fs_info, 283 struct extent_buffer *buf, 284 int verify) 285 { 286 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 287 char *result = NULL; 288 unsigned long len; 289 unsigned long cur_len; 290 unsigned long offset = BTRFS_CSUM_SIZE; 291 char *kaddr; 292 unsigned long map_start; 293 unsigned long map_len; 294 int err; 295 u32 crc = ~(u32)0; 296 unsigned long inline_result; 297 298 len = buf->len - offset; 299 while (len > 0) { 300 err = map_private_extent_buffer(buf, offset, 32, 301 &kaddr, &map_start, &map_len); 302 if (err) 303 return err; 304 cur_len = min(len, map_len - (offset - map_start)); 305 crc = btrfs_csum_data(kaddr + offset - map_start, 306 crc, cur_len); 307 len -= cur_len; 308 offset += cur_len; 309 } 310 if (csum_size > sizeof(inline_result)) { 311 result = kzalloc(csum_size, GFP_NOFS); 312 if (!result) 313 return -ENOMEM; 314 } else { 315 result = (char *)&inline_result; 316 } 317 318 btrfs_csum_final(crc, result); 319 320 if (verify) { 321 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 322 u32 val; 323 u32 found = 0; 324 memcpy(&found, result, csum_size); 325 326 read_extent_buffer(buf, &val, 0, csum_size); 327 btrfs_warn_rl(fs_info, 328 "%s checksum verify failed on %llu wanted %X found %X level %d", 329 fs_info->sb->s_id, buf->start, 330 val, found, btrfs_header_level(buf)); 331 if (result != (char *)&inline_result) 332 kfree(result); 333 return -EUCLEAN; 334 } 335 } else { 336 write_extent_buffer(buf, result, 0, csum_size); 337 } 338 if (result != (char *)&inline_result) 339 kfree(result); 340 return 0; 341 } 342 343 /* 344 * we can't consider a given block up to date unless the transid of the 345 * block matches the transid in the parent node's pointer. This is how we 346 * detect blocks that either didn't get written at all or got written 347 * in the wrong place. 348 */ 349 static int verify_parent_transid(struct extent_io_tree *io_tree, 350 struct extent_buffer *eb, u64 parent_transid, 351 int atomic) 352 { 353 struct extent_state *cached_state = NULL; 354 int ret; 355 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 356 357 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 358 return 0; 359 360 if (atomic) 361 return -EAGAIN; 362 363 if (need_lock) { 364 btrfs_tree_read_lock(eb); 365 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 366 } 367 368 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 369 &cached_state); 370 if (extent_buffer_uptodate(eb) && 371 btrfs_header_generation(eb) == parent_transid) { 372 ret = 0; 373 goto out; 374 } 375 btrfs_err_rl(eb->fs_info, 376 "parent transid verify failed on %llu wanted %llu found %llu", 377 eb->start, 378 parent_transid, btrfs_header_generation(eb)); 379 ret = 1; 380 381 /* 382 * Things reading via commit roots that don't have normal protection, 383 * like send, can have a really old block in cache that may point at a 384 * block that has been freed and re-allocated. So don't clear uptodate 385 * if we find an eb that is under IO (dirty/writeback) because we could 386 * end up reading in the stale data and then writing it back out and 387 * making everybody very sad. 388 */ 389 if (!extent_buffer_under_io(eb)) 390 clear_extent_buffer_uptodate(eb); 391 out: 392 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 393 &cached_state, GFP_NOFS); 394 if (need_lock) 395 btrfs_tree_read_unlock_blocking(eb); 396 return ret; 397 } 398 399 /* 400 * Return 0 if the superblock checksum type matches the checksum value of that 401 * algorithm. Pass the raw disk superblock data. 402 */ 403 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 404 char *raw_disk_sb) 405 { 406 struct btrfs_super_block *disk_sb = 407 (struct btrfs_super_block *)raw_disk_sb; 408 u16 csum_type = btrfs_super_csum_type(disk_sb); 409 int ret = 0; 410 411 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 412 u32 crc = ~(u32)0; 413 const int csum_size = sizeof(crc); 414 char result[csum_size]; 415 416 /* 417 * The super_block structure does not span the whole 418 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 419 * is filled with zeros and is included in the checksum. 420 */ 421 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 422 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 423 btrfs_csum_final(crc, result); 424 425 if (memcmp(raw_disk_sb, result, csum_size)) 426 ret = 1; 427 } 428 429 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 430 btrfs_err(fs_info, "unsupported checksum algorithm %u", 431 csum_type); 432 ret = 1; 433 } 434 435 return ret; 436 } 437 438 /* 439 * helper to read a given tree block, doing retries as required when 440 * the checksums don't match and we have alternate mirrors to try. 441 */ 442 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info, 443 struct extent_buffer *eb, 444 u64 parent_transid) 445 { 446 struct extent_io_tree *io_tree; 447 int failed = 0; 448 int ret; 449 int num_copies = 0; 450 int mirror_num = 0; 451 int failed_mirror = 0; 452 453 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 454 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 455 while (1) { 456 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE, 457 btree_get_extent, mirror_num); 458 if (!ret) { 459 if (!verify_parent_transid(io_tree, eb, 460 parent_transid, 0)) 461 break; 462 else 463 ret = -EIO; 464 } 465 466 /* 467 * This buffer's crc is fine, but its contents are corrupted, so 468 * there is no reason to read the other copies, they won't be 469 * any less wrong. 470 */ 471 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 472 break; 473 474 num_copies = btrfs_num_copies(fs_info, 475 eb->start, eb->len); 476 if (num_copies == 1) 477 break; 478 479 if (!failed_mirror) { 480 failed = 1; 481 failed_mirror = eb->read_mirror; 482 } 483 484 mirror_num++; 485 if (mirror_num == failed_mirror) 486 mirror_num++; 487 488 if (mirror_num > num_copies) 489 break; 490 } 491 492 if (failed && !ret && failed_mirror) 493 repair_eb_io_failure(fs_info, eb, failed_mirror); 494 495 return ret; 496 } 497 498 /* 499 * checksum a dirty tree block before IO. This has extra checks to make sure 500 * we only fill in the checksum field in the first page of a multi-page block 501 */ 502 503 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 504 { 505 u64 start = page_offset(page); 506 u64 found_start; 507 struct extent_buffer *eb; 508 509 eb = (struct extent_buffer *)page->private; 510 if (page != eb->pages[0]) 511 return 0; 512 513 found_start = btrfs_header_bytenr(eb); 514 /* 515 * Please do not consolidate these warnings into a single if. 516 * It is useful to know what went wrong. 517 */ 518 if (WARN_ON(found_start != start)) 519 return -EUCLEAN; 520 if (WARN_ON(!PageUptodate(page))) 521 return -EUCLEAN; 522 523 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid, 524 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 525 526 return csum_tree_block(fs_info, eb, 0); 527 } 528 529 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 530 struct extent_buffer *eb) 531 { 532 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 533 u8 fsid[BTRFS_UUID_SIZE]; 534 int ret = 1; 535 536 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 537 while (fs_devices) { 538 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 539 ret = 0; 540 break; 541 } 542 fs_devices = fs_devices->seed; 543 } 544 return ret; 545 } 546 547 #define CORRUPT(reason, eb, root, slot) \ 548 btrfs_crit(root->fs_info, \ 549 "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \ 550 btrfs_header_level(eb) == 0 ? "leaf" : "node", \ 551 reason, btrfs_header_bytenr(eb), root->objectid, slot) 552 553 static noinline int check_leaf(struct btrfs_root *root, 554 struct extent_buffer *leaf) 555 { 556 struct btrfs_fs_info *fs_info = root->fs_info; 557 struct btrfs_key key; 558 struct btrfs_key leaf_key; 559 u32 nritems = btrfs_header_nritems(leaf); 560 int slot; 561 562 /* 563 * Extent buffers from a relocation tree have a owner field that 564 * corresponds to the subvolume tree they are based on. So just from an 565 * extent buffer alone we can not find out what is the id of the 566 * corresponding subvolume tree, so we can not figure out if the extent 567 * buffer corresponds to the root of the relocation tree or not. So skip 568 * this check for relocation trees. 569 */ 570 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) { 571 struct btrfs_root *check_root; 572 573 key.objectid = btrfs_header_owner(leaf); 574 key.type = BTRFS_ROOT_ITEM_KEY; 575 key.offset = (u64)-1; 576 577 check_root = btrfs_get_fs_root(fs_info, &key, false); 578 /* 579 * The only reason we also check NULL here is that during 580 * open_ctree() some roots has not yet been set up. 581 */ 582 if (!IS_ERR_OR_NULL(check_root)) { 583 struct extent_buffer *eb; 584 585 eb = btrfs_root_node(check_root); 586 /* if leaf is the root, then it's fine */ 587 if (leaf != eb) { 588 CORRUPT("non-root leaf's nritems is 0", 589 leaf, check_root, 0); 590 free_extent_buffer(eb); 591 return -EIO; 592 } 593 free_extent_buffer(eb); 594 } 595 return 0; 596 } 597 598 if (nritems == 0) 599 return 0; 600 601 /* Check the 0 item */ 602 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 603 BTRFS_LEAF_DATA_SIZE(fs_info)) { 604 CORRUPT("invalid item offset size pair", leaf, root, 0); 605 return -EIO; 606 } 607 608 /* 609 * Check to make sure each items keys are in the correct order and their 610 * offsets make sense. We only have to loop through nritems-1 because 611 * we check the current slot against the next slot, which verifies the 612 * next slot's offset+size makes sense and that the current's slot 613 * offset is correct. 614 */ 615 for (slot = 0; slot < nritems - 1; slot++) { 616 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 617 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 618 619 /* Make sure the keys are in the right order */ 620 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 621 CORRUPT("bad key order", leaf, root, slot); 622 return -EIO; 623 } 624 625 /* 626 * Make sure the offset and ends are right, remember that the 627 * item data starts at the end of the leaf and grows towards the 628 * front. 629 */ 630 if (btrfs_item_offset_nr(leaf, slot) != 631 btrfs_item_end_nr(leaf, slot + 1)) { 632 CORRUPT("slot offset bad", leaf, root, slot); 633 return -EIO; 634 } 635 636 /* 637 * Check to make sure that we don't point outside of the leaf, 638 * just in case all the items are consistent to each other, but 639 * all point outside of the leaf. 640 */ 641 if (btrfs_item_end_nr(leaf, slot) > 642 BTRFS_LEAF_DATA_SIZE(fs_info)) { 643 CORRUPT("slot end outside of leaf", leaf, root, slot); 644 return -EIO; 645 } 646 } 647 648 return 0; 649 } 650 651 static int check_node(struct btrfs_root *root, struct extent_buffer *node) 652 { 653 unsigned long nr = btrfs_header_nritems(node); 654 struct btrfs_key key, next_key; 655 int slot; 656 u64 bytenr; 657 int ret = 0; 658 659 if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) { 660 btrfs_crit(root->fs_info, 661 "corrupt node: block %llu root %llu nritems %lu", 662 node->start, root->objectid, nr); 663 return -EIO; 664 } 665 666 for (slot = 0; slot < nr - 1; slot++) { 667 bytenr = btrfs_node_blockptr(node, slot); 668 btrfs_node_key_to_cpu(node, &key, slot); 669 btrfs_node_key_to_cpu(node, &next_key, slot + 1); 670 671 if (!bytenr) { 672 CORRUPT("invalid item slot", node, root, slot); 673 ret = -EIO; 674 goto out; 675 } 676 677 if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) { 678 CORRUPT("bad key order", node, root, slot); 679 ret = -EIO; 680 goto out; 681 } 682 } 683 out: 684 return ret; 685 } 686 687 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 688 u64 phy_offset, struct page *page, 689 u64 start, u64 end, int mirror) 690 { 691 u64 found_start; 692 int found_level; 693 struct extent_buffer *eb; 694 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 695 struct btrfs_fs_info *fs_info = root->fs_info; 696 int ret = 0; 697 int reads_done; 698 699 if (!page->private) 700 goto out; 701 702 eb = (struct extent_buffer *)page->private; 703 704 /* the pending IO might have been the only thing that kept this buffer 705 * in memory. Make sure we have a ref for all this other checks 706 */ 707 extent_buffer_get(eb); 708 709 reads_done = atomic_dec_and_test(&eb->io_pages); 710 if (!reads_done) 711 goto err; 712 713 eb->read_mirror = mirror; 714 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 715 ret = -EIO; 716 goto err; 717 } 718 719 found_start = btrfs_header_bytenr(eb); 720 if (found_start != eb->start) { 721 btrfs_err_rl(fs_info, "bad tree block start %llu %llu", 722 found_start, eb->start); 723 ret = -EIO; 724 goto err; 725 } 726 if (check_tree_block_fsid(fs_info, eb)) { 727 btrfs_err_rl(fs_info, "bad fsid on block %llu", 728 eb->start); 729 ret = -EIO; 730 goto err; 731 } 732 found_level = btrfs_header_level(eb); 733 if (found_level >= BTRFS_MAX_LEVEL) { 734 btrfs_err(fs_info, "bad tree block level %d", 735 (int)btrfs_header_level(eb)); 736 ret = -EIO; 737 goto err; 738 } 739 740 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 741 eb, found_level); 742 743 ret = csum_tree_block(fs_info, eb, 1); 744 if (ret) 745 goto err; 746 747 /* 748 * If this is a leaf block and it is corrupt, set the corrupt bit so 749 * that we don't try and read the other copies of this block, just 750 * return -EIO. 751 */ 752 if (found_level == 0 && check_leaf(root, eb)) { 753 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 754 ret = -EIO; 755 } 756 757 if (found_level > 0 && check_node(root, eb)) 758 ret = -EIO; 759 760 if (!ret) 761 set_extent_buffer_uptodate(eb); 762 err: 763 if (reads_done && 764 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 765 btree_readahead_hook(eb, ret); 766 767 if (ret) { 768 /* 769 * our io error hook is going to dec the io pages 770 * again, we have to make sure it has something 771 * to decrement 772 */ 773 atomic_inc(&eb->io_pages); 774 clear_extent_buffer_uptodate(eb); 775 } 776 free_extent_buffer(eb); 777 out: 778 return ret; 779 } 780 781 static int btree_io_failed_hook(struct page *page, int failed_mirror) 782 { 783 struct extent_buffer *eb; 784 785 eb = (struct extent_buffer *)page->private; 786 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 787 eb->read_mirror = failed_mirror; 788 atomic_dec(&eb->io_pages); 789 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 790 btree_readahead_hook(eb, -EIO); 791 return -EIO; /* we fixed nothing */ 792 } 793 794 static void end_workqueue_bio(struct bio *bio) 795 { 796 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 797 struct btrfs_fs_info *fs_info; 798 struct btrfs_workqueue *wq; 799 btrfs_work_func_t func; 800 801 fs_info = end_io_wq->info; 802 end_io_wq->error = bio->bi_error; 803 804 if (bio_op(bio) == REQ_OP_WRITE) { 805 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 806 wq = fs_info->endio_meta_write_workers; 807 func = btrfs_endio_meta_write_helper; 808 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 809 wq = fs_info->endio_freespace_worker; 810 func = btrfs_freespace_write_helper; 811 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 812 wq = fs_info->endio_raid56_workers; 813 func = btrfs_endio_raid56_helper; 814 } else { 815 wq = fs_info->endio_write_workers; 816 func = btrfs_endio_write_helper; 817 } 818 } else { 819 if (unlikely(end_io_wq->metadata == 820 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 821 wq = fs_info->endio_repair_workers; 822 func = btrfs_endio_repair_helper; 823 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 824 wq = fs_info->endio_raid56_workers; 825 func = btrfs_endio_raid56_helper; 826 } else if (end_io_wq->metadata) { 827 wq = fs_info->endio_meta_workers; 828 func = btrfs_endio_meta_helper; 829 } else { 830 wq = fs_info->endio_workers; 831 func = btrfs_endio_helper; 832 } 833 } 834 835 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 836 btrfs_queue_work(wq, &end_io_wq->work); 837 } 838 839 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 840 enum btrfs_wq_endio_type metadata) 841 { 842 struct btrfs_end_io_wq *end_io_wq; 843 844 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 845 if (!end_io_wq) 846 return -ENOMEM; 847 848 end_io_wq->private = bio->bi_private; 849 end_io_wq->end_io = bio->bi_end_io; 850 end_io_wq->info = info; 851 end_io_wq->error = 0; 852 end_io_wq->bio = bio; 853 end_io_wq->metadata = metadata; 854 855 bio->bi_private = end_io_wq; 856 bio->bi_end_io = end_workqueue_bio; 857 return 0; 858 } 859 860 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 861 { 862 unsigned long limit = min_t(unsigned long, 863 info->thread_pool_size, 864 info->fs_devices->open_devices); 865 return 256 * limit; 866 } 867 868 static void run_one_async_start(struct btrfs_work *work) 869 { 870 struct async_submit_bio *async; 871 int ret; 872 873 async = container_of(work, struct async_submit_bio, work); 874 ret = async->submit_bio_start(async->inode, async->bio, 875 async->mirror_num, async->bio_flags, 876 async->bio_offset); 877 if (ret) 878 async->error = ret; 879 } 880 881 static void run_one_async_done(struct btrfs_work *work) 882 { 883 struct btrfs_fs_info *fs_info; 884 struct async_submit_bio *async; 885 int limit; 886 887 async = container_of(work, struct async_submit_bio, work); 888 fs_info = BTRFS_I(async->inode)->root->fs_info; 889 890 limit = btrfs_async_submit_limit(fs_info); 891 limit = limit * 2 / 3; 892 893 /* 894 * atomic_dec_return implies a barrier for waitqueue_active 895 */ 896 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 897 waitqueue_active(&fs_info->async_submit_wait)) 898 wake_up(&fs_info->async_submit_wait); 899 900 /* If an error occurred we just want to clean up the bio and move on */ 901 if (async->error) { 902 async->bio->bi_error = async->error; 903 bio_endio(async->bio); 904 return; 905 } 906 907 async->submit_bio_done(async->inode, async->bio, async->mirror_num, 908 async->bio_flags, async->bio_offset); 909 } 910 911 static void run_one_async_free(struct btrfs_work *work) 912 { 913 struct async_submit_bio *async; 914 915 async = container_of(work, struct async_submit_bio, work); 916 kfree(async); 917 } 918 919 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 920 struct bio *bio, int mirror_num, 921 unsigned long bio_flags, 922 u64 bio_offset, 923 extent_submit_bio_hook_t *submit_bio_start, 924 extent_submit_bio_hook_t *submit_bio_done) 925 { 926 struct async_submit_bio *async; 927 928 async = kmalloc(sizeof(*async), GFP_NOFS); 929 if (!async) 930 return -ENOMEM; 931 932 async->inode = inode; 933 async->bio = bio; 934 async->mirror_num = mirror_num; 935 async->submit_bio_start = submit_bio_start; 936 async->submit_bio_done = submit_bio_done; 937 938 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 939 run_one_async_done, run_one_async_free); 940 941 async->bio_flags = bio_flags; 942 async->bio_offset = bio_offset; 943 944 async->error = 0; 945 946 atomic_inc(&fs_info->nr_async_submits); 947 948 if (op_is_sync(bio->bi_opf)) 949 btrfs_set_work_high_priority(&async->work); 950 951 btrfs_queue_work(fs_info->workers, &async->work); 952 953 while (atomic_read(&fs_info->async_submit_draining) && 954 atomic_read(&fs_info->nr_async_submits)) { 955 wait_event(fs_info->async_submit_wait, 956 (atomic_read(&fs_info->nr_async_submits) == 0)); 957 } 958 959 return 0; 960 } 961 962 static int btree_csum_one_bio(struct bio *bio) 963 { 964 struct bio_vec *bvec; 965 struct btrfs_root *root; 966 int i, ret = 0; 967 968 bio_for_each_segment_all(bvec, bio, i) { 969 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 970 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 971 if (ret) 972 break; 973 } 974 975 return ret; 976 } 977 978 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio, 979 int mirror_num, unsigned long bio_flags, 980 u64 bio_offset) 981 { 982 /* 983 * when we're called for a write, we're already in the async 984 * submission context. Just jump into btrfs_map_bio 985 */ 986 return btree_csum_one_bio(bio); 987 } 988 989 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio, 990 int mirror_num, unsigned long bio_flags, 991 u64 bio_offset) 992 { 993 int ret; 994 995 /* 996 * when we're called for a write, we're already in the async 997 * submission context. Just jump into btrfs_map_bio 998 */ 999 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1); 1000 if (ret) { 1001 bio->bi_error = ret; 1002 bio_endio(bio); 1003 } 1004 return ret; 1005 } 1006 1007 static int check_async_write(unsigned long bio_flags) 1008 { 1009 if (bio_flags & EXTENT_BIO_TREE_LOG) 1010 return 0; 1011 #ifdef CONFIG_X86 1012 if (static_cpu_has(X86_FEATURE_XMM4_2)) 1013 return 0; 1014 #endif 1015 return 1; 1016 } 1017 1018 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio, 1019 int mirror_num, unsigned long bio_flags, 1020 u64 bio_offset) 1021 { 1022 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1023 int async = check_async_write(bio_flags); 1024 int ret; 1025 1026 if (bio_op(bio) != REQ_OP_WRITE) { 1027 /* 1028 * called for a read, do the setup so that checksum validation 1029 * can happen in the async kernel threads 1030 */ 1031 ret = btrfs_bio_wq_end_io(fs_info, bio, 1032 BTRFS_WQ_ENDIO_METADATA); 1033 if (ret) 1034 goto out_w_error; 1035 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 1036 } else if (!async) { 1037 ret = btree_csum_one_bio(bio); 1038 if (ret) 1039 goto out_w_error; 1040 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 1041 } else { 1042 /* 1043 * kthread helpers are used to submit writes so that 1044 * checksumming can happen in parallel across all CPUs 1045 */ 1046 ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0, 1047 bio_offset, 1048 __btree_submit_bio_start, 1049 __btree_submit_bio_done); 1050 } 1051 1052 if (ret) 1053 goto out_w_error; 1054 return 0; 1055 1056 out_w_error: 1057 bio->bi_error = ret; 1058 bio_endio(bio); 1059 return ret; 1060 } 1061 1062 #ifdef CONFIG_MIGRATION 1063 static int btree_migratepage(struct address_space *mapping, 1064 struct page *newpage, struct page *page, 1065 enum migrate_mode mode) 1066 { 1067 /* 1068 * we can't safely write a btree page from here, 1069 * we haven't done the locking hook 1070 */ 1071 if (PageDirty(page)) 1072 return -EAGAIN; 1073 /* 1074 * Buffers may be managed in a filesystem specific way. 1075 * We must have no buffers or drop them. 1076 */ 1077 if (page_has_private(page) && 1078 !try_to_release_page(page, GFP_KERNEL)) 1079 return -EAGAIN; 1080 return migrate_page(mapping, newpage, page, mode); 1081 } 1082 #endif 1083 1084 1085 static int btree_writepages(struct address_space *mapping, 1086 struct writeback_control *wbc) 1087 { 1088 struct btrfs_fs_info *fs_info; 1089 int ret; 1090 1091 if (wbc->sync_mode == WB_SYNC_NONE) { 1092 1093 if (wbc->for_kupdate) 1094 return 0; 1095 1096 fs_info = BTRFS_I(mapping->host)->root->fs_info; 1097 /* this is a bit racy, but that's ok */ 1098 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 1099 BTRFS_DIRTY_METADATA_THRESH); 1100 if (ret < 0) 1101 return 0; 1102 } 1103 return btree_write_cache_pages(mapping, wbc); 1104 } 1105 1106 static int btree_readpage(struct file *file, struct page *page) 1107 { 1108 struct extent_io_tree *tree; 1109 tree = &BTRFS_I(page->mapping->host)->io_tree; 1110 return extent_read_full_page(tree, page, btree_get_extent, 0); 1111 } 1112 1113 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1114 { 1115 if (PageWriteback(page) || PageDirty(page)) 1116 return 0; 1117 1118 return try_release_extent_buffer(page); 1119 } 1120 1121 static void btree_invalidatepage(struct page *page, unsigned int offset, 1122 unsigned int length) 1123 { 1124 struct extent_io_tree *tree; 1125 tree = &BTRFS_I(page->mapping->host)->io_tree; 1126 extent_invalidatepage(tree, page, offset); 1127 btree_releasepage(page, GFP_NOFS); 1128 if (PagePrivate(page)) { 1129 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1130 "page private not zero on page %llu", 1131 (unsigned long long)page_offset(page)); 1132 ClearPagePrivate(page); 1133 set_page_private(page, 0); 1134 put_page(page); 1135 } 1136 } 1137 1138 static int btree_set_page_dirty(struct page *page) 1139 { 1140 #ifdef DEBUG 1141 struct extent_buffer *eb; 1142 1143 BUG_ON(!PagePrivate(page)); 1144 eb = (struct extent_buffer *)page->private; 1145 BUG_ON(!eb); 1146 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1147 BUG_ON(!atomic_read(&eb->refs)); 1148 btrfs_assert_tree_locked(eb); 1149 #endif 1150 return __set_page_dirty_nobuffers(page); 1151 } 1152 1153 static const struct address_space_operations btree_aops = { 1154 .readpage = btree_readpage, 1155 .writepages = btree_writepages, 1156 .releasepage = btree_releasepage, 1157 .invalidatepage = btree_invalidatepage, 1158 #ifdef CONFIG_MIGRATION 1159 .migratepage = btree_migratepage, 1160 #endif 1161 .set_page_dirty = btree_set_page_dirty, 1162 }; 1163 1164 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1165 { 1166 struct extent_buffer *buf = NULL; 1167 struct inode *btree_inode = fs_info->btree_inode; 1168 1169 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1170 if (IS_ERR(buf)) 1171 return; 1172 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1173 buf, WAIT_NONE, btree_get_extent, 0); 1174 free_extent_buffer(buf); 1175 } 1176 1177 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr, 1178 int mirror_num, struct extent_buffer **eb) 1179 { 1180 struct extent_buffer *buf = NULL; 1181 struct inode *btree_inode = fs_info->btree_inode; 1182 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1183 int ret; 1184 1185 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1186 if (IS_ERR(buf)) 1187 return 0; 1188 1189 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1190 1191 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK, 1192 btree_get_extent, mirror_num); 1193 if (ret) { 1194 free_extent_buffer(buf); 1195 return ret; 1196 } 1197 1198 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1199 free_extent_buffer(buf); 1200 return -EIO; 1201 } else if (extent_buffer_uptodate(buf)) { 1202 *eb = buf; 1203 } else { 1204 free_extent_buffer(buf); 1205 } 1206 return 0; 1207 } 1208 1209 struct extent_buffer *btrfs_find_create_tree_block( 1210 struct btrfs_fs_info *fs_info, 1211 u64 bytenr) 1212 { 1213 if (btrfs_is_testing(fs_info)) 1214 return alloc_test_extent_buffer(fs_info, bytenr); 1215 return alloc_extent_buffer(fs_info, bytenr); 1216 } 1217 1218 1219 int btrfs_write_tree_block(struct extent_buffer *buf) 1220 { 1221 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1222 buf->start + buf->len - 1); 1223 } 1224 1225 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1226 { 1227 return filemap_fdatawait_range(buf->pages[0]->mapping, 1228 buf->start, buf->start + buf->len - 1); 1229 } 1230 1231 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1232 u64 parent_transid) 1233 { 1234 struct extent_buffer *buf = NULL; 1235 int ret; 1236 1237 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1238 if (IS_ERR(buf)) 1239 return buf; 1240 1241 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid); 1242 if (ret) { 1243 free_extent_buffer(buf); 1244 return ERR_PTR(ret); 1245 } 1246 return buf; 1247 1248 } 1249 1250 void clean_tree_block(struct btrfs_fs_info *fs_info, 1251 struct extent_buffer *buf) 1252 { 1253 if (btrfs_header_generation(buf) == 1254 fs_info->running_transaction->transid) { 1255 btrfs_assert_tree_locked(buf); 1256 1257 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1258 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1259 -buf->len, 1260 fs_info->dirty_metadata_batch); 1261 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1262 btrfs_set_lock_blocking(buf); 1263 clear_extent_buffer_dirty(buf); 1264 } 1265 } 1266 } 1267 1268 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1269 { 1270 struct btrfs_subvolume_writers *writers; 1271 int ret; 1272 1273 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1274 if (!writers) 1275 return ERR_PTR(-ENOMEM); 1276 1277 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL); 1278 if (ret < 0) { 1279 kfree(writers); 1280 return ERR_PTR(ret); 1281 } 1282 1283 init_waitqueue_head(&writers->wait); 1284 return writers; 1285 } 1286 1287 static void 1288 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1289 { 1290 percpu_counter_destroy(&writers->counter); 1291 kfree(writers); 1292 } 1293 1294 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1295 u64 objectid) 1296 { 1297 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1298 root->node = NULL; 1299 root->commit_root = NULL; 1300 root->state = 0; 1301 root->orphan_cleanup_state = 0; 1302 1303 root->objectid = objectid; 1304 root->last_trans = 0; 1305 root->highest_objectid = 0; 1306 root->nr_delalloc_inodes = 0; 1307 root->nr_ordered_extents = 0; 1308 root->name = NULL; 1309 root->inode_tree = RB_ROOT; 1310 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1311 root->block_rsv = NULL; 1312 root->orphan_block_rsv = NULL; 1313 1314 INIT_LIST_HEAD(&root->dirty_list); 1315 INIT_LIST_HEAD(&root->root_list); 1316 INIT_LIST_HEAD(&root->delalloc_inodes); 1317 INIT_LIST_HEAD(&root->delalloc_root); 1318 INIT_LIST_HEAD(&root->ordered_extents); 1319 INIT_LIST_HEAD(&root->ordered_root); 1320 INIT_LIST_HEAD(&root->logged_list[0]); 1321 INIT_LIST_HEAD(&root->logged_list[1]); 1322 spin_lock_init(&root->orphan_lock); 1323 spin_lock_init(&root->inode_lock); 1324 spin_lock_init(&root->delalloc_lock); 1325 spin_lock_init(&root->ordered_extent_lock); 1326 spin_lock_init(&root->accounting_lock); 1327 spin_lock_init(&root->log_extents_lock[0]); 1328 spin_lock_init(&root->log_extents_lock[1]); 1329 mutex_init(&root->objectid_mutex); 1330 mutex_init(&root->log_mutex); 1331 mutex_init(&root->ordered_extent_mutex); 1332 mutex_init(&root->delalloc_mutex); 1333 init_waitqueue_head(&root->log_writer_wait); 1334 init_waitqueue_head(&root->log_commit_wait[0]); 1335 init_waitqueue_head(&root->log_commit_wait[1]); 1336 INIT_LIST_HEAD(&root->log_ctxs[0]); 1337 INIT_LIST_HEAD(&root->log_ctxs[1]); 1338 atomic_set(&root->log_commit[0], 0); 1339 atomic_set(&root->log_commit[1], 0); 1340 atomic_set(&root->log_writers, 0); 1341 atomic_set(&root->log_batch, 0); 1342 atomic_set(&root->orphan_inodes, 0); 1343 refcount_set(&root->refs, 1); 1344 atomic_set(&root->will_be_snapshoted, 0); 1345 atomic64_set(&root->qgroup_meta_rsv, 0); 1346 root->log_transid = 0; 1347 root->log_transid_committed = -1; 1348 root->last_log_commit = 0; 1349 if (!dummy) 1350 extent_io_tree_init(&root->dirty_log_pages, 1351 fs_info->btree_inode->i_mapping); 1352 1353 memset(&root->root_key, 0, sizeof(root->root_key)); 1354 memset(&root->root_item, 0, sizeof(root->root_item)); 1355 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1356 if (!dummy) 1357 root->defrag_trans_start = fs_info->generation; 1358 else 1359 root->defrag_trans_start = 0; 1360 root->root_key.objectid = objectid; 1361 root->anon_dev = 0; 1362 1363 spin_lock_init(&root->root_item_lock); 1364 } 1365 1366 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1367 gfp_t flags) 1368 { 1369 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1370 if (root) 1371 root->fs_info = fs_info; 1372 return root; 1373 } 1374 1375 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1376 /* Should only be used by the testing infrastructure */ 1377 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1378 { 1379 struct btrfs_root *root; 1380 1381 if (!fs_info) 1382 return ERR_PTR(-EINVAL); 1383 1384 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1385 if (!root) 1386 return ERR_PTR(-ENOMEM); 1387 1388 /* We don't use the stripesize in selftest, set it as sectorsize */ 1389 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 1390 root->alloc_bytenr = 0; 1391 1392 return root; 1393 } 1394 #endif 1395 1396 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1397 struct btrfs_fs_info *fs_info, 1398 u64 objectid) 1399 { 1400 struct extent_buffer *leaf; 1401 struct btrfs_root *tree_root = fs_info->tree_root; 1402 struct btrfs_root *root; 1403 struct btrfs_key key; 1404 int ret = 0; 1405 uuid_le uuid; 1406 1407 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1408 if (!root) 1409 return ERR_PTR(-ENOMEM); 1410 1411 __setup_root(root, fs_info, objectid); 1412 root->root_key.objectid = objectid; 1413 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1414 root->root_key.offset = 0; 1415 1416 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1417 if (IS_ERR(leaf)) { 1418 ret = PTR_ERR(leaf); 1419 leaf = NULL; 1420 goto fail; 1421 } 1422 1423 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 1424 btrfs_set_header_bytenr(leaf, leaf->start); 1425 btrfs_set_header_generation(leaf, trans->transid); 1426 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1427 btrfs_set_header_owner(leaf, objectid); 1428 root->node = leaf; 1429 1430 write_extent_buffer_fsid(leaf, fs_info->fsid); 1431 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid); 1432 btrfs_mark_buffer_dirty(leaf); 1433 1434 root->commit_root = btrfs_root_node(root); 1435 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1436 1437 root->root_item.flags = 0; 1438 root->root_item.byte_limit = 0; 1439 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1440 btrfs_set_root_generation(&root->root_item, trans->transid); 1441 btrfs_set_root_level(&root->root_item, 0); 1442 btrfs_set_root_refs(&root->root_item, 1); 1443 btrfs_set_root_used(&root->root_item, leaf->len); 1444 btrfs_set_root_last_snapshot(&root->root_item, 0); 1445 btrfs_set_root_dirid(&root->root_item, 0); 1446 uuid_le_gen(&uuid); 1447 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1448 root->root_item.drop_level = 0; 1449 1450 key.objectid = objectid; 1451 key.type = BTRFS_ROOT_ITEM_KEY; 1452 key.offset = 0; 1453 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1454 if (ret) 1455 goto fail; 1456 1457 btrfs_tree_unlock(leaf); 1458 1459 return root; 1460 1461 fail: 1462 if (leaf) { 1463 btrfs_tree_unlock(leaf); 1464 free_extent_buffer(root->commit_root); 1465 free_extent_buffer(leaf); 1466 } 1467 kfree(root); 1468 1469 return ERR_PTR(ret); 1470 } 1471 1472 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1473 struct btrfs_fs_info *fs_info) 1474 { 1475 struct btrfs_root *root; 1476 struct extent_buffer *leaf; 1477 1478 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1479 if (!root) 1480 return ERR_PTR(-ENOMEM); 1481 1482 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1483 1484 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1485 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1486 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1487 1488 /* 1489 * DON'T set REF_COWS for log trees 1490 * 1491 * log trees do not get reference counted because they go away 1492 * before a real commit is actually done. They do store pointers 1493 * to file data extents, and those reference counts still get 1494 * updated (along with back refs to the log tree). 1495 */ 1496 1497 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1498 NULL, 0, 0, 0); 1499 if (IS_ERR(leaf)) { 1500 kfree(root); 1501 return ERR_CAST(leaf); 1502 } 1503 1504 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 1505 btrfs_set_header_bytenr(leaf, leaf->start); 1506 btrfs_set_header_generation(leaf, trans->transid); 1507 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1508 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1509 root->node = leaf; 1510 1511 write_extent_buffer_fsid(root->node, fs_info->fsid); 1512 btrfs_mark_buffer_dirty(root->node); 1513 btrfs_tree_unlock(root->node); 1514 return root; 1515 } 1516 1517 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1518 struct btrfs_fs_info *fs_info) 1519 { 1520 struct btrfs_root *log_root; 1521 1522 log_root = alloc_log_tree(trans, fs_info); 1523 if (IS_ERR(log_root)) 1524 return PTR_ERR(log_root); 1525 WARN_ON(fs_info->log_root_tree); 1526 fs_info->log_root_tree = log_root; 1527 return 0; 1528 } 1529 1530 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1531 struct btrfs_root *root) 1532 { 1533 struct btrfs_fs_info *fs_info = root->fs_info; 1534 struct btrfs_root *log_root; 1535 struct btrfs_inode_item *inode_item; 1536 1537 log_root = alloc_log_tree(trans, fs_info); 1538 if (IS_ERR(log_root)) 1539 return PTR_ERR(log_root); 1540 1541 log_root->last_trans = trans->transid; 1542 log_root->root_key.offset = root->root_key.objectid; 1543 1544 inode_item = &log_root->root_item.inode; 1545 btrfs_set_stack_inode_generation(inode_item, 1); 1546 btrfs_set_stack_inode_size(inode_item, 3); 1547 btrfs_set_stack_inode_nlink(inode_item, 1); 1548 btrfs_set_stack_inode_nbytes(inode_item, 1549 fs_info->nodesize); 1550 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1551 1552 btrfs_set_root_node(&log_root->root_item, log_root->node); 1553 1554 WARN_ON(root->log_root); 1555 root->log_root = log_root; 1556 root->log_transid = 0; 1557 root->log_transid_committed = -1; 1558 root->last_log_commit = 0; 1559 return 0; 1560 } 1561 1562 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1563 struct btrfs_key *key) 1564 { 1565 struct btrfs_root *root; 1566 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1567 struct btrfs_path *path; 1568 u64 generation; 1569 int ret; 1570 1571 path = btrfs_alloc_path(); 1572 if (!path) 1573 return ERR_PTR(-ENOMEM); 1574 1575 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1576 if (!root) { 1577 ret = -ENOMEM; 1578 goto alloc_fail; 1579 } 1580 1581 __setup_root(root, fs_info, key->objectid); 1582 1583 ret = btrfs_find_root(tree_root, key, path, 1584 &root->root_item, &root->root_key); 1585 if (ret) { 1586 if (ret > 0) 1587 ret = -ENOENT; 1588 goto find_fail; 1589 } 1590 1591 generation = btrfs_root_generation(&root->root_item); 1592 root->node = read_tree_block(fs_info, 1593 btrfs_root_bytenr(&root->root_item), 1594 generation); 1595 if (IS_ERR(root->node)) { 1596 ret = PTR_ERR(root->node); 1597 goto find_fail; 1598 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1599 ret = -EIO; 1600 free_extent_buffer(root->node); 1601 goto find_fail; 1602 } 1603 root->commit_root = btrfs_root_node(root); 1604 out: 1605 btrfs_free_path(path); 1606 return root; 1607 1608 find_fail: 1609 kfree(root); 1610 alloc_fail: 1611 root = ERR_PTR(ret); 1612 goto out; 1613 } 1614 1615 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1616 struct btrfs_key *location) 1617 { 1618 struct btrfs_root *root; 1619 1620 root = btrfs_read_tree_root(tree_root, location); 1621 if (IS_ERR(root)) 1622 return root; 1623 1624 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1625 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1626 btrfs_check_and_init_root_item(&root->root_item); 1627 } 1628 1629 return root; 1630 } 1631 1632 int btrfs_init_fs_root(struct btrfs_root *root) 1633 { 1634 int ret; 1635 struct btrfs_subvolume_writers *writers; 1636 1637 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1638 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1639 GFP_NOFS); 1640 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1641 ret = -ENOMEM; 1642 goto fail; 1643 } 1644 1645 writers = btrfs_alloc_subvolume_writers(); 1646 if (IS_ERR(writers)) { 1647 ret = PTR_ERR(writers); 1648 goto fail; 1649 } 1650 root->subv_writers = writers; 1651 1652 btrfs_init_free_ino_ctl(root); 1653 spin_lock_init(&root->ino_cache_lock); 1654 init_waitqueue_head(&root->ino_cache_wait); 1655 1656 ret = get_anon_bdev(&root->anon_dev); 1657 if (ret) 1658 goto fail; 1659 1660 mutex_lock(&root->objectid_mutex); 1661 ret = btrfs_find_highest_objectid(root, 1662 &root->highest_objectid); 1663 if (ret) { 1664 mutex_unlock(&root->objectid_mutex); 1665 goto fail; 1666 } 1667 1668 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1669 1670 mutex_unlock(&root->objectid_mutex); 1671 1672 return 0; 1673 fail: 1674 /* the caller is responsible to call free_fs_root */ 1675 return ret; 1676 } 1677 1678 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1679 u64 root_id) 1680 { 1681 struct btrfs_root *root; 1682 1683 spin_lock(&fs_info->fs_roots_radix_lock); 1684 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1685 (unsigned long)root_id); 1686 spin_unlock(&fs_info->fs_roots_radix_lock); 1687 return root; 1688 } 1689 1690 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1691 struct btrfs_root *root) 1692 { 1693 int ret; 1694 1695 ret = radix_tree_preload(GFP_NOFS); 1696 if (ret) 1697 return ret; 1698 1699 spin_lock(&fs_info->fs_roots_radix_lock); 1700 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1701 (unsigned long)root->root_key.objectid, 1702 root); 1703 if (ret == 0) 1704 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1705 spin_unlock(&fs_info->fs_roots_radix_lock); 1706 radix_tree_preload_end(); 1707 1708 return ret; 1709 } 1710 1711 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1712 struct btrfs_key *location, 1713 bool check_ref) 1714 { 1715 struct btrfs_root *root; 1716 struct btrfs_path *path; 1717 struct btrfs_key key; 1718 int ret; 1719 1720 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1721 return fs_info->tree_root; 1722 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1723 return fs_info->extent_root; 1724 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1725 return fs_info->chunk_root; 1726 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1727 return fs_info->dev_root; 1728 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1729 return fs_info->csum_root; 1730 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1731 return fs_info->quota_root ? fs_info->quota_root : 1732 ERR_PTR(-ENOENT); 1733 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1734 return fs_info->uuid_root ? fs_info->uuid_root : 1735 ERR_PTR(-ENOENT); 1736 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1737 return fs_info->free_space_root ? fs_info->free_space_root : 1738 ERR_PTR(-ENOENT); 1739 again: 1740 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1741 if (root) { 1742 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1743 return ERR_PTR(-ENOENT); 1744 return root; 1745 } 1746 1747 root = btrfs_read_fs_root(fs_info->tree_root, location); 1748 if (IS_ERR(root)) 1749 return root; 1750 1751 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1752 ret = -ENOENT; 1753 goto fail; 1754 } 1755 1756 ret = btrfs_init_fs_root(root); 1757 if (ret) 1758 goto fail; 1759 1760 path = btrfs_alloc_path(); 1761 if (!path) { 1762 ret = -ENOMEM; 1763 goto fail; 1764 } 1765 key.objectid = BTRFS_ORPHAN_OBJECTID; 1766 key.type = BTRFS_ORPHAN_ITEM_KEY; 1767 key.offset = location->objectid; 1768 1769 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1770 btrfs_free_path(path); 1771 if (ret < 0) 1772 goto fail; 1773 if (ret == 0) 1774 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1775 1776 ret = btrfs_insert_fs_root(fs_info, root); 1777 if (ret) { 1778 if (ret == -EEXIST) { 1779 free_fs_root(root); 1780 goto again; 1781 } 1782 goto fail; 1783 } 1784 return root; 1785 fail: 1786 free_fs_root(root); 1787 return ERR_PTR(ret); 1788 } 1789 1790 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1791 { 1792 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1793 int ret = 0; 1794 struct btrfs_device *device; 1795 struct backing_dev_info *bdi; 1796 1797 rcu_read_lock(); 1798 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1799 if (!device->bdev) 1800 continue; 1801 bdi = device->bdev->bd_bdi; 1802 if (bdi_congested(bdi, bdi_bits)) { 1803 ret = 1; 1804 break; 1805 } 1806 } 1807 rcu_read_unlock(); 1808 return ret; 1809 } 1810 1811 /* 1812 * called by the kthread helper functions to finally call the bio end_io 1813 * functions. This is where read checksum verification actually happens 1814 */ 1815 static void end_workqueue_fn(struct btrfs_work *work) 1816 { 1817 struct bio *bio; 1818 struct btrfs_end_io_wq *end_io_wq; 1819 1820 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1821 bio = end_io_wq->bio; 1822 1823 bio->bi_error = end_io_wq->error; 1824 bio->bi_private = end_io_wq->private; 1825 bio->bi_end_io = end_io_wq->end_io; 1826 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1827 bio_endio(bio); 1828 } 1829 1830 static int cleaner_kthread(void *arg) 1831 { 1832 struct btrfs_root *root = arg; 1833 struct btrfs_fs_info *fs_info = root->fs_info; 1834 int again; 1835 struct btrfs_trans_handle *trans; 1836 1837 do { 1838 again = 0; 1839 1840 /* Make the cleaner go to sleep early. */ 1841 if (btrfs_need_cleaner_sleep(fs_info)) 1842 goto sleep; 1843 1844 /* 1845 * Do not do anything if we might cause open_ctree() to block 1846 * before we have finished mounting the filesystem. 1847 */ 1848 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1849 goto sleep; 1850 1851 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1852 goto sleep; 1853 1854 /* 1855 * Avoid the problem that we change the status of the fs 1856 * during the above check and trylock. 1857 */ 1858 if (btrfs_need_cleaner_sleep(fs_info)) { 1859 mutex_unlock(&fs_info->cleaner_mutex); 1860 goto sleep; 1861 } 1862 1863 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 1864 btrfs_run_delayed_iputs(fs_info); 1865 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 1866 1867 again = btrfs_clean_one_deleted_snapshot(root); 1868 mutex_unlock(&fs_info->cleaner_mutex); 1869 1870 /* 1871 * The defragger has dealt with the R/O remount and umount, 1872 * needn't do anything special here. 1873 */ 1874 btrfs_run_defrag_inodes(fs_info); 1875 1876 /* 1877 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1878 * with relocation (btrfs_relocate_chunk) and relocation 1879 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1880 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1881 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1882 * unused block groups. 1883 */ 1884 btrfs_delete_unused_bgs(fs_info); 1885 sleep: 1886 if (!again) { 1887 set_current_state(TASK_INTERRUPTIBLE); 1888 if (!kthread_should_stop()) 1889 schedule(); 1890 __set_current_state(TASK_RUNNING); 1891 } 1892 } while (!kthread_should_stop()); 1893 1894 /* 1895 * Transaction kthread is stopped before us and wakes us up. 1896 * However we might have started a new transaction and COWed some 1897 * tree blocks when deleting unused block groups for example. So 1898 * make sure we commit the transaction we started to have a clean 1899 * shutdown when evicting the btree inode - if it has dirty pages 1900 * when we do the final iput() on it, eviction will trigger a 1901 * writeback for it which will fail with null pointer dereferences 1902 * since work queues and other resources were already released and 1903 * destroyed by the time the iput/eviction/writeback is made. 1904 */ 1905 trans = btrfs_attach_transaction(root); 1906 if (IS_ERR(trans)) { 1907 if (PTR_ERR(trans) != -ENOENT) 1908 btrfs_err(fs_info, 1909 "cleaner transaction attach returned %ld", 1910 PTR_ERR(trans)); 1911 } else { 1912 int ret; 1913 1914 ret = btrfs_commit_transaction(trans); 1915 if (ret) 1916 btrfs_err(fs_info, 1917 "cleaner open transaction commit returned %d", 1918 ret); 1919 } 1920 1921 return 0; 1922 } 1923 1924 static int transaction_kthread(void *arg) 1925 { 1926 struct btrfs_root *root = arg; 1927 struct btrfs_fs_info *fs_info = root->fs_info; 1928 struct btrfs_trans_handle *trans; 1929 struct btrfs_transaction *cur; 1930 u64 transid; 1931 unsigned long now; 1932 unsigned long delay; 1933 bool cannot_commit; 1934 1935 do { 1936 cannot_commit = false; 1937 delay = HZ * fs_info->commit_interval; 1938 mutex_lock(&fs_info->transaction_kthread_mutex); 1939 1940 spin_lock(&fs_info->trans_lock); 1941 cur = fs_info->running_transaction; 1942 if (!cur) { 1943 spin_unlock(&fs_info->trans_lock); 1944 goto sleep; 1945 } 1946 1947 now = get_seconds(); 1948 if (cur->state < TRANS_STATE_BLOCKED && 1949 (now < cur->start_time || 1950 now - cur->start_time < fs_info->commit_interval)) { 1951 spin_unlock(&fs_info->trans_lock); 1952 delay = HZ * 5; 1953 goto sleep; 1954 } 1955 transid = cur->transid; 1956 spin_unlock(&fs_info->trans_lock); 1957 1958 /* If the file system is aborted, this will always fail. */ 1959 trans = btrfs_attach_transaction(root); 1960 if (IS_ERR(trans)) { 1961 if (PTR_ERR(trans) != -ENOENT) 1962 cannot_commit = true; 1963 goto sleep; 1964 } 1965 if (transid == trans->transid) { 1966 btrfs_commit_transaction(trans); 1967 } else { 1968 btrfs_end_transaction(trans); 1969 } 1970 sleep: 1971 wake_up_process(fs_info->cleaner_kthread); 1972 mutex_unlock(&fs_info->transaction_kthread_mutex); 1973 1974 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1975 &fs_info->fs_state))) 1976 btrfs_cleanup_transaction(fs_info); 1977 set_current_state(TASK_INTERRUPTIBLE); 1978 if (!kthread_should_stop() && 1979 (!btrfs_transaction_blocked(fs_info) || 1980 cannot_commit)) 1981 schedule_timeout(delay); 1982 __set_current_state(TASK_RUNNING); 1983 } while (!kthread_should_stop()); 1984 return 0; 1985 } 1986 1987 /* 1988 * this will find the highest generation in the array of 1989 * root backups. The index of the highest array is returned, 1990 * or -1 if we can't find anything. 1991 * 1992 * We check to make sure the array is valid by comparing the 1993 * generation of the latest root in the array with the generation 1994 * in the super block. If they don't match we pitch it. 1995 */ 1996 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1997 { 1998 u64 cur; 1999 int newest_index = -1; 2000 struct btrfs_root_backup *root_backup; 2001 int i; 2002 2003 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2004 root_backup = info->super_copy->super_roots + i; 2005 cur = btrfs_backup_tree_root_gen(root_backup); 2006 if (cur == newest_gen) 2007 newest_index = i; 2008 } 2009 2010 /* check to see if we actually wrapped around */ 2011 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 2012 root_backup = info->super_copy->super_roots; 2013 cur = btrfs_backup_tree_root_gen(root_backup); 2014 if (cur == newest_gen) 2015 newest_index = 0; 2016 } 2017 return newest_index; 2018 } 2019 2020 2021 /* 2022 * find the oldest backup so we know where to store new entries 2023 * in the backup array. This will set the backup_root_index 2024 * field in the fs_info struct 2025 */ 2026 static void find_oldest_super_backup(struct btrfs_fs_info *info, 2027 u64 newest_gen) 2028 { 2029 int newest_index = -1; 2030 2031 newest_index = find_newest_super_backup(info, newest_gen); 2032 /* if there was garbage in there, just move along */ 2033 if (newest_index == -1) { 2034 info->backup_root_index = 0; 2035 } else { 2036 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 2037 } 2038 } 2039 2040 /* 2041 * copy all the root pointers into the super backup array. 2042 * this will bump the backup pointer by one when it is 2043 * done 2044 */ 2045 static void backup_super_roots(struct btrfs_fs_info *info) 2046 { 2047 int next_backup; 2048 struct btrfs_root_backup *root_backup; 2049 int last_backup; 2050 2051 next_backup = info->backup_root_index; 2052 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 2053 BTRFS_NUM_BACKUP_ROOTS; 2054 2055 /* 2056 * just overwrite the last backup if we're at the same generation 2057 * this happens only at umount 2058 */ 2059 root_backup = info->super_for_commit->super_roots + last_backup; 2060 if (btrfs_backup_tree_root_gen(root_backup) == 2061 btrfs_header_generation(info->tree_root->node)) 2062 next_backup = last_backup; 2063 2064 root_backup = info->super_for_commit->super_roots + next_backup; 2065 2066 /* 2067 * make sure all of our padding and empty slots get zero filled 2068 * regardless of which ones we use today 2069 */ 2070 memset(root_backup, 0, sizeof(*root_backup)); 2071 2072 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 2073 2074 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 2075 btrfs_set_backup_tree_root_gen(root_backup, 2076 btrfs_header_generation(info->tree_root->node)); 2077 2078 btrfs_set_backup_tree_root_level(root_backup, 2079 btrfs_header_level(info->tree_root->node)); 2080 2081 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 2082 btrfs_set_backup_chunk_root_gen(root_backup, 2083 btrfs_header_generation(info->chunk_root->node)); 2084 btrfs_set_backup_chunk_root_level(root_backup, 2085 btrfs_header_level(info->chunk_root->node)); 2086 2087 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 2088 btrfs_set_backup_extent_root_gen(root_backup, 2089 btrfs_header_generation(info->extent_root->node)); 2090 btrfs_set_backup_extent_root_level(root_backup, 2091 btrfs_header_level(info->extent_root->node)); 2092 2093 /* 2094 * we might commit during log recovery, which happens before we set 2095 * the fs_root. Make sure it is valid before we fill it in. 2096 */ 2097 if (info->fs_root && info->fs_root->node) { 2098 btrfs_set_backup_fs_root(root_backup, 2099 info->fs_root->node->start); 2100 btrfs_set_backup_fs_root_gen(root_backup, 2101 btrfs_header_generation(info->fs_root->node)); 2102 btrfs_set_backup_fs_root_level(root_backup, 2103 btrfs_header_level(info->fs_root->node)); 2104 } 2105 2106 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2107 btrfs_set_backup_dev_root_gen(root_backup, 2108 btrfs_header_generation(info->dev_root->node)); 2109 btrfs_set_backup_dev_root_level(root_backup, 2110 btrfs_header_level(info->dev_root->node)); 2111 2112 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 2113 btrfs_set_backup_csum_root_gen(root_backup, 2114 btrfs_header_generation(info->csum_root->node)); 2115 btrfs_set_backup_csum_root_level(root_backup, 2116 btrfs_header_level(info->csum_root->node)); 2117 2118 btrfs_set_backup_total_bytes(root_backup, 2119 btrfs_super_total_bytes(info->super_copy)); 2120 btrfs_set_backup_bytes_used(root_backup, 2121 btrfs_super_bytes_used(info->super_copy)); 2122 btrfs_set_backup_num_devices(root_backup, 2123 btrfs_super_num_devices(info->super_copy)); 2124 2125 /* 2126 * if we don't copy this out to the super_copy, it won't get remembered 2127 * for the next commit 2128 */ 2129 memcpy(&info->super_copy->super_roots, 2130 &info->super_for_commit->super_roots, 2131 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2132 } 2133 2134 /* 2135 * this copies info out of the root backup array and back into 2136 * the in-memory super block. It is meant to help iterate through 2137 * the array, so you send it the number of backups you've already 2138 * tried and the last backup index you used. 2139 * 2140 * this returns -1 when it has tried all the backups 2141 */ 2142 static noinline int next_root_backup(struct btrfs_fs_info *info, 2143 struct btrfs_super_block *super, 2144 int *num_backups_tried, int *backup_index) 2145 { 2146 struct btrfs_root_backup *root_backup; 2147 int newest = *backup_index; 2148 2149 if (*num_backups_tried == 0) { 2150 u64 gen = btrfs_super_generation(super); 2151 2152 newest = find_newest_super_backup(info, gen); 2153 if (newest == -1) 2154 return -1; 2155 2156 *backup_index = newest; 2157 *num_backups_tried = 1; 2158 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2159 /* we've tried all the backups, all done */ 2160 return -1; 2161 } else { 2162 /* jump to the next oldest backup */ 2163 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2164 BTRFS_NUM_BACKUP_ROOTS; 2165 *backup_index = newest; 2166 *num_backups_tried += 1; 2167 } 2168 root_backup = super->super_roots + newest; 2169 2170 btrfs_set_super_generation(super, 2171 btrfs_backup_tree_root_gen(root_backup)); 2172 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2173 btrfs_set_super_root_level(super, 2174 btrfs_backup_tree_root_level(root_backup)); 2175 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2176 2177 /* 2178 * fixme: the total bytes and num_devices need to match or we should 2179 * need a fsck 2180 */ 2181 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2182 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2183 return 0; 2184 } 2185 2186 /* helper to cleanup workers */ 2187 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2188 { 2189 btrfs_destroy_workqueue(fs_info->fixup_workers); 2190 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2191 btrfs_destroy_workqueue(fs_info->workers); 2192 btrfs_destroy_workqueue(fs_info->endio_workers); 2193 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2194 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2195 btrfs_destroy_workqueue(fs_info->rmw_workers); 2196 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2197 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2198 btrfs_destroy_workqueue(fs_info->submit_workers); 2199 btrfs_destroy_workqueue(fs_info->delayed_workers); 2200 btrfs_destroy_workqueue(fs_info->caching_workers); 2201 btrfs_destroy_workqueue(fs_info->readahead_workers); 2202 btrfs_destroy_workqueue(fs_info->flush_workers); 2203 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2204 btrfs_destroy_workqueue(fs_info->extent_workers); 2205 /* 2206 * Now that all other work queues are destroyed, we can safely destroy 2207 * the queues used for metadata I/O, since tasks from those other work 2208 * queues can do metadata I/O operations. 2209 */ 2210 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2211 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2212 } 2213 2214 static void free_root_extent_buffers(struct btrfs_root *root) 2215 { 2216 if (root) { 2217 free_extent_buffer(root->node); 2218 free_extent_buffer(root->commit_root); 2219 root->node = NULL; 2220 root->commit_root = NULL; 2221 } 2222 } 2223 2224 /* helper to cleanup tree roots */ 2225 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2226 { 2227 free_root_extent_buffers(info->tree_root); 2228 2229 free_root_extent_buffers(info->dev_root); 2230 free_root_extent_buffers(info->extent_root); 2231 free_root_extent_buffers(info->csum_root); 2232 free_root_extent_buffers(info->quota_root); 2233 free_root_extent_buffers(info->uuid_root); 2234 if (chunk_root) 2235 free_root_extent_buffers(info->chunk_root); 2236 free_root_extent_buffers(info->free_space_root); 2237 } 2238 2239 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2240 { 2241 int ret; 2242 struct btrfs_root *gang[8]; 2243 int i; 2244 2245 while (!list_empty(&fs_info->dead_roots)) { 2246 gang[0] = list_entry(fs_info->dead_roots.next, 2247 struct btrfs_root, root_list); 2248 list_del(&gang[0]->root_list); 2249 2250 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2251 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2252 } else { 2253 free_extent_buffer(gang[0]->node); 2254 free_extent_buffer(gang[0]->commit_root); 2255 btrfs_put_fs_root(gang[0]); 2256 } 2257 } 2258 2259 while (1) { 2260 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2261 (void **)gang, 0, 2262 ARRAY_SIZE(gang)); 2263 if (!ret) 2264 break; 2265 for (i = 0; i < ret; i++) 2266 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2267 } 2268 2269 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2270 btrfs_free_log_root_tree(NULL, fs_info); 2271 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 2272 } 2273 } 2274 2275 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2276 { 2277 mutex_init(&fs_info->scrub_lock); 2278 atomic_set(&fs_info->scrubs_running, 0); 2279 atomic_set(&fs_info->scrub_pause_req, 0); 2280 atomic_set(&fs_info->scrubs_paused, 0); 2281 atomic_set(&fs_info->scrub_cancel_req, 0); 2282 init_waitqueue_head(&fs_info->scrub_pause_wait); 2283 fs_info->scrub_workers_refcnt = 0; 2284 } 2285 2286 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2287 { 2288 spin_lock_init(&fs_info->balance_lock); 2289 mutex_init(&fs_info->balance_mutex); 2290 atomic_set(&fs_info->balance_running, 0); 2291 atomic_set(&fs_info->balance_pause_req, 0); 2292 atomic_set(&fs_info->balance_cancel_req, 0); 2293 fs_info->balance_ctl = NULL; 2294 init_waitqueue_head(&fs_info->balance_wait_q); 2295 } 2296 2297 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2298 { 2299 struct inode *inode = fs_info->btree_inode; 2300 2301 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2302 set_nlink(inode, 1); 2303 /* 2304 * we set the i_size on the btree inode to the max possible int. 2305 * the real end of the address space is determined by all of 2306 * the devices in the system 2307 */ 2308 inode->i_size = OFFSET_MAX; 2309 inode->i_mapping->a_ops = &btree_aops; 2310 2311 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2312 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping); 2313 BTRFS_I(inode)->io_tree.track_uptodate = 0; 2314 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2315 2316 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2317 2318 BTRFS_I(inode)->root = fs_info->tree_root; 2319 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2320 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2321 btrfs_insert_inode_hash(inode); 2322 } 2323 2324 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2325 { 2326 fs_info->dev_replace.lock_owner = 0; 2327 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2328 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2329 rwlock_init(&fs_info->dev_replace.lock); 2330 atomic_set(&fs_info->dev_replace.read_locks, 0); 2331 atomic_set(&fs_info->dev_replace.blocking_readers, 0); 2332 init_waitqueue_head(&fs_info->replace_wait); 2333 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq); 2334 } 2335 2336 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2337 { 2338 spin_lock_init(&fs_info->qgroup_lock); 2339 mutex_init(&fs_info->qgroup_ioctl_lock); 2340 fs_info->qgroup_tree = RB_ROOT; 2341 fs_info->qgroup_op_tree = RB_ROOT; 2342 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2343 fs_info->qgroup_seq = 1; 2344 fs_info->qgroup_ulist = NULL; 2345 fs_info->qgroup_rescan_running = false; 2346 mutex_init(&fs_info->qgroup_rescan_lock); 2347 } 2348 2349 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2350 struct btrfs_fs_devices *fs_devices) 2351 { 2352 int max_active = fs_info->thread_pool_size; 2353 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2354 2355 fs_info->workers = 2356 btrfs_alloc_workqueue(fs_info, "worker", 2357 flags | WQ_HIGHPRI, max_active, 16); 2358 2359 fs_info->delalloc_workers = 2360 btrfs_alloc_workqueue(fs_info, "delalloc", 2361 flags, max_active, 2); 2362 2363 fs_info->flush_workers = 2364 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2365 flags, max_active, 0); 2366 2367 fs_info->caching_workers = 2368 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2369 2370 /* 2371 * a higher idle thresh on the submit workers makes it much more 2372 * likely that bios will be send down in a sane order to the 2373 * devices 2374 */ 2375 fs_info->submit_workers = 2376 btrfs_alloc_workqueue(fs_info, "submit", flags, 2377 min_t(u64, fs_devices->num_devices, 2378 max_active), 64); 2379 2380 fs_info->fixup_workers = 2381 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2382 2383 /* 2384 * endios are largely parallel and should have a very 2385 * low idle thresh 2386 */ 2387 fs_info->endio_workers = 2388 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2389 fs_info->endio_meta_workers = 2390 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2391 max_active, 4); 2392 fs_info->endio_meta_write_workers = 2393 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2394 max_active, 2); 2395 fs_info->endio_raid56_workers = 2396 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2397 max_active, 4); 2398 fs_info->endio_repair_workers = 2399 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2400 fs_info->rmw_workers = 2401 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2402 fs_info->endio_write_workers = 2403 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2404 max_active, 2); 2405 fs_info->endio_freespace_worker = 2406 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2407 max_active, 0); 2408 fs_info->delayed_workers = 2409 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2410 max_active, 0); 2411 fs_info->readahead_workers = 2412 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2413 max_active, 2); 2414 fs_info->qgroup_rescan_workers = 2415 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2416 fs_info->extent_workers = 2417 btrfs_alloc_workqueue(fs_info, "extent-refs", flags, 2418 min_t(u64, fs_devices->num_devices, 2419 max_active), 8); 2420 2421 if (!(fs_info->workers && fs_info->delalloc_workers && 2422 fs_info->submit_workers && fs_info->flush_workers && 2423 fs_info->endio_workers && fs_info->endio_meta_workers && 2424 fs_info->endio_meta_write_workers && 2425 fs_info->endio_repair_workers && 2426 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2427 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2428 fs_info->caching_workers && fs_info->readahead_workers && 2429 fs_info->fixup_workers && fs_info->delayed_workers && 2430 fs_info->extent_workers && 2431 fs_info->qgroup_rescan_workers)) { 2432 return -ENOMEM; 2433 } 2434 2435 return 0; 2436 } 2437 2438 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2439 struct btrfs_fs_devices *fs_devices) 2440 { 2441 int ret; 2442 struct btrfs_root *log_tree_root; 2443 struct btrfs_super_block *disk_super = fs_info->super_copy; 2444 u64 bytenr = btrfs_super_log_root(disk_super); 2445 2446 if (fs_devices->rw_devices == 0) { 2447 btrfs_warn(fs_info, "log replay required on RO media"); 2448 return -EIO; 2449 } 2450 2451 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2452 if (!log_tree_root) 2453 return -ENOMEM; 2454 2455 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2456 2457 log_tree_root->node = read_tree_block(fs_info, bytenr, 2458 fs_info->generation + 1); 2459 if (IS_ERR(log_tree_root->node)) { 2460 btrfs_warn(fs_info, "failed to read log tree"); 2461 ret = PTR_ERR(log_tree_root->node); 2462 kfree(log_tree_root); 2463 return ret; 2464 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2465 btrfs_err(fs_info, "failed to read log tree"); 2466 free_extent_buffer(log_tree_root->node); 2467 kfree(log_tree_root); 2468 return -EIO; 2469 } 2470 /* returns with log_tree_root freed on success */ 2471 ret = btrfs_recover_log_trees(log_tree_root); 2472 if (ret) { 2473 btrfs_handle_fs_error(fs_info, ret, 2474 "Failed to recover log tree"); 2475 free_extent_buffer(log_tree_root->node); 2476 kfree(log_tree_root); 2477 return ret; 2478 } 2479 2480 if (fs_info->sb->s_flags & MS_RDONLY) { 2481 ret = btrfs_commit_super(fs_info); 2482 if (ret) 2483 return ret; 2484 } 2485 2486 return 0; 2487 } 2488 2489 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2490 { 2491 struct btrfs_root *tree_root = fs_info->tree_root; 2492 struct btrfs_root *root; 2493 struct btrfs_key location; 2494 int ret; 2495 2496 BUG_ON(!fs_info->tree_root); 2497 2498 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2499 location.type = BTRFS_ROOT_ITEM_KEY; 2500 location.offset = 0; 2501 2502 root = btrfs_read_tree_root(tree_root, &location); 2503 if (IS_ERR(root)) 2504 return PTR_ERR(root); 2505 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2506 fs_info->extent_root = root; 2507 2508 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2509 root = btrfs_read_tree_root(tree_root, &location); 2510 if (IS_ERR(root)) 2511 return PTR_ERR(root); 2512 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2513 fs_info->dev_root = root; 2514 btrfs_init_devices_late(fs_info); 2515 2516 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2517 root = btrfs_read_tree_root(tree_root, &location); 2518 if (IS_ERR(root)) 2519 return PTR_ERR(root); 2520 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2521 fs_info->csum_root = root; 2522 2523 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2524 root = btrfs_read_tree_root(tree_root, &location); 2525 if (!IS_ERR(root)) { 2526 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2527 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2528 fs_info->quota_root = root; 2529 } 2530 2531 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2532 root = btrfs_read_tree_root(tree_root, &location); 2533 if (IS_ERR(root)) { 2534 ret = PTR_ERR(root); 2535 if (ret != -ENOENT) 2536 return ret; 2537 } else { 2538 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2539 fs_info->uuid_root = root; 2540 } 2541 2542 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2543 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2544 root = btrfs_read_tree_root(tree_root, &location); 2545 if (IS_ERR(root)) 2546 return PTR_ERR(root); 2547 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2548 fs_info->free_space_root = root; 2549 } 2550 2551 return 0; 2552 } 2553 2554 int open_ctree(struct super_block *sb, 2555 struct btrfs_fs_devices *fs_devices, 2556 char *options) 2557 { 2558 u32 sectorsize; 2559 u32 nodesize; 2560 u32 stripesize; 2561 u64 generation; 2562 u64 features; 2563 struct btrfs_key location; 2564 struct buffer_head *bh; 2565 struct btrfs_super_block *disk_super; 2566 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2567 struct btrfs_root *tree_root; 2568 struct btrfs_root *chunk_root; 2569 int ret; 2570 int err = -EINVAL; 2571 int num_backups_tried = 0; 2572 int backup_index = 0; 2573 int max_active; 2574 int clear_free_space_tree = 0; 2575 2576 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2577 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2578 if (!tree_root || !chunk_root) { 2579 err = -ENOMEM; 2580 goto fail; 2581 } 2582 2583 ret = init_srcu_struct(&fs_info->subvol_srcu); 2584 if (ret) { 2585 err = ret; 2586 goto fail; 2587 } 2588 2589 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2590 if (ret) { 2591 err = ret; 2592 goto fail_srcu; 2593 } 2594 fs_info->dirty_metadata_batch = PAGE_SIZE * 2595 (1 + ilog2(nr_cpu_ids)); 2596 2597 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2598 if (ret) { 2599 err = ret; 2600 goto fail_dirty_metadata_bytes; 2601 } 2602 2603 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2604 if (ret) { 2605 err = ret; 2606 goto fail_delalloc_bytes; 2607 } 2608 2609 fs_info->btree_inode = new_inode(sb); 2610 if (!fs_info->btree_inode) { 2611 err = -ENOMEM; 2612 goto fail_bio_counter; 2613 } 2614 2615 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2616 2617 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2618 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2619 INIT_LIST_HEAD(&fs_info->trans_list); 2620 INIT_LIST_HEAD(&fs_info->dead_roots); 2621 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2622 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2623 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2624 spin_lock_init(&fs_info->delalloc_root_lock); 2625 spin_lock_init(&fs_info->trans_lock); 2626 spin_lock_init(&fs_info->fs_roots_radix_lock); 2627 spin_lock_init(&fs_info->delayed_iput_lock); 2628 spin_lock_init(&fs_info->defrag_inodes_lock); 2629 spin_lock_init(&fs_info->free_chunk_lock); 2630 spin_lock_init(&fs_info->tree_mod_seq_lock); 2631 spin_lock_init(&fs_info->super_lock); 2632 spin_lock_init(&fs_info->qgroup_op_lock); 2633 spin_lock_init(&fs_info->buffer_lock); 2634 spin_lock_init(&fs_info->unused_bgs_lock); 2635 rwlock_init(&fs_info->tree_mod_log_lock); 2636 mutex_init(&fs_info->unused_bg_unpin_mutex); 2637 mutex_init(&fs_info->delete_unused_bgs_mutex); 2638 mutex_init(&fs_info->reloc_mutex); 2639 mutex_init(&fs_info->delalloc_root_mutex); 2640 mutex_init(&fs_info->cleaner_delayed_iput_mutex); 2641 seqlock_init(&fs_info->profiles_lock); 2642 2643 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2644 INIT_LIST_HEAD(&fs_info->space_info); 2645 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2646 INIT_LIST_HEAD(&fs_info->unused_bgs); 2647 btrfs_mapping_init(&fs_info->mapping_tree); 2648 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2649 BTRFS_BLOCK_RSV_GLOBAL); 2650 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2651 BTRFS_BLOCK_RSV_DELALLOC); 2652 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2653 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2654 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2655 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2656 BTRFS_BLOCK_RSV_DELOPS); 2657 atomic_set(&fs_info->nr_async_submits, 0); 2658 atomic_set(&fs_info->async_delalloc_pages, 0); 2659 atomic_set(&fs_info->async_submit_draining, 0); 2660 atomic_set(&fs_info->nr_async_bios, 0); 2661 atomic_set(&fs_info->defrag_running, 0); 2662 atomic_set(&fs_info->qgroup_op_seq, 0); 2663 atomic_set(&fs_info->reada_works_cnt, 0); 2664 atomic64_set(&fs_info->tree_mod_seq, 0); 2665 fs_info->fs_frozen = 0; 2666 fs_info->sb = sb; 2667 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2668 fs_info->metadata_ratio = 0; 2669 fs_info->defrag_inodes = RB_ROOT; 2670 fs_info->free_chunk_space = 0; 2671 fs_info->tree_mod_log = RB_ROOT; 2672 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2673 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2674 /* readahead state */ 2675 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2676 spin_lock_init(&fs_info->reada_lock); 2677 2678 fs_info->thread_pool_size = min_t(unsigned long, 2679 num_online_cpus() + 2, 8); 2680 2681 INIT_LIST_HEAD(&fs_info->ordered_roots); 2682 spin_lock_init(&fs_info->ordered_root_lock); 2683 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2684 GFP_KERNEL); 2685 if (!fs_info->delayed_root) { 2686 err = -ENOMEM; 2687 goto fail_iput; 2688 } 2689 btrfs_init_delayed_root(fs_info->delayed_root); 2690 2691 btrfs_init_scrub(fs_info); 2692 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2693 fs_info->check_integrity_print_mask = 0; 2694 #endif 2695 btrfs_init_balance(fs_info); 2696 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2697 2698 sb->s_blocksize = 4096; 2699 sb->s_blocksize_bits = blksize_bits(4096); 2700 2701 btrfs_init_btree_inode(fs_info); 2702 2703 spin_lock_init(&fs_info->block_group_cache_lock); 2704 fs_info->block_group_cache_tree = RB_ROOT; 2705 fs_info->first_logical_byte = (u64)-1; 2706 2707 extent_io_tree_init(&fs_info->freed_extents[0], 2708 fs_info->btree_inode->i_mapping); 2709 extent_io_tree_init(&fs_info->freed_extents[1], 2710 fs_info->btree_inode->i_mapping); 2711 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2712 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2713 2714 mutex_init(&fs_info->ordered_operations_mutex); 2715 mutex_init(&fs_info->tree_log_mutex); 2716 mutex_init(&fs_info->chunk_mutex); 2717 mutex_init(&fs_info->transaction_kthread_mutex); 2718 mutex_init(&fs_info->cleaner_mutex); 2719 mutex_init(&fs_info->volume_mutex); 2720 mutex_init(&fs_info->ro_block_group_mutex); 2721 init_rwsem(&fs_info->commit_root_sem); 2722 init_rwsem(&fs_info->cleanup_work_sem); 2723 init_rwsem(&fs_info->subvol_sem); 2724 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2725 2726 btrfs_init_dev_replace_locks(fs_info); 2727 btrfs_init_qgroup(fs_info); 2728 2729 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2730 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2731 2732 init_waitqueue_head(&fs_info->transaction_throttle); 2733 init_waitqueue_head(&fs_info->transaction_wait); 2734 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2735 init_waitqueue_head(&fs_info->async_submit_wait); 2736 2737 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2738 2739 /* Usable values until the real ones are cached from the superblock */ 2740 fs_info->nodesize = 4096; 2741 fs_info->sectorsize = 4096; 2742 fs_info->stripesize = 4096; 2743 2744 ret = btrfs_alloc_stripe_hash_table(fs_info); 2745 if (ret) { 2746 err = ret; 2747 goto fail_alloc; 2748 } 2749 2750 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 2751 2752 invalidate_bdev(fs_devices->latest_bdev); 2753 2754 /* 2755 * Read super block and check the signature bytes only 2756 */ 2757 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2758 if (IS_ERR(bh)) { 2759 err = PTR_ERR(bh); 2760 goto fail_alloc; 2761 } 2762 2763 /* 2764 * We want to check superblock checksum, the type is stored inside. 2765 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2766 */ 2767 if (btrfs_check_super_csum(fs_info, bh->b_data)) { 2768 btrfs_err(fs_info, "superblock checksum mismatch"); 2769 err = -EINVAL; 2770 brelse(bh); 2771 goto fail_alloc; 2772 } 2773 2774 /* 2775 * super_copy is zeroed at allocation time and we never touch the 2776 * following bytes up to INFO_SIZE, the checksum is calculated from 2777 * the whole block of INFO_SIZE 2778 */ 2779 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2780 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2781 sizeof(*fs_info->super_for_commit)); 2782 brelse(bh); 2783 2784 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2785 2786 ret = btrfs_check_super_valid(fs_info); 2787 if (ret) { 2788 btrfs_err(fs_info, "superblock contains fatal errors"); 2789 err = -EINVAL; 2790 goto fail_alloc; 2791 } 2792 2793 disk_super = fs_info->super_copy; 2794 if (!btrfs_super_root(disk_super)) 2795 goto fail_alloc; 2796 2797 /* check FS state, whether FS is broken. */ 2798 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2799 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2800 2801 /* 2802 * run through our array of backup supers and setup 2803 * our ring pointer to the oldest one 2804 */ 2805 generation = btrfs_super_generation(disk_super); 2806 find_oldest_super_backup(fs_info, generation); 2807 2808 /* 2809 * In the long term, we'll store the compression type in the super 2810 * block, and it'll be used for per file compression control. 2811 */ 2812 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2813 2814 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2815 if (ret) { 2816 err = ret; 2817 goto fail_alloc; 2818 } 2819 2820 features = btrfs_super_incompat_flags(disk_super) & 2821 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2822 if (features) { 2823 btrfs_err(fs_info, 2824 "cannot mount because of unsupported optional features (%llx)", 2825 features); 2826 err = -EINVAL; 2827 goto fail_alloc; 2828 } 2829 2830 features = btrfs_super_incompat_flags(disk_super); 2831 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2832 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2833 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2834 2835 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2836 btrfs_info(fs_info, "has skinny extents"); 2837 2838 /* 2839 * flag our filesystem as having big metadata blocks if 2840 * they are bigger than the page size 2841 */ 2842 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2843 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2844 btrfs_info(fs_info, 2845 "flagging fs with big metadata feature"); 2846 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2847 } 2848 2849 nodesize = btrfs_super_nodesize(disk_super); 2850 sectorsize = btrfs_super_sectorsize(disk_super); 2851 stripesize = sectorsize; 2852 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2853 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2854 2855 /* Cache block sizes */ 2856 fs_info->nodesize = nodesize; 2857 fs_info->sectorsize = sectorsize; 2858 fs_info->stripesize = stripesize; 2859 2860 /* 2861 * mixed block groups end up with duplicate but slightly offset 2862 * extent buffers for the same range. It leads to corruptions 2863 */ 2864 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2865 (sectorsize != nodesize)) { 2866 btrfs_err(fs_info, 2867 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2868 nodesize, sectorsize); 2869 goto fail_alloc; 2870 } 2871 2872 /* 2873 * Needn't use the lock because there is no other task which will 2874 * update the flag. 2875 */ 2876 btrfs_set_super_incompat_flags(disk_super, features); 2877 2878 features = btrfs_super_compat_ro_flags(disk_super) & 2879 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2880 if (!(sb->s_flags & MS_RDONLY) && features) { 2881 btrfs_err(fs_info, 2882 "cannot mount read-write because of unsupported optional features (%llx)", 2883 features); 2884 err = -EINVAL; 2885 goto fail_alloc; 2886 } 2887 2888 max_active = fs_info->thread_pool_size; 2889 2890 ret = btrfs_init_workqueues(fs_info, fs_devices); 2891 if (ret) { 2892 err = ret; 2893 goto fail_sb_buffer; 2894 } 2895 2896 sb->s_bdi->congested_fn = btrfs_congested_fn; 2897 sb->s_bdi->congested_data = fs_info; 2898 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 2899 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE; 2900 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 2901 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 2902 2903 sb->s_blocksize = sectorsize; 2904 sb->s_blocksize_bits = blksize_bits(sectorsize); 2905 2906 mutex_lock(&fs_info->chunk_mutex); 2907 ret = btrfs_read_sys_array(fs_info); 2908 mutex_unlock(&fs_info->chunk_mutex); 2909 if (ret) { 2910 btrfs_err(fs_info, "failed to read the system array: %d", ret); 2911 goto fail_sb_buffer; 2912 } 2913 2914 generation = btrfs_super_chunk_root_generation(disk_super); 2915 2916 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2917 2918 chunk_root->node = read_tree_block(fs_info, 2919 btrfs_super_chunk_root(disk_super), 2920 generation); 2921 if (IS_ERR(chunk_root->node) || 2922 !extent_buffer_uptodate(chunk_root->node)) { 2923 btrfs_err(fs_info, "failed to read chunk root"); 2924 if (!IS_ERR(chunk_root->node)) 2925 free_extent_buffer(chunk_root->node); 2926 chunk_root->node = NULL; 2927 goto fail_tree_roots; 2928 } 2929 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2930 chunk_root->commit_root = btrfs_root_node(chunk_root); 2931 2932 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2933 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2934 2935 ret = btrfs_read_chunk_tree(fs_info); 2936 if (ret) { 2937 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 2938 goto fail_tree_roots; 2939 } 2940 2941 /* 2942 * keep the device that is marked to be the target device for the 2943 * dev_replace procedure 2944 */ 2945 btrfs_close_extra_devices(fs_devices, 0); 2946 2947 if (!fs_devices->latest_bdev) { 2948 btrfs_err(fs_info, "failed to read devices"); 2949 goto fail_tree_roots; 2950 } 2951 2952 retry_root_backup: 2953 generation = btrfs_super_generation(disk_super); 2954 2955 tree_root->node = read_tree_block(fs_info, 2956 btrfs_super_root(disk_super), 2957 generation); 2958 if (IS_ERR(tree_root->node) || 2959 !extent_buffer_uptodate(tree_root->node)) { 2960 btrfs_warn(fs_info, "failed to read tree root"); 2961 if (!IS_ERR(tree_root->node)) 2962 free_extent_buffer(tree_root->node); 2963 tree_root->node = NULL; 2964 goto recovery_tree_root; 2965 } 2966 2967 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2968 tree_root->commit_root = btrfs_root_node(tree_root); 2969 btrfs_set_root_refs(&tree_root->root_item, 1); 2970 2971 mutex_lock(&tree_root->objectid_mutex); 2972 ret = btrfs_find_highest_objectid(tree_root, 2973 &tree_root->highest_objectid); 2974 if (ret) { 2975 mutex_unlock(&tree_root->objectid_mutex); 2976 goto recovery_tree_root; 2977 } 2978 2979 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2980 2981 mutex_unlock(&tree_root->objectid_mutex); 2982 2983 ret = btrfs_read_roots(fs_info); 2984 if (ret) 2985 goto recovery_tree_root; 2986 2987 fs_info->generation = generation; 2988 fs_info->last_trans_committed = generation; 2989 2990 ret = btrfs_recover_balance(fs_info); 2991 if (ret) { 2992 btrfs_err(fs_info, "failed to recover balance: %d", ret); 2993 goto fail_block_groups; 2994 } 2995 2996 ret = btrfs_init_dev_stats(fs_info); 2997 if (ret) { 2998 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 2999 goto fail_block_groups; 3000 } 3001 3002 ret = btrfs_init_dev_replace(fs_info); 3003 if (ret) { 3004 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3005 goto fail_block_groups; 3006 } 3007 3008 btrfs_close_extra_devices(fs_devices, 1); 3009 3010 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 3011 if (ret) { 3012 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3013 ret); 3014 goto fail_block_groups; 3015 } 3016 3017 ret = btrfs_sysfs_add_device(fs_devices); 3018 if (ret) { 3019 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 3020 ret); 3021 goto fail_fsdev_sysfs; 3022 } 3023 3024 ret = btrfs_sysfs_add_mounted(fs_info); 3025 if (ret) { 3026 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3027 goto fail_fsdev_sysfs; 3028 } 3029 3030 ret = btrfs_init_space_info(fs_info); 3031 if (ret) { 3032 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3033 goto fail_sysfs; 3034 } 3035 3036 ret = btrfs_read_block_groups(fs_info); 3037 if (ret) { 3038 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3039 goto fail_sysfs; 3040 } 3041 fs_info->num_tolerated_disk_barrier_failures = 3042 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3043 if (fs_info->fs_devices->missing_devices > 3044 fs_info->num_tolerated_disk_barrier_failures && 3045 !(sb->s_flags & MS_RDONLY)) { 3046 btrfs_warn(fs_info, 3047 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed", 3048 fs_info->fs_devices->missing_devices, 3049 fs_info->num_tolerated_disk_barrier_failures); 3050 goto fail_sysfs; 3051 } 3052 3053 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3054 "btrfs-cleaner"); 3055 if (IS_ERR(fs_info->cleaner_kthread)) 3056 goto fail_sysfs; 3057 3058 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3059 tree_root, 3060 "btrfs-transaction"); 3061 if (IS_ERR(fs_info->transaction_kthread)) 3062 goto fail_cleaner; 3063 3064 if (!btrfs_test_opt(fs_info, SSD) && 3065 !btrfs_test_opt(fs_info, NOSSD) && 3066 !fs_info->fs_devices->rotating) { 3067 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode"); 3068 btrfs_set_opt(fs_info->mount_opt, SSD); 3069 } 3070 3071 /* 3072 * Mount does not set all options immediately, we can do it now and do 3073 * not have to wait for transaction commit 3074 */ 3075 btrfs_apply_pending_changes(fs_info); 3076 3077 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3078 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3079 ret = btrfsic_mount(fs_info, fs_devices, 3080 btrfs_test_opt(fs_info, 3081 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3082 1 : 0, 3083 fs_info->check_integrity_print_mask); 3084 if (ret) 3085 btrfs_warn(fs_info, 3086 "failed to initialize integrity check module: %d", 3087 ret); 3088 } 3089 #endif 3090 ret = btrfs_read_qgroup_config(fs_info); 3091 if (ret) 3092 goto fail_trans_kthread; 3093 3094 /* do not make disk changes in broken FS or nologreplay is given */ 3095 if (btrfs_super_log_root(disk_super) != 0 && 3096 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3097 ret = btrfs_replay_log(fs_info, fs_devices); 3098 if (ret) { 3099 err = ret; 3100 goto fail_qgroup; 3101 } 3102 } 3103 3104 ret = btrfs_find_orphan_roots(fs_info); 3105 if (ret) 3106 goto fail_qgroup; 3107 3108 if (!(sb->s_flags & MS_RDONLY)) { 3109 ret = btrfs_cleanup_fs_roots(fs_info); 3110 if (ret) 3111 goto fail_qgroup; 3112 3113 mutex_lock(&fs_info->cleaner_mutex); 3114 ret = btrfs_recover_relocation(tree_root); 3115 mutex_unlock(&fs_info->cleaner_mutex); 3116 if (ret < 0) { 3117 btrfs_warn(fs_info, "failed to recover relocation: %d", 3118 ret); 3119 err = -EINVAL; 3120 goto fail_qgroup; 3121 } 3122 } 3123 3124 location.objectid = BTRFS_FS_TREE_OBJECTID; 3125 location.type = BTRFS_ROOT_ITEM_KEY; 3126 location.offset = 0; 3127 3128 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3129 if (IS_ERR(fs_info->fs_root)) { 3130 err = PTR_ERR(fs_info->fs_root); 3131 goto fail_qgroup; 3132 } 3133 3134 if (sb->s_flags & MS_RDONLY) 3135 return 0; 3136 3137 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3138 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3139 clear_free_space_tree = 1; 3140 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3141 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3142 btrfs_warn(fs_info, "free space tree is invalid"); 3143 clear_free_space_tree = 1; 3144 } 3145 3146 if (clear_free_space_tree) { 3147 btrfs_info(fs_info, "clearing free space tree"); 3148 ret = btrfs_clear_free_space_tree(fs_info); 3149 if (ret) { 3150 btrfs_warn(fs_info, 3151 "failed to clear free space tree: %d", ret); 3152 close_ctree(fs_info); 3153 return ret; 3154 } 3155 } 3156 3157 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3158 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3159 btrfs_info(fs_info, "creating free space tree"); 3160 ret = btrfs_create_free_space_tree(fs_info); 3161 if (ret) { 3162 btrfs_warn(fs_info, 3163 "failed to create free space tree: %d", ret); 3164 close_ctree(fs_info); 3165 return ret; 3166 } 3167 } 3168 3169 down_read(&fs_info->cleanup_work_sem); 3170 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3171 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3172 up_read(&fs_info->cleanup_work_sem); 3173 close_ctree(fs_info); 3174 return ret; 3175 } 3176 up_read(&fs_info->cleanup_work_sem); 3177 3178 ret = btrfs_resume_balance_async(fs_info); 3179 if (ret) { 3180 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3181 close_ctree(fs_info); 3182 return ret; 3183 } 3184 3185 ret = btrfs_resume_dev_replace_async(fs_info); 3186 if (ret) { 3187 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3188 close_ctree(fs_info); 3189 return ret; 3190 } 3191 3192 btrfs_qgroup_rescan_resume(fs_info); 3193 3194 if (!fs_info->uuid_root) { 3195 btrfs_info(fs_info, "creating UUID tree"); 3196 ret = btrfs_create_uuid_tree(fs_info); 3197 if (ret) { 3198 btrfs_warn(fs_info, 3199 "failed to create the UUID tree: %d", ret); 3200 close_ctree(fs_info); 3201 return ret; 3202 } 3203 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3204 fs_info->generation != 3205 btrfs_super_uuid_tree_generation(disk_super)) { 3206 btrfs_info(fs_info, "checking UUID tree"); 3207 ret = btrfs_check_uuid_tree(fs_info); 3208 if (ret) { 3209 btrfs_warn(fs_info, 3210 "failed to check the UUID tree: %d", ret); 3211 close_ctree(fs_info); 3212 return ret; 3213 } 3214 } else { 3215 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3216 } 3217 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3218 3219 /* 3220 * backuproot only affect mount behavior, and if open_ctree succeeded, 3221 * no need to keep the flag 3222 */ 3223 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3224 3225 return 0; 3226 3227 fail_qgroup: 3228 btrfs_free_qgroup_config(fs_info); 3229 fail_trans_kthread: 3230 kthread_stop(fs_info->transaction_kthread); 3231 btrfs_cleanup_transaction(fs_info); 3232 btrfs_free_fs_roots(fs_info); 3233 fail_cleaner: 3234 kthread_stop(fs_info->cleaner_kthread); 3235 3236 /* 3237 * make sure we're done with the btree inode before we stop our 3238 * kthreads 3239 */ 3240 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3241 3242 fail_sysfs: 3243 btrfs_sysfs_remove_mounted(fs_info); 3244 3245 fail_fsdev_sysfs: 3246 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3247 3248 fail_block_groups: 3249 btrfs_put_block_group_cache(fs_info); 3250 3251 fail_tree_roots: 3252 free_root_pointers(fs_info, 1); 3253 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3254 3255 fail_sb_buffer: 3256 btrfs_stop_all_workers(fs_info); 3257 btrfs_free_block_groups(fs_info); 3258 fail_alloc: 3259 fail_iput: 3260 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3261 3262 iput(fs_info->btree_inode); 3263 fail_bio_counter: 3264 percpu_counter_destroy(&fs_info->bio_counter); 3265 fail_delalloc_bytes: 3266 percpu_counter_destroy(&fs_info->delalloc_bytes); 3267 fail_dirty_metadata_bytes: 3268 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3269 fail_srcu: 3270 cleanup_srcu_struct(&fs_info->subvol_srcu); 3271 fail: 3272 btrfs_free_stripe_hash_table(fs_info); 3273 btrfs_close_devices(fs_info->fs_devices); 3274 return err; 3275 3276 recovery_tree_root: 3277 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 3278 goto fail_tree_roots; 3279 3280 free_root_pointers(fs_info, 0); 3281 3282 /* don't use the log in recovery mode, it won't be valid */ 3283 btrfs_set_super_log_root(disk_super, 0); 3284 3285 /* we can't trust the free space cache either */ 3286 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3287 3288 ret = next_root_backup(fs_info, fs_info->super_copy, 3289 &num_backups_tried, &backup_index); 3290 if (ret == -1) 3291 goto fail_block_groups; 3292 goto retry_root_backup; 3293 } 3294 3295 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3296 { 3297 if (uptodate) { 3298 set_buffer_uptodate(bh); 3299 } else { 3300 struct btrfs_device *device = (struct btrfs_device *) 3301 bh->b_private; 3302 3303 btrfs_warn_rl_in_rcu(device->fs_info, 3304 "lost page write due to IO error on %s", 3305 rcu_str_deref(device->name)); 3306 /* note, we don't set_buffer_write_io_error because we have 3307 * our own ways of dealing with the IO errors 3308 */ 3309 clear_buffer_uptodate(bh); 3310 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3311 } 3312 unlock_buffer(bh); 3313 put_bh(bh); 3314 } 3315 3316 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3317 struct buffer_head **bh_ret) 3318 { 3319 struct buffer_head *bh; 3320 struct btrfs_super_block *super; 3321 u64 bytenr; 3322 3323 bytenr = btrfs_sb_offset(copy_num); 3324 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3325 return -EINVAL; 3326 3327 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE); 3328 /* 3329 * If we fail to read from the underlying devices, as of now 3330 * the best option we have is to mark it EIO. 3331 */ 3332 if (!bh) 3333 return -EIO; 3334 3335 super = (struct btrfs_super_block *)bh->b_data; 3336 if (btrfs_super_bytenr(super) != bytenr || 3337 btrfs_super_magic(super) != BTRFS_MAGIC) { 3338 brelse(bh); 3339 return -EINVAL; 3340 } 3341 3342 *bh_ret = bh; 3343 return 0; 3344 } 3345 3346 3347 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3348 { 3349 struct buffer_head *bh; 3350 struct buffer_head *latest = NULL; 3351 struct btrfs_super_block *super; 3352 int i; 3353 u64 transid = 0; 3354 int ret = -EINVAL; 3355 3356 /* we would like to check all the supers, but that would make 3357 * a btrfs mount succeed after a mkfs from a different FS. 3358 * So, we need to add a special mount option to scan for 3359 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3360 */ 3361 for (i = 0; i < 1; i++) { 3362 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3363 if (ret) 3364 continue; 3365 3366 super = (struct btrfs_super_block *)bh->b_data; 3367 3368 if (!latest || btrfs_super_generation(super) > transid) { 3369 brelse(latest); 3370 latest = bh; 3371 transid = btrfs_super_generation(super); 3372 } else { 3373 brelse(bh); 3374 } 3375 } 3376 3377 if (!latest) 3378 return ERR_PTR(ret); 3379 3380 return latest; 3381 } 3382 3383 /* 3384 * this should be called twice, once with wait == 0 and 3385 * once with wait == 1. When wait == 0 is done, all the buffer heads 3386 * we write are pinned. 3387 * 3388 * They are released when wait == 1 is done. 3389 * max_mirrors must be the same for both runs, and it indicates how 3390 * many supers on this one device should be written. 3391 * 3392 * max_mirrors == 0 means to write them all. 3393 */ 3394 static int write_dev_supers(struct btrfs_device *device, 3395 struct btrfs_super_block *sb, 3396 int wait, int max_mirrors) 3397 { 3398 struct buffer_head *bh; 3399 int i; 3400 int ret; 3401 int errors = 0; 3402 u32 crc; 3403 u64 bytenr; 3404 3405 if (max_mirrors == 0) 3406 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3407 3408 for (i = 0; i < max_mirrors; i++) { 3409 bytenr = btrfs_sb_offset(i); 3410 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3411 device->commit_total_bytes) 3412 break; 3413 3414 if (wait) { 3415 bh = __find_get_block(device->bdev, bytenr / 4096, 3416 BTRFS_SUPER_INFO_SIZE); 3417 if (!bh) { 3418 errors++; 3419 continue; 3420 } 3421 wait_on_buffer(bh); 3422 if (!buffer_uptodate(bh)) 3423 errors++; 3424 3425 /* drop our reference */ 3426 brelse(bh); 3427 3428 /* drop the reference from the wait == 0 run */ 3429 brelse(bh); 3430 continue; 3431 } else { 3432 btrfs_set_super_bytenr(sb, bytenr); 3433 3434 crc = ~(u32)0; 3435 crc = btrfs_csum_data((const char *)sb + 3436 BTRFS_CSUM_SIZE, crc, 3437 BTRFS_SUPER_INFO_SIZE - 3438 BTRFS_CSUM_SIZE); 3439 btrfs_csum_final(crc, sb->csum); 3440 3441 /* 3442 * one reference for us, and we leave it for the 3443 * caller 3444 */ 3445 bh = __getblk(device->bdev, bytenr / 4096, 3446 BTRFS_SUPER_INFO_SIZE); 3447 if (!bh) { 3448 btrfs_err(device->fs_info, 3449 "couldn't get super buffer head for bytenr %llu", 3450 bytenr); 3451 errors++; 3452 continue; 3453 } 3454 3455 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3456 3457 /* one reference for submit_bh */ 3458 get_bh(bh); 3459 3460 set_buffer_uptodate(bh); 3461 lock_buffer(bh); 3462 bh->b_end_io = btrfs_end_buffer_write_sync; 3463 bh->b_private = device; 3464 } 3465 3466 /* 3467 * we fua the first super. The others we allow 3468 * to go down lazy. 3469 */ 3470 if (i == 0) 3471 ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_FUA, bh); 3472 else 3473 ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_SYNC, bh); 3474 if (ret) 3475 errors++; 3476 } 3477 return errors < i ? 0 : -1; 3478 } 3479 3480 /* 3481 * endio for the write_dev_flush, this will wake anyone waiting 3482 * for the barrier when it is done 3483 */ 3484 static void btrfs_end_empty_barrier(struct bio *bio) 3485 { 3486 if (bio->bi_private) 3487 complete(bio->bi_private); 3488 bio_put(bio); 3489 } 3490 3491 /* 3492 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3493 * sent down. With wait == 1, it waits for the previous flush. 3494 * 3495 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3496 * capable 3497 */ 3498 static int write_dev_flush(struct btrfs_device *device, int wait) 3499 { 3500 struct request_queue *q = bdev_get_queue(device->bdev); 3501 struct bio *bio; 3502 int ret = 0; 3503 3504 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3505 return 0; 3506 3507 if (wait) { 3508 bio = device->flush_bio; 3509 if (!bio) 3510 return 0; 3511 3512 wait_for_completion(&device->flush_wait); 3513 3514 if (bio->bi_error) { 3515 ret = bio->bi_error; 3516 btrfs_dev_stat_inc_and_print(device, 3517 BTRFS_DEV_STAT_FLUSH_ERRS); 3518 } 3519 3520 /* drop the reference from the wait == 0 run */ 3521 bio_put(bio); 3522 device->flush_bio = NULL; 3523 3524 return ret; 3525 } 3526 3527 /* 3528 * one reference for us, and we leave it for the 3529 * caller 3530 */ 3531 device->flush_bio = NULL; 3532 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3533 if (!bio) 3534 return -ENOMEM; 3535 3536 bio->bi_end_io = btrfs_end_empty_barrier; 3537 bio->bi_bdev = device->bdev; 3538 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 3539 init_completion(&device->flush_wait); 3540 bio->bi_private = &device->flush_wait; 3541 device->flush_bio = bio; 3542 3543 bio_get(bio); 3544 btrfsic_submit_bio(bio); 3545 3546 return 0; 3547 } 3548 3549 /* 3550 * send an empty flush down to each device in parallel, 3551 * then wait for them 3552 */ 3553 static int barrier_all_devices(struct btrfs_fs_info *info) 3554 { 3555 struct list_head *head; 3556 struct btrfs_device *dev; 3557 int errors_send = 0; 3558 int errors_wait = 0; 3559 int ret; 3560 3561 /* send down all the barriers */ 3562 head = &info->fs_devices->devices; 3563 list_for_each_entry_rcu(dev, head, dev_list) { 3564 if (dev->missing) 3565 continue; 3566 if (!dev->bdev) { 3567 errors_send++; 3568 continue; 3569 } 3570 if (!dev->in_fs_metadata || !dev->writeable) 3571 continue; 3572 3573 ret = write_dev_flush(dev, 0); 3574 if (ret) 3575 errors_send++; 3576 } 3577 3578 /* wait for all the barriers */ 3579 list_for_each_entry_rcu(dev, head, dev_list) { 3580 if (dev->missing) 3581 continue; 3582 if (!dev->bdev) { 3583 errors_wait++; 3584 continue; 3585 } 3586 if (!dev->in_fs_metadata || !dev->writeable) 3587 continue; 3588 3589 ret = write_dev_flush(dev, 1); 3590 if (ret) 3591 errors_wait++; 3592 } 3593 if (errors_send > info->num_tolerated_disk_barrier_failures || 3594 errors_wait > info->num_tolerated_disk_barrier_failures) 3595 return -EIO; 3596 return 0; 3597 } 3598 3599 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3600 { 3601 int raid_type; 3602 int min_tolerated = INT_MAX; 3603 3604 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3605 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3606 min_tolerated = min(min_tolerated, 3607 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3608 tolerated_failures); 3609 3610 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3611 if (raid_type == BTRFS_RAID_SINGLE) 3612 continue; 3613 if (!(flags & btrfs_raid_group[raid_type])) 3614 continue; 3615 min_tolerated = min(min_tolerated, 3616 btrfs_raid_array[raid_type]. 3617 tolerated_failures); 3618 } 3619 3620 if (min_tolerated == INT_MAX) { 3621 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3622 min_tolerated = 0; 3623 } 3624 3625 return min_tolerated; 3626 } 3627 3628 int btrfs_calc_num_tolerated_disk_barrier_failures( 3629 struct btrfs_fs_info *fs_info) 3630 { 3631 struct btrfs_ioctl_space_info space; 3632 struct btrfs_space_info *sinfo; 3633 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3634 BTRFS_BLOCK_GROUP_SYSTEM, 3635 BTRFS_BLOCK_GROUP_METADATA, 3636 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3637 int i; 3638 int c; 3639 int num_tolerated_disk_barrier_failures = 3640 (int)fs_info->fs_devices->num_devices; 3641 3642 for (i = 0; i < ARRAY_SIZE(types); i++) { 3643 struct btrfs_space_info *tmp; 3644 3645 sinfo = NULL; 3646 rcu_read_lock(); 3647 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3648 if (tmp->flags == types[i]) { 3649 sinfo = tmp; 3650 break; 3651 } 3652 } 3653 rcu_read_unlock(); 3654 3655 if (!sinfo) 3656 continue; 3657 3658 down_read(&sinfo->groups_sem); 3659 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3660 u64 flags; 3661 3662 if (list_empty(&sinfo->block_groups[c])) 3663 continue; 3664 3665 btrfs_get_block_group_info(&sinfo->block_groups[c], 3666 &space); 3667 if (space.total_bytes == 0 || space.used_bytes == 0) 3668 continue; 3669 flags = space.flags; 3670 3671 num_tolerated_disk_barrier_failures = min( 3672 num_tolerated_disk_barrier_failures, 3673 btrfs_get_num_tolerated_disk_barrier_failures( 3674 flags)); 3675 } 3676 up_read(&sinfo->groups_sem); 3677 } 3678 3679 return num_tolerated_disk_barrier_failures; 3680 } 3681 3682 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3683 { 3684 struct list_head *head; 3685 struct btrfs_device *dev; 3686 struct btrfs_super_block *sb; 3687 struct btrfs_dev_item *dev_item; 3688 int ret; 3689 int do_barriers; 3690 int max_errors; 3691 int total_errors = 0; 3692 u64 flags; 3693 3694 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3695 backup_super_roots(fs_info); 3696 3697 sb = fs_info->super_for_commit; 3698 dev_item = &sb->dev_item; 3699 3700 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3701 head = &fs_info->fs_devices->devices; 3702 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3703 3704 if (do_barriers) { 3705 ret = barrier_all_devices(fs_info); 3706 if (ret) { 3707 mutex_unlock( 3708 &fs_info->fs_devices->device_list_mutex); 3709 btrfs_handle_fs_error(fs_info, ret, 3710 "errors while submitting device barriers."); 3711 return ret; 3712 } 3713 } 3714 3715 list_for_each_entry_rcu(dev, head, dev_list) { 3716 if (!dev->bdev) { 3717 total_errors++; 3718 continue; 3719 } 3720 if (!dev->in_fs_metadata || !dev->writeable) 3721 continue; 3722 3723 btrfs_set_stack_device_generation(dev_item, 0); 3724 btrfs_set_stack_device_type(dev_item, dev->type); 3725 btrfs_set_stack_device_id(dev_item, dev->devid); 3726 btrfs_set_stack_device_total_bytes(dev_item, 3727 dev->commit_total_bytes); 3728 btrfs_set_stack_device_bytes_used(dev_item, 3729 dev->commit_bytes_used); 3730 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3731 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3732 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3733 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3734 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3735 3736 flags = btrfs_super_flags(sb); 3737 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3738 3739 ret = write_dev_supers(dev, sb, 0, max_mirrors); 3740 if (ret) 3741 total_errors++; 3742 } 3743 if (total_errors > max_errors) { 3744 btrfs_err(fs_info, "%d errors while writing supers", 3745 total_errors); 3746 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3747 3748 /* FUA is masked off if unsupported and can't be the reason */ 3749 btrfs_handle_fs_error(fs_info, -EIO, 3750 "%d errors while writing supers", 3751 total_errors); 3752 return -EIO; 3753 } 3754 3755 total_errors = 0; 3756 list_for_each_entry_rcu(dev, head, dev_list) { 3757 if (!dev->bdev) 3758 continue; 3759 if (!dev->in_fs_metadata || !dev->writeable) 3760 continue; 3761 3762 ret = write_dev_supers(dev, sb, 1, max_mirrors); 3763 if (ret) 3764 total_errors++; 3765 } 3766 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3767 if (total_errors > max_errors) { 3768 btrfs_handle_fs_error(fs_info, -EIO, 3769 "%d errors while writing supers", 3770 total_errors); 3771 return -EIO; 3772 } 3773 return 0; 3774 } 3775 3776 /* Drop a fs root from the radix tree and free it. */ 3777 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3778 struct btrfs_root *root) 3779 { 3780 spin_lock(&fs_info->fs_roots_radix_lock); 3781 radix_tree_delete(&fs_info->fs_roots_radix, 3782 (unsigned long)root->root_key.objectid); 3783 spin_unlock(&fs_info->fs_roots_radix_lock); 3784 3785 if (btrfs_root_refs(&root->root_item) == 0) 3786 synchronize_srcu(&fs_info->subvol_srcu); 3787 3788 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3789 btrfs_free_log(NULL, root); 3790 if (root->reloc_root) { 3791 free_extent_buffer(root->reloc_root->node); 3792 free_extent_buffer(root->reloc_root->commit_root); 3793 btrfs_put_fs_root(root->reloc_root); 3794 root->reloc_root = NULL; 3795 } 3796 } 3797 3798 if (root->free_ino_pinned) 3799 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3800 if (root->free_ino_ctl) 3801 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3802 free_fs_root(root); 3803 } 3804 3805 static void free_fs_root(struct btrfs_root *root) 3806 { 3807 iput(root->ino_cache_inode); 3808 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3809 btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv); 3810 root->orphan_block_rsv = NULL; 3811 if (root->anon_dev) 3812 free_anon_bdev(root->anon_dev); 3813 if (root->subv_writers) 3814 btrfs_free_subvolume_writers(root->subv_writers); 3815 free_extent_buffer(root->node); 3816 free_extent_buffer(root->commit_root); 3817 kfree(root->free_ino_ctl); 3818 kfree(root->free_ino_pinned); 3819 kfree(root->name); 3820 btrfs_put_fs_root(root); 3821 } 3822 3823 void btrfs_free_fs_root(struct btrfs_root *root) 3824 { 3825 free_fs_root(root); 3826 } 3827 3828 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3829 { 3830 u64 root_objectid = 0; 3831 struct btrfs_root *gang[8]; 3832 int i = 0; 3833 int err = 0; 3834 unsigned int ret = 0; 3835 int index; 3836 3837 while (1) { 3838 index = srcu_read_lock(&fs_info->subvol_srcu); 3839 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3840 (void **)gang, root_objectid, 3841 ARRAY_SIZE(gang)); 3842 if (!ret) { 3843 srcu_read_unlock(&fs_info->subvol_srcu, index); 3844 break; 3845 } 3846 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3847 3848 for (i = 0; i < ret; i++) { 3849 /* Avoid to grab roots in dead_roots */ 3850 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3851 gang[i] = NULL; 3852 continue; 3853 } 3854 /* grab all the search result for later use */ 3855 gang[i] = btrfs_grab_fs_root(gang[i]); 3856 } 3857 srcu_read_unlock(&fs_info->subvol_srcu, index); 3858 3859 for (i = 0; i < ret; i++) { 3860 if (!gang[i]) 3861 continue; 3862 root_objectid = gang[i]->root_key.objectid; 3863 err = btrfs_orphan_cleanup(gang[i]); 3864 if (err) 3865 break; 3866 btrfs_put_fs_root(gang[i]); 3867 } 3868 root_objectid++; 3869 } 3870 3871 /* release the uncleaned roots due to error */ 3872 for (; i < ret; i++) { 3873 if (gang[i]) 3874 btrfs_put_fs_root(gang[i]); 3875 } 3876 return err; 3877 } 3878 3879 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3880 { 3881 struct btrfs_root *root = fs_info->tree_root; 3882 struct btrfs_trans_handle *trans; 3883 3884 mutex_lock(&fs_info->cleaner_mutex); 3885 btrfs_run_delayed_iputs(fs_info); 3886 mutex_unlock(&fs_info->cleaner_mutex); 3887 wake_up_process(fs_info->cleaner_kthread); 3888 3889 /* wait until ongoing cleanup work done */ 3890 down_write(&fs_info->cleanup_work_sem); 3891 up_write(&fs_info->cleanup_work_sem); 3892 3893 trans = btrfs_join_transaction(root); 3894 if (IS_ERR(trans)) 3895 return PTR_ERR(trans); 3896 return btrfs_commit_transaction(trans); 3897 } 3898 3899 void close_ctree(struct btrfs_fs_info *fs_info) 3900 { 3901 struct btrfs_root *root = fs_info->tree_root; 3902 int ret; 3903 3904 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3905 3906 /* wait for the qgroup rescan worker to stop */ 3907 btrfs_qgroup_wait_for_completion(fs_info, false); 3908 3909 /* wait for the uuid_scan task to finish */ 3910 down(&fs_info->uuid_tree_rescan_sem); 3911 /* avoid complains from lockdep et al., set sem back to initial state */ 3912 up(&fs_info->uuid_tree_rescan_sem); 3913 3914 /* pause restriper - we want to resume on mount */ 3915 btrfs_pause_balance(fs_info); 3916 3917 btrfs_dev_replace_suspend_for_unmount(fs_info); 3918 3919 btrfs_scrub_cancel(fs_info); 3920 3921 /* wait for any defraggers to finish */ 3922 wait_event(fs_info->transaction_wait, 3923 (atomic_read(&fs_info->defrag_running) == 0)); 3924 3925 /* clear out the rbtree of defraggable inodes */ 3926 btrfs_cleanup_defrag_inodes(fs_info); 3927 3928 cancel_work_sync(&fs_info->async_reclaim_work); 3929 3930 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3931 /* 3932 * If the cleaner thread is stopped and there are 3933 * block groups queued for removal, the deletion will be 3934 * skipped when we quit the cleaner thread. 3935 */ 3936 btrfs_delete_unused_bgs(fs_info); 3937 3938 ret = btrfs_commit_super(fs_info); 3939 if (ret) 3940 btrfs_err(fs_info, "commit super ret %d", ret); 3941 } 3942 3943 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3944 btrfs_error_commit_super(fs_info); 3945 3946 kthread_stop(fs_info->transaction_kthread); 3947 kthread_stop(fs_info->cleaner_kthread); 3948 3949 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 3950 3951 btrfs_free_qgroup_config(fs_info); 3952 3953 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3954 btrfs_info(fs_info, "at unmount delalloc count %lld", 3955 percpu_counter_sum(&fs_info->delalloc_bytes)); 3956 } 3957 3958 btrfs_sysfs_remove_mounted(fs_info); 3959 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3960 3961 btrfs_free_fs_roots(fs_info); 3962 3963 btrfs_put_block_group_cache(fs_info); 3964 3965 /* 3966 * we must make sure there is not any read request to 3967 * submit after we stopping all workers. 3968 */ 3969 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3970 btrfs_stop_all_workers(fs_info); 3971 3972 btrfs_free_block_groups(fs_info); 3973 3974 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 3975 free_root_pointers(fs_info, 1); 3976 3977 iput(fs_info->btree_inode); 3978 3979 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3980 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 3981 btrfsic_unmount(fs_info->fs_devices); 3982 #endif 3983 3984 btrfs_close_devices(fs_info->fs_devices); 3985 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3986 3987 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3988 percpu_counter_destroy(&fs_info->delalloc_bytes); 3989 percpu_counter_destroy(&fs_info->bio_counter); 3990 cleanup_srcu_struct(&fs_info->subvol_srcu); 3991 3992 btrfs_free_stripe_hash_table(fs_info); 3993 3994 __btrfs_free_block_rsv(root->orphan_block_rsv); 3995 root->orphan_block_rsv = NULL; 3996 3997 mutex_lock(&fs_info->chunk_mutex); 3998 while (!list_empty(&fs_info->pinned_chunks)) { 3999 struct extent_map *em; 4000 4001 em = list_first_entry(&fs_info->pinned_chunks, 4002 struct extent_map, list); 4003 list_del_init(&em->list); 4004 free_extent_map(em); 4005 } 4006 mutex_unlock(&fs_info->chunk_mutex); 4007 } 4008 4009 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4010 int atomic) 4011 { 4012 int ret; 4013 struct inode *btree_inode = buf->pages[0]->mapping->host; 4014 4015 ret = extent_buffer_uptodate(buf); 4016 if (!ret) 4017 return ret; 4018 4019 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4020 parent_transid, atomic); 4021 if (ret == -EAGAIN) 4022 return ret; 4023 return !ret; 4024 } 4025 4026 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4027 { 4028 struct btrfs_fs_info *fs_info; 4029 struct btrfs_root *root; 4030 u64 transid = btrfs_header_generation(buf); 4031 int was_dirty; 4032 4033 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4034 /* 4035 * This is a fast path so only do this check if we have sanity tests 4036 * enabled. Normal people shouldn't be marking dummy buffers as dirty 4037 * outside of the sanity tests. 4038 */ 4039 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 4040 return; 4041 #endif 4042 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4043 fs_info = root->fs_info; 4044 btrfs_assert_tree_locked(buf); 4045 if (transid != fs_info->generation) 4046 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4047 buf->start, transid, fs_info->generation); 4048 was_dirty = set_extent_buffer_dirty(buf); 4049 if (!was_dirty) 4050 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 4051 buf->len, 4052 fs_info->dirty_metadata_batch); 4053 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4054 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) { 4055 btrfs_print_leaf(fs_info, buf); 4056 ASSERT(0); 4057 } 4058 #endif 4059 } 4060 4061 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4062 int flush_delayed) 4063 { 4064 /* 4065 * looks as though older kernels can get into trouble with 4066 * this code, they end up stuck in balance_dirty_pages forever 4067 */ 4068 int ret; 4069 4070 if (current->flags & PF_MEMALLOC) 4071 return; 4072 4073 if (flush_delayed) 4074 btrfs_balance_delayed_items(fs_info); 4075 4076 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4077 BTRFS_DIRTY_METADATA_THRESH); 4078 if (ret > 0) { 4079 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4080 } 4081 } 4082 4083 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4084 { 4085 __btrfs_btree_balance_dirty(fs_info, 1); 4086 } 4087 4088 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4089 { 4090 __btrfs_btree_balance_dirty(fs_info, 0); 4091 } 4092 4093 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 4094 { 4095 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4096 struct btrfs_fs_info *fs_info = root->fs_info; 4097 4098 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid); 4099 } 4100 4101 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info) 4102 { 4103 struct btrfs_super_block *sb = fs_info->super_copy; 4104 u64 nodesize = btrfs_super_nodesize(sb); 4105 u64 sectorsize = btrfs_super_sectorsize(sb); 4106 int ret = 0; 4107 4108 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 4109 btrfs_err(fs_info, "no valid FS found"); 4110 ret = -EINVAL; 4111 } 4112 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) 4113 btrfs_warn(fs_info, "unrecognized super flag: %llu", 4114 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 4115 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 4116 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 4117 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 4118 ret = -EINVAL; 4119 } 4120 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 4121 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 4122 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 4123 ret = -EINVAL; 4124 } 4125 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 4126 btrfs_err(fs_info, "log_root level too big: %d >= %d", 4127 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 4128 ret = -EINVAL; 4129 } 4130 4131 /* 4132 * Check sectorsize and nodesize first, other check will need it. 4133 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 4134 */ 4135 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 4136 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4137 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 4138 ret = -EINVAL; 4139 } 4140 /* Only PAGE SIZE is supported yet */ 4141 if (sectorsize != PAGE_SIZE) { 4142 btrfs_err(fs_info, 4143 "sectorsize %llu not supported yet, only support %lu", 4144 sectorsize, PAGE_SIZE); 4145 ret = -EINVAL; 4146 } 4147 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 4148 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4149 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 4150 ret = -EINVAL; 4151 } 4152 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 4153 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 4154 le32_to_cpu(sb->__unused_leafsize), nodesize); 4155 ret = -EINVAL; 4156 } 4157 4158 /* Root alignment check */ 4159 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 4160 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 4161 btrfs_super_root(sb)); 4162 ret = -EINVAL; 4163 } 4164 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 4165 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 4166 btrfs_super_chunk_root(sb)); 4167 ret = -EINVAL; 4168 } 4169 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 4170 btrfs_warn(fs_info, "log_root block unaligned: %llu", 4171 btrfs_super_log_root(sb)); 4172 ret = -EINVAL; 4173 } 4174 4175 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) { 4176 btrfs_err(fs_info, 4177 "dev_item UUID does not match fsid: %pU != %pU", 4178 fs_info->fsid, sb->dev_item.fsid); 4179 ret = -EINVAL; 4180 } 4181 4182 /* 4183 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 4184 * done later 4185 */ 4186 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 4187 btrfs_err(fs_info, "bytes_used is too small %llu", 4188 btrfs_super_bytes_used(sb)); 4189 ret = -EINVAL; 4190 } 4191 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 4192 btrfs_err(fs_info, "invalid stripesize %u", 4193 btrfs_super_stripesize(sb)); 4194 ret = -EINVAL; 4195 } 4196 if (btrfs_super_num_devices(sb) > (1UL << 31)) 4197 btrfs_warn(fs_info, "suspicious number of devices: %llu", 4198 btrfs_super_num_devices(sb)); 4199 if (btrfs_super_num_devices(sb) == 0) { 4200 btrfs_err(fs_info, "number of devices is 0"); 4201 ret = -EINVAL; 4202 } 4203 4204 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { 4205 btrfs_err(fs_info, "super offset mismatch %llu != %u", 4206 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 4207 ret = -EINVAL; 4208 } 4209 4210 /* 4211 * Obvious sys_chunk_array corruptions, it must hold at least one key 4212 * and one chunk 4213 */ 4214 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4215 btrfs_err(fs_info, "system chunk array too big %u > %u", 4216 btrfs_super_sys_array_size(sb), 4217 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 4218 ret = -EINVAL; 4219 } 4220 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 4221 + sizeof(struct btrfs_chunk)) { 4222 btrfs_err(fs_info, "system chunk array too small %u < %zu", 4223 btrfs_super_sys_array_size(sb), 4224 sizeof(struct btrfs_disk_key) 4225 + sizeof(struct btrfs_chunk)); 4226 ret = -EINVAL; 4227 } 4228 4229 /* 4230 * The generation is a global counter, we'll trust it more than the others 4231 * but it's still possible that it's the one that's wrong. 4232 */ 4233 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 4234 btrfs_warn(fs_info, 4235 "suspicious: generation < chunk_root_generation: %llu < %llu", 4236 btrfs_super_generation(sb), 4237 btrfs_super_chunk_root_generation(sb)); 4238 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 4239 && btrfs_super_cache_generation(sb) != (u64)-1) 4240 btrfs_warn(fs_info, 4241 "suspicious: generation < cache_generation: %llu < %llu", 4242 btrfs_super_generation(sb), 4243 btrfs_super_cache_generation(sb)); 4244 4245 return ret; 4246 } 4247 4248 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4249 { 4250 mutex_lock(&fs_info->cleaner_mutex); 4251 btrfs_run_delayed_iputs(fs_info); 4252 mutex_unlock(&fs_info->cleaner_mutex); 4253 4254 down_write(&fs_info->cleanup_work_sem); 4255 up_write(&fs_info->cleanup_work_sem); 4256 4257 /* cleanup FS via transaction */ 4258 btrfs_cleanup_transaction(fs_info); 4259 } 4260 4261 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4262 { 4263 struct btrfs_ordered_extent *ordered; 4264 4265 spin_lock(&root->ordered_extent_lock); 4266 /* 4267 * This will just short circuit the ordered completion stuff which will 4268 * make sure the ordered extent gets properly cleaned up. 4269 */ 4270 list_for_each_entry(ordered, &root->ordered_extents, 4271 root_extent_list) 4272 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4273 spin_unlock(&root->ordered_extent_lock); 4274 } 4275 4276 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4277 { 4278 struct btrfs_root *root; 4279 struct list_head splice; 4280 4281 INIT_LIST_HEAD(&splice); 4282 4283 spin_lock(&fs_info->ordered_root_lock); 4284 list_splice_init(&fs_info->ordered_roots, &splice); 4285 while (!list_empty(&splice)) { 4286 root = list_first_entry(&splice, struct btrfs_root, 4287 ordered_root); 4288 list_move_tail(&root->ordered_root, 4289 &fs_info->ordered_roots); 4290 4291 spin_unlock(&fs_info->ordered_root_lock); 4292 btrfs_destroy_ordered_extents(root); 4293 4294 cond_resched(); 4295 spin_lock(&fs_info->ordered_root_lock); 4296 } 4297 spin_unlock(&fs_info->ordered_root_lock); 4298 } 4299 4300 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4301 struct btrfs_fs_info *fs_info) 4302 { 4303 struct rb_node *node; 4304 struct btrfs_delayed_ref_root *delayed_refs; 4305 struct btrfs_delayed_ref_node *ref; 4306 int ret = 0; 4307 4308 delayed_refs = &trans->delayed_refs; 4309 4310 spin_lock(&delayed_refs->lock); 4311 if (atomic_read(&delayed_refs->num_entries) == 0) { 4312 spin_unlock(&delayed_refs->lock); 4313 btrfs_info(fs_info, "delayed_refs has NO entry"); 4314 return ret; 4315 } 4316 4317 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 4318 struct btrfs_delayed_ref_head *head; 4319 struct btrfs_delayed_ref_node *tmp; 4320 bool pin_bytes = false; 4321 4322 head = rb_entry(node, struct btrfs_delayed_ref_head, 4323 href_node); 4324 if (!mutex_trylock(&head->mutex)) { 4325 refcount_inc(&head->node.refs); 4326 spin_unlock(&delayed_refs->lock); 4327 4328 mutex_lock(&head->mutex); 4329 mutex_unlock(&head->mutex); 4330 btrfs_put_delayed_ref(&head->node); 4331 spin_lock(&delayed_refs->lock); 4332 continue; 4333 } 4334 spin_lock(&head->lock); 4335 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list, 4336 list) { 4337 ref->in_tree = 0; 4338 list_del(&ref->list); 4339 if (!list_empty(&ref->add_list)) 4340 list_del(&ref->add_list); 4341 atomic_dec(&delayed_refs->num_entries); 4342 btrfs_put_delayed_ref(ref); 4343 } 4344 if (head->must_insert_reserved) 4345 pin_bytes = true; 4346 btrfs_free_delayed_extent_op(head->extent_op); 4347 delayed_refs->num_heads--; 4348 if (head->processing == 0) 4349 delayed_refs->num_heads_ready--; 4350 atomic_dec(&delayed_refs->num_entries); 4351 head->node.in_tree = 0; 4352 rb_erase(&head->href_node, &delayed_refs->href_root); 4353 spin_unlock(&head->lock); 4354 spin_unlock(&delayed_refs->lock); 4355 mutex_unlock(&head->mutex); 4356 4357 if (pin_bytes) 4358 btrfs_pin_extent(fs_info, head->node.bytenr, 4359 head->node.num_bytes, 1); 4360 btrfs_put_delayed_ref(&head->node); 4361 cond_resched(); 4362 spin_lock(&delayed_refs->lock); 4363 } 4364 4365 spin_unlock(&delayed_refs->lock); 4366 4367 return ret; 4368 } 4369 4370 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4371 { 4372 struct btrfs_inode *btrfs_inode; 4373 struct list_head splice; 4374 4375 INIT_LIST_HEAD(&splice); 4376 4377 spin_lock(&root->delalloc_lock); 4378 list_splice_init(&root->delalloc_inodes, &splice); 4379 4380 while (!list_empty(&splice)) { 4381 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4382 delalloc_inodes); 4383 4384 list_del_init(&btrfs_inode->delalloc_inodes); 4385 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 4386 &btrfs_inode->runtime_flags); 4387 spin_unlock(&root->delalloc_lock); 4388 4389 btrfs_invalidate_inodes(btrfs_inode->root); 4390 4391 spin_lock(&root->delalloc_lock); 4392 } 4393 4394 spin_unlock(&root->delalloc_lock); 4395 } 4396 4397 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4398 { 4399 struct btrfs_root *root; 4400 struct list_head splice; 4401 4402 INIT_LIST_HEAD(&splice); 4403 4404 spin_lock(&fs_info->delalloc_root_lock); 4405 list_splice_init(&fs_info->delalloc_roots, &splice); 4406 while (!list_empty(&splice)) { 4407 root = list_first_entry(&splice, struct btrfs_root, 4408 delalloc_root); 4409 list_del_init(&root->delalloc_root); 4410 root = btrfs_grab_fs_root(root); 4411 BUG_ON(!root); 4412 spin_unlock(&fs_info->delalloc_root_lock); 4413 4414 btrfs_destroy_delalloc_inodes(root); 4415 btrfs_put_fs_root(root); 4416 4417 spin_lock(&fs_info->delalloc_root_lock); 4418 } 4419 spin_unlock(&fs_info->delalloc_root_lock); 4420 } 4421 4422 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4423 struct extent_io_tree *dirty_pages, 4424 int mark) 4425 { 4426 int ret; 4427 struct extent_buffer *eb; 4428 u64 start = 0; 4429 u64 end; 4430 4431 while (1) { 4432 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4433 mark, NULL); 4434 if (ret) 4435 break; 4436 4437 clear_extent_bits(dirty_pages, start, end, mark); 4438 while (start <= end) { 4439 eb = find_extent_buffer(fs_info, start); 4440 start += fs_info->nodesize; 4441 if (!eb) 4442 continue; 4443 wait_on_extent_buffer_writeback(eb); 4444 4445 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4446 &eb->bflags)) 4447 clear_extent_buffer_dirty(eb); 4448 free_extent_buffer_stale(eb); 4449 } 4450 } 4451 4452 return ret; 4453 } 4454 4455 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4456 struct extent_io_tree *pinned_extents) 4457 { 4458 struct extent_io_tree *unpin; 4459 u64 start; 4460 u64 end; 4461 int ret; 4462 bool loop = true; 4463 4464 unpin = pinned_extents; 4465 again: 4466 while (1) { 4467 ret = find_first_extent_bit(unpin, 0, &start, &end, 4468 EXTENT_DIRTY, NULL); 4469 if (ret) 4470 break; 4471 4472 clear_extent_dirty(unpin, start, end); 4473 btrfs_error_unpin_extent_range(fs_info, start, end); 4474 cond_resched(); 4475 } 4476 4477 if (loop) { 4478 if (unpin == &fs_info->freed_extents[0]) 4479 unpin = &fs_info->freed_extents[1]; 4480 else 4481 unpin = &fs_info->freed_extents[0]; 4482 loop = false; 4483 goto again; 4484 } 4485 4486 return 0; 4487 } 4488 4489 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) 4490 { 4491 struct inode *inode; 4492 4493 inode = cache->io_ctl.inode; 4494 if (inode) { 4495 invalidate_inode_pages2(inode->i_mapping); 4496 BTRFS_I(inode)->generation = 0; 4497 cache->io_ctl.inode = NULL; 4498 iput(inode); 4499 } 4500 btrfs_put_block_group(cache); 4501 } 4502 4503 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4504 struct btrfs_fs_info *fs_info) 4505 { 4506 struct btrfs_block_group_cache *cache; 4507 4508 spin_lock(&cur_trans->dirty_bgs_lock); 4509 while (!list_empty(&cur_trans->dirty_bgs)) { 4510 cache = list_first_entry(&cur_trans->dirty_bgs, 4511 struct btrfs_block_group_cache, 4512 dirty_list); 4513 if (!cache) { 4514 btrfs_err(fs_info, "orphan block group dirty_bgs list"); 4515 spin_unlock(&cur_trans->dirty_bgs_lock); 4516 return; 4517 } 4518 4519 if (!list_empty(&cache->io_list)) { 4520 spin_unlock(&cur_trans->dirty_bgs_lock); 4521 list_del_init(&cache->io_list); 4522 btrfs_cleanup_bg_io(cache); 4523 spin_lock(&cur_trans->dirty_bgs_lock); 4524 } 4525 4526 list_del_init(&cache->dirty_list); 4527 spin_lock(&cache->lock); 4528 cache->disk_cache_state = BTRFS_DC_ERROR; 4529 spin_unlock(&cache->lock); 4530 4531 spin_unlock(&cur_trans->dirty_bgs_lock); 4532 btrfs_put_block_group(cache); 4533 spin_lock(&cur_trans->dirty_bgs_lock); 4534 } 4535 spin_unlock(&cur_trans->dirty_bgs_lock); 4536 4537 while (!list_empty(&cur_trans->io_bgs)) { 4538 cache = list_first_entry(&cur_trans->io_bgs, 4539 struct btrfs_block_group_cache, 4540 io_list); 4541 if (!cache) { 4542 btrfs_err(fs_info, "orphan block group on io_bgs list"); 4543 return; 4544 } 4545 4546 list_del_init(&cache->io_list); 4547 spin_lock(&cache->lock); 4548 cache->disk_cache_state = BTRFS_DC_ERROR; 4549 spin_unlock(&cache->lock); 4550 btrfs_cleanup_bg_io(cache); 4551 } 4552 } 4553 4554 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4555 struct btrfs_fs_info *fs_info) 4556 { 4557 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4558 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4559 ASSERT(list_empty(&cur_trans->io_bgs)); 4560 4561 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4562 4563 cur_trans->state = TRANS_STATE_COMMIT_START; 4564 wake_up(&fs_info->transaction_blocked_wait); 4565 4566 cur_trans->state = TRANS_STATE_UNBLOCKED; 4567 wake_up(&fs_info->transaction_wait); 4568 4569 btrfs_destroy_delayed_inodes(fs_info); 4570 btrfs_assert_delayed_root_empty(fs_info); 4571 4572 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4573 EXTENT_DIRTY); 4574 btrfs_destroy_pinned_extent(fs_info, 4575 fs_info->pinned_extents); 4576 4577 cur_trans->state =TRANS_STATE_COMPLETED; 4578 wake_up(&cur_trans->commit_wait); 4579 4580 /* 4581 memset(cur_trans, 0, sizeof(*cur_trans)); 4582 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4583 */ 4584 } 4585 4586 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4587 { 4588 struct btrfs_transaction *t; 4589 4590 mutex_lock(&fs_info->transaction_kthread_mutex); 4591 4592 spin_lock(&fs_info->trans_lock); 4593 while (!list_empty(&fs_info->trans_list)) { 4594 t = list_first_entry(&fs_info->trans_list, 4595 struct btrfs_transaction, list); 4596 if (t->state >= TRANS_STATE_COMMIT_START) { 4597 refcount_inc(&t->use_count); 4598 spin_unlock(&fs_info->trans_lock); 4599 btrfs_wait_for_commit(fs_info, t->transid); 4600 btrfs_put_transaction(t); 4601 spin_lock(&fs_info->trans_lock); 4602 continue; 4603 } 4604 if (t == fs_info->running_transaction) { 4605 t->state = TRANS_STATE_COMMIT_DOING; 4606 spin_unlock(&fs_info->trans_lock); 4607 /* 4608 * We wait for 0 num_writers since we don't hold a trans 4609 * handle open currently for this transaction. 4610 */ 4611 wait_event(t->writer_wait, 4612 atomic_read(&t->num_writers) == 0); 4613 } else { 4614 spin_unlock(&fs_info->trans_lock); 4615 } 4616 btrfs_cleanup_one_transaction(t, fs_info); 4617 4618 spin_lock(&fs_info->trans_lock); 4619 if (t == fs_info->running_transaction) 4620 fs_info->running_transaction = NULL; 4621 list_del_init(&t->list); 4622 spin_unlock(&fs_info->trans_lock); 4623 4624 btrfs_put_transaction(t); 4625 trace_btrfs_transaction_commit(fs_info->tree_root); 4626 spin_lock(&fs_info->trans_lock); 4627 } 4628 spin_unlock(&fs_info->trans_lock); 4629 btrfs_destroy_all_ordered_extents(fs_info); 4630 btrfs_destroy_delayed_inodes(fs_info); 4631 btrfs_assert_delayed_root_empty(fs_info); 4632 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 4633 btrfs_destroy_all_delalloc_inodes(fs_info); 4634 mutex_unlock(&fs_info->transaction_kthread_mutex); 4635 4636 return 0; 4637 } 4638 4639 static const struct extent_io_ops btree_extent_io_ops = { 4640 /* mandatory callbacks */ 4641 .submit_bio_hook = btree_submit_bio_hook, 4642 .readpage_end_io_hook = btree_readpage_end_io_hook, 4643 /* note we're sharing with inode.c for the merge bio hook */ 4644 .merge_bio_hook = btrfs_merge_bio_hook, 4645 .readpage_io_failed_hook = btree_io_failed_hook, 4646 4647 /* optional callbacks */ 4648 }; 4649