xref: /openbmc/linux/fs/btrfs/disk-io.c (revision d167aa76)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46 #include "fs.h"
47 #include "accessors.h"
48 #include "extent-tree.h"
49 #include "root-tree.h"
50 #include "defrag.h"
51 #include "uuid-tree.h"
52 #include "relocation.h"
53 #include "scrub.h"
54 #include "super.h"
55 
56 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
57 				 BTRFS_HEADER_FLAG_RELOC |\
58 				 BTRFS_SUPER_FLAG_ERROR |\
59 				 BTRFS_SUPER_FLAG_SEEDING |\
60 				 BTRFS_SUPER_FLAG_METADUMP |\
61 				 BTRFS_SUPER_FLAG_METADUMP_V2)
62 
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65 
66 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
67 {
68 	if (fs_info->csum_shash)
69 		crypto_free_shash(fs_info->csum_shash);
70 }
71 
72 /*
73  * Compute the csum of a btree block and store the result to provided buffer.
74  */
75 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
76 {
77 	struct btrfs_fs_info *fs_info = buf->fs_info;
78 	const int num_pages = num_extent_pages(buf);
79 	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
80 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
81 	char *kaddr;
82 	int i;
83 
84 	shash->tfm = fs_info->csum_shash;
85 	crypto_shash_init(shash);
86 	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
87 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
88 			    first_page_part - BTRFS_CSUM_SIZE);
89 
90 	for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
91 		kaddr = page_address(buf->pages[i]);
92 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
93 	}
94 	memset(result, 0, BTRFS_CSUM_SIZE);
95 	crypto_shash_final(shash, result);
96 }
97 
98 /*
99  * we can't consider a given block up to date unless the transid of the
100  * block matches the transid in the parent node's pointer.  This is how we
101  * detect blocks that either didn't get written at all or got written
102  * in the wrong place.
103  */
104 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
105 {
106 	if (!extent_buffer_uptodate(eb))
107 		return 0;
108 
109 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
110 		return 1;
111 
112 	if (atomic)
113 		return -EAGAIN;
114 
115 	if (!extent_buffer_uptodate(eb) ||
116 	    btrfs_header_generation(eb) != parent_transid) {
117 		btrfs_err_rl(eb->fs_info,
118 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
119 			eb->start, eb->read_mirror,
120 			parent_transid, btrfs_header_generation(eb));
121 		clear_extent_buffer_uptodate(eb);
122 		return 0;
123 	}
124 	return 1;
125 }
126 
127 static bool btrfs_supported_super_csum(u16 csum_type)
128 {
129 	switch (csum_type) {
130 	case BTRFS_CSUM_TYPE_CRC32:
131 	case BTRFS_CSUM_TYPE_XXHASH:
132 	case BTRFS_CSUM_TYPE_SHA256:
133 	case BTRFS_CSUM_TYPE_BLAKE2:
134 		return true;
135 	default:
136 		return false;
137 	}
138 }
139 
140 /*
141  * Return 0 if the superblock checksum type matches the checksum value of that
142  * algorithm. Pass the raw disk superblock data.
143  */
144 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
145 			   const struct btrfs_super_block *disk_sb)
146 {
147 	char result[BTRFS_CSUM_SIZE];
148 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
149 
150 	shash->tfm = fs_info->csum_shash;
151 
152 	/*
153 	 * The super_block structure does not span the whole
154 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
155 	 * filled with zeros and is included in the checksum.
156 	 */
157 	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
158 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
159 
160 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
161 		return 1;
162 
163 	return 0;
164 }
165 
166 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
167 				      int mirror_num)
168 {
169 	struct btrfs_fs_info *fs_info = eb->fs_info;
170 	int i, num_pages = num_extent_pages(eb);
171 	int ret = 0;
172 
173 	if (sb_rdonly(fs_info->sb))
174 		return -EROFS;
175 
176 	for (i = 0; i < num_pages; i++) {
177 		struct page *p = eb->pages[i];
178 		u64 start = max_t(u64, eb->start, page_offset(p));
179 		u64 end = min_t(u64, eb->start + eb->len, page_offset(p) + PAGE_SIZE);
180 		u32 len = end - start;
181 
182 		ret = btrfs_repair_io_failure(fs_info, 0, start, len,
183 				start, p, offset_in_page(start), mirror_num);
184 		if (ret)
185 			break;
186 	}
187 
188 	return ret;
189 }
190 
191 /*
192  * helper to read a given tree block, doing retries as required when
193  * the checksums don't match and we have alternate mirrors to try.
194  *
195  * @check:		expected tree parentness check, see the comments of the
196  *			structure for details.
197  */
198 int btrfs_read_extent_buffer(struct extent_buffer *eb,
199 			     struct btrfs_tree_parent_check *check)
200 {
201 	struct btrfs_fs_info *fs_info = eb->fs_info;
202 	int failed = 0;
203 	int ret;
204 	int num_copies = 0;
205 	int mirror_num = 0;
206 	int failed_mirror = 0;
207 
208 	ASSERT(check);
209 
210 	while (1) {
211 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
212 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
213 		if (!ret)
214 			break;
215 
216 		num_copies = btrfs_num_copies(fs_info,
217 					      eb->start, eb->len);
218 		if (num_copies == 1)
219 			break;
220 
221 		if (!failed_mirror) {
222 			failed = 1;
223 			failed_mirror = eb->read_mirror;
224 		}
225 
226 		mirror_num++;
227 		if (mirror_num == failed_mirror)
228 			mirror_num++;
229 
230 		if (mirror_num > num_copies)
231 			break;
232 	}
233 
234 	if (failed && !ret && failed_mirror)
235 		btrfs_repair_eb_io_failure(eb, failed_mirror);
236 
237 	return ret;
238 }
239 
240 /*
241  * Checksum a dirty tree block before IO.
242  */
243 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
244 {
245 	struct extent_buffer *eb = bbio->private;
246 	struct btrfs_fs_info *fs_info = eb->fs_info;
247 	u64 found_start = btrfs_header_bytenr(eb);
248 	u8 result[BTRFS_CSUM_SIZE];
249 	int ret;
250 
251 	/* Btree blocks are always contiguous on disk. */
252 	if (WARN_ON_ONCE(bbio->file_offset != eb->start))
253 		return BLK_STS_IOERR;
254 	if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
255 		return BLK_STS_IOERR;
256 
257 	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
258 		WARN_ON_ONCE(found_start != 0);
259 		return BLK_STS_OK;
260 	}
261 
262 	if (WARN_ON_ONCE(found_start != eb->start))
263 		return BLK_STS_IOERR;
264 	if (WARN_ON(!btrfs_page_test_uptodate(fs_info, eb->pages[0], eb->start,
265 					      eb->len)))
266 		return BLK_STS_IOERR;
267 
268 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
269 				    offsetof(struct btrfs_header, fsid),
270 				    BTRFS_FSID_SIZE) == 0);
271 	csum_tree_block(eb, result);
272 
273 	if (btrfs_header_level(eb))
274 		ret = btrfs_check_node(eb);
275 	else
276 		ret = btrfs_check_leaf(eb);
277 
278 	if (ret < 0)
279 		goto error;
280 
281 	/*
282 	 * Also check the generation, the eb reached here must be newer than
283 	 * last committed. Or something seriously wrong happened.
284 	 */
285 	if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
286 		ret = -EUCLEAN;
287 		btrfs_err(fs_info,
288 			"block=%llu bad generation, have %llu expect > %llu",
289 			  eb->start, btrfs_header_generation(eb),
290 			  fs_info->last_trans_committed);
291 		goto error;
292 	}
293 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
294 	return BLK_STS_OK;
295 
296 error:
297 	btrfs_print_tree(eb, 0);
298 	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
299 		  eb->start);
300 	/*
301 	 * Be noisy if this is an extent buffer from a log tree. We don't abort
302 	 * a transaction in case there's a bad log tree extent buffer, we just
303 	 * fallback to a transaction commit. Still we want to know when there is
304 	 * a bad log tree extent buffer, as that may signal a bug somewhere.
305 	 */
306 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
307 		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
308 	return errno_to_blk_status(ret);
309 }
310 
311 static bool check_tree_block_fsid(struct extent_buffer *eb)
312 {
313 	struct btrfs_fs_info *fs_info = eb->fs_info;
314 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
315 	u8 fsid[BTRFS_FSID_SIZE];
316 	u8 *metadata_uuid;
317 
318 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
319 			   BTRFS_FSID_SIZE);
320 	/*
321 	 * Checking the incompat flag is only valid for the current fs. For
322 	 * seed devices it's forbidden to have their uuid changed so reading
323 	 * ->fsid in this case is fine
324 	 */
325 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
326 		metadata_uuid = fs_devices->metadata_uuid;
327 	else
328 		metadata_uuid = fs_devices->fsid;
329 
330 	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
331 		return false;
332 
333 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
334 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
335 			return false;
336 
337 	return true;
338 }
339 
340 /* Do basic extent buffer checks at read time */
341 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
342 				 struct btrfs_tree_parent_check *check)
343 {
344 	struct btrfs_fs_info *fs_info = eb->fs_info;
345 	u64 found_start;
346 	const u32 csum_size = fs_info->csum_size;
347 	u8 found_level;
348 	u8 result[BTRFS_CSUM_SIZE];
349 	const u8 *header_csum;
350 	int ret = 0;
351 
352 	ASSERT(check);
353 
354 	found_start = btrfs_header_bytenr(eb);
355 	if (found_start != eb->start) {
356 		btrfs_err_rl(fs_info,
357 			"bad tree block start, mirror %u want %llu have %llu",
358 			     eb->read_mirror, eb->start, found_start);
359 		ret = -EIO;
360 		goto out;
361 	}
362 	if (check_tree_block_fsid(eb)) {
363 		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
364 			     eb->start, eb->read_mirror);
365 		ret = -EIO;
366 		goto out;
367 	}
368 	found_level = btrfs_header_level(eb);
369 	if (found_level >= BTRFS_MAX_LEVEL) {
370 		btrfs_err(fs_info,
371 			"bad tree block level, mirror %u level %d on logical %llu",
372 			eb->read_mirror, btrfs_header_level(eb), eb->start);
373 		ret = -EIO;
374 		goto out;
375 	}
376 
377 	csum_tree_block(eb, result);
378 	header_csum = page_address(eb->pages[0]) +
379 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
380 
381 	if (memcmp(result, header_csum, csum_size) != 0) {
382 		btrfs_warn_rl(fs_info,
383 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
384 			      eb->start, eb->read_mirror,
385 			      CSUM_FMT_VALUE(csum_size, header_csum),
386 			      CSUM_FMT_VALUE(csum_size, result),
387 			      btrfs_header_level(eb));
388 		ret = -EUCLEAN;
389 		goto out;
390 	}
391 
392 	if (found_level != check->level) {
393 		btrfs_err(fs_info,
394 		"level verify failed on logical %llu mirror %u wanted %u found %u",
395 			  eb->start, eb->read_mirror, check->level, found_level);
396 		ret = -EIO;
397 		goto out;
398 	}
399 	if (unlikely(check->transid &&
400 		     btrfs_header_generation(eb) != check->transid)) {
401 		btrfs_err_rl(eb->fs_info,
402 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
403 				eb->start, eb->read_mirror, check->transid,
404 				btrfs_header_generation(eb));
405 		ret = -EIO;
406 		goto out;
407 	}
408 	if (check->has_first_key) {
409 		struct btrfs_key *expect_key = &check->first_key;
410 		struct btrfs_key found_key;
411 
412 		if (found_level)
413 			btrfs_node_key_to_cpu(eb, &found_key, 0);
414 		else
415 			btrfs_item_key_to_cpu(eb, &found_key, 0);
416 		if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
417 			btrfs_err(fs_info,
418 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
419 				  eb->start, check->transid,
420 				  expect_key->objectid,
421 				  expect_key->type, expect_key->offset,
422 				  found_key.objectid, found_key.type,
423 				  found_key.offset);
424 			ret = -EUCLEAN;
425 			goto out;
426 		}
427 	}
428 	if (check->owner_root) {
429 		ret = btrfs_check_eb_owner(eb, check->owner_root);
430 		if (ret < 0)
431 			goto out;
432 	}
433 
434 	/*
435 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
436 	 * that we don't try and read the other copies of this block, just
437 	 * return -EIO.
438 	 */
439 	if (found_level == 0 && btrfs_check_leaf(eb)) {
440 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
441 		ret = -EIO;
442 	}
443 
444 	if (found_level > 0 && btrfs_check_node(eb))
445 		ret = -EIO;
446 
447 	if (ret)
448 		btrfs_err(fs_info,
449 		"read time tree block corruption detected on logical %llu mirror %u",
450 			  eb->start, eb->read_mirror);
451 out:
452 	return ret;
453 }
454 
455 #ifdef CONFIG_MIGRATION
456 static int btree_migrate_folio(struct address_space *mapping,
457 		struct folio *dst, struct folio *src, enum migrate_mode mode)
458 {
459 	/*
460 	 * we can't safely write a btree page from here,
461 	 * we haven't done the locking hook
462 	 */
463 	if (folio_test_dirty(src))
464 		return -EAGAIN;
465 	/*
466 	 * Buffers may be managed in a filesystem specific way.
467 	 * We must have no buffers or drop them.
468 	 */
469 	if (folio_get_private(src) &&
470 	    !filemap_release_folio(src, GFP_KERNEL))
471 		return -EAGAIN;
472 	return migrate_folio(mapping, dst, src, mode);
473 }
474 #else
475 #define btree_migrate_folio NULL
476 #endif
477 
478 static int btree_writepages(struct address_space *mapping,
479 			    struct writeback_control *wbc)
480 {
481 	struct btrfs_fs_info *fs_info;
482 	int ret;
483 
484 	if (wbc->sync_mode == WB_SYNC_NONE) {
485 
486 		if (wbc->for_kupdate)
487 			return 0;
488 
489 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
490 		/* this is a bit racy, but that's ok */
491 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
492 					     BTRFS_DIRTY_METADATA_THRESH,
493 					     fs_info->dirty_metadata_batch);
494 		if (ret < 0)
495 			return 0;
496 	}
497 	return btree_write_cache_pages(mapping, wbc);
498 }
499 
500 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
501 {
502 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
503 		return false;
504 
505 	return try_release_extent_buffer(&folio->page);
506 }
507 
508 static void btree_invalidate_folio(struct folio *folio, size_t offset,
509 				 size_t length)
510 {
511 	struct extent_io_tree *tree;
512 	tree = &BTRFS_I(folio->mapping->host)->io_tree;
513 	extent_invalidate_folio(tree, folio, offset);
514 	btree_release_folio(folio, GFP_NOFS);
515 	if (folio_get_private(folio)) {
516 		btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
517 			   "folio private not zero on folio %llu",
518 			   (unsigned long long)folio_pos(folio));
519 		folio_detach_private(folio);
520 	}
521 }
522 
523 #ifdef DEBUG
524 static bool btree_dirty_folio(struct address_space *mapping,
525 		struct folio *folio)
526 {
527 	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
528 	struct btrfs_subpage *subpage;
529 	struct extent_buffer *eb;
530 	int cur_bit = 0;
531 	u64 page_start = folio_pos(folio);
532 
533 	if (fs_info->sectorsize == PAGE_SIZE) {
534 		eb = folio_get_private(folio);
535 		BUG_ON(!eb);
536 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
537 		BUG_ON(!atomic_read(&eb->refs));
538 		btrfs_assert_tree_write_locked(eb);
539 		return filemap_dirty_folio(mapping, folio);
540 	}
541 	subpage = folio_get_private(folio);
542 
543 	ASSERT(subpage->dirty_bitmap);
544 	while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
545 		unsigned long flags;
546 		u64 cur;
547 		u16 tmp = (1 << cur_bit);
548 
549 		spin_lock_irqsave(&subpage->lock, flags);
550 		if (!(tmp & subpage->dirty_bitmap)) {
551 			spin_unlock_irqrestore(&subpage->lock, flags);
552 			cur_bit++;
553 			continue;
554 		}
555 		spin_unlock_irqrestore(&subpage->lock, flags);
556 		cur = page_start + cur_bit * fs_info->sectorsize;
557 
558 		eb = find_extent_buffer(fs_info, cur);
559 		ASSERT(eb);
560 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
561 		ASSERT(atomic_read(&eb->refs));
562 		btrfs_assert_tree_write_locked(eb);
563 		free_extent_buffer(eb);
564 
565 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
566 	}
567 	return filemap_dirty_folio(mapping, folio);
568 }
569 #else
570 #define btree_dirty_folio filemap_dirty_folio
571 #endif
572 
573 static const struct address_space_operations btree_aops = {
574 	.writepages	= btree_writepages,
575 	.release_folio	= btree_release_folio,
576 	.invalidate_folio = btree_invalidate_folio,
577 	.migrate_folio	= btree_migrate_folio,
578 	.dirty_folio	= btree_dirty_folio,
579 };
580 
581 struct extent_buffer *btrfs_find_create_tree_block(
582 						struct btrfs_fs_info *fs_info,
583 						u64 bytenr, u64 owner_root,
584 						int level)
585 {
586 	if (btrfs_is_testing(fs_info))
587 		return alloc_test_extent_buffer(fs_info, bytenr);
588 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
589 }
590 
591 /*
592  * Read tree block at logical address @bytenr and do variant basic but critical
593  * verification.
594  *
595  * @check:		expected tree parentness check, see comments of the
596  *			structure for details.
597  */
598 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
599 				      struct btrfs_tree_parent_check *check)
600 {
601 	struct extent_buffer *buf = NULL;
602 	int ret;
603 
604 	ASSERT(check);
605 
606 	buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
607 					   check->level);
608 	if (IS_ERR(buf))
609 		return buf;
610 
611 	ret = btrfs_read_extent_buffer(buf, check);
612 	if (ret) {
613 		free_extent_buffer_stale(buf);
614 		return ERR_PTR(ret);
615 	}
616 	if (btrfs_check_eb_owner(buf, check->owner_root)) {
617 		free_extent_buffer_stale(buf);
618 		return ERR_PTR(-EUCLEAN);
619 	}
620 	return buf;
621 
622 }
623 
624 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
625 			 u64 objectid)
626 {
627 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
628 
629 	memset(&root->root_key, 0, sizeof(root->root_key));
630 	memset(&root->root_item, 0, sizeof(root->root_item));
631 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
632 	root->fs_info = fs_info;
633 	root->root_key.objectid = objectid;
634 	root->node = NULL;
635 	root->commit_root = NULL;
636 	root->state = 0;
637 	RB_CLEAR_NODE(&root->rb_node);
638 
639 	root->last_trans = 0;
640 	root->free_objectid = 0;
641 	root->nr_delalloc_inodes = 0;
642 	root->nr_ordered_extents = 0;
643 	root->inode_tree = RB_ROOT;
644 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
645 
646 	btrfs_init_root_block_rsv(root);
647 
648 	INIT_LIST_HEAD(&root->dirty_list);
649 	INIT_LIST_HEAD(&root->root_list);
650 	INIT_LIST_HEAD(&root->delalloc_inodes);
651 	INIT_LIST_HEAD(&root->delalloc_root);
652 	INIT_LIST_HEAD(&root->ordered_extents);
653 	INIT_LIST_HEAD(&root->ordered_root);
654 	INIT_LIST_HEAD(&root->reloc_dirty_list);
655 	INIT_LIST_HEAD(&root->logged_list[0]);
656 	INIT_LIST_HEAD(&root->logged_list[1]);
657 	spin_lock_init(&root->inode_lock);
658 	spin_lock_init(&root->delalloc_lock);
659 	spin_lock_init(&root->ordered_extent_lock);
660 	spin_lock_init(&root->accounting_lock);
661 	spin_lock_init(&root->log_extents_lock[0]);
662 	spin_lock_init(&root->log_extents_lock[1]);
663 	spin_lock_init(&root->qgroup_meta_rsv_lock);
664 	mutex_init(&root->objectid_mutex);
665 	mutex_init(&root->log_mutex);
666 	mutex_init(&root->ordered_extent_mutex);
667 	mutex_init(&root->delalloc_mutex);
668 	init_waitqueue_head(&root->qgroup_flush_wait);
669 	init_waitqueue_head(&root->log_writer_wait);
670 	init_waitqueue_head(&root->log_commit_wait[0]);
671 	init_waitqueue_head(&root->log_commit_wait[1]);
672 	INIT_LIST_HEAD(&root->log_ctxs[0]);
673 	INIT_LIST_HEAD(&root->log_ctxs[1]);
674 	atomic_set(&root->log_commit[0], 0);
675 	atomic_set(&root->log_commit[1], 0);
676 	atomic_set(&root->log_writers, 0);
677 	atomic_set(&root->log_batch, 0);
678 	refcount_set(&root->refs, 1);
679 	atomic_set(&root->snapshot_force_cow, 0);
680 	atomic_set(&root->nr_swapfiles, 0);
681 	root->log_transid = 0;
682 	root->log_transid_committed = -1;
683 	root->last_log_commit = 0;
684 	root->anon_dev = 0;
685 	if (!dummy) {
686 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
687 				    IO_TREE_ROOT_DIRTY_LOG_PAGES);
688 		extent_io_tree_init(fs_info, &root->log_csum_range,
689 				    IO_TREE_LOG_CSUM_RANGE);
690 	}
691 
692 	spin_lock_init(&root->root_item_lock);
693 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
694 #ifdef CONFIG_BTRFS_DEBUG
695 	INIT_LIST_HEAD(&root->leak_list);
696 	spin_lock(&fs_info->fs_roots_radix_lock);
697 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
698 	spin_unlock(&fs_info->fs_roots_radix_lock);
699 #endif
700 }
701 
702 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
703 					   u64 objectid, gfp_t flags)
704 {
705 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
706 	if (root)
707 		__setup_root(root, fs_info, objectid);
708 	return root;
709 }
710 
711 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
712 /* Should only be used by the testing infrastructure */
713 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
714 {
715 	struct btrfs_root *root;
716 
717 	if (!fs_info)
718 		return ERR_PTR(-EINVAL);
719 
720 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
721 	if (!root)
722 		return ERR_PTR(-ENOMEM);
723 
724 	/* We don't use the stripesize in selftest, set it as sectorsize */
725 	root->alloc_bytenr = 0;
726 
727 	return root;
728 }
729 #endif
730 
731 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
732 {
733 	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
734 	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
735 
736 	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
737 }
738 
739 static int global_root_key_cmp(const void *k, const struct rb_node *node)
740 {
741 	const struct btrfs_key *key = k;
742 	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
743 
744 	return btrfs_comp_cpu_keys(key, &root->root_key);
745 }
746 
747 int btrfs_global_root_insert(struct btrfs_root *root)
748 {
749 	struct btrfs_fs_info *fs_info = root->fs_info;
750 	struct rb_node *tmp;
751 	int ret = 0;
752 
753 	write_lock(&fs_info->global_root_lock);
754 	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
755 	write_unlock(&fs_info->global_root_lock);
756 
757 	if (tmp) {
758 		ret = -EEXIST;
759 		btrfs_warn(fs_info, "global root %llu %llu already exists",
760 				root->root_key.objectid, root->root_key.offset);
761 	}
762 	return ret;
763 }
764 
765 void btrfs_global_root_delete(struct btrfs_root *root)
766 {
767 	struct btrfs_fs_info *fs_info = root->fs_info;
768 
769 	write_lock(&fs_info->global_root_lock);
770 	rb_erase(&root->rb_node, &fs_info->global_root_tree);
771 	write_unlock(&fs_info->global_root_lock);
772 }
773 
774 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
775 				     struct btrfs_key *key)
776 {
777 	struct rb_node *node;
778 	struct btrfs_root *root = NULL;
779 
780 	read_lock(&fs_info->global_root_lock);
781 	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
782 	if (node)
783 		root = container_of(node, struct btrfs_root, rb_node);
784 	read_unlock(&fs_info->global_root_lock);
785 
786 	return root;
787 }
788 
789 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
790 {
791 	struct btrfs_block_group *block_group;
792 	u64 ret;
793 
794 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
795 		return 0;
796 
797 	if (bytenr)
798 		block_group = btrfs_lookup_block_group(fs_info, bytenr);
799 	else
800 		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
801 	ASSERT(block_group);
802 	if (!block_group)
803 		return 0;
804 	ret = block_group->global_root_id;
805 	btrfs_put_block_group(block_group);
806 
807 	return ret;
808 }
809 
810 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
811 {
812 	struct btrfs_key key = {
813 		.objectid = BTRFS_CSUM_TREE_OBJECTID,
814 		.type = BTRFS_ROOT_ITEM_KEY,
815 		.offset = btrfs_global_root_id(fs_info, bytenr),
816 	};
817 
818 	return btrfs_global_root(fs_info, &key);
819 }
820 
821 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
822 {
823 	struct btrfs_key key = {
824 		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
825 		.type = BTRFS_ROOT_ITEM_KEY,
826 		.offset = btrfs_global_root_id(fs_info, bytenr),
827 	};
828 
829 	return btrfs_global_root(fs_info, &key);
830 }
831 
832 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
833 {
834 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
835 		return fs_info->block_group_root;
836 	return btrfs_extent_root(fs_info, 0);
837 }
838 
839 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
840 				     u64 objectid)
841 {
842 	struct btrfs_fs_info *fs_info = trans->fs_info;
843 	struct extent_buffer *leaf;
844 	struct btrfs_root *tree_root = fs_info->tree_root;
845 	struct btrfs_root *root;
846 	struct btrfs_key key;
847 	unsigned int nofs_flag;
848 	int ret = 0;
849 
850 	/*
851 	 * We're holding a transaction handle, so use a NOFS memory allocation
852 	 * context to avoid deadlock if reclaim happens.
853 	 */
854 	nofs_flag = memalloc_nofs_save();
855 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
856 	memalloc_nofs_restore(nofs_flag);
857 	if (!root)
858 		return ERR_PTR(-ENOMEM);
859 
860 	root->root_key.objectid = objectid;
861 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
862 	root->root_key.offset = 0;
863 
864 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
865 				      BTRFS_NESTING_NORMAL);
866 	if (IS_ERR(leaf)) {
867 		ret = PTR_ERR(leaf);
868 		leaf = NULL;
869 		goto fail;
870 	}
871 
872 	root->node = leaf;
873 	btrfs_mark_buffer_dirty(leaf);
874 
875 	root->commit_root = btrfs_root_node(root);
876 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
877 
878 	btrfs_set_root_flags(&root->root_item, 0);
879 	btrfs_set_root_limit(&root->root_item, 0);
880 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
881 	btrfs_set_root_generation(&root->root_item, trans->transid);
882 	btrfs_set_root_level(&root->root_item, 0);
883 	btrfs_set_root_refs(&root->root_item, 1);
884 	btrfs_set_root_used(&root->root_item, leaf->len);
885 	btrfs_set_root_last_snapshot(&root->root_item, 0);
886 	btrfs_set_root_dirid(&root->root_item, 0);
887 	if (is_fstree(objectid))
888 		generate_random_guid(root->root_item.uuid);
889 	else
890 		export_guid(root->root_item.uuid, &guid_null);
891 	btrfs_set_root_drop_level(&root->root_item, 0);
892 
893 	btrfs_tree_unlock(leaf);
894 
895 	key.objectid = objectid;
896 	key.type = BTRFS_ROOT_ITEM_KEY;
897 	key.offset = 0;
898 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
899 	if (ret)
900 		goto fail;
901 
902 	return root;
903 
904 fail:
905 	btrfs_put_root(root);
906 
907 	return ERR_PTR(ret);
908 }
909 
910 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
911 					 struct btrfs_fs_info *fs_info)
912 {
913 	struct btrfs_root *root;
914 
915 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
916 	if (!root)
917 		return ERR_PTR(-ENOMEM);
918 
919 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
920 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
921 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
922 
923 	return root;
924 }
925 
926 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
927 			      struct btrfs_root *root)
928 {
929 	struct extent_buffer *leaf;
930 
931 	/*
932 	 * DON'T set SHAREABLE bit for log trees.
933 	 *
934 	 * Log trees are not exposed to user space thus can't be snapshotted,
935 	 * and they go away before a real commit is actually done.
936 	 *
937 	 * They do store pointers to file data extents, and those reference
938 	 * counts still get updated (along with back refs to the log tree).
939 	 */
940 
941 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
942 			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
943 	if (IS_ERR(leaf))
944 		return PTR_ERR(leaf);
945 
946 	root->node = leaf;
947 
948 	btrfs_mark_buffer_dirty(root->node);
949 	btrfs_tree_unlock(root->node);
950 
951 	return 0;
952 }
953 
954 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
955 			     struct btrfs_fs_info *fs_info)
956 {
957 	struct btrfs_root *log_root;
958 
959 	log_root = alloc_log_tree(trans, fs_info);
960 	if (IS_ERR(log_root))
961 		return PTR_ERR(log_root);
962 
963 	if (!btrfs_is_zoned(fs_info)) {
964 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
965 
966 		if (ret) {
967 			btrfs_put_root(log_root);
968 			return ret;
969 		}
970 	}
971 
972 	WARN_ON(fs_info->log_root_tree);
973 	fs_info->log_root_tree = log_root;
974 	return 0;
975 }
976 
977 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
978 		       struct btrfs_root *root)
979 {
980 	struct btrfs_fs_info *fs_info = root->fs_info;
981 	struct btrfs_root *log_root;
982 	struct btrfs_inode_item *inode_item;
983 	int ret;
984 
985 	log_root = alloc_log_tree(trans, fs_info);
986 	if (IS_ERR(log_root))
987 		return PTR_ERR(log_root);
988 
989 	ret = btrfs_alloc_log_tree_node(trans, log_root);
990 	if (ret) {
991 		btrfs_put_root(log_root);
992 		return ret;
993 	}
994 
995 	log_root->last_trans = trans->transid;
996 	log_root->root_key.offset = root->root_key.objectid;
997 
998 	inode_item = &log_root->root_item.inode;
999 	btrfs_set_stack_inode_generation(inode_item, 1);
1000 	btrfs_set_stack_inode_size(inode_item, 3);
1001 	btrfs_set_stack_inode_nlink(inode_item, 1);
1002 	btrfs_set_stack_inode_nbytes(inode_item,
1003 				     fs_info->nodesize);
1004 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1005 
1006 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1007 
1008 	WARN_ON(root->log_root);
1009 	root->log_root = log_root;
1010 	root->log_transid = 0;
1011 	root->log_transid_committed = -1;
1012 	root->last_log_commit = 0;
1013 	return 0;
1014 }
1015 
1016 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1017 					      struct btrfs_path *path,
1018 					      struct btrfs_key *key)
1019 {
1020 	struct btrfs_root *root;
1021 	struct btrfs_tree_parent_check check = { 0 };
1022 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1023 	u64 generation;
1024 	int ret;
1025 	int level;
1026 
1027 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1028 	if (!root)
1029 		return ERR_PTR(-ENOMEM);
1030 
1031 	ret = btrfs_find_root(tree_root, key, path,
1032 			      &root->root_item, &root->root_key);
1033 	if (ret) {
1034 		if (ret > 0)
1035 			ret = -ENOENT;
1036 		goto fail;
1037 	}
1038 
1039 	generation = btrfs_root_generation(&root->root_item);
1040 	level = btrfs_root_level(&root->root_item);
1041 	check.level = level;
1042 	check.transid = generation;
1043 	check.owner_root = key->objectid;
1044 	root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1045 				     &check);
1046 	if (IS_ERR(root->node)) {
1047 		ret = PTR_ERR(root->node);
1048 		root->node = NULL;
1049 		goto fail;
1050 	}
1051 	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1052 		ret = -EIO;
1053 		goto fail;
1054 	}
1055 
1056 	/*
1057 	 * For real fs, and not log/reloc trees, root owner must
1058 	 * match its root node owner
1059 	 */
1060 	if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1061 	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1062 	    root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1063 	    root->root_key.objectid != btrfs_header_owner(root->node)) {
1064 		btrfs_crit(fs_info,
1065 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1066 			   root->root_key.objectid, root->node->start,
1067 			   btrfs_header_owner(root->node),
1068 			   root->root_key.objectid);
1069 		ret = -EUCLEAN;
1070 		goto fail;
1071 	}
1072 	root->commit_root = btrfs_root_node(root);
1073 	return root;
1074 fail:
1075 	btrfs_put_root(root);
1076 	return ERR_PTR(ret);
1077 }
1078 
1079 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1080 					struct btrfs_key *key)
1081 {
1082 	struct btrfs_root *root;
1083 	struct btrfs_path *path;
1084 
1085 	path = btrfs_alloc_path();
1086 	if (!path)
1087 		return ERR_PTR(-ENOMEM);
1088 	root = read_tree_root_path(tree_root, path, key);
1089 	btrfs_free_path(path);
1090 
1091 	return root;
1092 }
1093 
1094 /*
1095  * Initialize subvolume root in-memory structure
1096  *
1097  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1098  */
1099 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1100 {
1101 	int ret;
1102 
1103 	btrfs_drew_lock_init(&root->snapshot_lock);
1104 
1105 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1106 	    !btrfs_is_data_reloc_root(root) &&
1107 	    is_fstree(root->root_key.objectid)) {
1108 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1109 		btrfs_check_and_init_root_item(&root->root_item);
1110 	}
1111 
1112 	/*
1113 	 * Don't assign anonymous block device to roots that are not exposed to
1114 	 * userspace, the id pool is limited to 1M
1115 	 */
1116 	if (is_fstree(root->root_key.objectid) &&
1117 	    btrfs_root_refs(&root->root_item) > 0) {
1118 		if (!anon_dev) {
1119 			ret = get_anon_bdev(&root->anon_dev);
1120 			if (ret)
1121 				goto fail;
1122 		} else {
1123 			root->anon_dev = anon_dev;
1124 		}
1125 	}
1126 
1127 	mutex_lock(&root->objectid_mutex);
1128 	ret = btrfs_init_root_free_objectid(root);
1129 	if (ret) {
1130 		mutex_unlock(&root->objectid_mutex);
1131 		goto fail;
1132 	}
1133 
1134 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1135 
1136 	mutex_unlock(&root->objectid_mutex);
1137 
1138 	return 0;
1139 fail:
1140 	/* The caller is responsible to call btrfs_free_fs_root */
1141 	return ret;
1142 }
1143 
1144 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1145 					       u64 root_id)
1146 {
1147 	struct btrfs_root *root;
1148 
1149 	spin_lock(&fs_info->fs_roots_radix_lock);
1150 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1151 				 (unsigned long)root_id);
1152 	root = btrfs_grab_root(root);
1153 	spin_unlock(&fs_info->fs_roots_radix_lock);
1154 	return root;
1155 }
1156 
1157 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1158 						u64 objectid)
1159 {
1160 	struct btrfs_key key = {
1161 		.objectid = objectid,
1162 		.type = BTRFS_ROOT_ITEM_KEY,
1163 		.offset = 0,
1164 	};
1165 
1166 	switch (objectid) {
1167 	case BTRFS_ROOT_TREE_OBJECTID:
1168 		return btrfs_grab_root(fs_info->tree_root);
1169 	case BTRFS_EXTENT_TREE_OBJECTID:
1170 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1171 	case BTRFS_CHUNK_TREE_OBJECTID:
1172 		return btrfs_grab_root(fs_info->chunk_root);
1173 	case BTRFS_DEV_TREE_OBJECTID:
1174 		return btrfs_grab_root(fs_info->dev_root);
1175 	case BTRFS_CSUM_TREE_OBJECTID:
1176 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1177 	case BTRFS_QUOTA_TREE_OBJECTID:
1178 		return btrfs_grab_root(fs_info->quota_root);
1179 	case BTRFS_UUID_TREE_OBJECTID:
1180 		return btrfs_grab_root(fs_info->uuid_root);
1181 	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1182 		return btrfs_grab_root(fs_info->block_group_root);
1183 	case BTRFS_FREE_SPACE_TREE_OBJECTID:
1184 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1185 	default:
1186 		return NULL;
1187 	}
1188 }
1189 
1190 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1191 			 struct btrfs_root *root)
1192 {
1193 	int ret;
1194 
1195 	ret = radix_tree_preload(GFP_NOFS);
1196 	if (ret)
1197 		return ret;
1198 
1199 	spin_lock(&fs_info->fs_roots_radix_lock);
1200 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1201 				(unsigned long)root->root_key.objectid,
1202 				root);
1203 	if (ret == 0) {
1204 		btrfs_grab_root(root);
1205 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1206 	}
1207 	spin_unlock(&fs_info->fs_roots_radix_lock);
1208 	radix_tree_preload_end();
1209 
1210 	return ret;
1211 }
1212 
1213 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1214 {
1215 #ifdef CONFIG_BTRFS_DEBUG
1216 	struct btrfs_root *root;
1217 
1218 	while (!list_empty(&fs_info->allocated_roots)) {
1219 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1220 
1221 		root = list_first_entry(&fs_info->allocated_roots,
1222 					struct btrfs_root, leak_list);
1223 		btrfs_err(fs_info, "leaked root %s refcount %d",
1224 			  btrfs_root_name(&root->root_key, buf),
1225 			  refcount_read(&root->refs));
1226 		while (refcount_read(&root->refs) > 1)
1227 			btrfs_put_root(root);
1228 		btrfs_put_root(root);
1229 	}
1230 #endif
1231 }
1232 
1233 static void free_global_roots(struct btrfs_fs_info *fs_info)
1234 {
1235 	struct btrfs_root *root;
1236 	struct rb_node *node;
1237 
1238 	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1239 		root = rb_entry(node, struct btrfs_root, rb_node);
1240 		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1241 		btrfs_put_root(root);
1242 	}
1243 }
1244 
1245 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1246 {
1247 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1248 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1249 	percpu_counter_destroy(&fs_info->ordered_bytes);
1250 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1251 	btrfs_free_csum_hash(fs_info);
1252 	btrfs_free_stripe_hash_table(fs_info);
1253 	btrfs_free_ref_cache(fs_info);
1254 	kfree(fs_info->balance_ctl);
1255 	kfree(fs_info->delayed_root);
1256 	free_global_roots(fs_info);
1257 	btrfs_put_root(fs_info->tree_root);
1258 	btrfs_put_root(fs_info->chunk_root);
1259 	btrfs_put_root(fs_info->dev_root);
1260 	btrfs_put_root(fs_info->quota_root);
1261 	btrfs_put_root(fs_info->uuid_root);
1262 	btrfs_put_root(fs_info->fs_root);
1263 	btrfs_put_root(fs_info->data_reloc_root);
1264 	btrfs_put_root(fs_info->block_group_root);
1265 	btrfs_check_leaked_roots(fs_info);
1266 	btrfs_extent_buffer_leak_debug_check(fs_info);
1267 	kfree(fs_info->super_copy);
1268 	kfree(fs_info->super_for_commit);
1269 	kfree(fs_info->subpage_info);
1270 	kvfree(fs_info);
1271 }
1272 
1273 
1274 /*
1275  * Get an in-memory reference of a root structure.
1276  *
1277  * For essential trees like root/extent tree, we grab it from fs_info directly.
1278  * For subvolume trees, we check the cached filesystem roots first. If not
1279  * found, then read it from disk and add it to cached fs roots.
1280  *
1281  * Caller should release the root by calling btrfs_put_root() after the usage.
1282  *
1283  * NOTE: Reloc and log trees can't be read by this function as they share the
1284  *	 same root objectid.
1285  *
1286  * @objectid:	root id
1287  * @anon_dev:	preallocated anonymous block device number for new roots,
1288  * 		pass 0 for new allocation.
1289  * @check_ref:	whether to check root item references, If true, return -ENOENT
1290  *		for orphan roots
1291  */
1292 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1293 					     u64 objectid, dev_t anon_dev,
1294 					     bool check_ref)
1295 {
1296 	struct btrfs_root *root;
1297 	struct btrfs_path *path;
1298 	struct btrfs_key key;
1299 	int ret;
1300 
1301 	root = btrfs_get_global_root(fs_info, objectid);
1302 	if (root)
1303 		return root;
1304 
1305 	/*
1306 	 * If we're called for non-subvolume trees, and above function didn't
1307 	 * find one, do not try to read it from disk.
1308 	 *
1309 	 * This is namely for free-space-tree and quota tree, which can change
1310 	 * at runtime and should only be grabbed from fs_info.
1311 	 */
1312 	if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1313 		return ERR_PTR(-ENOENT);
1314 again:
1315 	root = btrfs_lookup_fs_root(fs_info, objectid);
1316 	if (root) {
1317 		/* Shouldn't get preallocated anon_dev for cached roots */
1318 		ASSERT(!anon_dev);
1319 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1320 			btrfs_put_root(root);
1321 			return ERR_PTR(-ENOENT);
1322 		}
1323 		return root;
1324 	}
1325 
1326 	key.objectid = objectid;
1327 	key.type = BTRFS_ROOT_ITEM_KEY;
1328 	key.offset = (u64)-1;
1329 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1330 	if (IS_ERR(root))
1331 		return root;
1332 
1333 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1334 		ret = -ENOENT;
1335 		goto fail;
1336 	}
1337 
1338 	ret = btrfs_init_fs_root(root, anon_dev);
1339 	if (ret)
1340 		goto fail;
1341 
1342 	path = btrfs_alloc_path();
1343 	if (!path) {
1344 		ret = -ENOMEM;
1345 		goto fail;
1346 	}
1347 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1348 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1349 	key.offset = objectid;
1350 
1351 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1352 	btrfs_free_path(path);
1353 	if (ret < 0)
1354 		goto fail;
1355 	if (ret == 0)
1356 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1357 
1358 	ret = btrfs_insert_fs_root(fs_info, root);
1359 	if (ret) {
1360 		if (ret == -EEXIST) {
1361 			btrfs_put_root(root);
1362 			goto again;
1363 		}
1364 		goto fail;
1365 	}
1366 	return root;
1367 fail:
1368 	/*
1369 	 * If our caller provided us an anonymous device, then it's his
1370 	 * responsibility to free it in case we fail. So we have to set our
1371 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1372 	 * and once again by our caller.
1373 	 */
1374 	if (anon_dev)
1375 		root->anon_dev = 0;
1376 	btrfs_put_root(root);
1377 	return ERR_PTR(ret);
1378 }
1379 
1380 /*
1381  * Get in-memory reference of a root structure
1382  *
1383  * @objectid:	tree objectid
1384  * @check_ref:	if set, verify that the tree exists and the item has at least
1385  *		one reference
1386  */
1387 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1388 				     u64 objectid, bool check_ref)
1389 {
1390 	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1391 }
1392 
1393 /*
1394  * Get in-memory reference of a root structure, created as new, optionally pass
1395  * the anonymous block device id
1396  *
1397  * @objectid:	tree objectid
1398  * @anon_dev:	if zero, allocate a new anonymous block device or use the
1399  *		parameter value
1400  */
1401 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1402 					 u64 objectid, dev_t anon_dev)
1403 {
1404 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1405 }
1406 
1407 /*
1408  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1409  * @fs_info:	the fs_info
1410  * @objectid:	the objectid we need to lookup
1411  *
1412  * This is exclusively used for backref walking, and exists specifically because
1413  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1414  * creation time, which means we may have to read the tree_root in order to look
1415  * up a fs root that is not in memory.  If the root is not in memory we will
1416  * read the tree root commit root and look up the fs root from there.  This is a
1417  * temporary root, it will not be inserted into the radix tree as it doesn't
1418  * have the most uptodate information, it'll simply be discarded once the
1419  * backref code is finished using the root.
1420  */
1421 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1422 						 struct btrfs_path *path,
1423 						 u64 objectid)
1424 {
1425 	struct btrfs_root *root;
1426 	struct btrfs_key key;
1427 
1428 	ASSERT(path->search_commit_root && path->skip_locking);
1429 
1430 	/*
1431 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1432 	 * since this is called via the backref walking code we won't be looking
1433 	 * up a root that doesn't exist, unless there's corruption.  So if root
1434 	 * != NULL just return it.
1435 	 */
1436 	root = btrfs_get_global_root(fs_info, objectid);
1437 	if (root)
1438 		return root;
1439 
1440 	root = btrfs_lookup_fs_root(fs_info, objectid);
1441 	if (root)
1442 		return root;
1443 
1444 	key.objectid = objectid;
1445 	key.type = BTRFS_ROOT_ITEM_KEY;
1446 	key.offset = (u64)-1;
1447 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1448 	btrfs_release_path(path);
1449 
1450 	return root;
1451 }
1452 
1453 static int cleaner_kthread(void *arg)
1454 {
1455 	struct btrfs_fs_info *fs_info = arg;
1456 	int again;
1457 
1458 	while (1) {
1459 		again = 0;
1460 
1461 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1462 
1463 		/* Make the cleaner go to sleep early. */
1464 		if (btrfs_need_cleaner_sleep(fs_info))
1465 			goto sleep;
1466 
1467 		/*
1468 		 * Do not do anything if we might cause open_ctree() to block
1469 		 * before we have finished mounting the filesystem.
1470 		 */
1471 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1472 			goto sleep;
1473 
1474 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1475 			goto sleep;
1476 
1477 		/*
1478 		 * Avoid the problem that we change the status of the fs
1479 		 * during the above check and trylock.
1480 		 */
1481 		if (btrfs_need_cleaner_sleep(fs_info)) {
1482 			mutex_unlock(&fs_info->cleaner_mutex);
1483 			goto sleep;
1484 		}
1485 
1486 		if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1487 			btrfs_sysfs_feature_update(fs_info);
1488 
1489 		btrfs_run_delayed_iputs(fs_info);
1490 
1491 		again = btrfs_clean_one_deleted_snapshot(fs_info);
1492 		mutex_unlock(&fs_info->cleaner_mutex);
1493 
1494 		/*
1495 		 * The defragger has dealt with the R/O remount and umount,
1496 		 * needn't do anything special here.
1497 		 */
1498 		btrfs_run_defrag_inodes(fs_info);
1499 
1500 		/*
1501 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1502 		 * with relocation (btrfs_relocate_chunk) and relocation
1503 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1504 		 * after acquiring fs_info->reclaim_bgs_lock. So we
1505 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1506 		 * unused block groups.
1507 		 */
1508 		btrfs_delete_unused_bgs(fs_info);
1509 
1510 		/*
1511 		 * Reclaim block groups in the reclaim_bgs list after we deleted
1512 		 * all unused block_groups. This possibly gives us some more free
1513 		 * space.
1514 		 */
1515 		btrfs_reclaim_bgs(fs_info);
1516 sleep:
1517 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1518 		if (kthread_should_park())
1519 			kthread_parkme();
1520 		if (kthread_should_stop())
1521 			return 0;
1522 		if (!again) {
1523 			set_current_state(TASK_INTERRUPTIBLE);
1524 			schedule();
1525 			__set_current_state(TASK_RUNNING);
1526 		}
1527 	}
1528 }
1529 
1530 static int transaction_kthread(void *arg)
1531 {
1532 	struct btrfs_root *root = arg;
1533 	struct btrfs_fs_info *fs_info = root->fs_info;
1534 	struct btrfs_trans_handle *trans;
1535 	struct btrfs_transaction *cur;
1536 	u64 transid;
1537 	time64_t delta;
1538 	unsigned long delay;
1539 	bool cannot_commit;
1540 
1541 	do {
1542 		cannot_commit = false;
1543 		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1544 		mutex_lock(&fs_info->transaction_kthread_mutex);
1545 
1546 		spin_lock(&fs_info->trans_lock);
1547 		cur = fs_info->running_transaction;
1548 		if (!cur) {
1549 			spin_unlock(&fs_info->trans_lock);
1550 			goto sleep;
1551 		}
1552 
1553 		delta = ktime_get_seconds() - cur->start_time;
1554 		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1555 		    cur->state < TRANS_STATE_COMMIT_START &&
1556 		    delta < fs_info->commit_interval) {
1557 			spin_unlock(&fs_info->trans_lock);
1558 			delay -= msecs_to_jiffies((delta - 1) * 1000);
1559 			delay = min(delay,
1560 				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1561 			goto sleep;
1562 		}
1563 		transid = cur->transid;
1564 		spin_unlock(&fs_info->trans_lock);
1565 
1566 		/* If the file system is aborted, this will always fail. */
1567 		trans = btrfs_attach_transaction(root);
1568 		if (IS_ERR(trans)) {
1569 			if (PTR_ERR(trans) != -ENOENT)
1570 				cannot_commit = true;
1571 			goto sleep;
1572 		}
1573 		if (transid == trans->transid) {
1574 			btrfs_commit_transaction(trans);
1575 		} else {
1576 			btrfs_end_transaction(trans);
1577 		}
1578 sleep:
1579 		wake_up_process(fs_info->cleaner_kthread);
1580 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1581 
1582 		if (BTRFS_FS_ERROR(fs_info))
1583 			btrfs_cleanup_transaction(fs_info);
1584 		if (!kthread_should_stop() &&
1585 				(!btrfs_transaction_blocked(fs_info) ||
1586 				 cannot_commit))
1587 			schedule_timeout_interruptible(delay);
1588 	} while (!kthread_should_stop());
1589 	return 0;
1590 }
1591 
1592 /*
1593  * This will find the highest generation in the array of root backups.  The
1594  * index of the highest array is returned, or -EINVAL if we can't find
1595  * anything.
1596  *
1597  * We check to make sure the array is valid by comparing the
1598  * generation of the latest  root in the array with the generation
1599  * in the super block.  If they don't match we pitch it.
1600  */
1601 static int find_newest_super_backup(struct btrfs_fs_info *info)
1602 {
1603 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1604 	u64 cur;
1605 	struct btrfs_root_backup *root_backup;
1606 	int i;
1607 
1608 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1609 		root_backup = info->super_copy->super_roots + i;
1610 		cur = btrfs_backup_tree_root_gen(root_backup);
1611 		if (cur == newest_gen)
1612 			return i;
1613 	}
1614 
1615 	return -EINVAL;
1616 }
1617 
1618 /*
1619  * copy all the root pointers into the super backup array.
1620  * this will bump the backup pointer by one when it is
1621  * done
1622  */
1623 static void backup_super_roots(struct btrfs_fs_info *info)
1624 {
1625 	const int next_backup = info->backup_root_index;
1626 	struct btrfs_root_backup *root_backup;
1627 
1628 	root_backup = info->super_for_commit->super_roots + next_backup;
1629 
1630 	/*
1631 	 * make sure all of our padding and empty slots get zero filled
1632 	 * regardless of which ones we use today
1633 	 */
1634 	memset(root_backup, 0, sizeof(*root_backup));
1635 
1636 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1637 
1638 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1639 	btrfs_set_backup_tree_root_gen(root_backup,
1640 			       btrfs_header_generation(info->tree_root->node));
1641 
1642 	btrfs_set_backup_tree_root_level(root_backup,
1643 			       btrfs_header_level(info->tree_root->node));
1644 
1645 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1646 	btrfs_set_backup_chunk_root_gen(root_backup,
1647 			       btrfs_header_generation(info->chunk_root->node));
1648 	btrfs_set_backup_chunk_root_level(root_backup,
1649 			       btrfs_header_level(info->chunk_root->node));
1650 
1651 	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1652 		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1653 		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1654 
1655 		btrfs_set_backup_extent_root(root_backup,
1656 					     extent_root->node->start);
1657 		btrfs_set_backup_extent_root_gen(root_backup,
1658 				btrfs_header_generation(extent_root->node));
1659 		btrfs_set_backup_extent_root_level(root_backup,
1660 					btrfs_header_level(extent_root->node));
1661 
1662 		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1663 		btrfs_set_backup_csum_root_gen(root_backup,
1664 					       btrfs_header_generation(csum_root->node));
1665 		btrfs_set_backup_csum_root_level(root_backup,
1666 						 btrfs_header_level(csum_root->node));
1667 	}
1668 
1669 	/*
1670 	 * we might commit during log recovery, which happens before we set
1671 	 * the fs_root.  Make sure it is valid before we fill it in.
1672 	 */
1673 	if (info->fs_root && info->fs_root->node) {
1674 		btrfs_set_backup_fs_root(root_backup,
1675 					 info->fs_root->node->start);
1676 		btrfs_set_backup_fs_root_gen(root_backup,
1677 			       btrfs_header_generation(info->fs_root->node));
1678 		btrfs_set_backup_fs_root_level(root_backup,
1679 			       btrfs_header_level(info->fs_root->node));
1680 	}
1681 
1682 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1683 	btrfs_set_backup_dev_root_gen(root_backup,
1684 			       btrfs_header_generation(info->dev_root->node));
1685 	btrfs_set_backup_dev_root_level(root_backup,
1686 				       btrfs_header_level(info->dev_root->node));
1687 
1688 	btrfs_set_backup_total_bytes(root_backup,
1689 			     btrfs_super_total_bytes(info->super_copy));
1690 	btrfs_set_backup_bytes_used(root_backup,
1691 			     btrfs_super_bytes_used(info->super_copy));
1692 	btrfs_set_backup_num_devices(root_backup,
1693 			     btrfs_super_num_devices(info->super_copy));
1694 
1695 	/*
1696 	 * if we don't copy this out to the super_copy, it won't get remembered
1697 	 * for the next commit
1698 	 */
1699 	memcpy(&info->super_copy->super_roots,
1700 	       &info->super_for_commit->super_roots,
1701 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1702 }
1703 
1704 /*
1705  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1706  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1707  *
1708  * fs_info - filesystem whose backup roots need to be read
1709  * priority - priority of backup root required
1710  *
1711  * Returns backup root index on success and -EINVAL otherwise.
1712  */
1713 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1714 {
1715 	int backup_index = find_newest_super_backup(fs_info);
1716 	struct btrfs_super_block *super = fs_info->super_copy;
1717 	struct btrfs_root_backup *root_backup;
1718 
1719 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1720 		if (priority == 0)
1721 			return backup_index;
1722 
1723 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1724 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1725 	} else {
1726 		return -EINVAL;
1727 	}
1728 
1729 	root_backup = super->super_roots + backup_index;
1730 
1731 	btrfs_set_super_generation(super,
1732 				   btrfs_backup_tree_root_gen(root_backup));
1733 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1734 	btrfs_set_super_root_level(super,
1735 				   btrfs_backup_tree_root_level(root_backup));
1736 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1737 
1738 	/*
1739 	 * Fixme: the total bytes and num_devices need to match or we should
1740 	 * need a fsck
1741 	 */
1742 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1743 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1744 
1745 	return backup_index;
1746 }
1747 
1748 /* helper to cleanup workers */
1749 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1750 {
1751 	btrfs_destroy_workqueue(fs_info->fixup_workers);
1752 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1753 	btrfs_destroy_workqueue(fs_info->workers);
1754 	if (fs_info->endio_workers)
1755 		destroy_workqueue(fs_info->endio_workers);
1756 	if (fs_info->rmw_workers)
1757 		destroy_workqueue(fs_info->rmw_workers);
1758 	if (fs_info->compressed_write_workers)
1759 		destroy_workqueue(fs_info->compressed_write_workers);
1760 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1761 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1762 	btrfs_destroy_workqueue(fs_info->delayed_workers);
1763 	btrfs_destroy_workqueue(fs_info->caching_workers);
1764 	btrfs_destroy_workqueue(fs_info->flush_workers);
1765 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1766 	if (fs_info->discard_ctl.discard_workers)
1767 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1768 	/*
1769 	 * Now that all other work queues are destroyed, we can safely destroy
1770 	 * the queues used for metadata I/O, since tasks from those other work
1771 	 * queues can do metadata I/O operations.
1772 	 */
1773 	if (fs_info->endio_meta_workers)
1774 		destroy_workqueue(fs_info->endio_meta_workers);
1775 }
1776 
1777 static void free_root_extent_buffers(struct btrfs_root *root)
1778 {
1779 	if (root) {
1780 		free_extent_buffer(root->node);
1781 		free_extent_buffer(root->commit_root);
1782 		root->node = NULL;
1783 		root->commit_root = NULL;
1784 	}
1785 }
1786 
1787 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1788 {
1789 	struct btrfs_root *root, *tmp;
1790 
1791 	rbtree_postorder_for_each_entry_safe(root, tmp,
1792 					     &fs_info->global_root_tree,
1793 					     rb_node)
1794 		free_root_extent_buffers(root);
1795 }
1796 
1797 /* helper to cleanup tree roots */
1798 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1799 {
1800 	free_root_extent_buffers(info->tree_root);
1801 
1802 	free_global_root_pointers(info);
1803 	free_root_extent_buffers(info->dev_root);
1804 	free_root_extent_buffers(info->quota_root);
1805 	free_root_extent_buffers(info->uuid_root);
1806 	free_root_extent_buffers(info->fs_root);
1807 	free_root_extent_buffers(info->data_reloc_root);
1808 	free_root_extent_buffers(info->block_group_root);
1809 	if (free_chunk_root)
1810 		free_root_extent_buffers(info->chunk_root);
1811 }
1812 
1813 void btrfs_put_root(struct btrfs_root *root)
1814 {
1815 	if (!root)
1816 		return;
1817 
1818 	if (refcount_dec_and_test(&root->refs)) {
1819 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1820 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1821 		if (root->anon_dev)
1822 			free_anon_bdev(root->anon_dev);
1823 		free_root_extent_buffers(root);
1824 #ifdef CONFIG_BTRFS_DEBUG
1825 		spin_lock(&root->fs_info->fs_roots_radix_lock);
1826 		list_del_init(&root->leak_list);
1827 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
1828 #endif
1829 		kfree(root);
1830 	}
1831 }
1832 
1833 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1834 {
1835 	int ret;
1836 	struct btrfs_root *gang[8];
1837 	int i;
1838 
1839 	while (!list_empty(&fs_info->dead_roots)) {
1840 		gang[0] = list_entry(fs_info->dead_roots.next,
1841 				     struct btrfs_root, root_list);
1842 		list_del(&gang[0]->root_list);
1843 
1844 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1845 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1846 		btrfs_put_root(gang[0]);
1847 	}
1848 
1849 	while (1) {
1850 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1851 					     (void **)gang, 0,
1852 					     ARRAY_SIZE(gang));
1853 		if (!ret)
1854 			break;
1855 		for (i = 0; i < ret; i++)
1856 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1857 	}
1858 }
1859 
1860 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1861 {
1862 	mutex_init(&fs_info->scrub_lock);
1863 	atomic_set(&fs_info->scrubs_running, 0);
1864 	atomic_set(&fs_info->scrub_pause_req, 0);
1865 	atomic_set(&fs_info->scrubs_paused, 0);
1866 	atomic_set(&fs_info->scrub_cancel_req, 0);
1867 	init_waitqueue_head(&fs_info->scrub_pause_wait);
1868 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
1869 }
1870 
1871 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1872 {
1873 	spin_lock_init(&fs_info->balance_lock);
1874 	mutex_init(&fs_info->balance_mutex);
1875 	atomic_set(&fs_info->balance_pause_req, 0);
1876 	atomic_set(&fs_info->balance_cancel_req, 0);
1877 	fs_info->balance_ctl = NULL;
1878 	init_waitqueue_head(&fs_info->balance_wait_q);
1879 	atomic_set(&fs_info->reloc_cancel_req, 0);
1880 }
1881 
1882 static int btrfs_init_btree_inode(struct super_block *sb)
1883 {
1884 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1885 	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1886 					      fs_info->tree_root);
1887 	struct inode *inode;
1888 
1889 	inode = new_inode(sb);
1890 	if (!inode)
1891 		return -ENOMEM;
1892 
1893 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1894 	set_nlink(inode, 1);
1895 	/*
1896 	 * we set the i_size on the btree inode to the max possible int.
1897 	 * the real end of the address space is determined by all of
1898 	 * the devices in the system
1899 	 */
1900 	inode->i_size = OFFSET_MAX;
1901 	inode->i_mapping->a_ops = &btree_aops;
1902 	mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1903 
1904 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
1905 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1906 			    IO_TREE_BTREE_INODE_IO);
1907 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1908 
1909 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1910 	BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1911 	BTRFS_I(inode)->location.type = 0;
1912 	BTRFS_I(inode)->location.offset = 0;
1913 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1914 	__insert_inode_hash(inode, hash);
1915 	fs_info->btree_inode = inode;
1916 
1917 	return 0;
1918 }
1919 
1920 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1921 {
1922 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1923 	init_rwsem(&fs_info->dev_replace.rwsem);
1924 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1925 }
1926 
1927 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1928 {
1929 	spin_lock_init(&fs_info->qgroup_lock);
1930 	mutex_init(&fs_info->qgroup_ioctl_lock);
1931 	fs_info->qgroup_tree = RB_ROOT;
1932 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1933 	fs_info->qgroup_seq = 1;
1934 	fs_info->qgroup_ulist = NULL;
1935 	fs_info->qgroup_rescan_running = false;
1936 	fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
1937 	mutex_init(&fs_info->qgroup_rescan_lock);
1938 }
1939 
1940 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1941 {
1942 	u32 max_active = fs_info->thread_pool_size;
1943 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1944 	unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1945 
1946 	fs_info->workers =
1947 		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1948 
1949 	fs_info->delalloc_workers =
1950 		btrfs_alloc_workqueue(fs_info, "delalloc",
1951 				      flags, max_active, 2);
1952 
1953 	fs_info->flush_workers =
1954 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1955 				      flags, max_active, 0);
1956 
1957 	fs_info->caching_workers =
1958 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1959 
1960 	fs_info->fixup_workers =
1961 		btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1962 
1963 	fs_info->endio_workers =
1964 		alloc_workqueue("btrfs-endio", flags, max_active);
1965 	fs_info->endio_meta_workers =
1966 		alloc_workqueue("btrfs-endio-meta", flags, max_active);
1967 	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
1968 	fs_info->endio_write_workers =
1969 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1970 				      max_active, 2);
1971 	fs_info->compressed_write_workers =
1972 		alloc_workqueue("btrfs-compressed-write", flags, max_active);
1973 	fs_info->endio_freespace_worker =
1974 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
1975 				      max_active, 0);
1976 	fs_info->delayed_workers =
1977 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
1978 				      max_active, 0);
1979 	fs_info->qgroup_rescan_workers =
1980 		btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
1981 					      ordered_flags);
1982 	fs_info->discard_ctl.discard_workers =
1983 		alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
1984 
1985 	if (!(fs_info->workers &&
1986 	      fs_info->delalloc_workers && fs_info->flush_workers &&
1987 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
1988 	      fs_info->compressed_write_workers &&
1989 	      fs_info->endio_write_workers &&
1990 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
1991 	      fs_info->caching_workers && fs_info->fixup_workers &&
1992 	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
1993 	      fs_info->discard_ctl.discard_workers)) {
1994 		return -ENOMEM;
1995 	}
1996 
1997 	return 0;
1998 }
1999 
2000 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2001 {
2002 	struct crypto_shash *csum_shash;
2003 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2004 
2005 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2006 
2007 	if (IS_ERR(csum_shash)) {
2008 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2009 			  csum_driver);
2010 		return PTR_ERR(csum_shash);
2011 	}
2012 
2013 	fs_info->csum_shash = csum_shash;
2014 
2015 	/*
2016 	 * Check if the checksum implementation is a fast accelerated one.
2017 	 * As-is this is a bit of a hack and should be replaced once the csum
2018 	 * implementations provide that information themselves.
2019 	 */
2020 	switch (csum_type) {
2021 	case BTRFS_CSUM_TYPE_CRC32:
2022 		if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2023 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2024 		break;
2025 	case BTRFS_CSUM_TYPE_XXHASH:
2026 		set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2027 		break;
2028 	default:
2029 		break;
2030 	}
2031 
2032 	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2033 			btrfs_super_csum_name(csum_type),
2034 			crypto_shash_driver_name(csum_shash));
2035 	return 0;
2036 }
2037 
2038 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2039 			    struct btrfs_fs_devices *fs_devices)
2040 {
2041 	int ret;
2042 	struct btrfs_tree_parent_check check = { 0 };
2043 	struct btrfs_root *log_tree_root;
2044 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2045 	u64 bytenr = btrfs_super_log_root(disk_super);
2046 	int level = btrfs_super_log_root_level(disk_super);
2047 
2048 	if (fs_devices->rw_devices == 0) {
2049 		btrfs_warn(fs_info, "log replay required on RO media");
2050 		return -EIO;
2051 	}
2052 
2053 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2054 					 GFP_KERNEL);
2055 	if (!log_tree_root)
2056 		return -ENOMEM;
2057 
2058 	check.level = level;
2059 	check.transid = fs_info->generation + 1;
2060 	check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2061 	log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2062 	if (IS_ERR(log_tree_root->node)) {
2063 		btrfs_warn(fs_info, "failed to read log tree");
2064 		ret = PTR_ERR(log_tree_root->node);
2065 		log_tree_root->node = NULL;
2066 		btrfs_put_root(log_tree_root);
2067 		return ret;
2068 	}
2069 	if (!extent_buffer_uptodate(log_tree_root->node)) {
2070 		btrfs_err(fs_info, "failed to read log tree");
2071 		btrfs_put_root(log_tree_root);
2072 		return -EIO;
2073 	}
2074 
2075 	/* returns with log_tree_root freed on success */
2076 	ret = btrfs_recover_log_trees(log_tree_root);
2077 	if (ret) {
2078 		btrfs_handle_fs_error(fs_info, ret,
2079 				      "Failed to recover log tree");
2080 		btrfs_put_root(log_tree_root);
2081 		return ret;
2082 	}
2083 
2084 	if (sb_rdonly(fs_info->sb)) {
2085 		ret = btrfs_commit_super(fs_info);
2086 		if (ret)
2087 			return ret;
2088 	}
2089 
2090 	return 0;
2091 }
2092 
2093 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2094 				      struct btrfs_path *path, u64 objectid,
2095 				      const char *name)
2096 {
2097 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2098 	struct btrfs_root *root;
2099 	u64 max_global_id = 0;
2100 	int ret;
2101 	struct btrfs_key key = {
2102 		.objectid = objectid,
2103 		.type = BTRFS_ROOT_ITEM_KEY,
2104 		.offset = 0,
2105 	};
2106 	bool found = false;
2107 
2108 	/* If we have IGNOREDATACSUMS skip loading these roots. */
2109 	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2110 	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2111 		set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2112 		return 0;
2113 	}
2114 
2115 	while (1) {
2116 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2117 		if (ret < 0)
2118 			break;
2119 
2120 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2121 			ret = btrfs_next_leaf(tree_root, path);
2122 			if (ret) {
2123 				if (ret > 0)
2124 					ret = 0;
2125 				break;
2126 			}
2127 		}
2128 		ret = 0;
2129 
2130 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2131 		if (key.objectid != objectid)
2132 			break;
2133 		btrfs_release_path(path);
2134 
2135 		/*
2136 		 * Just worry about this for extent tree, it'll be the same for
2137 		 * everybody.
2138 		 */
2139 		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2140 			max_global_id = max(max_global_id, key.offset);
2141 
2142 		found = true;
2143 		root = read_tree_root_path(tree_root, path, &key);
2144 		if (IS_ERR(root)) {
2145 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2146 				ret = PTR_ERR(root);
2147 			break;
2148 		}
2149 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2150 		ret = btrfs_global_root_insert(root);
2151 		if (ret) {
2152 			btrfs_put_root(root);
2153 			break;
2154 		}
2155 		key.offset++;
2156 	}
2157 	btrfs_release_path(path);
2158 
2159 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2160 		fs_info->nr_global_roots = max_global_id + 1;
2161 
2162 	if (!found || ret) {
2163 		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2164 			set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2165 
2166 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2167 			ret = ret ? ret : -ENOENT;
2168 		else
2169 			ret = 0;
2170 		btrfs_err(fs_info, "failed to load root %s", name);
2171 	}
2172 	return ret;
2173 }
2174 
2175 static int load_global_roots(struct btrfs_root *tree_root)
2176 {
2177 	struct btrfs_path *path;
2178 	int ret = 0;
2179 
2180 	path = btrfs_alloc_path();
2181 	if (!path)
2182 		return -ENOMEM;
2183 
2184 	ret = load_global_roots_objectid(tree_root, path,
2185 					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2186 	if (ret)
2187 		goto out;
2188 	ret = load_global_roots_objectid(tree_root, path,
2189 					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2190 	if (ret)
2191 		goto out;
2192 	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2193 		goto out;
2194 	ret = load_global_roots_objectid(tree_root, path,
2195 					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2196 					 "free space");
2197 out:
2198 	btrfs_free_path(path);
2199 	return ret;
2200 }
2201 
2202 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2203 {
2204 	struct btrfs_root *tree_root = fs_info->tree_root;
2205 	struct btrfs_root *root;
2206 	struct btrfs_key location;
2207 	int ret;
2208 
2209 	BUG_ON(!fs_info->tree_root);
2210 
2211 	ret = load_global_roots(tree_root);
2212 	if (ret)
2213 		return ret;
2214 
2215 	location.type = BTRFS_ROOT_ITEM_KEY;
2216 	location.offset = 0;
2217 
2218 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2219 		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2220 		root = btrfs_read_tree_root(tree_root, &location);
2221 		if (IS_ERR(root)) {
2222 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2223 				ret = PTR_ERR(root);
2224 				goto out;
2225 			}
2226 		} else {
2227 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2228 			fs_info->block_group_root = root;
2229 		}
2230 	}
2231 
2232 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2233 	root = btrfs_read_tree_root(tree_root, &location);
2234 	if (IS_ERR(root)) {
2235 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2236 			ret = PTR_ERR(root);
2237 			goto out;
2238 		}
2239 	} else {
2240 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2241 		fs_info->dev_root = root;
2242 	}
2243 	/* Initialize fs_info for all devices in any case */
2244 	ret = btrfs_init_devices_late(fs_info);
2245 	if (ret)
2246 		goto out;
2247 
2248 	/*
2249 	 * This tree can share blocks with some other fs tree during relocation
2250 	 * and we need a proper setup by btrfs_get_fs_root
2251 	 */
2252 	root = btrfs_get_fs_root(tree_root->fs_info,
2253 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2254 	if (IS_ERR(root)) {
2255 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2256 			ret = PTR_ERR(root);
2257 			goto out;
2258 		}
2259 	} else {
2260 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2261 		fs_info->data_reloc_root = root;
2262 	}
2263 
2264 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2265 	root = btrfs_read_tree_root(tree_root, &location);
2266 	if (!IS_ERR(root)) {
2267 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2268 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2269 		fs_info->quota_root = root;
2270 	}
2271 
2272 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2273 	root = btrfs_read_tree_root(tree_root, &location);
2274 	if (IS_ERR(root)) {
2275 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2276 			ret = PTR_ERR(root);
2277 			if (ret != -ENOENT)
2278 				goto out;
2279 		}
2280 	} else {
2281 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2282 		fs_info->uuid_root = root;
2283 	}
2284 
2285 	return 0;
2286 out:
2287 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2288 		   location.objectid, ret);
2289 	return ret;
2290 }
2291 
2292 /*
2293  * Real super block validation
2294  * NOTE: super csum type and incompat features will not be checked here.
2295  *
2296  * @sb:		super block to check
2297  * @mirror_num:	the super block number to check its bytenr:
2298  * 		0	the primary (1st) sb
2299  * 		1, 2	2nd and 3rd backup copy
2300  * 	       -1	skip bytenr check
2301  */
2302 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2303 			 struct btrfs_super_block *sb, int mirror_num)
2304 {
2305 	u64 nodesize = btrfs_super_nodesize(sb);
2306 	u64 sectorsize = btrfs_super_sectorsize(sb);
2307 	int ret = 0;
2308 
2309 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2310 		btrfs_err(fs_info, "no valid FS found");
2311 		ret = -EINVAL;
2312 	}
2313 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2314 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2315 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2316 		ret = -EINVAL;
2317 	}
2318 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2319 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2320 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2321 		ret = -EINVAL;
2322 	}
2323 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2324 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2325 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2326 		ret = -EINVAL;
2327 	}
2328 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2329 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2330 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2331 		ret = -EINVAL;
2332 	}
2333 
2334 	/*
2335 	 * Check sectorsize and nodesize first, other check will need it.
2336 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2337 	 */
2338 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2339 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2340 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2341 		ret = -EINVAL;
2342 	}
2343 
2344 	/*
2345 	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2346 	 *
2347 	 * We can support 16K sectorsize with 64K page size without problem,
2348 	 * but such sectorsize/pagesize combination doesn't make much sense.
2349 	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2350 	 * beginning.
2351 	 */
2352 	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2353 		btrfs_err(fs_info,
2354 			"sectorsize %llu not yet supported for page size %lu",
2355 			sectorsize, PAGE_SIZE);
2356 		ret = -EINVAL;
2357 	}
2358 
2359 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2360 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2361 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2362 		ret = -EINVAL;
2363 	}
2364 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2365 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2366 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2367 		ret = -EINVAL;
2368 	}
2369 
2370 	/* Root alignment check */
2371 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2372 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2373 			   btrfs_super_root(sb));
2374 		ret = -EINVAL;
2375 	}
2376 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2377 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2378 			   btrfs_super_chunk_root(sb));
2379 		ret = -EINVAL;
2380 	}
2381 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2382 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2383 			   btrfs_super_log_root(sb));
2384 		ret = -EINVAL;
2385 	}
2386 
2387 	if (memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2388 		btrfs_err(fs_info,
2389 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2390 			  sb->fsid, fs_info->fs_devices->fsid);
2391 		ret = -EINVAL;
2392 	}
2393 
2394 	if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2395 	    memcmp(fs_info->fs_devices->metadata_uuid,
2396 		   fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2397 		btrfs_err(fs_info,
2398 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2399 			fs_info->super_copy->metadata_uuid,
2400 			fs_info->fs_devices->metadata_uuid);
2401 		ret = -EINVAL;
2402 	}
2403 
2404 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2405 		   BTRFS_FSID_SIZE) != 0) {
2406 		btrfs_err(fs_info,
2407 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2408 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2409 		ret = -EINVAL;
2410 	}
2411 
2412 	/*
2413 	 * Artificial requirement for block-group-tree to force newer features
2414 	 * (free-space-tree, no-holes) so the test matrix is smaller.
2415 	 */
2416 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2417 	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2418 	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2419 		btrfs_err(fs_info,
2420 		"block-group-tree feature requires fres-space-tree and no-holes");
2421 		ret = -EINVAL;
2422 	}
2423 
2424 	/*
2425 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2426 	 * done later
2427 	 */
2428 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2429 		btrfs_err(fs_info, "bytes_used is too small %llu",
2430 			  btrfs_super_bytes_used(sb));
2431 		ret = -EINVAL;
2432 	}
2433 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2434 		btrfs_err(fs_info, "invalid stripesize %u",
2435 			  btrfs_super_stripesize(sb));
2436 		ret = -EINVAL;
2437 	}
2438 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2439 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2440 			   btrfs_super_num_devices(sb));
2441 	if (btrfs_super_num_devices(sb) == 0) {
2442 		btrfs_err(fs_info, "number of devices is 0");
2443 		ret = -EINVAL;
2444 	}
2445 
2446 	if (mirror_num >= 0 &&
2447 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2448 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2449 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2450 		ret = -EINVAL;
2451 	}
2452 
2453 	/*
2454 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2455 	 * and one chunk
2456 	 */
2457 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2458 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2459 			  btrfs_super_sys_array_size(sb),
2460 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2461 		ret = -EINVAL;
2462 	}
2463 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2464 			+ sizeof(struct btrfs_chunk)) {
2465 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2466 			  btrfs_super_sys_array_size(sb),
2467 			  sizeof(struct btrfs_disk_key)
2468 			  + sizeof(struct btrfs_chunk));
2469 		ret = -EINVAL;
2470 	}
2471 
2472 	/*
2473 	 * The generation is a global counter, we'll trust it more than the others
2474 	 * but it's still possible that it's the one that's wrong.
2475 	 */
2476 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2477 		btrfs_warn(fs_info,
2478 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2479 			btrfs_super_generation(sb),
2480 			btrfs_super_chunk_root_generation(sb));
2481 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2482 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2483 		btrfs_warn(fs_info,
2484 			"suspicious: generation < cache_generation: %llu < %llu",
2485 			btrfs_super_generation(sb),
2486 			btrfs_super_cache_generation(sb));
2487 
2488 	return ret;
2489 }
2490 
2491 /*
2492  * Validation of super block at mount time.
2493  * Some checks already done early at mount time, like csum type and incompat
2494  * flags will be skipped.
2495  */
2496 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2497 {
2498 	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2499 }
2500 
2501 /*
2502  * Validation of super block at write time.
2503  * Some checks like bytenr check will be skipped as their values will be
2504  * overwritten soon.
2505  * Extra checks like csum type and incompat flags will be done here.
2506  */
2507 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2508 				      struct btrfs_super_block *sb)
2509 {
2510 	int ret;
2511 
2512 	ret = btrfs_validate_super(fs_info, sb, -1);
2513 	if (ret < 0)
2514 		goto out;
2515 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2516 		ret = -EUCLEAN;
2517 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2518 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2519 		goto out;
2520 	}
2521 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2522 		ret = -EUCLEAN;
2523 		btrfs_err(fs_info,
2524 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2525 			  btrfs_super_incompat_flags(sb),
2526 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2527 		goto out;
2528 	}
2529 out:
2530 	if (ret < 0)
2531 		btrfs_err(fs_info,
2532 		"super block corruption detected before writing it to disk");
2533 	return ret;
2534 }
2535 
2536 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2537 {
2538 	struct btrfs_tree_parent_check check = {
2539 		.level = level,
2540 		.transid = gen,
2541 		.owner_root = root->root_key.objectid
2542 	};
2543 	int ret = 0;
2544 
2545 	root->node = read_tree_block(root->fs_info, bytenr, &check);
2546 	if (IS_ERR(root->node)) {
2547 		ret = PTR_ERR(root->node);
2548 		root->node = NULL;
2549 		return ret;
2550 	}
2551 	if (!extent_buffer_uptodate(root->node)) {
2552 		free_extent_buffer(root->node);
2553 		root->node = NULL;
2554 		return -EIO;
2555 	}
2556 
2557 	btrfs_set_root_node(&root->root_item, root->node);
2558 	root->commit_root = btrfs_root_node(root);
2559 	btrfs_set_root_refs(&root->root_item, 1);
2560 	return ret;
2561 }
2562 
2563 static int load_important_roots(struct btrfs_fs_info *fs_info)
2564 {
2565 	struct btrfs_super_block *sb = fs_info->super_copy;
2566 	u64 gen, bytenr;
2567 	int level, ret;
2568 
2569 	bytenr = btrfs_super_root(sb);
2570 	gen = btrfs_super_generation(sb);
2571 	level = btrfs_super_root_level(sb);
2572 	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2573 	if (ret) {
2574 		btrfs_warn(fs_info, "couldn't read tree root");
2575 		return ret;
2576 	}
2577 	return 0;
2578 }
2579 
2580 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2581 {
2582 	int backup_index = find_newest_super_backup(fs_info);
2583 	struct btrfs_super_block *sb = fs_info->super_copy;
2584 	struct btrfs_root *tree_root = fs_info->tree_root;
2585 	bool handle_error = false;
2586 	int ret = 0;
2587 	int i;
2588 
2589 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2590 		if (handle_error) {
2591 			if (!IS_ERR(tree_root->node))
2592 				free_extent_buffer(tree_root->node);
2593 			tree_root->node = NULL;
2594 
2595 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2596 				break;
2597 
2598 			free_root_pointers(fs_info, 0);
2599 
2600 			/*
2601 			 * Don't use the log in recovery mode, it won't be
2602 			 * valid
2603 			 */
2604 			btrfs_set_super_log_root(sb, 0);
2605 
2606 			/* We can't trust the free space cache either */
2607 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2608 
2609 			btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2610 			ret = read_backup_root(fs_info, i);
2611 			backup_index = ret;
2612 			if (ret < 0)
2613 				return ret;
2614 		}
2615 
2616 		ret = load_important_roots(fs_info);
2617 		if (ret) {
2618 			handle_error = true;
2619 			continue;
2620 		}
2621 
2622 		/*
2623 		 * No need to hold btrfs_root::objectid_mutex since the fs
2624 		 * hasn't been fully initialised and we are the only user
2625 		 */
2626 		ret = btrfs_init_root_free_objectid(tree_root);
2627 		if (ret < 0) {
2628 			handle_error = true;
2629 			continue;
2630 		}
2631 
2632 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2633 
2634 		ret = btrfs_read_roots(fs_info);
2635 		if (ret < 0) {
2636 			handle_error = true;
2637 			continue;
2638 		}
2639 
2640 		/* All successful */
2641 		fs_info->generation = btrfs_header_generation(tree_root->node);
2642 		fs_info->last_trans_committed = fs_info->generation;
2643 		fs_info->last_reloc_trans = 0;
2644 
2645 		/* Always begin writing backup roots after the one being used */
2646 		if (backup_index < 0) {
2647 			fs_info->backup_root_index = 0;
2648 		} else {
2649 			fs_info->backup_root_index = backup_index + 1;
2650 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2651 		}
2652 		break;
2653 	}
2654 
2655 	return ret;
2656 }
2657 
2658 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2659 {
2660 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2661 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2662 	INIT_LIST_HEAD(&fs_info->trans_list);
2663 	INIT_LIST_HEAD(&fs_info->dead_roots);
2664 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2665 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2666 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2667 	spin_lock_init(&fs_info->delalloc_root_lock);
2668 	spin_lock_init(&fs_info->trans_lock);
2669 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2670 	spin_lock_init(&fs_info->delayed_iput_lock);
2671 	spin_lock_init(&fs_info->defrag_inodes_lock);
2672 	spin_lock_init(&fs_info->super_lock);
2673 	spin_lock_init(&fs_info->buffer_lock);
2674 	spin_lock_init(&fs_info->unused_bgs_lock);
2675 	spin_lock_init(&fs_info->treelog_bg_lock);
2676 	spin_lock_init(&fs_info->zone_active_bgs_lock);
2677 	spin_lock_init(&fs_info->relocation_bg_lock);
2678 	rwlock_init(&fs_info->tree_mod_log_lock);
2679 	rwlock_init(&fs_info->global_root_lock);
2680 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2681 	mutex_init(&fs_info->reclaim_bgs_lock);
2682 	mutex_init(&fs_info->reloc_mutex);
2683 	mutex_init(&fs_info->delalloc_root_mutex);
2684 	mutex_init(&fs_info->zoned_meta_io_lock);
2685 	mutex_init(&fs_info->zoned_data_reloc_io_lock);
2686 	seqlock_init(&fs_info->profiles_lock);
2687 
2688 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2689 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2690 	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2691 	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2692 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
2693 				     BTRFS_LOCKDEP_TRANS_COMMIT_START);
2694 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2695 				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2696 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2697 				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2698 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2699 				     BTRFS_LOCKDEP_TRANS_COMPLETED);
2700 
2701 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2702 	INIT_LIST_HEAD(&fs_info->space_info);
2703 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2704 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2705 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2706 	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2707 #ifdef CONFIG_BTRFS_DEBUG
2708 	INIT_LIST_HEAD(&fs_info->allocated_roots);
2709 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2710 	spin_lock_init(&fs_info->eb_leak_lock);
2711 #endif
2712 	extent_map_tree_init(&fs_info->mapping_tree);
2713 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2714 			     BTRFS_BLOCK_RSV_GLOBAL);
2715 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2716 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2717 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2718 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2719 			     BTRFS_BLOCK_RSV_DELOPS);
2720 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2721 			     BTRFS_BLOCK_RSV_DELREFS);
2722 
2723 	atomic_set(&fs_info->async_delalloc_pages, 0);
2724 	atomic_set(&fs_info->defrag_running, 0);
2725 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2726 	atomic64_set(&fs_info->tree_mod_seq, 0);
2727 	fs_info->global_root_tree = RB_ROOT;
2728 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2729 	fs_info->metadata_ratio = 0;
2730 	fs_info->defrag_inodes = RB_ROOT;
2731 	atomic64_set(&fs_info->free_chunk_space, 0);
2732 	fs_info->tree_mod_log = RB_ROOT;
2733 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2734 	btrfs_init_ref_verify(fs_info);
2735 
2736 	fs_info->thread_pool_size = min_t(unsigned long,
2737 					  num_online_cpus() + 2, 8);
2738 
2739 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2740 	spin_lock_init(&fs_info->ordered_root_lock);
2741 
2742 	btrfs_init_scrub(fs_info);
2743 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2744 	fs_info->check_integrity_print_mask = 0;
2745 #endif
2746 	btrfs_init_balance(fs_info);
2747 	btrfs_init_async_reclaim_work(fs_info);
2748 
2749 	rwlock_init(&fs_info->block_group_cache_lock);
2750 	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2751 
2752 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2753 			    IO_TREE_FS_EXCLUDED_EXTENTS);
2754 
2755 	mutex_init(&fs_info->ordered_operations_mutex);
2756 	mutex_init(&fs_info->tree_log_mutex);
2757 	mutex_init(&fs_info->chunk_mutex);
2758 	mutex_init(&fs_info->transaction_kthread_mutex);
2759 	mutex_init(&fs_info->cleaner_mutex);
2760 	mutex_init(&fs_info->ro_block_group_mutex);
2761 	init_rwsem(&fs_info->commit_root_sem);
2762 	init_rwsem(&fs_info->cleanup_work_sem);
2763 	init_rwsem(&fs_info->subvol_sem);
2764 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2765 
2766 	btrfs_init_dev_replace_locks(fs_info);
2767 	btrfs_init_qgroup(fs_info);
2768 	btrfs_discard_init(fs_info);
2769 
2770 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2771 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2772 
2773 	init_waitqueue_head(&fs_info->transaction_throttle);
2774 	init_waitqueue_head(&fs_info->transaction_wait);
2775 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2776 	init_waitqueue_head(&fs_info->async_submit_wait);
2777 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2778 
2779 	/* Usable values until the real ones are cached from the superblock */
2780 	fs_info->nodesize = 4096;
2781 	fs_info->sectorsize = 4096;
2782 	fs_info->sectorsize_bits = ilog2(4096);
2783 	fs_info->stripesize = 4096;
2784 
2785 	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2786 
2787 	spin_lock_init(&fs_info->swapfile_pins_lock);
2788 	fs_info->swapfile_pins = RB_ROOT;
2789 
2790 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2791 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2792 }
2793 
2794 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2795 {
2796 	int ret;
2797 
2798 	fs_info->sb = sb;
2799 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2800 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2801 
2802 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2803 	if (ret)
2804 		return ret;
2805 
2806 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2807 	if (ret)
2808 		return ret;
2809 
2810 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2811 					(1 + ilog2(nr_cpu_ids));
2812 
2813 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2814 	if (ret)
2815 		return ret;
2816 
2817 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2818 			GFP_KERNEL);
2819 	if (ret)
2820 		return ret;
2821 
2822 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2823 					GFP_KERNEL);
2824 	if (!fs_info->delayed_root)
2825 		return -ENOMEM;
2826 	btrfs_init_delayed_root(fs_info->delayed_root);
2827 
2828 	if (sb_rdonly(sb))
2829 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2830 
2831 	return btrfs_alloc_stripe_hash_table(fs_info);
2832 }
2833 
2834 static int btrfs_uuid_rescan_kthread(void *data)
2835 {
2836 	struct btrfs_fs_info *fs_info = data;
2837 	int ret;
2838 
2839 	/*
2840 	 * 1st step is to iterate through the existing UUID tree and
2841 	 * to delete all entries that contain outdated data.
2842 	 * 2nd step is to add all missing entries to the UUID tree.
2843 	 */
2844 	ret = btrfs_uuid_tree_iterate(fs_info);
2845 	if (ret < 0) {
2846 		if (ret != -EINTR)
2847 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2848 				   ret);
2849 		up(&fs_info->uuid_tree_rescan_sem);
2850 		return ret;
2851 	}
2852 	return btrfs_uuid_scan_kthread(data);
2853 }
2854 
2855 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2856 {
2857 	struct task_struct *task;
2858 
2859 	down(&fs_info->uuid_tree_rescan_sem);
2860 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2861 	if (IS_ERR(task)) {
2862 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2863 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2864 		up(&fs_info->uuid_tree_rescan_sem);
2865 		return PTR_ERR(task);
2866 	}
2867 
2868 	return 0;
2869 }
2870 
2871 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2872 {
2873 	u64 root_objectid = 0;
2874 	struct btrfs_root *gang[8];
2875 	int i = 0;
2876 	int err = 0;
2877 	unsigned int ret = 0;
2878 
2879 	while (1) {
2880 		spin_lock(&fs_info->fs_roots_radix_lock);
2881 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2882 					     (void **)gang, root_objectid,
2883 					     ARRAY_SIZE(gang));
2884 		if (!ret) {
2885 			spin_unlock(&fs_info->fs_roots_radix_lock);
2886 			break;
2887 		}
2888 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
2889 
2890 		for (i = 0; i < ret; i++) {
2891 			/* Avoid to grab roots in dead_roots. */
2892 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2893 				gang[i] = NULL;
2894 				continue;
2895 			}
2896 			/* Grab all the search result for later use. */
2897 			gang[i] = btrfs_grab_root(gang[i]);
2898 		}
2899 		spin_unlock(&fs_info->fs_roots_radix_lock);
2900 
2901 		for (i = 0; i < ret; i++) {
2902 			if (!gang[i])
2903 				continue;
2904 			root_objectid = gang[i]->root_key.objectid;
2905 			err = btrfs_orphan_cleanup(gang[i]);
2906 			if (err)
2907 				goto out;
2908 			btrfs_put_root(gang[i]);
2909 		}
2910 		root_objectid++;
2911 	}
2912 out:
2913 	/* Release the uncleaned roots due to error. */
2914 	for (; i < ret; i++) {
2915 		if (gang[i])
2916 			btrfs_put_root(gang[i]);
2917 	}
2918 	return err;
2919 }
2920 
2921 /*
2922  * Some options only have meaning at mount time and shouldn't persist across
2923  * remounts, or be displayed. Clear these at the end of mount and remount
2924  * code paths.
2925  */
2926 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
2927 {
2928 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
2929 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
2930 }
2931 
2932 /*
2933  * Mounting logic specific to read-write file systems. Shared by open_ctree
2934  * and btrfs_remount when remounting from read-only to read-write.
2935  */
2936 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2937 {
2938 	int ret;
2939 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2940 	bool rebuild_free_space_tree = false;
2941 
2942 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2943 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2944 		rebuild_free_space_tree = true;
2945 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2946 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2947 		btrfs_warn(fs_info, "free space tree is invalid");
2948 		rebuild_free_space_tree = true;
2949 	}
2950 
2951 	if (rebuild_free_space_tree) {
2952 		btrfs_info(fs_info, "rebuilding free space tree");
2953 		ret = btrfs_rebuild_free_space_tree(fs_info);
2954 		if (ret) {
2955 			btrfs_warn(fs_info,
2956 				   "failed to rebuild free space tree: %d", ret);
2957 			goto out;
2958 		}
2959 	}
2960 
2961 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2962 	    !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
2963 		btrfs_info(fs_info, "disabling free space tree");
2964 		ret = btrfs_delete_free_space_tree(fs_info);
2965 		if (ret) {
2966 			btrfs_warn(fs_info,
2967 				   "failed to disable free space tree: %d", ret);
2968 			goto out;
2969 		}
2970 	}
2971 
2972 	/*
2973 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
2974 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
2975 	 * them into the fs_info->fs_roots_radix tree. This must be done before
2976 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
2977 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
2978 	 * item before the root's tree is deleted - this means that if we unmount
2979 	 * or crash before the deletion completes, on the next mount we will not
2980 	 * delete what remains of the tree because the orphan item does not
2981 	 * exists anymore, which is what tells us we have a pending deletion.
2982 	 */
2983 	ret = btrfs_find_orphan_roots(fs_info);
2984 	if (ret)
2985 		goto out;
2986 
2987 	ret = btrfs_cleanup_fs_roots(fs_info);
2988 	if (ret)
2989 		goto out;
2990 
2991 	down_read(&fs_info->cleanup_work_sem);
2992 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2993 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2994 		up_read(&fs_info->cleanup_work_sem);
2995 		goto out;
2996 	}
2997 	up_read(&fs_info->cleanup_work_sem);
2998 
2999 	mutex_lock(&fs_info->cleaner_mutex);
3000 	ret = btrfs_recover_relocation(fs_info);
3001 	mutex_unlock(&fs_info->cleaner_mutex);
3002 	if (ret < 0) {
3003 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3004 		goto out;
3005 	}
3006 
3007 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3008 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3009 		btrfs_info(fs_info, "creating free space tree");
3010 		ret = btrfs_create_free_space_tree(fs_info);
3011 		if (ret) {
3012 			btrfs_warn(fs_info,
3013 				"failed to create free space tree: %d", ret);
3014 			goto out;
3015 		}
3016 	}
3017 
3018 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3019 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3020 		if (ret)
3021 			goto out;
3022 	}
3023 
3024 	ret = btrfs_resume_balance_async(fs_info);
3025 	if (ret)
3026 		goto out;
3027 
3028 	ret = btrfs_resume_dev_replace_async(fs_info);
3029 	if (ret) {
3030 		btrfs_warn(fs_info, "failed to resume dev_replace");
3031 		goto out;
3032 	}
3033 
3034 	btrfs_qgroup_rescan_resume(fs_info);
3035 
3036 	if (!fs_info->uuid_root) {
3037 		btrfs_info(fs_info, "creating UUID tree");
3038 		ret = btrfs_create_uuid_tree(fs_info);
3039 		if (ret) {
3040 			btrfs_warn(fs_info,
3041 				   "failed to create the UUID tree %d", ret);
3042 			goto out;
3043 		}
3044 	}
3045 
3046 out:
3047 	return ret;
3048 }
3049 
3050 /*
3051  * Do various sanity and dependency checks of different features.
3052  *
3053  * @is_rw_mount:	If the mount is read-write.
3054  *
3055  * This is the place for less strict checks (like for subpage or artificial
3056  * feature dependencies).
3057  *
3058  * For strict checks or possible corruption detection, see
3059  * btrfs_validate_super().
3060  *
3061  * This should be called after btrfs_parse_options(), as some mount options
3062  * (space cache related) can modify on-disk format like free space tree and
3063  * screw up certain feature dependencies.
3064  */
3065 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3066 {
3067 	struct btrfs_super_block *disk_super = fs_info->super_copy;
3068 	u64 incompat = btrfs_super_incompat_flags(disk_super);
3069 	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3070 	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3071 
3072 	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3073 		btrfs_err(fs_info,
3074 		"cannot mount because of unknown incompat features (0x%llx)",
3075 		    incompat);
3076 		return -EINVAL;
3077 	}
3078 
3079 	/* Runtime limitation for mixed block groups. */
3080 	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3081 	    (fs_info->sectorsize != fs_info->nodesize)) {
3082 		btrfs_err(fs_info,
3083 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3084 			fs_info->nodesize, fs_info->sectorsize);
3085 		return -EINVAL;
3086 	}
3087 
3088 	/* Mixed backref is an always-enabled feature. */
3089 	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3090 
3091 	/* Set compression related flags just in case. */
3092 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3093 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3094 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3095 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3096 
3097 	/*
3098 	 * An ancient flag, which should really be marked deprecated.
3099 	 * Such runtime limitation doesn't really need a incompat flag.
3100 	 */
3101 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3102 		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3103 
3104 	if (compat_ro_unsupp && is_rw_mount) {
3105 		btrfs_err(fs_info,
3106 	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3107 		       compat_ro);
3108 		return -EINVAL;
3109 	}
3110 
3111 	/*
3112 	 * We have unsupported RO compat features, although RO mounted, we
3113 	 * should not cause any metadata writes, including log replay.
3114 	 * Or we could screw up whatever the new feature requires.
3115 	 */
3116 	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3117 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3118 		btrfs_err(fs_info,
3119 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3120 			  compat_ro);
3121 		return -EINVAL;
3122 	}
3123 
3124 	/*
3125 	 * Artificial limitations for block group tree, to force
3126 	 * block-group-tree to rely on no-holes and free-space-tree.
3127 	 */
3128 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3129 	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3130 	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3131 		btrfs_err(fs_info,
3132 "block-group-tree feature requires no-holes and free-space-tree features");
3133 		return -EINVAL;
3134 	}
3135 
3136 	/*
3137 	 * Subpage runtime limitation on v1 cache.
3138 	 *
3139 	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3140 	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3141 	 * going to be deprecated anyway.
3142 	 */
3143 	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3144 		btrfs_warn(fs_info,
3145 	"v1 space cache is not supported for page size %lu with sectorsize %u",
3146 			   PAGE_SIZE, fs_info->sectorsize);
3147 		return -EINVAL;
3148 	}
3149 
3150 	/* This can be called by remount, we need to protect the super block. */
3151 	spin_lock(&fs_info->super_lock);
3152 	btrfs_set_super_incompat_flags(disk_super, incompat);
3153 	spin_unlock(&fs_info->super_lock);
3154 
3155 	return 0;
3156 }
3157 
3158 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3159 		      char *options)
3160 {
3161 	u32 sectorsize;
3162 	u32 nodesize;
3163 	u32 stripesize;
3164 	u64 generation;
3165 	u64 features;
3166 	u16 csum_type;
3167 	struct btrfs_super_block *disk_super;
3168 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3169 	struct btrfs_root *tree_root;
3170 	struct btrfs_root *chunk_root;
3171 	int ret;
3172 	int level;
3173 
3174 	ret = init_mount_fs_info(fs_info, sb);
3175 	if (ret)
3176 		goto fail;
3177 
3178 	/* These need to be init'ed before we start creating inodes and such. */
3179 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3180 				     GFP_KERNEL);
3181 	fs_info->tree_root = tree_root;
3182 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3183 				      GFP_KERNEL);
3184 	fs_info->chunk_root = chunk_root;
3185 	if (!tree_root || !chunk_root) {
3186 		ret = -ENOMEM;
3187 		goto fail;
3188 	}
3189 
3190 	ret = btrfs_init_btree_inode(sb);
3191 	if (ret)
3192 		goto fail;
3193 
3194 	invalidate_bdev(fs_devices->latest_dev->bdev);
3195 
3196 	/*
3197 	 * Read super block and check the signature bytes only
3198 	 */
3199 	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3200 	if (IS_ERR(disk_super)) {
3201 		ret = PTR_ERR(disk_super);
3202 		goto fail_alloc;
3203 	}
3204 
3205 	/*
3206 	 * Verify the type first, if that or the checksum value are
3207 	 * corrupted, we'll find out
3208 	 */
3209 	csum_type = btrfs_super_csum_type(disk_super);
3210 	if (!btrfs_supported_super_csum(csum_type)) {
3211 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3212 			  csum_type);
3213 		ret = -EINVAL;
3214 		btrfs_release_disk_super(disk_super);
3215 		goto fail_alloc;
3216 	}
3217 
3218 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3219 
3220 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3221 	if (ret) {
3222 		btrfs_release_disk_super(disk_super);
3223 		goto fail_alloc;
3224 	}
3225 
3226 	/*
3227 	 * We want to check superblock checksum, the type is stored inside.
3228 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3229 	 */
3230 	if (btrfs_check_super_csum(fs_info, disk_super)) {
3231 		btrfs_err(fs_info, "superblock checksum mismatch");
3232 		ret = -EINVAL;
3233 		btrfs_release_disk_super(disk_super);
3234 		goto fail_alloc;
3235 	}
3236 
3237 	/*
3238 	 * super_copy is zeroed at allocation time and we never touch the
3239 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3240 	 * the whole block of INFO_SIZE
3241 	 */
3242 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3243 	btrfs_release_disk_super(disk_super);
3244 
3245 	disk_super = fs_info->super_copy;
3246 
3247 
3248 	features = btrfs_super_flags(disk_super);
3249 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3250 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3251 		btrfs_set_super_flags(disk_super, features);
3252 		btrfs_info(fs_info,
3253 			"found metadata UUID change in progress flag, clearing");
3254 	}
3255 
3256 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3257 	       sizeof(*fs_info->super_for_commit));
3258 
3259 	ret = btrfs_validate_mount_super(fs_info);
3260 	if (ret) {
3261 		btrfs_err(fs_info, "superblock contains fatal errors");
3262 		ret = -EINVAL;
3263 		goto fail_alloc;
3264 	}
3265 
3266 	if (!btrfs_super_root(disk_super)) {
3267 		btrfs_err(fs_info, "invalid superblock tree root bytenr");
3268 		ret = -EINVAL;
3269 		goto fail_alloc;
3270 	}
3271 
3272 	/* check FS state, whether FS is broken. */
3273 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3274 		WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3275 
3276 	/*
3277 	 * In the long term, we'll store the compression type in the super
3278 	 * block, and it'll be used for per file compression control.
3279 	 */
3280 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3281 
3282 
3283 	/* Set up fs_info before parsing mount options */
3284 	nodesize = btrfs_super_nodesize(disk_super);
3285 	sectorsize = btrfs_super_sectorsize(disk_super);
3286 	stripesize = sectorsize;
3287 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3288 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3289 
3290 	fs_info->nodesize = nodesize;
3291 	fs_info->sectorsize = sectorsize;
3292 	fs_info->sectorsize_bits = ilog2(sectorsize);
3293 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3294 	fs_info->stripesize = stripesize;
3295 
3296 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3297 	if (ret)
3298 		goto fail_alloc;
3299 
3300 	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3301 	if (ret < 0)
3302 		goto fail_alloc;
3303 
3304 	if (sectorsize < PAGE_SIZE) {
3305 		struct btrfs_subpage_info *subpage_info;
3306 
3307 		/*
3308 		 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3309 		 * going to be deprecated.
3310 		 *
3311 		 * Force to use v2 cache for subpage case.
3312 		 */
3313 		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3314 		btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3315 			"forcing free space tree for sector size %u with page size %lu",
3316 			sectorsize, PAGE_SIZE);
3317 
3318 		btrfs_warn(fs_info,
3319 		"read-write for sector size %u with page size %lu is experimental",
3320 			   sectorsize, PAGE_SIZE);
3321 		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3322 		if (!subpage_info) {
3323 			ret = -ENOMEM;
3324 			goto fail_alloc;
3325 		}
3326 		btrfs_init_subpage_info(subpage_info, sectorsize);
3327 		fs_info->subpage_info = subpage_info;
3328 	}
3329 
3330 	ret = btrfs_init_workqueues(fs_info);
3331 	if (ret)
3332 		goto fail_sb_buffer;
3333 
3334 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3335 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3336 
3337 	sb->s_blocksize = sectorsize;
3338 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3339 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3340 
3341 	mutex_lock(&fs_info->chunk_mutex);
3342 	ret = btrfs_read_sys_array(fs_info);
3343 	mutex_unlock(&fs_info->chunk_mutex);
3344 	if (ret) {
3345 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3346 		goto fail_sb_buffer;
3347 	}
3348 
3349 	generation = btrfs_super_chunk_root_generation(disk_super);
3350 	level = btrfs_super_chunk_root_level(disk_super);
3351 	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3352 			      generation, level);
3353 	if (ret) {
3354 		btrfs_err(fs_info, "failed to read chunk root");
3355 		goto fail_tree_roots;
3356 	}
3357 
3358 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3359 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3360 			   BTRFS_UUID_SIZE);
3361 
3362 	ret = btrfs_read_chunk_tree(fs_info);
3363 	if (ret) {
3364 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3365 		goto fail_tree_roots;
3366 	}
3367 
3368 	/*
3369 	 * At this point we know all the devices that make this filesystem,
3370 	 * including the seed devices but we don't know yet if the replace
3371 	 * target is required. So free devices that are not part of this
3372 	 * filesystem but skip the replace target device which is checked
3373 	 * below in btrfs_init_dev_replace().
3374 	 */
3375 	btrfs_free_extra_devids(fs_devices);
3376 	if (!fs_devices->latest_dev->bdev) {
3377 		btrfs_err(fs_info, "failed to read devices");
3378 		ret = -EIO;
3379 		goto fail_tree_roots;
3380 	}
3381 
3382 	ret = init_tree_roots(fs_info);
3383 	if (ret)
3384 		goto fail_tree_roots;
3385 
3386 	/*
3387 	 * Get zone type information of zoned block devices. This will also
3388 	 * handle emulation of a zoned filesystem if a regular device has the
3389 	 * zoned incompat feature flag set.
3390 	 */
3391 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3392 	if (ret) {
3393 		btrfs_err(fs_info,
3394 			  "zoned: failed to read device zone info: %d", ret);
3395 		goto fail_block_groups;
3396 	}
3397 
3398 	/*
3399 	 * If we have a uuid root and we're not being told to rescan we need to
3400 	 * check the generation here so we can set the
3401 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3402 	 * transaction during a balance or the log replay without updating the
3403 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3404 	 * even though it was perfectly fine.
3405 	 */
3406 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3407 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3408 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3409 
3410 	ret = btrfs_verify_dev_extents(fs_info);
3411 	if (ret) {
3412 		btrfs_err(fs_info,
3413 			  "failed to verify dev extents against chunks: %d",
3414 			  ret);
3415 		goto fail_block_groups;
3416 	}
3417 	ret = btrfs_recover_balance(fs_info);
3418 	if (ret) {
3419 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3420 		goto fail_block_groups;
3421 	}
3422 
3423 	ret = btrfs_init_dev_stats(fs_info);
3424 	if (ret) {
3425 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3426 		goto fail_block_groups;
3427 	}
3428 
3429 	ret = btrfs_init_dev_replace(fs_info);
3430 	if (ret) {
3431 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3432 		goto fail_block_groups;
3433 	}
3434 
3435 	ret = btrfs_check_zoned_mode(fs_info);
3436 	if (ret) {
3437 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3438 			  ret);
3439 		goto fail_block_groups;
3440 	}
3441 
3442 	ret = btrfs_sysfs_add_fsid(fs_devices);
3443 	if (ret) {
3444 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3445 				ret);
3446 		goto fail_block_groups;
3447 	}
3448 
3449 	ret = btrfs_sysfs_add_mounted(fs_info);
3450 	if (ret) {
3451 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3452 		goto fail_fsdev_sysfs;
3453 	}
3454 
3455 	ret = btrfs_init_space_info(fs_info);
3456 	if (ret) {
3457 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3458 		goto fail_sysfs;
3459 	}
3460 
3461 	ret = btrfs_read_block_groups(fs_info);
3462 	if (ret) {
3463 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3464 		goto fail_sysfs;
3465 	}
3466 
3467 	btrfs_free_zone_cache(fs_info);
3468 
3469 	btrfs_check_active_zone_reservation(fs_info);
3470 
3471 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3472 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3473 		btrfs_warn(fs_info,
3474 		"writable mount is not allowed due to too many missing devices");
3475 		ret = -EINVAL;
3476 		goto fail_sysfs;
3477 	}
3478 
3479 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3480 					       "btrfs-cleaner");
3481 	if (IS_ERR(fs_info->cleaner_kthread)) {
3482 		ret = PTR_ERR(fs_info->cleaner_kthread);
3483 		goto fail_sysfs;
3484 	}
3485 
3486 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3487 						   tree_root,
3488 						   "btrfs-transaction");
3489 	if (IS_ERR(fs_info->transaction_kthread)) {
3490 		ret = PTR_ERR(fs_info->transaction_kthread);
3491 		goto fail_cleaner;
3492 	}
3493 
3494 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3495 	    !fs_info->fs_devices->rotating) {
3496 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3497 	}
3498 
3499 	/*
3500 	 * For devices supporting discard turn on discard=async automatically,
3501 	 * unless it's already set or disabled. This could be turned off by
3502 	 * nodiscard for the same mount.
3503 	 *
3504 	 * The zoned mode piggy backs on the discard functionality for
3505 	 * resetting a zone. There is no reason to delay the zone reset as it is
3506 	 * fast enough. So, do not enable async discard for zoned mode.
3507 	 */
3508 	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
3509 	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
3510 	      btrfs_test_opt(fs_info, NODISCARD)) &&
3511 	    fs_info->fs_devices->discardable &&
3512 	    !btrfs_is_zoned(fs_info)) {
3513 		btrfs_set_and_info(fs_info, DISCARD_ASYNC,
3514 				   "auto enabling async discard");
3515 	}
3516 
3517 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3518 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3519 		ret = btrfsic_mount(fs_info, fs_devices,
3520 				    btrfs_test_opt(fs_info,
3521 					CHECK_INTEGRITY_DATA) ? 1 : 0,
3522 				    fs_info->check_integrity_print_mask);
3523 		if (ret)
3524 			btrfs_warn(fs_info,
3525 				"failed to initialize integrity check module: %d",
3526 				ret);
3527 	}
3528 #endif
3529 	ret = btrfs_read_qgroup_config(fs_info);
3530 	if (ret)
3531 		goto fail_trans_kthread;
3532 
3533 	if (btrfs_build_ref_tree(fs_info))
3534 		btrfs_err(fs_info, "couldn't build ref tree");
3535 
3536 	/* do not make disk changes in broken FS or nologreplay is given */
3537 	if (btrfs_super_log_root(disk_super) != 0 &&
3538 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3539 		btrfs_info(fs_info, "start tree-log replay");
3540 		ret = btrfs_replay_log(fs_info, fs_devices);
3541 		if (ret)
3542 			goto fail_qgroup;
3543 	}
3544 
3545 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3546 	if (IS_ERR(fs_info->fs_root)) {
3547 		ret = PTR_ERR(fs_info->fs_root);
3548 		btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3549 		fs_info->fs_root = NULL;
3550 		goto fail_qgroup;
3551 	}
3552 
3553 	if (sb_rdonly(sb))
3554 		goto clear_oneshot;
3555 
3556 	ret = btrfs_start_pre_rw_mount(fs_info);
3557 	if (ret) {
3558 		close_ctree(fs_info);
3559 		return ret;
3560 	}
3561 	btrfs_discard_resume(fs_info);
3562 
3563 	if (fs_info->uuid_root &&
3564 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3565 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3566 		btrfs_info(fs_info, "checking UUID tree");
3567 		ret = btrfs_check_uuid_tree(fs_info);
3568 		if (ret) {
3569 			btrfs_warn(fs_info,
3570 				"failed to check the UUID tree: %d", ret);
3571 			close_ctree(fs_info);
3572 			return ret;
3573 		}
3574 	}
3575 
3576 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3577 
3578 	/* Kick the cleaner thread so it'll start deleting snapshots. */
3579 	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3580 		wake_up_process(fs_info->cleaner_kthread);
3581 
3582 clear_oneshot:
3583 	btrfs_clear_oneshot_options(fs_info);
3584 	return 0;
3585 
3586 fail_qgroup:
3587 	btrfs_free_qgroup_config(fs_info);
3588 fail_trans_kthread:
3589 	kthread_stop(fs_info->transaction_kthread);
3590 	btrfs_cleanup_transaction(fs_info);
3591 	btrfs_free_fs_roots(fs_info);
3592 fail_cleaner:
3593 	kthread_stop(fs_info->cleaner_kthread);
3594 
3595 	/*
3596 	 * make sure we're done with the btree inode before we stop our
3597 	 * kthreads
3598 	 */
3599 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3600 
3601 fail_sysfs:
3602 	btrfs_sysfs_remove_mounted(fs_info);
3603 
3604 fail_fsdev_sysfs:
3605 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3606 
3607 fail_block_groups:
3608 	btrfs_put_block_group_cache(fs_info);
3609 
3610 fail_tree_roots:
3611 	if (fs_info->data_reloc_root)
3612 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3613 	free_root_pointers(fs_info, true);
3614 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3615 
3616 fail_sb_buffer:
3617 	btrfs_stop_all_workers(fs_info);
3618 	btrfs_free_block_groups(fs_info);
3619 fail_alloc:
3620 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3621 
3622 	iput(fs_info->btree_inode);
3623 fail:
3624 	btrfs_close_devices(fs_info->fs_devices);
3625 	ASSERT(ret < 0);
3626 	return ret;
3627 }
3628 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3629 
3630 static void btrfs_end_super_write(struct bio *bio)
3631 {
3632 	struct btrfs_device *device = bio->bi_private;
3633 	struct bio_vec *bvec;
3634 	struct bvec_iter_all iter_all;
3635 	struct page *page;
3636 
3637 	bio_for_each_segment_all(bvec, bio, iter_all) {
3638 		page = bvec->bv_page;
3639 
3640 		if (bio->bi_status) {
3641 			btrfs_warn_rl_in_rcu(device->fs_info,
3642 				"lost page write due to IO error on %s (%d)",
3643 				btrfs_dev_name(device),
3644 				blk_status_to_errno(bio->bi_status));
3645 			ClearPageUptodate(page);
3646 			SetPageError(page);
3647 			btrfs_dev_stat_inc_and_print(device,
3648 						     BTRFS_DEV_STAT_WRITE_ERRS);
3649 		} else {
3650 			SetPageUptodate(page);
3651 		}
3652 
3653 		put_page(page);
3654 		unlock_page(page);
3655 	}
3656 
3657 	bio_put(bio);
3658 }
3659 
3660 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3661 						   int copy_num, bool drop_cache)
3662 {
3663 	struct btrfs_super_block *super;
3664 	struct page *page;
3665 	u64 bytenr, bytenr_orig;
3666 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3667 	int ret;
3668 
3669 	bytenr_orig = btrfs_sb_offset(copy_num);
3670 	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3671 	if (ret == -ENOENT)
3672 		return ERR_PTR(-EINVAL);
3673 	else if (ret)
3674 		return ERR_PTR(ret);
3675 
3676 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3677 		return ERR_PTR(-EINVAL);
3678 
3679 	if (drop_cache) {
3680 		/* This should only be called with the primary sb. */
3681 		ASSERT(copy_num == 0);
3682 
3683 		/*
3684 		 * Drop the page of the primary superblock, so later read will
3685 		 * always read from the device.
3686 		 */
3687 		invalidate_inode_pages2_range(mapping,
3688 				bytenr >> PAGE_SHIFT,
3689 				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3690 	}
3691 
3692 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3693 	if (IS_ERR(page))
3694 		return ERR_CAST(page);
3695 
3696 	super = page_address(page);
3697 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3698 		btrfs_release_disk_super(super);
3699 		return ERR_PTR(-ENODATA);
3700 	}
3701 
3702 	if (btrfs_super_bytenr(super) != bytenr_orig) {
3703 		btrfs_release_disk_super(super);
3704 		return ERR_PTR(-EINVAL);
3705 	}
3706 
3707 	return super;
3708 }
3709 
3710 
3711 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3712 {
3713 	struct btrfs_super_block *super, *latest = NULL;
3714 	int i;
3715 	u64 transid = 0;
3716 
3717 	/* we would like to check all the supers, but that would make
3718 	 * a btrfs mount succeed after a mkfs from a different FS.
3719 	 * So, we need to add a special mount option to scan for
3720 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3721 	 */
3722 	for (i = 0; i < 1; i++) {
3723 		super = btrfs_read_dev_one_super(bdev, i, false);
3724 		if (IS_ERR(super))
3725 			continue;
3726 
3727 		if (!latest || btrfs_super_generation(super) > transid) {
3728 			if (latest)
3729 				btrfs_release_disk_super(super);
3730 
3731 			latest = super;
3732 			transid = btrfs_super_generation(super);
3733 		}
3734 	}
3735 
3736 	return super;
3737 }
3738 
3739 /*
3740  * Write superblock @sb to the @device. Do not wait for completion, all the
3741  * pages we use for writing are locked.
3742  *
3743  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3744  * the expected device size at commit time. Note that max_mirrors must be
3745  * same for write and wait phases.
3746  *
3747  * Return number of errors when page is not found or submission fails.
3748  */
3749 static int write_dev_supers(struct btrfs_device *device,
3750 			    struct btrfs_super_block *sb, int max_mirrors)
3751 {
3752 	struct btrfs_fs_info *fs_info = device->fs_info;
3753 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3754 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3755 	int i;
3756 	int errors = 0;
3757 	int ret;
3758 	u64 bytenr, bytenr_orig;
3759 
3760 	if (max_mirrors == 0)
3761 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3762 
3763 	shash->tfm = fs_info->csum_shash;
3764 
3765 	for (i = 0; i < max_mirrors; i++) {
3766 		struct page *page;
3767 		struct bio *bio;
3768 		struct btrfs_super_block *disk_super;
3769 
3770 		bytenr_orig = btrfs_sb_offset(i);
3771 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3772 		if (ret == -ENOENT) {
3773 			continue;
3774 		} else if (ret < 0) {
3775 			btrfs_err(device->fs_info,
3776 				"couldn't get super block location for mirror %d",
3777 				i);
3778 			errors++;
3779 			continue;
3780 		}
3781 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3782 		    device->commit_total_bytes)
3783 			break;
3784 
3785 		btrfs_set_super_bytenr(sb, bytenr_orig);
3786 
3787 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3788 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3789 				    sb->csum);
3790 
3791 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3792 					   GFP_NOFS);
3793 		if (!page) {
3794 			btrfs_err(device->fs_info,
3795 			    "couldn't get super block page for bytenr %llu",
3796 			    bytenr);
3797 			errors++;
3798 			continue;
3799 		}
3800 
3801 		/* Bump the refcount for wait_dev_supers() */
3802 		get_page(page);
3803 
3804 		disk_super = page_address(page);
3805 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3806 
3807 		/*
3808 		 * Directly use bios here instead of relying on the page cache
3809 		 * to do I/O, so we don't lose the ability to do integrity
3810 		 * checking.
3811 		 */
3812 		bio = bio_alloc(device->bdev, 1,
3813 				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3814 				GFP_NOFS);
3815 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3816 		bio->bi_private = device;
3817 		bio->bi_end_io = btrfs_end_super_write;
3818 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3819 			       offset_in_page(bytenr));
3820 
3821 		/*
3822 		 * We FUA only the first super block.  The others we allow to
3823 		 * go down lazy and there's a short window where the on-disk
3824 		 * copies might still contain the older version.
3825 		 */
3826 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3827 			bio->bi_opf |= REQ_FUA;
3828 
3829 		btrfsic_check_bio(bio);
3830 		submit_bio(bio);
3831 
3832 		if (btrfs_advance_sb_log(device, i))
3833 			errors++;
3834 	}
3835 	return errors < i ? 0 : -1;
3836 }
3837 
3838 /*
3839  * Wait for write completion of superblocks done by write_dev_supers,
3840  * @max_mirrors same for write and wait phases.
3841  *
3842  * Return number of errors when page is not found or not marked up to
3843  * date.
3844  */
3845 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3846 {
3847 	int i;
3848 	int errors = 0;
3849 	bool primary_failed = false;
3850 	int ret;
3851 	u64 bytenr;
3852 
3853 	if (max_mirrors == 0)
3854 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3855 
3856 	for (i = 0; i < max_mirrors; i++) {
3857 		struct page *page;
3858 
3859 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3860 		if (ret == -ENOENT) {
3861 			break;
3862 		} else if (ret < 0) {
3863 			errors++;
3864 			if (i == 0)
3865 				primary_failed = true;
3866 			continue;
3867 		}
3868 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3869 		    device->commit_total_bytes)
3870 			break;
3871 
3872 		page = find_get_page(device->bdev->bd_inode->i_mapping,
3873 				     bytenr >> PAGE_SHIFT);
3874 		if (!page) {
3875 			errors++;
3876 			if (i == 0)
3877 				primary_failed = true;
3878 			continue;
3879 		}
3880 		/* Page is submitted locked and unlocked once the IO completes */
3881 		wait_on_page_locked(page);
3882 		if (PageError(page)) {
3883 			errors++;
3884 			if (i == 0)
3885 				primary_failed = true;
3886 		}
3887 
3888 		/* Drop our reference */
3889 		put_page(page);
3890 
3891 		/* Drop the reference from the writing run */
3892 		put_page(page);
3893 	}
3894 
3895 	/* log error, force error return */
3896 	if (primary_failed) {
3897 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3898 			  device->devid);
3899 		return -1;
3900 	}
3901 
3902 	return errors < i ? 0 : -1;
3903 }
3904 
3905 /*
3906  * endio for the write_dev_flush, this will wake anyone waiting
3907  * for the barrier when it is done
3908  */
3909 static void btrfs_end_empty_barrier(struct bio *bio)
3910 {
3911 	bio_uninit(bio);
3912 	complete(bio->bi_private);
3913 }
3914 
3915 /*
3916  * Submit a flush request to the device if it supports it. Error handling is
3917  * done in the waiting counterpart.
3918  */
3919 static void write_dev_flush(struct btrfs_device *device)
3920 {
3921 	struct bio *bio = &device->flush_bio;
3922 
3923 	device->last_flush_error = BLK_STS_OK;
3924 
3925 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3926 	/*
3927 	 * When a disk has write caching disabled, we skip submission of a bio
3928 	 * with flush and sync requests before writing the superblock, since
3929 	 * it's not needed. However when the integrity checker is enabled, this
3930 	 * results in reports that there are metadata blocks referred by a
3931 	 * superblock that were not properly flushed. So don't skip the bio
3932 	 * submission only when the integrity checker is enabled for the sake
3933 	 * of simplicity, since this is a debug tool and not meant for use in
3934 	 * non-debug builds.
3935 	 */
3936 	if (!bdev_write_cache(device->bdev))
3937 		return;
3938 #endif
3939 
3940 	bio_init(bio, device->bdev, NULL, 0,
3941 		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3942 	bio->bi_end_io = btrfs_end_empty_barrier;
3943 	init_completion(&device->flush_wait);
3944 	bio->bi_private = &device->flush_wait;
3945 
3946 	btrfsic_check_bio(bio);
3947 	submit_bio(bio);
3948 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3949 }
3950 
3951 /*
3952  * If the flush bio has been submitted by write_dev_flush, wait for it.
3953  * Return true for any error, and false otherwise.
3954  */
3955 static bool wait_dev_flush(struct btrfs_device *device)
3956 {
3957 	struct bio *bio = &device->flush_bio;
3958 
3959 	if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3960 		return false;
3961 
3962 	wait_for_completion_io(&device->flush_wait);
3963 
3964 	if (bio->bi_status) {
3965 		device->last_flush_error = bio->bi_status;
3966 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3967 		return true;
3968 	}
3969 
3970 	return false;
3971 }
3972 
3973 /*
3974  * send an empty flush down to each device in parallel,
3975  * then wait for them
3976  */
3977 static int barrier_all_devices(struct btrfs_fs_info *info)
3978 {
3979 	struct list_head *head;
3980 	struct btrfs_device *dev;
3981 	int errors_wait = 0;
3982 
3983 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3984 	/* send down all the barriers */
3985 	head = &info->fs_devices->devices;
3986 	list_for_each_entry(dev, head, dev_list) {
3987 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3988 			continue;
3989 		if (!dev->bdev)
3990 			continue;
3991 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3992 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3993 			continue;
3994 
3995 		write_dev_flush(dev);
3996 	}
3997 
3998 	/* wait for all the barriers */
3999 	list_for_each_entry(dev, head, dev_list) {
4000 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4001 			continue;
4002 		if (!dev->bdev) {
4003 			errors_wait++;
4004 			continue;
4005 		}
4006 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4007 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4008 			continue;
4009 
4010 		if (wait_dev_flush(dev))
4011 			errors_wait++;
4012 	}
4013 
4014 	/*
4015 	 * Checks last_flush_error of disks in order to determine the device
4016 	 * state.
4017 	 */
4018 	if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
4019 		return -EIO;
4020 
4021 	return 0;
4022 }
4023 
4024 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4025 {
4026 	int raid_type;
4027 	int min_tolerated = INT_MAX;
4028 
4029 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4030 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4031 		min_tolerated = min_t(int, min_tolerated,
4032 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4033 				    tolerated_failures);
4034 
4035 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4036 		if (raid_type == BTRFS_RAID_SINGLE)
4037 			continue;
4038 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4039 			continue;
4040 		min_tolerated = min_t(int, min_tolerated,
4041 				    btrfs_raid_array[raid_type].
4042 				    tolerated_failures);
4043 	}
4044 
4045 	if (min_tolerated == INT_MAX) {
4046 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4047 		min_tolerated = 0;
4048 	}
4049 
4050 	return min_tolerated;
4051 }
4052 
4053 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4054 {
4055 	struct list_head *head;
4056 	struct btrfs_device *dev;
4057 	struct btrfs_super_block *sb;
4058 	struct btrfs_dev_item *dev_item;
4059 	int ret;
4060 	int do_barriers;
4061 	int max_errors;
4062 	int total_errors = 0;
4063 	u64 flags;
4064 
4065 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4066 
4067 	/*
4068 	 * max_mirrors == 0 indicates we're from commit_transaction,
4069 	 * not from fsync where the tree roots in fs_info have not
4070 	 * been consistent on disk.
4071 	 */
4072 	if (max_mirrors == 0)
4073 		backup_super_roots(fs_info);
4074 
4075 	sb = fs_info->super_for_commit;
4076 	dev_item = &sb->dev_item;
4077 
4078 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4079 	head = &fs_info->fs_devices->devices;
4080 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4081 
4082 	if (do_barriers) {
4083 		ret = barrier_all_devices(fs_info);
4084 		if (ret) {
4085 			mutex_unlock(
4086 				&fs_info->fs_devices->device_list_mutex);
4087 			btrfs_handle_fs_error(fs_info, ret,
4088 					      "errors while submitting device barriers.");
4089 			return ret;
4090 		}
4091 	}
4092 
4093 	list_for_each_entry(dev, head, dev_list) {
4094 		if (!dev->bdev) {
4095 			total_errors++;
4096 			continue;
4097 		}
4098 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4099 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4100 			continue;
4101 
4102 		btrfs_set_stack_device_generation(dev_item, 0);
4103 		btrfs_set_stack_device_type(dev_item, dev->type);
4104 		btrfs_set_stack_device_id(dev_item, dev->devid);
4105 		btrfs_set_stack_device_total_bytes(dev_item,
4106 						   dev->commit_total_bytes);
4107 		btrfs_set_stack_device_bytes_used(dev_item,
4108 						  dev->commit_bytes_used);
4109 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4110 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4111 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4112 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4113 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4114 		       BTRFS_FSID_SIZE);
4115 
4116 		flags = btrfs_super_flags(sb);
4117 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4118 
4119 		ret = btrfs_validate_write_super(fs_info, sb);
4120 		if (ret < 0) {
4121 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4122 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4123 				"unexpected superblock corruption detected");
4124 			return -EUCLEAN;
4125 		}
4126 
4127 		ret = write_dev_supers(dev, sb, max_mirrors);
4128 		if (ret)
4129 			total_errors++;
4130 	}
4131 	if (total_errors > max_errors) {
4132 		btrfs_err(fs_info, "%d errors while writing supers",
4133 			  total_errors);
4134 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4135 
4136 		/* FUA is masked off if unsupported and can't be the reason */
4137 		btrfs_handle_fs_error(fs_info, -EIO,
4138 				      "%d errors while writing supers",
4139 				      total_errors);
4140 		return -EIO;
4141 	}
4142 
4143 	total_errors = 0;
4144 	list_for_each_entry(dev, head, dev_list) {
4145 		if (!dev->bdev)
4146 			continue;
4147 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4148 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4149 			continue;
4150 
4151 		ret = wait_dev_supers(dev, max_mirrors);
4152 		if (ret)
4153 			total_errors++;
4154 	}
4155 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4156 	if (total_errors > max_errors) {
4157 		btrfs_handle_fs_error(fs_info, -EIO,
4158 				      "%d errors while writing supers",
4159 				      total_errors);
4160 		return -EIO;
4161 	}
4162 	return 0;
4163 }
4164 
4165 /* Drop a fs root from the radix tree and free it. */
4166 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4167 				  struct btrfs_root *root)
4168 {
4169 	bool drop_ref = false;
4170 
4171 	spin_lock(&fs_info->fs_roots_radix_lock);
4172 	radix_tree_delete(&fs_info->fs_roots_radix,
4173 			  (unsigned long)root->root_key.objectid);
4174 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4175 		drop_ref = true;
4176 	spin_unlock(&fs_info->fs_roots_radix_lock);
4177 
4178 	if (BTRFS_FS_ERROR(fs_info)) {
4179 		ASSERT(root->log_root == NULL);
4180 		if (root->reloc_root) {
4181 			btrfs_put_root(root->reloc_root);
4182 			root->reloc_root = NULL;
4183 		}
4184 	}
4185 
4186 	if (drop_ref)
4187 		btrfs_put_root(root);
4188 }
4189 
4190 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4191 {
4192 	struct btrfs_root *root = fs_info->tree_root;
4193 	struct btrfs_trans_handle *trans;
4194 
4195 	mutex_lock(&fs_info->cleaner_mutex);
4196 	btrfs_run_delayed_iputs(fs_info);
4197 	mutex_unlock(&fs_info->cleaner_mutex);
4198 	wake_up_process(fs_info->cleaner_kthread);
4199 
4200 	/* wait until ongoing cleanup work done */
4201 	down_write(&fs_info->cleanup_work_sem);
4202 	up_write(&fs_info->cleanup_work_sem);
4203 
4204 	trans = btrfs_join_transaction(root);
4205 	if (IS_ERR(trans))
4206 		return PTR_ERR(trans);
4207 	return btrfs_commit_transaction(trans);
4208 }
4209 
4210 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4211 {
4212 	struct btrfs_transaction *trans;
4213 	struct btrfs_transaction *tmp;
4214 	bool found = false;
4215 
4216 	if (list_empty(&fs_info->trans_list))
4217 		return;
4218 
4219 	/*
4220 	 * This function is only called at the very end of close_ctree(),
4221 	 * thus no other running transaction, no need to take trans_lock.
4222 	 */
4223 	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4224 	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4225 		struct extent_state *cached = NULL;
4226 		u64 dirty_bytes = 0;
4227 		u64 cur = 0;
4228 		u64 found_start;
4229 		u64 found_end;
4230 
4231 		found = true;
4232 		while (find_first_extent_bit(&trans->dirty_pages, cur,
4233 			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4234 			dirty_bytes += found_end + 1 - found_start;
4235 			cur = found_end + 1;
4236 		}
4237 		btrfs_warn(fs_info,
4238 	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4239 			   trans->transid, dirty_bytes);
4240 		btrfs_cleanup_one_transaction(trans, fs_info);
4241 
4242 		if (trans == fs_info->running_transaction)
4243 			fs_info->running_transaction = NULL;
4244 		list_del_init(&trans->list);
4245 
4246 		btrfs_put_transaction(trans);
4247 		trace_btrfs_transaction_commit(fs_info);
4248 	}
4249 	ASSERT(!found);
4250 }
4251 
4252 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4253 {
4254 	int ret;
4255 
4256 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4257 
4258 	/*
4259 	 * If we had UNFINISHED_DROPS we could still be processing them, so
4260 	 * clear that bit and wake up relocation so it can stop.
4261 	 * We must do this before stopping the block group reclaim task, because
4262 	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4263 	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4264 	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4265 	 * return 1.
4266 	 */
4267 	btrfs_wake_unfinished_drop(fs_info);
4268 
4269 	/*
4270 	 * We may have the reclaim task running and relocating a data block group,
4271 	 * in which case it may create delayed iputs. So stop it before we park
4272 	 * the cleaner kthread otherwise we can get new delayed iputs after
4273 	 * parking the cleaner, and that can make the async reclaim task to hang
4274 	 * if it's waiting for delayed iputs to complete, since the cleaner is
4275 	 * parked and can not run delayed iputs - this will make us hang when
4276 	 * trying to stop the async reclaim task.
4277 	 */
4278 	cancel_work_sync(&fs_info->reclaim_bgs_work);
4279 	/*
4280 	 * We don't want the cleaner to start new transactions, add more delayed
4281 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4282 	 * because that frees the task_struct, and the transaction kthread might
4283 	 * still try to wake up the cleaner.
4284 	 */
4285 	kthread_park(fs_info->cleaner_kthread);
4286 
4287 	/* wait for the qgroup rescan worker to stop */
4288 	btrfs_qgroup_wait_for_completion(fs_info, false);
4289 
4290 	/* wait for the uuid_scan task to finish */
4291 	down(&fs_info->uuid_tree_rescan_sem);
4292 	/* avoid complains from lockdep et al., set sem back to initial state */
4293 	up(&fs_info->uuid_tree_rescan_sem);
4294 
4295 	/* pause restriper - we want to resume on mount */
4296 	btrfs_pause_balance(fs_info);
4297 
4298 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4299 
4300 	btrfs_scrub_cancel(fs_info);
4301 
4302 	/* wait for any defraggers to finish */
4303 	wait_event(fs_info->transaction_wait,
4304 		   (atomic_read(&fs_info->defrag_running) == 0));
4305 
4306 	/* clear out the rbtree of defraggable inodes */
4307 	btrfs_cleanup_defrag_inodes(fs_info);
4308 
4309 	/*
4310 	 * After we parked the cleaner kthread, ordered extents may have
4311 	 * completed and created new delayed iputs. If one of the async reclaim
4312 	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4313 	 * can hang forever trying to stop it, because if a delayed iput is
4314 	 * added after it ran btrfs_run_delayed_iputs() and before it called
4315 	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4316 	 * no one else to run iputs.
4317 	 *
4318 	 * So wait for all ongoing ordered extents to complete and then run
4319 	 * delayed iputs. This works because once we reach this point no one
4320 	 * can either create new ordered extents nor create delayed iputs
4321 	 * through some other means.
4322 	 *
4323 	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4324 	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4325 	 * but the delayed iput for the respective inode is made only when doing
4326 	 * the final btrfs_put_ordered_extent() (which must happen at
4327 	 * btrfs_finish_ordered_io() when we are unmounting).
4328 	 */
4329 	btrfs_flush_workqueue(fs_info->endio_write_workers);
4330 	/* Ordered extents for free space inodes. */
4331 	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4332 	btrfs_run_delayed_iputs(fs_info);
4333 
4334 	cancel_work_sync(&fs_info->async_reclaim_work);
4335 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4336 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4337 
4338 	/* Cancel or finish ongoing discard work */
4339 	btrfs_discard_cleanup(fs_info);
4340 
4341 	if (!sb_rdonly(fs_info->sb)) {
4342 		/*
4343 		 * The cleaner kthread is stopped, so do one final pass over
4344 		 * unused block groups.
4345 		 */
4346 		btrfs_delete_unused_bgs(fs_info);
4347 
4348 		/*
4349 		 * There might be existing delayed inode workers still running
4350 		 * and holding an empty delayed inode item. We must wait for
4351 		 * them to complete first because they can create a transaction.
4352 		 * This happens when someone calls btrfs_balance_delayed_items()
4353 		 * and then a transaction commit runs the same delayed nodes
4354 		 * before any delayed worker has done something with the nodes.
4355 		 * We must wait for any worker here and not at transaction
4356 		 * commit time since that could cause a deadlock.
4357 		 * This is a very rare case.
4358 		 */
4359 		btrfs_flush_workqueue(fs_info->delayed_workers);
4360 
4361 		ret = btrfs_commit_super(fs_info);
4362 		if (ret)
4363 			btrfs_err(fs_info, "commit super ret %d", ret);
4364 	}
4365 
4366 	if (BTRFS_FS_ERROR(fs_info))
4367 		btrfs_error_commit_super(fs_info);
4368 
4369 	kthread_stop(fs_info->transaction_kthread);
4370 	kthread_stop(fs_info->cleaner_kthread);
4371 
4372 	ASSERT(list_empty(&fs_info->delayed_iputs));
4373 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4374 
4375 	if (btrfs_check_quota_leak(fs_info)) {
4376 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4377 		btrfs_err(fs_info, "qgroup reserved space leaked");
4378 	}
4379 
4380 	btrfs_free_qgroup_config(fs_info);
4381 	ASSERT(list_empty(&fs_info->delalloc_roots));
4382 
4383 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4384 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4385 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4386 	}
4387 
4388 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4389 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4390 			   percpu_counter_sum(&fs_info->ordered_bytes));
4391 
4392 	btrfs_sysfs_remove_mounted(fs_info);
4393 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4394 
4395 	btrfs_put_block_group_cache(fs_info);
4396 
4397 	/*
4398 	 * we must make sure there is not any read request to
4399 	 * submit after we stopping all workers.
4400 	 */
4401 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4402 	btrfs_stop_all_workers(fs_info);
4403 
4404 	/* We shouldn't have any transaction open at this point */
4405 	warn_about_uncommitted_trans(fs_info);
4406 
4407 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4408 	free_root_pointers(fs_info, true);
4409 	btrfs_free_fs_roots(fs_info);
4410 
4411 	/*
4412 	 * We must free the block groups after dropping the fs_roots as we could
4413 	 * have had an IO error and have left over tree log blocks that aren't
4414 	 * cleaned up until the fs roots are freed.  This makes the block group
4415 	 * accounting appear to be wrong because there's pending reserved bytes,
4416 	 * so make sure we do the block group cleanup afterwards.
4417 	 */
4418 	btrfs_free_block_groups(fs_info);
4419 
4420 	iput(fs_info->btree_inode);
4421 
4422 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4423 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4424 		btrfsic_unmount(fs_info->fs_devices);
4425 #endif
4426 
4427 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4428 	btrfs_close_devices(fs_info->fs_devices);
4429 }
4430 
4431 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4432 {
4433 	struct btrfs_fs_info *fs_info = buf->fs_info;
4434 	u64 transid = btrfs_header_generation(buf);
4435 
4436 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4437 	/*
4438 	 * This is a fast path so only do this check if we have sanity tests
4439 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4440 	 * outside of the sanity tests.
4441 	 */
4442 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4443 		return;
4444 #endif
4445 	btrfs_assert_tree_write_locked(buf);
4446 	if (transid != fs_info->generation)
4447 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4448 			buf->start, transid, fs_info->generation);
4449 	set_extent_buffer_dirty(buf);
4450 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4451 	/*
4452 	 * btrfs_check_leaf() won't check item data if we don't have WRITTEN
4453 	 * set, so this will only validate the basic structure of the items.
4454 	 */
4455 	if (btrfs_header_level(buf) == 0 && btrfs_check_leaf(buf)) {
4456 		btrfs_print_leaf(buf);
4457 		ASSERT(0);
4458 	}
4459 #endif
4460 }
4461 
4462 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4463 					int flush_delayed)
4464 {
4465 	/*
4466 	 * looks as though older kernels can get into trouble with
4467 	 * this code, they end up stuck in balance_dirty_pages forever
4468 	 */
4469 	int ret;
4470 
4471 	if (current->flags & PF_MEMALLOC)
4472 		return;
4473 
4474 	if (flush_delayed)
4475 		btrfs_balance_delayed_items(fs_info);
4476 
4477 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4478 				     BTRFS_DIRTY_METADATA_THRESH,
4479 				     fs_info->dirty_metadata_batch);
4480 	if (ret > 0) {
4481 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4482 	}
4483 }
4484 
4485 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4486 {
4487 	__btrfs_btree_balance_dirty(fs_info, 1);
4488 }
4489 
4490 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4491 {
4492 	__btrfs_btree_balance_dirty(fs_info, 0);
4493 }
4494 
4495 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4496 {
4497 	/* cleanup FS via transaction */
4498 	btrfs_cleanup_transaction(fs_info);
4499 
4500 	mutex_lock(&fs_info->cleaner_mutex);
4501 	btrfs_run_delayed_iputs(fs_info);
4502 	mutex_unlock(&fs_info->cleaner_mutex);
4503 
4504 	down_write(&fs_info->cleanup_work_sem);
4505 	up_write(&fs_info->cleanup_work_sem);
4506 }
4507 
4508 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4509 {
4510 	struct btrfs_root *gang[8];
4511 	u64 root_objectid = 0;
4512 	int ret;
4513 
4514 	spin_lock(&fs_info->fs_roots_radix_lock);
4515 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4516 					     (void **)gang, root_objectid,
4517 					     ARRAY_SIZE(gang))) != 0) {
4518 		int i;
4519 
4520 		for (i = 0; i < ret; i++)
4521 			gang[i] = btrfs_grab_root(gang[i]);
4522 		spin_unlock(&fs_info->fs_roots_radix_lock);
4523 
4524 		for (i = 0; i < ret; i++) {
4525 			if (!gang[i])
4526 				continue;
4527 			root_objectid = gang[i]->root_key.objectid;
4528 			btrfs_free_log(NULL, gang[i]);
4529 			btrfs_put_root(gang[i]);
4530 		}
4531 		root_objectid++;
4532 		spin_lock(&fs_info->fs_roots_radix_lock);
4533 	}
4534 	spin_unlock(&fs_info->fs_roots_radix_lock);
4535 	btrfs_free_log_root_tree(NULL, fs_info);
4536 }
4537 
4538 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4539 {
4540 	struct btrfs_ordered_extent *ordered;
4541 
4542 	spin_lock(&root->ordered_extent_lock);
4543 	/*
4544 	 * This will just short circuit the ordered completion stuff which will
4545 	 * make sure the ordered extent gets properly cleaned up.
4546 	 */
4547 	list_for_each_entry(ordered, &root->ordered_extents,
4548 			    root_extent_list)
4549 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4550 	spin_unlock(&root->ordered_extent_lock);
4551 }
4552 
4553 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4554 {
4555 	struct btrfs_root *root;
4556 	LIST_HEAD(splice);
4557 
4558 	spin_lock(&fs_info->ordered_root_lock);
4559 	list_splice_init(&fs_info->ordered_roots, &splice);
4560 	while (!list_empty(&splice)) {
4561 		root = list_first_entry(&splice, struct btrfs_root,
4562 					ordered_root);
4563 		list_move_tail(&root->ordered_root,
4564 			       &fs_info->ordered_roots);
4565 
4566 		spin_unlock(&fs_info->ordered_root_lock);
4567 		btrfs_destroy_ordered_extents(root);
4568 
4569 		cond_resched();
4570 		spin_lock(&fs_info->ordered_root_lock);
4571 	}
4572 	spin_unlock(&fs_info->ordered_root_lock);
4573 
4574 	/*
4575 	 * We need this here because if we've been flipped read-only we won't
4576 	 * get sync() from the umount, so we need to make sure any ordered
4577 	 * extents that haven't had their dirty pages IO start writeout yet
4578 	 * actually get run and error out properly.
4579 	 */
4580 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4581 }
4582 
4583 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4584 				       struct btrfs_fs_info *fs_info)
4585 {
4586 	struct rb_node *node;
4587 	struct btrfs_delayed_ref_root *delayed_refs;
4588 	struct btrfs_delayed_ref_node *ref;
4589 
4590 	delayed_refs = &trans->delayed_refs;
4591 
4592 	spin_lock(&delayed_refs->lock);
4593 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4594 		spin_unlock(&delayed_refs->lock);
4595 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4596 		return;
4597 	}
4598 
4599 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4600 		struct btrfs_delayed_ref_head *head;
4601 		struct rb_node *n;
4602 		bool pin_bytes = false;
4603 
4604 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4605 				href_node);
4606 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4607 			continue;
4608 
4609 		spin_lock(&head->lock);
4610 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4611 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4612 				       ref_node);
4613 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4614 			RB_CLEAR_NODE(&ref->ref_node);
4615 			if (!list_empty(&ref->add_list))
4616 				list_del(&ref->add_list);
4617 			atomic_dec(&delayed_refs->num_entries);
4618 			btrfs_put_delayed_ref(ref);
4619 		}
4620 		if (head->must_insert_reserved)
4621 			pin_bytes = true;
4622 		btrfs_free_delayed_extent_op(head->extent_op);
4623 		btrfs_delete_ref_head(delayed_refs, head);
4624 		spin_unlock(&head->lock);
4625 		spin_unlock(&delayed_refs->lock);
4626 		mutex_unlock(&head->mutex);
4627 
4628 		if (pin_bytes) {
4629 			struct btrfs_block_group *cache;
4630 
4631 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4632 			BUG_ON(!cache);
4633 
4634 			spin_lock(&cache->space_info->lock);
4635 			spin_lock(&cache->lock);
4636 			cache->pinned += head->num_bytes;
4637 			btrfs_space_info_update_bytes_pinned(fs_info,
4638 				cache->space_info, head->num_bytes);
4639 			cache->reserved -= head->num_bytes;
4640 			cache->space_info->bytes_reserved -= head->num_bytes;
4641 			spin_unlock(&cache->lock);
4642 			spin_unlock(&cache->space_info->lock);
4643 
4644 			btrfs_put_block_group(cache);
4645 
4646 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4647 				head->bytenr + head->num_bytes - 1);
4648 		}
4649 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4650 		btrfs_put_delayed_ref_head(head);
4651 		cond_resched();
4652 		spin_lock(&delayed_refs->lock);
4653 	}
4654 	btrfs_qgroup_destroy_extent_records(trans);
4655 
4656 	spin_unlock(&delayed_refs->lock);
4657 }
4658 
4659 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4660 {
4661 	struct btrfs_inode *btrfs_inode;
4662 	LIST_HEAD(splice);
4663 
4664 	spin_lock(&root->delalloc_lock);
4665 	list_splice_init(&root->delalloc_inodes, &splice);
4666 
4667 	while (!list_empty(&splice)) {
4668 		struct inode *inode = NULL;
4669 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4670 					       delalloc_inodes);
4671 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4672 		spin_unlock(&root->delalloc_lock);
4673 
4674 		/*
4675 		 * Make sure we get a live inode and that it'll not disappear
4676 		 * meanwhile.
4677 		 */
4678 		inode = igrab(&btrfs_inode->vfs_inode);
4679 		if (inode) {
4680 			unsigned int nofs_flag;
4681 
4682 			nofs_flag = memalloc_nofs_save();
4683 			invalidate_inode_pages2(inode->i_mapping);
4684 			memalloc_nofs_restore(nofs_flag);
4685 			iput(inode);
4686 		}
4687 		spin_lock(&root->delalloc_lock);
4688 	}
4689 	spin_unlock(&root->delalloc_lock);
4690 }
4691 
4692 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4693 {
4694 	struct btrfs_root *root;
4695 	LIST_HEAD(splice);
4696 
4697 	spin_lock(&fs_info->delalloc_root_lock);
4698 	list_splice_init(&fs_info->delalloc_roots, &splice);
4699 	while (!list_empty(&splice)) {
4700 		root = list_first_entry(&splice, struct btrfs_root,
4701 					 delalloc_root);
4702 		root = btrfs_grab_root(root);
4703 		BUG_ON(!root);
4704 		spin_unlock(&fs_info->delalloc_root_lock);
4705 
4706 		btrfs_destroy_delalloc_inodes(root);
4707 		btrfs_put_root(root);
4708 
4709 		spin_lock(&fs_info->delalloc_root_lock);
4710 	}
4711 	spin_unlock(&fs_info->delalloc_root_lock);
4712 }
4713 
4714 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4715 					 struct extent_io_tree *dirty_pages,
4716 					 int mark)
4717 {
4718 	struct extent_buffer *eb;
4719 	u64 start = 0;
4720 	u64 end;
4721 
4722 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
4723 				     mark, NULL)) {
4724 		clear_extent_bits(dirty_pages, start, end, mark);
4725 		while (start <= end) {
4726 			eb = find_extent_buffer(fs_info, start);
4727 			start += fs_info->nodesize;
4728 			if (!eb)
4729 				continue;
4730 
4731 			btrfs_tree_lock(eb);
4732 			wait_on_extent_buffer_writeback(eb);
4733 			btrfs_clear_buffer_dirty(NULL, eb);
4734 			btrfs_tree_unlock(eb);
4735 
4736 			free_extent_buffer_stale(eb);
4737 		}
4738 	}
4739 }
4740 
4741 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4742 					struct extent_io_tree *unpin)
4743 {
4744 	u64 start;
4745 	u64 end;
4746 
4747 	while (1) {
4748 		struct extent_state *cached_state = NULL;
4749 
4750 		/*
4751 		 * The btrfs_finish_extent_commit() may get the same range as
4752 		 * ours between find_first_extent_bit and clear_extent_dirty.
4753 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4754 		 * the same extent range.
4755 		 */
4756 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4757 		if (!find_first_extent_bit(unpin, 0, &start, &end,
4758 					   EXTENT_DIRTY, &cached_state)) {
4759 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4760 			break;
4761 		}
4762 
4763 		clear_extent_dirty(unpin, start, end, &cached_state);
4764 		free_extent_state(cached_state);
4765 		btrfs_error_unpin_extent_range(fs_info, start, end);
4766 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4767 		cond_resched();
4768 	}
4769 }
4770 
4771 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4772 {
4773 	struct inode *inode;
4774 
4775 	inode = cache->io_ctl.inode;
4776 	if (inode) {
4777 		unsigned int nofs_flag;
4778 
4779 		nofs_flag = memalloc_nofs_save();
4780 		invalidate_inode_pages2(inode->i_mapping);
4781 		memalloc_nofs_restore(nofs_flag);
4782 
4783 		BTRFS_I(inode)->generation = 0;
4784 		cache->io_ctl.inode = NULL;
4785 		iput(inode);
4786 	}
4787 	ASSERT(cache->io_ctl.pages == NULL);
4788 	btrfs_put_block_group(cache);
4789 }
4790 
4791 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4792 			     struct btrfs_fs_info *fs_info)
4793 {
4794 	struct btrfs_block_group *cache;
4795 
4796 	spin_lock(&cur_trans->dirty_bgs_lock);
4797 	while (!list_empty(&cur_trans->dirty_bgs)) {
4798 		cache = list_first_entry(&cur_trans->dirty_bgs,
4799 					 struct btrfs_block_group,
4800 					 dirty_list);
4801 
4802 		if (!list_empty(&cache->io_list)) {
4803 			spin_unlock(&cur_trans->dirty_bgs_lock);
4804 			list_del_init(&cache->io_list);
4805 			btrfs_cleanup_bg_io(cache);
4806 			spin_lock(&cur_trans->dirty_bgs_lock);
4807 		}
4808 
4809 		list_del_init(&cache->dirty_list);
4810 		spin_lock(&cache->lock);
4811 		cache->disk_cache_state = BTRFS_DC_ERROR;
4812 		spin_unlock(&cache->lock);
4813 
4814 		spin_unlock(&cur_trans->dirty_bgs_lock);
4815 		btrfs_put_block_group(cache);
4816 		btrfs_delayed_refs_rsv_release(fs_info, 1);
4817 		spin_lock(&cur_trans->dirty_bgs_lock);
4818 	}
4819 	spin_unlock(&cur_trans->dirty_bgs_lock);
4820 
4821 	/*
4822 	 * Refer to the definition of io_bgs member for details why it's safe
4823 	 * to use it without any locking
4824 	 */
4825 	while (!list_empty(&cur_trans->io_bgs)) {
4826 		cache = list_first_entry(&cur_trans->io_bgs,
4827 					 struct btrfs_block_group,
4828 					 io_list);
4829 
4830 		list_del_init(&cache->io_list);
4831 		spin_lock(&cache->lock);
4832 		cache->disk_cache_state = BTRFS_DC_ERROR;
4833 		spin_unlock(&cache->lock);
4834 		btrfs_cleanup_bg_io(cache);
4835 	}
4836 }
4837 
4838 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4839 				   struct btrfs_fs_info *fs_info)
4840 {
4841 	struct btrfs_device *dev, *tmp;
4842 
4843 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4844 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4845 	ASSERT(list_empty(&cur_trans->io_bgs));
4846 
4847 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4848 				 post_commit_list) {
4849 		list_del_init(&dev->post_commit_list);
4850 	}
4851 
4852 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4853 
4854 	cur_trans->state = TRANS_STATE_COMMIT_START;
4855 	wake_up(&fs_info->transaction_blocked_wait);
4856 
4857 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4858 	wake_up(&fs_info->transaction_wait);
4859 
4860 	btrfs_destroy_delayed_inodes(fs_info);
4861 
4862 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4863 				     EXTENT_DIRTY);
4864 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4865 
4866 	cur_trans->state =TRANS_STATE_COMPLETED;
4867 	wake_up(&cur_trans->commit_wait);
4868 }
4869 
4870 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4871 {
4872 	struct btrfs_transaction *t;
4873 
4874 	mutex_lock(&fs_info->transaction_kthread_mutex);
4875 
4876 	spin_lock(&fs_info->trans_lock);
4877 	while (!list_empty(&fs_info->trans_list)) {
4878 		t = list_first_entry(&fs_info->trans_list,
4879 				     struct btrfs_transaction, list);
4880 		if (t->state >= TRANS_STATE_COMMIT_START) {
4881 			refcount_inc(&t->use_count);
4882 			spin_unlock(&fs_info->trans_lock);
4883 			btrfs_wait_for_commit(fs_info, t->transid);
4884 			btrfs_put_transaction(t);
4885 			spin_lock(&fs_info->trans_lock);
4886 			continue;
4887 		}
4888 		if (t == fs_info->running_transaction) {
4889 			t->state = TRANS_STATE_COMMIT_DOING;
4890 			spin_unlock(&fs_info->trans_lock);
4891 			/*
4892 			 * We wait for 0 num_writers since we don't hold a trans
4893 			 * handle open currently for this transaction.
4894 			 */
4895 			wait_event(t->writer_wait,
4896 				   atomic_read(&t->num_writers) == 0);
4897 		} else {
4898 			spin_unlock(&fs_info->trans_lock);
4899 		}
4900 		btrfs_cleanup_one_transaction(t, fs_info);
4901 
4902 		spin_lock(&fs_info->trans_lock);
4903 		if (t == fs_info->running_transaction)
4904 			fs_info->running_transaction = NULL;
4905 		list_del_init(&t->list);
4906 		spin_unlock(&fs_info->trans_lock);
4907 
4908 		btrfs_put_transaction(t);
4909 		trace_btrfs_transaction_commit(fs_info);
4910 		spin_lock(&fs_info->trans_lock);
4911 	}
4912 	spin_unlock(&fs_info->trans_lock);
4913 	btrfs_destroy_all_ordered_extents(fs_info);
4914 	btrfs_destroy_delayed_inodes(fs_info);
4915 	btrfs_assert_delayed_root_empty(fs_info);
4916 	btrfs_destroy_all_delalloc_inodes(fs_info);
4917 	btrfs_drop_all_logs(fs_info);
4918 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4919 
4920 	return 0;
4921 }
4922 
4923 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4924 {
4925 	struct btrfs_path *path;
4926 	int ret;
4927 	struct extent_buffer *l;
4928 	struct btrfs_key search_key;
4929 	struct btrfs_key found_key;
4930 	int slot;
4931 
4932 	path = btrfs_alloc_path();
4933 	if (!path)
4934 		return -ENOMEM;
4935 
4936 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4937 	search_key.type = -1;
4938 	search_key.offset = (u64)-1;
4939 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4940 	if (ret < 0)
4941 		goto error;
4942 	BUG_ON(ret == 0); /* Corruption */
4943 	if (path->slots[0] > 0) {
4944 		slot = path->slots[0] - 1;
4945 		l = path->nodes[0];
4946 		btrfs_item_key_to_cpu(l, &found_key, slot);
4947 		root->free_objectid = max_t(u64, found_key.objectid + 1,
4948 					    BTRFS_FIRST_FREE_OBJECTID);
4949 	} else {
4950 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4951 	}
4952 	ret = 0;
4953 error:
4954 	btrfs_free_path(path);
4955 	return ret;
4956 }
4957 
4958 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4959 {
4960 	int ret;
4961 	mutex_lock(&root->objectid_mutex);
4962 
4963 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4964 		btrfs_warn(root->fs_info,
4965 			   "the objectid of root %llu reaches its highest value",
4966 			   root->root_key.objectid);
4967 		ret = -ENOSPC;
4968 		goto out;
4969 	}
4970 
4971 	*objectid = root->free_objectid++;
4972 	ret = 0;
4973 out:
4974 	mutex_unlock(&root->objectid_mutex);
4975 	return ret;
4976 }
4977