1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include <linux/slab.h> 31 #include <linux/migrate.h> 32 #include <linux/ratelimit.h> 33 #include <asm/unaligned.h> 34 #include "compat.h" 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "async-thread.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 48 static struct extent_io_ops btree_extent_io_ops; 49 static void end_workqueue_fn(struct btrfs_work *work); 50 static void free_fs_root(struct btrfs_root *root); 51 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 52 int read_only); 53 static void btrfs_destroy_ordered_operations(struct btrfs_root *root); 54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 56 struct btrfs_root *root); 57 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t); 58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 59 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 60 struct extent_io_tree *dirty_pages, 61 int mark); 62 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 63 struct extent_io_tree *pinned_extents); 64 65 /* 66 * end_io_wq structs are used to do processing in task context when an IO is 67 * complete. This is used during reads to verify checksums, and it is used 68 * by writes to insert metadata for new file extents after IO is complete. 69 */ 70 struct end_io_wq { 71 struct bio *bio; 72 bio_end_io_t *end_io; 73 void *private; 74 struct btrfs_fs_info *info; 75 int error; 76 int metadata; 77 struct list_head list; 78 struct btrfs_work work; 79 }; 80 81 /* 82 * async submit bios are used to offload expensive checksumming 83 * onto the worker threads. They checksum file and metadata bios 84 * just before they are sent down the IO stack. 85 */ 86 struct async_submit_bio { 87 struct inode *inode; 88 struct bio *bio; 89 struct list_head list; 90 extent_submit_bio_hook_t *submit_bio_start; 91 extent_submit_bio_hook_t *submit_bio_done; 92 int rw; 93 int mirror_num; 94 unsigned long bio_flags; 95 /* 96 * bio_offset is optional, can be used if the pages in the bio 97 * can't tell us where in the file the bio should go 98 */ 99 u64 bio_offset; 100 struct btrfs_work work; 101 int error; 102 }; 103 104 /* 105 * Lockdep class keys for extent_buffer->lock's in this root. For a given 106 * eb, the lockdep key is determined by the btrfs_root it belongs to and 107 * the level the eb occupies in the tree. 108 * 109 * Different roots are used for different purposes and may nest inside each 110 * other and they require separate keysets. As lockdep keys should be 111 * static, assign keysets according to the purpose of the root as indicated 112 * by btrfs_root->objectid. This ensures that all special purpose roots 113 * have separate keysets. 114 * 115 * Lock-nesting across peer nodes is always done with the immediate parent 116 * node locked thus preventing deadlock. As lockdep doesn't know this, use 117 * subclass to avoid triggering lockdep warning in such cases. 118 * 119 * The key is set by the readpage_end_io_hook after the buffer has passed 120 * csum validation but before the pages are unlocked. It is also set by 121 * btrfs_init_new_buffer on freshly allocated blocks. 122 * 123 * We also add a check to make sure the highest level of the tree is the 124 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 125 * needs update as well. 126 */ 127 #ifdef CONFIG_DEBUG_LOCK_ALLOC 128 # if BTRFS_MAX_LEVEL != 8 129 # error 130 # endif 131 132 static struct btrfs_lockdep_keyset { 133 u64 id; /* root objectid */ 134 const char *name_stem; /* lock name stem */ 135 char names[BTRFS_MAX_LEVEL + 1][20]; 136 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 137 } btrfs_lockdep_keysets[] = { 138 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 139 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 140 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 141 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 142 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 143 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 144 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" }, 145 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 146 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 147 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 148 { .id = 0, .name_stem = "tree" }, 149 }; 150 151 void __init btrfs_init_lockdep(void) 152 { 153 int i, j; 154 155 /* initialize lockdep class names */ 156 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 157 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 158 159 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 160 snprintf(ks->names[j], sizeof(ks->names[j]), 161 "btrfs-%s-%02d", ks->name_stem, j); 162 } 163 } 164 165 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 166 int level) 167 { 168 struct btrfs_lockdep_keyset *ks; 169 170 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 171 172 /* find the matching keyset, id 0 is the default entry */ 173 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 174 if (ks->id == objectid) 175 break; 176 177 lockdep_set_class_and_name(&eb->lock, 178 &ks->keys[level], ks->names[level]); 179 } 180 181 #endif 182 183 /* 184 * extents on the btree inode are pretty simple, there's one extent 185 * that covers the entire device 186 */ 187 static struct extent_map *btree_get_extent(struct inode *inode, 188 struct page *page, size_t pg_offset, u64 start, u64 len, 189 int create) 190 { 191 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 192 struct extent_map *em; 193 int ret; 194 195 read_lock(&em_tree->lock); 196 em = lookup_extent_mapping(em_tree, start, len); 197 if (em) { 198 em->bdev = 199 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 200 read_unlock(&em_tree->lock); 201 goto out; 202 } 203 read_unlock(&em_tree->lock); 204 205 em = alloc_extent_map(); 206 if (!em) { 207 em = ERR_PTR(-ENOMEM); 208 goto out; 209 } 210 em->start = 0; 211 em->len = (u64)-1; 212 em->block_len = (u64)-1; 213 em->block_start = 0; 214 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 215 216 write_lock(&em_tree->lock); 217 ret = add_extent_mapping(em_tree, em); 218 if (ret == -EEXIST) { 219 u64 failed_start = em->start; 220 u64 failed_len = em->len; 221 222 free_extent_map(em); 223 em = lookup_extent_mapping(em_tree, start, len); 224 if (em) { 225 ret = 0; 226 } else { 227 em = lookup_extent_mapping(em_tree, failed_start, 228 failed_len); 229 ret = -EIO; 230 } 231 } else if (ret) { 232 free_extent_map(em); 233 em = NULL; 234 } 235 write_unlock(&em_tree->lock); 236 237 if (ret) 238 em = ERR_PTR(ret); 239 out: 240 return em; 241 } 242 243 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 244 { 245 return crc32c(seed, data, len); 246 } 247 248 void btrfs_csum_final(u32 crc, char *result) 249 { 250 put_unaligned_le32(~crc, result); 251 } 252 253 /* 254 * compute the csum for a btree block, and either verify it or write it 255 * into the csum field of the block. 256 */ 257 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 258 int verify) 259 { 260 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 261 char *result = NULL; 262 unsigned long len; 263 unsigned long cur_len; 264 unsigned long offset = BTRFS_CSUM_SIZE; 265 char *kaddr; 266 unsigned long map_start; 267 unsigned long map_len; 268 int err; 269 u32 crc = ~(u32)0; 270 unsigned long inline_result; 271 272 len = buf->len - offset; 273 while (len > 0) { 274 err = map_private_extent_buffer(buf, offset, 32, 275 &kaddr, &map_start, &map_len); 276 if (err) 277 return 1; 278 cur_len = min(len, map_len - (offset - map_start)); 279 crc = btrfs_csum_data(root, kaddr + offset - map_start, 280 crc, cur_len); 281 len -= cur_len; 282 offset += cur_len; 283 } 284 if (csum_size > sizeof(inline_result)) { 285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 286 if (!result) 287 return 1; 288 } else { 289 result = (char *)&inline_result; 290 } 291 292 btrfs_csum_final(crc, result); 293 294 if (verify) { 295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 296 u32 val; 297 u32 found = 0; 298 memcpy(&found, result, csum_size); 299 300 read_extent_buffer(buf, &val, 0, csum_size); 301 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify " 302 "failed on %llu wanted %X found %X " 303 "level %d\n", 304 root->fs_info->sb->s_id, 305 (unsigned long long)buf->start, val, found, 306 btrfs_header_level(buf)); 307 if (result != (char *)&inline_result) 308 kfree(result); 309 return 1; 310 } 311 } else { 312 write_extent_buffer(buf, result, 0, csum_size); 313 } 314 if (result != (char *)&inline_result) 315 kfree(result); 316 return 0; 317 } 318 319 /* 320 * we can't consider a given block up to date unless the transid of the 321 * block matches the transid in the parent node's pointer. This is how we 322 * detect blocks that either didn't get written at all or got written 323 * in the wrong place. 324 */ 325 static int verify_parent_transid(struct extent_io_tree *io_tree, 326 struct extent_buffer *eb, u64 parent_transid, 327 int atomic) 328 { 329 struct extent_state *cached_state = NULL; 330 int ret; 331 332 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 333 return 0; 334 335 if (atomic) 336 return -EAGAIN; 337 338 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 339 0, &cached_state); 340 if (extent_buffer_uptodate(eb) && 341 btrfs_header_generation(eb) == parent_transid) { 342 ret = 0; 343 goto out; 344 } 345 printk_ratelimited("parent transid verify failed on %llu wanted %llu " 346 "found %llu\n", 347 (unsigned long long)eb->start, 348 (unsigned long long)parent_transid, 349 (unsigned long long)btrfs_header_generation(eb)); 350 ret = 1; 351 clear_extent_buffer_uptodate(eb); 352 out: 353 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 354 &cached_state, GFP_NOFS); 355 return ret; 356 } 357 358 /* 359 * helper to read a given tree block, doing retries as required when 360 * the checksums don't match and we have alternate mirrors to try. 361 */ 362 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 363 struct extent_buffer *eb, 364 u64 start, u64 parent_transid) 365 { 366 struct extent_io_tree *io_tree; 367 int failed = 0; 368 int ret; 369 int num_copies = 0; 370 int mirror_num = 0; 371 int failed_mirror = 0; 372 373 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 374 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 375 while (1) { 376 ret = read_extent_buffer_pages(io_tree, eb, start, 377 WAIT_COMPLETE, 378 btree_get_extent, mirror_num); 379 if (!ret && !verify_parent_transid(io_tree, eb, 380 parent_transid, 0)) 381 break; 382 383 /* 384 * This buffer's crc is fine, but its contents are corrupted, so 385 * there is no reason to read the other copies, they won't be 386 * any less wrong. 387 */ 388 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 389 break; 390 391 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 392 eb->start, eb->len); 393 if (num_copies == 1) 394 break; 395 396 if (!failed_mirror) { 397 failed = 1; 398 failed_mirror = eb->read_mirror; 399 } 400 401 mirror_num++; 402 if (mirror_num == failed_mirror) 403 mirror_num++; 404 405 if (mirror_num > num_copies) 406 break; 407 } 408 409 if (failed && !ret) 410 repair_eb_io_failure(root, eb, failed_mirror); 411 412 return ret; 413 } 414 415 /* 416 * checksum a dirty tree block before IO. This has extra checks to make sure 417 * we only fill in the checksum field in the first page of a multi-page block 418 */ 419 420 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 421 { 422 struct extent_io_tree *tree; 423 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 424 u64 found_start; 425 struct extent_buffer *eb; 426 427 tree = &BTRFS_I(page->mapping->host)->io_tree; 428 429 eb = (struct extent_buffer *)page->private; 430 if (page != eb->pages[0]) 431 return 0; 432 found_start = btrfs_header_bytenr(eb); 433 if (found_start != start) { 434 WARN_ON(1); 435 return 0; 436 } 437 if (eb->pages[0] != page) { 438 WARN_ON(1); 439 return 0; 440 } 441 if (!PageUptodate(page)) { 442 WARN_ON(1); 443 return 0; 444 } 445 csum_tree_block(root, eb, 0); 446 return 0; 447 } 448 449 static int check_tree_block_fsid(struct btrfs_root *root, 450 struct extent_buffer *eb) 451 { 452 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 453 u8 fsid[BTRFS_UUID_SIZE]; 454 int ret = 1; 455 456 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 457 BTRFS_FSID_SIZE); 458 while (fs_devices) { 459 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 460 ret = 0; 461 break; 462 } 463 fs_devices = fs_devices->seed; 464 } 465 return ret; 466 } 467 468 #define CORRUPT(reason, eb, root, slot) \ 469 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \ 470 "root=%llu, slot=%d\n", reason, \ 471 (unsigned long long)btrfs_header_bytenr(eb), \ 472 (unsigned long long)root->objectid, slot) 473 474 static noinline int check_leaf(struct btrfs_root *root, 475 struct extent_buffer *leaf) 476 { 477 struct btrfs_key key; 478 struct btrfs_key leaf_key; 479 u32 nritems = btrfs_header_nritems(leaf); 480 int slot; 481 482 if (nritems == 0) 483 return 0; 484 485 /* Check the 0 item */ 486 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 487 BTRFS_LEAF_DATA_SIZE(root)) { 488 CORRUPT("invalid item offset size pair", leaf, root, 0); 489 return -EIO; 490 } 491 492 /* 493 * Check to make sure each items keys are in the correct order and their 494 * offsets make sense. We only have to loop through nritems-1 because 495 * we check the current slot against the next slot, which verifies the 496 * next slot's offset+size makes sense and that the current's slot 497 * offset is correct. 498 */ 499 for (slot = 0; slot < nritems - 1; slot++) { 500 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 501 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 502 503 /* Make sure the keys are in the right order */ 504 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 505 CORRUPT("bad key order", leaf, root, slot); 506 return -EIO; 507 } 508 509 /* 510 * Make sure the offset and ends are right, remember that the 511 * item data starts at the end of the leaf and grows towards the 512 * front. 513 */ 514 if (btrfs_item_offset_nr(leaf, slot) != 515 btrfs_item_end_nr(leaf, slot + 1)) { 516 CORRUPT("slot offset bad", leaf, root, slot); 517 return -EIO; 518 } 519 520 /* 521 * Check to make sure that we don't point outside of the leaf, 522 * just incase all the items are consistent to eachother, but 523 * all point outside of the leaf. 524 */ 525 if (btrfs_item_end_nr(leaf, slot) > 526 BTRFS_LEAF_DATA_SIZE(root)) { 527 CORRUPT("slot end outside of leaf", leaf, root, slot); 528 return -EIO; 529 } 530 } 531 532 return 0; 533 } 534 535 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree, 536 struct page *page, int max_walk) 537 { 538 struct extent_buffer *eb; 539 u64 start = page_offset(page); 540 u64 target = start; 541 u64 min_start; 542 543 if (start < max_walk) 544 min_start = 0; 545 else 546 min_start = start - max_walk; 547 548 while (start >= min_start) { 549 eb = find_extent_buffer(tree, start, 0); 550 if (eb) { 551 /* 552 * we found an extent buffer and it contains our page 553 * horray! 554 */ 555 if (eb->start <= target && 556 eb->start + eb->len > target) 557 return eb; 558 559 /* we found an extent buffer that wasn't for us */ 560 free_extent_buffer(eb); 561 return NULL; 562 } 563 if (start == 0) 564 break; 565 start -= PAGE_CACHE_SIZE; 566 } 567 return NULL; 568 } 569 570 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 571 struct extent_state *state, int mirror) 572 { 573 struct extent_io_tree *tree; 574 u64 found_start; 575 int found_level; 576 struct extent_buffer *eb; 577 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 578 int ret = 0; 579 int reads_done; 580 581 if (!page->private) 582 goto out; 583 584 tree = &BTRFS_I(page->mapping->host)->io_tree; 585 eb = (struct extent_buffer *)page->private; 586 587 /* the pending IO might have been the only thing that kept this buffer 588 * in memory. Make sure we have a ref for all this other checks 589 */ 590 extent_buffer_get(eb); 591 592 reads_done = atomic_dec_and_test(&eb->io_pages); 593 if (!reads_done) 594 goto err; 595 596 eb->read_mirror = mirror; 597 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 598 ret = -EIO; 599 goto err; 600 } 601 602 found_start = btrfs_header_bytenr(eb); 603 if (found_start != eb->start) { 604 printk_ratelimited(KERN_INFO "btrfs bad tree block start " 605 "%llu %llu\n", 606 (unsigned long long)found_start, 607 (unsigned long long)eb->start); 608 ret = -EIO; 609 goto err; 610 } 611 if (check_tree_block_fsid(root, eb)) { 612 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n", 613 (unsigned long long)eb->start); 614 ret = -EIO; 615 goto err; 616 } 617 found_level = btrfs_header_level(eb); 618 619 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 620 eb, found_level); 621 622 ret = csum_tree_block(root, eb, 1); 623 if (ret) { 624 ret = -EIO; 625 goto err; 626 } 627 628 /* 629 * If this is a leaf block and it is corrupt, set the corrupt bit so 630 * that we don't try and read the other copies of this block, just 631 * return -EIO. 632 */ 633 if (found_level == 0 && check_leaf(root, eb)) { 634 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 635 ret = -EIO; 636 } 637 638 if (!ret) 639 set_extent_buffer_uptodate(eb); 640 err: 641 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) { 642 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags); 643 btree_readahead_hook(root, eb, eb->start, ret); 644 } 645 646 if (ret) 647 clear_extent_buffer_uptodate(eb); 648 free_extent_buffer(eb); 649 out: 650 return ret; 651 } 652 653 static int btree_io_failed_hook(struct page *page, int failed_mirror) 654 { 655 struct extent_buffer *eb; 656 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 657 658 eb = (struct extent_buffer *)page->private; 659 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 660 eb->read_mirror = failed_mirror; 661 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 662 btree_readahead_hook(root, eb, eb->start, -EIO); 663 return -EIO; /* we fixed nothing */ 664 } 665 666 static void end_workqueue_bio(struct bio *bio, int err) 667 { 668 struct end_io_wq *end_io_wq = bio->bi_private; 669 struct btrfs_fs_info *fs_info; 670 671 fs_info = end_io_wq->info; 672 end_io_wq->error = err; 673 end_io_wq->work.func = end_workqueue_fn; 674 end_io_wq->work.flags = 0; 675 676 if (bio->bi_rw & REQ_WRITE) { 677 if (end_io_wq->metadata == 1) 678 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 679 &end_io_wq->work); 680 else if (end_io_wq->metadata == 2) 681 btrfs_queue_worker(&fs_info->endio_freespace_worker, 682 &end_io_wq->work); 683 else 684 btrfs_queue_worker(&fs_info->endio_write_workers, 685 &end_io_wq->work); 686 } else { 687 if (end_io_wq->metadata) 688 btrfs_queue_worker(&fs_info->endio_meta_workers, 689 &end_io_wq->work); 690 else 691 btrfs_queue_worker(&fs_info->endio_workers, 692 &end_io_wq->work); 693 } 694 } 695 696 /* 697 * For the metadata arg you want 698 * 699 * 0 - if data 700 * 1 - if normal metadta 701 * 2 - if writing to the free space cache area 702 */ 703 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 704 int metadata) 705 { 706 struct end_io_wq *end_io_wq; 707 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 708 if (!end_io_wq) 709 return -ENOMEM; 710 711 end_io_wq->private = bio->bi_private; 712 end_io_wq->end_io = bio->bi_end_io; 713 end_io_wq->info = info; 714 end_io_wq->error = 0; 715 end_io_wq->bio = bio; 716 end_io_wq->metadata = metadata; 717 718 bio->bi_private = end_io_wq; 719 bio->bi_end_io = end_workqueue_bio; 720 return 0; 721 } 722 723 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 724 { 725 unsigned long limit = min_t(unsigned long, 726 info->workers.max_workers, 727 info->fs_devices->open_devices); 728 return 256 * limit; 729 } 730 731 static void run_one_async_start(struct btrfs_work *work) 732 { 733 struct async_submit_bio *async; 734 int ret; 735 736 async = container_of(work, struct async_submit_bio, work); 737 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 738 async->mirror_num, async->bio_flags, 739 async->bio_offset); 740 if (ret) 741 async->error = ret; 742 } 743 744 static void run_one_async_done(struct btrfs_work *work) 745 { 746 struct btrfs_fs_info *fs_info; 747 struct async_submit_bio *async; 748 int limit; 749 750 async = container_of(work, struct async_submit_bio, work); 751 fs_info = BTRFS_I(async->inode)->root->fs_info; 752 753 limit = btrfs_async_submit_limit(fs_info); 754 limit = limit * 2 / 3; 755 756 atomic_dec(&fs_info->nr_async_submits); 757 758 if (atomic_read(&fs_info->nr_async_submits) < limit && 759 waitqueue_active(&fs_info->async_submit_wait)) 760 wake_up(&fs_info->async_submit_wait); 761 762 /* If an error occured we just want to clean up the bio and move on */ 763 if (async->error) { 764 bio_endio(async->bio, async->error); 765 return; 766 } 767 768 async->submit_bio_done(async->inode, async->rw, async->bio, 769 async->mirror_num, async->bio_flags, 770 async->bio_offset); 771 } 772 773 static void run_one_async_free(struct btrfs_work *work) 774 { 775 struct async_submit_bio *async; 776 777 async = container_of(work, struct async_submit_bio, work); 778 kfree(async); 779 } 780 781 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 782 int rw, struct bio *bio, int mirror_num, 783 unsigned long bio_flags, 784 u64 bio_offset, 785 extent_submit_bio_hook_t *submit_bio_start, 786 extent_submit_bio_hook_t *submit_bio_done) 787 { 788 struct async_submit_bio *async; 789 790 async = kmalloc(sizeof(*async), GFP_NOFS); 791 if (!async) 792 return -ENOMEM; 793 794 async->inode = inode; 795 async->rw = rw; 796 async->bio = bio; 797 async->mirror_num = mirror_num; 798 async->submit_bio_start = submit_bio_start; 799 async->submit_bio_done = submit_bio_done; 800 801 async->work.func = run_one_async_start; 802 async->work.ordered_func = run_one_async_done; 803 async->work.ordered_free = run_one_async_free; 804 805 async->work.flags = 0; 806 async->bio_flags = bio_flags; 807 async->bio_offset = bio_offset; 808 809 async->error = 0; 810 811 atomic_inc(&fs_info->nr_async_submits); 812 813 if (rw & REQ_SYNC) 814 btrfs_set_work_high_prio(&async->work); 815 816 btrfs_queue_worker(&fs_info->workers, &async->work); 817 818 while (atomic_read(&fs_info->async_submit_draining) && 819 atomic_read(&fs_info->nr_async_submits)) { 820 wait_event(fs_info->async_submit_wait, 821 (atomic_read(&fs_info->nr_async_submits) == 0)); 822 } 823 824 return 0; 825 } 826 827 static int btree_csum_one_bio(struct bio *bio) 828 { 829 struct bio_vec *bvec = bio->bi_io_vec; 830 int bio_index = 0; 831 struct btrfs_root *root; 832 int ret = 0; 833 834 WARN_ON(bio->bi_vcnt <= 0); 835 while (bio_index < bio->bi_vcnt) { 836 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 837 ret = csum_dirty_buffer(root, bvec->bv_page); 838 if (ret) 839 break; 840 bio_index++; 841 bvec++; 842 } 843 return ret; 844 } 845 846 static int __btree_submit_bio_start(struct inode *inode, int rw, 847 struct bio *bio, int mirror_num, 848 unsigned long bio_flags, 849 u64 bio_offset) 850 { 851 /* 852 * when we're called for a write, we're already in the async 853 * submission context. Just jump into btrfs_map_bio 854 */ 855 return btree_csum_one_bio(bio); 856 } 857 858 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 859 int mirror_num, unsigned long bio_flags, 860 u64 bio_offset) 861 { 862 /* 863 * when we're called for a write, we're already in the async 864 * submission context. Just jump into btrfs_map_bio 865 */ 866 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 867 } 868 869 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 870 int mirror_num, unsigned long bio_flags, 871 u64 bio_offset) 872 { 873 int ret; 874 875 if (!(rw & REQ_WRITE)) { 876 877 /* 878 * called for a read, do the setup so that checksum validation 879 * can happen in the async kernel threads 880 */ 881 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 882 bio, 1); 883 if (ret) 884 return ret; 885 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 886 mirror_num, 0); 887 } 888 889 /* 890 * kthread helpers are used to submit writes so that checksumming 891 * can happen in parallel across all CPUs 892 */ 893 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 894 inode, rw, bio, mirror_num, 0, 895 bio_offset, 896 __btree_submit_bio_start, 897 __btree_submit_bio_done); 898 } 899 900 #ifdef CONFIG_MIGRATION 901 static int btree_migratepage(struct address_space *mapping, 902 struct page *newpage, struct page *page, 903 enum migrate_mode mode) 904 { 905 /* 906 * we can't safely write a btree page from here, 907 * we haven't done the locking hook 908 */ 909 if (PageDirty(page)) 910 return -EAGAIN; 911 /* 912 * Buffers may be managed in a filesystem specific way. 913 * We must have no buffers or drop them. 914 */ 915 if (page_has_private(page) && 916 !try_to_release_page(page, GFP_KERNEL)) 917 return -EAGAIN; 918 return migrate_page(mapping, newpage, page, mode); 919 } 920 #endif 921 922 923 static int btree_writepages(struct address_space *mapping, 924 struct writeback_control *wbc) 925 { 926 struct extent_io_tree *tree; 927 tree = &BTRFS_I(mapping->host)->io_tree; 928 if (wbc->sync_mode == WB_SYNC_NONE) { 929 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 930 u64 num_dirty; 931 unsigned long thresh = 32 * 1024 * 1024; 932 933 if (wbc->for_kupdate) 934 return 0; 935 936 /* this is a bit racy, but that's ok */ 937 num_dirty = root->fs_info->dirty_metadata_bytes; 938 if (num_dirty < thresh) 939 return 0; 940 } 941 return btree_write_cache_pages(mapping, wbc); 942 } 943 944 static int btree_readpage(struct file *file, struct page *page) 945 { 946 struct extent_io_tree *tree; 947 tree = &BTRFS_I(page->mapping->host)->io_tree; 948 return extent_read_full_page(tree, page, btree_get_extent, 0); 949 } 950 951 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 952 { 953 if (PageWriteback(page) || PageDirty(page)) 954 return 0; 955 /* 956 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing 957 * slab allocation from alloc_extent_state down the callchain where 958 * it'd hit a BUG_ON as those flags are not allowed. 959 */ 960 gfp_flags &= ~GFP_SLAB_BUG_MASK; 961 962 return try_release_extent_buffer(page, gfp_flags); 963 } 964 965 static void btree_invalidatepage(struct page *page, unsigned long offset) 966 { 967 struct extent_io_tree *tree; 968 tree = &BTRFS_I(page->mapping->host)->io_tree; 969 extent_invalidatepage(tree, page, offset); 970 btree_releasepage(page, GFP_NOFS); 971 if (PagePrivate(page)) { 972 printk(KERN_WARNING "btrfs warning page private not zero " 973 "on page %llu\n", (unsigned long long)page_offset(page)); 974 ClearPagePrivate(page); 975 set_page_private(page, 0); 976 page_cache_release(page); 977 } 978 } 979 980 static int btree_set_page_dirty(struct page *page) 981 { 982 struct extent_buffer *eb; 983 984 BUG_ON(!PagePrivate(page)); 985 eb = (struct extent_buffer *)page->private; 986 BUG_ON(!eb); 987 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 988 BUG_ON(!atomic_read(&eb->refs)); 989 btrfs_assert_tree_locked(eb); 990 return __set_page_dirty_nobuffers(page); 991 } 992 993 static const struct address_space_operations btree_aops = { 994 .readpage = btree_readpage, 995 .writepages = btree_writepages, 996 .releasepage = btree_releasepage, 997 .invalidatepage = btree_invalidatepage, 998 #ifdef CONFIG_MIGRATION 999 .migratepage = btree_migratepage, 1000 #endif 1001 .set_page_dirty = btree_set_page_dirty, 1002 }; 1003 1004 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1005 u64 parent_transid) 1006 { 1007 struct extent_buffer *buf = NULL; 1008 struct inode *btree_inode = root->fs_info->btree_inode; 1009 int ret = 0; 1010 1011 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1012 if (!buf) 1013 return 0; 1014 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1015 buf, 0, WAIT_NONE, btree_get_extent, 0); 1016 free_extent_buffer(buf); 1017 return ret; 1018 } 1019 1020 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1021 int mirror_num, struct extent_buffer **eb) 1022 { 1023 struct extent_buffer *buf = NULL; 1024 struct inode *btree_inode = root->fs_info->btree_inode; 1025 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1026 int ret; 1027 1028 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1029 if (!buf) 1030 return 0; 1031 1032 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1033 1034 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1035 btree_get_extent, mirror_num); 1036 if (ret) { 1037 free_extent_buffer(buf); 1038 return ret; 1039 } 1040 1041 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1042 free_extent_buffer(buf); 1043 return -EIO; 1044 } else if (extent_buffer_uptodate(buf)) { 1045 *eb = buf; 1046 } else { 1047 free_extent_buffer(buf); 1048 } 1049 return 0; 1050 } 1051 1052 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 1053 u64 bytenr, u32 blocksize) 1054 { 1055 struct inode *btree_inode = root->fs_info->btree_inode; 1056 struct extent_buffer *eb; 1057 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1058 bytenr, blocksize); 1059 return eb; 1060 } 1061 1062 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1063 u64 bytenr, u32 blocksize) 1064 { 1065 struct inode *btree_inode = root->fs_info->btree_inode; 1066 struct extent_buffer *eb; 1067 1068 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1069 bytenr, blocksize); 1070 return eb; 1071 } 1072 1073 1074 int btrfs_write_tree_block(struct extent_buffer *buf) 1075 { 1076 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1077 buf->start + buf->len - 1); 1078 } 1079 1080 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1081 { 1082 return filemap_fdatawait_range(buf->pages[0]->mapping, 1083 buf->start, buf->start + buf->len - 1); 1084 } 1085 1086 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1087 u32 blocksize, u64 parent_transid) 1088 { 1089 struct extent_buffer *buf = NULL; 1090 int ret; 1091 1092 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1093 if (!buf) 1094 return NULL; 1095 1096 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1097 return buf; 1098 1099 } 1100 1101 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1102 struct extent_buffer *buf) 1103 { 1104 if (btrfs_header_generation(buf) == 1105 root->fs_info->running_transaction->transid) { 1106 btrfs_assert_tree_locked(buf); 1107 1108 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1109 spin_lock(&root->fs_info->delalloc_lock); 1110 if (root->fs_info->dirty_metadata_bytes >= buf->len) 1111 root->fs_info->dirty_metadata_bytes -= buf->len; 1112 else { 1113 spin_unlock(&root->fs_info->delalloc_lock); 1114 btrfs_panic(root->fs_info, -EOVERFLOW, 1115 "Can't clear %lu bytes from " 1116 " dirty_mdatadata_bytes (%lu)", 1117 buf->len, 1118 root->fs_info->dirty_metadata_bytes); 1119 } 1120 spin_unlock(&root->fs_info->delalloc_lock); 1121 } 1122 1123 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1124 btrfs_set_lock_blocking(buf); 1125 clear_extent_buffer_dirty(buf); 1126 } 1127 } 1128 1129 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 1130 u32 stripesize, struct btrfs_root *root, 1131 struct btrfs_fs_info *fs_info, 1132 u64 objectid) 1133 { 1134 root->node = NULL; 1135 root->commit_root = NULL; 1136 root->sectorsize = sectorsize; 1137 root->nodesize = nodesize; 1138 root->leafsize = leafsize; 1139 root->stripesize = stripesize; 1140 root->ref_cows = 0; 1141 root->track_dirty = 0; 1142 root->in_radix = 0; 1143 root->orphan_item_inserted = 0; 1144 root->orphan_cleanup_state = 0; 1145 1146 root->objectid = objectid; 1147 root->last_trans = 0; 1148 root->highest_objectid = 0; 1149 root->name = NULL; 1150 root->inode_tree = RB_ROOT; 1151 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1152 root->block_rsv = NULL; 1153 root->orphan_block_rsv = NULL; 1154 1155 INIT_LIST_HEAD(&root->dirty_list); 1156 INIT_LIST_HEAD(&root->orphan_list); 1157 INIT_LIST_HEAD(&root->root_list); 1158 spin_lock_init(&root->orphan_lock); 1159 spin_lock_init(&root->inode_lock); 1160 spin_lock_init(&root->accounting_lock); 1161 mutex_init(&root->objectid_mutex); 1162 mutex_init(&root->log_mutex); 1163 init_waitqueue_head(&root->log_writer_wait); 1164 init_waitqueue_head(&root->log_commit_wait[0]); 1165 init_waitqueue_head(&root->log_commit_wait[1]); 1166 atomic_set(&root->log_commit[0], 0); 1167 atomic_set(&root->log_commit[1], 0); 1168 atomic_set(&root->log_writers, 0); 1169 root->log_batch = 0; 1170 root->log_transid = 0; 1171 root->last_log_commit = 0; 1172 extent_io_tree_init(&root->dirty_log_pages, 1173 fs_info->btree_inode->i_mapping); 1174 1175 memset(&root->root_key, 0, sizeof(root->root_key)); 1176 memset(&root->root_item, 0, sizeof(root->root_item)); 1177 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1178 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1179 root->defrag_trans_start = fs_info->generation; 1180 init_completion(&root->kobj_unregister); 1181 root->defrag_running = 0; 1182 root->root_key.objectid = objectid; 1183 root->anon_dev = 0; 1184 } 1185 1186 static int __must_check find_and_setup_root(struct btrfs_root *tree_root, 1187 struct btrfs_fs_info *fs_info, 1188 u64 objectid, 1189 struct btrfs_root *root) 1190 { 1191 int ret; 1192 u32 blocksize; 1193 u64 generation; 1194 1195 __setup_root(tree_root->nodesize, tree_root->leafsize, 1196 tree_root->sectorsize, tree_root->stripesize, 1197 root, fs_info, objectid); 1198 ret = btrfs_find_last_root(tree_root, objectid, 1199 &root->root_item, &root->root_key); 1200 if (ret > 0) 1201 return -ENOENT; 1202 else if (ret < 0) 1203 return ret; 1204 1205 generation = btrfs_root_generation(&root->root_item); 1206 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1207 root->commit_root = NULL; 1208 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1209 blocksize, generation); 1210 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) { 1211 free_extent_buffer(root->node); 1212 root->node = NULL; 1213 return -EIO; 1214 } 1215 root->commit_root = btrfs_root_node(root); 1216 return 0; 1217 } 1218 1219 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1220 { 1221 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1222 if (root) 1223 root->fs_info = fs_info; 1224 return root; 1225 } 1226 1227 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1228 struct btrfs_fs_info *fs_info) 1229 { 1230 struct btrfs_root *root; 1231 struct btrfs_root *tree_root = fs_info->tree_root; 1232 struct extent_buffer *leaf; 1233 1234 root = btrfs_alloc_root(fs_info); 1235 if (!root) 1236 return ERR_PTR(-ENOMEM); 1237 1238 __setup_root(tree_root->nodesize, tree_root->leafsize, 1239 tree_root->sectorsize, tree_root->stripesize, 1240 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1241 1242 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1243 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1244 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1245 /* 1246 * log trees do not get reference counted because they go away 1247 * before a real commit is actually done. They do store pointers 1248 * to file data extents, and those reference counts still get 1249 * updated (along with back refs to the log tree). 1250 */ 1251 root->ref_cows = 0; 1252 1253 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1254 BTRFS_TREE_LOG_OBJECTID, NULL, 1255 0, 0, 0, 0); 1256 if (IS_ERR(leaf)) { 1257 kfree(root); 1258 return ERR_CAST(leaf); 1259 } 1260 1261 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1262 btrfs_set_header_bytenr(leaf, leaf->start); 1263 btrfs_set_header_generation(leaf, trans->transid); 1264 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1265 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1266 root->node = leaf; 1267 1268 write_extent_buffer(root->node, root->fs_info->fsid, 1269 (unsigned long)btrfs_header_fsid(root->node), 1270 BTRFS_FSID_SIZE); 1271 btrfs_mark_buffer_dirty(root->node); 1272 btrfs_tree_unlock(root->node); 1273 return root; 1274 } 1275 1276 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1277 struct btrfs_fs_info *fs_info) 1278 { 1279 struct btrfs_root *log_root; 1280 1281 log_root = alloc_log_tree(trans, fs_info); 1282 if (IS_ERR(log_root)) 1283 return PTR_ERR(log_root); 1284 WARN_ON(fs_info->log_root_tree); 1285 fs_info->log_root_tree = log_root; 1286 return 0; 1287 } 1288 1289 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1290 struct btrfs_root *root) 1291 { 1292 struct btrfs_root *log_root; 1293 struct btrfs_inode_item *inode_item; 1294 1295 log_root = alloc_log_tree(trans, root->fs_info); 1296 if (IS_ERR(log_root)) 1297 return PTR_ERR(log_root); 1298 1299 log_root->last_trans = trans->transid; 1300 log_root->root_key.offset = root->root_key.objectid; 1301 1302 inode_item = &log_root->root_item.inode; 1303 inode_item->generation = cpu_to_le64(1); 1304 inode_item->size = cpu_to_le64(3); 1305 inode_item->nlink = cpu_to_le32(1); 1306 inode_item->nbytes = cpu_to_le64(root->leafsize); 1307 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1308 1309 btrfs_set_root_node(&log_root->root_item, log_root->node); 1310 1311 WARN_ON(root->log_root); 1312 root->log_root = log_root; 1313 root->log_transid = 0; 1314 root->last_log_commit = 0; 1315 return 0; 1316 } 1317 1318 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1319 struct btrfs_key *location) 1320 { 1321 struct btrfs_root *root; 1322 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1323 struct btrfs_path *path; 1324 struct extent_buffer *l; 1325 u64 generation; 1326 u32 blocksize; 1327 int ret = 0; 1328 1329 root = btrfs_alloc_root(fs_info); 1330 if (!root) 1331 return ERR_PTR(-ENOMEM); 1332 if (location->offset == (u64)-1) { 1333 ret = find_and_setup_root(tree_root, fs_info, 1334 location->objectid, root); 1335 if (ret) { 1336 kfree(root); 1337 return ERR_PTR(ret); 1338 } 1339 goto out; 1340 } 1341 1342 __setup_root(tree_root->nodesize, tree_root->leafsize, 1343 tree_root->sectorsize, tree_root->stripesize, 1344 root, fs_info, location->objectid); 1345 1346 path = btrfs_alloc_path(); 1347 if (!path) { 1348 kfree(root); 1349 return ERR_PTR(-ENOMEM); 1350 } 1351 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1352 if (ret == 0) { 1353 l = path->nodes[0]; 1354 read_extent_buffer(l, &root->root_item, 1355 btrfs_item_ptr_offset(l, path->slots[0]), 1356 sizeof(root->root_item)); 1357 memcpy(&root->root_key, location, sizeof(*location)); 1358 } 1359 btrfs_free_path(path); 1360 if (ret) { 1361 kfree(root); 1362 if (ret > 0) 1363 ret = -ENOENT; 1364 return ERR_PTR(ret); 1365 } 1366 1367 generation = btrfs_root_generation(&root->root_item); 1368 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1369 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1370 blocksize, generation); 1371 root->commit_root = btrfs_root_node(root); 1372 BUG_ON(!root->node); /* -ENOMEM */ 1373 out: 1374 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { 1375 root->ref_cows = 1; 1376 btrfs_check_and_init_root_item(&root->root_item); 1377 } 1378 1379 return root; 1380 } 1381 1382 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1383 struct btrfs_key *location) 1384 { 1385 struct btrfs_root *root; 1386 int ret; 1387 1388 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1389 return fs_info->tree_root; 1390 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1391 return fs_info->extent_root; 1392 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1393 return fs_info->chunk_root; 1394 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1395 return fs_info->dev_root; 1396 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1397 return fs_info->csum_root; 1398 again: 1399 spin_lock(&fs_info->fs_roots_radix_lock); 1400 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1401 (unsigned long)location->objectid); 1402 spin_unlock(&fs_info->fs_roots_radix_lock); 1403 if (root) 1404 return root; 1405 1406 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1407 if (IS_ERR(root)) 1408 return root; 1409 1410 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1411 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1412 GFP_NOFS); 1413 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1414 ret = -ENOMEM; 1415 goto fail; 1416 } 1417 1418 btrfs_init_free_ino_ctl(root); 1419 mutex_init(&root->fs_commit_mutex); 1420 spin_lock_init(&root->cache_lock); 1421 init_waitqueue_head(&root->cache_wait); 1422 1423 ret = get_anon_bdev(&root->anon_dev); 1424 if (ret) 1425 goto fail; 1426 1427 if (btrfs_root_refs(&root->root_item) == 0) { 1428 ret = -ENOENT; 1429 goto fail; 1430 } 1431 1432 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1433 if (ret < 0) 1434 goto fail; 1435 if (ret == 0) 1436 root->orphan_item_inserted = 1; 1437 1438 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1439 if (ret) 1440 goto fail; 1441 1442 spin_lock(&fs_info->fs_roots_radix_lock); 1443 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1444 (unsigned long)root->root_key.objectid, 1445 root); 1446 if (ret == 0) 1447 root->in_radix = 1; 1448 1449 spin_unlock(&fs_info->fs_roots_radix_lock); 1450 radix_tree_preload_end(); 1451 if (ret) { 1452 if (ret == -EEXIST) { 1453 free_fs_root(root); 1454 goto again; 1455 } 1456 goto fail; 1457 } 1458 1459 ret = btrfs_find_dead_roots(fs_info->tree_root, 1460 root->root_key.objectid); 1461 WARN_ON(ret); 1462 return root; 1463 fail: 1464 free_fs_root(root); 1465 return ERR_PTR(ret); 1466 } 1467 1468 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1469 { 1470 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1471 int ret = 0; 1472 struct btrfs_device *device; 1473 struct backing_dev_info *bdi; 1474 1475 rcu_read_lock(); 1476 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1477 if (!device->bdev) 1478 continue; 1479 bdi = blk_get_backing_dev_info(device->bdev); 1480 if (bdi && bdi_congested(bdi, bdi_bits)) { 1481 ret = 1; 1482 break; 1483 } 1484 } 1485 rcu_read_unlock(); 1486 return ret; 1487 } 1488 1489 /* 1490 * If this fails, caller must call bdi_destroy() to get rid of the 1491 * bdi again. 1492 */ 1493 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1494 { 1495 int err; 1496 1497 bdi->capabilities = BDI_CAP_MAP_COPY; 1498 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1499 if (err) 1500 return err; 1501 1502 bdi->ra_pages = default_backing_dev_info.ra_pages; 1503 bdi->congested_fn = btrfs_congested_fn; 1504 bdi->congested_data = info; 1505 return 0; 1506 } 1507 1508 /* 1509 * called by the kthread helper functions to finally call the bio end_io 1510 * functions. This is where read checksum verification actually happens 1511 */ 1512 static void end_workqueue_fn(struct btrfs_work *work) 1513 { 1514 struct bio *bio; 1515 struct end_io_wq *end_io_wq; 1516 struct btrfs_fs_info *fs_info; 1517 int error; 1518 1519 end_io_wq = container_of(work, struct end_io_wq, work); 1520 bio = end_io_wq->bio; 1521 fs_info = end_io_wq->info; 1522 1523 error = end_io_wq->error; 1524 bio->bi_private = end_io_wq->private; 1525 bio->bi_end_io = end_io_wq->end_io; 1526 kfree(end_io_wq); 1527 bio_endio(bio, error); 1528 } 1529 1530 static int cleaner_kthread(void *arg) 1531 { 1532 struct btrfs_root *root = arg; 1533 1534 do { 1535 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1536 1537 if (!(root->fs_info->sb->s_flags & MS_RDONLY) && 1538 mutex_trylock(&root->fs_info->cleaner_mutex)) { 1539 btrfs_run_delayed_iputs(root); 1540 btrfs_clean_old_snapshots(root); 1541 mutex_unlock(&root->fs_info->cleaner_mutex); 1542 btrfs_run_defrag_inodes(root->fs_info); 1543 } 1544 1545 if (!try_to_freeze()) { 1546 set_current_state(TASK_INTERRUPTIBLE); 1547 if (!kthread_should_stop()) 1548 schedule(); 1549 __set_current_state(TASK_RUNNING); 1550 } 1551 } while (!kthread_should_stop()); 1552 return 0; 1553 } 1554 1555 static int transaction_kthread(void *arg) 1556 { 1557 struct btrfs_root *root = arg; 1558 struct btrfs_trans_handle *trans; 1559 struct btrfs_transaction *cur; 1560 u64 transid; 1561 unsigned long now; 1562 unsigned long delay; 1563 bool cannot_commit; 1564 1565 do { 1566 cannot_commit = false; 1567 delay = HZ * 30; 1568 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1569 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1570 1571 spin_lock(&root->fs_info->trans_lock); 1572 cur = root->fs_info->running_transaction; 1573 if (!cur) { 1574 spin_unlock(&root->fs_info->trans_lock); 1575 goto sleep; 1576 } 1577 1578 now = get_seconds(); 1579 if (!cur->blocked && 1580 (now < cur->start_time || now - cur->start_time < 30)) { 1581 spin_unlock(&root->fs_info->trans_lock); 1582 delay = HZ * 5; 1583 goto sleep; 1584 } 1585 transid = cur->transid; 1586 spin_unlock(&root->fs_info->trans_lock); 1587 1588 /* If the file system is aborted, this will always fail. */ 1589 trans = btrfs_join_transaction(root); 1590 if (IS_ERR(trans)) { 1591 cannot_commit = true; 1592 goto sleep; 1593 } 1594 if (transid == trans->transid) { 1595 btrfs_commit_transaction(trans, root); 1596 } else { 1597 btrfs_end_transaction(trans, root); 1598 } 1599 sleep: 1600 wake_up_process(root->fs_info->cleaner_kthread); 1601 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1602 1603 if (!try_to_freeze()) { 1604 set_current_state(TASK_INTERRUPTIBLE); 1605 if (!kthread_should_stop() && 1606 (!btrfs_transaction_blocked(root->fs_info) || 1607 cannot_commit)) 1608 schedule_timeout(delay); 1609 __set_current_state(TASK_RUNNING); 1610 } 1611 } while (!kthread_should_stop()); 1612 return 0; 1613 } 1614 1615 /* 1616 * this will find the highest generation in the array of 1617 * root backups. The index of the highest array is returned, 1618 * or -1 if we can't find anything. 1619 * 1620 * We check to make sure the array is valid by comparing the 1621 * generation of the latest root in the array with the generation 1622 * in the super block. If they don't match we pitch it. 1623 */ 1624 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1625 { 1626 u64 cur; 1627 int newest_index = -1; 1628 struct btrfs_root_backup *root_backup; 1629 int i; 1630 1631 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1632 root_backup = info->super_copy->super_roots + i; 1633 cur = btrfs_backup_tree_root_gen(root_backup); 1634 if (cur == newest_gen) 1635 newest_index = i; 1636 } 1637 1638 /* check to see if we actually wrapped around */ 1639 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1640 root_backup = info->super_copy->super_roots; 1641 cur = btrfs_backup_tree_root_gen(root_backup); 1642 if (cur == newest_gen) 1643 newest_index = 0; 1644 } 1645 return newest_index; 1646 } 1647 1648 1649 /* 1650 * find the oldest backup so we know where to store new entries 1651 * in the backup array. This will set the backup_root_index 1652 * field in the fs_info struct 1653 */ 1654 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1655 u64 newest_gen) 1656 { 1657 int newest_index = -1; 1658 1659 newest_index = find_newest_super_backup(info, newest_gen); 1660 /* if there was garbage in there, just move along */ 1661 if (newest_index == -1) { 1662 info->backup_root_index = 0; 1663 } else { 1664 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1665 } 1666 } 1667 1668 /* 1669 * copy all the root pointers into the super backup array. 1670 * this will bump the backup pointer by one when it is 1671 * done 1672 */ 1673 static void backup_super_roots(struct btrfs_fs_info *info) 1674 { 1675 int next_backup; 1676 struct btrfs_root_backup *root_backup; 1677 int last_backup; 1678 1679 next_backup = info->backup_root_index; 1680 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1681 BTRFS_NUM_BACKUP_ROOTS; 1682 1683 /* 1684 * just overwrite the last backup if we're at the same generation 1685 * this happens only at umount 1686 */ 1687 root_backup = info->super_for_commit->super_roots + last_backup; 1688 if (btrfs_backup_tree_root_gen(root_backup) == 1689 btrfs_header_generation(info->tree_root->node)) 1690 next_backup = last_backup; 1691 1692 root_backup = info->super_for_commit->super_roots + next_backup; 1693 1694 /* 1695 * make sure all of our padding and empty slots get zero filled 1696 * regardless of which ones we use today 1697 */ 1698 memset(root_backup, 0, sizeof(*root_backup)); 1699 1700 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1701 1702 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1703 btrfs_set_backup_tree_root_gen(root_backup, 1704 btrfs_header_generation(info->tree_root->node)); 1705 1706 btrfs_set_backup_tree_root_level(root_backup, 1707 btrfs_header_level(info->tree_root->node)); 1708 1709 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1710 btrfs_set_backup_chunk_root_gen(root_backup, 1711 btrfs_header_generation(info->chunk_root->node)); 1712 btrfs_set_backup_chunk_root_level(root_backup, 1713 btrfs_header_level(info->chunk_root->node)); 1714 1715 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1716 btrfs_set_backup_extent_root_gen(root_backup, 1717 btrfs_header_generation(info->extent_root->node)); 1718 btrfs_set_backup_extent_root_level(root_backup, 1719 btrfs_header_level(info->extent_root->node)); 1720 1721 /* 1722 * we might commit during log recovery, which happens before we set 1723 * the fs_root. Make sure it is valid before we fill it in. 1724 */ 1725 if (info->fs_root && info->fs_root->node) { 1726 btrfs_set_backup_fs_root(root_backup, 1727 info->fs_root->node->start); 1728 btrfs_set_backup_fs_root_gen(root_backup, 1729 btrfs_header_generation(info->fs_root->node)); 1730 btrfs_set_backup_fs_root_level(root_backup, 1731 btrfs_header_level(info->fs_root->node)); 1732 } 1733 1734 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1735 btrfs_set_backup_dev_root_gen(root_backup, 1736 btrfs_header_generation(info->dev_root->node)); 1737 btrfs_set_backup_dev_root_level(root_backup, 1738 btrfs_header_level(info->dev_root->node)); 1739 1740 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1741 btrfs_set_backup_csum_root_gen(root_backup, 1742 btrfs_header_generation(info->csum_root->node)); 1743 btrfs_set_backup_csum_root_level(root_backup, 1744 btrfs_header_level(info->csum_root->node)); 1745 1746 btrfs_set_backup_total_bytes(root_backup, 1747 btrfs_super_total_bytes(info->super_copy)); 1748 btrfs_set_backup_bytes_used(root_backup, 1749 btrfs_super_bytes_used(info->super_copy)); 1750 btrfs_set_backup_num_devices(root_backup, 1751 btrfs_super_num_devices(info->super_copy)); 1752 1753 /* 1754 * if we don't copy this out to the super_copy, it won't get remembered 1755 * for the next commit 1756 */ 1757 memcpy(&info->super_copy->super_roots, 1758 &info->super_for_commit->super_roots, 1759 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1760 } 1761 1762 /* 1763 * this copies info out of the root backup array and back into 1764 * the in-memory super block. It is meant to help iterate through 1765 * the array, so you send it the number of backups you've already 1766 * tried and the last backup index you used. 1767 * 1768 * this returns -1 when it has tried all the backups 1769 */ 1770 static noinline int next_root_backup(struct btrfs_fs_info *info, 1771 struct btrfs_super_block *super, 1772 int *num_backups_tried, int *backup_index) 1773 { 1774 struct btrfs_root_backup *root_backup; 1775 int newest = *backup_index; 1776 1777 if (*num_backups_tried == 0) { 1778 u64 gen = btrfs_super_generation(super); 1779 1780 newest = find_newest_super_backup(info, gen); 1781 if (newest == -1) 1782 return -1; 1783 1784 *backup_index = newest; 1785 *num_backups_tried = 1; 1786 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1787 /* we've tried all the backups, all done */ 1788 return -1; 1789 } else { 1790 /* jump to the next oldest backup */ 1791 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1792 BTRFS_NUM_BACKUP_ROOTS; 1793 *backup_index = newest; 1794 *num_backups_tried += 1; 1795 } 1796 root_backup = super->super_roots + newest; 1797 1798 btrfs_set_super_generation(super, 1799 btrfs_backup_tree_root_gen(root_backup)); 1800 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1801 btrfs_set_super_root_level(super, 1802 btrfs_backup_tree_root_level(root_backup)); 1803 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1804 1805 /* 1806 * fixme: the total bytes and num_devices need to match or we should 1807 * need a fsck 1808 */ 1809 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1810 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1811 return 0; 1812 } 1813 1814 /* helper to cleanup tree roots */ 1815 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 1816 { 1817 free_extent_buffer(info->tree_root->node); 1818 free_extent_buffer(info->tree_root->commit_root); 1819 free_extent_buffer(info->dev_root->node); 1820 free_extent_buffer(info->dev_root->commit_root); 1821 free_extent_buffer(info->extent_root->node); 1822 free_extent_buffer(info->extent_root->commit_root); 1823 free_extent_buffer(info->csum_root->node); 1824 free_extent_buffer(info->csum_root->commit_root); 1825 1826 info->tree_root->node = NULL; 1827 info->tree_root->commit_root = NULL; 1828 info->dev_root->node = NULL; 1829 info->dev_root->commit_root = NULL; 1830 info->extent_root->node = NULL; 1831 info->extent_root->commit_root = NULL; 1832 info->csum_root->node = NULL; 1833 info->csum_root->commit_root = NULL; 1834 1835 if (chunk_root) { 1836 free_extent_buffer(info->chunk_root->node); 1837 free_extent_buffer(info->chunk_root->commit_root); 1838 info->chunk_root->node = NULL; 1839 info->chunk_root->commit_root = NULL; 1840 } 1841 } 1842 1843 1844 int open_ctree(struct super_block *sb, 1845 struct btrfs_fs_devices *fs_devices, 1846 char *options) 1847 { 1848 u32 sectorsize; 1849 u32 nodesize; 1850 u32 leafsize; 1851 u32 blocksize; 1852 u32 stripesize; 1853 u64 generation; 1854 u64 features; 1855 struct btrfs_key location; 1856 struct buffer_head *bh; 1857 struct btrfs_super_block *disk_super; 1858 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1859 struct btrfs_root *tree_root; 1860 struct btrfs_root *extent_root; 1861 struct btrfs_root *csum_root; 1862 struct btrfs_root *chunk_root; 1863 struct btrfs_root *dev_root; 1864 struct btrfs_root *log_tree_root; 1865 int ret; 1866 int err = -EINVAL; 1867 int num_backups_tried = 0; 1868 int backup_index = 0; 1869 1870 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 1871 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info); 1872 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info); 1873 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 1874 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info); 1875 1876 if (!tree_root || !extent_root || !csum_root || 1877 !chunk_root || !dev_root) { 1878 err = -ENOMEM; 1879 goto fail; 1880 } 1881 1882 ret = init_srcu_struct(&fs_info->subvol_srcu); 1883 if (ret) { 1884 err = ret; 1885 goto fail; 1886 } 1887 1888 ret = setup_bdi(fs_info, &fs_info->bdi); 1889 if (ret) { 1890 err = ret; 1891 goto fail_srcu; 1892 } 1893 1894 fs_info->btree_inode = new_inode(sb); 1895 if (!fs_info->btree_inode) { 1896 err = -ENOMEM; 1897 goto fail_bdi; 1898 } 1899 1900 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 1901 1902 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 1903 INIT_LIST_HEAD(&fs_info->trans_list); 1904 INIT_LIST_HEAD(&fs_info->dead_roots); 1905 INIT_LIST_HEAD(&fs_info->delayed_iputs); 1906 INIT_LIST_HEAD(&fs_info->hashers); 1907 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 1908 INIT_LIST_HEAD(&fs_info->ordered_operations); 1909 INIT_LIST_HEAD(&fs_info->caching_block_groups); 1910 spin_lock_init(&fs_info->delalloc_lock); 1911 spin_lock_init(&fs_info->trans_lock); 1912 spin_lock_init(&fs_info->ref_cache_lock); 1913 spin_lock_init(&fs_info->fs_roots_radix_lock); 1914 spin_lock_init(&fs_info->delayed_iput_lock); 1915 spin_lock_init(&fs_info->defrag_inodes_lock); 1916 spin_lock_init(&fs_info->free_chunk_lock); 1917 mutex_init(&fs_info->reloc_mutex); 1918 1919 init_completion(&fs_info->kobj_unregister); 1920 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 1921 INIT_LIST_HEAD(&fs_info->space_info); 1922 btrfs_mapping_init(&fs_info->mapping_tree); 1923 btrfs_init_block_rsv(&fs_info->global_block_rsv); 1924 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv); 1925 btrfs_init_block_rsv(&fs_info->trans_block_rsv); 1926 btrfs_init_block_rsv(&fs_info->chunk_block_rsv); 1927 btrfs_init_block_rsv(&fs_info->empty_block_rsv); 1928 btrfs_init_block_rsv(&fs_info->delayed_block_rsv); 1929 atomic_set(&fs_info->nr_async_submits, 0); 1930 atomic_set(&fs_info->async_delalloc_pages, 0); 1931 atomic_set(&fs_info->async_submit_draining, 0); 1932 atomic_set(&fs_info->nr_async_bios, 0); 1933 atomic_set(&fs_info->defrag_running, 0); 1934 fs_info->sb = sb; 1935 fs_info->max_inline = 8192 * 1024; 1936 fs_info->metadata_ratio = 0; 1937 fs_info->defrag_inodes = RB_ROOT; 1938 fs_info->trans_no_join = 0; 1939 fs_info->free_chunk_space = 0; 1940 1941 /* readahead state */ 1942 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 1943 spin_lock_init(&fs_info->reada_lock); 1944 1945 fs_info->thread_pool_size = min_t(unsigned long, 1946 num_online_cpus() + 2, 8); 1947 1948 INIT_LIST_HEAD(&fs_info->ordered_extents); 1949 spin_lock_init(&fs_info->ordered_extent_lock); 1950 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 1951 GFP_NOFS); 1952 if (!fs_info->delayed_root) { 1953 err = -ENOMEM; 1954 goto fail_iput; 1955 } 1956 btrfs_init_delayed_root(fs_info->delayed_root); 1957 1958 mutex_init(&fs_info->scrub_lock); 1959 atomic_set(&fs_info->scrubs_running, 0); 1960 atomic_set(&fs_info->scrub_pause_req, 0); 1961 atomic_set(&fs_info->scrubs_paused, 0); 1962 atomic_set(&fs_info->scrub_cancel_req, 0); 1963 init_waitqueue_head(&fs_info->scrub_pause_wait); 1964 init_rwsem(&fs_info->scrub_super_lock); 1965 fs_info->scrub_workers_refcnt = 0; 1966 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1967 fs_info->check_integrity_print_mask = 0; 1968 #endif 1969 1970 spin_lock_init(&fs_info->balance_lock); 1971 mutex_init(&fs_info->balance_mutex); 1972 atomic_set(&fs_info->balance_running, 0); 1973 atomic_set(&fs_info->balance_pause_req, 0); 1974 atomic_set(&fs_info->balance_cancel_req, 0); 1975 fs_info->balance_ctl = NULL; 1976 init_waitqueue_head(&fs_info->balance_wait_q); 1977 1978 sb->s_blocksize = 4096; 1979 sb->s_blocksize_bits = blksize_bits(4096); 1980 sb->s_bdi = &fs_info->bdi; 1981 1982 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 1983 set_nlink(fs_info->btree_inode, 1); 1984 /* 1985 * we set the i_size on the btree inode to the max possible int. 1986 * the real end of the address space is determined by all of 1987 * the devices in the system 1988 */ 1989 fs_info->btree_inode->i_size = OFFSET_MAX; 1990 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 1991 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 1992 1993 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 1994 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 1995 fs_info->btree_inode->i_mapping); 1996 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 1997 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 1998 1999 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2000 2001 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2002 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2003 sizeof(struct btrfs_key)); 2004 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1; 2005 insert_inode_hash(fs_info->btree_inode); 2006 2007 spin_lock_init(&fs_info->block_group_cache_lock); 2008 fs_info->block_group_cache_tree = RB_ROOT; 2009 2010 extent_io_tree_init(&fs_info->freed_extents[0], 2011 fs_info->btree_inode->i_mapping); 2012 extent_io_tree_init(&fs_info->freed_extents[1], 2013 fs_info->btree_inode->i_mapping); 2014 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2015 fs_info->do_barriers = 1; 2016 2017 2018 mutex_init(&fs_info->ordered_operations_mutex); 2019 mutex_init(&fs_info->tree_log_mutex); 2020 mutex_init(&fs_info->chunk_mutex); 2021 mutex_init(&fs_info->transaction_kthread_mutex); 2022 mutex_init(&fs_info->cleaner_mutex); 2023 mutex_init(&fs_info->volume_mutex); 2024 init_rwsem(&fs_info->extent_commit_sem); 2025 init_rwsem(&fs_info->cleanup_work_sem); 2026 init_rwsem(&fs_info->subvol_sem); 2027 2028 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2029 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2030 2031 init_waitqueue_head(&fs_info->transaction_throttle); 2032 init_waitqueue_head(&fs_info->transaction_wait); 2033 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2034 init_waitqueue_head(&fs_info->async_submit_wait); 2035 2036 __setup_root(4096, 4096, 4096, 4096, tree_root, 2037 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2038 2039 invalidate_bdev(fs_devices->latest_bdev); 2040 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2041 if (!bh) { 2042 err = -EINVAL; 2043 goto fail_alloc; 2044 } 2045 2046 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2047 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2048 sizeof(*fs_info->super_for_commit)); 2049 brelse(bh); 2050 2051 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2052 2053 disk_super = fs_info->super_copy; 2054 if (!btrfs_super_root(disk_super)) 2055 goto fail_alloc; 2056 2057 /* check FS state, whether FS is broken. */ 2058 fs_info->fs_state |= btrfs_super_flags(disk_super); 2059 2060 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2061 if (ret) { 2062 printk(KERN_ERR "btrfs: superblock contains fatal errors\n"); 2063 err = ret; 2064 goto fail_alloc; 2065 } 2066 2067 /* 2068 * run through our array of backup supers and setup 2069 * our ring pointer to the oldest one 2070 */ 2071 generation = btrfs_super_generation(disk_super); 2072 find_oldest_super_backup(fs_info, generation); 2073 2074 /* 2075 * In the long term, we'll store the compression type in the super 2076 * block, and it'll be used for per file compression control. 2077 */ 2078 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2079 2080 ret = btrfs_parse_options(tree_root, options); 2081 if (ret) { 2082 err = ret; 2083 goto fail_alloc; 2084 } 2085 2086 features = btrfs_super_incompat_flags(disk_super) & 2087 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2088 if (features) { 2089 printk(KERN_ERR "BTRFS: couldn't mount because of " 2090 "unsupported optional features (%Lx).\n", 2091 (unsigned long long)features); 2092 err = -EINVAL; 2093 goto fail_alloc; 2094 } 2095 2096 if (btrfs_super_leafsize(disk_super) != 2097 btrfs_super_nodesize(disk_super)) { 2098 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2099 "blocksizes don't match. node %d leaf %d\n", 2100 btrfs_super_nodesize(disk_super), 2101 btrfs_super_leafsize(disk_super)); 2102 err = -EINVAL; 2103 goto fail_alloc; 2104 } 2105 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2106 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2107 "blocksize (%d) was too large\n", 2108 btrfs_super_leafsize(disk_super)); 2109 err = -EINVAL; 2110 goto fail_alloc; 2111 } 2112 2113 features = btrfs_super_incompat_flags(disk_super); 2114 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2115 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO) 2116 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2117 2118 /* 2119 * flag our filesystem as having big metadata blocks if 2120 * they are bigger than the page size 2121 */ 2122 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) { 2123 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2124 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n"); 2125 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2126 } 2127 2128 nodesize = btrfs_super_nodesize(disk_super); 2129 leafsize = btrfs_super_leafsize(disk_super); 2130 sectorsize = btrfs_super_sectorsize(disk_super); 2131 stripesize = btrfs_super_stripesize(disk_super); 2132 2133 /* 2134 * mixed block groups end up with duplicate but slightly offset 2135 * extent buffers for the same range. It leads to corruptions 2136 */ 2137 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2138 (sectorsize != leafsize)) { 2139 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes " 2140 "are not allowed for mixed block groups on %s\n", 2141 sb->s_id); 2142 goto fail_alloc; 2143 } 2144 2145 btrfs_set_super_incompat_flags(disk_super, features); 2146 2147 features = btrfs_super_compat_ro_flags(disk_super) & 2148 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2149 if (!(sb->s_flags & MS_RDONLY) && features) { 2150 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2151 "unsupported option features (%Lx).\n", 2152 (unsigned long long)features); 2153 err = -EINVAL; 2154 goto fail_alloc; 2155 } 2156 2157 btrfs_init_workers(&fs_info->generic_worker, 2158 "genwork", 1, NULL); 2159 2160 btrfs_init_workers(&fs_info->workers, "worker", 2161 fs_info->thread_pool_size, 2162 &fs_info->generic_worker); 2163 2164 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 2165 fs_info->thread_pool_size, 2166 &fs_info->generic_worker); 2167 2168 btrfs_init_workers(&fs_info->submit_workers, "submit", 2169 min_t(u64, fs_devices->num_devices, 2170 fs_info->thread_pool_size), 2171 &fs_info->generic_worker); 2172 2173 btrfs_init_workers(&fs_info->caching_workers, "cache", 2174 2, &fs_info->generic_worker); 2175 2176 /* a higher idle thresh on the submit workers makes it much more 2177 * likely that bios will be send down in a sane order to the 2178 * devices 2179 */ 2180 fs_info->submit_workers.idle_thresh = 64; 2181 2182 fs_info->workers.idle_thresh = 16; 2183 fs_info->workers.ordered = 1; 2184 2185 fs_info->delalloc_workers.idle_thresh = 2; 2186 fs_info->delalloc_workers.ordered = 1; 2187 2188 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 2189 &fs_info->generic_worker); 2190 btrfs_init_workers(&fs_info->endio_workers, "endio", 2191 fs_info->thread_pool_size, 2192 &fs_info->generic_worker); 2193 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 2194 fs_info->thread_pool_size, 2195 &fs_info->generic_worker); 2196 btrfs_init_workers(&fs_info->endio_meta_write_workers, 2197 "endio-meta-write", fs_info->thread_pool_size, 2198 &fs_info->generic_worker); 2199 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 2200 fs_info->thread_pool_size, 2201 &fs_info->generic_worker); 2202 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", 2203 1, &fs_info->generic_worker); 2204 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta", 2205 fs_info->thread_pool_size, 2206 &fs_info->generic_worker); 2207 btrfs_init_workers(&fs_info->readahead_workers, "readahead", 2208 fs_info->thread_pool_size, 2209 &fs_info->generic_worker); 2210 2211 /* 2212 * endios are largely parallel and should have a very 2213 * low idle thresh 2214 */ 2215 fs_info->endio_workers.idle_thresh = 4; 2216 fs_info->endio_meta_workers.idle_thresh = 4; 2217 2218 fs_info->endio_write_workers.idle_thresh = 2; 2219 fs_info->endio_meta_write_workers.idle_thresh = 2; 2220 fs_info->readahead_workers.idle_thresh = 2; 2221 2222 /* 2223 * btrfs_start_workers can really only fail because of ENOMEM so just 2224 * return -ENOMEM if any of these fail. 2225 */ 2226 ret = btrfs_start_workers(&fs_info->workers); 2227 ret |= btrfs_start_workers(&fs_info->generic_worker); 2228 ret |= btrfs_start_workers(&fs_info->submit_workers); 2229 ret |= btrfs_start_workers(&fs_info->delalloc_workers); 2230 ret |= btrfs_start_workers(&fs_info->fixup_workers); 2231 ret |= btrfs_start_workers(&fs_info->endio_workers); 2232 ret |= btrfs_start_workers(&fs_info->endio_meta_workers); 2233 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers); 2234 ret |= btrfs_start_workers(&fs_info->endio_write_workers); 2235 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker); 2236 ret |= btrfs_start_workers(&fs_info->delayed_workers); 2237 ret |= btrfs_start_workers(&fs_info->caching_workers); 2238 ret |= btrfs_start_workers(&fs_info->readahead_workers); 2239 if (ret) { 2240 ret = -ENOMEM; 2241 goto fail_sb_buffer; 2242 } 2243 2244 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2245 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2246 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2247 2248 tree_root->nodesize = nodesize; 2249 tree_root->leafsize = leafsize; 2250 tree_root->sectorsize = sectorsize; 2251 tree_root->stripesize = stripesize; 2252 2253 sb->s_blocksize = sectorsize; 2254 sb->s_blocksize_bits = blksize_bits(sectorsize); 2255 2256 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 2257 sizeof(disk_super->magic))) { 2258 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 2259 goto fail_sb_buffer; 2260 } 2261 2262 if (sectorsize != PAGE_SIZE) { 2263 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) " 2264 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2265 goto fail_sb_buffer; 2266 } 2267 2268 mutex_lock(&fs_info->chunk_mutex); 2269 ret = btrfs_read_sys_array(tree_root); 2270 mutex_unlock(&fs_info->chunk_mutex); 2271 if (ret) { 2272 printk(KERN_WARNING "btrfs: failed to read the system " 2273 "array on %s\n", sb->s_id); 2274 goto fail_sb_buffer; 2275 } 2276 2277 blocksize = btrfs_level_size(tree_root, 2278 btrfs_super_chunk_root_level(disk_super)); 2279 generation = btrfs_super_chunk_root_generation(disk_super); 2280 2281 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2282 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2283 2284 chunk_root->node = read_tree_block(chunk_root, 2285 btrfs_super_chunk_root(disk_super), 2286 blocksize, generation); 2287 BUG_ON(!chunk_root->node); /* -ENOMEM */ 2288 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2289 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 2290 sb->s_id); 2291 goto fail_tree_roots; 2292 } 2293 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2294 chunk_root->commit_root = btrfs_root_node(chunk_root); 2295 2296 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2297 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 2298 BTRFS_UUID_SIZE); 2299 2300 ret = btrfs_read_chunk_tree(chunk_root); 2301 if (ret) { 2302 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 2303 sb->s_id); 2304 goto fail_tree_roots; 2305 } 2306 2307 btrfs_close_extra_devices(fs_devices); 2308 2309 if (!fs_devices->latest_bdev) { 2310 printk(KERN_CRIT "btrfs: failed to read devices on %s\n", 2311 sb->s_id); 2312 goto fail_tree_roots; 2313 } 2314 2315 retry_root_backup: 2316 blocksize = btrfs_level_size(tree_root, 2317 btrfs_super_root_level(disk_super)); 2318 generation = btrfs_super_generation(disk_super); 2319 2320 tree_root->node = read_tree_block(tree_root, 2321 btrfs_super_root(disk_super), 2322 blocksize, generation); 2323 if (!tree_root->node || 2324 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2325 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 2326 sb->s_id); 2327 2328 goto recovery_tree_root; 2329 } 2330 2331 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2332 tree_root->commit_root = btrfs_root_node(tree_root); 2333 2334 ret = find_and_setup_root(tree_root, fs_info, 2335 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 2336 if (ret) 2337 goto recovery_tree_root; 2338 extent_root->track_dirty = 1; 2339 2340 ret = find_and_setup_root(tree_root, fs_info, 2341 BTRFS_DEV_TREE_OBJECTID, dev_root); 2342 if (ret) 2343 goto recovery_tree_root; 2344 dev_root->track_dirty = 1; 2345 2346 ret = find_and_setup_root(tree_root, fs_info, 2347 BTRFS_CSUM_TREE_OBJECTID, csum_root); 2348 if (ret) 2349 goto recovery_tree_root; 2350 2351 csum_root->track_dirty = 1; 2352 2353 fs_info->generation = generation; 2354 fs_info->last_trans_committed = generation; 2355 2356 ret = btrfs_init_space_info(fs_info); 2357 if (ret) { 2358 printk(KERN_ERR "Failed to initial space info: %d\n", ret); 2359 goto fail_block_groups; 2360 } 2361 2362 ret = btrfs_read_block_groups(extent_root); 2363 if (ret) { 2364 printk(KERN_ERR "Failed to read block groups: %d\n", ret); 2365 goto fail_block_groups; 2366 } 2367 2368 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2369 "btrfs-cleaner"); 2370 if (IS_ERR(fs_info->cleaner_kthread)) 2371 goto fail_block_groups; 2372 2373 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2374 tree_root, 2375 "btrfs-transaction"); 2376 if (IS_ERR(fs_info->transaction_kthread)) 2377 goto fail_cleaner; 2378 2379 if (!btrfs_test_opt(tree_root, SSD) && 2380 !btrfs_test_opt(tree_root, NOSSD) && 2381 !fs_info->fs_devices->rotating) { 2382 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 2383 "mode\n"); 2384 btrfs_set_opt(fs_info->mount_opt, SSD); 2385 } 2386 2387 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2388 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2389 ret = btrfsic_mount(tree_root, fs_devices, 2390 btrfs_test_opt(tree_root, 2391 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2392 1 : 0, 2393 fs_info->check_integrity_print_mask); 2394 if (ret) 2395 printk(KERN_WARNING "btrfs: failed to initialize" 2396 " integrity check module %s\n", sb->s_id); 2397 } 2398 #endif 2399 2400 /* do not make disk changes in broken FS */ 2401 if (btrfs_super_log_root(disk_super) != 0 && 2402 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) { 2403 u64 bytenr = btrfs_super_log_root(disk_super); 2404 2405 if (fs_devices->rw_devices == 0) { 2406 printk(KERN_WARNING "Btrfs log replay required " 2407 "on RO media\n"); 2408 err = -EIO; 2409 goto fail_trans_kthread; 2410 } 2411 blocksize = 2412 btrfs_level_size(tree_root, 2413 btrfs_super_log_root_level(disk_super)); 2414 2415 log_tree_root = btrfs_alloc_root(fs_info); 2416 if (!log_tree_root) { 2417 err = -ENOMEM; 2418 goto fail_trans_kthread; 2419 } 2420 2421 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2422 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2423 2424 log_tree_root->node = read_tree_block(tree_root, bytenr, 2425 blocksize, 2426 generation + 1); 2427 /* returns with log_tree_root freed on success */ 2428 ret = btrfs_recover_log_trees(log_tree_root); 2429 if (ret) { 2430 btrfs_error(tree_root->fs_info, ret, 2431 "Failed to recover log tree"); 2432 free_extent_buffer(log_tree_root->node); 2433 kfree(log_tree_root); 2434 goto fail_trans_kthread; 2435 } 2436 2437 if (sb->s_flags & MS_RDONLY) { 2438 ret = btrfs_commit_super(tree_root); 2439 if (ret) 2440 goto fail_trans_kthread; 2441 } 2442 } 2443 2444 ret = btrfs_find_orphan_roots(tree_root); 2445 if (ret) 2446 goto fail_trans_kthread; 2447 2448 if (!(sb->s_flags & MS_RDONLY)) { 2449 ret = btrfs_cleanup_fs_roots(fs_info); 2450 if (ret) { 2451 } 2452 2453 ret = btrfs_recover_relocation(tree_root); 2454 if (ret < 0) { 2455 printk(KERN_WARNING 2456 "btrfs: failed to recover relocation\n"); 2457 err = -EINVAL; 2458 goto fail_trans_kthread; 2459 } 2460 } 2461 2462 location.objectid = BTRFS_FS_TREE_OBJECTID; 2463 location.type = BTRFS_ROOT_ITEM_KEY; 2464 location.offset = (u64)-1; 2465 2466 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2467 if (!fs_info->fs_root) 2468 goto fail_trans_kthread; 2469 if (IS_ERR(fs_info->fs_root)) { 2470 err = PTR_ERR(fs_info->fs_root); 2471 goto fail_trans_kthread; 2472 } 2473 2474 if (!(sb->s_flags & MS_RDONLY)) { 2475 down_read(&fs_info->cleanup_work_sem); 2476 err = btrfs_orphan_cleanup(fs_info->fs_root); 2477 if (!err) 2478 err = btrfs_orphan_cleanup(fs_info->tree_root); 2479 up_read(&fs_info->cleanup_work_sem); 2480 2481 if (!err) 2482 err = btrfs_recover_balance(fs_info->tree_root); 2483 2484 if (err) { 2485 close_ctree(tree_root); 2486 return err; 2487 } 2488 } 2489 2490 return 0; 2491 2492 fail_trans_kthread: 2493 kthread_stop(fs_info->transaction_kthread); 2494 fail_cleaner: 2495 kthread_stop(fs_info->cleaner_kthread); 2496 2497 /* 2498 * make sure we're done with the btree inode before we stop our 2499 * kthreads 2500 */ 2501 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2502 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2503 2504 fail_block_groups: 2505 btrfs_free_block_groups(fs_info); 2506 2507 fail_tree_roots: 2508 free_root_pointers(fs_info, 1); 2509 2510 fail_sb_buffer: 2511 btrfs_stop_workers(&fs_info->generic_worker); 2512 btrfs_stop_workers(&fs_info->readahead_workers); 2513 btrfs_stop_workers(&fs_info->fixup_workers); 2514 btrfs_stop_workers(&fs_info->delalloc_workers); 2515 btrfs_stop_workers(&fs_info->workers); 2516 btrfs_stop_workers(&fs_info->endio_workers); 2517 btrfs_stop_workers(&fs_info->endio_meta_workers); 2518 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2519 btrfs_stop_workers(&fs_info->endio_write_workers); 2520 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2521 btrfs_stop_workers(&fs_info->submit_workers); 2522 btrfs_stop_workers(&fs_info->delayed_workers); 2523 btrfs_stop_workers(&fs_info->caching_workers); 2524 fail_alloc: 2525 fail_iput: 2526 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2527 2528 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2529 iput(fs_info->btree_inode); 2530 fail_bdi: 2531 bdi_destroy(&fs_info->bdi); 2532 fail_srcu: 2533 cleanup_srcu_struct(&fs_info->subvol_srcu); 2534 fail: 2535 btrfs_close_devices(fs_info->fs_devices); 2536 return err; 2537 2538 recovery_tree_root: 2539 if (!btrfs_test_opt(tree_root, RECOVERY)) 2540 goto fail_tree_roots; 2541 2542 free_root_pointers(fs_info, 0); 2543 2544 /* don't use the log in recovery mode, it won't be valid */ 2545 btrfs_set_super_log_root(disk_super, 0); 2546 2547 /* we can't trust the free space cache either */ 2548 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2549 2550 ret = next_root_backup(fs_info, fs_info->super_copy, 2551 &num_backups_tried, &backup_index); 2552 if (ret == -1) 2553 goto fail_block_groups; 2554 goto retry_root_backup; 2555 } 2556 2557 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 2558 { 2559 char b[BDEVNAME_SIZE]; 2560 2561 if (uptodate) { 2562 set_buffer_uptodate(bh); 2563 } else { 2564 printk_ratelimited(KERN_WARNING "lost page write due to " 2565 "I/O error on %s\n", 2566 bdevname(bh->b_bdev, b)); 2567 /* note, we dont' set_buffer_write_io_error because we have 2568 * our own ways of dealing with the IO errors 2569 */ 2570 clear_buffer_uptodate(bh); 2571 } 2572 unlock_buffer(bh); 2573 put_bh(bh); 2574 } 2575 2576 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 2577 { 2578 struct buffer_head *bh; 2579 struct buffer_head *latest = NULL; 2580 struct btrfs_super_block *super; 2581 int i; 2582 u64 transid = 0; 2583 u64 bytenr; 2584 2585 /* we would like to check all the supers, but that would make 2586 * a btrfs mount succeed after a mkfs from a different FS. 2587 * So, we need to add a special mount option to scan for 2588 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2589 */ 2590 for (i = 0; i < 1; i++) { 2591 bytenr = btrfs_sb_offset(i); 2592 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2593 break; 2594 bh = __bread(bdev, bytenr / 4096, 4096); 2595 if (!bh) 2596 continue; 2597 2598 super = (struct btrfs_super_block *)bh->b_data; 2599 if (btrfs_super_bytenr(super) != bytenr || 2600 strncmp((char *)(&super->magic), BTRFS_MAGIC, 2601 sizeof(super->magic))) { 2602 brelse(bh); 2603 continue; 2604 } 2605 2606 if (!latest || btrfs_super_generation(super) > transid) { 2607 brelse(latest); 2608 latest = bh; 2609 transid = btrfs_super_generation(super); 2610 } else { 2611 brelse(bh); 2612 } 2613 } 2614 return latest; 2615 } 2616 2617 /* 2618 * this should be called twice, once with wait == 0 and 2619 * once with wait == 1. When wait == 0 is done, all the buffer heads 2620 * we write are pinned. 2621 * 2622 * They are released when wait == 1 is done. 2623 * max_mirrors must be the same for both runs, and it indicates how 2624 * many supers on this one device should be written. 2625 * 2626 * max_mirrors == 0 means to write them all. 2627 */ 2628 static int write_dev_supers(struct btrfs_device *device, 2629 struct btrfs_super_block *sb, 2630 int do_barriers, int wait, int max_mirrors) 2631 { 2632 struct buffer_head *bh; 2633 int i; 2634 int ret; 2635 int errors = 0; 2636 u32 crc; 2637 u64 bytenr; 2638 2639 if (max_mirrors == 0) 2640 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2641 2642 for (i = 0; i < max_mirrors; i++) { 2643 bytenr = btrfs_sb_offset(i); 2644 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2645 break; 2646 2647 if (wait) { 2648 bh = __find_get_block(device->bdev, bytenr / 4096, 2649 BTRFS_SUPER_INFO_SIZE); 2650 BUG_ON(!bh); 2651 wait_on_buffer(bh); 2652 if (!buffer_uptodate(bh)) 2653 errors++; 2654 2655 /* drop our reference */ 2656 brelse(bh); 2657 2658 /* drop the reference from the wait == 0 run */ 2659 brelse(bh); 2660 continue; 2661 } else { 2662 btrfs_set_super_bytenr(sb, bytenr); 2663 2664 crc = ~(u32)0; 2665 crc = btrfs_csum_data(NULL, (char *)sb + 2666 BTRFS_CSUM_SIZE, crc, 2667 BTRFS_SUPER_INFO_SIZE - 2668 BTRFS_CSUM_SIZE); 2669 btrfs_csum_final(crc, sb->csum); 2670 2671 /* 2672 * one reference for us, and we leave it for the 2673 * caller 2674 */ 2675 bh = __getblk(device->bdev, bytenr / 4096, 2676 BTRFS_SUPER_INFO_SIZE); 2677 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2678 2679 /* one reference for submit_bh */ 2680 get_bh(bh); 2681 2682 set_buffer_uptodate(bh); 2683 lock_buffer(bh); 2684 bh->b_end_io = btrfs_end_buffer_write_sync; 2685 } 2686 2687 /* 2688 * we fua the first super. The others we allow 2689 * to go down lazy. 2690 */ 2691 ret = btrfsic_submit_bh(WRITE_FUA, bh); 2692 if (ret) 2693 errors++; 2694 } 2695 return errors < i ? 0 : -1; 2696 } 2697 2698 /* 2699 * endio for the write_dev_flush, this will wake anyone waiting 2700 * for the barrier when it is done 2701 */ 2702 static void btrfs_end_empty_barrier(struct bio *bio, int err) 2703 { 2704 if (err) { 2705 if (err == -EOPNOTSUPP) 2706 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2707 clear_bit(BIO_UPTODATE, &bio->bi_flags); 2708 } 2709 if (bio->bi_private) 2710 complete(bio->bi_private); 2711 bio_put(bio); 2712 } 2713 2714 /* 2715 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 2716 * sent down. With wait == 1, it waits for the previous flush. 2717 * 2718 * any device where the flush fails with eopnotsupp are flagged as not-barrier 2719 * capable 2720 */ 2721 static int write_dev_flush(struct btrfs_device *device, int wait) 2722 { 2723 struct bio *bio; 2724 int ret = 0; 2725 2726 if (device->nobarriers) 2727 return 0; 2728 2729 if (wait) { 2730 bio = device->flush_bio; 2731 if (!bio) 2732 return 0; 2733 2734 wait_for_completion(&device->flush_wait); 2735 2736 if (bio_flagged(bio, BIO_EOPNOTSUPP)) { 2737 printk("btrfs: disabling barriers on dev %s\n", 2738 device->name); 2739 device->nobarriers = 1; 2740 } 2741 if (!bio_flagged(bio, BIO_UPTODATE)) { 2742 ret = -EIO; 2743 } 2744 2745 /* drop the reference from the wait == 0 run */ 2746 bio_put(bio); 2747 device->flush_bio = NULL; 2748 2749 return ret; 2750 } 2751 2752 /* 2753 * one reference for us, and we leave it for the 2754 * caller 2755 */ 2756 device->flush_bio = NULL;; 2757 bio = bio_alloc(GFP_NOFS, 0); 2758 if (!bio) 2759 return -ENOMEM; 2760 2761 bio->bi_end_io = btrfs_end_empty_barrier; 2762 bio->bi_bdev = device->bdev; 2763 init_completion(&device->flush_wait); 2764 bio->bi_private = &device->flush_wait; 2765 device->flush_bio = bio; 2766 2767 bio_get(bio); 2768 btrfsic_submit_bio(WRITE_FLUSH, bio); 2769 2770 return 0; 2771 } 2772 2773 /* 2774 * send an empty flush down to each device in parallel, 2775 * then wait for them 2776 */ 2777 static int barrier_all_devices(struct btrfs_fs_info *info) 2778 { 2779 struct list_head *head; 2780 struct btrfs_device *dev; 2781 int errors = 0; 2782 int ret; 2783 2784 /* send down all the barriers */ 2785 head = &info->fs_devices->devices; 2786 list_for_each_entry_rcu(dev, head, dev_list) { 2787 if (!dev->bdev) { 2788 errors++; 2789 continue; 2790 } 2791 if (!dev->in_fs_metadata || !dev->writeable) 2792 continue; 2793 2794 ret = write_dev_flush(dev, 0); 2795 if (ret) 2796 errors++; 2797 } 2798 2799 /* wait for all the barriers */ 2800 list_for_each_entry_rcu(dev, head, dev_list) { 2801 if (!dev->bdev) { 2802 errors++; 2803 continue; 2804 } 2805 if (!dev->in_fs_metadata || !dev->writeable) 2806 continue; 2807 2808 ret = write_dev_flush(dev, 1); 2809 if (ret) 2810 errors++; 2811 } 2812 if (errors) 2813 return -EIO; 2814 return 0; 2815 } 2816 2817 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2818 { 2819 struct list_head *head; 2820 struct btrfs_device *dev; 2821 struct btrfs_super_block *sb; 2822 struct btrfs_dev_item *dev_item; 2823 int ret; 2824 int do_barriers; 2825 int max_errors; 2826 int total_errors = 0; 2827 u64 flags; 2828 2829 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 2830 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2831 backup_super_roots(root->fs_info); 2832 2833 sb = root->fs_info->super_for_commit; 2834 dev_item = &sb->dev_item; 2835 2836 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2837 head = &root->fs_info->fs_devices->devices; 2838 2839 if (do_barriers) 2840 barrier_all_devices(root->fs_info); 2841 2842 list_for_each_entry_rcu(dev, head, dev_list) { 2843 if (!dev->bdev) { 2844 total_errors++; 2845 continue; 2846 } 2847 if (!dev->in_fs_metadata || !dev->writeable) 2848 continue; 2849 2850 btrfs_set_stack_device_generation(dev_item, 0); 2851 btrfs_set_stack_device_type(dev_item, dev->type); 2852 btrfs_set_stack_device_id(dev_item, dev->devid); 2853 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2854 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2855 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 2856 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 2857 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 2858 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 2859 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2860 2861 flags = btrfs_super_flags(sb); 2862 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 2863 2864 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 2865 if (ret) 2866 total_errors++; 2867 } 2868 if (total_errors > max_errors) { 2869 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2870 total_errors); 2871 2872 /* This shouldn't happen. FUA is masked off if unsupported */ 2873 BUG(); 2874 } 2875 2876 total_errors = 0; 2877 list_for_each_entry_rcu(dev, head, dev_list) { 2878 if (!dev->bdev) 2879 continue; 2880 if (!dev->in_fs_metadata || !dev->writeable) 2881 continue; 2882 2883 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 2884 if (ret) 2885 total_errors++; 2886 } 2887 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2888 if (total_errors > max_errors) { 2889 btrfs_error(root->fs_info, -EIO, 2890 "%d errors while writing supers", total_errors); 2891 return -EIO; 2892 } 2893 return 0; 2894 } 2895 2896 int write_ctree_super(struct btrfs_trans_handle *trans, 2897 struct btrfs_root *root, int max_mirrors) 2898 { 2899 int ret; 2900 2901 ret = write_all_supers(root, max_mirrors); 2902 return ret; 2903 } 2904 2905 /* Kill all outstanding I/O */ 2906 void btrfs_abort_devices(struct btrfs_root *root) 2907 { 2908 struct list_head *head; 2909 struct btrfs_device *dev; 2910 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2911 head = &root->fs_info->fs_devices->devices; 2912 list_for_each_entry_rcu(dev, head, dev_list) { 2913 blk_abort_queue(dev->bdev->bd_disk->queue); 2914 } 2915 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2916 } 2917 2918 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2919 { 2920 spin_lock(&fs_info->fs_roots_radix_lock); 2921 radix_tree_delete(&fs_info->fs_roots_radix, 2922 (unsigned long)root->root_key.objectid); 2923 spin_unlock(&fs_info->fs_roots_radix_lock); 2924 2925 if (btrfs_root_refs(&root->root_item) == 0) 2926 synchronize_srcu(&fs_info->subvol_srcu); 2927 2928 __btrfs_remove_free_space_cache(root->free_ino_pinned); 2929 __btrfs_remove_free_space_cache(root->free_ino_ctl); 2930 free_fs_root(root); 2931 } 2932 2933 static void free_fs_root(struct btrfs_root *root) 2934 { 2935 iput(root->cache_inode); 2936 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2937 if (root->anon_dev) 2938 free_anon_bdev(root->anon_dev); 2939 free_extent_buffer(root->node); 2940 free_extent_buffer(root->commit_root); 2941 kfree(root->free_ino_ctl); 2942 kfree(root->free_ino_pinned); 2943 kfree(root->name); 2944 kfree(root); 2945 } 2946 2947 static void del_fs_roots(struct btrfs_fs_info *fs_info) 2948 { 2949 int ret; 2950 struct btrfs_root *gang[8]; 2951 int i; 2952 2953 while (!list_empty(&fs_info->dead_roots)) { 2954 gang[0] = list_entry(fs_info->dead_roots.next, 2955 struct btrfs_root, root_list); 2956 list_del(&gang[0]->root_list); 2957 2958 if (gang[0]->in_radix) { 2959 btrfs_free_fs_root(fs_info, gang[0]); 2960 } else { 2961 free_extent_buffer(gang[0]->node); 2962 free_extent_buffer(gang[0]->commit_root); 2963 kfree(gang[0]); 2964 } 2965 } 2966 2967 while (1) { 2968 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2969 (void **)gang, 0, 2970 ARRAY_SIZE(gang)); 2971 if (!ret) 2972 break; 2973 for (i = 0; i < ret; i++) 2974 btrfs_free_fs_root(fs_info, gang[i]); 2975 } 2976 } 2977 2978 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2979 { 2980 u64 root_objectid = 0; 2981 struct btrfs_root *gang[8]; 2982 int i; 2983 int ret; 2984 2985 while (1) { 2986 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2987 (void **)gang, root_objectid, 2988 ARRAY_SIZE(gang)); 2989 if (!ret) 2990 break; 2991 2992 root_objectid = gang[ret - 1]->root_key.objectid + 1; 2993 for (i = 0; i < ret; i++) { 2994 int err; 2995 2996 root_objectid = gang[i]->root_key.objectid; 2997 err = btrfs_orphan_cleanup(gang[i]); 2998 if (err) 2999 return err; 3000 } 3001 root_objectid++; 3002 } 3003 return 0; 3004 } 3005 3006 int btrfs_commit_super(struct btrfs_root *root) 3007 { 3008 struct btrfs_trans_handle *trans; 3009 int ret; 3010 3011 mutex_lock(&root->fs_info->cleaner_mutex); 3012 btrfs_run_delayed_iputs(root); 3013 btrfs_clean_old_snapshots(root); 3014 mutex_unlock(&root->fs_info->cleaner_mutex); 3015 3016 /* wait until ongoing cleanup work done */ 3017 down_write(&root->fs_info->cleanup_work_sem); 3018 up_write(&root->fs_info->cleanup_work_sem); 3019 3020 trans = btrfs_join_transaction(root); 3021 if (IS_ERR(trans)) 3022 return PTR_ERR(trans); 3023 ret = btrfs_commit_transaction(trans, root); 3024 if (ret) 3025 return ret; 3026 /* run commit again to drop the original snapshot */ 3027 trans = btrfs_join_transaction(root); 3028 if (IS_ERR(trans)) 3029 return PTR_ERR(trans); 3030 ret = btrfs_commit_transaction(trans, root); 3031 if (ret) 3032 return ret; 3033 ret = btrfs_write_and_wait_transaction(NULL, root); 3034 if (ret) { 3035 btrfs_error(root->fs_info, ret, 3036 "Failed to sync btree inode to disk."); 3037 return ret; 3038 } 3039 3040 ret = write_ctree_super(NULL, root, 0); 3041 return ret; 3042 } 3043 3044 int close_ctree(struct btrfs_root *root) 3045 { 3046 struct btrfs_fs_info *fs_info = root->fs_info; 3047 int ret; 3048 3049 fs_info->closing = 1; 3050 smp_mb(); 3051 3052 /* pause restriper - we want to resume on mount */ 3053 btrfs_pause_balance(root->fs_info); 3054 3055 btrfs_scrub_cancel(root); 3056 3057 /* wait for any defraggers to finish */ 3058 wait_event(fs_info->transaction_wait, 3059 (atomic_read(&fs_info->defrag_running) == 0)); 3060 3061 /* clear out the rbtree of defraggable inodes */ 3062 btrfs_run_defrag_inodes(fs_info); 3063 3064 /* 3065 * Here come 2 situations when btrfs is broken to flip readonly: 3066 * 3067 * 1. when btrfs flips readonly somewhere else before 3068 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag, 3069 * and btrfs will skip to write sb directly to keep 3070 * ERROR state on disk. 3071 * 3072 * 2. when btrfs flips readonly just in btrfs_commit_super, 3073 * and in such case, btrfs cannot write sb via btrfs_commit_super, 3074 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag, 3075 * btrfs will cleanup all FS resources first and write sb then. 3076 */ 3077 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3078 ret = btrfs_commit_super(root); 3079 if (ret) 3080 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 3081 } 3082 3083 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 3084 ret = btrfs_error_commit_super(root); 3085 if (ret) 3086 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 3087 } 3088 3089 btrfs_put_block_group_cache(fs_info); 3090 3091 kthread_stop(fs_info->transaction_kthread); 3092 kthread_stop(fs_info->cleaner_kthread); 3093 3094 fs_info->closing = 2; 3095 smp_mb(); 3096 3097 if (fs_info->delalloc_bytes) { 3098 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 3099 (unsigned long long)fs_info->delalloc_bytes); 3100 } 3101 if (fs_info->total_ref_cache_size) { 3102 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 3103 (unsigned long long)fs_info->total_ref_cache_size); 3104 } 3105 3106 free_extent_buffer(fs_info->extent_root->node); 3107 free_extent_buffer(fs_info->extent_root->commit_root); 3108 free_extent_buffer(fs_info->tree_root->node); 3109 free_extent_buffer(fs_info->tree_root->commit_root); 3110 free_extent_buffer(fs_info->chunk_root->node); 3111 free_extent_buffer(fs_info->chunk_root->commit_root); 3112 free_extent_buffer(fs_info->dev_root->node); 3113 free_extent_buffer(fs_info->dev_root->commit_root); 3114 free_extent_buffer(fs_info->csum_root->node); 3115 free_extent_buffer(fs_info->csum_root->commit_root); 3116 3117 btrfs_free_block_groups(fs_info); 3118 3119 del_fs_roots(fs_info); 3120 3121 iput(fs_info->btree_inode); 3122 3123 btrfs_stop_workers(&fs_info->generic_worker); 3124 btrfs_stop_workers(&fs_info->fixup_workers); 3125 btrfs_stop_workers(&fs_info->delalloc_workers); 3126 btrfs_stop_workers(&fs_info->workers); 3127 btrfs_stop_workers(&fs_info->endio_workers); 3128 btrfs_stop_workers(&fs_info->endio_meta_workers); 3129 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 3130 btrfs_stop_workers(&fs_info->endio_write_workers); 3131 btrfs_stop_workers(&fs_info->endio_freespace_worker); 3132 btrfs_stop_workers(&fs_info->submit_workers); 3133 btrfs_stop_workers(&fs_info->delayed_workers); 3134 btrfs_stop_workers(&fs_info->caching_workers); 3135 btrfs_stop_workers(&fs_info->readahead_workers); 3136 3137 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3138 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3139 btrfsic_unmount(root, fs_info->fs_devices); 3140 #endif 3141 3142 btrfs_close_devices(fs_info->fs_devices); 3143 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3144 3145 bdi_destroy(&fs_info->bdi); 3146 cleanup_srcu_struct(&fs_info->subvol_srcu); 3147 3148 return 0; 3149 } 3150 3151 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3152 int atomic) 3153 { 3154 int ret; 3155 struct inode *btree_inode = buf->pages[0]->mapping->host; 3156 3157 ret = extent_buffer_uptodate(buf); 3158 if (!ret) 3159 return ret; 3160 3161 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3162 parent_transid, atomic); 3163 if (ret == -EAGAIN) 3164 return ret; 3165 return !ret; 3166 } 3167 3168 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3169 { 3170 return set_extent_buffer_uptodate(buf); 3171 } 3172 3173 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3174 { 3175 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3176 u64 transid = btrfs_header_generation(buf); 3177 int was_dirty; 3178 3179 btrfs_assert_tree_locked(buf); 3180 if (transid != root->fs_info->generation) { 3181 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 3182 "found %llu running %llu\n", 3183 (unsigned long long)buf->start, 3184 (unsigned long long)transid, 3185 (unsigned long long)root->fs_info->generation); 3186 WARN_ON(1); 3187 } 3188 was_dirty = set_extent_buffer_dirty(buf); 3189 if (!was_dirty) { 3190 spin_lock(&root->fs_info->delalloc_lock); 3191 root->fs_info->dirty_metadata_bytes += buf->len; 3192 spin_unlock(&root->fs_info->delalloc_lock); 3193 } 3194 } 3195 3196 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 3197 { 3198 /* 3199 * looks as though older kernels can get into trouble with 3200 * this code, they end up stuck in balance_dirty_pages forever 3201 */ 3202 u64 num_dirty; 3203 unsigned long thresh = 32 * 1024 * 1024; 3204 3205 if (current->flags & PF_MEMALLOC) 3206 return; 3207 3208 btrfs_balance_delayed_items(root); 3209 3210 num_dirty = root->fs_info->dirty_metadata_bytes; 3211 3212 if (num_dirty > thresh) { 3213 balance_dirty_pages_ratelimited_nr( 3214 root->fs_info->btree_inode->i_mapping, 1); 3215 } 3216 return; 3217 } 3218 3219 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 3220 { 3221 /* 3222 * looks as though older kernels can get into trouble with 3223 * this code, they end up stuck in balance_dirty_pages forever 3224 */ 3225 u64 num_dirty; 3226 unsigned long thresh = 32 * 1024 * 1024; 3227 3228 if (current->flags & PF_MEMALLOC) 3229 return; 3230 3231 num_dirty = root->fs_info->dirty_metadata_bytes; 3232 3233 if (num_dirty > thresh) { 3234 balance_dirty_pages_ratelimited_nr( 3235 root->fs_info->btree_inode->i_mapping, 1); 3236 } 3237 return; 3238 } 3239 3240 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3241 { 3242 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3243 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3244 } 3245 3246 static int btree_lock_page_hook(struct page *page, void *data, 3247 void (*flush_fn)(void *)) 3248 { 3249 struct inode *inode = page->mapping->host; 3250 struct btrfs_root *root = BTRFS_I(inode)->root; 3251 struct extent_buffer *eb; 3252 3253 /* 3254 * We culled this eb but the page is still hanging out on the mapping, 3255 * carry on. 3256 */ 3257 if (!PagePrivate(page)) 3258 goto out; 3259 3260 eb = (struct extent_buffer *)page->private; 3261 if (!eb) { 3262 WARN_ON(1); 3263 goto out; 3264 } 3265 if (page != eb->pages[0]) 3266 goto out; 3267 3268 if (!btrfs_try_tree_write_lock(eb)) { 3269 flush_fn(data); 3270 btrfs_tree_lock(eb); 3271 } 3272 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3273 3274 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3275 spin_lock(&root->fs_info->delalloc_lock); 3276 if (root->fs_info->dirty_metadata_bytes >= eb->len) 3277 root->fs_info->dirty_metadata_bytes -= eb->len; 3278 else 3279 WARN_ON(1); 3280 spin_unlock(&root->fs_info->delalloc_lock); 3281 } 3282 3283 btrfs_tree_unlock(eb); 3284 out: 3285 if (!trylock_page(page)) { 3286 flush_fn(data); 3287 lock_page(page); 3288 } 3289 return 0; 3290 } 3291 3292 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3293 int read_only) 3294 { 3295 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) { 3296 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n"); 3297 return -EINVAL; 3298 } 3299 3300 if (read_only) 3301 return 0; 3302 3303 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 3304 printk(KERN_WARNING "warning: mount fs with errors, " 3305 "running btrfsck is recommended\n"); 3306 } 3307 3308 return 0; 3309 } 3310 3311 int btrfs_error_commit_super(struct btrfs_root *root) 3312 { 3313 int ret; 3314 3315 mutex_lock(&root->fs_info->cleaner_mutex); 3316 btrfs_run_delayed_iputs(root); 3317 mutex_unlock(&root->fs_info->cleaner_mutex); 3318 3319 down_write(&root->fs_info->cleanup_work_sem); 3320 up_write(&root->fs_info->cleanup_work_sem); 3321 3322 /* cleanup FS via transaction */ 3323 btrfs_cleanup_transaction(root); 3324 3325 ret = write_ctree_super(NULL, root, 0); 3326 3327 return ret; 3328 } 3329 3330 static void btrfs_destroy_ordered_operations(struct btrfs_root *root) 3331 { 3332 struct btrfs_inode *btrfs_inode; 3333 struct list_head splice; 3334 3335 INIT_LIST_HEAD(&splice); 3336 3337 mutex_lock(&root->fs_info->ordered_operations_mutex); 3338 spin_lock(&root->fs_info->ordered_extent_lock); 3339 3340 list_splice_init(&root->fs_info->ordered_operations, &splice); 3341 while (!list_empty(&splice)) { 3342 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3343 ordered_operations); 3344 3345 list_del_init(&btrfs_inode->ordered_operations); 3346 3347 btrfs_invalidate_inodes(btrfs_inode->root); 3348 } 3349 3350 spin_unlock(&root->fs_info->ordered_extent_lock); 3351 mutex_unlock(&root->fs_info->ordered_operations_mutex); 3352 } 3353 3354 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 3355 { 3356 struct list_head splice; 3357 struct btrfs_ordered_extent *ordered; 3358 struct inode *inode; 3359 3360 INIT_LIST_HEAD(&splice); 3361 3362 spin_lock(&root->fs_info->ordered_extent_lock); 3363 3364 list_splice_init(&root->fs_info->ordered_extents, &splice); 3365 while (!list_empty(&splice)) { 3366 ordered = list_entry(splice.next, struct btrfs_ordered_extent, 3367 root_extent_list); 3368 3369 list_del_init(&ordered->root_extent_list); 3370 atomic_inc(&ordered->refs); 3371 3372 /* the inode may be getting freed (in sys_unlink path). */ 3373 inode = igrab(ordered->inode); 3374 3375 spin_unlock(&root->fs_info->ordered_extent_lock); 3376 if (inode) 3377 iput(inode); 3378 3379 atomic_set(&ordered->refs, 1); 3380 btrfs_put_ordered_extent(ordered); 3381 3382 spin_lock(&root->fs_info->ordered_extent_lock); 3383 } 3384 3385 spin_unlock(&root->fs_info->ordered_extent_lock); 3386 } 3387 3388 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 3389 struct btrfs_root *root) 3390 { 3391 struct rb_node *node; 3392 struct btrfs_delayed_ref_root *delayed_refs; 3393 struct btrfs_delayed_ref_node *ref; 3394 int ret = 0; 3395 3396 delayed_refs = &trans->delayed_refs; 3397 3398 again: 3399 spin_lock(&delayed_refs->lock); 3400 if (delayed_refs->num_entries == 0) { 3401 spin_unlock(&delayed_refs->lock); 3402 printk(KERN_INFO "delayed_refs has NO entry\n"); 3403 return ret; 3404 } 3405 3406 node = rb_first(&delayed_refs->root); 3407 while (node) { 3408 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 3409 node = rb_next(node); 3410 3411 ref->in_tree = 0; 3412 rb_erase(&ref->rb_node, &delayed_refs->root); 3413 delayed_refs->num_entries--; 3414 3415 atomic_set(&ref->refs, 1); 3416 if (btrfs_delayed_ref_is_head(ref)) { 3417 struct btrfs_delayed_ref_head *head; 3418 3419 head = btrfs_delayed_node_to_head(ref); 3420 spin_unlock(&delayed_refs->lock); 3421 mutex_lock(&head->mutex); 3422 kfree(head->extent_op); 3423 delayed_refs->num_heads--; 3424 if (list_empty(&head->cluster)) 3425 delayed_refs->num_heads_ready--; 3426 list_del_init(&head->cluster); 3427 mutex_unlock(&head->mutex); 3428 btrfs_put_delayed_ref(ref); 3429 goto again; 3430 } 3431 spin_unlock(&delayed_refs->lock); 3432 btrfs_put_delayed_ref(ref); 3433 3434 cond_resched(); 3435 spin_lock(&delayed_refs->lock); 3436 } 3437 3438 spin_unlock(&delayed_refs->lock); 3439 3440 return ret; 3441 } 3442 3443 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t) 3444 { 3445 struct btrfs_pending_snapshot *snapshot; 3446 struct list_head splice; 3447 3448 INIT_LIST_HEAD(&splice); 3449 3450 list_splice_init(&t->pending_snapshots, &splice); 3451 3452 while (!list_empty(&splice)) { 3453 snapshot = list_entry(splice.next, 3454 struct btrfs_pending_snapshot, 3455 list); 3456 3457 list_del_init(&snapshot->list); 3458 3459 kfree(snapshot); 3460 } 3461 } 3462 3463 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 3464 { 3465 struct btrfs_inode *btrfs_inode; 3466 struct list_head splice; 3467 3468 INIT_LIST_HEAD(&splice); 3469 3470 spin_lock(&root->fs_info->delalloc_lock); 3471 list_splice_init(&root->fs_info->delalloc_inodes, &splice); 3472 3473 while (!list_empty(&splice)) { 3474 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3475 delalloc_inodes); 3476 3477 list_del_init(&btrfs_inode->delalloc_inodes); 3478 3479 btrfs_invalidate_inodes(btrfs_inode->root); 3480 } 3481 3482 spin_unlock(&root->fs_info->delalloc_lock); 3483 } 3484 3485 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 3486 struct extent_io_tree *dirty_pages, 3487 int mark) 3488 { 3489 int ret; 3490 struct page *page; 3491 struct inode *btree_inode = root->fs_info->btree_inode; 3492 struct extent_buffer *eb; 3493 u64 start = 0; 3494 u64 end; 3495 u64 offset; 3496 unsigned long index; 3497 3498 while (1) { 3499 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 3500 mark); 3501 if (ret) 3502 break; 3503 3504 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 3505 while (start <= end) { 3506 index = start >> PAGE_CACHE_SHIFT; 3507 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 3508 page = find_get_page(btree_inode->i_mapping, index); 3509 if (!page) 3510 continue; 3511 offset = page_offset(page); 3512 3513 spin_lock(&dirty_pages->buffer_lock); 3514 eb = radix_tree_lookup( 3515 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer, 3516 offset >> PAGE_CACHE_SHIFT); 3517 spin_unlock(&dirty_pages->buffer_lock); 3518 if (eb) { 3519 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY, 3520 &eb->bflags); 3521 atomic_set(&eb->refs, 1); 3522 } 3523 if (PageWriteback(page)) 3524 end_page_writeback(page); 3525 3526 lock_page(page); 3527 if (PageDirty(page)) { 3528 clear_page_dirty_for_io(page); 3529 spin_lock_irq(&page->mapping->tree_lock); 3530 radix_tree_tag_clear(&page->mapping->page_tree, 3531 page_index(page), 3532 PAGECACHE_TAG_DIRTY); 3533 spin_unlock_irq(&page->mapping->tree_lock); 3534 } 3535 3536 page->mapping->a_ops->invalidatepage(page, 0); 3537 unlock_page(page); 3538 } 3539 } 3540 3541 return ret; 3542 } 3543 3544 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 3545 struct extent_io_tree *pinned_extents) 3546 { 3547 struct extent_io_tree *unpin; 3548 u64 start; 3549 u64 end; 3550 int ret; 3551 3552 unpin = pinned_extents; 3553 while (1) { 3554 ret = find_first_extent_bit(unpin, 0, &start, &end, 3555 EXTENT_DIRTY); 3556 if (ret) 3557 break; 3558 3559 /* opt_discard */ 3560 if (btrfs_test_opt(root, DISCARD)) 3561 ret = btrfs_error_discard_extent(root, start, 3562 end + 1 - start, 3563 NULL); 3564 3565 clear_extent_dirty(unpin, start, end, GFP_NOFS); 3566 btrfs_error_unpin_extent_range(root, start, end); 3567 cond_resched(); 3568 } 3569 3570 return 0; 3571 } 3572 3573 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 3574 struct btrfs_root *root) 3575 { 3576 btrfs_destroy_delayed_refs(cur_trans, root); 3577 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 3578 cur_trans->dirty_pages.dirty_bytes); 3579 3580 /* FIXME: cleanup wait for commit */ 3581 cur_trans->in_commit = 1; 3582 cur_trans->blocked = 1; 3583 if (waitqueue_active(&root->fs_info->transaction_blocked_wait)) 3584 wake_up(&root->fs_info->transaction_blocked_wait); 3585 3586 cur_trans->blocked = 0; 3587 if (waitqueue_active(&root->fs_info->transaction_wait)) 3588 wake_up(&root->fs_info->transaction_wait); 3589 3590 cur_trans->commit_done = 1; 3591 if (waitqueue_active(&cur_trans->commit_wait)) 3592 wake_up(&cur_trans->commit_wait); 3593 3594 btrfs_destroy_pending_snapshots(cur_trans); 3595 3596 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 3597 EXTENT_DIRTY); 3598 3599 /* 3600 memset(cur_trans, 0, sizeof(*cur_trans)); 3601 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 3602 */ 3603 } 3604 3605 int btrfs_cleanup_transaction(struct btrfs_root *root) 3606 { 3607 struct btrfs_transaction *t; 3608 LIST_HEAD(list); 3609 3610 mutex_lock(&root->fs_info->transaction_kthread_mutex); 3611 3612 spin_lock(&root->fs_info->trans_lock); 3613 list_splice_init(&root->fs_info->trans_list, &list); 3614 root->fs_info->trans_no_join = 1; 3615 spin_unlock(&root->fs_info->trans_lock); 3616 3617 while (!list_empty(&list)) { 3618 t = list_entry(list.next, struct btrfs_transaction, list); 3619 if (!t) 3620 break; 3621 3622 btrfs_destroy_ordered_operations(root); 3623 3624 btrfs_destroy_ordered_extents(root); 3625 3626 btrfs_destroy_delayed_refs(t, root); 3627 3628 btrfs_block_rsv_release(root, 3629 &root->fs_info->trans_block_rsv, 3630 t->dirty_pages.dirty_bytes); 3631 3632 /* FIXME: cleanup wait for commit */ 3633 t->in_commit = 1; 3634 t->blocked = 1; 3635 if (waitqueue_active(&root->fs_info->transaction_blocked_wait)) 3636 wake_up(&root->fs_info->transaction_blocked_wait); 3637 3638 t->blocked = 0; 3639 if (waitqueue_active(&root->fs_info->transaction_wait)) 3640 wake_up(&root->fs_info->transaction_wait); 3641 3642 t->commit_done = 1; 3643 if (waitqueue_active(&t->commit_wait)) 3644 wake_up(&t->commit_wait); 3645 3646 btrfs_destroy_pending_snapshots(t); 3647 3648 btrfs_destroy_delalloc_inodes(root); 3649 3650 spin_lock(&root->fs_info->trans_lock); 3651 root->fs_info->running_transaction = NULL; 3652 spin_unlock(&root->fs_info->trans_lock); 3653 3654 btrfs_destroy_marked_extents(root, &t->dirty_pages, 3655 EXTENT_DIRTY); 3656 3657 btrfs_destroy_pinned_extent(root, 3658 root->fs_info->pinned_extents); 3659 3660 atomic_set(&t->use_count, 0); 3661 list_del_init(&t->list); 3662 memset(t, 0, sizeof(*t)); 3663 kmem_cache_free(btrfs_transaction_cachep, t); 3664 } 3665 3666 spin_lock(&root->fs_info->trans_lock); 3667 root->fs_info->trans_no_join = 0; 3668 spin_unlock(&root->fs_info->trans_lock); 3669 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 3670 3671 return 0; 3672 } 3673 3674 static int btree_writepage_io_failed_hook(struct bio *bio, struct page *page, 3675 u64 start, u64 end, 3676 struct extent_state *state) 3677 { 3678 struct super_block *sb = page->mapping->host->i_sb; 3679 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3680 btrfs_error(fs_info, -EIO, 3681 "Error occured while writing out btree at %llu", start); 3682 return -EIO; 3683 } 3684 3685 static struct extent_io_ops btree_extent_io_ops = { 3686 .write_cache_pages_lock_hook = btree_lock_page_hook, 3687 .readpage_end_io_hook = btree_readpage_end_io_hook, 3688 .readpage_io_failed_hook = btree_io_failed_hook, 3689 .submit_bio_hook = btree_submit_bio_hook, 3690 /* note we're sharing with inode.c for the merge bio hook */ 3691 .merge_bio_hook = btrfs_merge_bio_hook, 3692 .writepage_io_failed_hook = btree_writepage_io_failed_hook, 3693 }; 3694