1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include <linux/slab.h> 31 #include <linux/migrate.h> 32 #include <linux/ratelimit.h> 33 #include <linux/uuid.h> 34 #include <asm/unaligned.h> 35 #include "compat.h" 36 #include "ctree.h" 37 #include "disk-io.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "volumes.h" 41 #include "print-tree.h" 42 #include "async-thread.h" 43 #include "locking.h" 44 #include "tree-log.h" 45 #include "free-space-cache.h" 46 #include "inode-map.h" 47 #include "check-integrity.h" 48 #include "rcu-string.h" 49 #include "dev-replace.h" 50 #include "raid56.h" 51 52 #ifdef CONFIG_X86 53 #include <asm/cpufeature.h> 54 #endif 55 56 static struct extent_io_ops btree_extent_io_ops; 57 static void end_workqueue_fn(struct btrfs_work *work); 58 static void free_fs_root(struct btrfs_root *root); 59 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 60 int read_only); 61 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t, 62 struct btrfs_root *root); 63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 65 struct btrfs_root *root); 66 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t); 67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 68 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 69 struct extent_io_tree *dirty_pages, 70 int mark); 71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 72 struct extent_io_tree *pinned_extents); 73 static int btrfs_cleanup_transaction(struct btrfs_root *root); 74 static void btrfs_error_commit_super(struct btrfs_root *root); 75 76 /* 77 * end_io_wq structs are used to do processing in task context when an IO is 78 * complete. This is used during reads to verify checksums, and it is used 79 * by writes to insert metadata for new file extents after IO is complete. 80 */ 81 struct end_io_wq { 82 struct bio *bio; 83 bio_end_io_t *end_io; 84 void *private; 85 struct btrfs_fs_info *info; 86 int error; 87 int metadata; 88 struct list_head list; 89 struct btrfs_work work; 90 }; 91 92 /* 93 * async submit bios are used to offload expensive checksumming 94 * onto the worker threads. They checksum file and metadata bios 95 * just before they are sent down the IO stack. 96 */ 97 struct async_submit_bio { 98 struct inode *inode; 99 struct bio *bio; 100 struct list_head list; 101 extent_submit_bio_hook_t *submit_bio_start; 102 extent_submit_bio_hook_t *submit_bio_done; 103 int rw; 104 int mirror_num; 105 unsigned long bio_flags; 106 /* 107 * bio_offset is optional, can be used if the pages in the bio 108 * can't tell us where in the file the bio should go 109 */ 110 u64 bio_offset; 111 struct btrfs_work work; 112 int error; 113 }; 114 115 /* 116 * Lockdep class keys for extent_buffer->lock's in this root. For a given 117 * eb, the lockdep key is determined by the btrfs_root it belongs to and 118 * the level the eb occupies in the tree. 119 * 120 * Different roots are used for different purposes and may nest inside each 121 * other and they require separate keysets. As lockdep keys should be 122 * static, assign keysets according to the purpose of the root as indicated 123 * by btrfs_root->objectid. This ensures that all special purpose roots 124 * have separate keysets. 125 * 126 * Lock-nesting across peer nodes is always done with the immediate parent 127 * node locked thus preventing deadlock. As lockdep doesn't know this, use 128 * subclass to avoid triggering lockdep warning in such cases. 129 * 130 * The key is set by the readpage_end_io_hook after the buffer has passed 131 * csum validation but before the pages are unlocked. It is also set by 132 * btrfs_init_new_buffer on freshly allocated blocks. 133 * 134 * We also add a check to make sure the highest level of the tree is the 135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 136 * needs update as well. 137 */ 138 #ifdef CONFIG_DEBUG_LOCK_ALLOC 139 # if BTRFS_MAX_LEVEL != 8 140 # error 141 # endif 142 143 static struct btrfs_lockdep_keyset { 144 u64 id; /* root objectid */ 145 const char *name_stem; /* lock name stem */ 146 char names[BTRFS_MAX_LEVEL + 1][20]; 147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 148 } btrfs_lockdep_keysets[] = { 149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 159 { .id = 0, .name_stem = "tree" }, 160 }; 161 162 void __init btrfs_init_lockdep(void) 163 { 164 int i, j; 165 166 /* initialize lockdep class names */ 167 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 168 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 169 170 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 171 snprintf(ks->names[j], sizeof(ks->names[j]), 172 "btrfs-%s-%02d", ks->name_stem, j); 173 } 174 } 175 176 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 177 int level) 178 { 179 struct btrfs_lockdep_keyset *ks; 180 181 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 182 183 /* find the matching keyset, id 0 is the default entry */ 184 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 185 if (ks->id == objectid) 186 break; 187 188 lockdep_set_class_and_name(&eb->lock, 189 &ks->keys[level], ks->names[level]); 190 } 191 192 #endif 193 194 /* 195 * extents on the btree inode are pretty simple, there's one extent 196 * that covers the entire device 197 */ 198 static struct extent_map *btree_get_extent(struct inode *inode, 199 struct page *page, size_t pg_offset, u64 start, u64 len, 200 int create) 201 { 202 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 203 struct extent_map *em; 204 int ret; 205 206 read_lock(&em_tree->lock); 207 em = lookup_extent_mapping(em_tree, start, len); 208 if (em) { 209 em->bdev = 210 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 211 read_unlock(&em_tree->lock); 212 goto out; 213 } 214 read_unlock(&em_tree->lock); 215 216 em = alloc_extent_map(); 217 if (!em) { 218 em = ERR_PTR(-ENOMEM); 219 goto out; 220 } 221 em->start = 0; 222 em->len = (u64)-1; 223 em->block_len = (u64)-1; 224 em->block_start = 0; 225 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 226 227 write_lock(&em_tree->lock); 228 ret = add_extent_mapping(em_tree, em, 0); 229 if (ret == -EEXIST) { 230 free_extent_map(em); 231 em = lookup_extent_mapping(em_tree, start, len); 232 if (!em) 233 em = ERR_PTR(-EIO); 234 } else if (ret) { 235 free_extent_map(em); 236 em = ERR_PTR(ret); 237 } 238 write_unlock(&em_tree->lock); 239 240 out: 241 return em; 242 } 243 244 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 245 { 246 return crc32c(seed, data, len); 247 } 248 249 void btrfs_csum_final(u32 crc, char *result) 250 { 251 put_unaligned_le32(~crc, result); 252 } 253 254 /* 255 * compute the csum for a btree block, and either verify it or write it 256 * into the csum field of the block. 257 */ 258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 259 int verify) 260 { 261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 262 char *result = NULL; 263 unsigned long len; 264 unsigned long cur_len; 265 unsigned long offset = BTRFS_CSUM_SIZE; 266 char *kaddr; 267 unsigned long map_start; 268 unsigned long map_len; 269 int err; 270 u32 crc = ~(u32)0; 271 unsigned long inline_result; 272 273 len = buf->len - offset; 274 while (len > 0) { 275 err = map_private_extent_buffer(buf, offset, 32, 276 &kaddr, &map_start, &map_len); 277 if (err) 278 return 1; 279 cur_len = min(len, map_len - (offset - map_start)); 280 crc = btrfs_csum_data(kaddr + offset - map_start, 281 crc, cur_len); 282 len -= cur_len; 283 offset += cur_len; 284 } 285 if (csum_size > sizeof(inline_result)) { 286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 287 if (!result) 288 return 1; 289 } else { 290 result = (char *)&inline_result; 291 } 292 293 btrfs_csum_final(crc, result); 294 295 if (verify) { 296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 297 u32 val; 298 u32 found = 0; 299 memcpy(&found, result, csum_size); 300 301 read_extent_buffer(buf, &val, 0, csum_size); 302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify " 303 "failed on %llu wanted %X found %X " 304 "level %d\n", 305 root->fs_info->sb->s_id, 306 (unsigned long long)buf->start, val, found, 307 btrfs_header_level(buf)); 308 if (result != (char *)&inline_result) 309 kfree(result); 310 return 1; 311 } 312 } else { 313 write_extent_buffer(buf, result, 0, csum_size); 314 } 315 if (result != (char *)&inline_result) 316 kfree(result); 317 return 0; 318 } 319 320 /* 321 * we can't consider a given block up to date unless the transid of the 322 * block matches the transid in the parent node's pointer. This is how we 323 * detect blocks that either didn't get written at all or got written 324 * in the wrong place. 325 */ 326 static int verify_parent_transid(struct extent_io_tree *io_tree, 327 struct extent_buffer *eb, u64 parent_transid, 328 int atomic) 329 { 330 struct extent_state *cached_state = NULL; 331 int ret; 332 333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 334 return 0; 335 336 if (atomic) 337 return -EAGAIN; 338 339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 340 0, &cached_state); 341 if (extent_buffer_uptodate(eb) && 342 btrfs_header_generation(eb) == parent_transid) { 343 ret = 0; 344 goto out; 345 } 346 printk_ratelimited("parent transid verify failed on %llu wanted %llu " 347 "found %llu\n", 348 (unsigned long long)eb->start, 349 (unsigned long long)parent_transid, 350 (unsigned long long)btrfs_header_generation(eb)); 351 ret = 1; 352 clear_extent_buffer_uptodate(eb); 353 out: 354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 355 &cached_state, GFP_NOFS); 356 return ret; 357 } 358 359 /* 360 * Return 0 if the superblock checksum type matches the checksum value of that 361 * algorithm. Pass the raw disk superblock data. 362 */ 363 static int btrfs_check_super_csum(char *raw_disk_sb) 364 { 365 struct btrfs_super_block *disk_sb = 366 (struct btrfs_super_block *)raw_disk_sb; 367 u16 csum_type = btrfs_super_csum_type(disk_sb); 368 int ret = 0; 369 370 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 371 u32 crc = ~(u32)0; 372 const int csum_size = sizeof(crc); 373 char result[csum_size]; 374 375 /* 376 * The super_block structure does not span the whole 377 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 378 * is filled with zeros and is included in the checkum. 379 */ 380 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 381 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 382 btrfs_csum_final(crc, result); 383 384 if (memcmp(raw_disk_sb, result, csum_size)) 385 ret = 1; 386 387 if (ret && btrfs_super_generation(disk_sb) < 10) { 388 printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n"); 389 ret = 0; 390 } 391 } 392 393 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 394 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n", 395 csum_type); 396 ret = 1; 397 } 398 399 return ret; 400 } 401 402 /* 403 * helper to read a given tree block, doing retries as required when 404 * the checksums don't match and we have alternate mirrors to try. 405 */ 406 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 407 struct extent_buffer *eb, 408 u64 start, u64 parent_transid) 409 { 410 struct extent_io_tree *io_tree; 411 int failed = 0; 412 int ret; 413 int num_copies = 0; 414 int mirror_num = 0; 415 int failed_mirror = 0; 416 417 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 418 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 419 while (1) { 420 ret = read_extent_buffer_pages(io_tree, eb, start, 421 WAIT_COMPLETE, 422 btree_get_extent, mirror_num); 423 if (!ret) { 424 if (!verify_parent_transid(io_tree, eb, 425 parent_transid, 0)) 426 break; 427 else 428 ret = -EIO; 429 } 430 431 /* 432 * This buffer's crc is fine, but its contents are corrupted, so 433 * there is no reason to read the other copies, they won't be 434 * any less wrong. 435 */ 436 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 437 break; 438 439 num_copies = btrfs_num_copies(root->fs_info, 440 eb->start, eb->len); 441 if (num_copies == 1) 442 break; 443 444 if (!failed_mirror) { 445 failed = 1; 446 failed_mirror = eb->read_mirror; 447 } 448 449 mirror_num++; 450 if (mirror_num == failed_mirror) 451 mirror_num++; 452 453 if (mirror_num > num_copies) 454 break; 455 } 456 457 if (failed && !ret && failed_mirror) 458 repair_eb_io_failure(root, eb, failed_mirror); 459 460 return ret; 461 } 462 463 /* 464 * checksum a dirty tree block before IO. This has extra checks to make sure 465 * we only fill in the checksum field in the first page of a multi-page block 466 */ 467 468 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 469 { 470 struct extent_io_tree *tree; 471 u64 start = page_offset(page); 472 u64 found_start; 473 struct extent_buffer *eb; 474 475 tree = &BTRFS_I(page->mapping->host)->io_tree; 476 477 eb = (struct extent_buffer *)page->private; 478 if (page != eb->pages[0]) 479 return 0; 480 found_start = btrfs_header_bytenr(eb); 481 if (found_start != start) { 482 WARN_ON(1); 483 return 0; 484 } 485 if (!PageUptodate(page)) { 486 WARN_ON(1); 487 return 0; 488 } 489 csum_tree_block(root, eb, 0); 490 return 0; 491 } 492 493 static int check_tree_block_fsid(struct btrfs_root *root, 494 struct extent_buffer *eb) 495 { 496 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 497 u8 fsid[BTRFS_UUID_SIZE]; 498 int ret = 1; 499 500 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 501 BTRFS_FSID_SIZE); 502 while (fs_devices) { 503 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 504 ret = 0; 505 break; 506 } 507 fs_devices = fs_devices->seed; 508 } 509 return ret; 510 } 511 512 #define CORRUPT(reason, eb, root, slot) \ 513 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \ 514 "root=%llu, slot=%d\n", reason, \ 515 (unsigned long long)btrfs_header_bytenr(eb), \ 516 (unsigned long long)root->objectid, slot) 517 518 static noinline int check_leaf(struct btrfs_root *root, 519 struct extent_buffer *leaf) 520 { 521 struct btrfs_key key; 522 struct btrfs_key leaf_key; 523 u32 nritems = btrfs_header_nritems(leaf); 524 int slot; 525 526 if (nritems == 0) 527 return 0; 528 529 /* Check the 0 item */ 530 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 531 BTRFS_LEAF_DATA_SIZE(root)) { 532 CORRUPT("invalid item offset size pair", leaf, root, 0); 533 return -EIO; 534 } 535 536 /* 537 * Check to make sure each items keys are in the correct order and their 538 * offsets make sense. We only have to loop through nritems-1 because 539 * we check the current slot against the next slot, which verifies the 540 * next slot's offset+size makes sense and that the current's slot 541 * offset is correct. 542 */ 543 for (slot = 0; slot < nritems - 1; slot++) { 544 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 545 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 546 547 /* Make sure the keys are in the right order */ 548 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 549 CORRUPT("bad key order", leaf, root, slot); 550 return -EIO; 551 } 552 553 /* 554 * Make sure the offset and ends are right, remember that the 555 * item data starts at the end of the leaf and grows towards the 556 * front. 557 */ 558 if (btrfs_item_offset_nr(leaf, slot) != 559 btrfs_item_end_nr(leaf, slot + 1)) { 560 CORRUPT("slot offset bad", leaf, root, slot); 561 return -EIO; 562 } 563 564 /* 565 * Check to make sure that we don't point outside of the leaf, 566 * just incase all the items are consistent to eachother, but 567 * all point outside of the leaf. 568 */ 569 if (btrfs_item_end_nr(leaf, slot) > 570 BTRFS_LEAF_DATA_SIZE(root)) { 571 CORRUPT("slot end outside of leaf", leaf, root, slot); 572 return -EIO; 573 } 574 } 575 576 return 0; 577 } 578 579 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 580 struct extent_state *state, int mirror) 581 { 582 struct extent_io_tree *tree; 583 u64 found_start; 584 int found_level; 585 struct extent_buffer *eb; 586 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 587 int ret = 0; 588 int reads_done; 589 590 if (!page->private) 591 goto out; 592 593 tree = &BTRFS_I(page->mapping->host)->io_tree; 594 eb = (struct extent_buffer *)page->private; 595 596 /* the pending IO might have been the only thing that kept this buffer 597 * in memory. Make sure we have a ref for all this other checks 598 */ 599 extent_buffer_get(eb); 600 601 reads_done = atomic_dec_and_test(&eb->io_pages); 602 if (!reads_done) 603 goto err; 604 605 eb->read_mirror = mirror; 606 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 607 ret = -EIO; 608 goto err; 609 } 610 611 found_start = btrfs_header_bytenr(eb); 612 if (found_start != eb->start) { 613 printk_ratelimited(KERN_INFO "btrfs bad tree block start " 614 "%llu %llu\n", 615 (unsigned long long)found_start, 616 (unsigned long long)eb->start); 617 ret = -EIO; 618 goto err; 619 } 620 if (check_tree_block_fsid(root, eb)) { 621 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n", 622 (unsigned long long)eb->start); 623 ret = -EIO; 624 goto err; 625 } 626 found_level = btrfs_header_level(eb); 627 if (found_level >= BTRFS_MAX_LEVEL) { 628 btrfs_info(root->fs_info, "bad tree block level %d\n", 629 (int)btrfs_header_level(eb)); 630 ret = -EIO; 631 goto err; 632 } 633 634 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 635 eb, found_level); 636 637 ret = csum_tree_block(root, eb, 1); 638 if (ret) { 639 ret = -EIO; 640 goto err; 641 } 642 643 /* 644 * If this is a leaf block and it is corrupt, set the corrupt bit so 645 * that we don't try and read the other copies of this block, just 646 * return -EIO. 647 */ 648 if (found_level == 0 && check_leaf(root, eb)) { 649 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 650 ret = -EIO; 651 } 652 653 if (!ret) 654 set_extent_buffer_uptodate(eb); 655 err: 656 if (reads_done && 657 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 658 btree_readahead_hook(root, eb, eb->start, ret); 659 660 if (ret) { 661 /* 662 * our io error hook is going to dec the io pages 663 * again, we have to make sure it has something 664 * to decrement 665 */ 666 atomic_inc(&eb->io_pages); 667 clear_extent_buffer_uptodate(eb); 668 } 669 free_extent_buffer(eb); 670 out: 671 return ret; 672 } 673 674 static int btree_io_failed_hook(struct page *page, int failed_mirror) 675 { 676 struct extent_buffer *eb; 677 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 678 679 eb = (struct extent_buffer *)page->private; 680 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 681 eb->read_mirror = failed_mirror; 682 atomic_dec(&eb->io_pages); 683 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 684 btree_readahead_hook(root, eb, eb->start, -EIO); 685 return -EIO; /* we fixed nothing */ 686 } 687 688 static void end_workqueue_bio(struct bio *bio, int err) 689 { 690 struct end_io_wq *end_io_wq = bio->bi_private; 691 struct btrfs_fs_info *fs_info; 692 693 fs_info = end_io_wq->info; 694 end_io_wq->error = err; 695 end_io_wq->work.func = end_workqueue_fn; 696 end_io_wq->work.flags = 0; 697 698 if (bio->bi_rw & REQ_WRITE) { 699 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) 700 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 701 &end_io_wq->work); 702 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) 703 btrfs_queue_worker(&fs_info->endio_freespace_worker, 704 &end_io_wq->work); 705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 706 btrfs_queue_worker(&fs_info->endio_raid56_workers, 707 &end_io_wq->work); 708 else 709 btrfs_queue_worker(&fs_info->endio_write_workers, 710 &end_io_wq->work); 711 } else { 712 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 713 btrfs_queue_worker(&fs_info->endio_raid56_workers, 714 &end_io_wq->work); 715 else if (end_io_wq->metadata) 716 btrfs_queue_worker(&fs_info->endio_meta_workers, 717 &end_io_wq->work); 718 else 719 btrfs_queue_worker(&fs_info->endio_workers, 720 &end_io_wq->work); 721 } 722 } 723 724 /* 725 * For the metadata arg you want 726 * 727 * 0 - if data 728 * 1 - if normal metadta 729 * 2 - if writing to the free space cache area 730 * 3 - raid parity work 731 */ 732 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 733 int metadata) 734 { 735 struct end_io_wq *end_io_wq; 736 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 737 if (!end_io_wq) 738 return -ENOMEM; 739 740 end_io_wq->private = bio->bi_private; 741 end_io_wq->end_io = bio->bi_end_io; 742 end_io_wq->info = info; 743 end_io_wq->error = 0; 744 end_io_wq->bio = bio; 745 end_io_wq->metadata = metadata; 746 747 bio->bi_private = end_io_wq; 748 bio->bi_end_io = end_workqueue_bio; 749 return 0; 750 } 751 752 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 753 { 754 unsigned long limit = min_t(unsigned long, 755 info->workers.max_workers, 756 info->fs_devices->open_devices); 757 return 256 * limit; 758 } 759 760 static void run_one_async_start(struct btrfs_work *work) 761 { 762 struct async_submit_bio *async; 763 int ret; 764 765 async = container_of(work, struct async_submit_bio, work); 766 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 767 async->mirror_num, async->bio_flags, 768 async->bio_offset); 769 if (ret) 770 async->error = ret; 771 } 772 773 static void run_one_async_done(struct btrfs_work *work) 774 { 775 struct btrfs_fs_info *fs_info; 776 struct async_submit_bio *async; 777 int limit; 778 779 async = container_of(work, struct async_submit_bio, work); 780 fs_info = BTRFS_I(async->inode)->root->fs_info; 781 782 limit = btrfs_async_submit_limit(fs_info); 783 limit = limit * 2 / 3; 784 785 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 786 waitqueue_active(&fs_info->async_submit_wait)) 787 wake_up(&fs_info->async_submit_wait); 788 789 /* If an error occured we just want to clean up the bio and move on */ 790 if (async->error) { 791 bio_endio(async->bio, async->error); 792 return; 793 } 794 795 async->submit_bio_done(async->inode, async->rw, async->bio, 796 async->mirror_num, async->bio_flags, 797 async->bio_offset); 798 } 799 800 static void run_one_async_free(struct btrfs_work *work) 801 { 802 struct async_submit_bio *async; 803 804 async = container_of(work, struct async_submit_bio, work); 805 kfree(async); 806 } 807 808 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 809 int rw, struct bio *bio, int mirror_num, 810 unsigned long bio_flags, 811 u64 bio_offset, 812 extent_submit_bio_hook_t *submit_bio_start, 813 extent_submit_bio_hook_t *submit_bio_done) 814 { 815 struct async_submit_bio *async; 816 817 async = kmalloc(sizeof(*async), GFP_NOFS); 818 if (!async) 819 return -ENOMEM; 820 821 async->inode = inode; 822 async->rw = rw; 823 async->bio = bio; 824 async->mirror_num = mirror_num; 825 async->submit_bio_start = submit_bio_start; 826 async->submit_bio_done = submit_bio_done; 827 828 async->work.func = run_one_async_start; 829 async->work.ordered_func = run_one_async_done; 830 async->work.ordered_free = run_one_async_free; 831 832 async->work.flags = 0; 833 async->bio_flags = bio_flags; 834 async->bio_offset = bio_offset; 835 836 async->error = 0; 837 838 atomic_inc(&fs_info->nr_async_submits); 839 840 if (rw & REQ_SYNC) 841 btrfs_set_work_high_prio(&async->work); 842 843 btrfs_queue_worker(&fs_info->workers, &async->work); 844 845 while (atomic_read(&fs_info->async_submit_draining) && 846 atomic_read(&fs_info->nr_async_submits)) { 847 wait_event(fs_info->async_submit_wait, 848 (atomic_read(&fs_info->nr_async_submits) == 0)); 849 } 850 851 return 0; 852 } 853 854 static int btree_csum_one_bio(struct bio *bio) 855 { 856 struct bio_vec *bvec = bio->bi_io_vec; 857 int bio_index = 0; 858 struct btrfs_root *root; 859 int ret = 0; 860 861 WARN_ON(bio->bi_vcnt <= 0); 862 while (bio_index < bio->bi_vcnt) { 863 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 864 ret = csum_dirty_buffer(root, bvec->bv_page); 865 if (ret) 866 break; 867 bio_index++; 868 bvec++; 869 } 870 return ret; 871 } 872 873 static int __btree_submit_bio_start(struct inode *inode, int rw, 874 struct bio *bio, int mirror_num, 875 unsigned long bio_flags, 876 u64 bio_offset) 877 { 878 /* 879 * when we're called for a write, we're already in the async 880 * submission context. Just jump into btrfs_map_bio 881 */ 882 return btree_csum_one_bio(bio); 883 } 884 885 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 886 int mirror_num, unsigned long bio_flags, 887 u64 bio_offset) 888 { 889 int ret; 890 891 /* 892 * when we're called for a write, we're already in the async 893 * submission context. Just jump into btrfs_map_bio 894 */ 895 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 896 if (ret) 897 bio_endio(bio, ret); 898 return ret; 899 } 900 901 static int check_async_write(struct inode *inode, unsigned long bio_flags) 902 { 903 if (bio_flags & EXTENT_BIO_TREE_LOG) 904 return 0; 905 #ifdef CONFIG_X86 906 if (cpu_has_xmm4_2) 907 return 0; 908 #endif 909 return 1; 910 } 911 912 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 913 int mirror_num, unsigned long bio_flags, 914 u64 bio_offset) 915 { 916 int async = check_async_write(inode, bio_flags); 917 int ret; 918 919 if (!(rw & REQ_WRITE)) { 920 /* 921 * called for a read, do the setup so that checksum validation 922 * can happen in the async kernel threads 923 */ 924 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 925 bio, 1); 926 if (ret) 927 goto out_w_error; 928 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 929 mirror_num, 0); 930 } else if (!async) { 931 ret = btree_csum_one_bio(bio); 932 if (ret) 933 goto out_w_error; 934 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 935 mirror_num, 0); 936 } else { 937 /* 938 * kthread helpers are used to submit writes so that 939 * checksumming can happen in parallel across all CPUs 940 */ 941 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 942 inode, rw, bio, mirror_num, 0, 943 bio_offset, 944 __btree_submit_bio_start, 945 __btree_submit_bio_done); 946 } 947 948 if (ret) { 949 out_w_error: 950 bio_endio(bio, ret); 951 } 952 return ret; 953 } 954 955 #ifdef CONFIG_MIGRATION 956 static int btree_migratepage(struct address_space *mapping, 957 struct page *newpage, struct page *page, 958 enum migrate_mode mode) 959 { 960 /* 961 * we can't safely write a btree page from here, 962 * we haven't done the locking hook 963 */ 964 if (PageDirty(page)) 965 return -EAGAIN; 966 /* 967 * Buffers may be managed in a filesystem specific way. 968 * We must have no buffers or drop them. 969 */ 970 if (page_has_private(page) && 971 !try_to_release_page(page, GFP_KERNEL)) 972 return -EAGAIN; 973 return migrate_page(mapping, newpage, page, mode); 974 } 975 #endif 976 977 978 static int btree_writepages(struct address_space *mapping, 979 struct writeback_control *wbc) 980 { 981 struct extent_io_tree *tree; 982 struct btrfs_fs_info *fs_info; 983 int ret; 984 985 tree = &BTRFS_I(mapping->host)->io_tree; 986 if (wbc->sync_mode == WB_SYNC_NONE) { 987 988 if (wbc->for_kupdate) 989 return 0; 990 991 fs_info = BTRFS_I(mapping->host)->root->fs_info; 992 /* this is a bit racy, but that's ok */ 993 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 994 BTRFS_DIRTY_METADATA_THRESH); 995 if (ret < 0) 996 return 0; 997 } 998 return btree_write_cache_pages(mapping, wbc); 999 } 1000 1001 static int btree_readpage(struct file *file, struct page *page) 1002 { 1003 struct extent_io_tree *tree; 1004 tree = &BTRFS_I(page->mapping->host)->io_tree; 1005 return extent_read_full_page(tree, page, btree_get_extent, 0); 1006 } 1007 1008 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1009 { 1010 if (PageWriteback(page) || PageDirty(page)) 1011 return 0; 1012 1013 return try_release_extent_buffer(page); 1014 } 1015 1016 static void btree_invalidatepage(struct page *page, unsigned long offset) 1017 { 1018 struct extent_io_tree *tree; 1019 tree = &BTRFS_I(page->mapping->host)->io_tree; 1020 extent_invalidatepage(tree, page, offset); 1021 btree_releasepage(page, GFP_NOFS); 1022 if (PagePrivate(page)) { 1023 printk(KERN_WARNING "btrfs warning page private not zero " 1024 "on page %llu\n", (unsigned long long)page_offset(page)); 1025 ClearPagePrivate(page); 1026 set_page_private(page, 0); 1027 page_cache_release(page); 1028 } 1029 } 1030 1031 static int btree_set_page_dirty(struct page *page) 1032 { 1033 #ifdef DEBUG 1034 struct extent_buffer *eb; 1035 1036 BUG_ON(!PagePrivate(page)); 1037 eb = (struct extent_buffer *)page->private; 1038 BUG_ON(!eb); 1039 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1040 BUG_ON(!atomic_read(&eb->refs)); 1041 btrfs_assert_tree_locked(eb); 1042 #endif 1043 return __set_page_dirty_nobuffers(page); 1044 } 1045 1046 static const struct address_space_operations btree_aops = { 1047 .readpage = btree_readpage, 1048 .writepages = btree_writepages, 1049 .releasepage = btree_releasepage, 1050 .invalidatepage = btree_invalidatepage, 1051 #ifdef CONFIG_MIGRATION 1052 .migratepage = btree_migratepage, 1053 #endif 1054 .set_page_dirty = btree_set_page_dirty, 1055 }; 1056 1057 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1058 u64 parent_transid) 1059 { 1060 struct extent_buffer *buf = NULL; 1061 struct inode *btree_inode = root->fs_info->btree_inode; 1062 int ret = 0; 1063 1064 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1065 if (!buf) 1066 return 0; 1067 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1068 buf, 0, WAIT_NONE, btree_get_extent, 0); 1069 free_extent_buffer(buf); 1070 return ret; 1071 } 1072 1073 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1074 int mirror_num, struct extent_buffer **eb) 1075 { 1076 struct extent_buffer *buf = NULL; 1077 struct inode *btree_inode = root->fs_info->btree_inode; 1078 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1079 int ret; 1080 1081 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1082 if (!buf) 1083 return 0; 1084 1085 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1086 1087 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1088 btree_get_extent, mirror_num); 1089 if (ret) { 1090 free_extent_buffer(buf); 1091 return ret; 1092 } 1093 1094 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1095 free_extent_buffer(buf); 1096 return -EIO; 1097 } else if (extent_buffer_uptodate(buf)) { 1098 *eb = buf; 1099 } else { 1100 free_extent_buffer(buf); 1101 } 1102 return 0; 1103 } 1104 1105 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 1106 u64 bytenr, u32 blocksize) 1107 { 1108 struct inode *btree_inode = root->fs_info->btree_inode; 1109 struct extent_buffer *eb; 1110 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1111 bytenr, blocksize); 1112 return eb; 1113 } 1114 1115 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1116 u64 bytenr, u32 blocksize) 1117 { 1118 struct inode *btree_inode = root->fs_info->btree_inode; 1119 struct extent_buffer *eb; 1120 1121 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1122 bytenr, blocksize); 1123 return eb; 1124 } 1125 1126 1127 int btrfs_write_tree_block(struct extent_buffer *buf) 1128 { 1129 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1130 buf->start + buf->len - 1); 1131 } 1132 1133 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1134 { 1135 return filemap_fdatawait_range(buf->pages[0]->mapping, 1136 buf->start, buf->start + buf->len - 1); 1137 } 1138 1139 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1140 u32 blocksize, u64 parent_transid) 1141 { 1142 struct extent_buffer *buf = NULL; 1143 int ret; 1144 1145 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1146 if (!buf) 1147 return NULL; 1148 1149 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1150 return buf; 1151 1152 } 1153 1154 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1155 struct extent_buffer *buf) 1156 { 1157 struct btrfs_fs_info *fs_info = root->fs_info; 1158 1159 if (btrfs_header_generation(buf) == 1160 fs_info->running_transaction->transid) { 1161 btrfs_assert_tree_locked(buf); 1162 1163 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1164 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1165 -buf->len, 1166 fs_info->dirty_metadata_batch); 1167 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1168 btrfs_set_lock_blocking(buf); 1169 clear_extent_buffer_dirty(buf); 1170 } 1171 } 1172 } 1173 1174 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 1175 u32 stripesize, struct btrfs_root *root, 1176 struct btrfs_fs_info *fs_info, 1177 u64 objectid) 1178 { 1179 root->node = NULL; 1180 root->commit_root = NULL; 1181 root->sectorsize = sectorsize; 1182 root->nodesize = nodesize; 1183 root->leafsize = leafsize; 1184 root->stripesize = stripesize; 1185 root->ref_cows = 0; 1186 root->track_dirty = 0; 1187 root->in_radix = 0; 1188 root->orphan_item_inserted = 0; 1189 root->orphan_cleanup_state = 0; 1190 1191 root->objectid = objectid; 1192 root->last_trans = 0; 1193 root->highest_objectid = 0; 1194 root->name = NULL; 1195 root->inode_tree = RB_ROOT; 1196 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1197 root->block_rsv = NULL; 1198 root->orphan_block_rsv = NULL; 1199 1200 INIT_LIST_HEAD(&root->dirty_list); 1201 INIT_LIST_HEAD(&root->root_list); 1202 INIT_LIST_HEAD(&root->logged_list[0]); 1203 INIT_LIST_HEAD(&root->logged_list[1]); 1204 spin_lock_init(&root->orphan_lock); 1205 spin_lock_init(&root->inode_lock); 1206 spin_lock_init(&root->accounting_lock); 1207 spin_lock_init(&root->log_extents_lock[0]); 1208 spin_lock_init(&root->log_extents_lock[1]); 1209 mutex_init(&root->objectid_mutex); 1210 mutex_init(&root->log_mutex); 1211 init_waitqueue_head(&root->log_writer_wait); 1212 init_waitqueue_head(&root->log_commit_wait[0]); 1213 init_waitqueue_head(&root->log_commit_wait[1]); 1214 atomic_set(&root->log_commit[0], 0); 1215 atomic_set(&root->log_commit[1], 0); 1216 atomic_set(&root->log_writers, 0); 1217 atomic_set(&root->log_batch, 0); 1218 atomic_set(&root->orphan_inodes, 0); 1219 root->log_transid = 0; 1220 root->last_log_commit = 0; 1221 extent_io_tree_init(&root->dirty_log_pages, 1222 fs_info->btree_inode->i_mapping); 1223 1224 memset(&root->root_key, 0, sizeof(root->root_key)); 1225 memset(&root->root_item, 0, sizeof(root->root_item)); 1226 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1227 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1228 root->defrag_trans_start = fs_info->generation; 1229 init_completion(&root->kobj_unregister); 1230 root->defrag_running = 0; 1231 root->root_key.objectid = objectid; 1232 root->anon_dev = 0; 1233 1234 spin_lock_init(&root->root_item_lock); 1235 } 1236 1237 static int __must_check find_and_setup_root(struct btrfs_root *tree_root, 1238 struct btrfs_fs_info *fs_info, 1239 u64 objectid, 1240 struct btrfs_root *root) 1241 { 1242 int ret; 1243 u32 blocksize; 1244 u64 generation; 1245 1246 __setup_root(tree_root->nodesize, tree_root->leafsize, 1247 tree_root->sectorsize, tree_root->stripesize, 1248 root, fs_info, objectid); 1249 ret = btrfs_find_last_root(tree_root, objectid, 1250 &root->root_item, &root->root_key); 1251 if (ret > 0) 1252 return -ENOENT; 1253 else if (ret < 0) 1254 return ret; 1255 1256 generation = btrfs_root_generation(&root->root_item); 1257 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1258 root->commit_root = NULL; 1259 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1260 blocksize, generation); 1261 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) { 1262 free_extent_buffer(root->node); 1263 root->node = NULL; 1264 return -EIO; 1265 } 1266 root->commit_root = btrfs_root_node(root); 1267 return 0; 1268 } 1269 1270 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1271 { 1272 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1273 if (root) 1274 root->fs_info = fs_info; 1275 return root; 1276 } 1277 1278 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1279 struct btrfs_fs_info *fs_info, 1280 u64 objectid) 1281 { 1282 struct extent_buffer *leaf; 1283 struct btrfs_root *tree_root = fs_info->tree_root; 1284 struct btrfs_root *root; 1285 struct btrfs_key key; 1286 int ret = 0; 1287 u64 bytenr; 1288 uuid_le uuid; 1289 1290 root = btrfs_alloc_root(fs_info); 1291 if (!root) 1292 return ERR_PTR(-ENOMEM); 1293 1294 __setup_root(tree_root->nodesize, tree_root->leafsize, 1295 tree_root->sectorsize, tree_root->stripesize, 1296 root, fs_info, objectid); 1297 root->root_key.objectid = objectid; 1298 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1299 root->root_key.offset = 0; 1300 1301 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 1302 0, objectid, NULL, 0, 0, 0); 1303 if (IS_ERR(leaf)) { 1304 ret = PTR_ERR(leaf); 1305 leaf = NULL; 1306 goto fail; 1307 } 1308 1309 bytenr = leaf->start; 1310 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1311 btrfs_set_header_bytenr(leaf, leaf->start); 1312 btrfs_set_header_generation(leaf, trans->transid); 1313 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1314 btrfs_set_header_owner(leaf, objectid); 1315 root->node = leaf; 1316 1317 write_extent_buffer(leaf, fs_info->fsid, 1318 (unsigned long)btrfs_header_fsid(leaf), 1319 BTRFS_FSID_SIZE); 1320 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1321 (unsigned long)btrfs_header_chunk_tree_uuid(leaf), 1322 BTRFS_UUID_SIZE); 1323 btrfs_mark_buffer_dirty(leaf); 1324 1325 root->commit_root = btrfs_root_node(root); 1326 root->track_dirty = 1; 1327 1328 1329 root->root_item.flags = 0; 1330 root->root_item.byte_limit = 0; 1331 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1332 btrfs_set_root_generation(&root->root_item, trans->transid); 1333 btrfs_set_root_level(&root->root_item, 0); 1334 btrfs_set_root_refs(&root->root_item, 1); 1335 btrfs_set_root_used(&root->root_item, leaf->len); 1336 btrfs_set_root_last_snapshot(&root->root_item, 0); 1337 btrfs_set_root_dirid(&root->root_item, 0); 1338 uuid_le_gen(&uuid); 1339 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1340 root->root_item.drop_level = 0; 1341 1342 key.objectid = objectid; 1343 key.type = BTRFS_ROOT_ITEM_KEY; 1344 key.offset = 0; 1345 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1346 if (ret) 1347 goto fail; 1348 1349 btrfs_tree_unlock(leaf); 1350 1351 return root; 1352 1353 fail: 1354 if (leaf) { 1355 btrfs_tree_unlock(leaf); 1356 free_extent_buffer(leaf); 1357 } 1358 kfree(root); 1359 1360 return ERR_PTR(ret); 1361 } 1362 1363 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1364 struct btrfs_fs_info *fs_info) 1365 { 1366 struct btrfs_root *root; 1367 struct btrfs_root *tree_root = fs_info->tree_root; 1368 struct extent_buffer *leaf; 1369 1370 root = btrfs_alloc_root(fs_info); 1371 if (!root) 1372 return ERR_PTR(-ENOMEM); 1373 1374 __setup_root(tree_root->nodesize, tree_root->leafsize, 1375 tree_root->sectorsize, tree_root->stripesize, 1376 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1377 1378 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1379 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1380 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1381 /* 1382 * log trees do not get reference counted because they go away 1383 * before a real commit is actually done. They do store pointers 1384 * to file data extents, and those reference counts still get 1385 * updated (along with back refs to the log tree). 1386 */ 1387 root->ref_cows = 0; 1388 1389 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1390 BTRFS_TREE_LOG_OBJECTID, NULL, 1391 0, 0, 0); 1392 if (IS_ERR(leaf)) { 1393 kfree(root); 1394 return ERR_CAST(leaf); 1395 } 1396 1397 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1398 btrfs_set_header_bytenr(leaf, leaf->start); 1399 btrfs_set_header_generation(leaf, trans->transid); 1400 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1401 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1402 root->node = leaf; 1403 1404 write_extent_buffer(root->node, root->fs_info->fsid, 1405 (unsigned long)btrfs_header_fsid(root->node), 1406 BTRFS_FSID_SIZE); 1407 btrfs_mark_buffer_dirty(root->node); 1408 btrfs_tree_unlock(root->node); 1409 return root; 1410 } 1411 1412 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1413 struct btrfs_fs_info *fs_info) 1414 { 1415 struct btrfs_root *log_root; 1416 1417 log_root = alloc_log_tree(trans, fs_info); 1418 if (IS_ERR(log_root)) 1419 return PTR_ERR(log_root); 1420 WARN_ON(fs_info->log_root_tree); 1421 fs_info->log_root_tree = log_root; 1422 return 0; 1423 } 1424 1425 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1426 struct btrfs_root *root) 1427 { 1428 struct btrfs_root *log_root; 1429 struct btrfs_inode_item *inode_item; 1430 1431 log_root = alloc_log_tree(trans, root->fs_info); 1432 if (IS_ERR(log_root)) 1433 return PTR_ERR(log_root); 1434 1435 log_root->last_trans = trans->transid; 1436 log_root->root_key.offset = root->root_key.objectid; 1437 1438 inode_item = &log_root->root_item.inode; 1439 inode_item->generation = cpu_to_le64(1); 1440 inode_item->size = cpu_to_le64(3); 1441 inode_item->nlink = cpu_to_le32(1); 1442 inode_item->nbytes = cpu_to_le64(root->leafsize); 1443 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1444 1445 btrfs_set_root_node(&log_root->root_item, log_root->node); 1446 1447 WARN_ON(root->log_root); 1448 root->log_root = log_root; 1449 root->log_transid = 0; 1450 root->last_log_commit = 0; 1451 return 0; 1452 } 1453 1454 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1455 struct btrfs_key *location) 1456 { 1457 struct btrfs_root *root; 1458 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1459 struct btrfs_path *path; 1460 struct extent_buffer *l; 1461 u64 generation; 1462 u32 blocksize; 1463 int ret = 0; 1464 int slot; 1465 1466 root = btrfs_alloc_root(fs_info); 1467 if (!root) 1468 return ERR_PTR(-ENOMEM); 1469 if (location->offset == (u64)-1) { 1470 ret = find_and_setup_root(tree_root, fs_info, 1471 location->objectid, root); 1472 if (ret) { 1473 kfree(root); 1474 return ERR_PTR(ret); 1475 } 1476 goto out; 1477 } 1478 1479 __setup_root(tree_root->nodesize, tree_root->leafsize, 1480 tree_root->sectorsize, tree_root->stripesize, 1481 root, fs_info, location->objectid); 1482 1483 path = btrfs_alloc_path(); 1484 if (!path) { 1485 kfree(root); 1486 return ERR_PTR(-ENOMEM); 1487 } 1488 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1489 if (ret == 0) { 1490 l = path->nodes[0]; 1491 slot = path->slots[0]; 1492 btrfs_read_root_item(l, slot, &root->root_item); 1493 memcpy(&root->root_key, location, sizeof(*location)); 1494 } 1495 btrfs_free_path(path); 1496 if (ret) { 1497 kfree(root); 1498 if (ret > 0) 1499 ret = -ENOENT; 1500 return ERR_PTR(ret); 1501 } 1502 1503 generation = btrfs_root_generation(&root->root_item); 1504 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1505 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1506 blocksize, generation); 1507 if (!root->node || !extent_buffer_uptodate(root->node)) { 1508 ret = (!root->node) ? -ENOMEM : -EIO; 1509 1510 free_extent_buffer(root->node); 1511 kfree(root); 1512 return ERR_PTR(ret); 1513 } 1514 1515 root->commit_root = btrfs_root_node(root); 1516 out: 1517 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { 1518 root->ref_cows = 1; 1519 btrfs_check_and_init_root_item(&root->root_item); 1520 } 1521 1522 return root; 1523 } 1524 1525 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1526 struct btrfs_key *location) 1527 { 1528 struct btrfs_root *root; 1529 int ret; 1530 1531 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1532 return fs_info->tree_root; 1533 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1534 return fs_info->extent_root; 1535 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1536 return fs_info->chunk_root; 1537 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1538 return fs_info->dev_root; 1539 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1540 return fs_info->csum_root; 1541 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1542 return fs_info->quota_root ? fs_info->quota_root : 1543 ERR_PTR(-ENOENT); 1544 again: 1545 spin_lock(&fs_info->fs_roots_radix_lock); 1546 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1547 (unsigned long)location->objectid); 1548 spin_unlock(&fs_info->fs_roots_radix_lock); 1549 if (root) 1550 return root; 1551 1552 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1553 if (IS_ERR(root)) 1554 return root; 1555 1556 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1557 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1558 GFP_NOFS); 1559 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1560 ret = -ENOMEM; 1561 goto fail; 1562 } 1563 1564 btrfs_init_free_ino_ctl(root); 1565 mutex_init(&root->fs_commit_mutex); 1566 spin_lock_init(&root->cache_lock); 1567 init_waitqueue_head(&root->cache_wait); 1568 1569 ret = get_anon_bdev(&root->anon_dev); 1570 if (ret) 1571 goto fail; 1572 1573 if (btrfs_root_refs(&root->root_item) == 0) { 1574 ret = -ENOENT; 1575 goto fail; 1576 } 1577 1578 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1579 if (ret < 0) 1580 goto fail; 1581 if (ret == 0) 1582 root->orphan_item_inserted = 1; 1583 1584 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1585 if (ret) 1586 goto fail; 1587 1588 spin_lock(&fs_info->fs_roots_radix_lock); 1589 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1590 (unsigned long)root->root_key.objectid, 1591 root); 1592 if (ret == 0) 1593 root->in_radix = 1; 1594 1595 spin_unlock(&fs_info->fs_roots_radix_lock); 1596 radix_tree_preload_end(); 1597 if (ret) { 1598 if (ret == -EEXIST) { 1599 free_fs_root(root); 1600 goto again; 1601 } 1602 goto fail; 1603 } 1604 1605 ret = btrfs_find_dead_roots(fs_info->tree_root, 1606 root->root_key.objectid); 1607 WARN_ON(ret); 1608 return root; 1609 fail: 1610 free_fs_root(root); 1611 return ERR_PTR(ret); 1612 } 1613 1614 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1615 { 1616 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1617 int ret = 0; 1618 struct btrfs_device *device; 1619 struct backing_dev_info *bdi; 1620 1621 rcu_read_lock(); 1622 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1623 if (!device->bdev) 1624 continue; 1625 bdi = blk_get_backing_dev_info(device->bdev); 1626 if (bdi && bdi_congested(bdi, bdi_bits)) { 1627 ret = 1; 1628 break; 1629 } 1630 } 1631 rcu_read_unlock(); 1632 return ret; 1633 } 1634 1635 /* 1636 * If this fails, caller must call bdi_destroy() to get rid of the 1637 * bdi again. 1638 */ 1639 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1640 { 1641 int err; 1642 1643 bdi->capabilities = BDI_CAP_MAP_COPY; 1644 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1645 if (err) 1646 return err; 1647 1648 bdi->ra_pages = default_backing_dev_info.ra_pages; 1649 bdi->congested_fn = btrfs_congested_fn; 1650 bdi->congested_data = info; 1651 return 0; 1652 } 1653 1654 /* 1655 * called by the kthread helper functions to finally call the bio end_io 1656 * functions. This is where read checksum verification actually happens 1657 */ 1658 static void end_workqueue_fn(struct btrfs_work *work) 1659 { 1660 struct bio *bio; 1661 struct end_io_wq *end_io_wq; 1662 struct btrfs_fs_info *fs_info; 1663 int error; 1664 1665 end_io_wq = container_of(work, struct end_io_wq, work); 1666 bio = end_io_wq->bio; 1667 fs_info = end_io_wq->info; 1668 1669 error = end_io_wq->error; 1670 bio->bi_private = end_io_wq->private; 1671 bio->bi_end_io = end_io_wq->end_io; 1672 kfree(end_io_wq); 1673 bio_endio(bio, error); 1674 } 1675 1676 static int cleaner_kthread(void *arg) 1677 { 1678 struct btrfs_root *root = arg; 1679 1680 do { 1681 int again = 0; 1682 1683 if (!(root->fs_info->sb->s_flags & MS_RDONLY) && 1684 down_read_trylock(&root->fs_info->sb->s_umount)) { 1685 if (mutex_trylock(&root->fs_info->cleaner_mutex)) { 1686 btrfs_run_delayed_iputs(root); 1687 again = btrfs_clean_one_deleted_snapshot(root); 1688 mutex_unlock(&root->fs_info->cleaner_mutex); 1689 } 1690 btrfs_run_defrag_inodes(root->fs_info); 1691 up_read(&root->fs_info->sb->s_umount); 1692 } 1693 1694 if (!try_to_freeze() && !again) { 1695 set_current_state(TASK_INTERRUPTIBLE); 1696 if (!kthread_should_stop()) 1697 schedule(); 1698 __set_current_state(TASK_RUNNING); 1699 } 1700 } while (!kthread_should_stop()); 1701 return 0; 1702 } 1703 1704 static int transaction_kthread(void *arg) 1705 { 1706 struct btrfs_root *root = arg; 1707 struct btrfs_trans_handle *trans; 1708 struct btrfs_transaction *cur; 1709 u64 transid; 1710 unsigned long now; 1711 unsigned long delay; 1712 bool cannot_commit; 1713 1714 do { 1715 cannot_commit = false; 1716 delay = HZ * 30; 1717 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1718 1719 spin_lock(&root->fs_info->trans_lock); 1720 cur = root->fs_info->running_transaction; 1721 if (!cur) { 1722 spin_unlock(&root->fs_info->trans_lock); 1723 goto sleep; 1724 } 1725 1726 now = get_seconds(); 1727 if (!cur->blocked && 1728 (now < cur->start_time || now - cur->start_time < 30)) { 1729 spin_unlock(&root->fs_info->trans_lock); 1730 delay = HZ * 5; 1731 goto sleep; 1732 } 1733 transid = cur->transid; 1734 spin_unlock(&root->fs_info->trans_lock); 1735 1736 /* If the file system is aborted, this will always fail. */ 1737 trans = btrfs_attach_transaction(root); 1738 if (IS_ERR(trans)) { 1739 if (PTR_ERR(trans) != -ENOENT) 1740 cannot_commit = true; 1741 goto sleep; 1742 } 1743 if (transid == trans->transid) { 1744 btrfs_commit_transaction(trans, root); 1745 } else { 1746 btrfs_end_transaction(trans, root); 1747 } 1748 sleep: 1749 wake_up_process(root->fs_info->cleaner_kthread); 1750 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1751 1752 if (!try_to_freeze()) { 1753 set_current_state(TASK_INTERRUPTIBLE); 1754 if (!kthread_should_stop() && 1755 (!btrfs_transaction_blocked(root->fs_info) || 1756 cannot_commit)) 1757 schedule_timeout(delay); 1758 __set_current_state(TASK_RUNNING); 1759 } 1760 } while (!kthread_should_stop()); 1761 return 0; 1762 } 1763 1764 /* 1765 * this will find the highest generation in the array of 1766 * root backups. The index of the highest array is returned, 1767 * or -1 if we can't find anything. 1768 * 1769 * We check to make sure the array is valid by comparing the 1770 * generation of the latest root in the array with the generation 1771 * in the super block. If they don't match we pitch it. 1772 */ 1773 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1774 { 1775 u64 cur; 1776 int newest_index = -1; 1777 struct btrfs_root_backup *root_backup; 1778 int i; 1779 1780 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1781 root_backup = info->super_copy->super_roots + i; 1782 cur = btrfs_backup_tree_root_gen(root_backup); 1783 if (cur == newest_gen) 1784 newest_index = i; 1785 } 1786 1787 /* check to see if we actually wrapped around */ 1788 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1789 root_backup = info->super_copy->super_roots; 1790 cur = btrfs_backup_tree_root_gen(root_backup); 1791 if (cur == newest_gen) 1792 newest_index = 0; 1793 } 1794 return newest_index; 1795 } 1796 1797 1798 /* 1799 * find the oldest backup so we know where to store new entries 1800 * in the backup array. This will set the backup_root_index 1801 * field in the fs_info struct 1802 */ 1803 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1804 u64 newest_gen) 1805 { 1806 int newest_index = -1; 1807 1808 newest_index = find_newest_super_backup(info, newest_gen); 1809 /* if there was garbage in there, just move along */ 1810 if (newest_index == -1) { 1811 info->backup_root_index = 0; 1812 } else { 1813 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1814 } 1815 } 1816 1817 /* 1818 * copy all the root pointers into the super backup array. 1819 * this will bump the backup pointer by one when it is 1820 * done 1821 */ 1822 static void backup_super_roots(struct btrfs_fs_info *info) 1823 { 1824 int next_backup; 1825 struct btrfs_root_backup *root_backup; 1826 int last_backup; 1827 1828 next_backup = info->backup_root_index; 1829 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1830 BTRFS_NUM_BACKUP_ROOTS; 1831 1832 /* 1833 * just overwrite the last backup if we're at the same generation 1834 * this happens only at umount 1835 */ 1836 root_backup = info->super_for_commit->super_roots + last_backup; 1837 if (btrfs_backup_tree_root_gen(root_backup) == 1838 btrfs_header_generation(info->tree_root->node)) 1839 next_backup = last_backup; 1840 1841 root_backup = info->super_for_commit->super_roots + next_backup; 1842 1843 /* 1844 * make sure all of our padding and empty slots get zero filled 1845 * regardless of which ones we use today 1846 */ 1847 memset(root_backup, 0, sizeof(*root_backup)); 1848 1849 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1850 1851 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1852 btrfs_set_backup_tree_root_gen(root_backup, 1853 btrfs_header_generation(info->tree_root->node)); 1854 1855 btrfs_set_backup_tree_root_level(root_backup, 1856 btrfs_header_level(info->tree_root->node)); 1857 1858 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1859 btrfs_set_backup_chunk_root_gen(root_backup, 1860 btrfs_header_generation(info->chunk_root->node)); 1861 btrfs_set_backup_chunk_root_level(root_backup, 1862 btrfs_header_level(info->chunk_root->node)); 1863 1864 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1865 btrfs_set_backup_extent_root_gen(root_backup, 1866 btrfs_header_generation(info->extent_root->node)); 1867 btrfs_set_backup_extent_root_level(root_backup, 1868 btrfs_header_level(info->extent_root->node)); 1869 1870 /* 1871 * we might commit during log recovery, which happens before we set 1872 * the fs_root. Make sure it is valid before we fill it in. 1873 */ 1874 if (info->fs_root && info->fs_root->node) { 1875 btrfs_set_backup_fs_root(root_backup, 1876 info->fs_root->node->start); 1877 btrfs_set_backup_fs_root_gen(root_backup, 1878 btrfs_header_generation(info->fs_root->node)); 1879 btrfs_set_backup_fs_root_level(root_backup, 1880 btrfs_header_level(info->fs_root->node)); 1881 } 1882 1883 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1884 btrfs_set_backup_dev_root_gen(root_backup, 1885 btrfs_header_generation(info->dev_root->node)); 1886 btrfs_set_backup_dev_root_level(root_backup, 1887 btrfs_header_level(info->dev_root->node)); 1888 1889 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1890 btrfs_set_backup_csum_root_gen(root_backup, 1891 btrfs_header_generation(info->csum_root->node)); 1892 btrfs_set_backup_csum_root_level(root_backup, 1893 btrfs_header_level(info->csum_root->node)); 1894 1895 btrfs_set_backup_total_bytes(root_backup, 1896 btrfs_super_total_bytes(info->super_copy)); 1897 btrfs_set_backup_bytes_used(root_backup, 1898 btrfs_super_bytes_used(info->super_copy)); 1899 btrfs_set_backup_num_devices(root_backup, 1900 btrfs_super_num_devices(info->super_copy)); 1901 1902 /* 1903 * if we don't copy this out to the super_copy, it won't get remembered 1904 * for the next commit 1905 */ 1906 memcpy(&info->super_copy->super_roots, 1907 &info->super_for_commit->super_roots, 1908 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1909 } 1910 1911 /* 1912 * this copies info out of the root backup array and back into 1913 * the in-memory super block. It is meant to help iterate through 1914 * the array, so you send it the number of backups you've already 1915 * tried and the last backup index you used. 1916 * 1917 * this returns -1 when it has tried all the backups 1918 */ 1919 static noinline int next_root_backup(struct btrfs_fs_info *info, 1920 struct btrfs_super_block *super, 1921 int *num_backups_tried, int *backup_index) 1922 { 1923 struct btrfs_root_backup *root_backup; 1924 int newest = *backup_index; 1925 1926 if (*num_backups_tried == 0) { 1927 u64 gen = btrfs_super_generation(super); 1928 1929 newest = find_newest_super_backup(info, gen); 1930 if (newest == -1) 1931 return -1; 1932 1933 *backup_index = newest; 1934 *num_backups_tried = 1; 1935 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1936 /* we've tried all the backups, all done */ 1937 return -1; 1938 } else { 1939 /* jump to the next oldest backup */ 1940 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1941 BTRFS_NUM_BACKUP_ROOTS; 1942 *backup_index = newest; 1943 *num_backups_tried += 1; 1944 } 1945 root_backup = super->super_roots + newest; 1946 1947 btrfs_set_super_generation(super, 1948 btrfs_backup_tree_root_gen(root_backup)); 1949 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1950 btrfs_set_super_root_level(super, 1951 btrfs_backup_tree_root_level(root_backup)); 1952 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1953 1954 /* 1955 * fixme: the total bytes and num_devices need to match or we should 1956 * need a fsck 1957 */ 1958 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1959 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1960 return 0; 1961 } 1962 1963 /* helper to cleanup workers */ 1964 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1965 { 1966 btrfs_stop_workers(&fs_info->generic_worker); 1967 btrfs_stop_workers(&fs_info->fixup_workers); 1968 btrfs_stop_workers(&fs_info->delalloc_workers); 1969 btrfs_stop_workers(&fs_info->workers); 1970 btrfs_stop_workers(&fs_info->endio_workers); 1971 btrfs_stop_workers(&fs_info->endio_meta_workers); 1972 btrfs_stop_workers(&fs_info->endio_raid56_workers); 1973 btrfs_stop_workers(&fs_info->rmw_workers); 1974 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 1975 btrfs_stop_workers(&fs_info->endio_write_workers); 1976 btrfs_stop_workers(&fs_info->endio_freespace_worker); 1977 btrfs_stop_workers(&fs_info->submit_workers); 1978 btrfs_stop_workers(&fs_info->delayed_workers); 1979 btrfs_stop_workers(&fs_info->caching_workers); 1980 btrfs_stop_workers(&fs_info->readahead_workers); 1981 btrfs_stop_workers(&fs_info->flush_workers); 1982 btrfs_stop_workers(&fs_info->qgroup_rescan_workers); 1983 } 1984 1985 /* helper to cleanup tree roots */ 1986 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 1987 { 1988 free_extent_buffer(info->tree_root->node); 1989 free_extent_buffer(info->tree_root->commit_root); 1990 info->tree_root->node = NULL; 1991 info->tree_root->commit_root = NULL; 1992 1993 if (info->dev_root) { 1994 free_extent_buffer(info->dev_root->node); 1995 free_extent_buffer(info->dev_root->commit_root); 1996 info->dev_root->node = NULL; 1997 info->dev_root->commit_root = NULL; 1998 } 1999 if (info->extent_root) { 2000 free_extent_buffer(info->extent_root->node); 2001 free_extent_buffer(info->extent_root->commit_root); 2002 info->extent_root->node = NULL; 2003 info->extent_root->commit_root = NULL; 2004 } 2005 if (info->csum_root) { 2006 free_extent_buffer(info->csum_root->node); 2007 free_extent_buffer(info->csum_root->commit_root); 2008 info->csum_root->node = NULL; 2009 info->csum_root->commit_root = NULL; 2010 } 2011 if (info->quota_root) { 2012 free_extent_buffer(info->quota_root->node); 2013 free_extent_buffer(info->quota_root->commit_root); 2014 info->quota_root->node = NULL; 2015 info->quota_root->commit_root = NULL; 2016 } 2017 if (chunk_root) { 2018 free_extent_buffer(info->chunk_root->node); 2019 free_extent_buffer(info->chunk_root->commit_root); 2020 info->chunk_root->node = NULL; 2021 info->chunk_root->commit_root = NULL; 2022 } 2023 } 2024 2025 static void del_fs_roots(struct btrfs_fs_info *fs_info) 2026 { 2027 int ret; 2028 struct btrfs_root *gang[8]; 2029 int i; 2030 2031 while (!list_empty(&fs_info->dead_roots)) { 2032 gang[0] = list_entry(fs_info->dead_roots.next, 2033 struct btrfs_root, root_list); 2034 list_del(&gang[0]->root_list); 2035 2036 if (gang[0]->in_radix) { 2037 btrfs_free_fs_root(fs_info, gang[0]); 2038 } else { 2039 free_extent_buffer(gang[0]->node); 2040 free_extent_buffer(gang[0]->commit_root); 2041 kfree(gang[0]); 2042 } 2043 } 2044 2045 while (1) { 2046 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2047 (void **)gang, 0, 2048 ARRAY_SIZE(gang)); 2049 if (!ret) 2050 break; 2051 for (i = 0; i < ret; i++) 2052 btrfs_free_fs_root(fs_info, gang[i]); 2053 } 2054 } 2055 2056 int open_ctree(struct super_block *sb, 2057 struct btrfs_fs_devices *fs_devices, 2058 char *options) 2059 { 2060 u32 sectorsize; 2061 u32 nodesize; 2062 u32 leafsize; 2063 u32 blocksize; 2064 u32 stripesize; 2065 u64 generation; 2066 u64 features; 2067 struct btrfs_key location; 2068 struct buffer_head *bh; 2069 struct btrfs_super_block *disk_super; 2070 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2071 struct btrfs_root *tree_root; 2072 struct btrfs_root *extent_root; 2073 struct btrfs_root *csum_root; 2074 struct btrfs_root *chunk_root; 2075 struct btrfs_root *dev_root; 2076 struct btrfs_root *quota_root; 2077 struct btrfs_root *log_tree_root; 2078 int ret; 2079 int err = -EINVAL; 2080 int num_backups_tried = 0; 2081 int backup_index = 0; 2082 2083 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 2084 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info); 2085 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info); 2086 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 2087 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info); 2088 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info); 2089 2090 if (!tree_root || !extent_root || !csum_root || 2091 !chunk_root || !dev_root || !quota_root) { 2092 err = -ENOMEM; 2093 goto fail; 2094 } 2095 2096 ret = init_srcu_struct(&fs_info->subvol_srcu); 2097 if (ret) { 2098 err = ret; 2099 goto fail; 2100 } 2101 2102 ret = setup_bdi(fs_info, &fs_info->bdi); 2103 if (ret) { 2104 err = ret; 2105 goto fail_srcu; 2106 } 2107 2108 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0); 2109 if (ret) { 2110 err = ret; 2111 goto fail_bdi; 2112 } 2113 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE * 2114 (1 + ilog2(nr_cpu_ids)); 2115 2116 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0); 2117 if (ret) { 2118 err = ret; 2119 goto fail_dirty_metadata_bytes; 2120 } 2121 2122 fs_info->btree_inode = new_inode(sb); 2123 if (!fs_info->btree_inode) { 2124 err = -ENOMEM; 2125 goto fail_delalloc_bytes; 2126 } 2127 2128 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2129 2130 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2131 INIT_LIST_HEAD(&fs_info->trans_list); 2132 INIT_LIST_HEAD(&fs_info->dead_roots); 2133 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2134 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 2135 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2136 spin_lock_init(&fs_info->delalloc_lock); 2137 spin_lock_init(&fs_info->trans_lock); 2138 spin_lock_init(&fs_info->fs_roots_radix_lock); 2139 spin_lock_init(&fs_info->delayed_iput_lock); 2140 spin_lock_init(&fs_info->defrag_inodes_lock); 2141 spin_lock_init(&fs_info->free_chunk_lock); 2142 spin_lock_init(&fs_info->tree_mod_seq_lock); 2143 spin_lock_init(&fs_info->super_lock); 2144 rwlock_init(&fs_info->tree_mod_log_lock); 2145 mutex_init(&fs_info->reloc_mutex); 2146 seqlock_init(&fs_info->profiles_lock); 2147 2148 init_completion(&fs_info->kobj_unregister); 2149 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2150 INIT_LIST_HEAD(&fs_info->space_info); 2151 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2152 btrfs_mapping_init(&fs_info->mapping_tree); 2153 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2154 BTRFS_BLOCK_RSV_GLOBAL); 2155 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2156 BTRFS_BLOCK_RSV_DELALLOC); 2157 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2158 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2159 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2160 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2161 BTRFS_BLOCK_RSV_DELOPS); 2162 atomic_set(&fs_info->nr_async_submits, 0); 2163 atomic_set(&fs_info->async_delalloc_pages, 0); 2164 atomic_set(&fs_info->async_submit_draining, 0); 2165 atomic_set(&fs_info->nr_async_bios, 0); 2166 atomic_set(&fs_info->defrag_running, 0); 2167 atomic64_set(&fs_info->tree_mod_seq, 0); 2168 fs_info->sb = sb; 2169 fs_info->max_inline = 8192 * 1024; 2170 fs_info->metadata_ratio = 0; 2171 fs_info->defrag_inodes = RB_ROOT; 2172 fs_info->trans_no_join = 0; 2173 fs_info->free_chunk_space = 0; 2174 fs_info->tree_mod_log = RB_ROOT; 2175 2176 /* readahead state */ 2177 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 2178 spin_lock_init(&fs_info->reada_lock); 2179 2180 fs_info->thread_pool_size = min_t(unsigned long, 2181 num_online_cpus() + 2, 8); 2182 2183 INIT_LIST_HEAD(&fs_info->ordered_extents); 2184 spin_lock_init(&fs_info->ordered_extent_lock); 2185 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2186 GFP_NOFS); 2187 if (!fs_info->delayed_root) { 2188 err = -ENOMEM; 2189 goto fail_iput; 2190 } 2191 btrfs_init_delayed_root(fs_info->delayed_root); 2192 2193 mutex_init(&fs_info->scrub_lock); 2194 atomic_set(&fs_info->scrubs_running, 0); 2195 atomic_set(&fs_info->scrub_pause_req, 0); 2196 atomic_set(&fs_info->scrubs_paused, 0); 2197 atomic_set(&fs_info->scrub_cancel_req, 0); 2198 init_waitqueue_head(&fs_info->scrub_pause_wait); 2199 init_rwsem(&fs_info->scrub_super_lock); 2200 fs_info->scrub_workers_refcnt = 0; 2201 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2202 fs_info->check_integrity_print_mask = 0; 2203 #endif 2204 2205 spin_lock_init(&fs_info->balance_lock); 2206 mutex_init(&fs_info->balance_mutex); 2207 atomic_set(&fs_info->balance_running, 0); 2208 atomic_set(&fs_info->balance_pause_req, 0); 2209 atomic_set(&fs_info->balance_cancel_req, 0); 2210 fs_info->balance_ctl = NULL; 2211 init_waitqueue_head(&fs_info->balance_wait_q); 2212 2213 sb->s_blocksize = 4096; 2214 sb->s_blocksize_bits = blksize_bits(4096); 2215 sb->s_bdi = &fs_info->bdi; 2216 2217 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2218 set_nlink(fs_info->btree_inode, 1); 2219 /* 2220 * we set the i_size on the btree inode to the max possible int. 2221 * the real end of the address space is determined by all of 2222 * the devices in the system 2223 */ 2224 fs_info->btree_inode->i_size = OFFSET_MAX; 2225 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2226 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 2227 2228 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2229 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2230 fs_info->btree_inode->i_mapping); 2231 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2232 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2233 2234 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2235 2236 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2237 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2238 sizeof(struct btrfs_key)); 2239 set_bit(BTRFS_INODE_DUMMY, 2240 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2241 insert_inode_hash(fs_info->btree_inode); 2242 2243 spin_lock_init(&fs_info->block_group_cache_lock); 2244 fs_info->block_group_cache_tree = RB_ROOT; 2245 fs_info->first_logical_byte = (u64)-1; 2246 2247 extent_io_tree_init(&fs_info->freed_extents[0], 2248 fs_info->btree_inode->i_mapping); 2249 extent_io_tree_init(&fs_info->freed_extents[1], 2250 fs_info->btree_inode->i_mapping); 2251 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2252 fs_info->do_barriers = 1; 2253 2254 2255 mutex_init(&fs_info->ordered_operations_mutex); 2256 mutex_init(&fs_info->tree_log_mutex); 2257 mutex_init(&fs_info->chunk_mutex); 2258 mutex_init(&fs_info->transaction_kthread_mutex); 2259 mutex_init(&fs_info->cleaner_mutex); 2260 mutex_init(&fs_info->volume_mutex); 2261 init_rwsem(&fs_info->extent_commit_sem); 2262 init_rwsem(&fs_info->cleanup_work_sem); 2263 init_rwsem(&fs_info->subvol_sem); 2264 fs_info->dev_replace.lock_owner = 0; 2265 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2266 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2267 mutex_init(&fs_info->dev_replace.lock_management_lock); 2268 mutex_init(&fs_info->dev_replace.lock); 2269 2270 spin_lock_init(&fs_info->qgroup_lock); 2271 mutex_init(&fs_info->qgroup_ioctl_lock); 2272 fs_info->qgroup_tree = RB_ROOT; 2273 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2274 fs_info->qgroup_seq = 1; 2275 fs_info->quota_enabled = 0; 2276 fs_info->pending_quota_state = 0; 2277 mutex_init(&fs_info->qgroup_rescan_lock); 2278 2279 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2280 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2281 2282 init_waitqueue_head(&fs_info->transaction_throttle); 2283 init_waitqueue_head(&fs_info->transaction_wait); 2284 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2285 init_waitqueue_head(&fs_info->async_submit_wait); 2286 2287 ret = btrfs_alloc_stripe_hash_table(fs_info); 2288 if (ret) { 2289 err = ret; 2290 goto fail_alloc; 2291 } 2292 2293 __setup_root(4096, 4096, 4096, 4096, tree_root, 2294 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2295 2296 invalidate_bdev(fs_devices->latest_bdev); 2297 2298 /* 2299 * Read super block and check the signature bytes only 2300 */ 2301 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2302 if (!bh) { 2303 err = -EINVAL; 2304 goto fail_alloc; 2305 } 2306 2307 /* 2308 * We want to check superblock checksum, the type is stored inside. 2309 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2310 */ 2311 if (btrfs_check_super_csum(bh->b_data)) { 2312 printk(KERN_ERR "btrfs: superblock checksum mismatch\n"); 2313 err = -EINVAL; 2314 goto fail_alloc; 2315 } 2316 2317 /* 2318 * super_copy is zeroed at allocation time and we never touch the 2319 * following bytes up to INFO_SIZE, the checksum is calculated from 2320 * the whole block of INFO_SIZE 2321 */ 2322 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2323 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2324 sizeof(*fs_info->super_for_commit)); 2325 brelse(bh); 2326 2327 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2328 2329 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2330 if (ret) { 2331 printk(KERN_ERR "btrfs: superblock contains fatal errors\n"); 2332 err = -EINVAL; 2333 goto fail_alloc; 2334 } 2335 2336 disk_super = fs_info->super_copy; 2337 if (!btrfs_super_root(disk_super)) 2338 goto fail_alloc; 2339 2340 /* check FS state, whether FS is broken. */ 2341 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2342 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2343 2344 /* 2345 * run through our array of backup supers and setup 2346 * our ring pointer to the oldest one 2347 */ 2348 generation = btrfs_super_generation(disk_super); 2349 find_oldest_super_backup(fs_info, generation); 2350 2351 /* 2352 * In the long term, we'll store the compression type in the super 2353 * block, and it'll be used for per file compression control. 2354 */ 2355 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2356 2357 ret = btrfs_parse_options(tree_root, options); 2358 if (ret) { 2359 err = ret; 2360 goto fail_alloc; 2361 } 2362 2363 features = btrfs_super_incompat_flags(disk_super) & 2364 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2365 if (features) { 2366 printk(KERN_ERR "BTRFS: couldn't mount because of " 2367 "unsupported optional features (%Lx).\n", 2368 (unsigned long long)features); 2369 err = -EINVAL; 2370 goto fail_alloc; 2371 } 2372 2373 if (btrfs_super_leafsize(disk_super) != 2374 btrfs_super_nodesize(disk_super)) { 2375 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2376 "blocksizes don't match. node %d leaf %d\n", 2377 btrfs_super_nodesize(disk_super), 2378 btrfs_super_leafsize(disk_super)); 2379 err = -EINVAL; 2380 goto fail_alloc; 2381 } 2382 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2383 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2384 "blocksize (%d) was too large\n", 2385 btrfs_super_leafsize(disk_super)); 2386 err = -EINVAL; 2387 goto fail_alloc; 2388 } 2389 2390 features = btrfs_super_incompat_flags(disk_super); 2391 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2392 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2393 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2394 2395 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2396 printk(KERN_ERR "btrfs: has skinny extents\n"); 2397 2398 /* 2399 * flag our filesystem as having big metadata blocks if 2400 * they are bigger than the page size 2401 */ 2402 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) { 2403 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2404 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n"); 2405 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2406 } 2407 2408 nodesize = btrfs_super_nodesize(disk_super); 2409 leafsize = btrfs_super_leafsize(disk_super); 2410 sectorsize = btrfs_super_sectorsize(disk_super); 2411 stripesize = btrfs_super_stripesize(disk_super); 2412 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids)); 2413 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2414 2415 /* 2416 * mixed block groups end up with duplicate but slightly offset 2417 * extent buffers for the same range. It leads to corruptions 2418 */ 2419 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2420 (sectorsize != leafsize)) { 2421 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes " 2422 "are not allowed for mixed block groups on %s\n", 2423 sb->s_id); 2424 goto fail_alloc; 2425 } 2426 2427 /* 2428 * Needn't use the lock because there is no other task which will 2429 * update the flag. 2430 */ 2431 btrfs_set_super_incompat_flags(disk_super, features); 2432 2433 features = btrfs_super_compat_ro_flags(disk_super) & 2434 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2435 if (!(sb->s_flags & MS_RDONLY) && features) { 2436 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2437 "unsupported option features (%Lx).\n", 2438 (unsigned long long)features); 2439 err = -EINVAL; 2440 goto fail_alloc; 2441 } 2442 2443 btrfs_init_workers(&fs_info->generic_worker, 2444 "genwork", 1, NULL); 2445 2446 btrfs_init_workers(&fs_info->workers, "worker", 2447 fs_info->thread_pool_size, 2448 &fs_info->generic_worker); 2449 2450 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 2451 fs_info->thread_pool_size, 2452 &fs_info->generic_worker); 2453 2454 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc", 2455 fs_info->thread_pool_size, 2456 &fs_info->generic_worker); 2457 2458 btrfs_init_workers(&fs_info->submit_workers, "submit", 2459 min_t(u64, fs_devices->num_devices, 2460 fs_info->thread_pool_size), 2461 &fs_info->generic_worker); 2462 2463 btrfs_init_workers(&fs_info->caching_workers, "cache", 2464 2, &fs_info->generic_worker); 2465 2466 /* a higher idle thresh on the submit workers makes it much more 2467 * likely that bios will be send down in a sane order to the 2468 * devices 2469 */ 2470 fs_info->submit_workers.idle_thresh = 64; 2471 2472 fs_info->workers.idle_thresh = 16; 2473 fs_info->workers.ordered = 1; 2474 2475 fs_info->delalloc_workers.idle_thresh = 2; 2476 fs_info->delalloc_workers.ordered = 1; 2477 2478 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 2479 &fs_info->generic_worker); 2480 btrfs_init_workers(&fs_info->endio_workers, "endio", 2481 fs_info->thread_pool_size, 2482 &fs_info->generic_worker); 2483 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 2484 fs_info->thread_pool_size, 2485 &fs_info->generic_worker); 2486 btrfs_init_workers(&fs_info->endio_meta_write_workers, 2487 "endio-meta-write", fs_info->thread_pool_size, 2488 &fs_info->generic_worker); 2489 btrfs_init_workers(&fs_info->endio_raid56_workers, 2490 "endio-raid56", fs_info->thread_pool_size, 2491 &fs_info->generic_worker); 2492 btrfs_init_workers(&fs_info->rmw_workers, 2493 "rmw", fs_info->thread_pool_size, 2494 &fs_info->generic_worker); 2495 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 2496 fs_info->thread_pool_size, 2497 &fs_info->generic_worker); 2498 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", 2499 1, &fs_info->generic_worker); 2500 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta", 2501 fs_info->thread_pool_size, 2502 &fs_info->generic_worker); 2503 btrfs_init_workers(&fs_info->readahead_workers, "readahead", 2504 fs_info->thread_pool_size, 2505 &fs_info->generic_worker); 2506 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1, 2507 &fs_info->generic_worker); 2508 2509 /* 2510 * endios are largely parallel and should have a very 2511 * low idle thresh 2512 */ 2513 fs_info->endio_workers.idle_thresh = 4; 2514 fs_info->endio_meta_workers.idle_thresh = 4; 2515 fs_info->endio_raid56_workers.idle_thresh = 4; 2516 fs_info->rmw_workers.idle_thresh = 2; 2517 2518 fs_info->endio_write_workers.idle_thresh = 2; 2519 fs_info->endio_meta_write_workers.idle_thresh = 2; 2520 fs_info->readahead_workers.idle_thresh = 2; 2521 2522 /* 2523 * btrfs_start_workers can really only fail because of ENOMEM so just 2524 * return -ENOMEM if any of these fail. 2525 */ 2526 ret = btrfs_start_workers(&fs_info->workers); 2527 ret |= btrfs_start_workers(&fs_info->generic_worker); 2528 ret |= btrfs_start_workers(&fs_info->submit_workers); 2529 ret |= btrfs_start_workers(&fs_info->delalloc_workers); 2530 ret |= btrfs_start_workers(&fs_info->fixup_workers); 2531 ret |= btrfs_start_workers(&fs_info->endio_workers); 2532 ret |= btrfs_start_workers(&fs_info->endio_meta_workers); 2533 ret |= btrfs_start_workers(&fs_info->rmw_workers); 2534 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers); 2535 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers); 2536 ret |= btrfs_start_workers(&fs_info->endio_write_workers); 2537 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker); 2538 ret |= btrfs_start_workers(&fs_info->delayed_workers); 2539 ret |= btrfs_start_workers(&fs_info->caching_workers); 2540 ret |= btrfs_start_workers(&fs_info->readahead_workers); 2541 ret |= btrfs_start_workers(&fs_info->flush_workers); 2542 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers); 2543 if (ret) { 2544 err = -ENOMEM; 2545 goto fail_sb_buffer; 2546 } 2547 2548 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2549 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2550 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2551 2552 tree_root->nodesize = nodesize; 2553 tree_root->leafsize = leafsize; 2554 tree_root->sectorsize = sectorsize; 2555 tree_root->stripesize = stripesize; 2556 2557 sb->s_blocksize = sectorsize; 2558 sb->s_blocksize_bits = blksize_bits(sectorsize); 2559 2560 if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) { 2561 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 2562 goto fail_sb_buffer; 2563 } 2564 2565 if (sectorsize != PAGE_SIZE) { 2566 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) " 2567 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2568 goto fail_sb_buffer; 2569 } 2570 2571 mutex_lock(&fs_info->chunk_mutex); 2572 ret = btrfs_read_sys_array(tree_root); 2573 mutex_unlock(&fs_info->chunk_mutex); 2574 if (ret) { 2575 printk(KERN_WARNING "btrfs: failed to read the system " 2576 "array on %s\n", sb->s_id); 2577 goto fail_sb_buffer; 2578 } 2579 2580 blocksize = btrfs_level_size(tree_root, 2581 btrfs_super_chunk_root_level(disk_super)); 2582 generation = btrfs_super_chunk_root_generation(disk_super); 2583 2584 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2585 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2586 2587 chunk_root->node = read_tree_block(chunk_root, 2588 btrfs_super_chunk_root(disk_super), 2589 blocksize, generation); 2590 if (!chunk_root->node || 2591 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2592 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 2593 sb->s_id); 2594 goto fail_tree_roots; 2595 } 2596 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2597 chunk_root->commit_root = btrfs_root_node(chunk_root); 2598 2599 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2600 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 2601 BTRFS_UUID_SIZE); 2602 2603 ret = btrfs_read_chunk_tree(chunk_root); 2604 if (ret) { 2605 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 2606 sb->s_id); 2607 goto fail_tree_roots; 2608 } 2609 2610 /* 2611 * keep the device that is marked to be the target device for the 2612 * dev_replace procedure 2613 */ 2614 btrfs_close_extra_devices(fs_info, fs_devices, 0); 2615 2616 if (!fs_devices->latest_bdev) { 2617 printk(KERN_CRIT "btrfs: failed to read devices on %s\n", 2618 sb->s_id); 2619 goto fail_tree_roots; 2620 } 2621 2622 retry_root_backup: 2623 blocksize = btrfs_level_size(tree_root, 2624 btrfs_super_root_level(disk_super)); 2625 generation = btrfs_super_generation(disk_super); 2626 2627 tree_root->node = read_tree_block(tree_root, 2628 btrfs_super_root(disk_super), 2629 blocksize, generation); 2630 if (!tree_root->node || 2631 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2632 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 2633 sb->s_id); 2634 2635 goto recovery_tree_root; 2636 } 2637 2638 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2639 tree_root->commit_root = btrfs_root_node(tree_root); 2640 2641 ret = find_and_setup_root(tree_root, fs_info, 2642 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 2643 if (ret) 2644 goto recovery_tree_root; 2645 extent_root->track_dirty = 1; 2646 2647 ret = find_and_setup_root(tree_root, fs_info, 2648 BTRFS_DEV_TREE_OBJECTID, dev_root); 2649 if (ret) 2650 goto recovery_tree_root; 2651 dev_root->track_dirty = 1; 2652 2653 ret = find_and_setup_root(tree_root, fs_info, 2654 BTRFS_CSUM_TREE_OBJECTID, csum_root); 2655 if (ret) 2656 goto recovery_tree_root; 2657 csum_root->track_dirty = 1; 2658 2659 ret = find_and_setup_root(tree_root, fs_info, 2660 BTRFS_QUOTA_TREE_OBJECTID, quota_root); 2661 if (ret) { 2662 kfree(quota_root); 2663 quota_root = fs_info->quota_root = NULL; 2664 } else { 2665 quota_root->track_dirty = 1; 2666 fs_info->quota_enabled = 1; 2667 fs_info->pending_quota_state = 1; 2668 } 2669 2670 fs_info->generation = generation; 2671 fs_info->last_trans_committed = generation; 2672 2673 ret = btrfs_recover_balance(fs_info); 2674 if (ret) { 2675 printk(KERN_WARNING "btrfs: failed to recover balance\n"); 2676 goto fail_block_groups; 2677 } 2678 2679 ret = btrfs_init_dev_stats(fs_info); 2680 if (ret) { 2681 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n", 2682 ret); 2683 goto fail_block_groups; 2684 } 2685 2686 ret = btrfs_init_dev_replace(fs_info); 2687 if (ret) { 2688 pr_err("btrfs: failed to init dev_replace: %d\n", ret); 2689 goto fail_block_groups; 2690 } 2691 2692 btrfs_close_extra_devices(fs_info, fs_devices, 1); 2693 2694 ret = btrfs_init_space_info(fs_info); 2695 if (ret) { 2696 printk(KERN_ERR "Failed to initial space info: %d\n", ret); 2697 goto fail_block_groups; 2698 } 2699 2700 ret = btrfs_read_block_groups(extent_root); 2701 if (ret) { 2702 printk(KERN_ERR "Failed to read block groups: %d\n", ret); 2703 goto fail_block_groups; 2704 } 2705 fs_info->num_tolerated_disk_barrier_failures = 2706 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2707 if (fs_info->fs_devices->missing_devices > 2708 fs_info->num_tolerated_disk_barrier_failures && 2709 !(sb->s_flags & MS_RDONLY)) { 2710 printk(KERN_WARNING 2711 "Btrfs: too many missing devices, writeable mount is not allowed\n"); 2712 goto fail_block_groups; 2713 } 2714 2715 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2716 "btrfs-cleaner"); 2717 if (IS_ERR(fs_info->cleaner_kthread)) 2718 goto fail_block_groups; 2719 2720 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2721 tree_root, 2722 "btrfs-transaction"); 2723 if (IS_ERR(fs_info->transaction_kthread)) 2724 goto fail_cleaner; 2725 2726 if (!btrfs_test_opt(tree_root, SSD) && 2727 !btrfs_test_opt(tree_root, NOSSD) && 2728 !fs_info->fs_devices->rotating) { 2729 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 2730 "mode\n"); 2731 btrfs_set_opt(fs_info->mount_opt, SSD); 2732 } 2733 2734 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2735 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2736 ret = btrfsic_mount(tree_root, fs_devices, 2737 btrfs_test_opt(tree_root, 2738 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2739 1 : 0, 2740 fs_info->check_integrity_print_mask); 2741 if (ret) 2742 printk(KERN_WARNING "btrfs: failed to initialize" 2743 " integrity check module %s\n", sb->s_id); 2744 } 2745 #endif 2746 ret = btrfs_read_qgroup_config(fs_info); 2747 if (ret) 2748 goto fail_trans_kthread; 2749 2750 /* do not make disk changes in broken FS */ 2751 if (btrfs_super_log_root(disk_super) != 0) { 2752 u64 bytenr = btrfs_super_log_root(disk_super); 2753 2754 if (fs_devices->rw_devices == 0) { 2755 printk(KERN_WARNING "Btrfs log replay required " 2756 "on RO media\n"); 2757 err = -EIO; 2758 goto fail_qgroup; 2759 } 2760 blocksize = 2761 btrfs_level_size(tree_root, 2762 btrfs_super_log_root_level(disk_super)); 2763 2764 log_tree_root = btrfs_alloc_root(fs_info); 2765 if (!log_tree_root) { 2766 err = -ENOMEM; 2767 goto fail_qgroup; 2768 } 2769 2770 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2771 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2772 2773 log_tree_root->node = read_tree_block(tree_root, bytenr, 2774 blocksize, 2775 generation + 1); 2776 if (!log_tree_root->node || 2777 !extent_buffer_uptodate(log_tree_root->node)) { 2778 printk(KERN_ERR "btrfs: failed to read log tree\n"); 2779 free_extent_buffer(log_tree_root->node); 2780 kfree(log_tree_root); 2781 goto fail_trans_kthread; 2782 } 2783 /* returns with log_tree_root freed on success */ 2784 ret = btrfs_recover_log_trees(log_tree_root); 2785 if (ret) { 2786 btrfs_error(tree_root->fs_info, ret, 2787 "Failed to recover log tree"); 2788 free_extent_buffer(log_tree_root->node); 2789 kfree(log_tree_root); 2790 goto fail_trans_kthread; 2791 } 2792 2793 if (sb->s_flags & MS_RDONLY) { 2794 ret = btrfs_commit_super(tree_root); 2795 if (ret) 2796 goto fail_trans_kthread; 2797 } 2798 } 2799 2800 ret = btrfs_find_orphan_roots(tree_root); 2801 if (ret) 2802 goto fail_trans_kthread; 2803 2804 if (!(sb->s_flags & MS_RDONLY)) { 2805 ret = btrfs_cleanup_fs_roots(fs_info); 2806 if (ret) 2807 goto fail_trans_kthread; 2808 2809 ret = btrfs_recover_relocation(tree_root); 2810 if (ret < 0) { 2811 printk(KERN_WARNING 2812 "btrfs: failed to recover relocation\n"); 2813 err = -EINVAL; 2814 goto fail_qgroup; 2815 } 2816 } 2817 2818 location.objectid = BTRFS_FS_TREE_OBJECTID; 2819 location.type = BTRFS_ROOT_ITEM_KEY; 2820 location.offset = (u64)-1; 2821 2822 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2823 if (!fs_info->fs_root) 2824 goto fail_qgroup; 2825 if (IS_ERR(fs_info->fs_root)) { 2826 err = PTR_ERR(fs_info->fs_root); 2827 goto fail_qgroup; 2828 } 2829 2830 if (sb->s_flags & MS_RDONLY) 2831 return 0; 2832 2833 down_read(&fs_info->cleanup_work_sem); 2834 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2835 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2836 up_read(&fs_info->cleanup_work_sem); 2837 close_ctree(tree_root); 2838 return ret; 2839 } 2840 up_read(&fs_info->cleanup_work_sem); 2841 2842 ret = btrfs_resume_balance_async(fs_info); 2843 if (ret) { 2844 printk(KERN_WARNING "btrfs: failed to resume balance\n"); 2845 close_ctree(tree_root); 2846 return ret; 2847 } 2848 2849 ret = btrfs_resume_dev_replace_async(fs_info); 2850 if (ret) { 2851 pr_warn("btrfs: failed to resume dev_replace\n"); 2852 close_ctree(tree_root); 2853 return ret; 2854 } 2855 2856 return 0; 2857 2858 fail_qgroup: 2859 btrfs_free_qgroup_config(fs_info); 2860 fail_trans_kthread: 2861 kthread_stop(fs_info->transaction_kthread); 2862 del_fs_roots(fs_info); 2863 btrfs_cleanup_transaction(fs_info->tree_root); 2864 fail_cleaner: 2865 kthread_stop(fs_info->cleaner_kthread); 2866 2867 /* 2868 * make sure we're done with the btree inode before we stop our 2869 * kthreads 2870 */ 2871 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2872 2873 fail_block_groups: 2874 btrfs_put_block_group_cache(fs_info); 2875 btrfs_free_block_groups(fs_info); 2876 2877 fail_tree_roots: 2878 free_root_pointers(fs_info, 1); 2879 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2880 2881 fail_sb_buffer: 2882 btrfs_stop_all_workers(fs_info); 2883 fail_alloc: 2884 fail_iput: 2885 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2886 2887 iput(fs_info->btree_inode); 2888 fail_delalloc_bytes: 2889 percpu_counter_destroy(&fs_info->delalloc_bytes); 2890 fail_dirty_metadata_bytes: 2891 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 2892 fail_bdi: 2893 bdi_destroy(&fs_info->bdi); 2894 fail_srcu: 2895 cleanup_srcu_struct(&fs_info->subvol_srcu); 2896 fail: 2897 btrfs_free_stripe_hash_table(fs_info); 2898 btrfs_close_devices(fs_info->fs_devices); 2899 return err; 2900 2901 recovery_tree_root: 2902 if (!btrfs_test_opt(tree_root, RECOVERY)) 2903 goto fail_tree_roots; 2904 2905 free_root_pointers(fs_info, 0); 2906 2907 /* don't use the log in recovery mode, it won't be valid */ 2908 btrfs_set_super_log_root(disk_super, 0); 2909 2910 /* we can't trust the free space cache either */ 2911 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2912 2913 ret = next_root_backup(fs_info, fs_info->super_copy, 2914 &num_backups_tried, &backup_index); 2915 if (ret == -1) 2916 goto fail_block_groups; 2917 goto retry_root_backup; 2918 } 2919 2920 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 2921 { 2922 if (uptodate) { 2923 set_buffer_uptodate(bh); 2924 } else { 2925 struct btrfs_device *device = (struct btrfs_device *) 2926 bh->b_private; 2927 2928 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to " 2929 "I/O error on %s\n", 2930 rcu_str_deref(device->name)); 2931 /* note, we dont' set_buffer_write_io_error because we have 2932 * our own ways of dealing with the IO errors 2933 */ 2934 clear_buffer_uptodate(bh); 2935 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 2936 } 2937 unlock_buffer(bh); 2938 put_bh(bh); 2939 } 2940 2941 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 2942 { 2943 struct buffer_head *bh; 2944 struct buffer_head *latest = NULL; 2945 struct btrfs_super_block *super; 2946 int i; 2947 u64 transid = 0; 2948 u64 bytenr; 2949 2950 /* we would like to check all the supers, but that would make 2951 * a btrfs mount succeed after a mkfs from a different FS. 2952 * So, we need to add a special mount option to scan for 2953 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2954 */ 2955 for (i = 0; i < 1; i++) { 2956 bytenr = btrfs_sb_offset(i); 2957 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2958 break; 2959 bh = __bread(bdev, bytenr / 4096, 4096); 2960 if (!bh) 2961 continue; 2962 2963 super = (struct btrfs_super_block *)bh->b_data; 2964 if (btrfs_super_bytenr(super) != bytenr || 2965 super->magic != cpu_to_le64(BTRFS_MAGIC)) { 2966 brelse(bh); 2967 continue; 2968 } 2969 2970 if (!latest || btrfs_super_generation(super) > transid) { 2971 brelse(latest); 2972 latest = bh; 2973 transid = btrfs_super_generation(super); 2974 } else { 2975 brelse(bh); 2976 } 2977 } 2978 return latest; 2979 } 2980 2981 /* 2982 * this should be called twice, once with wait == 0 and 2983 * once with wait == 1. When wait == 0 is done, all the buffer heads 2984 * we write are pinned. 2985 * 2986 * They are released when wait == 1 is done. 2987 * max_mirrors must be the same for both runs, and it indicates how 2988 * many supers on this one device should be written. 2989 * 2990 * max_mirrors == 0 means to write them all. 2991 */ 2992 static int write_dev_supers(struct btrfs_device *device, 2993 struct btrfs_super_block *sb, 2994 int do_barriers, int wait, int max_mirrors) 2995 { 2996 struct buffer_head *bh; 2997 int i; 2998 int ret; 2999 int errors = 0; 3000 u32 crc; 3001 u64 bytenr; 3002 3003 if (max_mirrors == 0) 3004 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3005 3006 for (i = 0; i < max_mirrors; i++) { 3007 bytenr = btrfs_sb_offset(i); 3008 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 3009 break; 3010 3011 if (wait) { 3012 bh = __find_get_block(device->bdev, bytenr / 4096, 3013 BTRFS_SUPER_INFO_SIZE); 3014 if (!bh) { 3015 errors++; 3016 continue; 3017 } 3018 wait_on_buffer(bh); 3019 if (!buffer_uptodate(bh)) 3020 errors++; 3021 3022 /* drop our reference */ 3023 brelse(bh); 3024 3025 /* drop the reference from the wait == 0 run */ 3026 brelse(bh); 3027 continue; 3028 } else { 3029 btrfs_set_super_bytenr(sb, bytenr); 3030 3031 crc = ~(u32)0; 3032 crc = btrfs_csum_data((char *)sb + 3033 BTRFS_CSUM_SIZE, crc, 3034 BTRFS_SUPER_INFO_SIZE - 3035 BTRFS_CSUM_SIZE); 3036 btrfs_csum_final(crc, sb->csum); 3037 3038 /* 3039 * one reference for us, and we leave it for the 3040 * caller 3041 */ 3042 bh = __getblk(device->bdev, bytenr / 4096, 3043 BTRFS_SUPER_INFO_SIZE); 3044 if (!bh) { 3045 printk(KERN_ERR "btrfs: couldn't get super " 3046 "buffer head for bytenr %Lu\n", bytenr); 3047 errors++; 3048 continue; 3049 } 3050 3051 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3052 3053 /* one reference for submit_bh */ 3054 get_bh(bh); 3055 3056 set_buffer_uptodate(bh); 3057 lock_buffer(bh); 3058 bh->b_end_io = btrfs_end_buffer_write_sync; 3059 bh->b_private = device; 3060 } 3061 3062 /* 3063 * we fua the first super. The others we allow 3064 * to go down lazy. 3065 */ 3066 ret = btrfsic_submit_bh(WRITE_FUA, bh); 3067 if (ret) 3068 errors++; 3069 } 3070 return errors < i ? 0 : -1; 3071 } 3072 3073 /* 3074 * endio for the write_dev_flush, this will wake anyone waiting 3075 * for the barrier when it is done 3076 */ 3077 static void btrfs_end_empty_barrier(struct bio *bio, int err) 3078 { 3079 if (err) { 3080 if (err == -EOPNOTSUPP) 3081 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 3082 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3083 } 3084 if (bio->bi_private) 3085 complete(bio->bi_private); 3086 bio_put(bio); 3087 } 3088 3089 /* 3090 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3091 * sent down. With wait == 1, it waits for the previous flush. 3092 * 3093 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3094 * capable 3095 */ 3096 static int write_dev_flush(struct btrfs_device *device, int wait) 3097 { 3098 struct bio *bio; 3099 int ret = 0; 3100 3101 if (device->nobarriers) 3102 return 0; 3103 3104 if (wait) { 3105 bio = device->flush_bio; 3106 if (!bio) 3107 return 0; 3108 3109 wait_for_completion(&device->flush_wait); 3110 3111 if (bio_flagged(bio, BIO_EOPNOTSUPP)) { 3112 printk_in_rcu("btrfs: disabling barriers on dev %s\n", 3113 rcu_str_deref(device->name)); 3114 device->nobarriers = 1; 3115 } else if (!bio_flagged(bio, BIO_UPTODATE)) { 3116 ret = -EIO; 3117 btrfs_dev_stat_inc_and_print(device, 3118 BTRFS_DEV_STAT_FLUSH_ERRS); 3119 } 3120 3121 /* drop the reference from the wait == 0 run */ 3122 bio_put(bio); 3123 device->flush_bio = NULL; 3124 3125 return ret; 3126 } 3127 3128 /* 3129 * one reference for us, and we leave it for the 3130 * caller 3131 */ 3132 device->flush_bio = NULL; 3133 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3134 if (!bio) 3135 return -ENOMEM; 3136 3137 bio->bi_end_io = btrfs_end_empty_barrier; 3138 bio->bi_bdev = device->bdev; 3139 init_completion(&device->flush_wait); 3140 bio->bi_private = &device->flush_wait; 3141 device->flush_bio = bio; 3142 3143 bio_get(bio); 3144 btrfsic_submit_bio(WRITE_FLUSH, bio); 3145 3146 return 0; 3147 } 3148 3149 /* 3150 * send an empty flush down to each device in parallel, 3151 * then wait for them 3152 */ 3153 static int barrier_all_devices(struct btrfs_fs_info *info) 3154 { 3155 struct list_head *head; 3156 struct btrfs_device *dev; 3157 int errors_send = 0; 3158 int errors_wait = 0; 3159 int ret; 3160 3161 /* send down all the barriers */ 3162 head = &info->fs_devices->devices; 3163 list_for_each_entry_rcu(dev, head, dev_list) { 3164 if (!dev->bdev) { 3165 errors_send++; 3166 continue; 3167 } 3168 if (!dev->in_fs_metadata || !dev->writeable) 3169 continue; 3170 3171 ret = write_dev_flush(dev, 0); 3172 if (ret) 3173 errors_send++; 3174 } 3175 3176 /* wait for all the barriers */ 3177 list_for_each_entry_rcu(dev, head, dev_list) { 3178 if (!dev->bdev) { 3179 errors_wait++; 3180 continue; 3181 } 3182 if (!dev->in_fs_metadata || !dev->writeable) 3183 continue; 3184 3185 ret = write_dev_flush(dev, 1); 3186 if (ret) 3187 errors_wait++; 3188 } 3189 if (errors_send > info->num_tolerated_disk_barrier_failures || 3190 errors_wait > info->num_tolerated_disk_barrier_failures) 3191 return -EIO; 3192 return 0; 3193 } 3194 3195 int btrfs_calc_num_tolerated_disk_barrier_failures( 3196 struct btrfs_fs_info *fs_info) 3197 { 3198 struct btrfs_ioctl_space_info space; 3199 struct btrfs_space_info *sinfo; 3200 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3201 BTRFS_BLOCK_GROUP_SYSTEM, 3202 BTRFS_BLOCK_GROUP_METADATA, 3203 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3204 int num_types = 4; 3205 int i; 3206 int c; 3207 int num_tolerated_disk_barrier_failures = 3208 (int)fs_info->fs_devices->num_devices; 3209 3210 for (i = 0; i < num_types; i++) { 3211 struct btrfs_space_info *tmp; 3212 3213 sinfo = NULL; 3214 rcu_read_lock(); 3215 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3216 if (tmp->flags == types[i]) { 3217 sinfo = tmp; 3218 break; 3219 } 3220 } 3221 rcu_read_unlock(); 3222 3223 if (!sinfo) 3224 continue; 3225 3226 down_read(&sinfo->groups_sem); 3227 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3228 if (!list_empty(&sinfo->block_groups[c])) { 3229 u64 flags; 3230 3231 btrfs_get_block_group_info( 3232 &sinfo->block_groups[c], &space); 3233 if (space.total_bytes == 0 || 3234 space.used_bytes == 0) 3235 continue; 3236 flags = space.flags; 3237 /* 3238 * return 3239 * 0: if dup, single or RAID0 is configured for 3240 * any of metadata, system or data, else 3241 * 1: if RAID5 is configured, or if RAID1 or 3242 * RAID10 is configured and only two mirrors 3243 * are used, else 3244 * 2: if RAID6 is configured, else 3245 * num_mirrors - 1: if RAID1 or RAID10 is 3246 * configured and more than 3247 * 2 mirrors are used. 3248 */ 3249 if (num_tolerated_disk_barrier_failures > 0 && 3250 ((flags & (BTRFS_BLOCK_GROUP_DUP | 3251 BTRFS_BLOCK_GROUP_RAID0)) || 3252 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) 3253 == 0))) 3254 num_tolerated_disk_barrier_failures = 0; 3255 else if (num_tolerated_disk_barrier_failures > 1) { 3256 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3257 BTRFS_BLOCK_GROUP_RAID5 | 3258 BTRFS_BLOCK_GROUP_RAID10)) { 3259 num_tolerated_disk_barrier_failures = 1; 3260 } else if (flags & 3261 BTRFS_BLOCK_GROUP_RAID5) { 3262 num_tolerated_disk_barrier_failures = 2; 3263 } 3264 } 3265 } 3266 } 3267 up_read(&sinfo->groups_sem); 3268 } 3269 3270 return num_tolerated_disk_barrier_failures; 3271 } 3272 3273 static int write_all_supers(struct btrfs_root *root, int max_mirrors) 3274 { 3275 struct list_head *head; 3276 struct btrfs_device *dev; 3277 struct btrfs_super_block *sb; 3278 struct btrfs_dev_item *dev_item; 3279 int ret; 3280 int do_barriers; 3281 int max_errors; 3282 int total_errors = 0; 3283 u64 flags; 3284 3285 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3286 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3287 backup_super_roots(root->fs_info); 3288 3289 sb = root->fs_info->super_for_commit; 3290 dev_item = &sb->dev_item; 3291 3292 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3293 head = &root->fs_info->fs_devices->devices; 3294 3295 if (do_barriers) { 3296 ret = barrier_all_devices(root->fs_info); 3297 if (ret) { 3298 mutex_unlock( 3299 &root->fs_info->fs_devices->device_list_mutex); 3300 btrfs_error(root->fs_info, ret, 3301 "errors while submitting device barriers."); 3302 return ret; 3303 } 3304 } 3305 3306 list_for_each_entry_rcu(dev, head, dev_list) { 3307 if (!dev->bdev) { 3308 total_errors++; 3309 continue; 3310 } 3311 if (!dev->in_fs_metadata || !dev->writeable) 3312 continue; 3313 3314 btrfs_set_stack_device_generation(dev_item, 0); 3315 btrfs_set_stack_device_type(dev_item, dev->type); 3316 btrfs_set_stack_device_id(dev_item, dev->devid); 3317 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 3318 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 3319 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3320 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3321 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3322 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3323 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3324 3325 flags = btrfs_super_flags(sb); 3326 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3327 3328 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3329 if (ret) 3330 total_errors++; 3331 } 3332 if (total_errors > max_errors) { 3333 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 3334 total_errors); 3335 3336 /* This shouldn't happen. FUA is masked off if unsupported */ 3337 BUG(); 3338 } 3339 3340 total_errors = 0; 3341 list_for_each_entry_rcu(dev, head, dev_list) { 3342 if (!dev->bdev) 3343 continue; 3344 if (!dev->in_fs_metadata || !dev->writeable) 3345 continue; 3346 3347 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3348 if (ret) 3349 total_errors++; 3350 } 3351 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3352 if (total_errors > max_errors) { 3353 btrfs_error(root->fs_info, -EIO, 3354 "%d errors while writing supers", total_errors); 3355 return -EIO; 3356 } 3357 return 0; 3358 } 3359 3360 int write_ctree_super(struct btrfs_trans_handle *trans, 3361 struct btrfs_root *root, int max_mirrors) 3362 { 3363 int ret; 3364 3365 ret = write_all_supers(root, max_mirrors); 3366 return ret; 3367 } 3368 3369 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 3370 { 3371 spin_lock(&fs_info->fs_roots_radix_lock); 3372 radix_tree_delete(&fs_info->fs_roots_radix, 3373 (unsigned long)root->root_key.objectid); 3374 spin_unlock(&fs_info->fs_roots_radix_lock); 3375 3376 if (btrfs_root_refs(&root->root_item) == 0) 3377 synchronize_srcu(&fs_info->subvol_srcu); 3378 3379 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3380 btrfs_free_log(NULL, root); 3381 btrfs_free_log_root_tree(NULL, fs_info); 3382 } 3383 3384 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3385 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3386 free_fs_root(root); 3387 } 3388 3389 static void free_fs_root(struct btrfs_root *root) 3390 { 3391 iput(root->cache_inode); 3392 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3393 if (root->anon_dev) 3394 free_anon_bdev(root->anon_dev); 3395 free_extent_buffer(root->node); 3396 free_extent_buffer(root->commit_root); 3397 kfree(root->free_ino_ctl); 3398 kfree(root->free_ino_pinned); 3399 kfree(root->name); 3400 kfree(root); 3401 } 3402 3403 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3404 { 3405 u64 root_objectid = 0; 3406 struct btrfs_root *gang[8]; 3407 int i; 3408 int ret; 3409 3410 while (1) { 3411 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3412 (void **)gang, root_objectid, 3413 ARRAY_SIZE(gang)); 3414 if (!ret) 3415 break; 3416 3417 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3418 for (i = 0; i < ret; i++) { 3419 int err; 3420 3421 root_objectid = gang[i]->root_key.objectid; 3422 err = btrfs_orphan_cleanup(gang[i]); 3423 if (err) 3424 return err; 3425 } 3426 root_objectid++; 3427 } 3428 return 0; 3429 } 3430 3431 int btrfs_commit_super(struct btrfs_root *root) 3432 { 3433 struct btrfs_trans_handle *trans; 3434 int ret; 3435 3436 mutex_lock(&root->fs_info->cleaner_mutex); 3437 btrfs_run_delayed_iputs(root); 3438 mutex_unlock(&root->fs_info->cleaner_mutex); 3439 wake_up_process(root->fs_info->cleaner_kthread); 3440 3441 /* wait until ongoing cleanup work done */ 3442 down_write(&root->fs_info->cleanup_work_sem); 3443 up_write(&root->fs_info->cleanup_work_sem); 3444 3445 trans = btrfs_join_transaction(root); 3446 if (IS_ERR(trans)) 3447 return PTR_ERR(trans); 3448 ret = btrfs_commit_transaction(trans, root); 3449 if (ret) 3450 return ret; 3451 /* run commit again to drop the original snapshot */ 3452 trans = btrfs_join_transaction(root); 3453 if (IS_ERR(trans)) 3454 return PTR_ERR(trans); 3455 ret = btrfs_commit_transaction(trans, root); 3456 if (ret) 3457 return ret; 3458 ret = btrfs_write_and_wait_transaction(NULL, root); 3459 if (ret) { 3460 btrfs_error(root->fs_info, ret, 3461 "Failed to sync btree inode to disk."); 3462 return ret; 3463 } 3464 3465 ret = write_ctree_super(NULL, root, 0); 3466 return ret; 3467 } 3468 3469 int close_ctree(struct btrfs_root *root) 3470 { 3471 struct btrfs_fs_info *fs_info = root->fs_info; 3472 int ret; 3473 3474 fs_info->closing = 1; 3475 smp_mb(); 3476 3477 /* pause restriper - we want to resume on mount */ 3478 btrfs_pause_balance(fs_info); 3479 3480 btrfs_dev_replace_suspend_for_unmount(fs_info); 3481 3482 btrfs_scrub_cancel(fs_info); 3483 3484 /* wait for any defraggers to finish */ 3485 wait_event(fs_info->transaction_wait, 3486 (atomic_read(&fs_info->defrag_running) == 0)); 3487 3488 /* clear out the rbtree of defraggable inodes */ 3489 btrfs_cleanup_defrag_inodes(fs_info); 3490 3491 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3492 ret = btrfs_commit_super(root); 3493 if (ret) 3494 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 3495 } 3496 3497 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3498 btrfs_error_commit_super(root); 3499 3500 btrfs_put_block_group_cache(fs_info); 3501 3502 kthread_stop(fs_info->transaction_kthread); 3503 kthread_stop(fs_info->cleaner_kthread); 3504 3505 fs_info->closing = 2; 3506 smp_mb(); 3507 3508 btrfs_free_qgroup_config(root->fs_info); 3509 3510 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3511 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n", 3512 percpu_counter_sum(&fs_info->delalloc_bytes)); 3513 } 3514 3515 free_root_pointers(fs_info, 1); 3516 3517 btrfs_free_block_groups(fs_info); 3518 3519 del_fs_roots(fs_info); 3520 3521 iput(fs_info->btree_inode); 3522 3523 btrfs_stop_all_workers(fs_info); 3524 3525 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3526 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3527 btrfsic_unmount(root, fs_info->fs_devices); 3528 #endif 3529 3530 btrfs_close_devices(fs_info->fs_devices); 3531 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3532 3533 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3534 percpu_counter_destroy(&fs_info->delalloc_bytes); 3535 bdi_destroy(&fs_info->bdi); 3536 cleanup_srcu_struct(&fs_info->subvol_srcu); 3537 3538 btrfs_free_stripe_hash_table(fs_info); 3539 3540 return 0; 3541 } 3542 3543 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3544 int atomic) 3545 { 3546 int ret; 3547 struct inode *btree_inode = buf->pages[0]->mapping->host; 3548 3549 ret = extent_buffer_uptodate(buf); 3550 if (!ret) 3551 return ret; 3552 3553 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3554 parent_transid, atomic); 3555 if (ret == -EAGAIN) 3556 return ret; 3557 return !ret; 3558 } 3559 3560 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3561 { 3562 return set_extent_buffer_uptodate(buf); 3563 } 3564 3565 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3566 { 3567 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3568 u64 transid = btrfs_header_generation(buf); 3569 int was_dirty; 3570 3571 btrfs_assert_tree_locked(buf); 3572 if (transid != root->fs_info->generation) 3573 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 3574 "found %llu running %llu\n", 3575 (unsigned long long)buf->start, 3576 (unsigned long long)transid, 3577 (unsigned long long)root->fs_info->generation); 3578 was_dirty = set_extent_buffer_dirty(buf); 3579 if (!was_dirty) 3580 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 3581 buf->len, 3582 root->fs_info->dirty_metadata_batch); 3583 } 3584 3585 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 3586 int flush_delayed) 3587 { 3588 /* 3589 * looks as though older kernels can get into trouble with 3590 * this code, they end up stuck in balance_dirty_pages forever 3591 */ 3592 int ret; 3593 3594 if (current->flags & PF_MEMALLOC) 3595 return; 3596 3597 if (flush_delayed) 3598 btrfs_balance_delayed_items(root); 3599 3600 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 3601 BTRFS_DIRTY_METADATA_THRESH); 3602 if (ret > 0) { 3603 balance_dirty_pages_ratelimited( 3604 root->fs_info->btree_inode->i_mapping); 3605 } 3606 return; 3607 } 3608 3609 void btrfs_btree_balance_dirty(struct btrfs_root *root) 3610 { 3611 __btrfs_btree_balance_dirty(root, 1); 3612 } 3613 3614 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 3615 { 3616 __btrfs_btree_balance_dirty(root, 0); 3617 } 3618 3619 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3620 { 3621 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3622 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3623 } 3624 3625 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3626 int read_only) 3627 { 3628 /* 3629 * Placeholder for checks 3630 */ 3631 return 0; 3632 } 3633 3634 static void btrfs_error_commit_super(struct btrfs_root *root) 3635 { 3636 mutex_lock(&root->fs_info->cleaner_mutex); 3637 btrfs_run_delayed_iputs(root); 3638 mutex_unlock(&root->fs_info->cleaner_mutex); 3639 3640 down_write(&root->fs_info->cleanup_work_sem); 3641 up_write(&root->fs_info->cleanup_work_sem); 3642 3643 /* cleanup FS via transaction */ 3644 btrfs_cleanup_transaction(root); 3645 } 3646 3647 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t, 3648 struct btrfs_root *root) 3649 { 3650 struct btrfs_inode *btrfs_inode; 3651 struct list_head splice; 3652 3653 INIT_LIST_HEAD(&splice); 3654 3655 mutex_lock(&root->fs_info->ordered_operations_mutex); 3656 spin_lock(&root->fs_info->ordered_extent_lock); 3657 3658 list_splice_init(&t->ordered_operations, &splice); 3659 while (!list_empty(&splice)) { 3660 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3661 ordered_operations); 3662 3663 list_del_init(&btrfs_inode->ordered_operations); 3664 spin_unlock(&root->fs_info->ordered_extent_lock); 3665 3666 btrfs_invalidate_inodes(btrfs_inode->root); 3667 3668 spin_lock(&root->fs_info->ordered_extent_lock); 3669 } 3670 3671 spin_unlock(&root->fs_info->ordered_extent_lock); 3672 mutex_unlock(&root->fs_info->ordered_operations_mutex); 3673 } 3674 3675 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 3676 { 3677 struct btrfs_ordered_extent *ordered; 3678 3679 spin_lock(&root->fs_info->ordered_extent_lock); 3680 /* 3681 * This will just short circuit the ordered completion stuff which will 3682 * make sure the ordered extent gets properly cleaned up. 3683 */ 3684 list_for_each_entry(ordered, &root->fs_info->ordered_extents, 3685 root_extent_list) 3686 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 3687 spin_unlock(&root->fs_info->ordered_extent_lock); 3688 } 3689 3690 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 3691 struct btrfs_root *root) 3692 { 3693 struct rb_node *node; 3694 struct btrfs_delayed_ref_root *delayed_refs; 3695 struct btrfs_delayed_ref_node *ref; 3696 int ret = 0; 3697 3698 delayed_refs = &trans->delayed_refs; 3699 3700 spin_lock(&delayed_refs->lock); 3701 if (delayed_refs->num_entries == 0) { 3702 spin_unlock(&delayed_refs->lock); 3703 printk(KERN_INFO "delayed_refs has NO entry\n"); 3704 return ret; 3705 } 3706 3707 while ((node = rb_first(&delayed_refs->root)) != NULL) { 3708 struct btrfs_delayed_ref_head *head = NULL; 3709 3710 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 3711 atomic_set(&ref->refs, 1); 3712 if (btrfs_delayed_ref_is_head(ref)) { 3713 3714 head = btrfs_delayed_node_to_head(ref); 3715 if (!mutex_trylock(&head->mutex)) { 3716 atomic_inc(&ref->refs); 3717 spin_unlock(&delayed_refs->lock); 3718 3719 /* Need to wait for the delayed ref to run */ 3720 mutex_lock(&head->mutex); 3721 mutex_unlock(&head->mutex); 3722 btrfs_put_delayed_ref(ref); 3723 3724 spin_lock(&delayed_refs->lock); 3725 continue; 3726 } 3727 3728 if (head->must_insert_reserved) 3729 btrfs_pin_extent(root, ref->bytenr, 3730 ref->num_bytes, 1); 3731 btrfs_free_delayed_extent_op(head->extent_op); 3732 delayed_refs->num_heads--; 3733 if (list_empty(&head->cluster)) 3734 delayed_refs->num_heads_ready--; 3735 list_del_init(&head->cluster); 3736 } 3737 3738 ref->in_tree = 0; 3739 rb_erase(&ref->rb_node, &delayed_refs->root); 3740 delayed_refs->num_entries--; 3741 if (head) 3742 mutex_unlock(&head->mutex); 3743 spin_unlock(&delayed_refs->lock); 3744 btrfs_put_delayed_ref(ref); 3745 3746 cond_resched(); 3747 spin_lock(&delayed_refs->lock); 3748 } 3749 3750 spin_unlock(&delayed_refs->lock); 3751 3752 return ret; 3753 } 3754 3755 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t) 3756 { 3757 struct btrfs_pending_snapshot *snapshot; 3758 struct list_head splice; 3759 3760 INIT_LIST_HEAD(&splice); 3761 3762 list_splice_init(&t->pending_snapshots, &splice); 3763 3764 while (!list_empty(&splice)) { 3765 snapshot = list_entry(splice.next, 3766 struct btrfs_pending_snapshot, 3767 list); 3768 snapshot->error = -ECANCELED; 3769 list_del_init(&snapshot->list); 3770 } 3771 } 3772 3773 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 3774 { 3775 struct btrfs_inode *btrfs_inode; 3776 struct list_head splice; 3777 3778 INIT_LIST_HEAD(&splice); 3779 3780 spin_lock(&root->fs_info->delalloc_lock); 3781 list_splice_init(&root->fs_info->delalloc_inodes, &splice); 3782 3783 while (!list_empty(&splice)) { 3784 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3785 delalloc_inodes); 3786 3787 list_del_init(&btrfs_inode->delalloc_inodes); 3788 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 3789 &btrfs_inode->runtime_flags); 3790 spin_unlock(&root->fs_info->delalloc_lock); 3791 3792 btrfs_invalidate_inodes(btrfs_inode->root); 3793 3794 spin_lock(&root->fs_info->delalloc_lock); 3795 } 3796 3797 spin_unlock(&root->fs_info->delalloc_lock); 3798 } 3799 3800 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 3801 struct extent_io_tree *dirty_pages, 3802 int mark) 3803 { 3804 int ret; 3805 struct extent_buffer *eb; 3806 u64 start = 0; 3807 u64 end; 3808 3809 while (1) { 3810 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 3811 mark, NULL); 3812 if (ret) 3813 break; 3814 3815 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 3816 while (start <= end) { 3817 eb = btrfs_find_tree_block(root, start, 3818 root->leafsize); 3819 start += root->leafsize; 3820 if (!eb) 3821 continue; 3822 wait_on_extent_buffer_writeback(eb); 3823 3824 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 3825 &eb->bflags)) 3826 clear_extent_buffer_dirty(eb); 3827 free_extent_buffer_stale(eb); 3828 } 3829 } 3830 3831 return ret; 3832 } 3833 3834 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 3835 struct extent_io_tree *pinned_extents) 3836 { 3837 struct extent_io_tree *unpin; 3838 u64 start; 3839 u64 end; 3840 int ret; 3841 bool loop = true; 3842 3843 unpin = pinned_extents; 3844 again: 3845 while (1) { 3846 ret = find_first_extent_bit(unpin, 0, &start, &end, 3847 EXTENT_DIRTY, NULL); 3848 if (ret) 3849 break; 3850 3851 /* opt_discard */ 3852 if (btrfs_test_opt(root, DISCARD)) 3853 ret = btrfs_error_discard_extent(root, start, 3854 end + 1 - start, 3855 NULL); 3856 3857 clear_extent_dirty(unpin, start, end, GFP_NOFS); 3858 btrfs_error_unpin_extent_range(root, start, end); 3859 cond_resched(); 3860 } 3861 3862 if (loop) { 3863 if (unpin == &root->fs_info->freed_extents[0]) 3864 unpin = &root->fs_info->freed_extents[1]; 3865 else 3866 unpin = &root->fs_info->freed_extents[0]; 3867 loop = false; 3868 goto again; 3869 } 3870 3871 return 0; 3872 } 3873 3874 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 3875 struct btrfs_root *root) 3876 { 3877 btrfs_destroy_delayed_refs(cur_trans, root); 3878 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 3879 cur_trans->dirty_pages.dirty_bytes); 3880 3881 /* FIXME: cleanup wait for commit */ 3882 cur_trans->in_commit = 1; 3883 cur_trans->blocked = 1; 3884 wake_up(&root->fs_info->transaction_blocked_wait); 3885 3886 btrfs_evict_pending_snapshots(cur_trans); 3887 3888 cur_trans->blocked = 0; 3889 wake_up(&root->fs_info->transaction_wait); 3890 3891 cur_trans->commit_done = 1; 3892 wake_up(&cur_trans->commit_wait); 3893 3894 btrfs_destroy_delayed_inodes(root); 3895 btrfs_assert_delayed_root_empty(root); 3896 3897 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 3898 EXTENT_DIRTY); 3899 btrfs_destroy_pinned_extent(root, 3900 root->fs_info->pinned_extents); 3901 3902 /* 3903 memset(cur_trans, 0, sizeof(*cur_trans)); 3904 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 3905 */ 3906 } 3907 3908 static int btrfs_cleanup_transaction(struct btrfs_root *root) 3909 { 3910 struct btrfs_transaction *t; 3911 LIST_HEAD(list); 3912 3913 mutex_lock(&root->fs_info->transaction_kthread_mutex); 3914 3915 spin_lock(&root->fs_info->trans_lock); 3916 list_splice_init(&root->fs_info->trans_list, &list); 3917 root->fs_info->trans_no_join = 1; 3918 spin_unlock(&root->fs_info->trans_lock); 3919 3920 while (!list_empty(&list)) { 3921 t = list_entry(list.next, struct btrfs_transaction, list); 3922 3923 btrfs_destroy_ordered_operations(t, root); 3924 3925 btrfs_destroy_ordered_extents(root); 3926 3927 btrfs_destroy_delayed_refs(t, root); 3928 3929 /* FIXME: cleanup wait for commit */ 3930 t->in_commit = 1; 3931 t->blocked = 1; 3932 smp_mb(); 3933 if (waitqueue_active(&root->fs_info->transaction_blocked_wait)) 3934 wake_up(&root->fs_info->transaction_blocked_wait); 3935 3936 btrfs_evict_pending_snapshots(t); 3937 3938 t->blocked = 0; 3939 smp_mb(); 3940 if (waitqueue_active(&root->fs_info->transaction_wait)) 3941 wake_up(&root->fs_info->transaction_wait); 3942 3943 t->commit_done = 1; 3944 smp_mb(); 3945 if (waitqueue_active(&t->commit_wait)) 3946 wake_up(&t->commit_wait); 3947 3948 btrfs_destroy_delayed_inodes(root); 3949 btrfs_assert_delayed_root_empty(root); 3950 3951 btrfs_destroy_delalloc_inodes(root); 3952 3953 spin_lock(&root->fs_info->trans_lock); 3954 root->fs_info->running_transaction = NULL; 3955 spin_unlock(&root->fs_info->trans_lock); 3956 3957 btrfs_destroy_marked_extents(root, &t->dirty_pages, 3958 EXTENT_DIRTY); 3959 3960 btrfs_destroy_pinned_extent(root, 3961 root->fs_info->pinned_extents); 3962 3963 atomic_set(&t->use_count, 0); 3964 list_del_init(&t->list); 3965 memset(t, 0, sizeof(*t)); 3966 kmem_cache_free(btrfs_transaction_cachep, t); 3967 } 3968 3969 spin_lock(&root->fs_info->trans_lock); 3970 root->fs_info->trans_no_join = 0; 3971 spin_unlock(&root->fs_info->trans_lock); 3972 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 3973 3974 return 0; 3975 } 3976 3977 static struct extent_io_ops btree_extent_io_ops = { 3978 .readpage_end_io_hook = btree_readpage_end_io_hook, 3979 .readpage_io_failed_hook = btree_io_failed_hook, 3980 .submit_bio_hook = btree_submit_bio_hook, 3981 /* note we're sharing with inode.c for the merge bio hook */ 3982 .merge_bio_hook = btrfs_merge_bio_hook, 3983 }; 3984