xref: /openbmc/linux/fs/btrfs/disk-io.c (revision cdfce539)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <asm/unaligned.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 
52 #ifdef CONFIG_X86
53 #include <asm/cpufeature.h>
54 #endif
55 
56 static struct extent_io_ops btree_extent_io_ops;
57 static void end_workqueue_fn(struct btrfs_work *work);
58 static void free_fs_root(struct btrfs_root *root);
59 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
60 				    int read_only);
61 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
62 					     struct btrfs_root *root);
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 				      struct btrfs_root *root);
66 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 					struct extent_io_tree *dirty_pages,
70 					int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 				       struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75 
76 /*
77  * end_io_wq structs are used to do processing in task context when an IO is
78  * complete.  This is used during reads to verify checksums, and it is used
79  * by writes to insert metadata for new file extents after IO is complete.
80  */
81 struct end_io_wq {
82 	struct bio *bio;
83 	bio_end_io_t *end_io;
84 	void *private;
85 	struct btrfs_fs_info *info;
86 	int error;
87 	int metadata;
88 	struct list_head list;
89 	struct btrfs_work work;
90 };
91 
92 /*
93  * async submit bios are used to offload expensive checksumming
94  * onto the worker threads.  They checksum file and metadata bios
95  * just before they are sent down the IO stack.
96  */
97 struct async_submit_bio {
98 	struct inode *inode;
99 	struct bio *bio;
100 	struct list_head list;
101 	extent_submit_bio_hook_t *submit_bio_start;
102 	extent_submit_bio_hook_t *submit_bio_done;
103 	int rw;
104 	int mirror_num;
105 	unsigned long bio_flags;
106 	/*
107 	 * bio_offset is optional, can be used if the pages in the bio
108 	 * can't tell us where in the file the bio should go
109 	 */
110 	u64 bio_offset;
111 	struct btrfs_work work;
112 	int error;
113 };
114 
115 /*
116  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
117  * eb, the lockdep key is determined by the btrfs_root it belongs to and
118  * the level the eb occupies in the tree.
119  *
120  * Different roots are used for different purposes and may nest inside each
121  * other and they require separate keysets.  As lockdep keys should be
122  * static, assign keysets according to the purpose of the root as indicated
123  * by btrfs_root->objectid.  This ensures that all special purpose roots
124  * have separate keysets.
125  *
126  * Lock-nesting across peer nodes is always done with the immediate parent
127  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
128  * subclass to avoid triggering lockdep warning in such cases.
129  *
130  * The key is set by the readpage_end_io_hook after the buffer has passed
131  * csum validation but before the pages are unlocked.  It is also set by
132  * btrfs_init_new_buffer on freshly allocated blocks.
133  *
134  * We also add a check to make sure the highest level of the tree is the
135  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
136  * needs update as well.
137  */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 #  error
141 # endif
142 
143 static struct btrfs_lockdep_keyset {
144 	u64			id;		/* root objectid */
145 	const char		*name_stem;	/* lock name stem */
146 	char			names[BTRFS_MAX_LEVEL + 1][20];
147 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
150 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
151 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
152 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
153 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
154 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
155 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
156 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
157 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
158 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
159 	{ .id = 0,				.name_stem = "tree"	},
160 };
161 
162 void __init btrfs_init_lockdep(void)
163 {
164 	int i, j;
165 
166 	/* initialize lockdep class names */
167 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
168 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
169 
170 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
171 			snprintf(ks->names[j], sizeof(ks->names[j]),
172 				 "btrfs-%s-%02d", ks->name_stem, j);
173 	}
174 }
175 
176 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
177 				    int level)
178 {
179 	struct btrfs_lockdep_keyset *ks;
180 
181 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
182 
183 	/* find the matching keyset, id 0 is the default entry */
184 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
185 		if (ks->id == objectid)
186 			break;
187 
188 	lockdep_set_class_and_name(&eb->lock,
189 				   &ks->keys[level], ks->names[level]);
190 }
191 
192 #endif
193 
194 /*
195  * extents on the btree inode are pretty simple, there's one extent
196  * that covers the entire device
197  */
198 static struct extent_map *btree_get_extent(struct inode *inode,
199 		struct page *page, size_t pg_offset, u64 start, u64 len,
200 		int create)
201 {
202 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
203 	struct extent_map *em;
204 	int ret;
205 
206 	read_lock(&em_tree->lock);
207 	em = lookup_extent_mapping(em_tree, start, len);
208 	if (em) {
209 		em->bdev =
210 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
211 		read_unlock(&em_tree->lock);
212 		goto out;
213 	}
214 	read_unlock(&em_tree->lock);
215 
216 	em = alloc_extent_map();
217 	if (!em) {
218 		em = ERR_PTR(-ENOMEM);
219 		goto out;
220 	}
221 	em->start = 0;
222 	em->len = (u64)-1;
223 	em->block_len = (u64)-1;
224 	em->block_start = 0;
225 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
226 
227 	write_lock(&em_tree->lock);
228 	ret = add_extent_mapping(em_tree, em, 0);
229 	if (ret == -EEXIST) {
230 		free_extent_map(em);
231 		em = lookup_extent_mapping(em_tree, start, len);
232 		if (!em)
233 			em = ERR_PTR(-EIO);
234 	} else if (ret) {
235 		free_extent_map(em);
236 		em = ERR_PTR(ret);
237 	}
238 	write_unlock(&em_tree->lock);
239 
240 out:
241 	return em;
242 }
243 
244 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
245 {
246 	return crc32c(seed, data, len);
247 }
248 
249 void btrfs_csum_final(u32 crc, char *result)
250 {
251 	put_unaligned_le32(~crc, result);
252 }
253 
254 /*
255  * compute the csum for a btree block, and either verify it or write it
256  * into the csum field of the block.
257  */
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 			   int verify)
260 {
261 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262 	char *result = NULL;
263 	unsigned long len;
264 	unsigned long cur_len;
265 	unsigned long offset = BTRFS_CSUM_SIZE;
266 	char *kaddr;
267 	unsigned long map_start;
268 	unsigned long map_len;
269 	int err;
270 	u32 crc = ~(u32)0;
271 	unsigned long inline_result;
272 
273 	len = buf->len - offset;
274 	while (len > 0) {
275 		err = map_private_extent_buffer(buf, offset, 32,
276 					&kaddr, &map_start, &map_len);
277 		if (err)
278 			return 1;
279 		cur_len = min(len, map_len - (offset - map_start));
280 		crc = btrfs_csum_data(kaddr + offset - map_start,
281 				      crc, cur_len);
282 		len -= cur_len;
283 		offset += cur_len;
284 	}
285 	if (csum_size > sizeof(inline_result)) {
286 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 		if (!result)
288 			return 1;
289 	} else {
290 		result = (char *)&inline_result;
291 	}
292 
293 	btrfs_csum_final(crc, result);
294 
295 	if (verify) {
296 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297 			u32 val;
298 			u32 found = 0;
299 			memcpy(&found, result, csum_size);
300 
301 			read_extent_buffer(buf, &val, 0, csum_size);
302 			printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303 				       "failed on %llu wanted %X found %X "
304 				       "level %d\n",
305 				       root->fs_info->sb->s_id,
306 				       (unsigned long long)buf->start, val, found,
307 				       btrfs_header_level(buf));
308 			if (result != (char *)&inline_result)
309 				kfree(result);
310 			return 1;
311 		}
312 	} else {
313 		write_extent_buffer(buf, result, 0, csum_size);
314 	}
315 	if (result != (char *)&inline_result)
316 		kfree(result);
317 	return 0;
318 }
319 
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 				 struct extent_buffer *eb, u64 parent_transid,
328 				 int atomic)
329 {
330 	struct extent_state *cached_state = NULL;
331 	int ret;
332 
333 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 		return 0;
335 
336 	if (atomic)
337 		return -EAGAIN;
338 
339 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340 			 0, &cached_state);
341 	if (extent_buffer_uptodate(eb) &&
342 	    btrfs_header_generation(eb) == parent_transid) {
343 		ret = 0;
344 		goto out;
345 	}
346 	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347 		       "found %llu\n",
348 		       (unsigned long long)eb->start,
349 		       (unsigned long long)parent_transid,
350 		       (unsigned long long)btrfs_header_generation(eb));
351 	ret = 1;
352 	clear_extent_buffer_uptodate(eb);
353 out:
354 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 			     &cached_state, GFP_NOFS);
356 	return ret;
357 }
358 
359 /*
360  * Return 0 if the superblock checksum type matches the checksum value of that
361  * algorithm. Pass the raw disk superblock data.
362  */
363 static int btrfs_check_super_csum(char *raw_disk_sb)
364 {
365 	struct btrfs_super_block *disk_sb =
366 		(struct btrfs_super_block *)raw_disk_sb;
367 	u16 csum_type = btrfs_super_csum_type(disk_sb);
368 	int ret = 0;
369 
370 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
371 		u32 crc = ~(u32)0;
372 		const int csum_size = sizeof(crc);
373 		char result[csum_size];
374 
375 		/*
376 		 * The super_block structure does not span the whole
377 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
378 		 * is filled with zeros and is included in the checkum.
379 		 */
380 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
381 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382 		btrfs_csum_final(crc, result);
383 
384 		if (memcmp(raw_disk_sb, result, csum_size))
385 			ret = 1;
386 
387 		if (ret && btrfs_super_generation(disk_sb) < 10) {
388 			printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
389 			ret = 0;
390 		}
391 	}
392 
393 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
394 		printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
395 				csum_type);
396 		ret = 1;
397 	}
398 
399 	return ret;
400 }
401 
402 /*
403  * helper to read a given tree block, doing retries as required when
404  * the checksums don't match and we have alternate mirrors to try.
405  */
406 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
407 					  struct extent_buffer *eb,
408 					  u64 start, u64 parent_transid)
409 {
410 	struct extent_io_tree *io_tree;
411 	int failed = 0;
412 	int ret;
413 	int num_copies = 0;
414 	int mirror_num = 0;
415 	int failed_mirror = 0;
416 
417 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
418 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
419 	while (1) {
420 		ret = read_extent_buffer_pages(io_tree, eb, start,
421 					       WAIT_COMPLETE,
422 					       btree_get_extent, mirror_num);
423 		if (!ret) {
424 			if (!verify_parent_transid(io_tree, eb,
425 						   parent_transid, 0))
426 				break;
427 			else
428 				ret = -EIO;
429 		}
430 
431 		/*
432 		 * This buffer's crc is fine, but its contents are corrupted, so
433 		 * there is no reason to read the other copies, they won't be
434 		 * any less wrong.
435 		 */
436 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
437 			break;
438 
439 		num_copies = btrfs_num_copies(root->fs_info,
440 					      eb->start, eb->len);
441 		if (num_copies == 1)
442 			break;
443 
444 		if (!failed_mirror) {
445 			failed = 1;
446 			failed_mirror = eb->read_mirror;
447 		}
448 
449 		mirror_num++;
450 		if (mirror_num == failed_mirror)
451 			mirror_num++;
452 
453 		if (mirror_num > num_copies)
454 			break;
455 	}
456 
457 	if (failed && !ret && failed_mirror)
458 		repair_eb_io_failure(root, eb, failed_mirror);
459 
460 	return ret;
461 }
462 
463 /*
464  * checksum a dirty tree block before IO.  This has extra checks to make sure
465  * we only fill in the checksum field in the first page of a multi-page block
466  */
467 
468 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
469 {
470 	struct extent_io_tree *tree;
471 	u64 start = page_offset(page);
472 	u64 found_start;
473 	struct extent_buffer *eb;
474 
475 	tree = &BTRFS_I(page->mapping->host)->io_tree;
476 
477 	eb = (struct extent_buffer *)page->private;
478 	if (page != eb->pages[0])
479 		return 0;
480 	found_start = btrfs_header_bytenr(eb);
481 	if (found_start != start) {
482 		WARN_ON(1);
483 		return 0;
484 	}
485 	if (!PageUptodate(page)) {
486 		WARN_ON(1);
487 		return 0;
488 	}
489 	csum_tree_block(root, eb, 0);
490 	return 0;
491 }
492 
493 static int check_tree_block_fsid(struct btrfs_root *root,
494 				 struct extent_buffer *eb)
495 {
496 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
497 	u8 fsid[BTRFS_UUID_SIZE];
498 	int ret = 1;
499 
500 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
501 			   BTRFS_FSID_SIZE);
502 	while (fs_devices) {
503 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
504 			ret = 0;
505 			break;
506 		}
507 		fs_devices = fs_devices->seed;
508 	}
509 	return ret;
510 }
511 
512 #define CORRUPT(reason, eb, root, slot)				\
513 	printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu,"	\
514 	       "root=%llu, slot=%d\n", reason,			\
515 	       (unsigned long long)btrfs_header_bytenr(eb),	\
516 	       (unsigned long long)root->objectid, slot)
517 
518 static noinline int check_leaf(struct btrfs_root *root,
519 			       struct extent_buffer *leaf)
520 {
521 	struct btrfs_key key;
522 	struct btrfs_key leaf_key;
523 	u32 nritems = btrfs_header_nritems(leaf);
524 	int slot;
525 
526 	if (nritems == 0)
527 		return 0;
528 
529 	/* Check the 0 item */
530 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
531 	    BTRFS_LEAF_DATA_SIZE(root)) {
532 		CORRUPT("invalid item offset size pair", leaf, root, 0);
533 		return -EIO;
534 	}
535 
536 	/*
537 	 * Check to make sure each items keys are in the correct order and their
538 	 * offsets make sense.  We only have to loop through nritems-1 because
539 	 * we check the current slot against the next slot, which verifies the
540 	 * next slot's offset+size makes sense and that the current's slot
541 	 * offset is correct.
542 	 */
543 	for (slot = 0; slot < nritems - 1; slot++) {
544 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
545 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
546 
547 		/* Make sure the keys are in the right order */
548 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
549 			CORRUPT("bad key order", leaf, root, slot);
550 			return -EIO;
551 		}
552 
553 		/*
554 		 * Make sure the offset and ends are right, remember that the
555 		 * item data starts at the end of the leaf and grows towards the
556 		 * front.
557 		 */
558 		if (btrfs_item_offset_nr(leaf, slot) !=
559 			btrfs_item_end_nr(leaf, slot + 1)) {
560 			CORRUPT("slot offset bad", leaf, root, slot);
561 			return -EIO;
562 		}
563 
564 		/*
565 		 * Check to make sure that we don't point outside of the leaf,
566 		 * just incase all the items are consistent to eachother, but
567 		 * all point outside of the leaf.
568 		 */
569 		if (btrfs_item_end_nr(leaf, slot) >
570 		    BTRFS_LEAF_DATA_SIZE(root)) {
571 			CORRUPT("slot end outside of leaf", leaf, root, slot);
572 			return -EIO;
573 		}
574 	}
575 
576 	return 0;
577 }
578 
579 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
580 			       struct extent_state *state, int mirror)
581 {
582 	struct extent_io_tree *tree;
583 	u64 found_start;
584 	int found_level;
585 	struct extent_buffer *eb;
586 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
587 	int ret = 0;
588 	int reads_done;
589 
590 	if (!page->private)
591 		goto out;
592 
593 	tree = &BTRFS_I(page->mapping->host)->io_tree;
594 	eb = (struct extent_buffer *)page->private;
595 
596 	/* the pending IO might have been the only thing that kept this buffer
597 	 * in memory.  Make sure we have a ref for all this other checks
598 	 */
599 	extent_buffer_get(eb);
600 
601 	reads_done = atomic_dec_and_test(&eb->io_pages);
602 	if (!reads_done)
603 		goto err;
604 
605 	eb->read_mirror = mirror;
606 	if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
607 		ret = -EIO;
608 		goto err;
609 	}
610 
611 	found_start = btrfs_header_bytenr(eb);
612 	if (found_start != eb->start) {
613 		printk_ratelimited(KERN_INFO "btrfs bad tree block start "
614 			       "%llu %llu\n",
615 			       (unsigned long long)found_start,
616 			       (unsigned long long)eb->start);
617 		ret = -EIO;
618 		goto err;
619 	}
620 	if (check_tree_block_fsid(root, eb)) {
621 		printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
622 			       (unsigned long long)eb->start);
623 		ret = -EIO;
624 		goto err;
625 	}
626 	found_level = btrfs_header_level(eb);
627 	if (found_level >= BTRFS_MAX_LEVEL) {
628 		btrfs_info(root->fs_info, "bad tree block level %d\n",
629 			   (int)btrfs_header_level(eb));
630 		ret = -EIO;
631 		goto err;
632 	}
633 
634 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
635 				       eb, found_level);
636 
637 	ret = csum_tree_block(root, eb, 1);
638 	if (ret) {
639 		ret = -EIO;
640 		goto err;
641 	}
642 
643 	/*
644 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
645 	 * that we don't try and read the other copies of this block, just
646 	 * return -EIO.
647 	 */
648 	if (found_level == 0 && check_leaf(root, eb)) {
649 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
650 		ret = -EIO;
651 	}
652 
653 	if (!ret)
654 		set_extent_buffer_uptodate(eb);
655 err:
656 	if (reads_done &&
657 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
658 		btree_readahead_hook(root, eb, eb->start, ret);
659 
660 	if (ret) {
661 		/*
662 		 * our io error hook is going to dec the io pages
663 		 * again, we have to make sure it has something
664 		 * to decrement
665 		 */
666 		atomic_inc(&eb->io_pages);
667 		clear_extent_buffer_uptodate(eb);
668 	}
669 	free_extent_buffer(eb);
670 out:
671 	return ret;
672 }
673 
674 static int btree_io_failed_hook(struct page *page, int failed_mirror)
675 {
676 	struct extent_buffer *eb;
677 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
678 
679 	eb = (struct extent_buffer *)page->private;
680 	set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
681 	eb->read_mirror = failed_mirror;
682 	atomic_dec(&eb->io_pages);
683 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
684 		btree_readahead_hook(root, eb, eb->start, -EIO);
685 	return -EIO;	/* we fixed nothing */
686 }
687 
688 static void end_workqueue_bio(struct bio *bio, int err)
689 {
690 	struct end_io_wq *end_io_wq = bio->bi_private;
691 	struct btrfs_fs_info *fs_info;
692 
693 	fs_info = end_io_wq->info;
694 	end_io_wq->error = err;
695 	end_io_wq->work.func = end_workqueue_fn;
696 	end_io_wq->work.flags = 0;
697 
698 	if (bio->bi_rw & REQ_WRITE) {
699 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
700 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
701 					   &end_io_wq->work);
702 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
703 			btrfs_queue_worker(&fs_info->endio_freespace_worker,
704 					   &end_io_wq->work);
705 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
706 			btrfs_queue_worker(&fs_info->endio_raid56_workers,
707 					   &end_io_wq->work);
708 		else
709 			btrfs_queue_worker(&fs_info->endio_write_workers,
710 					   &end_io_wq->work);
711 	} else {
712 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
713 			btrfs_queue_worker(&fs_info->endio_raid56_workers,
714 					   &end_io_wq->work);
715 		else if (end_io_wq->metadata)
716 			btrfs_queue_worker(&fs_info->endio_meta_workers,
717 					   &end_io_wq->work);
718 		else
719 			btrfs_queue_worker(&fs_info->endio_workers,
720 					   &end_io_wq->work);
721 	}
722 }
723 
724 /*
725  * For the metadata arg you want
726  *
727  * 0 - if data
728  * 1 - if normal metadta
729  * 2 - if writing to the free space cache area
730  * 3 - raid parity work
731  */
732 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
733 			int metadata)
734 {
735 	struct end_io_wq *end_io_wq;
736 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
737 	if (!end_io_wq)
738 		return -ENOMEM;
739 
740 	end_io_wq->private = bio->bi_private;
741 	end_io_wq->end_io = bio->bi_end_io;
742 	end_io_wq->info = info;
743 	end_io_wq->error = 0;
744 	end_io_wq->bio = bio;
745 	end_io_wq->metadata = metadata;
746 
747 	bio->bi_private = end_io_wq;
748 	bio->bi_end_io = end_workqueue_bio;
749 	return 0;
750 }
751 
752 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
753 {
754 	unsigned long limit = min_t(unsigned long,
755 				    info->workers.max_workers,
756 				    info->fs_devices->open_devices);
757 	return 256 * limit;
758 }
759 
760 static void run_one_async_start(struct btrfs_work *work)
761 {
762 	struct async_submit_bio *async;
763 	int ret;
764 
765 	async = container_of(work, struct  async_submit_bio, work);
766 	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
767 				      async->mirror_num, async->bio_flags,
768 				      async->bio_offset);
769 	if (ret)
770 		async->error = ret;
771 }
772 
773 static void run_one_async_done(struct btrfs_work *work)
774 {
775 	struct btrfs_fs_info *fs_info;
776 	struct async_submit_bio *async;
777 	int limit;
778 
779 	async = container_of(work, struct  async_submit_bio, work);
780 	fs_info = BTRFS_I(async->inode)->root->fs_info;
781 
782 	limit = btrfs_async_submit_limit(fs_info);
783 	limit = limit * 2 / 3;
784 
785 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
786 	    waitqueue_active(&fs_info->async_submit_wait))
787 		wake_up(&fs_info->async_submit_wait);
788 
789 	/* If an error occured we just want to clean up the bio and move on */
790 	if (async->error) {
791 		bio_endio(async->bio, async->error);
792 		return;
793 	}
794 
795 	async->submit_bio_done(async->inode, async->rw, async->bio,
796 			       async->mirror_num, async->bio_flags,
797 			       async->bio_offset);
798 }
799 
800 static void run_one_async_free(struct btrfs_work *work)
801 {
802 	struct async_submit_bio *async;
803 
804 	async = container_of(work, struct  async_submit_bio, work);
805 	kfree(async);
806 }
807 
808 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
809 			int rw, struct bio *bio, int mirror_num,
810 			unsigned long bio_flags,
811 			u64 bio_offset,
812 			extent_submit_bio_hook_t *submit_bio_start,
813 			extent_submit_bio_hook_t *submit_bio_done)
814 {
815 	struct async_submit_bio *async;
816 
817 	async = kmalloc(sizeof(*async), GFP_NOFS);
818 	if (!async)
819 		return -ENOMEM;
820 
821 	async->inode = inode;
822 	async->rw = rw;
823 	async->bio = bio;
824 	async->mirror_num = mirror_num;
825 	async->submit_bio_start = submit_bio_start;
826 	async->submit_bio_done = submit_bio_done;
827 
828 	async->work.func = run_one_async_start;
829 	async->work.ordered_func = run_one_async_done;
830 	async->work.ordered_free = run_one_async_free;
831 
832 	async->work.flags = 0;
833 	async->bio_flags = bio_flags;
834 	async->bio_offset = bio_offset;
835 
836 	async->error = 0;
837 
838 	atomic_inc(&fs_info->nr_async_submits);
839 
840 	if (rw & REQ_SYNC)
841 		btrfs_set_work_high_prio(&async->work);
842 
843 	btrfs_queue_worker(&fs_info->workers, &async->work);
844 
845 	while (atomic_read(&fs_info->async_submit_draining) &&
846 	      atomic_read(&fs_info->nr_async_submits)) {
847 		wait_event(fs_info->async_submit_wait,
848 			   (atomic_read(&fs_info->nr_async_submits) == 0));
849 	}
850 
851 	return 0;
852 }
853 
854 static int btree_csum_one_bio(struct bio *bio)
855 {
856 	struct bio_vec *bvec = bio->bi_io_vec;
857 	int bio_index = 0;
858 	struct btrfs_root *root;
859 	int ret = 0;
860 
861 	WARN_ON(bio->bi_vcnt <= 0);
862 	while (bio_index < bio->bi_vcnt) {
863 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
864 		ret = csum_dirty_buffer(root, bvec->bv_page);
865 		if (ret)
866 			break;
867 		bio_index++;
868 		bvec++;
869 	}
870 	return ret;
871 }
872 
873 static int __btree_submit_bio_start(struct inode *inode, int rw,
874 				    struct bio *bio, int mirror_num,
875 				    unsigned long bio_flags,
876 				    u64 bio_offset)
877 {
878 	/*
879 	 * when we're called for a write, we're already in the async
880 	 * submission context.  Just jump into btrfs_map_bio
881 	 */
882 	return btree_csum_one_bio(bio);
883 }
884 
885 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
886 				 int mirror_num, unsigned long bio_flags,
887 				 u64 bio_offset)
888 {
889 	int ret;
890 
891 	/*
892 	 * when we're called for a write, we're already in the async
893 	 * submission context.  Just jump into btrfs_map_bio
894 	 */
895 	ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
896 	if (ret)
897 		bio_endio(bio, ret);
898 	return ret;
899 }
900 
901 static int check_async_write(struct inode *inode, unsigned long bio_flags)
902 {
903 	if (bio_flags & EXTENT_BIO_TREE_LOG)
904 		return 0;
905 #ifdef CONFIG_X86
906 	if (cpu_has_xmm4_2)
907 		return 0;
908 #endif
909 	return 1;
910 }
911 
912 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
913 				 int mirror_num, unsigned long bio_flags,
914 				 u64 bio_offset)
915 {
916 	int async = check_async_write(inode, bio_flags);
917 	int ret;
918 
919 	if (!(rw & REQ_WRITE)) {
920 		/*
921 		 * called for a read, do the setup so that checksum validation
922 		 * can happen in the async kernel threads
923 		 */
924 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
925 					  bio, 1);
926 		if (ret)
927 			goto out_w_error;
928 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
929 				    mirror_num, 0);
930 	} else if (!async) {
931 		ret = btree_csum_one_bio(bio);
932 		if (ret)
933 			goto out_w_error;
934 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
935 				    mirror_num, 0);
936 	} else {
937 		/*
938 		 * kthread helpers are used to submit writes so that
939 		 * checksumming can happen in parallel across all CPUs
940 		 */
941 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
942 					  inode, rw, bio, mirror_num, 0,
943 					  bio_offset,
944 					  __btree_submit_bio_start,
945 					  __btree_submit_bio_done);
946 	}
947 
948 	if (ret) {
949 out_w_error:
950 		bio_endio(bio, ret);
951 	}
952 	return ret;
953 }
954 
955 #ifdef CONFIG_MIGRATION
956 static int btree_migratepage(struct address_space *mapping,
957 			struct page *newpage, struct page *page,
958 			enum migrate_mode mode)
959 {
960 	/*
961 	 * we can't safely write a btree page from here,
962 	 * we haven't done the locking hook
963 	 */
964 	if (PageDirty(page))
965 		return -EAGAIN;
966 	/*
967 	 * Buffers may be managed in a filesystem specific way.
968 	 * We must have no buffers or drop them.
969 	 */
970 	if (page_has_private(page) &&
971 	    !try_to_release_page(page, GFP_KERNEL))
972 		return -EAGAIN;
973 	return migrate_page(mapping, newpage, page, mode);
974 }
975 #endif
976 
977 
978 static int btree_writepages(struct address_space *mapping,
979 			    struct writeback_control *wbc)
980 {
981 	struct extent_io_tree *tree;
982 	struct btrfs_fs_info *fs_info;
983 	int ret;
984 
985 	tree = &BTRFS_I(mapping->host)->io_tree;
986 	if (wbc->sync_mode == WB_SYNC_NONE) {
987 
988 		if (wbc->for_kupdate)
989 			return 0;
990 
991 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
992 		/* this is a bit racy, but that's ok */
993 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
994 					     BTRFS_DIRTY_METADATA_THRESH);
995 		if (ret < 0)
996 			return 0;
997 	}
998 	return btree_write_cache_pages(mapping, wbc);
999 }
1000 
1001 static int btree_readpage(struct file *file, struct page *page)
1002 {
1003 	struct extent_io_tree *tree;
1004 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1005 	return extent_read_full_page(tree, page, btree_get_extent, 0);
1006 }
1007 
1008 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1009 {
1010 	if (PageWriteback(page) || PageDirty(page))
1011 		return 0;
1012 
1013 	return try_release_extent_buffer(page);
1014 }
1015 
1016 static void btree_invalidatepage(struct page *page, unsigned long offset)
1017 {
1018 	struct extent_io_tree *tree;
1019 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1020 	extent_invalidatepage(tree, page, offset);
1021 	btree_releasepage(page, GFP_NOFS);
1022 	if (PagePrivate(page)) {
1023 		printk(KERN_WARNING "btrfs warning page private not zero "
1024 		       "on page %llu\n", (unsigned long long)page_offset(page));
1025 		ClearPagePrivate(page);
1026 		set_page_private(page, 0);
1027 		page_cache_release(page);
1028 	}
1029 }
1030 
1031 static int btree_set_page_dirty(struct page *page)
1032 {
1033 #ifdef DEBUG
1034 	struct extent_buffer *eb;
1035 
1036 	BUG_ON(!PagePrivate(page));
1037 	eb = (struct extent_buffer *)page->private;
1038 	BUG_ON(!eb);
1039 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1040 	BUG_ON(!atomic_read(&eb->refs));
1041 	btrfs_assert_tree_locked(eb);
1042 #endif
1043 	return __set_page_dirty_nobuffers(page);
1044 }
1045 
1046 static const struct address_space_operations btree_aops = {
1047 	.readpage	= btree_readpage,
1048 	.writepages	= btree_writepages,
1049 	.releasepage	= btree_releasepage,
1050 	.invalidatepage = btree_invalidatepage,
1051 #ifdef CONFIG_MIGRATION
1052 	.migratepage	= btree_migratepage,
1053 #endif
1054 	.set_page_dirty = btree_set_page_dirty,
1055 };
1056 
1057 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1058 			 u64 parent_transid)
1059 {
1060 	struct extent_buffer *buf = NULL;
1061 	struct inode *btree_inode = root->fs_info->btree_inode;
1062 	int ret = 0;
1063 
1064 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1065 	if (!buf)
1066 		return 0;
1067 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1068 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1069 	free_extent_buffer(buf);
1070 	return ret;
1071 }
1072 
1073 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1074 			 int mirror_num, struct extent_buffer **eb)
1075 {
1076 	struct extent_buffer *buf = NULL;
1077 	struct inode *btree_inode = root->fs_info->btree_inode;
1078 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1079 	int ret;
1080 
1081 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1082 	if (!buf)
1083 		return 0;
1084 
1085 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1086 
1087 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1088 				       btree_get_extent, mirror_num);
1089 	if (ret) {
1090 		free_extent_buffer(buf);
1091 		return ret;
1092 	}
1093 
1094 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1095 		free_extent_buffer(buf);
1096 		return -EIO;
1097 	} else if (extent_buffer_uptodate(buf)) {
1098 		*eb = buf;
1099 	} else {
1100 		free_extent_buffer(buf);
1101 	}
1102 	return 0;
1103 }
1104 
1105 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1106 					    u64 bytenr, u32 blocksize)
1107 {
1108 	struct inode *btree_inode = root->fs_info->btree_inode;
1109 	struct extent_buffer *eb;
1110 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1111 				bytenr, blocksize);
1112 	return eb;
1113 }
1114 
1115 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1116 						 u64 bytenr, u32 blocksize)
1117 {
1118 	struct inode *btree_inode = root->fs_info->btree_inode;
1119 	struct extent_buffer *eb;
1120 
1121 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1122 				 bytenr, blocksize);
1123 	return eb;
1124 }
1125 
1126 
1127 int btrfs_write_tree_block(struct extent_buffer *buf)
1128 {
1129 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1130 					buf->start + buf->len - 1);
1131 }
1132 
1133 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1134 {
1135 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1136 				       buf->start, buf->start + buf->len - 1);
1137 }
1138 
1139 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1140 				      u32 blocksize, u64 parent_transid)
1141 {
1142 	struct extent_buffer *buf = NULL;
1143 	int ret;
1144 
1145 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1146 	if (!buf)
1147 		return NULL;
1148 
1149 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1150 	return buf;
1151 
1152 }
1153 
1154 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1155 		      struct extent_buffer *buf)
1156 {
1157 	struct btrfs_fs_info *fs_info = root->fs_info;
1158 
1159 	if (btrfs_header_generation(buf) ==
1160 	    fs_info->running_transaction->transid) {
1161 		btrfs_assert_tree_locked(buf);
1162 
1163 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1164 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1165 					     -buf->len,
1166 					     fs_info->dirty_metadata_batch);
1167 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1168 			btrfs_set_lock_blocking(buf);
1169 			clear_extent_buffer_dirty(buf);
1170 		}
1171 	}
1172 }
1173 
1174 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1175 			 u32 stripesize, struct btrfs_root *root,
1176 			 struct btrfs_fs_info *fs_info,
1177 			 u64 objectid)
1178 {
1179 	root->node = NULL;
1180 	root->commit_root = NULL;
1181 	root->sectorsize = sectorsize;
1182 	root->nodesize = nodesize;
1183 	root->leafsize = leafsize;
1184 	root->stripesize = stripesize;
1185 	root->ref_cows = 0;
1186 	root->track_dirty = 0;
1187 	root->in_radix = 0;
1188 	root->orphan_item_inserted = 0;
1189 	root->orphan_cleanup_state = 0;
1190 
1191 	root->objectid = objectid;
1192 	root->last_trans = 0;
1193 	root->highest_objectid = 0;
1194 	root->name = NULL;
1195 	root->inode_tree = RB_ROOT;
1196 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1197 	root->block_rsv = NULL;
1198 	root->orphan_block_rsv = NULL;
1199 
1200 	INIT_LIST_HEAD(&root->dirty_list);
1201 	INIT_LIST_HEAD(&root->root_list);
1202 	INIT_LIST_HEAD(&root->logged_list[0]);
1203 	INIT_LIST_HEAD(&root->logged_list[1]);
1204 	spin_lock_init(&root->orphan_lock);
1205 	spin_lock_init(&root->inode_lock);
1206 	spin_lock_init(&root->accounting_lock);
1207 	spin_lock_init(&root->log_extents_lock[0]);
1208 	spin_lock_init(&root->log_extents_lock[1]);
1209 	mutex_init(&root->objectid_mutex);
1210 	mutex_init(&root->log_mutex);
1211 	init_waitqueue_head(&root->log_writer_wait);
1212 	init_waitqueue_head(&root->log_commit_wait[0]);
1213 	init_waitqueue_head(&root->log_commit_wait[1]);
1214 	atomic_set(&root->log_commit[0], 0);
1215 	atomic_set(&root->log_commit[1], 0);
1216 	atomic_set(&root->log_writers, 0);
1217 	atomic_set(&root->log_batch, 0);
1218 	atomic_set(&root->orphan_inodes, 0);
1219 	root->log_transid = 0;
1220 	root->last_log_commit = 0;
1221 	extent_io_tree_init(&root->dirty_log_pages,
1222 			     fs_info->btree_inode->i_mapping);
1223 
1224 	memset(&root->root_key, 0, sizeof(root->root_key));
1225 	memset(&root->root_item, 0, sizeof(root->root_item));
1226 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1227 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1228 	root->defrag_trans_start = fs_info->generation;
1229 	init_completion(&root->kobj_unregister);
1230 	root->defrag_running = 0;
1231 	root->root_key.objectid = objectid;
1232 	root->anon_dev = 0;
1233 
1234 	spin_lock_init(&root->root_item_lock);
1235 }
1236 
1237 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1238 					    struct btrfs_fs_info *fs_info,
1239 					    u64 objectid,
1240 					    struct btrfs_root *root)
1241 {
1242 	int ret;
1243 	u32 blocksize;
1244 	u64 generation;
1245 
1246 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1247 		     tree_root->sectorsize, tree_root->stripesize,
1248 		     root, fs_info, objectid);
1249 	ret = btrfs_find_last_root(tree_root, objectid,
1250 				   &root->root_item, &root->root_key);
1251 	if (ret > 0)
1252 		return -ENOENT;
1253 	else if (ret < 0)
1254 		return ret;
1255 
1256 	generation = btrfs_root_generation(&root->root_item);
1257 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1258 	root->commit_root = NULL;
1259 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1260 				     blocksize, generation);
1261 	if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1262 		free_extent_buffer(root->node);
1263 		root->node = NULL;
1264 		return -EIO;
1265 	}
1266 	root->commit_root = btrfs_root_node(root);
1267 	return 0;
1268 }
1269 
1270 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1271 {
1272 	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1273 	if (root)
1274 		root->fs_info = fs_info;
1275 	return root;
1276 }
1277 
1278 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1279 				     struct btrfs_fs_info *fs_info,
1280 				     u64 objectid)
1281 {
1282 	struct extent_buffer *leaf;
1283 	struct btrfs_root *tree_root = fs_info->tree_root;
1284 	struct btrfs_root *root;
1285 	struct btrfs_key key;
1286 	int ret = 0;
1287 	u64 bytenr;
1288 	uuid_le uuid;
1289 
1290 	root = btrfs_alloc_root(fs_info);
1291 	if (!root)
1292 		return ERR_PTR(-ENOMEM);
1293 
1294 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1295 		     tree_root->sectorsize, tree_root->stripesize,
1296 		     root, fs_info, objectid);
1297 	root->root_key.objectid = objectid;
1298 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1299 	root->root_key.offset = 0;
1300 
1301 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1302 				      0, objectid, NULL, 0, 0, 0);
1303 	if (IS_ERR(leaf)) {
1304 		ret = PTR_ERR(leaf);
1305 		leaf = NULL;
1306 		goto fail;
1307 	}
1308 
1309 	bytenr = leaf->start;
1310 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1311 	btrfs_set_header_bytenr(leaf, leaf->start);
1312 	btrfs_set_header_generation(leaf, trans->transid);
1313 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1314 	btrfs_set_header_owner(leaf, objectid);
1315 	root->node = leaf;
1316 
1317 	write_extent_buffer(leaf, fs_info->fsid,
1318 			    (unsigned long)btrfs_header_fsid(leaf),
1319 			    BTRFS_FSID_SIZE);
1320 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1321 			    (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1322 			    BTRFS_UUID_SIZE);
1323 	btrfs_mark_buffer_dirty(leaf);
1324 
1325 	root->commit_root = btrfs_root_node(root);
1326 	root->track_dirty = 1;
1327 
1328 
1329 	root->root_item.flags = 0;
1330 	root->root_item.byte_limit = 0;
1331 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1332 	btrfs_set_root_generation(&root->root_item, trans->transid);
1333 	btrfs_set_root_level(&root->root_item, 0);
1334 	btrfs_set_root_refs(&root->root_item, 1);
1335 	btrfs_set_root_used(&root->root_item, leaf->len);
1336 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1337 	btrfs_set_root_dirid(&root->root_item, 0);
1338 	uuid_le_gen(&uuid);
1339 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1340 	root->root_item.drop_level = 0;
1341 
1342 	key.objectid = objectid;
1343 	key.type = BTRFS_ROOT_ITEM_KEY;
1344 	key.offset = 0;
1345 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1346 	if (ret)
1347 		goto fail;
1348 
1349 	btrfs_tree_unlock(leaf);
1350 
1351 	return root;
1352 
1353 fail:
1354 	if (leaf) {
1355 		btrfs_tree_unlock(leaf);
1356 		free_extent_buffer(leaf);
1357 	}
1358 	kfree(root);
1359 
1360 	return ERR_PTR(ret);
1361 }
1362 
1363 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1364 					 struct btrfs_fs_info *fs_info)
1365 {
1366 	struct btrfs_root *root;
1367 	struct btrfs_root *tree_root = fs_info->tree_root;
1368 	struct extent_buffer *leaf;
1369 
1370 	root = btrfs_alloc_root(fs_info);
1371 	if (!root)
1372 		return ERR_PTR(-ENOMEM);
1373 
1374 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1375 		     tree_root->sectorsize, tree_root->stripesize,
1376 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1377 
1378 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1379 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1380 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1381 	/*
1382 	 * log trees do not get reference counted because they go away
1383 	 * before a real commit is actually done.  They do store pointers
1384 	 * to file data extents, and those reference counts still get
1385 	 * updated (along with back refs to the log tree).
1386 	 */
1387 	root->ref_cows = 0;
1388 
1389 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1390 				      BTRFS_TREE_LOG_OBJECTID, NULL,
1391 				      0, 0, 0);
1392 	if (IS_ERR(leaf)) {
1393 		kfree(root);
1394 		return ERR_CAST(leaf);
1395 	}
1396 
1397 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1398 	btrfs_set_header_bytenr(leaf, leaf->start);
1399 	btrfs_set_header_generation(leaf, trans->transid);
1400 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1401 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1402 	root->node = leaf;
1403 
1404 	write_extent_buffer(root->node, root->fs_info->fsid,
1405 			    (unsigned long)btrfs_header_fsid(root->node),
1406 			    BTRFS_FSID_SIZE);
1407 	btrfs_mark_buffer_dirty(root->node);
1408 	btrfs_tree_unlock(root->node);
1409 	return root;
1410 }
1411 
1412 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1413 			     struct btrfs_fs_info *fs_info)
1414 {
1415 	struct btrfs_root *log_root;
1416 
1417 	log_root = alloc_log_tree(trans, fs_info);
1418 	if (IS_ERR(log_root))
1419 		return PTR_ERR(log_root);
1420 	WARN_ON(fs_info->log_root_tree);
1421 	fs_info->log_root_tree = log_root;
1422 	return 0;
1423 }
1424 
1425 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1426 		       struct btrfs_root *root)
1427 {
1428 	struct btrfs_root *log_root;
1429 	struct btrfs_inode_item *inode_item;
1430 
1431 	log_root = alloc_log_tree(trans, root->fs_info);
1432 	if (IS_ERR(log_root))
1433 		return PTR_ERR(log_root);
1434 
1435 	log_root->last_trans = trans->transid;
1436 	log_root->root_key.offset = root->root_key.objectid;
1437 
1438 	inode_item = &log_root->root_item.inode;
1439 	inode_item->generation = cpu_to_le64(1);
1440 	inode_item->size = cpu_to_le64(3);
1441 	inode_item->nlink = cpu_to_le32(1);
1442 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1443 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1444 
1445 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1446 
1447 	WARN_ON(root->log_root);
1448 	root->log_root = log_root;
1449 	root->log_transid = 0;
1450 	root->last_log_commit = 0;
1451 	return 0;
1452 }
1453 
1454 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1455 					       struct btrfs_key *location)
1456 {
1457 	struct btrfs_root *root;
1458 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1459 	struct btrfs_path *path;
1460 	struct extent_buffer *l;
1461 	u64 generation;
1462 	u32 blocksize;
1463 	int ret = 0;
1464 	int slot;
1465 
1466 	root = btrfs_alloc_root(fs_info);
1467 	if (!root)
1468 		return ERR_PTR(-ENOMEM);
1469 	if (location->offset == (u64)-1) {
1470 		ret = find_and_setup_root(tree_root, fs_info,
1471 					  location->objectid, root);
1472 		if (ret) {
1473 			kfree(root);
1474 			return ERR_PTR(ret);
1475 		}
1476 		goto out;
1477 	}
1478 
1479 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1480 		     tree_root->sectorsize, tree_root->stripesize,
1481 		     root, fs_info, location->objectid);
1482 
1483 	path = btrfs_alloc_path();
1484 	if (!path) {
1485 		kfree(root);
1486 		return ERR_PTR(-ENOMEM);
1487 	}
1488 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1489 	if (ret == 0) {
1490 		l = path->nodes[0];
1491 		slot = path->slots[0];
1492 		btrfs_read_root_item(l, slot, &root->root_item);
1493 		memcpy(&root->root_key, location, sizeof(*location));
1494 	}
1495 	btrfs_free_path(path);
1496 	if (ret) {
1497 		kfree(root);
1498 		if (ret > 0)
1499 			ret = -ENOENT;
1500 		return ERR_PTR(ret);
1501 	}
1502 
1503 	generation = btrfs_root_generation(&root->root_item);
1504 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1505 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1506 				     blocksize, generation);
1507 	if (!root->node || !extent_buffer_uptodate(root->node)) {
1508 		ret = (!root->node) ? -ENOMEM : -EIO;
1509 
1510 		free_extent_buffer(root->node);
1511 		kfree(root);
1512 		return ERR_PTR(ret);
1513 	}
1514 
1515 	root->commit_root = btrfs_root_node(root);
1516 out:
1517 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1518 		root->ref_cows = 1;
1519 		btrfs_check_and_init_root_item(&root->root_item);
1520 	}
1521 
1522 	return root;
1523 }
1524 
1525 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1526 					      struct btrfs_key *location)
1527 {
1528 	struct btrfs_root *root;
1529 	int ret;
1530 
1531 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1532 		return fs_info->tree_root;
1533 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1534 		return fs_info->extent_root;
1535 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1536 		return fs_info->chunk_root;
1537 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1538 		return fs_info->dev_root;
1539 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1540 		return fs_info->csum_root;
1541 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1542 		return fs_info->quota_root ? fs_info->quota_root :
1543 					     ERR_PTR(-ENOENT);
1544 again:
1545 	spin_lock(&fs_info->fs_roots_radix_lock);
1546 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1547 				 (unsigned long)location->objectid);
1548 	spin_unlock(&fs_info->fs_roots_radix_lock);
1549 	if (root)
1550 		return root;
1551 
1552 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1553 	if (IS_ERR(root))
1554 		return root;
1555 
1556 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1557 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1558 					GFP_NOFS);
1559 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1560 		ret = -ENOMEM;
1561 		goto fail;
1562 	}
1563 
1564 	btrfs_init_free_ino_ctl(root);
1565 	mutex_init(&root->fs_commit_mutex);
1566 	spin_lock_init(&root->cache_lock);
1567 	init_waitqueue_head(&root->cache_wait);
1568 
1569 	ret = get_anon_bdev(&root->anon_dev);
1570 	if (ret)
1571 		goto fail;
1572 
1573 	if (btrfs_root_refs(&root->root_item) == 0) {
1574 		ret = -ENOENT;
1575 		goto fail;
1576 	}
1577 
1578 	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1579 	if (ret < 0)
1580 		goto fail;
1581 	if (ret == 0)
1582 		root->orphan_item_inserted = 1;
1583 
1584 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1585 	if (ret)
1586 		goto fail;
1587 
1588 	spin_lock(&fs_info->fs_roots_radix_lock);
1589 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1590 				(unsigned long)root->root_key.objectid,
1591 				root);
1592 	if (ret == 0)
1593 		root->in_radix = 1;
1594 
1595 	spin_unlock(&fs_info->fs_roots_radix_lock);
1596 	radix_tree_preload_end();
1597 	if (ret) {
1598 		if (ret == -EEXIST) {
1599 			free_fs_root(root);
1600 			goto again;
1601 		}
1602 		goto fail;
1603 	}
1604 
1605 	ret = btrfs_find_dead_roots(fs_info->tree_root,
1606 				    root->root_key.objectid);
1607 	WARN_ON(ret);
1608 	return root;
1609 fail:
1610 	free_fs_root(root);
1611 	return ERR_PTR(ret);
1612 }
1613 
1614 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1615 {
1616 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1617 	int ret = 0;
1618 	struct btrfs_device *device;
1619 	struct backing_dev_info *bdi;
1620 
1621 	rcu_read_lock();
1622 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1623 		if (!device->bdev)
1624 			continue;
1625 		bdi = blk_get_backing_dev_info(device->bdev);
1626 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1627 			ret = 1;
1628 			break;
1629 		}
1630 	}
1631 	rcu_read_unlock();
1632 	return ret;
1633 }
1634 
1635 /*
1636  * If this fails, caller must call bdi_destroy() to get rid of the
1637  * bdi again.
1638  */
1639 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1640 {
1641 	int err;
1642 
1643 	bdi->capabilities = BDI_CAP_MAP_COPY;
1644 	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1645 	if (err)
1646 		return err;
1647 
1648 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1649 	bdi->congested_fn	= btrfs_congested_fn;
1650 	bdi->congested_data	= info;
1651 	return 0;
1652 }
1653 
1654 /*
1655  * called by the kthread helper functions to finally call the bio end_io
1656  * functions.  This is where read checksum verification actually happens
1657  */
1658 static void end_workqueue_fn(struct btrfs_work *work)
1659 {
1660 	struct bio *bio;
1661 	struct end_io_wq *end_io_wq;
1662 	struct btrfs_fs_info *fs_info;
1663 	int error;
1664 
1665 	end_io_wq = container_of(work, struct end_io_wq, work);
1666 	bio = end_io_wq->bio;
1667 	fs_info = end_io_wq->info;
1668 
1669 	error = end_io_wq->error;
1670 	bio->bi_private = end_io_wq->private;
1671 	bio->bi_end_io = end_io_wq->end_io;
1672 	kfree(end_io_wq);
1673 	bio_endio(bio, error);
1674 }
1675 
1676 static int cleaner_kthread(void *arg)
1677 {
1678 	struct btrfs_root *root = arg;
1679 
1680 	do {
1681 		int again = 0;
1682 
1683 		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1684 		    down_read_trylock(&root->fs_info->sb->s_umount)) {
1685 			if (mutex_trylock(&root->fs_info->cleaner_mutex)) {
1686 				btrfs_run_delayed_iputs(root);
1687 				again = btrfs_clean_one_deleted_snapshot(root);
1688 				mutex_unlock(&root->fs_info->cleaner_mutex);
1689 			}
1690 			btrfs_run_defrag_inodes(root->fs_info);
1691 			up_read(&root->fs_info->sb->s_umount);
1692 		}
1693 
1694 		if (!try_to_freeze() && !again) {
1695 			set_current_state(TASK_INTERRUPTIBLE);
1696 			if (!kthread_should_stop())
1697 				schedule();
1698 			__set_current_state(TASK_RUNNING);
1699 		}
1700 	} while (!kthread_should_stop());
1701 	return 0;
1702 }
1703 
1704 static int transaction_kthread(void *arg)
1705 {
1706 	struct btrfs_root *root = arg;
1707 	struct btrfs_trans_handle *trans;
1708 	struct btrfs_transaction *cur;
1709 	u64 transid;
1710 	unsigned long now;
1711 	unsigned long delay;
1712 	bool cannot_commit;
1713 
1714 	do {
1715 		cannot_commit = false;
1716 		delay = HZ * 30;
1717 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1718 
1719 		spin_lock(&root->fs_info->trans_lock);
1720 		cur = root->fs_info->running_transaction;
1721 		if (!cur) {
1722 			spin_unlock(&root->fs_info->trans_lock);
1723 			goto sleep;
1724 		}
1725 
1726 		now = get_seconds();
1727 		if (!cur->blocked &&
1728 		    (now < cur->start_time || now - cur->start_time < 30)) {
1729 			spin_unlock(&root->fs_info->trans_lock);
1730 			delay = HZ * 5;
1731 			goto sleep;
1732 		}
1733 		transid = cur->transid;
1734 		spin_unlock(&root->fs_info->trans_lock);
1735 
1736 		/* If the file system is aborted, this will always fail. */
1737 		trans = btrfs_attach_transaction(root);
1738 		if (IS_ERR(trans)) {
1739 			if (PTR_ERR(trans) != -ENOENT)
1740 				cannot_commit = true;
1741 			goto sleep;
1742 		}
1743 		if (transid == trans->transid) {
1744 			btrfs_commit_transaction(trans, root);
1745 		} else {
1746 			btrfs_end_transaction(trans, root);
1747 		}
1748 sleep:
1749 		wake_up_process(root->fs_info->cleaner_kthread);
1750 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1751 
1752 		if (!try_to_freeze()) {
1753 			set_current_state(TASK_INTERRUPTIBLE);
1754 			if (!kthread_should_stop() &&
1755 			    (!btrfs_transaction_blocked(root->fs_info) ||
1756 			     cannot_commit))
1757 				schedule_timeout(delay);
1758 			__set_current_state(TASK_RUNNING);
1759 		}
1760 	} while (!kthread_should_stop());
1761 	return 0;
1762 }
1763 
1764 /*
1765  * this will find the highest generation in the array of
1766  * root backups.  The index of the highest array is returned,
1767  * or -1 if we can't find anything.
1768  *
1769  * We check to make sure the array is valid by comparing the
1770  * generation of the latest  root in the array with the generation
1771  * in the super block.  If they don't match we pitch it.
1772  */
1773 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1774 {
1775 	u64 cur;
1776 	int newest_index = -1;
1777 	struct btrfs_root_backup *root_backup;
1778 	int i;
1779 
1780 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1781 		root_backup = info->super_copy->super_roots + i;
1782 		cur = btrfs_backup_tree_root_gen(root_backup);
1783 		if (cur == newest_gen)
1784 			newest_index = i;
1785 	}
1786 
1787 	/* check to see if we actually wrapped around */
1788 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1789 		root_backup = info->super_copy->super_roots;
1790 		cur = btrfs_backup_tree_root_gen(root_backup);
1791 		if (cur == newest_gen)
1792 			newest_index = 0;
1793 	}
1794 	return newest_index;
1795 }
1796 
1797 
1798 /*
1799  * find the oldest backup so we know where to store new entries
1800  * in the backup array.  This will set the backup_root_index
1801  * field in the fs_info struct
1802  */
1803 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1804 				     u64 newest_gen)
1805 {
1806 	int newest_index = -1;
1807 
1808 	newest_index = find_newest_super_backup(info, newest_gen);
1809 	/* if there was garbage in there, just move along */
1810 	if (newest_index == -1) {
1811 		info->backup_root_index = 0;
1812 	} else {
1813 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1814 	}
1815 }
1816 
1817 /*
1818  * copy all the root pointers into the super backup array.
1819  * this will bump the backup pointer by one when it is
1820  * done
1821  */
1822 static void backup_super_roots(struct btrfs_fs_info *info)
1823 {
1824 	int next_backup;
1825 	struct btrfs_root_backup *root_backup;
1826 	int last_backup;
1827 
1828 	next_backup = info->backup_root_index;
1829 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1830 		BTRFS_NUM_BACKUP_ROOTS;
1831 
1832 	/*
1833 	 * just overwrite the last backup if we're at the same generation
1834 	 * this happens only at umount
1835 	 */
1836 	root_backup = info->super_for_commit->super_roots + last_backup;
1837 	if (btrfs_backup_tree_root_gen(root_backup) ==
1838 	    btrfs_header_generation(info->tree_root->node))
1839 		next_backup = last_backup;
1840 
1841 	root_backup = info->super_for_commit->super_roots + next_backup;
1842 
1843 	/*
1844 	 * make sure all of our padding and empty slots get zero filled
1845 	 * regardless of which ones we use today
1846 	 */
1847 	memset(root_backup, 0, sizeof(*root_backup));
1848 
1849 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1850 
1851 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1852 	btrfs_set_backup_tree_root_gen(root_backup,
1853 			       btrfs_header_generation(info->tree_root->node));
1854 
1855 	btrfs_set_backup_tree_root_level(root_backup,
1856 			       btrfs_header_level(info->tree_root->node));
1857 
1858 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1859 	btrfs_set_backup_chunk_root_gen(root_backup,
1860 			       btrfs_header_generation(info->chunk_root->node));
1861 	btrfs_set_backup_chunk_root_level(root_backup,
1862 			       btrfs_header_level(info->chunk_root->node));
1863 
1864 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1865 	btrfs_set_backup_extent_root_gen(root_backup,
1866 			       btrfs_header_generation(info->extent_root->node));
1867 	btrfs_set_backup_extent_root_level(root_backup,
1868 			       btrfs_header_level(info->extent_root->node));
1869 
1870 	/*
1871 	 * we might commit during log recovery, which happens before we set
1872 	 * the fs_root.  Make sure it is valid before we fill it in.
1873 	 */
1874 	if (info->fs_root && info->fs_root->node) {
1875 		btrfs_set_backup_fs_root(root_backup,
1876 					 info->fs_root->node->start);
1877 		btrfs_set_backup_fs_root_gen(root_backup,
1878 			       btrfs_header_generation(info->fs_root->node));
1879 		btrfs_set_backup_fs_root_level(root_backup,
1880 			       btrfs_header_level(info->fs_root->node));
1881 	}
1882 
1883 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1884 	btrfs_set_backup_dev_root_gen(root_backup,
1885 			       btrfs_header_generation(info->dev_root->node));
1886 	btrfs_set_backup_dev_root_level(root_backup,
1887 				       btrfs_header_level(info->dev_root->node));
1888 
1889 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1890 	btrfs_set_backup_csum_root_gen(root_backup,
1891 			       btrfs_header_generation(info->csum_root->node));
1892 	btrfs_set_backup_csum_root_level(root_backup,
1893 			       btrfs_header_level(info->csum_root->node));
1894 
1895 	btrfs_set_backup_total_bytes(root_backup,
1896 			     btrfs_super_total_bytes(info->super_copy));
1897 	btrfs_set_backup_bytes_used(root_backup,
1898 			     btrfs_super_bytes_used(info->super_copy));
1899 	btrfs_set_backup_num_devices(root_backup,
1900 			     btrfs_super_num_devices(info->super_copy));
1901 
1902 	/*
1903 	 * if we don't copy this out to the super_copy, it won't get remembered
1904 	 * for the next commit
1905 	 */
1906 	memcpy(&info->super_copy->super_roots,
1907 	       &info->super_for_commit->super_roots,
1908 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1909 }
1910 
1911 /*
1912  * this copies info out of the root backup array and back into
1913  * the in-memory super block.  It is meant to help iterate through
1914  * the array, so you send it the number of backups you've already
1915  * tried and the last backup index you used.
1916  *
1917  * this returns -1 when it has tried all the backups
1918  */
1919 static noinline int next_root_backup(struct btrfs_fs_info *info,
1920 				     struct btrfs_super_block *super,
1921 				     int *num_backups_tried, int *backup_index)
1922 {
1923 	struct btrfs_root_backup *root_backup;
1924 	int newest = *backup_index;
1925 
1926 	if (*num_backups_tried == 0) {
1927 		u64 gen = btrfs_super_generation(super);
1928 
1929 		newest = find_newest_super_backup(info, gen);
1930 		if (newest == -1)
1931 			return -1;
1932 
1933 		*backup_index = newest;
1934 		*num_backups_tried = 1;
1935 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1936 		/* we've tried all the backups, all done */
1937 		return -1;
1938 	} else {
1939 		/* jump to the next oldest backup */
1940 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1941 			BTRFS_NUM_BACKUP_ROOTS;
1942 		*backup_index = newest;
1943 		*num_backups_tried += 1;
1944 	}
1945 	root_backup = super->super_roots + newest;
1946 
1947 	btrfs_set_super_generation(super,
1948 				   btrfs_backup_tree_root_gen(root_backup));
1949 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1950 	btrfs_set_super_root_level(super,
1951 				   btrfs_backup_tree_root_level(root_backup));
1952 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1953 
1954 	/*
1955 	 * fixme: the total bytes and num_devices need to match or we should
1956 	 * need a fsck
1957 	 */
1958 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1959 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1960 	return 0;
1961 }
1962 
1963 /* helper to cleanup workers */
1964 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1965 {
1966 	btrfs_stop_workers(&fs_info->generic_worker);
1967 	btrfs_stop_workers(&fs_info->fixup_workers);
1968 	btrfs_stop_workers(&fs_info->delalloc_workers);
1969 	btrfs_stop_workers(&fs_info->workers);
1970 	btrfs_stop_workers(&fs_info->endio_workers);
1971 	btrfs_stop_workers(&fs_info->endio_meta_workers);
1972 	btrfs_stop_workers(&fs_info->endio_raid56_workers);
1973 	btrfs_stop_workers(&fs_info->rmw_workers);
1974 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1975 	btrfs_stop_workers(&fs_info->endio_write_workers);
1976 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
1977 	btrfs_stop_workers(&fs_info->submit_workers);
1978 	btrfs_stop_workers(&fs_info->delayed_workers);
1979 	btrfs_stop_workers(&fs_info->caching_workers);
1980 	btrfs_stop_workers(&fs_info->readahead_workers);
1981 	btrfs_stop_workers(&fs_info->flush_workers);
1982 	btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
1983 }
1984 
1985 /* helper to cleanup tree roots */
1986 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1987 {
1988 	free_extent_buffer(info->tree_root->node);
1989 	free_extent_buffer(info->tree_root->commit_root);
1990 	info->tree_root->node = NULL;
1991 	info->tree_root->commit_root = NULL;
1992 
1993 	if (info->dev_root) {
1994 		free_extent_buffer(info->dev_root->node);
1995 		free_extent_buffer(info->dev_root->commit_root);
1996 		info->dev_root->node = NULL;
1997 		info->dev_root->commit_root = NULL;
1998 	}
1999 	if (info->extent_root) {
2000 		free_extent_buffer(info->extent_root->node);
2001 		free_extent_buffer(info->extent_root->commit_root);
2002 		info->extent_root->node = NULL;
2003 		info->extent_root->commit_root = NULL;
2004 	}
2005 	if (info->csum_root) {
2006 		free_extent_buffer(info->csum_root->node);
2007 		free_extent_buffer(info->csum_root->commit_root);
2008 		info->csum_root->node = NULL;
2009 		info->csum_root->commit_root = NULL;
2010 	}
2011 	if (info->quota_root) {
2012 		free_extent_buffer(info->quota_root->node);
2013 		free_extent_buffer(info->quota_root->commit_root);
2014 		info->quota_root->node = NULL;
2015 		info->quota_root->commit_root = NULL;
2016 	}
2017 	if (chunk_root) {
2018 		free_extent_buffer(info->chunk_root->node);
2019 		free_extent_buffer(info->chunk_root->commit_root);
2020 		info->chunk_root->node = NULL;
2021 		info->chunk_root->commit_root = NULL;
2022 	}
2023 }
2024 
2025 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2026 {
2027 	int ret;
2028 	struct btrfs_root *gang[8];
2029 	int i;
2030 
2031 	while (!list_empty(&fs_info->dead_roots)) {
2032 		gang[0] = list_entry(fs_info->dead_roots.next,
2033 				     struct btrfs_root, root_list);
2034 		list_del(&gang[0]->root_list);
2035 
2036 		if (gang[0]->in_radix) {
2037 			btrfs_free_fs_root(fs_info, gang[0]);
2038 		} else {
2039 			free_extent_buffer(gang[0]->node);
2040 			free_extent_buffer(gang[0]->commit_root);
2041 			kfree(gang[0]);
2042 		}
2043 	}
2044 
2045 	while (1) {
2046 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2047 					     (void **)gang, 0,
2048 					     ARRAY_SIZE(gang));
2049 		if (!ret)
2050 			break;
2051 		for (i = 0; i < ret; i++)
2052 			btrfs_free_fs_root(fs_info, gang[i]);
2053 	}
2054 }
2055 
2056 int open_ctree(struct super_block *sb,
2057 	       struct btrfs_fs_devices *fs_devices,
2058 	       char *options)
2059 {
2060 	u32 sectorsize;
2061 	u32 nodesize;
2062 	u32 leafsize;
2063 	u32 blocksize;
2064 	u32 stripesize;
2065 	u64 generation;
2066 	u64 features;
2067 	struct btrfs_key location;
2068 	struct buffer_head *bh;
2069 	struct btrfs_super_block *disk_super;
2070 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2071 	struct btrfs_root *tree_root;
2072 	struct btrfs_root *extent_root;
2073 	struct btrfs_root *csum_root;
2074 	struct btrfs_root *chunk_root;
2075 	struct btrfs_root *dev_root;
2076 	struct btrfs_root *quota_root;
2077 	struct btrfs_root *log_tree_root;
2078 	int ret;
2079 	int err = -EINVAL;
2080 	int num_backups_tried = 0;
2081 	int backup_index = 0;
2082 
2083 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2084 	extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
2085 	csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2086 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2087 	dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
2088 	quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
2089 
2090 	if (!tree_root || !extent_root || !csum_root ||
2091 	    !chunk_root || !dev_root || !quota_root) {
2092 		err = -ENOMEM;
2093 		goto fail;
2094 	}
2095 
2096 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2097 	if (ret) {
2098 		err = ret;
2099 		goto fail;
2100 	}
2101 
2102 	ret = setup_bdi(fs_info, &fs_info->bdi);
2103 	if (ret) {
2104 		err = ret;
2105 		goto fail_srcu;
2106 	}
2107 
2108 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2109 	if (ret) {
2110 		err = ret;
2111 		goto fail_bdi;
2112 	}
2113 	fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2114 					(1 + ilog2(nr_cpu_ids));
2115 
2116 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2117 	if (ret) {
2118 		err = ret;
2119 		goto fail_dirty_metadata_bytes;
2120 	}
2121 
2122 	fs_info->btree_inode = new_inode(sb);
2123 	if (!fs_info->btree_inode) {
2124 		err = -ENOMEM;
2125 		goto fail_delalloc_bytes;
2126 	}
2127 
2128 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2129 
2130 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2131 	INIT_LIST_HEAD(&fs_info->trans_list);
2132 	INIT_LIST_HEAD(&fs_info->dead_roots);
2133 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2134 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2135 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2136 	spin_lock_init(&fs_info->delalloc_lock);
2137 	spin_lock_init(&fs_info->trans_lock);
2138 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2139 	spin_lock_init(&fs_info->delayed_iput_lock);
2140 	spin_lock_init(&fs_info->defrag_inodes_lock);
2141 	spin_lock_init(&fs_info->free_chunk_lock);
2142 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2143 	spin_lock_init(&fs_info->super_lock);
2144 	rwlock_init(&fs_info->tree_mod_log_lock);
2145 	mutex_init(&fs_info->reloc_mutex);
2146 	seqlock_init(&fs_info->profiles_lock);
2147 
2148 	init_completion(&fs_info->kobj_unregister);
2149 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2150 	INIT_LIST_HEAD(&fs_info->space_info);
2151 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2152 	btrfs_mapping_init(&fs_info->mapping_tree);
2153 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2154 			     BTRFS_BLOCK_RSV_GLOBAL);
2155 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2156 			     BTRFS_BLOCK_RSV_DELALLOC);
2157 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2158 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2159 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2160 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2161 			     BTRFS_BLOCK_RSV_DELOPS);
2162 	atomic_set(&fs_info->nr_async_submits, 0);
2163 	atomic_set(&fs_info->async_delalloc_pages, 0);
2164 	atomic_set(&fs_info->async_submit_draining, 0);
2165 	atomic_set(&fs_info->nr_async_bios, 0);
2166 	atomic_set(&fs_info->defrag_running, 0);
2167 	atomic64_set(&fs_info->tree_mod_seq, 0);
2168 	fs_info->sb = sb;
2169 	fs_info->max_inline = 8192 * 1024;
2170 	fs_info->metadata_ratio = 0;
2171 	fs_info->defrag_inodes = RB_ROOT;
2172 	fs_info->trans_no_join = 0;
2173 	fs_info->free_chunk_space = 0;
2174 	fs_info->tree_mod_log = RB_ROOT;
2175 
2176 	/* readahead state */
2177 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2178 	spin_lock_init(&fs_info->reada_lock);
2179 
2180 	fs_info->thread_pool_size = min_t(unsigned long,
2181 					  num_online_cpus() + 2, 8);
2182 
2183 	INIT_LIST_HEAD(&fs_info->ordered_extents);
2184 	spin_lock_init(&fs_info->ordered_extent_lock);
2185 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2186 					GFP_NOFS);
2187 	if (!fs_info->delayed_root) {
2188 		err = -ENOMEM;
2189 		goto fail_iput;
2190 	}
2191 	btrfs_init_delayed_root(fs_info->delayed_root);
2192 
2193 	mutex_init(&fs_info->scrub_lock);
2194 	atomic_set(&fs_info->scrubs_running, 0);
2195 	atomic_set(&fs_info->scrub_pause_req, 0);
2196 	atomic_set(&fs_info->scrubs_paused, 0);
2197 	atomic_set(&fs_info->scrub_cancel_req, 0);
2198 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2199 	init_rwsem(&fs_info->scrub_super_lock);
2200 	fs_info->scrub_workers_refcnt = 0;
2201 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2202 	fs_info->check_integrity_print_mask = 0;
2203 #endif
2204 
2205 	spin_lock_init(&fs_info->balance_lock);
2206 	mutex_init(&fs_info->balance_mutex);
2207 	atomic_set(&fs_info->balance_running, 0);
2208 	atomic_set(&fs_info->balance_pause_req, 0);
2209 	atomic_set(&fs_info->balance_cancel_req, 0);
2210 	fs_info->balance_ctl = NULL;
2211 	init_waitqueue_head(&fs_info->balance_wait_q);
2212 
2213 	sb->s_blocksize = 4096;
2214 	sb->s_blocksize_bits = blksize_bits(4096);
2215 	sb->s_bdi = &fs_info->bdi;
2216 
2217 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2218 	set_nlink(fs_info->btree_inode, 1);
2219 	/*
2220 	 * we set the i_size on the btree inode to the max possible int.
2221 	 * the real end of the address space is determined by all of
2222 	 * the devices in the system
2223 	 */
2224 	fs_info->btree_inode->i_size = OFFSET_MAX;
2225 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2226 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2227 
2228 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2229 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2230 			     fs_info->btree_inode->i_mapping);
2231 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2232 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2233 
2234 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2235 
2236 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2237 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2238 	       sizeof(struct btrfs_key));
2239 	set_bit(BTRFS_INODE_DUMMY,
2240 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2241 	insert_inode_hash(fs_info->btree_inode);
2242 
2243 	spin_lock_init(&fs_info->block_group_cache_lock);
2244 	fs_info->block_group_cache_tree = RB_ROOT;
2245 	fs_info->first_logical_byte = (u64)-1;
2246 
2247 	extent_io_tree_init(&fs_info->freed_extents[0],
2248 			     fs_info->btree_inode->i_mapping);
2249 	extent_io_tree_init(&fs_info->freed_extents[1],
2250 			     fs_info->btree_inode->i_mapping);
2251 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2252 	fs_info->do_barriers = 1;
2253 
2254 
2255 	mutex_init(&fs_info->ordered_operations_mutex);
2256 	mutex_init(&fs_info->tree_log_mutex);
2257 	mutex_init(&fs_info->chunk_mutex);
2258 	mutex_init(&fs_info->transaction_kthread_mutex);
2259 	mutex_init(&fs_info->cleaner_mutex);
2260 	mutex_init(&fs_info->volume_mutex);
2261 	init_rwsem(&fs_info->extent_commit_sem);
2262 	init_rwsem(&fs_info->cleanup_work_sem);
2263 	init_rwsem(&fs_info->subvol_sem);
2264 	fs_info->dev_replace.lock_owner = 0;
2265 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2266 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2267 	mutex_init(&fs_info->dev_replace.lock_management_lock);
2268 	mutex_init(&fs_info->dev_replace.lock);
2269 
2270 	spin_lock_init(&fs_info->qgroup_lock);
2271 	mutex_init(&fs_info->qgroup_ioctl_lock);
2272 	fs_info->qgroup_tree = RB_ROOT;
2273 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2274 	fs_info->qgroup_seq = 1;
2275 	fs_info->quota_enabled = 0;
2276 	fs_info->pending_quota_state = 0;
2277 	mutex_init(&fs_info->qgroup_rescan_lock);
2278 
2279 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2280 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2281 
2282 	init_waitqueue_head(&fs_info->transaction_throttle);
2283 	init_waitqueue_head(&fs_info->transaction_wait);
2284 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2285 	init_waitqueue_head(&fs_info->async_submit_wait);
2286 
2287 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2288 	if (ret) {
2289 		err = ret;
2290 		goto fail_alloc;
2291 	}
2292 
2293 	__setup_root(4096, 4096, 4096, 4096, tree_root,
2294 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2295 
2296 	invalidate_bdev(fs_devices->latest_bdev);
2297 
2298 	/*
2299 	 * Read super block and check the signature bytes only
2300 	 */
2301 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2302 	if (!bh) {
2303 		err = -EINVAL;
2304 		goto fail_alloc;
2305 	}
2306 
2307 	/*
2308 	 * We want to check superblock checksum, the type is stored inside.
2309 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2310 	 */
2311 	if (btrfs_check_super_csum(bh->b_data)) {
2312 		printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2313 		err = -EINVAL;
2314 		goto fail_alloc;
2315 	}
2316 
2317 	/*
2318 	 * super_copy is zeroed at allocation time and we never touch the
2319 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2320 	 * the whole block of INFO_SIZE
2321 	 */
2322 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2323 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2324 	       sizeof(*fs_info->super_for_commit));
2325 	brelse(bh);
2326 
2327 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2328 
2329 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2330 	if (ret) {
2331 		printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2332 		err = -EINVAL;
2333 		goto fail_alloc;
2334 	}
2335 
2336 	disk_super = fs_info->super_copy;
2337 	if (!btrfs_super_root(disk_super))
2338 		goto fail_alloc;
2339 
2340 	/* check FS state, whether FS is broken. */
2341 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2342 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2343 
2344 	/*
2345 	 * run through our array of backup supers and setup
2346 	 * our ring pointer to the oldest one
2347 	 */
2348 	generation = btrfs_super_generation(disk_super);
2349 	find_oldest_super_backup(fs_info, generation);
2350 
2351 	/*
2352 	 * In the long term, we'll store the compression type in the super
2353 	 * block, and it'll be used for per file compression control.
2354 	 */
2355 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2356 
2357 	ret = btrfs_parse_options(tree_root, options);
2358 	if (ret) {
2359 		err = ret;
2360 		goto fail_alloc;
2361 	}
2362 
2363 	features = btrfs_super_incompat_flags(disk_super) &
2364 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2365 	if (features) {
2366 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2367 		       "unsupported optional features (%Lx).\n",
2368 		       (unsigned long long)features);
2369 		err = -EINVAL;
2370 		goto fail_alloc;
2371 	}
2372 
2373 	if (btrfs_super_leafsize(disk_super) !=
2374 	    btrfs_super_nodesize(disk_super)) {
2375 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2376 		       "blocksizes don't match.  node %d leaf %d\n",
2377 		       btrfs_super_nodesize(disk_super),
2378 		       btrfs_super_leafsize(disk_super));
2379 		err = -EINVAL;
2380 		goto fail_alloc;
2381 	}
2382 	if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2383 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2384 		       "blocksize (%d) was too large\n",
2385 		       btrfs_super_leafsize(disk_super));
2386 		err = -EINVAL;
2387 		goto fail_alloc;
2388 	}
2389 
2390 	features = btrfs_super_incompat_flags(disk_super);
2391 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2392 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2393 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2394 
2395 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2396 		printk(KERN_ERR "btrfs: has skinny extents\n");
2397 
2398 	/*
2399 	 * flag our filesystem as having big metadata blocks if
2400 	 * they are bigger than the page size
2401 	 */
2402 	if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2403 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2404 			printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2405 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2406 	}
2407 
2408 	nodesize = btrfs_super_nodesize(disk_super);
2409 	leafsize = btrfs_super_leafsize(disk_super);
2410 	sectorsize = btrfs_super_sectorsize(disk_super);
2411 	stripesize = btrfs_super_stripesize(disk_super);
2412 	fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2413 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2414 
2415 	/*
2416 	 * mixed block groups end up with duplicate but slightly offset
2417 	 * extent buffers for the same range.  It leads to corruptions
2418 	 */
2419 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2420 	    (sectorsize != leafsize)) {
2421 		printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2422 				"are not allowed for mixed block groups on %s\n",
2423 				sb->s_id);
2424 		goto fail_alloc;
2425 	}
2426 
2427 	/*
2428 	 * Needn't use the lock because there is no other task which will
2429 	 * update the flag.
2430 	 */
2431 	btrfs_set_super_incompat_flags(disk_super, features);
2432 
2433 	features = btrfs_super_compat_ro_flags(disk_super) &
2434 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2435 	if (!(sb->s_flags & MS_RDONLY) && features) {
2436 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2437 		       "unsupported option features (%Lx).\n",
2438 		       (unsigned long long)features);
2439 		err = -EINVAL;
2440 		goto fail_alloc;
2441 	}
2442 
2443 	btrfs_init_workers(&fs_info->generic_worker,
2444 			   "genwork", 1, NULL);
2445 
2446 	btrfs_init_workers(&fs_info->workers, "worker",
2447 			   fs_info->thread_pool_size,
2448 			   &fs_info->generic_worker);
2449 
2450 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2451 			   fs_info->thread_pool_size,
2452 			   &fs_info->generic_worker);
2453 
2454 	btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2455 			   fs_info->thread_pool_size,
2456 			   &fs_info->generic_worker);
2457 
2458 	btrfs_init_workers(&fs_info->submit_workers, "submit",
2459 			   min_t(u64, fs_devices->num_devices,
2460 			   fs_info->thread_pool_size),
2461 			   &fs_info->generic_worker);
2462 
2463 	btrfs_init_workers(&fs_info->caching_workers, "cache",
2464 			   2, &fs_info->generic_worker);
2465 
2466 	/* a higher idle thresh on the submit workers makes it much more
2467 	 * likely that bios will be send down in a sane order to the
2468 	 * devices
2469 	 */
2470 	fs_info->submit_workers.idle_thresh = 64;
2471 
2472 	fs_info->workers.idle_thresh = 16;
2473 	fs_info->workers.ordered = 1;
2474 
2475 	fs_info->delalloc_workers.idle_thresh = 2;
2476 	fs_info->delalloc_workers.ordered = 1;
2477 
2478 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2479 			   &fs_info->generic_worker);
2480 	btrfs_init_workers(&fs_info->endio_workers, "endio",
2481 			   fs_info->thread_pool_size,
2482 			   &fs_info->generic_worker);
2483 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2484 			   fs_info->thread_pool_size,
2485 			   &fs_info->generic_worker);
2486 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
2487 			   "endio-meta-write", fs_info->thread_pool_size,
2488 			   &fs_info->generic_worker);
2489 	btrfs_init_workers(&fs_info->endio_raid56_workers,
2490 			   "endio-raid56", fs_info->thread_pool_size,
2491 			   &fs_info->generic_worker);
2492 	btrfs_init_workers(&fs_info->rmw_workers,
2493 			   "rmw", fs_info->thread_pool_size,
2494 			   &fs_info->generic_worker);
2495 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2496 			   fs_info->thread_pool_size,
2497 			   &fs_info->generic_worker);
2498 	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2499 			   1, &fs_info->generic_worker);
2500 	btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2501 			   fs_info->thread_pool_size,
2502 			   &fs_info->generic_worker);
2503 	btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2504 			   fs_info->thread_pool_size,
2505 			   &fs_info->generic_worker);
2506 	btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2507 			   &fs_info->generic_worker);
2508 
2509 	/*
2510 	 * endios are largely parallel and should have a very
2511 	 * low idle thresh
2512 	 */
2513 	fs_info->endio_workers.idle_thresh = 4;
2514 	fs_info->endio_meta_workers.idle_thresh = 4;
2515 	fs_info->endio_raid56_workers.idle_thresh = 4;
2516 	fs_info->rmw_workers.idle_thresh = 2;
2517 
2518 	fs_info->endio_write_workers.idle_thresh = 2;
2519 	fs_info->endio_meta_write_workers.idle_thresh = 2;
2520 	fs_info->readahead_workers.idle_thresh = 2;
2521 
2522 	/*
2523 	 * btrfs_start_workers can really only fail because of ENOMEM so just
2524 	 * return -ENOMEM if any of these fail.
2525 	 */
2526 	ret = btrfs_start_workers(&fs_info->workers);
2527 	ret |= btrfs_start_workers(&fs_info->generic_worker);
2528 	ret |= btrfs_start_workers(&fs_info->submit_workers);
2529 	ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2530 	ret |= btrfs_start_workers(&fs_info->fixup_workers);
2531 	ret |= btrfs_start_workers(&fs_info->endio_workers);
2532 	ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2533 	ret |= btrfs_start_workers(&fs_info->rmw_workers);
2534 	ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2535 	ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2536 	ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2537 	ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2538 	ret |= btrfs_start_workers(&fs_info->delayed_workers);
2539 	ret |= btrfs_start_workers(&fs_info->caching_workers);
2540 	ret |= btrfs_start_workers(&fs_info->readahead_workers);
2541 	ret |= btrfs_start_workers(&fs_info->flush_workers);
2542 	ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2543 	if (ret) {
2544 		err = -ENOMEM;
2545 		goto fail_sb_buffer;
2546 	}
2547 
2548 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2549 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2550 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2551 
2552 	tree_root->nodesize = nodesize;
2553 	tree_root->leafsize = leafsize;
2554 	tree_root->sectorsize = sectorsize;
2555 	tree_root->stripesize = stripesize;
2556 
2557 	sb->s_blocksize = sectorsize;
2558 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2559 
2560 	if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2561 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2562 		goto fail_sb_buffer;
2563 	}
2564 
2565 	if (sectorsize != PAGE_SIZE) {
2566 		printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2567 		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2568 		goto fail_sb_buffer;
2569 	}
2570 
2571 	mutex_lock(&fs_info->chunk_mutex);
2572 	ret = btrfs_read_sys_array(tree_root);
2573 	mutex_unlock(&fs_info->chunk_mutex);
2574 	if (ret) {
2575 		printk(KERN_WARNING "btrfs: failed to read the system "
2576 		       "array on %s\n", sb->s_id);
2577 		goto fail_sb_buffer;
2578 	}
2579 
2580 	blocksize = btrfs_level_size(tree_root,
2581 				     btrfs_super_chunk_root_level(disk_super));
2582 	generation = btrfs_super_chunk_root_generation(disk_super);
2583 
2584 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
2585 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2586 
2587 	chunk_root->node = read_tree_block(chunk_root,
2588 					   btrfs_super_chunk_root(disk_super),
2589 					   blocksize, generation);
2590 	if (!chunk_root->node ||
2591 	    !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2592 		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2593 		       sb->s_id);
2594 		goto fail_tree_roots;
2595 	}
2596 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2597 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2598 
2599 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2600 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2601 	   BTRFS_UUID_SIZE);
2602 
2603 	ret = btrfs_read_chunk_tree(chunk_root);
2604 	if (ret) {
2605 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2606 		       sb->s_id);
2607 		goto fail_tree_roots;
2608 	}
2609 
2610 	/*
2611 	 * keep the device that is marked to be the target device for the
2612 	 * dev_replace procedure
2613 	 */
2614 	btrfs_close_extra_devices(fs_info, fs_devices, 0);
2615 
2616 	if (!fs_devices->latest_bdev) {
2617 		printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2618 		       sb->s_id);
2619 		goto fail_tree_roots;
2620 	}
2621 
2622 retry_root_backup:
2623 	blocksize = btrfs_level_size(tree_root,
2624 				     btrfs_super_root_level(disk_super));
2625 	generation = btrfs_super_generation(disk_super);
2626 
2627 	tree_root->node = read_tree_block(tree_root,
2628 					  btrfs_super_root(disk_super),
2629 					  blocksize, generation);
2630 	if (!tree_root->node ||
2631 	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2632 		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2633 		       sb->s_id);
2634 
2635 		goto recovery_tree_root;
2636 	}
2637 
2638 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2639 	tree_root->commit_root = btrfs_root_node(tree_root);
2640 
2641 	ret = find_and_setup_root(tree_root, fs_info,
2642 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2643 	if (ret)
2644 		goto recovery_tree_root;
2645 	extent_root->track_dirty = 1;
2646 
2647 	ret = find_and_setup_root(tree_root, fs_info,
2648 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
2649 	if (ret)
2650 		goto recovery_tree_root;
2651 	dev_root->track_dirty = 1;
2652 
2653 	ret = find_and_setup_root(tree_root, fs_info,
2654 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
2655 	if (ret)
2656 		goto recovery_tree_root;
2657 	csum_root->track_dirty = 1;
2658 
2659 	ret = find_and_setup_root(tree_root, fs_info,
2660 				  BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2661 	if (ret) {
2662 		kfree(quota_root);
2663 		quota_root = fs_info->quota_root = NULL;
2664 	} else {
2665 		quota_root->track_dirty = 1;
2666 		fs_info->quota_enabled = 1;
2667 		fs_info->pending_quota_state = 1;
2668 	}
2669 
2670 	fs_info->generation = generation;
2671 	fs_info->last_trans_committed = generation;
2672 
2673 	ret = btrfs_recover_balance(fs_info);
2674 	if (ret) {
2675 		printk(KERN_WARNING "btrfs: failed to recover balance\n");
2676 		goto fail_block_groups;
2677 	}
2678 
2679 	ret = btrfs_init_dev_stats(fs_info);
2680 	if (ret) {
2681 		printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2682 		       ret);
2683 		goto fail_block_groups;
2684 	}
2685 
2686 	ret = btrfs_init_dev_replace(fs_info);
2687 	if (ret) {
2688 		pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2689 		goto fail_block_groups;
2690 	}
2691 
2692 	btrfs_close_extra_devices(fs_info, fs_devices, 1);
2693 
2694 	ret = btrfs_init_space_info(fs_info);
2695 	if (ret) {
2696 		printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2697 		goto fail_block_groups;
2698 	}
2699 
2700 	ret = btrfs_read_block_groups(extent_root);
2701 	if (ret) {
2702 		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2703 		goto fail_block_groups;
2704 	}
2705 	fs_info->num_tolerated_disk_barrier_failures =
2706 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2707 	if (fs_info->fs_devices->missing_devices >
2708 	     fs_info->num_tolerated_disk_barrier_failures &&
2709 	    !(sb->s_flags & MS_RDONLY)) {
2710 		printk(KERN_WARNING
2711 		       "Btrfs: too many missing devices, writeable mount is not allowed\n");
2712 		goto fail_block_groups;
2713 	}
2714 
2715 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2716 					       "btrfs-cleaner");
2717 	if (IS_ERR(fs_info->cleaner_kthread))
2718 		goto fail_block_groups;
2719 
2720 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2721 						   tree_root,
2722 						   "btrfs-transaction");
2723 	if (IS_ERR(fs_info->transaction_kthread))
2724 		goto fail_cleaner;
2725 
2726 	if (!btrfs_test_opt(tree_root, SSD) &&
2727 	    !btrfs_test_opt(tree_root, NOSSD) &&
2728 	    !fs_info->fs_devices->rotating) {
2729 		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2730 		       "mode\n");
2731 		btrfs_set_opt(fs_info->mount_opt, SSD);
2732 	}
2733 
2734 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2735 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2736 		ret = btrfsic_mount(tree_root, fs_devices,
2737 				    btrfs_test_opt(tree_root,
2738 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2739 				    1 : 0,
2740 				    fs_info->check_integrity_print_mask);
2741 		if (ret)
2742 			printk(KERN_WARNING "btrfs: failed to initialize"
2743 			       " integrity check module %s\n", sb->s_id);
2744 	}
2745 #endif
2746 	ret = btrfs_read_qgroup_config(fs_info);
2747 	if (ret)
2748 		goto fail_trans_kthread;
2749 
2750 	/* do not make disk changes in broken FS */
2751 	if (btrfs_super_log_root(disk_super) != 0) {
2752 		u64 bytenr = btrfs_super_log_root(disk_super);
2753 
2754 		if (fs_devices->rw_devices == 0) {
2755 			printk(KERN_WARNING "Btrfs log replay required "
2756 			       "on RO media\n");
2757 			err = -EIO;
2758 			goto fail_qgroup;
2759 		}
2760 		blocksize =
2761 		     btrfs_level_size(tree_root,
2762 				      btrfs_super_log_root_level(disk_super));
2763 
2764 		log_tree_root = btrfs_alloc_root(fs_info);
2765 		if (!log_tree_root) {
2766 			err = -ENOMEM;
2767 			goto fail_qgroup;
2768 		}
2769 
2770 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2771 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2772 
2773 		log_tree_root->node = read_tree_block(tree_root, bytenr,
2774 						      blocksize,
2775 						      generation + 1);
2776 		if (!log_tree_root->node ||
2777 		    !extent_buffer_uptodate(log_tree_root->node)) {
2778 			printk(KERN_ERR "btrfs: failed to read log tree\n");
2779 			free_extent_buffer(log_tree_root->node);
2780 			kfree(log_tree_root);
2781 			goto fail_trans_kthread;
2782 		}
2783 		/* returns with log_tree_root freed on success */
2784 		ret = btrfs_recover_log_trees(log_tree_root);
2785 		if (ret) {
2786 			btrfs_error(tree_root->fs_info, ret,
2787 				    "Failed to recover log tree");
2788 			free_extent_buffer(log_tree_root->node);
2789 			kfree(log_tree_root);
2790 			goto fail_trans_kthread;
2791 		}
2792 
2793 		if (sb->s_flags & MS_RDONLY) {
2794 			ret = btrfs_commit_super(tree_root);
2795 			if (ret)
2796 				goto fail_trans_kthread;
2797 		}
2798 	}
2799 
2800 	ret = btrfs_find_orphan_roots(tree_root);
2801 	if (ret)
2802 		goto fail_trans_kthread;
2803 
2804 	if (!(sb->s_flags & MS_RDONLY)) {
2805 		ret = btrfs_cleanup_fs_roots(fs_info);
2806 		if (ret)
2807 			goto fail_trans_kthread;
2808 
2809 		ret = btrfs_recover_relocation(tree_root);
2810 		if (ret < 0) {
2811 			printk(KERN_WARNING
2812 			       "btrfs: failed to recover relocation\n");
2813 			err = -EINVAL;
2814 			goto fail_qgroup;
2815 		}
2816 	}
2817 
2818 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2819 	location.type = BTRFS_ROOT_ITEM_KEY;
2820 	location.offset = (u64)-1;
2821 
2822 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2823 	if (!fs_info->fs_root)
2824 		goto fail_qgroup;
2825 	if (IS_ERR(fs_info->fs_root)) {
2826 		err = PTR_ERR(fs_info->fs_root);
2827 		goto fail_qgroup;
2828 	}
2829 
2830 	if (sb->s_flags & MS_RDONLY)
2831 		return 0;
2832 
2833 	down_read(&fs_info->cleanup_work_sem);
2834 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2835 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2836 		up_read(&fs_info->cleanup_work_sem);
2837 		close_ctree(tree_root);
2838 		return ret;
2839 	}
2840 	up_read(&fs_info->cleanup_work_sem);
2841 
2842 	ret = btrfs_resume_balance_async(fs_info);
2843 	if (ret) {
2844 		printk(KERN_WARNING "btrfs: failed to resume balance\n");
2845 		close_ctree(tree_root);
2846 		return ret;
2847 	}
2848 
2849 	ret = btrfs_resume_dev_replace_async(fs_info);
2850 	if (ret) {
2851 		pr_warn("btrfs: failed to resume dev_replace\n");
2852 		close_ctree(tree_root);
2853 		return ret;
2854 	}
2855 
2856 	return 0;
2857 
2858 fail_qgroup:
2859 	btrfs_free_qgroup_config(fs_info);
2860 fail_trans_kthread:
2861 	kthread_stop(fs_info->transaction_kthread);
2862 	del_fs_roots(fs_info);
2863 	btrfs_cleanup_transaction(fs_info->tree_root);
2864 fail_cleaner:
2865 	kthread_stop(fs_info->cleaner_kthread);
2866 
2867 	/*
2868 	 * make sure we're done with the btree inode before we stop our
2869 	 * kthreads
2870 	 */
2871 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2872 
2873 fail_block_groups:
2874 	btrfs_put_block_group_cache(fs_info);
2875 	btrfs_free_block_groups(fs_info);
2876 
2877 fail_tree_roots:
2878 	free_root_pointers(fs_info, 1);
2879 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2880 
2881 fail_sb_buffer:
2882 	btrfs_stop_all_workers(fs_info);
2883 fail_alloc:
2884 fail_iput:
2885 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2886 
2887 	iput(fs_info->btree_inode);
2888 fail_delalloc_bytes:
2889 	percpu_counter_destroy(&fs_info->delalloc_bytes);
2890 fail_dirty_metadata_bytes:
2891 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2892 fail_bdi:
2893 	bdi_destroy(&fs_info->bdi);
2894 fail_srcu:
2895 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2896 fail:
2897 	btrfs_free_stripe_hash_table(fs_info);
2898 	btrfs_close_devices(fs_info->fs_devices);
2899 	return err;
2900 
2901 recovery_tree_root:
2902 	if (!btrfs_test_opt(tree_root, RECOVERY))
2903 		goto fail_tree_roots;
2904 
2905 	free_root_pointers(fs_info, 0);
2906 
2907 	/* don't use the log in recovery mode, it won't be valid */
2908 	btrfs_set_super_log_root(disk_super, 0);
2909 
2910 	/* we can't trust the free space cache either */
2911 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2912 
2913 	ret = next_root_backup(fs_info, fs_info->super_copy,
2914 			       &num_backups_tried, &backup_index);
2915 	if (ret == -1)
2916 		goto fail_block_groups;
2917 	goto retry_root_backup;
2918 }
2919 
2920 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2921 {
2922 	if (uptodate) {
2923 		set_buffer_uptodate(bh);
2924 	} else {
2925 		struct btrfs_device *device = (struct btrfs_device *)
2926 			bh->b_private;
2927 
2928 		printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2929 					  "I/O error on %s\n",
2930 					  rcu_str_deref(device->name));
2931 		/* note, we dont' set_buffer_write_io_error because we have
2932 		 * our own ways of dealing with the IO errors
2933 		 */
2934 		clear_buffer_uptodate(bh);
2935 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2936 	}
2937 	unlock_buffer(bh);
2938 	put_bh(bh);
2939 }
2940 
2941 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2942 {
2943 	struct buffer_head *bh;
2944 	struct buffer_head *latest = NULL;
2945 	struct btrfs_super_block *super;
2946 	int i;
2947 	u64 transid = 0;
2948 	u64 bytenr;
2949 
2950 	/* we would like to check all the supers, but that would make
2951 	 * a btrfs mount succeed after a mkfs from a different FS.
2952 	 * So, we need to add a special mount option to scan for
2953 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2954 	 */
2955 	for (i = 0; i < 1; i++) {
2956 		bytenr = btrfs_sb_offset(i);
2957 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2958 			break;
2959 		bh = __bread(bdev, bytenr / 4096, 4096);
2960 		if (!bh)
2961 			continue;
2962 
2963 		super = (struct btrfs_super_block *)bh->b_data;
2964 		if (btrfs_super_bytenr(super) != bytenr ||
2965 		    super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2966 			brelse(bh);
2967 			continue;
2968 		}
2969 
2970 		if (!latest || btrfs_super_generation(super) > transid) {
2971 			brelse(latest);
2972 			latest = bh;
2973 			transid = btrfs_super_generation(super);
2974 		} else {
2975 			brelse(bh);
2976 		}
2977 	}
2978 	return latest;
2979 }
2980 
2981 /*
2982  * this should be called twice, once with wait == 0 and
2983  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2984  * we write are pinned.
2985  *
2986  * They are released when wait == 1 is done.
2987  * max_mirrors must be the same for both runs, and it indicates how
2988  * many supers on this one device should be written.
2989  *
2990  * max_mirrors == 0 means to write them all.
2991  */
2992 static int write_dev_supers(struct btrfs_device *device,
2993 			    struct btrfs_super_block *sb,
2994 			    int do_barriers, int wait, int max_mirrors)
2995 {
2996 	struct buffer_head *bh;
2997 	int i;
2998 	int ret;
2999 	int errors = 0;
3000 	u32 crc;
3001 	u64 bytenr;
3002 
3003 	if (max_mirrors == 0)
3004 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3005 
3006 	for (i = 0; i < max_mirrors; i++) {
3007 		bytenr = btrfs_sb_offset(i);
3008 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3009 			break;
3010 
3011 		if (wait) {
3012 			bh = __find_get_block(device->bdev, bytenr / 4096,
3013 					      BTRFS_SUPER_INFO_SIZE);
3014 			if (!bh) {
3015 				errors++;
3016 				continue;
3017 			}
3018 			wait_on_buffer(bh);
3019 			if (!buffer_uptodate(bh))
3020 				errors++;
3021 
3022 			/* drop our reference */
3023 			brelse(bh);
3024 
3025 			/* drop the reference from the wait == 0 run */
3026 			brelse(bh);
3027 			continue;
3028 		} else {
3029 			btrfs_set_super_bytenr(sb, bytenr);
3030 
3031 			crc = ~(u32)0;
3032 			crc = btrfs_csum_data((char *)sb +
3033 					      BTRFS_CSUM_SIZE, crc,
3034 					      BTRFS_SUPER_INFO_SIZE -
3035 					      BTRFS_CSUM_SIZE);
3036 			btrfs_csum_final(crc, sb->csum);
3037 
3038 			/*
3039 			 * one reference for us, and we leave it for the
3040 			 * caller
3041 			 */
3042 			bh = __getblk(device->bdev, bytenr / 4096,
3043 				      BTRFS_SUPER_INFO_SIZE);
3044 			if (!bh) {
3045 				printk(KERN_ERR "btrfs: couldn't get super "
3046 				       "buffer head for bytenr %Lu\n", bytenr);
3047 				errors++;
3048 				continue;
3049 			}
3050 
3051 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3052 
3053 			/* one reference for submit_bh */
3054 			get_bh(bh);
3055 
3056 			set_buffer_uptodate(bh);
3057 			lock_buffer(bh);
3058 			bh->b_end_io = btrfs_end_buffer_write_sync;
3059 			bh->b_private = device;
3060 		}
3061 
3062 		/*
3063 		 * we fua the first super.  The others we allow
3064 		 * to go down lazy.
3065 		 */
3066 		ret = btrfsic_submit_bh(WRITE_FUA, bh);
3067 		if (ret)
3068 			errors++;
3069 	}
3070 	return errors < i ? 0 : -1;
3071 }
3072 
3073 /*
3074  * endio for the write_dev_flush, this will wake anyone waiting
3075  * for the barrier when it is done
3076  */
3077 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3078 {
3079 	if (err) {
3080 		if (err == -EOPNOTSUPP)
3081 			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3082 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
3083 	}
3084 	if (bio->bi_private)
3085 		complete(bio->bi_private);
3086 	bio_put(bio);
3087 }
3088 
3089 /*
3090  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3091  * sent down.  With wait == 1, it waits for the previous flush.
3092  *
3093  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3094  * capable
3095  */
3096 static int write_dev_flush(struct btrfs_device *device, int wait)
3097 {
3098 	struct bio *bio;
3099 	int ret = 0;
3100 
3101 	if (device->nobarriers)
3102 		return 0;
3103 
3104 	if (wait) {
3105 		bio = device->flush_bio;
3106 		if (!bio)
3107 			return 0;
3108 
3109 		wait_for_completion(&device->flush_wait);
3110 
3111 		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3112 			printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3113 				      rcu_str_deref(device->name));
3114 			device->nobarriers = 1;
3115 		} else if (!bio_flagged(bio, BIO_UPTODATE)) {
3116 			ret = -EIO;
3117 			btrfs_dev_stat_inc_and_print(device,
3118 				BTRFS_DEV_STAT_FLUSH_ERRS);
3119 		}
3120 
3121 		/* drop the reference from the wait == 0 run */
3122 		bio_put(bio);
3123 		device->flush_bio = NULL;
3124 
3125 		return ret;
3126 	}
3127 
3128 	/*
3129 	 * one reference for us, and we leave it for the
3130 	 * caller
3131 	 */
3132 	device->flush_bio = NULL;
3133 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3134 	if (!bio)
3135 		return -ENOMEM;
3136 
3137 	bio->bi_end_io = btrfs_end_empty_barrier;
3138 	bio->bi_bdev = device->bdev;
3139 	init_completion(&device->flush_wait);
3140 	bio->bi_private = &device->flush_wait;
3141 	device->flush_bio = bio;
3142 
3143 	bio_get(bio);
3144 	btrfsic_submit_bio(WRITE_FLUSH, bio);
3145 
3146 	return 0;
3147 }
3148 
3149 /*
3150  * send an empty flush down to each device in parallel,
3151  * then wait for them
3152  */
3153 static int barrier_all_devices(struct btrfs_fs_info *info)
3154 {
3155 	struct list_head *head;
3156 	struct btrfs_device *dev;
3157 	int errors_send = 0;
3158 	int errors_wait = 0;
3159 	int ret;
3160 
3161 	/* send down all the barriers */
3162 	head = &info->fs_devices->devices;
3163 	list_for_each_entry_rcu(dev, head, dev_list) {
3164 		if (!dev->bdev) {
3165 			errors_send++;
3166 			continue;
3167 		}
3168 		if (!dev->in_fs_metadata || !dev->writeable)
3169 			continue;
3170 
3171 		ret = write_dev_flush(dev, 0);
3172 		if (ret)
3173 			errors_send++;
3174 	}
3175 
3176 	/* wait for all the barriers */
3177 	list_for_each_entry_rcu(dev, head, dev_list) {
3178 		if (!dev->bdev) {
3179 			errors_wait++;
3180 			continue;
3181 		}
3182 		if (!dev->in_fs_metadata || !dev->writeable)
3183 			continue;
3184 
3185 		ret = write_dev_flush(dev, 1);
3186 		if (ret)
3187 			errors_wait++;
3188 	}
3189 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3190 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3191 		return -EIO;
3192 	return 0;
3193 }
3194 
3195 int btrfs_calc_num_tolerated_disk_barrier_failures(
3196 	struct btrfs_fs_info *fs_info)
3197 {
3198 	struct btrfs_ioctl_space_info space;
3199 	struct btrfs_space_info *sinfo;
3200 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3201 		       BTRFS_BLOCK_GROUP_SYSTEM,
3202 		       BTRFS_BLOCK_GROUP_METADATA,
3203 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3204 	int num_types = 4;
3205 	int i;
3206 	int c;
3207 	int num_tolerated_disk_barrier_failures =
3208 		(int)fs_info->fs_devices->num_devices;
3209 
3210 	for (i = 0; i < num_types; i++) {
3211 		struct btrfs_space_info *tmp;
3212 
3213 		sinfo = NULL;
3214 		rcu_read_lock();
3215 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3216 			if (tmp->flags == types[i]) {
3217 				sinfo = tmp;
3218 				break;
3219 			}
3220 		}
3221 		rcu_read_unlock();
3222 
3223 		if (!sinfo)
3224 			continue;
3225 
3226 		down_read(&sinfo->groups_sem);
3227 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3228 			if (!list_empty(&sinfo->block_groups[c])) {
3229 				u64 flags;
3230 
3231 				btrfs_get_block_group_info(
3232 					&sinfo->block_groups[c], &space);
3233 				if (space.total_bytes == 0 ||
3234 				    space.used_bytes == 0)
3235 					continue;
3236 				flags = space.flags;
3237 				/*
3238 				 * return
3239 				 * 0: if dup, single or RAID0 is configured for
3240 				 *    any of metadata, system or data, else
3241 				 * 1: if RAID5 is configured, or if RAID1 or
3242 				 *    RAID10 is configured and only two mirrors
3243 				 *    are used, else
3244 				 * 2: if RAID6 is configured, else
3245 				 * num_mirrors - 1: if RAID1 or RAID10 is
3246 				 *                  configured and more than
3247 				 *                  2 mirrors are used.
3248 				 */
3249 				if (num_tolerated_disk_barrier_failures > 0 &&
3250 				    ((flags & (BTRFS_BLOCK_GROUP_DUP |
3251 					       BTRFS_BLOCK_GROUP_RAID0)) ||
3252 				     ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3253 				      == 0)))
3254 					num_tolerated_disk_barrier_failures = 0;
3255 				else if (num_tolerated_disk_barrier_failures > 1) {
3256 					if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3257 					    BTRFS_BLOCK_GROUP_RAID5 |
3258 					    BTRFS_BLOCK_GROUP_RAID10)) {
3259 						num_tolerated_disk_barrier_failures = 1;
3260 					} else if (flags &
3261 						   BTRFS_BLOCK_GROUP_RAID5) {
3262 						num_tolerated_disk_barrier_failures = 2;
3263 					}
3264 				}
3265 			}
3266 		}
3267 		up_read(&sinfo->groups_sem);
3268 	}
3269 
3270 	return num_tolerated_disk_barrier_failures;
3271 }
3272 
3273 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3274 {
3275 	struct list_head *head;
3276 	struct btrfs_device *dev;
3277 	struct btrfs_super_block *sb;
3278 	struct btrfs_dev_item *dev_item;
3279 	int ret;
3280 	int do_barriers;
3281 	int max_errors;
3282 	int total_errors = 0;
3283 	u64 flags;
3284 
3285 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3286 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3287 	backup_super_roots(root->fs_info);
3288 
3289 	sb = root->fs_info->super_for_commit;
3290 	dev_item = &sb->dev_item;
3291 
3292 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3293 	head = &root->fs_info->fs_devices->devices;
3294 
3295 	if (do_barriers) {
3296 		ret = barrier_all_devices(root->fs_info);
3297 		if (ret) {
3298 			mutex_unlock(
3299 				&root->fs_info->fs_devices->device_list_mutex);
3300 			btrfs_error(root->fs_info, ret,
3301 				    "errors while submitting device barriers.");
3302 			return ret;
3303 		}
3304 	}
3305 
3306 	list_for_each_entry_rcu(dev, head, dev_list) {
3307 		if (!dev->bdev) {
3308 			total_errors++;
3309 			continue;
3310 		}
3311 		if (!dev->in_fs_metadata || !dev->writeable)
3312 			continue;
3313 
3314 		btrfs_set_stack_device_generation(dev_item, 0);
3315 		btrfs_set_stack_device_type(dev_item, dev->type);
3316 		btrfs_set_stack_device_id(dev_item, dev->devid);
3317 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3318 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3319 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3320 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3321 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3322 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3323 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3324 
3325 		flags = btrfs_super_flags(sb);
3326 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3327 
3328 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3329 		if (ret)
3330 			total_errors++;
3331 	}
3332 	if (total_errors > max_errors) {
3333 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3334 		       total_errors);
3335 
3336 		/* This shouldn't happen. FUA is masked off if unsupported */
3337 		BUG();
3338 	}
3339 
3340 	total_errors = 0;
3341 	list_for_each_entry_rcu(dev, head, dev_list) {
3342 		if (!dev->bdev)
3343 			continue;
3344 		if (!dev->in_fs_metadata || !dev->writeable)
3345 			continue;
3346 
3347 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3348 		if (ret)
3349 			total_errors++;
3350 	}
3351 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3352 	if (total_errors > max_errors) {
3353 		btrfs_error(root->fs_info, -EIO,
3354 			    "%d errors while writing supers", total_errors);
3355 		return -EIO;
3356 	}
3357 	return 0;
3358 }
3359 
3360 int write_ctree_super(struct btrfs_trans_handle *trans,
3361 		      struct btrfs_root *root, int max_mirrors)
3362 {
3363 	int ret;
3364 
3365 	ret = write_all_supers(root, max_mirrors);
3366 	return ret;
3367 }
3368 
3369 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3370 {
3371 	spin_lock(&fs_info->fs_roots_radix_lock);
3372 	radix_tree_delete(&fs_info->fs_roots_radix,
3373 			  (unsigned long)root->root_key.objectid);
3374 	spin_unlock(&fs_info->fs_roots_radix_lock);
3375 
3376 	if (btrfs_root_refs(&root->root_item) == 0)
3377 		synchronize_srcu(&fs_info->subvol_srcu);
3378 
3379 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3380 		btrfs_free_log(NULL, root);
3381 		btrfs_free_log_root_tree(NULL, fs_info);
3382 	}
3383 
3384 	__btrfs_remove_free_space_cache(root->free_ino_pinned);
3385 	__btrfs_remove_free_space_cache(root->free_ino_ctl);
3386 	free_fs_root(root);
3387 }
3388 
3389 static void free_fs_root(struct btrfs_root *root)
3390 {
3391 	iput(root->cache_inode);
3392 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3393 	if (root->anon_dev)
3394 		free_anon_bdev(root->anon_dev);
3395 	free_extent_buffer(root->node);
3396 	free_extent_buffer(root->commit_root);
3397 	kfree(root->free_ino_ctl);
3398 	kfree(root->free_ino_pinned);
3399 	kfree(root->name);
3400 	kfree(root);
3401 }
3402 
3403 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3404 {
3405 	u64 root_objectid = 0;
3406 	struct btrfs_root *gang[8];
3407 	int i;
3408 	int ret;
3409 
3410 	while (1) {
3411 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3412 					     (void **)gang, root_objectid,
3413 					     ARRAY_SIZE(gang));
3414 		if (!ret)
3415 			break;
3416 
3417 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3418 		for (i = 0; i < ret; i++) {
3419 			int err;
3420 
3421 			root_objectid = gang[i]->root_key.objectid;
3422 			err = btrfs_orphan_cleanup(gang[i]);
3423 			if (err)
3424 				return err;
3425 		}
3426 		root_objectid++;
3427 	}
3428 	return 0;
3429 }
3430 
3431 int btrfs_commit_super(struct btrfs_root *root)
3432 {
3433 	struct btrfs_trans_handle *trans;
3434 	int ret;
3435 
3436 	mutex_lock(&root->fs_info->cleaner_mutex);
3437 	btrfs_run_delayed_iputs(root);
3438 	mutex_unlock(&root->fs_info->cleaner_mutex);
3439 	wake_up_process(root->fs_info->cleaner_kthread);
3440 
3441 	/* wait until ongoing cleanup work done */
3442 	down_write(&root->fs_info->cleanup_work_sem);
3443 	up_write(&root->fs_info->cleanup_work_sem);
3444 
3445 	trans = btrfs_join_transaction(root);
3446 	if (IS_ERR(trans))
3447 		return PTR_ERR(trans);
3448 	ret = btrfs_commit_transaction(trans, root);
3449 	if (ret)
3450 		return ret;
3451 	/* run commit again to drop the original snapshot */
3452 	trans = btrfs_join_transaction(root);
3453 	if (IS_ERR(trans))
3454 		return PTR_ERR(trans);
3455 	ret = btrfs_commit_transaction(trans, root);
3456 	if (ret)
3457 		return ret;
3458 	ret = btrfs_write_and_wait_transaction(NULL, root);
3459 	if (ret) {
3460 		btrfs_error(root->fs_info, ret,
3461 			    "Failed to sync btree inode to disk.");
3462 		return ret;
3463 	}
3464 
3465 	ret = write_ctree_super(NULL, root, 0);
3466 	return ret;
3467 }
3468 
3469 int close_ctree(struct btrfs_root *root)
3470 {
3471 	struct btrfs_fs_info *fs_info = root->fs_info;
3472 	int ret;
3473 
3474 	fs_info->closing = 1;
3475 	smp_mb();
3476 
3477 	/* pause restriper - we want to resume on mount */
3478 	btrfs_pause_balance(fs_info);
3479 
3480 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3481 
3482 	btrfs_scrub_cancel(fs_info);
3483 
3484 	/* wait for any defraggers to finish */
3485 	wait_event(fs_info->transaction_wait,
3486 		   (atomic_read(&fs_info->defrag_running) == 0));
3487 
3488 	/* clear out the rbtree of defraggable inodes */
3489 	btrfs_cleanup_defrag_inodes(fs_info);
3490 
3491 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3492 		ret = btrfs_commit_super(root);
3493 		if (ret)
3494 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3495 	}
3496 
3497 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3498 		btrfs_error_commit_super(root);
3499 
3500 	btrfs_put_block_group_cache(fs_info);
3501 
3502 	kthread_stop(fs_info->transaction_kthread);
3503 	kthread_stop(fs_info->cleaner_kthread);
3504 
3505 	fs_info->closing = 2;
3506 	smp_mb();
3507 
3508 	btrfs_free_qgroup_config(root->fs_info);
3509 
3510 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3511 		printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3512 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3513 	}
3514 
3515 	free_root_pointers(fs_info, 1);
3516 
3517 	btrfs_free_block_groups(fs_info);
3518 
3519 	del_fs_roots(fs_info);
3520 
3521 	iput(fs_info->btree_inode);
3522 
3523 	btrfs_stop_all_workers(fs_info);
3524 
3525 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3526 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3527 		btrfsic_unmount(root, fs_info->fs_devices);
3528 #endif
3529 
3530 	btrfs_close_devices(fs_info->fs_devices);
3531 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3532 
3533 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3534 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3535 	bdi_destroy(&fs_info->bdi);
3536 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3537 
3538 	btrfs_free_stripe_hash_table(fs_info);
3539 
3540 	return 0;
3541 }
3542 
3543 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3544 			  int atomic)
3545 {
3546 	int ret;
3547 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3548 
3549 	ret = extent_buffer_uptodate(buf);
3550 	if (!ret)
3551 		return ret;
3552 
3553 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3554 				    parent_transid, atomic);
3555 	if (ret == -EAGAIN)
3556 		return ret;
3557 	return !ret;
3558 }
3559 
3560 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3561 {
3562 	return set_extent_buffer_uptodate(buf);
3563 }
3564 
3565 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3566 {
3567 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3568 	u64 transid = btrfs_header_generation(buf);
3569 	int was_dirty;
3570 
3571 	btrfs_assert_tree_locked(buf);
3572 	if (transid != root->fs_info->generation)
3573 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3574 		       "found %llu running %llu\n",
3575 			(unsigned long long)buf->start,
3576 			(unsigned long long)transid,
3577 			(unsigned long long)root->fs_info->generation);
3578 	was_dirty = set_extent_buffer_dirty(buf);
3579 	if (!was_dirty)
3580 		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3581 				     buf->len,
3582 				     root->fs_info->dirty_metadata_batch);
3583 }
3584 
3585 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3586 					int flush_delayed)
3587 {
3588 	/*
3589 	 * looks as though older kernels can get into trouble with
3590 	 * this code, they end up stuck in balance_dirty_pages forever
3591 	 */
3592 	int ret;
3593 
3594 	if (current->flags & PF_MEMALLOC)
3595 		return;
3596 
3597 	if (flush_delayed)
3598 		btrfs_balance_delayed_items(root);
3599 
3600 	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3601 				     BTRFS_DIRTY_METADATA_THRESH);
3602 	if (ret > 0) {
3603 		balance_dirty_pages_ratelimited(
3604 				   root->fs_info->btree_inode->i_mapping);
3605 	}
3606 	return;
3607 }
3608 
3609 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3610 {
3611 	__btrfs_btree_balance_dirty(root, 1);
3612 }
3613 
3614 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3615 {
3616 	__btrfs_btree_balance_dirty(root, 0);
3617 }
3618 
3619 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3620 {
3621 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3622 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3623 }
3624 
3625 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3626 			      int read_only)
3627 {
3628 	/*
3629 	 * Placeholder for checks
3630 	 */
3631 	return 0;
3632 }
3633 
3634 static void btrfs_error_commit_super(struct btrfs_root *root)
3635 {
3636 	mutex_lock(&root->fs_info->cleaner_mutex);
3637 	btrfs_run_delayed_iputs(root);
3638 	mutex_unlock(&root->fs_info->cleaner_mutex);
3639 
3640 	down_write(&root->fs_info->cleanup_work_sem);
3641 	up_write(&root->fs_info->cleanup_work_sem);
3642 
3643 	/* cleanup FS via transaction */
3644 	btrfs_cleanup_transaction(root);
3645 }
3646 
3647 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3648 					     struct btrfs_root *root)
3649 {
3650 	struct btrfs_inode *btrfs_inode;
3651 	struct list_head splice;
3652 
3653 	INIT_LIST_HEAD(&splice);
3654 
3655 	mutex_lock(&root->fs_info->ordered_operations_mutex);
3656 	spin_lock(&root->fs_info->ordered_extent_lock);
3657 
3658 	list_splice_init(&t->ordered_operations, &splice);
3659 	while (!list_empty(&splice)) {
3660 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3661 					 ordered_operations);
3662 
3663 		list_del_init(&btrfs_inode->ordered_operations);
3664 		spin_unlock(&root->fs_info->ordered_extent_lock);
3665 
3666 		btrfs_invalidate_inodes(btrfs_inode->root);
3667 
3668 		spin_lock(&root->fs_info->ordered_extent_lock);
3669 	}
3670 
3671 	spin_unlock(&root->fs_info->ordered_extent_lock);
3672 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
3673 }
3674 
3675 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3676 {
3677 	struct btrfs_ordered_extent *ordered;
3678 
3679 	spin_lock(&root->fs_info->ordered_extent_lock);
3680 	/*
3681 	 * This will just short circuit the ordered completion stuff which will
3682 	 * make sure the ordered extent gets properly cleaned up.
3683 	 */
3684 	list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3685 			    root_extent_list)
3686 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3687 	spin_unlock(&root->fs_info->ordered_extent_lock);
3688 }
3689 
3690 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3691 			       struct btrfs_root *root)
3692 {
3693 	struct rb_node *node;
3694 	struct btrfs_delayed_ref_root *delayed_refs;
3695 	struct btrfs_delayed_ref_node *ref;
3696 	int ret = 0;
3697 
3698 	delayed_refs = &trans->delayed_refs;
3699 
3700 	spin_lock(&delayed_refs->lock);
3701 	if (delayed_refs->num_entries == 0) {
3702 		spin_unlock(&delayed_refs->lock);
3703 		printk(KERN_INFO "delayed_refs has NO entry\n");
3704 		return ret;
3705 	}
3706 
3707 	while ((node = rb_first(&delayed_refs->root)) != NULL) {
3708 		struct btrfs_delayed_ref_head *head = NULL;
3709 
3710 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3711 		atomic_set(&ref->refs, 1);
3712 		if (btrfs_delayed_ref_is_head(ref)) {
3713 
3714 			head = btrfs_delayed_node_to_head(ref);
3715 			if (!mutex_trylock(&head->mutex)) {
3716 				atomic_inc(&ref->refs);
3717 				spin_unlock(&delayed_refs->lock);
3718 
3719 				/* Need to wait for the delayed ref to run */
3720 				mutex_lock(&head->mutex);
3721 				mutex_unlock(&head->mutex);
3722 				btrfs_put_delayed_ref(ref);
3723 
3724 				spin_lock(&delayed_refs->lock);
3725 				continue;
3726 			}
3727 
3728 			if (head->must_insert_reserved)
3729 				btrfs_pin_extent(root, ref->bytenr,
3730 						 ref->num_bytes, 1);
3731 			btrfs_free_delayed_extent_op(head->extent_op);
3732 			delayed_refs->num_heads--;
3733 			if (list_empty(&head->cluster))
3734 				delayed_refs->num_heads_ready--;
3735 			list_del_init(&head->cluster);
3736 		}
3737 
3738 		ref->in_tree = 0;
3739 		rb_erase(&ref->rb_node, &delayed_refs->root);
3740 		delayed_refs->num_entries--;
3741 		if (head)
3742 			mutex_unlock(&head->mutex);
3743 		spin_unlock(&delayed_refs->lock);
3744 		btrfs_put_delayed_ref(ref);
3745 
3746 		cond_resched();
3747 		spin_lock(&delayed_refs->lock);
3748 	}
3749 
3750 	spin_unlock(&delayed_refs->lock);
3751 
3752 	return ret;
3753 }
3754 
3755 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3756 {
3757 	struct btrfs_pending_snapshot *snapshot;
3758 	struct list_head splice;
3759 
3760 	INIT_LIST_HEAD(&splice);
3761 
3762 	list_splice_init(&t->pending_snapshots, &splice);
3763 
3764 	while (!list_empty(&splice)) {
3765 		snapshot = list_entry(splice.next,
3766 				      struct btrfs_pending_snapshot,
3767 				      list);
3768 		snapshot->error = -ECANCELED;
3769 		list_del_init(&snapshot->list);
3770 	}
3771 }
3772 
3773 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3774 {
3775 	struct btrfs_inode *btrfs_inode;
3776 	struct list_head splice;
3777 
3778 	INIT_LIST_HEAD(&splice);
3779 
3780 	spin_lock(&root->fs_info->delalloc_lock);
3781 	list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3782 
3783 	while (!list_empty(&splice)) {
3784 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3785 				    delalloc_inodes);
3786 
3787 		list_del_init(&btrfs_inode->delalloc_inodes);
3788 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3789 			  &btrfs_inode->runtime_flags);
3790 		spin_unlock(&root->fs_info->delalloc_lock);
3791 
3792 		btrfs_invalidate_inodes(btrfs_inode->root);
3793 
3794 		spin_lock(&root->fs_info->delalloc_lock);
3795 	}
3796 
3797 	spin_unlock(&root->fs_info->delalloc_lock);
3798 }
3799 
3800 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3801 					struct extent_io_tree *dirty_pages,
3802 					int mark)
3803 {
3804 	int ret;
3805 	struct extent_buffer *eb;
3806 	u64 start = 0;
3807 	u64 end;
3808 
3809 	while (1) {
3810 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3811 					    mark, NULL);
3812 		if (ret)
3813 			break;
3814 
3815 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3816 		while (start <= end) {
3817 			eb = btrfs_find_tree_block(root, start,
3818 						   root->leafsize);
3819 			start += root->leafsize;
3820 			if (!eb)
3821 				continue;
3822 			wait_on_extent_buffer_writeback(eb);
3823 
3824 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3825 					       &eb->bflags))
3826 				clear_extent_buffer_dirty(eb);
3827 			free_extent_buffer_stale(eb);
3828 		}
3829 	}
3830 
3831 	return ret;
3832 }
3833 
3834 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3835 				       struct extent_io_tree *pinned_extents)
3836 {
3837 	struct extent_io_tree *unpin;
3838 	u64 start;
3839 	u64 end;
3840 	int ret;
3841 	bool loop = true;
3842 
3843 	unpin = pinned_extents;
3844 again:
3845 	while (1) {
3846 		ret = find_first_extent_bit(unpin, 0, &start, &end,
3847 					    EXTENT_DIRTY, NULL);
3848 		if (ret)
3849 			break;
3850 
3851 		/* opt_discard */
3852 		if (btrfs_test_opt(root, DISCARD))
3853 			ret = btrfs_error_discard_extent(root, start,
3854 							 end + 1 - start,
3855 							 NULL);
3856 
3857 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
3858 		btrfs_error_unpin_extent_range(root, start, end);
3859 		cond_resched();
3860 	}
3861 
3862 	if (loop) {
3863 		if (unpin == &root->fs_info->freed_extents[0])
3864 			unpin = &root->fs_info->freed_extents[1];
3865 		else
3866 			unpin = &root->fs_info->freed_extents[0];
3867 		loop = false;
3868 		goto again;
3869 	}
3870 
3871 	return 0;
3872 }
3873 
3874 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3875 				   struct btrfs_root *root)
3876 {
3877 	btrfs_destroy_delayed_refs(cur_trans, root);
3878 	btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3879 				cur_trans->dirty_pages.dirty_bytes);
3880 
3881 	/* FIXME: cleanup wait for commit */
3882 	cur_trans->in_commit = 1;
3883 	cur_trans->blocked = 1;
3884 	wake_up(&root->fs_info->transaction_blocked_wait);
3885 
3886 	btrfs_evict_pending_snapshots(cur_trans);
3887 
3888 	cur_trans->blocked = 0;
3889 	wake_up(&root->fs_info->transaction_wait);
3890 
3891 	cur_trans->commit_done = 1;
3892 	wake_up(&cur_trans->commit_wait);
3893 
3894 	btrfs_destroy_delayed_inodes(root);
3895 	btrfs_assert_delayed_root_empty(root);
3896 
3897 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3898 				     EXTENT_DIRTY);
3899 	btrfs_destroy_pinned_extent(root,
3900 				    root->fs_info->pinned_extents);
3901 
3902 	/*
3903 	memset(cur_trans, 0, sizeof(*cur_trans));
3904 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3905 	*/
3906 }
3907 
3908 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3909 {
3910 	struct btrfs_transaction *t;
3911 	LIST_HEAD(list);
3912 
3913 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
3914 
3915 	spin_lock(&root->fs_info->trans_lock);
3916 	list_splice_init(&root->fs_info->trans_list, &list);
3917 	root->fs_info->trans_no_join = 1;
3918 	spin_unlock(&root->fs_info->trans_lock);
3919 
3920 	while (!list_empty(&list)) {
3921 		t = list_entry(list.next, struct btrfs_transaction, list);
3922 
3923 		btrfs_destroy_ordered_operations(t, root);
3924 
3925 		btrfs_destroy_ordered_extents(root);
3926 
3927 		btrfs_destroy_delayed_refs(t, root);
3928 
3929 		/* FIXME: cleanup wait for commit */
3930 		t->in_commit = 1;
3931 		t->blocked = 1;
3932 		smp_mb();
3933 		if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3934 			wake_up(&root->fs_info->transaction_blocked_wait);
3935 
3936 		btrfs_evict_pending_snapshots(t);
3937 
3938 		t->blocked = 0;
3939 		smp_mb();
3940 		if (waitqueue_active(&root->fs_info->transaction_wait))
3941 			wake_up(&root->fs_info->transaction_wait);
3942 
3943 		t->commit_done = 1;
3944 		smp_mb();
3945 		if (waitqueue_active(&t->commit_wait))
3946 			wake_up(&t->commit_wait);
3947 
3948 		btrfs_destroy_delayed_inodes(root);
3949 		btrfs_assert_delayed_root_empty(root);
3950 
3951 		btrfs_destroy_delalloc_inodes(root);
3952 
3953 		spin_lock(&root->fs_info->trans_lock);
3954 		root->fs_info->running_transaction = NULL;
3955 		spin_unlock(&root->fs_info->trans_lock);
3956 
3957 		btrfs_destroy_marked_extents(root, &t->dirty_pages,
3958 					     EXTENT_DIRTY);
3959 
3960 		btrfs_destroy_pinned_extent(root,
3961 					    root->fs_info->pinned_extents);
3962 
3963 		atomic_set(&t->use_count, 0);
3964 		list_del_init(&t->list);
3965 		memset(t, 0, sizeof(*t));
3966 		kmem_cache_free(btrfs_transaction_cachep, t);
3967 	}
3968 
3969 	spin_lock(&root->fs_info->trans_lock);
3970 	root->fs_info->trans_no_join = 0;
3971 	spin_unlock(&root->fs_info->trans_lock);
3972 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3973 
3974 	return 0;
3975 }
3976 
3977 static struct extent_io_ops btree_extent_io_ops = {
3978 	.readpage_end_io_hook = btree_readpage_end_io_hook,
3979 	.readpage_io_failed_hook = btree_io_failed_hook,
3980 	.submit_bio_hook = btree_submit_bio_hook,
3981 	/* note we're sharing with inode.c for the merge bio hook */
3982 	.merge_bio_hook = btrfs_merge_bio_hook,
3983 };
3984