xref: /openbmc/linux/fs/btrfs/disk-io.c (revision c8ed9fc9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
43 #include "discard.h"
44 #include "space-info.h"
45 
46 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
47 				 BTRFS_HEADER_FLAG_RELOC |\
48 				 BTRFS_SUPER_FLAG_ERROR |\
49 				 BTRFS_SUPER_FLAG_SEEDING |\
50 				 BTRFS_SUPER_FLAG_METADUMP |\
51 				 BTRFS_SUPER_FLAG_METADUMP_V2)
52 
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 				      struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60 					struct extent_io_tree *dirty_pages,
61 					int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63 				       struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66 
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73 	struct bio *bio;
74 	bio_end_io_t *end_io;
75 	void *private;
76 	struct btrfs_fs_info *info;
77 	blk_status_t status;
78 	enum btrfs_wq_endio_type metadata;
79 	struct btrfs_work work;
80 };
81 
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83 
84 int __init btrfs_end_io_wq_init(void)
85 {
86 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 					sizeof(struct btrfs_end_io_wq),
88 					0,
89 					SLAB_MEM_SPREAD,
90 					NULL);
91 	if (!btrfs_end_io_wq_cache)
92 		return -ENOMEM;
93 	return 0;
94 }
95 
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98 	kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100 
101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103 	if (fs_info->csum_shash)
104 		crypto_free_shash(fs_info->csum_shash);
105 }
106 
107 /*
108  * async submit bios are used to offload expensive checksumming
109  * onto the worker threads.  They checksum file and metadata bios
110  * just before they are sent down the IO stack.
111  */
112 struct async_submit_bio {
113 	void *private_data;
114 	struct bio *bio;
115 	extent_submit_bio_start_t *submit_bio_start;
116 	int mirror_num;
117 	/*
118 	 * bio_offset is optional, can be used if the pages in the bio
119 	 * can't tell us where in the file the bio should go
120 	 */
121 	u64 bio_offset;
122 	struct btrfs_work work;
123 	blk_status_t status;
124 };
125 
126 /*
127  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
128  * eb, the lockdep key is determined by the btrfs_root it belongs to and
129  * the level the eb occupies in the tree.
130  *
131  * Different roots are used for different purposes and may nest inside each
132  * other and they require separate keysets.  As lockdep keys should be
133  * static, assign keysets according to the purpose of the root as indicated
134  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
135  * roots have separate keysets.
136  *
137  * Lock-nesting across peer nodes is always done with the immediate parent
138  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
139  * subclass to avoid triggering lockdep warning in such cases.
140  *
141  * The key is set by the readpage_end_io_hook after the buffer has passed
142  * csum validation but before the pages are unlocked.  It is also set by
143  * btrfs_init_new_buffer on freshly allocated blocks.
144  *
145  * We also add a check to make sure the highest level of the tree is the
146  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
147  * needs update as well.
148  */
149 #ifdef CONFIG_DEBUG_LOCK_ALLOC
150 # if BTRFS_MAX_LEVEL != 8
151 #  error
152 # endif
153 
154 static struct btrfs_lockdep_keyset {
155 	u64			id;		/* root objectid */
156 	const char		*name_stem;	/* lock name stem */
157 	char			names[BTRFS_MAX_LEVEL + 1][20];
158 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
159 } btrfs_lockdep_keysets[] = {
160 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
161 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
162 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
163 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
164 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
165 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
166 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
167 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
168 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
169 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
170 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
171 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
172 	{ .id = 0,				.name_stem = "tree"	},
173 };
174 
175 void __init btrfs_init_lockdep(void)
176 {
177 	int i, j;
178 
179 	/* initialize lockdep class names */
180 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182 
183 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184 			snprintf(ks->names[j], sizeof(ks->names[j]),
185 				 "btrfs-%s-%02d", ks->name_stem, j);
186 	}
187 }
188 
189 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 				    int level)
191 {
192 	struct btrfs_lockdep_keyset *ks;
193 
194 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
195 
196 	/* find the matching keyset, id 0 is the default entry */
197 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198 		if (ks->id == objectid)
199 			break;
200 
201 	lockdep_set_class_and_name(&eb->lock,
202 				   &ks->keys[level], ks->names[level]);
203 }
204 
205 #endif
206 
207 /*
208  * extents on the btree inode are pretty simple, there's one extent
209  * that covers the entire device
210  */
211 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
212 				    struct page *page, size_t pg_offset,
213 				    u64 start, u64 len)
214 {
215 	struct extent_map_tree *em_tree = &inode->extent_tree;
216 	struct extent_map *em;
217 	int ret;
218 
219 	read_lock(&em_tree->lock);
220 	em = lookup_extent_mapping(em_tree, start, len);
221 	if (em) {
222 		read_unlock(&em_tree->lock);
223 		goto out;
224 	}
225 	read_unlock(&em_tree->lock);
226 
227 	em = alloc_extent_map();
228 	if (!em) {
229 		em = ERR_PTR(-ENOMEM);
230 		goto out;
231 	}
232 	em->start = 0;
233 	em->len = (u64)-1;
234 	em->block_len = (u64)-1;
235 	em->block_start = 0;
236 
237 	write_lock(&em_tree->lock);
238 	ret = add_extent_mapping(em_tree, em, 0);
239 	if (ret == -EEXIST) {
240 		free_extent_map(em);
241 		em = lookup_extent_mapping(em_tree, start, len);
242 		if (!em)
243 			em = ERR_PTR(-EIO);
244 	} else if (ret) {
245 		free_extent_map(em);
246 		em = ERR_PTR(ret);
247 	}
248 	write_unlock(&em_tree->lock);
249 
250 out:
251 	return em;
252 }
253 
254 /*
255  * Compute the csum of a btree block and store the result to provided buffer.
256  */
257 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
258 {
259 	struct btrfs_fs_info *fs_info = buf->fs_info;
260 	const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
261 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
262 	char *kaddr;
263 	int i;
264 
265 	shash->tfm = fs_info->csum_shash;
266 	crypto_shash_init(shash);
267 	kaddr = page_address(buf->pages[0]);
268 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
269 			    PAGE_SIZE - BTRFS_CSUM_SIZE);
270 
271 	for (i = 1; i < num_pages; i++) {
272 		kaddr = page_address(buf->pages[i]);
273 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
274 	}
275 	memset(result, 0, BTRFS_CSUM_SIZE);
276 	crypto_shash_final(shash, result);
277 }
278 
279 /*
280  * we can't consider a given block up to date unless the transid of the
281  * block matches the transid in the parent node's pointer.  This is how we
282  * detect blocks that either didn't get written at all or got written
283  * in the wrong place.
284  */
285 static int verify_parent_transid(struct extent_io_tree *io_tree,
286 				 struct extent_buffer *eb, u64 parent_transid,
287 				 int atomic)
288 {
289 	struct extent_state *cached_state = NULL;
290 	int ret;
291 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
292 
293 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
294 		return 0;
295 
296 	if (atomic)
297 		return -EAGAIN;
298 
299 	if (need_lock) {
300 		btrfs_tree_read_lock(eb);
301 		btrfs_set_lock_blocking_read(eb);
302 	}
303 
304 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
305 			 &cached_state);
306 	if (extent_buffer_uptodate(eb) &&
307 	    btrfs_header_generation(eb) == parent_transid) {
308 		ret = 0;
309 		goto out;
310 	}
311 	btrfs_err_rl(eb->fs_info,
312 		"parent transid verify failed on %llu wanted %llu found %llu",
313 			eb->start,
314 			parent_transid, btrfs_header_generation(eb));
315 	ret = 1;
316 
317 	/*
318 	 * Things reading via commit roots that don't have normal protection,
319 	 * like send, can have a really old block in cache that may point at a
320 	 * block that has been freed and re-allocated.  So don't clear uptodate
321 	 * if we find an eb that is under IO (dirty/writeback) because we could
322 	 * end up reading in the stale data and then writing it back out and
323 	 * making everybody very sad.
324 	 */
325 	if (!extent_buffer_under_io(eb))
326 		clear_extent_buffer_uptodate(eb);
327 out:
328 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
329 			     &cached_state);
330 	if (need_lock)
331 		btrfs_tree_read_unlock_blocking(eb);
332 	return ret;
333 }
334 
335 static bool btrfs_supported_super_csum(u16 csum_type)
336 {
337 	switch (csum_type) {
338 	case BTRFS_CSUM_TYPE_CRC32:
339 	case BTRFS_CSUM_TYPE_XXHASH:
340 	case BTRFS_CSUM_TYPE_SHA256:
341 	case BTRFS_CSUM_TYPE_BLAKE2:
342 		return true;
343 	default:
344 		return false;
345 	}
346 }
347 
348 /*
349  * Return 0 if the superblock checksum type matches the checksum value of that
350  * algorithm. Pass the raw disk superblock data.
351  */
352 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
353 				  char *raw_disk_sb)
354 {
355 	struct btrfs_super_block *disk_sb =
356 		(struct btrfs_super_block *)raw_disk_sb;
357 	char result[BTRFS_CSUM_SIZE];
358 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
359 
360 	shash->tfm = fs_info->csum_shash;
361 
362 	/*
363 	 * The super_block structure does not span the whole
364 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
365 	 * filled with zeros and is included in the checksum.
366 	 */
367 	crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
368 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
369 
370 	if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
371 		return 1;
372 
373 	return 0;
374 }
375 
376 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
377 			   struct btrfs_key *first_key, u64 parent_transid)
378 {
379 	struct btrfs_fs_info *fs_info = eb->fs_info;
380 	int found_level;
381 	struct btrfs_key found_key;
382 	int ret;
383 
384 	found_level = btrfs_header_level(eb);
385 	if (found_level != level) {
386 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
387 		     KERN_ERR "BTRFS: tree level check failed\n");
388 		btrfs_err(fs_info,
389 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
390 			  eb->start, level, found_level);
391 		return -EIO;
392 	}
393 
394 	if (!first_key)
395 		return 0;
396 
397 	/*
398 	 * For live tree block (new tree blocks in current transaction),
399 	 * we need proper lock context to avoid race, which is impossible here.
400 	 * So we only checks tree blocks which is read from disk, whose
401 	 * generation <= fs_info->last_trans_committed.
402 	 */
403 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
404 		return 0;
405 
406 	/* We have @first_key, so this @eb must have at least one item */
407 	if (btrfs_header_nritems(eb) == 0) {
408 		btrfs_err(fs_info,
409 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
410 			  eb->start);
411 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
412 		return -EUCLEAN;
413 	}
414 
415 	if (found_level)
416 		btrfs_node_key_to_cpu(eb, &found_key, 0);
417 	else
418 		btrfs_item_key_to_cpu(eb, &found_key, 0);
419 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
420 
421 	if (ret) {
422 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
423 		     KERN_ERR "BTRFS: tree first key check failed\n");
424 		btrfs_err(fs_info,
425 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
426 			  eb->start, parent_transid, first_key->objectid,
427 			  first_key->type, first_key->offset,
428 			  found_key.objectid, found_key.type,
429 			  found_key.offset);
430 	}
431 	return ret;
432 }
433 
434 /*
435  * helper to read a given tree block, doing retries as required when
436  * the checksums don't match and we have alternate mirrors to try.
437  *
438  * @parent_transid:	expected transid, skip check if 0
439  * @level:		expected level, mandatory check
440  * @first_key:		expected key of first slot, skip check if NULL
441  */
442 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
443 					  u64 parent_transid, int level,
444 					  struct btrfs_key *first_key)
445 {
446 	struct btrfs_fs_info *fs_info = eb->fs_info;
447 	struct extent_io_tree *io_tree;
448 	int failed = 0;
449 	int ret;
450 	int num_copies = 0;
451 	int mirror_num = 0;
452 	int failed_mirror = 0;
453 
454 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
455 	while (1) {
456 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
457 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
458 		if (!ret) {
459 			if (verify_parent_transid(io_tree, eb,
460 						   parent_transid, 0))
461 				ret = -EIO;
462 			else if (btrfs_verify_level_key(eb, level,
463 						first_key, parent_transid))
464 				ret = -EUCLEAN;
465 			else
466 				break;
467 		}
468 
469 		num_copies = btrfs_num_copies(fs_info,
470 					      eb->start, eb->len);
471 		if (num_copies == 1)
472 			break;
473 
474 		if (!failed_mirror) {
475 			failed = 1;
476 			failed_mirror = eb->read_mirror;
477 		}
478 
479 		mirror_num++;
480 		if (mirror_num == failed_mirror)
481 			mirror_num++;
482 
483 		if (mirror_num > num_copies)
484 			break;
485 	}
486 
487 	if (failed && !ret && failed_mirror)
488 		btrfs_repair_eb_io_failure(eb, failed_mirror);
489 
490 	return ret;
491 }
492 
493 /*
494  * checksum a dirty tree block before IO.  This has extra checks to make sure
495  * we only fill in the checksum field in the first page of a multi-page block
496  */
497 
498 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
499 {
500 	u64 start = page_offset(page);
501 	u64 found_start;
502 	u8 result[BTRFS_CSUM_SIZE];
503 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
504 	struct extent_buffer *eb;
505 	int ret;
506 
507 	eb = (struct extent_buffer *)page->private;
508 	if (page != eb->pages[0])
509 		return 0;
510 
511 	found_start = btrfs_header_bytenr(eb);
512 	/*
513 	 * Please do not consolidate these warnings into a single if.
514 	 * It is useful to know what went wrong.
515 	 */
516 	if (WARN_ON(found_start != start))
517 		return -EUCLEAN;
518 	if (WARN_ON(!PageUptodate(page)))
519 		return -EUCLEAN;
520 
521 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
522 				    offsetof(struct btrfs_header, fsid),
523 				    BTRFS_FSID_SIZE) == 0);
524 
525 	csum_tree_block(eb, result);
526 
527 	if (btrfs_header_level(eb))
528 		ret = btrfs_check_node(eb);
529 	else
530 		ret = btrfs_check_leaf_full(eb);
531 
532 	if (ret < 0) {
533 		btrfs_print_tree(eb, 0);
534 		btrfs_err(fs_info,
535 		"block=%llu write time tree block corruption detected",
536 			  eb->start);
537 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
538 		return ret;
539 	}
540 	write_extent_buffer(eb, result, 0, csum_size);
541 
542 	return 0;
543 }
544 
545 static int check_tree_block_fsid(struct extent_buffer *eb)
546 {
547 	struct btrfs_fs_info *fs_info = eb->fs_info;
548 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
549 	u8 fsid[BTRFS_FSID_SIZE];
550 	int ret = 1;
551 
552 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
553 			   BTRFS_FSID_SIZE);
554 	while (fs_devices) {
555 		u8 *metadata_uuid;
556 
557 		/*
558 		 * Checking the incompat flag is only valid for the current
559 		 * fs. For seed devices it's forbidden to have their uuid
560 		 * changed so reading ->fsid in this case is fine
561 		 */
562 		if (fs_devices == fs_info->fs_devices &&
563 		    btrfs_fs_incompat(fs_info, METADATA_UUID))
564 			metadata_uuid = fs_devices->metadata_uuid;
565 		else
566 			metadata_uuid = fs_devices->fsid;
567 
568 		if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
569 			ret = 0;
570 			break;
571 		}
572 		fs_devices = fs_devices->seed;
573 	}
574 	return ret;
575 }
576 
577 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
578 				      u64 phy_offset, struct page *page,
579 				      u64 start, u64 end, int mirror)
580 {
581 	u64 found_start;
582 	int found_level;
583 	struct extent_buffer *eb;
584 	struct btrfs_fs_info *fs_info;
585 	u16 csum_size;
586 	int ret = 0;
587 	u8 result[BTRFS_CSUM_SIZE];
588 	int reads_done;
589 
590 	if (!page->private)
591 		goto out;
592 
593 	eb = (struct extent_buffer *)page->private;
594 	fs_info = eb->fs_info;
595 	csum_size = btrfs_super_csum_size(fs_info->super_copy);
596 
597 	/* the pending IO might have been the only thing that kept this buffer
598 	 * in memory.  Make sure we have a ref for all this other checks
599 	 */
600 	atomic_inc(&eb->refs);
601 
602 	reads_done = atomic_dec_and_test(&eb->io_pages);
603 	if (!reads_done)
604 		goto err;
605 
606 	eb->read_mirror = mirror;
607 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
608 		ret = -EIO;
609 		goto err;
610 	}
611 
612 	found_start = btrfs_header_bytenr(eb);
613 	if (found_start != eb->start) {
614 		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
615 			     eb->start, found_start);
616 		ret = -EIO;
617 		goto err;
618 	}
619 	if (check_tree_block_fsid(eb)) {
620 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
621 			     eb->start);
622 		ret = -EIO;
623 		goto err;
624 	}
625 	found_level = btrfs_header_level(eb);
626 	if (found_level >= BTRFS_MAX_LEVEL) {
627 		btrfs_err(fs_info, "bad tree block level %d on %llu",
628 			  (int)btrfs_header_level(eb), eb->start);
629 		ret = -EIO;
630 		goto err;
631 	}
632 
633 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
634 				       eb, found_level);
635 
636 	csum_tree_block(eb, result);
637 
638 	if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
639 		u32 val;
640 		u32 found = 0;
641 
642 		memcpy(&found, result, csum_size);
643 
644 		read_extent_buffer(eb, &val, 0, csum_size);
645 		btrfs_warn_rl(fs_info,
646 		"%s checksum verify failed on %llu wanted %x found %x level %d",
647 			      fs_info->sb->s_id, eb->start,
648 			      val, found, btrfs_header_level(eb));
649 		ret = -EUCLEAN;
650 		goto err;
651 	}
652 
653 	/*
654 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
655 	 * that we don't try and read the other copies of this block, just
656 	 * return -EIO.
657 	 */
658 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
659 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
660 		ret = -EIO;
661 	}
662 
663 	if (found_level > 0 && btrfs_check_node(eb))
664 		ret = -EIO;
665 
666 	if (!ret)
667 		set_extent_buffer_uptodate(eb);
668 	else
669 		btrfs_err(fs_info,
670 			  "block=%llu read time tree block corruption detected",
671 			  eb->start);
672 err:
673 	if (reads_done &&
674 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
675 		btree_readahead_hook(eb, ret);
676 
677 	if (ret) {
678 		/*
679 		 * our io error hook is going to dec the io pages
680 		 * again, we have to make sure it has something
681 		 * to decrement
682 		 */
683 		atomic_inc(&eb->io_pages);
684 		clear_extent_buffer_uptodate(eb);
685 	}
686 	free_extent_buffer(eb);
687 out:
688 	return ret;
689 }
690 
691 static void end_workqueue_bio(struct bio *bio)
692 {
693 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
694 	struct btrfs_fs_info *fs_info;
695 	struct btrfs_workqueue *wq;
696 
697 	fs_info = end_io_wq->info;
698 	end_io_wq->status = bio->bi_status;
699 
700 	if (bio_op(bio) == REQ_OP_WRITE) {
701 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
702 			wq = fs_info->endio_meta_write_workers;
703 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
704 			wq = fs_info->endio_freespace_worker;
705 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
706 			wq = fs_info->endio_raid56_workers;
707 		else
708 			wq = fs_info->endio_write_workers;
709 	} else {
710 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
711 			wq = fs_info->endio_raid56_workers;
712 		else if (end_io_wq->metadata)
713 			wq = fs_info->endio_meta_workers;
714 		else
715 			wq = fs_info->endio_workers;
716 	}
717 
718 	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
719 	btrfs_queue_work(wq, &end_io_wq->work);
720 }
721 
722 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
723 			enum btrfs_wq_endio_type metadata)
724 {
725 	struct btrfs_end_io_wq *end_io_wq;
726 
727 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
728 	if (!end_io_wq)
729 		return BLK_STS_RESOURCE;
730 
731 	end_io_wq->private = bio->bi_private;
732 	end_io_wq->end_io = bio->bi_end_io;
733 	end_io_wq->info = info;
734 	end_io_wq->status = 0;
735 	end_io_wq->bio = bio;
736 	end_io_wq->metadata = metadata;
737 
738 	bio->bi_private = end_io_wq;
739 	bio->bi_end_io = end_workqueue_bio;
740 	return 0;
741 }
742 
743 static void run_one_async_start(struct btrfs_work *work)
744 {
745 	struct async_submit_bio *async;
746 	blk_status_t ret;
747 
748 	async = container_of(work, struct  async_submit_bio, work);
749 	ret = async->submit_bio_start(async->private_data, async->bio,
750 				      async->bio_offset);
751 	if (ret)
752 		async->status = ret;
753 }
754 
755 /*
756  * In order to insert checksums into the metadata in large chunks, we wait
757  * until bio submission time.   All the pages in the bio are checksummed and
758  * sums are attached onto the ordered extent record.
759  *
760  * At IO completion time the csums attached on the ordered extent record are
761  * inserted into the tree.
762  */
763 static void run_one_async_done(struct btrfs_work *work)
764 {
765 	struct async_submit_bio *async;
766 	struct inode *inode;
767 	blk_status_t ret;
768 
769 	async = container_of(work, struct  async_submit_bio, work);
770 	inode = async->private_data;
771 
772 	/* If an error occurred we just want to clean up the bio and move on */
773 	if (async->status) {
774 		async->bio->bi_status = async->status;
775 		bio_endio(async->bio);
776 		return;
777 	}
778 
779 	/*
780 	 * All of the bios that pass through here are from async helpers.
781 	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
782 	 * This changes nothing when cgroups aren't in use.
783 	 */
784 	async->bio->bi_opf |= REQ_CGROUP_PUNT;
785 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
786 	if (ret) {
787 		async->bio->bi_status = ret;
788 		bio_endio(async->bio);
789 	}
790 }
791 
792 static void run_one_async_free(struct btrfs_work *work)
793 {
794 	struct async_submit_bio *async;
795 
796 	async = container_of(work, struct  async_submit_bio, work);
797 	kfree(async);
798 }
799 
800 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
801 				 int mirror_num, unsigned long bio_flags,
802 				 u64 bio_offset, void *private_data,
803 				 extent_submit_bio_start_t *submit_bio_start)
804 {
805 	struct async_submit_bio *async;
806 
807 	async = kmalloc(sizeof(*async), GFP_NOFS);
808 	if (!async)
809 		return BLK_STS_RESOURCE;
810 
811 	async->private_data = private_data;
812 	async->bio = bio;
813 	async->mirror_num = mirror_num;
814 	async->submit_bio_start = submit_bio_start;
815 
816 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
817 			run_one_async_free);
818 
819 	async->bio_offset = bio_offset;
820 
821 	async->status = 0;
822 
823 	if (op_is_sync(bio->bi_opf))
824 		btrfs_set_work_high_priority(&async->work);
825 
826 	btrfs_queue_work(fs_info->workers, &async->work);
827 	return 0;
828 }
829 
830 static blk_status_t btree_csum_one_bio(struct bio *bio)
831 {
832 	struct bio_vec *bvec;
833 	struct btrfs_root *root;
834 	int ret = 0;
835 	struct bvec_iter_all iter_all;
836 
837 	ASSERT(!bio_flagged(bio, BIO_CLONED));
838 	bio_for_each_segment_all(bvec, bio, iter_all) {
839 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
840 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
841 		if (ret)
842 			break;
843 	}
844 
845 	return errno_to_blk_status(ret);
846 }
847 
848 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
849 					     u64 bio_offset)
850 {
851 	/*
852 	 * when we're called for a write, we're already in the async
853 	 * submission context.  Just jump into btrfs_map_bio
854 	 */
855 	return btree_csum_one_bio(bio);
856 }
857 
858 static int check_async_write(struct btrfs_fs_info *fs_info,
859 			     struct btrfs_inode *bi)
860 {
861 	if (atomic_read(&bi->sync_writers))
862 		return 0;
863 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
864 		return 0;
865 	return 1;
866 }
867 
868 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
869 					  int mirror_num,
870 					  unsigned long bio_flags)
871 {
872 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
873 	int async = check_async_write(fs_info, BTRFS_I(inode));
874 	blk_status_t ret;
875 
876 	if (bio_op(bio) != REQ_OP_WRITE) {
877 		/*
878 		 * called for a read, do the setup so that checksum validation
879 		 * can happen in the async kernel threads
880 		 */
881 		ret = btrfs_bio_wq_end_io(fs_info, bio,
882 					  BTRFS_WQ_ENDIO_METADATA);
883 		if (ret)
884 			goto out_w_error;
885 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
886 	} else if (!async) {
887 		ret = btree_csum_one_bio(bio);
888 		if (ret)
889 			goto out_w_error;
890 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
891 	} else {
892 		/*
893 		 * kthread helpers are used to submit writes so that
894 		 * checksumming can happen in parallel across all CPUs
895 		 */
896 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
897 					  0, inode, btree_submit_bio_start);
898 	}
899 
900 	if (ret)
901 		goto out_w_error;
902 	return 0;
903 
904 out_w_error:
905 	bio->bi_status = ret;
906 	bio_endio(bio);
907 	return ret;
908 }
909 
910 #ifdef CONFIG_MIGRATION
911 static int btree_migratepage(struct address_space *mapping,
912 			struct page *newpage, struct page *page,
913 			enum migrate_mode mode)
914 {
915 	/*
916 	 * we can't safely write a btree page from here,
917 	 * we haven't done the locking hook
918 	 */
919 	if (PageDirty(page))
920 		return -EAGAIN;
921 	/*
922 	 * Buffers may be managed in a filesystem specific way.
923 	 * We must have no buffers or drop them.
924 	 */
925 	if (page_has_private(page) &&
926 	    !try_to_release_page(page, GFP_KERNEL))
927 		return -EAGAIN;
928 	return migrate_page(mapping, newpage, page, mode);
929 }
930 #endif
931 
932 
933 static int btree_writepages(struct address_space *mapping,
934 			    struct writeback_control *wbc)
935 {
936 	struct btrfs_fs_info *fs_info;
937 	int ret;
938 
939 	if (wbc->sync_mode == WB_SYNC_NONE) {
940 
941 		if (wbc->for_kupdate)
942 			return 0;
943 
944 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
945 		/* this is a bit racy, but that's ok */
946 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
947 					     BTRFS_DIRTY_METADATA_THRESH,
948 					     fs_info->dirty_metadata_batch);
949 		if (ret < 0)
950 			return 0;
951 	}
952 	return btree_write_cache_pages(mapping, wbc);
953 }
954 
955 static int btree_readpage(struct file *file, struct page *page)
956 {
957 	return extent_read_full_page(page, btree_get_extent, 0);
958 }
959 
960 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
961 {
962 	if (PageWriteback(page) || PageDirty(page))
963 		return 0;
964 
965 	return try_release_extent_buffer(page);
966 }
967 
968 static void btree_invalidatepage(struct page *page, unsigned int offset,
969 				 unsigned int length)
970 {
971 	struct extent_io_tree *tree;
972 	tree = &BTRFS_I(page->mapping->host)->io_tree;
973 	extent_invalidatepage(tree, page, offset);
974 	btree_releasepage(page, GFP_NOFS);
975 	if (PagePrivate(page)) {
976 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
977 			   "page private not zero on page %llu",
978 			   (unsigned long long)page_offset(page));
979 		detach_page_private(page);
980 	}
981 }
982 
983 static int btree_set_page_dirty(struct page *page)
984 {
985 #ifdef DEBUG
986 	struct extent_buffer *eb;
987 
988 	BUG_ON(!PagePrivate(page));
989 	eb = (struct extent_buffer *)page->private;
990 	BUG_ON(!eb);
991 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
992 	BUG_ON(!atomic_read(&eb->refs));
993 	btrfs_assert_tree_locked(eb);
994 #endif
995 	return __set_page_dirty_nobuffers(page);
996 }
997 
998 static const struct address_space_operations btree_aops = {
999 	.readpage	= btree_readpage,
1000 	.writepages	= btree_writepages,
1001 	.releasepage	= btree_releasepage,
1002 	.invalidatepage = btree_invalidatepage,
1003 #ifdef CONFIG_MIGRATION
1004 	.migratepage	= btree_migratepage,
1005 #endif
1006 	.set_page_dirty = btree_set_page_dirty,
1007 };
1008 
1009 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1010 {
1011 	struct extent_buffer *buf = NULL;
1012 	int ret;
1013 
1014 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1015 	if (IS_ERR(buf))
1016 		return;
1017 
1018 	ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1019 	if (ret < 0)
1020 		free_extent_buffer_stale(buf);
1021 	else
1022 		free_extent_buffer(buf);
1023 }
1024 
1025 struct extent_buffer *btrfs_find_create_tree_block(
1026 						struct btrfs_fs_info *fs_info,
1027 						u64 bytenr)
1028 {
1029 	if (btrfs_is_testing(fs_info))
1030 		return alloc_test_extent_buffer(fs_info, bytenr);
1031 	return alloc_extent_buffer(fs_info, bytenr);
1032 }
1033 
1034 /*
1035  * Read tree block at logical address @bytenr and do variant basic but critical
1036  * verification.
1037  *
1038  * @parent_transid:	expected transid of this tree block, skip check if 0
1039  * @level:		expected level, mandatory check
1040  * @first_key:		expected key in slot 0, skip check if NULL
1041  */
1042 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1043 				      u64 parent_transid, int level,
1044 				      struct btrfs_key *first_key)
1045 {
1046 	struct extent_buffer *buf = NULL;
1047 	int ret;
1048 
1049 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1050 	if (IS_ERR(buf))
1051 		return buf;
1052 
1053 	ret = btree_read_extent_buffer_pages(buf, parent_transid,
1054 					     level, first_key);
1055 	if (ret) {
1056 		free_extent_buffer_stale(buf);
1057 		return ERR_PTR(ret);
1058 	}
1059 	return buf;
1060 
1061 }
1062 
1063 void btrfs_clean_tree_block(struct extent_buffer *buf)
1064 {
1065 	struct btrfs_fs_info *fs_info = buf->fs_info;
1066 	if (btrfs_header_generation(buf) ==
1067 	    fs_info->running_transaction->transid) {
1068 		btrfs_assert_tree_locked(buf);
1069 
1070 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1071 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1072 						 -buf->len,
1073 						 fs_info->dirty_metadata_batch);
1074 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1075 			btrfs_set_lock_blocking_write(buf);
1076 			clear_extent_buffer_dirty(buf);
1077 		}
1078 	}
1079 }
1080 
1081 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1082 			 u64 objectid)
1083 {
1084 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1085 	root->fs_info = fs_info;
1086 	root->node = NULL;
1087 	root->commit_root = NULL;
1088 	root->state = 0;
1089 	root->orphan_cleanup_state = 0;
1090 
1091 	root->last_trans = 0;
1092 	root->highest_objectid = 0;
1093 	root->nr_delalloc_inodes = 0;
1094 	root->nr_ordered_extents = 0;
1095 	root->inode_tree = RB_ROOT;
1096 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1097 	root->block_rsv = NULL;
1098 
1099 	INIT_LIST_HEAD(&root->dirty_list);
1100 	INIT_LIST_HEAD(&root->root_list);
1101 	INIT_LIST_HEAD(&root->delalloc_inodes);
1102 	INIT_LIST_HEAD(&root->delalloc_root);
1103 	INIT_LIST_HEAD(&root->ordered_extents);
1104 	INIT_LIST_HEAD(&root->ordered_root);
1105 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1106 	INIT_LIST_HEAD(&root->logged_list[0]);
1107 	INIT_LIST_HEAD(&root->logged_list[1]);
1108 	spin_lock_init(&root->inode_lock);
1109 	spin_lock_init(&root->delalloc_lock);
1110 	spin_lock_init(&root->ordered_extent_lock);
1111 	spin_lock_init(&root->accounting_lock);
1112 	spin_lock_init(&root->log_extents_lock[0]);
1113 	spin_lock_init(&root->log_extents_lock[1]);
1114 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1115 	mutex_init(&root->objectid_mutex);
1116 	mutex_init(&root->log_mutex);
1117 	mutex_init(&root->ordered_extent_mutex);
1118 	mutex_init(&root->delalloc_mutex);
1119 	init_waitqueue_head(&root->log_writer_wait);
1120 	init_waitqueue_head(&root->log_commit_wait[0]);
1121 	init_waitqueue_head(&root->log_commit_wait[1]);
1122 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1123 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1124 	atomic_set(&root->log_commit[0], 0);
1125 	atomic_set(&root->log_commit[1], 0);
1126 	atomic_set(&root->log_writers, 0);
1127 	atomic_set(&root->log_batch, 0);
1128 	refcount_set(&root->refs, 1);
1129 	atomic_set(&root->snapshot_force_cow, 0);
1130 	atomic_set(&root->nr_swapfiles, 0);
1131 	root->log_transid = 0;
1132 	root->log_transid_committed = -1;
1133 	root->last_log_commit = 0;
1134 	if (!dummy) {
1135 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1136 				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1137 		extent_io_tree_init(fs_info, &root->log_csum_range,
1138 				    IO_TREE_LOG_CSUM_RANGE, NULL);
1139 	}
1140 
1141 	memset(&root->root_key, 0, sizeof(root->root_key));
1142 	memset(&root->root_item, 0, sizeof(root->root_item));
1143 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1144 	if (!dummy)
1145 		root->defrag_trans_start = fs_info->generation;
1146 	else
1147 		root->defrag_trans_start = 0;
1148 	root->root_key.objectid = objectid;
1149 	root->anon_dev = 0;
1150 
1151 	spin_lock_init(&root->root_item_lock);
1152 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1153 #ifdef CONFIG_BTRFS_DEBUG
1154 	INIT_LIST_HEAD(&root->leak_list);
1155 	spin_lock(&fs_info->fs_roots_radix_lock);
1156 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1157 	spin_unlock(&fs_info->fs_roots_radix_lock);
1158 #endif
1159 }
1160 
1161 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1162 					   u64 objectid, gfp_t flags)
1163 {
1164 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1165 	if (root)
1166 		__setup_root(root, fs_info, objectid);
1167 	return root;
1168 }
1169 
1170 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1171 /* Should only be used by the testing infrastructure */
1172 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1173 {
1174 	struct btrfs_root *root;
1175 
1176 	if (!fs_info)
1177 		return ERR_PTR(-EINVAL);
1178 
1179 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1180 	if (!root)
1181 		return ERR_PTR(-ENOMEM);
1182 
1183 	/* We don't use the stripesize in selftest, set it as sectorsize */
1184 	root->alloc_bytenr = 0;
1185 
1186 	return root;
1187 }
1188 #endif
1189 
1190 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1191 				     u64 objectid)
1192 {
1193 	struct btrfs_fs_info *fs_info = trans->fs_info;
1194 	struct extent_buffer *leaf;
1195 	struct btrfs_root *tree_root = fs_info->tree_root;
1196 	struct btrfs_root *root;
1197 	struct btrfs_key key;
1198 	unsigned int nofs_flag;
1199 	int ret = 0;
1200 
1201 	/*
1202 	 * We're holding a transaction handle, so use a NOFS memory allocation
1203 	 * context to avoid deadlock if reclaim happens.
1204 	 */
1205 	nofs_flag = memalloc_nofs_save();
1206 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1207 	memalloc_nofs_restore(nofs_flag);
1208 	if (!root)
1209 		return ERR_PTR(-ENOMEM);
1210 
1211 	root->root_key.objectid = objectid;
1212 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1213 	root->root_key.offset = 0;
1214 
1215 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1216 	if (IS_ERR(leaf)) {
1217 		ret = PTR_ERR(leaf);
1218 		leaf = NULL;
1219 		goto fail;
1220 	}
1221 
1222 	root->node = leaf;
1223 	btrfs_mark_buffer_dirty(leaf);
1224 
1225 	root->commit_root = btrfs_root_node(root);
1226 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1227 
1228 	root->root_item.flags = 0;
1229 	root->root_item.byte_limit = 0;
1230 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1231 	btrfs_set_root_generation(&root->root_item, trans->transid);
1232 	btrfs_set_root_level(&root->root_item, 0);
1233 	btrfs_set_root_refs(&root->root_item, 1);
1234 	btrfs_set_root_used(&root->root_item, leaf->len);
1235 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1236 	btrfs_set_root_dirid(&root->root_item, 0);
1237 	if (is_fstree(objectid))
1238 		generate_random_guid(root->root_item.uuid);
1239 	else
1240 		export_guid(root->root_item.uuid, &guid_null);
1241 	root->root_item.drop_level = 0;
1242 
1243 	key.objectid = objectid;
1244 	key.type = BTRFS_ROOT_ITEM_KEY;
1245 	key.offset = 0;
1246 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1247 	if (ret)
1248 		goto fail;
1249 
1250 	btrfs_tree_unlock(leaf);
1251 
1252 	return root;
1253 
1254 fail:
1255 	if (leaf)
1256 		btrfs_tree_unlock(leaf);
1257 	btrfs_put_root(root);
1258 
1259 	return ERR_PTR(ret);
1260 }
1261 
1262 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1263 					 struct btrfs_fs_info *fs_info)
1264 {
1265 	struct btrfs_root *root;
1266 	struct extent_buffer *leaf;
1267 
1268 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1269 	if (!root)
1270 		return ERR_PTR(-ENOMEM);
1271 
1272 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1273 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1274 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1275 
1276 	/*
1277 	 * DON'T set SHAREABLE bit for log trees.
1278 	 *
1279 	 * Log trees are not exposed to user space thus can't be snapshotted,
1280 	 * and they go away before a real commit is actually done.
1281 	 *
1282 	 * They do store pointers to file data extents, and those reference
1283 	 * counts still get updated (along with back refs to the log tree).
1284 	 */
1285 
1286 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1287 			NULL, 0, 0, 0);
1288 	if (IS_ERR(leaf)) {
1289 		btrfs_put_root(root);
1290 		return ERR_CAST(leaf);
1291 	}
1292 
1293 	root->node = leaf;
1294 
1295 	btrfs_mark_buffer_dirty(root->node);
1296 	btrfs_tree_unlock(root->node);
1297 	return root;
1298 }
1299 
1300 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1301 			     struct btrfs_fs_info *fs_info)
1302 {
1303 	struct btrfs_root *log_root;
1304 
1305 	log_root = alloc_log_tree(trans, fs_info);
1306 	if (IS_ERR(log_root))
1307 		return PTR_ERR(log_root);
1308 	WARN_ON(fs_info->log_root_tree);
1309 	fs_info->log_root_tree = log_root;
1310 	return 0;
1311 }
1312 
1313 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1314 		       struct btrfs_root *root)
1315 {
1316 	struct btrfs_fs_info *fs_info = root->fs_info;
1317 	struct btrfs_root *log_root;
1318 	struct btrfs_inode_item *inode_item;
1319 
1320 	log_root = alloc_log_tree(trans, fs_info);
1321 	if (IS_ERR(log_root))
1322 		return PTR_ERR(log_root);
1323 
1324 	log_root->last_trans = trans->transid;
1325 	log_root->root_key.offset = root->root_key.objectid;
1326 
1327 	inode_item = &log_root->root_item.inode;
1328 	btrfs_set_stack_inode_generation(inode_item, 1);
1329 	btrfs_set_stack_inode_size(inode_item, 3);
1330 	btrfs_set_stack_inode_nlink(inode_item, 1);
1331 	btrfs_set_stack_inode_nbytes(inode_item,
1332 				     fs_info->nodesize);
1333 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1334 
1335 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1336 
1337 	WARN_ON(root->log_root);
1338 	root->log_root = log_root;
1339 	root->log_transid = 0;
1340 	root->log_transid_committed = -1;
1341 	root->last_log_commit = 0;
1342 	return 0;
1343 }
1344 
1345 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1346 					struct btrfs_key *key)
1347 {
1348 	struct btrfs_root *root;
1349 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1350 	struct btrfs_path *path;
1351 	u64 generation;
1352 	int ret;
1353 	int level;
1354 
1355 	path = btrfs_alloc_path();
1356 	if (!path)
1357 		return ERR_PTR(-ENOMEM);
1358 
1359 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1360 	if (!root) {
1361 		ret = -ENOMEM;
1362 		goto alloc_fail;
1363 	}
1364 
1365 	ret = btrfs_find_root(tree_root, key, path,
1366 			      &root->root_item, &root->root_key);
1367 	if (ret) {
1368 		if (ret > 0)
1369 			ret = -ENOENT;
1370 		goto find_fail;
1371 	}
1372 
1373 	generation = btrfs_root_generation(&root->root_item);
1374 	level = btrfs_root_level(&root->root_item);
1375 	root->node = read_tree_block(fs_info,
1376 				     btrfs_root_bytenr(&root->root_item),
1377 				     generation, level, NULL);
1378 	if (IS_ERR(root->node)) {
1379 		ret = PTR_ERR(root->node);
1380 		root->node = NULL;
1381 		goto find_fail;
1382 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1383 		ret = -EIO;
1384 		goto find_fail;
1385 	}
1386 	root->commit_root = btrfs_root_node(root);
1387 out:
1388 	btrfs_free_path(path);
1389 	return root;
1390 
1391 find_fail:
1392 	btrfs_put_root(root);
1393 alloc_fail:
1394 	root = ERR_PTR(ret);
1395 	goto out;
1396 }
1397 
1398 static int btrfs_init_fs_root(struct btrfs_root *root)
1399 {
1400 	int ret;
1401 	unsigned int nofs_flag;
1402 
1403 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1404 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1405 					GFP_NOFS);
1406 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1407 		ret = -ENOMEM;
1408 		goto fail;
1409 	}
1410 
1411 	/*
1412 	 * We might be called under a transaction (e.g. indirect backref
1413 	 * resolution) which could deadlock if it triggers memory reclaim
1414 	 */
1415 	nofs_flag = memalloc_nofs_save();
1416 	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1417 	memalloc_nofs_restore(nofs_flag);
1418 	if (ret)
1419 		goto fail;
1420 
1421 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1422 	    root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1423 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1424 		btrfs_check_and_init_root_item(&root->root_item);
1425 	}
1426 
1427 	btrfs_init_free_ino_ctl(root);
1428 	spin_lock_init(&root->ino_cache_lock);
1429 	init_waitqueue_head(&root->ino_cache_wait);
1430 
1431 	ret = get_anon_bdev(&root->anon_dev);
1432 	if (ret)
1433 		goto fail;
1434 
1435 	mutex_lock(&root->objectid_mutex);
1436 	ret = btrfs_find_highest_objectid(root,
1437 					&root->highest_objectid);
1438 	if (ret) {
1439 		mutex_unlock(&root->objectid_mutex);
1440 		goto fail;
1441 	}
1442 
1443 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1444 
1445 	mutex_unlock(&root->objectid_mutex);
1446 
1447 	return 0;
1448 fail:
1449 	/* The caller is responsible to call btrfs_free_fs_root */
1450 	return ret;
1451 }
1452 
1453 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1454 					       u64 root_id)
1455 {
1456 	struct btrfs_root *root;
1457 
1458 	spin_lock(&fs_info->fs_roots_radix_lock);
1459 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1460 				 (unsigned long)root_id);
1461 	if (root)
1462 		root = btrfs_grab_root(root);
1463 	spin_unlock(&fs_info->fs_roots_radix_lock);
1464 	return root;
1465 }
1466 
1467 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1468 			 struct btrfs_root *root)
1469 {
1470 	int ret;
1471 
1472 	ret = radix_tree_preload(GFP_NOFS);
1473 	if (ret)
1474 		return ret;
1475 
1476 	spin_lock(&fs_info->fs_roots_radix_lock);
1477 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1478 				(unsigned long)root->root_key.objectid,
1479 				root);
1480 	if (ret == 0) {
1481 		btrfs_grab_root(root);
1482 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1483 	}
1484 	spin_unlock(&fs_info->fs_roots_radix_lock);
1485 	radix_tree_preload_end();
1486 
1487 	return ret;
1488 }
1489 
1490 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1491 {
1492 #ifdef CONFIG_BTRFS_DEBUG
1493 	struct btrfs_root *root;
1494 
1495 	while (!list_empty(&fs_info->allocated_roots)) {
1496 		root = list_first_entry(&fs_info->allocated_roots,
1497 					struct btrfs_root, leak_list);
1498 		btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1499 			  root->root_key.objectid, root->root_key.offset,
1500 			  refcount_read(&root->refs));
1501 		while (refcount_read(&root->refs) > 1)
1502 			btrfs_put_root(root);
1503 		btrfs_put_root(root);
1504 	}
1505 #endif
1506 }
1507 
1508 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1509 {
1510 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1511 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1512 	percpu_counter_destroy(&fs_info->dio_bytes);
1513 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1514 	btrfs_free_csum_hash(fs_info);
1515 	btrfs_free_stripe_hash_table(fs_info);
1516 	btrfs_free_ref_cache(fs_info);
1517 	kfree(fs_info->balance_ctl);
1518 	kfree(fs_info->delayed_root);
1519 	btrfs_put_root(fs_info->extent_root);
1520 	btrfs_put_root(fs_info->tree_root);
1521 	btrfs_put_root(fs_info->chunk_root);
1522 	btrfs_put_root(fs_info->dev_root);
1523 	btrfs_put_root(fs_info->csum_root);
1524 	btrfs_put_root(fs_info->quota_root);
1525 	btrfs_put_root(fs_info->uuid_root);
1526 	btrfs_put_root(fs_info->free_space_root);
1527 	btrfs_put_root(fs_info->fs_root);
1528 	btrfs_put_root(fs_info->data_reloc_root);
1529 	btrfs_check_leaked_roots(fs_info);
1530 	btrfs_extent_buffer_leak_debug_check(fs_info);
1531 	kfree(fs_info->super_copy);
1532 	kfree(fs_info->super_for_commit);
1533 	kvfree(fs_info);
1534 }
1535 
1536 
1537 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1538 				     u64 objectid, bool check_ref)
1539 {
1540 	struct btrfs_root *root;
1541 	struct btrfs_path *path;
1542 	struct btrfs_key key;
1543 	int ret;
1544 
1545 	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1546 		return btrfs_grab_root(fs_info->tree_root);
1547 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1548 		return btrfs_grab_root(fs_info->extent_root);
1549 	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1550 		return btrfs_grab_root(fs_info->chunk_root);
1551 	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1552 		return btrfs_grab_root(fs_info->dev_root);
1553 	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1554 		return btrfs_grab_root(fs_info->csum_root);
1555 	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1556 		return btrfs_grab_root(fs_info->quota_root) ?
1557 			fs_info->quota_root : ERR_PTR(-ENOENT);
1558 	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1559 		return btrfs_grab_root(fs_info->uuid_root) ?
1560 			fs_info->uuid_root : ERR_PTR(-ENOENT);
1561 	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1562 		return btrfs_grab_root(fs_info->free_space_root) ?
1563 			fs_info->free_space_root : ERR_PTR(-ENOENT);
1564 again:
1565 	root = btrfs_lookup_fs_root(fs_info, objectid);
1566 	if (root) {
1567 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1568 			btrfs_put_root(root);
1569 			return ERR_PTR(-ENOENT);
1570 		}
1571 		return root;
1572 	}
1573 
1574 	key.objectid = objectid;
1575 	key.type = BTRFS_ROOT_ITEM_KEY;
1576 	key.offset = (u64)-1;
1577 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1578 	if (IS_ERR(root))
1579 		return root;
1580 
1581 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1582 		ret = -ENOENT;
1583 		goto fail;
1584 	}
1585 
1586 	ret = btrfs_init_fs_root(root);
1587 	if (ret)
1588 		goto fail;
1589 
1590 	path = btrfs_alloc_path();
1591 	if (!path) {
1592 		ret = -ENOMEM;
1593 		goto fail;
1594 	}
1595 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1596 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1597 	key.offset = objectid;
1598 
1599 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1600 	btrfs_free_path(path);
1601 	if (ret < 0)
1602 		goto fail;
1603 	if (ret == 0)
1604 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1605 
1606 	ret = btrfs_insert_fs_root(fs_info, root);
1607 	if (ret) {
1608 		btrfs_put_root(root);
1609 		if (ret == -EEXIST)
1610 			goto again;
1611 		goto fail;
1612 	}
1613 	return root;
1614 fail:
1615 	btrfs_put_root(root);
1616 	return ERR_PTR(ret);
1617 }
1618 
1619 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1620 {
1621 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1622 	int ret = 0;
1623 	struct btrfs_device *device;
1624 	struct backing_dev_info *bdi;
1625 
1626 	rcu_read_lock();
1627 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1628 		if (!device->bdev)
1629 			continue;
1630 		bdi = device->bdev->bd_bdi;
1631 		if (bdi_congested(bdi, bdi_bits)) {
1632 			ret = 1;
1633 			break;
1634 		}
1635 	}
1636 	rcu_read_unlock();
1637 	return ret;
1638 }
1639 
1640 /*
1641  * called by the kthread helper functions to finally call the bio end_io
1642  * functions.  This is where read checksum verification actually happens
1643  */
1644 static void end_workqueue_fn(struct btrfs_work *work)
1645 {
1646 	struct bio *bio;
1647 	struct btrfs_end_io_wq *end_io_wq;
1648 
1649 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1650 	bio = end_io_wq->bio;
1651 
1652 	bio->bi_status = end_io_wq->status;
1653 	bio->bi_private = end_io_wq->private;
1654 	bio->bi_end_io = end_io_wq->end_io;
1655 	bio_endio(bio);
1656 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1657 }
1658 
1659 static int cleaner_kthread(void *arg)
1660 {
1661 	struct btrfs_root *root = arg;
1662 	struct btrfs_fs_info *fs_info = root->fs_info;
1663 	int again;
1664 
1665 	while (1) {
1666 		again = 0;
1667 
1668 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1669 
1670 		/* Make the cleaner go to sleep early. */
1671 		if (btrfs_need_cleaner_sleep(fs_info))
1672 			goto sleep;
1673 
1674 		/*
1675 		 * Do not do anything if we might cause open_ctree() to block
1676 		 * before we have finished mounting the filesystem.
1677 		 */
1678 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1679 			goto sleep;
1680 
1681 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1682 			goto sleep;
1683 
1684 		/*
1685 		 * Avoid the problem that we change the status of the fs
1686 		 * during the above check and trylock.
1687 		 */
1688 		if (btrfs_need_cleaner_sleep(fs_info)) {
1689 			mutex_unlock(&fs_info->cleaner_mutex);
1690 			goto sleep;
1691 		}
1692 
1693 		btrfs_run_delayed_iputs(fs_info);
1694 
1695 		again = btrfs_clean_one_deleted_snapshot(root);
1696 		mutex_unlock(&fs_info->cleaner_mutex);
1697 
1698 		/*
1699 		 * The defragger has dealt with the R/O remount and umount,
1700 		 * needn't do anything special here.
1701 		 */
1702 		btrfs_run_defrag_inodes(fs_info);
1703 
1704 		/*
1705 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1706 		 * with relocation (btrfs_relocate_chunk) and relocation
1707 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1708 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1709 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1710 		 * unused block groups.
1711 		 */
1712 		btrfs_delete_unused_bgs(fs_info);
1713 sleep:
1714 		clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1715 		if (kthread_should_park())
1716 			kthread_parkme();
1717 		if (kthread_should_stop())
1718 			return 0;
1719 		if (!again) {
1720 			set_current_state(TASK_INTERRUPTIBLE);
1721 			schedule();
1722 			__set_current_state(TASK_RUNNING);
1723 		}
1724 	}
1725 }
1726 
1727 static int transaction_kthread(void *arg)
1728 {
1729 	struct btrfs_root *root = arg;
1730 	struct btrfs_fs_info *fs_info = root->fs_info;
1731 	struct btrfs_trans_handle *trans;
1732 	struct btrfs_transaction *cur;
1733 	u64 transid;
1734 	time64_t now;
1735 	unsigned long delay;
1736 	bool cannot_commit;
1737 
1738 	do {
1739 		cannot_commit = false;
1740 		delay = HZ * fs_info->commit_interval;
1741 		mutex_lock(&fs_info->transaction_kthread_mutex);
1742 
1743 		spin_lock(&fs_info->trans_lock);
1744 		cur = fs_info->running_transaction;
1745 		if (!cur) {
1746 			spin_unlock(&fs_info->trans_lock);
1747 			goto sleep;
1748 		}
1749 
1750 		now = ktime_get_seconds();
1751 		if (cur->state < TRANS_STATE_COMMIT_START &&
1752 		    !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1753 		    (now < cur->start_time ||
1754 		     now - cur->start_time < fs_info->commit_interval)) {
1755 			spin_unlock(&fs_info->trans_lock);
1756 			delay = HZ * 5;
1757 			goto sleep;
1758 		}
1759 		transid = cur->transid;
1760 		spin_unlock(&fs_info->trans_lock);
1761 
1762 		/* If the file system is aborted, this will always fail. */
1763 		trans = btrfs_attach_transaction(root);
1764 		if (IS_ERR(trans)) {
1765 			if (PTR_ERR(trans) != -ENOENT)
1766 				cannot_commit = true;
1767 			goto sleep;
1768 		}
1769 		if (transid == trans->transid) {
1770 			btrfs_commit_transaction(trans);
1771 		} else {
1772 			btrfs_end_transaction(trans);
1773 		}
1774 sleep:
1775 		wake_up_process(fs_info->cleaner_kthread);
1776 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1777 
1778 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1779 				      &fs_info->fs_state)))
1780 			btrfs_cleanup_transaction(fs_info);
1781 		if (!kthread_should_stop() &&
1782 				(!btrfs_transaction_blocked(fs_info) ||
1783 				 cannot_commit))
1784 			schedule_timeout_interruptible(delay);
1785 	} while (!kthread_should_stop());
1786 	return 0;
1787 }
1788 
1789 /*
1790  * This will find the highest generation in the array of root backups.  The
1791  * index of the highest array is returned, or -EINVAL if we can't find
1792  * anything.
1793  *
1794  * We check to make sure the array is valid by comparing the
1795  * generation of the latest  root in the array with the generation
1796  * in the super block.  If they don't match we pitch it.
1797  */
1798 static int find_newest_super_backup(struct btrfs_fs_info *info)
1799 {
1800 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1801 	u64 cur;
1802 	struct btrfs_root_backup *root_backup;
1803 	int i;
1804 
1805 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1806 		root_backup = info->super_copy->super_roots + i;
1807 		cur = btrfs_backup_tree_root_gen(root_backup);
1808 		if (cur == newest_gen)
1809 			return i;
1810 	}
1811 
1812 	return -EINVAL;
1813 }
1814 
1815 /*
1816  * copy all the root pointers into the super backup array.
1817  * this will bump the backup pointer by one when it is
1818  * done
1819  */
1820 static void backup_super_roots(struct btrfs_fs_info *info)
1821 {
1822 	const int next_backup = info->backup_root_index;
1823 	struct btrfs_root_backup *root_backup;
1824 
1825 	root_backup = info->super_for_commit->super_roots + next_backup;
1826 
1827 	/*
1828 	 * make sure all of our padding and empty slots get zero filled
1829 	 * regardless of which ones we use today
1830 	 */
1831 	memset(root_backup, 0, sizeof(*root_backup));
1832 
1833 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1834 
1835 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1836 	btrfs_set_backup_tree_root_gen(root_backup,
1837 			       btrfs_header_generation(info->tree_root->node));
1838 
1839 	btrfs_set_backup_tree_root_level(root_backup,
1840 			       btrfs_header_level(info->tree_root->node));
1841 
1842 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1843 	btrfs_set_backup_chunk_root_gen(root_backup,
1844 			       btrfs_header_generation(info->chunk_root->node));
1845 	btrfs_set_backup_chunk_root_level(root_backup,
1846 			       btrfs_header_level(info->chunk_root->node));
1847 
1848 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1849 	btrfs_set_backup_extent_root_gen(root_backup,
1850 			       btrfs_header_generation(info->extent_root->node));
1851 	btrfs_set_backup_extent_root_level(root_backup,
1852 			       btrfs_header_level(info->extent_root->node));
1853 
1854 	/*
1855 	 * we might commit during log recovery, which happens before we set
1856 	 * the fs_root.  Make sure it is valid before we fill it in.
1857 	 */
1858 	if (info->fs_root && info->fs_root->node) {
1859 		btrfs_set_backup_fs_root(root_backup,
1860 					 info->fs_root->node->start);
1861 		btrfs_set_backup_fs_root_gen(root_backup,
1862 			       btrfs_header_generation(info->fs_root->node));
1863 		btrfs_set_backup_fs_root_level(root_backup,
1864 			       btrfs_header_level(info->fs_root->node));
1865 	}
1866 
1867 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1868 	btrfs_set_backup_dev_root_gen(root_backup,
1869 			       btrfs_header_generation(info->dev_root->node));
1870 	btrfs_set_backup_dev_root_level(root_backup,
1871 				       btrfs_header_level(info->dev_root->node));
1872 
1873 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1874 	btrfs_set_backup_csum_root_gen(root_backup,
1875 			       btrfs_header_generation(info->csum_root->node));
1876 	btrfs_set_backup_csum_root_level(root_backup,
1877 			       btrfs_header_level(info->csum_root->node));
1878 
1879 	btrfs_set_backup_total_bytes(root_backup,
1880 			     btrfs_super_total_bytes(info->super_copy));
1881 	btrfs_set_backup_bytes_used(root_backup,
1882 			     btrfs_super_bytes_used(info->super_copy));
1883 	btrfs_set_backup_num_devices(root_backup,
1884 			     btrfs_super_num_devices(info->super_copy));
1885 
1886 	/*
1887 	 * if we don't copy this out to the super_copy, it won't get remembered
1888 	 * for the next commit
1889 	 */
1890 	memcpy(&info->super_copy->super_roots,
1891 	       &info->super_for_commit->super_roots,
1892 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1893 }
1894 
1895 /*
1896  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1897  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1898  *
1899  * fs_info - filesystem whose backup roots need to be read
1900  * priority - priority of backup root required
1901  *
1902  * Returns backup root index on success and -EINVAL otherwise.
1903  */
1904 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1905 {
1906 	int backup_index = find_newest_super_backup(fs_info);
1907 	struct btrfs_super_block *super = fs_info->super_copy;
1908 	struct btrfs_root_backup *root_backup;
1909 
1910 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1911 		if (priority == 0)
1912 			return backup_index;
1913 
1914 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1915 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1916 	} else {
1917 		return -EINVAL;
1918 	}
1919 
1920 	root_backup = super->super_roots + backup_index;
1921 
1922 	btrfs_set_super_generation(super,
1923 				   btrfs_backup_tree_root_gen(root_backup));
1924 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1925 	btrfs_set_super_root_level(super,
1926 				   btrfs_backup_tree_root_level(root_backup));
1927 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1928 
1929 	/*
1930 	 * Fixme: the total bytes and num_devices need to match or we should
1931 	 * need a fsck
1932 	 */
1933 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1934 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1935 
1936 	return backup_index;
1937 }
1938 
1939 /* helper to cleanup workers */
1940 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1941 {
1942 	btrfs_destroy_workqueue(fs_info->fixup_workers);
1943 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1944 	btrfs_destroy_workqueue(fs_info->workers);
1945 	btrfs_destroy_workqueue(fs_info->endio_workers);
1946 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1947 	btrfs_destroy_workqueue(fs_info->rmw_workers);
1948 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1949 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1950 	btrfs_destroy_workqueue(fs_info->delayed_workers);
1951 	btrfs_destroy_workqueue(fs_info->caching_workers);
1952 	btrfs_destroy_workqueue(fs_info->readahead_workers);
1953 	btrfs_destroy_workqueue(fs_info->flush_workers);
1954 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1955 	if (fs_info->discard_ctl.discard_workers)
1956 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1957 	/*
1958 	 * Now that all other work queues are destroyed, we can safely destroy
1959 	 * the queues used for metadata I/O, since tasks from those other work
1960 	 * queues can do metadata I/O operations.
1961 	 */
1962 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1963 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
1964 }
1965 
1966 static void free_root_extent_buffers(struct btrfs_root *root)
1967 {
1968 	if (root) {
1969 		free_extent_buffer(root->node);
1970 		free_extent_buffer(root->commit_root);
1971 		root->node = NULL;
1972 		root->commit_root = NULL;
1973 	}
1974 }
1975 
1976 /* helper to cleanup tree roots */
1977 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1978 {
1979 	free_root_extent_buffers(info->tree_root);
1980 
1981 	free_root_extent_buffers(info->dev_root);
1982 	free_root_extent_buffers(info->extent_root);
1983 	free_root_extent_buffers(info->csum_root);
1984 	free_root_extent_buffers(info->quota_root);
1985 	free_root_extent_buffers(info->uuid_root);
1986 	free_root_extent_buffers(info->fs_root);
1987 	free_root_extent_buffers(info->data_reloc_root);
1988 	if (free_chunk_root)
1989 		free_root_extent_buffers(info->chunk_root);
1990 	free_root_extent_buffers(info->free_space_root);
1991 }
1992 
1993 void btrfs_put_root(struct btrfs_root *root)
1994 {
1995 	if (!root)
1996 		return;
1997 
1998 	if (refcount_dec_and_test(&root->refs)) {
1999 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2000 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2001 		if (root->anon_dev)
2002 			free_anon_bdev(root->anon_dev);
2003 		btrfs_drew_lock_destroy(&root->snapshot_lock);
2004 		free_extent_buffer(root->node);
2005 		free_extent_buffer(root->commit_root);
2006 		kfree(root->free_ino_ctl);
2007 		kfree(root->free_ino_pinned);
2008 #ifdef CONFIG_BTRFS_DEBUG
2009 		spin_lock(&root->fs_info->fs_roots_radix_lock);
2010 		list_del_init(&root->leak_list);
2011 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2012 #endif
2013 		kfree(root);
2014 	}
2015 }
2016 
2017 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2018 {
2019 	int ret;
2020 	struct btrfs_root *gang[8];
2021 	int i;
2022 
2023 	while (!list_empty(&fs_info->dead_roots)) {
2024 		gang[0] = list_entry(fs_info->dead_roots.next,
2025 				     struct btrfs_root, root_list);
2026 		list_del(&gang[0]->root_list);
2027 
2028 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2029 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2030 		btrfs_put_root(gang[0]);
2031 	}
2032 
2033 	while (1) {
2034 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2035 					     (void **)gang, 0,
2036 					     ARRAY_SIZE(gang));
2037 		if (!ret)
2038 			break;
2039 		for (i = 0; i < ret; i++)
2040 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2041 	}
2042 }
2043 
2044 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2045 {
2046 	mutex_init(&fs_info->scrub_lock);
2047 	atomic_set(&fs_info->scrubs_running, 0);
2048 	atomic_set(&fs_info->scrub_pause_req, 0);
2049 	atomic_set(&fs_info->scrubs_paused, 0);
2050 	atomic_set(&fs_info->scrub_cancel_req, 0);
2051 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2052 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2053 }
2054 
2055 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2056 {
2057 	spin_lock_init(&fs_info->balance_lock);
2058 	mutex_init(&fs_info->balance_mutex);
2059 	atomic_set(&fs_info->balance_pause_req, 0);
2060 	atomic_set(&fs_info->balance_cancel_req, 0);
2061 	fs_info->balance_ctl = NULL;
2062 	init_waitqueue_head(&fs_info->balance_wait_q);
2063 }
2064 
2065 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2066 {
2067 	struct inode *inode = fs_info->btree_inode;
2068 
2069 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2070 	set_nlink(inode, 1);
2071 	/*
2072 	 * we set the i_size on the btree inode to the max possible int.
2073 	 * the real end of the address space is determined by all of
2074 	 * the devices in the system
2075 	 */
2076 	inode->i_size = OFFSET_MAX;
2077 	inode->i_mapping->a_ops = &btree_aops;
2078 
2079 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2080 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2081 			    IO_TREE_INODE_IO, inode);
2082 	BTRFS_I(inode)->io_tree.track_uptodate = false;
2083 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2084 
2085 	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2086 
2087 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2088 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2089 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2090 	btrfs_insert_inode_hash(inode);
2091 }
2092 
2093 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2094 {
2095 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2096 	init_rwsem(&fs_info->dev_replace.rwsem);
2097 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2098 }
2099 
2100 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2101 {
2102 	spin_lock_init(&fs_info->qgroup_lock);
2103 	mutex_init(&fs_info->qgroup_ioctl_lock);
2104 	fs_info->qgroup_tree = RB_ROOT;
2105 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2106 	fs_info->qgroup_seq = 1;
2107 	fs_info->qgroup_ulist = NULL;
2108 	fs_info->qgroup_rescan_running = false;
2109 	mutex_init(&fs_info->qgroup_rescan_lock);
2110 }
2111 
2112 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2113 		struct btrfs_fs_devices *fs_devices)
2114 {
2115 	u32 max_active = fs_info->thread_pool_size;
2116 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2117 
2118 	fs_info->workers =
2119 		btrfs_alloc_workqueue(fs_info, "worker",
2120 				      flags | WQ_HIGHPRI, max_active, 16);
2121 
2122 	fs_info->delalloc_workers =
2123 		btrfs_alloc_workqueue(fs_info, "delalloc",
2124 				      flags, max_active, 2);
2125 
2126 	fs_info->flush_workers =
2127 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2128 				      flags, max_active, 0);
2129 
2130 	fs_info->caching_workers =
2131 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2132 
2133 	fs_info->fixup_workers =
2134 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2135 
2136 	/*
2137 	 * endios are largely parallel and should have a very
2138 	 * low idle thresh
2139 	 */
2140 	fs_info->endio_workers =
2141 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2142 	fs_info->endio_meta_workers =
2143 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2144 				      max_active, 4);
2145 	fs_info->endio_meta_write_workers =
2146 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2147 				      max_active, 2);
2148 	fs_info->endio_raid56_workers =
2149 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2150 				      max_active, 4);
2151 	fs_info->rmw_workers =
2152 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2153 	fs_info->endio_write_workers =
2154 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2155 				      max_active, 2);
2156 	fs_info->endio_freespace_worker =
2157 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2158 				      max_active, 0);
2159 	fs_info->delayed_workers =
2160 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2161 				      max_active, 0);
2162 	fs_info->readahead_workers =
2163 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2164 				      max_active, 2);
2165 	fs_info->qgroup_rescan_workers =
2166 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2167 	fs_info->discard_ctl.discard_workers =
2168 		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2169 
2170 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2171 	      fs_info->flush_workers &&
2172 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2173 	      fs_info->endio_meta_write_workers &&
2174 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2175 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2176 	      fs_info->caching_workers && fs_info->readahead_workers &&
2177 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2178 	      fs_info->qgroup_rescan_workers &&
2179 	      fs_info->discard_ctl.discard_workers)) {
2180 		return -ENOMEM;
2181 	}
2182 
2183 	return 0;
2184 }
2185 
2186 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2187 {
2188 	struct crypto_shash *csum_shash;
2189 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2190 
2191 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2192 
2193 	if (IS_ERR(csum_shash)) {
2194 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2195 			  csum_driver);
2196 		return PTR_ERR(csum_shash);
2197 	}
2198 
2199 	fs_info->csum_shash = csum_shash;
2200 
2201 	return 0;
2202 }
2203 
2204 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2205 			    struct btrfs_fs_devices *fs_devices)
2206 {
2207 	int ret;
2208 	struct btrfs_root *log_tree_root;
2209 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2210 	u64 bytenr = btrfs_super_log_root(disk_super);
2211 	int level = btrfs_super_log_root_level(disk_super);
2212 
2213 	if (fs_devices->rw_devices == 0) {
2214 		btrfs_warn(fs_info, "log replay required on RO media");
2215 		return -EIO;
2216 	}
2217 
2218 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2219 					 GFP_KERNEL);
2220 	if (!log_tree_root)
2221 		return -ENOMEM;
2222 
2223 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2224 					      fs_info->generation + 1,
2225 					      level, NULL);
2226 	if (IS_ERR(log_tree_root->node)) {
2227 		btrfs_warn(fs_info, "failed to read log tree");
2228 		ret = PTR_ERR(log_tree_root->node);
2229 		log_tree_root->node = NULL;
2230 		btrfs_put_root(log_tree_root);
2231 		return ret;
2232 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2233 		btrfs_err(fs_info, "failed to read log tree");
2234 		btrfs_put_root(log_tree_root);
2235 		return -EIO;
2236 	}
2237 	/* returns with log_tree_root freed on success */
2238 	ret = btrfs_recover_log_trees(log_tree_root);
2239 	if (ret) {
2240 		btrfs_handle_fs_error(fs_info, ret,
2241 				      "Failed to recover log tree");
2242 		btrfs_put_root(log_tree_root);
2243 		return ret;
2244 	}
2245 
2246 	if (sb_rdonly(fs_info->sb)) {
2247 		ret = btrfs_commit_super(fs_info);
2248 		if (ret)
2249 			return ret;
2250 	}
2251 
2252 	return 0;
2253 }
2254 
2255 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2256 {
2257 	struct btrfs_root *tree_root = fs_info->tree_root;
2258 	struct btrfs_root *root;
2259 	struct btrfs_key location;
2260 	int ret;
2261 
2262 	BUG_ON(!fs_info->tree_root);
2263 
2264 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2265 	location.type = BTRFS_ROOT_ITEM_KEY;
2266 	location.offset = 0;
2267 
2268 	root = btrfs_read_tree_root(tree_root, &location);
2269 	if (IS_ERR(root)) {
2270 		ret = PTR_ERR(root);
2271 		goto out;
2272 	}
2273 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2274 	fs_info->extent_root = root;
2275 
2276 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2277 	root = btrfs_read_tree_root(tree_root, &location);
2278 	if (IS_ERR(root)) {
2279 		ret = PTR_ERR(root);
2280 		goto out;
2281 	}
2282 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2283 	fs_info->dev_root = root;
2284 	btrfs_init_devices_late(fs_info);
2285 
2286 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2287 	root = btrfs_read_tree_root(tree_root, &location);
2288 	if (IS_ERR(root)) {
2289 		ret = PTR_ERR(root);
2290 		goto out;
2291 	}
2292 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2293 	fs_info->csum_root = root;
2294 
2295 	/*
2296 	 * This tree can share blocks with some other fs tree during relocation
2297 	 * and we need a proper setup by btrfs_get_fs_root
2298 	 */
2299 	root = btrfs_get_fs_root(tree_root->fs_info,
2300 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2301 	if (IS_ERR(root)) {
2302 		ret = PTR_ERR(root);
2303 		goto out;
2304 	}
2305 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2306 	fs_info->data_reloc_root = root;
2307 
2308 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2309 	root = btrfs_read_tree_root(tree_root, &location);
2310 	if (!IS_ERR(root)) {
2311 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2312 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2313 		fs_info->quota_root = root;
2314 	}
2315 
2316 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2317 	root = btrfs_read_tree_root(tree_root, &location);
2318 	if (IS_ERR(root)) {
2319 		ret = PTR_ERR(root);
2320 		if (ret != -ENOENT)
2321 			goto out;
2322 	} else {
2323 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2324 		fs_info->uuid_root = root;
2325 	}
2326 
2327 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2328 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2329 		root = btrfs_read_tree_root(tree_root, &location);
2330 		if (IS_ERR(root)) {
2331 			ret = PTR_ERR(root);
2332 			goto out;
2333 		}
2334 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2335 		fs_info->free_space_root = root;
2336 	}
2337 
2338 	return 0;
2339 out:
2340 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2341 		   location.objectid, ret);
2342 	return ret;
2343 }
2344 
2345 /*
2346  * Real super block validation
2347  * NOTE: super csum type and incompat features will not be checked here.
2348  *
2349  * @sb:		super block to check
2350  * @mirror_num:	the super block number to check its bytenr:
2351  * 		0	the primary (1st) sb
2352  * 		1, 2	2nd and 3rd backup copy
2353  * 	       -1	skip bytenr check
2354  */
2355 static int validate_super(struct btrfs_fs_info *fs_info,
2356 			    struct btrfs_super_block *sb, int mirror_num)
2357 {
2358 	u64 nodesize = btrfs_super_nodesize(sb);
2359 	u64 sectorsize = btrfs_super_sectorsize(sb);
2360 	int ret = 0;
2361 
2362 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2363 		btrfs_err(fs_info, "no valid FS found");
2364 		ret = -EINVAL;
2365 	}
2366 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2367 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2368 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2369 		ret = -EINVAL;
2370 	}
2371 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2372 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2373 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2374 		ret = -EINVAL;
2375 	}
2376 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2377 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2378 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2379 		ret = -EINVAL;
2380 	}
2381 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2382 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2383 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2384 		ret = -EINVAL;
2385 	}
2386 
2387 	/*
2388 	 * Check sectorsize and nodesize first, other check will need it.
2389 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2390 	 */
2391 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2392 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2393 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2394 		ret = -EINVAL;
2395 	}
2396 	/* Only PAGE SIZE is supported yet */
2397 	if (sectorsize != PAGE_SIZE) {
2398 		btrfs_err(fs_info,
2399 			"sectorsize %llu not supported yet, only support %lu",
2400 			sectorsize, PAGE_SIZE);
2401 		ret = -EINVAL;
2402 	}
2403 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2404 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2405 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2406 		ret = -EINVAL;
2407 	}
2408 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2409 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2410 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2411 		ret = -EINVAL;
2412 	}
2413 
2414 	/* Root alignment check */
2415 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2416 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2417 			   btrfs_super_root(sb));
2418 		ret = -EINVAL;
2419 	}
2420 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2421 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2422 			   btrfs_super_chunk_root(sb));
2423 		ret = -EINVAL;
2424 	}
2425 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2426 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2427 			   btrfs_super_log_root(sb));
2428 		ret = -EINVAL;
2429 	}
2430 
2431 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2432 		   BTRFS_FSID_SIZE) != 0) {
2433 		btrfs_err(fs_info,
2434 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2435 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2436 		ret = -EINVAL;
2437 	}
2438 
2439 	/*
2440 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2441 	 * done later
2442 	 */
2443 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2444 		btrfs_err(fs_info, "bytes_used is too small %llu",
2445 			  btrfs_super_bytes_used(sb));
2446 		ret = -EINVAL;
2447 	}
2448 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2449 		btrfs_err(fs_info, "invalid stripesize %u",
2450 			  btrfs_super_stripesize(sb));
2451 		ret = -EINVAL;
2452 	}
2453 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2454 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2455 			   btrfs_super_num_devices(sb));
2456 	if (btrfs_super_num_devices(sb) == 0) {
2457 		btrfs_err(fs_info, "number of devices is 0");
2458 		ret = -EINVAL;
2459 	}
2460 
2461 	if (mirror_num >= 0 &&
2462 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2463 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2464 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2465 		ret = -EINVAL;
2466 	}
2467 
2468 	/*
2469 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2470 	 * and one chunk
2471 	 */
2472 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2473 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2474 			  btrfs_super_sys_array_size(sb),
2475 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2476 		ret = -EINVAL;
2477 	}
2478 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2479 			+ sizeof(struct btrfs_chunk)) {
2480 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2481 			  btrfs_super_sys_array_size(sb),
2482 			  sizeof(struct btrfs_disk_key)
2483 			  + sizeof(struct btrfs_chunk));
2484 		ret = -EINVAL;
2485 	}
2486 
2487 	/*
2488 	 * The generation is a global counter, we'll trust it more than the others
2489 	 * but it's still possible that it's the one that's wrong.
2490 	 */
2491 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2492 		btrfs_warn(fs_info,
2493 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2494 			btrfs_super_generation(sb),
2495 			btrfs_super_chunk_root_generation(sb));
2496 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2497 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2498 		btrfs_warn(fs_info,
2499 			"suspicious: generation < cache_generation: %llu < %llu",
2500 			btrfs_super_generation(sb),
2501 			btrfs_super_cache_generation(sb));
2502 
2503 	return ret;
2504 }
2505 
2506 /*
2507  * Validation of super block at mount time.
2508  * Some checks already done early at mount time, like csum type and incompat
2509  * flags will be skipped.
2510  */
2511 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2512 {
2513 	return validate_super(fs_info, fs_info->super_copy, 0);
2514 }
2515 
2516 /*
2517  * Validation of super block at write time.
2518  * Some checks like bytenr check will be skipped as their values will be
2519  * overwritten soon.
2520  * Extra checks like csum type and incompat flags will be done here.
2521  */
2522 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2523 				      struct btrfs_super_block *sb)
2524 {
2525 	int ret;
2526 
2527 	ret = validate_super(fs_info, sb, -1);
2528 	if (ret < 0)
2529 		goto out;
2530 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2531 		ret = -EUCLEAN;
2532 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2533 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2534 		goto out;
2535 	}
2536 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2537 		ret = -EUCLEAN;
2538 		btrfs_err(fs_info,
2539 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2540 			  btrfs_super_incompat_flags(sb),
2541 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2542 		goto out;
2543 	}
2544 out:
2545 	if (ret < 0)
2546 		btrfs_err(fs_info,
2547 		"super block corruption detected before writing it to disk");
2548 	return ret;
2549 }
2550 
2551 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2552 {
2553 	int backup_index = find_newest_super_backup(fs_info);
2554 	struct btrfs_super_block *sb = fs_info->super_copy;
2555 	struct btrfs_root *tree_root = fs_info->tree_root;
2556 	bool handle_error = false;
2557 	int ret = 0;
2558 	int i;
2559 
2560 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2561 		u64 generation;
2562 		int level;
2563 
2564 		if (handle_error) {
2565 			if (!IS_ERR(tree_root->node))
2566 				free_extent_buffer(tree_root->node);
2567 			tree_root->node = NULL;
2568 
2569 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2570 				break;
2571 
2572 			free_root_pointers(fs_info, 0);
2573 
2574 			/*
2575 			 * Don't use the log in recovery mode, it won't be
2576 			 * valid
2577 			 */
2578 			btrfs_set_super_log_root(sb, 0);
2579 
2580 			/* We can't trust the free space cache either */
2581 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2582 
2583 			ret = read_backup_root(fs_info, i);
2584 			backup_index = ret;
2585 			if (ret < 0)
2586 				return ret;
2587 		}
2588 		generation = btrfs_super_generation(sb);
2589 		level = btrfs_super_root_level(sb);
2590 		tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2591 						  generation, level, NULL);
2592 		if (IS_ERR(tree_root->node) ||
2593 		    !extent_buffer_uptodate(tree_root->node)) {
2594 			handle_error = true;
2595 
2596 			if (IS_ERR(tree_root->node))
2597 				ret = PTR_ERR(tree_root->node);
2598 			else if (!extent_buffer_uptodate(tree_root->node))
2599 				ret = -EUCLEAN;
2600 
2601 			btrfs_warn(fs_info, "failed to read tree root");
2602 			continue;
2603 		}
2604 
2605 		btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2606 		tree_root->commit_root = btrfs_root_node(tree_root);
2607 		btrfs_set_root_refs(&tree_root->root_item, 1);
2608 
2609 		/*
2610 		 * No need to hold btrfs_root::objectid_mutex since the fs
2611 		 * hasn't been fully initialised and we are the only user
2612 		 */
2613 		ret = btrfs_find_highest_objectid(tree_root,
2614 						&tree_root->highest_objectid);
2615 		if (ret < 0) {
2616 			handle_error = true;
2617 			continue;
2618 		}
2619 
2620 		ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2621 
2622 		ret = btrfs_read_roots(fs_info);
2623 		if (ret < 0) {
2624 			handle_error = true;
2625 			continue;
2626 		}
2627 
2628 		/* All successful */
2629 		fs_info->generation = generation;
2630 		fs_info->last_trans_committed = generation;
2631 
2632 		/* Always begin writing backup roots after the one being used */
2633 		if (backup_index < 0) {
2634 			fs_info->backup_root_index = 0;
2635 		} else {
2636 			fs_info->backup_root_index = backup_index + 1;
2637 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2638 		}
2639 		break;
2640 	}
2641 
2642 	return ret;
2643 }
2644 
2645 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2646 {
2647 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2648 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2649 	INIT_LIST_HEAD(&fs_info->trans_list);
2650 	INIT_LIST_HEAD(&fs_info->dead_roots);
2651 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2652 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2653 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2654 	spin_lock_init(&fs_info->delalloc_root_lock);
2655 	spin_lock_init(&fs_info->trans_lock);
2656 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2657 	spin_lock_init(&fs_info->delayed_iput_lock);
2658 	spin_lock_init(&fs_info->defrag_inodes_lock);
2659 	spin_lock_init(&fs_info->super_lock);
2660 	spin_lock_init(&fs_info->buffer_lock);
2661 	spin_lock_init(&fs_info->unused_bgs_lock);
2662 	rwlock_init(&fs_info->tree_mod_log_lock);
2663 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2664 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2665 	mutex_init(&fs_info->reloc_mutex);
2666 	mutex_init(&fs_info->delalloc_root_mutex);
2667 	seqlock_init(&fs_info->profiles_lock);
2668 
2669 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2670 	INIT_LIST_HEAD(&fs_info->space_info);
2671 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2672 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2673 #ifdef CONFIG_BTRFS_DEBUG
2674 	INIT_LIST_HEAD(&fs_info->allocated_roots);
2675 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2676 	spin_lock_init(&fs_info->eb_leak_lock);
2677 #endif
2678 	extent_map_tree_init(&fs_info->mapping_tree);
2679 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2680 			     BTRFS_BLOCK_RSV_GLOBAL);
2681 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2682 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2683 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2684 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2685 			     BTRFS_BLOCK_RSV_DELOPS);
2686 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2687 			     BTRFS_BLOCK_RSV_DELREFS);
2688 
2689 	atomic_set(&fs_info->async_delalloc_pages, 0);
2690 	atomic_set(&fs_info->defrag_running, 0);
2691 	atomic_set(&fs_info->reada_works_cnt, 0);
2692 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2693 	atomic64_set(&fs_info->tree_mod_seq, 0);
2694 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2695 	fs_info->metadata_ratio = 0;
2696 	fs_info->defrag_inodes = RB_ROOT;
2697 	atomic64_set(&fs_info->free_chunk_space, 0);
2698 	fs_info->tree_mod_log = RB_ROOT;
2699 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2700 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2701 	/* readahead state */
2702 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2703 	spin_lock_init(&fs_info->reada_lock);
2704 	btrfs_init_ref_verify(fs_info);
2705 
2706 	fs_info->thread_pool_size = min_t(unsigned long,
2707 					  num_online_cpus() + 2, 8);
2708 
2709 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2710 	spin_lock_init(&fs_info->ordered_root_lock);
2711 
2712 	btrfs_init_scrub(fs_info);
2713 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2714 	fs_info->check_integrity_print_mask = 0;
2715 #endif
2716 	btrfs_init_balance(fs_info);
2717 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2718 
2719 	spin_lock_init(&fs_info->block_group_cache_lock);
2720 	fs_info->block_group_cache_tree = RB_ROOT;
2721 	fs_info->first_logical_byte = (u64)-1;
2722 
2723 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2724 			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2725 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2726 
2727 	mutex_init(&fs_info->ordered_operations_mutex);
2728 	mutex_init(&fs_info->tree_log_mutex);
2729 	mutex_init(&fs_info->chunk_mutex);
2730 	mutex_init(&fs_info->transaction_kthread_mutex);
2731 	mutex_init(&fs_info->cleaner_mutex);
2732 	mutex_init(&fs_info->ro_block_group_mutex);
2733 	init_rwsem(&fs_info->commit_root_sem);
2734 	init_rwsem(&fs_info->cleanup_work_sem);
2735 	init_rwsem(&fs_info->subvol_sem);
2736 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2737 
2738 	btrfs_init_dev_replace_locks(fs_info);
2739 	btrfs_init_qgroup(fs_info);
2740 	btrfs_discard_init(fs_info);
2741 
2742 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2743 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2744 
2745 	init_waitqueue_head(&fs_info->transaction_throttle);
2746 	init_waitqueue_head(&fs_info->transaction_wait);
2747 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2748 	init_waitqueue_head(&fs_info->async_submit_wait);
2749 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2750 
2751 	/* Usable values until the real ones are cached from the superblock */
2752 	fs_info->nodesize = 4096;
2753 	fs_info->sectorsize = 4096;
2754 	fs_info->stripesize = 4096;
2755 
2756 	spin_lock_init(&fs_info->swapfile_pins_lock);
2757 	fs_info->swapfile_pins = RB_ROOT;
2758 
2759 	fs_info->send_in_progress = 0;
2760 }
2761 
2762 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2763 {
2764 	int ret;
2765 
2766 	fs_info->sb = sb;
2767 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2768 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2769 
2770 	ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2771 	if (ret)
2772 		return ret;
2773 
2774 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2775 	if (ret)
2776 		return ret;
2777 
2778 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2779 					(1 + ilog2(nr_cpu_ids));
2780 
2781 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2782 	if (ret)
2783 		return ret;
2784 
2785 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2786 			GFP_KERNEL);
2787 	if (ret)
2788 		return ret;
2789 
2790 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2791 					GFP_KERNEL);
2792 	if (!fs_info->delayed_root)
2793 		return -ENOMEM;
2794 	btrfs_init_delayed_root(fs_info->delayed_root);
2795 
2796 	return btrfs_alloc_stripe_hash_table(fs_info);
2797 }
2798 
2799 static int btrfs_uuid_rescan_kthread(void *data)
2800 {
2801 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2802 	int ret;
2803 
2804 	/*
2805 	 * 1st step is to iterate through the existing UUID tree and
2806 	 * to delete all entries that contain outdated data.
2807 	 * 2nd step is to add all missing entries to the UUID tree.
2808 	 */
2809 	ret = btrfs_uuid_tree_iterate(fs_info);
2810 	if (ret < 0) {
2811 		if (ret != -EINTR)
2812 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2813 				   ret);
2814 		up(&fs_info->uuid_tree_rescan_sem);
2815 		return ret;
2816 	}
2817 	return btrfs_uuid_scan_kthread(data);
2818 }
2819 
2820 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2821 {
2822 	struct task_struct *task;
2823 
2824 	down(&fs_info->uuid_tree_rescan_sem);
2825 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2826 	if (IS_ERR(task)) {
2827 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2828 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2829 		up(&fs_info->uuid_tree_rescan_sem);
2830 		return PTR_ERR(task);
2831 	}
2832 
2833 	return 0;
2834 }
2835 
2836 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2837 		      char *options)
2838 {
2839 	u32 sectorsize;
2840 	u32 nodesize;
2841 	u32 stripesize;
2842 	u64 generation;
2843 	u64 features;
2844 	u16 csum_type;
2845 	struct btrfs_super_block *disk_super;
2846 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2847 	struct btrfs_root *tree_root;
2848 	struct btrfs_root *chunk_root;
2849 	int ret;
2850 	int err = -EINVAL;
2851 	int clear_free_space_tree = 0;
2852 	int level;
2853 
2854 	ret = init_mount_fs_info(fs_info, sb);
2855 	if (ret) {
2856 		err = ret;
2857 		goto fail;
2858 	}
2859 
2860 	/* These need to be init'ed before we start creating inodes and such. */
2861 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2862 				     GFP_KERNEL);
2863 	fs_info->tree_root = tree_root;
2864 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2865 				      GFP_KERNEL);
2866 	fs_info->chunk_root = chunk_root;
2867 	if (!tree_root || !chunk_root) {
2868 		err = -ENOMEM;
2869 		goto fail;
2870 	}
2871 
2872 	fs_info->btree_inode = new_inode(sb);
2873 	if (!fs_info->btree_inode) {
2874 		err = -ENOMEM;
2875 		goto fail;
2876 	}
2877 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2878 	btrfs_init_btree_inode(fs_info);
2879 
2880 	invalidate_bdev(fs_devices->latest_bdev);
2881 
2882 	/*
2883 	 * Read super block and check the signature bytes only
2884 	 */
2885 	disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2886 	if (IS_ERR(disk_super)) {
2887 		err = PTR_ERR(disk_super);
2888 		goto fail_alloc;
2889 	}
2890 
2891 	/*
2892 	 * Verify the type first, if that or the the checksum value are
2893 	 * corrupted, we'll find out
2894 	 */
2895 	csum_type = btrfs_super_csum_type(disk_super);
2896 	if (!btrfs_supported_super_csum(csum_type)) {
2897 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2898 			  csum_type);
2899 		err = -EINVAL;
2900 		btrfs_release_disk_super(disk_super);
2901 		goto fail_alloc;
2902 	}
2903 
2904 	ret = btrfs_init_csum_hash(fs_info, csum_type);
2905 	if (ret) {
2906 		err = ret;
2907 		btrfs_release_disk_super(disk_super);
2908 		goto fail_alloc;
2909 	}
2910 
2911 	/*
2912 	 * We want to check superblock checksum, the type is stored inside.
2913 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2914 	 */
2915 	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2916 		btrfs_err(fs_info, "superblock checksum mismatch");
2917 		err = -EINVAL;
2918 		btrfs_release_disk_super(disk_super);
2919 		goto fail_alloc;
2920 	}
2921 
2922 	/*
2923 	 * super_copy is zeroed at allocation time and we never touch the
2924 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2925 	 * the whole block of INFO_SIZE
2926 	 */
2927 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2928 	btrfs_release_disk_super(disk_super);
2929 
2930 	disk_super = fs_info->super_copy;
2931 
2932 	ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2933 		       BTRFS_FSID_SIZE));
2934 
2935 	if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2936 		ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2937 				fs_info->super_copy->metadata_uuid,
2938 				BTRFS_FSID_SIZE));
2939 	}
2940 
2941 	features = btrfs_super_flags(disk_super);
2942 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2943 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2944 		btrfs_set_super_flags(disk_super, features);
2945 		btrfs_info(fs_info,
2946 			"found metadata UUID change in progress flag, clearing");
2947 	}
2948 
2949 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2950 	       sizeof(*fs_info->super_for_commit));
2951 
2952 	ret = btrfs_validate_mount_super(fs_info);
2953 	if (ret) {
2954 		btrfs_err(fs_info, "superblock contains fatal errors");
2955 		err = -EINVAL;
2956 		goto fail_alloc;
2957 	}
2958 
2959 	if (!btrfs_super_root(disk_super))
2960 		goto fail_alloc;
2961 
2962 	/* check FS state, whether FS is broken. */
2963 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2964 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2965 
2966 	/*
2967 	 * In the long term, we'll store the compression type in the super
2968 	 * block, and it'll be used for per file compression control.
2969 	 */
2970 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2971 
2972 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2973 	if (ret) {
2974 		err = ret;
2975 		goto fail_alloc;
2976 	}
2977 
2978 	features = btrfs_super_incompat_flags(disk_super) &
2979 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2980 	if (features) {
2981 		btrfs_err(fs_info,
2982 		    "cannot mount because of unsupported optional features (%llx)",
2983 		    features);
2984 		err = -EINVAL;
2985 		goto fail_alloc;
2986 	}
2987 
2988 	features = btrfs_super_incompat_flags(disk_super);
2989 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2990 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2991 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2992 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2993 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2994 
2995 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2996 		btrfs_info(fs_info, "has skinny extents");
2997 
2998 	/*
2999 	 * flag our filesystem as having big metadata blocks if
3000 	 * they are bigger than the page size
3001 	 */
3002 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3003 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3004 			btrfs_info(fs_info,
3005 				"flagging fs with big metadata feature");
3006 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3007 	}
3008 
3009 	nodesize = btrfs_super_nodesize(disk_super);
3010 	sectorsize = btrfs_super_sectorsize(disk_super);
3011 	stripesize = sectorsize;
3012 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3013 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3014 
3015 	/* Cache block sizes */
3016 	fs_info->nodesize = nodesize;
3017 	fs_info->sectorsize = sectorsize;
3018 	fs_info->stripesize = stripesize;
3019 
3020 	/*
3021 	 * mixed block groups end up with duplicate but slightly offset
3022 	 * extent buffers for the same range.  It leads to corruptions
3023 	 */
3024 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3025 	    (sectorsize != nodesize)) {
3026 		btrfs_err(fs_info,
3027 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3028 			nodesize, sectorsize);
3029 		goto fail_alloc;
3030 	}
3031 
3032 	/*
3033 	 * Needn't use the lock because there is no other task which will
3034 	 * update the flag.
3035 	 */
3036 	btrfs_set_super_incompat_flags(disk_super, features);
3037 
3038 	features = btrfs_super_compat_ro_flags(disk_super) &
3039 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3040 	if (!sb_rdonly(sb) && features) {
3041 		btrfs_err(fs_info,
3042 	"cannot mount read-write because of unsupported optional features (%llx)",
3043 		       features);
3044 		err = -EINVAL;
3045 		goto fail_alloc;
3046 	}
3047 
3048 	ret = btrfs_init_workqueues(fs_info, fs_devices);
3049 	if (ret) {
3050 		err = ret;
3051 		goto fail_sb_buffer;
3052 	}
3053 
3054 	sb->s_bdi->congested_fn = btrfs_congested_fn;
3055 	sb->s_bdi->congested_data = fs_info;
3056 	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3057 	sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3058 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3059 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3060 
3061 	sb->s_blocksize = sectorsize;
3062 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3063 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3064 
3065 	mutex_lock(&fs_info->chunk_mutex);
3066 	ret = btrfs_read_sys_array(fs_info);
3067 	mutex_unlock(&fs_info->chunk_mutex);
3068 	if (ret) {
3069 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3070 		goto fail_sb_buffer;
3071 	}
3072 
3073 	generation = btrfs_super_chunk_root_generation(disk_super);
3074 	level = btrfs_super_chunk_root_level(disk_super);
3075 
3076 	chunk_root->node = read_tree_block(fs_info,
3077 					   btrfs_super_chunk_root(disk_super),
3078 					   generation, level, NULL);
3079 	if (IS_ERR(chunk_root->node) ||
3080 	    !extent_buffer_uptodate(chunk_root->node)) {
3081 		btrfs_err(fs_info, "failed to read chunk root");
3082 		if (!IS_ERR(chunk_root->node))
3083 			free_extent_buffer(chunk_root->node);
3084 		chunk_root->node = NULL;
3085 		goto fail_tree_roots;
3086 	}
3087 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3088 	chunk_root->commit_root = btrfs_root_node(chunk_root);
3089 
3090 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3091 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3092 			   BTRFS_UUID_SIZE);
3093 
3094 	ret = btrfs_read_chunk_tree(fs_info);
3095 	if (ret) {
3096 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3097 		goto fail_tree_roots;
3098 	}
3099 
3100 	/*
3101 	 * Keep the devid that is marked to be the target device for the
3102 	 * device replace procedure
3103 	 */
3104 	btrfs_free_extra_devids(fs_devices, 0);
3105 
3106 	if (!fs_devices->latest_bdev) {
3107 		btrfs_err(fs_info, "failed to read devices");
3108 		goto fail_tree_roots;
3109 	}
3110 
3111 	ret = init_tree_roots(fs_info);
3112 	if (ret)
3113 		goto fail_tree_roots;
3114 
3115 	/*
3116 	 * If we have a uuid root and we're not being told to rescan we need to
3117 	 * check the generation here so we can set the
3118 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3119 	 * transaction during a balance or the log replay without updating the
3120 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3121 	 * even though it was perfectly fine.
3122 	 */
3123 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3124 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3125 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3126 
3127 	ret = btrfs_verify_dev_extents(fs_info);
3128 	if (ret) {
3129 		btrfs_err(fs_info,
3130 			  "failed to verify dev extents against chunks: %d",
3131 			  ret);
3132 		goto fail_block_groups;
3133 	}
3134 	ret = btrfs_recover_balance(fs_info);
3135 	if (ret) {
3136 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3137 		goto fail_block_groups;
3138 	}
3139 
3140 	ret = btrfs_init_dev_stats(fs_info);
3141 	if (ret) {
3142 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3143 		goto fail_block_groups;
3144 	}
3145 
3146 	ret = btrfs_init_dev_replace(fs_info);
3147 	if (ret) {
3148 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3149 		goto fail_block_groups;
3150 	}
3151 
3152 	btrfs_free_extra_devids(fs_devices, 1);
3153 
3154 	ret = btrfs_sysfs_add_fsid(fs_devices);
3155 	if (ret) {
3156 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3157 				ret);
3158 		goto fail_block_groups;
3159 	}
3160 
3161 	ret = btrfs_sysfs_add_mounted(fs_info);
3162 	if (ret) {
3163 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3164 		goto fail_fsdev_sysfs;
3165 	}
3166 
3167 	ret = btrfs_init_space_info(fs_info);
3168 	if (ret) {
3169 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3170 		goto fail_sysfs;
3171 	}
3172 
3173 	ret = btrfs_read_block_groups(fs_info);
3174 	if (ret) {
3175 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3176 		goto fail_sysfs;
3177 	}
3178 
3179 	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3180 		btrfs_warn(fs_info,
3181 		"writable mount is not allowed due to too many missing devices");
3182 		goto fail_sysfs;
3183 	}
3184 
3185 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3186 					       "btrfs-cleaner");
3187 	if (IS_ERR(fs_info->cleaner_kthread))
3188 		goto fail_sysfs;
3189 
3190 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3191 						   tree_root,
3192 						   "btrfs-transaction");
3193 	if (IS_ERR(fs_info->transaction_kthread))
3194 		goto fail_cleaner;
3195 
3196 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3197 	    !fs_info->fs_devices->rotating) {
3198 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3199 	}
3200 
3201 	/*
3202 	 * Mount does not set all options immediately, we can do it now and do
3203 	 * not have to wait for transaction commit
3204 	 */
3205 	btrfs_apply_pending_changes(fs_info);
3206 
3207 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3208 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3209 		ret = btrfsic_mount(fs_info, fs_devices,
3210 				    btrfs_test_opt(fs_info,
3211 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3212 				    1 : 0,
3213 				    fs_info->check_integrity_print_mask);
3214 		if (ret)
3215 			btrfs_warn(fs_info,
3216 				"failed to initialize integrity check module: %d",
3217 				ret);
3218 	}
3219 #endif
3220 	ret = btrfs_read_qgroup_config(fs_info);
3221 	if (ret)
3222 		goto fail_trans_kthread;
3223 
3224 	if (btrfs_build_ref_tree(fs_info))
3225 		btrfs_err(fs_info, "couldn't build ref tree");
3226 
3227 	/* do not make disk changes in broken FS or nologreplay is given */
3228 	if (btrfs_super_log_root(disk_super) != 0 &&
3229 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3230 		btrfs_info(fs_info, "start tree-log replay");
3231 		ret = btrfs_replay_log(fs_info, fs_devices);
3232 		if (ret) {
3233 			err = ret;
3234 			goto fail_qgroup;
3235 		}
3236 	}
3237 
3238 	ret = btrfs_find_orphan_roots(fs_info);
3239 	if (ret)
3240 		goto fail_qgroup;
3241 
3242 	if (!sb_rdonly(sb)) {
3243 		ret = btrfs_cleanup_fs_roots(fs_info);
3244 		if (ret)
3245 			goto fail_qgroup;
3246 
3247 		mutex_lock(&fs_info->cleaner_mutex);
3248 		ret = btrfs_recover_relocation(tree_root);
3249 		mutex_unlock(&fs_info->cleaner_mutex);
3250 		if (ret < 0) {
3251 			btrfs_warn(fs_info, "failed to recover relocation: %d",
3252 					ret);
3253 			err = -EINVAL;
3254 			goto fail_qgroup;
3255 		}
3256 	}
3257 
3258 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3259 	if (IS_ERR(fs_info->fs_root)) {
3260 		err = PTR_ERR(fs_info->fs_root);
3261 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3262 		fs_info->fs_root = NULL;
3263 		goto fail_qgroup;
3264 	}
3265 
3266 	if (sb_rdonly(sb))
3267 		return 0;
3268 
3269 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3270 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3271 		clear_free_space_tree = 1;
3272 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3273 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3274 		btrfs_warn(fs_info, "free space tree is invalid");
3275 		clear_free_space_tree = 1;
3276 	}
3277 
3278 	if (clear_free_space_tree) {
3279 		btrfs_info(fs_info, "clearing free space tree");
3280 		ret = btrfs_clear_free_space_tree(fs_info);
3281 		if (ret) {
3282 			btrfs_warn(fs_info,
3283 				   "failed to clear free space tree: %d", ret);
3284 			close_ctree(fs_info);
3285 			return ret;
3286 		}
3287 	}
3288 
3289 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3290 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3291 		btrfs_info(fs_info, "creating free space tree");
3292 		ret = btrfs_create_free_space_tree(fs_info);
3293 		if (ret) {
3294 			btrfs_warn(fs_info,
3295 				"failed to create free space tree: %d", ret);
3296 			close_ctree(fs_info);
3297 			return ret;
3298 		}
3299 	}
3300 
3301 	down_read(&fs_info->cleanup_work_sem);
3302 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3303 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3304 		up_read(&fs_info->cleanup_work_sem);
3305 		close_ctree(fs_info);
3306 		return ret;
3307 	}
3308 	up_read(&fs_info->cleanup_work_sem);
3309 
3310 	ret = btrfs_resume_balance_async(fs_info);
3311 	if (ret) {
3312 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3313 		close_ctree(fs_info);
3314 		return ret;
3315 	}
3316 
3317 	ret = btrfs_resume_dev_replace_async(fs_info);
3318 	if (ret) {
3319 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3320 		close_ctree(fs_info);
3321 		return ret;
3322 	}
3323 
3324 	btrfs_qgroup_rescan_resume(fs_info);
3325 	btrfs_discard_resume(fs_info);
3326 
3327 	if (!fs_info->uuid_root) {
3328 		btrfs_info(fs_info, "creating UUID tree");
3329 		ret = btrfs_create_uuid_tree(fs_info);
3330 		if (ret) {
3331 			btrfs_warn(fs_info,
3332 				"failed to create the UUID tree: %d", ret);
3333 			close_ctree(fs_info);
3334 			return ret;
3335 		}
3336 	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3337 		   fs_info->generation !=
3338 				btrfs_super_uuid_tree_generation(disk_super)) {
3339 		btrfs_info(fs_info, "checking UUID tree");
3340 		ret = btrfs_check_uuid_tree(fs_info);
3341 		if (ret) {
3342 			btrfs_warn(fs_info,
3343 				"failed to check the UUID tree: %d", ret);
3344 			close_ctree(fs_info);
3345 			return ret;
3346 		}
3347 	}
3348 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3349 
3350 	/*
3351 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3352 	 * no need to keep the flag
3353 	 */
3354 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3355 
3356 	return 0;
3357 
3358 fail_qgroup:
3359 	btrfs_free_qgroup_config(fs_info);
3360 fail_trans_kthread:
3361 	kthread_stop(fs_info->transaction_kthread);
3362 	btrfs_cleanup_transaction(fs_info);
3363 	btrfs_free_fs_roots(fs_info);
3364 fail_cleaner:
3365 	kthread_stop(fs_info->cleaner_kthread);
3366 
3367 	/*
3368 	 * make sure we're done with the btree inode before we stop our
3369 	 * kthreads
3370 	 */
3371 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3372 
3373 fail_sysfs:
3374 	btrfs_sysfs_remove_mounted(fs_info);
3375 
3376 fail_fsdev_sysfs:
3377 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3378 
3379 fail_block_groups:
3380 	btrfs_put_block_group_cache(fs_info);
3381 
3382 fail_tree_roots:
3383 	free_root_pointers(fs_info, true);
3384 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3385 
3386 fail_sb_buffer:
3387 	btrfs_stop_all_workers(fs_info);
3388 	btrfs_free_block_groups(fs_info);
3389 fail_alloc:
3390 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3391 
3392 	iput(fs_info->btree_inode);
3393 fail:
3394 	btrfs_close_devices(fs_info->fs_devices);
3395 	return err;
3396 }
3397 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3398 
3399 static void btrfs_end_super_write(struct bio *bio)
3400 {
3401 	struct btrfs_device *device = bio->bi_private;
3402 	struct bio_vec *bvec;
3403 	struct bvec_iter_all iter_all;
3404 	struct page *page;
3405 
3406 	bio_for_each_segment_all(bvec, bio, iter_all) {
3407 		page = bvec->bv_page;
3408 
3409 		if (bio->bi_status) {
3410 			btrfs_warn_rl_in_rcu(device->fs_info,
3411 				"lost page write due to IO error on %s (%d)",
3412 				rcu_str_deref(device->name),
3413 				blk_status_to_errno(bio->bi_status));
3414 			ClearPageUptodate(page);
3415 			SetPageError(page);
3416 			btrfs_dev_stat_inc_and_print(device,
3417 						     BTRFS_DEV_STAT_WRITE_ERRS);
3418 		} else {
3419 			SetPageUptodate(page);
3420 		}
3421 
3422 		put_page(page);
3423 		unlock_page(page);
3424 	}
3425 
3426 	bio_put(bio);
3427 }
3428 
3429 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3430 						   int copy_num)
3431 {
3432 	struct btrfs_super_block *super;
3433 	struct page *page;
3434 	u64 bytenr;
3435 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3436 
3437 	bytenr = btrfs_sb_offset(copy_num);
3438 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3439 		return ERR_PTR(-EINVAL);
3440 
3441 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3442 	if (IS_ERR(page))
3443 		return ERR_CAST(page);
3444 
3445 	super = page_address(page);
3446 	if (btrfs_super_bytenr(super) != bytenr ||
3447 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3448 		btrfs_release_disk_super(super);
3449 		return ERR_PTR(-EINVAL);
3450 	}
3451 
3452 	return super;
3453 }
3454 
3455 
3456 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3457 {
3458 	struct btrfs_super_block *super, *latest = NULL;
3459 	int i;
3460 	u64 transid = 0;
3461 
3462 	/* we would like to check all the supers, but that would make
3463 	 * a btrfs mount succeed after a mkfs from a different FS.
3464 	 * So, we need to add a special mount option to scan for
3465 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3466 	 */
3467 	for (i = 0; i < 1; i++) {
3468 		super = btrfs_read_dev_one_super(bdev, i);
3469 		if (IS_ERR(super))
3470 			continue;
3471 
3472 		if (!latest || btrfs_super_generation(super) > transid) {
3473 			if (latest)
3474 				btrfs_release_disk_super(super);
3475 
3476 			latest = super;
3477 			transid = btrfs_super_generation(super);
3478 		}
3479 	}
3480 
3481 	return super;
3482 }
3483 
3484 /*
3485  * Write superblock @sb to the @device. Do not wait for completion, all the
3486  * pages we use for writing are locked.
3487  *
3488  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3489  * the expected device size at commit time. Note that max_mirrors must be
3490  * same for write and wait phases.
3491  *
3492  * Return number of errors when page is not found or submission fails.
3493  */
3494 static int write_dev_supers(struct btrfs_device *device,
3495 			    struct btrfs_super_block *sb, int max_mirrors)
3496 {
3497 	struct btrfs_fs_info *fs_info = device->fs_info;
3498 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3499 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3500 	int i;
3501 	int errors = 0;
3502 	u64 bytenr;
3503 
3504 	if (max_mirrors == 0)
3505 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3506 
3507 	shash->tfm = fs_info->csum_shash;
3508 
3509 	for (i = 0; i < max_mirrors; i++) {
3510 		struct page *page;
3511 		struct bio *bio;
3512 		struct btrfs_super_block *disk_super;
3513 
3514 		bytenr = btrfs_sb_offset(i);
3515 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3516 		    device->commit_total_bytes)
3517 			break;
3518 
3519 		btrfs_set_super_bytenr(sb, bytenr);
3520 
3521 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3522 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3523 				    sb->csum);
3524 
3525 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3526 					   GFP_NOFS);
3527 		if (!page) {
3528 			btrfs_err(device->fs_info,
3529 			    "couldn't get super block page for bytenr %llu",
3530 			    bytenr);
3531 			errors++;
3532 			continue;
3533 		}
3534 
3535 		/* Bump the refcount for wait_dev_supers() */
3536 		get_page(page);
3537 
3538 		disk_super = page_address(page);
3539 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3540 
3541 		/*
3542 		 * Directly use bios here instead of relying on the page cache
3543 		 * to do I/O, so we don't lose the ability to do integrity
3544 		 * checking.
3545 		 */
3546 		bio = bio_alloc(GFP_NOFS, 1);
3547 		bio_set_dev(bio, device->bdev);
3548 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3549 		bio->bi_private = device;
3550 		bio->bi_end_io = btrfs_end_super_write;
3551 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3552 			       offset_in_page(bytenr));
3553 
3554 		/*
3555 		 * We FUA only the first super block.  The others we allow to
3556 		 * go down lazy and there's a short window where the on-disk
3557 		 * copies might still contain the older version.
3558 		 */
3559 		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3560 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3561 			bio->bi_opf |= REQ_FUA;
3562 
3563 		btrfsic_submit_bio(bio);
3564 	}
3565 	return errors < i ? 0 : -1;
3566 }
3567 
3568 /*
3569  * Wait for write completion of superblocks done by write_dev_supers,
3570  * @max_mirrors same for write and wait phases.
3571  *
3572  * Return number of errors when page is not found or not marked up to
3573  * date.
3574  */
3575 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3576 {
3577 	int i;
3578 	int errors = 0;
3579 	bool primary_failed = false;
3580 	u64 bytenr;
3581 
3582 	if (max_mirrors == 0)
3583 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3584 
3585 	for (i = 0; i < max_mirrors; i++) {
3586 		struct page *page;
3587 
3588 		bytenr = btrfs_sb_offset(i);
3589 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3590 		    device->commit_total_bytes)
3591 			break;
3592 
3593 		page = find_get_page(device->bdev->bd_inode->i_mapping,
3594 				     bytenr >> PAGE_SHIFT);
3595 		if (!page) {
3596 			errors++;
3597 			if (i == 0)
3598 				primary_failed = true;
3599 			continue;
3600 		}
3601 		/* Page is submitted locked and unlocked once the IO completes */
3602 		wait_on_page_locked(page);
3603 		if (PageError(page)) {
3604 			errors++;
3605 			if (i == 0)
3606 				primary_failed = true;
3607 		}
3608 
3609 		/* Drop our reference */
3610 		put_page(page);
3611 
3612 		/* Drop the reference from the writing run */
3613 		put_page(page);
3614 	}
3615 
3616 	/* log error, force error return */
3617 	if (primary_failed) {
3618 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3619 			  device->devid);
3620 		return -1;
3621 	}
3622 
3623 	return errors < i ? 0 : -1;
3624 }
3625 
3626 /*
3627  * endio for the write_dev_flush, this will wake anyone waiting
3628  * for the barrier when it is done
3629  */
3630 static void btrfs_end_empty_barrier(struct bio *bio)
3631 {
3632 	complete(bio->bi_private);
3633 }
3634 
3635 /*
3636  * Submit a flush request to the device if it supports it. Error handling is
3637  * done in the waiting counterpart.
3638  */
3639 static void write_dev_flush(struct btrfs_device *device)
3640 {
3641 	struct request_queue *q = bdev_get_queue(device->bdev);
3642 	struct bio *bio = device->flush_bio;
3643 
3644 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3645 		return;
3646 
3647 	bio_reset(bio);
3648 	bio->bi_end_io = btrfs_end_empty_barrier;
3649 	bio_set_dev(bio, device->bdev);
3650 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3651 	init_completion(&device->flush_wait);
3652 	bio->bi_private = &device->flush_wait;
3653 
3654 	btrfsic_submit_bio(bio);
3655 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3656 }
3657 
3658 /*
3659  * If the flush bio has been submitted by write_dev_flush, wait for it.
3660  */
3661 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3662 {
3663 	struct bio *bio = device->flush_bio;
3664 
3665 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3666 		return BLK_STS_OK;
3667 
3668 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3669 	wait_for_completion_io(&device->flush_wait);
3670 
3671 	return bio->bi_status;
3672 }
3673 
3674 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3675 {
3676 	if (!btrfs_check_rw_degradable(fs_info, NULL))
3677 		return -EIO;
3678 	return 0;
3679 }
3680 
3681 /*
3682  * send an empty flush down to each device in parallel,
3683  * then wait for them
3684  */
3685 static int barrier_all_devices(struct btrfs_fs_info *info)
3686 {
3687 	struct list_head *head;
3688 	struct btrfs_device *dev;
3689 	int errors_wait = 0;
3690 	blk_status_t ret;
3691 
3692 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3693 	/* send down all the barriers */
3694 	head = &info->fs_devices->devices;
3695 	list_for_each_entry(dev, head, dev_list) {
3696 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3697 			continue;
3698 		if (!dev->bdev)
3699 			continue;
3700 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3701 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3702 			continue;
3703 
3704 		write_dev_flush(dev);
3705 		dev->last_flush_error = BLK_STS_OK;
3706 	}
3707 
3708 	/* wait for all the barriers */
3709 	list_for_each_entry(dev, head, dev_list) {
3710 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3711 			continue;
3712 		if (!dev->bdev) {
3713 			errors_wait++;
3714 			continue;
3715 		}
3716 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3717 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3718 			continue;
3719 
3720 		ret = wait_dev_flush(dev);
3721 		if (ret) {
3722 			dev->last_flush_error = ret;
3723 			btrfs_dev_stat_inc_and_print(dev,
3724 					BTRFS_DEV_STAT_FLUSH_ERRS);
3725 			errors_wait++;
3726 		}
3727 	}
3728 
3729 	if (errors_wait) {
3730 		/*
3731 		 * At some point we need the status of all disks
3732 		 * to arrive at the volume status. So error checking
3733 		 * is being pushed to a separate loop.
3734 		 */
3735 		return check_barrier_error(info);
3736 	}
3737 	return 0;
3738 }
3739 
3740 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3741 {
3742 	int raid_type;
3743 	int min_tolerated = INT_MAX;
3744 
3745 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3746 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3747 		min_tolerated = min_t(int, min_tolerated,
3748 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3749 				    tolerated_failures);
3750 
3751 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3752 		if (raid_type == BTRFS_RAID_SINGLE)
3753 			continue;
3754 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3755 			continue;
3756 		min_tolerated = min_t(int, min_tolerated,
3757 				    btrfs_raid_array[raid_type].
3758 				    tolerated_failures);
3759 	}
3760 
3761 	if (min_tolerated == INT_MAX) {
3762 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3763 		min_tolerated = 0;
3764 	}
3765 
3766 	return min_tolerated;
3767 }
3768 
3769 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3770 {
3771 	struct list_head *head;
3772 	struct btrfs_device *dev;
3773 	struct btrfs_super_block *sb;
3774 	struct btrfs_dev_item *dev_item;
3775 	int ret;
3776 	int do_barriers;
3777 	int max_errors;
3778 	int total_errors = 0;
3779 	u64 flags;
3780 
3781 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3782 
3783 	/*
3784 	 * max_mirrors == 0 indicates we're from commit_transaction,
3785 	 * not from fsync where the tree roots in fs_info have not
3786 	 * been consistent on disk.
3787 	 */
3788 	if (max_mirrors == 0)
3789 		backup_super_roots(fs_info);
3790 
3791 	sb = fs_info->super_for_commit;
3792 	dev_item = &sb->dev_item;
3793 
3794 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3795 	head = &fs_info->fs_devices->devices;
3796 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3797 
3798 	if (do_barriers) {
3799 		ret = barrier_all_devices(fs_info);
3800 		if (ret) {
3801 			mutex_unlock(
3802 				&fs_info->fs_devices->device_list_mutex);
3803 			btrfs_handle_fs_error(fs_info, ret,
3804 					      "errors while submitting device barriers.");
3805 			return ret;
3806 		}
3807 	}
3808 
3809 	list_for_each_entry(dev, head, dev_list) {
3810 		if (!dev->bdev) {
3811 			total_errors++;
3812 			continue;
3813 		}
3814 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3815 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3816 			continue;
3817 
3818 		btrfs_set_stack_device_generation(dev_item, 0);
3819 		btrfs_set_stack_device_type(dev_item, dev->type);
3820 		btrfs_set_stack_device_id(dev_item, dev->devid);
3821 		btrfs_set_stack_device_total_bytes(dev_item,
3822 						   dev->commit_total_bytes);
3823 		btrfs_set_stack_device_bytes_used(dev_item,
3824 						  dev->commit_bytes_used);
3825 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3826 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3827 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3828 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3829 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3830 		       BTRFS_FSID_SIZE);
3831 
3832 		flags = btrfs_super_flags(sb);
3833 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3834 
3835 		ret = btrfs_validate_write_super(fs_info, sb);
3836 		if (ret < 0) {
3837 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3838 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
3839 				"unexpected superblock corruption detected");
3840 			return -EUCLEAN;
3841 		}
3842 
3843 		ret = write_dev_supers(dev, sb, max_mirrors);
3844 		if (ret)
3845 			total_errors++;
3846 	}
3847 	if (total_errors > max_errors) {
3848 		btrfs_err(fs_info, "%d errors while writing supers",
3849 			  total_errors);
3850 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3851 
3852 		/* FUA is masked off if unsupported and can't be the reason */
3853 		btrfs_handle_fs_error(fs_info, -EIO,
3854 				      "%d errors while writing supers",
3855 				      total_errors);
3856 		return -EIO;
3857 	}
3858 
3859 	total_errors = 0;
3860 	list_for_each_entry(dev, head, dev_list) {
3861 		if (!dev->bdev)
3862 			continue;
3863 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3864 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3865 			continue;
3866 
3867 		ret = wait_dev_supers(dev, max_mirrors);
3868 		if (ret)
3869 			total_errors++;
3870 	}
3871 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3872 	if (total_errors > max_errors) {
3873 		btrfs_handle_fs_error(fs_info, -EIO,
3874 				      "%d errors while writing supers",
3875 				      total_errors);
3876 		return -EIO;
3877 	}
3878 	return 0;
3879 }
3880 
3881 /* Drop a fs root from the radix tree and free it. */
3882 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3883 				  struct btrfs_root *root)
3884 {
3885 	bool drop_ref = false;
3886 
3887 	spin_lock(&fs_info->fs_roots_radix_lock);
3888 	radix_tree_delete(&fs_info->fs_roots_radix,
3889 			  (unsigned long)root->root_key.objectid);
3890 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3891 		drop_ref = true;
3892 	spin_unlock(&fs_info->fs_roots_radix_lock);
3893 
3894 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3895 		ASSERT(root->log_root == NULL);
3896 		if (root->reloc_root) {
3897 			btrfs_put_root(root->reloc_root);
3898 			root->reloc_root = NULL;
3899 		}
3900 	}
3901 
3902 	if (root->free_ino_pinned)
3903 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3904 	if (root->free_ino_ctl)
3905 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3906 	if (root->ino_cache_inode) {
3907 		iput(root->ino_cache_inode);
3908 		root->ino_cache_inode = NULL;
3909 	}
3910 	if (drop_ref)
3911 		btrfs_put_root(root);
3912 }
3913 
3914 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3915 {
3916 	u64 root_objectid = 0;
3917 	struct btrfs_root *gang[8];
3918 	int i = 0;
3919 	int err = 0;
3920 	unsigned int ret = 0;
3921 
3922 	while (1) {
3923 		spin_lock(&fs_info->fs_roots_radix_lock);
3924 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3925 					     (void **)gang, root_objectid,
3926 					     ARRAY_SIZE(gang));
3927 		if (!ret) {
3928 			spin_unlock(&fs_info->fs_roots_radix_lock);
3929 			break;
3930 		}
3931 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3932 
3933 		for (i = 0; i < ret; i++) {
3934 			/* Avoid to grab roots in dead_roots */
3935 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3936 				gang[i] = NULL;
3937 				continue;
3938 			}
3939 			/* grab all the search result for later use */
3940 			gang[i] = btrfs_grab_root(gang[i]);
3941 		}
3942 		spin_unlock(&fs_info->fs_roots_radix_lock);
3943 
3944 		for (i = 0; i < ret; i++) {
3945 			if (!gang[i])
3946 				continue;
3947 			root_objectid = gang[i]->root_key.objectid;
3948 			err = btrfs_orphan_cleanup(gang[i]);
3949 			if (err)
3950 				break;
3951 			btrfs_put_root(gang[i]);
3952 		}
3953 		root_objectid++;
3954 	}
3955 
3956 	/* release the uncleaned roots due to error */
3957 	for (; i < ret; i++) {
3958 		if (gang[i])
3959 			btrfs_put_root(gang[i]);
3960 	}
3961 	return err;
3962 }
3963 
3964 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3965 {
3966 	struct btrfs_root *root = fs_info->tree_root;
3967 	struct btrfs_trans_handle *trans;
3968 
3969 	mutex_lock(&fs_info->cleaner_mutex);
3970 	btrfs_run_delayed_iputs(fs_info);
3971 	mutex_unlock(&fs_info->cleaner_mutex);
3972 	wake_up_process(fs_info->cleaner_kthread);
3973 
3974 	/* wait until ongoing cleanup work done */
3975 	down_write(&fs_info->cleanup_work_sem);
3976 	up_write(&fs_info->cleanup_work_sem);
3977 
3978 	trans = btrfs_join_transaction(root);
3979 	if (IS_ERR(trans))
3980 		return PTR_ERR(trans);
3981 	return btrfs_commit_transaction(trans);
3982 }
3983 
3984 void __cold close_ctree(struct btrfs_fs_info *fs_info)
3985 {
3986 	int ret;
3987 
3988 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3989 	/*
3990 	 * We don't want the cleaner to start new transactions, add more delayed
3991 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3992 	 * because that frees the task_struct, and the transaction kthread might
3993 	 * still try to wake up the cleaner.
3994 	 */
3995 	kthread_park(fs_info->cleaner_kthread);
3996 
3997 	/* wait for the qgroup rescan worker to stop */
3998 	btrfs_qgroup_wait_for_completion(fs_info, false);
3999 
4000 	/* wait for the uuid_scan task to finish */
4001 	down(&fs_info->uuid_tree_rescan_sem);
4002 	/* avoid complains from lockdep et al., set sem back to initial state */
4003 	up(&fs_info->uuid_tree_rescan_sem);
4004 
4005 	/* pause restriper - we want to resume on mount */
4006 	btrfs_pause_balance(fs_info);
4007 
4008 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4009 
4010 	btrfs_scrub_cancel(fs_info);
4011 
4012 	/* wait for any defraggers to finish */
4013 	wait_event(fs_info->transaction_wait,
4014 		   (atomic_read(&fs_info->defrag_running) == 0));
4015 
4016 	/* clear out the rbtree of defraggable inodes */
4017 	btrfs_cleanup_defrag_inodes(fs_info);
4018 
4019 	cancel_work_sync(&fs_info->async_reclaim_work);
4020 
4021 	/* Cancel or finish ongoing discard work */
4022 	btrfs_discard_cleanup(fs_info);
4023 
4024 	if (!sb_rdonly(fs_info->sb)) {
4025 		/*
4026 		 * The cleaner kthread is stopped, so do one final pass over
4027 		 * unused block groups.
4028 		 */
4029 		btrfs_delete_unused_bgs(fs_info);
4030 
4031 		/*
4032 		 * There might be existing delayed inode workers still running
4033 		 * and holding an empty delayed inode item. We must wait for
4034 		 * them to complete first because they can create a transaction.
4035 		 * This happens when someone calls btrfs_balance_delayed_items()
4036 		 * and then a transaction commit runs the same delayed nodes
4037 		 * before any delayed worker has done something with the nodes.
4038 		 * We must wait for any worker here and not at transaction
4039 		 * commit time since that could cause a deadlock.
4040 		 * This is a very rare case.
4041 		 */
4042 		btrfs_flush_workqueue(fs_info->delayed_workers);
4043 
4044 		ret = btrfs_commit_super(fs_info);
4045 		if (ret)
4046 			btrfs_err(fs_info, "commit super ret %d", ret);
4047 	}
4048 
4049 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4050 	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4051 		btrfs_error_commit_super(fs_info);
4052 
4053 	kthread_stop(fs_info->transaction_kthread);
4054 	kthread_stop(fs_info->cleaner_kthread);
4055 
4056 	ASSERT(list_empty(&fs_info->delayed_iputs));
4057 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4058 
4059 	btrfs_free_qgroup_config(fs_info);
4060 	ASSERT(list_empty(&fs_info->delalloc_roots));
4061 
4062 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4063 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4064 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4065 	}
4066 
4067 	if (percpu_counter_sum(&fs_info->dio_bytes))
4068 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4069 			   percpu_counter_sum(&fs_info->dio_bytes));
4070 
4071 	btrfs_sysfs_remove_mounted(fs_info);
4072 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4073 
4074 	btrfs_put_block_group_cache(fs_info);
4075 
4076 	/*
4077 	 * we must make sure there is not any read request to
4078 	 * submit after we stopping all workers.
4079 	 */
4080 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4081 	btrfs_stop_all_workers(fs_info);
4082 
4083 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4084 	free_root_pointers(fs_info, true);
4085 	btrfs_free_fs_roots(fs_info);
4086 
4087 	/*
4088 	 * We must free the block groups after dropping the fs_roots as we could
4089 	 * have had an IO error and have left over tree log blocks that aren't
4090 	 * cleaned up until the fs roots are freed.  This makes the block group
4091 	 * accounting appear to be wrong because there's pending reserved bytes,
4092 	 * so make sure we do the block group cleanup afterwards.
4093 	 */
4094 	btrfs_free_block_groups(fs_info);
4095 
4096 	iput(fs_info->btree_inode);
4097 
4098 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4099 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4100 		btrfsic_unmount(fs_info->fs_devices);
4101 #endif
4102 
4103 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4104 	btrfs_close_devices(fs_info->fs_devices);
4105 }
4106 
4107 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4108 			  int atomic)
4109 {
4110 	int ret;
4111 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4112 
4113 	ret = extent_buffer_uptodate(buf);
4114 	if (!ret)
4115 		return ret;
4116 
4117 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4118 				    parent_transid, atomic);
4119 	if (ret == -EAGAIN)
4120 		return ret;
4121 	return !ret;
4122 }
4123 
4124 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4125 {
4126 	struct btrfs_fs_info *fs_info;
4127 	struct btrfs_root *root;
4128 	u64 transid = btrfs_header_generation(buf);
4129 	int was_dirty;
4130 
4131 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4132 	/*
4133 	 * This is a fast path so only do this check if we have sanity tests
4134 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4135 	 * outside of the sanity tests.
4136 	 */
4137 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4138 		return;
4139 #endif
4140 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4141 	fs_info = root->fs_info;
4142 	btrfs_assert_tree_locked(buf);
4143 	if (transid != fs_info->generation)
4144 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4145 			buf->start, transid, fs_info->generation);
4146 	was_dirty = set_extent_buffer_dirty(buf);
4147 	if (!was_dirty)
4148 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4149 					 buf->len,
4150 					 fs_info->dirty_metadata_batch);
4151 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4152 	/*
4153 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4154 	 * but item data not updated.
4155 	 * So here we should only check item pointers, not item data.
4156 	 */
4157 	if (btrfs_header_level(buf) == 0 &&
4158 	    btrfs_check_leaf_relaxed(buf)) {
4159 		btrfs_print_leaf(buf);
4160 		ASSERT(0);
4161 	}
4162 #endif
4163 }
4164 
4165 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4166 					int flush_delayed)
4167 {
4168 	/*
4169 	 * looks as though older kernels can get into trouble with
4170 	 * this code, they end up stuck in balance_dirty_pages forever
4171 	 */
4172 	int ret;
4173 
4174 	if (current->flags & PF_MEMALLOC)
4175 		return;
4176 
4177 	if (flush_delayed)
4178 		btrfs_balance_delayed_items(fs_info);
4179 
4180 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4181 				     BTRFS_DIRTY_METADATA_THRESH,
4182 				     fs_info->dirty_metadata_batch);
4183 	if (ret > 0) {
4184 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4185 	}
4186 }
4187 
4188 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4189 {
4190 	__btrfs_btree_balance_dirty(fs_info, 1);
4191 }
4192 
4193 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4194 {
4195 	__btrfs_btree_balance_dirty(fs_info, 0);
4196 }
4197 
4198 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4199 		      struct btrfs_key *first_key)
4200 {
4201 	return btree_read_extent_buffer_pages(buf, parent_transid,
4202 					      level, first_key);
4203 }
4204 
4205 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4206 {
4207 	/* cleanup FS via transaction */
4208 	btrfs_cleanup_transaction(fs_info);
4209 
4210 	mutex_lock(&fs_info->cleaner_mutex);
4211 	btrfs_run_delayed_iputs(fs_info);
4212 	mutex_unlock(&fs_info->cleaner_mutex);
4213 
4214 	down_write(&fs_info->cleanup_work_sem);
4215 	up_write(&fs_info->cleanup_work_sem);
4216 }
4217 
4218 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4219 {
4220 	struct btrfs_root *gang[8];
4221 	u64 root_objectid = 0;
4222 	int ret;
4223 
4224 	spin_lock(&fs_info->fs_roots_radix_lock);
4225 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4226 					     (void **)gang, root_objectid,
4227 					     ARRAY_SIZE(gang))) != 0) {
4228 		int i;
4229 
4230 		for (i = 0; i < ret; i++)
4231 			gang[i] = btrfs_grab_root(gang[i]);
4232 		spin_unlock(&fs_info->fs_roots_radix_lock);
4233 
4234 		for (i = 0; i < ret; i++) {
4235 			if (!gang[i])
4236 				continue;
4237 			root_objectid = gang[i]->root_key.objectid;
4238 			btrfs_free_log(NULL, gang[i]);
4239 			btrfs_put_root(gang[i]);
4240 		}
4241 		root_objectid++;
4242 		spin_lock(&fs_info->fs_roots_radix_lock);
4243 	}
4244 	spin_unlock(&fs_info->fs_roots_radix_lock);
4245 	btrfs_free_log_root_tree(NULL, fs_info);
4246 }
4247 
4248 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4249 {
4250 	struct btrfs_ordered_extent *ordered;
4251 
4252 	spin_lock(&root->ordered_extent_lock);
4253 	/*
4254 	 * This will just short circuit the ordered completion stuff which will
4255 	 * make sure the ordered extent gets properly cleaned up.
4256 	 */
4257 	list_for_each_entry(ordered, &root->ordered_extents,
4258 			    root_extent_list)
4259 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4260 	spin_unlock(&root->ordered_extent_lock);
4261 }
4262 
4263 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4264 {
4265 	struct btrfs_root *root;
4266 	struct list_head splice;
4267 
4268 	INIT_LIST_HEAD(&splice);
4269 
4270 	spin_lock(&fs_info->ordered_root_lock);
4271 	list_splice_init(&fs_info->ordered_roots, &splice);
4272 	while (!list_empty(&splice)) {
4273 		root = list_first_entry(&splice, struct btrfs_root,
4274 					ordered_root);
4275 		list_move_tail(&root->ordered_root,
4276 			       &fs_info->ordered_roots);
4277 
4278 		spin_unlock(&fs_info->ordered_root_lock);
4279 		btrfs_destroy_ordered_extents(root);
4280 
4281 		cond_resched();
4282 		spin_lock(&fs_info->ordered_root_lock);
4283 	}
4284 	spin_unlock(&fs_info->ordered_root_lock);
4285 
4286 	/*
4287 	 * We need this here because if we've been flipped read-only we won't
4288 	 * get sync() from the umount, so we need to make sure any ordered
4289 	 * extents that haven't had their dirty pages IO start writeout yet
4290 	 * actually get run and error out properly.
4291 	 */
4292 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4293 }
4294 
4295 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4296 				      struct btrfs_fs_info *fs_info)
4297 {
4298 	struct rb_node *node;
4299 	struct btrfs_delayed_ref_root *delayed_refs;
4300 	struct btrfs_delayed_ref_node *ref;
4301 	int ret = 0;
4302 
4303 	delayed_refs = &trans->delayed_refs;
4304 
4305 	spin_lock(&delayed_refs->lock);
4306 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4307 		spin_unlock(&delayed_refs->lock);
4308 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4309 		return ret;
4310 	}
4311 
4312 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4313 		struct btrfs_delayed_ref_head *head;
4314 		struct rb_node *n;
4315 		bool pin_bytes = false;
4316 
4317 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4318 				href_node);
4319 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4320 			continue;
4321 
4322 		spin_lock(&head->lock);
4323 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4324 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4325 				       ref_node);
4326 			ref->in_tree = 0;
4327 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4328 			RB_CLEAR_NODE(&ref->ref_node);
4329 			if (!list_empty(&ref->add_list))
4330 				list_del(&ref->add_list);
4331 			atomic_dec(&delayed_refs->num_entries);
4332 			btrfs_put_delayed_ref(ref);
4333 		}
4334 		if (head->must_insert_reserved)
4335 			pin_bytes = true;
4336 		btrfs_free_delayed_extent_op(head->extent_op);
4337 		btrfs_delete_ref_head(delayed_refs, head);
4338 		spin_unlock(&head->lock);
4339 		spin_unlock(&delayed_refs->lock);
4340 		mutex_unlock(&head->mutex);
4341 
4342 		if (pin_bytes) {
4343 			struct btrfs_block_group *cache;
4344 
4345 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4346 			BUG_ON(!cache);
4347 
4348 			spin_lock(&cache->space_info->lock);
4349 			spin_lock(&cache->lock);
4350 			cache->pinned += head->num_bytes;
4351 			btrfs_space_info_update_bytes_pinned(fs_info,
4352 				cache->space_info, head->num_bytes);
4353 			cache->reserved -= head->num_bytes;
4354 			cache->space_info->bytes_reserved -= head->num_bytes;
4355 			spin_unlock(&cache->lock);
4356 			spin_unlock(&cache->space_info->lock);
4357 			percpu_counter_add_batch(
4358 				&cache->space_info->total_bytes_pinned,
4359 				head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4360 
4361 			btrfs_put_block_group(cache);
4362 
4363 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4364 				head->bytenr + head->num_bytes - 1);
4365 		}
4366 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4367 		btrfs_put_delayed_ref_head(head);
4368 		cond_resched();
4369 		spin_lock(&delayed_refs->lock);
4370 	}
4371 	btrfs_qgroup_destroy_extent_records(trans);
4372 
4373 	spin_unlock(&delayed_refs->lock);
4374 
4375 	return ret;
4376 }
4377 
4378 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4379 {
4380 	struct btrfs_inode *btrfs_inode;
4381 	struct list_head splice;
4382 
4383 	INIT_LIST_HEAD(&splice);
4384 
4385 	spin_lock(&root->delalloc_lock);
4386 	list_splice_init(&root->delalloc_inodes, &splice);
4387 
4388 	while (!list_empty(&splice)) {
4389 		struct inode *inode = NULL;
4390 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4391 					       delalloc_inodes);
4392 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4393 		spin_unlock(&root->delalloc_lock);
4394 
4395 		/*
4396 		 * Make sure we get a live inode and that it'll not disappear
4397 		 * meanwhile.
4398 		 */
4399 		inode = igrab(&btrfs_inode->vfs_inode);
4400 		if (inode) {
4401 			invalidate_inode_pages2(inode->i_mapping);
4402 			iput(inode);
4403 		}
4404 		spin_lock(&root->delalloc_lock);
4405 	}
4406 	spin_unlock(&root->delalloc_lock);
4407 }
4408 
4409 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4410 {
4411 	struct btrfs_root *root;
4412 	struct list_head splice;
4413 
4414 	INIT_LIST_HEAD(&splice);
4415 
4416 	spin_lock(&fs_info->delalloc_root_lock);
4417 	list_splice_init(&fs_info->delalloc_roots, &splice);
4418 	while (!list_empty(&splice)) {
4419 		root = list_first_entry(&splice, struct btrfs_root,
4420 					 delalloc_root);
4421 		root = btrfs_grab_root(root);
4422 		BUG_ON(!root);
4423 		spin_unlock(&fs_info->delalloc_root_lock);
4424 
4425 		btrfs_destroy_delalloc_inodes(root);
4426 		btrfs_put_root(root);
4427 
4428 		spin_lock(&fs_info->delalloc_root_lock);
4429 	}
4430 	spin_unlock(&fs_info->delalloc_root_lock);
4431 }
4432 
4433 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4434 					struct extent_io_tree *dirty_pages,
4435 					int mark)
4436 {
4437 	int ret;
4438 	struct extent_buffer *eb;
4439 	u64 start = 0;
4440 	u64 end;
4441 
4442 	while (1) {
4443 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4444 					    mark, NULL);
4445 		if (ret)
4446 			break;
4447 
4448 		clear_extent_bits(dirty_pages, start, end, mark);
4449 		while (start <= end) {
4450 			eb = find_extent_buffer(fs_info, start);
4451 			start += fs_info->nodesize;
4452 			if (!eb)
4453 				continue;
4454 			wait_on_extent_buffer_writeback(eb);
4455 
4456 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4457 					       &eb->bflags))
4458 				clear_extent_buffer_dirty(eb);
4459 			free_extent_buffer_stale(eb);
4460 		}
4461 	}
4462 
4463 	return ret;
4464 }
4465 
4466 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4467 				       struct extent_io_tree *unpin)
4468 {
4469 	u64 start;
4470 	u64 end;
4471 	int ret;
4472 
4473 	while (1) {
4474 		struct extent_state *cached_state = NULL;
4475 
4476 		/*
4477 		 * The btrfs_finish_extent_commit() may get the same range as
4478 		 * ours between find_first_extent_bit and clear_extent_dirty.
4479 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4480 		 * the same extent range.
4481 		 */
4482 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4483 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4484 					    EXTENT_DIRTY, &cached_state);
4485 		if (ret) {
4486 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4487 			break;
4488 		}
4489 
4490 		clear_extent_dirty(unpin, start, end, &cached_state);
4491 		free_extent_state(cached_state);
4492 		btrfs_error_unpin_extent_range(fs_info, start, end);
4493 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4494 		cond_resched();
4495 	}
4496 
4497 	return 0;
4498 }
4499 
4500 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4501 {
4502 	struct inode *inode;
4503 
4504 	inode = cache->io_ctl.inode;
4505 	if (inode) {
4506 		invalidate_inode_pages2(inode->i_mapping);
4507 		BTRFS_I(inode)->generation = 0;
4508 		cache->io_ctl.inode = NULL;
4509 		iput(inode);
4510 	}
4511 	btrfs_put_block_group(cache);
4512 }
4513 
4514 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4515 			     struct btrfs_fs_info *fs_info)
4516 {
4517 	struct btrfs_block_group *cache;
4518 
4519 	spin_lock(&cur_trans->dirty_bgs_lock);
4520 	while (!list_empty(&cur_trans->dirty_bgs)) {
4521 		cache = list_first_entry(&cur_trans->dirty_bgs,
4522 					 struct btrfs_block_group,
4523 					 dirty_list);
4524 
4525 		if (!list_empty(&cache->io_list)) {
4526 			spin_unlock(&cur_trans->dirty_bgs_lock);
4527 			list_del_init(&cache->io_list);
4528 			btrfs_cleanup_bg_io(cache);
4529 			spin_lock(&cur_trans->dirty_bgs_lock);
4530 		}
4531 
4532 		list_del_init(&cache->dirty_list);
4533 		spin_lock(&cache->lock);
4534 		cache->disk_cache_state = BTRFS_DC_ERROR;
4535 		spin_unlock(&cache->lock);
4536 
4537 		spin_unlock(&cur_trans->dirty_bgs_lock);
4538 		btrfs_put_block_group(cache);
4539 		btrfs_delayed_refs_rsv_release(fs_info, 1);
4540 		spin_lock(&cur_trans->dirty_bgs_lock);
4541 	}
4542 	spin_unlock(&cur_trans->dirty_bgs_lock);
4543 
4544 	/*
4545 	 * Refer to the definition of io_bgs member for details why it's safe
4546 	 * to use it without any locking
4547 	 */
4548 	while (!list_empty(&cur_trans->io_bgs)) {
4549 		cache = list_first_entry(&cur_trans->io_bgs,
4550 					 struct btrfs_block_group,
4551 					 io_list);
4552 
4553 		list_del_init(&cache->io_list);
4554 		spin_lock(&cache->lock);
4555 		cache->disk_cache_state = BTRFS_DC_ERROR;
4556 		spin_unlock(&cache->lock);
4557 		btrfs_cleanup_bg_io(cache);
4558 	}
4559 }
4560 
4561 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4562 				   struct btrfs_fs_info *fs_info)
4563 {
4564 	struct btrfs_device *dev, *tmp;
4565 
4566 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4567 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4568 	ASSERT(list_empty(&cur_trans->io_bgs));
4569 
4570 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4571 				 post_commit_list) {
4572 		list_del_init(&dev->post_commit_list);
4573 	}
4574 
4575 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4576 
4577 	cur_trans->state = TRANS_STATE_COMMIT_START;
4578 	wake_up(&fs_info->transaction_blocked_wait);
4579 
4580 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4581 	wake_up(&fs_info->transaction_wait);
4582 
4583 	btrfs_destroy_delayed_inodes(fs_info);
4584 
4585 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4586 				     EXTENT_DIRTY);
4587 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4588 
4589 	cur_trans->state =TRANS_STATE_COMPLETED;
4590 	wake_up(&cur_trans->commit_wait);
4591 }
4592 
4593 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4594 {
4595 	struct btrfs_transaction *t;
4596 
4597 	mutex_lock(&fs_info->transaction_kthread_mutex);
4598 
4599 	spin_lock(&fs_info->trans_lock);
4600 	while (!list_empty(&fs_info->trans_list)) {
4601 		t = list_first_entry(&fs_info->trans_list,
4602 				     struct btrfs_transaction, list);
4603 		if (t->state >= TRANS_STATE_COMMIT_START) {
4604 			refcount_inc(&t->use_count);
4605 			spin_unlock(&fs_info->trans_lock);
4606 			btrfs_wait_for_commit(fs_info, t->transid);
4607 			btrfs_put_transaction(t);
4608 			spin_lock(&fs_info->trans_lock);
4609 			continue;
4610 		}
4611 		if (t == fs_info->running_transaction) {
4612 			t->state = TRANS_STATE_COMMIT_DOING;
4613 			spin_unlock(&fs_info->trans_lock);
4614 			/*
4615 			 * We wait for 0 num_writers since we don't hold a trans
4616 			 * handle open currently for this transaction.
4617 			 */
4618 			wait_event(t->writer_wait,
4619 				   atomic_read(&t->num_writers) == 0);
4620 		} else {
4621 			spin_unlock(&fs_info->trans_lock);
4622 		}
4623 		btrfs_cleanup_one_transaction(t, fs_info);
4624 
4625 		spin_lock(&fs_info->trans_lock);
4626 		if (t == fs_info->running_transaction)
4627 			fs_info->running_transaction = NULL;
4628 		list_del_init(&t->list);
4629 		spin_unlock(&fs_info->trans_lock);
4630 
4631 		btrfs_put_transaction(t);
4632 		trace_btrfs_transaction_commit(fs_info->tree_root);
4633 		spin_lock(&fs_info->trans_lock);
4634 	}
4635 	spin_unlock(&fs_info->trans_lock);
4636 	btrfs_destroy_all_ordered_extents(fs_info);
4637 	btrfs_destroy_delayed_inodes(fs_info);
4638 	btrfs_assert_delayed_root_empty(fs_info);
4639 	btrfs_destroy_all_delalloc_inodes(fs_info);
4640 	btrfs_drop_all_logs(fs_info);
4641 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4642 
4643 	return 0;
4644 }
4645 
4646 static const struct extent_io_ops btree_extent_io_ops = {
4647 	/* mandatory callbacks */
4648 	.submit_bio_hook = btree_submit_bio_hook,
4649 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4650 };
4651