xref: /openbmc/linux/fs/btrfs/disk-io.c (revision c5254e72)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53 
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57 
58 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
59 				 BTRFS_HEADER_FLAG_RELOC |\
60 				 BTRFS_SUPER_FLAG_ERROR |\
61 				 BTRFS_SUPER_FLAG_SEEDING |\
62 				 BTRFS_SUPER_FLAG_METADUMP)
63 
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68 				    int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 				      struct btrfs_fs_info *fs_info);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
74 					struct extent_io_tree *dirty_pages,
75 					int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
77 				       struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
79 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
80 
81 /*
82  * btrfs_end_io_wq structs are used to do processing in task context when an IO
83  * is complete.  This is used during reads to verify checksums, and it is used
84  * by writes to insert metadata for new file extents after IO is complete.
85  */
86 struct btrfs_end_io_wq {
87 	struct bio *bio;
88 	bio_end_io_t *end_io;
89 	void *private;
90 	struct btrfs_fs_info *info;
91 	int error;
92 	enum btrfs_wq_endio_type metadata;
93 	struct list_head list;
94 	struct btrfs_work work;
95 };
96 
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98 
99 int __init btrfs_end_io_wq_init(void)
100 {
101 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 					sizeof(struct btrfs_end_io_wq),
103 					0,
104 					SLAB_MEM_SPREAD,
105 					NULL);
106 	if (!btrfs_end_io_wq_cache)
107 		return -ENOMEM;
108 	return 0;
109 }
110 
111 void btrfs_end_io_wq_exit(void)
112 {
113 	kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115 
116 /*
117  * async submit bios are used to offload expensive checksumming
118  * onto the worker threads.  They checksum file and metadata bios
119  * just before they are sent down the IO stack.
120  */
121 struct async_submit_bio {
122 	struct inode *inode;
123 	struct bio *bio;
124 	struct list_head list;
125 	extent_submit_bio_hook_t *submit_bio_start;
126 	extent_submit_bio_hook_t *submit_bio_done;
127 	int mirror_num;
128 	unsigned long bio_flags;
129 	/*
130 	 * bio_offset is optional, can be used if the pages in the bio
131 	 * can't tell us where in the file the bio should go
132 	 */
133 	u64 bio_offset;
134 	struct btrfs_work work;
135 	int error;
136 };
137 
138 /*
139  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
140  * eb, the lockdep key is determined by the btrfs_root it belongs to and
141  * the level the eb occupies in the tree.
142  *
143  * Different roots are used for different purposes and may nest inside each
144  * other and they require separate keysets.  As lockdep keys should be
145  * static, assign keysets according to the purpose of the root as indicated
146  * by btrfs_root->objectid.  This ensures that all special purpose roots
147  * have separate keysets.
148  *
149  * Lock-nesting across peer nodes is always done with the immediate parent
150  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
151  * subclass to avoid triggering lockdep warning in such cases.
152  *
153  * The key is set by the readpage_end_io_hook after the buffer has passed
154  * csum validation but before the pages are unlocked.  It is also set by
155  * btrfs_init_new_buffer on freshly allocated blocks.
156  *
157  * We also add a check to make sure the highest level of the tree is the
158  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
159  * needs update as well.
160  */
161 #ifdef CONFIG_DEBUG_LOCK_ALLOC
162 # if BTRFS_MAX_LEVEL != 8
163 #  error
164 # endif
165 
166 static struct btrfs_lockdep_keyset {
167 	u64			id;		/* root objectid */
168 	const char		*name_stem;	/* lock name stem */
169 	char			names[BTRFS_MAX_LEVEL + 1][20];
170 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
171 } btrfs_lockdep_keysets[] = {
172 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
173 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
174 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
175 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
176 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
177 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
178 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
179 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
180 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
181 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
182 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
183 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
184 	{ .id = 0,				.name_stem = "tree"	},
185 };
186 
187 void __init btrfs_init_lockdep(void)
188 {
189 	int i, j;
190 
191 	/* initialize lockdep class names */
192 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194 
195 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196 			snprintf(ks->names[j], sizeof(ks->names[j]),
197 				 "btrfs-%s-%02d", ks->name_stem, j);
198 	}
199 }
200 
201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202 				    int level)
203 {
204 	struct btrfs_lockdep_keyset *ks;
205 
206 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
207 
208 	/* find the matching keyset, id 0 is the default entry */
209 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210 		if (ks->id == objectid)
211 			break;
212 
213 	lockdep_set_class_and_name(&eb->lock,
214 				   &ks->keys[level], ks->names[level]);
215 }
216 
217 #endif
218 
219 /*
220  * extents on the btree inode are pretty simple, there's one extent
221  * that covers the entire device
222  */
223 static struct extent_map *btree_get_extent(struct inode *inode,
224 		struct page *page, size_t pg_offset, u64 start, u64 len,
225 		int create)
226 {
227 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
228 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
229 	struct extent_map *em;
230 	int ret;
231 
232 	read_lock(&em_tree->lock);
233 	em = lookup_extent_mapping(em_tree, start, len);
234 	if (em) {
235 		em->bdev = fs_info->fs_devices->latest_bdev;
236 		read_unlock(&em_tree->lock);
237 		goto out;
238 	}
239 	read_unlock(&em_tree->lock);
240 
241 	em = alloc_extent_map();
242 	if (!em) {
243 		em = ERR_PTR(-ENOMEM);
244 		goto out;
245 	}
246 	em->start = 0;
247 	em->len = (u64)-1;
248 	em->block_len = (u64)-1;
249 	em->block_start = 0;
250 	em->bdev = fs_info->fs_devices->latest_bdev;
251 
252 	write_lock(&em_tree->lock);
253 	ret = add_extent_mapping(em_tree, em, 0);
254 	if (ret == -EEXIST) {
255 		free_extent_map(em);
256 		em = lookup_extent_mapping(em_tree, start, len);
257 		if (!em)
258 			em = ERR_PTR(-EIO);
259 	} else if (ret) {
260 		free_extent_map(em);
261 		em = ERR_PTR(ret);
262 	}
263 	write_unlock(&em_tree->lock);
264 
265 out:
266 	return em;
267 }
268 
269 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
270 {
271 	return btrfs_crc32c(seed, data, len);
272 }
273 
274 void btrfs_csum_final(u32 crc, u8 *result)
275 {
276 	put_unaligned_le32(~crc, result);
277 }
278 
279 /*
280  * compute the csum for a btree block, and either verify it or write it
281  * into the csum field of the block.
282  */
283 static int csum_tree_block(struct btrfs_fs_info *fs_info,
284 			   struct extent_buffer *buf,
285 			   int verify)
286 {
287 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
288 	char *result = NULL;
289 	unsigned long len;
290 	unsigned long cur_len;
291 	unsigned long offset = BTRFS_CSUM_SIZE;
292 	char *kaddr;
293 	unsigned long map_start;
294 	unsigned long map_len;
295 	int err;
296 	u32 crc = ~(u32)0;
297 	unsigned long inline_result;
298 
299 	len = buf->len - offset;
300 	while (len > 0) {
301 		err = map_private_extent_buffer(buf, offset, 32,
302 					&kaddr, &map_start, &map_len);
303 		if (err)
304 			return err;
305 		cur_len = min(len, map_len - (offset - map_start));
306 		crc = btrfs_csum_data(kaddr + offset - map_start,
307 				      crc, cur_len);
308 		len -= cur_len;
309 		offset += cur_len;
310 	}
311 	if (csum_size > sizeof(inline_result)) {
312 		result = kzalloc(csum_size, GFP_NOFS);
313 		if (!result)
314 			return -ENOMEM;
315 	} else {
316 		result = (char *)&inline_result;
317 	}
318 
319 	btrfs_csum_final(crc, result);
320 
321 	if (verify) {
322 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
323 			u32 val;
324 			u32 found = 0;
325 			memcpy(&found, result, csum_size);
326 
327 			read_extent_buffer(buf, &val, 0, csum_size);
328 			btrfs_warn_rl(fs_info,
329 				"%s checksum verify failed on %llu wanted %X found %X level %d",
330 				fs_info->sb->s_id, buf->start,
331 				val, found, btrfs_header_level(buf));
332 			if (result != (char *)&inline_result)
333 				kfree(result);
334 			return -EUCLEAN;
335 		}
336 	} else {
337 		write_extent_buffer(buf, result, 0, csum_size);
338 	}
339 	if (result != (char *)&inline_result)
340 		kfree(result);
341 	return 0;
342 }
343 
344 /*
345  * we can't consider a given block up to date unless the transid of the
346  * block matches the transid in the parent node's pointer.  This is how we
347  * detect blocks that either didn't get written at all or got written
348  * in the wrong place.
349  */
350 static int verify_parent_transid(struct extent_io_tree *io_tree,
351 				 struct extent_buffer *eb, u64 parent_transid,
352 				 int atomic)
353 {
354 	struct extent_state *cached_state = NULL;
355 	int ret;
356 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
357 
358 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
359 		return 0;
360 
361 	if (atomic)
362 		return -EAGAIN;
363 
364 	if (need_lock) {
365 		btrfs_tree_read_lock(eb);
366 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
367 	}
368 
369 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
370 			 &cached_state);
371 	if (extent_buffer_uptodate(eb) &&
372 	    btrfs_header_generation(eb) == parent_transid) {
373 		ret = 0;
374 		goto out;
375 	}
376 	btrfs_err_rl(eb->fs_info,
377 		"parent transid verify failed on %llu wanted %llu found %llu",
378 			eb->start,
379 			parent_transid, btrfs_header_generation(eb));
380 	ret = 1;
381 
382 	/*
383 	 * Things reading via commit roots that don't have normal protection,
384 	 * like send, can have a really old block in cache that may point at a
385 	 * block that has been freed and re-allocated.  So don't clear uptodate
386 	 * if we find an eb that is under IO (dirty/writeback) because we could
387 	 * end up reading in the stale data and then writing it back out and
388 	 * making everybody very sad.
389 	 */
390 	if (!extent_buffer_under_io(eb))
391 		clear_extent_buffer_uptodate(eb);
392 out:
393 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
394 			     &cached_state, GFP_NOFS);
395 	if (need_lock)
396 		btrfs_tree_read_unlock_blocking(eb);
397 	return ret;
398 }
399 
400 /*
401  * Return 0 if the superblock checksum type matches the checksum value of that
402  * algorithm. Pass the raw disk superblock data.
403  */
404 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
405 				  char *raw_disk_sb)
406 {
407 	struct btrfs_super_block *disk_sb =
408 		(struct btrfs_super_block *)raw_disk_sb;
409 	u16 csum_type = btrfs_super_csum_type(disk_sb);
410 	int ret = 0;
411 
412 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413 		u32 crc = ~(u32)0;
414 		const int csum_size = sizeof(crc);
415 		char result[csum_size];
416 
417 		/*
418 		 * The super_block structure does not span the whole
419 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420 		 * is filled with zeros and is included in the checksum.
421 		 */
422 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424 		btrfs_csum_final(crc, result);
425 
426 		if (memcmp(raw_disk_sb, result, csum_size))
427 			ret = 1;
428 	}
429 
430 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
431 		btrfs_err(fs_info, "unsupported checksum algorithm %u",
432 				csum_type);
433 		ret = 1;
434 	}
435 
436 	return ret;
437 }
438 
439 /*
440  * helper to read a given tree block, doing retries as required when
441  * the checksums don't match and we have alternate mirrors to try.
442  */
443 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
444 					  struct extent_buffer *eb,
445 					  u64 parent_transid)
446 {
447 	struct extent_io_tree *io_tree;
448 	int failed = 0;
449 	int ret;
450 	int num_copies = 0;
451 	int mirror_num = 0;
452 	int failed_mirror = 0;
453 
454 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
455 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
456 	while (1) {
457 		ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
458 					       btree_get_extent, mirror_num);
459 		if (!ret) {
460 			if (!verify_parent_transid(io_tree, eb,
461 						   parent_transid, 0))
462 				break;
463 			else
464 				ret = -EIO;
465 		}
466 
467 		/*
468 		 * This buffer's crc is fine, but its contents are corrupted, so
469 		 * there is no reason to read the other copies, they won't be
470 		 * any less wrong.
471 		 */
472 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
473 			break;
474 
475 		num_copies = btrfs_num_copies(fs_info,
476 					      eb->start, eb->len);
477 		if (num_copies == 1)
478 			break;
479 
480 		if (!failed_mirror) {
481 			failed = 1;
482 			failed_mirror = eb->read_mirror;
483 		}
484 
485 		mirror_num++;
486 		if (mirror_num == failed_mirror)
487 			mirror_num++;
488 
489 		if (mirror_num > num_copies)
490 			break;
491 	}
492 
493 	if (failed && !ret && failed_mirror)
494 		repair_eb_io_failure(fs_info, eb, failed_mirror);
495 
496 	return ret;
497 }
498 
499 /*
500  * checksum a dirty tree block before IO.  This has extra checks to make sure
501  * we only fill in the checksum field in the first page of a multi-page block
502  */
503 
504 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
505 {
506 	u64 start = page_offset(page);
507 	u64 found_start;
508 	struct extent_buffer *eb;
509 
510 	eb = (struct extent_buffer *)page->private;
511 	if (page != eb->pages[0])
512 		return 0;
513 
514 	found_start = btrfs_header_bytenr(eb);
515 	/*
516 	 * Please do not consolidate these warnings into a single if.
517 	 * It is useful to know what went wrong.
518 	 */
519 	if (WARN_ON(found_start != start))
520 		return -EUCLEAN;
521 	if (WARN_ON(!PageUptodate(page)))
522 		return -EUCLEAN;
523 
524 	ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
525 			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
526 
527 	return csum_tree_block(fs_info, eb, 0);
528 }
529 
530 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
531 				 struct extent_buffer *eb)
532 {
533 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
534 	u8 fsid[BTRFS_UUID_SIZE];
535 	int ret = 1;
536 
537 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
538 	while (fs_devices) {
539 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
540 			ret = 0;
541 			break;
542 		}
543 		fs_devices = fs_devices->seed;
544 	}
545 	return ret;
546 }
547 
548 #define CORRUPT(reason, eb, root, slot)					\
549 	btrfs_crit(root->fs_info,					\
550 		   "corrupt %s, %s: block=%llu, root=%llu, slot=%d",	\
551 		   btrfs_header_level(eb) == 0 ? "leaf" : "node",	\
552 		   reason, btrfs_header_bytenr(eb), root->objectid, slot)
553 
554 static noinline int check_leaf(struct btrfs_root *root,
555 			       struct extent_buffer *leaf)
556 {
557 	struct btrfs_fs_info *fs_info = root->fs_info;
558 	struct btrfs_key key;
559 	struct btrfs_key leaf_key;
560 	u32 nritems = btrfs_header_nritems(leaf);
561 	int slot;
562 
563 	/*
564 	 * Extent buffers from a relocation tree have a owner field that
565 	 * corresponds to the subvolume tree they are based on. So just from an
566 	 * extent buffer alone we can not find out what is the id of the
567 	 * corresponding subvolume tree, so we can not figure out if the extent
568 	 * buffer corresponds to the root of the relocation tree or not. So skip
569 	 * this check for relocation trees.
570 	 */
571 	if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
572 		struct btrfs_root *check_root;
573 
574 		key.objectid = btrfs_header_owner(leaf);
575 		key.type = BTRFS_ROOT_ITEM_KEY;
576 		key.offset = (u64)-1;
577 
578 		check_root = btrfs_get_fs_root(fs_info, &key, false);
579 		/*
580 		 * The only reason we also check NULL here is that during
581 		 * open_ctree() some roots has not yet been set up.
582 		 */
583 		if (!IS_ERR_OR_NULL(check_root)) {
584 			struct extent_buffer *eb;
585 
586 			eb = btrfs_root_node(check_root);
587 			/* if leaf is the root, then it's fine */
588 			if (leaf != eb) {
589 				CORRUPT("non-root leaf's nritems is 0",
590 					leaf, check_root, 0);
591 				free_extent_buffer(eb);
592 				return -EIO;
593 			}
594 			free_extent_buffer(eb);
595 		}
596 		return 0;
597 	}
598 
599 	if (nritems == 0)
600 		return 0;
601 
602 	/* Check the 0 item */
603 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
604 	    BTRFS_LEAF_DATA_SIZE(fs_info)) {
605 		CORRUPT("invalid item offset size pair", leaf, root, 0);
606 		return -EIO;
607 	}
608 
609 	/*
610 	 * Check to make sure each items keys are in the correct order and their
611 	 * offsets make sense.  We only have to loop through nritems-1 because
612 	 * we check the current slot against the next slot, which verifies the
613 	 * next slot's offset+size makes sense and that the current's slot
614 	 * offset is correct.
615 	 */
616 	for (slot = 0; slot < nritems - 1; slot++) {
617 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
618 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
619 
620 		/* Make sure the keys are in the right order */
621 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
622 			CORRUPT("bad key order", leaf, root, slot);
623 			return -EIO;
624 		}
625 
626 		/*
627 		 * Make sure the offset and ends are right, remember that the
628 		 * item data starts at the end of the leaf and grows towards the
629 		 * front.
630 		 */
631 		if (btrfs_item_offset_nr(leaf, slot) !=
632 			btrfs_item_end_nr(leaf, slot + 1)) {
633 			CORRUPT("slot offset bad", leaf, root, slot);
634 			return -EIO;
635 		}
636 
637 		/*
638 		 * Check to make sure that we don't point outside of the leaf,
639 		 * just in case all the items are consistent to each other, but
640 		 * all point outside of the leaf.
641 		 */
642 		if (btrfs_item_end_nr(leaf, slot) >
643 		    BTRFS_LEAF_DATA_SIZE(fs_info)) {
644 			CORRUPT("slot end outside of leaf", leaf, root, slot);
645 			return -EIO;
646 		}
647 	}
648 
649 	return 0;
650 }
651 
652 static int check_node(struct btrfs_root *root, struct extent_buffer *node)
653 {
654 	unsigned long nr = btrfs_header_nritems(node);
655 	struct btrfs_key key, next_key;
656 	int slot;
657 	u64 bytenr;
658 	int ret = 0;
659 
660 	if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
661 		btrfs_crit(root->fs_info,
662 			   "corrupt node: block %llu root %llu nritems %lu",
663 			   node->start, root->objectid, nr);
664 		return -EIO;
665 	}
666 
667 	for (slot = 0; slot < nr - 1; slot++) {
668 		bytenr = btrfs_node_blockptr(node, slot);
669 		btrfs_node_key_to_cpu(node, &key, slot);
670 		btrfs_node_key_to_cpu(node, &next_key, slot + 1);
671 
672 		if (!bytenr) {
673 			CORRUPT("invalid item slot", node, root, slot);
674 			ret = -EIO;
675 			goto out;
676 		}
677 
678 		if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
679 			CORRUPT("bad key order", node, root, slot);
680 			ret = -EIO;
681 			goto out;
682 		}
683 	}
684 out:
685 	return ret;
686 }
687 
688 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
689 				      u64 phy_offset, struct page *page,
690 				      u64 start, u64 end, int mirror)
691 {
692 	u64 found_start;
693 	int found_level;
694 	struct extent_buffer *eb;
695 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
696 	struct btrfs_fs_info *fs_info = root->fs_info;
697 	int ret = 0;
698 	int reads_done;
699 
700 	if (!page->private)
701 		goto out;
702 
703 	eb = (struct extent_buffer *)page->private;
704 
705 	/* the pending IO might have been the only thing that kept this buffer
706 	 * in memory.  Make sure we have a ref for all this other checks
707 	 */
708 	extent_buffer_get(eb);
709 
710 	reads_done = atomic_dec_and_test(&eb->io_pages);
711 	if (!reads_done)
712 		goto err;
713 
714 	eb->read_mirror = mirror;
715 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
716 		ret = -EIO;
717 		goto err;
718 	}
719 
720 	found_start = btrfs_header_bytenr(eb);
721 	if (found_start != eb->start) {
722 		btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
723 			     found_start, eb->start);
724 		ret = -EIO;
725 		goto err;
726 	}
727 	if (check_tree_block_fsid(fs_info, eb)) {
728 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
729 			     eb->start);
730 		ret = -EIO;
731 		goto err;
732 	}
733 	found_level = btrfs_header_level(eb);
734 	if (found_level >= BTRFS_MAX_LEVEL) {
735 		btrfs_err(fs_info, "bad tree block level %d",
736 			  (int)btrfs_header_level(eb));
737 		ret = -EIO;
738 		goto err;
739 	}
740 
741 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
742 				       eb, found_level);
743 
744 	ret = csum_tree_block(fs_info, eb, 1);
745 	if (ret)
746 		goto err;
747 
748 	/*
749 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
750 	 * that we don't try and read the other copies of this block, just
751 	 * return -EIO.
752 	 */
753 	if (found_level == 0 && check_leaf(root, eb)) {
754 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
755 		ret = -EIO;
756 	}
757 
758 	if (found_level > 0 && check_node(root, eb))
759 		ret = -EIO;
760 
761 	if (!ret)
762 		set_extent_buffer_uptodate(eb);
763 err:
764 	if (reads_done &&
765 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
766 		btree_readahead_hook(fs_info, eb, ret);
767 
768 	if (ret) {
769 		/*
770 		 * our io error hook is going to dec the io pages
771 		 * again, we have to make sure it has something
772 		 * to decrement
773 		 */
774 		atomic_inc(&eb->io_pages);
775 		clear_extent_buffer_uptodate(eb);
776 	}
777 	free_extent_buffer(eb);
778 out:
779 	return ret;
780 }
781 
782 static int btree_io_failed_hook(struct page *page, int failed_mirror)
783 {
784 	struct extent_buffer *eb;
785 
786 	eb = (struct extent_buffer *)page->private;
787 	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
788 	eb->read_mirror = failed_mirror;
789 	atomic_dec(&eb->io_pages);
790 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
791 		btree_readahead_hook(eb->fs_info, eb, -EIO);
792 	return -EIO;	/* we fixed nothing */
793 }
794 
795 static void end_workqueue_bio(struct bio *bio)
796 {
797 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
798 	struct btrfs_fs_info *fs_info;
799 	struct btrfs_workqueue *wq;
800 	btrfs_work_func_t func;
801 
802 	fs_info = end_io_wq->info;
803 	end_io_wq->error = bio->bi_error;
804 
805 	if (bio_op(bio) == REQ_OP_WRITE) {
806 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
807 			wq = fs_info->endio_meta_write_workers;
808 			func = btrfs_endio_meta_write_helper;
809 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
810 			wq = fs_info->endio_freespace_worker;
811 			func = btrfs_freespace_write_helper;
812 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
813 			wq = fs_info->endio_raid56_workers;
814 			func = btrfs_endio_raid56_helper;
815 		} else {
816 			wq = fs_info->endio_write_workers;
817 			func = btrfs_endio_write_helper;
818 		}
819 	} else {
820 		if (unlikely(end_io_wq->metadata ==
821 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
822 			wq = fs_info->endio_repair_workers;
823 			func = btrfs_endio_repair_helper;
824 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
825 			wq = fs_info->endio_raid56_workers;
826 			func = btrfs_endio_raid56_helper;
827 		} else if (end_io_wq->metadata) {
828 			wq = fs_info->endio_meta_workers;
829 			func = btrfs_endio_meta_helper;
830 		} else {
831 			wq = fs_info->endio_workers;
832 			func = btrfs_endio_helper;
833 		}
834 	}
835 
836 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
837 	btrfs_queue_work(wq, &end_io_wq->work);
838 }
839 
840 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
841 			enum btrfs_wq_endio_type metadata)
842 {
843 	struct btrfs_end_io_wq *end_io_wq;
844 
845 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
846 	if (!end_io_wq)
847 		return -ENOMEM;
848 
849 	end_io_wq->private = bio->bi_private;
850 	end_io_wq->end_io = bio->bi_end_io;
851 	end_io_wq->info = info;
852 	end_io_wq->error = 0;
853 	end_io_wq->bio = bio;
854 	end_io_wq->metadata = metadata;
855 
856 	bio->bi_private = end_io_wq;
857 	bio->bi_end_io = end_workqueue_bio;
858 	return 0;
859 }
860 
861 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
862 {
863 	unsigned long limit = min_t(unsigned long,
864 				    info->thread_pool_size,
865 				    info->fs_devices->open_devices);
866 	return 256 * limit;
867 }
868 
869 static void run_one_async_start(struct btrfs_work *work)
870 {
871 	struct async_submit_bio *async;
872 	int ret;
873 
874 	async = container_of(work, struct  async_submit_bio, work);
875 	ret = async->submit_bio_start(async->inode, async->bio,
876 				      async->mirror_num, async->bio_flags,
877 				      async->bio_offset);
878 	if (ret)
879 		async->error = ret;
880 }
881 
882 static void run_one_async_done(struct btrfs_work *work)
883 {
884 	struct btrfs_fs_info *fs_info;
885 	struct async_submit_bio *async;
886 	int limit;
887 
888 	async = container_of(work, struct  async_submit_bio, work);
889 	fs_info = BTRFS_I(async->inode)->root->fs_info;
890 
891 	limit = btrfs_async_submit_limit(fs_info);
892 	limit = limit * 2 / 3;
893 
894 	/*
895 	 * atomic_dec_return implies a barrier for waitqueue_active
896 	 */
897 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
898 	    waitqueue_active(&fs_info->async_submit_wait))
899 		wake_up(&fs_info->async_submit_wait);
900 
901 	/* If an error occurred we just want to clean up the bio and move on */
902 	if (async->error) {
903 		async->bio->bi_error = async->error;
904 		bio_endio(async->bio);
905 		return;
906 	}
907 
908 	async->submit_bio_done(async->inode, async->bio, async->mirror_num,
909 			       async->bio_flags, async->bio_offset);
910 }
911 
912 static void run_one_async_free(struct btrfs_work *work)
913 {
914 	struct async_submit_bio *async;
915 
916 	async = container_of(work, struct  async_submit_bio, work);
917 	kfree(async);
918 }
919 
920 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
921 			struct bio *bio, int mirror_num,
922 			unsigned long bio_flags,
923 			u64 bio_offset,
924 			extent_submit_bio_hook_t *submit_bio_start,
925 			extent_submit_bio_hook_t *submit_bio_done)
926 {
927 	struct async_submit_bio *async;
928 
929 	async = kmalloc(sizeof(*async), GFP_NOFS);
930 	if (!async)
931 		return -ENOMEM;
932 
933 	async->inode = inode;
934 	async->bio = bio;
935 	async->mirror_num = mirror_num;
936 	async->submit_bio_start = submit_bio_start;
937 	async->submit_bio_done = submit_bio_done;
938 
939 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
940 			run_one_async_done, run_one_async_free);
941 
942 	async->bio_flags = bio_flags;
943 	async->bio_offset = bio_offset;
944 
945 	async->error = 0;
946 
947 	atomic_inc(&fs_info->nr_async_submits);
948 
949 	if (op_is_sync(bio->bi_opf))
950 		btrfs_set_work_high_priority(&async->work);
951 
952 	btrfs_queue_work(fs_info->workers, &async->work);
953 
954 	while (atomic_read(&fs_info->async_submit_draining) &&
955 	      atomic_read(&fs_info->nr_async_submits)) {
956 		wait_event(fs_info->async_submit_wait,
957 			   (atomic_read(&fs_info->nr_async_submits) == 0));
958 	}
959 
960 	return 0;
961 }
962 
963 static int btree_csum_one_bio(struct bio *bio)
964 {
965 	struct bio_vec *bvec;
966 	struct btrfs_root *root;
967 	int i, ret = 0;
968 
969 	bio_for_each_segment_all(bvec, bio, i) {
970 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
971 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
972 		if (ret)
973 			break;
974 	}
975 
976 	return ret;
977 }
978 
979 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
980 				    int mirror_num, unsigned long bio_flags,
981 				    u64 bio_offset)
982 {
983 	/*
984 	 * when we're called for a write, we're already in the async
985 	 * submission context.  Just jump into btrfs_map_bio
986 	 */
987 	return btree_csum_one_bio(bio);
988 }
989 
990 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
991 				 int mirror_num, unsigned long bio_flags,
992 				 u64 bio_offset)
993 {
994 	int ret;
995 
996 	/*
997 	 * when we're called for a write, we're already in the async
998 	 * submission context.  Just jump into btrfs_map_bio
999 	 */
1000 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
1001 	if (ret) {
1002 		bio->bi_error = ret;
1003 		bio_endio(bio);
1004 	}
1005 	return ret;
1006 }
1007 
1008 static int check_async_write(struct inode *inode, unsigned long bio_flags)
1009 {
1010 	if (bio_flags & EXTENT_BIO_TREE_LOG)
1011 		return 0;
1012 #ifdef CONFIG_X86
1013 	if (static_cpu_has(X86_FEATURE_XMM4_2))
1014 		return 0;
1015 #endif
1016 	return 1;
1017 }
1018 
1019 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
1020 				 int mirror_num, unsigned long bio_flags,
1021 				 u64 bio_offset)
1022 {
1023 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1024 	int async = check_async_write(inode, bio_flags);
1025 	int ret;
1026 
1027 	if (bio_op(bio) != REQ_OP_WRITE) {
1028 		/*
1029 		 * called for a read, do the setup so that checksum validation
1030 		 * can happen in the async kernel threads
1031 		 */
1032 		ret = btrfs_bio_wq_end_io(fs_info, bio,
1033 					  BTRFS_WQ_ENDIO_METADATA);
1034 		if (ret)
1035 			goto out_w_error;
1036 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1037 	} else if (!async) {
1038 		ret = btree_csum_one_bio(bio);
1039 		if (ret)
1040 			goto out_w_error;
1041 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1042 	} else {
1043 		/*
1044 		 * kthread helpers are used to submit writes so that
1045 		 * checksumming can happen in parallel across all CPUs
1046 		 */
1047 		ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0,
1048 					  bio_offset,
1049 					  __btree_submit_bio_start,
1050 					  __btree_submit_bio_done);
1051 	}
1052 
1053 	if (ret)
1054 		goto out_w_error;
1055 	return 0;
1056 
1057 out_w_error:
1058 	bio->bi_error = ret;
1059 	bio_endio(bio);
1060 	return ret;
1061 }
1062 
1063 #ifdef CONFIG_MIGRATION
1064 static int btree_migratepage(struct address_space *mapping,
1065 			struct page *newpage, struct page *page,
1066 			enum migrate_mode mode)
1067 {
1068 	/*
1069 	 * we can't safely write a btree page from here,
1070 	 * we haven't done the locking hook
1071 	 */
1072 	if (PageDirty(page))
1073 		return -EAGAIN;
1074 	/*
1075 	 * Buffers may be managed in a filesystem specific way.
1076 	 * We must have no buffers or drop them.
1077 	 */
1078 	if (page_has_private(page) &&
1079 	    !try_to_release_page(page, GFP_KERNEL))
1080 		return -EAGAIN;
1081 	return migrate_page(mapping, newpage, page, mode);
1082 }
1083 #endif
1084 
1085 
1086 static int btree_writepages(struct address_space *mapping,
1087 			    struct writeback_control *wbc)
1088 {
1089 	struct btrfs_fs_info *fs_info;
1090 	int ret;
1091 
1092 	if (wbc->sync_mode == WB_SYNC_NONE) {
1093 
1094 		if (wbc->for_kupdate)
1095 			return 0;
1096 
1097 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
1098 		/* this is a bit racy, but that's ok */
1099 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1100 					     BTRFS_DIRTY_METADATA_THRESH);
1101 		if (ret < 0)
1102 			return 0;
1103 	}
1104 	return btree_write_cache_pages(mapping, wbc);
1105 }
1106 
1107 static int btree_readpage(struct file *file, struct page *page)
1108 {
1109 	struct extent_io_tree *tree;
1110 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1111 	return extent_read_full_page(tree, page, btree_get_extent, 0);
1112 }
1113 
1114 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1115 {
1116 	if (PageWriteback(page) || PageDirty(page))
1117 		return 0;
1118 
1119 	return try_release_extent_buffer(page);
1120 }
1121 
1122 static void btree_invalidatepage(struct page *page, unsigned int offset,
1123 				 unsigned int length)
1124 {
1125 	struct extent_io_tree *tree;
1126 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1127 	extent_invalidatepage(tree, page, offset);
1128 	btree_releasepage(page, GFP_NOFS);
1129 	if (PagePrivate(page)) {
1130 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1131 			   "page private not zero on page %llu",
1132 			   (unsigned long long)page_offset(page));
1133 		ClearPagePrivate(page);
1134 		set_page_private(page, 0);
1135 		put_page(page);
1136 	}
1137 }
1138 
1139 static int btree_set_page_dirty(struct page *page)
1140 {
1141 #ifdef DEBUG
1142 	struct extent_buffer *eb;
1143 
1144 	BUG_ON(!PagePrivate(page));
1145 	eb = (struct extent_buffer *)page->private;
1146 	BUG_ON(!eb);
1147 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1148 	BUG_ON(!atomic_read(&eb->refs));
1149 	btrfs_assert_tree_locked(eb);
1150 #endif
1151 	return __set_page_dirty_nobuffers(page);
1152 }
1153 
1154 static const struct address_space_operations btree_aops = {
1155 	.readpage	= btree_readpage,
1156 	.writepages	= btree_writepages,
1157 	.releasepage	= btree_releasepage,
1158 	.invalidatepage = btree_invalidatepage,
1159 #ifdef CONFIG_MIGRATION
1160 	.migratepage	= btree_migratepage,
1161 #endif
1162 	.set_page_dirty = btree_set_page_dirty,
1163 };
1164 
1165 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1166 {
1167 	struct extent_buffer *buf = NULL;
1168 	struct inode *btree_inode = fs_info->btree_inode;
1169 
1170 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1171 	if (IS_ERR(buf))
1172 		return;
1173 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1174 				 buf, WAIT_NONE, btree_get_extent, 0);
1175 	free_extent_buffer(buf);
1176 }
1177 
1178 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1179 			 int mirror_num, struct extent_buffer **eb)
1180 {
1181 	struct extent_buffer *buf = NULL;
1182 	struct inode *btree_inode = fs_info->btree_inode;
1183 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1184 	int ret;
1185 
1186 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1187 	if (IS_ERR(buf))
1188 		return 0;
1189 
1190 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1191 
1192 	ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1193 				       btree_get_extent, mirror_num);
1194 	if (ret) {
1195 		free_extent_buffer(buf);
1196 		return ret;
1197 	}
1198 
1199 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1200 		free_extent_buffer(buf);
1201 		return -EIO;
1202 	} else if (extent_buffer_uptodate(buf)) {
1203 		*eb = buf;
1204 	} else {
1205 		free_extent_buffer(buf);
1206 	}
1207 	return 0;
1208 }
1209 
1210 struct extent_buffer *btrfs_find_create_tree_block(
1211 						struct btrfs_fs_info *fs_info,
1212 						u64 bytenr)
1213 {
1214 	if (btrfs_is_testing(fs_info))
1215 		return alloc_test_extent_buffer(fs_info, bytenr);
1216 	return alloc_extent_buffer(fs_info, bytenr);
1217 }
1218 
1219 
1220 int btrfs_write_tree_block(struct extent_buffer *buf)
1221 {
1222 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1223 					buf->start + buf->len - 1);
1224 }
1225 
1226 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1227 {
1228 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1229 				       buf->start, buf->start + buf->len - 1);
1230 }
1231 
1232 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1233 				      u64 parent_transid)
1234 {
1235 	struct extent_buffer *buf = NULL;
1236 	int ret;
1237 
1238 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1239 	if (IS_ERR(buf))
1240 		return buf;
1241 
1242 	ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
1243 	if (ret) {
1244 		free_extent_buffer(buf);
1245 		return ERR_PTR(ret);
1246 	}
1247 	return buf;
1248 
1249 }
1250 
1251 void clean_tree_block(struct btrfs_trans_handle *trans,
1252 		      struct btrfs_fs_info *fs_info,
1253 		      struct extent_buffer *buf)
1254 {
1255 	if (btrfs_header_generation(buf) ==
1256 	    fs_info->running_transaction->transid) {
1257 		btrfs_assert_tree_locked(buf);
1258 
1259 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1260 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1261 					     -buf->len,
1262 					     fs_info->dirty_metadata_batch);
1263 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1264 			btrfs_set_lock_blocking(buf);
1265 			clear_extent_buffer_dirty(buf);
1266 		}
1267 	}
1268 }
1269 
1270 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1271 {
1272 	struct btrfs_subvolume_writers *writers;
1273 	int ret;
1274 
1275 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1276 	if (!writers)
1277 		return ERR_PTR(-ENOMEM);
1278 
1279 	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1280 	if (ret < 0) {
1281 		kfree(writers);
1282 		return ERR_PTR(ret);
1283 	}
1284 
1285 	init_waitqueue_head(&writers->wait);
1286 	return writers;
1287 }
1288 
1289 static void
1290 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1291 {
1292 	percpu_counter_destroy(&writers->counter);
1293 	kfree(writers);
1294 }
1295 
1296 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1297 			 u64 objectid)
1298 {
1299 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1300 	root->node = NULL;
1301 	root->commit_root = NULL;
1302 	root->state = 0;
1303 	root->orphan_cleanup_state = 0;
1304 
1305 	root->objectid = objectid;
1306 	root->last_trans = 0;
1307 	root->highest_objectid = 0;
1308 	root->nr_delalloc_inodes = 0;
1309 	root->nr_ordered_extents = 0;
1310 	root->name = NULL;
1311 	root->inode_tree = RB_ROOT;
1312 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1313 	root->block_rsv = NULL;
1314 	root->orphan_block_rsv = NULL;
1315 
1316 	INIT_LIST_HEAD(&root->dirty_list);
1317 	INIT_LIST_HEAD(&root->root_list);
1318 	INIT_LIST_HEAD(&root->delalloc_inodes);
1319 	INIT_LIST_HEAD(&root->delalloc_root);
1320 	INIT_LIST_HEAD(&root->ordered_extents);
1321 	INIT_LIST_HEAD(&root->ordered_root);
1322 	INIT_LIST_HEAD(&root->logged_list[0]);
1323 	INIT_LIST_HEAD(&root->logged_list[1]);
1324 	spin_lock_init(&root->orphan_lock);
1325 	spin_lock_init(&root->inode_lock);
1326 	spin_lock_init(&root->delalloc_lock);
1327 	spin_lock_init(&root->ordered_extent_lock);
1328 	spin_lock_init(&root->accounting_lock);
1329 	spin_lock_init(&root->log_extents_lock[0]);
1330 	spin_lock_init(&root->log_extents_lock[1]);
1331 	mutex_init(&root->objectid_mutex);
1332 	mutex_init(&root->log_mutex);
1333 	mutex_init(&root->ordered_extent_mutex);
1334 	mutex_init(&root->delalloc_mutex);
1335 	init_waitqueue_head(&root->log_writer_wait);
1336 	init_waitqueue_head(&root->log_commit_wait[0]);
1337 	init_waitqueue_head(&root->log_commit_wait[1]);
1338 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1339 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1340 	atomic_set(&root->log_commit[0], 0);
1341 	atomic_set(&root->log_commit[1], 0);
1342 	atomic_set(&root->log_writers, 0);
1343 	atomic_set(&root->log_batch, 0);
1344 	atomic_set(&root->orphan_inodes, 0);
1345 	atomic_set(&root->refs, 1);
1346 	atomic_set(&root->will_be_snapshoted, 0);
1347 	atomic_set(&root->qgroup_meta_rsv, 0);
1348 	root->log_transid = 0;
1349 	root->log_transid_committed = -1;
1350 	root->last_log_commit = 0;
1351 	if (!dummy)
1352 		extent_io_tree_init(&root->dirty_log_pages,
1353 				     fs_info->btree_inode->i_mapping);
1354 
1355 	memset(&root->root_key, 0, sizeof(root->root_key));
1356 	memset(&root->root_item, 0, sizeof(root->root_item));
1357 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1358 	if (!dummy)
1359 		root->defrag_trans_start = fs_info->generation;
1360 	else
1361 		root->defrag_trans_start = 0;
1362 	root->root_key.objectid = objectid;
1363 	root->anon_dev = 0;
1364 
1365 	spin_lock_init(&root->root_item_lock);
1366 }
1367 
1368 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1369 		gfp_t flags)
1370 {
1371 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1372 	if (root)
1373 		root->fs_info = fs_info;
1374 	return root;
1375 }
1376 
1377 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1378 /* Should only be used by the testing infrastructure */
1379 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1380 {
1381 	struct btrfs_root *root;
1382 
1383 	if (!fs_info)
1384 		return ERR_PTR(-EINVAL);
1385 
1386 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1387 	if (!root)
1388 		return ERR_PTR(-ENOMEM);
1389 
1390 	/* We don't use the stripesize in selftest, set it as sectorsize */
1391 	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1392 	root->alloc_bytenr = 0;
1393 
1394 	return root;
1395 }
1396 #endif
1397 
1398 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1399 				     struct btrfs_fs_info *fs_info,
1400 				     u64 objectid)
1401 {
1402 	struct extent_buffer *leaf;
1403 	struct btrfs_root *tree_root = fs_info->tree_root;
1404 	struct btrfs_root *root;
1405 	struct btrfs_key key;
1406 	int ret = 0;
1407 	uuid_le uuid;
1408 
1409 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1410 	if (!root)
1411 		return ERR_PTR(-ENOMEM);
1412 
1413 	__setup_root(root, fs_info, objectid);
1414 	root->root_key.objectid = objectid;
1415 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1416 	root->root_key.offset = 0;
1417 
1418 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1419 	if (IS_ERR(leaf)) {
1420 		ret = PTR_ERR(leaf);
1421 		leaf = NULL;
1422 		goto fail;
1423 	}
1424 
1425 	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1426 	btrfs_set_header_bytenr(leaf, leaf->start);
1427 	btrfs_set_header_generation(leaf, trans->transid);
1428 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1429 	btrfs_set_header_owner(leaf, objectid);
1430 	root->node = leaf;
1431 
1432 	write_extent_buffer_fsid(leaf, fs_info->fsid);
1433 	write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1434 	btrfs_mark_buffer_dirty(leaf);
1435 
1436 	root->commit_root = btrfs_root_node(root);
1437 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1438 
1439 	root->root_item.flags = 0;
1440 	root->root_item.byte_limit = 0;
1441 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1442 	btrfs_set_root_generation(&root->root_item, trans->transid);
1443 	btrfs_set_root_level(&root->root_item, 0);
1444 	btrfs_set_root_refs(&root->root_item, 1);
1445 	btrfs_set_root_used(&root->root_item, leaf->len);
1446 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1447 	btrfs_set_root_dirid(&root->root_item, 0);
1448 	uuid_le_gen(&uuid);
1449 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1450 	root->root_item.drop_level = 0;
1451 
1452 	key.objectid = objectid;
1453 	key.type = BTRFS_ROOT_ITEM_KEY;
1454 	key.offset = 0;
1455 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1456 	if (ret)
1457 		goto fail;
1458 
1459 	btrfs_tree_unlock(leaf);
1460 
1461 	return root;
1462 
1463 fail:
1464 	if (leaf) {
1465 		btrfs_tree_unlock(leaf);
1466 		free_extent_buffer(root->commit_root);
1467 		free_extent_buffer(leaf);
1468 	}
1469 	kfree(root);
1470 
1471 	return ERR_PTR(ret);
1472 }
1473 
1474 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1475 					 struct btrfs_fs_info *fs_info)
1476 {
1477 	struct btrfs_root *root;
1478 	struct extent_buffer *leaf;
1479 
1480 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1481 	if (!root)
1482 		return ERR_PTR(-ENOMEM);
1483 
1484 	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1485 
1486 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1487 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1488 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1489 
1490 	/*
1491 	 * DON'T set REF_COWS for log trees
1492 	 *
1493 	 * log trees do not get reference counted because they go away
1494 	 * before a real commit is actually done.  They do store pointers
1495 	 * to file data extents, and those reference counts still get
1496 	 * updated (along with back refs to the log tree).
1497 	 */
1498 
1499 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1500 			NULL, 0, 0, 0);
1501 	if (IS_ERR(leaf)) {
1502 		kfree(root);
1503 		return ERR_CAST(leaf);
1504 	}
1505 
1506 	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1507 	btrfs_set_header_bytenr(leaf, leaf->start);
1508 	btrfs_set_header_generation(leaf, trans->transid);
1509 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1510 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1511 	root->node = leaf;
1512 
1513 	write_extent_buffer_fsid(root->node, fs_info->fsid);
1514 	btrfs_mark_buffer_dirty(root->node);
1515 	btrfs_tree_unlock(root->node);
1516 	return root;
1517 }
1518 
1519 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1520 			     struct btrfs_fs_info *fs_info)
1521 {
1522 	struct btrfs_root *log_root;
1523 
1524 	log_root = alloc_log_tree(trans, fs_info);
1525 	if (IS_ERR(log_root))
1526 		return PTR_ERR(log_root);
1527 	WARN_ON(fs_info->log_root_tree);
1528 	fs_info->log_root_tree = log_root;
1529 	return 0;
1530 }
1531 
1532 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1533 		       struct btrfs_root *root)
1534 {
1535 	struct btrfs_fs_info *fs_info = root->fs_info;
1536 	struct btrfs_root *log_root;
1537 	struct btrfs_inode_item *inode_item;
1538 
1539 	log_root = alloc_log_tree(trans, fs_info);
1540 	if (IS_ERR(log_root))
1541 		return PTR_ERR(log_root);
1542 
1543 	log_root->last_trans = trans->transid;
1544 	log_root->root_key.offset = root->root_key.objectid;
1545 
1546 	inode_item = &log_root->root_item.inode;
1547 	btrfs_set_stack_inode_generation(inode_item, 1);
1548 	btrfs_set_stack_inode_size(inode_item, 3);
1549 	btrfs_set_stack_inode_nlink(inode_item, 1);
1550 	btrfs_set_stack_inode_nbytes(inode_item,
1551 				     fs_info->nodesize);
1552 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1553 
1554 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1555 
1556 	WARN_ON(root->log_root);
1557 	root->log_root = log_root;
1558 	root->log_transid = 0;
1559 	root->log_transid_committed = -1;
1560 	root->last_log_commit = 0;
1561 	return 0;
1562 }
1563 
1564 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1565 					       struct btrfs_key *key)
1566 {
1567 	struct btrfs_root *root;
1568 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1569 	struct btrfs_path *path;
1570 	u64 generation;
1571 	int ret;
1572 
1573 	path = btrfs_alloc_path();
1574 	if (!path)
1575 		return ERR_PTR(-ENOMEM);
1576 
1577 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1578 	if (!root) {
1579 		ret = -ENOMEM;
1580 		goto alloc_fail;
1581 	}
1582 
1583 	__setup_root(root, fs_info, key->objectid);
1584 
1585 	ret = btrfs_find_root(tree_root, key, path,
1586 			      &root->root_item, &root->root_key);
1587 	if (ret) {
1588 		if (ret > 0)
1589 			ret = -ENOENT;
1590 		goto find_fail;
1591 	}
1592 
1593 	generation = btrfs_root_generation(&root->root_item);
1594 	root->node = read_tree_block(fs_info,
1595 				     btrfs_root_bytenr(&root->root_item),
1596 				     generation);
1597 	if (IS_ERR(root->node)) {
1598 		ret = PTR_ERR(root->node);
1599 		goto find_fail;
1600 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1601 		ret = -EIO;
1602 		free_extent_buffer(root->node);
1603 		goto find_fail;
1604 	}
1605 	root->commit_root = btrfs_root_node(root);
1606 out:
1607 	btrfs_free_path(path);
1608 	return root;
1609 
1610 find_fail:
1611 	kfree(root);
1612 alloc_fail:
1613 	root = ERR_PTR(ret);
1614 	goto out;
1615 }
1616 
1617 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1618 				      struct btrfs_key *location)
1619 {
1620 	struct btrfs_root *root;
1621 
1622 	root = btrfs_read_tree_root(tree_root, location);
1623 	if (IS_ERR(root))
1624 		return root;
1625 
1626 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1627 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1628 		btrfs_check_and_init_root_item(&root->root_item);
1629 	}
1630 
1631 	return root;
1632 }
1633 
1634 int btrfs_init_fs_root(struct btrfs_root *root)
1635 {
1636 	int ret;
1637 	struct btrfs_subvolume_writers *writers;
1638 
1639 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1640 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1641 					GFP_NOFS);
1642 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1643 		ret = -ENOMEM;
1644 		goto fail;
1645 	}
1646 
1647 	writers = btrfs_alloc_subvolume_writers();
1648 	if (IS_ERR(writers)) {
1649 		ret = PTR_ERR(writers);
1650 		goto fail;
1651 	}
1652 	root->subv_writers = writers;
1653 
1654 	btrfs_init_free_ino_ctl(root);
1655 	spin_lock_init(&root->ino_cache_lock);
1656 	init_waitqueue_head(&root->ino_cache_wait);
1657 
1658 	ret = get_anon_bdev(&root->anon_dev);
1659 	if (ret)
1660 		goto fail;
1661 
1662 	mutex_lock(&root->objectid_mutex);
1663 	ret = btrfs_find_highest_objectid(root,
1664 					&root->highest_objectid);
1665 	if (ret) {
1666 		mutex_unlock(&root->objectid_mutex);
1667 		goto fail;
1668 	}
1669 
1670 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1671 
1672 	mutex_unlock(&root->objectid_mutex);
1673 
1674 	return 0;
1675 fail:
1676 	/* the caller is responsible to call free_fs_root */
1677 	return ret;
1678 }
1679 
1680 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1681 					u64 root_id)
1682 {
1683 	struct btrfs_root *root;
1684 
1685 	spin_lock(&fs_info->fs_roots_radix_lock);
1686 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1687 				 (unsigned long)root_id);
1688 	spin_unlock(&fs_info->fs_roots_radix_lock);
1689 	return root;
1690 }
1691 
1692 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1693 			 struct btrfs_root *root)
1694 {
1695 	int ret;
1696 
1697 	ret = radix_tree_preload(GFP_NOFS);
1698 	if (ret)
1699 		return ret;
1700 
1701 	spin_lock(&fs_info->fs_roots_radix_lock);
1702 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1703 				(unsigned long)root->root_key.objectid,
1704 				root);
1705 	if (ret == 0)
1706 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1707 	spin_unlock(&fs_info->fs_roots_radix_lock);
1708 	radix_tree_preload_end();
1709 
1710 	return ret;
1711 }
1712 
1713 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1714 				     struct btrfs_key *location,
1715 				     bool check_ref)
1716 {
1717 	struct btrfs_root *root;
1718 	struct btrfs_path *path;
1719 	struct btrfs_key key;
1720 	int ret;
1721 
1722 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1723 		return fs_info->tree_root;
1724 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1725 		return fs_info->extent_root;
1726 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1727 		return fs_info->chunk_root;
1728 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1729 		return fs_info->dev_root;
1730 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1731 		return fs_info->csum_root;
1732 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1733 		return fs_info->quota_root ? fs_info->quota_root :
1734 					     ERR_PTR(-ENOENT);
1735 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1736 		return fs_info->uuid_root ? fs_info->uuid_root :
1737 					    ERR_PTR(-ENOENT);
1738 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1739 		return fs_info->free_space_root ? fs_info->free_space_root :
1740 						  ERR_PTR(-ENOENT);
1741 again:
1742 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1743 	if (root) {
1744 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1745 			return ERR_PTR(-ENOENT);
1746 		return root;
1747 	}
1748 
1749 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1750 	if (IS_ERR(root))
1751 		return root;
1752 
1753 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1754 		ret = -ENOENT;
1755 		goto fail;
1756 	}
1757 
1758 	ret = btrfs_init_fs_root(root);
1759 	if (ret)
1760 		goto fail;
1761 
1762 	path = btrfs_alloc_path();
1763 	if (!path) {
1764 		ret = -ENOMEM;
1765 		goto fail;
1766 	}
1767 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1768 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1769 	key.offset = location->objectid;
1770 
1771 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1772 	btrfs_free_path(path);
1773 	if (ret < 0)
1774 		goto fail;
1775 	if (ret == 0)
1776 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1777 
1778 	ret = btrfs_insert_fs_root(fs_info, root);
1779 	if (ret) {
1780 		if (ret == -EEXIST) {
1781 			free_fs_root(root);
1782 			goto again;
1783 		}
1784 		goto fail;
1785 	}
1786 	return root;
1787 fail:
1788 	free_fs_root(root);
1789 	return ERR_PTR(ret);
1790 }
1791 
1792 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1793 {
1794 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1795 	int ret = 0;
1796 	struct btrfs_device *device;
1797 	struct backing_dev_info *bdi;
1798 
1799 	rcu_read_lock();
1800 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1801 		if (!device->bdev)
1802 			continue;
1803 		bdi = blk_get_backing_dev_info(device->bdev);
1804 		if (bdi_congested(bdi, bdi_bits)) {
1805 			ret = 1;
1806 			break;
1807 		}
1808 	}
1809 	rcu_read_unlock();
1810 	return ret;
1811 }
1812 
1813 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1814 {
1815 	int err;
1816 
1817 	err = bdi_setup_and_register(bdi, "btrfs");
1818 	if (err)
1819 		return err;
1820 
1821 	bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1822 	bdi->congested_fn	= btrfs_congested_fn;
1823 	bdi->congested_data	= info;
1824 	bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1825 	return 0;
1826 }
1827 
1828 /*
1829  * called by the kthread helper functions to finally call the bio end_io
1830  * functions.  This is where read checksum verification actually happens
1831  */
1832 static void end_workqueue_fn(struct btrfs_work *work)
1833 {
1834 	struct bio *bio;
1835 	struct btrfs_end_io_wq *end_io_wq;
1836 
1837 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1838 	bio = end_io_wq->bio;
1839 
1840 	bio->bi_error = end_io_wq->error;
1841 	bio->bi_private = end_io_wq->private;
1842 	bio->bi_end_io = end_io_wq->end_io;
1843 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1844 	bio_endio(bio);
1845 }
1846 
1847 static int cleaner_kthread(void *arg)
1848 {
1849 	struct btrfs_root *root = arg;
1850 	struct btrfs_fs_info *fs_info = root->fs_info;
1851 	int again;
1852 	struct btrfs_trans_handle *trans;
1853 
1854 	do {
1855 		again = 0;
1856 
1857 		/* Make the cleaner go to sleep early. */
1858 		if (btrfs_need_cleaner_sleep(fs_info))
1859 			goto sleep;
1860 
1861 		/*
1862 		 * Do not do anything if we might cause open_ctree() to block
1863 		 * before we have finished mounting the filesystem.
1864 		 */
1865 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1866 			goto sleep;
1867 
1868 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1869 			goto sleep;
1870 
1871 		/*
1872 		 * Avoid the problem that we change the status of the fs
1873 		 * during the above check and trylock.
1874 		 */
1875 		if (btrfs_need_cleaner_sleep(fs_info)) {
1876 			mutex_unlock(&fs_info->cleaner_mutex);
1877 			goto sleep;
1878 		}
1879 
1880 		mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1881 		btrfs_run_delayed_iputs(fs_info);
1882 		mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1883 
1884 		again = btrfs_clean_one_deleted_snapshot(root);
1885 		mutex_unlock(&fs_info->cleaner_mutex);
1886 
1887 		/*
1888 		 * The defragger has dealt with the R/O remount and umount,
1889 		 * needn't do anything special here.
1890 		 */
1891 		btrfs_run_defrag_inodes(fs_info);
1892 
1893 		/*
1894 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1895 		 * with relocation (btrfs_relocate_chunk) and relocation
1896 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1897 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1898 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1899 		 * unused block groups.
1900 		 */
1901 		btrfs_delete_unused_bgs(fs_info);
1902 sleep:
1903 		if (!again) {
1904 			set_current_state(TASK_INTERRUPTIBLE);
1905 			if (!kthread_should_stop())
1906 				schedule();
1907 			__set_current_state(TASK_RUNNING);
1908 		}
1909 	} while (!kthread_should_stop());
1910 
1911 	/*
1912 	 * Transaction kthread is stopped before us and wakes us up.
1913 	 * However we might have started a new transaction and COWed some
1914 	 * tree blocks when deleting unused block groups for example. So
1915 	 * make sure we commit the transaction we started to have a clean
1916 	 * shutdown when evicting the btree inode - if it has dirty pages
1917 	 * when we do the final iput() on it, eviction will trigger a
1918 	 * writeback for it which will fail with null pointer dereferences
1919 	 * since work queues and other resources were already released and
1920 	 * destroyed by the time the iput/eviction/writeback is made.
1921 	 */
1922 	trans = btrfs_attach_transaction(root);
1923 	if (IS_ERR(trans)) {
1924 		if (PTR_ERR(trans) != -ENOENT)
1925 			btrfs_err(fs_info,
1926 				  "cleaner transaction attach returned %ld",
1927 				  PTR_ERR(trans));
1928 	} else {
1929 		int ret;
1930 
1931 		ret = btrfs_commit_transaction(trans);
1932 		if (ret)
1933 			btrfs_err(fs_info,
1934 				  "cleaner open transaction commit returned %d",
1935 				  ret);
1936 	}
1937 
1938 	return 0;
1939 }
1940 
1941 static int transaction_kthread(void *arg)
1942 {
1943 	struct btrfs_root *root = arg;
1944 	struct btrfs_fs_info *fs_info = root->fs_info;
1945 	struct btrfs_trans_handle *trans;
1946 	struct btrfs_transaction *cur;
1947 	u64 transid;
1948 	unsigned long now;
1949 	unsigned long delay;
1950 	bool cannot_commit;
1951 
1952 	do {
1953 		cannot_commit = false;
1954 		delay = HZ * fs_info->commit_interval;
1955 		mutex_lock(&fs_info->transaction_kthread_mutex);
1956 
1957 		spin_lock(&fs_info->trans_lock);
1958 		cur = fs_info->running_transaction;
1959 		if (!cur) {
1960 			spin_unlock(&fs_info->trans_lock);
1961 			goto sleep;
1962 		}
1963 
1964 		now = get_seconds();
1965 		if (cur->state < TRANS_STATE_BLOCKED &&
1966 		    (now < cur->start_time ||
1967 		     now - cur->start_time < fs_info->commit_interval)) {
1968 			spin_unlock(&fs_info->trans_lock);
1969 			delay = HZ * 5;
1970 			goto sleep;
1971 		}
1972 		transid = cur->transid;
1973 		spin_unlock(&fs_info->trans_lock);
1974 
1975 		/* If the file system is aborted, this will always fail. */
1976 		trans = btrfs_attach_transaction(root);
1977 		if (IS_ERR(trans)) {
1978 			if (PTR_ERR(trans) != -ENOENT)
1979 				cannot_commit = true;
1980 			goto sleep;
1981 		}
1982 		if (transid == trans->transid) {
1983 			btrfs_commit_transaction(trans);
1984 		} else {
1985 			btrfs_end_transaction(trans);
1986 		}
1987 sleep:
1988 		wake_up_process(fs_info->cleaner_kthread);
1989 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1990 
1991 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1992 				      &fs_info->fs_state)))
1993 			btrfs_cleanup_transaction(fs_info);
1994 		set_current_state(TASK_INTERRUPTIBLE);
1995 		if (!kthread_should_stop() &&
1996 				(!btrfs_transaction_blocked(fs_info) ||
1997 				 cannot_commit))
1998 			schedule_timeout(delay);
1999 		__set_current_state(TASK_RUNNING);
2000 	} while (!kthread_should_stop());
2001 	return 0;
2002 }
2003 
2004 /*
2005  * this will find the highest generation in the array of
2006  * root backups.  The index of the highest array is returned,
2007  * or -1 if we can't find anything.
2008  *
2009  * We check to make sure the array is valid by comparing the
2010  * generation of the latest  root in the array with the generation
2011  * in the super block.  If they don't match we pitch it.
2012  */
2013 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
2014 {
2015 	u64 cur;
2016 	int newest_index = -1;
2017 	struct btrfs_root_backup *root_backup;
2018 	int i;
2019 
2020 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2021 		root_backup = info->super_copy->super_roots + i;
2022 		cur = btrfs_backup_tree_root_gen(root_backup);
2023 		if (cur == newest_gen)
2024 			newest_index = i;
2025 	}
2026 
2027 	/* check to see if we actually wrapped around */
2028 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2029 		root_backup = info->super_copy->super_roots;
2030 		cur = btrfs_backup_tree_root_gen(root_backup);
2031 		if (cur == newest_gen)
2032 			newest_index = 0;
2033 	}
2034 	return newest_index;
2035 }
2036 
2037 
2038 /*
2039  * find the oldest backup so we know where to store new entries
2040  * in the backup array.  This will set the backup_root_index
2041  * field in the fs_info struct
2042  */
2043 static void find_oldest_super_backup(struct btrfs_fs_info *info,
2044 				     u64 newest_gen)
2045 {
2046 	int newest_index = -1;
2047 
2048 	newest_index = find_newest_super_backup(info, newest_gen);
2049 	/* if there was garbage in there, just move along */
2050 	if (newest_index == -1) {
2051 		info->backup_root_index = 0;
2052 	} else {
2053 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2054 	}
2055 }
2056 
2057 /*
2058  * copy all the root pointers into the super backup array.
2059  * this will bump the backup pointer by one when it is
2060  * done
2061  */
2062 static void backup_super_roots(struct btrfs_fs_info *info)
2063 {
2064 	int next_backup;
2065 	struct btrfs_root_backup *root_backup;
2066 	int last_backup;
2067 
2068 	next_backup = info->backup_root_index;
2069 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2070 		BTRFS_NUM_BACKUP_ROOTS;
2071 
2072 	/*
2073 	 * just overwrite the last backup if we're at the same generation
2074 	 * this happens only at umount
2075 	 */
2076 	root_backup = info->super_for_commit->super_roots + last_backup;
2077 	if (btrfs_backup_tree_root_gen(root_backup) ==
2078 	    btrfs_header_generation(info->tree_root->node))
2079 		next_backup = last_backup;
2080 
2081 	root_backup = info->super_for_commit->super_roots + next_backup;
2082 
2083 	/*
2084 	 * make sure all of our padding and empty slots get zero filled
2085 	 * regardless of which ones we use today
2086 	 */
2087 	memset(root_backup, 0, sizeof(*root_backup));
2088 
2089 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2090 
2091 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2092 	btrfs_set_backup_tree_root_gen(root_backup,
2093 			       btrfs_header_generation(info->tree_root->node));
2094 
2095 	btrfs_set_backup_tree_root_level(root_backup,
2096 			       btrfs_header_level(info->tree_root->node));
2097 
2098 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2099 	btrfs_set_backup_chunk_root_gen(root_backup,
2100 			       btrfs_header_generation(info->chunk_root->node));
2101 	btrfs_set_backup_chunk_root_level(root_backup,
2102 			       btrfs_header_level(info->chunk_root->node));
2103 
2104 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2105 	btrfs_set_backup_extent_root_gen(root_backup,
2106 			       btrfs_header_generation(info->extent_root->node));
2107 	btrfs_set_backup_extent_root_level(root_backup,
2108 			       btrfs_header_level(info->extent_root->node));
2109 
2110 	/*
2111 	 * we might commit during log recovery, which happens before we set
2112 	 * the fs_root.  Make sure it is valid before we fill it in.
2113 	 */
2114 	if (info->fs_root && info->fs_root->node) {
2115 		btrfs_set_backup_fs_root(root_backup,
2116 					 info->fs_root->node->start);
2117 		btrfs_set_backup_fs_root_gen(root_backup,
2118 			       btrfs_header_generation(info->fs_root->node));
2119 		btrfs_set_backup_fs_root_level(root_backup,
2120 			       btrfs_header_level(info->fs_root->node));
2121 	}
2122 
2123 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2124 	btrfs_set_backup_dev_root_gen(root_backup,
2125 			       btrfs_header_generation(info->dev_root->node));
2126 	btrfs_set_backup_dev_root_level(root_backup,
2127 				       btrfs_header_level(info->dev_root->node));
2128 
2129 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2130 	btrfs_set_backup_csum_root_gen(root_backup,
2131 			       btrfs_header_generation(info->csum_root->node));
2132 	btrfs_set_backup_csum_root_level(root_backup,
2133 			       btrfs_header_level(info->csum_root->node));
2134 
2135 	btrfs_set_backup_total_bytes(root_backup,
2136 			     btrfs_super_total_bytes(info->super_copy));
2137 	btrfs_set_backup_bytes_used(root_backup,
2138 			     btrfs_super_bytes_used(info->super_copy));
2139 	btrfs_set_backup_num_devices(root_backup,
2140 			     btrfs_super_num_devices(info->super_copy));
2141 
2142 	/*
2143 	 * if we don't copy this out to the super_copy, it won't get remembered
2144 	 * for the next commit
2145 	 */
2146 	memcpy(&info->super_copy->super_roots,
2147 	       &info->super_for_commit->super_roots,
2148 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2149 }
2150 
2151 /*
2152  * this copies info out of the root backup array and back into
2153  * the in-memory super block.  It is meant to help iterate through
2154  * the array, so you send it the number of backups you've already
2155  * tried and the last backup index you used.
2156  *
2157  * this returns -1 when it has tried all the backups
2158  */
2159 static noinline int next_root_backup(struct btrfs_fs_info *info,
2160 				     struct btrfs_super_block *super,
2161 				     int *num_backups_tried, int *backup_index)
2162 {
2163 	struct btrfs_root_backup *root_backup;
2164 	int newest = *backup_index;
2165 
2166 	if (*num_backups_tried == 0) {
2167 		u64 gen = btrfs_super_generation(super);
2168 
2169 		newest = find_newest_super_backup(info, gen);
2170 		if (newest == -1)
2171 			return -1;
2172 
2173 		*backup_index = newest;
2174 		*num_backups_tried = 1;
2175 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2176 		/* we've tried all the backups, all done */
2177 		return -1;
2178 	} else {
2179 		/* jump to the next oldest backup */
2180 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2181 			BTRFS_NUM_BACKUP_ROOTS;
2182 		*backup_index = newest;
2183 		*num_backups_tried += 1;
2184 	}
2185 	root_backup = super->super_roots + newest;
2186 
2187 	btrfs_set_super_generation(super,
2188 				   btrfs_backup_tree_root_gen(root_backup));
2189 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2190 	btrfs_set_super_root_level(super,
2191 				   btrfs_backup_tree_root_level(root_backup));
2192 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2193 
2194 	/*
2195 	 * fixme: the total bytes and num_devices need to match or we should
2196 	 * need a fsck
2197 	 */
2198 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2199 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2200 	return 0;
2201 }
2202 
2203 /* helper to cleanup workers */
2204 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2205 {
2206 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2207 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2208 	btrfs_destroy_workqueue(fs_info->workers);
2209 	btrfs_destroy_workqueue(fs_info->endio_workers);
2210 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2211 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2212 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2213 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2214 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2215 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2216 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2217 	btrfs_destroy_workqueue(fs_info->submit_workers);
2218 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2219 	btrfs_destroy_workqueue(fs_info->caching_workers);
2220 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2221 	btrfs_destroy_workqueue(fs_info->flush_workers);
2222 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2223 	btrfs_destroy_workqueue(fs_info->extent_workers);
2224 }
2225 
2226 static void free_root_extent_buffers(struct btrfs_root *root)
2227 {
2228 	if (root) {
2229 		free_extent_buffer(root->node);
2230 		free_extent_buffer(root->commit_root);
2231 		root->node = NULL;
2232 		root->commit_root = NULL;
2233 	}
2234 }
2235 
2236 /* helper to cleanup tree roots */
2237 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2238 {
2239 	free_root_extent_buffers(info->tree_root);
2240 
2241 	free_root_extent_buffers(info->dev_root);
2242 	free_root_extent_buffers(info->extent_root);
2243 	free_root_extent_buffers(info->csum_root);
2244 	free_root_extent_buffers(info->quota_root);
2245 	free_root_extent_buffers(info->uuid_root);
2246 	if (chunk_root)
2247 		free_root_extent_buffers(info->chunk_root);
2248 	free_root_extent_buffers(info->free_space_root);
2249 }
2250 
2251 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2252 {
2253 	int ret;
2254 	struct btrfs_root *gang[8];
2255 	int i;
2256 
2257 	while (!list_empty(&fs_info->dead_roots)) {
2258 		gang[0] = list_entry(fs_info->dead_roots.next,
2259 				     struct btrfs_root, root_list);
2260 		list_del(&gang[0]->root_list);
2261 
2262 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2263 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2264 		} else {
2265 			free_extent_buffer(gang[0]->node);
2266 			free_extent_buffer(gang[0]->commit_root);
2267 			btrfs_put_fs_root(gang[0]);
2268 		}
2269 	}
2270 
2271 	while (1) {
2272 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2273 					     (void **)gang, 0,
2274 					     ARRAY_SIZE(gang));
2275 		if (!ret)
2276 			break;
2277 		for (i = 0; i < ret; i++)
2278 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2279 	}
2280 
2281 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2282 		btrfs_free_log_root_tree(NULL, fs_info);
2283 		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2284 	}
2285 }
2286 
2287 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2288 {
2289 	mutex_init(&fs_info->scrub_lock);
2290 	atomic_set(&fs_info->scrubs_running, 0);
2291 	atomic_set(&fs_info->scrub_pause_req, 0);
2292 	atomic_set(&fs_info->scrubs_paused, 0);
2293 	atomic_set(&fs_info->scrub_cancel_req, 0);
2294 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2295 	fs_info->scrub_workers_refcnt = 0;
2296 }
2297 
2298 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2299 {
2300 	spin_lock_init(&fs_info->balance_lock);
2301 	mutex_init(&fs_info->balance_mutex);
2302 	atomic_set(&fs_info->balance_running, 0);
2303 	atomic_set(&fs_info->balance_pause_req, 0);
2304 	atomic_set(&fs_info->balance_cancel_req, 0);
2305 	fs_info->balance_ctl = NULL;
2306 	init_waitqueue_head(&fs_info->balance_wait_q);
2307 }
2308 
2309 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2310 {
2311 	struct inode *inode = fs_info->btree_inode;
2312 
2313 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2314 	set_nlink(inode, 1);
2315 	/*
2316 	 * we set the i_size on the btree inode to the max possible int.
2317 	 * the real end of the address space is determined by all of
2318 	 * the devices in the system
2319 	 */
2320 	inode->i_size = OFFSET_MAX;
2321 	inode->i_mapping->a_ops = &btree_aops;
2322 
2323 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2324 	extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping);
2325 	BTRFS_I(inode)->io_tree.track_uptodate = 0;
2326 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2327 
2328 	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2329 
2330 	BTRFS_I(inode)->root = fs_info->tree_root;
2331 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2332 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2333 	btrfs_insert_inode_hash(inode);
2334 }
2335 
2336 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2337 {
2338 	fs_info->dev_replace.lock_owner = 0;
2339 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2340 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2341 	rwlock_init(&fs_info->dev_replace.lock);
2342 	atomic_set(&fs_info->dev_replace.read_locks, 0);
2343 	atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2344 	init_waitqueue_head(&fs_info->replace_wait);
2345 	init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2346 }
2347 
2348 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2349 {
2350 	spin_lock_init(&fs_info->qgroup_lock);
2351 	mutex_init(&fs_info->qgroup_ioctl_lock);
2352 	fs_info->qgroup_tree = RB_ROOT;
2353 	fs_info->qgroup_op_tree = RB_ROOT;
2354 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2355 	fs_info->qgroup_seq = 1;
2356 	fs_info->qgroup_ulist = NULL;
2357 	fs_info->qgroup_rescan_running = false;
2358 	mutex_init(&fs_info->qgroup_rescan_lock);
2359 }
2360 
2361 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2362 		struct btrfs_fs_devices *fs_devices)
2363 {
2364 	int max_active = fs_info->thread_pool_size;
2365 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2366 
2367 	fs_info->workers =
2368 		btrfs_alloc_workqueue(fs_info, "worker",
2369 				      flags | WQ_HIGHPRI, max_active, 16);
2370 
2371 	fs_info->delalloc_workers =
2372 		btrfs_alloc_workqueue(fs_info, "delalloc",
2373 				      flags, max_active, 2);
2374 
2375 	fs_info->flush_workers =
2376 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2377 				      flags, max_active, 0);
2378 
2379 	fs_info->caching_workers =
2380 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2381 
2382 	/*
2383 	 * a higher idle thresh on the submit workers makes it much more
2384 	 * likely that bios will be send down in a sane order to the
2385 	 * devices
2386 	 */
2387 	fs_info->submit_workers =
2388 		btrfs_alloc_workqueue(fs_info, "submit", flags,
2389 				      min_t(u64, fs_devices->num_devices,
2390 					    max_active), 64);
2391 
2392 	fs_info->fixup_workers =
2393 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2394 
2395 	/*
2396 	 * endios are largely parallel and should have a very
2397 	 * low idle thresh
2398 	 */
2399 	fs_info->endio_workers =
2400 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2401 	fs_info->endio_meta_workers =
2402 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2403 				      max_active, 4);
2404 	fs_info->endio_meta_write_workers =
2405 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2406 				      max_active, 2);
2407 	fs_info->endio_raid56_workers =
2408 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2409 				      max_active, 4);
2410 	fs_info->endio_repair_workers =
2411 		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2412 	fs_info->rmw_workers =
2413 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2414 	fs_info->endio_write_workers =
2415 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2416 				      max_active, 2);
2417 	fs_info->endio_freespace_worker =
2418 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2419 				      max_active, 0);
2420 	fs_info->delayed_workers =
2421 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2422 				      max_active, 0);
2423 	fs_info->readahead_workers =
2424 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2425 				      max_active, 2);
2426 	fs_info->qgroup_rescan_workers =
2427 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2428 	fs_info->extent_workers =
2429 		btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2430 				      min_t(u64, fs_devices->num_devices,
2431 					    max_active), 8);
2432 
2433 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2434 	      fs_info->submit_workers && fs_info->flush_workers &&
2435 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2436 	      fs_info->endio_meta_write_workers &&
2437 	      fs_info->endio_repair_workers &&
2438 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2439 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2440 	      fs_info->caching_workers && fs_info->readahead_workers &&
2441 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2442 	      fs_info->extent_workers &&
2443 	      fs_info->qgroup_rescan_workers)) {
2444 		return -ENOMEM;
2445 	}
2446 
2447 	return 0;
2448 }
2449 
2450 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2451 			    struct btrfs_fs_devices *fs_devices)
2452 {
2453 	int ret;
2454 	struct btrfs_root *log_tree_root;
2455 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2456 	u64 bytenr = btrfs_super_log_root(disk_super);
2457 
2458 	if (fs_devices->rw_devices == 0) {
2459 		btrfs_warn(fs_info, "log replay required on RO media");
2460 		return -EIO;
2461 	}
2462 
2463 	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2464 	if (!log_tree_root)
2465 		return -ENOMEM;
2466 
2467 	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2468 
2469 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2470 					      fs_info->generation + 1);
2471 	if (IS_ERR(log_tree_root->node)) {
2472 		btrfs_warn(fs_info, "failed to read log tree");
2473 		ret = PTR_ERR(log_tree_root->node);
2474 		kfree(log_tree_root);
2475 		return ret;
2476 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2477 		btrfs_err(fs_info, "failed to read log tree");
2478 		free_extent_buffer(log_tree_root->node);
2479 		kfree(log_tree_root);
2480 		return -EIO;
2481 	}
2482 	/* returns with log_tree_root freed on success */
2483 	ret = btrfs_recover_log_trees(log_tree_root);
2484 	if (ret) {
2485 		btrfs_handle_fs_error(fs_info, ret,
2486 				      "Failed to recover log tree");
2487 		free_extent_buffer(log_tree_root->node);
2488 		kfree(log_tree_root);
2489 		return ret;
2490 	}
2491 
2492 	if (fs_info->sb->s_flags & MS_RDONLY) {
2493 		ret = btrfs_commit_super(fs_info);
2494 		if (ret)
2495 			return ret;
2496 	}
2497 
2498 	return 0;
2499 }
2500 
2501 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2502 {
2503 	struct btrfs_root *tree_root = fs_info->tree_root;
2504 	struct btrfs_root *root;
2505 	struct btrfs_key location;
2506 	int ret;
2507 
2508 	BUG_ON(!fs_info->tree_root);
2509 
2510 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2511 	location.type = BTRFS_ROOT_ITEM_KEY;
2512 	location.offset = 0;
2513 
2514 	root = btrfs_read_tree_root(tree_root, &location);
2515 	if (IS_ERR(root))
2516 		return PTR_ERR(root);
2517 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2518 	fs_info->extent_root = root;
2519 
2520 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2521 	root = btrfs_read_tree_root(tree_root, &location);
2522 	if (IS_ERR(root))
2523 		return PTR_ERR(root);
2524 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2525 	fs_info->dev_root = root;
2526 	btrfs_init_devices_late(fs_info);
2527 
2528 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2529 	root = btrfs_read_tree_root(tree_root, &location);
2530 	if (IS_ERR(root))
2531 		return PTR_ERR(root);
2532 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2533 	fs_info->csum_root = root;
2534 
2535 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2536 	root = btrfs_read_tree_root(tree_root, &location);
2537 	if (!IS_ERR(root)) {
2538 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2539 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2540 		fs_info->quota_root = root;
2541 	}
2542 
2543 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2544 	root = btrfs_read_tree_root(tree_root, &location);
2545 	if (IS_ERR(root)) {
2546 		ret = PTR_ERR(root);
2547 		if (ret != -ENOENT)
2548 			return ret;
2549 	} else {
2550 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2551 		fs_info->uuid_root = root;
2552 	}
2553 
2554 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2555 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2556 		root = btrfs_read_tree_root(tree_root, &location);
2557 		if (IS_ERR(root))
2558 			return PTR_ERR(root);
2559 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2560 		fs_info->free_space_root = root;
2561 	}
2562 
2563 	return 0;
2564 }
2565 
2566 int open_ctree(struct super_block *sb,
2567 	       struct btrfs_fs_devices *fs_devices,
2568 	       char *options)
2569 {
2570 	u32 sectorsize;
2571 	u32 nodesize;
2572 	u32 stripesize;
2573 	u64 generation;
2574 	u64 features;
2575 	struct btrfs_key location;
2576 	struct buffer_head *bh;
2577 	struct btrfs_super_block *disk_super;
2578 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2579 	struct btrfs_root *tree_root;
2580 	struct btrfs_root *chunk_root;
2581 	int ret;
2582 	int err = -EINVAL;
2583 	int num_backups_tried = 0;
2584 	int backup_index = 0;
2585 	int max_active;
2586 	int clear_free_space_tree = 0;
2587 
2588 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2589 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2590 	if (!tree_root || !chunk_root) {
2591 		err = -ENOMEM;
2592 		goto fail;
2593 	}
2594 
2595 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2596 	if (ret) {
2597 		err = ret;
2598 		goto fail;
2599 	}
2600 
2601 	ret = setup_bdi(fs_info, &fs_info->bdi);
2602 	if (ret) {
2603 		err = ret;
2604 		goto fail_srcu;
2605 	}
2606 
2607 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2608 	if (ret) {
2609 		err = ret;
2610 		goto fail_bdi;
2611 	}
2612 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2613 					(1 + ilog2(nr_cpu_ids));
2614 
2615 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2616 	if (ret) {
2617 		err = ret;
2618 		goto fail_dirty_metadata_bytes;
2619 	}
2620 
2621 	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2622 	if (ret) {
2623 		err = ret;
2624 		goto fail_delalloc_bytes;
2625 	}
2626 
2627 	fs_info->btree_inode = new_inode(sb);
2628 	if (!fs_info->btree_inode) {
2629 		err = -ENOMEM;
2630 		goto fail_bio_counter;
2631 	}
2632 
2633 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2634 
2635 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2636 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2637 	INIT_LIST_HEAD(&fs_info->trans_list);
2638 	INIT_LIST_HEAD(&fs_info->dead_roots);
2639 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2640 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2641 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2642 	spin_lock_init(&fs_info->delalloc_root_lock);
2643 	spin_lock_init(&fs_info->trans_lock);
2644 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2645 	spin_lock_init(&fs_info->delayed_iput_lock);
2646 	spin_lock_init(&fs_info->defrag_inodes_lock);
2647 	spin_lock_init(&fs_info->free_chunk_lock);
2648 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2649 	spin_lock_init(&fs_info->super_lock);
2650 	spin_lock_init(&fs_info->qgroup_op_lock);
2651 	spin_lock_init(&fs_info->buffer_lock);
2652 	spin_lock_init(&fs_info->unused_bgs_lock);
2653 	rwlock_init(&fs_info->tree_mod_log_lock);
2654 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2655 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2656 	mutex_init(&fs_info->reloc_mutex);
2657 	mutex_init(&fs_info->delalloc_root_mutex);
2658 	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2659 	seqlock_init(&fs_info->profiles_lock);
2660 
2661 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2662 	INIT_LIST_HEAD(&fs_info->space_info);
2663 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2664 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2665 	btrfs_mapping_init(&fs_info->mapping_tree);
2666 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2667 			     BTRFS_BLOCK_RSV_GLOBAL);
2668 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2669 			     BTRFS_BLOCK_RSV_DELALLOC);
2670 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2671 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2672 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2673 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2674 			     BTRFS_BLOCK_RSV_DELOPS);
2675 	atomic_set(&fs_info->nr_async_submits, 0);
2676 	atomic_set(&fs_info->async_delalloc_pages, 0);
2677 	atomic_set(&fs_info->async_submit_draining, 0);
2678 	atomic_set(&fs_info->nr_async_bios, 0);
2679 	atomic_set(&fs_info->defrag_running, 0);
2680 	atomic_set(&fs_info->qgroup_op_seq, 0);
2681 	atomic_set(&fs_info->reada_works_cnt, 0);
2682 	atomic64_set(&fs_info->tree_mod_seq, 0);
2683 	fs_info->fs_frozen = 0;
2684 	fs_info->sb = sb;
2685 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2686 	fs_info->metadata_ratio = 0;
2687 	fs_info->defrag_inodes = RB_ROOT;
2688 	fs_info->free_chunk_space = 0;
2689 	fs_info->tree_mod_log = RB_ROOT;
2690 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2691 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2692 	/* readahead state */
2693 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2694 	spin_lock_init(&fs_info->reada_lock);
2695 
2696 	fs_info->thread_pool_size = min_t(unsigned long,
2697 					  num_online_cpus() + 2, 8);
2698 
2699 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2700 	spin_lock_init(&fs_info->ordered_root_lock);
2701 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2702 					GFP_KERNEL);
2703 	if (!fs_info->delayed_root) {
2704 		err = -ENOMEM;
2705 		goto fail_iput;
2706 	}
2707 	btrfs_init_delayed_root(fs_info->delayed_root);
2708 
2709 	btrfs_init_scrub(fs_info);
2710 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2711 	fs_info->check_integrity_print_mask = 0;
2712 #endif
2713 	btrfs_init_balance(fs_info);
2714 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2715 
2716 	sb->s_blocksize = 4096;
2717 	sb->s_blocksize_bits = blksize_bits(4096);
2718 	sb->s_bdi = &fs_info->bdi;
2719 
2720 	btrfs_init_btree_inode(fs_info);
2721 
2722 	spin_lock_init(&fs_info->block_group_cache_lock);
2723 	fs_info->block_group_cache_tree = RB_ROOT;
2724 	fs_info->first_logical_byte = (u64)-1;
2725 
2726 	extent_io_tree_init(&fs_info->freed_extents[0],
2727 			     fs_info->btree_inode->i_mapping);
2728 	extent_io_tree_init(&fs_info->freed_extents[1],
2729 			     fs_info->btree_inode->i_mapping);
2730 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2731 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2732 
2733 	mutex_init(&fs_info->ordered_operations_mutex);
2734 	mutex_init(&fs_info->tree_log_mutex);
2735 	mutex_init(&fs_info->chunk_mutex);
2736 	mutex_init(&fs_info->transaction_kthread_mutex);
2737 	mutex_init(&fs_info->cleaner_mutex);
2738 	mutex_init(&fs_info->volume_mutex);
2739 	mutex_init(&fs_info->ro_block_group_mutex);
2740 	init_rwsem(&fs_info->commit_root_sem);
2741 	init_rwsem(&fs_info->cleanup_work_sem);
2742 	init_rwsem(&fs_info->subvol_sem);
2743 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2744 
2745 	btrfs_init_dev_replace_locks(fs_info);
2746 	btrfs_init_qgroup(fs_info);
2747 
2748 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2749 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2750 
2751 	init_waitqueue_head(&fs_info->transaction_throttle);
2752 	init_waitqueue_head(&fs_info->transaction_wait);
2753 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2754 	init_waitqueue_head(&fs_info->async_submit_wait);
2755 
2756 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2757 
2758 	/* Usable values until the real ones are cached from the superblock */
2759 	fs_info->nodesize = 4096;
2760 	fs_info->sectorsize = 4096;
2761 	fs_info->stripesize = 4096;
2762 
2763 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2764 	if (ret) {
2765 		err = ret;
2766 		goto fail_alloc;
2767 	}
2768 
2769 	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2770 
2771 	invalidate_bdev(fs_devices->latest_bdev);
2772 
2773 	/*
2774 	 * Read super block and check the signature bytes only
2775 	 */
2776 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2777 	if (IS_ERR(bh)) {
2778 		err = PTR_ERR(bh);
2779 		goto fail_alloc;
2780 	}
2781 
2782 	/*
2783 	 * We want to check superblock checksum, the type is stored inside.
2784 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2785 	 */
2786 	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2787 		btrfs_err(fs_info, "superblock checksum mismatch");
2788 		err = -EINVAL;
2789 		brelse(bh);
2790 		goto fail_alloc;
2791 	}
2792 
2793 	/*
2794 	 * super_copy is zeroed at allocation time and we never touch the
2795 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2796 	 * the whole block of INFO_SIZE
2797 	 */
2798 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2799 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2800 	       sizeof(*fs_info->super_for_commit));
2801 	brelse(bh);
2802 
2803 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2804 
2805 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2806 	if (ret) {
2807 		btrfs_err(fs_info, "superblock contains fatal errors");
2808 		err = -EINVAL;
2809 		goto fail_alloc;
2810 	}
2811 
2812 	disk_super = fs_info->super_copy;
2813 	if (!btrfs_super_root(disk_super))
2814 		goto fail_alloc;
2815 
2816 	/* check FS state, whether FS is broken. */
2817 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2818 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2819 
2820 	/*
2821 	 * run through our array of backup supers and setup
2822 	 * our ring pointer to the oldest one
2823 	 */
2824 	generation = btrfs_super_generation(disk_super);
2825 	find_oldest_super_backup(fs_info, generation);
2826 
2827 	/*
2828 	 * In the long term, we'll store the compression type in the super
2829 	 * block, and it'll be used for per file compression control.
2830 	 */
2831 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2832 
2833 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2834 	if (ret) {
2835 		err = ret;
2836 		goto fail_alloc;
2837 	}
2838 
2839 	features = btrfs_super_incompat_flags(disk_super) &
2840 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2841 	if (features) {
2842 		btrfs_err(fs_info,
2843 		    "cannot mount because of unsupported optional features (%llx)",
2844 		    features);
2845 		err = -EINVAL;
2846 		goto fail_alloc;
2847 	}
2848 
2849 	features = btrfs_super_incompat_flags(disk_super);
2850 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2851 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2852 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2853 
2854 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2855 		btrfs_info(fs_info, "has skinny extents");
2856 
2857 	/*
2858 	 * flag our filesystem as having big metadata blocks if
2859 	 * they are bigger than the page size
2860 	 */
2861 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2862 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2863 			btrfs_info(fs_info,
2864 				"flagging fs with big metadata feature");
2865 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2866 	}
2867 
2868 	nodesize = btrfs_super_nodesize(disk_super);
2869 	sectorsize = btrfs_super_sectorsize(disk_super);
2870 	stripesize = sectorsize;
2871 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2872 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2873 
2874 	/* Cache block sizes */
2875 	fs_info->nodesize = nodesize;
2876 	fs_info->sectorsize = sectorsize;
2877 	fs_info->stripesize = stripesize;
2878 
2879 	/*
2880 	 * mixed block groups end up with duplicate but slightly offset
2881 	 * extent buffers for the same range.  It leads to corruptions
2882 	 */
2883 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2884 	    (sectorsize != nodesize)) {
2885 		btrfs_err(fs_info,
2886 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2887 			nodesize, sectorsize);
2888 		goto fail_alloc;
2889 	}
2890 
2891 	/*
2892 	 * Needn't use the lock because there is no other task which will
2893 	 * update the flag.
2894 	 */
2895 	btrfs_set_super_incompat_flags(disk_super, features);
2896 
2897 	features = btrfs_super_compat_ro_flags(disk_super) &
2898 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2899 	if (!(sb->s_flags & MS_RDONLY) && features) {
2900 		btrfs_err(fs_info,
2901 	"cannot mount read-write because of unsupported optional features (%llx)",
2902 		       features);
2903 		err = -EINVAL;
2904 		goto fail_alloc;
2905 	}
2906 
2907 	max_active = fs_info->thread_pool_size;
2908 
2909 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2910 	if (ret) {
2911 		err = ret;
2912 		goto fail_sb_buffer;
2913 	}
2914 
2915 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2916 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2917 				    SZ_4M / PAGE_SIZE);
2918 
2919 	sb->s_blocksize = sectorsize;
2920 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2921 
2922 	mutex_lock(&fs_info->chunk_mutex);
2923 	ret = btrfs_read_sys_array(fs_info);
2924 	mutex_unlock(&fs_info->chunk_mutex);
2925 	if (ret) {
2926 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2927 		goto fail_sb_buffer;
2928 	}
2929 
2930 	generation = btrfs_super_chunk_root_generation(disk_super);
2931 
2932 	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2933 
2934 	chunk_root->node = read_tree_block(fs_info,
2935 					   btrfs_super_chunk_root(disk_super),
2936 					   generation);
2937 	if (IS_ERR(chunk_root->node) ||
2938 	    !extent_buffer_uptodate(chunk_root->node)) {
2939 		btrfs_err(fs_info, "failed to read chunk root");
2940 		if (!IS_ERR(chunk_root->node))
2941 			free_extent_buffer(chunk_root->node);
2942 		chunk_root->node = NULL;
2943 		goto fail_tree_roots;
2944 	}
2945 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2946 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2947 
2948 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2949 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2950 
2951 	ret = btrfs_read_chunk_tree(fs_info);
2952 	if (ret) {
2953 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2954 		goto fail_tree_roots;
2955 	}
2956 
2957 	/*
2958 	 * keep the device that is marked to be the target device for the
2959 	 * dev_replace procedure
2960 	 */
2961 	btrfs_close_extra_devices(fs_devices, 0);
2962 
2963 	if (!fs_devices->latest_bdev) {
2964 		btrfs_err(fs_info, "failed to read devices");
2965 		goto fail_tree_roots;
2966 	}
2967 
2968 retry_root_backup:
2969 	generation = btrfs_super_generation(disk_super);
2970 
2971 	tree_root->node = read_tree_block(fs_info,
2972 					  btrfs_super_root(disk_super),
2973 					  generation);
2974 	if (IS_ERR(tree_root->node) ||
2975 	    !extent_buffer_uptodate(tree_root->node)) {
2976 		btrfs_warn(fs_info, "failed to read tree root");
2977 		if (!IS_ERR(tree_root->node))
2978 			free_extent_buffer(tree_root->node);
2979 		tree_root->node = NULL;
2980 		goto recovery_tree_root;
2981 	}
2982 
2983 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2984 	tree_root->commit_root = btrfs_root_node(tree_root);
2985 	btrfs_set_root_refs(&tree_root->root_item, 1);
2986 
2987 	mutex_lock(&tree_root->objectid_mutex);
2988 	ret = btrfs_find_highest_objectid(tree_root,
2989 					&tree_root->highest_objectid);
2990 	if (ret) {
2991 		mutex_unlock(&tree_root->objectid_mutex);
2992 		goto recovery_tree_root;
2993 	}
2994 
2995 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2996 
2997 	mutex_unlock(&tree_root->objectid_mutex);
2998 
2999 	ret = btrfs_read_roots(fs_info);
3000 	if (ret)
3001 		goto recovery_tree_root;
3002 
3003 	fs_info->generation = generation;
3004 	fs_info->last_trans_committed = generation;
3005 
3006 	ret = btrfs_recover_balance(fs_info);
3007 	if (ret) {
3008 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3009 		goto fail_block_groups;
3010 	}
3011 
3012 	ret = btrfs_init_dev_stats(fs_info);
3013 	if (ret) {
3014 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3015 		goto fail_block_groups;
3016 	}
3017 
3018 	ret = btrfs_init_dev_replace(fs_info);
3019 	if (ret) {
3020 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3021 		goto fail_block_groups;
3022 	}
3023 
3024 	btrfs_close_extra_devices(fs_devices, 1);
3025 
3026 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3027 	if (ret) {
3028 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3029 				ret);
3030 		goto fail_block_groups;
3031 	}
3032 
3033 	ret = btrfs_sysfs_add_device(fs_devices);
3034 	if (ret) {
3035 		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3036 				ret);
3037 		goto fail_fsdev_sysfs;
3038 	}
3039 
3040 	ret = btrfs_sysfs_add_mounted(fs_info);
3041 	if (ret) {
3042 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3043 		goto fail_fsdev_sysfs;
3044 	}
3045 
3046 	ret = btrfs_init_space_info(fs_info);
3047 	if (ret) {
3048 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3049 		goto fail_sysfs;
3050 	}
3051 
3052 	ret = btrfs_read_block_groups(fs_info);
3053 	if (ret) {
3054 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3055 		goto fail_sysfs;
3056 	}
3057 	fs_info->num_tolerated_disk_barrier_failures =
3058 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3059 	if (fs_info->fs_devices->missing_devices >
3060 	     fs_info->num_tolerated_disk_barrier_failures &&
3061 	    !(sb->s_flags & MS_RDONLY)) {
3062 		btrfs_warn(fs_info,
3063 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3064 			fs_info->fs_devices->missing_devices,
3065 			fs_info->num_tolerated_disk_barrier_failures);
3066 		goto fail_sysfs;
3067 	}
3068 
3069 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3070 					       "btrfs-cleaner");
3071 	if (IS_ERR(fs_info->cleaner_kthread))
3072 		goto fail_sysfs;
3073 
3074 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3075 						   tree_root,
3076 						   "btrfs-transaction");
3077 	if (IS_ERR(fs_info->transaction_kthread))
3078 		goto fail_cleaner;
3079 
3080 	if (!btrfs_test_opt(fs_info, SSD) &&
3081 	    !btrfs_test_opt(fs_info, NOSSD) &&
3082 	    !fs_info->fs_devices->rotating) {
3083 		btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3084 		btrfs_set_opt(fs_info->mount_opt, SSD);
3085 	}
3086 
3087 	/*
3088 	 * Mount does not set all options immediately, we can do it now and do
3089 	 * not have to wait for transaction commit
3090 	 */
3091 	btrfs_apply_pending_changes(fs_info);
3092 
3093 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3094 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3095 		ret = btrfsic_mount(fs_info, fs_devices,
3096 				    btrfs_test_opt(fs_info,
3097 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3098 				    1 : 0,
3099 				    fs_info->check_integrity_print_mask);
3100 		if (ret)
3101 			btrfs_warn(fs_info,
3102 				"failed to initialize integrity check module: %d",
3103 				ret);
3104 	}
3105 #endif
3106 	ret = btrfs_read_qgroup_config(fs_info);
3107 	if (ret)
3108 		goto fail_trans_kthread;
3109 
3110 	/* do not make disk changes in broken FS or nologreplay is given */
3111 	if (btrfs_super_log_root(disk_super) != 0 &&
3112 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3113 		ret = btrfs_replay_log(fs_info, fs_devices);
3114 		if (ret) {
3115 			err = ret;
3116 			goto fail_qgroup;
3117 		}
3118 	}
3119 
3120 	ret = btrfs_find_orphan_roots(fs_info);
3121 	if (ret)
3122 		goto fail_qgroup;
3123 
3124 	if (!(sb->s_flags & MS_RDONLY)) {
3125 		ret = btrfs_cleanup_fs_roots(fs_info);
3126 		if (ret)
3127 			goto fail_qgroup;
3128 
3129 		mutex_lock(&fs_info->cleaner_mutex);
3130 		ret = btrfs_recover_relocation(tree_root);
3131 		mutex_unlock(&fs_info->cleaner_mutex);
3132 		if (ret < 0) {
3133 			btrfs_warn(fs_info, "failed to recover relocation: %d",
3134 					ret);
3135 			err = -EINVAL;
3136 			goto fail_qgroup;
3137 		}
3138 	}
3139 
3140 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3141 	location.type = BTRFS_ROOT_ITEM_KEY;
3142 	location.offset = 0;
3143 
3144 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3145 	if (IS_ERR(fs_info->fs_root)) {
3146 		err = PTR_ERR(fs_info->fs_root);
3147 		goto fail_qgroup;
3148 	}
3149 
3150 	if (sb->s_flags & MS_RDONLY)
3151 		return 0;
3152 
3153 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3154 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3155 		clear_free_space_tree = 1;
3156 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3157 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3158 		btrfs_warn(fs_info, "free space tree is invalid");
3159 		clear_free_space_tree = 1;
3160 	}
3161 
3162 	if (clear_free_space_tree) {
3163 		btrfs_info(fs_info, "clearing free space tree");
3164 		ret = btrfs_clear_free_space_tree(fs_info);
3165 		if (ret) {
3166 			btrfs_warn(fs_info,
3167 				   "failed to clear free space tree: %d", ret);
3168 			close_ctree(fs_info);
3169 			return ret;
3170 		}
3171 	}
3172 
3173 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3174 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3175 		btrfs_info(fs_info, "creating free space tree");
3176 		ret = btrfs_create_free_space_tree(fs_info);
3177 		if (ret) {
3178 			btrfs_warn(fs_info,
3179 				"failed to create free space tree: %d", ret);
3180 			close_ctree(fs_info);
3181 			return ret;
3182 		}
3183 	}
3184 
3185 	down_read(&fs_info->cleanup_work_sem);
3186 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3187 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3188 		up_read(&fs_info->cleanup_work_sem);
3189 		close_ctree(fs_info);
3190 		return ret;
3191 	}
3192 	up_read(&fs_info->cleanup_work_sem);
3193 
3194 	ret = btrfs_resume_balance_async(fs_info);
3195 	if (ret) {
3196 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3197 		close_ctree(fs_info);
3198 		return ret;
3199 	}
3200 
3201 	ret = btrfs_resume_dev_replace_async(fs_info);
3202 	if (ret) {
3203 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3204 		close_ctree(fs_info);
3205 		return ret;
3206 	}
3207 
3208 	btrfs_qgroup_rescan_resume(fs_info);
3209 
3210 	if (!fs_info->uuid_root) {
3211 		btrfs_info(fs_info, "creating UUID tree");
3212 		ret = btrfs_create_uuid_tree(fs_info);
3213 		if (ret) {
3214 			btrfs_warn(fs_info,
3215 				"failed to create the UUID tree: %d", ret);
3216 			close_ctree(fs_info);
3217 			return ret;
3218 		}
3219 	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3220 		   fs_info->generation !=
3221 				btrfs_super_uuid_tree_generation(disk_super)) {
3222 		btrfs_info(fs_info, "checking UUID tree");
3223 		ret = btrfs_check_uuid_tree(fs_info);
3224 		if (ret) {
3225 			btrfs_warn(fs_info,
3226 				"failed to check the UUID tree: %d", ret);
3227 			close_ctree(fs_info);
3228 			return ret;
3229 		}
3230 	} else {
3231 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3232 	}
3233 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3234 
3235 	/*
3236 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3237 	 * no need to keep the flag
3238 	 */
3239 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3240 
3241 	return 0;
3242 
3243 fail_qgroup:
3244 	btrfs_free_qgroup_config(fs_info);
3245 fail_trans_kthread:
3246 	kthread_stop(fs_info->transaction_kthread);
3247 	btrfs_cleanup_transaction(fs_info);
3248 	btrfs_free_fs_roots(fs_info);
3249 fail_cleaner:
3250 	kthread_stop(fs_info->cleaner_kthread);
3251 
3252 	/*
3253 	 * make sure we're done with the btree inode before we stop our
3254 	 * kthreads
3255 	 */
3256 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3257 
3258 fail_sysfs:
3259 	btrfs_sysfs_remove_mounted(fs_info);
3260 
3261 fail_fsdev_sysfs:
3262 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3263 
3264 fail_block_groups:
3265 	btrfs_put_block_group_cache(fs_info);
3266 	btrfs_free_block_groups(fs_info);
3267 
3268 fail_tree_roots:
3269 	free_root_pointers(fs_info, 1);
3270 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3271 
3272 fail_sb_buffer:
3273 	btrfs_stop_all_workers(fs_info);
3274 fail_alloc:
3275 fail_iput:
3276 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3277 
3278 	iput(fs_info->btree_inode);
3279 fail_bio_counter:
3280 	percpu_counter_destroy(&fs_info->bio_counter);
3281 fail_delalloc_bytes:
3282 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3283 fail_dirty_metadata_bytes:
3284 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3285 fail_bdi:
3286 	bdi_destroy(&fs_info->bdi);
3287 fail_srcu:
3288 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3289 fail:
3290 	btrfs_free_stripe_hash_table(fs_info);
3291 	btrfs_close_devices(fs_info->fs_devices);
3292 	return err;
3293 
3294 recovery_tree_root:
3295 	if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3296 		goto fail_tree_roots;
3297 
3298 	free_root_pointers(fs_info, 0);
3299 
3300 	/* don't use the log in recovery mode, it won't be valid */
3301 	btrfs_set_super_log_root(disk_super, 0);
3302 
3303 	/* we can't trust the free space cache either */
3304 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3305 
3306 	ret = next_root_backup(fs_info, fs_info->super_copy,
3307 			       &num_backups_tried, &backup_index);
3308 	if (ret == -1)
3309 		goto fail_block_groups;
3310 	goto retry_root_backup;
3311 }
3312 
3313 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3314 {
3315 	if (uptodate) {
3316 		set_buffer_uptodate(bh);
3317 	} else {
3318 		struct btrfs_device *device = (struct btrfs_device *)
3319 			bh->b_private;
3320 
3321 		btrfs_warn_rl_in_rcu(device->fs_info,
3322 				"lost page write due to IO error on %s",
3323 					  rcu_str_deref(device->name));
3324 		/* note, we don't set_buffer_write_io_error because we have
3325 		 * our own ways of dealing with the IO errors
3326 		 */
3327 		clear_buffer_uptodate(bh);
3328 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3329 	}
3330 	unlock_buffer(bh);
3331 	put_bh(bh);
3332 }
3333 
3334 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3335 			struct buffer_head **bh_ret)
3336 {
3337 	struct buffer_head *bh;
3338 	struct btrfs_super_block *super;
3339 	u64 bytenr;
3340 
3341 	bytenr = btrfs_sb_offset(copy_num);
3342 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3343 		return -EINVAL;
3344 
3345 	bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3346 	/*
3347 	 * If we fail to read from the underlying devices, as of now
3348 	 * the best option we have is to mark it EIO.
3349 	 */
3350 	if (!bh)
3351 		return -EIO;
3352 
3353 	super = (struct btrfs_super_block *)bh->b_data;
3354 	if (btrfs_super_bytenr(super) != bytenr ||
3355 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3356 		brelse(bh);
3357 		return -EINVAL;
3358 	}
3359 
3360 	*bh_ret = bh;
3361 	return 0;
3362 }
3363 
3364 
3365 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3366 {
3367 	struct buffer_head *bh;
3368 	struct buffer_head *latest = NULL;
3369 	struct btrfs_super_block *super;
3370 	int i;
3371 	u64 transid = 0;
3372 	int ret = -EINVAL;
3373 
3374 	/* we would like to check all the supers, but that would make
3375 	 * a btrfs mount succeed after a mkfs from a different FS.
3376 	 * So, we need to add a special mount option to scan for
3377 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3378 	 */
3379 	for (i = 0; i < 1; i++) {
3380 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3381 		if (ret)
3382 			continue;
3383 
3384 		super = (struct btrfs_super_block *)bh->b_data;
3385 
3386 		if (!latest || btrfs_super_generation(super) > transid) {
3387 			brelse(latest);
3388 			latest = bh;
3389 			transid = btrfs_super_generation(super);
3390 		} else {
3391 			brelse(bh);
3392 		}
3393 	}
3394 
3395 	if (!latest)
3396 		return ERR_PTR(ret);
3397 
3398 	return latest;
3399 }
3400 
3401 /*
3402  * this should be called twice, once with wait == 0 and
3403  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3404  * we write are pinned.
3405  *
3406  * They are released when wait == 1 is done.
3407  * max_mirrors must be the same for both runs, and it indicates how
3408  * many supers on this one device should be written.
3409  *
3410  * max_mirrors == 0 means to write them all.
3411  */
3412 static int write_dev_supers(struct btrfs_device *device,
3413 			    struct btrfs_super_block *sb,
3414 			    int do_barriers, int wait, int max_mirrors)
3415 {
3416 	struct buffer_head *bh;
3417 	int i;
3418 	int ret;
3419 	int errors = 0;
3420 	u32 crc;
3421 	u64 bytenr;
3422 
3423 	if (max_mirrors == 0)
3424 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3425 
3426 	for (i = 0; i < max_mirrors; i++) {
3427 		bytenr = btrfs_sb_offset(i);
3428 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3429 		    device->commit_total_bytes)
3430 			break;
3431 
3432 		if (wait) {
3433 			bh = __find_get_block(device->bdev, bytenr / 4096,
3434 					      BTRFS_SUPER_INFO_SIZE);
3435 			if (!bh) {
3436 				errors++;
3437 				continue;
3438 			}
3439 			wait_on_buffer(bh);
3440 			if (!buffer_uptodate(bh))
3441 				errors++;
3442 
3443 			/* drop our reference */
3444 			brelse(bh);
3445 
3446 			/* drop the reference from the wait == 0 run */
3447 			brelse(bh);
3448 			continue;
3449 		} else {
3450 			btrfs_set_super_bytenr(sb, bytenr);
3451 
3452 			crc = ~(u32)0;
3453 			crc = btrfs_csum_data((char *)sb +
3454 					      BTRFS_CSUM_SIZE, crc,
3455 					      BTRFS_SUPER_INFO_SIZE -
3456 					      BTRFS_CSUM_SIZE);
3457 			btrfs_csum_final(crc, sb->csum);
3458 
3459 			/*
3460 			 * one reference for us, and we leave it for the
3461 			 * caller
3462 			 */
3463 			bh = __getblk(device->bdev, bytenr / 4096,
3464 				      BTRFS_SUPER_INFO_SIZE);
3465 			if (!bh) {
3466 				btrfs_err(device->fs_info,
3467 				    "couldn't get super buffer head for bytenr %llu",
3468 				    bytenr);
3469 				errors++;
3470 				continue;
3471 			}
3472 
3473 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3474 
3475 			/* one reference for submit_bh */
3476 			get_bh(bh);
3477 
3478 			set_buffer_uptodate(bh);
3479 			lock_buffer(bh);
3480 			bh->b_end_io = btrfs_end_buffer_write_sync;
3481 			bh->b_private = device;
3482 		}
3483 
3484 		/*
3485 		 * we fua the first super.  The others we allow
3486 		 * to go down lazy.
3487 		 */
3488 		if (i == 0)
3489 			ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_FUA, bh);
3490 		else
3491 			ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_SYNC, bh);
3492 		if (ret)
3493 			errors++;
3494 	}
3495 	return errors < i ? 0 : -1;
3496 }
3497 
3498 /*
3499  * endio for the write_dev_flush, this will wake anyone waiting
3500  * for the barrier when it is done
3501  */
3502 static void btrfs_end_empty_barrier(struct bio *bio)
3503 {
3504 	if (bio->bi_private)
3505 		complete(bio->bi_private);
3506 	bio_put(bio);
3507 }
3508 
3509 /*
3510  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3511  * sent down.  With wait == 1, it waits for the previous flush.
3512  *
3513  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3514  * capable
3515  */
3516 static int write_dev_flush(struct btrfs_device *device, int wait)
3517 {
3518 	struct bio *bio;
3519 	int ret = 0;
3520 
3521 	if (device->nobarriers)
3522 		return 0;
3523 
3524 	if (wait) {
3525 		bio = device->flush_bio;
3526 		if (!bio)
3527 			return 0;
3528 
3529 		wait_for_completion(&device->flush_wait);
3530 
3531 		if (bio->bi_error) {
3532 			ret = bio->bi_error;
3533 			btrfs_dev_stat_inc_and_print(device,
3534 				BTRFS_DEV_STAT_FLUSH_ERRS);
3535 		}
3536 
3537 		/* drop the reference from the wait == 0 run */
3538 		bio_put(bio);
3539 		device->flush_bio = NULL;
3540 
3541 		return ret;
3542 	}
3543 
3544 	/*
3545 	 * one reference for us, and we leave it for the
3546 	 * caller
3547 	 */
3548 	device->flush_bio = NULL;
3549 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3550 	if (!bio)
3551 		return -ENOMEM;
3552 
3553 	bio->bi_end_io = btrfs_end_empty_barrier;
3554 	bio->bi_bdev = device->bdev;
3555 	bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
3556 	init_completion(&device->flush_wait);
3557 	bio->bi_private = &device->flush_wait;
3558 	device->flush_bio = bio;
3559 
3560 	bio_get(bio);
3561 	btrfsic_submit_bio(bio);
3562 
3563 	return 0;
3564 }
3565 
3566 /*
3567  * send an empty flush down to each device in parallel,
3568  * then wait for them
3569  */
3570 static int barrier_all_devices(struct btrfs_fs_info *info)
3571 {
3572 	struct list_head *head;
3573 	struct btrfs_device *dev;
3574 	int errors_send = 0;
3575 	int errors_wait = 0;
3576 	int ret;
3577 
3578 	/* send down all the barriers */
3579 	head = &info->fs_devices->devices;
3580 	list_for_each_entry_rcu(dev, head, dev_list) {
3581 		if (dev->missing)
3582 			continue;
3583 		if (!dev->bdev) {
3584 			errors_send++;
3585 			continue;
3586 		}
3587 		if (!dev->in_fs_metadata || !dev->writeable)
3588 			continue;
3589 
3590 		ret = write_dev_flush(dev, 0);
3591 		if (ret)
3592 			errors_send++;
3593 	}
3594 
3595 	/* wait for all the barriers */
3596 	list_for_each_entry_rcu(dev, head, dev_list) {
3597 		if (dev->missing)
3598 			continue;
3599 		if (!dev->bdev) {
3600 			errors_wait++;
3601 			continue;
3602 		}
3603 		if (!dev->in_fs_metadata || !dev->writeable)
3604 			continue;
3605 
3606 		ret = write_dev_flush(dev, 1);
3607 		if (ret)
3608 			errors_wait++;
3609 	}
3610 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3611 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3612 		return -EIO;
3613 	return 0;
3614 }
3615 
3616 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3617 {
3618 	int raid_type;
3619 	int min_tolerated = INT_MAX;
3620 
3621 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3622 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3623 		min_tolerated = min(min_tolerated,
3624 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3625 				    tolerated_failures);
3626 
3627 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3628 		if (raid_type == BTRFS_RAID_SINGLE)
3629 			continue;
3630 		if (!(flags & btrfs_raid_group[raid_type]))
3631 			continue;
3632 		min_tolerated = min(min_tolerated,
3633 				    btrfs_raid_array[raid_type].
3634 				    tolerated_failures);
3635 	}
3636 
3637 	if (min_tolerated == INT_MAX) {
3638 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3639 		min_tolerated = 0;
3640 	}
3641 
3642 	return min_tolerated;
3643 }
3644 
3645 int btrfs_calc_num_tolerated_disk_barrier_failures(
3646 	struct btrfs_fs_info *fs_info)
3647 {
3648 	struct btrfs_ioctl_space_info space;
3649 	struct btrfs_space_info *sinfo;
3650 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3651 		       BTRFS_BLOCK_GROUP_SYSTEM,
3652 		       BTRFS_BLOCK_GROUP_METADATA,
3653 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3654 	int i;
3655 	int c;
3656 	int num_tolerated_disk_barrier_failures =
3657 		(int)fs_info->fs_devices->num_devices;
3658 
3659 	for (i = 0; i < ARRAY_SIZE(types); i++) {
3660 		struct btrfs_space_info *tmp;
3661 
3662 		sinfo = NULL;
3663 		rcu_read_lock();
3664 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3665 			if (tmp->flags == types[i]) {
3666 				sinfo = tmp;
3667 				break;
3668 			}
3669 		}
3670 		rcu_read_unlock();
3671 
3672 		if (!sinfo)
3673 			continue;
3674 
3675 		down_read(&sinfo->groups_sem);
3676 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3677 			u64 flags;
3678 
3679 			if (list_empty(&sinfo->block_groups[c]))
3680 				continue;
3681 
3682 			btrfs_get_block_group_info(&sinfo->block_groups[c],
3683 						   &space);
3684 			if (space.total_bytes == 0 || space.used_bytes == 0)
3685 				continue;
3686 			flags = space.flags;
3687 
3688 			num_tolerated_disk_barrier_failures = min(
3689 				num_tolerated_disk_barrier_failures,
3690 				btrfs_get_num_tolerated_disk_barrier_failures(
3691 					flags));
3692 		}
3693 		up_read(&sinfo->groups_sem);
3694 	}
3695 
3696 	return num_tolerated_disk_barrier_failures;
3697 }
3698 
3699 static int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3700 {
3701 	struct list_head *head;
3702 	struct btrfs_device *dev;
3703 	struct btrfs_super_block *sb;
3704 	struct btrfs_dev_item *dev_item;
3705 	int ret;
3706 	int do_barriers;
3707 	int max_errors;
3708 	int total_errors = 0;
3709 	u64 flags;
3710 
3711 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3712 	backup_super_roots(fs_info);
3713 
3714 	sb = fs_info->super_for_commit;
3715 	dev_item = &sb->dev_item;
3716 
3717 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3718 	head = &fs_info->fs_devices->devices;
3719 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3720 
3721 	if (do_barriers) {
3722 		ret = barrier_all_devices(fs_info);
3723 		if (ret) {
3724 			mutex_unlock(
3725 				&fs_info->fs_devices->device_list_mutex);
3726 			btrfs_handle_fs_error(fs_info, ret,
3727 					      "errors while submitting device barriers.");
3728 			return ret;
3729 		}
3730 	}
3731 
3732 	list_for_each_entry_rcu(dev, head, dev_list) {
3733 		if (!dev->bdev) {
3734 			total_errors++;
3735 			continue;
3736 		}
3737 		if (!dev->in_fs_metadata || !dev->writeable)
3738 			continue;
3739 
3740 		btrfs_set_stack_device_generation(dev_item, 0);
3741 		btrfs_set_stack_device_type(dev_item, dev->type);
3742 		btrfs_set_stack_device_id(dev_item, dev->devid);
3743 		btrfs_set_stack_device_total_bytes(dev_item,
3744 						   dev->commit_total_bytes);
3745 		btrfs_set_stack_device_bytes_used(dev_item,
3746 						  dev->commit_bytes_used);
3747 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3748 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3749 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3750 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3751 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3752 
3753 		flags = btrfs_super_flags(sb);
3754 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3755 
3756 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3757 		if (ret)
3758 			total_errors++;
3759 	}
3760 	if (total_errors > max_errors) {
3761 		btrfs_err(fs_info, "%d errors while writing supers",
3762 			  total_errors);
3763 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3764 
3765 		/* FUA is masked off if unsupported and can't be the reason */
3766 		btrfs_handle_fs_error(fs_info, -EIO,
3767 				      "%d errors while writing supers",
3768 				      total_errors);
3769 		return -EIO;
3770 	}
3771 
3772 	total_errors = 0;
3773 	list_for_each_entry_rcu(dev, head, dev_list) {
3774 		if (!dev->bdev)
3775 			continue;
3776 		if (!dev->in_fs_metadata || !dev->writeable)
3777 			continue;
3778 
3779 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3780 		if (ret)
3781 			total_errors++;
3782 	}
3783 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3784 	if (total_errors > max_errors) {
3785 		btrfs_handle_fs_error(fs_info, -EIO,
3786 				      "%d errors while writing supers",
3787 				      total_errors);
3788 		return -EIO;
3789 	}
3790 	return 0;
3791 }
3792 
3793 int write_ctree_super(struct btrfs_trans_handle *trans,
3794 		      struct btrfs_fs_info *fs_info, int max_mirrors)
3795 {
3796 	return write_all_supers(fs_info, max_mirrors);
3797 }
3798 
3799 /* Drop a fs root from the radix tree and free it. */
3800 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3801 				  struct btrfs_root *root)
3802 {
3803 	spin_lock(&fs_info->fs_roots_radix_lock);
3804 	radix_tree_delete(&fs_info->fs_roots_radix,
3805 			  (unsigned long)root->root_key.objectid);
3806 	spin_unlock(&fs_info->fs_roots_radix_lock);
3807 
3808 	if (btrfs_root_refs(&root->root_item) == 0)
3809 		synchronize_srcu(&fs_info->subvol_srcu);
3810 
3811 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3812 		btrfs_free_log(NULL, root);
3813 		if (root->reloc_root) {
3814 			free_extent_buffer(root->reloc_root->node);
3815 			free_extent_buffer(root->reloc_root->commit_root);
3816 			btrfs_put_fs_root(root->reloc_root);
3817 			root->reloc_root = NULL;
3818 		}
3819 	}
3820 
3821 	if (root->free_ino_pinned)
3822 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3823 	if (root->free_ino_ctl)
3824 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3825 	free_fs_root(root);
3826 }
3827 
3828 static void free_fs_root(struct btrfs_root *root)
3829 {
3830 	iput(root->ino_cache_inode);
3831 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3832 	btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3833 	root->orphan_block_rsv = NULL;
3834 	if (root->anon_dev)
3835 		free_anon_bdev(root->anon_dev);
3836 	if (root->subv_writers)
3837 		btrfs_free_subvolume_writers(root->subv_writers);
3838 	free_extent_buffer(root->node);
3839 	free_extent_buffer(root->commit_root);
3840 	kfree(root->free_ino_ctl);
3841 	kfree(root->free_ino_pinned);
3842 	kfree(root->name);
3843 	btrfs_put_fs_root(root);
3844 }
3845 
3846 void btrfs_free_fs_root(struct btrfs_root *root)
3847 {
3848 	free_fs_root(root);
3849 }
3850 
3851 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3852 {
3853 	u64 root_objectid = 0;
3854 	struct btrfs_root *gang[8];
3855 	int i = 0;
3856 	int err = 0;
3857 	unsigned int ret = 0;
3858 	int index;
3859 
3860 	while (1) {
3861 		index = srcu_read_lock(&fs_info->subvol_srcu);
3862 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3863 					     (void **)gang, root_objectid,
3864 					     ARRAY_SIZE(gang));
3865 		if (!ret) {
3866 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3867 			break;
3868 		}
3869 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3870 
3871 		for (i = 0; i < ret; i++) {
3872 			/* Avoid to grab roots in dead_roots */
3873 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3874 				gang[i] = NULL;
3875 				continue;
3876 			}
3877 			/* grab all the search result for later use */
3878 			gang[i] = btrfs_grab_fs_root(gang[i]);
3879 		}
3880 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3881 
3882 		for (i = 0; i < ret; i++) {
3883 			if (!gang[i])
3884 				continue;
3885 			root_objectid = gang[i]->root_key.objectid;
3886 			err = btrfs_orphan_cleanup(gang[i]);
3887 			if (err)
3888 				break;
3889 			btrfs_put_fs_root(gang[i]);
3890 		}
3891 		root_objectid++;
3892 	}
3893 
3894 	/* release the uncleaned roots due to error */
3895 	for (; i < ret; i++) {
3896 		if (gang[i])
3897 			btrfs_put_fs_root(gang[i]);
3898 	}
3899 	return err;
3900 }
3901 
3902 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3903 {
3904 	struct btrfs_root *root = fs_info->tree_root;
3905 	struct btrfs_trans_handle *trans;
3906 
3907 	mutex_lock(&fs_info->cleaner_mutex);
3908 	btrfs_run_delayed_iputs(fs_info);
3909 	mutex_unlock(&fs_info->cleaner_mutex);
3910 	wake_up_process(fs_info->cleaner_kthread);
3911 
3912 	/* wait until ongoing cleanup work done */
3913 	down_write(&fs_info->cleanup_work_sem);
3914 	up_write(&fs_info->cleanup_work_sem);
3915 
3916 	trans = btrfs_join_transaction(root);
3917 	if (IS_ERR(trans))
3918 		return PTR_ERR(trans);
3919 	return btrfs_commit_transaction(trans);
3920 }
3921 
3922 void close_ctree(struct btrfs_fs_info *fs_info)
3923 {
3924 	struct btrfs_root *root = fs_info->tree_root;
3925 	int ret;
3926 
3927 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3928 
3929 	/* wait for the qgroup rescan worker to stop */
3930 	btrfs_qgroup_wait_for_completion(fs_info, false);
3931 
3932 	/* wait for the uuid_scan task to finish */
3933 	down(&fs_info->uuid_tree_rescan_sem);
3934 	/* avoid complains from lockdep et al., set sem back to initial state */
3935 	up(&fs_info->uuid_tree_rescan_sem);
3936 
3937 	/* pause restriper - we want to resume on mount */
3938 	btrfs_pause_balance(fs_info);
3939 
3940 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3941 
3942 	btrfs_scrub_cancel(fs_info);
3943 
3944 	/* wait for any defraggers to finish */
3945 	wait_event(fs_info->transaction_wait,
3946 		   (atomic_read(&fs_info->defrag_running) == 0));
3947 
3948 	/* clear out the rbtree of defraggable inodes */
3949 	btrfs_cleanup_defrag_inodes(fs_info);
3950 
3951 	cancel_work_sync(&fs_info->async_reclaim_work);
3952 
3953 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3954 		/*
3955 		 * If the cleaner thread is stopped and there are
3956 		 * block groups queued for removal, the deletion will be
3957 		 * skipped when we quit the cleaner thread.
3958 		 */
3959 		btrfs_delete_unused_bgs(fs_info);
3960 
3961 		ret = btrfs_commit_super(fs_info);
3962 		if (ret)
3963 			btrfs_err(fs_info, "commit super ret %d", ret);
3964 	}
3965 
3966 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3967 		btrfs_error_commit_super(fs_info);
3968 
3969 	kthread_stop(fs_info->transaction_kthread);
3970 	kthread_stop(fs_info->cleaner_kthread);
3971 
3972 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3973 
3974 	btrfs_free_qgroup_config(fs_info);
3975 
3976 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3977 		btrfs_info(fs_info, "at unmount delalloc count %lld",
3978 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3979 	}
3980 
3981 	btrfs_sysfs_remove_mounted(fs_info);
3982 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3983 
3984 	btrfs_free_fs_roots(fs_info);
3985 
3986 	btrfs_put_block_group_cache(fs_info);
3987 
3988 	btrfs_free_block_groups(fs_info);
3989 
3990 	/*
3991 	 * we must make sure there is not any read request to
3992 	 * submit after we stopping all workers.
3993 	 */
3994 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3995 	btrfs_stop_all_workers(fs_info);
3996 
3997 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3998 	free_root_pointers(fs_info, 1);
3999 
4000 	iput(fs_info->btree_inode);
4001 
4002 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4003 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4004 		btrfsic_unmount(fs_info->fs_devices);
4005 #endif
4006 
4007 	btrfs_close_devices(fs_info->fs_devices);
4008 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4009 
4010 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4011 	percpu_counter_destroy(&fs_info->delalloc_bytes);
4012 	percpu_counter_destroy(&fs_info->bio_counter);
4013 	bdi_destroy(&fs_info->bdi);
4014 	cleanup_srcu_struct(&fs_info->subvol_srcu);
4015 
4016 	btrfs_free_stripe_hash_table(fs_info);
4017 
4018 	__btrfs_free_block_rsv(root->orphan_block_rsv);
4019 	root->orphan_block_rsv = NULL;
4020 
4021 	mutex_lock(&fs_info->chunk_mutex);
4022 	while (!list_empty(&fs_info->pinned_chunks)) {
4023 		struct extent_map *em;
4024 
4025 		em = list_first_entry(&fs_info->pinned_chunks,
4026 				      struct extent_map, list);
4027 		list_del_init(&em->list);
4028 		free_extent_map(em);
4029 	}
4030 	mutex_unlock(&fs_info->chunk_mutex);
4031 }
4032 
4033 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4034 			  int atomic)
4035 {
4036 	int ret;
4037 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4038 
4039 	ret = extent_buffer_uptodate(buf);
4040 	if (!ret)
4041 		return ret;
4042 
4043 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4044 				    parent_transid, atomic);
4045 	if (ret == -EAGAIN)
4046 		return ret;
4047 	return !ret;
4048 }
4049 
4050 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4051 {
4052 	struct btrfs_fs_info *fs_info;
4053 	struct btrfs_root *root;
4054 	u64 transid = btrfs_header_generation(buf);
4055 	int was_dirty;
4056 
4057 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4058 	/*
4059 	 * This is a fast path so only do this check if we have sanity tests
4060 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
4061 	 * outside of the sanity tests.
4062 	 */
4063 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4064 		return;
4065 #endif
4066 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4067 	fs_info = root->fs_info;
4068 	btrfs_assert_tree_locked(buf);
4069 	if (transid != fs_info->generation)
4070 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4071 			buf->start, transid, fs_info->generation);
4072 	was_dirty = set_extent_buffer_dirty(buf);
4073 	if (!was_dirty)
4074 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
4075 				     buf->len,
4076 				     fs_info->dirty_metadata_batch);
4077 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4078 	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4079 		btrfs_print_leaf(fs_info, buf);
4080 		ASSERT(0);
4081 	}
4082 #endif
4083 }
4084 
4085 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4086 					int flush_delayed)
4087 {
4088 	/*
4089 	 * looks as though older kernels can get into trouble with
4090 	 * this code, they end up stuck in balance_dirty_pages forever
4091 	 */
4092 	int ret;
4093 
4094 	if (current->flags & PF_MEMALLOC)
4095 		return;
4096 
4097 	if (flush_delayed)
4098 		btrfs_balance_delayed_items(fs_info);
4099 
4100 	ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4101 				     BTRFS_DIRTY_METADATA_THRESH);
4102 	if (ret > 0) {
4103 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4104 	}
4105 }
4106 
4107 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4108 {
4109 	__btrfs_btree_balance_dirty(fs_info, 1);
4110 }
4111 
4112 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4113 {
4114 	__btrfs_btree_balance_dirty(fs_info, 0);
4115 }
4116 
4117 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4118 {
4119 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4120 	struct btrfs_fs_info *fs_info = root->fs_info;
4121 
4122 	return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
4123 }
4124 
4125 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4126 			      int read_only)
4127 {
4128 	struct btrfs_super_block *sb = fs_info->super_copy;
4129 	u64 nodesize = btrfs_super_nodesize(sb);
4130 	u64 sectorsize = btrfs_super_sectorsize(sb);
4131 	int ret = 0;
4132 
4133 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4134 		btrfs_err(fs_info, "no valid FS found");
4135 		ret = -EINVAL;
4136 	}
4137 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4138 		btrfs_warn(fs_info, "unrecognized super flag: %llu",
4139 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4140 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4141 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
4142 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4143 		ret = -EINVAL;
4144 	}
4145 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4146 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
4147 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4148 		ret = -EINVAL;
4149 	}
4150 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4151 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
4152 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4153 		ret = -EINVAL;
4154 	}
4155 
4156 	/*
4157 	 * Check sectorsize and nodesize first, other check will need it.
4158 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4159 	 */
4160 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4161 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4162 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
4163 		ret = -EINVAL;
4164 	}
4165 	/* Only PAGE SIZE is supported yet */
4166 	if (sectorsize != PAGE_SIZE) {
4167 		btrfs_err(fs_info,
4168 			"sectorsize %llu not supported yet, only support %lu",
4169 			sectorsize, PAGE_SIZE);
4170 		ret = -EINVAL;
4171 	}
4172 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4173 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4174 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
4175 		ret = -EINVAL;
4176 	}
4177 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4178 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4179 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
4180 		ret = -EINVAL;
4181 	}
4182 
4183 	/* Root alignment check */
4184 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4185 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4186 			   btrfs_super_root(sb));
4187 		ret = -EINVAL;
4188 	}
4189 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4190 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4191 			   btrfs_super_chunk_root(sb));
4192 		ret = -EINVAL;
4193 	}
4194 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4195 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
4196 			   btrfs_super_log_root(sb));
4197 		ret = -EINVAL;
4198 	}
4199 
4200 	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4201 		btrfs_err(fs_info,
4202 			   "dev_item UUID does not match fsid: %pU != %pU",
4203 			   fs_info->fsid, sb->dev_item.fsid);
4204 		ret = -EINVAL;
4205 	}
4206 
4207 	/*
4208 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4209 	 * done later
4210 	 */
4211 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4212 		btrfs_err(fs_info, "bytes_used is too small %llu",
4213 			  btrfs_super_bytes_used(sb));
4214 		ret = -EINVAL;
4215 	}
4216 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4217 		btrfs_err(fs_info, "invalid stripesize %u",
4218 			  btrfs_super_stripesize(sb));
4219 		ret = -EINVAL;
4220 	}
4221 	if (btrfs_super_num_devices(sb) > (1UL << 31))
4222 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
4223 			   btrfs_super_num_devices(sb));
4224 	if (btrfs_super_num_devices(sb) == 0) {
4225 		btrfs_err(fs_info, "number of devices is 0");
4226 		ret = -EINVAL;
4227 	}
4228 
4229 	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4230 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
4231 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4232 		ret = -EINVAL;
4233 	}
4234 
4235 	/*
4236 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4237 	 * and one chunk
4238 	 */
4239 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4240 		btrfs_err(fs_info, "system chunk array too big %u > %u",
4241 			  btrfs_super_sys_array_size(sb),
4242 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4243 		ret = -EINVAL;
4244 	}
4245 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4246 			+ sizeof(struct btrfs_chunk)) {
4247 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
4248 			  btrfs_super_sys_array_size(sb),
4249 			  sizeof(struct btrfs_disk_key)
4250 			  + sizeof(struct btrfs_chunk));
4251 		ret = -EINVAL;
4252 	}
4253 
4254 	/*
4255 	 * The generation is a global counter, we'll trust it more than the others
4256 	 * but it's still possible that it's the one that's wrong.
4257 	 */
4258 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4259 		btrfs_warn(fs_info,
4260 			"suspicious: generation < chunk_root_generation: %llu < %llu",
4261 			btrfs_super_generation(sb),
4262 			btrfs_super_chunk_root_generation(sb));
4263 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4264 	    && btrfs_super_cache_generation(sb) != (u64)-1)
4265 		btrfs_warn(fs_info,
4266 			"suspicious: generation < cache_generation: %llu < %llu",
4267 			btrfs_super_generation(sb),
4268 			btrfs_super_cache_generation(sb));
4269 
4270 	return ret;
4271 }
4272 
4273 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4274 {
4275 	mutex_lock(&fs_info->cleaner_mutex);
4276 	btrfs_run_delayed_iputs(fs_info);
4277 	mutex_unlock(&fs_info->cleaner_mutex);
4278 
4279 	down_write(&fs_info->cleanup_work_sem);
4280 	up_write(&fs_info->cleanup_work_sem);
4281 
4282 	/* cleanup FS via transaction */
4283 	btrfs_cleanup_transaction(fs_info);
4284 }
4285 
4286 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4287 {
4288 	struct btrfs_ordered_extent *ordered;
4289 
4290 	spin_lock(&root->ordered_extent_lock);
4291 	/*
4292 	 * This will just short circuit the ordered completion stuff which will
4293 	 * make sure the ordered extent gets properly cleaned up.
4294 	 */
4295 	list_for_each_entry(ordered, &root->ordered_extents,
4296 			    root_extent_list)
4297 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4298 	spin_unlock(&root->ordered_extent_lock);
4299 }
4300 
4301 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4302 {
4303 	struct btrfs_root *root;
4304 	struct list_head splice;
4305 
4306 	INIT_LIST_HEAD(&splice);
4307 
4308 	spin_lock(&fs_info->ordered_root_lock);
4309 	list_splice_init(&fs_info->ordered_roots, &splice);
4310 	while (!list_empty(&splice)) {
4311 		root = list_first_entry(&splice, struct btrfs_root,
4312 					ordered_root);
4313 		list_move_tail(&root->ordered_root,
4314 			       &fs_info->ordered_roots);
4315 
4316 		spin_unlock(&fs_info->ordered_root_lock);
4317 		btrfs_destroy_ordered_extents(root);
4318 
4319 		cond_resched();
4320 		spin_lock(&fs_info->ordered_root_lock);
4321 	}
4322 	spin_unlock(&fs_info->ordered_root_lock);
4323 }
4324 
4325 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4326 				      struct btrfs_fs_info *fs_info)
4327 {
4328 	struct rb_node *node;
4329 	struct btrfs_delayed_ref_root *delayed_refs;
4330 	struct btrfs_delayed_ref_node *ref;
4331 	int ret = 0;
4332 
4333 	delayed_refs = &trans->delayed_refs;
4334 
4335 	spin_lock(&delayed_refs->lock);
4336 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4337 		spin_unlock(&delayed_refs->lock);
4338 		btrfs_info(fs_info, "delayed_refs has NO entry");
4339 		return ret;
4340 	}
4341 
4342 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4343 		struct btrfs_delayed_ref_head *head;
4344 		struct btrfs_delayed_ref_node *tmp;
4345 		bool pin_bytes = false;
4346 
4347 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4348 				href_node);
4349 		if (!mutex_trylock(&head->mutex)) {
4350 			atomic_inc(&head->node.refs);
4351 			spin_unlock(&delayed_refs->lock);
4352 
4353 			mutex_lock(&head->mutex);
4354 			mutex_unlock(&head->mutex);
4355 			btrfs_put_delayed_ref(&head->node);
4356 			spin_lock(&delayed_refs->lock);
4357 			continue;
4358 		}
4359 		spin_lock(&head->lock);
4360 		list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4361 						 list) {
4362 			ref->in_tree = 0;
4363 			list_del(&ref->list);
4364 			if (!list_empty(&ref->add_list))
4365 				list_del(&ref->add_list);
4366 			atomic_dec(&delayed_refs->num_entries);
4367 			btrfs_put_delayed_ref(ref);
4368 		}
4369 		if (head->must_insert_reserved)
4370 			pin_bytes = true;
4371 		btrfs_free_delayed_extent_op(head->extent_op);
4372 		delayed_refs->num_heads--;
4373 		if (head->processing == 0)
4374 			delayed_refs->num_heads_ready--;
4375 		atomic_dec(&delayed_refs->num_entries);
4376 		head->node.in_tree = 0;
4377 		rb_erase(&head->href_node, &delayed_refs->href_root);
4378 		spin_unlock(&head->lock);
4379 		spin_unlock(&delayed_refs->lock);
4380 		mutex_unlock(&head->mutex);
4381 
4382 		if (pin_bytes)
4383 			btrfs_pin_extent(fs_info, head->node.bytenr,
4384 					 head->node.num_bytes, 1);
4385 		btrfs_put_delayed_ref(&head->node);
4386 		cond_resched();
4387 		spin_lock(&delayed_refs->lock);
4388 	}
4389 
4390 	spin_unlock(&delayed_refs->lock);
4391 
4392 	return ret;
4393 }
4394 
4395 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4396 {
4397 	struct btrfs_inode *btrfs_inode;
4398 	struct list_head splice;
4399 
4400 	INIT_LIST_HEAD(&splice);
4401 
4402 	spin_lock(&root->delalloc_lock);
4403 	list_splice_init(&root->delalloc_inodes, &splice);
4404 
4405 	while (!list_empty(&splice)) {
4406 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4407 					       delalloc_inodes);
4408 
4409 		list_del_init(&btrfs_inode->delalloc_inodes);
4410 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4411 			  &btrfs_inode->runtime_flags);
4412 		spin_unlock(&root->delalloc_lock);
4413 
4414 		btrfs_invalidate_inodes(btrfs_inode->root);
4415 
4416 		spin_lock(&root->delalloc_lock);
4417 	}
4418 
4419 	spin_unlock(&root->delalloc_lock);
4420 }
4421 
4422 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4423 {
4424 	struct btrfs_root *root;
4425 	struct list_head splice;
4426 
4427 	INIT_LIST_HEAD(&splice);
4428 
4429 	spin_lock(&fs_info->delalloc_root_lock);
4430 	list_splice_init(&fs_info->delalloc_roots, &splice);
4431 	while (!list_empty(&splice)) {
4432 		root = list_first_entry(&splice, struct btrfs_root,
4433 					 delalloc_root);
4434 		list_del_init(&root->delalloc_root);
4435 		root = btrfs_grab_fs_root(root);
4436 		BUG_ON(!root);
4437 		spin_unlock(&fs_info->delalloc_root_lock);
4438 
4439 		btrfs_destroy_delalloc_inodes(root);
4440 		btrfs_put_fs_root(root);
4441 
4442 		spin_lock(&fs_info->delalloc_root_lock);
4443 	}
4444 	spin_unlock(&fs_info->delalloc_root_lock);
4445 }
4446 
4447 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4448 					struct extent_io_tree *dirty_pages,
4449 					int mark)
4450 {
4451 	int ret;
4452 	struct extent_buffer *eb;
4453 	u64 start = 0;
4454 	u64 end;
4455 
4456 	while (1) {
4457 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4458 					    mark, NULL);
4459 		if (ret)
4460 			break;
4461 
4462 		clear_extent_bits(dirty_pages, start, end, mark);
4463 		while (start <= end) {
4464 			eb = find_extent_buffer(fs_info, start);
4465 			start += fs_info->nodesize;
4466 			if (!eb)
4467 				continue;
4468 			wait_on_extent_buffer_writeback(eb);
4469 
4470 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4471 					       &eb->bflags))
4472 				clear_extent_buffer_dirty(eb);
4473 			free_extent_buffer_stale(eb);
4474 		}
4475 	}
4476 
4477 	return ret;
4478 }
4479 
4480 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4481 				       struct extent_io_tree *pinned_extents)
4482 {
4483 	struct extent_io_tree *unpin;
4484 	u64 start;
4485 	u64 end;
4486 	int ret;
4487 	bool loop = true;
4488 
4489 	unpin = pinned_extents;
4490 again:
4491 	while (1) {
4492 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4493 					    EXTENT_DIRTY, NULL);
4494 		if (ret)
4495 			break;
4496 
4497 		clear_extent_dirty(unpin, start, end);
4498 		btrfs_error_unpin_extent_range(fs_info, start, end);
4499 		cond_resched();
4500 	}
4501 
4502 	if (loop) {
4503 		if (unpin == &fs_info->freed_extents[0])
4504 			unpin = &fs_info->freed_extents[1];
4505 		else
4506 			unpin = &fs_info->freed_extents[0];
4507 		loop = false;
4508 		goto again;
4509 	}
4510 
4511 	return 0;
4512 }
4513 
4514 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4515 {
4516 	struct inode *inode;
4517 
4518 	inode = cache->io_ctl.inode;
4519 	if (inode) {
4520 		invalidate_inode_pages2(inode->i_mapping);
4521 		BTRFS_I(inode)->generation = 0;
4522 		cache->io_ctl.inode = NULL;
4523 		iput(inode);
4524 	}
4525 	btrfs_put_block_group(cache);
4526 }
4527 
4528 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4529 			     struct btrfs_fs_info *fs_info)
4530 {
4531 	struct btrfs_block_group_cache *cache;
4532 
4533 	spin_lock(&cur_trans->dirty_bgs_lock);
4534 	while (!list_empty(&cur_trans->dirty_bgs)) {
4535 		cache = list_first_entry(&cur_trans->dirty_bgs,
4536 					 struct btrfs_block_group_cache,
4537 					 dirty_list);
4538 		if (!cache) {
4539 			btrfs_err(fs_info, "orphan block group dirty_bgs list");
4540 			spin_unlock(&cur_trans->dirty_bgs_lock);
4541 			return;
4542 		}
4543 
4544 		if (!list_empty(&cache->io_list)) {
4545 			spin_unlock(&cur_trans->dirty_bgs_lock);
4546 			list_del_init(&cache->io_list);
4547 			btrfs_cleanup_bg_io(cache);
4548 			spin_lock(&cur_trans->dirty_bgs_lock);
4549 		}
4550 
4551 		list_del_init(&cache->dirty_list);
4552 		spin_lock(&cache->lock);
4553 		cache->disk_cache_state = BTRFS_DC_ERROR;
4554 		spin_unlock(&cache->lock);
4555 
4556 		spin_unlock(&cur_trans->dirty_bgs_lock);
4557 		btrfs_put_block_group(cache);
4558 		spin_lock(&cur_trans->dirty_bgs_lock);
4559 	}
4560 	spin_unlock(&cur_trans->dirty_bgs_lock);
4561 
4562 	while (!list_empty(&cur_trans->io_bgs)) {
4563 		cache = list_first_entry(&cur_trans->io_bgs,
4564 					 struct btrfs_block_group_cache,
4565 					 io_list);
4566 		if (!cache) {
4567 			btrfs_err(fs_info, "orphan block group on io_bgs list");
4568 			return;
4569 		}
4570 
4571 		list_del_init(&cache->io_list);
4572 		spin_lock(&cache->lock);
4573 		cache->disk_cache_state = BTRFS_DC_ERROR;
4574 		spin_unlock(&cache->lock);
4575 		btrfs_cleanup_bg_io(cache);
4576 	}
4577 }
4578 
4579 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4580 				   struct btrfs_fs_info *fs_info)
4581 {
4582 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4583 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4584 	ASSERT(list_empty(&cur_trans->io_bgs));
4585 
4586 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4587 
4588 	cur_trans->state = TRANS_STATE_COMMIT_START;
4589 	wake_up(&fs_info->transaction_blocked_wait);
4590 
4591 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4592 	wake_up(&fs_info->transaction_wait);
4593 
4594 	btrfs_destroy_delayed_inodes(fs_info);
4595 	btrfs_assert_delayed_root_empty(fs_info);
4596 
4597 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4598 				     EXTENT_DIRTY);
4599 	btrfs_destroy_pinned_extent(fs_info,
4600 				    fs_info->pinned_extents);
4601 
4602 	cur_trans->state =TRANS_STATE_COMPLETED;
4603 	wake_up(&cur_trans->commit_wait);
4604 
4605 	/*
4606 	memset(cur_trans, 0, sizeof(*cur_trans));
4607 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4608 	*/
4609 }
4610 
4611 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4612 {
4613 	struct btrfs_transaction *t;
4614 
4615 	mutex_lock(&fs_info->transaction_kthread_mutex);
4616 
4617 	spin_lock(&fs_info->trans_lock);
4618 	while (!list_empty(&fs_info->trans_list)) {
4619 		t = list_first_entry(&fs_info->trans_list,
4620 				     struct btrfs_transaction, list);
4621 		if (t->state >= TRANS_STATE_COMMIT_START) {
4622 			atomic_inc(&t->use_count);
4623 			spin_unlock(&fs_info->trans_lock);
4624 			btrfs_wait_for_commit(fs_info, t->transid);
4625 			btrfs_put_transaction(t);
4626 			spin_lock(&fs_info->trans_lock);
4627 			continue;
4628 		}
4629 		if (t == fs_info->running_transaction) {
4630 			t->state = TRANS_STATE_COMMIT_DOING;
4631 			spin_unlock(&fs_info->trans_lock);
4632 			/*
4633 			 * We wait for 0 num_writers since we don't hold a trans
4634 			 * handle open currently for this transaction.
4635 			 */
4636 			wait_event(t->writer_wait,
4637 				   atomic_read(&t->num_writers) == 0);
4638 		} else {
4639 			spin_unlock(&fs_info->trans_lock);
4640 		}
4641 		btrfs_cleanup_one_transaction(t, fs_info);
4642 
4643 		spin_lock(&fs_info->trans_lock);
4644 		if (t == fs_info->running_transaction)
4645 			fs_info->running_transaction = NULL;
4646 		list_del_init(&t->list);
4647 		spin_unlock(&fs_info->trans_lock);
4648 
4649 		btrfs_put_transaction(t);
4650 		trace_btrfs_transaction_commit(fs_info->tree_root);
4651 		spin_lock(&fs_info->trans_lock);
4652 	}
4653 	spin_unlock(&fs_info->trans_lock);
4654 	btrfs_destroy_all_ordered_extents(fs_info);
4655 	btrfs_destroy_delayed_inodes(fs_info);
4656 	btrfs_assert_delayed_root_empty(fs_info);
4657 	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4658 	btrfs_destroy_all_delalloc_inodes(fs_info);
4659 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4660 
4661 	return 0;
4662 }
4663 
4664 static const struct extent_io_ops btree_extent_io_ops = {
4665 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4666 	.readpage_io_failed_hook = btree_io_failed_hook,
4667 	.submit_bio_hook = btree_submit_bio_hook,
4668 	/* note we're sharing with inode.c for the merge bio hook */
4669 	.merge_bio_hook = btrfs_merge_bio_hook,
4670 };
4671