1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/buffer_head.h> 11 #include <linux/workqueue.h> 12 #include <linux/kthread.h> 13 #include <linux/slab.h> 14 #include <linux/migrate.h> 15 #include <linux/ratelimit.h> 16 #include <linux/uuid.h> 17 #include <linux/semaphore.h> 18 #include <linux/error-injection.h> 19 #include <linux/crc32c.h> 20 #include <linux/sched/mm.h> 21 #include <asm/unaligned.h> 22 #include <crypto/hash.h> 23 #include "ctree.h" 24 #include "disk-io.h" 25 #include "transaction.h" 26 #include "btrfs_inode.h" 27 #include "volumes.h" 28 #include "print-tree.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "free-space-cache.h" 32 #include "free-space-tree.h" 33 #include "inode-map.h" 34 #include "check-integrity.h" 35 #include "rcu-string.h" 36 #include "dev-replace.h" 37 #include "raid56.h" 38 #include "sysfs.h" 39 #include "qgroup.h" 40 #include "compression.h" 41 #include "tree-checker.h" 42 #include "ref-verify.h" 43 #include "block-group.h" 44 45 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 46 BTRFS_HEADER_FLAG_RELOC |\ 47 BTRFS_SUPER_FLAG_ERROR |\ 48 BTRFS_SUPER_FLAG_SEEDING |\ 49 BTRFS_SUPER_FLAG_METADUMP |\ 50 BTRFS_SUPER_FLAG_METADUMP_V2) 51 52 static const struct extent_io_ops btree_extent_io_ops; 53 static void end_workqueue_fn(struct btrfs_work *work); 54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 56 struct btrfs_fs_info *fs_info); 57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 59 struct extent_io_tree *dirty_pages, 60 int mark); 61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 62 struct extent_io_tree *pinned_extents); 63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 65 66 /* 67 * btrfs_end_io_wq structs are used to do processing in task context when an IO 68 * is complete. This is used during reads to verify checksums, and it is used 69 * by writes to insert metadata for new file extents after IO is complete. 70 */ 71 struct btrfs_end_io_wq { 72 struct bio *bio; 73 bio_end_io_t *end_io; 74 void *private; 75 struct btrfs_fs_info *info; 76 blk_status_t status; 77 enum btrfs_wq_endio_type metadata; 78 struct btrfs_work work; 79 }; 80 81 static struct kmem_cache *btrfs_end_io_wq_cache; 82 83 int __init btrfs_end_io_wq_init(void) 84 { 85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 86 sizeof(struct btrfs_end_io_wq), 87 0, 88 SLAB_MEM_SPREAD, 89 NULL); 90 if (!btrfs_end_io_wq_cache) 91 return -ENOMEM; 92 return 0; 93 } 94 95 void __cold btrfs_end_io_wq_exit(void) 96 { 97 kmem_cache_destroy(btrfs_end_io_wq_cache); 98 } 99 100 /* 101 * async submit bios are used to offload expensive checksumming 102 * onto the worker threads. They checksum file and metadata bios 103 * just before they are sent down the IO stack. 104 */ 105 struct async_submit_bio { 106 void *private_data; 107 struct bio *bio; 108 extent_submit_bio_start_t *submit_bio_start; 109 int mirror_num; 110 /* 111 * bio_offset is optional, can be used if the pages in the bio 112 * can't tell us where in the file the bio should go 113 */ 114 u64 bio_offset; 115 struct btrfs_work work; 116 blk_status_t status; 117 }; 118 119 /* 120 * Lockdep class keys for extent_buffer->lock's in this root. For a given 121 * eb, the lockdep key is determined by the btrfs_root it belongs to and 122 * the level the eb occupies in the tree. 123 * 124 * Different roots are used for different purposes and may nest inside each 125 * other and they require separate keysets. As lockdep keys should be 126 * static, assign keysets according to the purpose of the root as indicated 127 * by btrfs_root->root_key.objectid. This ensures that all special purpose 128 * roots have separate keysets. 129 * 130 * Lock-nesting across peer nodes is always done with the immediate parent 131 * node locked thus preventing deadlock. As lockdep doesn't know this, use 132 * subclass to avoid triggering lockdep warning in such cases. 133 * 134 * The key is set by the readpage_end_io_hook after the buffer has passed 135 * csum validation but before the pages are unlocked. It is also set by 136 * btrfs_init_new_buffer on freshly allocated blocks. 137 * 138 * We also add a check to make sure the highest level of the tree is the 139 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 140 * needs update as well. 141 */ 142 #ifdef CONFIG_DEBUG_LOCK_ALLOC 143 # if BTRFS_MAX_LEVEL != 8 144 # error 145 # endif 146 147 static struct btrfs_lockdep_keyset { 148 u64 id; /* root objectid */ 149 const char *name_stem; /* lock name stem */ 150 char names[BTRFS_MAX_LEVEL + 1][20]; 151 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 152 } btrfs_lockdep_keysets[] = { 153 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 154 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 155 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 156 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 157 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 158 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 159 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 160 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 161 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 162 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 163 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 164 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 165 { .id = 0, .name_stem = "tree" }, 166 }; 167 168 void __init btrfs_init_lockdep(void) 169 { 170 int i, j; 171 172 /* initialize lockdep class names */ 173 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 174 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 175 176 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 177 snprintf(ks->names[j], sizeof(ks->names[j]), 178 "btrfs-%s-%02d", ks->name_stem, j); 179 } 180 } 181 182 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 183 int level) 184 { 185 struct btrfs_lockdep_keyset *ks; 186 187 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 188 189 /* find the matching keyset, id 0 is the default entry */ 190 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 191 if (ks->id == objectid) 192 break; 193 194 lockdep_set_class_and_name(&eb->lock, 195 &ks->keys[level], ks->names[level]); 196 } 197 198 #endif 199 200 /* 201 * extents on the btree inode are pretty simple, there's one extent 202 * that covers the entire device 203 */ 204 struct extent_map *btree_get_extent(struct btrfs_inode *inode, 205 struct page *page, size_t pg_offset, u64 start, u64 len, 206 int create) 207 { 208 struct extent_map_tree *em_tree = &inode->extent_tree; 209 struct extent_map *em; 210 int ret; 211 212 read_lock(&em_tree->lock); 213 em = lookup_extent_mapping(em_tree, start, len); 214 if (em) { 215 read_unlock(&em_tree->lock); 216 goto out; 217 } 218 read_unlock(&em_tree->lock); 219 220 em = alloc_extent_map(); 221 if (!em) { 222 em = ERR_PTR(-ENOMEM); 223 goto out; 224 } 225 em->start = 0; 226 em->len = (u64)-1; 227 em->block_len = (u64)-1; 228 em->block_start = 0; 229 230 write_lock(&em_tree->lock); 231 ret = add_extent_mapping(em_tree, em, 0); 232 if (ret == -EEXIST) { 233 free_extent_map(em); 234 em = lookup_extent_mapping(em_tree, start, len); 235 if (!em) 236 em = ERR_PTR(-EIO); 237 } else if (ret) { 238 free_extent_map(em); 239 em = ERR_PTR(ret); 240 } 241 write_unlock(&em_tree->lock); 242 243 out: 244 return em; 245 } 246 247 /* 248 * Compute the csum of a btree block and store the result to provided buffer. 249 * 250 * Returns error if the extent buffer cannot be mapped. 251 */ 252 static int csum_tree_block(struct extent_buffer *buf, u8 *result) 253 { 254 struct btrfs_fs_info *fs_info = buf->fs_info; 255 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 256 unsigned long len; 257 unsigned long cur_len; 258 unsigned long offset = BTRFS_CSUM_SIZE; 259 char *kaddr; 260 unsigned long map_start; 261 unsigned long map_len; 262 int err; 263 264 shash->tfm = fs_info->csum_shash; 265 crypto_shash_init(shash); 266 267 len = buf->len - offset; 268 269 while (len > 0) { 270 /* 271 * Note: we don't need to check for the err == 1 case here, as 272 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)' 273 * and 'min_len = 32' and the currently implemented mapping 274 * algorithm we cannot cross a page boundary. 275 */ 276 err = map_private_extent_buffer(buf, offset, 32, 277 &kaddr, &map_start, &map_len); 278 if (WARN_ON(err)) 279 return err; 280 cur_len = min(len, map_len - (offset - map_start)); 281 crypto_shash_update(shash, kaddr + offset - map_start, cur_len); 282 len -= cur_len; 283 offset += cur_len; 284 } 285 memset(result, 0, BTRFS_CSUM_SIZE); 286 287 crypto_shash_final(shash, result); 288 289 return 0; 290 } 291 292 /* 293 * we can't consider a given block up to date unless the transid of the 294 * block matches the transid in the parent node's pointer. This is how we 295 * detect blocks that either didn't get written at all or got written 296 * in the wrong place. 297 */ 298 static int verify_parent_transid(struct extent_io_tree *io_tree, 299 struct extent_buffer *eb, u64 parent_transid, 300 int atomic) 301 { 302 struct extent_state *cached_state = NULL; 303 int ret; 304 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 305 306 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 307 return 0; 308 309 if (atomic) 310 return -EAGAIN; 311 312 if (need_lock) { 313 btrfs_tree_read_lock(eb); 314 btrfs_set_lock_blocking_read(eb); 315 } 316 317 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 318 &cached_state); 319 if (extent_buffer_uptodate(eb) && 320 btrfs_header_generation(eb) == parent_transid) { 321 ret = 0; 322 goto out; 323 } 324 btrfs_err_rl(eb->fs_info, 325 "parent transid verify failed on %llu wanted %llu found %llu", 326 eb->start, 327 parent_transid, btrfs_header_generation(eb)); 328 ret = 1; 329 330 /* 331 * Things reading via commit roots that don't have normal protection, 332 * like send, can have a really old block in cache that may point at a 333 * block that has been freed and re-allocated. So don't clear uptodate 334 * if we find an eb that is under IO (dirty/writeback) because we could 335 * end up reading in the stale data and then writing it back out and 336 * making everybody very sad. 337 */ 338 if (!extent_buffer_under_io(eb)) 339 clear_extent_buffer_uptodate(eb); 340 out: 341 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 342 &cached_state); 343 if (need_lock) 344 btrfs_tree_read_unlock_blocking(eb); 345 return ret; 346 } 347 348 static bool btrfs_supported_super_csum(u16 csum_type) 349 { 350 switch (csum_type) { 351 case BTRFS_CSUM_TYPE_CRC32: 352 case BTRFS_CSUM_TYPE_XXHASH: 353 case BTRFS_CSUM_TYPE_SHA256: 354 case BTRFS_CSUM_TYPE_BLAKE2: 355 return true; 356 default: 357 return false; 358 } 359 } 360 361 /* 362 * Return 0 if the superblock checksum type matches the checksum value of that 363 * algorithm. Pass the raw disk superblock data. 364 */ 365 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 366 char *raw_disk_sb) 367 { 368 struct btrfs_super_block *disk_sb = 369 (struct btrfs_super_block *)raw_disk_sb; 370 char result[BTRFS_CSUM_SIZE]; 371 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 372 373 shash->tfm = fs_info->csum_shash; 374 crypto_shash_init(shash); 375 376 /* 377 * The super_block structure does not span the whole 378 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 379 * filled with zeros and is included in the checksum. 380 */ 381 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE, 382 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 383 crypto_shash_final(shash, result); 384 385 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb))) 386 return 1; 387 388 return 0; 389 } 390 391 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 392 struct btrfs_key *first_key, u64 parent_transid) 393 { 394 struct btrfs_fs_info *fs_info = eb->fs_info; 395 int found_level; 396 struct btrfs_key found_key; 397 int ret; 398 399 found_level = btrfs_header_level(eb); 400 if (found_level != level) { 401 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 402 KERN_ERR "BTRFS: tree level check failed\n"); 403 btrfs_err(fs_info, 404 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 405 eb->start, level, found_level); 406 return -EIO; 407 } 408 409 if (!first_key) 410 return 0; 411 412 /* 413 * For live tree block (new tree blocks in current transaction), 414 * we need proper lock context to avoid race, which is impossible here. 415 * So we only checks tree blocks which is read from disk, whose 416 * generation <= fs_info->last_trans_committed. 417 */ 418 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 419 return 0; 420 421 /* We have @first_key, so this @eb must have at least one item */ 422 if (btrfs_header_nritems(eb) == 0) { 423 btrfs_err(fs_info, 424 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 425 eb->start); 426 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 427 return -EUCLEAN; 428 } 429 430 if (found_level) 431 btrfs_node_key_to_cpu(eb, &found_key, 0); 432 else 433 btrfs_item_key_to_cpu(eb, &found_key, 0); 434 ret = btrfs_comp_cpu_keys(first_key, &found_key); 435 436 if (ret) { 437 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 438 KERN_ERR "BTRFS: tree first key check failed\n"); 439 btrfs_err(fs_info, 440 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 441 eb->start, parent_transid, first_key->objectid, 442 first_key->type, first_key->offset, 443 found_key.objectid, found_key.type, 444 found_key.offset); 445 } 446 return ret; 447 } 448 449 /* 450 * helper to read a given tree block, doing retries as required when 451 * the checksums don't match and we have alternate mirrors to try. 452 * 453 * @parent_transid: expected transid, skip check if 0 454 * @level: expected level, mandatory check 455 * @first_key: expected key of first slot, skip check if NULL 456 */ 457 static int btree_read_extent_buffer_pages(struct extent_buffer *eb, 458 u64 parent_transid, int level, 459 struct btrfs_key *first_key) 460 { 461 struct btrfs_fs_info *fs_info = eb->fs_info; 462 struct extent_io_tree *io_tree; 463 int failed = 0; 464 int ret; 465 int num_copies = 0; 466 int mirror_num = 0; 467 int failed_mirror = 0; 468 469 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 470 while (1) { 471 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 472 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num); 473 if (!ret) { 474 if (verify_parent_transid(io_tree, eb, 475 parent_transid, 0)) 476 ret = -EIO; 477 else if (btrfs_verify_level_key(eb, level, 478 first_key, parent_transid)) 479 ret = -EUCLEAN; 480 else 481 break; 482 } 483 484 num_copies = btrfs_num_copies(fs_info, 485 eb->start, eb->len); 486 if (num_copies == 1) 487 break; 488 489 if (!failed_mirror) { 490 failed = 1; 491 failed_mirror = eb->read_mirror; 492 } 493 494 mirror_num++; 495 if (mirror_num == failed_mirror) 496 mirror_num++; 497 498 if (mirror_num > num_copies) 499 break; 500 } 501 502 if (failed && !ret && failed_mirror) 503 btrfs_repair_eb_io_failure(eb, failed_mirror); 504 505 return ret; 506 } 507 508 /* 509 * checksum a dirty tree block before IO. This has extra checks to make sure 510 * we only fill in the checksum field in the first page of a multi-page block 511 */ 512 513 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 514 { 515 u64 start = page_offset(page); 516 u64 found_start; 517 u8 result[BTRFS_CSUM_SIZE]; 518 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 519 struct extent_buffer *eb; 520 int ret; 521 522 eb = (struct extent_buffer *)page->private; 523 if (page != eb->pages[0]) 524 return 0; 525 526 found_start = btrfs_header_bytenr(eb); 527 /* 528 * Please do not consolidate these warnings into a single if. 529 * It is useful to know what went wrong. 530 */ 531 if (WARN_ON(found_start != start)) 532 return -EUCLEAN; 533 if (WARN_ON(!PageUptodate(page))) 534 return -EUCLEAN; 535 536 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 537 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 538 539 if (csum_tree_block(eb, result)) 540 return -EINVAL; 541 542 if (btrfs_header_level(eb)) 543 ret = btrfs_check_node(eb); 544 else 545 ret = btrfs_check_leaf_full(eb); 546 547 if (ret < 0) { 548 btrfs_print_tree(eb, 0); 549 btrfs_err(fs_info, 550 "block=%llu write time tree block corruption detected", 551 eb->start); 552 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 553 return ret; 554 } 555 write_extent_buffer(eb, result, 0, csum_size); 556 557 return 0; 558 } 559 560 static int check_tree_block_fsid(struct extent_buffer *eb) 561 { 562 struct btrfs_fs_info *fs_info = eb->fs_info; 563 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 564 u8 fsid[BTRFS_FSID_SIZE]; 565 int ret = 1; 566 567 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 568 while (fs_devices) { 569 u8 *metadata_uuid; 570 571 /* 572 * Checking the incompat flag is only valid for the current 573 * fs. For seed devices it's forbidden to have their uuid 574 * changed so reading ->fsid in this case is fine 575 */ 576 if (fs_devices == fs_info->fs_devices && 577 btrfs_fs_incompat(fs_info, METADATA_UUID)) 578 metadata_uuid = fs_devices->metadata_uuid; 579 else 580 metadata_uuid = fs_devices->fsid; 581 582 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) { 583 ret = 0; 584 break; 585 } 586 fs_devices = fs_devices->seed; 587 } 588 return ret; 589 } 590 591 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 592 u64 phy_offset, struct page *page, 593 u64 start, u64 end, int mirror) 594 { 595 u64 found_start; 596 int found_level; 597 struct extent_buffer *eb; 598 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 599 struct btrfs_fs_info *fs_info = root->fs_info; 600 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 601 int ret = 0; 602 u8 result[BTRFS_CSUM_SIZE]; 603 int reads_done; 604 605 if (!page->private) 606 goto out; 607 608 eb = (struct extent_buffer *)page->private; 609 610 /* the pending IO might have been the only thing that kept this buffer 611 * in memory. Make sure we have a ref for all this other checks 612 */ 613 atomic_inc(&eb->refs); 614 615 reads_done = atomic_dec_and_test(&eb->io_pages); 616 if (!reads_done) 617 goto err; 618 619 eb->read_mirror = mirror; 620 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 621 ret = -EIO; 622 goto err; 623 } 624 625 found_start = btrfs_header_bytenr(eb); 626 if (found_start != eb->start) { 627 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 628 eb->start, found_start); 629 ret = -EIO; 630 goto err; 631 } 632 if (check_tree_block_fsid(eb)) { 633 btrfs_err_rl(fs_info, "bad fsid on block %llu", 634 eb->start); 635 ret = -EIO; 636 goto err; 637 } 638 found_level = btrfs_header_level(eb); 639 if (found_level >= BTRFS_MAX_LEVEL) { 640 btrfs_err(fs_info, "bad tree block level %d on %llu", 641 (int)btrfs_header_level(eb), eb->start); 642 ret = -EIO; 643 goto err; 644 } 645 646 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 647 eb, found_level); 648 649 ret = csum_tree_block(eb, result); 650 if (ret) 651 goto err; 652 653 if (memcmp_extent_buffer(eb, result, 0, csum_size)) { 654 u32 val; 655 u32 found = 0; 656 657 memcpy(&found, result, csum_size); 658 659 read_extent_buffer(eb, &val, 0, csum_size); 660 btrfs_warn_rl(fs_info, 661 "%s checksum verify failed on %llu wanted %x found %x level %d", 662 fs_info->sb->s_id, eb->start, 663 val, found, btrfs_header_level(eb)); 664 ret = -EUCLEAN; 665 goto err; 666 } 667 668 /* 669 * If this is a leaf block and it is corrupt, set the corrupt bit so 670 * that we don't try and read the other copies of this block, just 671 * return -EIO. 672 */ 673 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 674 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 675 ret = -EIO; 676 } 677 678 if (found_level > 0 && btrfs_check_node(eb)) 679 ret = -EIO; 680 681 if (!ret) 682 set_extent_buffer_uptodate(eb); 683 else 684 btrfs_err(fs_info, 685 "block=%llu read time tree block corruption detected", 686 eb->start); 687 err: 688 if (reads_done && 689 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 690 btree_readahead_hook(eb, ret); 691 692 if (ret) { 693 /* 694 * our io error hook is going to dec the io pages 695 * again, we have to make sure it has something 696 * to decrement 697 */ 698 atomic_inc(&eb->io_pages); 699 clear_extent_buffer_uptodate(eb); 700 } 701 free_extent_buffer(eb); 702 out: 703 return ret; 704 } 705 706 static void end_workqueue_bio(struct bio *bio) 707 { 708 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 709 struct btrfs_fs_info *fs_info; 710 struct btrfs_workqueue *wq; 711 712 fs_info = end_io_wq->info; 713 end_io_wq->status = bio->bi_status; 714 715 if (bio_op(bio) == REQ_OP_WRITE) { 716 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) 717 wq = fs_info->endio_meta_write_workers; 718 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) 719 wq = fs_info->endio_freespace_worker; 720 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 721 wq = fs_info->endio_raid56_workers; 722 else 723 wq = fs_info->endio_write_workers; 724 } else { 725 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR)) 726 wq = fs_info->endio_repair_workers; 727 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 728 wq = fs_info->endio_raid56_workers; 729 else if (end_io_wq->metadata) 730 wq = fs_info->endio_meta_workers; 731 else 732 wq = fs_info->endio_workers; 733 } 734 735 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL); 736 btrfs_queue_work(wq, &end_io_wq->work); 737 } 738 739 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 740 enum btrfs_wq_endio_type metadata) 741 { 742 struct btrfs_end_io_wq *end_io_wq; 743 744 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 745 if (!end_io_wq) 746 return BLK_STS_RESOURCE; 747 748 end_io_wq->private = bio->bi_private; 749 end_io_wq->end_io = bio->bi_end_io; 750 end_io_wq->info = info; 751 end_io_wq->status = 0; 752 end_io_wq->bio = bio; 753 end_io_wq->metadata = metadata; 754 755 bio->bi_private = end_io_wq; 756 bio->bi_end_io = end_workqueue_bio; 757 return 0; 758 } 759 760 static void run_one_async_start(struct btrfs_work *work) 761 { 762 struct async_submit_bio *async; 763 blk_status_t ret; 764 765 async = container_of(work, struct async_submit_bio, work); 766 ret = async->submit_bio_start(async->private_data, async->bio, 767 async->bio_offset); 768 if (ret) 769 async->status = ret; 770 } 771 772 /* 773 * In order to insert checksums into the metadata in large chunks, we wait 774 * until bio submission time. All the pages in the bio are checksummed and 775 * sums are attached onto the ordered extent record. 776 * 777 * At IO completion time the csums attached on the ordered extent record are 778 * inserted into the tree. 779 */ 780 static void run_one_async_done(struct btrfs_work *work) 781 { 782 struct async_submit_bio *async; 783 struct inode *inode; 784 blk_status_t ret; 785 786 async = container_of(work, struct async_submit_bio, work); 787 inode = async->private_data; 788 789 /* If an error occurred we just want to clean up the bio and move on */ 790 if (async->status) { 791 async->bio->bi_status = async->status; 792 bio_endio(async->bio); 793 return; 794 } 795 796 /* 797 * All of the bios that pass through here are from async helpers. 798 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context. 799 * This changes nothing when cgroups aren't in use. 800 */ 801 async->bio->bi_opf |= REQ_CGROUP_PUNT; 802 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num); 803 if (ret) { 804 async->bio->bi_status = ret; 805 bio_endio(async->bio); 806 } 807 } 808 809 static void run_one_async_free(struct btrfs_work *work) 810 { 811 struct async_submit_bio *async; 812 813 async = container_of(work, struct async_submit_bio, work); 814 kfree(async); 815 } 816 817 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 818 int mirror_num, unsigned long bio_flags, 819 u64 bio_offset, void *private_data, 820 extent_submit_bio_start_t *submit_bio_start) 821 { 822 struct async_submit_bio *async; 823 824 async = kmalloc(sizeof(*async), GFP_NOFS); 825 if (!async) 826 return BLK_STS_RESOURCE; 827 828 async->private_data = private_data; 829 async->bio = bio; 830 async->mirror_num = mirror_num; 831 async->submit_bio_start = submit_bio_start; 832 833 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, 834 run_one_async_free); 835 836 async->bio_offset = bio_offset; 837 838 async->status = 0; 839 840 if (op_is_sync(bio->bi_opf)) 841 btrfs_set_work_high_priority(&async->work); 842 843 btrfs_queue_work(fs_info->workers, &async->work); 844 return 0; 845 } 846 847 static blk_status_t btree_csum_one_bio(struct bio *bio) 848 { 849 struct bio_vec *bvec; 850 struct btrfs_root *root; 851 int ret = 0; 852 struct bvec_iter_all iter_all; 853 854 ASSERT(!bio_flagged(bio, BIO_CLONED)); 855 bio_for_each_segment_all(bvec, bio, iter_all) { 856 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 857 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 858 if (ret) 859 break; 860 } 861 862 return errno_to_blk_status(ret); 863 } 864 865 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, 866 u64 bio_offset) 867 { 868 /* 869 * when we're called for a write, we're already in the async 870 * submission context. Just jump into btrfs_map_bio 871 */ 872 return btree_csum_one_bio(bio); 873 } 874 875 static int check_async_write(struct btrfs_fs_info *fs_info, 876 struct btrfs_inode *bi) 877 { 878 if (atomic_read(&bi->sync_writers)) 879 return 0; 880 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 881 return 0; 882 return 1; 883 } 884 885 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio, 886 int mirror_num, 887 unsigned long bio_flags) 888 { 889 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 890 int async = check_async_write(fs_info, BTRFS_I(inode)); 891 blk_status_t ret; 892 893 if (bio_op(bio) != REQ_OP_WRITE) { 894 /* 895 * called for a read, do the setup so that checksum validation 896 * can happen in the async kernel threads 897 */ 898 ret = btrfs_bio_wq_end_io(fs_info, bio, 899 BTRFS_WQ_ENDIO_METADATA); 900 if (ret) 901 goto out_w_error; 902 ret = btrfs_map_bio(fs_info, bio, mirror_num); 903 } else if (!async) { 904 ret = btree_csum_one_bio(bio); 905 if (ret) 906 goto out_w_error; 907 ret = btrfs_map_bio(fs_info, bio, mirror_num); 908 } else { 909 /* 910 * kthread helpers are used to submit writes so that 911 * checksumming can happen in parallel across all CPUs 912 */ 913 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 914 0, inode, btree_submit_bio_start); 915 } 916 917 if (ret) 918 goto out_w_error; 919 return 0; 920 921 out_w_error: 922 bio->bi_status = ret; 923 bio_endio(bio); 924 return ret; 925 } 926 927 #ifdef CONFIG_MIGRATION 928 static int btree_migratepage(struct address_space *mapping, 929 struct page *newpage, struct page *page, 930 enum migrate_mode mode) 931 { 932 /* 933 * we can't safely write a btree page from here, 934 * we haven't done the locking hook 935 */ 936 if (PageDirty(page)) 937 return -EAGAIN; 938 /* 939 * Buffers may be managed in a filesystem specific way. 940 * We must have no buffers or drop them. 941 */ 942 if (page_has_private(page) && 943 !try_to_release_page(page, GFP_KERNEL)) 944 return -EAGAIN; 945 return migrate_page(mapping, newpage, page, mode); 946 } 947 #endif 948 949 950 static int btree_writepages(struct address_space *mapping, 951 struct writeback_control *wbc) 952 { 953 struct btrfs_fs_info *fs_info; 954 int ret; 955 956 if (wbc->sync_mode == WB_SYNC_NONE) { 957 958 if (wbc->for_kupdate) 959 return 0; 960 961 fs_info = BTRFS_I(mapping->host)->root->fs_info; 962 /* this is a bit racy, but that's ok */ 963 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 964 BTRFS_DIRTY_METADATA_THRESH, 965 fs_info->dirty_metadata_batch); 966 if (ret < 0) 967 return 0; 968 } 969 return btree_write_cache_pages(mapping, wbc); 970 } 971 972 static int btree_readpage(struct file *file, struct page *page) 973 { 974 struct extent_io_tree *tree; 975 tree = &BTRFS_I(page->mapping->host)->io_tree; 976 return extent_read_full_page(tree, page, btree_get_extent, 0); 977 } 978 979 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 980 { 981 if (PageWriteback(page) || PageDirty(page)) 982 return 0; 983 984 return try_release_extent_buffer(page); 985 } 986 987 static void btree_invalidatepage(struct page *page, unsigned int offset, 988 unsigned int length) 989 { 990 struct extent_io_tree *tree; 991 tree = &BTRFS_I(page->mapping->host)->io_tree; 992 extent_invalidatepage(tree, page, offset); 993 btree_releasepage(page, GFP_NOFS); 994 if (PagePrivate(page)) { 995 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 996 "page private not zero on page %llu", 997 (unsigned long long)page_offset(page)); 998 ClearPagePrivate(page); 999 set_page_private(page, 0); 1000 put_page(page); 1001 } 1002 } 1003 1004 static int btree_set_page_dirty(struct page *page) 1005 { 1006 #ifdef DEBUG 1007 struct extent_buffer *eb; 1008 1009 BUG_ON(!PagePrivate(page)); 1010 eb = (struct extent_buffer *)page->private; 1011 BUG_ON(!eb); 1012 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1013 BUG_ON(!atomic_read(&eb->refs)); 1014 btrfs_assert_tree_locked(eb); 1015 #endif 1016 return __set_page_dirty_nobuffers(page); 1017 } 1018 1019 static const struct address_space_operations btree_aops = { 1020 .readpage = btree_readpage, 1021 .writepages = btree_writepages, 1022 .releasepage = btree_releasepage, 1023 .invalidatepage = btree_invalidatepage, 1024 #ifdef CONFIG_MIGRATION 1025 .migratepage = btree_migratepage, 1026 #endif 1027 .set_page_dirty = btree_set_page_dirty, 1028 }; 1029 1030 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1031 { 1032 struct extent_buffer *buf = NULL; 1033 int ret; 1034 1035 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1036 if (IS_ERR(buf)) 1037 return; 1038 1039 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0); 1040 if (ret < 0) 1041 free_extent_buffer_stale(buf); 1042 else 1043 free_extent_buffer(buf); 1044 } 1045 1046 struct extent_buffer *btrfs_find_create_tree_block( 1047 struct btrfs_fs_info *fs_info, 1048 u64 bytenr) 1049 { 1050 if (btrfs_is_testing(fs_info)) 1051 return alloc_test_extent_buffer(fs_info, bytenr); 1052 return alloc_extent_buffer(fs_info, bytenr); 1053 } 1054 1055 /* 1056 * Read tree block at logical address @bytenr and do variant basic but critical 1057 * verification. 1058 * 1059 * @parent_transid: expected transid of this tree block, skip check if 0 1060 * @level: expected level, mandatory check 1061 * @first_key: expected key in slot 0, skip check if NULL 1062 */ 1063 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1064 u64 parent_transid, int level, 1065 struct btrfs_key *first_key) 1066 { 1067 struct extent_buffer *buf = NULL; 1068 int ret; 1069 1070 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1071 if (IS_ERR(buf)) 1072 return buf; 1073 1074 ret = btree_read_extent_buffer_pages(buf, parent_transid, 1075 level, first_key); 1076 if (ret) { 1077 free_extent_buffer_stale(buf); 1078 return ERR_PTR(ret); 1079 } 1080 return buf; 1081 1082 } 1083 1084 void btrfs_clean_tree_block(struct extent_buffer *buf) 1085 { 1086 struct btrfs_fs_info *fs_info = buf->fs_info; 1087 if (btrfs_header_generation(buf) == 1088 fs_info->running_transaction->transid) { 1089 btrfs_assert_tree_locked(buf); 1090 1091 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1092 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1093 -buf->len, 1094 fs_info->dirty_metadata_batch); 1095 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1096 btrfs_set_lock_blocking_write(buf); 1097 clear_extent_buffer_dirty(buf); 1098 } 1099 } 1100 } 1101 1102 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1103 { 1104 struct btrfs_subvolume_writers *writers; 1105 int ret; 1106 1107 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1108 if (!writers) 1109 return ERR_PTR(-ENOMEM); 1110 1111 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS); 1112 if (ret < 0) { 1113 kfree(writers); 1114 return ERR_PTR(ret); 1115 } 1116 1117 init_waitqueue_head(&writers->wait); 1118 return writers; 1119 } 1120 1121 static void 1122 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1123 { 1124 percpu_counter_destroy(&writers->counter); 1125 kfree(writers); 1126 } 1127 1128 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1129 u64 objectid) 1130 { 1131 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1132 root->node = NULL; 1133 root->commit_root = NULL; 1134 root->state = 0; 1135 root->orphan_cleanup_state = 0; 1136 1137 root->last_trans = 0; 1138 root->highest_objectid = 0; 1139 root->nr_delalloc_inodes = 0; 1140 root->nr_ordered_extents = 0; 1141 root->inode_tree = RB_ROOT; 1142 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1143 root->block_rsv = NULL; 1144 1145 INIT_LIST_HEAD(&root->dirty_list); 1146 INIT_LIST_HEAD(&root->root_list); 1147 INIT_LIST_HEAD(&root->delalloc_inodes); 1148 INIT_LIST_HEAD(&root->delalloc_root); 1149 INIT_LIST_HEAD(&root->ordered_extents); 1150 INIT_LIST_HEAD(&root->ordered_root); 1151 INIT_LIST_HEAD(&root->reloc_dirty_list); 1152 INIT_LIST_HEAD(&root->logged_list[0]); 1153 INIT_LIST_HEAD(&root->logged_list[1]); 1154 spin_lock_init(&root->inode_lock); 1155 spin_lock_init(&root->delalloc_lock); 1156 spin_lock_init(&root->ordered_extent_lock); 1157 spin_lock_init(&root->accounting_lock); 1158 spin_lock_init(&root->log_extents_lock[0]); 1159 spin_lock_init(&root->log_extents_lock[1]); 1160 spin_lock_init(&root->qgroup_meta_rsv_lock); 1161 mutex_init(&root->objectid_mutex); 1162 mutex_init(&root->log_mutex); 1163 mutex_init(&root->ordered_extent_mutex); 1164 mutex_init(&root->delalloc_mutex); 1165 init_waitqueue_head(&root->log_writer_wait); 1166 init_waitqueue_head(&root->log_commit_wait[0]); 1167 init_waitqueue_head(&root->log_commit_wait[1]); 1168 INIT_LIST_HEAD(&root->log_ctxs[0]); 1169 INIT_LIST_HEAD(&root->log_ctxs[1]); 1170 atomic_set(&root->log_commit[0], 0); 1171 atomic_set(&root->log_commit[1], 0); 1172 atomic_set(&root->log_writers, 0); 1173 atomic_set(&root->log_batch, 0); 1174 refcount_set(&root->refs, 1); 1175 atomic_set(&root->will_be_snapshotted, 0); 1176 atomic_set(&root->snapshot_force_cow, 0); 1177 atomic_set(&root->nr_swapfiles, 0); 1178 root->log_transid = 0; 1179 root->log_transid_committed = -1; 1180 root->last_log_commit = 0; 1181 if (!dummy) 1182 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1183 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL); 1184 1185 memset(&root->root_key, 0, sizeof(root->root_key)); 1186 memset(&root->root_item, 0, sizeof(root->root_item)); 1187 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1188 if (!dummy) 1189 root->defrag_trans_start = fs_info->generation; 1190 else 1191 root->defrag_trans_start = 0; 1192 root->root_key.objectid = objectid; 1193 root->anon_dev = 0; 1194 1195 spin_lock_init(&root->root_item_lock); 1196 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1197 } 1198 1199 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1200 gfp_t flags) 1201 { 1202 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1203 if (root) 1204 root->fs_info = fs_info; 1205 return root; 1206 } 1207 1208 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1209 /* Should only be used by the testing infrastructure */ 1210 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1211 { 1212 struct btrfs_root *root; 1213 1214 if (!fs_info) 1215 return ERR_PTR(-EINVAL); 1216 1217 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1218 if (!root) 1219 return ERR_PTR(-ENOMEM); 1220 1221 /* We don't use the stripesize in selftest, set it as sectorsize */ 1222 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 1223 root->alloc_bytenr = 0; 1224 1225 return root; 1226 } 1227 #endif 1228 1229 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1230 u64 objectid) 1231 { 1232 struct btrfs_fs_info *fs_info = trans->fs_info; 1233 struct extent_buffer *leaf; 1234 struct btrfs_root *tree_root = fs_info->tree_root; 1235 struct btrfs_root *root; 1236 struct btrfs_key key; 1237 unsigned int nofs_flag; 1238 int ret = 0; 1239 uuid_le uuid = NULL_UUID_LE; 1240 1241 /* 1242 * We're holding a transaction handle, so use a NOFS memory allocation 1243 * context to avoid deadlock if reclaim happens. 1244 */ 1245 nofs_flag = memalloc_nofs_save(); 1246 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1247 memalloc_nofs_restore(nofs_flag); 1248 if (!root) 1249 return ERR_PTR(-ENOMEM); 1250 1251 __setup_root(root, fs_info, objectid); 1252 root->root_key.objectid = objectid; 1253 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1254 root->root_key.offset = 0; 1255 1256 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1257 if (IS_ERR(leaf)) { 1258 ret = PTR_ERR(leaf); 1259 leaf = NULL; 1260 goto fail; 1261 } 1262 1263 root->node = leaf; 1264 btrfs_mark_buffer_dirty(leaf); 1265 1266 root->commit_root = btrfs_root_node(root); 1267 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1268 1269 root->root_item.flags = 0; 1270 root->root_item.byte_limit = 0; 1271 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1272 btrfs_set_root_generation(&root->root_item, trans->transid); 1273 btrfs_set_root_level(&root->root_item, 0); 1274 btrfs_set_root_refs(&root->root_item, 1); 1275 btrfs_set_root_used(&root->root_item, leaf->len); 1276 btrfs_set_root_last_snapshot(&root->root_item, 0); 1277 btrfs_set_root_dirid(&root->root_item, 0); 1278 if (is_fstree(objectid)) 1279 uuid_le_gen(&uuid); 1280 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1281 root->root_item.drop_level = 0; 1282 1283 key.objectid = objectid; 1284 key.type = BTRFS_ROOT_ITEM_KEY; 1285 key.offset = 0; 1286 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1287 if (ret) 1288 goto fail; 1289 1290 btrfs_tree_unlock(leaf); 1291 1292 return root; 1293 1294 fail: 1295 if (leaf) { 1296 btrfs_tree_unlock(leaf); 1297 free_extent_buffer(root->commit_root); 1298 free_extent_buffer(leaf); 1299 } 1300 kfree(root); 1301 1302 return ERR_PTR(ret); 1303 } 1304 1305 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1306 struct btrfs_fs_info *fs_info) 1307 { 1308 struct btrfs_root *root; 1309 struct extent_buffer *leaf; 1310 1311 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1312 if (!root) 1313 return ERR_PTR(-ENOMEM); 1314 1315 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1316 1317 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1318 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1319 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1320 1321 /* 1322 * DON'T set REF_COWS for log trees 1323 * 1324 * log trees do not get reference counted because they go away 1325 * before a real commit is actually done. They do store pointers 1326 * to file data extents, and those reference counts still get 1327 * updated (along with back refs to the log tree). 1328 */ 1329 1330 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1331 NULL, 0, 0, 0); 1332 if (IS_ERR(leaf)) { 1333 kfree(root); 1334 return ERR_CAST(leaf); 1335 } 1336 1337 root->node = leaf; 1338 1339 btrfs_mark_buffer_dirty(root->node); 1340 btrfs_tree_unlock(root->node); 1341 return root; 1342 } 1343 1344 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1345 struct btrfs_fs_info *fs_info) 1346 { 1347 struct btrfs_root *log_root; 1348 1349 log_root = alloc_log_tree(trans, fs_info); 1350 if (IS_ERR(log_root)) 1351 return PTR_ERR(log_root); 1352 WARN_ON(fs_info->log_root_tree); 1353 fs_info->log_root_tree = log_root; 1354 return 0; 1355 } 1356 1357 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1358 struct btrfs_root *root) 1359 { 1360 struct btrfs_fs_info *fs_info = root->fs_info; 1361 struct btrfs_root *log_root; 1362 struct btrfs_inode_item *inode_item; 1363 1364 log_root = alloc_log_tree(trans, fs_info); 1365 if (IS_ERR(log_root)) 1366 return PTR_ERR(log_root); 1367 1368 log_root->last_trans = trans->transid; 1369 log_root->root_key.offset = root->root_key.objectid; 1370 1371 inode_item = &log_root->root_item.inode; 1372 btrfs_set_stack_inode_generation(inode_item, 1); 1373 btrfs_set_stack_inode_size(inode_item, 3); 1374 btrfs_set_stack_inode_nlink(inode_item, 1); 1375 btrfs_set_stack_inode_nbytes(inode_item, 1376 fs_info->nodesize); 1377 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1378 1379 btrfs_set_root_node(&log_root->root_item, log_root->node); 1380 1381 WARN_ON(root->log_root); 1382 root->log_root = log_root; 1383 root->log_transid = 0; 1384 root->log_transid_committed = -1; 1385 root->last_log_commit = 0; 1386 return 0; 1387 } 1388 1389 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1390 struct btrfs_key *key) 1391 { 1392 struct btrfs_root *root; 1393 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1394 struct btrfs_path *path; 1395 u64 generation; 1396 int ret; 1397 int level; 1398 1399 path = btrfs_alloc_path(); 1400 if (!path) 1401 return ERR_PTR(-ENOMEM); 1402 1403 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1404 if (!root) { 1405 ret = -ENOMEM; 1406 goto alloc_fail; 1407 } 1408 1409 __setup_root(root, fs_info, key->objectid); 1410 1411 ret = btrfs_find_root(tree_root, key, path, 1412 &root->root_item, &root->root_key); 1413 if (ret) { 1414 if (ret > 0) 1415 ret = -ENOENT; 1416 goto find_fail; 1417 } 1418 1419 generation = btrfs_root_generation(&root->root_item); 1420 level = btrfs_root_level(&root->root_item); 1421 root->node = read_tree_block(fs_info, 1422 btrfs_root_bytenr(&root->root_item), 1423 generation, level, NULL); 1424 if (IS_ERR(root->node)) { 1425 ret = PTR_ERR(root->node); 1426 goto find_fail; 1427 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1428 ret = -EIO; 1429 free_extent_buffer(root->node); 1430 goto find_fail; 1431 } 1432 root->commit_root = btrfs_root_node(root); 1433 out: 1434 btrfs_free_path(path); 1435 return root; 1436 1437 find_fail: 1438 kfree(root); 1439 alloc_fail: 1440 root = ERR_PTR(ret); 1441 goto out; 1442 } 1443 1444 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1445 struct btrfs_key *location) 1446 { 1447 struct btrfs_root *root; 1448 1449 root = btrfs_read_tree_root(tree_root, location); 1450 if (IS_ERR(root)) 1451 return root; 1452 1453 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1454 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1455 btrfs_check_and_init_root_item(&root->root_item); 1456 } 1457 1458 return root; 1459 } 1460 1461 int btrfs_init_fs_root(struct btrfs_root *root) 1462 { 1463 int ret; 1464 struct btrfs_subvolume_writers *writers; 1465 1466 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1467 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1468 GFP_NOFS); 1469 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1470 ret = -ENOMEM; 1471 goto fail; 1472 } 1473 1474 writers = btrfs_alloc_subvolume_writers(); 1475 if (IS_ERR(writers)) { 1476 ret = PTR_ERR(writers); 1477 goto fail; 1478 } 1479 root->subv_writers = writers; 1480 1481 btrfs_init_free_ino_ctl(root); 1482 spin_lock_init(&root->ino_cache_lock); 1483 init_waitqueue_head(&root->ino_cache_wait); 1484 1485 ret = get_anon_bdev(&root->anon_dev); 1486 if (ret) 1487 goto fail; 1488 1489 mutex_lock(&root->objectid_mutex); 1490 ret = btrfs_find_highest_objectid(root, 1491 &root->highest_objectid); 1492 if (ret) { 1493 mutex_unlock(&root->objectid_mutex); 1494 goto fail; 1495 } 1496 1497 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1498 1499 mutex_unlock(&root->objectid_mutex); 1500 1501 return 0; 1502 fail: 1503 /* The caller is responsible to call btrfs_free_fs_root */ 1504 return ret; 1505 } 1506 1507 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1508 u64 root_id) 1509 { 1510 struct btrfs_root *root; 1511 1512 spin_lock(&fs_info->fs_roots_radix_lock); 1513 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1514 (unsigned long)root_id); 1515 spin_unlock(&fs_info->fs_roots_radix_lock); 1516 return root; 1517 } 1518 1519 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1520 struct btrfs_root *root) 1521 { 1522 int ret; 1523 1524 ret = radix_tree_preload(GFP_NOFS); 1525 if (ret) 1526 return ret; 1527 1528 spin_lock(&fs_info->fs_roots_radix_lock); 1529 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1530 (unsigned long)root->root_key.objectid, 1531 root); 1532 if (ret == 0) 1533 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1534 spin_unlock(&fs_info->fs_roots_radix_lock); 1535 radix_tree_preload_end(); 1536 1537 return ret; 1538 } 1539 1540 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1541 struct btrfs_key *location, 1542 bool check_ref) 1543 { 1544 struct btrfs_root *root; 1545 struct btrfs_path *path; 1546 struct btrfs_key key; 1547 int ret; 1548 1549 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1550 return fs_info->tree_root; 1551 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1552 return fs_info->extent_root; 1553 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1554 return fs_info->chunk_root; 1555 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1556 return fs_info->dev_root; 1557 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1558 return fs_info->csum_root; 1559 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1560 return fs_info->quota_root ? fs_info->quota_root : 1561 ERR_PTR(-ENOENT); 1562 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1563 return fs_info->uuid_root ? fs_info->uuid_root : 1564 ERR_PTR(-ENOENT); 1565 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1566 return fs_info->free_space_root ? fs_info->free_space_root : 1567 ERR_PTR(-ENOENT); 1568 again: 1569 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1570 if (root) { 1571 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1572 return ERR_PTR(-ENOENT); 1573 return root; 1574 } 1575 1576 root = btrfs_read_fs_root(fs_info->tree_root, location); 1577 if (IS_ERR(root)) 1578 return root; 1579 1580 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1581 ret = -ENOENT; 1582 goto fail; 1583 } 1584 1585 ret = btrfs_init_fs_root(root); 1586 if (ret) 1587 goto fail; 1588 1589 path = btrfs_alloc_path(); 1590 if (!path) { 1591 ret = -ENOMEM; 1592 goto fail; 1593 } 1594 key.objectid = BTRFS_ORPHAN_OBJECTID; 1595 key.type = BTRFS_ORPHAN_ITEM_KEY; 1596 key.offset = location->objectid; 1597 1598 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1599 btrfs_free_path(path); 1600 if (ret < 0) 1601 goto fail; 1602 if (ret == 0) 1603 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1604 1605 ret = btrfs_insert_fs_root(fs_info, root); 1606 if (ret) { 1607 if (ret == -EEXIST) { 1608 btrfs_free_fs_root(root); 1609 goto again; 1610 } 1611 goto fail; 1612 } 1613 return root; 1614 fail: 1615 btrfs_free_fs_root(root); 1616 return ERR_PTR(ret); 1617 } 1618 1619 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1620 { 1621 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1622 int ret = 0; 1623 struct btrfs_device *device; 1624 struct backing_dev_info *bdi; 1625 1626 rcu_read_lock(); 1627 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1628 if (!device->bdev) 1629 continue; 1630 bdi = device->bdev->bd_bdi; 1631 if (bdi_congested(bdi, bdi_bits)) { 1632 ret = 1; 1633 break; 1634 } 1635 } 1636 rcu_read_unlock(); 1637 return ret; 1638 } 1639 1640 /* 1641 * called by the kthread helper functions to finally call the bio end_io 1642 * functions. This is where read checksum verification actually happens 1643 */ 1644 static void end_workqueue_fn(struct btrfs_work *work) 1645 { 1646 struct bio *bio; 1647 struct btrfs_end_io_wq *end_io_wq; 1648 1649 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1650 bio = end_io_wq->bio; 1651 1652 bio->bi_status = end_io_wq->status; 1653 bio->bi_private = end_io_wq->private; 1654 bio->bi_end_io = end_io_wq->end_io; 1655 bio_endio(bio); 1656 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1657 } 1658 1659 static int cleaner_kthread(void *arg) 1660 { 1661 struct btrfs_root *root = arg; 1662 struct btrfs_fs_info *fs_info = root->fs_info; 1663 int again; 1664 1665 while (1) { 1666 again = 0; 1667 1668 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1669 1670 /* Make the cleaner go to sleep early. */ 1671 if (btrfs_need_cleaner_sleep(fs_info)) 1672 goto sleep; 1673 1674 /* 1675 * Do not do anything if we might cause open_ctree() to block 1676 * before we have finished mounting the filesystem. 1677 */ 1678 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1679 goto sleep; 1680 1681 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1682 goto sleep; 1683 1684 /* 1685 * Avoid the problem that we change the status of the fs 1686 * during the above check and trylock. 1687 */ 1688 if (btrfs_need_cleaner_sleep(fs_info)) { 1689 mutex_unlock(&fs_info->cleaner_mutex); 1690 goto sleep; 1691 } 1692 1693 btrfs_run_delayed_iputs(fs_info); 1694 1695 again = btrfs_clean_one_deleted_snapshot(root); 1696 mutex_unlock(&fs_info->cleaner_mutex); 1697 1698 /* 1699 * The defragger has dealt with the R/O remount and umount, 1700 * needn't do anything special here. 1701 */ 1702 btrfs_run_defrag_inodes(fs_info); 1703 1704 /* 1705 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1706 * with relocation (btrfs_relocate_chunk) and relocation 1707 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1708 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1709 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1710 * unused block groups. 1711 */ 1712 btrfs_delete_unused_bgs(fs_info); 1713 sleep: 1714 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1715 if (kthread_should_park()) 1716 kthread_parkme(); 1717 if (kthread_should_stop()) 1718 return 0; 1719 if (!again) { 1720 set_current_state(TASK_INTERRUPTIBLE); 1721 schedule(); 1722 __set_current_state(TASK_RUNNING); 1723 } 1724 } 1725 } 1726 1727 static int transaction_kthread(void *arg) 1728 { 1729 struct btrfs_root *root = arg; 1730 struct btrfs_fs_info *fs_info = root->fs_info; 1731 struct btrfs_trans_handle *trans; 1732 struct btrfs_transaction *cur; 1733 u64 transid; 1734 time64_t now; 1735 unsigned long delay; 1736 bool cannot_commit; 1737 1738 do { 1739 cannot_commit = false; 1740 delay = HZ * fs_info->commit_interval; 1741 mutex_lock(&fs_info->transaction_kthread_mutex); 1742 1743 spin_lock(&fs_info->trans_lock); 1744 cur = fs_info->running_transaction; 1745 if (!cur) { 1746 spin_unlock(&fs_info->trans_lock); 1747 goto sleep; 1748 } 1749 1750 now = ktime_get_seconds(); 1751 if (cur->state < TRANS_STATE_COMMIT_START && 1752 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) && 1753 (now < cur->start_time || 1754 now - cur->start_time < fs_info->commit_interval)) { 1755 spin_unlock(&fs_info->trans_lock); 1756 delay = HZ * 5; 1757 goto sleep; 1758 } 1759 transid = cur->transid; 1760 spin_unlock(&fs_info->trans_lock); 1761 1762 /* If the file system is aborted, this will always fail. */ 1763 trans = btrfs_attach_transaction(root); 1764 if (IS_ERR(trans)) { 1765 if (PTR_ERR(trans) != -ENOENT) 1766 cannot_commit = true; 1767 goto sleep; 1768 } 1769 if (transid == trans->transid) { 1770 btrfs_commit_transaction(trans); 1771 } else { 1772 btrfs_end_transaction(trans); 1773 } 1774 sleep: 1775 wake_up_process(fs_info->cleaner_kthread); 1776 mutex_unlock(&fs_info->transaction_kthread_mutex); 1777 1778 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1779 &fs_info->fs_state))) 1780 btrfs_cleanup_transaction(fs_info); 1781 if (!kthread_should_stop() && 1782 (!btrfs_transaction_blocked(fs_info) || 1783 cannot_commit)) 1784 schedule_timeout_interruptible(delay); 1785 } while (!kthread_should_stop()); 1786 return 0; 1787 } 1788 1789 /* 1790 * This will find the highest generation in the array of root backups. The 1791 * index of the highest array is returned, or -EINVAL if we can't find 1792 * anything. 1793 * 1794 * We check to make sure the array is valid by comparing the 1795 * generation of the latest root in the array with the generation 1796 * in the super block. If they don't match we pitch it. 1797 */ 1798 static int find_newest_super_backup(struct btrfs_fs_info *info) 1799 { 1800 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1801 u64 cur; 1802 struct btrfs_root_backup *root_backup; 1803 int i; 1804 1805 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1806 root_backup = info->super_copy->super_roots + i; 1807 cur = btrfs_backup_tree_root_gen(root_backup); 1808 if (cur == newest_gen) 1809 return i; 1810 } 1811 1812 return -EINVAL; 1813 } 1814 1815 /* 1816 * copy all the root pointers into the super backup array. 1817 * this will bump the backup pointer by one when it is 1818 * done 1819 */ 1820 static void backup_super_roots(struct btrfs_fs_info *info) 1821 { 1822 const int next_backup = info->backup_root_index; 1823 struct btrfs_root_backup *root_backup; 1824 1825 root_backup = info->super_for_commit->super_roots + next_backup; 1826 1827 /* 1828 * make sure all of our padding and empty slots get zero filled 1829 * regardless of which ones we use today 1830 */ 1831 memset(root_backup, 0, sizeof(*root_backup)); 1832 1833 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1834 1835 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1836 btrfs_set_backup_tree_root_gen(root_backup, 1837 btrfs_header_generation(info->tree_root->node)); 1838 1839 btrfs_set_backup_tree_root_level(root_backup, 1840 btrfs_header_level(info->tree_root->node)); 1841 1842 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1843 btrfs_set_backup_chunk_root_gen(root_backup, 1844 btrfs_header_generation(info->chunk_root->node)); 1845 btrfs_set_backup_chunk_root_level(root_backup, 1846 btrfs_header_level(info->chunk_root->node)); 1847 1848 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1849 btrfs_set_backup_extent_root_gen(root_backup, 1850 btrfs_header_generation(info->extent_root->node)); 1851 btrfs_set_backup_extent_root_level(root_backup, 1852 btrfs_header_level(info->extent_root->node)); 1853 1854 /* 1855 * we might commit during log recovery, which happens before we set 1856 * the fs_root. Make sure it is valid before we fill it in. 1857 */ 1858 if (info->fs_root && info->fs_root->node) { 1859 btrfs_set_backup_fs_root(root_backup, 1860 info->fs_root->node->start); 1861 btrfs_set_backup_fs_root_gen(root_backup, 1862 btrfs_header_generation(info->fs_root->node)); 1863 btrfs_set_backup_fs_root_level(root_backup, 1864 btrfs_header_level(info->fs_root->node)); 1865 } 1866 1867 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1868 btrfs_set_backup_dev_root_gen(root_backup, 1869 btrfs_header_generation(info->dev_root->node)); 1870 btrfs_set_backup_dev_root_level(root_backup, 1871 btrfs_header_level(info->dev_root->node)); 1872 1873 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1874 btrfs_set_backup_csum_root_gen(root_backup, 1875 btrfs_header_generation(info->csum_root->node)); 1876 btrfs_set_backup_csum_root_level(root_backup, 1877 btrfs_header_level(info->csum_root->node)); 1878 1879 btrfs_set_backup_total_bytes(root_backup, 1880 btrfs_super_total_bytes(info->super_copy)); 1881 btrfs_set_backup_bytes_used(root_backup, 1882 btrfs_super_bytes_used(info->super_copy)); 1883 btrfs_set_backup_num_devices(root_backup, 1884 btrfs_super_num_devices(info->super_copy)); 1885 1886 /* 1887 * if we don't copy this out to the super_copy, it won't get remembered 1888 * for the next commit 1889 */ 1890 memcpy(&info->super_copy->super_roots, 1891 &info->super_for_commit->super_roots, 1892 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1893 } 1894 1895 /* 1896 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 1897 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1898 * 1899 * fs_info - filesystem whose backup roots need to be read 1900 * priority - priority of backup root required 1901 * 1902 * Returns backup root index on success and -EINVAL otherwise. 1903 */ 1904 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1905 { 1906 int backup_index = find_newest_super_backup(fs_info); 1907 struct btrfs_super_block *super = fs_info->super_copy; 1908 struct btrfs_root_backup *root_backup; 1909 1910 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1911 if (priority == 0) 1912 return backup_index; 1913 1914 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1915 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1916 } else { 1917 return -EINVAL; 1918 } 1919 1920 root_backup = super->super_roots + backup_index; 1921 1922 btrfs_set_super_generation(super, 1923 btrfs_backup_tree_root_gen(root_backup)); 1924 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1925 btrfs_set_super_root_level(super, 1926 btrfs_backup_tree_root_level(root_backup)); 1927 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1928 1929 /* 1930 * Fixme: the total bytes and num_devices need to match or we should 1931 * need a fsck 1932 */ 1933 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1934 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1935 1936 return backup_index; 1937 } 1938 1939 /* helper to cleanup workers */ 1940 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1941 { 1942 btrfs_destroy_workqueue(fs_info->fixup_workers); 1943 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1944 btrfs_destroy_workqueue(fs_info->workers); 1945 btrfs_destroy_workqueue(fs_info->endio_workers); 1946 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 1947 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 1948 btrfs_destroy_workqueue(fs_info->rmw_workers); 1949 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1950 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1951 btrfs_destroy_workqueue(fs_info->delayed_workers); 1952 btrfs_destroy_workqueue(fs_info->caching_workers); 1953 btrfs_destroy_workqueue(fs_info->readahead_workers); 1954 btrfs_destroy_workqueue(fs_info->flush_workers); 1955 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1956 /* 1957 * Now that all other work queues are destroyed, we can safely destroy 1958 * the queues used for metadata I/O, since tasks from those other work 1959 * queues can do metadata I/O operations. 1960 */ 1961 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 1962 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 1963 } 1964 1965 static void free_root_extent_buffers(struct btrfs_root *root) 1966 { 1967 if (root) { 1968 free_extent_buffer(root->node); 1969 free_extent_buffer(root->commit_root); 1970 root->node = NULL; 1971 root->commit_root = NULL; 1972 } 1973 } 1974 1975 /* helper to cleanup tree roots */ 1976 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1977 { 1978 free_root_extent_buffers(info->tree_root); 1979 1980 free_root_extent_buffers(info->dev_root); 1981 free_root_extent_buffers(info->extent_root); 1982 free_root_extent_buffers(info->csum_root); 1983 free_root_extent_buffers(info->quota_root); 1984 free_root_extent_buffers(info->uuid_root); 1985 if (free_chunk_root) 1986 free_root_extent_buffers(info->chunk_root); 1987 free_root_extent_buffers(info->free_space_root); 1988 } 1989 1990 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 1991 { 1992 int ret; 1993 struct btrfs_root *gang[8]; 1994 int i; 1995 1996 while (!list_empty(&fs_info->dead_roots)) { 1997 gang[0] = list_entry(fs_info->dead_roots.next, 1998 struct btrfs_root, root_list); 1999 list_del(&gang[0]->root_list); 2000 2001 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2002 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2003 } else { 2004 free_extent_buffer(gang[0]->node); 2005 free_extent_buffer(gang[0]->commit_root); 2006 btrfs_put_fs_root(gang[0]); 2007 } 2008 } 2009 2010 while (1) { 2011 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2012 (void **)gang, 0, 2013 ARRAY_SIZE(gang)); 2014 if (!ret) 2015 break; 2016 for (i = 0; i < ret; i++) 2017 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2018 } 2019 2020 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2021 btrfs_free_log_root_tree(NULL, fs_info); 2022 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 2023 } 2024 } 2025 2026 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2027 { 2028 mutex_init(&fs_info->scrub_lock); 2029 atomic_set(&fs_info->scrubs_running, 0); 2030 atomic_set(&fs_info->scrub_pause_req, 0); 2031 atomic_set(&fs_info->scrubs_paused, 0); 2032 atomic_set(&fs_info->scrub_cancel_req, 0); 2033 init_waitqueue_head(&fs_info->scrub_pause_wait); 2034 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2035 } 2036 2037 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2038 { 2039 spin_lock_init(&fs_info->balance_lock); 2040 mutex_init(&fs_info->balance_mutex); 2041 atomic_set(&fs_info->balance_pause_req, 0); 2042 atomic_set(&fs_info->balance_cancel_req, 0); 2043 fs_info->balance_ctl = NULL; 2044 init_waitqueue_head(&fs_info->balance_wait_q); 2045 } 2046 2047 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2048 { 2049 struct inode *inode = fs_info->btree_inode; 2050 2051 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2052 set_nlink(inode, 1); 2053 /* 2054 * we set the i_size on the btree inode to the max possible int. 2055 * the real end of the address space is determined by all of 2056 * the devices in the system 2057 */ 2058 inode->i_size = OFFSET_MAX; 2059 inode->i_mapping->a_ops = &btree_aops; 2060 2061 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2062 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2063 IO_TREE_INODE_IO, inode); 2064 BTRFS_I(inode)->io_tree.track_uptodate = false; 2065 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2066 2067 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2068 2069 BTRFS_I(inode)->root = fs_info->tree_root; 2070 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2071 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2072 btrfs_insert_inode_hash(inode); 2073 } 2074 2075 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2076 { 2077 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2078 init_rwsem(&fs_info->dev_replace.rwsem); 2079 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2080 } 2081 2082 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2083 { 2084 spin_lock_init(&fs_info->qgroup_lock); 2085 mutex_init(&fs_info->qgroup_ioctl_lock); 2086 fs_info->qgroup_tree = RB_ROOT; 2087 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2088 fs_info->qgroup_seq = 1; 2089 fs_info->qgroup_ulist = NULL; 2090 fs_info->qgroup_rescan_running = false; 2091 mutex_init(&fs_info->qgroup_rescan_lock); 2092 } 2093 2094 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2095 struct btrfs_fs_devices *fs_devices) 2096 { 2097 u32 max_active = fs_info->thread_pool_size; 2098 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2099 2100 fs_info->workers = 2101 btrfs_alloc_workqueue(fs_info, "worker", 2102 flags | WQ_HIGHPRI, max_active, 16); 2103 2104 fs_info->delalloc_workers = 2105 btrfs_alloc_workqueue(fs_info, "delalloc", 2106 flags, max_active, 2); 2107 2108 fs_info->flush_workers = 2109 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2110 flags, max_active, 0); 2111 2112 fs_info->caching_workers = 2113 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2114 2115 fs_info->fixup_workers = 2116 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2117 2118 /* 2119 * endios are largely parallel and should have a very 2120 * low idle thresh 2121 */ 2122 fs_info->endio_workers = 2123 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2124 fs_info->endio_meta_workers = 2125 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2126 max_active, 4); 2127 fs_info->endio_meta_write_workers = 2128 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2129 max_active, 2); 2130 fs_info->endio_raid56_workers = 2131 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2132 max_active, 4); 2133 fs_info->endio_repair_workers = 2134 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2135 fs_info->rmw_workers = 2136 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2137 fs_info->endio_write_workers = 2138 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2139 max_active, 2); 2140 fs_info->endio_freespace_worker = 2141 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2142 max_active, 0); 2143 fs_info->delayed_workers = 2144 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2145 max_active, 0); 2146 fs_info->readahead_workers = 2147 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2148 max_active, 2); 2149 fs_info->qgroup_rescan_workers = 2150 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2151 2152 if (!(fs_info->workers && fs_info->delalloc_workers && 2153 fs_info->flush_workers && 2154 fs_info->endio_workers && fs_info->endio_meta_workers && 2155 fs_info->endio_meta_write_workers && 2156 fs_info->endio_repair_workers && 2157 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2158 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2159 fs_info->caching_workers && fs_info->readahead_workers && 2160 fs_info->fixup_workers && fs_info->delayed_workers && 2161 fs_info->qgroup_rescan_workers)) { 2162 return -ENOMEM; 2163 } 2164 2165 return 0; 2166 } 2167 2168 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2169 { 2170 struct crypto_shash *csum_shash; 2171 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2172 2173 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2174 2175 if (IS_ERR(csum_shash)) { 2176 btrfs_err(fs_info, "error allocating %s hash for checksum", 2177 csum_driver); 2178 return PTR_ERR(csum_shash); 2179 } 2180 2181 fs_info->csum_shash = csum_shash; 2182 2183 return 0; 2184 } 2185 2186 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 2187 { 2188 crypto_free_shash(fs_info->csum_shash); 2189 } 2190 2191 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2192 struct btrfs_fs_devices *fs_devices) 2193 { 2194 int ret; 2195 struct btrfs_root *log_tree_root; 2196 struct btrfs_super_block *disk_super = fs_info->super_copy; 2197 u64 bytenr = btrfs_super_log_root(disk_super); 2198 int level = btrfs_super_log_root_level(disk_super); 2199 2200 if (fs_devices->rw_devices == 0) { 2201 btrfs_warn(fs_info, "log replay required on RO media"); 2202 return -EIO; 2203 } 2204 2205 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2206 if (!log_tree_root) 2207 return -ENOMEM; 2208 2209 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2210 2211 log_tree_root->node = read_tree_block(fs_info, bytenr, 2212 fs_info->generation + 1, 2213 level, NULL); 2214 if (IS_ERR(log_tree_root->node)) { 2215 btrfs_warn(fs_info, "failed to read log tree"); 2216 ret = PTR_ERR(log_tree_root->node); 2217 kfree(log_tree_root); 2218 return ret; 2219 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2220 btrfs_err(fs_info, "failed to read log tree"); 2221 free_extent_buffer(log_tree_root->node); 2222 kfree(log_tree_root); 2223 return -EIO; 2224 } 2225 /* returns with log_tree_root freed on success */ 2226 ret = btrfs_recover_log_trees(log_tree_root); 2227 if (ret) { 2228 btrfs_handle_fs_error(fs_info, ret, 2229 "Failed to recover log tree"); 2230 free_extent_buffer(log_tree_root->node); 2231 kfree(log_tree_root); 2232 return ret; 2233 } 2234 2235 if (sb_rdonly(fs_info->sb)) { 2236 ret = btrfs_commit_super(fs_info); 2237 if (ret) 2238 return ret; 2239 } 2240 2241 return 0; 2242 } 2243 2244 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2245 { 2246 struct btrfs_root *tree_root = fs_info->tree_root; 2247 struct btrfs_root *root; 2248 struct btrfs_key location; 2249 int ret; 2250 2251 BUG_ON(!fs_info->tree_root); 2252 2253 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2254 location.type = BTRFS_ROOT_ITEM_KEY; 2255 location.offset = 0; 2256 2257 root = btrfs_read_tree_root(tree_root, &location); 2258 if (IS_ERR(root)) { 2259 ret = PTR_ERR(root); 2260 goto out; 2261 } 2262 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2263 fs_info->extent_root = root; 2264 2265 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2266 root = btrfs_read_tree_root(tree_root, &location); 2267 if (IS_ERR(root)) { 2268 ret = PTR_ERR(root); 2269 goto out; 2270 } 2271 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2272 fs_info->dev_root = root; 2273 btrfs_init_devices_late(fs_info); 2274 2275 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2276 root = btrfs_read_tree_root(tree_root, &location); 2277 if (IS_ERR(root)) { 2278 ret = PTR_ERR(root); 2279 goto out; 2280 } 2281 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2282 fs_info->csum_root = root; 2283 2284 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2285 root = btrfs_read_tree_root(tree_root, &location); 2286 if (!IS_ERR(root)) { 2287 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2288 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2289 fs_info->quota_root = root; 2290 } 2291 2292 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2293 root = btrfs_read_tree_root(tree_root, &location); 2294 if (IS_ERR(root)) { 2295 ret = PTR_ERR(root); 2296 if (ret != -ENOENT) 2297 goto out; 2298 } else { 2299 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2300 fs_info->uuid_root = root; 2301 } 2302 2303 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2304 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2305 root = btrfs_read_tree_root(tree_root, &location); 2306 if (IS_ERR(root)) { 2307 ret = PTR_ERR(root); 2308 goto out; 2309 } 2310 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2311 fs_info->free_space_root = root; 2312 } 2313 2314 return 0; 2315 out: 2316 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2317 location.objectid, ret); 2318 return ret; 2319 } 2320 2321 /* 2322 * Real super block validation 2323 * NOTE: super csum type and incompat features will not be checked here. 2324 * 2325 * @sb: super block to check 2326 * @mirror_num: the super block number to check its bytenr: 2327 * 0 the primary (1st) sb 2328 * 1, 2 2nd and 3rd backup copy 2329 * -1 skip bytenr check 2330 */ 2331 static int validate_super(struct btrfs_fs_info *fs_info, 2332 struct btrfs_super_block *sb, int mirror_num) 2333 { 2334 u64 nodesize = btrfs_super_nodesize(sb); 2335 u64 sectorsize = btrfs_super_sectorsize(sb); 2336 int ret = 0; 2337 2338 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2339 btrfs_err(fs_info, "no valid FS found"); 2340 ret = -EINVAL; 2341 } 2342 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2343 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2344 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2345 ret = -EINVAL; 2346 } 2347 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2348 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2349 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2350 ret = -EINVAL; 2351 } 2352 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2353 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2354 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2355 ret = -EINVAL; 2356 } 2357 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2358 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2359 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2360 ret = -EINVAL; 2361 } 2362 2363 /* 2364 * Check sectorsize and nodesize first, other check will need it. 2365 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2366 */ 2367 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2368 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2369 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2370 ret = -EINVAL; 2371 } 2372 /* Only PAGE SIZE is supported yet */ 2373 if (sectorsize != PAGE_SIZE) { 2374 btrfs_err(fs_info, 2375 "sectorsize %llu not supported yet, only support %lu", 2376 sectorsize, PAGE_SIZE); 2377 ret = -EINVAL; 2378 } 2379 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2380 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2381 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2382 ret = -EINVAL; 2383 } 2384 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2385 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2386 le32_to_cpu(sb->__unused_leafsize), nodesize); 2387 ret = -EINVAL; 2388 } 2389 2390 /* Root alignment check */ 2391 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2392 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2393 btrfs_super_root(sb)); 2394 ret = -EINVAL; 2395 } 2396 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2397 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2398 btrfs_super_chunk_root(sb)); 2399 ret = -EINVAL; 2400 } 2401 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2402 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2403 btrfs_super_log_root(sb)); 2404 ret = -EINVAL; 2405 } 2406 2407 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2408 BTRFS_FSID_SIZE) != 0) { 2409 btrfs_err(fs_info, 2410 "dev_item UUID does not match metadata fsid: %pU != %pU", 2411 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2412 ret = -EINVAL; 2413 } 2414 2415 /* 2416 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2417 * done later 2418 */ 2419 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2420 btrfs_err(fs_info, "bytes_used is too small %llu", 2421 btrfs_super_bytes_used(sb)); 2422 ret = -EINVAL; 2423 } 2424 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2425 btrfs_err(fs_info, "invalid stripesize %u", 2426 btrfs_super_stripesize(sb)); 2427 ret = -EINVAL; 2428 } 2429 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2430 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2431 btrfs_super_num_devices(sb)); 2432 if (btrfs_super_num_devices(sb) == 0) { 2433 btrfs_err(fs_info, "number of devices is 0"); 2434 ret = -EINVAL; 2435 } 2436 2437 if (mirror_num >= 0 && 2438 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2439 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2440 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2441 ret = -EINVAL; 2442 } 2443 2444 /* 2445 * Obvious sys_chunk_array corruptions, it must hold at least one key 2446 * and one chunk 2447 */ 2448 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2449 btrfs_err(fs_info, "system chunk array too big %u > %u", 2450 btrfs_super_sys_array_size(sb), 2451 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2452 ret = -EINVAL; 2453 } 2454 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2455 + sizeof(struct btrfs_chunk)) { 2456 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2457 btrfs_super_sys_array_size(sb), 2458 sizeof(struct btrfs_disk_key) 2459 + sizeof(struct btrfs_chunk)); 2460 ret = -EINVAL; 2461 } 2462 2463 /* 2464 * The generation is a global counter, we'll trust it more than the others 2465 * but it's still possible that it's the one that's wrong. 2466 */ 2467 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2468 btrfs_warn(fs_info, 2469 "suspicious: generation < chunk_root_generation: %llu < %llu", 2470 btrfs_super_generation(sb), 2471 btrfs_super_chunk_root_generation(sb)); 2472 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2473 && btrfs_super_cache_generation(sb) != (u64)-1) 2474 btrfs_warn(fs_info, 2475 "suspicious: generation < cache_generation: %llu < %llu", 2476 btrfs_super_generation(sb), 2477 btrfs_super_cache_generation(sb)); 2478 2479 return ret; 2480 } 2481 2482 /* 2483 * Validation of super block at mount time. 2484 * Some checks already done early at mount time, like csum type and incompat 2485 * flags will be skipped. 2486 */ 2487 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2488 { 2489 return validate_super(fs_info, fs_info->super_copy, 0); 2490 } 2491 2492 /* 2493 * Validation of super block at write time. 2494 * Some checks like bytenr check will be skipped as their values will be 2495 * overwritten soon. 2496 * Extra checks like csum type and incompat flags will be done here. 2497 */ 2498 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2499 struct btrfs_super_block *sb) 2500 { 2501 int ret; 2502 2503 ret = validate_super(fs_info, sb, -1); 2504 if (ret < 0) 2505 goto out; 2506 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2507 ret = -EUCLEAN; 2508 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2509 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2510 goto out; 2511 } 2512 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2513 ret = -EUCLEAN; 2514 btrfs_err(fs_info, 2515 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2516 btrfs_super_incompat_flags(sb), 2517 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2518 goto out; 2519 } 2520 out: 2521 if (ret < 0) 2522 btrfs_err(fs_info, 2523 "super block corruption detected before writing it to disk"); 2524 return ret; 2525 } 2526 2527 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2528 { 2529 int backup_index = find_newest_super_backup(fs_info); 2530 struct btrfs_super_block *sb = fs_info->super_copy; 2531 struct btrfs_root *tree_root = fs_info->tree_root; 2532 bool handle_error = false; 2533 int ret = 0; 2534 int i; 2535 2536 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2537 u64 generation; 2538 int level; 2539 2540 if (handle_error) { 2541 if (!IS_ERR(tree_root->node)) 2542 free_extent_buffer(tree_root->node); 2543 tree_root->node = NULL; 2544 2545 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2546 break; 2547 2548 free_root_pointers(fs_info, 0); 2549 2550 /* 2551 * Don't use the log in recovery mode, it won't be 2552 * valid 2553 */ 2554 btrfs_set_super_log_root(sb, 0); 2555 2556 /* We can't trust the free space cache either */ 2557 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2558 2559 ret = read_backup_root(fs_info, i); 2560 backup_index = ret; 2561 if (ret < 0) 2562 return ret; 2563 } 2564 generation = btrfs_super_generation(sb); 2565 level = btrfs_super_root_level(sb); 2566 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb), 2567 generation, level, NULL); 2568 if (IS_ERR(tree_root->node) || 2569 !extent_buffer_uptodate(tree_root->node)) { 2570 handle_error = true; 2571 2572 if (IS_ERR(tree_root->node)) 2573 ret = PTR_ERR(tree_root->node); 2574 else if (!extent_buffer_uptodate(tree_root->node)) 2575 ret = -EUCLEAN; 2576 2577 btrfs_warn(fs_info, "failed to read tree root"); 2578 continue; 2579 } 2580 2581 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2582 tree_root->commit_root = btrfs_root_node(tree_root); 2583 btrfs_set_root_refs(&tree_root->root_item, 1); 2584 2585 /* 2586 * No need to hold btrfs_root::objectid_mutex since the fs 2587 * hasn't been fully initialised and we are the only user 2588 */ 2589 ret = btrfs_find_highest_objectid(tree_root, 2590 &tree_root->highest_objectid); 2591 if (ret < 0) { 2592 handle_error = true; 2593 continue; 2594 } 2595 2596 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2597 2598 ret = btrfs_read_roots(fs_info); 2599 if (ret < 0) { 2600 handle_error = true; 2601 continue; 2602 } 2603 2604 /* All successful */ 2605 fs_info->generation = generation; 2606 fs_info->last_trans_committed = generation; 2607 2608 /* Always begin writing backup roots after the one being used */ 2609 if (backup_index < 0) { 2610 fs_info->backup_root_index = 0; 2611 } else { 2612 fs_info->backup_root_index = backup_index + 1; 2613 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2614 } 2615 break; 2616 } 2617 2618 return ret; 2619 } 2620 2621 int __cold open_ctree(struct super_block *sb, 2622 struct btrfs_fs_devices *fs_devices, 2623 char *options) 2624 { 2625 u32 sectorsize; 2626 u32 nodesize; 2627 u32 stripesize; 2628 u64 generation; 2629 u64 features; 2630 u16 csum_type; 2631 struct btrfs_key location; 2632 struct buffer_head *bh; 2633 struct btrfs_super_block *disk_super; 2634 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2635 struct btrfs_root *tree_root; 2636 struct btrfs_root *chunk_root; 2637 int ret; 2638 int err = -EINVAL; 2639 int clear_free_space_tree = 0; 2640 int level; 2641 2642 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2643 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2644 if (!tree_root || !chunk_root) { 2645 err = -ENOMEM; 2646 goto fail; 2647 } 2648 2649 ret = init_srcu_struct(&fs_info->subvol_srcu); 2650 if (ret) { 2651 err = ret; 2652 goto fail; 2653 } 2654 2655 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL); 2656 if (ret) { 2657 err = ret; 2658 goto fail_srcu; 2659 } 2660 2661 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2662 if (ret) { 2663 err = ret; 2664 goto fail_dio_bytes; 2665 } 2666 fs_info->dirty_metadata_batch = PAGE_SIZE * 2667 (1 + ilog2(nr_cpu_ids)); 2668 2669 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2670 if (ret) { 2671 err = ret; 2672 goto fail_dirty_metadata_bytes; 2673 } 2674 2675 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2676 GFP_KERNEL); 2677 if (ret) { 2678 err = ret; 2679 goto fail_delalloc_bytes; 2680 } 2681 2682 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2683 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2684 INIT_LIST_HEAD(&fs_info->trans_list); 2685 INIT_LIST_HEAD(&fs_info->dead_roots); 2686 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2687 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2688 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2689 spin_lock_init(&fs_info->delalloc_root_lock); 2690 spin_lock_init(&fs_info->trans_lock); 2691 spin_lock_init(&fs_info->fs_roots_radix_lock); 2692 spin_lock_init(&fs_info->delayed_iput_lock); 2693 spin_lock_init(&fs_info->defrag_inodes_lock); 2694 spin_lock_init(&fs_info->tree_mod_seq_lock); 2695 spin_lock_init(&fs_info->super_lock); 2696 spin_lock_init(&fs_info->buffer_lock); 2697 spin_lock_init(&fs_info->unused_bgs_lock); 2698 rwlock_init(&fs_info->tree_mod_log_lock); 2699 mutex_init(&fs_info->unused_bg_unpin_mutex); 2700 mutex_init(&fs_info->delete_unused_bgs_mutex); 2701 mutex_init(&fs_info->reloc_mutex); 2702 mutex_init(&fs_info->delalloc_root_mutex); 2703 seqlock_init(&fs_info->profiles_lock); 2704 2705 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2706 INIT_LIST_HEAD(&fs_info->space_info); 2707 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2708 INIT_LIST_HEAD(&fs_info->unused_bgs); 2709 extent_map_tree_init(&fs_info->mapping_tree); 2710 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2711 BTRFS_BLOCK_RSV_GLOBAL); 2712 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2713 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2714 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2715 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2716 BTRFS_BLOCK_RSV_DELOPS); 2717 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2718 BTRFS_BLOCK_RSV_DELREFS); 2719 2720 atomic_set(&fs_info->async_delalloc_pages, 0); 2721 atomic_set(&fs_info->defrag_running, 0); 2722 atomic_set(&fs_info->reada_works_cnt, 0); 2723 atomic_set(&fs_info->nr_delayed_iputs, 0); 2724 atomic64_set(&fs_info->tree_mod_seq, 0); 2725 fs_info->sb = sb; 2726 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2727 fs_info->metadata_ratio = 0; 2728 fs_info->defrag_inodes = RB_ROOT; 2729 atomic64_set(&fs_info->free_chunk_space, 0); 2730 fs_info->tree_mod_log = RB_ROOT; 2731 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2732 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2733 /* readahead state */ 2734 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2735 spin_lock_init(&fs_info->reada_lock); 2736 btrfs_init_ref_verify(fs_info); 2737 2738 fs_info->thread_pool_size = min_t(unsigned long, 2739 num_online_cpus() + 2, 8); 2740 2741 INIT_LIST_HEAD(&fs_info->ordered_roots); 2742 spin_lock_init(&fs_info->ordered_root_lock); 2743 2744 fs_info->btree_inode = new_inode(sb); 2745 if (!fs_info->btree_inode) { 2746 err = -ENOMEM; 2747 goto fail_bio_counter; 2748 } 2749 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2750 2751 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2752 GFP_KERNEL); 2753 if (!fs_info->delayed_root) { 2754 err = -ENOMEM; 2755 goto fail_iput; 2756 } 2757 btrfs_init_delayed_root(fs_info->delayed_root); 2758 2759 btrfs_init_scrub(fs_info); 2760 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2761 fs_info->check_integrity_print_mask = 0; 2762 #endif 2763 btrfs_init_balance(fs_info); 2764 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2765 2766 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2767 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2768 2769 btrfs_init_btree_inode(fs_info); 2770 2771 spin_lock_init(&fs_info->block_group_cache_lock); 2772 fs_info->block_group_cache_tree = RB_ROOT; 2773 fs_info->first_logical_byte = (u64)-1; 2774 2775 extent_io_tree_init(fs_info, &fs_info->freed_extents[0], 2776 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL); 2777 extent_io_tree_init(fs_info, &fs_info->freed_extents[1], 2778 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL); 2779 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2780 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2781 2782 mutex_init(&fs_info->ordered_operations_mutex); 2783 mutex_init(&fs_info->tree_log_mutex); 2784 mutex_init(&fs_info->chunk_mutex); 2785 mutex_init(&fs_info->transaction_kthread_mutex); 2786 mutex_init(&fs_info->cleaner_mutex); 2787 mutex_init(&fs_info->ro_block_group_mutex); 2788 init_rwsem(&fs_info->commit_root_sem); 2789 init_rwsem(&fs_info->cleanup_work_sem); 2790 init_rwsem(&fs_info->subvol_sem); 2791 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2792 2793 btrfs_init_dev_replace_locks(fs_info); 2794 btrfs_init_qgroup(fs_info); 2795 2796 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2797 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2798 2799 init_waitqueue_head(&fs_info->transaction_throttle); 2800 init_waitqueue_head(&fs_info->transaction_wait); 2801 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2802 init_waitqueue_head(&fs_info->async_submit_wait); 2803 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2804 2805 /* Usable values until the real ones are cached from the superblock */ 2806 fs_info->nodesize = 4096; 2807 fs_info->sectorsize = 4096; 2808 fs_info->stripesize = 4096; 2809 2810 spin_lock_init(&fs_info->swapfile_pins_lock); 2811 fs_info->swapfile_pins = RB_ROOT; 2812 2813 fs_info->send_in_progress = 0; 2814 2815 ret = btrfs_alloc_stripe_hash_table(fs_info); 2816 if (ret) { 2817 err = ret; 2818 goto fail_alloc; 2819 } 2820 2821 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 2822 2823 invalidate_bdev(fs_devices->latest_bdev); 2824 2825 /* 2826 * Read super block and check the signature bytes only 2827 */ 2828 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2829 if (IS_ERR(bh)) { 2830 err = PTR_ERR(bh); 2831 goto fail_alloc; 2832 } 2833 2834 /* 2835 * Verify the type first, if that or the the checksum value are 2836 * corrupted, we'll find out 2837 */ 2838 csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data); 2839 if (!btrfs_supported_super_csum(csum_type)) { 2840 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 2841 csum_type); 2842 err = -EINVAL; 2843 brelse(bh); 2844 goto fail_alloc; 2845 } 2846 2847 ret = btrfs_init_csum_hash(fs_info, csum_type); 2848 if (ret) { 2849 err = ret; 2850 goto fail_alloc; 2851 } 2852 2853 /* 2854 * We want to check superblock checksum, the type is stored inside. 2855 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2856 */ 2857 if (btrfs_check_super_csum(fs_info, bh->b_data)) { 2858 btrfs_err(fs_info, "superblock checksum mismatch"); 2859 err = -EINVAL; 2860 brelse(bh); 2861 goto fail_csum; 2862 } 2863 2864 /* 2865 * super_copy is zeroed at allocation time and we never touch the 2866 * following bytes up to INFO_SIZE, the checksum is calculated from 2867 * the whole block of INFO_SIZE 2868 */ 2869 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2870 brelse(bh); 2871 2872 disk_super = fs_info->super_copy; 2873 2874 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2875 BTRFS_FSID_SIZE)); 2876 2877 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) { 2878 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid, 2879 fs_info->super_copy->metadata_uuid, 2880 BTRFS_FSID_SIZE)); 2881 } 2882 2883 features = btrfs_super_flags(disk_super); 2884 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 2885 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 2886 btrfs_set_super_flags(disk_super, features); 2887 btrfs_info(fs_info, 2888 "found metadata UUID change in progress flag, clearing"); 2889 } 2890 2891 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2892 sizeof(*fs_info->super_for_commit)); 2893 2894 ret = btrfs_validate_mount_super(fs_info); 2895 if (ret) { 2896 btrfs_err(fs_info, "superblock contains fatal errors"); 2897 err = -EINVAL; 2898 goto fail_csum; 2899 } 2900 2901 if (!btrfs_super_root(disk_super)) 2902 goto fail_csum; 2903 2904 /* check FS state, whether FS is broken. */ 2905 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2906 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2907 2908 /* 2909 * In the long term, we'll store the compression type in the super 2910 * block, and it'll be used for per file compression control. 2911 */ 2912 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2913 2914 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2915 if (ret) { 2916 err = ret; 2917 goto fail_csum; 2918 } 2919 2920 features = btrfs_super_incompat_flags(disk_super) & 2921 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2922 if (features) { 2923 btrfs_err(fs_info, 2924 "cannot mount because of unsupported optional features (%llx)", 2925 features); 2926 err = -EINVAL; 2927 goto fail_csum; 2928 } 2929 2930 features = btrfs_super_incompat_flags(disk_super); 2931 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2932 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2933 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2934 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 2935 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 2936 2937 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2938 btrfs_info(fs_info, "has skinny extents"); 2939 2940 /* 2941 * flag our filesystem as having big metadata blocks if 2942 * they are bigger than the page size 2943 */ 2944 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2945 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2946 btrfs_info(fs_info, 2947 "flagging fs with big metadata feature"); 2948 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2949 } 2950 2951 nodesize = btrfs_super_nodesize(disk_super); 2952 sectorsize = btrfs_super_sectorsize(disk_super); 2953 stripesize = sectorsize; 2954 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2955 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2956 2957 /* Cache block sizes */ 2958 fs_info->nodesize = nodesize; 2959 fs_info->sectorsize = sectorsize; 2960 fs_info->stripesize = stripesize; 2961 2962 /* 2963 * mixed block groups end up with duplicate but slightly offset 2964 * extent buffers for the same range. It leads to corruptions 2965 */ 2966 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2967 (sectorsize != nodesize)) { 2968 btrfs_err(fs_info, 2969 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2970 nodesize, sectorsize); 2971 goto fail_csum; 2972 } 2973 2974 /* 2975 * Needn't use the lock because there is no other task which will 2976 * update the flag. 2977 */ 2978 btrfs_set_super_incompat_flags(disk_super, features); 2979 2980 features = btrfs_super_compat_ro_flags(disk_super) & 2981 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2982 if (!sb_rdonly(sb) && features) { 2983 btrfs_err(fs_info, 2984 "cannot mount read-write because of unsupported optional features (%llx)", 2985 features); 2986 err = -EINVAL; 2987 goto fail_csum; 2988 } 2989 2990 ret = btrfs_init_workqueues(fs_info, fs_devices); 2991 if (ret) { 2992 err = ret; 2993 goto fail_sb_buffer; 2994 } 2995 2996 sb->s_bdi->congested_fn = btrfs_congested_fn; 2997 sb->s_bdi->congested_data = fs_info; 2998 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 2999 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES; 3000 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3001 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3002 3003 sb->s_blocksize = sectorsize; 3004 sb->s_blocksize_bits = blksize_bits(sectorsize); 3005 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3006 3007 mutex_lock(&fs_info->chunk_mutex); 3008 ret = btrfs_read_sys_array(fs_info); 3009 mutex_unlock(&fs_info->chunk_mutex); 3010 if (ret) { 3011 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3012 goto fail_sb_buffer; 3013 } 3014 3015 generation = btrfs_super_chunk_root_generation(disk_super); 3016 level = btrfs_super_chunk_root_level(disk_super); 3017 3018 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 3019 3020 chunk_root->node = read_tree_block(fs_info, 3021 btrfs_super_chunk_root(disk_super), 3022 generation, level, NULL); 3023 if (IS_ERR(chunk_root->node) || 3024 !extent_buffer_uptodate(chunk_root->node)) { 3025 btrfs_err(fs_info, "failed to read chunk root"); 3026 if (!IS_ERR(chunk_root->node)) 3027 free_extent_buffer(chunk_root->node); 3028 chunk_root->node = NULL; 3029 goto fail_tree_roots; 3030 } 3031 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 3032 chunk_root->commit_root = btrfs_root_node(chunk_root); 3033 3034 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3035 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 3036 3037 ret = btrfs_read_chunk_tree(fs_info); 3038 if (ret) { 3039 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3040 goto fail_tree_roots; 3041 } 3042 3043 /* 3044 * Keep the devid that is marked to be the target device for the 3045 * device replace procedure 3046 */ 3047 btrfs_free_extra_devids(fs_devices, 0); 3048 3049 if (!fs_devices->latest_bdev) { 3050 btrfs_err(fs_info, "failed to read devices"); 3051 goto fail_tree_roots; 3052 } 3053 3054 ret = init_tree_roots(fs_info); 3055 if (ret) 3056 goto fail_tree_roots; 3057 3058 ret = btrfs_verify_dev_extents(fs_info); 3059 if (ret) { 3060 btrfs_err(fs_info, 3061 "failed to verify dev extents against chunks: %d", 3062 ret); 3063 goto fail_block_groups; 3064 } 3065 ret = btrfs_recover_balance(fs_info); 3066 if (ret) { 3067 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3068 goto fail_block_groups; 3069 } 3070 3071 ret = btrfs_init_dev_stats(fs_info); 3072 if (ret) { 3073 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3074 goto fail_block_groups; 3075 } 3076 3077 ret = btrfs_init_dev_replace(fs_info); 3078 if (ret) { 3079 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3080 goto fail_block_groups; 3081 } 3082 3083 btrfs_free_extra_devids(fs_devices, 1); 3084 3085 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 3086 if (ret) { 3087 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3088 ret); 3089 goto fail_block_groups; 3090 } 3091 3092 ret = btrfs_sysfs_add_device(fs_devices); 3093 if (ret) { 3094 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 3095 ret); 3096 goto fail_fsdev_sysfs; 3097 } 3098 3099 ret = btrfs_sysfs_add_mounted(fs_info); 3100 if (ret) { 3101 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3102 goto fail_fsdev_sysfs; 3103 } 3104 3105 ret = btrfs_init_space_info(fs_info); 3106 if (ret) { 3107 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3108 goto fail_sysfs; 3109 } 3110 3111 ret = btrfs_read_block_groups(fs_info); 3112 if (ret) { 3113 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3114 goto fail_sysfs; 3115 } 3116 3117 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 3118 btrfs_warn(fs_info, 3119 "writable mount is not allowed due to too many missing devices"); 3120 goto fail_sysfs; 3121 } 3122 3123 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3124 "btrfs-cleaner"); 3125 if (IS_ERR(fs_info->cleaner_kthread)) 3126 goto fail_sysfs; 3127 3128 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3129 tree_root, 3130 "btrfs-transaction"); 3131 if (IS_ERR(fs_info->transaction_kthread)) 3132 goto fail_cleaner; 3133 3134 if (!btrfs_test_opt(fs_info, NOSSD) && 3135 !fs_info->fs_devices->rotating) { 3136 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3137 } 3138 3139 /* 3140 * Mount does not set all options immediately, we can do it now and do 3141 * not have to wait for transaction commit 3142 */ 3143 btrfs_apply_pending_changes(fs_info); 3144 3145 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3146 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3147 ret = btrfsic_mount(fs_info, fs_devices, 3148 btrfs_test_opt(fs_info, 3149 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3150 1 : 0, 3151 fs_info->check_integrity_print_mask); 3152 if (ret) 3153 btrfs_warn(fs_info, 3154 "failed to initialize integrity check module: %d", 3155 ret); 3156 } 3157 #endif 3158 ret = btrfs_read_qgroup_config(fs_info); 3159 if (ret) 3160 goto fail_trans_kthread; 3161 3162 if (btrfs_build_ref_tree(fs_info)) 3163 btrfs_err(fs_info, "couldn't build ref tree"); 3164 3165 /* do not make disk changes in broken FS or nologreplay is given */ 3166 if (btrfs_super_log_root(disk_super) != 0 && 3167 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3168 ret = btrfs_replay_log(fs_info, fs_devices); 3169 if (ret) { 3170 err = ret; 3171 goto fail_qgroup; 3172 } 3173 } 3174 3175 ret = btrfs_find_orphan_roots(fs_info); 3176 if (ret) 3177 goto fail_qgroup; 3178 3179 if (!sb_rdonly(sb)) { 3180 ret = btrfs_cleanup_fs_roots(fs_info); 3181 if (ret) 3182 goto fail_qgroup; 3183 3184 mutex_lock(&fs_info->cleaner_mutex); 3185 ret = btrfs_recover_relocation(tree_root); 3186 mutex_unlock(&fs_info->cleaner_mutex); 3187 if (ret < 0) { 3188 btrfs_warn(fs_info, "failed to recover relocation: %d", 3189 ret); 3190 err = -EINVAL; 3191 goto fail_qgroup; 3192 } 3193 } 3194 3195 location.objectid = BTRFS_FS_TREE_OBJECTID; 3196 location.type = BTRFS_ROOT_ITEM_KEY; 3197 location.offset = 0; 3198 3199 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3200 if (IS_ERR(fs_info->fs_root)) { 3201 err = PTR_ERR(fs_info->fs_root); 3202 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3203 goto fail_qgroup; 3204 } 3205 3206 if (sb_rdonly(sb)) 3207 return 0; 3208 3209 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3210 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3211 clear_free_space_tree = 1; 3212 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3213 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3214 btrfs_warn(fs_info, "free space tree is invalid"); 3215 clear_free_space_tree = 1; 3216 } 3217 3218 if (clear_free_space_tree) { 3219 btrfs_info(fs_info, "clearing free space tree"); 3220 ret = btrfs_clear_free_space_tree(fs_info); 3221 if (ret) { 3222 btrfs_warn(fs_info, 3223 "failed to clear free space tree: %d", ret); 3224 close_ctree(fs_info); 3225 return ret; 3226 } 3227 } 3228 3229 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3230 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3231 btrfs_info(fs_info, "creating free space tree"); 3232 ret = btrfs_create_free_space_tree(fs_info); 3233 if (ret) { 3234 btrfs_warn(fs_info, 3235 "failed to create free space tree: %d", ret); 3236 close_ctree(fs_info); 3237 return ret; 3238 } 3239 } 3240 3241 down_read(&fs_info->cleanup_work_sem); 3242 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3243 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3244 up_read(&fs_info->cleanup_work_sem); 3245 close_ctree(fs_info); 3246 return ret; 3247 } 3248 up_read(&fs_info->cleanup_work_sem); 3249 3250 ret = btrfs_resume_balance_async(fs_info); 3251 if (ret) { 3252 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3253 close_ctree(fs_info); 3254 return ret; 3255 } 3256 3257 ret = btrfs_resume_dev_replace_async(fs_info); 3258 if (ret) { 3259 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3260 close_ctree(fs_info); 3261 return ret; 3262 } 3263 3264 btrfs_qgroup_rescan_resume(fs_info); 3265 3266 if (!fs_info->uuid_root) { 3267 btrfs_info(fs_info, "creating UUID tree"); 3268 ret = btrfs_create_uuid_tree(fs_info); 3269 if (ret) { 3270 btrfs_warn(fs_info, 3271 "failed to create the UUID tree: %d", ret); 3272 close_ctree(fs_info); 3273 return ret; 3274 } 3275 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3276 fs_info->generation != 3277 btrfs_super_uuid_tree_generation(disk_super)) { 3278 btrfs_info(fs_info, "checking UUID tree"); 3279 ret = btrfs_check_uuid_tree(fs_info); 3280 if (ret) { 3281 btrfs_warn(fs_info, 3282 "failed to check the UUID tree: %d", ret); 3283 close_ctree(fs_info); 3284 return ret; 3285 } 3286 } else { 3287 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3288 } 3289 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3290 3291 /* 3292 * backuproot only affect mount behavior, and if open_ctree succeeded, 3293 * no need to keep the flag 3294 */ 3295 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3296 3297 return 0; 3298 3299 fail_qgroup: 3300 btrfs_free_qgroup_config(fs_info); 3301 fail_trans_kthread: 3302 kthread_stop(fs_info->transaction_kthread); 3303 btrfs_cleanup_transaction(fs_info); 3304 btrfs_free_fs_roots(fs_info); 3305 fail_cleaner: 3306 kthread_stop(fs_info->cleaner_kthread); 3307 3308 /* 3309 * make sure we're done with the btree inode before we stop our 3310 * kthreads 3311 */ 3312 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3313 3314 fail_sysfs: 3315 btrfs_sysfs_remove_mounted(fs_info); 3316 3317 fail_fsdev_sysfs: 3318 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3319 3320 fail_block_groups: 3321 btrfs_put_block_group_cache(fs_info); 3322 3323 fail_tree_roots: 3324 free_root_pointers(fs_info, true); 3325 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3326 3327 fail_sb_buffer: 3328 btrfs_stop_all_workers(fs_info); 3329 btrfs_free_block_groups(fs_info); 3330 fail_csum: 3331 btrfs_free_csum_hash(fs_info); 3332 fail_alloc: 3333 fail_iput: 3334 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3335 3336 iput(fs_info->btree_inode); 3337 fail_bio_counter: 3338 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 3339 fail_delalloc_bytes: 3340 percpu_counter_destroy(&fs_info->delalloc_bytes); 3341 fail_dirty_metadata_bytes: 3342 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3343 fail_dio_bytes: 3344 percpu_counter_destroy(&fs_info->dio_bytes); 3345 fail_srcu: 3346 cleanup_srcu_struct(&fs_info->subvol_srcu); 3347 fail: 3348 btrfs_free_stripe_hash_table(fs_info); 3349 btrfs_close_devices(fs_info->fs_devices); 3350 return err; 3351 } 3352 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3353 3354 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3355 { 3356 if (uptodate) { 3357 set_buffer_uptodate(bh); 3358 } else { 3359 struct btrfs_device *device = (struct btrfs_device *) 3360 bh->b_private; 3361 3362 btrfs_warn_rl_in_rcu(device->fs_info, 3363 "lost page write due to IO error on %s", 3364 rcu_str_deref(device->name)); 3365 /* note, we don't set_buffer_write_io_error because we have 3366 * our own ways of dealing with the IO errors 3367 */ 3368 clear_buffer_uptodate(bh); 3369 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3370 } 3371 unlock_buffer(bh); 3372 put_bh(bh); 3373 } 3374 3375 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3376 struct buffer_head **bh_ret) 3377 { 3378 struct buffer_head *bh; 3379 struct btrfs_super_block *super; 3380 u64 bytenr; 3381 3382 bytenr = btrfs_sb_offset(copy_num); 3383 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3384 return -EINVAL; 3385 3386 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE); 3387 /* 3388 * If we fail to read from the underlying devices, as of now 3389 * the best option we have is to mark it EIO. 3390 */ 3391 if (!bh) 3392 return -EIO; 3393 3394 super = (struct btrfs_super_block *)bh->b_data; 3395 if (btrfs_super_bytenr(super) != bytenr || 3396 btrfs_super_magic(super) != BTRFS_MAGIC) { 3397 brelse(bh); 3398 return -EINVAL; 3399 } 3400 3401 *bh_ret = bh; 3402 return 0; 3403 } 3404 3405 3406 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3407 { 3408 struct buffer_head *bh; 3409 struct buffer_head *latest = NULL; 3410 struct btrfs_super_block *super; 3411 int i; 3412 u64 transid = 0; 3413 int ret = -EINVAL; 3414 3415 /* we would like to check all the supers, but that would make 3416 * a btrfs mount succeed after a mkfs from a different FS. 3417 * So, we need to add a special mount option to scan for 3418 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3419 */ 3420 for (i = 0; i < 1; i++) { 3421 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3422 if (ret) 3423 continue; 3424 3425 super = (struct btrfs_super_block *)bh->b_data; 3426 3427 if (!latest || btrfs_super_generation(super) > transid) { 3428 brelse(latest); 3429 latest = bh; 3430 transid = btrfs_super_generation(super); 3431 } else { 3432 brelse(bh); 3433 } 3434 } 3435 3436 if (!latest) 3437 return ERR_PTR(ret); 3438 3439 return latest; 3440 } 3441 3442 /* 3443 * Write superblock @sb to the @device. Do not wait for completion, all the 3444 * buffer heads we write are pinned. 3445 * 3446 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3447 * the expected device size at commit time. Note that max_mirrors must be 3448 * same for write and wait phases. 3449 * 3450 * Return number of errors when buffer head is not found or submission fails. 3451 */ 3452 static int write_dev_supers(struct btrfs_device *device, 3453 struct btrfs_super_block *sb, int max_mirrors) 3454 { 3455 struct btrfs_fs_info *fs_info = device->fs_info; 3456 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3457 struct buffer_head *bh; 3458 int i; 3459 int ret; 3460 int errors = 0; 3461 u64 bytenr; 3462 int op_flags; 3463 3464 if (max_mirrors == 0) 3465 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3466 3467 shash->tfm = fs_info->csum_shash; 3468 3469 for (i = 0; i < max_mirrors; i++) { 3470 bytenr = btrfs_sb_offset(i); 3471 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3472 device->commit_total_bytes) 3473 break; 3474 3475 btrfs_set_super_bytenr(sb, bytenr); 3476 3477 crypto_shash_init(shash); 3478 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3479 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 3480 crypto_shash_final(shash, sb->csum); 3481 3482 /* One reference for us, and we leave it for the caller */ 3483 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, 3484 BTRFS_SUPER_INFO_SIZE); 3485 if (!bh) { 3486 btrfs_err(device->fs_info, 3487 "couldn't get super buffer head for bytenr %llu", 3488 bytenr); 3489 errors++; 3490 continue; 3491 } 3492 3493 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3494 3495 /* one reference for submit_bh */ 3496 get_bh(bh); 3497 3498 set_buffer_uptodate(bh); 3499 lock_buffer(bh); 3500 bh->b_end_io = btrfs_end_buffer_write_sync; 3501 bh->b_private = device; 3502 3503 /* 3504 * we fua the first super. The others we allow 3505 * to go down lazy. 3506 */ 3507 op_flags = REQ_SYNC | REQ_META | REQ_PRIO; 3508 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3509 op_flags |= REQ_FUA; 3510 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh); 3511 if (ret) 3512 errors++; 3513 } 3514 return errors < i ? 0 : -1; 3515 } 3516 3517 /* 3518 * Wait for write completion of superblocks done by write_dev_supers, 3519 * @max_mirrors same for write and wait phases. 3520 * 3521 * Return number of errors when buffer head is not found or not marked up to 3522 * date. 3523 */ 3524 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3525 { 3526 struct buffer_head *bh; 3527 int i; 3528 int errors = 0; 3529 bool primary_failed = false; 3530 u64 bytenr; 3531 3532 if (max_mirrors == 0) 3533 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3534 3535 for (i = 0; i < max_mirrors; i++) { 3536 bytenr = btrfs_sb_offset(i); 3537 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3538 device->commit_total_bytes) 3539 break; 3540 3541 bh = __find_get_block(device->bdev, 3542 bytenr / BTRFS_BDEV_BLOCKSIZE, 3543 BTRFS_SUPER_INFO_SIZE); 3544 if (!bh) { 3545 errors++; 3546 if (i == 0) 3547 primary_failed = true; 3548 continue; 3549 } 3550 wait_on_buffer(bh); 3551 if (!buffer_uptodate(bh)) { 3552 errors++; 3553 if (i == 0) 3554 primary_failed = true; 3555 } 3556 3557 /* drop our reference */ 3558 brelse(bh); 3559 3560 /* drop the reference from the writing run */ 3561 brelse(bh); 3562 } 3563 3564 /* log error, force error return */ 3565 if (primary_failed) { 3566 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3567 device->devid); 3568 return -1; 3569 } 3570 3571 return errors < i ? 0 : -1; 3572 } 3573 3574 /* 3575 * endio for the write_dev_flush, this will wake anyone waiting 3576 * for the barrier when it is done 3577 */ 3578 static void btrfs_end_empty_barrier(struct bio *bio) 3579 { 3580 complete(bio->bi_private); 3581 } 3582 3583 /* 3584 * Submit a flush request to the device if it supports it. Error handling is 3585 * done in the waiting counterpart. 3586 */ 3587 static void write_dev_flush(struct btrfs_device *device) 3588 { 3589 struct request_queue *q = bdev_get_queue(device->bdev); 3590 struct bio *bio = device->flush_bio; 3591 3592 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3593 return; 3594 3595 bio_reset(bio); 3596 bio->bi_end_io = btrfs_end_empty_barrier; 3597 bio_set_dev(bio, device->bdev); 3598 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3599 init_completion(&device->flush_wait); 3600 bio->bi_private = &device->flush_wait; 3601 3602 btrfsic_submit_bio(bio); 3603 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3604 } 3605 3606 /* 3607 * If the flush bio has been submitted by write_dev_flush, wait for it. 3608 */ 3609 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3610 { 3611 struct bio *bio = device->flush_bio; 3612 3613 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3614 return BLK_STS_OK; 3615 3616 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3617 wait_for_completion_io(&device->flush_wait); 3618 3619 return bio->bi_status; 3620 } 3621 3622 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3623 { 3624 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3625 return -EIO; 3626 return 0; 3627 } 3628 3629 /* 3630 * send an empty flush down to each device in parallel, 3631 * then wait for them 3632 */ 3633 static int barrier_all_devices(struct btrfs_fs_info *info) 3634 { 3635 struct list_head *head; 3636 struct btrfs_device *dev; 3637 int errors_wait = 0; 3638 blk_status_t ret; 3639 3640 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3641 /* send down all the barriers */ 3642 head = &info->fs_devices->devices; 3643 list_for_each_entry(dev, head, dev_list) { 3644 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3645 continue; 3646 if (!dev->bdev) 3647 continue; 3648 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3649 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3650 continue; 3651 3652 write_dev_flush(dev); 3653 dev->last_flush_error = BLK_STS_OK; 3654 } 3655 3656 /* wait for all the barriers */ 3657 list_for_each_entry(dev, head, dev_list) { 3658 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3659 continue; 3660 if (!dev->bdev) { 3661 errors_wait++; 3662 continue; 3663 } 3664 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3665 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3666 continue; 3667 3668 ret = wait_dev_flush(dev); 3669 if (ret) { 3670 dev->last_flush_error = ret; 3671 btrfs_dev_stat_inc_and_print(dev, 3672 BTRFS_DEV_STAT_FLUSH_ERRS); 3673 errors_wait++; 3674 } 3675 } 3676 3677 if (errors_wait) { 3678 /* 3679 * At some point we need the status of all disks 3680 * to arrive at the volume status. So error checking 3681 * is being pushed to a separate loop. 3682 */ 3683 return check_barrier_error(info); 3684 } 3685 return 0; 3686 } 3687 3688 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3689 { 3690 int raid_type; 3691 int min_tolerated = INT_MAX; 3692 3693 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3694 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3695 min_tolerated = min_t(int, min_tolerated, 3696 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3697 tolerated_failures); 3698 3699 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3700 if (raid_type == BTRFS_RAID_SINGLE) 3701 continue; 3702 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3703 continue; 3704 min_tolerated = min_t(int, min_tolerated, 3705 btrfs_raid_array[raid_type]. 3706 tolerated_failures); 3707 } 3708 3709 if (min_tolerated == INT_MAX) { 3710 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3711 min_tolerated = 0; 3712 } 3713 3714 return min_tolerated; 3715 } 3716 3717 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3718 { 3719 struct list_head *head; 3720 struct btrfs_device *dev; 3721 struct btrfs_super_block *sb; 3722 struct btrfs_dev_item *dev_item; 3723 int ret; 3724 int do_barriers; 3725 int max_errors; 3726 int total_errors = 0; 3727 u64 flags; 3728 3729 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3730 3731 /* 3732 * max_mirrors == 0 indicates we're from commit_transaction, 3733 * not from fsync where the tree roots in fs_info have not 3734 * been consistent on disk. 3735 */ 3736 if (max_mirrors == 0) 3737 backup_super_roots(fs_info); 3738 3739 sb = fs_info->super_for_commit; 3740 dev_item = &sb->dev_item; 3741 3742 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3743 head = &fs_info->fs_devices->devices; 3744 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3745 3746 if (do_barriers) { 3747 ret = barrier_all_devices(fs_info); 3748 if (ret) { 3749 mutex_unlock( 3750 &fs_info->fs_devices->device_list_mutex); 3751 btrfs_handle_fs_error(fs_info, ret, 3752 "errors while submitting device barriers."); 3753 return ret; 3754 } 3755 } 3756 3757 list_for_each_entry(dev, head, dev_list) { 3758 if (!dev->bdev) { 3759 total_errors++; 3760 continue; 3761 } 3762 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3763 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3764 continue; 3765 3766 btrfs_set_stack_device_generation(dev_item, 0); 3767 btrfs_set_stack_device_type(dev_item, dev->type); 3768 btrfs_set_stack_device_id(dev_item, dev->devid); 3769 btrfs_set_stack_device_total_bytes(dev_item, 3770 dev->commit_total_bytes); 3771 btrfs_set_stack_device_bytes_used(dev_item, 3772 dev->commit_bytes_used); 3773 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3774 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3775 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3776 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3777 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 3778 BTRFS_FSID_SIZE); 3779 3780 flags = btrfs_super_flags(sb); 3781 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3782 3783 ret = btrfs_validate_write_super(fs_info, sb); 3784 if (ret < 0) { 3785 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3786 btrfs_handle_fs_error(fs_info, -EUCLEAN, 3787 "unexpected superblock corruption detected"); 3788 return -EUCLEAN; 3789 } 3790 3791 ret = write_dev_supers(dev, sb, max_mirrors); 3792 if (ret) 3793 total_errors++; 3794 } 3795 if (total_errors > max_errors) { 3796 btrfs_err(fs_info, "%d errors while writing supers", 3797 total_errors); 3798 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3799 3800 /* FUA is masked off if unsupported and can't be the reason */ 3801 btrfs_handle_fs_error(fs_info, -EIO, 3802 "%d errors while writing supers", 3803 total_errors); 3804 return -EIO; 3805 } 3806 3807 total_errors = 0; 3808 list_for_each_entry(dev, head, dev_list) { 3809 if (!dev->bdev) 3810 continue; 3811 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3812 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3813 continue; 3814 3815 ret = wait_dev_supers(dev, max_mirrors); 3816 if (ret) 3817 total_errors++; 3818 } 3819 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3820 if (total_errors > max_errors) { 3821 btrfs_handle_fs_error(fs_info, -EIO, 3822 "%d errors while writing supers", 3823 total_errors); 3824 return -EIO; 3825 } 3826 return 0; 3827 } 3828 3829 /* Drop a fs root from the radix tree and free it. */ 3830 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3831 struct btrfs_root *root) 3832 { 3833 spin_lock(&fs_info->fs_roots_radix_lock); 3834 radix_tree_delete(&fs_info->fs_roots_radix, 3835 (unsigned long)root->root_key.objectid); 3836 spin_unlock(&fs_info->fs_roots_radix_lock); 3837 3838 if (btrfs_root_refs(&root->root_item) == 0) 3839 synchronize_srcu(&fs_info->subvol_srcu); 3840 3841 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3842 btrfs_free_log(NULL, root); 3843 if (root->reloc_root) { 3844 free_extent_buffer(root->reloc_root->node); 3845 free_extent_buffer(root->reloc_root->commit_root); 3846 btrfs_put_fs_root(root->reloc_root); 3847 root->reloc_root = NULL; 3848 } 3849 } 3850 3851 if (root->free_ino_pinned) 3852 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3853 if (root->free_ino_ctl) 3854 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3855 btrfs_free_fs_root(root); 3856 } 3857 3858 void btrfs_free_fs_root(struct btrfs_root *root) 3859 { 3860 iput(root->ino_cache_inode); 3861 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3862 if (root->anon_dev) 3863 free_anon_bdev(root->anon_dev); 3864 if (root->subv_writers) 3865 btrfs_free_subvolume_writers(root->subv_writers); 3866 free_extent_buffer(root->node); 3867 free_extent_buffer(root->commit_root); 3868 kfree(root->free_ino_ctl); 3869 kfree(root->free_ino_pinned); 3870 btrfs_put_fs_root(root); 3871 } 3872 3873 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3874 { 3875 u64 root_objectid = 0; 3876 struct btrfs_root *gang[8]; 3877 int i = 0; 3878 int err = 0; 3879 unsigned int ret = 0; 3880 int index; 3881 3882 while (1) { 3883 index = srcu_read_lock(&fs_info->subvol_srcu); 3884 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3885 (void **)gang, root_objectid, 3886 ARRAY_SIZE(gang)); 3887 if (!ret) { 3888 srcu_read_unlock(&fs_info->subvol_srcu, index); 3889 break; 3890 } 3891 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3892 3893 for (i = 0; i < ret; i++) { 3894 /* Avoid to grab roots in dead_roots */ 3895 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3896 gang[i] = NULL; 3897 continue; 3898 } 3899 /* grab all the search result for later use */ 3900 gang[i] = btrfs_grab_fs_root(gang[i]); 3901 } 3902 srcu_read_unlock(&fs_info->subvol_srcu, index); 3903 3904 for (i = 0; i < ret; i++) { 3905 if (!gang[i]) 3906 continue; 3907 root_objectid = gang[i]->root_key.objectid; 3908 err = btrfs_orphan_cleanup(gang[i]); 3909 if (err) 3910 break; 3911 btrfs_put_fs_root(gang[i]); 3912 } 3913 root_objectid++; 3914 } 3915 3916 /* release the uncleaned roots due to error */ 3917 for (; i < ret; i++) { 3918 if (gang[i]) 3919 btrfs_put_fs_root(gang[i]); 3920 } 3921 return err; 3922 } 3923 3924 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3925 { 3926 struct btrfs_root *root = fs_info->tree_root; 3927 struct btrfs_trans_handle *trans; 3928 3929 mutex_lock(&fs_info->cleaner_mutex); 3930 btrfs_run_delayed_iputs(fs_info); 3931 mutex_unlock(&fs_info->cleaner_mutex); 3932 wake_up_process(fs_info->cleaner_kthread); 3933 3934 /* wait until ongoing cleanup work done */ 3935 down_write(&fs_info->cleanup_work_sem); 3936 up_write(&fs_info->cleanup_work_sem); 3937 3938 trans = btrfs_join_transaction(root); 3939 if (IS_ERR(trans)) 3940 return PTR_ERR(trans); 3941 return btrfs_commit_transaction(trans); 3942 } 3943 3944 void __cold close_ctree(struct btrfs_fs_info *fs_info) 3945 { 3946 int ret; 3947 3948 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3949 /* 3950 * We don't want the cleaner to start new transactions, add more delayed 3951 * iputs, etc. while we're closing. We can't use kthread_stop() yet 3952 * because that frees the task_struct, and the transaction kthread might 3953 * still try to wake up the cleaner. 3954 */ 3955 kthread_park(fs_info->cleaner_kthread); 3956 3957 /* wait for the qgroup rescan worker to stop */ 3958 btrfs_qgroup_wait_for_completion(fs_info, false); 3959 3960 /* wait for the uuid_scan task to finish */ 3961 down(&fs_info->uuid_tree_rescan_sem); 3962 /* avoid complains from lockdep et al., set sem back to initial state */ 3963 up(&fs_info->uuid_tree_rescan_sem); 3964 3965 /* pause restriper - we want to resume on mount */ 3966 btrfs_pause_balance(fs_info); 3967 3968 btrfs_dev_replace_suspend_for_unmount(fs_info); 3969 3970 btrfs_scrub_cancel(fs_info); 3971 3972 /* wait for any defraggers to finish */ 3973 wait_event(fs_info->transaction_wait, 3974 (atomic_read(&fs_info->defrag_running) == 0)); 3975 3976 /* clear out the rbtree of defraggable inodes */ 3977 btrfs_cleanup_defrag_inodes(fs_info); 3978 3979 cancel_work_sync(&fs_info->async_reclaim_work); 3980 3981 if (!sb_rdonly(fs_info->sb)) { 3982 /* 3983 * The cleaner kthread is stopped, so do one final pass over 3984 * unused block groups. 3985 */ 3986 btrfs_delete_unused_bgs(fs_info); 3987 3988 ret = btrfs_commit_super(fs_info); 3989 if (ret) 3990 btrfs_err(fs_info, "commit super ret %d", ret); 3991 } 3992 3993 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 3994 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 3995 btrfs_error_commit_super(fs_info); 3996 3997 kthread_stop(fs_info->transaction_kthread); 3998 kthread_stop(fs_info->cleaner_kthread); 3999 4000 ASSERT(list_empty(&fs_info->delayed_iputs)); 4001 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4002 4003 btrfs_free_qgroup_config(fs_info); 4004 ASSERT(list_empty(&fs_info->delalloc_roots)); 4005 4006 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4007 btrfs_info(fs_info, "at unmount delalloc count %lld", 4008 percpu_counter_sum(&fs_info->delalloc_bytes)); 4009 } 4010 4011 if (percpu_counter_sum(&fs_info->dio_bytes)) 4012 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4013 percpu_counter_sum(&fs_info->dio_bytes)); 4014 4015 btrfs_sysfs_remove_mounted(fs_info); 4016 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4017 4018 btrfs_free_fs_roots(fs_info); 4019 4020 btrfs_put_block_group_cache(fs_info); 4021 4022 /* 4023 * we must make sure there is not any read request to 4024 * submit after we stopping all workers. 4025 */ 4026 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4027 btrfs_stop_all_workers(fs_info); 4028 4029 btrfs_free_block_groups(fs_info); 4030 4031 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4032 free_root_pointers(fs_info, true); 4033 4034 iput(fs_info->btree_inode); 4035 4036 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4037 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4038 btrfsic_unmount(fs_info->fs_devices); 4039 #endif 4040 4041 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4042 btrfs_close_devices(fs_info->fs_devices); 4043 4044 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 4045 percpu_counter_destroy(&fs_info->delalloc_bytes); 4046 percpu_counter_destroy(&fs_info->dio_bytes); 4047 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 4048 cleanup_srcu_struct(&fs_info->subvol_srcu); 4049 4050 btrfs_free_csum_hash(fs_info); 4051 btrfs_free_stripe_hash_table(fs_info); 4052 btrfs_free_ref_cache(fs_info); 4053 } 4054 4055 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4056 int atomic) 4057 { 4058 int ret; 4059 struct inode *btree_inode = buf->pages[0]->mapping->host; 4060 4061 ret = extent_buffer_uptodate(buf); 4062 if (!ret) 4063 return ret; 4064 4065 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4066 parent_transid, atomic); 4067 if (ret == -EAGAIN) 4068 return ret; 4069 return !ret; 4070 } 4071 4072 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4073 { 4074 struct btrfs_fs_info *fs_info; 4075 struct btrfs_root *root; 4076 u64 transid = btrfs_header_generation(buf); 4077 int was_dirty; 4078 4079 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4080 /* 4081 * This is a fast path so only do this check if we have sanity tests 4082 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4083 * outside of the sanity tests. 4084 */ 4085 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4086 return; 4087 #endif 4088 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4089 fs_info = root->fs_info; 4090 btrfs_assert_tree_locked(buf); 4091 if (transid != fs_info->generation) 4092 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4093 buf->start, transid, fs_info->generation); 4094 was_dirty = set_extent_buffer_dirty(buf); 4095 if (!was_dirty) 4096 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4097 buf->len, 4098 fs_info->dirty_metadata_batch); 4099 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4100 /* 4101 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4102 * but item data not updated. 4103 * So here we should only check item pointers, not item data. 4104 */ 4105 if (btrfs_header_level(buf) == 0 && 4106 btrfs_check_leaf_relaxed(buf)) { 4107 btrfs_print_leaf(buf); 4108 ASSERT(0); 4109 } 4110 #endif 4111 } 4112 4113 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4114 int flush_delayed) 4115 { 4116 /* 4117 * looks as though older kernels can get into trouble with 4118 * this code, they end up stuck in balance_dirty_pages forever 4119 */ 4120 int ret; 4121 4122 if (current->flags & PF_MEMALLOC) 4123 return; 4124 4125 if (flush_delayed) 4126 btrfs_balance_delayed_items(fs_info); 4127 4128 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4129 BTRFS_DIRTY_METADATA_THRESH, 4130 fs_info->dirty_metadata_batch); 4131 if (ret > 0) { 4132 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4133 } 4134 } 4135 4136 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4137 { 4138 __btrfs_btree_balance_dirty(fs_info, 1); 4139 } 4140 4141 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4142 { 4143 __btrfs_btree_balance_dirty(fs_info, 0); 4144 } 4145 4146 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4147 struct btrfs_key *first_key) 4148 { 4149 return btree_read_extent_buffer_pages(buf, parent_transid, 4150 level, first_key); 4151 } 4152 4153 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4154 { 4155 /* cleanup FS via transaction */ 4156 btrfs_cleanup_transaction(fs_info); 4157 4158 mutex_lock(&fs_info->cleaner_mutex); 4159 btrfs_run_delayed_iputs(fs_info); 4160 mutex_unlock(&fs_info->cleaner_mutex); 4161 4162 down_write(&fs_info->cleanup_work_sem); 4163 up_write(&fs_info->cleanup_work_sem); 4164 } 4165 4166 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4167 { 4168 struct btrfs_ordered_extent *ordered; 4169 4170 spin_lock(&root->ordered_extent_lock); 4171 /* 4172 * This will just short circuit the ordered completion stuff which will 4173 * make sure the ordered extent gets properly cleaned up. 4174 */ 4175 list_for_each_entry(ordered, &root->ordered_extents, 4176 root_extent_list) 4177 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4178 spin_unlock(&root->ordered_extent_lock); 4179 } 4180 4181 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4182 { 4183 struct btrfs_root *root; 4184 struct list_head splice; 4185 4186 INIT_LIST_HEAD(&splice); 4187 4188 spin_lock(&fs_info->ordered_root_lock); 4189 list_splice_init(&fs_info->ordered_roots, &splice); 4190 while (!list_empty(&splice)) { 4191 root = list_first_entry(&splice, struct btrfs_root, 4192 ordered_root); 4193 list_move_tail(&root->ordered_root, 4194 &fs_info->ordered_roots); 4195 4196 spin_unlock(&fs_info->ordered_root_lock); 4197 btrfs_destroy_ordered_extents(root); 4198 4199 cond_resched(); 4200 spin_lock(&fs_info->ordered_root_lock); 4201 } 4202 spin_unlock(&fs_info->ordered_root_lock); 4203 4204 /* 4205 * We need this here because if we've been flipped read-only we won't 4206 * get sync() from the umount, so we need to make sure any ordered 4207 * extents that haven't had their dirty pages IO start writeout yet 4208 * actually get run and error out properly. 4209 */ 4210 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4211 } 4212 4213 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4214 struct btrfs_fs_info *fs_info) 4215 { 4216 struct rb_node *node; 4217 struct btrfs_delayed_ref_root *delayed_refs; 4218 struct btrfs_delayed_ref_node *ref; 4219 int ret = 0; 4220 4221 delayed_refs = &trans->delayed_refs; 4222 4223 spin_lock(&delayed_refs->lock); 4224 if (atomic_read(&delayed_refs->num_entries) == 0) { 4225 spin_unlock(&delayed_refs->lock); 4226 btrfs_info(fs_info, "delayed_refs has NO entry"); 4227 return ret; 4228 } 4229 4230 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4231 struct btrfs_delayed_ref_head *head; 4232 struct rb_node *n; 4233 bool pin_bytes = false; 4234 4235 head = rb_entry(node, struct btrfs_delayed_ref_head, 4236 href_node); 4237 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4238 continue; 4239 4240 spin_lock(&head->lock); 4241 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4242 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4243 ref_node); 4244 ref->in_tree = 0; 4245 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4246 RB_CLEAR_NODE(&ref->ref_node); 4247 if (!list_empty(&ref->add_list)) 4248 list_del(&ref->add_list); 4249 atomic_dec(&delayed_refs->num_entries); 4250 btrfs_put_delayed_ref(ref); 4251 } 4252 if (head->must_insert_reserved) 4253 pin_bytes = true; 4254 btrfs_free_delayed_extent_op(head->extent_op); 4255 btrfs_delete_ref_head(delayed_refs, head); 4256 spin_unlock(&head->lock); 4257 spin_unlock(&delayed_refs->lock); 4258 mutex_unlock(&head->mutex); 4259 4260 if (pin_bytes) 4261 btrfs_pin_extent(fs_info, head->bytenr, 4262 head->num_bytes, 1); 4263 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4264 btrfs_put_delayed_ref_head(head); 4265 cond_resched(); 4266 spin_lock(&delayed_refs->lock); 4267 } 4268 4269 spin_unlock(&delayed_refs->lock); 4270 4271 return ret; 4272 } 4273 4274 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4275 { 4276 struct btrfs_inode *btrfs_inode; 4277 struct list_head splice; 4278 4279 INIT_LIST_HEAD(&splice); 4280 4281 spin_lock(&root->delalloc_lock); 4282 list_splice_init(&root->delalloc_inodes, &splice); 4283 4284 while (!list_empty(&splice)) { 4285 struct inode *inode = NULL; 4286 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4287 delalloc_inodes); 4288 __btrfs_del_delalloc_inode(root, btrfs_inode); 4289 spin_unlock(&root->delalloc_lock); 4290 4291 /* 4292 * Make sure we get a live inode and that it'll not disappear 4293 * meanwhile. 4294 */ 4295 inode = igrab(&btrfs_inode->vfs_inode); 4296 if (inode) { 4297 invalidate_inode_pages2(inode->i_mapping); 4298 iput(inode); 4299 } 4300 spin_lock(&root->delalloc_lock); 4301 } 4302 spin_unlock(&root->delalloc_lock); 4303 } 4304 4305 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4306 { 4307 struct btrfs_root *root; 4308 struct list_head splice; 4309 4310 INIT_LIST_HEAD(&splice); 4311 4312 spin_lock(&fs_info->delalloc_root_lock); 4313 list_splice_init(&fs_info->delalloc_roots, &splice); 4314 while (!list_empty(&splice)) { 4315 root = list_first_entry(&splice, struct btrfs_root, 4316 delalloc_root); 4317 root = btrfs_grab_fs_root(root); 4318 BUG_ON(!root); 4319 spin_unlock(&fs_info->delalloc_root_lock); 4320 4321 btrfs_destroy_delalloc_inodes(root); 4322 btrfs_put_fs_root(root); 4323 4324 spin_lock(&fs_info->delalloc_root_lock); 4325 } 4326 spin_unlock(&fs_info->delalloc_root_lock); 4327 } 4328 4329 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4330 struct extent_io_tree *dirty_pages, 4331 int mark) 4332 { 4333 int ret; 4334 struct extent_buffer *eb; 4335 u64 start = 0; 4336 u64 end; 4337 4338 while (1) { 4339 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4340 mark, NULL); 4341 if (ret) 4342 break; 4343 4344 clear_extent_bits(dirty_pages, start, end, mark); 4345 while (start <= end) { 4346 eb = find_extent_buffer(fs_info, start); 4347 start += fs_info->nodesize; 4348 if (!eb) 4349 continue; 4350 wait_on_extent_buffer_writeback(eb); 4351 4352 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4353 &eb->bflags)) 4354 clear_extent_buffer_dirty(eb); 4355 free_extent_buffer_stale(eb); 4356 } 4357 } 4358 4359 return ret; 4360 } 4361 4362 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4363 struct extent_io_tree *pinned_extents) 4364 { 4365 struct extent_io_tree *unpin; 4366 u64 start; 4367 u64 end; 4368 int ret; 4369 bool loop = true; 4370 4371 unpin = pinned_extents; 4372 again: 4373 while (1) { 4374 struct extent_state *cached_state = NULL; 4375 4376 /* 4377 * The btrfs_finish_extent_commit() may get the same range as 4378 * ours between find_first_extent_bit and clear_extent_dirty. 4379 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4380 * the same extent range. 4381 */ 4382 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4383 ret = find_first_extent_bit(unpin, 0, &start, &end, 4384 EXTENT_DIRTY, &cached_state); 4385 if (ret) { 4386 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4387 break; 4388 } 4389 4390 clear_extent_dirty(unpin, start, end, &cached_state); 4391 free_extent_state(cached_state); 4392 btrfs_error_unpin_extent_range(fs_info, start, end); 4393 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4394 cond_resched(); 4395 } 4396 4397 if (loop) { 4398 if (unpin == &fs_info->freed_extents[0]) 4399 unpin = &fs_info->freed_extents[1]; 4400 else 4401 unpin = &fs_info->freed_extents[0]; 4402 loop = false; 4403 goto again; 4404 } 4405 4406 return 0; 4407 } 4408 4409 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4410 { 4411 struct inode *inode; 4412 4413 inode = cache->io_ctl.inode; 4414 if (inode) { 4415 invalidate_inode_pages2(inode->i_mapping); 4416 BTRFS_I(inode)->generation = 0; 4417 cache->io_ctl.inode = NULL; 4418 iput(inode); 4419 } 4420 btrfs_put_block_group(cache); 4421 } 4422 4423 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4424 struct btrfs_fs_info *fs_info) 4425 { 4426 struct btrfs_block_group *cache; 4427 4428 spin_lock(&cur_trans->dirty_bgs_lock); 4429 while (!list_empty(&cur_trans->dirty_bgs)) { 4430 cache = list_first_entry(&cur_trans->dirty_bgs, 4431 struct btrfs_block_group, 4432 dirty_list); 4433 4434 if (!list_empty(&cache->io_list)) { 4435 spin_unlock(&cur_trans->dirty_bgs_lock); 4436 list_del_init(&cache->io_list); 4437 btrfs_cleanup_bg_io(cache); 4438 spin_lock(&cur_trans->dirty_bgs_lock); 4439 } 4440 4441 list_del_init(&cache->dirty_list); 4442 spin_lock(&cache->lock); 4443 cache->disk_cache_state = BTRFS_DC_ERROR; 4444 spin_unlock(&cache->lock); 4445 4446 spin_unlock(&cur_trans->dirty_bgs_lock); 4447 btrfs_put_block_group(cache); 4448 btrfs_delayed_refs_rsv_release(fs_info, 1); 4449 spin_lock(&cur_trans->dirty_bgs_lock); 4450 } 4451 spin_unlock(&cur_trans->dirty_bgs_lock); 4452 4453 /* 4454 * Refer to the definition of io_bgs member for details why it's safe 4455 * to use it without any locking 4456 */ 4457 while (!list_empty(&cur_trans->io_bgs)) { 4458 cache = list_first_entry(&cur_trans->io_bgs, 4459 struct btrfs_block_group, 4460 io_list); 4461 4462 list_del_init(&cache->io_list); 4463 spin_lock(&cache->lock); 4464 cache->disk_cache_state = BTRFS_DC_ERROR; 4465 spin_unlock(&cache->lock); 4466 btrfs_cleanup_bg_io(cache); 4467 } 4468 } 4469 4470 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4471 struct btrfs_fs_info *fs_info) 4472 { 4473 struct btrfs_device *dev, *tmp; 4474 4475 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4476 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4477 ASSERT(list_empty(&cur_trans->io_bgs)); 4478 4479 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4480 post_commit_list) { 4481 list_del_init(&dev->post_commit_list); 4482 } 4483 4484 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4485 4486 cur_trans->state = TRANS_STATE_COMMIT_START; 4487 wake_up(&fs_info->transaction_blocked_wait); 4488 4489 cur_trans->state = TRANS_STATE_UNBLOCKED; 4490 wake_up(&fs_info->transaction_wait); 4491 4492 btrfs_destroy_delayed_inodes(fs_info); 4493 btrfs_assert_delayed_root_empty(fs_info); 4494 4495 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4496 EXTENT_DIRTY); 4497 btrfs_destroy_pinned_extent(fs_info, 4498 fs_info->pinned_extents); 4499 4500 cur_trans->state =TRANS_STATE_COMPLETED; 4501 wake_up(&cur_trans->commit_wait); 4502 } 4503 4504 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4505 { 4506 struct btrfs_transaction *t; 4507 4508 mutex_lock(&fs_info->transaction_kthread_mutex); 4509 4510 spin_lock(&fs_info->trans_lock); 4511 while (!list_empty(&fs_info->trans_list)) { 4512 t = list_first_entry(&fs_info->trans_list, 4513 struct btrfs_transaction, list); 4514 if (t->state >= TRANS_STATE_COMMIT_START) { 4515 refcount_inc(&t->use_count); 4516 spin_unlock(&fs_info->trans_lock); 4517 btrfs_wait_for_commit(fs_info, t->transid); 4518 btrfs_put_transaction(t); 4519 spin_lock(&fs_info->trans_lock); 4520 continue; 4521 } 4522 if (t == fs_info->running_transaction) { 4523 t->state = TRANS_STATE_COMMIT_DOING; 4524 spin_unlock(&fs_info->trans_lock); 4525 /* 4526 * We wait for 0 num_writers since we don't hold a trans 4527 * handle open currently for this transaction. 4528 */ 4529 wait_event(t->writer_wait, 4530 atomic_read(&t->num_writers) == 0); 4531 } else { 4532 spin_unlock(&fs_info->trans_lock); 4533 } 4534 btrfs_cleanup_one_transaction(t, fs_info); 4535 4536 spin_lock(&fs_info->trans_lock); 4537 if (t == fs_info->running_transaction) 4538 fs_info->running_transaction = NULL; 4539 list_del_init(&t->list); 4540 spin_unlock(&fs_info->trans_lock); 4541 4542 btrfs_put_transaction(t); 4543 trace_btrfs_transaction_commit(fs_info->tree_root); 4544 spin_lock(&fs_info->trans_lock); 4545 } 4546 spin_unlock(&fs_info->trans_lock); 4547 btrfs_destroy_all_ordered_extents(fs_info); 4548 btrfs_destroy_delayed_inodes(fs_info); 4549 btrfs_assert_delayed_root_empty(fs_info); 4550 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 4551 btrfs_destroy_all_delalloc_inodes(fs_info); 4552 mutex_unlock(&fs_info->transaction_kthread_mutex); 4553 4554 return 0; 4555 } 4556 4557 static const struct extent_io_ops btree_extent_io_ops = { 4558 /* mandatory callbacks */ 4559 .submit_bio_hook = btree_submit_bio_hook, 4560 .readpage_end_io_hook = btree_readpage_end_io_hook, 4561 }; 4562