1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/buffer_head.h> 11 #include <linux/workqueue.h> 12 #include <linux/kthread.h> 13 #include <linux/slab.h> 14 #include <linux/migrate.h> 15 #include <linux/ratelimit.h> 16 #include <linux/uuid.h> 17 #include <linux/semaphore.h> 18 #include <linux/error-injection.h> 19 #include <linux/crc32c.h> 20 #include <linux/sched/mm.h> 21 #include <asm/unaligned.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "inode-map.h" 33 #include "check-integrity.h" 34 #include "rcu-string.h" 35 #include "dev-replace.h" 36 #include "raid56.h" 37 #include "sysfs.h" 38 #include "qgroup.h" 39 #include "compression.h" 40 #include "tree-checker.h" 41 #include "ref-verify.h" 42 43 #ifdef CONFIG_X86 44 #include <asm/cpufeature.h> 45 #endif 46 47 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 48 BTRFS_HEADER_FLAG_RELOC |\ 49 BTRFS_SUPER_FLAG_ERROR |\ 50 BTRFS_SUPER_FLAG_SEEDING |\ 51 BTRFS_SUPER_FLAG_METADUMP |\ 52 BTRFS_SUPER_FLAG_METADUMP_V2) 53 54 static const struct extent_io_ops btree_extent_io_ops; 55 static void end_workqueue_fn(struct btrfs_work *work); 56 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 57 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 58 struct btrfs_fs_info *fs_info); 59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 60 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 61 struct extent_io_tree *dirty_pages, 62 int mark); 63 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 64 struct extent_io_tree *pinned_extents); 65 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 66 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 67 68 /* 69 * btrfs_end_io_wq structs are used to do processing in task context when an IO 70 * is complete. This is used during reads to verify checksums, and it is used 71 * by writes to insert metadata for new file extents after IO is complete. 72 */ 73 struct btrfs_end_io_wq { 74 struct bio *bio; 75 bio_end_io_t *end_io; 76 void *private; 77 struct btrfs_fs_info *info; 78 blk_status_t status; 79 enum btrfs_wq_endio_type metadata; 80 struct btrfs_work work; 81 }; 82 83 static struct kmem_cache *btrfs_end_io_wq_cache; 84 85 int __init btrfs_end_io_wq_init(void) 86 { 87 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 88 sizeof(struct btrfs_end_io_wq), 89 0, 90 SLAB_MEM_SPREAD, 91 NULL); 92 if (!btrfs_end_io_wq_cache) 93 return -ENOMEM; 94 return 0; 95 } 96 97 void __cold btrfs_end_io_wq_exit(void) 98 { 99 kmem_cache_destroy(btrfs_end_io_wq_cache); 100 } 101 102 /* 103 * async submit bios are used to offload expensive checksumming 104 * onto the worker threads. They checksum file and metadata bios 105 * just before they are sent down the IO stack. 106 */ 107 struct async_submit_bio { 108 void *private_data; 109 struct bio *bio; 110 extent_submit_bio_start_t *submit_bio_start; 111 int mirror_num; 112 /* 113 * bio_offset is optional, can be used if the pages in the bio 114 * can't tell us where in the file the bio should go 115 */ 116 u64 bio_offset; 117 struct btrfs_work work; 118 blk_status_t status; 119 }; 120 121 /* 122 * Lockdep class keys for extent_buffer->lock's in this root. For a given 123 * eb, the lockdep key is determined by the btrfs_root it belongs to and 124 * the level the eb occupies in the tree. 125 * 126 * Different roots are used for different purposes and may nest inside each 127 * other and they require separate keysets. As lockdep keys should be 128 * static, assign keysets according to the purpose of the root as indicated 129 * by btrfs_root->root_key.objectid. This ensures that all special purpose 130 * roots have separate keysets. 131 * 132 * Lock-nesting across peer nodes is always done with the immediate parent 133 * node locked thus preventing deadlock. As lockdep doesn't know this, use 134 * subclass to avoid triggering lockdep warning in such cases. 135 * 136 * The key is set by the readpage_end_io_hook after the buffer has passed 137 * csum validation but before the pages are unlocked. It is also set by 138 * btrfs_init_new_buffer on freshly allocated blocks. 139 * 140 * We also add a check to make sure the highest level of the tree is the 141 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 142 * needs update as well. 143 */ 144 #ifdef CONFIG_DEBUG_LOCK_ALLOC 145 # if BTRFS_MAX_LEVEL != 8 146 # error 147 # endif 148 149 static struct btrfs_lockdep_keyset { 150 u64 id; /* root objectid */ 151 const char *name_stem; /* lock name stem */ 152 char names[BTRFS_MAX_LEVEL + 1][20]; 153 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 154 } btrfs_lockdep_keysets[] = { 155 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 156 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 157 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 158 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 159 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 160 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 161 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 162 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 163 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 164 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 165 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 166 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 167 { .id = 0, .name_stem = "tree" }, 168 }; 169 170 void __init btrfs_init_lockdep(void) 171 { 172 int i, j; 173 174 /* initialize lockdep class names */ 175 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 176 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 177 178 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 179 snprintf(ks->names[j], sizeof(ks->names[j]), 180 "btrfs-%s-%02d", ks->name_stem, j); 181 } 182 } 183 184 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 185 int level) 186 { 187 struct btrfs_lockdep_keyset *ks; 188 189 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 190 191 /* find the matching keyset, id 0 is the default entry */ 192 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 193 if (ks->id == objectid) 194 break; 195 196 lockdep_set_class_and_name(&eb->lock, 197 &ks->keys[level], ks->names[level]); 198 } 199 200 #endif 201 202 /* 203 * extents on the btree inode are pretty simple, there's one extent 204 * that covers the entire device 205 */ 206 struct extent_map *btree_get_extent(struct btrfs_inode *inode, 207 struct page *page, size_t pg_offset, u64 start, u64 len, 208 int create) 209 { 210 struct btrfs_fs_info *fs_info = inode->root->fs_info; 211 struct extent_map_tree *em_tree = &inode->extent_tree; 212 struct extent_map *em; 213 int ret; 214 215 read_lock(&em_tree->lock); 216 em = lookup_extent_mapping(em_tree, start, len); 217 if (em) { 218 em->bdev = fs_info->fs_devices->latest_bdev; 219 read_unlock(&em_tree->lock); 220 goto out; 221 } 222 read_unlock(&em_tree->lock); 223 224 em = alloc_extent_map(); 225 if (!em) { 226 em = ERR_PTR(-ENOMEM); 227 goto out; 228 } 229 em->start = 0; 230 em->len = (u64)-1; 231 em->block_len = (u64)-1; 232 em->block_start = 0; 233 em->bdev = fs_info->fs_devices->latest_bdev; 234 235 write_lock(&em_tree->lock); 236 ret = add_extent_mapping(em_tree, em, 0); 237 if (ret == -EEXIST) { 238 free_extent_map(em); 239 em = lookup_extent_mapping(em_tree, start, len); 240 if (!em) 241 em = ERR_PTR(-EIO); 242 } else if (ret) { 243 free_extent_map(em); 244 em = ERR_PTR(ret); 245 } 246 write_unlock(&em_tree->lock); 247 248 out: 249 return em; 250 } 251 252 u32 btrfs_csum_data(const char *data, u32 seed, size_t len) 253 { 254 return crc32c(seed, data, len); 255 } 256 257 void btrfs_csum_final(u32 crc, u8 *result) 258 { 259 put_unaligned_le32(~crc, result); 260 } 261 262 /* 263 * compute the csum for a btree block, and either verify it or write it 264 * into the csum field of the block. 265 */ 266 static int csum_tree_block(struct btrfs_fs_info *fs_info, 267 struct extent_buffer *buf, 268 int verify) 269 { 270 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 271 char result[BTRFS_CSUM_SIZE]; 272 unsigned long len; 273 unsigned long cur_len; 274 unsigned long offset = BTRFS_CSUM_SIZE; 275 char *kaddr; 276 unsigned long map_start; 277 unsigned long map_len; 278 int err; 279 u32 crc = ~(u32)0; 280 281 len = buf->len - offset; 282 while (len > 0) { 283 /* 284 * Note: we don't need to check for the err == 1 case here, as 285 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)' 286 * and 'min_len = 32' and the currently implemented mapping 287 * algorithm we cannot cross a page boundary. 288 */ 289 err = map_private_extent_buffer(buf, offset, 32, 290 &kaddr, &map_start, &map_len); 291 if (err) 292 return err; 293 cur_len = min(len, map_len - (offset - map_start)); 294 crc = btrfs_csum_data(kaddr + offset - map_start, 295 crc, cur_len); 296 len -= cur_len; 297 offset += cur_len; 298 } 299 memset(result, 0, BTRFS_CSUM_SIZE); 300 301 btrfs_csum_final(crc, result); 302 303 if (verify) { 304 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 305 u32 val; 306 u32 found = 0; 307 memcpy(&found, result, csum_size); 308 309 read_extent_buffer(buf, &val, 0, csum_size); 310 btrfs_warn_rl(fs_info, 311 "%s checksum verify failed on %llu wanted %X found %X level %d", 312 fs_info->sb->s_id, buf->start, 313 val, found, btrfs_header_level(buf)); 314 return -EUCLEAN; 315 } 316 } else { 317 write_extent_buffer(buf, result, 0, csum_size); 318 } 319 320 return 0; 321 } 322 323 /* 324 * we can't consider a given block up to date unless the transid of the 325 * block matches the transid in the parent node's pointer. This is how we 326 * detect blocks that either didn't get written at all or got written 327 * in the wrong place. 328 */ 329 static int verify_parent_transid(struct extent_io_tree *io_tree, 330 struct extent_buffer *eb, u64 parent_transid, 331 int atomic) 332 { 333 struct extent_state *cached_state = NULL; 334 int ret; 335 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 336 337 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 338 return 0; 339 340 if (atomic) 341 return -EAGAIN; 342 343 if (need_lock) { 344 btrfs_tree_read_lock(eb); 345 btrfs_set_lock_blocking_read(eb); 346 } 347 348 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 349 &cached_state); 350 if (extent_buffer_uptodate(eb) && 351 btrfs_header_generation(eb) == parent_transid) { 352 ret = 0; 353 goto out; 354 } 355 btrfs_err_rl(eb->fs_info, 356 "parent transid verify failed on %llu wanted %llu found %llu", 357 eb->start, 358 parent_transid, btrfs_header_generation(eb)); 359 ret = 1; 360 361 /* 362 * Things reading via commit roots that don't have normal protection, 363 * like send, can have a really old block in cache that may point at a 364 * block that has been freed and re-allocated. So don't clear uptodate 365 * if we find an eb that is under IO (dirty/writeback) because we could 366 * end up reading in the stale data and then writing it back out and 367 * making everybody very sad. 368 */ 369 if (!extent_buffer_under_io(eb)) 370 clear_extent_buffer_uptodate(eb); 371 out: 372 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 373 &cached_state); 374 if (need_lock) 375 btrfs_tree_read_unlock_blocking(eb); 376 return ret; 377 } 378 379 /* 380 * Return 0 if the superblock checksum type matches the checksum value of that 381 * algorithm. Pass the raw disk superblock data. 382 */ 383 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 384 char *raw_disk_sb) 385 { 386 struct btrfs_super_block *disk_sb = 387 (struct btrfs_super_block *)raw_disk_sb; 388 u16 csum_type = btrfs_super_csum_type(disk_sb); 389 int ret = 0; 390 391 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 392 u32 crc = ~(u32)0; 393 char result[sizeof(crc)]; 394 395 /* 396 * The super_block structure does not span the whole 397 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 398 * is filled with zeros and is included in the checksum. 399 */ 400 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 401 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 402 btrfs_csum_final(crc, result); 403 404 if (memcmp(raw_disk_sb, result, sizeof(result))) 405 ret = 1; 406 } 407 408 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 409 btrfs_err(fs_info, "unsupported checksum algorithm %u", 410 csum_type); 411 ret = 1; 412 } 413 414 return ret; 415 } 416 417 static int verify_level_key(struct btrfs_fs_info *fs_info, 418 struct extent_buffer *eb, int level, 419 struct btrfs_key *first_key, u64 parent_transid) 420 { 421 int found_level; 422 struct btrfs_key found_key; 423 int ret; 424 425 found_level = btrfs_header_level(eb); 426 if (found_level != level) { 427 #ifdef CONFIG_BTRFS_DEBUG 428 WARN_ON(1); 429 btrfs_err(fs_info, 430 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 431 eb->start, level, found_level); 432 #endif 433 return -EIO; 434 } 435 436 if (!first_key) 437 return 0; 438 439 /* 440 * For live tree block (new tree blocks in current transaction), 441 * we need proper lock context to avoid race, which is impossible here. 442 * So we only checks tree blocks which is read from disk, whose 443 * generation <= fs_info->last_trans_committed. 444 */ 445 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 446 return 0; 447 if (found_level) 448 btrfs_node_key_to_cpu(eb, &found_key, 0); 449 else 450 btrfs_item_key_to_cpu(eb, &found_key, 0); 451 ret = btrfs_comp_cpu_keys(first_key, &found_key); 452 453 #ifdef CONFIG_BTRFS_DEBUG 454 if (ret) { 455 WARN_ON(1); 456 btrfs_err(fs_info, 457 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 458 eb->start, parent_transid, first_key->objectid, 459 first_key->type, first_key->offset, 460 found_key.objectid, found_key.type, 461 found_key.offset); 462 } 463 #endif 464 return ret; 465 } 466 467 /* 468 * helper to read a given tree block, doing retries as required when 469 * the checksums don't match and we have alternate mirrors to try. 470 * 471 * @parent_transid: expected transid, skip check if 0 472 * @level: expected level, mandatory check 473 * @first_key: expected key of first slot, skip check if NULL 474 */ 475 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info, 476 struct extent_buffer *eb, 477 u64 parent_transid, int level, 478 struct btrfs_key *first_key) 479 { 480 struct extent_io_tree *io_tree; 481 int failed = 0; 482 int ret; 483 int num_copies = 0; 484 int mirror_num = 0; 485 int failed_mirror = 0; 486 487 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 488 while (1) { 489 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 490 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE, 491 mirror_num); 492 if (!ret) { 493 if (verify_parent_transid(io_tree, eb, 494 parent_transid, 0)) 495 ret = -EIO; 496 else if (verify_level_key(fs_info, eb, level, 497 first_key, parent_transid)) 498 ret = -EUCLEAN; 499 else 500 break; 501 } 502 503 num_copies = btrfs_num_copies(fs_info, 504 eb->start, eb->len); 505 if (num_copies == 1) 506 break; 507 508 if (!failed_mirror) { 509 failed = 1; 510 failed_mirror = eb->read_mirror; 511 } 512 513 mirror_num++; 514 if (mirror_num == failed_mirror) 515 mirror_num++; 516 517 if (mirror_num > num_copies) 518 break; 519 } 520 521 if (failed && !ret && failed_mirror) 522 repair_eb_io_failure(fs_info, eb, failed_mirror); 523 524 return ret; 525 } 526 527 /* 528 * checksum a dirty tree block before IO. This has extra checks to make sure 529 * we only fill in the checksum field in the first page of a multi-page block 530 */ 531 532 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 533 { 534 u64 start = page_offset(page); 535 u64 found_start; 536 struct extent_buffer *eb; 537 538 eb = (struct extent_buffer *)page->private; 539 if (page != eb->pages[0]) 540 return 0; 541 542 found_start = btrfs_header_bytenr(eb); 543 /* 544 * Please do not consolidate these warnings into a single if. 545 * It is useful to know what went wrong. 546 */ 547 if (WARN_ON(found_start != start)) 548 return -EUCLEAN; 549 if (WARN_ON(!PageUptodate(page))) 550 return -EUCLEAN; 551 552 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 553 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 554 555 return csum_tree_block(fs_info, eb, 0); 556 } 557 558 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 559 struct extent_buffer *eb) 560 { 561 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 562 u8 fsid[BTRFS_FSID_SIZE]; 563 int ret = 1; 564 565 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 566 while (fs_devices) { 567 u8 *metadata_uuid; 568 569 /* 570 * Checking the incompat flag is only valid for the current 571 * fs. For seed devices it's forbidden to have their uuid 572 * changed so reading ->fsid in this case is fine 573 */ 574 if (fs_devices == fs_info->fs_devices && 575 btrfs_fs_incompat(fs_info, METADATA_UUID)) 576 metadata_uuid = fs_devices->metadata_uuid; 577 else 578 metadata_uuid = fs_devices->fsid; 579 580 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) { 581 ret = 0; 582 break; 583 } 584 fs_devices = fs_devices->seed; 585 } 586 return ret; 587 } 588 589 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 590 u64 phy_offset, struct page *page, 591 u64 start, u64 end, int mirror) 592 { 593 u64 found_start; 594 int found_level; 595 struct extent_buffer *eb; 596 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 597 struct btrfs_fs_info *fs_info = root->fs_info; 598 int ret = 0; 599 int reads_done; 600 601 if (!page->private) 602 goto out; 603 604 eb = (struct extent_buffer *)page->private; 605 606 /* the pending IO might have been the only thing that kept this buffer 607 * in memory. Make sure we have a ref for all this other checks 608 */ 609 extent_buffer_get(eb); 610 611 reads_done = atomic_dec_and_test(&eb->io_pages); 612 if (!reads_done) 613 goto err; 614 615 eb->read_mirror = mirror; 616 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 617 ret = -EIO; 618 goto err; 619 } 620 621 found_start = btrfs_header_bytenr(eb); 622 if (found_start != eb->start) { 623 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 624 eb->start, found_start); 625 ret = -EIO; 626 goto err; 627 } 628 if (check_tree_block_fsid(fs_info, eb)) { 629 btrfs_err_rl(fs_info, "bad fsid on block %llu", 630 eb->start); 631 ret = -EIO; 632 goto err; 633 } 634 found_level = btrfs_header_level(eb); 635 if (found_level >= BTRFS_MAX_LEVEL) { 636 btrfs_err(fs_info, "bad tree block level %d on %llu", 637 (int)btrfs_header_level(eb), eb->start); 638 ret = -EIO; 639 goto err; 640 } 641 642 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 643 eb, found_level); 644 645 ret = csum_tree_block(fs_info, eb, 1); 646 if (ret) 647 goto err; 648 649 /* 650 * If this is a leaf block and it is corrupt, set the corrupt bit so 651 * that we don't try and read the other copies of this block, just 652 * return -EIO. 653 */ 654 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) { 655 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 656 ret = -EIO; 657 } 658 659 if (found_level > 0 && btrfs_check_node(fs_info, eb)) 660 ret = -EIO; 661 662 if (!ret) 663 set_extent_buffer_uptodate(eb); 664 err: 665 if (reads_done && 666 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 667 btree_readahead_hook(eb, ret); 668 669 if (ret) { 670 /* 671 * our io error hook is going to dec the io pages 672 * again, we have to make sure it has something 673 * to decrement 674 */ 675 atomic_inc(&eb->io_pages); 676 clear_extent_buffer_uptodate(eb); 677 } 678 free_extent_buffer(eb); 679 out: 680 return ret; 681 } 682 683 static void end_workqueue_bio(struct bio *bio) 684 { 685 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 686 struct btrfs_fs_info *fs_info; 687 struct btrfs_workqueue *wq; 688 btrfs_work_func_t func; 689 690 fs_info = end_io_wq->info; 691 end_io_wq->status = bio->bi_status; 692 693 if (bio_op(bio) == REQ_OP_WRITE) { 694 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 695 wq = fs_info->endio_meta_write_workers; 696 func = btrfs_endio_meta_write_helper; 697 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 698 wq = fs_info->endio_freespace_worker; 699 func = btrfs_freespace_write_helper; 700 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 701 wq = fs_info->endio_raid56_workers; 702 func = btrfs_endio_raid56_helper; 703 } else { 704 wq = fs_info->endio_write_workers; 705 func = btrfs_endio_write_helper; 706 } 707 } else { 708 if (unlikely(end_io_wq->metadata == 709 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 710 wq = fs_info->endio_repair_workers; 711 func = btrfs_endio_repair_helper; 712 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 713 wq = fs_info->endio_raid56_workers; 714 func = btrfs_endio_raid56_helper; 715 } else if (end_io_wq->metadata) { 716 wq = fs_info->endio_meta_workers; 717 func = btrfs_endio_meta_helper; 718 } else { 719 wq = fs_info->endio_workers; 720 func = btrfs_endio_helper; 721 } 722 } 723 724 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 725 btrfs_queue_work(wq, &end_io_wq->work); 726 } 727 728 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 729 enum btrfs_wq_endio_type metadata) 730 { 731 struct btrfs_end_io_wq *end_io_wq; 732 733 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 734 if (!end_io_wq) 735 return BLK_STS_RESOURCE; 736 737 end_io_wq->private = bio->bi_private; 738 end_io_wq->end_io = bio->bi_end_io; 739 end_io_wq->info = info; 740 end_io_wq->status = 0; 741 end_io_wq->bio = bio; 742 end_io_wq->metadata = metadata; 743 744 bio->bi_private = end_io_wq; 745 bio->bi_end_io = end_workqueue_bio; 746 return 0; 747 } 748 749 static void run_one_async_start(struct btrfs_work *work) 750 { 751 struct async_submit_bio *async; 752 blk_status_t ret; 753 754 async = container_of(work, struct async_submit_bio, work); 755 ret = async->submit_bio_start(async->private_data, async->bio, 756 async->bio_offset); 757 if (ret) 758 async->status = ret; 759 } 760 761 /* 762 * In order to insert checksums into the metadata in large chunks, we wait 763 * until bio submission time. All the pages in the bio are checksummed and 764 * sums are attached onto the ordered extent record. 765 * 766 * At IO completion time the csums attached on the ordered extent record are 767 * inserted into the tree. 768 */ 769 static void run_one_async_done(struct btrfs_work *work) 770 { 771 struct async_submit_bio *async; 772 struct inode *inode; 773 blk_status_t ret; 774 775 async = container_of(work, struct async_submit_bio, work); 776 inode = async->private_data; 777 778 /* If an error occurred we just want to clean up the bio and move on */ 779 if (async->status) { 780 async->bio->bi_status = async->status; 781 bio_endio(async->bio); 782 return; 783 } 784 785 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, 786 async->mirror_num, 1); 787 if (ret) { 788 async->bio->bi_status = ret; 789 bio_endio(async->bio); 790 } 791 } 792 793 static void run_one_async_free(struct btrfs_work *work) 794 { 795 struct async_submit_bio *async; 796 797 async = container_of(work, struct async_submit_bio, work); 798 kfree(async); 799 } 800 801 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 802 int mirror_num, unsigned long bio_flags, 803 u64 bio_offset, void *private_data, 804 extent_submit_bio_start_t *submit_bio_start) 805 { 806 struct async_submit_bio *async; 807 808 async = kmalloc(sizeof(*async), GFP_NOFS); 809 if (!async) 810 return BLK_STS_RESOURCE; 811 812 async->private_data = private_data; 813 async->bio = bio; 814 async->mirror_num = mirror_num; 815 async->submit_bio_start = submit_bio_start; 816 817 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 818 run_one_async_done, run_one_async_free); 819 820 async->bio_offset = bio_offset; 821 822 async->status = 0; 823 824 if (op_is_sync(bio->bi_opf)) 825 btrfs_set_work_high_priority(&async->work); 826 827 btrfs_queue_work(fs_info->workers, &async->work); 828 return 0; 829 } 830 831 static blk_status_t btree_csum_one_bio(struct bio *bio) 832 { 833 struct bio_vec *bvec; 834 struct btrfs_root *root; 835 int i, ret = 0; 836 struct bvec_iter_all iter_all; 837 838 ASSERT(!bio_flagged(bio, BIO_CLONED)); 839 bio_for_each_segment_all(bvec, bio, i, iter_all) { 840 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 841 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 842 if (ret) 843 break; 844 } 845 846 return errno_to_blk_status(ret); 847 } 848 849 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, 850 u64 bio_offset) 851 { 852 /* 853 * when we're called for a write, we're already in the async 854 * submission context. Just jump into btrfs_map_bio 855 */ 856 return btree_csum_one_bio(bio); 857 } 858 859 static int check_async_write(struct btrfs_inode *bi) 860 { 861 if (atomic_read(&bi->sync_writers)) 862 return 0; 863 #ifdef CONFIG_X86 864 if (static_cpu_has(X86_FEATURE_XMM4_2)) 865 return 0; 866 #endif 867 return 1; 868 } 869 870 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio, 871 int mirror_num, unsigned long bio_flags, 872 u64 bio_offset) 873 { 874 struct inode *inode = private_data; 875 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 876 int async = check_async_write(BTRFS_I(inode)); 877 blk_status_t ret; 878 879 if (bio_op(bio) != REQ_OP_WRITE) { 880 /* 881 * called for a read, do the setup so that checksum validation 882 * can happen in the async kernel threads 883 */ 884 ret = btrfs_bio_wq_end_io(fs_info, bio, 885 BTRFS_WQ_ENDIO_METADATA); 886 if (ret) 887 goto out_w_error; 888 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 889 } else if (!async) { 890 ret = btree_csum_one_bio(bio); 891 if (ret) 892 goto out_w_error; 893 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 894 } else { 895 /* 896 * kthread helpers are used to submit writes so that 897 * checksumming can happen in parallel across all CPUs 898 */ 899 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 900 bio_offset, private_data, 901 btree_submit_bio_start); 902 } 903 904 if (ret) 905 goto out_w_error; 906 return 0; 907 908 out_w_error: 909 bio->bi_status = ret; 910 bio_endio(bio); 911 return ret; 912 } 913 914 #ifdef CONFIG_MIGRATION 915 static int btree_migratepage(struct address_space *mapping, 916 struct page *newpage, struct page *page, 917 enum migrate_mode mode) 918 { 919 /* 920 * we can't safely write a btree page from here, 921 * we haven't done the locking hook 922 */ 923 if (PageDirty(page)) 924 return -EAGAIN; 925 /* 926 * Buffers may be managed in a filesystem specific way. 927 * We must have no buffers or drop them. 928 */ 929 if (page_has_private(page) && 930 !try_to_release_page(page, GFP_KERNEL)) 931 return -EAGAIN; 932 return migrate_page(mapping, newpage, page, mode); 933 } 934 #endif 935 936 937 static int btree_writepages(struct address_space *mapping, 938 struct writeback_control *wbc) 939 { 940 struct btrfs_fs_info *fs_info; 941 int ret; 942 943 if (wbc->sync_mode == WB_SYNC_NONE) { 944 945 if (wbc->for_kupdate) 946 return 0; 947 948 fs_info = BTRFS_I(mapping->host)->root->fs_info; 949 /* this is a bit racy, but that's ok */ 950 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 951 BTRFS_DIRTY_METADATA_THRESH, 952 fs_info->dirty_metadata_batch); 953 if (ret < 0) 954 return 0; 955 } 956 return btree_write_cache_pages(mapping, wbc); 957 } 958 959 static int btree_readpage(struct file *file, struct page *page) 960 { 961 struct extent_io_tree *tree; 962 tree = &BTRFS_I(page->mapping->host)->io_tree; 963 return extent_read_full_page(tree, page, btree_get_extent, 0); 964 } 965 966 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 967 { 968 if (PageWriteback(page) || PageDirty(page)) 969 return 0; 970 971 return try_release_extent_buffer(page); 972 } 973 974 static void btree_invalidatepage(struct page *page, unsigned int offset, 975 unsigned int length) 976 { 977 struct extent_io_tree *tree; 978 tree = &BTRFS_I(page->mapping->host)->io_tree; 979 extent_invalidatepage(tree, page, offset); 980 btree_releasepage(page, GFP_NOFS); 981 if (PagePrivate(page)) { 982 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 983 "page private not zero on page %llu", 984 (unsigned long long)page_offset(page)); 985 ClearPagePrivate(page); 986 set_page_private(page, 0); 987 put_page(page); 988 } 989 } 990 991 static int btree_set_page_dirty(struct page *page) 992 { 993 #ifdef DEBUG 994 struct extent_buffer *eb; 995 996 BUG_ON(!PagePrivate(page)); 997 eb = (struct extent_buffer *)page->private; 998 BUG_ON(!eb); 999 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1000 BUG_ON(!atomic_read(&eb->refs)); 1001 btrfs_assert_tree_locked(eb); 1002 #endif 1003 return __set_page_dirty_nobuffers(page); 1004 } 1005 1006 static const struct address_space_operations btree_aops = { 1007 .readpage = btree_readpage, 1008 .writepages = btree_writepages, 1009 .releasepage = btree_releasepage, 1010 .invalidatepage = btree_invalidatepage, 1011 #ifdef CONFIG_MIGRATION 1012 .migratepage = btree_migratepage, 1013 #endif 1014 .set_page_dirty = btree_set_page_dirty, 1015 }; 1016 1017 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1018 { 1019 struct extent_buffer *buf = NULL; 1020 struct inode *btree_inode = fs_info->btree_inode; 1021 1022 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1023 if (IS_ERR(buf)) 1024 return; 1025 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1026 buf, WAIT_NONE, 0); 1027 free_extent_buffer(buf); 1028 } 1029 1030 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr, 1031 int mirror_num, struct extent_buffer **eb) 1032 { 1033 struct extent_buffer *buf = NULL; 1034 struct inode *btree_inode = fs_info->btree_inode; 1035 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1036 int ret; 1037 1038 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1039 if (IS_ERR(buf)) 1040 return 0; 1041 1042 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1043 1044 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK, 1045 mirror_num); 1046 if (ret) { 1047 free_extent_buffer(buf); 1048 return ret; 1049 } 1050 1051 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1052 free_extent_buffer(buf); 1053 return -EIO; 1054 } else if (extent_buffer_uptodate(buf)) { 1055 *eb = buf; 1056 } else { 1057 free_extent_buffer(buf); 1058 } 1059 return 0; 1060 } 1061 1062 struct extent_buffer *btrfs_find_create_tree_block( 1063 struct btrfs_fs_info *fs_info, 1064 u64 bytenr) 1065 { 1066 if (btrfs_is_testing(fs_info)) 1067 return alloc_test_extent_buffer(fs_info, bytenr); 1068 return alloc_extent_buffer(fs_info, bytenr); 1069 } 1070 1071 1072 int btrfs_write_tree_block(struct extent_buffer *buf) 1073 { 1074 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1075 buf->start + buf->len - 1); 1076 } 1077 1078 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1079 { 1080 filemap_fdatawait_range(buf->pages[0]->mapping, 1081 buf->start, buf->start + buf->len - 1); 1082 } 1083 1084 /* 1085 * Read tree block at logical address @bytenr and do variant basic but critical 1086 * verification. 1087 * 1088 * @parent_transid: expected transid of this tree block, skip check if 0 1089 * @level: expected level, mandatory check 1090 * @first_key: expected key in slot 0, skip check if NULL 1091 */ 1092 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1093 u64 parent_transid, int level, 1094 struct btrfs_key *first_key) 1095 { 1096 struct extent_buffer *buf = NULL; 1097 int ret; 1098 1099 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1100 if (IS_ERR(buf)) 1101 return buf; 1102 1103 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid, 1104 level, first_key); 1105 if (ret) { 1106 free_extent_buffer(buf); 1107 return ERR_PTR(ret); 1108 } 1109 return buf; 1110 1111 } 1112 1113 void clean_tree_block(struct btrfs_fs_info *fs_info, 1114 struct extent_buffer *buf) 1115 { 1116 if (btrfs_header_generation(buf) == 1117 fs_info->running_transaction->transid) { 1118 btrfs_assert_tree_locked(buf); 1119 1120 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1121 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1122 -buf->len, 1123 fs_info->dirty_metadata_batch); 1124 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1125 btrfs_set_lock_blocking_write(buf); 1126 clear_extent_buffer_dirty(buf); 1127 } 1128 } 1129 } 1130 1131 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1132 { 1133 struct btrfs_subvolume_writers *writers; 1134 int ret; 1135 1136 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1137 if (!writers) 1138 return ERR_PTR(-ENOMEM); 1139 1140 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS); 1141 if (ret < 0) { 1142 kfree(writers); 1143 return ERR_PTR(ret); 1144 } 1145 1146 init_waitqueue_head(&writers->wait); 1147 return writers; 1148 } 1149 1150 static void 1151 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1152 { 1153 percpu_counter_destroy(&writers->counter); 1154 kfree(writers); 1155 } 1156 1157 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1158 u64 objectid) 1159 { 1160 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1161 root->node = NULL; 1162 root->commit_root = NULL; 1163 root->state = 0; 1164 root->orphan_cleanup_state = 0; 1165 1166 root->last_trans = 0; 1167 root->highest_objectid = 0; 1168 root->nr_delalloc_inodes = 0; 1169 root->nr_ordered_extents = 0; 1170 root->inode_tree = RB_ROOT; 1171 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1172 root->block_rsv = NULL; 1173 1174 INIT_LIST_HEAD(&root->dirty_list); 1175 INIT_LIST_HEAD(&root->root_list); 1176 INIT_LIST_HEAD(&root->delalloc_inodes); 1177 INIT_LIST_HEAD(&root->delalloc_root); 1178 INIT_LIST_HEAD(&root->ordered_extents); 1179 INIT_LIST_HEAD(&root->ordered_root); 1180 INIT_LIST_HEAD(&root->reloc_dirty_list); 1181 INIT_LIST_HEAD(&root->logged_list[0]); 1182 INIT_LIST_HEAD(&root->logged_list[1]); 1183 spin_lock_init(&root->inode_lock); 1184 spin_lock_init(&root->delalloc_lock); 1185 spin_lock_init(&root->ordered_extent_lock); 1186 spin_lock_init(&root->accounting_lock); 1187 spin_lock_init(&root->log_extents_lock[0]); 1188 spin_lock_init(&root->log_extents_lock[1]); 1189 spin_lock_init(&root->qgroup_meta_rsv_lock); 1190 mutex_init(&root->objectid_mutex); 1191 mutex_init(&root->log_mutex); 1192 mutex_init(&root->ordered_extent_mutex); 1193 mutex_init(&root->delalloc_mutex); 1194 init_waitqueue_head(&root->log_writer_wait); 1195 init_waitqueue_head(&root->log_commit_wait[0]); 1196 init_waitqueue_head(&root->log_commit_wait[1]); 1197 INIT_LIST_HEAD(&root->log_ctxs[0]); 1198 INIT_LIST_HEAD(&root->log_ctxs[1]); 1199 atomic_set(&root->log_commit[0], 0); 1200 atomic_set(&root->log_commit[1], 0); 1201 atomic_set(&root->log_writers, 0); 1202 atomic_set(&root->log_batch, 0); 1203 refcount_set(&root->refs, 1); 1204 atomic_set(&root->will_be_snapshotted, 0); 1205 atomic_set(&root->snapshot_force_cow, 0); 1206 atomic_set(&root->nr_swapfiles, 0); 1207 root->log_transid = 0; 1208 root->log_transid_committed = -1; 1209 root->last_log_commit = 0; 1210 if (!dummy) 1211 extent_io_tree_init(&root->dirty_log_pages, NULL); 1212 1213 memset(&root->root_key, 0, sizeof(root->root_key)); 1214 memset(&root->root_item, 0, sizeof(root->root_item)); 1215 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1216 if (!dummy) 1217 root->defrag_trans_start = fs_info->generation; 1218 else 1219 root->defrag_trans_start = 0; 1220 root->root_key.objectid = objectid; 1221 root->anon_dev = 0; 1222 1223 spin_lock_init(&root->root_item_lock); 1224 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1225 } 1226 1227 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1228 gfp_t flags) 1229 { 1230 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1231 if (root) 1232 root->fs_info = fs_info; 1233 return root; 1234 } 1235 1236 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1237 /* Should only be used by the testing infrastructure */ 1238 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1239 { 1240 struct btrfs_root *root; 1241 1242 if (!fs_info) 1243 return ERR_PTR(-EINVAL); 1244 1245 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1246 if (!root) 1247 return ERR_PTR(-ENOMEM); 1248 1249 /* We don't use the stripesize in selftest, set it as sectorsize */ 1250 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 1251 root->alloc_bytenr = 0; 1252 1253 return root; 1254 } 1255 #endif 1256 1257 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1258 struct btrfs_fs_info *fs_info, 1259 u64 objectid) 1260 { 1261 struct extent_buffer *leaf; 1262 struct btrfs_root *tree_root = fs_info->tree_root; 1263 struct btrfs_root *root; 1264 struct btrfs_key key; 1265 unsigned int nofs_flag; 1266 int ret = 0; 1267 uuid_le uuid = NULL_UUID_LE; 1268 1269 /* 1270 * We're holding a transaction handle, so use a NOFS memory allocation 1271 * context to avoid deadlock if reclaim happens. 1272 */ 1273 nofs_flag = memalloc_nofs_save(); 1274 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1275 memalloc_nofs_restore(nofs_flag); 1276 if (!root) 1277 return ERR_PTR(-ENOMEM); 1278 1279 __setup_root(root, fs_info, objectid); 1280 root->root_key.objectid = objectid; 1281 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1282 root->root_key.offset = 0; 1283 1284 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1285 if (IS_ERR(leaf)) { 1286 ret = PTR_ERR(leaf); 1287 leaf = NULL; 1288 goto fail; 1289 } 1290 1291 root->node = leaf; 1292 btrfs_mark_buffer_dirty(leaf); 1293 1294 root->commit_root = btrfs_root_node(root); 1295 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1296 1297 root->root_item.flags = 0; 1298 root->root_item.byte_limit = 0; 1299 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1300 btrfs_set_root_generation(&root->root_item, trans->transid); 1301 btrfs_set_root_level(&root->root_item, 0); 1302 btrfs_set_root_refs(&root->root_item, 1); 1303 btrfs_set_root_used(&root->root_item, leaf->len); 1304 btrfs_set_root_last_snapshot(&root->root_item, 0); 1305 btrfs_set_root_dirid(&root->root_item, 0); 1306 if (is_fstree(objectid)) 1307 uuid_le_gen(&uuid); 1308 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1309 root->root_item.drop_level = 0; 1310 1311 key.objectid = objectid; 1312 key.type = BTRFS_ROOT_ITEM_KEY; 1313 key.offset = 0; 1314 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1315 if (ret) 1316 goto fail; 1317 1318 btrfs_tree_unlock(leaf); 1319 1320 return root; 1321 1322 fail: 1323 if (leaf) { 1324 btrfs_tree_unlock(leaf); 1325 free_extent_buffer(root->commit_root); 1326 free_extent_buffer(leaf); 1327 } 1328 kfree(root); 1329 1330 return ERR_PTR(ret); 1331 } 1332 1333 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1334 struct btrfs_fs_info *fs_info) 1335 { 1336 struct btrfs_root *root; 1337 struct extent_buffer *leaf; 1338 1339 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1340 if (!root) 1341 return ERR_PTR(-ENOMEM); 1342 1343 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1344 1345 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1346 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1347 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1348 1349 /* 1350 * DON'T set REF_COWS for log trees 1351 * 1352 * log trees do not get reference counted because they go away 1353 * before a real commit is actually done. They do store pointers 1354 * to file data extents, and those reference counts still get 1355 * updated (along with back refs to the log tree). 1356 */ 1357 1358 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1359 NULL, 0, 0, 0); 1360 if (IS_ERR(leaf)) { 1361 kfree(root); 1362 return ERR_CAST(leaf); 1363 } 1364 1365 root->node = leaf; 1366 1367 btrfs_mark_buffer_dirty(root->node); 1368 btrfs_tree_unlock(root->node); 1369 return root; 1370 } 1371 1372 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1373 struct btrfs_fs_info *fs_info) 1374 { 1375 struct btrfs_root *log_root; 1376 1377 log_root = alloc_log_tree(trans, fs_info); 1378 if (IS_ERR(log_root)) 1379 return PTR_ERR(log_root); 1380 WARN_ON(fs_info->log_root_tree); 1381 fs_info->log_root_tree = log_root; 1382 return 0; 1383 } 1384 1385 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1386 struct btrfs_root *root) 1387 { 1388 struct btrfs_fs_info *fs_info = root->fs_info; 1389 struct btrfs_root *log_root; 1390 struct btrfs_inode_item *inode_item; 1391 1392 log_root = alloc_log_tree(trans, fs_info); 1393 if (IS_ERR(log_root)) 1394 return PTR_ERR(log_root); 1395 1396 log_root->last_trans = trans->transid; 1397 log_root->root_key.offset = root->root_key.objectid; 1398 1399 inode_item = &log_root->root_item.inode; 1400 btrfs_set_stack_inode_generation(inode_item, 1); 1401 btrfs_set_stack_inode_size(inode_item, 3); 1402 btrfs_set_stack_inode_nlink(inode_item, 1); 1403 btrfs_set_stack_inode_nbytes(inode_item, 1404 fs_info->nodesize); 1405 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1406 1407 btrfs_set_root_node(&log_root->root_item, log_root->node); 1408 1409 WARN_ON(root->log_root); 1410 root->log_root = log_root; 1411 root->log_transid = 0; 1412 root->log_transid_committed = -1; 1413 root->last_log_commit = 0; 1414 return 0; 1415 } 1416 1417 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1418 struct btrfs_key *key) 1419 { 1420 struct btrfs_root *root; 1421 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1422 struct btrfs_path *path; 1423 u64 generation; 1424 int ret; 1425 int level; 1426 1427 path = btrfs_alloc_path(); 1428 if (!path) 1429 return ERR_PTR(-ENOMEM); 1430 1431 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1432 if (!root) { 1433 ret = -ENOMEM; 1434 goto alloc_fail; 1435 } 1436 1437 __setup_root(root, fs_info, key->objectid); 1438 1439 ret = btrfs_find_root(tree_root, key, path, 1440 &root->root_item, &root->root_key); 1441 if (ret) { 1442 if (ret > 0) 1443 ret = -ENOENT; 1444 goto find_fail; 1445 } 1446 1447 generation = btrfs_root_generation(&root->root_item); 1448 level = btrfs_root_level(&root->root_item); 1449 root->node = read_tree_block(fs_info, 1450 btrfs_root_bytenr(&root->root_item), 1451 generation, level, NULL); 1452 if (IS_ERR(root->node)) { 1453 ret = PTR_ERR(root->node); 1454 goto find_fail; 1455 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1456 ret = -EIO; 1457 free_extent_buffer(root->node); 1458 goto find_fail; 1459 } 1460 root->commit_root = btrfs_root_node(root); 1461 out: 1462 btrfs_free_path(path); 1463 return root; 1464 1465 find_fail: 1466 kfree(root); 1467 alloc_fail: 1468 root = ERR_PTR(ret); 1469 goto out; 1470 } 1471 1472 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1473 struct btrfs_key *location) 1474 { 1475 struct btrfs_root *root; 1476 1477 root = btrfs_read_tree_root(tree_root, location); 1478 if (IS_ERR(root)) 1479 return root; 1480 1481 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1482 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1483 btrfs_check_and_init_root_item(&root->root_item); 1484 } 1485 1486 return root; 1487 } 1488 1489 int btrfs_init_fs_root(struct btrfs_root *root) 1490 { 1491 int ret; 1492 struct btrfs_subvolume_writers *writers; 1493 1494 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1495 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1496 GFP_NOFS); 1497 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1498 ret = -ENOMEM; 1499 goto fail; 1500 } 1501 1502 writers = btrfs_alloc_subvolume_writers(); 1503 if (IS_ERR(writers)) { 1504 ret = PTR_ERR(writers); 1505 goto fail; 1506 } 1507 root->subv_writers = writers; 1508 1509 btrfs_init_free_ino_ctl(root); 1510 spin_lock_init(&root->ino_cache_lock); 1511 init_waitqueue_head(&root->ino_cache_wait); 1512 1513 ret = get_anon_bdev(&root->anon_dev); 1514 if (ret) 1515 goto fail; 1516 1517 mutex_lock(&root->objectid_mutex); 1518 ret = btrfs_find_highest_objectid(root, 1519 &root->highest_objectid); 1520 if (ret) { 1521 mutex_unlock(&root->objectid_mutex); 1522 goto fail; 1523 } 1524 1525 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1526 1527 mutex_unlock(&root->objectid_mutex); 1528 1529 return 0; 1530 fail: 1531 /* The caller is responsible to call btrfs_free_fs_root */ 1532 return ret; 1533 } 1534 1535 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1536 u64 root_id) 1537 { 1538 struct btrfs_root *root; 1539 1540 spin_lock(&fs_info->fs_roots_radix_lock); 1541 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1542 (unsigned long)root_id); 1543 spin_unlock(&fs_info->fs_roots_radix_lock); 1544 return root; 1545 } 1546 1547 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1548 struct btrfs_root *root) 1549 { 1550 int ret; 1551 1552 ret = radix_tree_preload(GFP_NOFS); 1553 if (ret) 1554 return ret; 1555 1556 spin_lock(&fs_info->fs_roots_radix_lock); 1557 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1558 (unsigned long)root->root_key.objectid, 1559 root); 1560 if (ret == 0) 1561 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1562 spin_unlock(&fs_info->fs_roots_radix_lock); 1563 radix_tree_preload_end(); 1564 1565 return ret; 1566 } 1567 1568 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1569 struct btrfs_key *location, 1570 bool check_ref) 1571 { 1572 struct btrfs_root *root; 1573 struct btrfs_path *path; 1574 struct btrfs_key key; 1575 int ret; 1576 1577 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1578 return fs_info->tree_root; 1579 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1580 return fs_info->extent_root; 1581 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1582 return fs_info->chunk_root; 1583 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1584 return fs_info->dev_root; 1585 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1586 return fs_info->csum_root; 1587 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1588 return fs_info->quota_root ? fs_info->quota_root : 1589 ERR_PTR(-ENOENT); 1590 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1591 return fs_info->uuid_root ? fs_info->uuid_root : 1592 ERR_PTR(-ENOENT); 1593 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1594 return fs_info->free_space_root ? fs_info->free_space_root : 1595 ERR_PTR(-ENOENT); 1596 again: 1597 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1598 if (root) { 1599 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1600 return ERR_PTR(-ENOENT); 1601 return root; 1602 } 1603 1604 root = btrfs_read_fs_root(fs_info->tree_root, location); 1605 if (IS_ERR(root)) 1606 return root; 1607 1608 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1609 ret = -ENOENT; 1610 goto fail; 1611 } 1612 1613 ret = btrfs_init_fs_root(root); 1614 if (ret) 1615 goto fail; 1616 1617 path = btrfs_alloc_path(); 1618 if (!path) { 1619 ret = -ENOMEM; 1620 goto fail; 1621 } 1622 key.objectid = BTRFS_ORPHAN_OBJECTID; 1623 key.type = BTRFS_ORPHAN_ITEM_KEY; 1624 key.offset = location->objectid; 1625 1626 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1627 btrfs_free_path(path); 1628 if (ret < 0) 1629 goto fail; 1630 if (ret == 0) 1631 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1632 1633 ret = btrfs_insert_fs_root(fs_info, root); 1634 if (ret) { 1635 if (ret == -EEXIST) { 1636 btrfs_free_fs_root(root); 1637 goto again; 1638 } 1639 goto fail; 1640 } 1641 return root; 1642 fail: 1643 btrfs_free_fs_root(root); 1644 return ERR_PTR(ret); 1645 } 1646 1647 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1648 { 1649 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1650 int ret = 0; 1651 struct btrfs_device *device; 1652 struct backing_dev_info *bdi; 1653 1654 rcu_read_lock(); 1655 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1656 if (!device->bdev) 1657 continue; 1658 bdi = device->bdev->bd_bdi; 1659 if (bdi_congested(bdi, bdi_bits)) { 1660 ret = 1; 1661 break; 1662 } 1663 } 1664 rcu_read_unlock(); 1665 return ret; 1666 } 1667 1668 /* 1669 * called by the kthread helper functions to finally call the bio end_io 1670 * functions. This is where read checksum verification actually happens 1671 */ 1672 static void end_workqueue_fn(struct btrfs_work *work) 1673 { 1674 struct bio *bio; 1675 struct btrfs_end_io_wq *end_io_wq; 1676 1677 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1678 bio = end_io_wq->bio; 1679 1680 bio->bi_status = end_io_wq->status; 1681 bio->bi_private = end_io_wq->private; 1682 bio->bi_end_io = end_io_wq->end_io; 1683 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1684 bio_endio(bio); 1685 } 1686 1687 static int cleaner_kthread(void *arg) 1688 { 1689 struct btrfs_root *root = arg; 1690 struct btrfs_fs_info *fs_info = root->fs_info; 1691 int again; 1692 1693 while (1) { 1694 again = 0; 1695 1696 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1697 1698 /* Make the cleaner go to sleep early. */ 1699 if (btrfs_need_cleaner_sleep(fs_info)) 1700 goto sleep; 1701 1702 /* 1703 * Do not do anything if we might cause open_ctree() to block 1704 * before we have finished mounting the filesystem. 1705 */ 1706 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1707 goto sleep; 1708 1709 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1710 goto sleep; 1711 1712 /* 1713 * Avoid the problem that we change the status of the fs 1714 * during the above check and trylock. 1715 */ 1716 if (btrfs_need_cleaner_sleep(fs_info)) { 1717 mutex_unlock(&fs_info->cleaner_mutex); 1718 goto sleep; 1719 } 1720 1721 btrfs_run_delayed_iputs(fs_info); 1722 1723 again = btrfs_clean_one_deleted_snapshot(root); 1724 mutex_unlock(&fs_info->cleaner_mutex); 1725 1726 /* 1727 * The defragger has dealt with the R/O remount and umount, 1728 * needn't do anything special here. 1729 */ 1730 btrfs_run_defrag_inodes(fs_info); 1731 1732 /* 1733 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1734 * with relocation (btrfs_relocate_chunk) and relocation 1735 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1736 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1737 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1738 * unused block groups. 1739 */ 1740 btrfs_delete_unused_bgs(fs_info); 1741 sleep: 1742 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1743 if (kthread_should_park()) 1744 kthread_parkme(); 1745 if (kthread_should_stop()) 1746 return 0; 1747 if (!again) { 1748 set_current_state(TASK_INTERRUPTIBLE); 1749 schedule(); 1750 __set_current_state(TASK_RUNNING); 1751 } 1752 } 1753 } 1754 1755 static int transaction_kthread(void *arg) 1756 { 1757 struct btrfs_root *root = arg; 1758 struct btrfs_fs_info *fs_info = root->fs_info; 1759 struct btrfs_trans_handle *trans; 1760 struct btrfs_transaction *cur; 1761 u64 transid; 1762 time64_t now; 1763 unsigned long delay; 1764 bool cannot_commit; 1765 1766 do { 1767 cannot_commit = false; 1768 delay = HZ * fs_info->commit_interval; 1769 mutex_lock(&fs_info->transaction_kthread_mutex); 1770 1771 spin_lock(&fs_info->trans_lock); 1772 cur = fs_info->running_transaction; 1773 if (!cur) { 1774 spin_unlock(&fs_info->trans_lock); 1775 goto sleep; 1776 } 1777 1778 now = ktime_get_seconds(); 1779 if (cur->state < TRANS_STATE_BLOCKED && 1780 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) && 1781 (now < cur->start_time || 1782 now - cur->start_time < fs_info->commit_interval)) { 1783 spin_unlock(&fs_info->trans_lock); 1784 delay = HZ * 5; 1785 goto sleep; 1786 } 1787 transid = cur->transid; 1788 spin_unlock(&fs_info->trans_lock); 1789 1790 /* If the file system is aborted, this will always fail. */ 1791 trans = btrfs_attach_transaction(root); 1792 if (IS_ERR(trans)) { 1793 if (PTR_ERR(trans) != -ENOENT) 1794 cannot_commit = true; 1795 goto sleep; 1796 } 1797 if (transid == trans->transid) { 1798 btrfs_commit_transaction(trans); 1799 } else { 1800 btrfs_end_transaction(trans); 1801 } 1802 sleep: 1803 wake_up_process(fs_info->cleaner_kthread); 1804 mutex_unlock(&fs_info->transaction_kthread_mutex); 1805 1806 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1807 &fs_info->fs_state))) 1808 btrfs_cleanup_transaction(fs_info); 1809 if (!kthread_should_stop() && 1810 (!btrfs_transaction_blocked(fs_info) || 1811 cannot_commit)) 1812 schedule_timeout_interruptible(delay); 1813 } while (!kthread_should_stop()); 1814 return 0; 1815 } 1816 1817 /* 1818 * this will find the highest generation in the array of 1819 * root backups. The index of the highest array is returned, 1820 * or -1 if we can't find anything. 1821 * 1822 * We check to make sure the array is valid by comparing the 1823 * generation of the latest root in the array with the generation 1824 * in the super block. If they don't match we pitch it. 1825 */ 1826 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1827 { 1828 u64 cur; 1829 int newest_index = -1; 1830 struct btrfs_root_backup *root_backup; 1831 int i; 1832 1833 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1834 root_backup = info->super_copy->super_roots + i; 1835 cur = btrfs_backup_tree_root_gen(root_backup); 1836 if (cur == newest_gen) 1837 newest_index = i; 1838 } 1839 1840 /* check to see if we actually wrapped around */ 1841 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1842 root_backup = info->super_copy->super_roots; 1843 cur = btrfs_backup_tree_root_gen(root_backup); 1844 if (cur == newest_gen) 1845 newest_index = 0; 1846 } 1847 return newest_index; 1848 } 1849 1850 1851 /* 1852 * find the oldest backup so we know where to store new entries 1853 * in the backup array. This will set the backup_root_index 1854 * field in the fs_info struct 1855 */ 1856 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1857 u64 newest_gen) 1858 { 1859 int newest_index = -1; 1860 1861 newest_index = find_newest_super_backup(info, newest_gen); 1862 /* if there was garbage in there, just move along */ 1863 if (newest_index == -1) { 1864 info->backup_root_index = 0; 1865 } else { 1866 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1867 } 1868 } 1869 1870 /* 1871 * copy all the root pointers into the super backup array. 1872 * this will bump the backup pointer by one when it is 1873 * done 1874 */ 1875 static void backup_super_roots(struct btrfs_fs_info *info) 1876 { 1877 int next_backup; 1878 struct btrfs_root_backup *root_backup; 1879 int last_backup; 1880 1881 next_backup = info->backup_root_index; 1882 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1883 BTRFS_NUM_BACKUP_ROOTS; 1884 1885 /* 1886 * just overwrite the last backup if we're at the same generation 1887 * this happens only at umount 1888 */ 1889 root_backup = info->super_for_commit->super_roots + last_backup; 1890 if (btrfs_backup_tree_root_gen(root_backup) == 1891 btrfs_header_generation(info->tree_root->node)) 1892 next_backup = last_backup; 1893 1894 root_backup = info->super_for_commit->super_roots + next_backup; 1895 1896 /* 1897 * make sure all of our padding and empty slots get zero filled 1898 * regardless of which ones we use today 1899 */ 1900 memset(root_backup, 0, sizeof(*root_backup)); 1901 1902 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1903 1904 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1905 btrfs_set_backup_tree_root_gen(root_backup, 1906 btrfs_header_generation(info->tree_root->node)); 1907 1908 btrfs_set_backup_tree_root_level(root_backup, 1909 btrfs_header_level(info->tree_root->node)); 1910 1911 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1912 btrfs_set_backup_chunk_root_gen(root_backup, 1913 btrfs_header_generation(info->chunk_root->node)); 1914 btrfs_set_backup_chunk_root_level(root_backup, 1915 btrfs_header_level(info->chunk_root->node)); 1916 1917 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1918 btrfs_set_backup_extent_root_gen(root_backup, 1919 btrfs_header_generation(info->extent_root->node)); 1920 btrfs_set_backup_extent_root_level(root_backup, 1921 btrfs_header_level(info->extent_root->node)); 1922 1923 /* 1924 * we might commit during log recovery, which happens before we set 1925 * the fs_root. Make sure it is valid before we fill it in. 1926 */ 1927 if (info->fs_root && info->fs_root->node) { 1928 btrfs_set_backup_fs_root(root_backup, 1929 info->fs_root->node->start); 1930 btrfs_set_backup_fs_root_gen(root_backup, 1931 btrfs_header_generation(info->fs_root->node)); 1932 btrfs_set_backup_fs_root_level(root_backup, 1933 btrfs_header_level(info->fs_root->node)); 1934 } 1935 1936 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1937 btrfs_set_backup_dev_root_gen(root_backup, 1938 btrfs_header_generation(info->dev_root->node)); 1939 btrfs_set_backup_dev_root_level(root_backup, 1940 btrfs_header_level(info->dev_root->node)); 1941 1942 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1943 btrfs_set_backup_csum_root_gen(root_backup, 1944 btrfs_header_generation(info->csum_root->node)); 1945 btrfs_set_backup_csum_root_level(root_backup, 1946 btrfs_header_level(info->csum_root->node)); 1947 1948 btrfs_set_backup_total_bytes(root_backup, 1949 btrfs_super_total_bytes(info->super_copy)); 1950 btrfs_set_backup_bytes_used(root_backup, 1951 btrfs_super_bytes_used(info->super_copy)); 1952 btrfs_set_backup_num_devices(root_backup, 1953 btrfs_super_num_devices(info->super_copy)); 1954 1955 /* 1956 * if we don't copy this out to the super_copy, it won't get remembered 1957 * for the next commit 1958 */ 1959 memcpy(&info->super_copy->super_roots, 1960 &info->super_for_commit->super_roots, 1961 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1962 } 1963 1964 /* 1965 * this copies info out of the root backup array and back into 1966 * the in-memory super block. It is meant to help iterate through 1967 * the array, so you send it the number of backups you've already 1968 * tried and the last backup index you used. 1969 * 1970 * this returns -1 when it has tried all the backups 1971 */ 1972 static noinline int next_root_backup(struct btrfs_fs_info *info, 1973 struct btrfs_super_block *super, 1974 int *num_backups_tried, int *backup_index) 1975 { 1976 struct btrfs_root_backup *root_backup; 1977 int newest = *backup_index; 1978 1979 if (*num_backups_tried == 0) { 1980 u64 gen = btrfs_super_generation(super); 1981 1982 newest = find_newest_super_backup(info, gen); 1983 if (newest == -1) 1984 return -1; 1985 1986 *backup_index = newest; 1987 *num_backups_tried = 1; 1988 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1989 /* we've tried all the backups, all done */ 1990 return -1; 1991 } else { 1992 /* jump to the next oldest backup */ 1993 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1994 BTRFS_NUM_BACKUP_ROOTS; 1995 *backup_index = newest; 1996 *num_backups_tried += 1; 1997 } 1998 root_backup = super->super_roots + newest; 1999 2000 btrfs_set_super_generation(super, 2001 btrfs_backup_tree_root_gen(root_backup)); 2002 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2003 btrfs_set_super_root_level(super, 2004 btrfs_backup_tree_root_level(root_backup)); 2005 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2006 2007 /* 2008 * fixme: the total bytes and num_devices need to match or we should 2009 * need a fsck 2010 */ 2011 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2012 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2013 return 0; 2014 } 2015 2016 /* helper to cleanup workers */ 2017 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2018 { 2019 btrfs_destroy_workqueue(fs_info->fixup_workers); 2020 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2021 btrfs_destroy_workqueue(fs_info->workers); 2022 btrfs_destroy_workqueue(fs_info->endio_workers); 2023 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2024 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2025 btrfs_destroy_workqueue(fs_info->rmw_workers); 2026 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2027 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2028 btrfs_destroy_workqueue(fs_info->submit_workers); 2029 btrfs_destroy_workqueue(fs_info->delayed_workers); 2030 btrfs_destroy_workqueue(fs_info->caching_workers); 2031 btrfs_destroy_workqueue(fs_info->readahead_workers); 2032 btrfs_destroy_workqueue(fs_info->flush_workers); 2033 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2034 btrfs_destroy_workqueue(fs_info->extent_workers); 2035 /* 2036 * Now that all other work queues are destroyed, we can safely destroy 2037 * the queues used for metadata I/O, since tasks from those other work 2038 * queues can do metadata I/O operations. 2039 */ 2040 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2041 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2042 } 2043 2044 static void free_root_extent_buffers(struct btrfs_root *root) 2045 { 2046 if (root) { 2047 free_extent_buffer(root->node); 2048 free_extent_buffer(root->commit_root); 2049 root->node = NULL; 2050 root->commit_root = NULL; 2051 } 2052 } 2053 2054 /* helper to cleanup tree roots */ 2055 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2056 { 2057 free_root_extent_buffers(info->tree_root); 2058 2059 free_root_extent_buffers(info->dev_root); 2060 free_root_extent_buffers(info->extent_root); 2061 free_root_extent_buffers(info->csum_root); 2062 free_root_extent_buffers(info->quota_root); 2063 free_root_extent_buffers(info->uuid_root); 2064 if (chunk_root) 2065 free_root_extent_buffers(info->chunk_root); 2066 free_root_extent_buffers(info->free_space_root); 2067 } 2068 2069 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2070 { 2071 int ret; 2072 struct btrfs_root *gang[8]; 2073 int i; 2074 2075 while (!list_empty(&fs_info->dead_roots)) { 2076 gang[0] = list_entry(fs_info->dead_roots.next, 2077 struct btrfs_root, root_list); 2078 list_del(&gang[0]->root_list); 2079 2080 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2081 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2082 } else { 2083 free_extent_buffer(gang[0]->node); 2084 free_extent_buffer(gang[0]->commit_root); 2085 btrfs_put_fs_root(gang[0]); 2086 } 2087 } 2088 2089 while (1) { 2090 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2091 (void **)gang, 0, 2092 ARRAY_SIZE(gang)); 2093 if (!ret) 2094 break; 2095 for (i = 0; i < ret; i++) 2096 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2097 } 2098 2099 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2100 btrfs_free_log_root_tree(NULL, fs_info); 2101 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 2102 } 2103 } 2104 2105 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2106 { 2107 mutex_init(&fs_info->scrub_lock); 2108 atomic_set(&fs_info->scrubs_running, 0); 2109 atomic_set(&fs_info->scrub_pause_req, 0); 2110 atomic_set(&fs_info->scrubs_paused, 0); 2111 atomic_set(&fs_info->scrub_cancel_req, 0); 2112 init_waitqueue_head(&fs_info->scrub_pause_wait); 2113 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2114 } 2115 2116 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2117 { 2118 spin_lock_init(&fs_info->balance_lock); 2119 mutex_init(&fs_info->balance_mutex); 2120 atomic_set(&fs_info->balance_pause_req, 0); 2121 atomic_set(&fs_info->balance_cancel_req, 0); 2122 fs_info->balance_ctl = NULL; 2123 init_waitqueue_head(&fs_info->balance_wait_q); 2124 } 2125 2126 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2127 { 2128 struct inode *inode = fs_info->btree_inode; 2129 2130 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2131 set_nlink(inode, 1); 2132 /* 2133 * we set the i_size on the btree inode to the max possible int. 2134 * the real end of the address space is determined by all of 2135 * the devices in the system 2136 */ 2137 inode->i_size = OFFSET_MAX; 2138 inode->i_mapping->a_ops = &btree_aops; 2139 2140 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2141 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode); 2142 BTRFS_I(inode)->io_tree.track_uptodate = 0; 2143 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2144 2145 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2146 2147 BTRFS_I(inode)->root = fs_info->tree_root; 2148 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2149 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2150 btrfs_insert_inode_hash(inode); 2151 } 2152 2153 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2154 { 2155 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2156 init_rwsem(&fs_info->dev_replace.rwsem); 2157 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2158 } 2159 2160 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2161 { 2162 spin_lock_init(&fs_info->qgroup_lock); 2163 mutex_init(&fs_info->qgroup_ioctl_lock); 2164 fs_info->qgroup_tree = RB_ROOT; 2165 fs_info->qgroup_op_tree = RB_ROOT; 2166 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2167 fs_info->qgroup_seq = 1; 2168 fs_info->qgroup_ulist = NULL; 2169 fs_info->qgroup_rescan_running = false; 2170 mutex_init(&fs_info->qgroup_rescan_lock); 2171 } 2172 2173 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2174 struct btrfs_fs_devices *fs_devices) 2175 { 2176 u32 max_active = fs_info->thread_pool_size; 2177 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2178 2179 fs_info->workers = 2180 btrfs_alloc_workqueue(fs_info, "worker", 2181 flags | WQ_HIGHPRI, max_active, 16); 2182 2183 fs_info->delalloc_workers = 2184 btrfs_alloc_workqueue(fs_info, "delalloc", 2185 flags, max_active, 2); 2186 2187 fs_info->flush_workers = 2188 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2189 flags, max_active, 0); 2190 2191 fs_info->caching_workers = 2192 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2193 2194 /* 2195 * a higher idle thresh on the submit workers makes it much more 2196 * likely that bios will be send down in a sane order to the 2197 * devices 2198 */ 2199 fs_info->submit_workers = 2200 btrfs_alloc_workqueue(fs_info, "submit", flags, 2201 min_t(u64, fs_devices->num_devices, 2202 max_active), 64); 2203 2204 fs_info->fixup_workers = 2205 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2206 2207 /* 2208 * endios are largely parallel and should have a very 2209 * low idle thresh 2210 */ 2211 fs_info->endio_workers = 2212 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2213 fs_info->endio_meta_workers = 2214 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2215 max_active, 4); 2216 fs_info->endio_meta_write_workers = 2217 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2218 max_active, 2); 2219 fs_info->endio_raid56_workers = 2220 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2221 max_active, 4); 2222 fs_info->endio_repair_workers = 2223 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2224 fs_info->rmw_workers = 2225 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2226 fs_info->endio_write_workers = 2227 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2228 max_active, 2); 2229 fs_info->endio_freespace_worker = 2230 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2231 max_active, 0); 2232 fs_info->delayed_workers = 2233 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2234 max_active, 0); 2235 fs_info->readahead_workers = 2236 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2237 max_active, 2); 2238 fs_info->qgroup_rescan_workers = 2239 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2240 fs_info->extent_workers = 2241 btrfs_alloc_workqueue(fs_info, "extent-refs", flags, 2242 min_t(u64, fs_devices->num_devices, 2243 max_active), 8); 2244 2245 if (!(fs_info->workers && fs_info->delalloc_workers && 2246 fs_info->submit_workers && fs_info->flush_workers && 2247 fs_info->endio_workers && fs_info->endio_meta_workers && 2248 fs_info->endio_meta_write_workers && 2249 fs_info->endio_repair_workers && 2250 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2251 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2252 fs_info->caching_workers && fs_info->readahead_workers && 2253 fs_info->fixup_workers && fs_info->delayed_workers && 2254 fs_info->extent_workers && 2255 fs_info->qgroup_rescan_workers)) { 2256 return -ENOMEM; 2257 } 2258 2259 return 0; 2260 } 2261 2262 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2263 struct btrfs_fs_devices *fs_devices) 2264 { 2265 int ret; 2266 struct btrfs_root *log_tree_root; 2267 struct btrfs_super_block *disk_super = fs_info->super_copy; 2268 u64 bytenr = btrfs_super_log_root(disk_super); 2269 int level = btrfs_super_log_root_level(disk_super); 2270 2271 if (fs_devices->rw_devices == 0) { 2272 btrfs_warn(fs_info, "log replay required on RO media"); 2273 return -EIO; 2274 } 2275 2276 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2277 if (!log_tree_root) 2278 return -ENOMEM; 2279 2280 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2281 2282 log_tree_root->node = read_tree_block(fs_info, bytenr, 2283 fs_info->generation + 1, 2284 level, NULL); 2285 if (IS_ERR(log_tree_root->node)) { 2286 btrfs_warn(fs_info, "failed to read log tree"); 2287 ret = PTR_ERR(log_tree_root->node); 2288 kfree(log_tree_root); 2289 return ret; 2290 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2291 btrfs_err(fs_info, "failed to read log tree"); 2292 free_extent_buffer(log_tree_root->node); 2293 kfree(log_tree_root); 2294 return -EIO; 2295 } 2296 /* returns with log_tree_root freed on success */ 2297 ret = btrfs_recover_log_trees(log_tree_root); 2298 if (ret) { 2299 btrfs_handle_fs_error(fs_info, ret, 2300 "Failed to recover log tree"); 2301 free_extent_buffer(log_tree_root->node); 2302 kfree(log_tree_root); 2303 return ret; 2304 } 2305 2306 if (sb_rdonly(fs_info->sb)) { 2307 ret = btrfs_commit_super(fs_info); 2308 if (ret) 2309 return ret; 2310 } 2311 2312 return 0; 2313 } 2314 2315 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2316 { 2317 struct btrfs_root *tree_root = fs_info->tree_root; 2318 struct btrfs_root *root; 2319 struct btrfs_key location; 2320 int ret; 2321 2322 BUG_ON(!fs_info->tree_root); 2323 2324 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2325 location.type = BTRFS_ROOT_ITEM_KEY; 2326 location.offset = 0; 2327 2328 root = btrfs_read_tree_root(tree_root, &location); 2329 if (IS_ERR(root)) { 2330 ret = PTR_ERR(root); 2331 goto out; 2332 } 2333 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2334 fs_info->extent_root = root; 2335 2336 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2337 root = btrfs_read_tree_root(tree_root, &location); 2338 if (IS_ERR(root)) { 2339 ret = PTR_ERR(root); 2340 goto out; 2341 } 2342 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2343 fs_info->dev_root = root; 2344 btrfs_init_devices_late(fs_info); 2345 2346 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2347 root = btrfs_read_tree_root(tree_root, &location); 2348 if (IS_ERR(root)) { 2349 ret = PTR_ERR(root); 2350 goto out; 2351 } 2352 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2353 fs_info->csum_root = root; 2354 2355 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2356 root = btrfs_read_tree_root(tree_root, &location); 2357 if (!IS_ERR(root)) { 2358 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2359 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2360 fs_info->quota_root = root; 2361 } 2362 2363 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2364 root = btrfs_read_tree_root(tree_root, &location); 2365 if (IS_ERR(root)) { 2366 ret = PTR_ERR(root); 2367 if (ret != -ENOENT) 2368 goto out; 2369 } else { 2370 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2371 fs_info->uuid_root = root; 2372 } 2373 2374 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2375 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2376 root = btrfs_read_tree_root(tree_root, &location); 2377 if (IS_ERR(root)) { 2378 ret = PTR_ERR(root); 2379 goto out; 2380 } 2381 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2382 fs_info->free_space_root = root; 2383 } 2384 2385 return 0; 2386 out: 2387 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2388 location.objectid, ret); 2389 return ret; 2390 } 2391 2392 /* 2393 * Real super block validation 2394 * NOTE: super csum type and incompat features will not be checked here. 2395 * 2396 * @sb: super block to check 2397 * @mirror_num: the super block number to check its bytenr: 2398 * 0 the primary (1st) sb 2399 * 1, 2 2nd and 3rd backup copy 2400 * -1 skip bytenr check 2401 */ 2402 static int validate_super(struct btrfs_fs_info *fs_info, 2403 struct btrfs_super_block *sb, int mirror_num) 2404 { 2405 u64 nodesize = btrfs_super_nodesize(sb); 2406 u64 sectorsize = btrfs_super_sectorsize(sb); 2407 int ret = 0; 2408 2409 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2410 btrfs_err(fs_info, "no valid FS found"); 2411 ret = -EINVAL; 2412 } 2413 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2414 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2415 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2416 ret = -EINVAL; 2417 } 2418 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2419 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2420 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2421 ret = -EINVAL; 2422 } 2423 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2424 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2425 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2426 ret = -EINVAL; 2427 } 2428 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2429 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2430 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2431 ret = -EINVAL; 2432 } 2433 2434 /* 2435 * Check sectorsize and nodesize first, other check will need it. 2436 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2437 */ 2438 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2439 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2440 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2441 ret = -EINVAL; 2442 } 2443 /* Only PAGE SIZE is supported yet */ 2444 if (sectorsize != PAGE_SIZE) { 2445 btrfs_err(fs_info, 2446 "sectorsize %llu not supported yet, only support %lu", 2447 sectorsize, PAGE_SIZE); 2448 ret = -EINVAL; 2449 } 2450 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2451 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2452 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2453 ret = -EINVAL; 2454 } 2455 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2456 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2457 le32_to_cpu(sb->__unused_leafsize), nodesize); 2458 ret = -EINVAL; 2459 } 2460 2461 /* Root alignment check */ 2462 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2463 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2464 btrfs_super_root(sb)); 2465 ret = -EINVAL; 2466 } 2467 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2468 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2469 btrfs_super_chunk_root(sb)); 2470 ret = -EINVAL; 2471 } 2472 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2473 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2474 btrfs_super_log_root(sb)); 2475 ret = -EINVAL; 2476 } 2477 2478 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2479 BTRFS_FSID_SIZE) != 0) { 2480 btrfs_err(fs_info, 2481 "dev_item UUID does not match metadata fsid: %pU != %pU", 2482 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2483 ret = -EINVAL; 2484 } 2485 2486 /* 2487 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2488 * done later 2489 */ 2490 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2491 btrfs_err(fs_info, "bytes_used is too small %llu", 2492 btrfs_super_bytes_used(sb)); 2493 ret = -EINVAL; 2494 } 2495 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2496 btrfs_err(fs_info, "invalid stripesize %u", 2497 btrfs_super_stripesize(sb)); 2498 ret = -EINVAL; 2499 } 2500 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2501 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2502 btrfs_super_num_devices(sb)); 2503 if (btrfs_super_num_devices(sb) == 0) { 2504 btrfs_err(fs_info, "number of devices is 0"); 2505 ret = -EINVAL; 2506 } 2507 2508 if (mirror_num >= 0 && 2509 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2510 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2511 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2512 ret = -EINVAL; 2513 } 2514 2515 /* 2516 * Obvious sys_chunk_array corruptions, it must hold at least one key 2517 * and one chunk 2518 */ 2519 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2520 btrfs_err(fs_info, "system chunk array too big %u > %u", 2521 btrfs_super_sys_array_size(sb), 2522 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2523 ret = -EINVAL; 2524 } 2525 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2526 + sizeof(struct btrfs_chunk)) { 2527 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2528 btrfs_super_sys_array_size(sb), 2529 sizeof(struct btrfs_disk_key) 2530 + sizeof(struct btrfs_chunk)); 2531 ret = -EINVAL; 2532 } 2533 2534 /* 2535 * The generation is a global counter, we'll trust it more than the others 2536 * but it's still possible that it's the one that's wrong. 2537 */ 2538 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2539 btrfs_warn(fs_info, 2540 "suspicious: generation < chunk_root_generation: %llu < %llu", 2541 btrfs_super_generation(sb), 2542 btrfs_super_chunk_root_generation(sb)); 2543 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2544 && btrfs_super_cache_generation(sb) != (u64)-1) 2545 btrfs_warn(fs_info, 2546 "suspicious: generation < cache_generation: %llu < %llu", 2547 btrfs_super_generation(sb), 2548 btrfs_super_cache_generation(sb)); 2549 2550 return ret; 2551 } 2552 2553 /* 2554 * Validation of super block at mount time. 2555 * Some checks already done early at mount time, like csum type and incompat 2556 * flags will be skipped. 2557 */ 2558 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2559 { 2560 return validate_super(fs_info, fs_info->super_copy, 0); 2561 } 2562 2563 /* 2564 * Validation of super block at write time. 2565 * Some checks like bytenr check will be skipped as their values will be 2566 * overwritten soon. 2567 * Extra checks like csum type and incompat flags will be done here. 2568 */ 2569 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2570 struct btrfs_super_block *sb) 2571 { 2572 int ret; 2573 2574 ret = validate_super(fs_info, sb, -1); 2575 if (ret < 0) 2576 goto out; 2577 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) { 2578 ret = -EUCLEAN; 2579 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2580 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2581 goto out; 2582 } 2583 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2584 ret = -EUCLEAN; 2585 btrfs_err(fs_info, 2586 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2587 btrfs_super_incompat_flags(sb), 2588 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2589 goto out; 2590 } 2591 out: 2592 if (ret < 0) 2593 btrfs_err(fs_info, 2594 "super block corruption detected before writing it to disk"); 2595 return ret; 2596 } 2597 2598 int open_ctree(struct super_block *sb, 2599 struct btrfs_fs_devices *fs_devices, 2600 char *options) 2601 { 2602 u32 sectorsize; 2603 u32 nodesize; 2604 u32 stripesize; 2605 u64 generation; 2606 u64 features; 2607 struct btrfs_key location; 2608 struct buffer_head *bh; 2609 struct btrfs_super_block *disk_super; 2610 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2611 struct btrfs_root *tree_root; 2612 struct btrfs_root *chunk_root; 2613 int ret; 2614 int err = -EINVAL; 2615 int num_backups_tried = 0; 2616 int backup_index = 0; 2617 int clear_free_space_tree = 0; 2618 int level; 2619 2620 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2621 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2622 if (!tree_root || !chunk_root) { 2623 err = -ENOMEM; 2624 goto fail; 2625 } 2626 2627 ret = init_srcu_struct(&fs_info->subvol_srcu); 2628 if (ret) { 2629 err = ret; 2630 goto fail; 2631 } 2632 2633 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2634 if (ret) { 2635 err = ret; 2636 goto fail_srcu; 2637 } 2638 fs_info->dirty_metadata_batch = PAGE_SIZE * 2639 (1 + ilog2(nr_cpu_ids)); 2640 2641 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2642 if (ret) { 2643 err = ret; 2644 goto fail_dirty_metadata_bytes; 2645 } 2646 2647 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2648 GFP_KERNEL); 2649 if (ret) { 2650 err = ret; 2651 goto fail_delalloc_bytes; 2652 } 2653 2654 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2655 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2656 INIT_LIST_HEAD(&fs_info->trans_list); 2657 INIT_LIST_HEAD(&fs_info->dead_roots); 2658 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2659 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2660 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2661 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs); 2662 spin_lock_init(&fs_info->pending_raid_kobjs_lock); 2663 spin_lock_init(&fs_info->delalloc_root_lock); 2664 spin_lock_init(&fs_info->trans_lock); 2665 spin_lock_init(&fs_info->fs_roots_radix_lock); 2666 spin_lock_init(&fs_info->delayed_iput_lock); 2667 spin_lock_init(&fs_info->defrag_inodes_lock); 2668 spin_lock_init(&fs_info->tree_mod_seq_lock); 2669 spin_lock_init(&fs_info->super_lock); 2670 spin_lock_init(&fs_info->qgroup_op_lock); 2671 spin_lock_init(&fs_info->buffer_lock); 2672 spin_lock_init(&fs_info->unused_bgs_lock); 2673 rwlock_init(&fs_info->tree_mod_log_lock); 2674 mutex_init(&fs_info->unused_bg_unpin_mutex); 2675 mutex_init(&fs_info->delete_unused_bgs_mutex); 2676 mutex_init(&fs_info->reloc_mutex); 2677 mutex_init(&fs_info->delalloc_root_mutex); 2678 seqlock_init(&fs_info->profiles_lock); 2679 2680 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2681 INIT_LIST_HEAD(&fs_info->space_info); 2682 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2683 INIT_LIST_HEAD(&fs_info->unused_bgs); 2684 btrfs_mapping_init(&fs_info->mapping_tree); 2685 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2686 BTRFS_BLOCK_RSV_GLOBAL); 2687 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2688 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2689 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2690 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2691 BTRFS_BLOCK_RSV_DELOPS); 2692 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2693 BTRFS_BLOCK_RSV_DELREFS); 2694 2695 atomic_set(&fs_info->async_delalloc_pages, 0); 2696 atomic_set(&fs_info->defrag_running, 0); 2697 atomic_set(&fs_info->qgroup_op_seq, 0); 2698 atomic_set(&fs_info->reada_works_cnt, 0); 2699 atomic_set(&fs_info->nr_delayed_iputs, 0); 2700 atomic64_set(&fs_info->tree_mod_seq, 0); 2701 fs_info->sb = sb; 2702 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2703 fs_info->metadata_ratio = 0; 2704 fs_info->defrag_inodes = RB_ROOT; 2705 atomic64_set(&fs_info->free_chunk_space, 0); 2706 fs_info->tree_mod_log = RB_ROOT; 2707 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2708 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2709 /* readahead state */ 2710 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2711 spin_lock_init(&fs_info->reada_lock); 2712 btrfs_init_ref_verify(fs_info); 2713 2714 fs_info->thread_pool_size = min_t(unsigned long, 2715 num_online_cpus() + 2, 8); 2716 2717 INIT_LIST_HEAD(&fs_info->ordered_roots); 2718 spin_lock_init(&fs_info->ordered_root_lock); 2719 2720 fs_info->btree_inode = new_inode(sb); 2721 if (!fs_info->btree_inode) { 2722 err = -ENOMEM; 2723 goto fail_bio_counter; 2724 } 2725 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2726 2727 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2728 GFP_KERNEL); 2729 if (!fs_info->delayed_root) { 2730 err = -ENOMEM; 2731 goto fail_iput; 2732 } 2733 btrfs_init_delayed_root(fs_info->delayed_root); 2734 2735 btrfs_init_scrub(fs_info); 2736 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2737 fs_info->check_integrity_print_mask = 0; 2738 #endif 2739 btrfs_init_balance(fs_info); 2740 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2741 2742 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2743 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2744 2745 btrfs_init_btree_inode(fs_info); 2746 2747 spin_lock_init(&fs_info->block_group_cache_lock); 2748 fs_info->block_group_cache_tree = RB_ROOT; 2749 fs_info->first_logical_byte = (u64)-1; 2750 2751 extent_io_tree_init(&fs_info->freed_extents[0], NULL); 2752 extent_io_tree_init(&fs_info->freed_extents[1], NULL); 2753 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2754 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2755 2756 mutex_init(&fs_info->ordered_operations_mutex); 2757 mutex_init(&fs_info->tree_log_mutex); 2758 mutex_init(&fs_info->chunk_mutex); 2759 mutex_init(&fs_info->transaction_kthread_mutex); 2760 mutex_init(&fs_info->cleaner_mutex); 2761 mutex_init(&fs_info->ro_block_group_mutex); 2762 init_rwsem(&fs_info->commit_root_sem); 2763 init_rwsem(&fs_info->cleanup_work_sem); 2764 init_rwsem(&fs_info->subvol_sem); 2765 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2766 2767 btrfs_init_dev_replace_locks(fs_info); 2768 btrfs_init_qgroup(fs_info); 2769 2770 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2771 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2772 2773 init_waitqueue_head(&fs_info->transaction_throttle); 2774 init_waitqueue_head(&fs_info->transaction_wait); 2775 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2776 init_waitqueue_head(&fs_info->async_submit_wait); 2777 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2778 2779 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2780 2781 /* Usable values until the real ones are cached from the superblock */ 2782 fs_info->nodesize = 4096; 2783 fs_info->sectorsize = 4096; 2784 fs_info->stripesize = 4096; 2785 2786 spin_lock_init(&fs_info->swapfile_pins_lock); 2787 fs_info->swapfile_pins = RB_ROOT; 2788 2789 ret = btrfs_alloc_stripe_hash_table(fs_info); 2790 if (ret) { 2791 err = ret; 2792 goto fail_alloc; 2793 } 2794 2795 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 2796 2797 invalidate_bdev(fs_devices->latest_bdev); 2798 2799 /* 2800 * Read super block and check the signature bytes only 2801 */ 2802 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2803 if (IS_ERR(bh)) { 2804 err = PTR_ERR(bh); 2805 goto fail_alloc; 2806 } 2807 2808 /* 2809 * We want to check superblock checksum, the type is stored inside. 2810 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2811 */ 2812 if (btrfs_check_super_csum(fs_info, bh->b_data)) { 2813 btrfs_err(fs_info, "superblock checksum mismatch"); 2814 err = -EINVAL; 2815 brelse(bh); 2816 goto fail_alloc; 2817 } 2818 2819 /* 2820 * super_copy is zeroed at allocation time and we never touch the 2821 * following bytes up to INFO_SIZE, the checksum is calculated from 2822 * the whole block of INFO_SIZE 2823 */ 2824 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2825 brelse(bh); 2826 2827 disk_super = fs_info->super_copy; 2828 2829 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2830 BTRFS_FSID_SIZE)); 2831 2832 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) { 2833 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid, 2834 fs_info->super_copy->metadata_uuid, 2835 BTRFS_FSID_SIZE)); 2836 } 2837 2838 features = btrfs_super_flags(disk_super); 2839 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 2840 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 2841 btrfs_set_super_flags(disk_super, features); 2842 btrfs_info(fs_info, 2843 "found metadata UUID change in progress flag, clearing"); 2844 } 2845 2846 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2847 sizeof(*fs_info->super_for_commit)); 2848 2849 ret = btrfs_validate_mount_super(fs_info); 2850 if (ret) { 2851 btrfs_err(fs_info, "superblock contains fatal errors"); 2852 err = -EINVAL; 2853 goto fail_alloc; 2854 } 2855 2856 if (!btrfs_super_root(disk_super)) 2857 goto fail_alloc; 2858 2859 /* check FS state, whether FS is broken. */ 2860 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2861 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2862 2863 /* 2864 * run through our array of backup supers and setup 2865 * our ring pointer to the oldest one 2866 */ 2867 generation = btrfs_super_generation(disk_super); 2868 find_oldest_super_backup(fs_info, generation); 2869 2870 /* 2871 * In the long term, we'll store the compression type in the super 2872 * block, and it'll be used for per file compression control. 2873 */ 2874 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2875 2876 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2877 if (ret) { 2878 err = ret; 2879 goto fail_alloc; 2880 } 2881 2882 features = btrfs_super_incompat_flags(disk_super) & 2883 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2884 if (features) { 2885 btrfs_err(fs_info, 2886 "cannot mount because of unsupported optional features (%llx)", 2887 features); 2888 err = -EINVAL; 2889 goto fail_alloc; 2890 } 2891 2892 features = btrfs_super_incompat_flags(disk_super); 2893 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2894 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2895 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2896 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 2897 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 2898 2899 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2900 btrfs_info(fs_info, "has skinny extents"); 2901 2902 /* 2903 * flag our filesystem as having big metadata blocks if 2904 * they are bigger than the page size 2905 */ 2906 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2907 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2908 btrfs_info(fs_info, 2909 "flagging fs with big metadata feature"); 2910 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2911 } 2912 2913 nodesize = btrfs_super_nodesize(disk_super); 2914 sectorsize = btrfs_super_sectorsize(disk_super); 2915 stripesize = sectorsize; 2916 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2917 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2918 2919 /* Cache block sizes */ 2920 fs_info->nodesize = nodesize; 2921 fs_info->sectorsize = sectorsize; 2922 fs_info->stripesize = stripesize; 2923 2924 /* 2925 * mixed block groups end up with duplicate but slightly offset 2926 * extent buffers for the same range. It leads to corruptions 2927 */ 2928 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2929 (sectorsize != nodesize)) { 2930 btrfs_err(fs_info, 2931 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2932 nodesize, sectorsize); 2933 goto fail_alloc; 2934 } 2935 2936 /* 2937 * Needn't use the lock because there is no other task which will 2938 * update the flag. 2939 */ 2940 btrfs_set_super_incompat_flags(disk_super, features); 2941 2942 features = btrfs_super_compat_ro_flags(disk_super) & 2943 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2944 if (!sb_rdonly(sb) && features) { 2945 btrfs_err(fs_info, 2946 "cannot mount read-write because of unsupported optional features (%llx)", 2947 features); 2948 err = -EINVAL; 2949 goto fail_alloc; 2950 } 2951 2952 ret = btrfs_init_workqueues(fs_info, fs_devices); 2953 if (ret) { 2954 err = ret; 2955 goto fail_sb_buffer; 2956 } 2957 2958 sb->s_bdi->congested_fn = btrfs_congested_fn; 2959 sb->s_bdi->congested_data = fs_info; 2960 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 2961 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES; 2962 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 2963 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 2964 2965 sb->s_blocksize = sectorsize; 2966 sb->s_blocksize_bits = blksize_bits(sectorsize); 2967 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 2968 2969 mutex_lock(&fs_info->chunk_mutex); 2970 ret = btrfs_read_sys_array(fs_info); 2971 mutex_unlock(&fs_info->chunk_mutex); 2972 if (ret) { 2973 btrfs_err(fs_info, "failed to read the system array: %d", ret); 2974 goto fail_sb_buffer; 2975 } 2976 2977 generation = btrfs_super_chunk_root_generation(disk_super); 2978 level = btrfs_super_chunk_root_level(disk_super); 2979 2980 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2981 2982 chunk_root->node = read_tree_block(fs_info, 2983 btrfs_super_chunk_root(disk_super), 2984 generation, level, NULL); 2985 if (IS_ERR(chunk_root->node) || 2986 !extent_buffer_uptodate(chunk_root->node)) { 2987 btrfs_err(fs_info, "failed to read chunk root"); 2988 if (!IS_ERR(chunk_root->node)) 2989 free_extent_buffer(chunk_root->node); 2990 chunk_root->node = NULL; 2991 goto fail_tree_roots; 2992 } 2993 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2994 chunk_root->commit_root = btrfs_root_node(chunk_root); 2995 2996 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2997 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2998 2999 ret = btrfs_read_chunk_tree(fs_info); 3000 if (ret) { 3001 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3002 goto fail_tree_roots; 3003 } 3004 3005 /* 3006 * Keep the devid that is marked to be the target device for the 3007 * device replace procedure 3008 */ 3009 btrfs_free_extra_devids(fs_devices, 0); 3010 3011 if (!fs_devices->latest_bdev) { 3012 btrfs_err(fs_info, "failed to read devices"); 3013 goto fail_tree_roots; 3014 } 3015 3016 retry_root_backup: 3017 generation = btrfs_super_generation(disk_super); 3018 level = btrfs_super_root_level(disk_super); 3019 3020 tree_root->node = read_tree_block(fs_info, 3021 btrfs_super_root(disk_super), 3022 generation, level, NULL); 3023 if (IS_ERR(tree_root->node) || 3024 !extent_buffer_uptodate(tree_root->node)) { 3025 btrfs_warn(fs_info, "failed to read tree root"); 3026 if (!IS_ERR(tree_root->node)) 3027 free_extent_buffer(tree_root->node); 3028 tree_root->node = NULL; 3029 goto recovery_tree_root; 3030 } 3031 3032 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 3033 tree_root->commit_root = btrfs_root_node(tree_root); 3034 btrfs_set_root_refs(&tree_root->root_item, 1); 3035 3036 mutex_lock(&tree_root->objectid_mutex); 3037 ret = btrfs_find_highest_objectid(tree_root, 3038 &tree_root->highest_objectid); 3039 if (ret) { 3040 mutex_unlock(&tree_root->objectid_mutex); 3041 goto recovery_tree_root; 3042 } 3043 3044 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 3045 3046 mutex_unlock(&tree_root->objectid_mutex); 3047 3048 ret = btrfs_read_roots(fs_info); 3049 if (ret) 3050 goto recovery_tree_root; 3051 3052 fs_info->generation = generation; 3053 fs_info->last_trans_committed = generation; 3054 3055 ret = btrfs_verify_dev_extents(fs_info); 3056 if (ret) { 3057 btrfs_err(fs_info, 3058 "failed to verify dev extents against chunks: %d", 3059 ret); 3060 goto fail_block_groups; 3061 } 3062 ret = btrfs_recover_balance(fs_info); 3063 if (ret) { 3064 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3065 goto fail_block_groups; 3066 } 3067 3068 ret = btrfs_init_dev_stats(fs_info); 3069 if (ret) { 3070 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3071 goto fail_block_groups; 3072 } 3073 3074 ret = btrfs_init_dev_replace(fs_info); 3075 if (ret) { 3076 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3077 goto fail_block_groups; 3078 } 3079 3080 btrfs_free_extra_devids(fs_devices, 1); 3081 3082 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 3083 if (ret) { 3084 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3085 ret); 3086 goto fail_block_groups; 3087 } 3088 3089 ret = btrfs_sysfs_add_device(fs_devices); 3090 if (ret) { 3091 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 3092 ret); 3093 goto fail_fsdev_sysfs; 3094 } 3095 3096 ret = btrfs_sysfs_add_mounted(fs_info); 3097 if (ret) { 3098 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3099 goto fail_fsdev_sysfs; 3100 } 3101 3102 ret = btrfs_init_space_info(fs_info); 3103 if (ret) { 3104 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3105 goto fail_sysfs; 3106 } 3107 3108 ret = btrfs_read_block_groups(fs_info); 3109 if (ret) { 3110 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3111 goto fail_sysfs; 3112 } 3113 3114 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 3115 btrfs_warn(fs_info, 3116 "writable mount is not allowed due to too many missing devices"); 3117 goto fail_sysfs; 3118 } 3119 3120 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3121 "btrfs-cleaner"); 3122 if (IS_ERR(fs_info->cleaner_kthread)) 3123 goto fail_sysfs; 3124 3125 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3126 tree_root, 3127 "btrfs-transaction"); 3128 if (IS_ERR(fs_info->transaction_kthread)) 3129 goto fail_cleaner; 3130 3131 if (!btrfs_test_opt(fs_info, NOSSD) && 3132 !fs_info->fs_devices->rotating) { 3133 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3134 } 3135 3136 /* 3137 * Mount does not set all options immediately, we can do it now and do 3138 * not have to wait for transaction commit 3139 */ 3140 btrfs_apply_pending_changes(fs_info); 3141 3142 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3143 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3144 ret = btrfsic_mount(fs_info, fs_devices, 3145 btrfs_test_opt(fs_info, 3146 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3147 1 : 0, 3148 fs_info->check_integrity_print_mask); 3149 if (ret) 3150 btrfs_warn(fs_info, 3151 "failed to initialize integrity check module: %d", 3152 ret); 3153 } 3154 #endif 3155 ret = btrfs_read_qgroup_config(fs_info); 3156 if (ret) 3157 goto fail_trans_kthread; 3158 3159 if (btrfs_build_ref_tree(fs_info)) 3160 btrfs_err(fs_info, "couldn't build ref tree"); 3161 3162 /* do not make disk changes in broken FS or nologreplay is given */ 3163 if (btrfs_super_log_root(disk_super) != 0 && 3164 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3165 ret = btrfs_replay_log(fs_info, fs_devices); 3166 if (ret) { 3167 err = ret; 3168 goto fail_qgroup; 3169 } 3170 } 3171 3172 ret = btrfs_find_orphan_roots(fs_info); 3173 if (ret) 3174 goto fail_qgroup; 3175 3176 if (!sb_rdonly(sb)) { 3177 ret = btrfs_cleanup_fs_roots(fs_info); 3178 if (ret) 3179 goto fail_qgroup; 3180 3181 mutex_lock(&fs_info->cleaner_mutex); 3182 ret = btrfs_recover_relocation(tree_root); 3183 mutex_unlock(&fs_info->cleaner_mutex); 3184 if (ret < 0) { 3185 btrfs_warn(fs_info, "failed to recover relocation: %d", 3186 ret); 3187 err = -EINVAL; 3188 goto fail_qgroup; 3189 } 3190 } 3191 3192 location.objectid = BTRFS_FS_TREE_OBJECTID; 3193 location.type = BTRFS_ROOT_ITEM_KEY; 3194 location.offset = 0; 3195 3196 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3197 if (IS_ERR(fs_info->fs_root)) { 3198 err = PTR_ERR(fs_info->fs_root); 3199 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3200 goto fail_qgroup; 3201 } 3202 3203 if (sb_rdonly(sb)) 3204 return 0; 3205 3206 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3207 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3208 clear_free_space_tree = 1; 3209 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3210 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3211 btrfs_warn(fs_info, "free space tree is invalid"); 3212 clear_free_space_tree = 1; 3213 } 3214 3215 if (clear_free_space_tree) { 3216 btrfs_info(fs_info, "clearing free space tree"); 3217 ret = btrfs_clear_free_space_tree(fs_info); 3218 if (ret) { 3219 btrfs_warn(fs_info, 3220 "failed to clear free space tree: %d", ret); 3221 close_ctree(fs_info); 3222 return ret; 3223 } 3224 } 3225 3226 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3227 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3228 btrfs_info(fs_info, "creating free space tree"); 3229 ret = btrfs_create_free_space_tree(fs_info); 3230 if (ret) { 3231 btrfs_warn(fs_info, 3232 "failed to create free space tree: %d", ret); 3233 close_ctree(fs_info); 3234 return ret; 3235 } 3236 } 3237 3238 down_read(&fs_info->cleanup_work_sem); 3239 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3240 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3241 up_read(&fs_info->cleanup_work_sem); 3242 close_ctree(fs_info); 3243 return ret; 3244 } 3245 up_read(&fs_info->cleanup_work_sem); 3246 3247 ret = btrfs_resume_balance_async(fs_info); 3248 if (ret) { 3249 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3250 close_ctree(fs_info); 3251 return ret; 3252 } 3253 3254 ret = btrfs_resume_dev_replace_async(fs_info); 3255 if (ret) { 3256 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3257 close_ctree(fs_info); 3258 return ret; 3259 } 3260 3261 btrfs_qgroup_rescan_resume(fs_info); 3262 3263 if (!fs_info->uuid_root) { 3264 btrfs_info(fs_info, "creating UUID tree"); 3265 ret = btrfs_create_uuid_tree(fs_info); 3266 if (ret) { 3267 btrfs_warn(fs_info, 3268 "failed to create the UUID tree: %d", ret); 3269 close_ctree(fs_info); 3270 return ret; 3271 } 3272 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3273 fs_info->generation != 3274 btrfs_super_uuid_tree_generation(disk_super)) { 3275 btrfs_info(fs_info, "checking UUID tree"); 3276 ret = btrfs_check_uuid_tree(fs_info); 3277 if (ret) { 3278 btrfs_warn(fs_info, 3279 "failed to check the UUID tree: %d", ret); 3280 close_ctree(fs_info); 3281 return ret; 3282 } 3283 } else { 3284 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3285 } 3286 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3287 3288 /* 3289 * backuproot only affect mount behavior, and if open_ctree succeeded, 3290 * no need to keep the flag 3291 */ 3292 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3293 3294 return 0; 3295 3296 fail_qgroup: 3297 btrfs_free_qgroup_config(fs_info); 3298 fail_trans_kthread: 3299 kthread_stop(fs_info->transaction_kthread); 3300 btrfs_cleanup_transaction(fs_info); 3301 btrfs_free_fs_roots(fs_info); 3302 fail_cleaner: 3303 kthread_stop(fs_info->cleaner_kthread); 3304 3305 /* 3306 * make sure we're done with the btree inode before we stop our 3307 * kthreads 3308 */ 3309 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3310 3311 fail_sysfs: 3312 btrfs_sysfs_remove_mounted(fs_info); 3313 3314 fail_fsdev_sysfs: 3315 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3316 3317 fail_block_groups: 3318 btrfs_put_block_group_cache(fs_info); 3319 3320 fail_tree_roots: 3321 free_root_pointers(fs_info, 1); 3322 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3323 3324 fail_sb_buffer: 3325 btrfs_stop_all_workers(fs_info); 3326 btrfs_free_block_groups(fs_info); 3327 fail_alloc: 3328 fail_iput: 3329 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3330 3331 iput(fs_info->btree_inode); 3332 fail_bio_counter: 3333 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 3334 fail_delalloc_bytes: 3335 percpu_counter_destroy(&fs_info->delalloc_bytes); 3336 fail_dirty_metadata_bytes: 3337 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3338 fail_srcu: 3339 cleanup_srcu_struct(&fs_info->subvol_srcu); 3340 fail: 3341 btrfs_free_stripe_hash_table(fs_info); 3342 btrfs_close_devices(fs_info->fs_devices); 3343 return err; 3344 3345 recovery_tree_root: 3346 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 3347 goto fail_tree_roots; 3348 3349 free_root_pointers(fs_info, 0); 3350 3351 /* don't use the log in recovery mode, it won't be valid */ 3352 btrfs_set_super_log_root(disk_super, 0); 3353 3354 /* we can't trust the free space cache either */ 3355 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3356 3357 ret = next_root_backup(fs_info, fs_info->super_copy, 3358 &num_backups_tried, &backup_index); 3359 if (ret == -1) 3360 goto fail_block_groups; 3361 goto retry_root_backup; 3362 } 3363 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3364 3365 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3366 { 3367 if (uptodate) { 3368 set_buffer_uptodate(bh); 3369 } else { 3370 struct btrfs_device *device = (struct btrfs_device *) 3371 bh->b_private; 3372 3373 btrfs_warn_rl_in_rcu(device->fs_info, 3374 "lost page write due to IO error on %s", 3375 rcu_str_deref(device->name)); 3376 /* note, we don't set_buffer_write_io_error because we have 3377 * our own ways of dealing with the IO errors 3378 */ 3379 clear_buffer_uptodate(bh); 3380 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3381 } 3382 unlock_buffer(bh); 3383 put_bh(bh); 3384 } 3385 3386 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3387 struct buffer_head **bh_ret) 3388 { 3389 struct buffer_head *bh; 3390 struct btrfs_super_block *super; 3391 u64 bytenr; 3392 3393 bytenr = btrfs_sb_offset(copy_num); 3394 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3395 return -EINVAL; 3396 3397 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE); 3398 /* 3399 * If we fail to read from the underlying devices, as of now 3400 * the best option we have is to mark it EIO. 3401 */ 3402 if (!bh) 3403 return -EIO; 3404 3405 super = (struct btrfs_super_block *)bh->b_data; 3406 if (btrfs_super_bytenr(super) != bytenr || 3407 btrfs_super_magic(super) != BTRFS_MAGIC) { 3408 brelse(bh); 3409 return -EINVAL; 3410 } 3411 3412 *bh_ret = bh; 3413 return 0; 3414 } 3415 3416 3417 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3418 { 3419 struct buffer_head *bh; 3420 struct buffer_head *latest = NULL; 3421 struct btrfs_super_block *super; 3422 int i; 3423 u64 transid = 0; 3424 int ret = -EINVAL; 3425 3426 /* we would like to check all the supers, but that would make 3427 * a btrfs mount succeed after a mkfs from a different FS. 3428 * So, we need to add a special mount option to scan for 3429 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3430 */ 3431 for (i = 0; i < 1; i++) { 3432 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3433 if (ret) 3434 continue; 3435 3436 super = (struct btrfs_super_block *)bh->b_data; 3437 3438 if (!latest || btrfs_super_generation(super) > transid) { 3439 brelse(latest); 3440 latest = bh; 3441 transid = btrfs_super_generation(super); 3442 } else { 3443 brelse(bh); 3444 } 3445 } 3446 3447 if (!latest) 3448 return ERR_PTR(ret); 3449 3450 return latest; 3451 } 3452 3453 /* 3454 * Write superblock @sb to the @device. Do not wait for completion, all the 3455 * buffer heads we write are pinned. 3456 * 3457 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3458 * the expected device size at commit time. Note that max_mirrors must be 3459 * same for write and wait phases. 3460 * 3461 * Return number of errors when buffer head is not found or submission fails. 3462 */ 3463 static int write_dev_supers(struct btrfs_device *device, 3464 struct btrfs_super_block *sb, int max_mirrors) 3465 { 3466 struct buffer_head *bh; 3467 int i; 3468 int ret; 3469 int errors = 0; 3470 u32 crc; 3471 u64 bytenr; 3472 int op_flags; 3473 3474 if (max_mirrors == 0) 3475 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3476 3477 for (i = 0; i < max_mirrors; i++) { 3478 bytenr = btrfs_sb_offset(i); 3479 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3480 device->commit_total_bytes) 3481 break; 3482 3483 btrfs_set_super_bytenr(sb, bytenr); 3484 3485 crc = ~(u32)0; 3486 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc, 3487 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 3488 btrfs_csum_final(crc, sb->csum); 3489 3490 /* One reference for us, and we leave it for the caller */ 3491 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, 3492 BTRFS_SUPER_INFO_SIZE); 3493 if (!bh) { 3494 btrfs_err(device->fs_info, 3495 "couldn't get super buffer head for bytenr %llu", 3496 bytenr); 3497 errors++; 3498 continue; 3499 } 3500 3501 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3502 3503 /* one reference for submit_bh */ 3504 get_bh(bh); 3505 3506 set_buffer_uptodate(bh); 3507 lock_buffer(bh); 3508 bh->b_end_io = btrfs_end_buffer_write_sync; 3509 bh->b_private = device; 3510 3511 /* 3512 * we fua the first super. The others we allow 3513 * to go down lazy. 3514 */ 3515 op_flags = REQ_SYNC | REQ_META | REQ_PRIO; 3516 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3517 op_flags |= REQ_FUA; 3518 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh); 3519 if (ret) 3520 errors++; 3521 } 3522 return errors < i ? 0 : -1; 3523 } 3524 3525 /* 3526 * Wait for write completion of superblocks done by write_dev_supers, 3527 * @max_mirrors same for write and wait phases. 3528 * 3529 * Return number of errors when buffer head is not found or not marked up to 3530 * date. 3531 */ 3532 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3533 { 3534 struct buffer_head *bh; 3535 int i; 3536 int errors = 0; 3537 bool primary_failed = false; 3538 u64 bytenr; 3539 3540 if (max_mirrors == 0) 3541 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3542 3543 for (i = 0; i < max_mirrors; i++) { 3544 bytenr = btrfs_sb_offset(i); 3545 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3546 device->commit_total_bytes) 3547 break; 3548 3549 bh = __find_get_block(device->bdev, 3550 bytenr / BTRFS_BDEV_BLOCKSIZE, 3551 BTRFS_SUPER_INFO_SIZE); 3552 if (!bh) { 3553 errors++; 3554 if (i == 0) 3555 primary_failed = true; 3556 continue; 3557 } 3558 wait_on_buffer(bh); 3559 if (!buffer_uptodate(bh)) { 3560 errors++; 3561 if (i == 0) 3562 primary_failed = true; 3563 } 3564 3565 /* drop our reference */ 3566 brelse(bh); 3567 3568 /* drop the reference from the writing run */ 3569 brelse(bh); 3570 } 3571 3572 /* log error, force error return */ 3573 if (primary_failed) { 3574 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3575 device->devid); 3576 return -1; 3577 } 3578 3579 return errors < i ? 0 : -1; 3580 } 3581 3582 /* 3583 * endio for the write_dev_flush, this will wake anyone waiting 3584 * for the barrier when it is done 3585 */ 3586 static void btrfs_end_empty_barrier(struct bio *bio) 3587 { 3588 complete(bio->bi_private); 3589 } 3590 3591 /* 3592 * Submit a flush request to the device if it supports it. Error handling is 3593 * done in the waiting counterpart. 3594 */ 3595 static void write_dev_flush(struct btrfs_device *device) 3596 { 3597 struct request_queue *q = bdev_get_queue(device->bdev); 3598 struct bio *bio = device->flush_bio; 3599 3600 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3601 return; 3602 3603 bio_reset(bio); 3604 bio->bi_end_io = btrfs_end_empty_barrier; 3605 bio_set_dev(bio, device->bdev); 3606 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3607 init_completion(&device->flush_wait); 3608 bio->bi_private = &device->flush_wait; 3609 3610 btrfsic_submit_bio(bio); 3611 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3612 } 3613 3614 /* 3615 * If the flush bio has been submitted by write_dev_flush, wait for it. 3616 */ 3617 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3618 { 3619 struct bio *bio = device->flush_bio; 3620 3621 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3622 return BLK_STS_OK; 3623 3624 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3625 wait_for_completion_io(&device->flush_wait); 3626 3627 return bio->bi_status; 3628 } 3629 3630 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3631 { 3632 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3633 return -EIO; 3634 return 0; 3635 } 3636 3637 /* 3638 * send an empty flush down to each device in parallel, 3639 * then wait for them 3640 */ 3641 static int barrier_all_devices(struct btrfs_fs_info *info) 3642 { 3643 struct list_head *head; 3644 struct btrfs_device *dev; 3645 int errors_wait = 0; 3646 blk_status_t ret; 3647 3648 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3649 /* send down all the barriers */ 3650 head = &info->fs_devices->devices; 3651 list_for_each_entry(dev, head, dev_list) { 3652 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3653 continue; 3654 if (!dev->bdev) 3655 continue; 3656 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3657 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3658 continue; 3659 3660 write_dev_flush(dev); 3661 dev->last_flush_error = BLK_STS_OK; 3662 } 3663 3664 /* wait for all the barriers */ 3665 list_for_each_entry(dev, head, dev_list) { 3666 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3667 continue; 3668 if (!dev->bdev) { 3669 errors_wait++; 3670 continue; 3671 } 3672 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3673 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3674 continue; 3675 3676 ret = wait_dev_flush(dev); 3677 if (ret) { 3678 dev->last_flush_error = ret; 3679 btrfs_dev_stat_inc_and_print(dev, 3680 BTRFS_DEV_STAT_FLUSH_ERRS); 3681 errors_wait++; 3682 } 3683 } 3684 3685 if (errors_wait) { 3686 /* 3687 * At some point we need the status of all disks 3688 * to arrive at the volume status. So error checking 3689 * is being pushed to a separate loop. 3690 */ 3691 return check_barrier_error(info); 3692 } 3693 return 0; 3694 } 3695 3696 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3697 { 3698 int raid_type; 3699 int min_tolerated = INT_MAX; 3700 3701 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3702 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3703 min_tolerated = min(min_tolerated, 3704 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3705 tolerated_failures); 3706 3707 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3708 if (raid_type == BTRFS_RAID_SINGLE) 3709 continue; 3710 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3711 continue; 3712 min_tolerated = min(min_tolerated, 3713 btrfs_raid_array[raid_type]. 3714 tolerated_failures); 3715 } 3716 3717 if (min_tolerated == INT_MAX) { 3718 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3719 min_tolerated = 0; 3720 } 3721 3722 return min_tolerated; 3723 } 3724 3725 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3726 { 3727 struct list_head *head; 3728 struct btrfs_device *dev; 3729 struct btrfs_super_block *sb; 3730 struct btrfs_dev_item *dev_item; 3731 int ret; 3732 int do_barriers; 3733 int max_errors; 3734 int total_errors = 0; 3735 u64 flags; 3736 3737 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3738 3739 /* 3740 * max_mirrors == 0 indicates we're from commit_transaction, 3741 * not from fsync where the tree roots in fs_info have not 3742 * been consistent on disk. 3743 */ 3744 if (max_mirrors == 0) 3745 backup_super_roots(fs_info); 3746 3747 sb = fs_info->super_for_commit; 3748 dev_item = &sb->dev_item; 3749 3750 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3751 head = &fs_info->fs_devices->devices; 3752 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3753 3754 if (do_barriers) { 3755 ret = barrier_all_devices(fs_info); 3756 if (ret) { 3757 mutex_unlock( 3758 &fs_info->fs_devices->device_list_mutex); 3759 btrfs_handle_fs_error(fs_info, ret, 3760 "errors while submitting device barriers."); 3761 return ret; 3762 } 3763 } 3764 3765 list_for_each_entry(dev, head, dev_list) { 3766 if (!dev->bdev) { 3767 total_errors++; 3768 continue; 3769 } 3770 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3771 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3772 continue; 3773 3774 btrfs_set_stack_device_generation(dev_item, 0); 3775 btrfs_set_stack_device_type(dev_item, dev->type); 3776 btrfs_set_stack_device_id(dev_item, dev->devid); 3777 btrfs_set_stack_device_total_bytes(dev_item, 3778 dev->commit_total_bytes); 3779 btrfs_set_stack_device_bytes_used(dev_item, 3780 dev->commit_bytes_used); 3781 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3782 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3783 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3784 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3785 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 3786 BTRFS_FSID_SIZE); 3787 3788 flags = btrfs_super_flags(sb); 3789 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3790 3791 ret = btrfs_validate_write_super(fs_info, sb); 3792 if (ret < 0) { 3793 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3794 btrfs_handle_fs_error(fs_info, -EUCLEAN, 3795 "unexpected superblock corruption detected"); 3796 return -EUCLEAN; 3797 } 3798 3799 ret = write_dev_supers(dev, sb, max_mirrors); 3800 if (ret) 3801 total_errors++; 3802 } 3803 if (total_errors > max_errors) { 3804 btrfs_err(fs_info, "%d errors while writing supers", 3805 total_errors); 3806 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3807 3808 /* FUA is masked off if unsupported and can't be the reason */ 3809 btrfs_handle_fs_error(fs_info, -EIO, 3810 "%d errors while writing supers", 3811 total_errors); 3812 return -EIO; 3813 } 3814 3815 total_errors = 0; 3816 list_for_each_entry(dev, head, dev_list) { 3817 if (!dev->bdev) 3818 continue; 3819 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3820 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3821 continue; 3822 3823 ret = wait_dev_supers(dev, max_mirrors); 3824 if (ret) 3825 total_errors++; 3826 } 3827 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3828 if (total_errors > max_errors) { 3829 btrfs_handle_fs_error(fs_info, -EIO, 3830 "%d errors while writing supers", 3831 total_errors); 3832 return -EIO; 3833 } 3834 return 0; 3835 } 3836 3837 /* Drop a fs root from the radix tree and free it. */ 3838 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3839 struct btrfs_root *root) 3840 { 3841 spin_lock(&fs_info->fs_roots_radix_lock); 3842 radix_tree_delete(&fs_info->fs_roots_radix, 3843 (unsigned long)root->root_key.objectid); 3844 spin_unlock(&fs_info->fs_roots_radix_lock); 3845 3846 if (btrfs_root_refs(&root->root_item) == 0) 3847 synchronize_srcu(&fs_info->subvol_srcu); 3848 3849 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3850 btrfs_free_log(NULL, root); 3851 if (root->reloc_root) { 3852 free_extent_buffer(root->reloc_root->node); 3853 free_extent_buffer(root->reloc_root->commit_root); 3854 btrfs_put_fs_root(root->reloc_root); 3855 root->reloc_root = NULL; 3856 } 3857 } 3858 3859 if (root->free_ino_pinned) 3860 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3861 if (root->free_ino_ctl) 3862 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3863 btrfs_free_fs_root(root); 3864 } 3865 3866 void btrfs_free_fs_root(struct btrfs_root *root) 3867 { 3868 iput(root->ino_cache_inode); 3869 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3870 if (root->anon_dev) 3871 free_anon_bdev(root->anon_dev); 3872 if (root->subv_writers) 3873 btrfs_free_subvolume_writers(root->subv_writers); 3874 free_extent_buffer(root->node); 3875 free_extent_buffer(root->commit_root); 3876 kfree(root->free_ino_ctl); 3877 kfree(root->free_ino_pinned); 3878 btrfs_put_fs_root(root); 3879 } 3880 3881 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3882 { 3883 u64 root_objectid = 0; 3884 struct btrfs_root *gang[8]; 3885 int i = 0; 3886 int err = 0; 3887 unsigned int ret = 0; 3888 int index; 3889 3890 while (1) { 3891 index = srcu_read_lock(&fs_info->subvol_srcu); 3892 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3893 (void **)gang, root_objectid, 3894 ARRAY_SIZE(gang)); 3895 if (!ret) { 3896 srcu_read_unlock(&fs_info->subvol_srcu, index); 3897 break; 3898 } 3899 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3900 3901 for (i = 0; i < ret; i++) { 3902 /* Avoid to grab roots in dead_roots */ 3903 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3904 gang[i] = NULL; 3905 continue; 3906 } 3907 /* grab all the search result for later use */ 3908 gang[i] = btrfs_grab_fs_root(gang[i]); 3909 } 3910 srcu_read_unlock(&fs_info->subvol_srcu, index); 3911 3912 for (i = 0; i < ret; i++) { 3913 if (!gang[i]) 3914 continue; 3915 root_objectid = gang[i]->root_key.objectid; 3916 err = btrfs_orphan_cleanup(gang[i]); 3917 if (err) 3918 break; 3919 btrfs_put_fs_root(gang[i]); 3920 } 3921 root_objectid++; 3922 } 3923 3924 /* release the uncleaned roots due to error */ 3925 for (; i < ret; i++) { 3926 if (gang[i]) 3927 btrfs_put_fs_root(gang[i]); 3928 } 3929 return err; 3930 } 3931 3932 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3933 { 3934 struct btrfs_root *root = fs_info->tree_root; 3935 struct btrfs_trans_handle *trans; 3936 3937 mutex_lock(&fs_info->cleaner_mutex); 3938 btrfs_run_delayed_iputs(fs_info); 3939 mutex_unlock(&fs_info->cleaner_mutex); 3940 wake_up_process(fs_info->cleaner_kthread); 3941 3942 /* wait until ongoing cleanup work done */ 3943 down_write(&fs_info->cleanup_work_sem); 3944 up_write(&fs_info->cleanup_work_sem); 3945 3946 trans = btrfs_join_transaction(root); 3947 if (IS_ERR(trans)) 3948 return PTR_ERR(trans); 3949 return btrfs_commit_transaction(trans); 3950 } 3951 3952 void close_ctree(struct btrfs_fs_info *fs_info) 3953 { 3954 int ret; 3955 3956 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3957 /* 3958 * We don't want the cleaner to start new transactions, add more delayed 3959 * iputs, etc. while we're closing. We can't use kthread_stop() yet 3960 * because that frees the task_struct, and the transaction kthread might 3961 * still try to wake up the cleaner. 3962 */ 3963 kthread_park(fs_info->cleaner_kthread); 3964 3965 /* wait for the qgroup rescan worker to stop */ 3966 btrfs_qgroup_wait_for_completion(fs_info, false); 3967 3968 /* wait for the uuid_scan task to finish */ 3969 down(&fs_info->uuid_tree_rescan_sem); 3970 /* avoid complains from lockdep et al., set sem back to initial state */ 3971 up(&fs_info->uuid_tree_rescan_sem); 3972 3973 /* pause restriper - we want to resume on mount */ 3974 btrfs_pause_balance(fs_info); 3975 3976 btrfs_dev_replace_suspend_for_unmount(fs_info); 3977 3978 btrfs_scrub_cancel(fs_info); 3979 3980 /* wait for any defraggers to finish */ 3981 wait_event(fs_info->transaction_wait, 3982 (atomic_read(&fs_info->defrag_running) == 0)); 3983 3984 /* clear out the rbtree of defraggable inodes */ 3985 btrfs_cleanup_defrag_inodes(fs_info); 3986 3987 cancel_work_sync(&fs_info->async_reclaim_work); 3988 3989 if (!sb_rdonly(fs_info->sb)) { 3990 /* 3991 * The cleaner kthread is stopped, so do one final pass over 3992 * unused block groups. 3993 */ 3994 btrfs_delete_unused_bgs(fs_info); 3995 3996 ret = btrfs_commit_super(fs_info); 3997 if (ret) 3998 btrfs_err(fs_info, "commit super ret %d", ret); 3999 } 4000 4001 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 4002 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 4003 btrfs_error_commit_super(fs_info); 4004 4005 kthread_stop(fs_info->transaction_kthread); 4006 kthread_stop(fs_info->cleaner_kthread); 4007 4008 ASSERT(list_empty(&fs_info->delayed_iputs)); 4009 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4010 4011 btrfs_free_qgroup_config(fs_info); 4012 ASSERT(list_empty(&fs_info->delalloc_roots)); 4013 4014 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4015 btrfs_info(fs_info, "at unmount delalloc count %lld", 4016 percpu_counter_sum(&fs_info->delalloc_bytes)); 4017 } 4018 4019 btrfs_sysfs_remove_mounted(fs_info); 4020 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4021 4022 btrfs_free_fs_roots(fs_info); 4023 4024 btrfs_put_block_group_cache(fs_info); 4025 4026 /* 4027 * we must make sure there is not any read request to 4028 * submit after we stopping all workers. 4029 */ 4030 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4031 btrfs_stop_all_workers(fs_info); 4032 4033 btrfs_free_block_groups(fs_info); 4034 4035 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4036 free_root_pointers(fs_info, 1); 4037 4038 iput(fs_info->btree_inode); 4039 4040 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4041 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4042 btrfsic_unmount(fs_info->fs_devices); 4043 #endif 4044 4045 btrfs_close_devices(fs_info->fs_devices); 4046 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4047 4048 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 4049 percpu_counter_destroy(&fs_info->delalloc_bytes); 4050 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 4051 cleanup_srcu_struct(&fs_info->subvol_srcu); 4052 4053 btrfs_free_stripe_hash_table(fs_info); 4054 btrfs_free_ref_cache(fs_info); 4055 4056 while (!list_empty(&fs_info->pinned_chunks)) { 4057 struct extent_map *em; 4058 4059 em = list_first_entry(&fs_info->pinned_chunks, 4060 struct extent_map, list); 4061 list_del_init(&em->list); 4062 free_extent_map(em); 4063 } 4064 } 4065 4066 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4067 int atomic) 4068 { 4069 int ret; 4070 struct inode *btree_inode = buf->pages[0]->mapping->host; 4071 4072 ret = extent_buffer_uptodate(buf); 4073 if (!ret) 4074 return ret; 4075 4076 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4077 parent_transid, atomic); 4078 if (ret == -EAGAIN) 4079 return ret; 4080 return !ret; 4081 } 4082 4083 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4084 { 4085 struct btrfs_fs_info *fs_info; 4086 struct btrfs_root *root; 4087 u64 transid = btrfs_header_generation(buf); 4088 int was_dirty; 4089 4090 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4091 /* 4092 * This is a fast path so only do this check if we have sanity tests 4093 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4094 * outside of the sanity tests. 4095 */ 4096 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4097 return; 4098 #endif 4099 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4100 fs_info = root->fs_info; 4101 btrfs_assert_tree_locked(buf); 4102 if (transid != fs_info->generation) 4103 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4104 buf->start, transid, fs_info->generation); 4105 was_dirty = set_extent_buffer_dirty(buf); 4106 if (!was_dirty) 4107 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4108 buf->len, 4109 fs_info->dirty_metadata_batch); 4110 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4111 /* 4112 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4113 * but item data not updated. 4114 * So here we should only check item pointers, not item data. 4115 */ 4116 if (btrfs_header_level(buf) == 0 && 4117 btrfs_check_leaf_relaxed(fs_info, buf)) { 4118 btrfs_print_leaf(buf); 4119 ASSERT(0); 4120 } 4121 #endif 4122 } 4123 4124 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4125 int flush_delayed) 4126 { 4127 /* 4128 * looks as though older kernels can get into trouble with 4129 * this code, they end up stuck in balance_dirty_pages forever 4130 */ 4131 int ret; 4132 4133 if (current->flags & PF_MEMALLOC) 4134 return; 4135 4136 if (flush_delayed) 4137 btrfs_balance_delayed_items(fs_info); 4138 4139 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4140 BTRFS_DIRTY_METADATA_THRESH, 4141 fs_info->dirty_metadata_batch); 4142 if (ret > 0) { 4143 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4144 } 4145 } 4146 4147 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4148 { 4149 __btrfs_btree_balance_dirty(fs_info, 1); 4150 } 4151 4152 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4153 { 4154 __btrfs_btree_balance_dirty(fs_info, 0); 4155 } 4156 4157 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4158 struct btrfs_key *first_key) 4159 { 4160 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4161 struct btrfs_fs_info *fs_info = root->fs_info; 4162 4163 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid, 4164 level, first_key); 4165 } 4166 4167 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4168 { 4169 /* cleanup FS via transaction */ 4170 btrfs_cleanup_transaction(fs_info); 4171 4172 mutex_lock(&fs_info->cleaner_mutex); 4173 btrfs_run_delayed_iputs(fs_info); 4174 mutex_unlock(&fs_info->cleaner_mutex); 4175 4176 down_write(&fs_info->cleanup_work_sem); 4177 up_write(&fs_info->cleanup_work_sem); 4178 } 4179 4180 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4181 { 4182 struct btrfs_ordered_extent *ordered; 4183 4184 spin_lock(&root->ordered_extent_lock); 4185 /* 4186 * This will just short circuit the ordered completion stuff which will 4187 * make sure the ordered extent gets properly cleaned up. 4188 */ 4189 list_for_each_entry(ordered, &root->ordered_extents, 4190 root_extent_list) 4191 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4192 spin_unlock(&root->ordered_extent_lock); 4193 } 4194 4195 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4196 { 4197 struct btrfs_root *root; 4198 struct list_head splice; 4199 4200 INIT_LIST_HEAD(&splice); 4201 4202 spin_lock(&fs_info->ordered_root_lock); 4203 list_splice_init(&fs_info->ordered_roots, &splice); 4204 while (!list_empty(&splice)) { 4205 root = list_first_entry(&splice, struct btrfs_root, 4206 ordered_root); 4207 list_move_tail(&root->ordered_root, 4208 &fs_info->ordered_roots); 4209 4210 spin_unlock(&fs_info->ordered_root_lock); 4211 btrfs_destroy_ordered_extents(root); 4212 4213 cond_resched(); 4214 spin_lock(&fs_info->ordered_root_lock); 4215 } 4216 spin_unlock(&fs_info->ordered_root_lock); 4217 4218 /* 4219 * We need this here because if we've been flipped read-only we won't 4220 * get sync() from the umount, so we need to make sure any ordered 4221 * extents that haven't had their dirty pages IO start writeout yet 4222 * actually get run and error out properly. 4223 */ 4224 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4225 } 4226 4227 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4228 struct btrfs_fs_info *fs_info) 4229 { 4230 struct rb_node *node; 4231 struct btrfs_delayed_ref_root *delayed_refs; 4232 struct btrfs_delayed_ref_node *ref; 4233 int ret = 0; 4234 4235 delayed_refs = &trans->delayed_refs; 4236 4237 spin_lock(&delayed_refs->lock); 4238 if (atomic_read(&delayed_refs->num_entries) == 0) { 4239 spin_unlock(&delayed_refs->lock); 4240 btrfs_info(fs_info, "delayed_refs has NO entry"); 4241 return ret; 4242 } 4243 4244 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4245 struct btrfs_delayed_ref_head *head; 4246 struct rb_node *n; 4247 bool pin_bytes = false; 4248 4249 head = rb_entry(node, struct btrfs_delayed_ref_head, 4250 href_node); 4251 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4252 continue; 4253 4254 spin_lock(&head->lock); 4255 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4256 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4257 ref_node); 4258 ref->in_tree = 0; 4259 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4260 RB_CLEAR_NODE(&ref->ref_node); 4261 if (!list_empty(&ref->add_list)) 4262 list_del(&ref->add_list); 4263 atomic_dec(&delayed_refs->num_entries); 4264 btrfs_put_delayed_ref(ref); 4265 } 4266 if (head->must_insert_reserved) 4267 pin_bytes = true; 4268 btrfs_free_delayed_extent_op(head->extent_op); 4269 btrfs_delete_ref_head(delayed_refs, head); 4270 spin_unlock(&head->lock); 4271 spin_unlock(&delayed_refs->lock); 4272 mutex_unlock(&head->mutex); 4273 4274 if (pin_bytes) 4275 btrfs_pin_extent(fs_info, head->bytenr, 4276 head->num_bytes, 1); 4277 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4278 btrfs_put_delayed_ref_head(head); 4279 cond_resched(); 4280 spin_lock(&delayed_refs->lock); 4281 } 4282 4283 spin_unlock(&delayed_refs->lock); 4284 4285 return ret; 4286 } 4287 4288 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4289 { 4290 struct btrfs_inode *btrfs_inode; 4291 struct list_head splice; 4292 4293 INIT_LIST_HEAD(&splice); 4294 4295 spin_lock(&root->delalloc_lock); 4296 list_splice_init(&root->delalloc_inodes, &splice); 4297 4298 while (!list_empty(&splice)) { 4299 struct inode *inode = NULL; 4300 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4301 delalloc_inodes); 4302 __btrfs_del_delalloc_inode(root, btrfs_inode); 4303 spin_unlock(&root->delalloc_lock); 4304 4305 /* 4306 * Make sure we get a live inode and that it'll not disappear 4307 * meanwhile. 4308 */ 4309 inode = igrab(&btrfs_inode->vfs_inode); 4310 if (inode) { 4311 invalidate_inode_pages2(inode->i_mapping); 4312 iput(inode); 4313 } 4314 spin_lock(&root->delalloc_lock); 4315 } 4316 spin_unlock(&root->delalloc_lock); 4317 } 4318 4319 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4320 { 4321 struct btrfs_root *root; 4322 struct list_head splice; 4323 4324 INIT_LIST_HEAD(&splice); 4325 4326 spin_lock(&fs_info->delalloc_root_lock); 4327 list_splice_init(&fs_info->delalloc_roots, &splice); 4328 while (!list_empty(&splice)) { 4329 root = list_first_entry(&splice, struct btrfs_root, 4330 delalloc_root); 4331 root = btrfs_grab_fs_root(root); 4332 BUG_ON(!root); 4333 spin_unlock(&fs_info->delalloc_root_lock); 4334 4335 btrfs_destroy_delalloc_inodes(root); 4336 btrfs_put_fs_root(root); 4337 4338 spin_lock(&fs_info->delalloc_root_lock); 4339 } 4340 spin_unlock(&fs_info->delalloc_root_lock); 4341 } 4342 4343 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4344 struct extent_io_tree *dirty_pages, 4345 int mark) 4346 { 4347 int ret; 4348 struct extent_buffer *eb; 4349 u64 start = 0; 4350 u64 end; 4351 4352 while (1) { 4353 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4354 mark, NULL); 4355 if (ret) 4356 break; 4357 4358 clear_extent_bits(dirty_pages, start, end, mark); 4359 while (start <= end) { 4360 eb = find_extent_buffer(fs_info, start); 4361 start += fs_info->nodesize; 4362 if (!eb) 4363 continue; 4364 wait_on_extent_buffer_writeback(eb); 4365 4366 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4367 &eb->bflags)) 4368 clear_extent_buffer_dirty(eb); 4369 free_extent_buffer_stale(eb); 4370 } 4371 } 4372 4373 return ret; 4374 } 4375 4376 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4377 struct extent_io_tree *pinned_extents) 4378 { 4379 struct extent_io_tree *unpin; 4380 u64 start; 4381 u64 end; 4382 int ret; 4383 bool loop = true; 4384 4385 unpin = pinned_extents; 4386 again: 4387 while (1) { 4388 struct extent_state *cached_state = NULL; 4389 4390 /* 4391 * The btrfs_finish_extent_commit() may get the same range as 4392 * ours between find_first_extent_bit and clear_extent_dirty. 4393 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4394 * the same extent range. 4395 */ 4396 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4397 ret = find_first_extent_bit(unpin, 0, &start, &end, 4398 EXTENT_DIRTY, &cached_state); 4399 if (ret) { 4400 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4401 break; 4402 } 4403 4404 clear_extent_dirty(unpin, start, end, &cached_state); 4405 free_extent_state(cached_state); 4406 btrfs_error_unpin_extent_range(fs_info, start, end); 4407 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4408 cond_resched(); 4409 } 4410 4411 if (loop) { 4412 if (unpin == &fs_info->freed_extents[0]) 4413 unpin = &fs_info->freed_extents[1]; 4414 else 4415 unpin = &fs_info->freed_extents[0]; 4416 loop = false; 4417 goto again; 4418 } 4419 4420 return 0; 4421 } 4422 4423 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) 4424 { 4425 struct inode *inode; 4426 4427 inode = cache->io_ctl.inode; 4428 if (inode) { 4429 invalidate_inode_pages2(inode->i_mapping); 4430 BTRFS_I(inode)->generation = 0; 4431 cache->io_ctl.inode = NULL; 4432 iput(inode); 4433 } 4434 btrfs_put_block_group(cache); 4435 } 4436 4437 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4438 struct btrfs_fs_info *fs_info) 4439 { 4440 struct btrfs_block_group_cache *cache; 4441 4442 spin_lock(&cur_trans->dirty_bgs_lock); 4443 while (!list_empty(&cur_trans->dirty_bgs)) { 4444 cache = list_first_entry(&cur_trans->dirty_bgs, 4445 struct btrfs_block_group_cache, 4446 dirty_list); 4447 4448 if (!list_empty(&cache->io_list)) { 4449 spin_unlock(&cur_trans->dirty_bgs_lock); 4450 list_del_init(&cache->io_list); 4451 btrfs_cleanup_bg_io(cache); 4452 spin_lock(&cur_trans->dirty_bgs_lock); 4453 } 4454 4455 list_del_init(&cache->dirty_list); 4456 spin_lock(&cache->lock); 4457 cache->disk_cache_state = BTRFS_DC_ERROR; 4458 spin_unlock(&cache->lock); 4459 4460 spin_unlock(&cur_trans->dirty_bgs_lock); 4461 btrfs_put_block_group(cache); 4462 btrfs_delayed_refs_rsv_release(fs_info, 1); 4463 spin_lock(&cur_trans->dirty_bgs_lock); 4464 } 4465 spin_unlock(&cur_trans->dirty_bgs_lock); 4466 4467 /* 4468 * Refer to the definition of io_bgs member for details why it's safe 4469 * to use it without any locking 4470 */ 4471 while (!list_empty(&cur_trans->io_bgs)) { 4472 cache = list_first_entry(&cur_trans->io_bgs, 4473 struct btrfs_block_group_cache, 4474 io_list); 4475 4476 list_del_init(&cache->io_list); 4477 spin_lock(&cache->lock); 4478 cache->disk_cache_state = BTRFS_DC_ERROR; 4479 spin_unlock(&cache->lock); 4480 btrfs_cleanup_bg_io(cache); 4481 } 4482 } 4483 4484 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4485 struct btrfs_fs_info *fs_info) 4486 { 4487 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4488 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4489 ASSERT(list_empty(&cur_trans->io_bgs)); 4490 4491 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4492 4493 cur_trans->state = TRANS_STATE_COMMIT_START; 4494 wake_up(&fs_info->transaction_blocked_wait); 4495 4496 cur_trans->state = TRANS_STATE_UNBLOCKED; 4497 wake_up(&fs_info->transaction_wait); 4498 4499 btrfs_destroy_delayed_inodes(fs_info); 4500 btrfs_assert_delayed_root_empty(fs_info); 4501 4502 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4503 EXTENT_DIRTY); 4504 btrfs_destroy_pinned_extent(fs_info, 4505 fs_info->pinned_extents); 4506 4507 cur_trans->state =TRANS_STATE_COMPLETED; 4508 wake_up(&cur_trans->commit_wait); 4509 } 4510 4511 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4512 { 4513 struct btrfs_transaction *t; 4514 4515 mutex_lock(&fs_info->transaction_kthread_mutex); 4516 4517 spin_lock(&fs_info->trans_lock); 4518 while (!list_empty(&fs_info->trans_list)) { 4519 t = list_first_entry(&fs_info->trans_list, 4520 struct btrfs_transaction, list); 4521 if (t->state >= TRANS_STATE_COMMIT_START) { 4522 refcount_inc(&t->use_count); 4523 spin_unlock(&fs_info->trans_lock); 4524 btrfs_wait_for_commit(fs_info, t->transid); 4525 btrfs_put_transaction(t); 4526 spin_lock(&fs_info->trans_lock); 4527 continue; 4528 } 4529 if (t == fs_info->running_transaction) { 4530 t->state = TRANS_STATE_COMMIT_DOING; 4531 spin_unlock(&fs_info->trans_lock); 4532 /* 4533 * We wait for 0 num_writers since we don't hold a trans 4534 * handle open currently for this transaction. 4535 */ 4536 wait_event(t->writer_wait, 4537 atomic_read(&t->num_writers) == 0); 4538 } else { 4539 spin_unlock(&fs_info->trans_lock); 4540 } 4541 btrfs_cleanup_one_transaction(t, fs_info); 4542 4543 spin_lock(&fs_info->trans_lock); 4544 if (t == fs_info->running_transaction) 4545 fs_info->running_transaction = NULL; 4546 list_del_init(&t->list); 4547 spin_unlock(&fs_info->trans_lock); 4548 4549 btrfs_put_transaction(t); 4550 trace_btrfs_transaction_commit(fs_info->tree_root); 4551 spin_lock(&fs_info->trans_lock); 4552 } 4553 spin_unlock(&fs_info->trans_lock); 4554 btrfs_destroy_all_ordered_extents(fs_info); 4555 btrfs_destroy_delayed_inodes(fs_info); 4556 btrfs_assert_delayed_root_empty(fs_info); 4557 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 4558 btrfs_destroy_all_delalloc_inodes(fs_info); 4559 mutex_unlock(&fs_info->transaction_kthread_mutex); 4560 4561 return 0; 4562 } 4563 4564 static const struct extent_io_ops btree_extent_io_ops = { 4565 /* mandatory callbacks */ 4566 .submit_bio_hook = btree_submit_bio_hook, 4567 .readpage_end_io_hook = btree_readpage_end_io_hook, 4568 }; 4569