1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include <linux/slab.h> 31 #include <linux/migrate.h> 32 #include <linux/ratelimit.h> 33 #include <linux/uuid.h> 34 #include <linux/semaphore.h> 35 #include <asm/unaligned.h> 36 #include "ctree.h" 37 #include "disk-io.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "volumes.h" 41 #include "print-tree.h" 42 #include "async-thread.h" 43 #include "locking.h" 44 #include "tree-log.h" 45 #include "free-space-cache.h" 46 #include "inode-map.h" 47 #include "check-integrity.h" 48 #include "rcu-string.h" 49 #include "dev-replace.h" 50 #include "raid56.h" 51 52 #ifdef CONFIG_X86 53 #include <asm/cpufeature.h> 54 #endif 55 56 static struct extent_io_ops btree_extent_io_ops; 57 static void end_workqueue_fn(struct btrfs_work *work); 58 static void free_fs_root(struct btrfs_root *root); 59 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 60 int read_only); 61 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t, 62 struct btrfs_root *root); 63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 65 struct btrfs_root *root); 66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 67 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 68 struct extent_io_tree *dirty_pages, 69 int mark); 70 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 71 struct extent_io_tree *pinned_extents); 72 static int btrfs_cleanup_transaction(struct btrfs_root *root); 73 static void btrfs_error_commit_super(struct btrfs_root *root); 74 75 /* 76 * end_io_wq structs are used to do processing in task context when an IO is 77 * complete. This is used during reads to verify checksums, and it is used 78 * by writes to insert metadata for new file extents after IO is complete. 79 */ 80 struct end_io_wq { 81 struct bio *bio; 82 bio_end_io_t *end_io; 83 void *private; 84 struct btrfs_fs_info *info; 85 int error; 86 int metadata; 87 struct list_head list; 88 struct btrfs_work work; 89 }; 90 91 /* 92 * async submit bios are used to offload expensive checksumming 93 * onto the worker threads. They checksum file and metadata bios 94 * just before they are sent down the IO stack. 95 */ 96 struct async_submit_bio { 97 struct inode *inode; 98 struct bio *bio; 99 struct list_head list; 100 extent_submit_bio_hook_t *submit_bio_start; 101 extent_submit_bio_hook_t *submit_bio_done; 102 int rw; 103 int mirror_num; 104 unsigned long bio_flags; 105 /* 106 * bio_offset is optional, can be used if the pages in the bio 107 * can't tell us where in the file the bio should go 108 */ 109 u64 bio_offset; 110 struct btrfs_work work; 111 int error; 112 }; 113 114 /* 115 * Lockdep class keys for extent_buffer->lock's in this root. For a given 116 * eb, the lockdep key is determined by the btrfs_root it belongs to and 117 * the level the eb occupies in the tree. 118 * 119 * Different roots are used for different purposes and may nest inside each 120 * other and they require separate keysets. As lockdep keys should be 121 * static, assign keysets according to the purpose of the root as indicated 122 * by btrfs_root->objectid. This ensures that all special purpose roots 123 * have separate keysets. 124 * 125 * Lock-nesting across peer nodes is always done with the immediate parent 126 * node locked thus preventing deadlock. As lockdep doesn't know this, use 127 * subclass to avoid triggering lockdep warning in such cases. 128 * 129 * The key is set by the readpage_end_io_hook after the buffer has passed 130 * csum validation but before the pages are unlocked. It is also set by 131 * btrfs_init_new_buffer on freshly allocated blocks. 132 * 133 * We also add a check to make sure the highest level of the tree is the 134 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 135 * needs update as well. 136 */ 137 #ifdef CONFIG_DEBUG_LOCK_ALLOC 138 # if BTRFS_MAX_LEVEL != 8 139 # error 140 # endif 141 142 static struct btrfs_lockdep_keyset { 143 u64 id; /* root objectid */ 144 const char *name_stem; /* lock name stem */ 145 char names[BTRFS_MAX_LEVEL + 1][20]; 146 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 147 } btrfs_lockdep_keysets[] = { 148 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 149 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 150 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 151 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 152 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 153 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 154 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 155 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 156 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 157 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 158 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 159 { .id = 0, .name_stem = "tree" }, 160 }; 161 162 void __init btrfs_init_lockdep(void) 163 { 164 int i, j; 165 166 /* initialize lockdep class names */ 167 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 168 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 169 170 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 171 snprintf(ks->names[j], sizeof(ks->names[j]), 172 "btrfs-%s-%02d", ks->name_stem, j); 173 } 174 } 175 176 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 177 int level) 178 { 179 struct btrfs_lockdep_keyset *ks; 180 181 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 182 183 /* find the matching keyset, id 0 is the default entry */ 184 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 185 if (ks->id == objectid) 186 break; 187 188 lockdep_set_class_and_name(&eb->lock, 189 &ks->keys[level], ks->names[level]); 190 } 191 192 #endif 193 194 /* 195 * extents on the btree inode are pretty simple, there's one extent 196 * that covers the entire device 197 */ 198 static struct extent_map *btree_get_extent(struct inode *inode, 199 struct page *page, size_t pg_offset, u64 start, u64 len, 200 int create) 201 { 202 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 203 struct extent_map *em; 204 int ret; 205 206 read_lock(&em_tree->lock); 207 em = lookup_extent_mapping(em_tree, start, len); 208 if (em) { 209 em->bdev = 210 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 211 read_unlock(&em_tree->lock); 212 goto out; 213 } 214 read_unlock(&em_tree->lock); 215 216 em = alloc_extent_map(); 217 if (!em) { 218 em = ERR_PTR(-ENOMEM); 219 goto out; 220 } 221 em->start = 0; 222 em->len = (u64)-1; 223 em->block_len = (u64)-1; 224 em->block_start = 0; 225 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 226 227 write_lock(&em_tree->lock); 228 ret = add_extent_mapping(em_tree, em, 0); 229 if (ret == -EEXIST) { 230 free_extent_map(em); 231 em = lookup_extent_mapping(em_tree, start, len); 232 if (!em) 233 em = ERR_PTR(-EIO); 234 } else if (ret) { 235 free_extent_map(em); 236 em = ERR_PTR(ret); 237 } 238 write_unlock(&em_tree->lock); 239 240 out: 241 return em; 242 } 243 244 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 245 { 246 return crc32c(seed, data, len); 247 } 248 249 void btrfs_csum_final(u32 crc, char *result) 250 { 251 put_unaligned_le32(~crc, result); 252 } 253 254 /* 255 * compute the csum for a btree block, and either verify it or write it 256 * into the csum field of the block. 257 */ 258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 259 int verify) 260 { 261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 262 char *result = NULL; 263 unsigned long len; 264 unsigned long cur_len; 265 unsigned long offset = BTRFS_CSUM_SIZE; 266 char *kaddr; 267 unsigned long map_start; 268 unsigned long map_len; 269 int err; 270 u32 crc = ~(u32)0; 271 unsigned long inline_result; 272 273 len = buf->len - offset; 274 while (len > 0) { 275 err = map_private_extent_buffer(buf, offset, 32, 276 &kaddr, &map_start, &map_len); 277 if (err) 278 return 1; 279 cur_len = min(len, map_len - (offset - map_start)); 280 crc = btrfs_csum_data(kaddr + offset - map_start, 281 crc, cur_len); 282 len -= cur_len; 283 offset += cur_len; 284 } 285 if (csum_size > sizeof(inline_result)) { 286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 287 if (!result) 288 return 1; 289 } else { 290 result = (char *)&inline_result; 291 } 292 293 btrfs_csum_final(crc, result); 294 295 if (verify) { 296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 297 u32 val; 298 u32 found = 0; 299 memcpy(&found, result, csum_size); 300 301 read_extent_buffer(buf, &val, 0, csum_size); 302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify " 303 "failed on %llu wanted %X found %X " 304 "level %d\n", 305 root->fs_info->sb->s_id, buf->start, 306 val, found, btrfs_header_level(buf)); 307 if (result != (char *)&inline_result) 308 kfree(result); 309 return 1; 310 } 311 } else { 312 write_extent_buffer(buf, result, 0, csum_size); 313 } 314 if (result != (char *)&inline_result) 315 kfree(result); 316 return 0; 317 } 318 319 /* 320 * we can't consider a given block up to date unless the transid of the 321 * block matches the transid in the parent node's pointer. This is how we 322 * detect blocks that either didn't get written at all or got written 323 * in the wrong place. 324 */ 325 static int verify_parent_transid(struct extent_io_tree *io_tree, 326 struct extent_buffer *eb, u64 parent_transid, 327 int atomic) 328 { 329 struct extent_state *cached_state = NULL; 330 int ret; 331 332 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 333 return 0; 334 335 if (atomic) 336 return -EAGAIN; 337 338 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 339 0, &cached_state); 340 if (extent_buffer_uptodate(eb) && 341 btrfs_header_generation(eb) == parent_transid) { 342 ret = 0; 343 goto out; 344 } 345 printk_ratelimited("parent transid verify failed on %llu wanted %llu " 346 "found %llu\n", 347 eb->start, parent_transid, btrfs_header_generation(eb)); 348 ret = 1; 349 clear_extent_buffer_uptodate(eb); 350 out: 351 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 352 &cached_state, GFP_NOFS); 353 return ret; 354 } 355 356 /* 357 * Return 0 if the superblock checksum type matches the checksum value of that 358 * algorithm. Pass the raw disk superblock data. 359 */ 360 static int btrfs_check_super_csum(char *raw_disk_sb) 361 { 362 struct btrfs_super_block *disk_sb = 363 (struct btrfs_super_block *)raw_disk_sb; 364 u16 csum_type = btrfs_super_csum_type(disk_sb); 365 int ret = 0; 366 367 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 368 u32 crc = ~(u32)0; 369 const int csum_size = sizeof(crc); 370 char result[csum_size]; 371 372 /* 373 * The super_block structure does not span the whole 374 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 375 * is filled with zeros and is included in the checkum. 376 */ 377 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 378 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 379 btrfs_csum_final(crc, result); 380 381 if (memcmp(raw_disk_sb, result, csum_size)) 382 ret = 1; 383 384 if (ret && btrfs_super_generation(disk_sb) < 10) { 385 printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n"); 386 ret = 0; 387 } 388 } 389 390 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 391 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n", 392 csum_type); 393 ret = 1; 394 } 395 396 return ret; 397 } 398 399 /* 400 * helper to read a given tree block, doing retries as required when 401 * the checksums don't match and we have alternate mirrors to try. 402 */ 403 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 404 struct extent_buffer *eb, 405 u64 start, u64 parent_transid) 406 { 407 struct extent_io_tree *io_tree; 408 int failed = 0; 409 int ret; 410 int num_copies = 0; 411 int mirror_num = 0; 412 int failed_mirror = 0; 413 414 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 415 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 416 while (1) { 417 ret = read_extent_buffer_pages(io_tree, eb, start, 418 WAIT_COMPLETE, 419 btree_get_extent, mirror_num); 420 if (!ret) { 421 if (!verify_parent_transid(io_tree, eb, 422 parent_transid, 0)) 423 break; 424 else 425 ret = -EIO; 426 } 427 428 /* 429 * This buffer's crc is fine, but its contents are corrupted, so 430 * there is no reason to read the other copies, they won't be 431 * any less wrong. 432 */ 433 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 434 break; 435 436 num_copies = btrfs_num_copies(root->fs_info, 437 eb->start, eb->len); 438 if (num_copies == 1) 439 break; 440 441 if (!failed_mirror) { 442 failed = 1; 443 failed_mirror = eb->read_mirror; 444 } 445 446 mirror_num++; 447 if (mirror_num == failed_mirror) 448 mirror_num++; 449 450 if (mirror_num > num_copies) 451 break; 452 } 453 454 if (failed && !ret && failed_mirror) 455 repair_eb_io_failure(root, eb, failed_mirror); 456 457 return ret; 458 } 459 460 /* 461 * checksum a dirty tree block before IO. This has extra checks to make sure 462 * we only fill in the checksum field in the first page of a multi-page block 463 */ 464 465 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 466 { 467 struct extent_io_tree *tree; 468 u64 start = page_offset(page); 469 u64 found_start; 470 struct extent_buffer *eb; 471 472 tree = &BTRFS_I(page->mapping->host)->io_tree; 473 474 eb = (struct extent_buffer *)page->private; 475 if (page != eb->pages[0]) 476 return 0; 477 found_start = btrfs_header_bytenr(eb); 478 if (WARN_ON(found_start != start || !PageUptodate(page))) 479 return 0; 480 csum_tree_block(root, eb, 0); 481 return 0; 482 } 483 484 static int check_tree_block_fsid(struct btrfs_root *root, 485 struct extent_buffer *eb) 486 { 487 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 488 u8 fsid[BTRFS_UUID_SIZE]; 489 int ret = 1; 490 491 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 492 while (fs_devices) { 493 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 494 ret = 0; 495 break; 496 } 497 fs_devices = fs_devices->seed; 498 } 499 return ret; 500 } 501 502 #define CORRUPT(reason, eb, root, slot) \ 503 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \ 504 "root=%llu, slot=%d\n", reason, \ 505 btrfs_header_bytenr(eb), root->objectid, slot) 506 507 static noinline int check_leaf(struct btrfs_root *root, 508 struct extent_buffer *leaf) 509 { 510 struct btrfs_key key; 511 struct btrfs_key leaf_key; 512 u32 nritems = btrfs_header_nritems(leaf); 513 int slot; 514 515 if (nritems == 0) 516 return 0; 517 518 /* Check the 0 item */ 519 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 520 BTRFS_LEAF_DATA_SIZE(root)) { 521 CORRUPT("invalid item offset size pair", leaf, root, 0); 522 return -EIO; 523 } 524 525 /* 526 * Check to make sure each items keys are in the correct order and their 527 * offsets make sense. We only have to loop through nritems-1 because 528 * we check the current slot against the next slot, which verifies the 529 * next slot's offset+size makes sense and that the current's slot 530 * offset is correct. 531 */ 532 for (slot = 0; slot < nritems - 1; slot++) { 533 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 534 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 535 536 /* Make sure the keys are in the right order */ 537 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 538 CORRUPT("bad key order", leaf, root, slot); 539 return -EIO; 540 } 541 542 /* 543 * Make sure the offset and ends are right, remember that the 544 * item data starts at the end of the leaf and grows towards the 545 * front. 546 */ 547 if (btrfs_item_offset_nr(leaf, slot) != 548 btrfs_item_end_nr(leaf, slot + 1)) { 549 CORRUPT("slot offset bad", leaf, root, slot); 550 return -EIO; 551 } 552 553 /* 554 * Check to make sure that we don't point outside of the leaf, 555 * just incase all the items are consistent to eachother, but 556 * all point outside of the leaf. 557 */ 558 if (btrfs_item_end_nr(leaf, slot) > 559 BTRFS_LEAF_DATA_SIZE(root)) { 560 CORRUPT("slot end outside of leaf", leaf, root, slot); 561 return -EIO; 562 } 563 } 564 565 return 0; 566 } 567 568 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 569 u64 phy_offset, struct page *page, 570 u64 start, u64 end, int mirror) 571 { 572 struct extent_io_tree *tree; 573 u64 found_start; 574 int found_level; 575 struct extent_buffer *eb; 576 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 577 int ret = 0; 578 int reads_done; 579 580 if (!page->private) 581 goto out; 582 583 tree = &BTRFS_I(page->mapping->host)->io_tree; 584 eb = (struct extent_buffer *)page->private; 585 586 /* the pending IO might have been the only thing that kept this buffer 587 * in memory. Make sure we have a ref for all this other checks 588 */ 589 extent_buffer_get(eb); 590 591 reads_done = atomic_dec_and_test(&eb->io_pages); 592 if (!reads_done) 593 goto err; 594 595 eb->read_mirror = mirror; 596 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 597 ret = -EIO; 598 goto err; 599 } 600 601 found_start = btrfs_header_bytenr(eb); 602 if (found_start != eb->start) { 603 printk_ratelimited(KERN_INFO "btrfs bad tree block start " 604 "%llu %llu\n", 605 found_start, eb->start); 606 ret = -EIO; 607 goto err; 608 } 609 if (check_tree_block_fsid(root, eb)) { 610 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n", 611 eb->start); 612 ret = -EIO; 613 goto err; 614 } 615 found_level = btrfs_header_level(eb); 616 if (found_level >= BTRFS_MAX_LEVEL) { 617 btrfs_info(root->fs_info, "bad tree block level %d\n", 618 (int)btrfs_header_level(eb)); 619 ret = -EIO; 620 goto err; 621 } 622 623 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 624 eb, found_level); 625 626 ret = csum_tree_block(root, eb, 1); 627 if (ret) { 628 ret = -EIO; 629 goto err; 630 } 631 632 /* 633 * If this is a leaf block and it is corrupt, set the corrupt bit so 634 * that we don't try and read the other copies of this block, just 635 * return -EIO. 636 */ 637 if (found_level == 0 && check_leaf(root, eb)) { 638 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 639 ret = -EIO; 640 } 641 642 if (!ret) 643 set_extent_buffer_uptodate(eb); 644 err: 645 if (reads_done && 646 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 647 btree_readahead_hook(root, eb, eb->start, ret); 648 649 if (ret) { 650 /* 651 * our io error hook is going to dec the io pages 652 * again, we have to make sure it has something 653 * to decrement 654 */ 655 atomic_inc(&eb->io_pages); 656 clear_extent_buffer_uptodate(eb); 657 } 658 free_extent_buffer(eb); 659 out: 660 return ret; 661 } 662 663 static int btree_io_failed_hook(struct page *page, int failed_mirror) 664 { 665 struct extent_buffer *eb; 666 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 667 668 eb = (struct extent_buffer *)page->private; 669 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 670 eb->read_mirror = failed_mirror; 671 atomic_dec(&eb->io_pages); 672 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 673 btree_readahead_hook(root, eb, eb->start, -EIO); 674 return -EIO; /* we fixed nothing */ 675 } 676 677 static void end_workqueue_bio(struct bio *bio, int err) 678 { 679 struct end_io_wq *end_io_wq = bio->bi_private; 680 struct btrfs_fs_info *fs_info; 681 682 fs_info = end_io_wq->info; 683 end_io_wq->error = err; 684 end_io_wq->work.func = end_workqueue_fn; 685 end_io_wq->work.flags = 0; 686 687 if (bio->bi_rw & REQ_WRITE) { 688 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) 689 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 690 &end_io_wq->work); 691 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) 692 btrfs_queue_worker(&fs_info->endio_freespace_worker, 693 &end_io_wq->work); 694 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 695 btrfs_queue_worker(&fs_info->endio_raid56_workers, 696 &end_io_wq->work); 697 else 698 btrfs_queue_worker(&fs_info->endio_write_workers, 699 &end_io_wq->work); 700 } else { 701 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 702 btrfs_queue_worker(&fs_info->endio_raid56_workers, 703 &end_io_wq->work); 704 else if (end_io_wq->metadata) 705 btrfs_queue_worker(&fs_info->endio_meta_workers, 706 &end_io_wq->work); 707 else 708 btrfs_queue_worker(&fs_info->endio_workers, 709 &end_io_wq->work); 710 } 711 } 712 713 /* 714 * For the metadata arg you want 715 * 716 * 0 - if data 717 * 1 - if normal metadta 718 * 2 - if writing to the free space cache area 719 * 3 - raid parity work 720 */ 721 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 722 int metadata) 723 { 724 struct end_io_wq *end_io_wq; 725 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 726 if (!end_io_wq) 727 return -ENOMEM; 728 729 end_io_wq->private = bio->bi_private; 730 end_io_wq->end_io = bio->bi_end_io; 731 end_io_wq->info = info; 732 end_io_wq->error = 0; 733 end_io_wq->bio = bio; 734 end_io_wq->metadata = metadata; 735 736 bio->bi_private = end_io_wq; 737 bio->bi_end_io = end_workqueue_bio; 738 return 0; 739 } 740 741 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 742 { 743 unsigned long limit = min_t(unsigned long, 744 info->workers.max_workers, 745 info->fs_devices->open_devices); 746 return 256 * limit; 747 } 748 749 static void run_one_async_start(struct btrfs_work *work) 750 { 751 struct async_submit_bio *async; 752 int ret; 753 754 async = container_of(work, struct async_submit_bio, work); 755 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 756 async->mirror_num, async->bio_flags, 757 async->bio_offset); 758 if (ret) 759 async->error = ret; 760 } 761 762 static void run_one_async_done(struct btrfs_work *work) 763 { 764 struct btrfs_fs_info *fs_info; 765 struct async_submit_bio *async; 766 int limit; 767 768 async = container_of(work, struct async_submit_bio, work); 769 fs_info = BTRFS_I(async->inode)->root->fs_info; 770 771 limit = btrfs_async_submit_limit(fs_info); 772 limit = limit * 2 / 3; 773 774 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 775 waitqueue_active(&fs_info->async_submit_wait)) 776 wake_up(&fs_info->async_submit_wait); 777 778 /* If an error occured we just want to clean up the bio and move on */ 779 if (async->error) { 780 bio_endio(async->bio, async->error); 781 return; 782 } 783 784 async->submit_bio_done(async->inode, async->rw, async->bio, 785 async->mirror_num, async->bio_flags, 786 async->bio_offset); 787 } 788 789 static void run_one_async_free(struct btrfs_work *work) 790 { 791 struct async_submit_bio *async; 792 793 async = container_of(work, struct async_submit_bio, work); 794 kfree(async); 795 } 796 797 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 798 int rw, struct bio *bio, int mirror_num, 799 unsigned long bio_flags, 800 u64 bio_offset, 801 extent_submit_bio_hook_t *submit_bio_start, 802 extent_submit_bio_hook_t *submit_bio_done) 803 { 804 struct async_submit_bio *async; 805 806 async = kmalloc(sizeof(*async), GFP_NOFS); 807 if (!async) 808 return -ENOMEM; 809 810 async->inode = inode; 811 async->rw = rw; 812 async->bio = bio; 813 async->mirror_num = mirror_num; 814 async->submit_bio_start = submit_bio_start; 815 async->submit_bio_done = submit_bio_done; 816 817 async->work.func = run_one_async_start; 818 async->work.ordered_func = run_one_async_done; 819 async->work.ordered_free = run_one_async_free; 820 821 async->work.flags = 0; 822 async->bio_flags = bio_flags; 823 async->bio_offset = bio_offset; 824 825 async->error = 0; 826 827 atomic_inc(&fs_info->nr_async_submits); 828 829 if (rw & REQ_SYNC) 830 btrfs_set_work_high_prio(&async->work); 831 832 btrfs_queue_worker(&fs_info->workers, &async->work); 833 834 while (atomic_read(&fs_info->async_submit_draining) && 835 atomic_read(&fs_info->nr_async_submits)) { 836 wait_event(fs_info->async_submit_wait, 837 (atomic_read(&fs_info->nr_async_submits) == 0)); 838 } 839 840 return 0; 841 } 842 843 static int btree_csum_one_bio(struct bio *bio) 844 { 845 struct bio_vec *bvec = bio->bi_io_vec; 846 int bio_index = 0; 847 struct btrfs_root *root; 848 int ret = 0; 849 850 WARN_ON(bio->bi_vcnt <= 0); 851 while (bio_index < bio->bi_vcnt) { 852 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 853 ret = csum_dirty_buffer(root, bvec->bv_page); 854 if (ret) 855 break; 856 bio_index++; 857 bvec++; 858 } 859 return ret; 860 } 861 862 static int __btree_submit_bio_start(struct inode *inode, int rw, 863 struct bio *bio, int mirror_num, 864 unsigned long bio_flags, 865 u64 bio_offset) 866 { 867 /* 868 * when we're called for a write, we're already in the async 869 * submission context. Just jump into btrfs_map_bio 870 */ 871 return btree_csum_one_bio(bio); 872 } 873 874 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 875 int mirror_num, unsigned long bio_flags, 876 u64 bio_offset) 877 { 878 int ret; 879 880 /* 881 * when we're called for a write, we're already in the async 882 * submission context. Just jump into btrfs_map_bio 883 */ 884 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 885 if (ret) 886 bio_endio(bio, ret); 887 return ret; 888 } 889 890 static int check_async_write(struct inode *inode, unsigned long bio_flags) 891 { 892 if (bio_flags & EXTENT_BIO_TREE_LOG) 893 return 0; 894 #ifdef CONFIG_X86 895 if (cpu_has_xmm4_2) 896 return 0; 897 #endif 898 return 1; 899 } 900 901 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 902 int mirror_num, unsigned long bio_flags, 903 u64 bio_offset) 904 { 905 int async = check_async_write(inode, bio_flags); 906 int ret; 907 908 if (!(rw & REQ_WRITE)) { 909 /* 910 * called for a read, do the setup so that checksum validation 911 * can happen in the async kernel threads 912 */ 913 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 914 bio, 1); 915 if (ret) 916 goto out_w_error; 917 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 918 mirror_num, 0); 919 } else if (!async) { 920 ret = btree_csum_one_bio(bio); 921 if (ret) 922 goto out_w_error; 923 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 924 mirror_num, 0); 925 } else { 926 /* 927 * kthread helpers are used to submit writes so that 928 * checksumming can happen in parallel across all CPUs 929 */ 930 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 931 inode, rw, bio, mirror_num, 0, 932 bio_offset, 933 __btree_submit_bio_start, 934 __btree_submit_bio_done); 935 } 936 937 if (ret) { 938 out_w_error: 939 bio_endio(bio, ret); 940 } 941 return ret; 942 } 943 944 #ifdef CONFIG_MIGRATION 945 static int btree_migratepage(struct address_space *mapping, 946 struct page *newpage, struct page *page, 947 enum migrate_mode mode) 948 { 949 /* 950 * we can't safely write a btree page from here, 951 * we haven't done the locking hook 952 */ 953 if (PageDirty(page)) 954 return -EAGAIN; 955 /* 956 * Buffers may be managed in a filesystem specific way. 957 * We must have no buffers or drop them. 958 */ 959 if (page_has_private(page) && 960 !try_to_release_page(page, GFP_KERNEL)) 961 return -EAGAIN; 962 return migrate_page(mapping, newpage, page, mode); 963 } 964 #endif 965 966 967 static int btree_writepages(struct address_space *mapping, 968 struct writeback_control *wbc) 969 { 970 struct extent_io_tree *tree; 971 struct btrfs_fs_info *fs_info; 972 int ret; 973 974 tree = &BTRFS_I(mapping->host)->io_tree; 975 if (wbc->sync_mode == WB_SYNC_NONE) { 976 977 if (wbc->for_kupdate) 978 return 0; 979 980 fs_info = BTRFS_I(mapping->host)->root->fs_info; 981 /* this is a bit racy, but that's ok */ 982 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 983 BTRFS_DIRTY_METADATA_THRESH); 984 if (ret < 0) 985 return 0; 986 } 987 return btree_write_cache_pages(mapping, wbc); 988 } 989 990 static int btree_readpage(struct file *file, struct page *page) 991 { 992 struct extent_io_tree *tree; 993 tree = &BTRFS_I(page->mapping->host)->io_tree; 994 return extent_read_full_page(tree, page, btree_get_extent, 0); 995 } 996 997 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 998 { 999 if (PageWriteback(page) || PageDirty(page)) 1000 return 0; 1001 1002 return try_release_extent_buffer(page); 1003 } 1004 1005 static void btree_invalidatepage(struct page *page, unsigned int offset, 1006 unsigned int length) 1007 { 1008 struct extent_io_tree *tree; 1009 tree = &BTRFS_I(page->mapping->host)->io_tree; 1010 extent_invalidatepage(tree, page, offset); 1011 btree_releasepage(page, GFP_NOFS); 1012 if (PagePrivate(page)) { 1013 printk(KERN_WARNING "btrfs warning page private not zero " 1014 "on page %llu\n", (unsigned long long)page_offset(page)); 1015 ClearPagePrivate(page); 1016 set_page_private(page, 0); 1017 page_cache_release(page); 1018 } 1019 } 1020 1021 static int btree_set_page_dirty(struct page *page) 1022 { 1023 #ifdef DEBUG 1024 struct extent_buffer *eb; 1025 1026 BUG_ON(!PagePrivate(page)); 1027 eb = (struct extent_buffer *)page->private; 1028 BUG_ON(!eb); 1029 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1030 BUG_ON(!atomic_read(&eb->refs)); 1031 btrfs_assert_tree_locked(eb); 1032 #endif 1033 return __set_page_dirty_nobuffers(page); 1034 } 1035 1036 static const struct address_space_operations btree_aops = { 1037 .readpage = btree_readpage, 1038 .writepages = btree_writepages, 1039 .releasepage = btree_releasepage, 1040 .invalidatepage = btree_invalidatepage, 1041 #ifdef CONFIG_MIGRATION 1042 .migratepage = btree_migratepage, 1043 #endif 1044 .set_page_dirty = btree_set_page_dirty, 1045 }; 1046 1047 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1048 u64 parent_transid) 1049 { 1050 struct extent_buffer *buf = NULL; 1051 struct inode *btree_inode = root->fs_info->btree_inode; 1052 int ret = 0; 1053 1054 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1055 if (!buf) 1056 return 0; 1057 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1058 buf, 0, WAIT_NONE, btree_get_extent, 0); 1059 free_extent_buffer(buf); 1060 return ret; 1061 } 1062 1063 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1064 int mirror_num, struct extent_buffer **eb) 1065 { 1066 struct extent_buffer *buf = NULL; 1067 struct inode *btree_inode = root->fs_info->btree_inode; 1068 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1069 int ret; 1070 1071 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1072 if (!buf) 1073 return 0; 1074 1075 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1076 1077 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1078 btree_get_extent, mirror_num); 1079 if (ret) { 1080 free_extent_buffer(buf); 1081 return ret; 1082 } 1083 1084 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1085 free_extent_buffer(buf); 1086 return -EIO; 1087 } else if (extent_buffer_uptodate(buf)) { 1088 *eb = buf; 1089 } else { 1090 free_extent_buffer(buf); 1091 } 1092 return 0; 1093 } 1094 1095 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 1096 u64 bytenr, u32 blocksize) 1097 { 1098 struct inode *btree_inode = root->fs_info->btree_inode; 1099 struct extent_buffer *eb; 1100 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, bytenr); 1101 return eb; 1102 } 1103 1104 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1105 u64 bytenr, u32 blocksize) 1106 { 1107 struct inode *btree_inode = root->fs_info->btree_inode; 1108 struct extent_buffer *eb; 1109 1110 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1111 bytenr, blocksize); 1112 return eb; 1113 } 1114 1115 1116 int btrfs_write_tree_block(struct extent_buffer *buf) 1117 { 1118 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1119 buf->start + buf->len - 1); 1120 } 1121 1122 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1123 { 1124 return filemap_fdatawait_range(buf->pages[0]->mapping, 1125 buf->start, buf->start + buf->len - 1); 1126 } 1127 1128 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1129 u32 blocksize, u64 parent_transid) 1130 { 1131 struct extent_buffer *buf = NULL; 1132 int ret; 1133 1134 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1135 if (!buf) 1136 return NULL; 1137 1138 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1139 if (ret) { 1140 free_extent_buffer(buf); 1141 return NULL; 1142 } 1143 return buf; 1144 1145 } 1146 1147 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1148 struct extent_buffer *buf) 1149 { 1150 struct btrfs_fs_info *fs_info = root->fs_info; 1151 1152 if (btrfs_header_generation(buf) == 1153 fs_info->running_transaction->transid) { 1154 btrfs_assert_tree_locked(buf); 1155 1156 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1157 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1158 -buf->len, 1159 fs_info->dirty_metadata_batch); 1160 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1161 btrfs_set_lock_blocking(buf); 1162 clear_extent_buffer_dirty(buf); 1163 } 1164 } 1165 } 1166 1167 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 1168 u32 stripesize, struct btrfs_root *root, 1169 struct btrfs_fs_info *fs_info, 1170 u64 objectid) 1171 { 1172 root->node = NULL; 1173 root->commit_root = NULL; 1174 root->sectorsize = sectorsize; 1175 root->nodesize = nodesize; 1176 root->leafsize = leafsize; 1177 root->stripesize = stripesize; 1178 root->ref_cows = 0; 1179 root->track_dirty = 0; 1180 root->in_radix = 0; 1181 root->orphan_item_inserted = 0; 1182 root->orphan_cleanup_state = 0; 1183 1184 root->objectid = objectid; 1185 root->last_trans = 0; 1186 root->highest_objectid = 0; 1187 root->nr_delalloc_inodes = 0; 1188 root->nr_ordered_extents = 0; 1189 root->name = NULL; 1190 root->inode_tree = RB_ROOT; 1191 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1192 root->block_rsv = NULL; 1193 root->orphan_block_rsv = NULL; 1194 1195 INIT_LIST_HEAD(&root->dirty_list); 1196 INIT_LIST_HEAD(&root->root_list); 1197 INIT_LIST_HEAD(&root->delalloc_inodes); 1198 INIT_LIST_HEAD(&root->delalloc_root); 1199 INIT_LIST_HEAD(&root->ordered_extents); 1200 INIT_LIST_HEAD(&root->ordered_root); 1201 INIT_LIST_HEAD(&root->logged_list[0]); 1202 INIT_LIST_HEAD(&root->logged_list[1]); 1203 spin_lock_init(&root->orphan_lock); 1204 spin_lock_init(&root->inode_lock); 1205 spin_lock_init(&root->delalloc_lock); 1206 spin_lock_init(&root->ordered_extent_lock); 1207 spin_lock_init(&root->accounting_lock); 1208 spin_lock_init(&root->log_extents_lock[0]); 1209 spin_lock_init(&root->log_extents_lock[1]); 1210 mutex_init(&root->objectid_mutex); 1211 mutex_init(&root->log_mutex); 1212 init_waitqueue_head(&root->log_writer_wait); 1213 init_waitqueue_head(&root->log_commit_wait[0]); 1214 init_waitqueue_head(&root->log_commit_wait[1]); 1215 atomic_set(&root->log_commit[0], 0); 1216 atomic_set(&root->log_commit[1], 0); 1217 atomic_set(&root->log_writers, 0); 1218 atomic_set(&root->log_batch, 0); 1219 atomic_set(&root->orphan_inodes, 0); 1220 atomic_set(&root->refs, 1); 1221 root->log_transid = 0; 1222 root->last_log_commit = 0; 1223 if (fs_info) 1224 extent_io_tree_init(&root->dirty_log_pages, 1225 fs_info->btree_inode->i_mapping); 1226 1227 memset(&root->root_key, 0, sizeof(root->root_key)); 1228 memset(&root->root_item, 0, sizeof(root->root_item)); 1229 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1230 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1231 if (fs_info) 1232 root->defrag_trans_start = fs_info->generation; 1233 else 1234 root->defrag_trans_start = 0; 1235 init_completion(&root->kobj_unregister); 1236 root->defrag_running = 0; 1237 root->root_key.objectid = objectid; 1238 root->anon_dev = 0; 1239 1240 spin_lock_init(&root->root_item_lock); 1241 } 1242 1243 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1244 { 1245 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1246 if (root) 1247 root->fs_info = fs_info; 1248 return root; 1249 } 1250 1251 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1252 /* Should only be used by the testing infrastructure */ 1253 struct btrfs_root *btrfs_alloc_dummy_root(void) 1254 { 1255 struct btrfs_root *root; 1256 1257 root = btrfs_alloc_root(NULL); 1258 if (!root) 1259 return ERR_PTR(-ENOMEM); 1260 __setup_root(4096, 4096, 4096, 4096, root, NULL, 1); 1261 root->dummy_root = 1; 1262 1263 return root; 1264 } 1265 #endif 1266 1267 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1268 struct btrfs_fs_info *fs_info, 1269 u64 objectid) 1270 { 1271 struct extent_buffer *leaf; 1272 struct btrfs_root *tree_root = fs_info->tree_root; 1273 struct btrfs_root *root; 1274 struct btrfs_key key; 1275 int ret = 0; 1276 u64 bytenr; 1277 uuid_le uuid; 1278 1279 root = btrfs_alloc_root(fs_info); 1280 if (!root) 1281 return ERR_PTR(-ENOMEM); 1282 1283 __setup_root(tree_root->nodesize, tree_root->leafsize, 1284 tree_root->sectorsize, tree_root->stripesize, 1285 root, fs_info, objectid); 1286 root->root_key.objectid = objectid; 1287 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1288 root->root_key.offset = 0; 1289 1290 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 1291 0, objectid, NULL, 0, 0, 0); 1292 if (IS_ERR(leaf)) { 1293 ret = PTR_ERR(leaf); 1294 leaf = NULL; 1295 goto fail; 1296 } 1297 1298 bytenr = leaf->start; 1299 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1300 btrfs_set_header_bytenr(leaf, leaf->start); 1301 btrfs_set_header_generation(leaf, trans->transid); 1302 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1303 btrfs_set_header_owner(leaf, objectid); 1304 root->node = leaf; 1305 1306 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(), 1307 BTRFS_FSID_SIZE); 1308 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1309 btrfs_header_chunk_tree_uuid(leaf), 1310 BTRFS_UUID_SIZE); 1311 btrfs_mark_buffer_dirty(leaf); 1312 1313 root->commit_root = btrfs_root_node(root); 1314 root->track_dirty = 1; 1315 1316 1317 root->root_item.flags = 0; 1318 root->root_item.byte_limit = 0; 1319 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1320 btrfs_set_root_generation(&root->root_item, trans->transid); 1321 btrfs_set_root_level(&root->root_item, 0); 1322 btrfs_set_root_refs(&root->root_item, 1); 1323 btrfs_set_root_used(&root->root_item, leaf->len); 1324 btrfs_set_root_last_snapshot(&root->root_item, 0); 1325 btrfs_set_root_dirid(&root->root_item, 0); 1326 uuid_le_gen(&uuid); 1327 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1328 root->root_item.drop_level = 0; 1329 1330 key.objectid = objectid; 1331 key.type = BTRFS_ROOT_ITEM_KEY; 1332 key.offset = 0; 1333 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1334 if (ret) 1335 goto fail; 1336 1337 btrfs_tree_unlock(leaf); 1338 1339 return root; 1340 1341 fail: 1342 if (leaf) { 1343 btrfs_tree_unlock(leaf); 1344 free_extent_buffer(leaf); 1345 } 1346 kfree(root); 1347 1348 return ERR_PTR(ret); 1349 } 1350 1351 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1352 struct btrfs_fs_info *fs_info) 1353 { 1354 struct btrfs_root *root; 1355 struct btrfs_root *tree_root = fs_info->tree_root; 1356 struct extent_buffer *leaf; 1357 1358 root = btrfs_alloc_root(fs_info); 1359 if (!root) 1360 return ERR_PTR(-ENOMEM); 1361 1362 __setup_root(tree_root->nodesize, tree_root->leafsize, 1363 tree_root->sectorsize, tree_root->stripesize, 1364 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1365 1366 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1367 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1368 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1369 /* 1370 * log trees do not get reference counted because they go away 1371 * before a real commit is actually done. They do store pointers 1372 * to file data extents, and those reference counts still get 1373 * updated (along with back refs to the log tree). 1374 */ 1375 root->ref_cows = 0; 1376 1377 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1378 BTRFS_TREE_LOG_OBJECTID, NULL, 1379 0, 0, 0); 1380 if (IS_ERR(leaf)) { 1381 kfree(root); 1382 return ERR_CAST(leaf); 1383 } 1384 1385 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1386 btrfs_set_header_bytenr(leaf, leaf->start); 1387 btrfs_set_header_generation(leaf, trans->transid); 1388 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1389 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1390 root->node = leaf; 1391 1392 write_extent_buffer(root->node, root->fs_info->fsid, 1393 btrfs_header_fsid(), BTRFS_FSID_SIZE); 1394 btrfs_mark_buffer_dirty(root->node); 1395 btrfs_tree_unlock(root->node); 1396 return root; 1397 } 1398 1399 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1400 struct btrfs_fs_info *fs_info) 1401 { 1402 struct btrfs_root *log_root; 1403 1404 log_root = alloc_log_tree(trans, fs_info); 1405 if (IS_ERR(log_root)) 1406 return PTR_ERR(log_root); 1407 WARN_ON(fs_info->log_root_tree); 1408 fs_info->log_root_tree = log_root; 1409 return 0; 1410 } 1411 1412 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1413 struct btrfs_root *root) 1414 { 1415 struct btrfs_root *log_root; 1416 struct btrfs_inode_item *inode_item; 1417 1418 log_root = alloc_log_tree(trans, root->fs_info); 1419 if (IS_ERR(log_root)) 1420 return PTR_ERR(log_root); 1421 1422 log_root->last_trans = trans->transid; 1423 log_root->root_key.offset = root->root_key.objectid; 1424 1425 inode_item = &log_root->root_item.inode; 1426 btrfs_set_stack_inode_generation(inode_item, 1); 1427 btrfs_set_stack_inode_size(inode_item, 3); 1428 btrfs_set_stack_inode_nlink(inode_item, 1); 1429 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize); 1430 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1431 1432 btrfs_set_root_node(&log_root->root_item, log_root->node); 1433 1434 WARN_ON(root->log_root); 1435 root->log_root = log_root; 1436 root->log_transid = 0; 1437 root->last_log_commit = 0; 1438 return 0; 1439 } 1440 1441 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1442 struct btrfs_key *key) 1443 { 1444 struct btrfs_root *root; 1445 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1446 struct btrfs_path *path; 1447 u64 generation; 1448 u32 blocksize; 1449 int ret; 1450 1451 path = btrfs_alloc_path(); 1452 if (!path) 1453 return ERR_PTR(-ENOMEM); 1454 1455 root = btrfs_alloc_root(fs_info); 1456 if (!root) { 1457 ret = -ENOMEM; 1458 goto alloc_fail; 1459 } 1460 1461 __setup_root(tree_root->nodesize, tree_root->leafsize, 1462 tree_root->sectorsize, tree_root->stripesize, 1463 root, fs_info, key->objectid); 1464 1465 ret = btrfs_find_root(tree_root, key, path, 1466 &root->root_item, &root->root_key); 1467 if (ret) { 1468 if (ret > 0) 1469 ret = -ENOENT; 1470 goto find_fail; 1471 } 1472 1473 generation = btrfs_root_generation(&root->root_item); 1474 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1475 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1476 blocksize, generation); 1477 if (!root->node) { 1478 ret = -ENOMEM; 1479 goto find_fail; 1480 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1481 ret = -EIO; 1482 goto read_fail; 1483 } 1484 root->commit_root = btrfs_root_node(root); 1485 out: 1486 btrfs_free_path(path); 1487 return root; 1488 1489 read_fail: 1490 free_extent_buffer(root->node); 1491 find_fail: 1492 kfree(root); 1493 alloc_fail: 1494 root = ERR_PTR(ret); 1495 goto out; 1496 } 1497 1498 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1499 struct btrfs_key *location) 1500 { 1501 struct btrfs_root *root; 1502 1503 root = btrfs_read_tree_root(tree_root, location); 1504 if (IS_ERR(root)) 1505 return root; 1506 1507 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1508 root->ref_cows = 1; 1509 btrfs_check_and_init_root_item(&root->root_item); 1510 } 1511 1512 return root; 1513 } 1514 1515 int btrfs_init_fs_root(struct btrfs_root *root) 1516 { 1517 int ret; 1518 1519 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1520 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1521 GFP_NOFS); 1522 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1523 ret = -ENOMEM; 1524 goto fail; 1525 } 1526 1527 btrfs_init_free_ino_ctl(root); 1528 mutex_init(&root->fs_commit_mutex); 1529 spin_lock_init(&root->cache_lock); 1530 init_waitqueue_head(&root->cache_wait); 1531 1532 ret = get_anon_bdev(&root->anon_dev); 1533 if (ret) 1534 goto fail; 1535 return 0; 1536 fail: 1537 kfree(root->free_ino_ctl); 1538 kfree(root->free_ino_pinned); 1539 return ret; 1540 } 1541 1542 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1543 u64 root_id) 1544 { 1545 struct btrfs_root *root; 1546 1547 spin_lock(&fs_info->fs_roots_radix_lock); 1548 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1549 (unsigned long)root_id); 1550 spin_unlock(&fs_info->fs_roots_radix_lock); 1551 return root; 1552 } 1553 1554 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1555 struct btrfs_root *root) 1556 { 1557 int ret; 1558 1559 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1560 if (ret) 1561 return ret; 1562 1563 spin_lock(&fs_info->fs_roots_radix_lock); 1564 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1565 (unsigned long)root->root_key.objectid, 1566 root); 1567 if (ret == 0) 1568 root->in_radix = 1; 1569 spin_unlock(&fs_info->fs_roots_radix_lock); 1570 radix_tree_preload_end(); 1571 1572 return ret; 1573 } 1574 1575 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1576 struct btrfs_key *location, 1577 bool check_ref) 1578 { 1579 struct btrfs_root *root; 1580 int ret; 1581 1582 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1583 return fs_info->tree_root; 1584 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1585 return fs_info->extent_root; 1586 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1587 return fs_info->chunk_root; 1588 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1589 return fs_info->dev_root; 1590 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1591 return fs_info->csum_root; 1592 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1593 return fs_info->quota_root ? fs_info->quota_root : 1594 ERR_PTR(-ENOENT); 1595 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1596 return fs_info->uuid_root ? fs_info->uuid_root : 1597 ERR_PTR(-ENOENT); 1598 again: 1599 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1600 if (root) { 1601 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1602 return ERR_PTR(-ENOENT); 1603 return root; 1604 } 1605 1606 root = btrfs_read_fs_root(fs_info->tree_root, location); 1607 if (IS_ERR(root)) 1608 return root; 1609 1610 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1611 ret = -ENOENT; 1612 goto fail; 1613 } 1614 1615 ret = btrfs_init_fs_root(root); 1616 if (ret) 1617 goto fail; 1618 1619 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1620 if (ret < 0) 1621 goto fail; 1622 if (ret == 0) 1623 root->orphan_item_inserted = 1; 1624 1625 ret = btrfs_insert_fs_root(fs_info, root); 1626 if (ret) { 1627 if (ret == -EEXIST) { 1628 free_fs_root(root); 1629 goto again; 1630 } 1631 goto fail; 1632 } 1633 return root; 1634 fail: 1635 free_fs_root(root); 1636 return ERR_PTR(ret); 1637 } 1638 1639 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1640 { 1641 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1642 int ret = 0; 1643 struct btrfs_device *device; 1644 struct backing_dev_info *bdi; 1645 1646 rcu_read_lock(); 1647 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1648 if (!device->bdev) 1649 continue; 1650 bdi = blk_get_backing_dev_info(device->bdev); 1651 if (bdi && bdi_congested(bdi, bdi_bits)) { 1652 ret = 1; 1653 break; 1654 } 1655 } 1656 rcu_read_unlock(); 1657 return ret; 1658 } 1659 1660 /* 1661 * If this fails, caller must call bdi_destroy() to get rid of the 1662 * bdi again. 1663 */ 1664 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1665 { 1666 int err; 1667 1668 bdi->capabilities = BDI_CAP_MAP_COPY; 1669 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1670 if (err) 1671 return err; 1672 1673 bdi->ra_pages = default_backing_dev_info.ra_pages; 1674 bdi->congested_fn = btrfs_congested_fn; 1675 bdi->congested_data = info; 1676 return 0; 1677 } 1678 1679 /* 1680 * called by the kthread helper functions to finally call the bio end_io 1681 * functions. This is where read checksum verification actually happens 1682 */ 1683 static void end_workqueue_fn(struct btrfs_work *work) 1684 { 1685 struct bio *bio; 1686 struct end_io_wq *end_io_wq; 1687 struct btrfs_fs_info *fs_info; 1688 int error; 1689 1690 end_io_wq = container_of(work, struct end_io_wq, work); 1691 bio = end_io_wq->bio; 1692 fs_info = end_io_wq->info; 1693 1694 error = end_io_wq->error; 1695 bio->bi_private = end_io_wq->private; 1696 bio->bi_end_io = end_io_wq->end_io; 1697 kfree(end_io_wq); 1698 bio_endio(bio, error); 1699 } 1700 1701 static int cleaner_kthread(void *arg) 1702 { 1703 struct btrfs_root *root = arg; 1704 int again; 1705 1706 do { 1707 again = 0; 1708 1709 /* Make the cleaner go to sleep early. */ 1710 if (btrfs_need_cleaner_sleep(root)) 1711 goto sleep; 1712 1713 if (!mutex_trylock(&root->fs_info->cleaner_mutex)) 1714 goto sleep; 1715 1716 /* 1717 * Avoid the problem that we change the status of the fs 1718 * during the above check and trylock. 1719 */ 1720 if (btrfs_need_cleaner_sleep(root)) { 1721 mutex_unlock(&root->fs_info->cleaner_mutex); 1722 goto sleep; 1723 } 1724 1725 btrfs_run_delayed_iputs(root); 1726 again = btrfs_clean_one_deleted_snapshot(root); 1727 mutex_unlock(&root->fs_info->cleaner_mutex); 1728 1729 /* 1730 * The defragger has dealt with the R/O remount and umount, 1731 * needn't do anything special here. 1732 */ 1733 btrfs_run_defrag_inodes(root->fs_info); 1734 sleep: 1735 if (!try_to_freeze() && !again) { 1736 set_current_state(TASK_INTERRUPTIBLE); 1737 if (!kthread_should_stop()) 1738 schedule(); 1739 __set_current_state(TASK_RUNNING); 1740 } 1741 } while (!kthread_should_stop()); 1742 return 0; 1743 } 1744 1745 static int transaction_kthread(void *arg) 1746 { 1747 struct btrfs_root *root = arg; 1748 struct btrfs_trans_handle *trans; 1749 struct btrfs_transaction *cur; 1750 u64 transid; 1751 unsigned long now; 1752 unsigned long delay; 1753 bool cannot_commit; 1754 1755 do { 1756 cannot_commit = false; 1757 delay = HZ * root->fs_info->commit_interval; 1758 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1759 1760 spin_lock(&root->fs_info->trans_lock); 1761 cur = root->fs_info->running_transaction; 1762 if (!cur) { 1763 spin_unlock(&root->fs_info->trans_lock); 1764 goto sleep; 1765 } 1766 1767 now = get_seconds(); 1768 if (cur->state < TRANS_STATE_BLOCKED && 1769 (now < cur->start_time || 1770 now - cur->start_time < root->fs_info->commit_interval)) { 1771 spin_unlock(&root->fs_info->trans_lock); 1772 delay = HZ * 5; 1773 goto sleep; 1774 } 1775 transid = cur->transid; 1776 spin_unlock(&root->fs_info->trans_lock); 1777 1778 /* If the file system is aborted, this will always fail. */ 1779 trans = btrfs_attach_transaction(root); 1780 if (IS_ERR(trans)) { 1781 if (PTR_ERR(trans) != -ENOENT) 1782 cannot_commit = true; 1783 goto sleep; 1784 } 1785 if (transid == trans->transid) { 1786 btrfs_commit_transaction(trans, root); 1787 } else { 1788 btrfs_end_transaction(trans, root); 1789 } 1790 sleep: 1791 wake_up_process(root->fs_info->cleaner_kthread); 1792 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1793 1794 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1795 &root->fs_info->fs_state))) 1796 btrfs_cleanup_transaction(root); 1797 if (!try_to_freeze()) { 1798 set_current_state(TASK_INTERRUPTIBLE); 1799 if (!kthread_should_stop() && 1800 (!btrfs_transaction_blocked(root->fs_info) || 1801 cannot_commit)) 1802 schedule_timeout(delay); 1803 __set_current_state(TASK_RUNNING); 1804 } 1805 } while (!kthread_should_stop()); 1806 return 0; 1807 } 1808 1809 /* 1810 * this will find the highest generation in the array of 1811 * root backups. The index of the highest array is returned, 1812 * or -1 if we can't find anything. 1813 * 1814 * We check to make sure the array is valid by comparing the 1815 * generation of the latest root in the array with the generation 1816 * in the super block. If they don't match we pitch it. 1817 */ 1818 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1819 { 1820 u64 cur; 1821 int newest_index = -1; 1822 struct btrfs_root_backup *root_backup; 1823 int i; 1824 1825 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1826 root_backup = info->super_copy->super_roots + i; 1827 cur = btrfs_backup_tree_root_gen(root_backup); 1828 if (cur == newest_gen) 1829 newest_index = i; 1830 } 1831 1832 /* check to see if we actually wrapped around */ 1833 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1834 root_backup = info->super_copy->super_roots; 1835 cur = btrfs_backup_tree_root_gen(root_backup); 1836 if (cur == newest_gen) 1837 newest_index = 0; 1838 } 1839 return newest_index; 1840 } 1841 1842 1843 /* 1844 * find the oldest backup so we know where to store new entries 1845 * in the backup array. This will set the backup_root_index 1846 * field in the fs_info struct 1847 */ 1848 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1849 u64 newest_gen) 1850 { 1851 int newest_index = -1; 1852 1853 newest_index = find_newest_super_backup(info, newest_gen); 1854 /* if there was garbage in there, just move along */ 1855 if (newest_index == -1) { 1856 info->backup_root_index = 0; 1857 } else { 1858 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1859 } 1860 } 1861 1862 /* 1863 * copy all the root pointers into the super backup array. 1864 * this will bump the backup pointer by one when it is 1865 * done 1866 */ 1867 static void backup_super_roots(struct btrfs_fs_info *info) 1868 { 1869 int next_backup; 1870 struct btrfs_root_backup *root_backup; 1871 int last_backup; 1872 1873 next_backup = info->backup_root_index; 1874 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1875 BTRFS_NUM_BACKUP_ROOTS; 1876 1877 /* 1878 * just overwrite the last backup if we're at the same generation 1879 * this happens only at umount 1880 */ 1881 root_backup = info->super_for_commit->super_roots + last_backup; 1882 if (btrfs_backup_tree_root_gen(root_backup) == 1883 btrfs_header_generation(info->tree_root->node)) 1884 next_backup = last_backup; 1885 1886 root_backup = info->super_for_commit->super_roots + next_backup; 1887 1888 /* 1889 * make sure all of our padding and empty slots get zero filled 1890 * regardless of which ones we use today 1891 */ 1892 memset(root_backup, 0, sizeof(*root_backup)); 1893 1894 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1895 1896 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1897 btrfs_set_backup_tree_root_gen(root_backup, 1898 btrfs_header_generation(info->tree_root->node)); 1899 1900 btrfs_set_backup_tree_root_level(root_backup, 1901 btrfs_header_level(info->tree_root->node)); 1902 1903 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1904 btrfs_set_backup_chunk_root_gen(root_backup, 1905 btrfs_header_generation(info->chunk_root->node)); 1906 btrfs_set_backup_chunk_root_level(root_backup, 1907 btrfs_header_level(info->chunk_root->node)); 1908 1909 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1910 btrfs_set_backup_extent_root_gen(root_backup, 1911 btrfs_header_generation(info->extent_root->node)); 1912 btrfs_set_backup_extent_root_level(root_backup, 1913 btrfs_header_level(info->extent_root->node)); 1914 1915 /* 1916 * we might commit during log recovery, which happens before we set 1917 * the fs_root. Make sure it is valid before we fill it in. 1918 */ 1919 if (info->fs_root && info->fs_root->node) { 1920 btrfs_set_backup_fs_root(root_backup, 1921 info->fs_root->node->start); 1922 btrfs_set_backup_fs_root_gen(root_backup, 1923 btrfs_header_generation(info->fs_root->node)); 1924 btrfs_set_backup_fs_root_level(root_backup, 1925 btrfs_header_level(info->fs_root->node)); 1926 } 1927 1928 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1929 btrfs_set_backup_dev_root_gen(root_backup, 1930 btrfs_header_generation(info->dev_root->node)); 1931 btrfs_set_backup_dev_root_level(root_backup, 1932 btrfs_header_level(info->dev_root->node)); 1933 1934 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1935 btrfs_set_backup_csum_root_gen(root_backup, 1936 btrfs_header_generation(info->csum_root->node)); 1937 btrfs_set_backup_csum_root_level(root_backup, 1938 btrfs_header_level(info->csum_root->node)); 1939 1940 btrfs_set_backup_total_bytes(root_backup, 1941 btrfs_super_total_bytes(info->super_copy)); 1942 btrfs_set_backup_bytes_used(root_backup, 1943 btrfs_super_bytes_used(info->super_copy)); 1944 btrfs_set_backup_num_devices(root_backup, 1945 btrfs_super_num_devices(info->super_copy)); 1946 1947 /* 1948 * if we don't copy this out to the super_copy, it won't get remembered 1949 * for the next commit 1950 */ 1951 memcpy(&info->super_copy->super_roots, 1952 &info->super_for_commit->super_roots, 1953 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1954 } 1955 1956 /* 1957 * this copies info out of the root backup array and back into 1958 * the in-memory super block. It is meant to help iterate through 1959 * the array, so you send it the number of backups you've already 1960 * tried and the last backup index you used. 1961 * 1962 * this returns -1 when it has tried all the backups 1963 */ 1964 static noinline int next_root_backup(struct btrfs_fs_info *info, 1965 struct btrfs_super_block *super, 1966 int *num_backups_tried, int *backup_index) 1967 { 1968 struct btrfs_root_backup *root_backup; 1969 int newest = *backup_index; 1970 1971 if (*num_backups_tried == 0) { 1972 u64 gen = btrfs_super_generation(super); 1973 1974 newest = find_newest_super_backup(info, gen); 1975 if (newest == -1) 1976 return -1; 1977 1978 *backup_index = newest; 1979 *num_backups_tried = 1; 1980 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1981 /* we've tried all the backups, all done */ 1982 return -1; 1983 } else { 1984 /* jump to the next oldest backup */ 1985 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1986 BTRFS_NUM_BACKUP_ROOTS; 1987 *backup_index = newest; 1988 *num_backups_tried += 1; 1989 } 1990 root_backup = super->super_roots + newest; 1991 1992 btrfs_set_super_generation(super, 1993 btrfs_backup_tree_root_gen(root_backup)); 1994 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1995 btrfs_set_super_root_level(super, 1996 btrfs_backup_tree_root_level(root_backup)); 1997 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1998 1999 /* 2000 * fixme: the total bytes and num_devices need to match or we should 2001 * need a fsck 2002 */ 2003 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2004 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2005 return 0; 2006 } 2007 2008 /* helper to cleanup workers */ 2009 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2010 { 2011 btrfs_stop_workers(&fs_info->generic_worker); 2012 btrfs_stop_workers(&fs_info->fixup_workers); 2013 btrfs_stop_workers(&fs_info->delalloc_workers); 2014 btrfs_stop_workers(&fs_info->workers); 2015 btrfs_stop_workers(&fs_info->endio_workers); 2016 btrfs_stop_workers(&fs_info->endio_meta_workers); 2017 btrfs_stop_workers(&fs_info->endio_raid56_workers); 2018 btrfs_stop_workers(&fs_info->rmw_workers); 2019 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2020 btrfs_stop_workers(&fs_info->endio_write_workers); 2021 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2022 btrfs_stop_workers(&fs_info->submit_workers); 2023 btrfs_stop_workers(&fs_info->delayed_workers); 2024 btrfs_stop_workers(&fs_info->caching_workers); 2025 btrfs_stop_workers(&fs_info->readahead_workers); 2026 btrfs_stop_workers(&fs_info->flush_workers); 2027 btrfs_stop_workers(&fs_info->qgroup_rescan_workers); 2028 } 2029 2030 static void free_root_extent_buffers(struct btrfs_root *root) 2031 { 2032 if (root) { 2033 free_extent_buffer(root->node); 2034 free_extent_buffer(root->commit_root); 2035 root->node = NULL; 2036 root->commit_root = NULL; 2037 } 2038 } 2039 2040 /* helper to cleanup tree roots */ 2041 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2042 { 2043 free_root_extent_buffers(info->tree_root); 2044 2045 free_root_extent_buffers(info->dev_root); 2046 free_root_extent_buffers(info->extent_root); 2047 free_root_extent_buffers(info->csum_root); 2048 free_root_extent_buffers(info->quota_root); 2049 free_root_extent_buffers(info->uuid_root); 2050 if (chunk_root) 2051 free_root_extent_buffers(info->chunk_root); 2052 } 2053 2054 static void del_fs_roots(struct btrfs_fs_info *fs_info) 2055 { 2056 int ret; 2057 struct btrfs_root *gang[8]; 2058 int i; 2059 2060 while (!list_empty(&fs_info->dead_roots)) { 2061 gang[0] = list_entry(fs_info->dead_roots.next, 2062 struct btrfs_root, root_list); 2063 list_del(&gang[0]->root_list); 2064 2065 if (gang[0]->in_radix) { 2066 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2067 } else { 2068 free_extent_buffer(gang[0]->node); 2069 free_extent_buffer(gang[0]->commit_root); 2070 btrfs_put_fs_root(gang[0]); 2071 } 2072 } 2073 2074 while (1) { 2075 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2076 (void **)gang, 0, 2077 ARRAY_SIZE(gang)); 2078 if (!ret) 2079 break; 2080 for (i = 0; i < ret; i++) 2081 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2082 } 2083 } 2084 2085 int open_ctree(struct super_block *sb, 2086 struct btrfs_fs_devices *fs_devices, 2087 char *options) 2088 { 2089 u32 sectorsize; 2090 u32 nodesize; 2091 u32 leafsize; 2092 u32 blocksize; 2093 u32 stripesize; 2094 u64 generation; 2095 u64 features; 2096 struct btrfs_key location; 2097 struct buffer_head *bh; 2098 struct btrfs_super_block *disk_super; 2099 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2100 struct btrfs_root *tree_root; 2101 struct btrfs_root *extent_root; 2102 struct btrfs_root *csum_root; 2103 struct btrfs_root *chunk_root; 2104 struct btrfs_root *dev_root; 2105 struct btrfs_root *quota_root; 2106 struct btrfs_root *uuid_root; 2107 struct btrfs_root *log_tree_root; 2108 int ret; 2109 int err = -EINVAL; 2110 int num_backups_tried = 0; 2111 int backup_index = 0; 2112 bool create_uuid_tree; 2113 bool check_uuid_tree; 2114 2115 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 2116 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 2117 if (!tree_root || !chunk_root) { 2118 err = -ENOMEM; 2119 goto fail; 2120 } 2121 2122 ret = init_srcu_struct(&fs_info->subvol_srcu); 2123 if (ret) { 2124 err = ret; 2125 goto fail; 2126 } 2127 2128 ret = setup_bdi(fs_info, &fs_info->bdi); 2129 if (ret) { 2130 err = ret; 2131 goto fail_srcu; 2132 } 2133 2134 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0); 2135 if (ret) { 2136 err = ret; 2137 goto fail_bdi; 2138 } 2139 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE * 2140 (1 + ilog2(nr_cpu_ids)); 2141 2142 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0); 2143 if (ret) { 2144 err = ret; 2145 goto fail_dirty_metadata_bytes; 2146 } 2147 2148 fs_info->btree_inode = new_inode(sb); 2149 if (!fs_info->btree_inode) { 2150 err = -ENOMEM; 2151 goto fail_delalloc_bytes; 2152 } 2153 2154 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2155 2156 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2157 INIT_LIST_HEAD(&fs_info->trans_list); 2158 INIT_LIST_HEAD(&fs_info->dead_roots); 2159 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2160 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2161 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2162 spin_lock_init(&fs_info->delalloc_root_lock); 2163 spin_lock_init(&fs_info->trans_lock); 2164 spin_lock_init(&fs_info->fs_roots_radix_lock); 2165 spin_lock_init(&fs_info->delayed_iput_lock); 2166 spin_lock_init(&fs_info->defrag_inodes_lock); 2167 spin_lock_init(&fs_info->free_chunk_lock); 2168 spin_lock_init(&fs_info->tree_mod_seq_lock); 2169 spin_lock_init(&fs_info->super_lock); 2170 rwlock_init(&fs_info->tree_mod_log_lock); 2171 mutex_init(&fs_info->reloc_mutex); 2172 seqlock_init(&fs_info->profiles_lock); 2173 2174 init_completion(&fs_info->kobj_unregister); 2175 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2176 INIT_LIST_HEAD(&fs_info->space_info); 2177 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2178 btrfs_mapping_init(&fs_info->mapping_tree); 2179 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2180 BTRFS_BLOCK_RSV_GLOBAL); 2181 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2182 BTRFS_BLOCK_RSV_DELALLOC); 2183 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2184 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2185 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2186 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2187 BTRFS_BLOCK_RSV_DELOPS); 2188 atomic_set(&fs_info->nr_async_submits, 0); 2189 atomic_set(&fs_info->async_delalloc_pages, 0); 2190 atomic_set(&fs_info->async_submit_draining, 0); 2191 atomic_set(&fs_info->nr_async_bios, 0); 2192 atomic_set(&fs_info->defrag_running, 0); 2193 atomic64_set(&fs_info->tree_mod_seq, 0); 2194 fs_info->sb = sb; 2195 fs_info->max_inline = 8192 * 1024; 2196 fs_info->metadata_ratio = 0; 2197 fs_info->defrag_inodes = RB_ROOT; 2198 fs_info->free_chunk_space = 0; 2199 fs_info->tree_mod_log = RB_ROOT; 2200 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2201 2202 /* readahead state */ 2203 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 2204 spin_lock_init(&fs_info->reada_lock); 2205 2206 fs_info->thread_pool_size = min_t(unsigned long, 2207 num_online_cpus() + 2, 8); 2208 2209 INIT_LIST_HEAD(&fs_info->ordered_roots); 2210 spin_lock_init(&fs_info->ordered_root_lock); 2211 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2212 GFP_NOFS); 2213 if (!fs_info->delayed_root) { 2214 err = -ENOMEM; 2215 goto fail_iput; 2216 } 2217 btrfs_init_delayed_root(fs_info->delayed_root); 2218 2219 mutex_init(&fs_info->scrub_lock); 2220 atomic_set(&fs_info->scrubs_running, 0); 2221 atomic_set(&fs_info->scrub_pause_req, 0); 2222 atomic_set(&fs_info->scrubs_paused, 0); 2223 atomic_set(&fs_info->scrub_cancel_req, 0); 2224 init_waitqueue_head(&fs_info->scrub_pause_wait); 2225 fs_info->scrub_workers_refcnt = 0; 2226 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2227 fs_info->check_integrity_print_mask = 0; 2228 #endif 2229 2230 spin_lock_init(&fs_info->balance_lock); 2231 mutex_init(&fs_info->balance_mutex); 2232 atomic_set(&fs_info->balance_running, 0); 2233 atomic_set(&fs_info->balance_pause_req, 0); 2234 atomic_set(&fs_info->balance_cancel_req, 0); 2235 fs_info->balance_ctl = NULL; 2236 init_waitqueue_head(&fs_info->balance_wait_q); 2237 2238 sb->s_blocksize = 4096; 2239 sb->s_blocksize_bits = blksize_bits(4096); 2240 sb->s_bdi = &fs_info->bdi; 2241 2242 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2243 set_nlink(fs_info->btree_inode, 1); 2244 /* 2245 * we set the i_size on the btree inode to the max possible int. 2246 * the real end of the address space is determined by all of 2247 * the devices in the system 2248 */ 2249 fs_info->btree_inode->i_size = OFFSET_MAX; 2250 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2251 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 2252 2253 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2254 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2255 fs_info->btree_inode->i_mapping); 2256 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2257 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2258 2259 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2260 2261 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2262 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2263 sizeof(struct btrfs_key)); 2264 set_bit(BTRFS_INODE_DUMMY, 2265 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2266 btrfs_insert_inode_hash(fs_info->btree_inode); 2267 2268 spin_lock_init(&fs_info->block_group_cache_lock); 2269 fs_info->block_group_cache_tree = RB_ROOT; 2270 fs_info->first_logical_byte = (u64)-1; 2271 2272 extent_io_tree_init(&fs_info->freed_extents[0], 2273 fs_info->btree_inode->i_mapping); 2274 extent_io_tree_init(&fs_info->freed_extents[1], 2275 fs_info->btree_inode->i_mapping); 2276 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2277 fs_info->do_barriers = 1; 2278 2279 2280 mutex_init(&fs_info->ordered_operations_mutex); 2281 mutex_init(&fs_info->ordered_extent_flush_mutex); 2282 mutex_init(&fs_info->tree_log_mutex); 2283 mutex_init(&fs_info->chunk_mutex); 2284 mutex_init(&fs_info->transaction_kthread_mutex); 2285 mutex_init(&fs_info->cleaner_mutex); 2286 mutex_init(&fs_info->volume_mutex); 2287 init_rwsem(&fs_info->extent_commit_sem); 2288 init_rwsem(&fs_info->cleanup_work_sem); 2289 init_rwsem(&fs_info->subvol_sem); 2290 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2291 fs_info->dev_replace.lock_owner = 0; 2292 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2293 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2294 mutex_init(&fs_info->dev_replace.lock_management_lock); 2295 mutex_init(&fs_info->dev_replace.lock); 2296 2297 spin_lock_init(&fs_info->qgroup_lock); 2298 mutex_init(&fs_info->qgroup_ioctl_lock); 2299 fs_info->qgroup_tree = RB_ROOT; 2300 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2301 fs_info->qgroup_seq = 1; 2302 fs_info->quota_enabled = 0; 2303 fs_info->pending_quota_state = 0; 2304 fs_info->qgroup_ulist = NULL; 2305 mutex_init(&fs_info->qgroup_rescan_lock); 2306 2307 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2308 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2309 2310 init_waitqueue_head(&fs_info->transaction_throttle); 2311 init_waitqueue_head(&fs_info->transaction_wait); 2312 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2313 init_waitqueue_head(&fs_info->async_submit_wait); 2314 2315 ret = btrfs_alloc_stripe_hash_table(fs_info); 2316 if (ret) { 2317 err = ret; 2318 goto fail_alloc; 2319 } 2320 2321 __setup_root(4096, 4096, 4096, 4096, tree_root, 2322 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2323 2324 invalidate_bdev(fs_devices->latest_bdev); 2325 2326 /* 2327 * Read super block and check the signature bytes only 2328 */ 2329 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2330 if (!bh) { 2331 err = -EINVAL; 2332 goto fail_alloc; 2333 } 2334 2335 /* 2336 * We want to check superblock checksum, the type is stored inside. 2337 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2338 */ 2339 if (btrfs_check_super_csum(bh->b_data)) { 2340 printk(KERN_ERR "btrfs: superblock checksum mismatch\n"); 2341 err = -EINVAL; 2342 goto fail_alloc; 2343 } 2344 2345 /* 2346 * super_copy is zeroed at allocation time and we never touch the 2347 * following bytes up to INFO_SIZE, the checksum is calculated from 2348 * the whole block of INFO_SIZE 2349 */ 2350 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2351 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2352 sizeof(*fs_info->super_for_commit)); 2353 brelse(bh); 2354 2355 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2356 2357 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2358 if (ret) { 2359 printk(KERN_ERR "btrfs: superblock contains fatal errors\n"); 2360 err = -EINVAL; 2361 goto fail_alloc; 2362 } 2363 2364 disk_super = fs_info->super_copy; 2365 if (!btrfs_super_root(disk_super)) 2366 goto fail_alloc; 2367 2368 /* check FS state, whether FS is broken. */ 2369 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2370 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2371 2372 /* 2373 * run through our array of backup supers and setup 2374 * our ring pointer to the oldest one 2375 */ 2376 generation = btrfs_super_generation(disk_super); 2377 find_oldest_super_backup(fs_info, generation); 2378 2379 /* 2380 * In the long term, we'll store the compression type in the super 2381 * block, and it'll be used for per file compression control. 2382 */ 2383 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2384 2385 ret = btrfs_parse_options(tree_root, options); 2386 if (ret) { 2387 err = ret; 2388 goto fail_alloc; 2389 } 2390 2391 features = btrfs_super_incompat_flags(disk_super) & 2392 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2393 if (features) { 2394 printk(KERN_ERR "BTRFS: couldn't mount because of " 2395 "unsupported optional features (%Lx).\n", 2396 features); 2397 err = -EINVAL; 2398 goto fail_alloc; 2399 } 2400 2401 if (btrfs_super_leafsize(disk_super) != 2402 btrfs_super_nodesize(disk_super)) { 2403 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2404 "blocksizes don't match. node %d leaf %d\n", 2405 btrfs_super_nodesize(disk_super), 2406 btrfs_super_leafsize(disk_super)); 2407 err = -EINVAL; 2408 goto fail_alloc; 2409 } 2410 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2411 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2412 "blocksize (%d) was too large\n", 2413 btrfs_super_leafsize(disk_super)); 2414 err = -EINVAL; 2415 goto fail_alloc; 2416 } 2417 2418 features = btrfs_super_incompat_flags(disk_super); 2419 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2420 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2421 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2422 2423 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2424 printk(KERN_ERR "btrfs: has skinny extents\n"); 2425 2426 /* 2427 * flag our filesystem as having big metadata blocks if 2428 * they are bigger than the page size 2429 */ 2430 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) { 2431 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2432 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n"); 2433 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2434 } 2435 2436 nodesize = btrfs_super_nodesize(disk_super); 2437 leafsize = btrfs_super_leafsize(disk_super); 2438 sectorsize = btrfs_super_sectorsize(disk_super); 2439 stripesize = btrfs_super_stripesize(disk_super); 2440 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids)); 2441 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2442 2443 /* 2444 * mixed block groups end up with duplicate but slightly offset 2445 * extent buffers for the same range. It leads to corruptions 2446 */ 2447 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2448 (sectorsize != leafsize)) { 2449 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes " 2450 "are not allowed for mixed block groups on %s\n", 2451 sb->s_id); 2452 goto fail_alloc; 2453 } 2454 2455 /* 2456 * Needn't use the lock because there is no other task which will 2457 * update the flag. 2458 */ 2459 btrfs_set_super_incompat_flags(disk_super, features); 2460 2461 features = btrfs_super_compat_ro_flags(disk_super) & 2462 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2463 if (!(sb->s_flags & MS_RDONLY) && features) { 2464 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2465 "unsupported option features (%Lx).\n", 2466 features); 2467 err = -EINVAL; 2468 goto fail_alloc; 2469 } 2470 2471 btrfs_init_workers(&fs_info->generic_worker, 2472 "genwork", 1, NULL); 2473 2474 btrfs_init_workers(&fs_info->workers, "worker", 2475 fs_info->thread_pool_size, 2476 &fs_info->generic_worker); 2477 2478 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 2479 fs_info->thread_pool_size, NULL); 2480 2481 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc", 2482 fs_info->thread_pool_size, NULL); 2483 2484 btrfs_init_workers(&fs_info->submit_workers, "submit", 2485 min_t(u64, fs_devices->num_devices, 2486 fs_info->thread_pool_size), NULL); 2487 2488 btrfs_init_workers(&fs_info->caching_workers, "cache", 2489 fs_info->thread_pool_size, NULL); 2490 2491 /* a higher idle thresh on the submit workers makes it much more 2492 * likely that bios will be send down in a sane order to the 2493 * devices 2494 */ 2495 fs_info->submit_workers.idle_thresh = 64; 2496 2497 fs_info->workers.idle_thresh = 16; 2498 fs_info->workers.ordered = 1; 2499 2500 fs_info->delalloc_workers.idle_thresh = 2; 2501 fs_info->delalloc_workers.ordered = 1; 2502 2503 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 2504 &fs_info->generic_worker); 2505 btrfs_init_workers(&fs_info->endio_workers, "endio", 2506 fs_info->thread_pool_size, 2507 &fs_info->generic_worker); 2508 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 2509 fs_info->thread_pool_size, 2510 &fs_info->generic_worker); 2511 btrfs_init_workers(&fs_info->endio_meta_write_workers, 2512 "endio-meta-write", fs_info->thread_pool_size, 2513 &fs_info->generic_worker); 2514 btrfs_init_workers(&fs_info->endio_raid56_workers, 2515 "endio-raid56", fs_info->thread_pool_size, 2516 &fs_info->generic_worker); 2517 btrfs_init_workers(&fs_info->rmw_workers, 2518 "rmw", fs_info->thread_pool_size, 2519 &fs_info->generic_worker); 2520 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 2521 fs_info->thread_pool_size, 2522 &fs_info->generic_worker); 2523 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", 2524 1, &fs_info->generic_worker); 2525 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta", 2526 fs_info->thread_pool_size, 2527 &fs_info->generic_worker); 2528 btrfs_init_workers(&fs_info->readahead_workers, "readahead", 2529 fs_info->thread_pool_size, 2530 &fs_info->generic_worker); 2531 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1, 2532 &fs_info->generic_worker); 2533 2534 /* 2535 * endios are largely parallel and should have a very 2536 * low idle thresh 2537 */ 2538 fs_info->endio_workers.idle_thresh = 4; 2539 fs_info->endio_meta_workers.idle_thresh = 4; 2540 fs_info->endio_raid56_workers.idle_thresh = 4; 2541 fs_info->rmw_workers.idle_thresh = 2; 2542 2543 fs_info->endio_write_workers.idle_thresh = 2; 2544 fs_info->endio_meta_write_workers.idle_thresh = 2; 2545 fs_info->readahead_workers.idle_thresh = 2; 2546 2547 /* 2548 * btrfs_start_workers can really only fail because of ENOMEM so just 2549 * return -ENOMEM if any of these fail. 2550 */ 2551 ret = btrfs_start_workers(&fs_info->workers); 2552 ret |= btrfs_start_workers(&fs_info->generic_worker); 2553 ret |= btrfs_start_workers(&fs_info->submit_workers); 2554 ret |= btrfs_start_workers(&fs_info->delalloc_workers); 2555 ret |= btrfs_start_workers(&fs_info->fixup_workers); 2556 ret |= btrfs_start_workers(&fs_info->endio_workers); 2557 ret |= btrfs_start_workers(&fs_info->endio_meta_workers); 2558 ret |= btrfs_start_workers(&fs_info->rmw_workers); 2559 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers); 2560 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers); 2561 ret |= btrfs_start_workers(&fs_info->endio_write_workers); 2562 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker); 2563 ret |= btrfs_start_workers(&fs_info->delayed_workers); 2564 ret |= btrfs_start_workers(&fs_info->caching_workers); 2565 ret |= btrfs_start_workers(&fs_info->readahead_workers); 2566 ret |= btrfs_start_workers(&fs_info->flush_workers); 2567 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers); 2568 if (ret) { 2569 err = -ENOMEM; 2570 goto fail_sb_buffer; 2571 } 2572 2573 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2574 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2575 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2576 2577 tree_root->nodesize = nodesize; 2578 tree_root->leafsize = leafsize; 2579 tree_root->sectorsize = sectorsize; 2580 tree_root->stripesize = stripesize; 2581 2582 sb->s_blocksize = sectorsize; 2583 sb->s_blocksize_bits = blksize_bits(sectorsize); 2584 2585 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 2586 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 2587 goto fail_sb_buffer; 2588 } 2589 2590 if (sectorsize != PAGE_SIZE) { 2591 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) " 2592 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2593 goto fail_sb_buffer; 2594 } 2595 2596 mutex_lock(&fs_info->chunk_mutex); 2597 ret = btrfs_read_sys_array(tree_root); 2598 mutex_unlock(&fs_info->chunk_mutex); 2599 if (ret) { 2600 printk(KERN_WARNING "btrfs: failed to read the system " 2601 "array on %s\n", sb->s_id); 2602 goto fail_sb_buffer; 2603 } 2604 2605 blocksize = btrfs_level_size(tree_root, 2606 btrfs_super_chunk_root_level(disk_super)); 2607 generation = btrfs_super_chunk_root_generation(disk_super); 2608 2609 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2610 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2611 2612 chunk_root->node = read_tree_block(chunk_root, 2613 btrfs_super_chunk_root(disk_super), 2614 blocksize, generation); 2615 if (!chunk_root->node || 2616 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2617 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 2618 sb->s_id); 2619 goto fail_tree_roots; 2620 } 2621 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2622 chunk_root->commit_root = btrfs_root_node(chunk_root); 2623 2624 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2625 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2626 2627 ret = btrfs_read_chunk_tree(chunk_root); 2628 if (ret) { 2629 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 2630 sb->s_id); 2631 goto fail_tree_roots; 2632 } 2633 2634 /* 2635 * keep the device that is marked to be the target device for the 2636 * dev_replace procedure 2637 */ 2638 btrfs_close_extra_devices(fs_info, fs_devices, 0); 2639 2640 if (!fs_devices->latest_bdev) { 2641 printk(KERN_CRIT "btrfs: failed to read devices on %s\n", 2642 sb->s_id); 2643 goto fail_tree_roots; 2644 } 2645 2646 retry_root_backup: 2647 blocksize = btrfs_level_size(tree_root, 2648 btrfs_super_root_level(disk_super)); 2649 generation = btrfs_super_generation(disk_super); 2650 2651 tree_root->node = read_tree_block(tree_root, 2652 btrfs_super_root(disk_super), 2653 blocksize, generation); 2654 if (!tree_root->node || 2655 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2656 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 2657 sb->s_id); 2658 2659 goto recovery_tree_root; 2660 } 2661 2662 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2663 tree_root->commit_root = btrfs_root_node(tree_root); 2664 btrfs_set_root_refs(&tree_root->root_item, 1); 2665 2666 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2667 location.type = BTRFS_ROOT_ITEM_KEY; 2668 location.offset = 0; 2669 2670 extent_root = btrfs_read_tree_root(tree_root, &location); 2671 if (IS_ERR(extent_root)) { 2672 ret = PTR_ERR(extent_root); 2673 goto recovery_tree_root; 2674 } 2675 extent_root->track_dirty = 1; 2676 fs_info->extent_root = extent_root; 2677 2678 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2679 dev_root = btrfs_read_tree_root(tree_root, &location); 2680 if (IS_ERR(dev_root)) { 2681 ret = PTR_ERR(dev_root); 2682 goto recovery_tree_root; 2683 } 2684 dev_root->track_dirty = 1; 2685 fs_info->dev_root = dev_root; 2686 btrfs_init_devices_late(fs_info); 2687 2688 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2689 csum_root = btrfs_read_tree_root(tree_root, &location); 2690 if (IS_ERR(csum_root)) { 2691 ret = PTR_ERR(csum_root); 2692 goto recovery_tree_root; 2693 } 2694 csum_root->track_dirty = 1; 2695 fs_info->csum_root = csum_root; 2696 2697 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2698 quota_root = btrfs_read_tree_root(tree_root, &location); 2699 if (!IS_ERR(quota_root)) { 2700 quota_root->track_dirty = 1; 2701 fs_info->quota_enabled = 1; 2702 fs_info->pending_quota_state = 1; 2703 fs_info->quota_root = quota_root; 2704 } 2705 2706 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2707 uuid_root = btrfs_read_tree_root(tree_root, &location); 2708 if (IS_ERR(uuid_root)) { 2709 ret = PTR_ERR(uuid_root); 2710 if (ret != -ENOENT) 2711 goto recovery_tree_root; 2712 create_uuid_tree = true; 2713 check_uuid_tree = false; 2714 } else { 2715 uuid_root->track_dirty = 1; 2716 fs_info->uuid_root = uuid_root; 2717 create_uuid_tree = false; 2718 check_uuid_tree = 2719 generation != btrfs_super_uuid_tree_generation(disk_super); 2720 } 2721 2722 fs_info->generation = generation; 2723 fs_info->last_trans_committed = generation; 2724 2725 ret = btrfs_recover_balance(fs_info); 2726 if (ret) { 2727 printk(KERN_WARNING "btrfs: failed to recover balance\n"); 2728 goto fail_block_groups; 2729 } 2730 2731 ret = btrfs_init_dev_stats(fs_info); 2732 if (ret) { 2733 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n", 2734 ret); 2735 goto fail_block_groups; 2736 } 2737 2738 ret = btrfs_init_dev_replace(fs_info); 2739 if (ret) { 2740 pr_err("btrfs: failed to init dev_replace: %d\n", ret); 2741 goto fail_block_groups; 2742 } 2743 2744 btrfs_close_extra_devices(fs_info, fs_devices, 1); 2745 2746 ret = btrfs_init_space_info(fs_info); 2747 if (ret) { 2748 printk(KERN_ERR "Failed to initial space info: %d\n", ret); 2749 goto fail_block_groups; 2750 } 2751 2752 ret = btrfs_read_block_groups(extent_root); 2753 if (ret) { 2754 printk(KERN_ERR "Failed to read block groups: %d\n", ret); 2755 goto fail_block_groups; 2756 } 2757 fs_info->num_tolerated_disk_barrier_failures = 2758 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2759 if (fs_info->fs_devices->missing_devices > 2760 fs_info->num_tolerated_disk_barrier_failures && 2761 !(sb->s_flags & MS_RDONLY)) { 2762 printk(KERN_WARNING 2763 "Btrfs: too many missing devices, writeable mount is not allowed\n"); 2764 goto fail_block_groups; 2765 } 2766 2767 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2768 "btrfs-cleaner"); 2769 if (IS_ERR(fs_info->cleaner_kthread)) 2770 goto fail_block_groups; 2771 2772 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2773 tree_root, 2774 "btrfs-transaction"); 2775 if (IS_ERR(fs_info->transaction_kthread)) 2776 goto fail_cleaner; 2777 2778 if (!btrfs_test_opt(tree_root, SSD) && 2779 !btrfs_test_opt(tree_root, NOSSD) && 2780 !fs_info->fs_devices->rotating) { 2781 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 2782 "mode\n"); 2783 btrfs_set_opt(fs_info->mount_opt, SSD); 2784 } 2785 2786 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2787 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2788 ret = btrfsic_mount(tree_root, fs_devices, 2789 btrfs_test_opt(tree_root, 2790 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2791 1 : 0, 2792 fs_info->check_integrity_print_mask); 2793 if (ret) 2794 printk(KERN_WARNING "btrfs: failed to initialize" 2795 " integrity check module %s\n", sb->s_id); 2796 } 2797 #endif 2798 ret = btrfs_read_qgroup_config(fs_info); 2799 if (ret) 2800 goto fail_trans_kthread; 2801 2802 /* do not make disk changes in broken FS */ 2803 if (btrfs_super_log_root(disk_super) != 0) { 2804 u64 bytenr = btrfs_super_log_root(disk_super); 2805 2806 if (fs_devices->rw_devices == 0) { 2807 printk(KERN_WARNING "Btrfs log replay required " 2808 "on RO media\n"); 2809 err = -EIO; 2810 goto fail_qgroup; 2811 } 2812 blocksize = 2813 btrfs_level_size(tree_root, 2814 btrfs_super_log_root_level(disk_super)); 2815 2816 log_tree_root = btrfs_alloc_root(fs_info); 2817 if (!log_tree_root) { 2818 err = -ENOMEM; 2819 goto fail_qgroup; 2820 } 2821 2822 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2823 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2824 2825 log_tree_root->node = read_tree_block(tree_root, bytenr, 2826 blocksize, 2827 generation + 1); 2828 if (!log_tree_root->node || 2829 !extent_buffer_uptodate(log_tree_root->node)) { 2830 printk(KERN_ERR "btrfs: failed to read log tree\n"); 2831 free_extent_buffer(log_tree_root->node); 2832 kfree(log_tree_root); 2833 goto fail_trans_kthread; 2834 } 2835 /* returns with log_tree_root freed on success */ 2836 ret = btrfs_recover_log_trees(log_tree_root); 2837 if (ret) { 2838 btrfs_error(tree_root->fs_info, ret, 2839 "Failed to recover log tree"); 2840 free_extent_buffer(log_tree_root->node); 2841 kfree(log_tree_root); 2842 goto fail_trans_kthread; 2843 } 2844 2845 if (sb->s_flags & MS_RDONLY) { 2846 ret = btrfs_commit_super(tree_root); 2847 if (ret) 2848 goto fail_trans_kthread; 2849 } 2850 } 2851 2852 ret = btrfs_find_orphan_roots(tree_root); 2853 if (ret) 2854 goto fail_trans_kthread; 2855 2856 if (!(sb->s_flags & MS_RDONLY)) { 2857 ret = btrfs_cleanup_fs_roots(fs_info); 2858 if (ret) 2859 goto fail_trans_kthread; 2860 2861 ret = btrfs_recover_relocation(tree_root); 2862 if (ret < 0) { 2863 printk(KERN_WARNING 2864 "btrfs: failed to recover relocation\n"); 2865 err = -EINVAL; 2866 goto fail_qgroup; 2867 } 2868 } 2869 2870 location.objectid = BTRFS_FS_TREE_OBJECTID; 2871 location.type = BTRFS_ROOT_ITEM_KEY; 2872 location.offset = 0; 2873 2874 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2875 if (IS_ERR(fs_info->fs_root)) { 2876 err = PTR_ERR(fs_info->fs_root); 2877 goto fail_qgroup; 2878 } 2879 2880 if (sb->s_flags & MS_RDONLY) 2881 return 0; 2882 2883 down_read(&fs_info->cleanup_work_sem); 2884 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2885 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2886 up_read(&fs_info->cleanup_work_sem); 2887 close_ctree(tree_root); 2888 return ret; 2889 } 2890 up_read(&fs_info->cleanup_work_sem); 2891 2892 ret = btrfs_resume_balance_async(fs_info); 2893 if (ret) { 2894 printk(KERN_WARNING "btrfs: failed to resume balance\n"); 2895 close_ctree(tree_root); 2896 return ret; 2897 } 2898 2899 ret = btrfs_resume_dev_replace_async(fs_info); 2900 if (ret) { 2901 pr_warn("btrfs: failed to resume dev_replace\n"); 2902 close_ctree(tree_root); 2903 return ret; 2904 } 2905 2906 btrfs_qgroup_rescan_resume(fs_info); 2907 2908 if (create_uuid_tree) { 2909 pr_info("btrfs: creating UUID tree\n"); 2910 ret = btrfs_create_uuid_tree(fs_info); 2911 if (ret) { 2912 pr_warn("btrfs: failed to create the UUID tree %d\n", 2913 ret); 2914 close_ctree(tree_root); 2915 return ret; 2916 } 2917 } else if (check_uuid_tree || 2918 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) { 2919 pr_info("btrfs: checking UUID tree\n"); 2920 ret = btrfs_check_uuid_tree(fs_info); 2921 if (ret) { 2922 pr_warn("btrfs: failed to check the UUID tree %d\n", 2923 ret); 2924 close_ctree(tree_root); 2925 return ret; 2926 } 2927 } else { 2928 fs_info->update_uuid_tree_gen = 1; 2929 } 2930 2931 return 0; 2932 2933 fail_qgroup: 2934 btrfs_free_qgroup_config(fs_info); 2935 fail_trans_kthread: 2936 kthread_stop(fs_info->transaction_kthread); 2937 btrfs_cleanup_transaction(fs_info->tree_root); 2938 del_fs_roots(fs_info); 2939 fail_cleaner: 2940 kthread_stop(fs_info->cleaner_kthread); 2941 2942 /* 2943 * make sure we're done with the btree inode before we stop our 2944 * kthreads 2945 */ 2946 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2947 2948 fail_block_groups: 2949 btrfs_put_block_group_cache(fs_info); 2950 btrfs_free_block_groups(fs_info); 2951 2952 fail_tree_roots: 2953 free_root_pointers(fs_info, 1); 2954 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2955 2956 fail_sb_buffer: 2957 btrfs_stop_all_workers(fs_info); 2958 fail_alloc: 2959 fail_iput: 2960 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2961 2962 iput(fs_info->btree_inode); 2963 fail_delalloc_bytes: 2964 percpu_counter_destroy(&fs_info->delalloc_bytes); 2965 fail_dirty_metadata_bytes: 2966 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 2967 fail_bdi: 2968 bdi_destroy(&fs_info->bdi); 2969 fail_srcu: 2970 cleanup_srcu_struct(&fs_info->subvol_srcu); 2971 fail: 2972 btrfs_free_stripe_hash_table(fs_info); 2973 btrfs_close_devices(fs_info->fs_devices); 2974 return err; 2975 2976 recovery_tree_root: 2977 if (!btrfs_test_opt(tree_root, RECOVERY)) 2978 goto fail_tree_roots; 2979 2980 free_root_pointers(fs_info, 0); 2981 2982 /* don't use the log in recovery mode, it won't be valid */ 2983 btrfs_set_super_log_root(disk_super, 0); 2984 2985 /* we can't trust the free space cache either */ 2986 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2987 2988 ret = next_root_backup(fs_info, fs_info->super_copy, 2989 &num_backups_tried, &backup_index); 2990 if (ret == -1) 2991 goto fail_block_groups; 2992 goto retry_root_backup; 2993 } 2994 2995 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 2996 { 2997 if (uptodate) { 2998 set_buffer_uptodate(bh); 2999 } else { 3000 struct btrfs_device *device = (struct btrfs_device *) 3001 bh->b_private; 3002 3003 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to " 3004 "I/O error on %s\n", 3005 rcu_str_deref(device->name)); 3006 /* note, we dont' set_buffer_write_io_error because we have 3007 * our own ways of dealing with the IO errors 3008 */ 3009 clear_buffer_uptodate(bh); 3010 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3011 } 3012 unlock_buffer(bh); 3013 put_bh(bh); 3014 } 3015 3016 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3017 { 3018 struct buffer_head *bh; 3019 struct buffer_head *latest = NULL; 3020 struct btrfs_super_block *super; 3021 int i; 3022 u64 transid = 0; 3023 u64 bytenr; 3024 3025 /* we would like to check all the supers, but that would make 3026 * a btrfs mount succeed after a mkfs from a different FS. 3027 * So, we need to add a special mount option to scan for 3028 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3029 */ 3030 for (i = 0; i < 1; i++) { 3031 bytenr = btrfs_sb_offset(i); 3032 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3033 i_size_read(bdev->bd_inode)) 3034 break; 3035 bh = __bread(bdev, bytenr / 4096, 3036 BTRFS_SUPER_INFO_SIZE); 3037 if (!bh) 3038 continue; 3039 3040 super = (struct btrfs_super_block *)bh->b_data; 3041 if (btrfs_super_bytenr(super) != bytenr || 3042 btrfs_super_magic(super) != BTRFS_MAGIC) { 3043 brelse(bh); 3044 continue; 3045 } 3046 3047 if (!latest || btrfs_super_generation(super) > transid) { 3048 brelse(latest); 3049 latest = bh; 3050 transid = btrfs_super_generation(super); 3051 } else { 3052 brelse(bh); 3053 } 3054 } 3055 return latest; 3056 } 3057 3058 /* 3059 * this should be called twice, once with wait == 0 and 3060 * once with wait == 1. When wait == 0 is done, all the buffer heads 3061 * we write are pinned. 3062 * 3063 * They are released when wait == 1 is done. 3064 * max_mirrors must be the same for both runs, and it indicates how 3065 * many supers on this one device should be written. 3066 * 3067 * max_mirrors == 0 means to write them all. 3068 */ 3069 static int write_dev_supers(struct btrfs_device *device, 3070 struct btrfs_super_block *sb, 3071 int do_barriers, int wait, int max_mirrors) 3072 { 3073 struct buffer_head *bh; 3074 int i; 3075 int ret; 3076 int errors = 0; 3077 u32 crc; 3078 u64 bytenr; 3079 3080 if (max_mirrors == 0) 3081 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3082 3083 for (i = 0; i < max_mirrors; i++) { 3084 bytenr = btrfs_sb_offset(i); 3085 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 3086 break; 3087 3088 if (wait) { 3089 bh = __find_get_block(device->bdev, bytenr / 4096, 3090 BTRFS_SUPER_INFO_SIZE); 3091 if (!bh) { 3092 errors++; 3093 continue; 3094 } 3095 wait_on_buffer(bh); 3096 if (!buffer_uptodate(bh)) 3097 errors++; 3098 3099 /* drop our reference */ 3100 brelse(bh); 3101 3102 /* drop the reference from the wait == 0 run */ 3103 brelse(bh); 3104 continue; 3105 } else { 3106 btrfs_set_super_bytenr(sb, bytenr); 3107 3108 crc = ~(u32)0; 3109 crc = btrfs_csum_data((char *)sb + 3110 BTRFS_CSUM_SIZE, crc, 3111 BTRFS_SUPER_INFO_SIZE - 3112 BTRFS_CSUM_SIZE); 3113 btrfs_csum_final(crc, sb->csum); 3114 3115 /* 3116 * one reference for us, and we leave it for the 3117 * caller 3118 */ 3119 bh = __getblk(device->bdev, bytenr / 4096, 3120 BTRFS_SUPER_INFO_SIZE); 3121 if (!bh) { 3122 printk(KERN_ERR "btrfs: couldn't get super " 3123 "buffer head for bytenr %Lu\n", bytenr); 3124 errors++; 3125 continue; 3126 } 3127 3128 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3129 3130 /* one reference for submit_bh */ 3131 get_bh(bh); 3132 3133 set_buffer_uptodate(bh); 3134 lock_buffer(bh); 3135 bh->b_end_io = btrfs_end_buffer_write_sync; 3136 bh->b_private = device; 3137 } 3138 3139 /* 3140 * we fua the first super. The others we allow 3141 * to go down lazy. 3142 */ 3143 ret = btrfsic_submit_bh(WRITE_FUA, bh); 3144 if (ret) 3145 errors++; 3146 } 3147 return errors < i ? 0 : -1; 3148 } 3149 3150 /* 3151 * endio for the write_dev_flush, this will wake anyone waiting 3152 * for the barrier when it is done 3153 */ 3154 static void btrfs_end_empty_barrier(struct bio *bio, int err) 3155 { 3156 if (err) { 3157 if (err == -EOPNOTSUPP) 3158 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 3159 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3160 } 3161 if (bio->bi_private) 3162 complete(bio->bi_private); 3163 bio_put(bio); 3164 } 3165 3166 /* 3167 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3168 * sent down. With wait == 1, it waits for the previous flush. 3169 * 3170 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3171 * capable 3172 */ 3173 static int write_dev_flush(struct btrfs_device *device, int wait) 3174 { 3175 struct bio *bio; 3176 int ret = 0; 3177 3178 if (device->nobarriers) 3179 return 0; 3180 3181 if (wait) { 3182 bio = device->flush_bio; 3183 if (!bio) 3184 return 0; 3185 3186 wait_for_completion(&device->flush_wait); 3187 3188 if (bio_flagged(bio, BIO_EOPNOTSUPP)) { 3189 printk_in_rcu("btrfs: disabling barriers on dev %s\n", 3190 rcu_str_deref(device->name)); 3191 device->nobarriers = 1; 3192 } else if (!bio_flagged(bio, BIO_UPTODATE)) { 3193 ret = -EIO; 3194 btrfs_dev_stat_inc_and_print(device, 3195 BTRFS_DEV_STAT_FLUSH_ERRS); 3196 } 3197 3198 /* drop the reference from the wait == 0 run */ 3199 bio_put(bio); 3200 device->flush_bio = NULL; 3201 3202 return ret; 3203 } 3204 3205 /* 3206 * one reference for us, and we leave it for the 3207 * caller 3208 */ 3209 device->flush_bio = NULL; 3210 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3211 if (!bio) 3212 return -ENOMEM; 3213 3214 bio->bi_end_io = btrfs_end_empty_barrier; 3215 bio->bi_bdev = device->bdev; 3216 init_completion(&device->flush_wait); 3217 bio->bi_private = &device->flush_wait; 3218 device->flush_bio = bio; 3219 3220 bio_get(bio); 3221 btrfsic_submit_bio(WRITE_FLUSH, bio); 3222 3223 return 0; 3224 } 3225 3226 /* 3227 * send an empty flush down to each device in parallel, 3228 * then wait for them 3229 */ 3230 static int barrier_all_devices(struct btrfs_fs_info *info) 3231 { 3232 struct list_head *head; 3233 struct btrfs_device *dev; 3234 int errors_send = 0; 3235 int errors_wait = 0; 3236 int ret; 3237 3238 /* send down all the barriers */ 3239 head = &info->fs_devices->devices; 3240 list_for_each_entry_rcu(dev, head, dev_list) { 3241 if (!dev->bdev) { 3242 errors_send++; 3243 continue; 3244 } 3245 if (!dev->in_fs_metadata || !dev->writeable) 3246 continue; 3247 3248 ret = write_dev_flush(dev, 0); 3249 if (ret) 3250 errors_send++; 3251 } 3252 3253 /* wait for all the barriers */ 3254 list_for_each_entry_rcu(dev, head, dev_list) { 3255 if (!dev->bdev) { 3256 errors_wait++; 3257 continue; 3258 } 3259 if (!dev->in_fs_metadata || !dev->writeable) 3260 continue; 3261 3262 ret = write_dev_flush(dev, 1); 3263 if (ret) 3264 errors_wait++; 3265 } 3266 if (errors_send > info->num_tolerated_disk_barrier_failures || 3267 errors_wait > info->num_tolerated_disk_barrier_failures) 3268 return -EIO; 3269 return 0; 3270 } 3271 3272 int btrfs_calc_num_tolerated_disk_barrier_failures( 3273 struct btrfs_fs_info *fs_info) 3274 { 3275 struct btrfs_ioctl_space_info space; 3276 struct btrfs_space_info *sinfo; 3277 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3278 BTRFS_BLOCK_GROUP_SYSTEM, 3279 BTRFS_BLOCK_GROUP_METADATA, 3280 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3281 int num_types = 4; 3282 int i; 3283 int c; 3284 int num_tolerated_disk_barrier_failures = 3285 (int)fs_info->fs_devices->num_devices; 3286 3287 for (i = 0; i < num_types; i++) { 3288 struct btrfs_space_info *tmp; 3289 3290 sinfo = NULL; 3291 rcu_read_lock(); 3292 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3293 if (tmp->flags == types[i]) { 3294 sinfo = tmp; 3295 break; 3296 } 3297 } 3298 rcu_read_unlock(); 3299 3300 if (!sinfo) 3301 continue; 3302 3303 down_read(&sinfo->groups_sem); 3304 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3305 if (!list_empty(&sinfo->block_groups[c])) { 3306 u64 flags; 3307 3308 btrfs_get_block_group_info( 3309 &sinfo->block_groups[c], &space); 3310 if (space.total_bytes == 0 || 3311 space.used_bytes == 0) 3312 continue; 3313 flags = space.flags; 3314 /* 3315 * return 3316 * 0: if dup, single or RAID0 is configured for 3317 * any of metadata, system or data, else 3318 * 1: if RAID5 is configured, or if RAID1 or 3319 * RAID10 is configured and only two mirrors 3320 * are used, else 3321 * 2: if RAID6 is configured, else 3322 * num_mirrors - 1: if RAID1 or RAID10 is 3323 * configured and more than 3324 * 2 mirrors are used. 3325 */ 3326 if (num_tolerated_disk_barrier_failures > 0 && 3327 ((flags & (BTRFS_BLOCK_GROUP_DUP | 3328 BTRFS_BLOCK_GROUP_RAID0)) || 3329 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) 3330 == 0))) 3331 num_tolerated_disk_barrier_failures = 0; 3332 else if (num_tolerated_disk_barrier_failures > 1) { 3333 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3334 BTRFS_BLOCK_GROUP_RAID5 | 3335 BTRFS_BLOCK_GROUP_RAID10)) { 3336 num_tolerated_disk_barrier_failures = 1; 3337 } else if (flags & 3338 BTRFS_BLOCK_GROUP_RAID6) { 3339 num_tolerated_disk_barrier_failures = 2; 3340 } 3341 } 3342 } 3343 } 3344 up_read(&sinfo->groups_sem); 3345 } 3346 3347 return num_tolerated_disk_barrier_failures; 3348 } 3349 3350 static int write_all_supers(struct btrfs_root *root, int max_mirrors) 3351 { 3352 struct list_head *head; 3353 struct btrfs_device *dev; 3354 struct btrfs_super_block *sb; 3355 struct btrfs_dev_item *dev_item; 3356 int ret; 3357 int do_barriers; 3358 int max_errors; 3359 int total_errors = 0; 3360 u64 flags; 3361 3362 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3363 backup_super_roots(root->fs_info); 3364 3365 sb = root->fs_info->super_for_commit; 3366 dev_item = &sb->dev_item; 3367 3368 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3369 head = &root->fs_info->fs_devices->devices; 3370 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3371 3372 if (do_barriers) { 3373 ret = barrier_all_devices(root->fs_info); 3374 if (ret) { 3375 mutex_unlock( 3376 &root->fs_info->fs_devices->device_list_mutex); 3377 btrfs_error(root->fs_info, ret, 3378 "errors while submitting device barriers."); 3379 return ret; 3380 } 3381 } 3382 3383 list_for_each_entry_rcu(dev, head, dev_list) { 3384 if (!dev->bdev) { 3385 total_errors++; 3386 continue; 3387 } 3388 if (!dev->in_fs_metadata || !dev->writeable) 3389 continue; 3390 3391 btrfs_set_stack_device_generation(dev_item, 0); 3392 btrfs_set_stack_device_type(dev_item, dev->type); 3393 btrfs_set_stack_device_id(dev_item, dev->devid); 3394 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 3395 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 3396 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3397 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3398 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3399 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3400 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3401 3402 flags = btrfs_super_flags(sb); 3403 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3404 3405 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3406 if (ret) 3407 total_errors++; 3408 } 3409 if (total_errors > max_errors) { 3410 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 3411 total_errors); 3412 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3413 3414 /* FUA is masked off if unsupported and can't be the reason */ 3415 btrfs_error(root->fs_info, -EIO, 3416 "%d errors while writing supers", total_errors); 3417 return -EIO; 3418 } 3419 3420 total_errors = 0; 3421 list_for_each_entry_rcu(dev, head, dev_list) { 3422 if (!dev->bdev) 3423 continue; 3424 if (!dev->in_fs_metadata || !dev->writeable) 3425 continue; 3426 3427 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3428 if (ret) 3429 total_errors++; 3430 } 3431 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3432 if (total_errors > max_errors) { 3433 btrfs_error(root->fs_info, -EIO, 3434 "%d errors while writing supers", total_errors); 3435 return -EIO; 3436 } 3437 return 0; 3438 } 3439 3440 int write_ctree_super(struct btrfs_trans_handle *trans, 3441 struct btrfs_root *root, int max_mirrors) 3442 { 3443 return write_all_supers(root, max_mirrors); 3444 } 3445 3446 /* Drop a fs root from the radix tree and free it. */ 3447 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3448 struct btrfs_root *root) 3449 { 3450 spin_lock(&fs_info->fs_roots_radix_lock); 3451 radix_tree_delete(&fs_info->fs_roots_radix, 3452 (unsigned long)root->root_key.objectid); 3453 spin_unlock(&fs_info->fs_roots_radix_lock); 3454 3455 if (btrfs_root_refs(&root->root_item) == 0) 3456 synchronize_srcu(&fs_info->subvol_srcu); 3457 3458 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3459 btrfs_free_log(NULL, root); 3460 btrfs_free_log_root_tree(NULL, fs_info); 3461 } 3462 3463 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3464 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3465 free_fs_root(root); 3466 } 3467 3468 static void free_fs_root(struct btrfs_root *root) 3469 { 3470 iput(root->cache_inode); 3471 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3472 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3473 root->orphan_block_rsv = NULL; 3474 if (root->anon_dev) 3475 free_anon_bdev(root->anon_dev); 3476 free_extent_buffer(root->node); 3477 free_extent_buffer(root->commit_root); 3478 kfree(root->free_ino_ctl); 3479 kfree(root->free_ino_pinned); 3480 kfree(root->name); 3481 btrfs_put_fs_root(root); 3482 } 3483 3484 void btrfs_free_fs_root(struct btrfs_root *root) 3485 { 3486 free_fs_root(root); 3487 } 3488 3489 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3490 { 3491 u64 root_objectid = 0; 3492 struct btrfs_root *gang[8]; 3493 int i; 3494 int ret; 3495 3496 while (1) { 3497 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3498 (void **)gang, root_objectid, 3499 ARRAY_SIZE(gang)); 3500 if (!ret) 3501 break; 3502 3503 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3504 for (i = 0; i < ret; i++) { 3505 int err; 3506 3507 root_objectid = gang[i]->root_key.objectid; 3508 err = btrfs_orphan_cleanup(gang[i]); 3509 if (err) 3510 return err; 3511 } 3512 root_objectid++; 3513 } 3514 return 0; 3515 } 3516 3517 int btrfs_commit_super(struct btrfs_root *root) 3518 { 3519 struct btrfs_trans_handle *trans; 3520 3521 mutex_lock(&root->fs_info->cleaner_mutex); 3522 btrfs_run_delayed_iputs(root); 3523 mutex_unlock(&root->fs_info->cleaner_mutex); 3524 wake_up_process(root->fs_info->cleaner_kthread); 3525 3526 /* wait until ongoing cleanup work done */ 3527 down_write(&root->fs_info->cleanup_work_sem); 3528 up_write(&root->fs_info->cleanup_work_sem); 3529 3530 trans = btrfs_join_transaction(root); 3531 if (IS_ERR(trans)) 3532 return PTR_ERR(trans); 3533 return btrfs_commit_transaction(trans, root); 3534 } 3535 3536 int close_ctree(struct btrfs_root *root) 3537 { 3538 struct btrfs_fs_info *fs_info = root->fs_info; 3539 int ret; 3540 3541 fs_info->closing = 1; 3542 smp_mb(); 3543 3544 /* wait for the uuid_scan task to finish */ 3545 down(&fs_info->uuid_tree_rescan_sem); 3546 /* avoid complains from lockdep et al., set sem back to initial state */ 3547 up(&fs_info->uuid_tree_rescan_sem); 3548 3549 /* pause restriper - we want to resume on mount */ 3550 btrfs_pause_balance(fs_info); 3551 3552 btrfs_dev_replace_suspend_for_unmount(fs_info); 3553 3554 btrfs_scrub_cancel(fs_info); 3555 3556 /* wait for any defraggers to finish */ 3557 wait_event(fs_info->transaction_wait, 3558 (atomic_read(&fs_info->defrag_running) == 0)); 3559 3560 /* clear out the rbtree of defraggable inodes */ 3561 btrfs_cleanup_defrag_inodes(fs_info); 3562 3563 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3564 ret = btrfs_commit_super(root); 3565 if (ret) 3566 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 3567 } 3568 3569 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3570 btrfs_error_commit_super(root); 3571 3572 btrfs_put_block_group_cache(fs_info); 3573 3574 kthread_stop(fs_info->transaction_kthread); 3575 kthread_stop(fs_info->cleaner_kthread); 3576 3577 fs_info->closing = 2; 3578 smp_mb(); 3579 3580 btrfs_free_qgroup_config(root->fs_info); 3581 3582 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3583 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n", 3584 percpu_counter_sum(&fs_info->delalloc_bytes)); 3585 } 3586 3587 del_fs_roots(fs_info); 3588 3589 btrfs_free_block_groups(fs_info); 3590 3591 btrfs_stop_all_workers(fs_info); 3592 3593 free_root_pointers(fs_info, 1); 3594 3595 iput(fs_info->btree_inode); 3596 3597 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3598 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3599 btrfsic_unmount(root, fs_info->fs_devices); 3600 #endif 3601 3602 btrfs_close_devices(fs_info->fs_devices); 3603 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3604 3605 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3606 percpu_counter_destroy(&fs_info->delalloc_bytes); 3607 bdi_destroy(&fs_info->bdi); 3608 cleanup_srcu_struct(&fs_info->subvol_srcu); 3609 3610 btrfs_free_stripe_hash_table(fs_info); 3611 3612 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3613 root->orphan_block_rsv = NULL; 3614 3615 return 0; 3616 } 3617 3618 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3619 int atomic) 3620 { 3621 int ret; 3622 struct inode *btree_inode = buf->pages[0]->mapping->host; 3623 3624 ret = extent_buffer_uptodate(buf); 3625 if (!ret) 3626 return ret; 3627 3628 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3629 parent_transid, atomic); 3630 if (ret == -EAGAIN) 3631 return ret; 3632 return !ret; 3633 } 3634 3635 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3636 { 3637 return set_extent_buffer_uptodate(buf); 3638 } 3639 3640 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3641 { 3642 struct btrfs_root *root; 3643 u64 transid = btrfs_header_generation(buf); 3644 int was_dirty; 3645 3646 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3647 /* 3648 * This is a fast path so only do this check if we have sanity tests 3649 * enabled. Normal people shouldn't be marking dummy buffers as dirty 3650 * outside of the sanity tests. 3651 */ 3652 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 3653 return; 3654 #endif 3655 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3656 btrfs_assert_tree_locked(buf); 3657 if (transid != root->fs_info->generation) 3658 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 3659 "found %llu running %llu\n", 3660 buf->start, transid, root->fs_info->generation); 3661 was_dirty = set_extent_buffer_dirty(buf); 3662 if (!was_dirty) 3663 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 3664 buf->len, 3665 root->fs_info->dirty_metadata_batch); 3666 } 3667 3668 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 3669 int flush_delayed) 3670 { 3671 /* 3672 * looks as though older kernels can get into trouble with 3673 * this code, they end up stuck in balance_dirty_pages forever 3674 */ 3675 int ret; 3676 3677 if (current->flags & PF_MEMALLOC) 3678 return; 3679 3680 if (flush_delayed) 3681 btrfs_balance_delayed_items(root); 3682 3683 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 3684 BTRFS_DIRTY_METADATA_THRESH); 3685 if (ret > 0) { 3686 balance_dirty_pages_ratelimited( 3687 root->fs_info->btree_inode->i_mapping); 3688 } 3689 return; 3690 } 3691 3692 void btrfs_btree_balance_dirty(struct btrfs_root *root) 3693 { 3694 __btrfs_btree_balance_dirty(root, 1); 3695 } 3696 3697 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 3698 { 3699 __btrfs_btree_balance_dirty(root, 0); 3700 } 3701 3702 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3703 { 3704 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3705 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3706 } 3707 3708 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3709 int read_only) 3710 { 3711 /* 3712 * Placeholder for checks 3713 */ 3714 return 0; 3715 } 3716 3717 static void btrfs_error_commit_super(struct btrfs_root *root) 3718 { 3719 mutex_lock(&root->fs_info->cleaner_mutex); 3720 btrfs_run_delayed_iputs(root); 3721 mutex_unlock(&root->fs_info->cleaner_mutex); 3722 3723 down_write(&root->fs_info->cleanup_work_sem); 3724 up_write(&root->fs_info->cleanup_work_sem); 3725 3726 /* cleanup FS via transaction */ 3727 btrfs_cleanup_transaction(root); 3728 } 3729 3730 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t, 3731 struct btrfs_root *root) 3732 { 3733 struct btrfs_inode *btrfs_inode; 3734 struct list_head splice; 3735 3736 INIT_LIST_HEAD(&splice); 3737 3738 mutex_lock(&root->fs_info->ordered_operations_mutex); 3739 spin_lock(&root->fs_info->ordered_root_lock); 3740 3741 list_splice_init(&t->ordered_operations, &splice); 3742 while (!list_empty(&splice)) { 3743 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3744 ordered_operations); 3745 3746 list_del_init(&btrfs_inode->ordered_operations); 3747 spin_unlock(&root->fs_info->ordered_root_lock); 3748 3749 btrfs_invalidate_inodes(btrfs_inode->root); 3750 3751 spin_lock(&root->fs_info->ordered_root_lock); 3752 } 3753 3754 spin_unlock(&root->fs_info->ordered_root_lock); 3755 mutex_unlock(&root->fs_info->ordered_operations_mutex); 3756 } 3757 3758 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 3759 { 3760 struct btrfs_ordered_extent *ordered; 3761 3762 spin_lock(&root->ordered_extent_lock); 3763 /* 3764 * This will just short circuit the ordered completion stuff which will 3765 * make sure the ordered extent gets properly cleaned up. 3766 */ 3767 list_for_each_entry(ordered, &root->ordered_extents, 3768 root_extent_list) 3769 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 3770 spin_unlock(&root->ordered_extent_lock); 3771 } 3772 3773 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 3774 { 3775 struct btrfs_root *root; 3776 struct list_head splice; 3777 3778 INIT_LIST_HEAD(&splice); 3779 3780 spin_lock(&fs_info->ordered_root_lock); 3781 list_splice_init(&fs_info->ordered_roots, &splice); 3782 while (!list_empty(&splice)) { 3783 root = list_first_entry(&splice, struct btrfs_root, 3784 ordered_root); 3785 list_move_tail(&root->ordered_root, 3786 &fs_info->ordered_roots); 3787 3788 btrfs_destroy_ordered_extents(root); 3789 3790 cond_resched_lock(&fs_info->ordered_root_lock); 3791 } 3792 spin_unlock(&fs_info->ordered_root_lock); 3793 } 3794 3795 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 3796 struct btrfs_root *root) 3797 { 3798 struct rb_node *node; 3799 struct btrfs_delayed_ref_root *delayed_refs; 3800 struct btrfs_delayed_ref_node *ref; 3801 int ret = 0; 3802 3803 delayed_refs = &trans->delayed_refs; 3804 3805 spin_lock(&delayed_refs->lock); 3806 if (delayed_refs->num_entries == 0) { 3807 spin_unlock(&delayed_refs->lock); 3808 printk(KERN_INFO "delayed_refs has NO entry\n"); 3809 return ret; 3810 } 3811 3812 while ((node = rb_first(&delayed_refs->root)) != NULL) { 3813 struct btrfs_delayed_ref_head *head = NULL; 3814 bool pin_bytes = false; 3815 3816 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 3817 atomic_set(&ref->refs, 1); 3818 if (btrfs_delayed_ref_is_head(ref)) { 3819 3820 head = btrfs_delayed_node_to_head(ref); 3821 if (!mutex_trylock(&head->mutex)) { 3822 atomic_inc(&ref->refs); 3823 spin_unlock(&delayed_refs->lock); 3824 3825 /* Need to wait for the delayed ref to run */ 3826 mutex_lock(&head->mutex); 3827 mutex_unlock(&head->mutex); 3828 btrfs_put_delayed_ref(ref); 3829 3830 spin_lock(&delayed_refs->lock); 3831 continue; 3832 } 3833 3834 if (head->must_insert_reserved) 3835 pin_bytes = true; 3836 btrfs_free_delayed_extent_op(head->extent_op); 3837 delayed_refs->num_heads--; 3838 if (list_empty(&head->cluster)) 3839 delayed_refs->num_heads_ready--; 3840 list_del_init(&head->cluster); 3841 } 3842 3843 ref->in_tree = 0; 3844 rb_erase(&ref->rb_node, &delayed_refs->root); 3845 delayed_refs->num_entries--; 3846 spin_unlock(&delayed_refs->lock); 3847 if (head) { 3848 if (pin_bytes) 3849 btrfs_pin_extent(root, ref->bytenr, 3850 ref->num_bytes, 1); 3851 mutex_unlock(&head->mutex); 3852 } 3853 btrfs_put_delayed_ref(ref); 3854 3855 cond_resched(); 3856 spin_lock(&delayed_refs->lock); 3857 } 3858 3859 spin_unlock(&delayed_refs->lock); 3860 3861 return ret; 3862 } 3863 3864 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 3865 { 3866 struct btrfs_inode *btrfs_inode; 3867 struct list_head splice; 3868 3869 INIT_LIST_HEAD(&splice); 3870 3871 spin_lock(&root->delalloc_lock); 3872 list_splice_init(&root->delalloc_inodes, &splice); 3873 3874 while (!list_empty(&splice)) { 3875 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 3876 delalloc_inodes); 3877 3878 list_del_init(&btrfs_inode->delalloc_inodes); 3879 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 3880 &btrfs_inode->runtime_flags); 3881 spin_unlock(&root->delalloc_lock); 3882 3883 btrfs_invalidate_inodes(btrfs_inode->root); 3884 3885 spin_lock(&root->delalloc_lock); 3886 } 3887 3888 spin_unlock(&root->delalloc_lock); 3889 } 3890 3891 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 3892 { 3893 struct btrfs_root *root; 3894 struct list_head splice; 3895 3896 INIT_LIST_HEAD(&splice); 3897 3898 spin_lock(&fs_info->delalloc_root_lock); 3899 list_splice_init(&fs_info->delalloc_roots, &splice); 3900 while (!list_empty(&splice)) { 3901 root = list_first_entry(&splice, struct btrfs_root, 3902 delalloc_root); 3903 list_del_init(&root->delalloc_root); 3904 root = btrfs_grab_fs_root(root); 3905 BUG_ON(!root); 3906 spin_unlock(&fs_info->delalloc_root_lock); 3907 3908 btrfs_destroy_delalloc_inodes(root); 3909 btrfs_put_fs_root(root); 3910 3911 spin_lock(&fs_info->delalloc_root_lock); 3912 } 3913 spin_unlock(&fs_info->delalloc_root_lock); 3914 } 3915 3916 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 3917 struct extent_io_tree *dirty_pages, 3918 int mark) 3919 { 3920 int ret; 3921 struct extent_buffer *eb; 3922 u64 start = 0; 3923 u64 end; 3924 3925 while (1) { 3926 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 3927 mark, NULL); 3928 if (ret) 3929 break; 3930 3931 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 3932 while (start <= end) { 3933 eb = btrfs_find_tree_block(root, start, 3934 root->leafsize); 3935 start += root->leafsize; 3936 if (!eb) 3937 continue; 3938 wait_on_extent_buffer_writeback(eb); 3939 3940 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 3941 &eb->bflags)) 3942 clear_extent_buffer_dirty(eb); 3943 free_extent_buffer_stale(eb); 3944 } 3945 } 3946 3947 return ret; 3948 } 3949 3950 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 3951 struct extent_io_tree *pinned_extents) 3952 { 3953 struct extent_io_tree *unpin; 3954 u64 start; 3955 u64 end; 3956 int ret; 3957 bool loop = true; 3958 3959 unpin = pinned_extents; 3960 again: 3961 while (1) { 3962 ret = find_first_extent_bit(unpin, 0, &start, &end, 3963 EXTENT_DIRTY, NULL); 3964 if (ret) 3965 break; 3966 3967 /* opt_discard */ 3968 if (btrfs_test_opt(root, DISCARD)) 3969 ret = btrfs_error_discard_extent(root, start, 3970 end + 1 - start, 3971 NULL); 3972 3973 clear_extent_dirty(unpin, start, end, GFP_NOFS); 3974 btrfs_error_unpin_extent_range(root, start, end); 3975 cond_resched(); 3976 } 3977 3978 if (loop) { 3979 if (unpin == &root->fs_info->freed_extents[0]) 3980 unpin = &root->fs_info->freed_extents[1]; 3981 else 3982 unpin = &root->fs_info->freed_extents[0]; 3983 loop = false; 3984 goto again; 3985 } 3986 3987 return 0; 3988 } 3989 3990 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 3991 struct btrfs_root *root) 3992 { 3993 btrfs_destroy_ordered_operations(cur_trans, root); 3994 3995 btrfs_destroy_delayed_refs(cur_trans, root); 3996 3997 cur_trans->state = TRANS_STATE_COMMIT_START; 3998 wake_up(&root->fs_info->transaction_blocked_wait); 3999 4000 cur_trans->state = TRANS_STATE_UNBLOCKED; 4001 wake_up(&root->fs_info->transaction_wait); 4002 4003 btrfs_destroy_delayed_inodes(root); 4004 btrfs_assert_delayed_root_empty(root); 4005 4006 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 4007 EXTENT_DIRTY); 4008 btrfs_destroy_pinned_extent(root, 4009 root->fs_info->pinned_extents); 4010 4011 cur_trans->state =TRANS_STATE_COMPLETED; 4012 wake_up(&cur_trans->commit_wait); 4013 4014 /* 4015 memset(cur_trans, 0, sizeof(*cur_trans)); 4016 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4017 */ 4018 } 4019 4020 static int btrfs_cleanup_transaction(struct btrfs_root *root) 4021 { 4022 struct btrfs_transaction *t; 4023 4024 mutex_lock(&root->fs_info->transaction_kthread_mutex); 4025 4026 spin_lock(&root->fs_info->trans_lock); 4027 while (!list_empty(&root->fs_info->trans_list)) { 4028 t = list_first_entry(&root->fs_info->trans_list, 4029 struct btrfs_transaction, list); 4030 if (t->state >= TRANS_STATE_COMMIT_START) { 4031 atomic_inc(&t->use_count); 4032 spin_unlock(&root->fs_info->trans_lock); 4033 btrfs_wait_for_commit(root, t->transid); 4034 btrfs_put_transaction(t); 4035 spin_lock(&root->fs_info->trans_lock); 4036 continue; 4037 } 4038 if (t == root->fs_info->running_transaction) { 4039 t->state = TRANS_STATE_COMMIT_DOING; 4040 spin_unlock(&root->fs_info->trans_lock); 4041 /* 4042 * We wait for 0 num_writers since we don't hold a trans 4043 * handle open currently for this transaction. 4044 */ 4045 wait_event(t->writer_wait, 4046 atomic_read(&t->num_writers) == 0); 4047 } else { 4048 spin_unlock(&root->fs_info->trans_lock); 4049 } 4050 btrfs_cleanup_one_transaction(t, root); 4051 4052 spin_lock(&root->fs_info->trans_lock); 4053 if (t == root->fs_info->running_transaction) 4054 root->fs_info->running_transaction = NULL; 4055 list_del_init(&t->list); 4056 spin_unlock(&root->fs_info->trans_lock); 4057 4058 btrfs_put_transaction(t); 4059 trace_btrfs_transaction_commit(root); 4060 spin_lock(&root->fs_info->trans_lock); 4061 } 4062 spin_unlock(&root->fs_info->trans_lock); 4063 btrfs_destroy_all_ordered_extents(root->fs_info); 4064 btrfs_destroy_delayed_inodes(root); 4065 btrfs_assert_delayed_root_empty(root); 4066 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents); 4067 btrfs_destroy_all_delalloc_inodes(root->fs_info); 4068 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 4069 4070 return 0; 4071 } 4072 4073 static struct extent_io_ops btree_extent_io_ops = { 4074 .readpage_end_io_hook = btree_readpage_end_io_hook, 4075 .readpage_io_failed_hook = btree_io_failed_hook, 4076 .submit_bio_hook = btree_submit_bio_hook, 4077 /* note we're sharing with inode.c for the merge bio hook */ 4078 .merge_bio_hook = btrfs_merge_bio_hook, 4079 }; 4080