1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 #include "block-group.h" 42 #include "discard.h" 43 #include "space-info.h" 44 #include "zoned.h" 45 #include "subpage.h" 46 47 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 48 BTRFS_HEADER_FLAG_RELOC |\ 49 BTRFS_SUPER_FLAG_ERROR |\ 50 BTRFS_SUPER_FLAG_SEEDING |\ 51 BTRFS_SUPER_FLAG_METADUMP |\ 52 BTRFS_SUPER_FLAG_METADUMP_V2) 53 54 static void end_workqueue_fn(struct btrfs_work *work); 55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 57 struct btrfs_fs_info *fs_info); 58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 60 struct extent_io_tree *dirty_pages, 61 int mark); 62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 63 struct extent_io_tree *pinned_extents); 64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 66 67 /* 68 * btrfs_end_io_wq structs are used to do processing in task context when an IO 69 * is complete. This is used during reads to verify checksums, and it is used 70 * by writes to insert metadata for new file extents after IO is complete. 71 */ 72 struct btrfs_end_io_wq { 73 struct bio *bio; 74 bio_end_io_t *end_io; 75 void *private; 76 struct btrfs_fs_info *info; 77 blk_status_t status; 78 enum btrfs_wq_endio_type metadata; 79 struct btrfs_work work; 80 }; 81 82 static struct kmem_cache *btrfs_end_io_wq_cache; 83 84 int __init btrfs_end_io_wq_init(void) 85 { 86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 87 sizeof(struct btrfs_end_io_wq), 88 0, 89 SLAB_MEM_SPREAD, 90 NULL); 91 if (!btrfs_end_io_wq_cache) 92 return -ENOMEM; 93 return 0; 94 } 95 96 void __cold btrfs_end_io_wq_exit(void) 97 { 98 kmem_cache_destroy(btrfs_end_io_wq_cache); 99 } 100 101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 102 { 103 if (fs_info->csum_shash) 104 crypto_free_shash(fs_info->csum_shash); 105 } 106 107 /* 108 * async submit bios are used to offload expensive checksumming 109 * onto the worker threads. They checksum file and metadata bios 110 * just before they are sent down the IO stack. 111 */ 112 struct async_submit_bio { 113 struct inode *inode; 114 struct bio *bio; 115 extent_submit_bio_start_t *submit_bio_start; 116 int mirror_num; 117 118 /* Optional parameter for submit_bio_start used by direct io */ 119 u64 dio_file_offset; 120 struct btrfs_work work; 121 blk_status_t status; 122 }; 123 124 /* 125 * Lockdep class keys for extent_buffer->lock's in this root. For a given 126 * eb, the lockdep key is determined by the btrfs_root it belongs to and 127 * the level the eb occupies in the tree. 128 * 129 * Different roots are used for different purposes and may nest inside each 130 * other and they require separate keysets. As lockdep keys should be 131 * static, assign keysets according to the purpose of the root as indicated 132 * by btrfs_root->root_key.objectid. This ensures that all special purpose 133 * roots have separate keysets. 134 * 135 * Lock-nesting across peer nodes is always done with the immediate parent 136 * node locked thus preventing deadlock. As lockdep doesn't know this, use 137 * subclass to avoid triggering lockdep warning in such cases. 138 * 139 * The key is set by the readpage_end_io_hook after the buffer has passed 140 * csum validation but before the pages are unlocked. It is also set by 141 * btrfs_init_new_buffer on freshly allocated blocks. 142 * 143 * We also add a check to make sure the highest level of the tree is the 144 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 145 * needs update as well. 146 */ 147 #ifdef CONFIG_DEBUG_LOCK_ALLOC 148 # if BTRFS_MAX_LEVEL != 8 149 # error 150 # endif 151 152 #define DEFINE_LEVEL(stem, level) \ 153 .names[level] = "btrfs-" stem "-0" #level, 154 155 #define DEFINE_NAME(stem) \ 156 DEFINE_LEVEL(stem, 0) \ 157 DEFINE_LEVEL(stem, 1) \ 158 DEFINE_LEVEL(stem, 2) \ 159 DEFINE_LEVEL(stem, 3) \ 160 DEFINE_LEVEL(stem, 4) \ 161 DEFINE_LEVEL(stem, 5) \ 162 DEFINE_LEVEL(stem, 6) \ 163 DEFINE_LEVEL(stem, 7) 164 165 static struct btrfs_lockdep_keyset { 166 u64 id; /* root objectid */ 167 /* Longest entry: btrfs-free-space-00 */ 168 char names[BTRFS_MAX_LEVEL][20]; 169 struct lock_class_key keys[BTRFS_MAX_LEVEL]; 170 } btrfs_lockdep_keysets[] = { 171 { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") }, 172 { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") }, 173 { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") }, 174 { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") }, 175 { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") }, 176 { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") }, 177 { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") }, 178 { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") }, 179 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") }, 180 { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") }, 181 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") }, 182 { .id = 0, DEFINE_NAME("tree") }, 183 }; 184 185 #undef DEFINE_LEVEL 186 #undef DEFINE_NAME 187 188 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 189 int level) 190 { 191 struct btrfs_lockdep_keyset *ks; 192 193 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 194 195 /* find the matching keyset, id 0 is the default entry */ 196 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 197 if (ks->id == objectid) 198 break; 199 200 lockdep_set_class_and_name(&eb->lock, 201 &ks->keys[level], ks->names[level]); 202 } 203 204 #endif 205 206 /* 207 * Compute the csum of a btree block and store the result to provided buffer. 208 */ 209 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 210 { 211 struct btrfs_fs_info *fs_info = buf->fs_info; 212 const int num_pages = num_extent_pages(buf); 213 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 214 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 215 char *kaddr; 216 int i; 217 218 shash->tfm = fs_info->csum_shash; 219 crypto_shash_init(shash); 220 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start); 221 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 222 first_page_part - BTRFS_CSUM_SIZE); 223 224 for (i = 1; i < num_pages; i++) { 225 kaddr = page_address(buf->pages[i]); 226 crypto_shash_update(shash, kaddr, PAGE_SIZE); 227 } 228 memset(result, 0, BTRFS_CSUM_SIZE); 229 crypto_shash_final(shash, result); 230 } 231 232 /* 233 * we can't consider a given block up to date unless the transid of the 234 * block matches the transid in the parent node's pointer. This is how we 235 * detect blocks that either didn't get written at all or got written 236 * in the wrong place. 237 */ 238 static int verify_parent_transid(struct extent_io_tree *io_tree, 239 struct extent_buffer *eb, u64 parent_transid, 240 int atomic) 241 { 242 struct extent_state *cached_state = NULL; 243 int ret; 244 245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 246 return 0; 247 248 if (atomic) 249 return -EAGAIN; 250 251 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 252 &cached_state); 253 if (extent_buffer_uptodate(eb) && 254 btrfs_header_generation(eb) == parent_transid) { 255 ret = 0; 256 goto out; 257 } 258 btrfs_err_rl(eb->fs_info, 259 "parent transid verify failed on %llu wanted %llu found %llu", 260 eb->start, 261 parent_transid, btrfs_header_generation(eb)); 262 ret = 1; 263 clear_extent_buffer_uptodate(eb); 264 out: 265 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 266 &cached_state); 267 return ret; 268 } 269 270 static bool btrfs_supported_super_csum(u16 csum_type) 271 { 272 switch (csum_type) { 273 case BTRFS_CSUM_TYPE_CRC32: 274 case BTRFS_CSUM_TYPE_XXHASH: 275 case BTRFS_CSUM_TYPE_SHA256: 276 case BTRFS_CSUM_TYPE_BLAKE2: 277 return true; 278 default: 279 return false; 280 } 281 } 282 283 /* 284 * Return 0 if the superblock checksum type matches the checksum value of that 285 * algorithm. Pass the raw disk superblock data. 286 */ 287 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 288 char *raw_disk_sb) 289 { 290 struct btrfs_super_block *disk_sb = 291 (struct btrfs_super_block *)raw_disk_sb; 292 char result[BTRFS_CSUM_SIZE]; 293 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 294 295 shash->tfm = fs_info->csum_shash; 296 297 /* 298 * The super_block structure does not span the whole 299 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 300 * filled with zeros and is included in the checksum. 301 */ 302 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE, 303 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 304 305 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 306 return 1; 307 308 return 0; 309 } 310 311 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 312 struct btrfs_key *first_key, u64 parent_transid) 313 { 314 struct btrfs_fs_info *fs_info = eb->fs_info; 315 int found_level; 316 struct btrfs_key found_key; 317 int ret; 318 319 found_level = btrfs_header_level(eb); 320 if (found_level != level) { 321 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 322 KERN_ERR "BTRFS: tree level check failed\n"); 323 btrfs_err(fs_info, 324 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 325 eb->start, level, found_level); 326 return -EIO; 327 } 328 329 if (!first_key) 330 return 0; 331 332 /* 333 * For live tree block (new tree blocks in current transaction), 334 * we need proper lock context to avoid race, which is impossible here. 335 * So we only checks tree blocks which is read from disk, whose 336 * generation <= fs_info->last_trans_committed. 337 */ 338 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 339 return 0; 340 341 /* We have @first_key, so this @eb must have at least one item */ 342 if (btrfs_header_nritems(eb) == 0) { 343 btrfs_err(fs_info, 344 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 345 eb->start); 346 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 347 return -EUCLEAN; 348 } 349 350 if (found_level) 351 btrfs_node_key_to_cpu(eb, &found_key, 0); 352 else 353 btrfs_item_key_to_cpu(eb, &found_key, 0); 354 ret = btrfs_comp_cpu_keys(first_key, &found_key); 355 356 if (ret) { 357 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 358 KERN_ERR "BTRFS: tree first key check failed\n"); 359 btrfs_err(fs_info, 360 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 361 eb->start, parent_transid, first_key->objectid, 362 first_key->type, first_key->offset, 363 found_key.objectid, found_key.type, 364 found_key.offset); 365 } 366 return ret; 367 } 368 369 /* 370 * helper to read a given tree block, doing retries as required when 371 * the checksums don't match and we have alternate mirrors to try. 372 * 373 * @parent_transid: expected transid, skip check if 0 374 * @level: expected level, mandatory check 375 * @first_key: expected key of first slot, skip check if NULL 376 */ 377 static int btree_read_extent_buffer_pages(struct extent_buffer *eb, 378 u64 parent_transid, int level, 379 struct btrfs_key *first_key) 380 { 381 struct btrfs_fs_info *fs_info = eb->fs_info; 382 struct extent_io_tree *io_tree; 383 int failed = 0; 384 int ret; 385 int num_copies = 0; 386 int mirror_num = 0; 387 int failed_mirror = 0; 388 389 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 390 while (1) { 391 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 392 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num); 393 if (!ret) { 394 if (verify_parent_transid(io_tree, eb, 395 parent_transid, 0)) 396 ret = -EIO; 397 else if (btrfs_verify_level_key(eb, level, 398 first_key, parent_transid)) 399 ret = -EUCLEAN; 400 else 401 break; 402 } 403 404 num_copies = btrfs_num_copies(fs_info, 405 eb->start, eb->len); 406 if (num_copies == 1) 407 break; 408 409 if (!failed_mirror) { 410 failed = 1; 411 failed_mirror = eb->read_mirror; 412 } 413 414 mirror_num++; 415 if (mirror_num == failed_mirror) 416 mirror_num++; 417 418 if (mirror_num > num_copies) 419 break; 420 } 421 422 if (failed && !ret && failed_mirror) 423 btrfs_repair_eb_io_failure(eb, failed_mirror); 424 425 return ret; 426 } 427 428 static int csum_one_extent_buffer(struct extent_buffer *eb) 429 { 430 struct btrfs_fs_info *fs_info = eb->fs_info; 431 u8 result[BTRFS_CSUM_SIZE]; 432 int ret; 433 434 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 435 offsetof(struct btrfs_header, fsid), 436 BTRFS_FSID_SIZE) == 0); 437 csum_tree_block(eb, result); 438 439 if (btrfs_header_level(eb)) 440 ret = btrfs_check_node(eb); 441 else 442 ret = btrfs_check_leaf_full(eb); 443 444 if (ret < 0) { 445 btrfs_print_tree(eb, 0); 446 btrfs_err(fs_info, 447 "block=%llu write time tree block corruption detected", 448 eb->start); 449 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 450 return ret; 451 } 452 write_extent_buffer(eb, result, 0, fs_info->csum_size); 453 454 return 0; 455 } 456 457 /* Checksum all dirty extent buffers in one bio_vec */ 458 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info, 459 struct bio_vec *bvec) 460 { 461 struct page *page = bvec->bv_page; 462 u64 bvec_start = page_offset(page) + bvec->bv_offset; 463 u64 cur; 464 int ret = 0; 465 466 for (cur = bvec_start; cur < bvec_start + bvec->bv_len; 467 cur += fs_info->nodesize) { 468 struct extent_buffer *eb; 469 bool uptodate; 470 471 eb = find_extent_buffer(fs_info, cur); 472 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur, 473 fs_info->nodesize); 474 475 /* A dirty eb shouldn't disappear from buffer_radix */ 476 if (WARN_ON(!eb)) 477 return -EUCLEAN; 478 479 if (WARN_ON(cur != btrfs_header_bytenr(eb))) { 480 free_extent_buffer(eb); 481 return -EUCLEAN; 482 } 483 if (WARN_ON(!uptodate)) { 484 free_extent_buffer(eb); 485 return -EUCLEAN; 486 } 487 488 ret = csum_one_extent_buffer(eb); 489 free_extent_buffer(eb); 490 if (ret < 0) 491 return ret; 492 } 493 return ret; 494 } 495 496 /* 497 * Checksum a dirty tree block before IO. This has extra checks to make sure 498 * we only fill in the checksum field in the first page of a multi-page block. 499 * For subpage extent buffers we need bvec to also read the offset in the page. 500 */ 501 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec) 502 { 503 struct page *page = bvec->bv_page; 504 u64 start = page_offset(page); 505 u64 found_start; 506 struct extent_buffer *eb; 507 508 if (fs_info->sectorsize < PAGE_SIZE) 509 return csum_dirty_subpage_buffers(fs_info, bvec); 510 511 eb = (struct extent_buffer *)page->private; 512 if (page != eb->pages[0]) 513 return 0; 514 515 found_start = btrfs_header_bytenr(eb); 516 517 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) { 518 WARN_ON(found_start != 0); 519 return 0; 520 } 521 522 /* 523 * Please do not consolidate these warnings into a single if. 524 * It is useful to know what went wrong. 525 */ 526 if (WARN_ON(found_start != start)) 527 return -EUCLEAN; 528 if (WARN_ON(!PageUptodate(page))) 529 return -EUCLEAN; 530 531 return csum_one_extent_buffer(eb); 532 } 533 534 static int check_tree_block_fsid(struct extent_buffer *eb) 535 { 536 struct btrfs_fs_info *fs_info = eb->fs_info; 537 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 538 u8 fsid[BTRFS_FSID_SIZE]; 539 u8 *metadata_uuid; 540 541 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 542 BTRFS_FSID_SIZE); 543 /* 544 * Checking the incompat flag is only valid for the current fs. For 545 * seed devices it's forbidden to have their uuid changed so reading 546 * ->fsid in this case is fine 547 */ 548 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 549 metadata_uuid = fs_devices->metadata_uuid; 550 else 551 metadata_uuid = fs_devices->fsid; 552 553 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) 554 return 0; 555 556 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 557 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 558 return 0; 559 560 return 1; 561 } 562 563 /* Do basic extent buffer checks at read time */ 564 static int validate_extent_buffer(struct extent_buffer *eb) 565 { 566 struct btrfs_fs_info *fs_info = eb->fs_info; 567 u64 found_start; 568 const u32 csum_size = fs_info->csum_size; 569 u8 found_level; 570 u8 result[BTRFS_CSUM_SIZE]; 571 const u8 *header_csum; 572 int ret = 0; 573 574 found_start = btrfs_header_bytenr(eb); 575 if (found_start != eb->start) { 576 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 577 eb->start, found_start); 578 ret = -EIO; 579 goto out; 580 } 581 if (check_tree_block_fsid(eb)) { 582 btrfs_err_rl(fs_info, "bad fsid on block %llu", 583 eb->start); 584 ret = -EIO; 585 goto out; 586 } 587 found_level = btrfs_header_level(eb); 588 if (found_level >= BTRFS_MAX_LEVEL) { 589 btrfs_err(fs_info, "bad tree block level %d on %llu", 590 (int)btrfs_header_level(eb), eb->start); 591 ret = -EIO; 592 goto out; 593 } 594 595 csum_tree_block(eb, result); 596 header_csum = page_address(eb->pages[0]) + 597 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum)); 598 599 if (memcmp(result, header_csum, csum_size) != 0) { 600 btrfs_warn_rl(fs_info, 601 "checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d", 602 eb->start, 603 CSUM_FMT_VALUE(csum_size, header_csum), 604 CSUM_FMT_VALUE(csum_size, result), 605 btrfs_header_level(eb)); 606 ret = -EUCLEAN; 607 goto out; 608 } 609 610 /* 611 * If this is a leaf block and it is corrupt, set the corrupt bit so 612 * that we don't try and read the other copies of this block, just 613 * return -EIO. 614 */ 615 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 616 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 617 ret = -EIO; 618 } 619 620 if (found_level > 0 && btrfs_check_node(eb)) 621 ret = -EIO; 622 623 if (!ret) 624 set_extent_buffer_uptodate(eb); 625 else 626 btrfs_err(fs_info, 627 "block=%llu read time tree block corruption detected", 628 eb->start); 629 out: 630 return ret; 631 } 632 633 static int validate_subpage_buffer(struct page *page, u64 start, u64 end, 634 int mirror) 635 { 636 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 637 struct extent_buffer *eb; 638 bool reads_done; 639 int ret = 0; 640 641 /* 642 * We don't allow bio merge for subpage metadata read, so we should 643 * only get one eb for each endio hook. 644 */ 645 ASSERT(end == start + fs_info->nodesize - 1); 646 ASSERT(PagePrivate(page)); 647 648 eb = find_extent_buffer(fs_info, start); 649 /* 650 * When we are reading one tree block, eb must have been inserted into 651 * the radix tree. If not, something is wrong. 652 */ 653 ASSERT(eb); 654 655 reads_done = atomic_dec_and_test(&eb->io_pages); 656 /* Subpage read must finish in page read */ 657 ASSERT(reads_done); 658 659 eb->read_mirror = mirror; 660 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 661 ret = -EIO; 662 goto err; 663 } 664 ret = validate_extent_buffer(eb); 665 if (ret < 0) 666 goto err; 667 668 set_extent_buffer_uptodate(eb); 669 670 free_extent_buffer(eb); 671 return ret; 672 err: 673 /* 674 * end_bio_extent_readpage decrements io_pages in case of error, 675 * make sure it has something to decrement. 676 */ 677 atomic_inc(&eb->io_pages); 678 clear_extent_buffer_uptodate(eb); 679 free_extent_buffer(eb); 680 return ret; 681 } 682 683 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio, 684 struct page *page, u64 start, u64 end, 685 int mirror) 686 { 687 struct extent_buffer *eb; 688 int ret = 0; 689 int reads_done; 690 691 ASSERT(page->private); 692 693 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE) 694 return validate_subpage_buffer(page, start, end, mirror); 695 696 eb = (struct extent_buffer *)page->private; 697 698 /* 699 * The pending IO might have been the only thing that kept this buffer 700 * in memory. Make sure we have a ref for all this other checks 701 */ 702 atomic_inc(&eb->refs); 703 704 reads_done = atomic_dec_and_test(&eb->io_pages); 705 if (!reads_done) 706 goto err; 707 708 eb->read_mirror = mirror; 709 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 710 ret = -EIO; 711 goto err; 712 } 713 ret = validate_extent_buffer(eb); 714 err: 715 if (ret) { 716 /* 717 * our io error hook is going to dec the io pages 718 * again, we have to make sure it has something 719 * to decrement 720 */ 721 atomic_inc(&eb->io_pages); 722 clear_extent_buffer_uptodate(eb); 723 } 724 free_extent_buffer(eb); 725 726 return ret; 727 } 728 729 static void end_workqueue_bio(struct bio *bio) 730 { 731 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 732 struct btrfs_fs_info *fs_info; 733 struct btrfs_workqueue *wq; 734 735 fs_info = end_io_wq->info; 736 end_io_wq->status = bio->bi_status; 737 738 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 739 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) 740 wq = fs_info->endio_meta_write_workers; 741 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) 742 wq = fs_info->endio_freespace_worker; 743 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 744 wq = fs_info->endio_raid56_workers; 745 else 746 wq = fs_info->endio_write_workers; 747 } else { 748 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 749 wq = fs_info->endio_raid56_workers; 750 else if (end_io_wq->metadata) 751 wq = fs_info->endio_meta_workers; 752 else 753 wq = fs_info->endio_workers; 754 } 755 756 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL); 757 btrfs_queue_work(wq, &end_io_wq->work); 758 } 759 760 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 761 enum btrfs_wq_endio_type metadata) 762 { 763 struct btrfs_end_io_wq *end_io_wq; 764 765 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 766 if (!end_io_wq) 767 return BLK_STS_RESOURCE; 768 769 end_io_wq->private = bio->bi_private; 770 end_io_wq->end_io = bio->bi_end_io; 771 end_io_wq->info = info; 772 end_io_wq->status = 0; 773 end_io_wq->bio = bio; 774 end_io_wq->metadata = metadata; 775 776 bio->bi_private = end_io_wq; 777 bio->bi_end_io = end_workqueue_bio; 778 return 0; 779 } 780 781 static void run_one_async_start(struct btrfs_work *work) 782 { 783 struct async_submit_bio *async; 784 blk_status_t ret; 785 786 async = container_of(work, struct async_submit_bio, work); 787 ret = async->submit_bio_start(async->inode, async->bio, 788 async->dio_file_offset); 789 if (ret) 790 async->status = ret; 791 } 792 793 /* 794 * In order to insert checksums into the metadata in large chunks, we wait 795 * until bio submission time. All the pages in the bio are checksummed and 796 * sums are attached onto the ordered extent record. 797 * 798 * At IO completion time the csums attached on the ordered extent record are 799 * inserted into the tree. 800 */ 801 static void run_one_async_done(struct btrfs_work *work) 802 { 803 struct async_submit_bio *async; 804 struct inode *inode; 805 blk_status_t ret; 806 807 async = container_of(work, struct async_submit_bio, work); 808 inode = async->inode; 809 810 /* If an error occurred we just want to clean up the bio and move on */ 811 if (async->status) { 812 async->bio->bi_status = async->status; 813 bio_endio(async->bio); 814 return; 815 } 816 817 /* 818 * All of the bios that pass through here are from async helpers. 819 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context. 820 * This changes nothing when cgroups aren't in use. 821 */ 822 async->bio->bi_opf |= REQ_CGROUP_PUNT; 823 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num); 824 if (ret) { 825 async->bio->bi_status = ret; 826 bio_endio(async->bio); 827 } 828 } 829 830 static void run_one_async_free(struct btrfs_work *work) 831 { 832 struct async_submit_bio *async; 833 834 async = container_of(work, struct async_submit_bio, work); 835 kfree(async); 836 } 837 838 blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio, 839 int mirror_num, unsigned long bio_flags, 840 u64 dio_file_offset, 841 extent_submit_bio_start_t *submit_bio_start) 842 { 843 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 844 struct async_submit_bio *async; 845 846 async = kmalloc(sizeof(*async), GFP_NOFS); 847 if (!async) 848 return BLK_STS_RESOURCE; 849 850 async->inode = inode; 851 async->bio = bio; 852 async->mirror_num = mirror_num; 853 async->submit_bio_start = submit_bio_start; 854 855 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, 856 run_one_async_free); 857 858 async->dio_file_offset = dio_file_offset; 859 860 async->status = 0; 861 862 if (op_is_sync(bio->bi_opf)) 863 btrfs_set_work_high_priority(&async->work); 864 865 btrfs_queue_work(fs_info->workers, &async->work); 866 return 0; 867 } 868 869 static blk_status_t btree_csum_one_bio(struct bio *bio) 870 { 871 struct bio_vec *bvec; 872 struct btrfs_root *root; 873 int ret = 0; 874 struct bvec_iter_all iter_all; 875 876 ASSERT(!bio_flagged(bio, BIO_CLONED)); 877 bio_for_each_segment_all(bvec, bio, iter_all) { 878 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 879 ret = csum_dirty_buffer(root->fs_info, bvec); 880 if (ret) 881 break; 882 } 883 884 return errno_to_blk_status(ret); 885 } 886 887 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio, 888 u64 dio_file_offset) 889 { 890 /* 891 * when we're called for a write, we're already in the async 892 * submission context. Just jump into btrfs_map_bio 893 */ 894 return btree_csum_one_bio(bio); 895 } 896 897 static bool should_async_write(struct btrfs_fs_info *fs_info, 898 struct btrfs_inode *bi) 899 { 900 if (btrfs_is_zoned(fs_info)) 901 return false; 902 if (atomic_read(&bi->sync_writers)) 903 return false; 904 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 905 return false; 906 return true; 907 } 908 909 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, 910 int mirror_num, unsigned long bio_flags) 911 { 912 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 913 blk_status_t ret; 914 915 if (btrfs_op(bio) != BTRFS_MAP_WRITE) { 916 /* 917 * called for a read, do the setup so that checksum validation 918 * can happen in the async kernel threads 919 */ 920 ret = btrfs_bio_wq_end_io(fs_info, bio, 921 BTRFS_WQ_ENDIO_METADATA); 922 if (ret) 923 goto out_w_error; 924 ret = btrfs_map_bio(fs_info, bio, mirror_num); 925 } else if (!should_async_write(fs_info, BTRFS_I(inode))) { 926 ret = btree_csum_one_bio(bio); 927 if (ret) 928 goto out_w_error; 929 ret = btrfs_map_bio(fs_info, bio, mirror_num); 930 } else { 931 /* 932 * kthread helpers are used to submit writes so that 933 * checksumming can happen in parallel across all CPUs 934 */ 935 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0, 936 0, btree_submit_bio_start); 937 } 938 939 if (ret) 940 goto out_w_error; 941 return 0; 942 943 out_w_error: 944 bio->bi_status = ret; 945 bio_endio(bio); 946 return ret; 947 } 948 949 #ifdef CONFIG_MIGRATION 950 static int btree_migratepage(struct address_space *mapping, 951 struct page *newpage, struct page *page, 952 enum migrate_mode mode) 953 { 954 /* 955 * we can't safely write a btree page from here, 956 * we haven't done the locking hook 957 */ 958 if (PageDirty(page)) 959 return -EAGAIN; 960 /* 961 * Buffers may be managed in a filesystem specific way. 962 * We must have no buffers or drop them. 963 */ 964 if (page_has_private(page) && 965 !try_to_release_page(page, GFP_KERNEL)) 966 return -EAGAIN; 967 return migrate_page(mapping, newpage, page, mode); 968 } 969 #endif 970 971 972 static int btree_writepages(struct address_space *mapping, 973 struct writeback_control *wbc) 974 { 975 struct btrfs_fs_info *fs_info; 976 int ret; 977 978 if (wbc->sync_mode == WB_SYNC_NONE) { 979 980 if (wbc->for_kupdate) 981 return 0; 982 983 fs_info = BTRFS_I(mapping->host)->root->fs_info; 984 /* this is a bit racy, but that's ok */ 985 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 986 BTRFS_DIRTY_METADATA_THRESH, 987 fs_info->dirty_metadata_batch); 988 if (ret < 0) 989 return 0; 990 } 991 return btree_write_cache_pages(mapping, wbc); 992 } 993 994 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 995 { 996 if (PageWriteback(page) || PageDirty(page)) 997 return 0; 998 999 return try_release_extent_buffer(page); 1000 } 1001 1002 static void btree_invalidatepage(struct page *page, unsigned int offset, 1003 unsigned int length) 1004 { 1005 struct extent_io_tree *tree; 1006 tree = &BTRFS_I(page->mapping->host)->io_tree; 1007 extent_invalidatepage(tree, page, offset); 1008 btree_releasepage(page, GFP_NOFS); 1009 if (PagePrivate(page)) { 1010 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1011 "page private not zero on page %llu", 1012 (unsigned long long)page_offset(page)); 1013 detach_page_private(page); 1014 } 1015 } 1016 1017 static int btree_set_page_dirty(struct page *page) 1018 { 1019 #ifdef DEBUG 1020 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 1021 struct btrfs_subpage *subpage; 1022 struct extent_buffer *eb; 1023 int cur_bit = 0; 1024 u64 page_start = page_offset(page); 1025 1026 if (fs_info->sectorsize == PAGE_SIZE) { 1027 BUG_ON(!PagePrivate(page)); 1028 eb = (struct extent_buffer *)page->private; 1029 BUG_ON(!eb); 1030 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1031 BUG_ON(!atomic_read(&eb->refs)); 1032 btrfs_assert_tree_write_locked(eb); 1033 return __set_page_dirty_nobuffers(page); 1034 } 1035 ASSERT(PagePrivate(page) && page->private); 1036 subpage = (struct btrfs_subpage *)page->private; 1037 1038 ASSERT(subpage->dirty_bitmap); 1039 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) { 1040 unsigned long flags; 1041 u64 cur; 1042 u16 tmp = (1 << cur_bit); 1043 1044 spin_lock_irqsave(&subpage->lock, flags); 1045 if (!(tmp & subpage->dirty_bitmap)) { 1046 spin_unlock_irqrestore(&subpage->lock, flags); 1047 cur_bit++; 1048 continue; 1049 } 1050 spin_unlock_irqrestore(&subpage->lock, flags); 1051 cur = page_start + cur_bit * fs_info->sectorsize; 1052 1053 eb = find_extent_buffer(fs_info, cur); 1054 ASSERT(eb); 1055 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1056 ASSERT(atomic_read(&eb->refs)); 1057 btrfs_assert_tree_write_locked(eb); 1058 free_extent_buffer(eb); 1059 1060 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits); 1061 } 1062 #endif 1063 return __set_page_dirty_nobuffers(page); 1064 } 1065 1066 static const struct address_space_operations btree_aops = { 1067 .writepages = btree_writepages, 1068 .releasepage = btree_releasepage, 1069 .invalidatepage = btree_invalidatepage, 1070 #ifdef CONFIG_MIGRATION 1071 .migratepage = btree_migratepage, 1072 #endif 1073 .set_page_dirty = btree_set_page_dirty, 1074 }; 1075 1076 struct extent_buffer *btrfs_find_create_tree_block( 1077 struct btrfs_fs_info *fs_info, 1078 u64 bytenr, u64 owner_root, 1079 int level) 1080 { 1081 if (btrfs_is_testing(fs_info)) 1082 return alloc_test_extent_buffer(fs_info, bytenr); 1083 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 1084 } 1085 1086 /* 1087 * Read tree block at logical address @bytenr and do variant basic but critical 1088 * verification. 1089 * 1090 * @owner_root: the objectid of the root owner for this block. 1091 * @parent_transid: expected transid of this tree block, skip check if 0 1092 * @level: expected level, mandatory check 1093 * @first_key: expected key in slot 0, skip check if NULL 1094 */ 1095 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1096 u64 owner_root, u64 parent_transid, 1097 int level, struct btrfs_key *first_key) 1098 { 1099 struct extent_buffer *buf = NULL; 1100 int ret; 1101 1102 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 1103 if (IS_ERR(buf)) 1104 return buf; 1105 1106 ret = btree_read_extent_buffer_pages(buf, parent_transid, 1107 level, first_key); 1108 if (ret) { 1109 free_extent_buffer_stale(buf); 1110 return ERR_PTR(ret); 1111 } 1112 return buf; 1113 1114 } 1115 1116 void btrfs_clean_tree_block(struct extent_buffer *buf) 1117 { 1118 struct btrfs_fs_info *fs_info = buf->fs_info; 1119 if (btrfs_header_generation(buf) == 1120 fs_info->running_transaction->transid) { 1121 btrfs_assert_tree_write_locked(buf); 1122 1123 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1124 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1125 -buf->len, 1126 fs_info->dirty_metadata_batch); 1127 clear_extent_buffer_dirty(buf); 1128 } 1129 } 1130 } 1131 1132 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1133 u64 objectid) 1134 { 1135 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1136 1137 memset(&root->root_key, 0, sizeof(root->root_key)); 1138 memset(&root->root_item, 0, sizeof(root->root_item)); 1139 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1140 root->fs_info = fs_info; 1141 root->root_key.objectid = objectid; 1142 root->node = NULL; 1143 root->commit_root = NULL; 1144 root->state = 0; 1145 RB_CLEAR_NODE(&root->rb_node); 1146 1147 root->last_trans = 0; 1148 root->free_objectid = 0; 1149 root->nr_delalloc_inodes = 0; 1150 root->nr_ordered_extents = 0; 1151 root->inode_tree = RB_ROOT; 1152 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1153 1154 btrfs_init_root_block_rsv(root); 1155 1156 INIT_LIST_HEAD(&root->dirty_list); 1157 INIT_LIST_HEAD(&root->root_list); 1158 INIT_LIST_HEAD(&root->delalloc_inodes); 1159 INIT_LIST_HEAD(&root->delalloc_root); 1160 INIT_LIST_HEAD(&root->ordered_extents); 1161 INIT_LIST_HEAD(&root->ordered_root); 1162 INIT_LIST_HEAD(&root->reloc_dirty_list); 1163 INIT_LIST_HEAD(&root->logged_list[0]); 1164 INIT_LIST_HEAD(&root->logged_list[1]); 1165 spin_lock_init(&root->inode_lock); 1166 spin_lock_init(&root->delalloc_lock); 1167 spin_lock_init(&root->ordered_extent_lock); 1168 spin_lock_init(&root->accounting_lock); 1169 spin_lock_init(&root->log_extents_lock[0]); 1170 spin_lock_init(&root->log_extents_lock[1]); 1171 spin_lock_init(&root->qgroup_meta_rsv_lock); 1172 mutex_init(&root->objectid_mutex); 1173 mutex_init(&root->log_mutex); 1174 mutex_init(&root->ordered_extent_mutex); 1175 mutex_init(&root->delalloc_mutex); 1176 init_waitqueue_head(&root->qgroup_flush_wait); 1177 init_waitqueue_head(&root->log_writer_wait); 1178 init_waitqueue_head(&root->log_commit_wait[0]); 1179 init_waitqueue_head(&root->log_commit_wait[1]); 1180 INIT_LIST_HEAD(&root->log_ctxs[0]); 1181 INIT_LIST_HEAD(&root->log_ctxs[1]); 1182 atomic_set(&root->log_commit[0], 0); 1183 atomic_set(&root->log_commit[1], 0); 1184 atomic_set(&root->log_writers, 0); 1185 atomic_set(&root->log_batch, 0); 1186 refcount_set(&root->refs, 1); 1187 atomic_set(&root->snapshot_force_cow, 0); 1188 atomic_set(&root->nr_swapfiles, 0); 1189 root->log_transid = 0; 1190 root->log_transid_committed = -1; 1191 root->last_log_commit = 0; 1192 root->anon_dev = 0; 1193 if (!dummy) { 1194 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1195 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL); 1196 extent_io_tree_init(fs_info, &root->log_csum_range, 1197 IO_TREE_LOG_CSUM_RANGE, NULL); 1198 } 1199 1200 spin_lock_init(&root->root_item_lock); 1201 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1202 #ifdef CONFIG_BTRFS_DEBUG 1203 INIT_LIST_HEAD(&root->leak_list); 1204 spin_lock(&fs_info->fs_roots_radix_lock); 1205 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 1206 spin_unlock(&fs_info->fs_roots_radix_lock); 1207 #endif 1208 } 1209 1210 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1211 u64 objectid, gfp_t flags) 1212 { 1213 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1214 if (root) 1215 __setup_root(root, fs_info, objectid); 1216 return root; 1217 } 1218 1219 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1220 /* Should only be used by the testing infrastructure */ 1221 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1222 { 1223 struct btrfs_root *root; 1224 1225 if (!fs_info) 1226 return ERR_PTR(-EINVAL); 1227 1228 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 1229 if (!root) 1230 return ERR_PTR(-ENOMEM); 1231 1232 /* We don't use the stripesize in selftest, set it as sectorsize */ 1233 root->alloc_bytenr = 0; 1234 1235 return root; 1236 } 1237 #endif 1238 1239 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 1240 { 1241 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 1242 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 1243 1244 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 1245 } 1246 1247 static int global_root_key_cmp(const void *k, const struct rb_node *node) 1248 { 1249 const struct btrfs_key *key = k; 1250 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 1251 1252 return btrfs_comp_cpu_keys(key, &root->root_key); 1253 } 1254 1255 int btrfs_global_root_insert(struct btrfs_root *root) 1256 { 1257 struct btrfs_fs_info *fs_info = root->fs_info; 1258 struct rb_node *tmp; 1259 1260 write_lock(&fs_info->global_root_lock); 1261 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 1262 write_unlock(&fs_info->global_root_lock); 1263 ASSERT(!tmp); 1264 1265 return tmp ? -EEXIST : 0; 1266 } 1267 1268 void btrfs_global_root_delete(struct btrfs_root *root) 1269 { 1270 struct btrfs_fs_info *fs_info = root->fs_info; 1271 1272 write_lock(&fs_info->global_root_lock); 1273 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1274 write_unlock(&fs_info->global_root_lock); 1275 } 1276 1277 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 1278 struct btrfs_key *key) 1279 { 1280 struct rb_node *node; 1281 struct btrfs_root *root = NULL; 1282 1283 read_lock(&fs_info->global_root_lock); 1284 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 1285 if (node) 1286 root = container_of(node, struct btrfs_root, rb_node); 1287 read_unlock(&fs_info->global_root_lock); 1288 1289 return root; 1290 } 1291 1292 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1293 { 1294 struct btrfs_key key = { 1295 .objectid = BTRFS_CSUM_TREE_OBJECTID, 1296 .type = BTRFS_ROOT_ITEM_KEY, 1297 .offset = 0, 1298 }; 1299 1300 return btrfs_global_root(fs_info, &key); 1301 } 1302 1303 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1304 { 1305 struct btrfs_key key = { 1306 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 1307 .type = BTRFS_ROOT_ITEM_KEY, 1308 .offset = 0, 1309 }; 1310 1311 return btrfs_global_root(fs_info, &key); 1312 } 1313 1314 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1315 u64 objectid) 1316 { 1317 struct btrfs_fs_info *fs_info = trans->fs_info; 1318 struct extent_buffer *leaf; 1319 struct btrfs_root *tree_root = fs_info->tree_root; 1320 struct btrfs_root *root; 1321 struct btrfs_key key; 1322 unsigned int nofs_flag; 1323 int ret = 0; 1324 1325 /* 1326 * We're holding a transaction handle, so use a NOFS memory allocation 1327 * context to avoid deadlock if reclaim happens. 1328 */ 1329 nofs_flag = memalloc_nofs_save(); 1330 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1331 memalloc_nofs_restore(nofs_flag); 1332 if (!root) 1333 return ERR_PTR(-ENOMEM); 1334 1335 root->root_key.objectid = objectid; 1336 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1337 root->root_key.offset = 0; 1338 1339 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 1340 BTRFS_NESTING_NORMAL); 1341 if (IS_ERR(leaf)) { 1342 ret = PTR_ERR(leaf); 1343 leaf = NULL; 1344 goto fail_unlock; 1345 } 1346 1347 root->node = leaf; 1348 btrfs_mark_buffer_dirty(leaf); 1349 1350 root->commit_root = btrfs_root_node(root); 1351 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1352 1353 btrfs_set_root_flags(&root->root_item, 0); 1354 btrfs_set_root_limit(&root->root_item, 0); 1355 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1356 btrfs_set_root_generation(&root->root_item, trans->transid); 1357 btrfs_set_root_level(&root->root_item, 0); 1358 btrfs_set_root_refs(&root->root_item, 1); 1359 btrfs_set_root_used(&root->root_item, leaf->len); 1360 btrfs_set_root_last_snapshot(&root->root_item, 0); 1361 btrfs_set_root_dirid(&root->root_item, 0); 1362 if (is_fstree(objectid)) 1363 generate_random_guid(root->root_item.uuid); 1364 else 1365 export_guid(root->root_item.uuid, &guid_null); 1366 btrfs_set_root_drop_level(&root->root_item, 0); 1367 1368 btrfs_tree_unlock(leaf); 1369 1370 key.objectid = objectid; 1371 key.type = BTRFS_ROOT_ITEM_KEY; 1372 key.offset = 0; 1373 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1374 if (ret) 1375 goto fail; 1376 1377 return root; 1378 1379 fail_unlock: 1380 if (leaf) 1381 btrfs_tree_unlock(leaf); 1382 fail: 1383 btrfs_put_root(root); 1384 1385 return ERR_PTR(ret); 1386 } 1387 1388 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1389 struct btrfs_fs_info *fs_info) 1390 { 1391 struct btrfs_root *root; 1392 1393 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1394 if (!root) 1395 return ERR_PTR(-ENOMEM); 1396 1397 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1398 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1399 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1400 1401 return root; 1402 } 1403 1404 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 1405 struct btrfs_root *root) 1406 { 1407 struct extent_buffer *leaf; 1408 1409 /* 1410 * DON'T set SHAREABLE bit for log trees. 1411 * 1412 * Log trees are not exposed to user space thus can't be snapshotted, 1413 * and they go away before a real commit is actually done. 1414 * 1415 * They do store pointers to file data extents, and those reference 1416 * counts still get updated (along with back refs to the log tree). 1417 */ 1418 1419 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1420 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); 1421 if (IS_ERR(leaf)) 1422 return PTR_ERR(leaf); 1423 1424 root->node = leaf; 1425 1426 btrfs_mark_buffer_dirty(root->node); 1427 btrfs_tree_unlock(root->node); 1428 1429 return 0; 1430 } 1431 1432 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1433 struct btrfs_fs_info *fs_info) 1434 { 1435 struct btrfs_root *log_root; 1436 1437 log_root = alloc_log_tree(trans, fs_info); 1438 if (IS_ERR(log_root)) 1439 return PTR_ERR(log_root); 1440 1441 if (!btrfs_is_zoned(fs_info)) { 1442 int ret = btrfs_alloc_log_tree_node(trans, log_root); 1443 1444 if (ret) { 1445 btrfs_put_root(log_root); 1446 return ret; 1447 } 1448 } 1449 1450 WARN_ON(fs_info->log_root_tree); 1451 fs_info->log_root_tree = log_root; 1452 return 0; 1453 } 1454 1455 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1456 struct btrfs_root *root) 1457 { 1458 struct btrfs_fs_info *fs_info = root->fs_info; 1459 struct btrfs_root *log_root; 1460 struct btrfs_inode_item *inode_item; 1461 int ret; 1462 1463 log_root = alloc_log_tree(trans, fs_info); 1464 if (IS_ERR(log_root)) 1465 return PTR_ERR(log_root); 1466 1467 ret = btrfs_alloc_log_tree_node(trans, log_root); 1468 if (ret) { 1469 btrfs_put_root(log_root); 1470 return ret; 1471 } 1472 1473 log_root->last_trans = trans->transid; 1474 log_root->root_key.offset = root->root_key.objectid; 1475 1476 inode_item = &log_root->root_item.inode; 1477 btrfs_set_stack_inode_generation(inode_item, 1); 1478 btrfs_set_stack_inode_size(inode_item, 3); 1479 btrfs_set_stack_inode_nlink(inode_item, 1); 1480 btrfs_set_stack_inode_nbytes(inode_item, 1481 fs_info->nodesize); 1482 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1483 1484 btrfs_set_root_node(&log_root->root_item, log_root->node); 1485 1486 WARN_ON(root->log_root); 1487 root->log_root = log_root; 1488 root->log_transid = 0; 1489 root->log_transid_committed = -1; 1490 root->last_log_commit = 0; 1491 return 0; 1492 } 1493 1494 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1495 struct btrfs_path *path, 1496 struct btrfs_key *key) 1497 { 1498 struct btrfs_root *root; 1499 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1500 u64 generation; 1501 int ret; 1502 int level; 1503 1504 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1505 if (!root) 1506 return ERR_PTR(-ENOMEM); 1507 1508 ret = btrfs_find_root(tree_root, key, path, 1509 &root->root_item, &root->root_key); 1510 if (ret) { 1511 if (ret > 0) 1512 ret = -ENOENT; 1513 goto fail; 1514 } 1515 1516 generation = btrfs_root_generation(&root->root_item); 1517 level = btrfs_root_level(&root->root_item); 1518 root->node = read_tree_block(fs_info, 1519 btrfs_root_bytenr(&root->root_item), 1520 key->objectid, generation, level, NULL); 1521 if (IS_ERR(root->node)) { 1522 ret = PTR_ERR(root->node); 1523 root->node = NULL; 1524 goto fail; 1525 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1526 ret = -EIO; 1527 goto fail; 1528 } 1529 root->commit_root = btrfs_root_node(root); 1530 return root; 1531 fail: 1532 btrfs_put_root(root); 1533 return ERR_PTR(ret); 1534 } 1535 1536 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1537 struct btrfs_key *key) 1538 { 1539 struct btrfs_root *root; 1540 struct btrfs_path *path; 1541 1542 path = btrfs_alloc_path(); 1543 if (!path) 1544 return ERR_PTR(-ENOMEM); 1545 root = read_tree_root_path(tree_root, path, key); 1546 btrfs_free_path(path); 1547 1548 return root; 1549 } 1550 1551 /* 1552 * Initialize subvolume root in-memory structure 1553 * 1554 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1555 */ 1556 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1557 { 1558 int ret; 1559 unsigned int nofs_flag; 1560 1561 /* 1562 * We might be called under a transaction (e.g. indirect backref 1563 * resolution) which could deadlock if it triggers memory reclaim 1564 */ 1565 nofs_flag = memalloc_nofs_save(); 1566 ret = btrfs_drew_lock_init(&root->snapshot_lock); 1567 memalloc_nofs_restore(nofs_flag); 1568 if (ret) 1569 goto fail; 1570 1571 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1572 !btrfs_is_data_reloc_root(root)) { 1573 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1574 btrfs_check_and_init_root_item(&root->root_item); 1575 } 1576 1577 /* 1578 * Don't assign anonymous block device to roots that are not exposed to 1579 * userspace, the id pool is limited to 1M 1580 */ 1581 if (is_fstree(root->root_key.objectid) && 1582 btrfs_root_refs(&root->root_item) > 0) { 1583 if (!anon_dev) { 1584 ret = get_anon_bdev(&root->anon_dev); 1585 if (ret) 1586 goto fail; 1587 } else { 1588 root->anon_dev = anon_dev; 1589 } 1590 } 1591 1592 mutex_lock(&root->objectid_mutex); 1593 ret = btrfs_init_root_free_objectid(root); 1594 if (ret) { 1595 mutex_unlock(&root->objectid_mutex); 1596 goto fail; 1597 } 1598 1599 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1600 1601 mutex_unlock(&root->objectid_mutex); 1602 1603 return 0; 1604 fail: 1605 /* The caller is responsible to call btrfs_free_fs_root */ 1606 return ret; 1607 } 1608 1609 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1610 u64 root_id) 1611 { 1612 struct btrfs_root *root; 1613 1614 spin_lock(&fs_info->fs_roots_radix_lock); 1615 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1616 (unsigned long)root_id); 1617 if (root) 1618 root = btrfs_grab_root(root); 1619 spin_unlock(&fs_info->fs_roots_radix_lock); 1620 return root; 1621 } 1622 1623 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1624 u64 objectid) 1625 { 1626 struct btrfs_key key = { 1627 .objectid = objectid, 1628 .type = BTRFS_ROOT_ITEM_KEY, 1629 .offset = 0, 1630 }; 1631 1632 if (objectid == BTRFS_ROOT_TREE_OBJECTID) 1633 return btrfs_grab_root(fs_info->tree_root); 1634 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 1635 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1636 if (objectid == BTRFS_CHUNK_TREE_OBJECTID) 1637 return btrfs_grab_root(fs_info->chunk_root); 1638 if (objectid == BTRFS_DEV_TREE_OBJECTID) 1639 return btrfs_grab_root(fs_info->dev_root); 1640 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 1641 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1642 if (objectid == BTRFS_QUOTA_TREE_OBJECTID) 1643 return btrfs_grab_root(fs_info->quota_root) ? 1644 fs_info->quota_root : ERR_PTR(-ENOENT); 1645 if (objectid == BTRFS_UUID_TREE_OBJECTID) 1646 return btrfs_grab_root(fs_info->uuid_root) ? 1647 fs_info->uuid_root : ERR_PTR(-ENOENT); 1648 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) { 1649 struct btrfs_root *root = btrfs_global_root(fs_info, &key); 1650 1651 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT); 1652 } 1653 return NULL; 1654 } 1655 1656 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1657 struct btrfs_root *root) 1658 { 1659 int ret; 1660 1661 ret = radix_tree_preload(GFP_NOFS); 1662 if (ret) 1663 return ret; 1664 1665 spin_lock(&fs_info->fs_roots_radix_lock); 1666 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1667 (unsigned long)root->root_key.objectid, 1668 root); 1669 if (ret == 0) { 1670 btrfs_grab_root(root); 1671 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1672 } 1673 spin_unlock(&fs_info->fs_roots_radix_lock); 1674 radix_tree_preload_end(); 1675 1676 return ret; 1677 } 1678 1679 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1680 { 1681 #ifdef CONFIG_BTRFS_DEBUG 1682 struct btrfs_root *root; 1683 1684 while (!list_empty(&fs_info->allocated_roots)) { 1685 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1686 1687 root = list_first_entry(&fs_info->allocated_roots, 1688 struct btrfs_root, leak_list); 1689 btrfs_err(fs_info, "leaked root %s refcount %d", 1690 btrfs_root_name(&root->root_key, buf), 1691 refcount_read(&root->refs)); 1692 while (refcount_read(&root->refs) > 1) 1693 btrfs_put_root(root); 1694 btrfs_put_root(root); 1695 } 1696 #endif 1697 } 1698 1699 static void free_global_roots(struct btrfs_fs_info *fs_info) 1700 { 1701 struct btrfs_root *root; 1702 struct rb_node *node; 1703 1704 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1705 root = rb_entry(node, struct btrfs_root, rb_node); 1706 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1707 btrfs_put_root(root); 1708 } 1709 } 1710 1711 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1712 { 1713 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1714 percpu_counter_destroy(&fs_info->delalloc_bytes); 1715 percpu_counter_destroy(&fs_info->ordered_bytes); 1716 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1717 btrfs_free_csum_hash(fs_info); 1718 btrfs_free_stripe_hash_table(fs_info); 1719 btrfs_free_ref_cache(fs_info); 1720 kfree(fs_info->balance_ctl); 1721 kfree(fs_info->delayed_root); 1722 free_global_roots(fs_info); 1723 btrfs_put_root(fs_info->tree_root); 1724 btrfs_put_root(fs_info->chunk_root); 1725 btrfs_put_root(fs_info->dev_root); 1726 btrfs_put_root(fs_info->quota_root); 1727 btrfs_put_root(fs_info->uuid_root); 1728 btrfs_put_root(fs_info->fs_root); 1729 btrfs_put_root(fs_info->data_reloc_root); 1730 btrfs_check_leaked_roots(fs_info); 1731 btrfs_extent_buffer_leak_debug_check(fs_info); 1732 kfree(fs_info->super_copy); 1733 kfree(fs_info->super_for_commit); 1734 kfree(fs_info->subpage_info); 1735 kvfree(fs_info); 1736 } 1737 1738 1739 /* 1740 * Get an in-memory reference of a root structure. 1741 * 1742 * For essential trees like root/extent tree, we grab it from fs_info directly. 1743 * For subvolume trees, we check the cached filesystem roots first. If not 1744 * found, then read it from disk and add it to cached fs roots. 1745 * 1746 * Caller should release the root by calling btrfs_put_root() after the usage. 1747 * 1748 * NOTE: Reloc and log trees can't be read by this function as they share the 1749 * same root objectid. 1750 * 1751 * @objectid: root id 1752 * @anon_dev: preallocated anonymous block device number for new roots, 1753 * pass 0 for new allocation. 1754 * @check_ref: whether to check root item references, If true, return -ENOENT 1755 * for orphan roots 1756 */ 1757 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1758 u64 objectid, dev_t anon_dev, 1759 bool check_ref) 1760 { 1761 struct btrfs_root *root; 1762 struct btrfs_path *path; 1763 struct btrfs_key key; 1764 int ret; 1765 1766 root = btrfs_get_global_root(fs_info, objectid); 1767 if (root) 1768 return root; 1769 again: 1770 root = btrfs_lookup_fs_root(fs_info, objectid); 1771 if (root) { 1772 /* Shouldn't get preallocated anon_dev for cached roots */ 1773 ASSERT(!anon_dev); 1774 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1775 btrfs_put_root(root); 1776 return ERR_PTR(-ENOENT); 1777 } 1778 return root; 1779 } 1780 1781 key.objectid = objectid; 1782 key.type = BTRFS_ROOT_ITEM_KEY; 1783 key.offset = (u64)-1; 1784 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1785 if (IS_ERR(root)) 1786 return root; 1787 1788 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1789 ret = -ENOENT; 1790 goto fail; 1791 } 1792 1793 ret = btrfs_init_fs_root(root, anon_dev); 1794 if (ret) 1795 goto fail; 1796 1797 path = btrfs_alloc_path(); 1798 if (!path) { 1799 ret = -ENOMEM; 1800 goto fail; 1801 } 1802 key.objectid = BTRFS_ORPHAN_OBJECTID; 1803 key.type = BTRFS_ORPHAN_ITEM_KEY; 1804 key.offset = objectid; 1805 1806 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1807 btrfs_free_path(path); 1808 if (ret < 0) 1809 goto fail; 1810 if (ret == 0) 1811 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1812 1813 ret = btrfs_insert_fs_root(fs_info, root); 1814 if (ret) { 1815 btrfs_put_root(root); 1816 if (ret == -EEXIST) 1817 goto again; 1818 goto fail; 1819 } 1820 return root; 1821 fail: 1822 /* 1823 * If our caller provided us an anonymous device, then it's his 1824 * responsability to free it in case we fail. So we have to set our 1825 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1826 * and once again by our caller. 1827 */ 1828 if (anon_dev) 1829 root->anon_dev = 0; 1830 btrfs_put_root(root); 1831 return ERR_PTR(ret); 1832 } 1833 1834 /* 1835 * Get in-memory reference of a root structure 1836 * 1837 * @objectid: tree objectid 1838 * @check_ref: if set, verify that the tree exists and the item has at least 1839 * one reference 1840 */ 1841 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1842 u64 objectid, bool check_ref) 1843 { 1844 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1845 } 1846 1847 /* 1848 * Get in-memory reference of a root structure, created as new, optionally pass 1849 * the anonymous block device id 1850 * 1851 * @objectid: tree objectid 1852 * @anon_dev: if zero, allocate a new anonymous block device or use the 1853 * parameter value 1854 */ 1855 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1856 u64 objectid, dev_t anon_dev) 1857 { 1858 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1859 } 1860 1861 /* 1862 * btrfs_get_fs_root_commit_root - return a root for the given objectid 1863 * @fs_info: the fs_info 1864 * @objectid: the objectid we need to lookup 1865 * 1866 * This is exclusively used for backref walking, and exists specifically because 1867 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1868 * creation time, which means we may have to read the tree_root in order to look 1869 * up a fs root that is not in memory. If the root is not in memory we will 1870 * read the tree root commit root and look up the fs root from there. This is a 1871 * temporary root, it will not be inserted into the radix tree as it doesn't 1872 * have the most uptodate information, it'll simply be discarded once the 1873 * backref code is finished using the root. 1874 */ 1875 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1876 struct btrfs_path *path, 1877 u64 objectid) 1878 { 1879 struct btrfs_root *root; 1880 struct btrfs_key key; 1881 1882 ASSERT(path->search_commit_root && path->skip_locking); 1883 1884 /* 1885 * This can return -ENOENT if we ask for a root that doesn't exist, but 1886 * since this is called via the backref walking code we won't be looking 1887 * up a root that doesn't exist, unless there's corruption. So if root 1888 * != NULL just return it. 1889 */ 1890 root = btrfs_get_global_root(fs_info, objectid); 1891 if (root) 1892 return root; 1893 1894 root = btrfs_lookup_fs_root(fs_info, objectid); 1895 if (root) 1896 return root; 1897 1898 key.objectid = objectid; 1899 key.type = BTRFS_ROOT_ITEM_KEY; 1900 key.offset = (u64)-1; 1901 root = read_tree_root_path(fs_info->tree_root, path, &key); 1902 btrfs_release_path(path); 1903 1904 return root; 1905 } 1906 1907 /* 1908 * called by the kthread helper functions to finally call the bio end_io 1909 * functions. This is where read checksum verification actually happens 1910 */ 1911 static void end_workqueue_fn(struct btrfs_work *work) 1912 { 1913 struct bio *bio; 1914 struct btrfs_end_io_wq *end_io_wq; 1915 1916 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1917 bio = end_io_wq->bio; 1918 1919 bio->bi_status = end_io_wq->status; 1920 bio->bi_private = end_io_wq->private; 1921 bio->bi_end_io = end_io_wq->end_io; 1922 bio_endio(bio); 1923 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1924 } 1925 1926 static int cleaner_kthread(void *arg) 1927 { 1928 struct btrfs_root *root = arg; 1929 struct btrfs_fs_info *fs_info = root->fs_info; 1930 int again; 1931 1932 while (1) { 1933 again = 0; 1934 1935 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1936 1937 /* Make the cleaner go to sleep early. */ 1938 if (btrfs_need_cleaner_sleep(fs_info)) 1939 goto sleep; 1940 1941 /* 1942 * Do not do anything if we might cause open_ctree() to block 1943 * before we have finished mounting the filesystem. 1944 */ 1945 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1946 goto sleep; 1947 1948 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1949 goto sleep; 1950 1951 /* 1952 * Avoid the problem that we change the status of the fs 1953 * during the above check and trylock. 1954 */ 1955 if (btrfs_need_cleaner_sleep(fs_info)) { 1956 mutex_unlock(&fs_info->cleaner_mutex); 1957 goto sleep; 1958 } 1959 1960 btrfs_run_delayed_iputs(fs_info); 1961 1962 again = btrfs_clean_one_deleted_snapshot(root); 1963 mutex_unlock(&fs_info->cleaner_mutex); 1964 1965 /* 1966 * The defragger has dealt with the R/O remount and umount, 1967 * needn't do anything special here. 1968 */ 1969 btrfs_run_defrag_inodes(fs_info); 1970 1971 /* 1972 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1973 * with relocation (btrfs_relocate_chunk) and relocation 1974 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1975 * after acquiring fs_info->reclaim_bgs_lock. So we 1976 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1977 * unused block groups. 1978 */ 1979 btrfs_delete_unused_bgs(fs_info); 1980 1981 /* 1982 * Reclaim block groups in the reclaim_bgs list after we deleted 1983 * all unused block_groups. This possibly gives us some more free 1984 * space. 1985 */ 1986 btrfs_reclaim_bgs(fs_info); 1987 sleep: 1988 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1989 if (kthread_should_park()) 1990 kthread_parkme(); 1991 if (kthread_should_stop()) 1992 return 0; 1993 if (!again) { 1994 set_current_state(TASK_INTERRUPTIBLE); 1995 schedule(); 1996 __set_current_state(TASK_RUNNING); 1997 } 1998 } 1999 } 2000 2001 static int transaction_kthread(void *arg) 2002 { 2003 struct btrfs_root *root = arg; 2004 struct btrfs_fs_info *fs_info = root->fs_info; 2005 struct btrfs_trans_handle *trans; 2006 struct btrfs_transaction *cur; 2007 u64 transid; 2008 time64_t delta; 2009 unsigned long delay; 2010 bool cannot_commit; 2011 2012 do { 2013 cannot_commit = false; 2014 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 2015 mutex_lock(&fs_info->transaction_kthread_mutex); 2016 2017 spin_lock(&fs_info->trans_lock); 2018 cur = fs_info->running_transaction; 2019 if (!cur) { 2020 spin_unlock(&fs_info->trans_lock); 2021 goto sleep; 2022 } 2023 2024 delta = ktime_get_seconds() - cur->start_time; 2025 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 2026 cur->state < TRANS_STATE_COMMIT_START && 2027 delta < fs_info->commit_interval) { 2028 spin_unlock(&fs_info->trans_lock); 2029 delay -= msecs_to_jiffies((delta - 1) * 1000); 2030 delay = min(delay, 2031 msecs_to_jiffies(fs_info->commit_interval * 1000)); 2032 goto sleep; 2033 } 2034 transid = cur->transid; 2035 spin_unlock(&fs_info->trans_lock); 2036 2037 /* If the file system is aborted, this will always fail. */ 2038 trans = btrfs_attach_transaction(root); 2039 if (IS_ERR(trans)) { 2040 if (PTR_ERR(trans) != -ENOENT) 2041 cannot_commit = true; 2042 goto sleep; 2043 } 2044 if (transid == trans->transid) { 2045 btrfs_commit_transaction(trans); 2046 } else { 2047 btrfs_end_transaction(trans); 2048 } 2049 sleep: 2050 wake_up_process(fs_info->cleaner_kthread); 2051 mutex_unlock(&fs_info->transaction_kthread_mutex); 2052 2053 if (BTRFS_FS_ERROR(fs_info)) 2054 btrfs_cleanup_transaction(fs_info); 2055 if (!kthread_should_stop() && 2056 (!btrfs_transaction_blocked(fs_info) || 2057 cannot_commit)) 2058 schedule_timeout_interruptible(delay); 2059 } while (!kthread_should_stop()); 2060 return 0; 2061 } 2062 2063 /* 2064 * This will find the highest generation in the array of root backups. The 2065 * index of the highest array is returned, or -EINVAL if we can't find 2066 * anything. 2067 * 2068 * We check to make sure the array is valid by comparing the 2069 * generation of the latest root in the array with the generation 2070 * in the super block. If they don't match we pitch it. 2071 */ 2072 static int find_newest_super_backup(struct btrfs_fs_info *info) 2073 { 2074 const u64 newest_gen = btrfs_super_generation(info->super_copy); 2075 u64 cur; 2076 struct btrfs_root_backup *root_backup; 2077 int i; 2078 2079 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2080 root_backup = info->super_copy->super_roots + i; 2081 cur = btrfs_backup_tree_root_gen(root_backup); 2082 if (cur == newest_gen) 2083 return i; 2084 } 2085 2086 return -EINVAL; 2087 } 2088 2089 /* 2090 * copy all the root pointers into the super backup array. 2091 * this will bump the backup pointer by one when it is 2092 * done 2093 */ 2094 static void backup_super_roots(struct btrfs_fs_info *info) 2095 { 2096 const int next_backup = info->backup_root_index; 2097 struct btrfs_root_backup *root_backup; 2098 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 2099 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 2100 2101 root_backup = info->super_for_commit->super_roots + next_backup; 2102 2103 /* 2104 * make sure all of our padding and empty slots get zero filled 2105 * regardless of which ones we use today 2106 */ 2107 memset(root_backup, 0, sizeof(*root_backup)); 2108 2109 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 2110 2111 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 2112 btrfs_set_backup_tree_root_gen(root_backup, 2113 btrfs_header_generation(info->tree_root->node)); 2114 2115 btrfs_set_backup_tree_root_level(root_backup, 2116 btrfs_header_level(info->tree_root->node)); 2117 2118 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 2119 btrfs_set_backup_chunk_root_gen(root_backup, 2120 btrfs_header_generation(info->chunk_root->node)); 2121 btrfs_set_backup_chunk_root_level(root_backup, 2122 btrfs_header_level(info->chunk_root->node)); 2123 2124 btrfs_set_backup_extent_root(root_backup, extent_root->node->start); 2125 btrfs_set_backup_extent_root_gen(root_backup, 2126 btrfs_header_generation(extent_root->node)); 2127 btrfs_set_backup_extent_root_level(root_backup, 2128 btrfs_header_level(extent_root->node)); 2129 2130 /* 2131 * we might commit during log recovery, which happens before we set 2132 * the fs_root. Make sure it is valid before we fill it in. 2133 */ 2134 if (info->fs_root && info->fs_root->node) { 2135 btrfs_set_backup_fs_root(root_backup, 2136 info->fs_root->node->start); 2137 btrfs_set_backup_fs_root_gen(root_backup, 2138 btrfs_header_generation(info->fs_root->node)); 2139 btrfs_set_backup_fs_root_level(root_backup, 2140 btrfs_header_level(info->fs_root->node)); 2141 } 2142 2143 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2144 btrfs_set_backup_dev_root_gen(root_backup, 2145 btrfs_header_generation(info->dev_root->node)); 2146 btrfs_set_backup_dev_root_level(root_backup, 2147 btrfs_header_level(info->dev_root->node)); 2148 2149 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 2150 btrfs_set_backup_csum_root_gen(root_backup, 2151 btrfs_header_generation(csum_root->node)); 2152 btrfs_set_backup_csum_root_level(root_backup, 2153 btrfs_header_level(csum_root->node)); 2154 2155 btrfs_set_backup_total_bytes(root_backup, 2156 btrfs_super_total_bytes(info->super_copy)); 2157 btrfs_set_backup_bytes_used(root_backup, 2158 btrfs_super_bytes_used(info->super_copy)); 2159 btrfs_set_backup_num_devices(root_backup, 2160 btrfs_super_num_devices(info->super_copy)); 2161 2162 /* 2163 * if we don't copy this out to the super_copy, it won't get remembered 2164 * for the next commit 2165 */ 2166 memcpy(&info->super_copy->super_roots, 2167 &info->super_for_commit->super_roots, 2168 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2169 } 2170 2171 /* 2172 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 2173 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 2174 * 2175 * fs_info - filesystem whose backup roots need to be read 2176 * priority - priority of backup root required 2177 * 2178 * Returns backup root index on success and -EINVAL otherwise. 2179 */ 2180 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 2181 { 2182 int backup_index = find_newest_super_backup(fs_info); 2183 struct btrfs_super_block *super = fs_info->super_copy; 2184 struct btrfs_root_backup *root_backup; 2185 2186 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 2187 if (priority == 0) 2188 return backup_index; 2189 2190 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 2191 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 2192 } else { 2193 return -EINVAL; 2194 } 2195 2196 root_backup = super->super_roots + backup_index; 2197 2198 btrfs_set_super_generation(super, 2199 btrfs_backup_tree_root_gen(root_backup)); 2200 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2201 btrfs_set_super_root_level(super, 2202 btrfs_backup_tree_root_level(root_backup)); 2203 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2204 2205 /* 2206 * Fixme: the total bytes and num_devices need to match or we should 2207 * need a fsck 2208 */ 2209 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2210 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2211 2212 return backup_index; 2213 } 2214 2215 /* helper to cleanup workers */ 2216 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2217 { 2218 btrfs_destroy_workqueue(fs_info->fixup_workers); 2219 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2220 btrfs_destroy_workqueue(fs_info->workers); 2221 btrfs_destroy_workqueue(fs_info->endio_workers); 2222 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2223 btrfs_destroy_workqueue(fs_info->rmw_workers); 2224 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2225 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2226 btrfs_destroy_workqueue(fs_info->delayed_workers); 2227 btrfs_destroy_workqueue(fs_info->caching_workers); 2228 btrfs_destroy_workqueue(fs_info->flush_workers); 2229 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2230 if (fs_info->discard_ctl.discard_workers) 2231 destroy_workqueue(fs_info->discard_ctl.discard_workers); 2232 /* 2233 * Now that all other work queues are destroyed, we can safely destroy 2234 * the queues used for metadata I/O, since tasks from those other work 2235 * queues can do metadata I/O operations. 2236 */ 2237 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2238 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2239 } 2240 2241 static void free_root_extent_buffers(struct btrfs_root *root) 2242 { 2243 if (root) { 2244 free_extent_buffer(root->node); 2245 free_extent_buffer(root->commit_root); 2246 root->node = NULL; 2247 root->commit_root = NULL; 2248 } 2249 } 2250 2251 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 2252 { 2253 struct btrfs_root *root, *tmp; 2254 2255 rbtree_postorder_for_each_entry_safe(root, tmp, 2256 &fs_info->global_root_tree, 2257 rb_node) 2258 free_root_extent_buffers(root); 2259 } 2260 2261 /* helper to cleanup tree roots */ 2262 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 2263 { 2264 free_root_extent_buffers(info->tree_root); 2265 2266 free_global_root_pointers(info); 2267 free_root_extent_buffers(info->dev_root); 2268 free_root_extent_buffers(info->quota_root); 2269 free_root_extent_buffers(info->uuid_root); 2270 free_root_extent_buffers(info->fs_root); 2271 free_root_extent_buffers(info->data_reloc_root); 2272 if (free_chunk_root) 2273 free_root_extent_buffers(info->chunk_root); 2274 } 2275 2276 void btrfs_put_root(struct btrfs_root *root) 2277 { 2278 if (!root) 2279 return; 2280 2281 if (refcount_dec_and_test(&root->refs)) { 2282 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2283 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 2284 if (root->anon_dev) 2285 free_anon_bdev(root->anon_dev); 2286 btrfs_drew_lock_destroy(&root->snapshot_lock); 2287 free_root_extent_buffers(root); 2288 #ifdef CONFIG_BTRFS_DEBUG 2289 spin_lock(&root->fs_info->fs_roots_radix_lock); 2290 list_del_init(&root->leak_list); 2291 spin_unlock(&root->fs_info->fs_roots_radix_lock); 2292 #endif 2293 kfree(root); 2294 } 2295 } 2296 2297 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2298 { 2299 int ret; 2300 struct btrfs_root *gang[8]; 2301 int i; 2302 2303 while (!list_empty(&fs_info->dead_roots)) { 2304 gang[0] = list_entry(fs_info->dead_roots.next, 2305 struct btrfs_root, root_list); 2306 list_del(&gang[0]->root_list); 2307 2308 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2309 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2310 btrfs_put_root(gang[0]); 2311 } 2312 2313 while (1) { 2314 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2315 (void **)gang, 0, 2316 ARRAY_SIZE(gang)); 2317 if (!ret) 2318 break; 2319 for (i = 0; i < ret; i++) 2320 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2321 } 2322 } 2323 2324 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2325 { 2326 mutex_init(&fs_info->scrub_lock); 2327 atomic_set(&fs_info->scrubs_running, 0); 2328 atomic_set(&fs_info->scrub_pause_req, 0); 2329 atomic_set(&fs_info->scrubs_paused, 0); 2330 atomic_set(&fs_info->scrub_cancel_req, 0); 2331 init_waitqueue_head(&fs_info->scrub_pause_wait); 2332 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2333 } 2334 2335 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2336 { 2337 spin_lock_init(&fs_info->balance_lock); 2338 mutex_init(&fs_info->balance_mutex); 2339 atomic_set(&fs_info->balance_pause_req, 0); 2340 atomic_set(&fs_info->balance_cancel_req, 0); 2341 fs_info->balance_ctl = NULL; 2342 init_waitqueue_head(&fs_info->balance_wait_q); 2343 atomic_set(&fs_info->reloc_cancel_req, 0); 2344 } 2345 2346 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2347 { 2348 struct inode *inode = fs_info->btree_inode; 2349 2350 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2351 set_nlink(inode, 1); 2352 /* 2353 * we set the i_size on the btree inode to the max possible int. 2354 * the real end of the address space is determined by all of 2355 * the devices in the system 2356 */ 2357 inode->i_size = OFFSET_MAX; 2358 inode->i_mapping->a_ops = &btree_aops; 2359 2360 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2361 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2362 IO_TREE_BTREE_INODE_IO, inode); 2363 BTRFS_I(inode)->io_tree.track_uptodate = false; 2364 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2365 2366 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2367 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2368 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2369 btrfs_insert_inode_hash(inode); 2370 } 2371 2372 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2373 { 2374 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2375 init_rwsem(&fs_info->dev_replace.rwsem); 2376 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2377 } 2378 2379 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2380 { 2381 spin_lock_init(&fs_info->qgroup_lock); 2382 mutex_init(&fs_info->qgroup_ioctl_lock); 2383 fs_info->qgroup_tree = RB_ROOT; 2384 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2385 fs_info->qgroup_seq = 1; 2386 fs_info->qgroup_ulist = NULL; 2387 fs_info->qgroup_rescan_running = false; 2388 mutex_init(&fs_info->qgroup_rescan_lock); 2389 } 2390 2391 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 2392 { 2393 u32 max_active = fs_info->thread_pool_size; 2394 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2395 2396 fs_info->workers = 2397 btrfs_alloc_workqueue(fs_info, "worker", 2398 flags | WQ_HIGHPRI, max_active, 16); 2399 2400 fs_info->delalloc_workers = 2401 btrfs_alloc_workqueue(fs_info, "delalloc", 2402 flags, max_active, 2); 2403 2404 fs_info->flush_workers = 2405 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2406 flags, max_active, 0); 2407 2408 fs_info->caching_workers = 2409 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2410 2411 fs_info->fixup_workers = 2412 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2413 2414 /* 2415 * endios are largely parallel and should have a very 2416 * low idle thresh 2417 */ 2418 fs_info->endio_workers = 2419 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2420 fs_info->endio_meta_workers = 2421 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2422 max_active, 4); 2423 fs_info->endio_meta_write_workers = 2424 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2425 max_active, 2); 2426 fs_info->endio_raid56_workers = 2427 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2428 max_active, 4); 2429 fs_info->rmw_workers = 2430 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2431 fs_info->endio_write_workers = 2432 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2433 max_active, 2); 2434 fs_info->endio_freespace_worker = 2435 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2436 max_active, 0); 2437 fs_info->delayed_workers = 2438 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2439 max_active, 0); 2440 fs_info->qgroup_rescan_workers = 2441 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2442 fs_info->discard_ctl.discard_workers = 2443 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2444 2445 if (!(fs_info->workers && fs_info->delalloc_workers && 2446 fs_info->flush_workers && 2447 fs_info->endio_workers && fs_info->endio_meta_workers && 2448 fs_info->endio_meta_write_workers && 2449 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2450 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2451 fs_info->caching_workers && fs_info->fixup_workers && 2452 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2453 fs_info->discard_ctl.discard_workers)) { 2454 return -ENOMEM; 2455 } 2456 2457 return 0; 2458 } 2459 2460 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2461 { 2462 struct crypto_shash *csum_shash; 2463 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2464 2465 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2466 2467 if (IS_ERR(csum_shash)) { 2468 btrfs_err(fs_info, "error allocating %s hash for checksum", 2469 csum_driver); 2470 return PTR_ERR(csum_shash); 2471 } 2472 2473 fs_info->csum_shash = csum_shash; 2474 2475 return 0; 2476 } 2477 2478 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2479 struct btrfs_fs_devices *fs_devices) 2480 { 2481 int ret; 2482 struct btrfs_root *log_tree_root; 2483 struct btrfs_super_block *disk_super = fs_info->super_copy; 2484 u64 bytenr = btrfs_super_log_root(disk_super); 2485 int level = btrfs_super_log_root_level(disk_super); 2486 2487 if (fs_devices->rw_devices == 0) { 2488 btrfs_warn(fs_info, "log replay required on RO media"); 2489 return -EIO; 2490 } 2491 2492 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2493 GFP_KERNEL); 2494 if (!log_tree_root) 2495 return -ENOMEM; 2496 2497 log_tree_root->node = read_tree_block(fs_info, bytenr, 2498 BTRFS_TREE_LOG_OBJECTID, 2499 fs_info->generation + 1, level, 2500 NULL); 2501 if (IS_ERR(log_tree_root->node)) { 2502 btrfs_warn(fs_info, "failed to read log tree"); 2503 ret = PTR_ERR(log_tree_root->node); 2504 log_tree_root->node = NULL; 2505 btrfs_put_root(log_tree_root); 2506 return ret; 2507 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2508 btrfs_err(fs_info, "failed to read log tree"); 2509 btrfs_put_root(log_tree_root); 2510 return -EIO; 2511 } 2512 /* returns with log_tree_root freed on success */ 2513 ret = btrfs_recover_log_trees(log_tree_root); 2514 if (ret) { 2515 btrfs_handle_fs_error(fs_info, ret, 2516 "Failed to recover log tree"); 2517 btrfs_put_root(log_tree_root); 2518 return ret; 2519 } 2520 2521 if (sb_rdonly(fs_info->sb)) { 2522 ret = btrfs_commit_super(fs_info); 2523 if (ret) 2524 return ret; 2525 } 2526 2527 return 0; 2528 } 2529 2530 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2531 struct btrfs_path *path, u64 objectid, 2532 const char *name) 2533 { 2534 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2535 struct btrfs_root *root; 2536 int ret; 2537 struct btrfs_key key = { 2538 .objectid = objectid, 2539 .type = BTRFS_ROOT_ITEM_KEY, 2540 .offset = 0, 2541 }; 2542 bool found = false; 2543 2544 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2545 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2546 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2547 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2548 return 0; 2549 } 2550 2551 while (1) { 2552 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2553 if (ret < 0) 2554 break; 2555 2556 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2557 ret = btrfs_next_leaf(tree_root, path); 2558 if (ret) { 2559 if (ret > 0) 2560 ret = 0; 2561 break; 2562 } 2563 } 2564 ret = 0; 2565 2566 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2567 if (key.objectid != objectid) 2568 break; 2569 btrfs_release_path(path); 2570 2571 found = true; 2572 root = read_tree_root_path(tree_root, path, &key); 2573 if (IS_ERR(root)) { 2574 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2575 ret = PTR_ERR(root); 2576 break; 2577 } 2578 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2579 ret = btrfs_global_root_insert(root); 2580 if (ret) { 2581 btrfs_put_root(root); 2582 break; 2583 } 2584 key.offset++; 2585 } 2586 btrfs_release_path(path); 2587 2588 if (!found || ret) { 2589 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2590 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2591 2592 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2593 ret = ret ? ret : -ENOENT; 2594 else 2595 ret = 0; 2596 btrfs_err(fs_info, "failed to load root %s", name); 2597 } 2598 return ret; 2599 } 2600 2601 static int load_global_roots(struct btrfs_root *tree_root) 2602 { 2603 struct btrfs_path *path; 2604 int ret = 0; 2605 2606 path = btrfs_alloc_path(); 2607 if (!path) 2608 return -ENOMEM; 2609 2610 ret = load_global_roots_objectid(tree_root, path, 2611 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2612 if (ret) 2613 goto out; 2614 ret = load_global_roots_objectid(tree_root, path, 2615 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2616 if (ret) 2617 goto out; 2618 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2619 goto out; 2620 ret = load_global_roots_objectid(tree_root, path, 2621 BTRFS_FREE_SPACE_TREE_OBJECTID, 2622 "free space"); 2623 out: 2624 btrfs_free_path(path); 2625 return ret; 2626 } 2627 2628 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2629 { 2630 struct btrfs_root *tree_root = fs_info->tree_root; 2631 struct btrfs_root *root; 2632 struct btrfs_key location; 2633 int ret; 2634 2635 BUG_ON(!fs_info->tree_root); 2636 2637 ret = load_global_roots(tree_root); 2638 if (ret) 2639 return ret; 2640 2641 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2642 location.type = BTRFS_ROOT_ITEM_KEY; 2643 location.offset = 0; 2644 2645 root = btrfs_read_tree_root(tree_root, &location); 2646 if (IS_ERR(root)) { 2647 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2648 ret = PTR_ERR(root); 2649 goto out; 2650 } 2651 } else { 2652 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2653 fs_info->dev_root = root; 2654 } 2655 /* Initialize fs_info for all devices in any case */ 2656 btrfs_init_devices_late(fs_info); 2657 2658 /* 2659 * This tree can share blocks with some other fs tree during relocation 2660 * and we need a proper setup by btrfs_get_fs_root 2661 */ 2662 root = btrfs_get_fs_root(tree_root->fs_info, 2663 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2664 if (IS_ERR(root)) { 2665 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2666 ret = PTR_ERR(root); 2667 goto out; 2668 } 2669 } else { 2670 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2671 fs_info->data_reloc_root = root; 2672 } 2673 2674 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2675 root = btrfs_read_tree_root(tree_root, &location); 2676 if (!IS_ERR(root)) { 2677 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2678 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2679 fs_info->quota_root = root; 2680 } 2681 2682 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2683 root = btrfs_read_tree_root(tree_root, &location); 2684 if (IS_ERR(root)) { 2685 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2686 ret = PTR_ERR(root); 2687 if (ret != -ENOENT) 2688 goto out; 2689 } 2690 } else { 2691 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2692 fs_info->uuid_root = root; 2693 } 2694 2695 return 0; 2696 out: 2697 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2698 location.objectid, ret); 2699 return ret; 2700 } 2701 2702 /* 2703 * Real super block validation 2704 * NOTE: super csum type and incompat features will not be checked here. 2705 * 2706 * @sb: super block to check 2707 * @mirror_num: the super block number to check its bytenr: 2708 * 0 the primary (1st) sb 2709 * 1, 2 2nd and 3rd backup copy 2710 * -1 skip bytenr check 2711 */ 2712 static int validate_super(struct btrfs_fs_info *fs_info, 2713 struct btrfs_super_block *sb, int mirror_num) 2714 { 2715 u64 nodesize = btrfs_super_nodesize(sb); 2716 u64 sectorsize = btrfs_super_sectorsize(sb); 2717 int ret = 0; 2718 2719 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2720 btrfs_err(fs_info, "no valid FS found"); 2721 ret = -EINVAL; 2722 } 2723 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2724 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2725 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2726 ret = -EINVAL; 2727 } 2728 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2729 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2730 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2731 ret = -EINVAL; 2732 } 2733 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2734 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2735 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2736 ret = -EINVAL; 2737 } 2738 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2739 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2740 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2741 ret = -EINVAL; 2742 } 2743 2744 /* 2745 * Check sectorsize and nodesize first, other check will need it. 2746 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2747 */ 2748 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2749 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2750 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2751 ret = -EINVAL; 2752 } 2753 2754 /* 2755 * For 4K page size, we only support 4K sector size. 2756 * For 64K page size, we support 64K and 4K sector sizes. 2757 */ 2758 if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) || 2759 (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K && 2760 sectorsize != SZ_64K))) { 2761 btrfs_err(fs_info, 2762 "sectorsize %llu not yet supported for page size %lu", 2763 sectorsize, PAGE_SIZE); 2764 ret = -EINVAL; 2765 } 2766 2767 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2768 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2769 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2770 ret = -EINVAL; 2771 } 2772 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2773 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2774 le32_to_cpu(sb->__unused_leafsize), nodesize); 2775 ret = -EINVAL; 2776 } 2777 2778 /* Root alignment check */ 2779 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2780 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2781 btrfs_super_root(sb)); 2782 ret = -EINVAL; 2783 } 2784 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2785 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2786 btrfs_super_chunk_root(sb)); 2787 ret = -EINVAL; 2788 } 2789 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2790 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2791 btrfs_super_log_root(sb)); 2792 ret = -EINVAL; 2793 } 2794 2795 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2796 BTRFS_FSID_SIZE)) { 2797 btrfs_err(fs_info, 2798 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2799 fs_info->super_copy->fsid, fs_info->fs_devices->fsid); 2800 ret = -EINVAL; 2801 } 2802 2803 if (btrfs_fs_incompat(fs_info, METADATA_UUID) && 2804 memcmp(fs_info->fs_devices->metadata_uuid, 2805 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) { 2806 btrfs_err(fs_info, 2807 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2808 fs_info->super_copy->metadata_uuid, 2809 fs_info->fs_devices->metadata_uuid); 2810 ret = -EINVAL; 2811 } 2812 2813 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2814 BTRFS_FSID_SIZE) != 0) { 2815 btrfs_err(fs_info, 2816 "dev_item UUID does not match metadata fsid: %pU != %pU", 2817 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2818 ret = -EINVAL; 2819 } 2820 2821 /* 2822 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2823 * done later 2824 */ 2825 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2826 btrfs_err(fs_info, "bytes_used is too small %llu", 2827 btrfs_super_bytes_used(sb)); 2828 ret = -EINVAL; 2829 } 2830 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2831 btrfs_err(fs_info, "invalid stripesize %u", 2832 btrfs_super_stripesize(sb)); 2833 ret = -EINVAL; 2834 } 2835 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2836 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2837 btrfs_super_num_devices(sb)); 2838 if (btrfs_super_num_devices(sb) == 0) { 2839 btrfs_err(fs_info, "number of devices is 0"); 2840 ret = -EINVAL; 2841 } 2842 2843 if (mirror_num >= 0 && 2844 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2845 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2846 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2847 ret = -EINVAL; 2848 } 2849 2850 /* 2851 * Obvious sys_chunk_array corruptions, it must hold at least one key 2852 * and one chunk 2853 */ 2854 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2855 btrfs_err(fs_info, "system chunk array too big %u > %u", 2856 btrfs_super_sys_array_size(sb), 2857 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2858 ret = -EINVAL; 2859 } 2860 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2861 + sizeof(struct btrfs_chunk)) { 2862 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2863 btrfs_super_sys_array_size(sb), 2864 sizeof(struct btrfs_disk_key) 2865 + sizeof(struct btrfs_chunk)); 2866 ret = -EINVAL; 2867 } 2868 2869 /* 2870 * The generation is a global counter, we'll trust it more than the others 2871 * but it's still possible that it's the one that's wrong. 2872 */ 2873 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2874 btrfs_warn(fs_info, 2875 "suspicious: generation < chunk_root_generation: %llu < %llu", 2876 btrfs_super_generation(sb), 2877 btrfs_super_chunk_root_generation(sb)); 2878 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2879 && btrfs_super_cache_generation(sb) != (u64)-1) 2880 btrfs_warn(fs_info, 2881 "suspicious: generation < cache_generation: %llu < %llu", 2882 btrfs_super_generation(sb), 2883 btrfs_super_cache_generation(sb)); 2884 2885 return ret; 2886 } 2887 2888 /* 2889 * Validation of super block at mount time. 2890 * Some checks already done early at mount time, like csum type and incompat 2891 * flags will be skipped. 2892 */ 2893 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2894 { 2895 return validate_super(fs_info, fs_info->super_copy, 0); 2896 } 2897 2898 /* 2899 * Validation of super block at write time. 2900 * Some checks like bytenr check will be skipped as their values will be 2901 * overwritten soon. 2902 * Extra checks like csum type and incompat flags will be done here. 2903 */ 2904 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2905 struct btrfs_super_block *sb) 2906 { 2907 int ret; 2908 2909 ret = validate_super(fs_info, sb, -1); 2910 if (ret < 0) 2911 goto out; 2912 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2913 ret = -EUCLEAN; 2914 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2915 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2916 goto out; 2917 } 2918 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2919 ret = -EUCLEAN; 2920 btrfs_err(fs_info, 2921 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2922 btrfs_super_incompat_flags(sb), 2923 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2924 goto out; 2925 } 2926 out: 2927 if (ret < 0) 2928 btrfs_err(fs_info, 2929 "super block corruption detected before writing it to disk"); 2930 return ret; 2931 } 2932 2933 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2934 { 2935 int backup_index = find_newest_super_backup(fs_info); 2936 struct btrfs_super_block *sb = fs_info->super_copy; 2937 struct btrfs_root *tree_root = fs_info->tree_root; 2938 bool handle_error = false; 2939 int ret = 0; 2940 int i; 2941 2942 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2943 u64 generation; 2944 int level; 2945 2946 if (handle_error) { 2947 if (!IS_ERR(tree_root->node)) 2948 free_extent_buffer(tree_root->node); 2949 tree_root->node = NULL; 2950 2951 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2952 break; 2953 2954 free_root_pointers(fs_info, 0); 2955 2956 /* 2957 * Don't use the log in recovery mode, it won't be 2958 * valid 2959 */ 2960 btrfs_set_super_log_root(sb, 0); 2961 2962 /* We can't trust the free space cache either */ 2963 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2964 2965 ret = read_backup_root(fs_info, i); 2966 backup_index = ret; 2967 if (ret < 0) 2968 return ret; 2969 } 2970 generation = btrfs_super_generation(sb); 2971 level = btrfs_super_root_level(sb); 2972 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb), 2973 BTRFS_ROOT_TREE_OBJECTID, 2974 generation, level, NULL); 2975 if (IS_ERR(tree_root->node)) { 2976 handle_error = true; 2977 ret = PTR_ERR(tree_root->node); 2978 tree_root->node = NULL; 2979 btrfs_warn(fs_info, "couldn't read tree root"); 2980 continue; 2981 2982 } else if (!extent_buffer_uptodate(tree_root->node)) { 2983 handle_error = true; 2984 ret = -EIO; 2985 btrfs_warn(fs_info, "error while reading tree root"); 2986 continue; 2987 } 2988 2989 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2990 tree_root->commit_root = btrfs_root_node(tree_root); 2991 btrfs_set_root_refs(&tree_root->root_item, 1); 2992 2993 /* 2994 * No need to hold btrfs_root::objectid_mutex since the fs 2995 * hasn't been fully initialised and we are the only user 2996 */ 2997 ret = btrfs_init_root_free_objectid(tree_root); 2998 if (ret < 0) { 2999 handle_error = true; 3000 continue; 3001 } 3002 3003 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 3004 3005 ret = btrfs_read_roots(fs_info); 3006 if (ret < 0) { 3007 handle_error = true; 3008 continue; 3009 } 3010 3011 /* All successful */ 3012 fs_info->generation = generation; 3013 fs_info->last_trans_committed = generation; 3014 fs_info->last_reloc_trans = 0; 3015 3016 /* Always begin writing backup roots after the one being used */ 3017 if (backup_index < 0) { 3018 fs_info->backup_root_index = 0; 3019 } else { 3020 fs_info->backup_root_index = backup_index + 1; 3021 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 3022 } 3023 break; 3024 } 3025 3026 return ret; 3027 } 3028 3029 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 3030 { 3031 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 3032 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 3033 INIT_LIST_HEAD(&fs_info->trans_list); 3034 INIT_LIST_HEAD(&fs_info->dead_roots); 3035 INIT_LIST_HEAD(&fs_info->delayed_iputs); 3036 INIT_LIST_HEAD(&fs_info->delalloc_roots); 3037 INIT_LIST_HEAD(&fs_info->caching_block_groups); 3038 spin_lock_init(&fs_info->delalloc_root_lock); 3039 spin_lock_init(&fs_info->trans_lock); 3040 spin_lock_init(&fs_info->fs_roots_radix_lock); 3041 spin_lock_init(&fs_info->delayed_iput_lock); 3042 spin_lock_init(&fs_info->defrag_inodes_lock); 3043 spin_lock_init(&fs_info->super_lock); 3044 spin_lock_init(&fs_info->buffer_lock); 3045 spin_lock_init(&fs_info->unused_bgs_lock); 3046 spin_lock_init(&fs_info->treelog_bg_lock); 3047 spin_lock_init(&fs_info->zone_active_bgs_lock); 3048 spin_lock_init(&fs_info->relocation_bg_lock); 3049 rwlock_init(&fs_info->tree_mod_log_lock); 3050 rwlock_init(&fs_info->global_root_lock); 3051 mutex_init(&fs_info->unused_bg_unpin_mutex); 3052 mutex_init(&fs_info->reclaim_bgs_lock); 3053 mutex_init(&fs_info->reloc_mutex); 3054 mutex_init(&fs_info->delalloc_root_mutex); 3055 mutex_init(&fs_info->zoned_meta_io_lock); 3056 seqlock_init(&fs_info->profiles_lock); 3057 3058 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 3059 INIT_LIST_HEAD(&fs_info->space_info); 3060 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 3061 INIT_LIST_HEAD(&fs_info->unused_bgs); 3062 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 3063 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 3064 #ifdef CONFIG_BTRFS_DEBUG 3065 INIT_LIST_HEAD(&fs_info->allocated_roots); 3066 INIT_LIST_HEAD(&fs_info->allocated_ebs); 3067 spin_lock_init(&fs_info->eb_leak_lock); 3068 #endif 3069 extent_map_tree_init(&fs_info->mapping_tree); 3070 btrfs_init_block_rsv(&fs_info->global_block_rsv, 3071 BTRFS_BLOCK_RSV_GLOBAL); 3072 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 3073 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 3074 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 3075 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 3076 BTRFS_BLOCK_RSV_DELOPS); 3077 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 3078 BTRFS_BLOCK_RSV_DELREFS); 3079 3080 atomic_set(&fs_info->async_delalloc_pages, 0); 3081 atomic_set(&fs_info->defrag_running, 0); 3082 atomic_set(&fs_info->nr_delayed_iputs, 0); 3083 atomic64_set(&fs_info->tree_mod_seq, 0); 3084 fs_info->global_root_tree = RB_ROOT; 3085 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 3086 fs_info->metadata_ratio = 0; 3087 fs_info->defrag_inodes = RB_ROOT; 3088 atomic64_set(&fs_info->free_chunk_space, 0); 3089 fs_info->tree_mod_log = RB_ROOT; 3090 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 3091 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 3092 btrfs_init_ref_verify(fs_info); 3093 3094 fs_info->thread_pool_size = min_t(unsigned long, 3095 num_online_cpus() + 2, 8); 3096 3097 INIT_LIST_HEAD(&fs_info->ordered_roots); 3098 spin_lock_init(&fs_info->ordered_root_lock); 3099 3100 btrfs_init_scrub(fs_info); 3101 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3102 fs_info->check_integrity_print_mask = 0; 3103 #endif 3104 btrfs_init_balance(fs_info); 3105 btrfs_init_async_reclaim_work(fs_info); 3106 3107 spin_lock_init(&fs_info->block_group_cache_lock); 3108 fs_info->block_group_cache_tree = RB_ROOT; 3109 fs_info->first_logical_byte = (u64)-1; 3110 3111 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 3112 IO_TREE_FS_EXCLUDED_EXTENTS, NULL); 3113 3114 mutex_init(&fs_info->ordered_operations_mutex); 3115 mutex_init(&fs_info->tree_log_mutex); 3116 mutex_init(&fs_info->chunk_mutex); 3117 mutex_init(&fs_info->transaction_kthread_mutex); 3118 mutex_init(&fs_info->cleaner_mutex); 3119 mutex_init(&fs_info->ro_block_group_mutex); 3120 init_rwsem(&fs_info->commit_root_sem); 3121 init_rwsem(&fs_info->cleanup_work_sem); 3122 init_rwsem(&fs_info->subvol_sem); 3123 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 3124 3125 btrfs_init_dev_replace_locks(fs_info); 3126 btrfs_init_qgroup(fs_info); 3127 btrfs_discard_init(fs_info); 3128 3129 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 3130 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 3131 3132 init_waitqueue_head(&fs_info->transaction_throttle); 3133 init_waitqueue_head(&fs_info->transaction_wait); 3134 init_waitqueue_head(&fs_info->transaction_blocked_wait); 3135 init_waitqueue_head(&fs_info->async_submit_wait); 3136 init_waitqueue_head(&fs_info->delayed_iputs_wait); 3137 3138 /* Usable values until the real ones are cached from the superblock */ 3139 fs_info->nodesize = 4096; 3140 fs_info->sectorsize = 4096; 3141 fs_info->sectorsize_bits = ilog2(4096); 3142 fs_info->stripesize = 4096; 3143 3144 spin_lock_init(&fs_info->swapfile_pins_lock); 3145 fs_info->swapfile_pins = RB_ROOT; 3146 3147 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 3148 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 3149 } 3150 3151 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 3152 { 3153 int ret; 3154 3155 fs_info->sb = sb; 3156 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 3157 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 3158 3159 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 3160 if (ret) 3161 return ret; 3162 3163 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 3164 if (ret) 3165 return ret; 3166 3167 fs_info->dirty_metadata_batch = PAGE_SIZE * 3168 (1 + ilog2(nr_cpu_ids)); 3169 3170 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 3171 if (ret) 3172 return ret; 3173 3174 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 3175 GFP_KERNEL); 3176 if (ret) 3177 return ret; 3178 3179 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 3180 GFP_KERNEL); 3181 if (!fs_info->delayed_root) 3182 return -ENOMEM; 3183 btrfs_init_delayed_root(fs_info->delayed_root); 3184 3185 if (sb_rdonly(sb)) 3186 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 3187 3188 return btrfs_alloc_stripe_hash_table(fs_info); 3189 } 3190 3191 static int btrfs_uuid_rescan_kthread(void *data) 3192 { 3193 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 3194 int ret; 3195 3196 /* 3197 * 1st step is to iterate through the existing UUID tree and 3198 * to delete all entries that contain outdated data. 3199 * 2nd step is to add all missing entries to the UUID tree. 3200 */ 3201 ret = btrfs_uuid_tree_iterate(fs_info); 3202 if (ret < 0) { 3203 if (ret != -EINTR) 3204 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 3205 ret); 3206 up(&fs_info->uuid_tree_rescan_sem); 3207 return ret; 3208 } 3209 return btrfs_uuid_scan_kthread(data); 3210 } 3211 3212 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 3213 { 3214 struct task_struct *task; 3215 3216 down(&fs_info->uuid_tree_rescan_sem); 3217 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 3218 if (IS_ERR(task)) { 3219 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3220 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 3221 up(&fs_info->uuid_tree_rescan_sem); 3222 return PTR_ERR(task); 3223 } 3224 3225 return 0; 3226 } 3227 3228 /* 3229 * Some options only have meaning at mount time and shouldn't persist across 3230 * remounts, or be displayed. Clear these at the end of mount and remount 3231 * code paths. 3232 */ 3233 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 3234 { 3235 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3236 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 3237 } 3238 3239 /* 3240 * Mounting logic specific to read-write file systems. Shared by open_ctree 3241 * and btrfs_remount when remounting from read-only to read-write. 3242 */ 3243 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 3244 { 3245 int ret; 3246 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 3247 bool clear_free_space_tree = false; 3248 3249 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3250 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3251 clear_free_space_tree = true; 3252 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3253 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3254 btrfs_warn(fs_info, "free space tree is invalid"); 3255 clear_free_space_tree = true; 3256 } 3257 3258 if (clear_free_space_tree) { 3259 btrfs_info(fs_info, "clearing free space tree"); 3260 ret = btrfs_clear_free_space_tree(fs_info); 3261 if (ret) { 3262 btrfs_warn(fs_info, 3263 "failed to clear free space tree: %d", ret); 3264 goto out; 3265 } 3266 } 3267 3268 /* 3269 * btrfs_find_orphan_roots() is responsible for finding all the dead 3270 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3271 * them into the fs_info->fs_roots_radix tree. This must be done before 3272 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3273 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3274 * item before the root's tree is deleted - this means that if we unmount 3275 * or crash before the deletion completes, on the next mount we will not 3276 * delete what remains of the tree because the orphan item does not 3277 * exists anymore, which is what tells us we have a pending deletion. 3278 */ 3279 ret = btrfs_find_orphan_roots(fs_info); 3280 if (ret) 3281 goto out; 3282 3283 ret = btrfs_cleanup_fs_roots(fs_info); 3284 if (ret) 3285 goto out; 3286 3287 down_read(&fs_info->cleanup_work_sem); 3288 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3289 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3290 up_read(&fs_info->cleanup_work_sem); 3291 goto out; 3292 } 3293 up_read(&fs_info->cleanup_work_sem); 3294 3295 mutex_lock(&fs_info->cleaner_mutex); 3296 ret = btrfs_recover_relocation(fs_info->tree_root); 3297 mutex_unlock(&fs_info->cleaner_mutex); 3298 if (ret < 0) { 3299 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3300 goto out; 3301 } 3302 3303 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3304 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3305 btrfs_info(fs_info, "creating free space tree"); 3306 ret = btrfs_create_free_space_tree(fs_info); 3307 if (ret) { 3308 btrfs_warn(fs_info, 3309 "failed to create free space tree: %d", ret); 3310 goto out; 3311 } 3312 } 3313 3314 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3315 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3316 if (ret) 3317 goto out; 3318 } 3319 3320 ret = btrfs_resume_balance_async(fs_info); 3321 if (ret) 3322 goto out; 3323 3324 ret = btrfs_resume_dev_replace_async(fs_info); 3325 if (ret) { 3326 btrfs_warn(fs_info, "failed to resume dev_replace"); 3327 goto out; 3328 } 3329 3330 btrfs_qgroup_rescan_resume(fs_info); 3331 3332 if (!fs_info->uuid_root) { 3333 btrfs_info(fs_info, "creating UUID tree"); 3334 ret = btrfs_create_uuid_tree(fs_info); 3335 if (ret) { 3336 btrfs_warn(fs_info, 3337 "failed to create the UUID tree %d", ret); 3338 goto out; 3339 } 3340 } 3341 3342 out: 3343 return ret; 3344 } 3345 3346 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3347 char *options) 3348 { 3349 u32 sectorsize; 3350 u32 nodesize; 3351 u32 stripesize; 3352 u64 generation; 3353 u64 features; 3354 u16 csum_type; 3355 struct btrfs_super_block *disk_super; 3356 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3357 struct btrfs_root *tree_root; 3358 struct btrfs_root *chunk_root; 3359 int ret; 3360 int err = -EINVAL; 3361 int level; 3362 3363 ret = init_mount_fs_info(fs_info, sb); 3364 if (ret) { 3365 err = ret; 3366 goto fail; 3367 } 3368 3369 /* These need to be init'ed before we start creating inodes and such. */ 3370 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3371 GFP_KERNEL); 3372 fs_info->tree_root = tree_root; 3373 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3374 GFP_KERNEL); 3375 fs_info->chunk_root = chunk_root; 3376 if (!tree_root || !chunk_root) { 3377 err = -ENOMEM; 3378 goto fail; 3379 } 3380 3381 fs_info->btree_inode = new_inode(sb); 3382 if (!fs_info->btree_inode) { 3383 err = -ENOMEM; 3384 goto fail; 3385 } 3386 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 3387 btrfs_init_btree_inode(fs_info); 3388 3389 invalidate_bdev(fs_devices->latest_dev->bdev); 3390 3391 /* 3392 * Read super block and check the signature bytes only 3393 */ 3394 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3395 if (IS_ERR(disk_super)) { 3396 err = PTR_ERR(disk_super); 3397 goto fail_alloc; 3398 } 3399 3400 /* 3401 * Verify the type first, if that or the checksum value are 3402 * corrupted, we'll find out 3403 */ 3404 csum_type = btrfs_super_csum_type(disk_super); 3405 if (!btrfs_supported_super_csum(csum_type)) { 3406 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3407 csum_type); 3408 err = -EINVAL; 3409 btrfs_release_disk_super(disk_super); 3410 goto fail_alloc; 3411 } 3412 3413 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3414 3415 ret = btrfs_init_csum_hash(fs_info, csum_type); 3416 if (ret) { 3417 err = ret; 3418 btrfs_release_disk_super(disk_super); 3419 goto fail_alloc; 3420 } 3421 3422 /* 3423 * We want to check superblock checksum, the type is stored inside. 3424 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3425 */ 3426 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) { 3427 btrfs_err(fs_info, "superblock checksum mismatch"); 3428 err = -EINVAL; 3429 btrfs_release_disk_super(disk_super); 3430 goto fail_alloc; 3431 } 3432 3433 /* 3434 * super_copy is zeroed at allocation time and we never touch the 3435 * following bytes up to INFO_SIZE, the checksum is calculated from 3436 * the whole block of INFO_SIZE 3437 */ 3438 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3439 btrfs_release_disk_super(disk_super); 3440 3441 disk_super = fs_info->super_copy; 3442 3443 3444 features = btrfs_super_flags(disk_super); 3445 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 3446 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 3447 btrfs_set_super_flags(disk_super, features); 3448 btrfs_info(fs_info, 3449 "found metadata UUID change in progress flag, clearing"); 3450 } 3451 3452 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3453 sizeof(*fs_info->super_for_commit)); 3454 3455 ret = btrfs_validate_mount_super(fs_info); 3456 if (ret) { 3457 btrfs_err(fs_info, "superblock contains fatal errors"); 3458 err = -EINVAL; 3459 goto fail_alloc; 3460 } 3461 3462 if (!btrfs_super_root(disk_super)) 3463 goto fail_alloc; 3464 3465 /* check FS state, whether FS is broken. */ 3466 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3467 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 3468 3469 /* 3470 * In the long term, we'll store the compression type in the super 3471 * block, and it'll be used for per file compression control. 3472 */ 3473 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3474 3475 /* 3476 * Flag our filesystem as having big metadata blocks if they are bigger 3477 * than the page size. 3478 */ 3479 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 3480 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 3481 btrfs_info(fs_info, 3482 "flagging fs with big metadata feature"); 3483 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3484 } 3485 3486 /* Set up fs_info before parsing mount options */ 3487 nodesize = btrfs_super_nodesize(disk_super); 3488 sectorsize = btrfs_super_sectorsize(disk_super); 3489 stripesize = sectorsize; 3490 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3491 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3492 3493 fs_info->nodesize = nodesize; 3494 fs_info->sectorsize = sectorsize; 3495 fs_info->sectorsize_bits = ilog2(sectorsize); 3496 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3497 fs_info->stripesize = stripesize; 3498 3499 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3500 if (ret) { 3501 err = ret; 3502 goto fail_alloc; 3503 } 3504 3505 features = btrfs_super_incompat_flags(disk_super) & 3506 ~BTRFS_FEATURE_INCOMPAT_SUPP; 3507 if (features) { 3508 btrfs_err(fs_info, 3509 "cannot mount because of unsupported optional features (%llx)", 3510 features); 3511 err = -EINVAL; 3512 goto fail_alloc; 3513 } 3514 3515 features = btrfs_super_incompat_flags(disk_super); 3516 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3517 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3518 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3519 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3520 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3521 3522 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 3523 btrfs_info(fs_info, "has skinny extents"); 3524 3525 /* 3526 * mixed block groups end up with duplicate but slightly offset 3527 * extent buffers for the same range. It leads to corruptions 3528 */ 3529 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3530 (sectorsize != nodesize)) { 3531 btrfs_err(fs_info, 3532 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3533 nodesize, sectorsize); 3534 goto fail_alloc; 3535 } 3536 3537 /* 3538 * Needn't use the lock because there is no other task which will 3539 * update the flag. 3540 */ 3541 btrfs_set_super_incompat_flags(disk_super, features); 3542 3543 features = btrfs_super_compat_ro_flags(disk_super) & 3544 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 3545 if (!sb_rdonly(sb) && features) { 3546 btrfs_err(fs_info, 3547 "cannot mount read-write because of unsupported optional features (%llx)", 3548 features); 3549 err = -EINVAL; 3550 goto fail_alloc; 3551 } 3552 3553 if (sectorsize < PAGE_SIZE) { 3554 struct btrfs_subpage_info *subpage_info; 3555 3556 btrfs_warn(fs_info, 3557 "read-write for sector size %u with page size %lu is experimental", 3558 sectorsize, PAGE_SIZE); 3559 if (btrfs_super_incompat_flags(fs_info->super_copy) & 3560 BTRFS_FEATURE_INCOMPAT_RAID56) { 3561 btrfs_err(fs_info, 3562 "RAID56 is not yet supported for sector size %u with page size %lu", 3563 sectorsize, PAGE_SIZE); 3564 err = -EINVAL; 3565 goto fail_alloc; 3566 } 3567 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL); 3568 if (!subpage_info) 3569 goto fail_alloc; 3570 btrfs_init_subpage_info(subpage_info, sectorsize); 3571 fs_info->subpage_info = subpage_info; 3572 } 3573 3574 ret = btrfs_init_workqueues(fs_info); 3575 if (ret) { 3576 err = ret; 3577 goto fail_sb_buffer; 3578 } 3579 3580 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3581 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3582 3583 sb->s_blocksize = sectorsize; 3584 sb->s_blocksize_bits = blksize_bits(sectorsize); 3585 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3586 3587 mutex_lock(&fs_info->chunk_mutex); 3588 ret = btrfs_read_sys_array(fs_info); 3589 mutex_unlock(&fs_info->chunk_mutex); 3590 if (ret) { 3591 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3592 goto fail_sb_buffer; 3593 } 3594 3595 generation = btrfs_super_chunk_root_generation(disk_super); 3596 level = btrfs_super_chunk_root_level(disk_super); 3597 3598 chunk_root->node = read_tree_block(fs_info, 3599 btrfs_super_chunk_root(disk_super), 3600 BTRFS_CHUNK_TREE_OBJECTID, 3601 generation, level, NULL); 3602 if (IS_ERR(chunk_root->node) || 3603 !extent_buffer_uptodate(chunk_root->node)) { 3604 btrfs_err(fs_info, "failed to read chunk root"); 3605 if (!IS_ERR(chunk_root->node)) 3606 free_extent_buffer(chunk_root->node); 3607 chunk_root->node = NULL; 3608 goto fail_tree_roots; 3609 } 3610 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 3611 chunk_root->commit_root = btrfs_root_node(chunk_root); 3612 3613 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3614 offsetof(struct btrfs_header, chunk_tree_uuid), 3615 BTRFS_UUID_SIZE); 3616 3617 ret = btrfs_read_chunk_tree(fs_info); 3618 if (ret) { 3619 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3620 goto fail_tree_roots; 3621 } 3622 3623 /* 3624 * At this point we know all the devices that make this filesystem, 3625 * including the seed devices but we don't know yet if the replace 3626 * target is required. So free devices that are not part of this 3627 * filesystem but skip the replace target device which is checked 3628 * below in btrfs_init_dev_replace(). 3629 */ 3630 btrfs_free_extra_devids(fs_devices); 3631 if (!fs_devices->latest_dev->bdev) { 3632 btrfs_err(fs_info, "failed to read devices"); 3633 goto fail_tree_roots; 3634 } 3635 3636 ret = init_tree_roots(fs_info); 3637 if (ret) 3638 goto fail_tree_roots; 3639 3640 /* 3641 * Get zone type information of zoned block devices. This will also 3642 * handle emulation of a zoned filesystem if a regular device has the 3643 * zoned incompat feature flag set. 3644 */ 3645 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3646 if (ret) { 3647 btrfs_err(fs_info, 3648 "zoned: failed to read device zone info: %d", 3649 ret); 3650 goto fail_block_groups; 3651 } 3652 3653 /* 3654 * If we have a uuid root and we're not being told to rescan we need to 3655 * check the generation here so we can set the 3656 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3657 * transaction during a balance or the log replay without updating the 3658 * uuid generation, and then if we crash we would rescan the uuid tree, 3659 * even though it was perfectly fine. 3660 */ 3661 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3662 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3663 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3664 3665 ret = btrfs_verify_dev_extents(fs_info); 3666 if (ret) { 3667 btrfs_err(fs_info, 3668 "failed to verify dev extents against chunks: %d", 3669 ret); 3670 goto fail_block_groups; 3671 } 3672 ret = btrfs_recover_balance(fs_info); 3673 if (ret) { 3674 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3675 goto fail_block_groups; 3676 } 3677 3678 ret = btrfs_init_dev_stats(fs_info); 3679 if (ret) { 3680 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3681 goto fail_block_groups; 3682 } 3683 3684 ret = btrfs_init_dev_replace(fs_info); 3685 if (ret) { 3686 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3687 goto fail_block_groups; 3688 } 3689 3690 ret = btrfs_check_zoned_mode(fs_info); 3691 if (ret) { 3692 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3693 ret); 3694 goto fail_block_groups; 3695 } 3696 3697 ret = btrfs_sysfs_add_fsid(fs_devices); 3698 if (ret) { 3699 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3700 ret); 3701 goto fail_block_groups; 3702 } 3703 3704 ret = btrfs_sysfs_add_mounted(fs_info); 3705 if (ret) { 3706 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3707 goto fail_fsdev_sysfs; 3708 } 3709 3710 ret = btrfs_init_space_info(fs_info); 3711 if (ret) { 3712 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3713 goto fail_sysfs; 3714 } 3715 3716 ret = btrfs_read_block_groups(fs_info); 3717 if (ret) { 3718 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3719 goto fail_sysfs; 3720 } 3721 3722 btrfs_free_zone_cache(fs_info); 3723 3724 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3725 !btrfs_check_rw_degradable(fs_info, NULL)) { 3726 btrfs_warn(fs_info, 3727 "writable mount is not allowed due to too many missing devices"); 3728 goto fail_sysfs; 3729 } 3730 3731 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3732 "btrfs-cleaner"); 3733 if (IS_ERR(fs_info->cleaner_kthread)) 3734 goto fail_sysfs; 3735 3736 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3737 tree_root, 3738 "btrfs-transaction"); 3739 if (IS_ERR(fs_info->transaction_kthread)) 3740 goto fail_cleaner; 3741 3742 if (!btrfs_test_opt(fs_info, NOSSD) && 3743 !fs_info->fs_devices->rotating) { 3744 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3745 } 3746 3747 /* 3748 * Mount does not set all options immediately, we can do it now and do 3749 * not have to wait for transaction commit 3750 */ 3751 btrfs_apply_pending_changes(fs_info); 3752 3753 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3754 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3755 ret = btrfsic_mount(fs_info, fs_devices, 3756 btrfs_test_opt(fs_info, 3757 CHECK_INTEGRITY_DATA) ? 1 : 0, 3758 fs_info->check_integrity_print_mask); 3759 if (ret) 3760 btrfs_warn(fs_info, 3761 "failed to initialize integrity check module: %d", 3762 ret); 3763 } 3764 #endif 3765 ret = btrfs_read_qgroup_config(fs_info); 3766 if (ret) 3767 goto fail_trans_kthread; 3768 3769 if (btrfs_build_ref_tree(fs_info)) 3770 btrfs_err(fs_info, "couldn't build ref tree"); 3771 3772 /* do not make disk changes in broken FS or nologreplay is given */ 3773 if (btrfs_super_log_root(disk_super) != 0 && 3774 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3775 btrfs_info(fs_info, "start tree-log replay"); 3776 ret = btrfs_replay_log(fs_info, fs_devices); 3777 if (ret) { 3778 err = ret; 3779 goto fail_qgroup; 3780 } 3781 } 3782 3783 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3784 if (IS_ERR(fs_info->fs_root)) { 3785 err = PTR_ERR(fs_info->fs_root); 3786 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3787 fs_info->fs_root = NULL; 3788 goto fail_qgroup; 3789 } 3790 3791 if (sb_rdonly(sb)) 3792 goto clear_oneshot; 3793 3794 ret = btrfs_start_pre_rw_mount(fs_info); 3795 if (ret) { 3796 close_ctree(fs_info); 3797 return ret; 3798 } 3799 btrfs_discard_resume(fs_info); 3800 3801 if (fs_info->uuid_root && 3802 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3803 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3804 btrfs_info(fs_info, "checking UUID tree"); 3805 ret = btrfs_check_uuid_tree(fs_info); 3806 if (ret) { 3807 btrfs_warn(fs_info, 3808 "failed to check the UUID tree: %d", ret); 3809 close_ctree(fs_info); 3810 return ret; 3811 } 3812 } 3813 3814 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3815 3816 clear_oneshot: 3817 btrfs_clear_oneshot_options(fs_info); 3818 return 0; 3819 3820 fail_qgroup: 3821 btrfs_free_qgroup_config(fs_info); 3822 fail_trans_kthread: 3823 kthread_stop(fs_info->transaction_kthread); 3824 btrfs_cleanup_transaction(fs_info); 3825 btrfs_free_fs_roots(fs_info); 3826 fail_cleaner: 3827 kthread_stop(fs_info->cleaner_kthread); 3828 3829 /* 3830 * make sure we're done with the btree inode before we stop our 3831 * kthreads 3832 */ 3833 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3834 3835 fail_sysfs: 3836 btrfs_sysfs_remove_mounted(fs_info); 3837 3838 fail_fsdev_sysfs: 3839 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3840 3841 fail_block_groups: 3842 btrfs_put_block_group_cache(fs_info); 3843 3844 fail_tree_roots: 3845 if (fs_info->data_reloc_root) 3846 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3847 free_root_pointers(fs_info, true); 3848 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3849 3850 fail_sb_buffer: 3851 btrfs_stop_all_workers(fs_info); 3852 btrfs_free_block_groups(fs_info); 3853 fail_alloc: 3854 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3855 3856 iput(fs_info->btree_inode); 3857 fail: 3858 btrfs_close_devices(fs_info->fs_devices); 3859 return err; 3860 } 3861 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3862 3863 static void btrfs_end_super_write(struct bio *bio) 3864 { 3865 struct btrfs_device *device = bio->bi_private; 3866 struct bio_vec *bvec; 3867 struct bvec_iter_all iter_all; 3868 struct page *page; 3869 3870 bio_for_each_segment_all(bvec, bio, iter_all) { 3871 page = bvec->bv_page; 3872 3873 if (bio->bi_status) { 3874 btrfs_warn_rl_in_rcu(device->fs_info, 3875 "lost page write due to IO error on %s (%d)", 3876 rcu_str_deref(device->name), 3877 blk_status_to_errno(bio->bi_status)); 3878 ClearPageUptodate(page); 3879 SetPageError(page); 3880 btrfs_dev_stat_inc_and_print(device, 3881 BTRFS_DEV_STAT_WRITE_ERRS); 3882 } else { 3883 SetPageUptodate(page); 3884 } 3885 3886 put_page(page); 3887 unlock_page(page); 3888 } 3889 3890 bio_put(bio); 3891 } 3892 3893 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3894 int copy_num) 3895 { 3896 struct btrfs_super_block *super; 3897 struct page *page; 3898 u64 bytenr, bytenr_orig; 3899 struct address_space *mapping = bdev->bd_inode->i_mapping; 3900 int ret; 3901 3902 bytenr_orig = btrfs_sb_offset(copy_num); 3903 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3904 if (ret == -ENOENT) 3905 return ERR_PTR(-EINVAL); 3906 else if (ret) 3907 return ERR_PTR(ret); 3908 3909 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 3910 return ERR_PTR(-EINVAL); 3911 3912 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3913 if (IS_ERR(page)) 3914 return ERR_CAST(page); 3915 3916 super = page_address(page); 3917 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3918 btrfs_release_disk_super(super); 3919 return ERR_PTR(-ENODATA); 3920 } 3921 3922 if (btrfs_super_bytenr(super) != bytenr_orig) { 3923 btrfs_release_disk_super(super); 3924 return ERR_PTR(-EINVAL); 3925 } 3926 3927 return super; 3928 } 3929 3930 3931 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3932 { 3933 struct btrfs_super_block *super, *latest = NULL; 3934 int i; 3935 u64 transid = 0; 3936 3937 /* we would like to check all the supers, but that would make 3938 * a btrfs mount succeed after a mkfs from a different FS. 3939 * So, we need to add a special mount option to scan for 3940 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3941 */ 3942 for (i = 0; i < 1; i++) { 3943 super = btrfs_read_dev_one_super(bdev, i); 3944 if (IS_ERR(super)) 3945 continue; 3946 3947 if (!latest || btrfs_super_generation(super) > transid) { 3948 if (latest) 3949 btrfs_release_disk_super(super); 3950 3951 latest = super; 3952 transid = btrfs_super_generation(super); 3953 } 3954 } 3955 3956 return super; 3957 } 3958 3959 /* 3960 * Write superblock @sb to the @device. Do not wait for completion, all the 3961 * pages we use for writing are locked. 3962 * 3963 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3964 * the expected device size at commit time. Note that max_mirrors must be 3965 * same for write and wait phases. 3966 * 3967 * Return number of errors when page is not found or submission fails. 3968 */ 3969 static int write_dev_supers(struct btrfs_device *device, 3970 struct btrfs_super_block *sb, int max_mirrors) 3971 { 3972 struct btrfs_fs_info *fs_info = device->fs_info; 3973 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3974 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3975 int i; 3976 int errors = 0; 3977 int ret; 3978 u64 bytenr, bytenr_orig; 3979 3980 if (max_mirrors == 0) 3981 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3982 3983 shash->tfm = fs_info->csum_shash; 3984 3985 for (i = 0; i < max_mirrors; i++) { 3986 struct page *page; 3987 struct bio *bio; 3988 struct btrfs_super_block *disk_super; 3989 3990 bytenr_orig = btrfs_sb_offset(i); 3991 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3992 if (ret == -ENOENT) { 3993 continue; 3994 } else if (ret < 0) { 3995 btrfs_err(device->fs_info, 3996 "couldn't get super block location for mirror %d", 3997 i); 3998 errors++; 3999 continue; 4000 } 4001 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 4002 device->commit_total_bytes) 4003 break; 4004 4005 btrfs_set_super_bytenr(sb, bytenr_orig); 4006 4007 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 4008 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 4009 sb->csum); 4010 4011 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 4012 GFP_NOFS); 4013 if (!page) { 4014 btrfs_err(device->fs_info, 4015 "couldn't get super block page for bytenr %llu", 4016 bytenr); 4017 errors++; 4018 continue; 4019 } 4020 4021 /* Bump the refcount for wait_dev_supers() */ 4022 get_page(page); 4023 4024 disk_super = page_address(page); 4025 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 4026 4027 /* 4028 * Directly use bios here instead of relying on the page cache 4029 * to do I/O, so we don't lose the ability to do integrity 4030 * checking. 4031 */ 4032 bio = bio_alloc(GFP_NOFS, 1); 4033 bio_set_dev(bio, device->bdev); 4034 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 4035 bio->bi_private = device; 4036 bio->bi_end_io = btrfs_end_super_write; 4037 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 4038 offset_in_page(bytenr)); 4039 4040 /* 4041 * We FUA only the first super block. The others we allow to 4042 * go down lazy and there's a short window where the on-disk 4043 * copies might still contain the older version. 4044 */ 4045 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO; 4046 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 4047 bio->bi_opf |= REQ_FUA; 4048 4049 btrfsic_submit_bio(bio); 4050 4051 if (btrfs_advance_sb_log(device, i)) 4052 errors++; 4053 } 4054 return errors < i ? 0 : -1; 4055 } 4056 4057 /* 4058 * Wait for write completion of superblocks done by write_dev_supers, 4059 * @max_mirrors same for write and wait phases. 4060 * 4061 * Return number of errors when page is not found or not marked up to 4062 * date. 4063 */ 4064 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 4065 { 4066 int i; 4067 int errors = 0; 4068 bool primary_failed = false; 4069 int ret; 4070 u64 bytenr; 4071 4072 if (max_mirrors == 0) 4073 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 4074 4075 for (i = 0; i < max_mirrors; i++) { 4076 struct page *page; 4077 4078 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 4079 if (ret == -ENOENT) { 4080 break; 4081 } else if (ret < 0) { 4082 errors++; 4083 if (i == 0) 4084 primary_failed = true; 4085 continue; 4086 } 4087 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 4088 device->commit_total_bytes) 4089 break; 4090 4091 page = find_get_page(device->bdev->bd_inode->i_mapping, 4092 bytenr >> PAGE_SHIFT); 4093 if (!page) { 4094 errors++; 4095 if (i == 0) 4096 primary_failed = true; 4097 continue; 4098 } 4099 /* Page is submitted locked and unlocked once the IO completes */ 4100 wait_on_page_locked(page); 4101 if (PageError(page)) { 4102 errors++; 4103 if (i == 0) 4104 primary_failed = true; 4105 } 4106 4107 /* Drop our reference */ 4108 put_page(page); 4109 4110 /* Drop the reference from the writing run */ 4111 put_page(page); 4112 } 4113 4114 /* log error, force error return */ 4115 if (primary_failed) { 4116 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 4117 device->devid); 4118 return -1; 4119 } 4120 4121 return errors < i ? 0 : -1; 4122 } 4123 4124 /* 4125 * endio for the write_dev_flush, this will wake anyone waiting 4126 * for the barrier when it is done 4127 */ 4128 static void btrfs_end_empty_barrier(struct bio *bio) 4129 { 4130 complete(bio->bi_private); 4131 } 4132 4133 /* 4134 * Submit a flush request to the device if it supports it. Error handling is 4135 * done in the waiting counterpart. 4136 */ 4137 static void write_dev_flush(struct btrfs_device *device) 4138 { 4139 struct bio *bio = device->flush_bio; 4140 4141 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4142 /* 4143 * When a disk has write caching disabled, we skip submission of a bio 4144 * with flush and sync requests before writing the superblock, since 4145 * it's not needed. However when the integrity checker is enabled, this 4146 * results in reports that there are metadata blocks referred by a 4147 * superblock that were not properly flushed. So don't skip the bio 4148 * submission only when the integrity checker is enabled for the sake 4149 * of simplicity, since this is a debug tool and not meant for use in 4150 * non-debug builds. 4151 */ 4152 struct request_queue *q = bdev_get_queue(device->bdev); 4153 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 4154 return; 4155 #endif 4156 4157 bio_reset(bio); 4158 bio->bi_end_io = btrfs_end_empty_barrier; 4159 bio_set_dev(bio, device->bdev); 4160 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 4161 init_completion(&device->flush_wait); 4162 bio->bi_private = &device->flush_wait; 4163 4164 btrfsic_submit_bio(bio); 4165 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 4166 } 4167 4168 /* 4169 * If the flush bio has been submitted by write_dev_flush, wait for it. 4170 */ 4171 static blk_status_t wait_dev_flush(struct btrfs_device *device) 4172 { 4173 struct bio *bio = device->flush_bio; 4174 4175 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 4176 return BLK_STS_OK; 4177 4178 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 4179 wait_for_completion_io(&device->flush_wait); 4180 4181 return bio->bi_status; 4182 } 4183 4184 static int check_barrier_error(struct btrfs_fs_info *fs_info) 4185 { 4186 if (!btrfs_check_rw_degradable(fs_info, NULL)) 4187 return -EIO; 4188 return 0; 4189 } 4190 4191 /* 4192 * send an empty flush down to each device in parallel, 4193 * then wait for them 4194 */ 4195 static int barrier_all_devices(struct btrfs_fs_info *info) 4196 { 4197 struct list_head *head; 4198 struct btrfs_device *dev; 4199 int errors_wait = 0; 4200 blk_status_t ret; 4201 4202 lockdep_assert_held(&info->fs_devices->device_list_mutex); 4203 /* send down all the barriers */ 4204 head = &info->fs_devices->devices; 4205 list_for_each_entry(dev, head, dev_list) { 4206 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4207 continue; 4208 if (!dev->bdev) 4209 continue; 4210 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4211 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4212 continue; 4213 4214 write_dev_flush(dev); 4215 dev->last_flush_error = BLK_STS_OK; 4216 } 4217 4218 /* wait for all the barriers */ 4219 list_for_each_entry(dev, head, dev_list) { 4220 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4221 continue; 4222 if (!dev->bdev) { 4223 errors_wait++; 4224 continue; 4225 } 4226 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4227 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4228 continue; 4229 4230 ret = wait_dev_flush(dev); 4231 if (ret) { 4232 dev->last_flush_error = ret; 4233 btrfs_dev_stat_inc_and_print(dev, 4234 BTRFS_DEV_STAT_FLUSH_ERRS); 4235 errors_wait++; 4236 } 4237 } 4238 4239 if (errors_wait) { 4240 /* 4241 * At some point we need the status of all disks 4242 * to arrive at the volume status. So error checking 4243 * is being pushed to a separate loop. 4244 */ 4245 return check_barrier_error(info); 4246 } 4247 return 0; 4248 } 4249 4250 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 4251 { 4252 int raid_type; 4253 int min_tolerated = INT_MAX; 4254 4255 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 4256 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 4257 min_tolerated = min_t(int, min_tolerated, 4258 btrfs_raid_array[BTRFS_RAID_SINGLE]. 4259 tolerated_failures); 4260 4261 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4262 if (raid_type == BTRFS_RAID_SINGLE) 4263 continue; 4264 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 4265 continue; 4266 min_tolerated = min_t(int, min_tolerated, 4267 btrfs_raid_array[raid_type]. 4268 tolerated_failures); 4269 } 4270 4271 if (min_tolerated == INT_MAX) { 4272 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4273 min_tolerated = 0; 4274 } 4275 4276 return min_tolerated; 4277 } 4278 4279 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4280 { 4281 struct list_head *head; 4282 struct btrfs_device *dev; 4283 struct btrfs_super_block *sb; 4284 struct btrfs_dev_item *dev_item; 4285 int ret; 4286 int do_barriers; 4287 int max_errors; 4288 int total_errors = 0; 4289 u64 flags; 4290 4291 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4292 4293 /* 4294 * max_mirrors == 0 indicates we're from commit_transaction, 4295 * not from fsync where the tree roots in fs_info have not 4296 * been consistent on disk. 4297 */ 4298 if (max_mirrors == 0) 4299 backup_super_roots(fs_info); 4300 4301 sb = fs_info->super_for_commit; 4302 dev_item = &sb->dev_item; 4303 4304 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4305 head = &fs_info->fs_devices->devices; 4306 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4307 4308 if (do_barriers) { 4309 ret = barrier_all_devices(fs_info); 4310 if (ret) { 4311 mutex_unlock( 4312 &fs_info->fs_devices->device_list_mutex); 4313 btrfs_handle_fs_error(fs_info, ret, 4314 "errors while submitting device barriers."); 4315 return ret; 4316 } 4317 } 4318 4319 list_for_each_entry(dev, head, dev_list) { 4320 if (!dev->bdev) { 4321 total_errors++; 4322 continue; 4323 } 4324 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4325 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4326 continue; 4327 4328 btrfs_set_stack_device_generation(dev_item, 0); 4329 btrfs_set_stack_device_type(dev_item, dev->type); 4330 btrfs_set_stack_device_id(dev_item, dev->devid); 4331 btrfs_set_stack_device_total_bytes(dev_item, 4332 dev->commit_total_bytes); 4333 btrfs_set_stack_device_bytes_used(dev_item, 4334 dev->commit_bytes_used); 4335 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4336 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4337 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4338 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4339 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4340 BTRFS_FSID_SIZE); 4341 4342 flags = btrfs_super_flags(sb); 4343 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4344 4345 ret = btrfs_validate_write_super(fs_info, sb); 4346 if (ret < 0) { 4347 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4348 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4349 "unexpected superblock corruption detected"); 4350 return -EUCLEAN; 4351 } 4352 4353 ret = write_dev_supers(dev, sb, max_mirrors); 4354 if (ret) 4355 total_errors++; 4356 } 4357 if (total_errors > max_errors) { 4358 btrfs_err(fs_info, "%d errors while writing supers", 4359 total_errors); 4360 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4361 4362 /* FUA is masked off if unsupported and can't be the reason */ 4363 btrfs_handle_fs_error(fs_info, -EIO, 4364 "%d errors while writing supers", 4365 total_errors); 4366 return -EIO; 4367 } 4368 4369 total_errors = 0; 4370 list_for_each_entry(dev, head, dev_list) { 4371 if (!dev->bdev) 4372 continue; 4373 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4374 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4375 continue; 4376 4377 ret = wait_dev_supers(dev, max_mirrors); 4378 if (ret) 4379 total_errors++; 4380 } 4381 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4382 if (total_errors > max_errors) { 4383 btrfs_handle_fs_error(fs_info, -EIO, 4384 "%d errors while writing supers", 4385 total_errors); 4386 return -EIO; 4387 } 4388 return 0; 4389 } 4390 4391 /* Drop a fs root from the radix tree and free it. */ 4392 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4393 struct btrfs_root *root) 4394 { 4395 bool drop_ref = false; 4396 4397 spin_lock(&fs_info->fs_roots_radix_lock); 4398 radix_tree_delete(&fs_info->fs_roots_radix, 4399 (unsigned long)root->root_key.objectid); 4400 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4401 drop_ref = true; 4402 spin_unlock(&fs_info->fs_roots_radix_lock); 4403 4404 if (BTRFS_FS_ERROR(fs_info)) { 4405 ASSERT(root->log_root == NULL); 4406 if (root->reloc_root) { 4407 btrfs_put_root(root->reloc_root); 4408 root->reloc_root = NULL; 4409 } 4410 } 4411 4412 if (drop_ref) 4413 btrfs_put_root(root); 4414 } 4415 4416 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 4417 { 4418 u64 root_objectid = 0; 4419 struct btrfs_root *gang[8]; 4420 int i = 0; 4421 int err = 0; 4422 unsigned int ret = 0; 4423 4424 while (1) { 4425 spin_lock(&fs_info->fs_roots_radix_lock); 4426 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4427 (void **)gang, root_objectid, 4428 ARRAY_SIZE(gang)); 4429 if (!ret) { 4430 spin_unlock(&fs_info->fs_roots_radix_lock); 4431 break; 4432 } 4433 root_objectid = gang[ret - 1]->root_key.objectid + 1; 4434 4435 for (i = 0; i < ret; i++) { 4436 /* Avoid to grab roots in dead_roots */ 4437 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 4438 gang[i] = NULL; 4439 continue; 4440 } 4441 /* grab all the search result for later use */ 4442 gang[i] = btrfs_grab_root(gang[i]); 4443 } 4444 spin_unlock(&fs_info->fs_roots_radix_lock); 4445 4446 for (i = 0; i < ret; i++) { 4447 if (!gang[i]) 4448 continue; 4449 root_objectid = gang[i]->root_key.objectid; 4450 err = btrfs_orphan_cleanup(gang[i]); 4451 if (err) 4452 break; 4453 btrfs_put_root(gang[i]); 4454 } 4455 root_objectid++; 4456 } 4457 4458 /* release the uncleaned roots due to error */ 4459 for (; i < ret; i++) { 4460 if (gang[i]) 4461 btrfs_put_root(gang[i]); 4462 } 4463 return err; 4464 } 4465 4466 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4467 { 4468 struct btrfs_root *root = fs_info->tree_root; 4469 struct btrfs_trans_handle *trans; 4470 4471 mutex_lock(&fs_info->cleaner_mutex); 4472 btrfs_run_delayed_iputs(fs_info); 4473 mutex_unlock(&fs_info->cleaner_mutex); 4474 wake_up_process(fs_info->cleaner_kthread); 4475 4476 /* wait until ongoing cleanup work done */ 4477 down_write(&fs_info->cleanup_work_sem); 4478 up_write(&fs_info->cleanup_work_sem); 4479 4480 trans = btrfs_join_transaction(root); 4481 if (IS_ERR(trans)) 4482 return PTR_ERR(trans); 4483 return btrfs_commit_transaction(trans); 4484 } 4485 4486 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4487 { 4488 struct btrfs_transaction *trans; 4489 struct btrfs_transaction *tmp; 4490 bool found = false; 4491 4492 if (list_empty(&fs_info->trans_list)) 4493 return; 4494 4495 /* 4496 * This function is only called at the very end of close_ctree(), 4497 * thus no other running transaction, no need to take trans_lock. 4498 */ 4499 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4500 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4501 struct extent_state *cached = NULL; 4502 u64 dirty_bytes = 0; 4503 u64 cur = 0; 4504 u64 found_start; 4505 u64 found_end; 4506 4507 found = true; 4508 while (!find_first_extent_bit(&trans->dirty_pages, cur, 4509 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4510 dirty_bytes += found_end + 1 - found_start; 4511 cur = found_end + 1; 4512 } 4513 btrfs_warn(fs_info, 4514 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4515 trans->transid, dirty_bytes); 4516 btrfs_cleanup_one_transaction(trans, fs_info); 4517 4518 if (trans == fs_info->running_transaction) 4519 fs_info->running_transaction = NULL; 4520 list_del_init(&trans->list); 4521 4522 btrfs_put_transaction(trans); 4523 trace_btrfs_transaction_commit(fs_info); 4524 } 4525 ASSERT(!found); 4526 } 4527 4528 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4529 { 4530 int ret; 4531 4532 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4533 /* 4534 * We don't want the cleaner to start new transactions, add more delayed 4535 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4536 * because that frees the task_struct, and the transaction kthread might 4537 * still try to wake up the cleaner. 4538 */ 4539 kthread_park(fs_info->cleaner_kthread); 4540 4541 /* wait for the qgroup rescan worker to stop */ 4542 btrfs_qgroup_wait_for_completion(fs_info, false); 4543 4544 /* wait for the uuid_scan task to finish */ 4545 down(&fs_info->uuid_tree_rescan_sem); 4546 /* avoid complains from lockdep et al., set sem back to initial state */ 4547 up(&fs_info->uuid_tree_rescan_sem); 4548 4549 /* pause restriper - we want to resume on mount */ 4550 btrfs_pause_balance(fs_info); 4551 4552 btrfs_dev_replace_suspend_for_unmount(fs_info); 4553 4554 btrfs_scrub_cancel(fs_info); 4555 4556 /* wait for any defraggers to finish */ 4557 wait_event(fs_info->transaction_wait, 4558 (atomic_read(&fs_info->defrag_running) == 0)); 4559 4560 /* clear out the rbtree of defraggable inodes */ 4561 btrfs_cleanup_defrag_inodes(fs_info); 4562 4563 cancel_work_sync(&fs_info->async_reclaim_work); 4564 cancel_work_sync(&fs_info->async_data_reclaim_work); 4565 cancel_work_sync(&fs_info->preempt_reclaim_work); 4566 4567 cancel_work_sync(&fs_info->reclaim_bgs_work); 4568 4569 /* Cancel or finish ongoing discard work */ 4570 btrfs_discard_cleanup(fs_info); 4571 4572 if (!sb_rdonly(fs_info->sb)) { 4573 /* 4574 * The cleaner kthread is stopped, so do one final pass over 4575 * unused block groups. 4576 */ 4577 btrfs_delete_unused_bgs(fs_info); 4578 4579 /* 4580 * There might be existing delayed inode workers still running 4581 * and holding an empty delayed inode item. We must wait for 4582 * them to complete first because they can create a transaction. 4583 * This happens when someone calls btrfs_balance_delayed_items() 4584 * and then a transaction commit runs the same delayed nodes 4585 * before any delayed worker has done something with the nodes. 4586 * We must wait for any worker here and not at transaction 4587 * commit time since that could cause a deadlock. 4588 * This is a very rare case. 4589 */ 4590 btrfs_flush_workqueue(fs_info->delayed_workers); 4591 4592 ret = btrfs_commit_super(fs_info); 4593 if (ret) 4594 btrfs_err(fs_info, "commit super ret %d", ret); 4595 } 4596 4597 if (BTRFS_FS_ERROR(fs_info)) 4598 btrfs_error_commit_super(fs_info); 4599 4600 kthread_stop(fs_info->transaction_kthread); 4601 kthread_stop(fs_info->cleaner_kthread); 4602 4603 ASSERT(list_empty(&fs_info->delayed_iputs)); 4604 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4605 4606 if (btrfs_check_quota_leak(fs_info)) { 4607 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4608 btrfs_err(fs_info, "qgroup reserved space leaked"); 4609 } 4610 4611 btrfs_free_qgroup_config(fs_info); 4612 ASSERT(list_empty(&fs_info->delalloc_roots)); 4613 4614 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4615 btrfs_info(fs_info, "at unmount delalloc count %lld", 4616 percpu_counter_sum(&fs_info->delalloc_bytes)); 4617 } 4618 4619 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4620 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4621 percpu_counter_sum(&fs_info->ordered_bytes)); 4622 4623 btrfs_sysfs_remove_mounted(fs_info); 4624 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4625 4626 btrfs_put_block_group_cache(fs_info); 4627 4628 /* 4629 * we must make sure there is not any read request to 4630 * submit after we stopping all workers. 4631 */ 4632 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4633 btrfs_stop_all_workers(fs_info); 4634 4635 /* We shouldn't have any transaction open at this point */ 4636 warn_about_uncommitted_trans(fs_info); 4637 4638 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4639 free_root_pointers(fs_info, true); 4640 btrfs_free_fs_roots(fs_info); 4641 4642 /* 4643 * We must free the block groups after dropping the fs_roots as we could 4644 * have had an IO error and have left over tree log blocks that aren't 4645 * cleaned up until the fs roots are freed. This makes the block group 4646 * accounting appear to be wrong because there's pending reserved bytes, 4647 * so make sure we do the block group cleanup afterwards. 4648 */ 4649 btrfs_free_block_groups(fs_info); 4650 4651 iput(fs_info->btree_inode); 4652 4653 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4654 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4655 btrfsic_unmount(fs_info->fs_devices); 4656 #endif 4657 4658 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4659 btrfs_close_devices(fs_info->fs_devices); 4660 } 4661 4662 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4663 int atomic) 4664 { 4665 int ret; 4666 struct inode *btree_inode = buf->pages[0]->mapping->host; 4667 4668 ret = extent_buffer_uptodate(buf); 4669 if (!ret) 4670 return ret; 4671 4672 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4673 parent_transid, atomic); 4674 if (ret == -EAGAIN) 4675 return ret; 4676 return !ret; 4677 } 4678 4679 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4680 { 4681 struct btrfs_fs_info *fs_info = buf->fs_info; 4682 u64 transid = btrfs_header_generation(buf); 4683 int was_dirty; 4684 4685 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4686 /* 4687 * This is a fast path so only do this check if we have sanity tests 4688 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4689 * outside of the sanity tests. 4690 */ 4691 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4692 return; 4693 #endif 4694 btrfs_assert_tree_write_locked(buf); 4695 if (transid != fs_info->generation) 4696 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4697 buf->start, transid, fs_info->generation); 4698 was_dirty = set_extent_buffer_dirty(buf); 4699 if (!was_dirty) 4700 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4701 buf->len, 4702 fs_info->dirty_metadata_batch); 4703 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4704 /* 4705 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4706 * but item data not updated. 4707 * So here we should only check item pointers, not item data. 4708 */ 4709 if (btrfs_header_level(buf) == 0 && 4710 btrfs_check_leaf_relaxed(buf)) { 4711 btrfs_print_leaf(buf); 4712 ASSERT(0); 4713 } 4714 #endif 4715 } 4716 4717 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4718 int flush_delayed) 4719 { 4720 /* 4721 * looks as though older kernels can get into trouble with 4722 * this code, they end up stuck in balance_dirty_pages forever 4723 */ 4724 int ret; 4725 4726 if (current->flags & PF_MEMALLOC) 4727 return; 4728 4729 if (flush_delayed) 4730 btrfs_balance_delayed_items(fs_info); 4731 4732 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4733 BTRFS_DIRTY_METADATA_THRESH, 4734 fs_info->dirty_metadata_batch); 4735 if (ret > 0) { 4736 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4737 } 4738 } 4739 4740 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4741 { 4742 __btrfs_btree_balance_dirty(fs_info, 1); 4743 } 4744 4745 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4746 { 4747 __btrfs_btree_balance_dirty(fs_info, 0); 4748 } 4749 4750 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4751 struct btrfs_key *first_key) 4752 { 4753 return btree_read_extent_buffer_pages(buf, parent_transid, 4754 level, first_key); 4755 } 4756 4757 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4758 { 4759 /* cleanup FS via transaction */ 4760 btrfs_cleanup_transaction(fs_info); 4761 4762 mutex_lock(&fs_info->cleaner_mutex); 4763 btrfs_run_delayed_iputs(fs_info); 4764 mutex_unlock(&fs_info->cleaner_mutex); 4765 4766 down_write(&fs_info->cleanup_work_sem); 4767 up_write(&fs_info->cleanup_work_sem); 4768 } 4769 4770 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4771 { 4772 struct btrfs_root *gang[8]; 4773 u64 root_objectid = 0; 4774 int ret; 4775 4776 spin_lock(&fs_info->fs_roots_radix_lock); 4777 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4778 (void **)gang, root_objectid, 4779 ARRAY_SIZE(gang))) != 0) { 4780 int i; 4781 4782 for (i = 0; i < ret; i++) 4783 gang[i] = btrfs_grab_root(gang[i]); 4784 spin_unlock(&fs_info->fs_roots_radix_lock); 4785 4786 for (i = 0; i < ret; i++) { 4787 if (!gang[i]) 4788 continue; 4789 root_objectid = gang[i]->root_key.objectid; 4790 btrfs_free_log(NULL, gang[i]); 4791 btrfs_put_root(gang[i]); 4792 } 4793 root_objectid++; 4794 spin_lock(&fs_info->fs_roots_radix_lock); 4795 } 4796 spin_unlock(&fs_info->fs_roots_radix_lock); 4797 btrfs_free_log_root_tree(NULL, fs_info); 4798 } 4799 4800 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4801 { 4802 struct btrfs_ordered_extent *ordered; 4803 4804 spin_lock(&root->ordered_extent_lock); 4805 /* 4806 * This will just short circuit the ordered completion stuff which will 4807 * make sure the ordered extent gets properly cleaned up. 4808 */ 4809 list_for_each_entry(ordered, &root->ordered_extents, 4810 root_extent_list) 4811 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4812 spin_unlock(&root->ordered_extent_lock); 4813 } 4814 4815 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4816 { 4817 struct btrfs_root *root; 4818 struct list_head splice; 4819 4820 INIT_LIST_HEAD(&splice); 4821 4822 spin_lock(&fs_info->ordered_root_lock); 4823 list_splice_init(&fs_info->ordered_roots, &splice); 4824 while (!list_empty(&splice)) { 4825 root = list_first_entry(&splice, struct btrfs_root, 4826 ordered_root); 4827 list_move_tail(&root->ordered_root, 4828 &fs_info->ordered_roots); 4829 4830 spin_unlock(&fs_info->ordered_root_lock); 4831 btrfs_destroy_ordered_extents(root); 4832 4833 cond_resched(); 4834 spin_lock(&fs_info->ordered_root_lock); 4835 } 4836 spin_unlock(&fs_info->ordered_root_lock); 4837 4838 /* 4839 * We need this here because if we've been flipped read-only we won't 4840 * get sync() from the umount, so we need to make sure any ordered 4841 * extents that haven't had their dirty pages IO start writeout yet 4842 * actually get run and error out properly. 4843 */ 4844 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4845 } 4846 4847 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4848 struct btrfs_fs_info *fs_info) 4849 { 4850 struct rb_node *node; 4851 struct btrfs_delayed_ref_root *delayed_refs; 4852 struct btrfs_delayed_ref_node *ref; 4853 int ret = 0; 4854 4855 delayed_refs = &trans->delayed_refs; 4856 4857 spin_lock(&delayed_refs->lock); 4858 if (atomic_read(&delayed_refs->num_entries) == 0) { 4859 spin_unlock(&delayed_refs->lock); 4860 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4861 return ret; 4862 } 4863 4864 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4865 struct btrfs_delayed_ref_head *head; 4866 struct rb_node *n; 4867 bool pin_bytes = false; 4868 4869 head = rb_entry(node, struct btrfs_delayed_ref_head, 4870 href_node); 4871 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4872 continue; 4873 4874 spin_lock(&head->lock); 4875 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4876 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4877 ref_node); 4878 ref->in_tree = 0; 4879 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4880 RB_CLEAR_NODE(&ref->ref_node); 4881 if (!list_empty(&ref->add_list)) 4882 list_del(&ref->add_list); 4883 atomic_dec(&delayed_refs->num_entries); 4884 btrfs_put_delayed_ref(ref); 4885 } 4886 if (head->must_insert_reserved) 4887 pin_bytes = true; 4888 btrfs_free_delayed_extent_op(head->extent_op); 4889 btrfs_delete_ref_head(delayed_refs, head); 4890 spin_unlock(&head->lock); 4891 spin_unlock(&delayed_refs->lock); 4892 mutex_unlock(&head->mutex); 4893 4894 if (pin_bytes) { 4895 struct btrfs_block_group *cache; 4896 4897 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4898 BUG_ON(!cache); 4899 4900 spin_lock(&cache->space_info->lock); 4901 spin_lock(&cache->lock); 4902 cache->pinned += head->num_bytes; 4903 btrfs_space_info_update_bytes_pinned(fs_info, 4904 cache->space_info, head->num_bytes); 4905 cache->reserved -= head->num_bytes; 4906 cache->space_info->bytes_reserved -= head->num_bytes; 4907 spin_unlock(&cache->lock); 4908 spin_unlock(&cache->space_info->lock); 4909 4910 btrfs_put_block_group(cache); 4911 4912 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4913 head->bytenr + head->num_bytes - 1); 4914 } 4915 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4916 btrfs_put_delayed_ref_head(head); 4917 cond_resched(); 4918 spin_lock(&delayed_refs->lock); 4919 } 4920 btrfs_qgroup_destroy_extent_records(trans); 4921 4922 spin_unlock(&delayed_refs->lock); 4923 4924 return ret; 4925 } 4926 4927 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4928 { 4929 struct btrfs_inode *btrfs_inode; 4930 struct list_head splice; 4931 4932 INIT_LIST_HEAD(&splice); 4933 4934 spin_lock(&root->delalloc_lock); 4935 list_splice_init(&root->delalloc_inodes, &splice); 4936 4937 while (!list_empty(&splice)) { 4938 struct inode *inode = NULL; 4939 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4940 delalloc_inodes); 4941 __btrfs_del_delalloc_inode(root, btrfs_inode); 4942 spin_unlock(&root->delalloc_lock); 4943 4944 /* 4945 * Make sure we get a live inode and that it'll not disappear 4946 * meanwhile. 4947 */ 4948 inode = igrab(&btrfs_inode->vfs_inode); 4949 if (inode) { 4950 invalidate_inode_pages2(inode->i_mapping); 4951 iput(inode); 4952 } 4953 spin_lock(&root->delalloc_lock); 4954 } 4955 spin_unlock(&root->delalloc_lock); 4956 } 4957 4958 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4959 { 4960 struct btrfs_root *root; 4961 struct list_head splice; 4962 4963 INIT_LIST_HEAD(&splice); 4964 4965 spin_lock(&fs_info->delalloc_root_lock); 4966 list_splice_init(&fs_info->delalloc_roots, &splice); 4967 while (!list_empty(&splice)) { 4968 root = list_first_entry(&splice, struct btrfs_root, 4969 delalloc_root); 4970 root = btrfs_grab_root(root); 4971 BUG_ON(!root); 4972 spin_unlock(&fs_info->delalloc_root_lock); 4973 4974 btrfs_destroy_delalloc_inodes(root); 4975 btrfs_put_root(root); 4976 4977 spin_lock(&fs_info->delalloc_root_lock); 4978 } 4979 spin_unlock(&fs_info->delalloc_root_lock); 4980 } 4981 4982 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4983 struct extent_io_tree *dirty_pages, 4984 int mark) 4985 { 4986 int ret; 4987 struct extent_buffer *eb; 4988 u64 start = 0; 4989 u64 end; 4990 4991 while (1) { 4992 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4993 mark, NULL); 4994 if (ret) 4995 break; 4996 4997 clear_extent_bits(dirty_pages, start, end, mark); 4998 while (start <= end) { 4999 eb = find_extent_buffer(fs_info, start); 5000 start += fs_info->nodesize; 5001 if (!eb) 5002 continue; 5003 wait_on_extent_buffer_writeback(eb); 5004 5005 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 5006 &eb->bflags)) 5007 clear_extent_buffer_dirty(eb); 5008 free_extent_buffer_stale(eb); 5009 } 5010 } 5011 5012 return ret; 5013 } 5014 5015 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 5016 struct extent_io_tree *unpin) 5017 { 5018 u64 start; 5019 u64 end; 5020 int ret; 5021 5022 while (1) { 5023 struct extent_state *cached_state = NULL; 5024 5025 /* 5026 * The btrfs_finish_extent_commit() may get the same range as 5027 * ours between find_first_extent_bit and clear_extent_dirty. 5028 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 5029 * the same extent range. 5030 */ 5031 mutex_lock(&fs_info->unused_bg_unpin_mutex); 5032 ret = find_first_extent_bit(unpin, 0, &start, &end, 5033 EXTENT_DIRTY, &cached_state); 5034 if (ret) { 5035 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5036 break; 5037 } 5038 5039 clear_extent_dirty(unpin, start, end, &cached_state); 5040 free_extent_state(cached_state); 5041 btrfs_error_unpin_extent_range(fs_info, start, end); 5042 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5043 cond_resched(); 5044 } 5045 5046 return 0; 5047 } 5048 5049 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 5050 { 5051 struct inode *inode; 5052 5053 inode = cache->io_ctl.inode; 5054 if (inode) { 5055 invalidate_inode_pages2(inode->i_mapping); 5056 BTRFS_I(inode)->generation = 0; 5057 cache->io_ctl.inode = NULL; 5058 iput(inode); 5059 } 5060 ASSERT(cache->io_ctl.pages == NULL); 5061 btrfs_put_block_group(cache); 5062 } 5063 5064 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 5065 struct btrfs_fs_info *fs_info) 5066 { 5067 struct btrfs_block_group *cache; 5068 5069 spin_lock(&cur_trans->dirty_bgs_lock); 5070 while (!list_empty(&cur_trans->dirty_bgs)) { 5071 cache = list_first_entry(&cur_trans->dirty_bgs, 5072 struct btrfs_block_group, 5073 dirty_list); 5074 5075 if (!list_empty(&cache->io_list)) { 5076 spin_unlock(&cur_trans->dirty_bgs_lock); 5077 list_del_init(&cache->io_list); 5078 btrfs_cleanup_bg_io(cache); 5079 spin_lock(&cur_trans->dirty_bgs_lock); 5080 } 5081 5082 list_del_init(&cache->dirty_list); 5083 spin_lock(&cache->lock); 5084 cache->disk_cache_state = BTRFS_DC_ERROR; 5085 spin_unlock(&cache->lock); 5086 5087 spin_unlock(&cur_trans->dirty_bgs_lock); 5088 btrfs_put_block_group(cache); 5089 btrfs_delayed_refs_rsv_release(fs_info, 1); 5090 spin_lock(&cur_trans->dirty_bgs_lock); 5091 } 5092 spin_unlock(&cur_trans->dirty_bgs_lock); 5093 5094 /* 5095 * Refer to the definition of io_bgs member for details why it's safe 5096 * to use it without any locking 5097 */ 5098 while (!list_empty(&cur_trans->io_bgs)) { 5099 cache = list_first_entry(&cur_trans->io_bgs, 5100 struct btrfs_block_group, 5101 io_list); 5102 5103 list_del_init(&cache->io_list); 5104 spin_lock(&cache->lock); 5105 cache->disk_cache_state = BTRFS_DC_ERROR; 5106 spin_unlock(&cache->lock); 5107 btrfs_cleanup_bg_io(cache); 5108 } 5109 } 5110 5111 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 5112 struct btrfs_fs_info *fs_info) 5113 { 5114 struct btrfs_device *dev, *tmp; 5115 5116 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 5117 ASSERT(list_empty(&cur_trans->dirty_bgs)); 5118 ASSERT(list_empty(&cur_trans->io_bgs)); 5119 5120 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 5121 post_commit_list) { 5122 list_del_init(&dev->post_commit_list); 5123 } 5124 5125 btrfs_destroy_delayed_refs(cur_trans, fs_info); 5126 5127 cur_trans->state = TRANS_STATE_COMMIT_START; 5128 wake_up(&fs_info->transaction_blocked_wait); 5129 5130 cur_trans->state = TRANS_STATE_UNBLOCKED; 5131 wake_up(&fs_info->transaction_wait); 5132 5133 btrfs_destroy_delayed_inodes(fs_info); 5134 5135 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 5136 EXTENT_DIRTY); 5137 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 5138 5139 btrfs_free_redirty_list(cur_trans); 5140 5141 cur_trans->state =TRANS_STATE_COMPLETED; 5142 wake_up(&cur_trans->commit_wait); 5143 } 5144 5145 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 5146 { 5147 struct btrfs_transaction *t; 5148 5149 mutex_lock(&fs_info->transaction_kthread_mutex); 5150 5151 spin_lock(&fs_info->trans_lock); 5152 while (!list_empty(&fs_info->trans_list)) { 5153 t = list_first_entry(&fs_info->trans_list, 5154 struct btrfs_transaction, list); 5155 if (t->state >= TRANS_STATE_COMMIT_START) { 5156 refcount_inc(&t->use_count); 5157 spin_unlock(&fs_info->trans_lock); 5158 btrfs_wait_for_commit(fs_info, t->transid); 5159 btrfs_put_transaction(t); 5160 spin_lock(&fs_info->trans_lock); 5161 continue; 5162 } 5163 if (t == fs_info->running_transaction) { 5164 t->state = TRANS_STATE_COMMIT_DOING; 5165 spin_unlock(&fs_info->trans_lock); 5166 /* 5167 * We wait for 0 num_writers since we don't hold a trans 5168 * handle open currently for this transaction. 5169 */ 5170 wait_event(t->writer_wait, 5171 atomic_read(&t->num_writers) == 0); 5172 } else { 5173 spin_unlock(&fs_info->trans_lock); 5174 } 5175 btrfs_cleanup_one_transaction(t, fs_info); 5176 5177 spin_lock(&fs_info->trans_lock); 5178 if (t == fs_info->running_transaction) 5179 fs_info->running_transaction = NULL; 5180 list_del_init(&t->list); 5181 spin_unlock(&fs_info->trans_lock); 5182 5183 btrfs_put_transaction(t); 5184 trace_btrfs_transaction_commit(fs_info); 5185 spin_lock(&fs_info->trans_lock); 5186 } 5187 spin_unlock(&fs_info->trans_lock); 5188 btrfs_destroy_all_ordered_extents(fs_info); 5189 btrfs_destroy_delayed_inodes(fs_info); 5190 btrfs_assert_delayed_root_empty(fs_info); 5191 btrfs_destroy_all_delalloc_inodes(fs_info); 5192 btrfs_drop_all_logs(fs_info); 5193 mutex_unlock(&fs_info->transaction_kthread_mutex); 5194 5195 return 0; 5196 } 5197 5198 int btrfs_init_root_free_objectid(struct btrfs_root *root) 5199 { 5200 struct btrfs_path *path; 5201 int ret; 5202 struct extent_buffer *l; 5203 struct btrfs_key search_key; 5204 struct btrfs_key found_key; 5205 int slot; 5206 5207 path = btrfs_alloc_path(); 5208 if (!path) 5209 return -ENOMEM; 5210 5211 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 5212 search_key.type = -1; 5213 search_key.offset = (u64)-1; 5214 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5215 if (ret < 0) 5216 goto error; 5217 BUG_ON(ret == 0); /* Corruption */ 5218 if (path->slots[0] > 0) { 5219 slot = path->slots[0] - 1; 5220 l = path->nodes[0]; 5221 btrfs_item_key_to_cpu(l, &found_key, slot); 5222 root->free_objectid = max_t(u64, found_key.objectid + 1, 5223 BTRFS_FIRST_FREE_OBJECTID); 5224 } else { 5225 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 5226 } 5227 ret = 0; 5228 error: 5229 btrfs_free_path(path); 5230 return ret; 5231 } 5232 5233 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 5234 { 5235 int ret; 5236 mutex_lock(&root->objectid_mutex); 5237 5238 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 5239 btrfs_warn(root->fs_info, 5240 "the objectid of root %llu reaches its highest value", 5241 root->root_key.objectid); 5242 ret = -ENOSPC; 5243 goto out; 5244 } 5245 5246 *objectid = root->free_objectid++; 5247 ret = 0; 5248 out: 5249 mutex_unlock(&root->objectid_mutex); 5250 return ret; 5251 } 5252