1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include "compat.h" 30 #include "crc32c.h" 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "volumes.h" 36 #include "print-tree.h" 37 #include "async-thread.h" 38 #include "locking.h" 39 #include "ref-cache.h" 40 #include "tree-log.h" 41 #include "free-space-cache.h" 42 43 static struct extent_io_ops btree_extent_io_ops; 44 static void end_workqueue_fn(struct btrfs_work *work); 45 46 /* 47 * end_io_wq structs are used to do processing in task context when an IO is 48 * complete. This is used during reads to verify checksums, and it is used 49 * by writes to insert metadata for new file extents after IO is complete. 50 */ 51 struct end_io_wq { 52 struct bio *bio; 53 bio_end_io_t *end_io; 54 void *private; 55 struct btrfs_fs_info *info; 56 int error; 57 int metadata; 58 struct list_head list; 59 struct btrfs_work work; 60 }; 61 62 /* 63 * async submit bios are used to offload expensive checksumming 64 * onto the worker threads. They checksum file and metadata bios 65 * just before they are sent down the IO stack. 66 */ 67 struct async_submit_bio { 68 struct inode *inode; 69 struct bio *bio; 70 struct list_head list; 71 extent_submit_bio_hook_t *submit_bio_start; 72 extent_submit_bio_hook_t *submit_bio_done; 73 int rw; 74 int mirror_num; 75 unsigned long bio_flags; 76 struct btrfs_work work; 77 }; 78 79 /* These are used to set the lockdep class on the extent buffer locks. 80 * The class is set by the readpage_end_io_hook after the buffer has 81 * passed csum validation but before the pages are unlocked. 82 * 83 * The lockdep class is also set by btrfs_init_new_buffer on freshly 84 * allocated blocks. 85 * 86 * The class is based on the level in the tree block, which allows lockdep 87 * to know that lower nodes nest inside the locks of higher nodes. 88 * 89 * We also add a check to make sure the highest level of the tree is 90 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this 91 * code needs update as well. 92 */ 93 #ifdef CONFIG_DEBUG_LOCK_ALLOC 94 # if BTRFS_MAX_LEVEL != 8 95 # error 96 # endif 97 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1]; 98 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = { 99 /* leaf */ 100 "btrfs-extent-00", 101 "btrfs-extent-01", 102 "btrfs-extent-02", 103 "btrfs-extent-03", 104 "btrfs-extent-04", 105 "btrfs-extent-05", 106 "btrfs-extent-06", 107 "btrfs-extent-07", 108 /* highest possible level */ 109 "btrfs-extent-08", 110 }; 111 #endif 112 113 /* 114 * extents on the btree inode are pretty simple, there's one extent 115 * that covers the entire device 116 */ 117 static struct extent_map *btree_get_extent(struct inode *inode, 118 struct page *page, size_t page_offset, u64 start, u64 len, 119 int create) 120 { 121 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 122 struct extent_map *em; 123 int ret; 124 125 spin_lock(&em_tree->lock); 126 em = lookup_extent_mapping(em_tree, start, len); 127 if (em) { 128 em->bdev = 129 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 130 spin_unlock(&em_tree->lock); 131 goto out; 132 } 133 spin_unlock(&em_tree->lock); 134 135 em = alloc_extent_map(GFP_NOFS); 136 if (!em) { 137 em = ERR_PTR(-ENOMEM); 138 goto out; 139 } 140 em->start = 0; 141 em->len = (u64)-1; 142 em->block_len = (u64)-1; 143 em->block_start = 0; 144 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 145 146 spin_lock(&em_tree->lock); 147 ret = add_extent_mapping(em_tree, em); 148 if (ret == -EEXIST) { 149 u64 failed_start = em->start; 150 u64 failed_len = em->len; 151 152 free_extent_map(em); 153 em = lookup_extent_mapping(em_tree, start, len); 154 if (em) { 155 ret = 0; 156 } else { 157 em = lookup_extent_mapping(em_tree, failed_start, 158 failed_len); 159 ret = -EIO; 160 } 161 } else if (ret) { 162 free_extent_map(em); 163 em = NULL; 164 } 165 spin_unlock(&em_tree->lock); 166 167 if (ret) 168 em = ERR_PTR(ret); 169 out: 170 return em; 171 } 172 173 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 174 { 175 return btrfs_crc32c(seed, data, len); 176 } 177 178 void btrfs_csum_final(u32 crc, char *result) 179 { 180 *(__le32 *)result = ~cpu_to_le32(crc); 181 } 182 183 /* 184 * compute the csum for a btree block, and either verify it or write it 185 * into the csum field of the block. 186 */ 187 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 188 int verify) 189 { 190 u16 csum_size = 191 btrfs_super_csum_size(&root->fs_info->super_copy); 192 char *result = NULL; 193 unsigned long len; 194 unsigned long cur_len; 195 unsigned long offset = BTRFS_CSUM_SIZE; 196 char *map_token = NULL; 197 char *kaddr; 198 unsigned long map_start; 199 unsigned long map_len; 200 int err; 201 u32 crc = ~(u32)0; 202 unsigned long inline_result; 203 204 len = buf->len - offset; 205 while (len > 0) { 206 err = map_private_extent_buffer(buf, offset, 32, 207 &map_token, &kaddr, 208 &map_start, &map_len, KM_USER0); 209 if (err) 210 return 1; 211 cur_len = min(len, map_len - (offset - map_start)); 212 crc = btrfs_csum_data(root, kaddr + offset - map_start, 213 crc, cur_len); 214 len -= cur_len; 215 offset += cur_len; 216 unmap_extent_buffer(buf, map_token, KM_USER0); 217 } 218 if (csum_size > sizeof(inline_result)) { 219 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 220 if (!result) 221 return 1; 222 } else { 223 result = (char *)&inline_result; 224 } 225 226 btrfs_csum_final(crc, result); 227 228 if (verify) { 229 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 230 u32 val; 231 u32 found = 0; 232 memcpy(&found, result, csum_size); 233 234 read_extent_buffer(buf, &val, 0, csum_size); 235 printk(KERN_INFO "btrfs: %s checksum verify failed " 236 "on %llu wanted %X found %X level %d\n", 237 root->fs_info->sb->s_id, 238 buf->start, val, found, btrfs_header_level(buf)); 239 if (result != (char *)&inline_result) 240 kfree(result); 241 return 1; 242 } 243 } else { 244 write_extent_buffer(buf, result, 0, csum_size); 245 } 246 if (result != (char *)&inline_result) 247 kfree(result); 248 return 0; 249 } 250 251 /* 252 * we can't consider a given block up to date unless the transid of the 253 * block matches the transid in the parent node's pointer. This is how we 254 * detect blocks that either didn't get written at all or got written 255 * in the wrong place. 256 */ 257 static int verify_parent_transid(struct extent_io_tree *io_tree, 258 struct extent_buffer *eb, u64 parent_transid) 259 { 260 int ret; 261 262 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 263 return 0; 264 265 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS); 266 if (extent_buffer_uptodate(io_tree, eb) && 267 btrfs_header_generation(eb) == parent_transid) { 268 ret = 0; 269 goto out; 270 } 271 printk("parent transid verify failed on %llu wanted %llu found %llu\n", 272 (unsigned long long)eb->start, 273 (unsigned long long)parent_transid, 274 (unsigned long long)btrfs_header_generation(eb)); 275 ret = 1; 276 clear_extent_buffer_uptodate(io_tree, eb); 277 out: 278 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 279 GFP_NOFS); 280 return ret; 281 } 282 283 /* 284 * helper to read a given tree block, doing retries as required when 285 * the checksums don't match and we have alternate mirrors to try. 286 */ 287 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 288 struct extent_buffer *eb, 289 u64 start, u64 parent_transid) 290 { 291 struct extent_io_tree *io_tree; 292 int ret; 293 int num_copies = 0; 294 int mirror_num = 0; 295 296 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 297 while (1) { 298 ret = read_extent_buffer_pages(io_tree, eb, start, 1, 299 btree_get_extent, mirror_num); 300 if (!ret && 301 !verify_parent_transid(io_tree, eb, parent_transid)) 302 return ret; 303 304 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 305 eb->start, eb->len); 306 if (num_copies == 1) 307 return ret; 308 309 mirror_num++; 310 if (mirror_num > num_copies) 311 return ret; 312 } 313 return -EIO; 314 } 315 316 /* 317 * checksum a dirty tree block before IO. This has extra checks to make sure 318 * we only fill in the checksum field in the first page of a multi-page block 319 */ 320 321 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 322 { 323 struct extent_io_tree *tree; 324 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 325 u64 found_start; 326 int found_level; 327 unsigned long len; 328 struct extent_buffer *eb; 329 int ret; 330 331 tree = &BTRFS_I(page->mapping->host)->io_tree; 332 333 if (page->private == EXTENT_PAGE_PRIVATE) 334 goto out; 335 if (!page->private) 336 goto out; 337 len = page->private >> 2; 338 WARN_ON(len == 0); 339 340 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 341 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE, 342 btrfs_header_generation(eb)); 343 BUG_ON(ret); 344 found_start = btrfs_header_bytenr(eb); 345 if (found_start != start) { 346 WARN_ON(1); 347 goto err; 348 } 349 if (eb->first_page != page) { 350 WARN_ON(1); 351 goto err; 352 } 353 if (!PageUptodate(page)) { 354 WARN_ON(1); 355 goto err; 356 } 357 found_level = btrfs_header_level(eb); 358 359 csum_tree_block(root, eb, 0); 360 err: 361 free_extent_buffer(eb); 362 out: 363 return 0; 364 } 365 366 static int check_tree_block_fsid(struct btrfs_root *root, 367 struct extent_buffer *eb) 368 { 369 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 370 u8 fsid[BTRFS_UUID_SIZE]; 371 int ret = 1; 372 373 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 374 BTRFS_FSID_SIZE); 375 while (fs_devices) { 376 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 377 ret = 0; 378 break; 379 } 380 fs_devices = fs_devices->seed; 381 } 382 return ret; 383 } 384 385 #ifdef CONFIG_DEBUG_LOCK_ALLOC 386 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level) 387 { 388 lockdep_set_class_and_name(&eb->lock, 389 &btrfs_eb_class[level], 390 btrfs_eb_name[level]); 391 } 392 #endif 393 394 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 395 struct extent_state *state) 396 { 397 struct extent_io_tree *tree; 398 u64 found_start; 399 int found_level; 400 unsigned long len; 401 struct extent_buffer *eb; 402 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 403 int ret = 0; 404 405 tree = &BTRFS_I(page->mapping->host)->io_tree; 406 if (page->private == EXTENT_PAGE_PRIVATE) 407 goto out; 408 if (!page->private) 409 goto out; 410 411 len = page->private >> 2; 412 WARN_ON(len == 0); 413 414 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 415 416 found_start = btrfs_header_bytenr(eb); 417 if (found_start != start) { 418 printk(KERN_INFO "btrfs bad tree block start %llu %llu\n", 419 (unsigned long long)found_start, 420 (unsigned long long)eb->start); 421 ret = -EIO; 422 goto err; 423 } 424 if (eb->first_page != page) { 425 printk(KERN_INFO "btrfs bad first page %lu %lu\n", 426 eb->first_page->index, page->index); 427 WARN_ON(1); 428 ret = -EIO; 429 goto err; 430 } 431 if (check_tree_block_fsid(root, eb)) { 432 printk(KERN_INFO "btrfs bad fsid on block %llu\n", 433 (unsigned long long)eb->start); 434 ret = -EIO; 435 goto err; 436 } 437 found_level = btrfs_header_level(eb); 438 439 btrfs_set_buffer_lockdep_class(eb, found_level); 440 441 ret = csum_tree_block(root, eb, 1); 442 if (ret) 443 ret = -EIO; 444 445 end = min_t(u64, eb->len, PAGE_CACHE_SIZE); 446 end = eb->start + end - 1; 447 err: 448 free_extent_buffer(eb); 449 out: 450 return ret; 451 } 452 453 static void end_workqueue_bio(struct bio *bio, int err) 454 { 455 struct end_io_wq *end_io_wq = bio->bi_private; 456 struct btrfs_fs_info *fs_info; 457 458 fs_info = end_io_wq->info; 459 end_io_wq->error = err; 460 end_io_wq->work.func = end_workqueue_fn; 461 end_io_wq->work.flags = 0; 462 463 if (bio->bi_rw & (1 << BIO_RW)) { 464 if (end_io_wq->metadata) 465 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 466 &end_io_wq->work); 467 else 468 btrfs_queue_worker(&fs_info->endio_write_workers, 469 &end_io_wq->work); 470 } else { 471 if (end_io_wq->metadata) 472 btrfs_queue_worker(&fs_info->endio_meta_workers, 473 &end_io_wq->work); 474 else 475 btrfs_queue_worker(&fs_info->endio_workers, 476 &end_io_wq->work); 477 } 478 } 479 480 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 481 int metadata) 482 { 483 struct end_io_wq *end_io_wq; 484 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 485 if (!end_io_wq) 486 return -ENOMEM; 487 488 end_io_wq->private = bio->bi_private; 489 end_io_wq->end_io = bio->bi_end_io; 490 end_io_wq->info = info; 491 end_io_wq->error = 0; 492 end_io_wq->bio = bio; 493 end_io_wq->metadata = metadata; 494 495 bio->bi_private = end_io_wq; 496 bio->bi_end_io = end_workqueue_bio; 497 return 0; 498 } 499 500 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 501 { 502 unsigned long limit = min_t(unsigned long, 503 info->workers.max_workers, 504 info->fs_devices->open_devices); 505 return 256 * limit; 506 } 507 508 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone) 509 { 510 return atomic_read(&info->nr_async_bios) > 511 btrfs_async_submit_limit(info); 512 } 513 514 static void run_one_async_start(struct btrfs_work *work) 515 { 516 struct btrfs_fs_info *fs_info; 517 struct async_submit_bio *async; 518 519 async = container_of(work, struct async_submit_bio, work); 520 fs_info = BTRFS_I(async->inode)->root->fs_info; 521 async->submit_bio_start(async->inode, async->rw, async->bio, 522 async->mirror_num, async->bio_flags); 523 } 524 525 static void run_one_async_done(struct btrfs_work *work) 526 { 527 struct btrfs_fs_info *fs_info; 528 struct async_submit_bio *async; 529 int limit; 530 531 async = container_of(work, struct async_submit_bio, work); 532 fs_info = BTRFS_I(async->inode)->root->fs_info; 533 534 limit = btrfs_async_submit_limit(fs_info); 535 limit = limit * 2 / 3; 536 537 atomic_dec(&fs_info->nr_async_submits); 538 539 if (atomic_read(&fs_info->nr_async_submits) < limit && 540 waitqueue_active(&fs_info->async_submit_wait)) 541 wake_up(&fs_info->async_submit_wait); 542 543 async->submit_bio_done(async->inode, async->rw, async->bio, 544 async->mirror_num, async->bio_flags); 545 } 546 547 static void run_one_async_free(struct btrfs_work *work) 548 { 549 struct async_submit_bio *async; 550 551 async = container_of(work, struct async_submit_bio, work); 552 kfree(async); 553 } 554 555 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 556 int rw, struct bio *bio, int mirror_num, 557 unsigned long bio_flags, 558 extent_submit_bio_hook_t *submit_bio_start, 559 extent_submit_bio_hook_t *submit_bio_done) 560 { 561 struct async_submit_bio *async; 562 563 async = kmalloc(sizeof(*async), GFP_NOFS); 564 if (!async) 565 return -ENOMEM; 566 567 async->inode = inode; 568 async->rw = rw; 569 async->bio = bio; 570 async->mirror_num = mirror_num; 571 async->submit_bio_start = submit_bio_start; 572 async->submit_bio_done = submit_bio_done; 573 574 async->work.func = run_one_async_start; 575 async->work.ordered_func = run_one_async_done; 576 async->work.ordered_free = run_one_async_free; 577 578 async->work.flags = 0; 579 async->bio_flags = bio_flags; 580 581 atomic_inc(&fs_info->nr_async_submits); 582 btrfs_queue_worker(&fs_info->workers, &async->work); 583 #if 0 584 int limit = btrfs_async_submit_limit(fs_info); 585 if (atomic_read(&fs_info->nr_async_submits) > limit) { 586 wait_event_timeout(fs_info->async_submit_wait, 587 (atomic_read(&fs_info->nr_async_submits) < limit), 588 HZ/10); 589 590 wait_event_timeout(fs_info->async_submit_wait, 591 (atomic_read(&fs_info->nr_async_bios) < limit), 592 HZ/10); 593 } 594 #endif 595 while (atomic_read(&fs_info->async_submit_draining) && 596 atomic_read(&fs_info->nr_async_submits)) { 597 wait_event(fs_info->async_submit_wait, 598 (atomic_read(&fs_info->nr_async_submits) == 0)); 599 } 600 601 return 0; 602 } 603 604 static int btree_csum_one_bio(struct bio *bio) 605 { 606 struct bio_vec *bvec = bio->bi_io_vec; 607 int bio_index = 0; 608 struct btrfs_root *root; 609 610 WARN_ON(bio->bi_vcnt <= 0); 611 while (bio_index < bio->bi_vcnt) { 612 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 613 csum_dirty_buffer(root, bvec->bv_page); 614 bio_index++; 615 bvec++; 616 } 617 return 0; 618 } 619 620 static int __btree_submit_bio_start(struct inode *inode, int rw, 621 struct bio *bio, int mirror_num, 622 unsigned long bio_flags) 623 { 624 /* 625 * when we're called for a write, we're already in the async 626 * submission context. Just jump into btrfs_map_bio 627 */ 628 btree_csum_one_bio(bio); 629 return 0; 630 } 631 632 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 633 int mirror_num, unsigned long bio_flags) 634 { 635 /* 636 * when we're called for a write, we're already in the async 637 * submission context. Just jump into btrfs_map_bio 638 */ 639 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 640 } 641 642 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 643 int mirror_num, unsigned long bio_flags) 644 { 645 int ret; 646 647 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 648 bio, 1); 649 BUG_ON(ret); 650 651 if (!(rw & (1 << BIO_RW))) { 652 /* 653 * called for a read, do the setup so that checksum validation 654 * can happen in the async kernel threads 655 */ 656 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 657 mirror_num, 0); 658 } 659 /* 660 * kthread helpers are used to submit writes so that checksumming 661 * can happen in parallel across all CPUs 662 */ 663 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 664 inode, rw, bio, mirror_num, 0, 665 __btree_submit_bio_start, 666 __btree_submit_bio_done); 667 } 668 669 static int btree_writepage(struct page *page, struct writeback_control *wbc) 670 { 671 struct extent_io_tree *tree; 672 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 673 struct extent_buffer *eb; 674 int was_dirty; 675 676 tree = &BTRFS_I(page->mapping->host)->io_tree; 677 if (!(current->flags & PF_MEMALLOC)) { 678 return extent_write_full_page(tree, page, 679 btree_get_extent, wbc); 680 } 681 682 redirty_page_for_writepage(wbc, page); 683 eb = btrfs_find_tree_block(root, page_offset(page), 684 PAGE_CACHE_SIZE); 685 WARN_ON(!eb); 686 687 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 688 if (!was_dirty) { 689 spin_lock(&root->fs_info->delalloc_lock); 690 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE; 691 spin_unlock(&root->fs_info->delalloc_lock); 692 } 693 free_extent_buffer(eb); 694 695 unlock_page(page); 696 return 0; 697 } 698 699 static int btree_writepages(struct address_space *mapping, 700 struct writeback_control *wbc) 701 { 702 struct extent_io_tree *tree; 703 tree = &BTRFS_I(mapping->host)->io_tree; 704 if (wbc->sync_mode == WB_SYNC_NONE) { 705 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 706 u64 num_dirty; 707 unsigned long thresh = 32 * 1024 * 1024; 708 709 if (wbc->for_kupdate) 710 return 0; 711 712 /* this is a bit racy, but that's ok */ 713 num_dirty = root->fs_info->dirty_metadata_bytes; 714 if (num_dirty < thresh) 715 return 0; 716 } 717 return extent_writepages(tree, mapping, btree_get_extent, wbc); 718 } 719 720 static int btree_readpage(struct file *file, struct page *page) 721 { 722 struct extent_io_tree *tree; 723 tree = &BTRFS_I(page->mapping->host)->io_tree; 724 return extent_read_full_page(tree, page, btree_get_extent); 725 } 726 727 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 728 { 729 struct extent_io_tree *tree; 730 struct extent_map_tree *map; 731 int ret; 732 733 if (PageWriteback(page) || PageDirty(page)) 734 return 0; 735 736 tree = &BTRFS_I(page->mapping->host)->io_tree; 737 map = &BTRFS_I(page->mapping->host)->extent_tree; 738 739 ret = try_release_extent_state(map, tree, page, gfp_flags); 740 if (!ret) 741 return 0; 742 743 ret = try_release_extent_buffer(tree, page); 744 if (ret == 1) { 745 ClearPagePrivate(page); 746 set_page_private(page, 0); 747 page_cache_release(page); 748 } 749 750 return ret; 751 } 752 753 static void btree_invalidatepage(struct page *page, unsigned long offset) 754 { 755 struct extent_io_tree *tree; 756 tree = &BTRFS_I(page->mapping->host)->io_tree; 757 extent_invalidatepage(tree, page, offset); 758 btree_releasepage(page, GFP_NOFS); 759 if (PagePrivate(page)) { 760 printk(KERN_WARNING "btrfs warning page private not zero " 761 "on page %llu\n", (unsigned long long)page_offset(page)); 762 ClearPagePrivate(page); 763 set_page_private(page, 0); 764 page_cache_release(page); 765 } 766 } 767 768 #if 0 769 static int btree_writepage(struct page *page, struct writeback_control *wbc) 770 { 771 struct buffer_head *bh; 772 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 773 struct buffer_head *head; 774 if (!page_has_buffers(page)) { 775 create_empty_buffers(page, root->fs_info->sb->s_blocksize, 776 (1 << BH_Dirty)|(1 << BH_Uptodate)); 777 } 778 head = page_buffers(page); 779 bh = head; 780 do { 781 if (buffer_dirty(bh)) 782 csum_tree_block(root, bh, 0); 783 bh = bh->b_this_page; 784 } while (bh != head); 785 return block_write_full_page(page, btree_get_block, wbc); 786 } 787 #endif 788 789 static struct address_space_operations btree_aops = { 790 .readpage = btree_readpage, 791 .writepage = btree_writepage, 792 .writepages = btree_writepages, 793 .releasepage = btree_releasepage, 794 .invalidatepage = btree_invalidatepage, 795 .sync_page = block_sync_page, 796 }; 797 798 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 799 u64 parent_transid) 800 { 801 struct extent_buffer *buf = NULL; 802 struct inode *btree_inode = root->fs_info->btree_inode; 803 int ret = 0; 804 805 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 806 if (!buf) 807 return 0; 808 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 809 buf, 0, 0, btree_get_extent, 0); 810 free_extent_buffer(buf); 811 return ret; 812 } 813 814 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 815 u64 bytenr, u32 blocksize) 816 { 817 struct inode *btree_inode = root->fs_info->btree_inode; 818 struct extent_buffer *eb; 819 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 820 bytenr, blocksize, GFP_NOFS); 821 return eb; 822 } 823 824 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 825 u64 bytenr, u32 blocksize) 826 { 827 struct inode *btree_inode = root->fs_info->btree_inode; 828 struct extent_buffer *eb; 829 830 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 831 bytenr, blocksize, NULL, GFP_NOFS); 832 return eb; 833 } 834 835 836 int btrfs_write_tree_block(struct extent_buffer *buf) 837 { 838 return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start, 839 buf->start + buf->len - 1, WB_SYNC_ALL); 840 } 841 842 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 843 { 844 return btrfs_wait_on_page_writeback_range(buf->first_page->mapping, 845 buf->start, buf->start + buf->len - 1); 846 } 847 848 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 849 u32 blocksize, u64 parent_transid) 850 { 851 struct extent_buffer *buf = NULL; 852 struct inode *btree_inode = root->fs_info->btree_inode; 853 struct extent_io_tree *io_tree; 854 int ret; 855 856 io_tree = &BTRFS_I(btree_inode)->io_tree; 857 858 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 859 if (!buf) 860 return NULL; 861 862 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 863 864 if (ret == 0) 865 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 866 else 867 WARN_ON(1); 868 return buf; 869 870 } 871 872 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 873 struct extent_buffer *buf) 874 { 875 struct inode *btree_inode = root->fs_info->btree_inode; 876 if (btrfs_header_generation(buf) == 877 root->fs_info->running_transaction->transid) { 878 btrfs_assert_tree_locked(buf); 879 880 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 881 spin_lock(&root->fs_info->delalloc_lock); 882 if (root->fs_info->dirty_metadata_bytes >= buf->len) 883 root->fs_info->dirty_metadata_bytes -= buf->len; 884 else 885 WARN_ON(1); 886 spin_unlock(&root->fs_info->delalloc_lock); 887 } 888 889 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 890 btrfs_set_lock_blocking(buf); 891 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 892 buf); 893 } 894 return 0; 895 } 896 897 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 898 u32 stripesize, struct btrfs_root *root, 899 struct btrfs_fs_info *fs_info, 900 u64 objectid) 901 { 902 root->node = NULL; 903 root->commit_root = NULL; 904 root->ref_tree = NULL; 905 root->sectorsize = sectorsize; 906 root->nodesize = nodesize; 907 root->leafsize = leafsize; 908 root->stripesize = stripesize; 909 root->ref_cows = 0; 910 root->track_dirty = 0; 911 912 root->fs_info = fs_info; 913 root->objectid = objectid; 914 root->last_trans = 0; 915 root->highest_inode = 0; 916 root->last_inode_alloc = 0; 917 root->name = NULL; 918 root->in_sysfs = 0; 919 920 INIT_LIST_HEAD(&root->dirty_list); 921 INIT_LIST_HEAD(&root->orphan_list); 922 INIT_LIST_HEAD(&root->dead_list); 923 spin_lock_init(&root->node_lock); 924 spin_lock_init(&root->list_lock); 925 mutex_init(&root->objectid_mutex); 926 mutex_init(&root->log_mutex); 927 init_waitqueue_head(&root->log_writer_wait); 928 init_waitqueue_head(&root->log_commit_wait[0]); 929 init_waitqueue_head(&root->log_commit_wait[1]); 930 atomic_set(&root->log_commit[0], 0); 931 atomic_set(&root->log_commit[1], 0); 932 atomic_set(&root->log_writers, 0); 933 root->log_batch = 0; 934 root->log_transid = 0; 935 extent_io_tree_init(&root->dirty_log_pages, 936 fs_info->btree_inode->i_mapping, GFP_NOFS); 937 938 btrfs_leaf_ref_tree_init(&root->ref_tree_struct); 939 root->ref_tree = &root->ref_tree_struct; 940 941 memset(&root->root_key, 0, sizeof(root->root_key)); 942 memset(&root->root_item, 0, sizeof(root->root_item)); 943 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 944 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 945 root->defrag_trans_start = fs_info->generation; 946 init_completion(&root->kobj_unregister); 947 root->defrag_running = 0; 948 root->defrag_level = 0; 949 root->root_key.objectid = objectid; 950 root->anon_super.s_root = NULL; 951 root->anon_super.s_dev = 0; 952 INIT_LIST_HEAD(&root->anon_super.s_list); 953 INIT_LIST_HEAD(&root->anon_super.s_instances); 954 init_rwsem(&root->anon_super.s_umount); 955 956 return 0; 957 } 958 959 static int find_and_setup_root(struct btrfs_root *tree_root, 960 struct btrfs_fs_info *fs_info, 961 u64 objectid, 962 struct btrfs_root *root) 963 { 964 int ret; 965 u32 blocksize; 966 u64 generation; 967 968 __setup_root(tree_root->nodesize, tree_root->leafsize, 969 tree_root->sectorsize, tree_root->stripesize, 970 root, fs_info, objectid); 971 ret = btrfs_find_last_root(tree_root, objectid, 972 &root->root_item, &root->root_key); 973 BUG_ON(ret); 974 975 generation = btrfs_root_generation(&root->root_item); 976 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 977 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 978 blocksize, generation); 979 BUG_ON(!root->node); 980 return 0; 981 } 982 983 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 984 struct btrfs_fs_info *fs_info) 985 { 986 struct extent_buffer *eb; 987 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 988 u64 start = 0; 989 u64 end = 0; 990 int ret; 991 992 if (!log_root_tree) 993 return 0; 994 995 while (1) { 996 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages, 997 0, &start, &end, EXTENT_DIRTY); 998 if (ret) 999 break; 1000 1001 clear_extent_dirty(&log_root_tree->dirty_log_pages, 1002 start, end, GFP_NOFS); 1003 } 1004 eb = fs_info->log_root_tree->node; 1005 1006 WARN_ON(btrfs_header_level(eb) != 0); 1007 WARN_ON(btrfs_header_nritems(eb) != 0); 1008 1009 ret = btrfs_free_reserved_extent(fs_info->tree_root, 1010 eb->start, eb->len); 1011 BUG_ON(ret); 1012 1013 free_extent_buffer(eb); 1014 kfree(fs_info->log_root_tree); 1015 fs_info->log_root_tree = NULL; 1016 return 0; 1017 } 1018 1019 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1020 struct btrfs_fs_info *fs_info) 1021 { 1022 struct btrfs_root *root; 1023 struct btrfs_root *tree_root = fs_info->tree_root; 1024 struct extent_buffer *leaf; 1025 1026 root = kzalloc(sizeof(*root), GFP_NOFS); 1027 if (!root) 1028 return ERR_PTR(-ENOMEM); 1029 1030 __setup_root(tree_root->nodesize, tree_root->leafsize, 1031 tree_root->sectorsize, tree_root->stripesize, 1032 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1033 1034 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1035 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1036 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1037 /* 1038 * log trees do not get reference counted because they go away 1039 * before a real commit is actually done. They do store pointers 1040 * to file data extents, and those reference counts still get 1041 * updated (along with back refs to the log tree). 1042 */ 1043 root->ref_cows = 0; 1044 1045 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 1046 0, BTRFS_TREE_LOG_OBJECTID, 1047 trans->transid, 0, 0, 0); 1048 if (IS_ERR(leaf)) { 1049 kfree(root); 1050 return ERR_CAST(leaf); 1051 } 1052 1053 root->node = leaf; 1054 btrfs_set_header_nritems(root->node, 0); 1055 btrfs_set_header_level(root->node, 0); 1056 btrfs_set_header_bytenr(root->node, root->node->start); 1057 btrfs_set_header_generation(root->node, trans->transid); 1058 btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID); 1059 1060 write_extent_buffer(root->node, root->fs_info->fsid, 1061 (unsigned long)btrfs_header_fsid(root->node), 1062 BTRFS_FSID_SIZE); 1063 btrfs_mark_buffer_dirty(root->node); 1064 btrfs_tree_unlock(root->node); 1065 return root; 1066 } 1067 1068 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1069 struct btrfs_fs_info *fs_info) 1070 { 1071 struct btrfs_root *log_root; 1072 1073 log_root = alloc_log_tree(trans, fs_info); 1074 if (IS_ERR(log_root)) 1075 return PTR_ERR(log_root); 1076 WARN_ON(fs_info->log_root_tree); 1077 fs_info->log_root_tree = log_root; 1078 return 0; 1079 } 1080 1081 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1082 struct btrfs_root *root) 1083 { 1084 struct btrfs_root *log_root; 1085 struct btrfs_inode_item *inode_item; 1086 1087 log_root = alloc_log_tree(trans, root->fs_info); 1088 if (IS_ERR(log_root)) 1089 return PTR_ERR(log_root); 1090 1091 log_root->last_trans = trans->transid; 1092 log_root->root_key.offset = root->root_key.objectid; 1093 1094 inode_item = &log_root->root_item.inode; 1095 inode_item->generation = cpu_to_le64(1); 1096 inode_item->size = cpu_to_le64(3); 1097 inode_item->nlink = cpu_to_le32(1); 1098 inode_item->nbytes = cpu_to_le64(root->leafsize); 1099 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1100 1101 btrfs_set_root_bytenr(&log_root->root_item, log_root->node->start); 1102 btrfs_set_root_generation(&log_root->root_item, trans->transid); 1103 1104 WARN_ON(root->log_root); 1105 root->log_root = log_root; 1106 root->log_transid = 0; 1107 return 0; 1108 } 1109 1110 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1111 struct btrfs_key *location) 1112 { 1113 struct btrfs_root *root; 1114 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1115 struct btrfs_path *path; 1116 struct extent_buffer *l; 1117 u64 highest_inode; 1118 u64 generation; 1119 u32 blocksize; 1120 int ret = 0; 1121 1122 root = kzalloc(sizeof(*root), GFP_NOFS); 1123 if (!root) 1124 return ERR_PTR(-ENOMEM); 1125 if (location->offset == (u64)-1) { 1126 ret = find_and_setup_root(tree_root, fs_info, 1127 location->objectid, root); 1128 if (ret) { 1129 kfree(root); 1130 return ERR_PTR(ret); 1131 } 1132 goto insert; 1133 } 1134 1135 __setup_root(tree_root->nodesize, tree_root->leafsize, 1136 tree_root->sectorsize, tree_root->stripesize, 1137 root, fs_info, location->objectid); 1138 1139 path = btrfs_alloc_path(); 1140 BUG_ON(!path); 1141 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1142 if (ret != 0) { 1143 if (ret > 0) 1144 ret = -ENOENT; 1145 goto out; 1146 } 1147 l = path->nodes[0]; 1148 read_extent_buffer(l, &root->root_item, 1149 btrfs_item_ptr_offset(l, path->slots[0]), 1150 sizeof(root->root_item)); 1151 memcpy(&root->root_key, location, sizeof(*location)); 1152 ret = 0; 1153 out: 1154 btrfs_release_path(root, path); 1155 btrfs_free_path(path); 1156 if (ret) { 1157 kfree(root); 1158 return ERR_PTR(ret); 1159 } 1160 generation = btrfs_root_generation(&root->root_item); 1161 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1162 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1163 blocksize, generation); 1164 BUG_ON(!root->node); 1165 insert: 1166 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { 1167 root->ref_cows = 1; 1168 ret = btrfs_find_highest_inode(root, &highest_inode); 1169 if (ret == 0) { 1170 root->highest_inode = highest_inode; 1171 root->last_inode_alloc = highest_inode; 1172 } 1173 } 1174 return root; 1175 } 1176 1177 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1178 u64 root_objectid) 1179 { 1180 struct btrfs_root *root; 1181 1182 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID) 1183 return fs_info->tree_root; 1184 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID) 1185 return fs_info->extent_root; 1186 1187 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1188 (unsigned long)root_objectid); 1189 return root; 1190 } 1191 1192 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1193 struct btrfs_key *location) 1194 { 1195 struct btrfs_root *root; 1196 int ret; 1197 1198 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1199 return fs_info->tree_root; 1200 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1201 return fs_info->extent_root; 1202 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1203 return fs_info->chunk_root; 1204 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1205 return fs_info->dev_root; 1206 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1207 return fs_info->csum_root; 1208 1209 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1210 (unsigned long)location->objectid); 1211 if (root) 1212 return root; 1213 1214 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1215 if (IS_ERR(root)) 1216 return root; 1217 1218 set_anon_super(&root->anon_super, NULL); 1219 1220 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1221 (unsigned long)root->root_key.objectid, 1222 root); 1223 if (ret) { 1224 free_extent_buffer(root->node); 1225 kfree(root); 1226 return ERR_PTR(ret); 1227 } 1228 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 1229 ret = btrfs_find_dead_roots(fs_info->tree_root, 1230 root->root_key.objectid, root); 1231 BUG_ON(ret); 1232 btrfs_orphan_cleanup(root); 1233 } 1234 return root; 1235 } 1236 1237 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info, 1238 struct btrfs_key *location, 1239 const char *name, int namelen) 1240 { 1241 struct btrfs_root *root; 1242 int ret; 1243 1244 root = btrfs_read_fs_root_no_name(fs_info, location); 1245 if (!root) 1246 return NULL; 1247 1248 if (root->in_sysfs) 1249 return root; 1250 1251 ret = btrfs_set_root_name(root, name, namelen); 1252 if (ret) { 1253 free_extent_buffer(root->node); 1254 kfree(root); 1255 return ERR_PTR(ret); 1256 } 1257 #if 0 1258 ret = btrfs_sysfs_add_root(root); 1259 if (ret) { 1260 free_extent_buffer(root->node); 1261 kfree(root->name); 1262 kfree(root); 1263 return ERR_PTR(ret); 1264 } 1265 #endif 1266 root->in_sysfs = 1; 1267 return root; 1268 } 1269 1270 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1271 { 1272 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1273 int ret = 0; 1274 struct btrfs_device *device; 1275 struct backing_dev_info *bdi; 1276 #if 0 1277 if ((bdi_bits & (1 << BDI_write_congested)) && 1278 btrfs_congested_async(info, 0)) 1279 return 1; 1280 #endif 1281 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1282 if (!device->bdev) 1283 continue; 1284 bdi = blk_get_backing_dev_info(device->bdev); 1285 if (bdi && bdi_congested(bdi, bdi_bits)) { 1286 ret = 1; 1287 break; 1288 } 1289 } 1290 return ret; 1291 } 1292 1293 /* 1294 * this unplugs every device on the box, and it is only used when page 1295 * is null 1296 */ 1297 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1298 { 1299 struct btrfs_device *device; 1300 struct btrfs_fs_info *info; 1301 1302 info = (struct btrfs_fs_info *)bdi->unplug_io_data; 1303 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1304 if (!device->bdev) 1305 continue; 1306 1307 bdi = blk_get_backing_dev_info(device->bdev); 1308 if (bdi->unplug_io_fn) 1309 bdi->unplug_io_fn(bdi, page); 1310 } 1311 } 1312 1313 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1314 { 1315 struct inode *inode; 1316 struct extent_map_tree *em_tree; 1317 struct extent_map *em; 1318 struct address_space *mapping; 1319 u64 offset; 1320 1321 /* the generic O_DIRECT read code does this */ 1322 if (1 || !page) { 1323 __unplug_io_fn(bdi, page); 1324 return; 1325 } 1326 1327 /* 1328 * page->mapping may change at any time. Get a consistent copy 1329 * and use that for everything below 1330 */ 1331 smp_mb(); 1332 mapping = page->mapping; 1333 if (!mapping) 1334 return; 1335 1336 inode = mapping->host; 1337 1338 /* 1339 * don't do the expensive searching for a small number of 1340 * devices 1341 */ 1342 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) { 1343 __unplug_io_fn(bdi, page); 1344 return; 1345 } 1346 1347 offset = page_offset(page); 1348 1349 em_tree = &BTRFS_I(inode)->extent_tree; 1350 spin_lock(&em_tree->lock); 1351 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 1352 spin_unlock(&em_tree->lock); 1353 if (!em) { 1354 __unplug_io_fn(bdi, page); 1355 return; 1356 } 1357 1358 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1359 free_extent_map(em); 1360 __unplug_io_fn(bdi, page); 1361 return; 1362 } 1363 offset = offset - em->start; 1364 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree, 1365 em->block_start + offset, page); 1366 free_extent_map(em); 1367 } 1368 1369 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1370 { 1371 bdi_init(bdi); 1372 bdi->ra_pages = default_backing_dev_info.ra_pages; 1373 bdi->state = 0; 1374 bdi->capabilities = default_backing_dev_info.capabilities; 1375 bdi->unplug_io_fn = btrfs_unplug_io_fn; 1376 bdi->unplug_io_data = info; 1377 bdi->congested_fn = btrfs_congested_fn; 1378 bdi->congested_data = info; 1379 return 0; 1380 } 1381 1382 static int bio_ready_for_csum(struct bio *bio) 1383 { 1384 u64 length = 0; 1385 u64 buf_len = 0; 1386 u64 start = 0; 1387 struct page *page; 1388 struct extent_io_tree *io_tree = NULL; 1389 struct btrfs_fs_info *info = NULL; 1390 struct bio_vec *bvec; 1391 int i; 1392 int ret; 1393 1394 bio_for_each_segment(bvec, bio, i) { 1395 page = bvec->bv_page; 1396 if (page->private == EXTENT_PAGE_PRIVATE) { 1397 length += bvec->bv_len; 1398 continue; 1399 } 1400 if (!page->private) { 1401 length += bvec->bv_len; 1402 continue; 1403 } 1404 length = bvec->bv_len; 1405 buf_len = page->private >> 2; 1406 start = page_offset(page) + bvec->bv_offset; 1407 io_tree = &BTRFS_I(page->mapping->host)->io_tree; 1408 info = BTRFS_I(page->mapping->host)->root->fs_info; 1409 } 1410 /* are we fully contained in this bio? */ 1411 if (buf_len <= length) 1412 return 1; 1413 1414 ret = extent_range_uptodate(io_tree, start + length, 1415 start + buf_len - 1); 1416 return ret; 1417 } 1418 1419 /* 1420 * called by the kthread helper functions to finally call the bio end_io 1421 * functions. This is where read checksum verification actually happens 1422 */ 1423 static void end_workqueue_fn(struct btrfs_work *work) 1424 { 1425 struct bio *bio; 1426 struct end_io_wq *end_io_wq; 1427 struct btrfs_fs_info *fs_info; 1428 int error; 1429 1430 end_io_wq = container_of(work, struct end_io_wq, work); 1431 bio = end_io_wq->bio; 1432 fs_info = end_io_wq->info; 1433 1434 /* metadata bio reads are special because the whole tree block must 1435 * be checksummed at once. This makes sure the entire block is in 1436 * ram and up to date before trying to verify things. For 1437 * blocksize <= pagesize, it is basically a noop 1438 */ 1439 if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata && 1440 !bio_ready_for_csum(bio)) { 1441 btrfs_queue_worker(&fs_info->endio_meta_workers, 1442 &end_io_wq->work); 1443 return; 1444 } 1445 error = end_io_wq->error; 1446 bio->bi_private = end_io_wq->private; 1447 bio->bi_end_io = end_io_wq->end_io; 1448 kfree(end_io_wq); 1449 bio_endio(bio, error); 1450 } 1451 1452 static int cleaner_kthread(void *arg) 1453 { 1454 struct btrfs_root *root = arg; 1455 1456 do { 1457 smp_mb(); 1458 if (root->fs_info->closing) 1459 break; 1460 1461 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1462 mutex_lock(&root->fs_info->cleaner_mutex); 1463 btrfs_clean_old_snapshots(root); 1464 mutex_unlock(&root->fs_info->cleaner_mutex); 1465 1466 if (freezing(current)) { 1467 refrigerator(); 1468 } else { 1469 smp_mb(); 1470 if (root->fs_info->closing) 1471 break; 1472 set_current_state(TASK_INTERRUPTIBLE); 1473 schedule(); 1474 __set_current_state(TASK_RUNNING); 1475 } 1476 } while (!kthread_should_stop()); 1477 return 0; 1478 } 1479 1480 static int transaction_kthread(void *arg) 1481 { 1482 struct btrfs_root *root = arg; 1483 struct btrfs_trans_handle *trans; 1484 struct btrfs_transaction *cur; 1485 unsigned long now; 1486 unsigned long delay; 1487 int ret; 1488 1489 do { 1490 smp_mb(); 1491 if (root->fs_info->closing) 1492 break; 1493 1494 delay = HZ * 30; 1495 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1496 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1497 1498 mutex_lock(&root->fs_info->trans_mutex); 1499 cur = root->fs_info->running_transaction; 1500 if (!cur) { 1501 mutex_unlock(&root->fs_info->trans_mutex); 1502 goto sleep; 1503 } 1504 1505 now = get_seconds(); 1506 if (now < cur->start_time || now - cur->start_time < 30) { 1507 mutex_unlock(&root->fs_info->trans_mutex); 1508 delay = HZ * 5; 1509 goto sleep; 1510 } 1511 mutex_unlock(&root->fs_info->trans_mutex); 1512 trans = btrfs_start_transaction(root, 1); 1513 ret = btrfs_commit_transaction(trans, root); 1514 1515 sleep: 1516 wake_up_process(root->fs_info->cleaner_kthread); 1517 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1518 1519 if (freezing(current)) { 1520 refrigerator(); 1521 } else { 1522 if (root->fs_info->closing) 1523 break; 1524 set_current_state(TASK_INTERRUPTIBLE); 1525 schedule_timeout(delay); 1526 __set_current_state(TASK_RUNNING); 1527 } 1528 } while (!kthread_should_stop()); 1529 return 0; 1530 } 1531 1532 struct btrfs_root *open_ctree(struct super_block *sb, 1533 struct btrfs_fs_devices *fs_devices, 1534 char *options) 1535 { 1536 u32 sectorsize; 1537 u32 nodesize; 1538 u32 leafsize; 1539 u32 blocksize; 1540 u32 stripesize; 1541 u64 generation; 1542 u64 features; 1543 struct btrfs_key location; 1544 struct buffer_head *bh; 1545 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root), 1546 GFP_NOFS); 1547 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root), 1548 GFP_NOFS); 1549 struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root), 1550 GFP_NOFS); 1551 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info), 1552 GFP_NOFS); 1553 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root), 1554 GFP_NOFS); 1555 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root), 1556 GFP_NOFS); 1557 struct btrfs_root *log_tree_root; 1558 1559 int ret; 1560 int err = -EINVAL; 1561 1562 struct btrfs_super_block *disk_super; 1563 1564 if (!extent_root || !tree_root || !fs_info || 1565 !chunk_root || !dev_root || !csum_root) { 1566 err = -ENOMEM; 1567 goto fail; 1568 } 1569 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS); 1570 INIT_LIST_HEAD(&fs_info->trans_list); 1571 INIT_LIST_HEAD(&fs_info->dead_roots); 1572 INIT_LIST_HEAD(&fs_info->hashers); 1573 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 1574 INIT_LIST_HEAD(&fs_info->ordered_operations); 1575 spin_lock_init(&fs_info->delalloc_lock); 1576 spin_lock_init(&fs_info->new_trans_lock); 1577 spin_lock_init(&fs_info->ref_cache_lock); 1578 1579 init_completion(&fs_info->kobj_unregister); 1580 fs_info->tree_root = tree_root; 1581 fs_info->extent_root = extent_root; 1582 fs_info->csum_root = csum_root; 1583 fs_info->chunk_root = chunk_root; 1584 fs_info->dev_root = dev_root; 1585 fs_info->fs_devices = fs_devices; 1586 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 1587 INIT_LIST_HEAD(&fs_info->space_info); 1588 btrfs_mapping_init(&fs_info->mapping_tree); 1589 atomic_set(&fs_info->nr_async_submits, 0); 1590 atomic_set(&fs_info->async_delalloc_pages, 0); 1591 atomic_set(&fs_info->async_submit_draining, 0); 1592 atomic_set(&fs_info->nr_async_bios, 0); 1593 atomic_set(&fs_info->throttles, 0); 1594 atomic_set(&fs_info->throttle_gen, 0); 1595 fs_info->sb = sb; 1596 fs_info->max_extent = (u64)-1; 1597 fs_info->max_inline = 8192 * 1024; 1598 setup_bdi(fs_info, &fs_info->bdi); 1599 fs_info->btree_inode = new_inode(sb); 1600 fs_info->btree_inode->i_ino = 1; 1601 fs_info->btree_inode->i_nlink = 1; 1602 1603 fs_info->thread_pool_size = min_t(unsigned long, 1604 num_online_cpus() + 2, 8); 1605 1606 INIT_LIST_HEAD(&fs_info->ordered_extents); 1607 spin_lock_init(&fs_info->ordered_extent_lock); 1608 1609 sb->s_blocksize = 4096; 1610 sb->s_blocksize_bits = blksize_bits(4096); 1611 1612 /* 1613 * we set the i_size on the btree inode to the max possible int. 1614 * the real end of the address space is determined by all of 1615 * the devices in the system 1616 */ 1617 fs_info->btree_inode->i_size = OFFSET_MAX; 1618 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 1619 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 1620 1621 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 1622 fs_info->btree_inode->i_mapping, 1623 GFP_NOFS); 1624 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree, 1625 GFP_NOFS); 1626 1627 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 1628 1629 spin_lock_init(&fs_info->block_group_cache_lock); 1630 fs_info->block_group_cache_tree.rb_node = NULL; 1631 1632 extent_io_tree_init(&fs_info->pinned_extents, 1633 fs_info->btree_inode->i_mapping, GFP_NOFS); 1634 fs_info->do_barriers = 1; 1635 1636 INIT_LIST_HEAD(&fs_info->dead_reloc_roots); 1637 btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree); 1638 btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree); 1639 1640 BTRFS_I(fs_info->btree_inode)->root = tree_root; 1641 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 1642 sizeof(struct btrfs_key)); 1643 insert_inode_hash(fs_info->btree_inode); 1644 1645 mutex_init(&fs_info->trans_mutex); 1646 mutex_init(&fs_info->ordered_operations_mutex); 1647 mutex_init(&fs_info->tree_log_mutex); 1648 mutex_init(&fs_info->drop_mutex); 1649 mutex_init(&fs_info->chunk_mutex); 1650 mutex_init(&fs_info->transaction_kthread_mutex); 1651 mutex_init(&fs_info->cleaner_mutex); 1652 mutex_init(&fs_info->volume_mutex); 1653 mutex_init(&fs_info->tree_reloc_mutex); 1654 1655 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 1656 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 1657 1658 init_waitqueue_head(&fs_info->transaction_throttle); 1659 init_waitqueue_head(&fs_info->transaction_wait); 1660 init_waitqueue_head(&fs_info->async_submit_wait); 1661 1662 __setup_root(4096, 4096, 4096, 4096, tree_root, 1663 fs_info, BTRFS_ROOT_TREE_OBJECTID); 1664 1665 1666 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 1667 if (!bh) 1668 goto fail_iput; 1669 1670 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy)); 1671 memcpy(&fs_info->super_for_commit, &fs_info->super_copy, 1672 sizeof(fs_info->super_for_commit)); 1673 brelse(bh); 1674 1675 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE); 1676 1677 disk_super = &fs_info->super_copy; 1678 if (!btrfs_super_root(disk_super)) 1679 goto fail_iput; 1680 1681 ret = btrfs_parse_options(tree_root, options); 1682 if (ret) { 1683 err = ret; 1684 goto fail_iput; 1685 } 1686 1687 features = btrfs_super_incompat_flags(disk_super) & 1688 ~BTRFS_FEATURE_INCOMPAT_SUPP; 1689 if (features) { 1690 printk(KERN_ERR "BTRFS: couldn't mount because of " 1691 "unsupported optional features (%Lx).\n", 1692 features); 1693 err = -EINVAL; 1694 goto fail_iput; 1695 } 1696 1697 features = btrfs_super_compat_ro_flags(disk_super) & 1698 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 1699 if (!(sb->s_flags & MS_RDONLY) && features) { 1700 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 1701 "unsupported option features (%Lx).\n", 1702 features); 1703 err = -EINVAL; 1704 goto fail_iput; 1705 } 1706 1707 /* 1708 * we need to start all the end_io workers up front because the 1709 * queue work function gets called at interrupt time, and so it 1710 * cannot dynamically grow. 1711 */ 1712 btrfs_init_workers(&fs_info->workers, "worker", 1713 fs_info->thread_pool_size); 1714 1715 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 1716 fs_info->thread_pool_size); 1717 1718 btrfs_init_workers(&fs_info->submit_workers, "submit", 1719 min_t(u64, fs_devices->num_devices, 1720 fs_info->thread_pool_size)); 1721 1722 /* a higher idle thresh on the submit workers makes it much more 1723 * likely that bios will be send down in a sane order to the 1724 * devices 1725 */ 1726 fs_info->submit_workers.idle_thresh = 64; 1727 1728 fs_info->workers.idle_thresh = 16; 1729 fs_info->workers.ordered = 1; 1730 1731 fs_info->delalloc_workers.idle_thresh = 2; 1732 fs_info->delalloc_workers.ordered = 1; 1733 1734 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1); 1735 btrfs_init_workers(&fs_info->endio_workers, "endio", 1736 fs_info->thread_pool_size); 1737 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 1738 fs_info->thread_pool_size); 1739 btrfs_init_workers(&fs_info->endio_meta_write_workers, 1740 "endio-meta-write", fs_info->thread_pool_size); 1741 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 1742 fs_info->thread_pool_size); 1743 1744 /* 1745 * endios are largely parallel and should have a very 1746 * low idle thresh 1747 */ 1748 fs_info->endio_workers.idle_thresh = 4; 1749 fs_info->endio_meta_workers.idle_thresh = 4; 1750 1751 fs_info->endio_write_workers.idle_thresh = 64; 1752 fs_info->endio_meta_write_workers.idle_thresh = 64; 1753 1754 btrfs_start_workers(&fs_info->workers, 1); 1755 btrfs_start_workers(&fs_info->submit_workers, 1); 1756 btrfs_start_workers(&fs_info->delalloc_workers, 1); 1757 btrfs_start_workers(&fs_info->fixup_workers, 1); 1758 btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size); 1759 btrfs_start_workers(&fs_info->endio_meta_workers, 1760 fs_info->thread_pool_size); 1761 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1762 fs_info->thread_pool_size); 1763 btrfs_start_workers(&fs_info->endio_write_workers, 1764 fs_info->thread_pool_size); 1765 1766 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 1767 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 1768 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 1769 1770 nodesize = btrfs_super_nodesize(disk_super); 1771 leafsize = btrfs_super_leafsize(disk_super); 1772 sectorsize = btrfs_super_sectorsize(disk_super); 1773 stripesize = btrfs_super_stripesize(disk_super); 1774 tree_root->nodesize = nodesize; 1775 tree_root->leafsize = leafsize; 1776 tree_root->sectorsize = sectorsize; 1777 tree_root->stripesize = stripesize; 1778 1779 sb->s_blocksize = sectorsize; 1780 sb->s_blocksize_bits = blksize_bits(sectorsize); 1781 1782 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 1783 sizeof(disk_super->magic))) { 1784 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 1785 goto fail_sb_buffer; 1786 } 1787 1788 mutex_lock(&fs_info->chunk_mutex); 1789 ret = btrfs_read_sys_array(tree_root); 1790 mutex_unlock(&fs_info->chunk_mutex); 1791 if (ret) { 1792 printk(KERN_WARNING "btrfs: failed to read the system " 1793 "array on %s\n", sb->s_id); 1794 goto fail_sys_array; 1795 } 1796 1797 blocksize = btrfs_level_size(tree_root, 1798 btrfs_super_chunk_root_level(disk_super)); 1799 generation = btrfs_super_chunk_root_generation(disk_super); 1800 1801 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1802 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 1803 1804 chunk_root->node = read_tree_block(chunk_root, 1805 btrfs_super_chunk_root(disk_super), 1806 blocksize, generation); 1807 BUG_ON(!chunk_root->node); 1808 1809 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 1810 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 1811 BTRFS_UUID_SIZE); 1812 1813 mutex_lock(&fs_info->chunk_mutex); 1814 ret = btrfs_read_chunk_tree(chunk_root); 1815 mutex_unlock(&fs_info->chunk_mutex); 1816 if (ret) { 1817 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 1818 sb->s_id); 1819 goto fail_chunk_root; 1820 } 1821 1822 btrfs_close_extra_devices(fs_devices); 1823 1824 blocksize = btrfs_level_size(tree_root, 1825 btrfs_super_root_level(disk_super)); 1826 generation = btrfs_super_generation(disk_super); 1827 1828 tree_root->node = read_tree_block(tree_root, 1829 btrfs_super_root(disk_super), 1830 blocksize, generation); 1831 if (!tree_root->node) 1832 goto fail_chunk_root; 1833 1834 1835 ret = find_and_setup_root(tree_root, fs_info, 1836 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 1837 if (ret) 1838 goto fail_tree_root; 1839 extent_root->track_dirty = 1; 1840 1841 ret = find_and_setup_root(tree_root, fs_info, 1842 BTRFS_DEV_TREE_OBJECTID, dev_root); 1843 dev_root->track_dirty = 1; 1844 if (ret) 1845 goto fail_extent_root; 1846 1847 ret = find_and_setup_root(tree_root, fs_info, 1848 BTRFS_CSUM_TREE_OBJECTID, csum_root); 1849 if (ret) 1850 goto fail_extent_root; 1851 1852 csum_root->track_dirty = 1; 1853 1854 btrfs_read_block_groups(extent_root); 1855 1856 fs_info->generation = generation; 1857 fs_info->last_trans_committed = generation; 1858 fs_info->data_alloc_profile = (u64)-1; 1859 fs_info->metadata_alloc_profile = (u64)-1; 1860 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile; 1861 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 1862 "btrfs-cleaner"); 1863 if (IS_ERR(fs_info->cleaner_kthread)) 1864 goto fail_csum_root; 1865 1866 fs_info->transaction_kthread = kthread_run(transaction_kthread, 1867 tree_root, 1868 "btrfs-transaction"); 1869 if (IS_ERR(fs_info->transaction_kthread)) 1870 goto fail_cleaner; 1871 1872 if (btrfs_super_log_root(disk_super) != 0) { 1873 u64 bytenr = btrfs_super_log_root(disk_super); 1874 1875 if (fs_devices->rw_devices == 0) { 1876 printk(KERN_WARNING "Btrfs log replay required " 1877 "on RO media\n"); 1878 err = -EIO; 1879 goto fail_trans_kthread; 1880 } 1881 blocksize = 1882 btrfs_level_size(tree_root, 1883 btrfs_super_log_root_level(disk_super)); 1884 1885 log_tree_root = kzalloc(sizeof(struct btrfs_root), 1886 GFP_NOFS); 1887 1888 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1889 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1890 1891 log_tree_root->node = read_tree_block(tree_root, bytenr, 1892 blocksize, 1893 generation + 1); 1894 ret = btrfs_recover_log_trees(log_tree_root); 1895 BUG_ON(ret); 1896 1897 if (sb->s_flags & MS_RDONLY) { 1898 ret = btrfs_commit_super(tree_root); 1899 BUG_ON(ret); 1900 } 1901 } 1902 1903 if (!(sb->s_flags & MS_RDONLY)) { 1904 ret = btrfs_cleanup_reloc_trees(tree_root); 1905 BUG_ON(ret); 1906 } 1907 1908 location.objectid = BTRFS_FS_TREE_OBJECTID; 1909 location.type = BTRFS_ROOT_ITEM_KEY; 1910 location.offset = (u64)-1; 1911 1912 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 1913 if (!fs_info->fs_root) 1914 goto fail_trans_kthread; 1915 return tree_root; 1916 1917 fail_trans_kthread: 1918 kthread_stop(fs_info->transaction_kthread); 1919 fail_cleaner: 1920 kthread_stop(fs_info->cleaner_kthread); 1921 1922 /* 1923 * make sure we're done with the btree inode before we stop our 1924 * kthreads 1925 */ 1926 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 1927 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 1928 1929 fail_csum_root: 1930 free_extent_buffer(csum_root->node); 1931 fail_extent_root: 1932 free_extent_buffer(extent_root->node); 1933 fail_tree_root: 1934 free_extent_buffer(tree_root->node); 1935 fail_chunk_root: 1936 free_extent_buffer(chunk_root->node); 1937 fail_sys_array: 1938 free_extent_buffer(dev_root->node); 1939 fail_sb_buffer: 1940 btrfs_stop_workers(&fs_info->fixup_workers); 1941 btrfs_stop_workers(&fs_info->delalloc_workers); 1942 btrfs_stop_workers(&fs_info->workers); 1943 btrfs_stop_workers(&fs_info->endio_workers); 1944 btrfs_stop_workers(&fs_info->endio_meta_workers); 1945 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 1946 btrfs_stop_workers(&fs_info->endio_write_workers); 1947 btrfs_stop_workers(&fs_info->submit_workers); 1948 fail_iput: 1949 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 1950 iput(fs_info->btree_inode); 1951 1952 btrfs_close_devices(fs_info->fs_devices); 1953 btrfs_mapping_tree_free(&fs_info->mapping_tree); 1954 bdi_destroy(&fs_info->bdi); 1955 1956 fail: 1957 kfree(extent_root); 1958 kfree(tree_root); 1959 kfree(fs_info); 1960 kfree(chunk_root); 1961 kfree(dev_root); 1962 kfree(csum_root); 1963 return ERR_PTR(err); 1964 } 1965 1966 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 1967 { 1968 char b[BDEVNAME_SIZE]; 1969 1970 if (uptodate) { 1971 set_buffer_uptodate(bh); 1972 } else { 1973 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { 1974 printk(KERN_WARNING "lost page write due to " 1975 "I/O error on %s\n", 1976 bdevname(bh->b_bdev, b)); 1977 } 1978 /* note, we dont' set_buffer_write_io_error because we have 1979 * our own ways of dealing with the IO errors 1980 */ 1981 clear_buffer_uptodate(bh); 1982 } 1983 unlock_buffer(bh); 1984 put_bh(bh); 1985 } 1986 1987 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 1988 { 1989 struct buffer_head *bh; 1990 struct buffer_head *latest = NULL; 1991 struct btrfs_super_block *super; 1992 int i; 1993 u64 transid = 0; 1994 u64 bytenr; 1995 1996 /* we would like to check all the supers, but that would make 1997 * a btrfs mount succeed after a mkfs from a different FS. 1998 * So, we need to add a special mount option to scan for 1999 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2000 */ 2001 for (i = 0; i < 1; i++) { 2002 bytenr = btrfs_sb_offset(i); 2003 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2004 break; 2005 bh = __bread(bdev, bytenr / 4096, 4096); 2006 if (!bh) 2007 continue; 2008 2009 super = (struct btrfs_super_block *)bh->b_data; 2010 if (btrfs_super_bytenr(super) != bytenr || 2011 strncmp((char *)(&super->magic), BTRFS_MAGIC, 2012 sizeof(super->magic))) { 2013 brelse(bh); 2014 continue; 2015 } 2016 2017 if (!latest || btrfs_super_generation(super) > transid) { 2018 brelse(latest); 2019 latest = bh; 2020 transid = btrfs_super_generation(super); 2021 } else { 2022 brelse(bh); 2023 } 2024 } 2025 return latest; 2026 } 2027 2028 static int write_dev_supers(struct btrfs_device *device, 2029 struct btrfs_super_block *sb, 2030 int do_barriers, int wait, int max_mirrors) 2031 { 2032 struct buffer_head *bh; 2033 int i; 2034 int ret; 2035 int errors = 0; 2036 u32 crc; 2037 u64 bytenr; 2038 int last_barrier = 0; 2039 2040 if (max_mirrors == 0) 2041 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2042 2043 /* make sure only the last submit_bh does a barrier */ 2044 if (do_barriers) { 2045 for (i = 0; i < max_mirrors; i++) { 2046 bytenr = btrfs_sb_offset(i); 2047 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 2048 device->total_bytes) 2049 break; 2050 last_barrier = i; 2051 } 2052 } 2053 2054 for (i = 0; i < max_mirrors; i++) { 2055 bytenr = btrfs_sb_offset(i); 2056 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2057 break; 2058 2059 if (wait) { 2060 bh = __find_get_block(device->bdev, bytenr / 4096, 2061 BTRFS_SUPER_INFO_SIZE); 2062 BUG_ON(!bh); 2063 brelse(bh); 2064 wait_on_buffer(bh); 2065 if (buffer_uptodate(bh)) { 2066 brelse(bh); 2067 continue; 2068 } 2069 } else { 2070 btrfs_set_super_bytenr(sb, bytenr); 2071 2072 crc = ~(u32)0; 2073 crc = btrfs_csum_data(NULL, (char *)sb + 2074 BTRFS_CSUM_SIZE, crc, 2075 BTRFS_SUPER_INFO_SIZE - 2076 BTRFS_CSUM_SIZE); 2077 btrfs_csum_final(crc, sb->csum); 2078 2079 bh = __getblk(device->bdev, bytenr / 4096, 2080 BTRFS_SUPER_INFO_SIZE); 2081 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2082 2083 set_buffer_uptodate(bh); 2084 get_bh(bh); 2085 lock_buffer(bh); 2086 bh->b_end_io = btrfs_end_buffer_write_sync; 2087 } 2088 2089 if (i == last_barrier && do_barriers && device->barriers) { 2090 ret = submit_bh(WRITE_BARRIER, bh); 2091 if (ret == -EOPNOTSUPP) { 2092 printk("btrfs: disabling barriers on dev %s\n", 2093 device->name); 2094 set_buffer_uptodate(bh); 2095 device->barriers = 0; 2096 get_bh(bh); 2097 lock_buffer(bh); 2098 ret = submit_bh(WRITE, bh); 2099 } 2100 } else { 2101 ret = submit_bh(WRITE, bh); 2102 } 2103 2104 if (!ret && wait) { 2105 wait_on_buffer(bh); 2106 if (!buffer_uptodate(bh)) 2107 errors++; 2108 } else if (ret) { 2109 errors++; 2110 } 2111 if (wait) 2112 brelse(bh); 2113 } 2114 return errors < i ? 0 : -1; 2115 } 2116 2117 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2118 { 2119 struct list_head *head = &root->fs_info->fs_devices->devices; 2120 struct btrfs_device *dev; 2121 struct btrfs_super_block *sb; 2122 struct btrfs_dev_item *dev_item; 2123 int ret; 2124 int do_barriers; 2125 int max_errors; 2126 int total_errors = 0; 2127 u64 flags; 2128 2129 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; 2130 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2131 2132 sb = &root->fs_info->super_for_commit; 2133 dev_item = &sb->dev_item; 2134 list_for_each_entry(dev, head, dev_list) { 2135 if (!dev->bdev) { 2136 total_errors++; 2137 continue; 2138 } 2139 if (!dev->in_fs_metadata || !dev->writeable) 2140 continue; 2141 2142 btrfs_set_stack_device_generation(dev_item, 0); 2143 btrfs_set_stack_device_type(dev_item, dev->type); 2144 btrfs_set_stack_device_id(dev_item, dev->devid); 2145 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2146 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2147 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 2148 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 2149 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 2150 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 2151 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2152 2153 flags = btrfs_super_flags(sb); 2154 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 2155 2156 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 2157 if (ret) 2158 total_errors++; 2159 } 2160 if (total_errors > max_errors) { 2161 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2162 total_errors); 2163 BUG(); 2164 } 2165 2166 total_errors = 0; 2167 list_for_each_entry(dev, head, dev_list) { 2168 if (!dev->bdev) 2169 continue; 2170 if (!dev->in_fs_metadata || !dev->writeable) 2171 continue; 2172 2173 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 2174 if (ret) 2175 total_errors++; 2176 } 2177 if (total_errors > max_errors) { 2178 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2179 total_errors); 2180 BUG(); 2181 } 2182 return 0; 2183 } 2184 2185 int write_ctree_super(struct btrfs_trans_handle *trans, 2186 struct btrfs_root *root, int max_mirrors) 2187 { 2188 int ret; 2189 2190 ret = write_all_supers(root, max_mirrors); 2191 return ret; 2192 } 2193 2194 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2195 { 2196 radix_tree_delete(&fs_info->fs_roots_radix, 2197 (unsigned long)root->root_key.objectid); 2198 if (root->anon_super.s_dev) { 2199 down_write(&root->anon_super.s_umount); 2200 kill_anon_super(&root->anon_super); 2201 } 2202 if (root->node) 2203 free_extent_buffer(root->node); 2204 if (root->commit_root) 2205 free_extent_buffer(root->commit_root); 2206 kfree(root->name); 2207 kfree(root); 2208 return 0; 2209 } 2210 2211 static int del_fs_roots(struct btrfs_fs_info *fs_info) 2212 { 2213 int ret; 2214 struct btrfs_root *gang[8]; 2215 int i; 2216 2217 while (1) { 2218 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2219 (void **)gang, 0, 2220 ARRAY_SIZE(gang)); 2221 if (!ret) 2222 break; 2223 for (i = 0; i < ret; i++) 2224 btrfs_free_fs_root(fs_info, gang[i]); 2225 } 2226 return 0; 2227 } 2228 2229 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2230 { 2231 u64 root_objectid = 0; 2232 struct btrfs_root *gang[8]; 2233 int i; 2234 int ret; 2235 2236 while (1) { 2237 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2238 (void **)gang, root_objectid, 2239 ARRAY_SIZE(gang)); 2240 if (!ret) 2241 break; 2242 for (i = 0; i < ret; i++) { 2243 root_objectid = gang[i]->root_key.objectid; 2244 ret = btrfs_find_dead_roots(fs_info->tree_root, 2245 root_objectid, gang[i]); 2246 BUG_ON(ret); 2247 btrfs_orphan_cleanup(gang[i]); 2248 } 2249 root_objectid++; 2250 } 2251 return 0; 2252 } 2253 2254 int btrfs_commit_super(struct btrfs_root *root) 2255 { 2256 struct btrfs_trans_handle *trans; 2257 int ret; 2258 2259 mutex_lock(&root->fs_info->cleaner_mutex); 2260 btrfs_clean_old_snapshots(root); 2261 mutex_unlock(&root->fs_info->cleaner_mutex); 2262 trans = btrfs_start_transaction(root, 1); 2263 ret = btrfs_commit_transaction(trans, root); 2264 BUG_ON(ret); 2265 /* run commit again to drop the original snapshot */ 2266 trans = btrfs_start_transaction(root, 1); 2267 btrfs_commit_transaction(trans, root); 2268 ret = btrfs_write_and_wait_transaction(NULL, root); 2269 BUG_ON(ret); 2270 2271 ret = write_ctree_super(NULL, root, 0); 2272 return ret; 2273 } 2274 2275 int close_ctree(struct btrfs_root *root) 2276 { 2277 struct btrfs_fs_info *fs_info = root->fs_info; 2278 int ret; 2279 2280 fs_info->closing = 1; 2281 smp_mb(); 2282 2283 kthread_stop(root->fs_info->transaction_kthread); 2284 kthread_stop(root->fs_info->cleaner_kthread); 2285 2286 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 2287 ret = btrfs_commit_super(root); 2288 if (ret) 2289 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 2290 } 2291 2292 if (fs_info->delalloc_bytes) { 2293 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 2294 fs_info->delalloc_bytes); 2295 } 2296 if (fs_info->total_ref_cache_size) { 2297 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 2298 (unsigned long long)fs_info->total_ref_cache_size); 2299 } 2300 2301 if (fs_info->extent_root->node) 2302 free_extent_buffer(fs_info->extent_root->node); 2303 2304 if (fs_info->tree_root->node) 2305 free_extent_buffer(fs_info->tree_root->node); 2306 2307 if (root->fs_info->chunk_root->node) 2308 free_extent_buffer(root->fs_info->chunk_root->node); 2309 2310 if (root->fs_info->dev_root->node) 2311 free_extent_buffer(root->fs_info->dev_root->node); 2312 2313 if (root->fs_info->csum_root->node) 2314 free_extent_buffer(root->fs_info->csum_root->node); 2315 2316 btrfs_free_block_groups(root->fs_info); 2317 2318 del_fs_roots(fs_info); 2319 2320 iput(fs_info->btree_inode); 2321 2322 btrfs_stop_workers(&fs_info->fixup_workers); 2323 btrfs_stop_workers(&fs_info->delalloc_workers); 2324 btrfs_stop_workers(&fs_info->workers); 2325 btrfs_stop_workers(&fs_info->endio_workers); 2326 btrfs_stop_workers(&fs_info->endio_meta_workers); 2327 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2328 btrfs_stop_workers(&fs_info->endio_write_workers); 2329 btrfs_stop_workers(&fs_info->submit_workers); 2330 2331 #if 0 2332 while (!list_empty(&fs_info->hashers)) { 2333 struct btrfs_hasher *hasher; 2334 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher, 2335 hashers); 2336 list_del(&hasher->hashers); 2337 crypto_free_hash(&fs_info->hash_tfm); 2338 kfree(hasher); 2339 } 2340 #endif 2341 btrfs_close_devices(fs_info->fs_devices); 2342 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2343 2344 bdi_destroy(&fs_info->bdi); 2345 2346 kfree(fs_info->extent_root); 2347 kfree(fs_info->tree_root); 2348 kfree(fs_info->chunk_root); 2349 kfree(fs_info->dev_root); 2350 kfree(fs_info->csum_root); 2351 return 0; 2352 } 2353 2354 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) 2355 { 2356 int ret; 2357 struct inode *btree_inode = buf->first_page->mapping->host; 2358 2359 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf); 2360 if (!ret) 2361 return ret; 2362 2363 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 2364 parent_transid); 2365 return !ret; 2366 } 2367 2368 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 2369 { 2370 struct inode *btree_inode = buf->first_page->mapping->host; 2371 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, 2372 buf); 2373 } 2374 2375 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 2376 { 2377 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2378 u64 transid = btrfs_header_generation(buf); 2379 struct inode *btree_inode = root->fs_info->btree_inode; 2380 int was_dirty; 2381 2382 btrfs_assert_tree_locked(buf); 2383 if (transid != root->fs_info->generation) { 2384 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 2385 "found %llu running %llu\n", 2386 (unsigned long long)buf->start, 2387 (unsigned long long)transid, 2388 (unsigned long long)root->fs_info->generation); 2389 WARN_ON(1); 2390 } 2391 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 2392 buf); 2393 if (!was_dirty) { 2394 spin_lock(&root->fs_info->delalloc_lock); 2395 root->fs_info->dirty_metadata_bytes += buf->len; 2396 spin_unlock(&root->fs_info->delalloc_lock); 2397 } 2398 } 2399 2400 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 2401 { 2402 /* 2403 * looks as though older kernels can get into trouble with 2404 * this code, they end up stuck in balance_dirty_pages forever 2405 */ 2406 struct extent_io_tree *tree; 2407 u64 num_dirty; 2408 u64 start = 0; 2409 unsigned long thresh = 32 * 1024 * 1024; 2410 tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 2411 2412 if (current->flags & PF_MEMALLOC) 2413 return; 2414 2415 num_dirty = count_range_bits(tree, &start, (u64)-1, 2416 thresh, EXTENT_DIRTY); 2417 if (num_dirty > thresh) { 2418 balance_dirty_pages_ratelimited_nr( 2419 root->fs_info->btree_inode->i_mapping, 1); 2420 } 2421 return; 2422 } 2423 2424 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 2425 { 2426 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2427 int ret; 2428 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 2429 if (ret == 0) 2430 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 2431 return ret; 2432 } 2433 2434 int btree_lock_page_hook(struct page *page) 2435 { 2436 struct inode *inode = page->mapping->host; 2437 struct btrfs_root *root = BTRFS_I(inode)->root; 2438 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2439 struct extent_buffer *eb; 2440 unsigned long len; 2441 u64 bytenr = page_offset(page); 2442 2443 if (page->private == EXTENT_PAGE_PRIVATE) 2444 goto out; 2445 2446 len = page->private >> 2; 2447 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS); 2448 if (!eb) 2449 goto out; 2450 2451 btrfs_tree_lock(eb); 2452 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 2453 2454 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 2455 spin_lock(&root->fs_info->delalloc_lock); 2456 if (root->fs_info->dirty_metadata_bytes >= eb->len) 2457 root->fs_info->dirty_metadata_bytes -= eb->len; 2458 else 2459 WARN_ON(1); 2460 spin_unlock(&root->fs_info->delalloc_lock); 2461 } 2462 2463 btrfs_tree_unlock(eb); 2464 free_extent_buffer(eb); 2465 out: 2466 lock_page(page); 2467 return 0; 2468 } 2469 2470 static struct extent_io_ops btree_extent_io_ops = { 2471 .write_cache_pages_lock_hook = btree_lock_page_hook, 2472 .readpage_end_io_hook = btree_readpage_end_io_hook, 2473 .submit_bio_hook = btree_submit_bio_hook, 2474 /* note we're sharing with inode.c for the merge bio hook */ 2475 .merge_bio_hook = btrfs_merge_bio_hook, 2476 }; 2477