xref: /openbmc/linux/fs/btrfs/disk-io.c (revision b627b4ed)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include "compat.h"
30 #include "crc32c.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "volumes.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
38 #include "locking.h"
39 #include "ref-cache.h"
40 #include "tree-log.h"
41 #include "free-space-cache.h"
42 
43 static struct extent_io_ops btree_extent_io_ops;
44 static void end_workqueue_fn(struct btrfs_work *work);
45 
46 /*
47  * end_io_wq structs are used to do processing in task context when an IO is
48  * complete.  This is used during reads to verify checksums, and it is used
49  * by writes to insert metadata for new file extents after IO is complete.
50  */
51 struct end_io_wq {
52 	struct bio *bio;
53 	bio_end_io_t *end_io;
54 	void *private;
55 	struct btrfs_fs_info *info;
56 	int error;
57 	int metadata;
58 	struct list_head list;
59 	struct btrfs_work work;
60 };
61 
62 /*
63  * async submit bios are used to offload expensive checksumming
64  * onto the worker threads.  They checksum file and metadata bios
65  * just before they are sent down the IO stack.
66  */
67 struct async_submit_bio {
68 	struct inode *inode;
69 	struct bio *bio;
70 	struct list_head list;
71 	extent_submit_bio_hook_t *submit_bio_start;
72 	extent_submit_bio_hook_t *submit_bio_done;
73 	int rw;
74 	int mirror_num;
75 	unsigned long bio_flags;
76 	struct btrfs_work work;
77 };
78 
79 /* These are used to set the lockdep class on the extent buffer locks.
80  * The class is set by the readpage_end_io_hook after the buffer has
81  * passed csum validation but before the pages are unlocked.
82  *
83  * The lockdep class is also set by btrfs_init_new_buffer on freshly
84  * allocated blocks.
85  *
86  * The class is based on the level in the tree block, which allows lockdep
87  * to know that lower nodes nest inside the locks of higher nodes.
88  *
89  * We also add a check to make sure the highest level of the tree is
90  * the same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this
91  * code needs update as well.
92  */
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 # if BTRFS_MAX_LEVEL != 8
95 #  error
96 # endif
97 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
98 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
99 	/* leaf */
100 	"btrfs-extent-00",
101 	"btrfs-extent-01",
102 	"btrfs-extent-02",
103 	"btrfs-extent-03",
104 	"btrfs-extent-04",
105 	"btrfs-extent-05",
106 	"btrfs-extent-06",
107 	"btrfs-extent-07",
108 	/* highest possible level */
109 	"btrfs-extent-08",
110 };
111 #endif
112 
113 /*
114  * extents on the btree inode are pretty simple, there's one extent
115  * that covers the entire device
116  */
117 static struct extent_map *btree_get_extent(struct inode *inode,
118 		struct page *page, size_t page_offset, u64 start, u64 len,
119 		int create)
120 {
121 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
122 	struct extent_map *em;
123 	int ret;
124 
125 	spin_lock(&em_tree->lock);
126 	em = lookup_extent_mapping(em_tree, start, len);
127 	if (em) {
128 		em->bdev =
129 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
130 		spin_unlock(&em_tree->lock);
131 		goto out;
132 	}
133 	spin_unlock(&em_tree->lock);
134 
135 	em = alloc_extent_map(GFP_NOFS);
136 	if (!em) {
137 		em = ERR_PTR(-ENOMEM);
138 		goto out;
139 	}
140 	em->start = 0;
141 	em->len = (u64)-1;
142 	em->block_len = (u64)-1;
143 	em->block_start = 0;
144 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
145 
146 	spin_lock(&em_tree->lock);
147 	ret = add_extent_mapping(em_tree, em);
148 	if (ret == -EEXIST) {
149 		u64 failed_start = em->start;
150 		u64 failed_len = em->len;
151 
152 		free_extent_map(em);
153 		em = lookup_extent_mapping(em_tree, start, len);
154 		if (em) {
155 			ret = 0;
156 		} else {
157 			em = lookup_extent_mapping(em_tree, failed_start,
158 						   failed_len);
159 			ret = -EIO;
160 		}
161 	} else if (ret) {
162 		free_extent_map(em);
163 		em = NULL;
164 	}
165 	spin_unlock(&em_tree->lock);
166 
167 	if (ret)
168 		em = ERR_PTR(ret);
169 out:
170 	return em;
171 }
172 
173 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
174 {
175 	return btrfs_crc32c(seed, data, len);
176 }
177 
178 void btrfs_csum_final(u32 crc, char *result)
179 {
180 	*(__le32 *)result = ~cpu_to_le32(crc);
181 }
182 
183 /*
184  * compute the csum for a btree block, and either verify it or write it
185  * into the csum field of the block.
186  */
187 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
188 			   int verify)
189 {
190 	u16 csum_size =
191 		btrfs_super_csum_size(&root->fs_info->super_copy);
192 	char *result = NULL;
193 	unsigned long len;
194 	unsigned long cur_len;
195 	unsigned long offset = BTRFS_CSUM_SIZE;
196 	char *map_token = NULL;
197 	char *kaddr;
198 	unsigned long map_start;
199 	unsigned long map_len;
200 	int err;
201 	u32 crc = ~(u32)0;
202 	unsigned long inline_result;
203 
204 	len = buf->len - offset;
205 	while (len > 0) {
206 		err = map_private_extent_buffer(buf, offset, 32,
207 					&map_token, &kaddr,
208 					&map_start, &map_len, KM_USER0);
209 		if (err)
210 			return 1;
211 		cur_len = min(len, map_len - (offset - map_start));
212 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
213 				      crc, cur_len);
214 		len -= cur_len;
215 		offset += cur_len;
216 		unmap_extent_buffer(buf, map_token, KM_USER0);
217 	}
218 	if (csum_size > sizeof(inline_result)) {
219 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
220 		if (!result)
221 			return 1;
222 	} else {
223 		result = (char *)&inline_result;
224 	}
225 
226 	btrfs_csum_final(crc, result);
227 
228 	if (verify) {
229 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
230 			u32 val;
231 			u32 found = 0;
232 			memcpy(&found, result, csum_size);
233 
234 			read_extent_buffer(buf, &val, 0, csum_size);
235 			printk(KERN_INFO "btrfs: %s checksum verify failed "
236 			       "on %llu wanted %X found %X level %d\n",
237 			       root->fs_info->sb->s_id,
238 			       buf->start, val, found, btrfs_header_level(buf));
239 			if (result != (char *)&inline_result)
240 				kfree(result);
241 			return 1;
242 		}
243 	} else {
244 		write_extent_buffer(buf, result, 0, csum_size);
245 	}
246 	if (result != (char *)&inline_result)
247 		kfree(result);
248 	return 0;
249 }
250 
251 /*
252  * we can't consider a given block up to date unless the transid of the
253  * block matches the transid in the parent node's pointer.  This is how we
254  * detect blocks that either didn't get written at all or got written
255  * in the wrong place.
256  */
257 static int verify_parent_transid(struct extent_io_tree *io_tree,
258 				 struct extent_buffer *eb, u64 parent_transid)
259 {
260 	int ret;
261 
262 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
263 		return 0;
264 
265 	lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
266 	if (extent_buffer_uptodate(io_tree, eb) &&
267 	    btrfs_header_generation(eb) == parent_transid) {
268 		ret = 0;
269 		goto out;
270 	}
271 	printk("parent transid verify failed on %llu wanted %llu found %llu\n",
272 	       (unsigned long long)eb->start,
273 	       (unsigned long long)parent_transid,
274 	       (unsigned long long)btrfs_header_generation(eb));
275 	ret = 1;
276 	clear_extent_buffer_uptodate(io_tree, eb);
277 out:
278 	unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
279 		      GFP_NOFS);
280 	return ret;
281 }
282 
283 /*
284  * helper to read a given tree block, doing retries as required when
285  * the checksums don't match and we have alternate mirrors to try.
286  */
287 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
288 					  struct extent_buffer *eb,
289 					  u64 start, u64 parent_transid)
290 {
291 	struct extent_io_tree *io_tree;
292 	int ret;
293 	int num_copies = 0;
294 	int mirror_num = 0;
295 
296 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
297 	while (1) {
298 		ret = read_extent_buffer_pages(io_tree, eb, start, 1,
299 					       btree_get_extent, mirror_num);
300 		if (!ret &&
301 		    !verify_parent_transid(io_tree, eb, parent_transid))
302 			return ret;
303 
304 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
305 					      eb->start, eb->len);
306 		if (num_copies == 1)
307 			return ret;
308 
309 		mirror_num++;
310 		if (mirror_num > num_copies)
311 			return ret;
312 	}
313 	return -EIO;
314 }
315 
316 /*
317  * checksum a dirty tree block before IO.  This has extra checks to make sure
318  * we only fill in the checksum field in the first page of a multi-page block
319  */
320 
321 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
322 {
323 	struct extent_io_tree *tree;
324 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
325 	u64 found_start;
326 	int found_level;
327 	unsigned long len;
328 	struct extent_buffer *eb;
329 	int ret;
330 
331 	tree = &BTRFS_I(page->mapping->host)->io_tree;
332 
333 	if (page->private == EXTENT_PAGE_PRIVATE)
334 		goto out;
335 	if (!page->private)
336 		goto out;
337 	len = page->private >> 2;
338 	WARN_ON(len == 0);
339 
340 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
341 	ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
342 					     btrfs_header_generation(eb));
343 	BUG_ON(ret);
344 	found_start = btrfs_header_bytenr(eb);
345 	if (found_start != start) {
346 		WARN_ON(1);
347 		goto err;
348 	}
349 	if (eb->first_page != page) {
350 		WARN_ON(1);
351 		goto err;
352 	}
353 	if (!PageUptodate(page)) {
354 		WARN_ON(1);
355 		goto err;
356 	}
357 	found_level = btrfs_header_level(eb);
358 
359 	csum_tree_block(root, eb, 0);
360 err:
361 	free_extent_buffer(eb);
362 out:
363 	return 0;
364 }
365 
366 static int check_tree_block_fsid(struct btrfs_root *root,
367 				 struct extent_buffer *eb)
368 {
369 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
370 	u8 fsid[BTRFS_UUID_SIZE];
371 	int ret = 1;
372 
373 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
374 			   BTRFS_FSID_SIZE);
375 	while (fs_devices) {
376 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
377 			ret = 0;
378 			break;
379 		}
380 		fs_devices = fs_devices->seed;
381 	}
382 	return ret;
383 }
384 
385 #ifdef CONFIG_DEBUG_LOCK_ALLOC
386 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
387 {
388 	lockdep_set_class_and_name(&eb->lock,
389 			   &btrfs_eb_class[level],
390 			   btrfs_eb_name[level]);
391 }
392 #endif
393 
394 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
395 			       struct extent_state *state)
396 {
397 	struct extent_io_tree *tree;
398 	u64 found_start;
399 	int found_level;
400 	unsigned long len;
401 	struct extent_buffer *eb;
402 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
403 	int ret = 0;
404 
405 	tree = &BTRFS_I(page->mapping->host)->io_tree;
406 	if (page->private == EXTENT_PAGE_PRIVATE)
407 		goto out;
408 	if (!page->private)
409 		goto out;
410 
411 	len = page->private >> 2;
412 	WARN_ON(len == 0);
413 
414 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
415 
416 	found_start = btrfs_header_bytenr(eb);
417 	if (found_start != start) {
418 		printk(KERN_INFO "btrfs bad tree block start %llu %llu\n",
419 		       (unsigned long long)found_start,
420 		       (unsigned long long)eb->start);
421 		ret = -EIO;
422 		goto err;
423 	}
424 	if (eb->first_page != page) {
425 		printk(KERN_INFO "btrfs bad first page %lu %lu\n",
426 		       eb->first_page->index, page->index);
427 		WARN_ON(1);
428 		ret = -EIO;
429 		goto err;
430 	}
431 	if (check_tree_block_fsid(root, eb)) {
432 		printk(KERN_INFO "btrfs bad fsid on block %llu\n",
433 		       (unsigned long long)eb->start);
434 		ret = -EIO;
435 		goto err;
436 	}
437 	found_level = btrfs_header_level(eb);
438 
439 	btrfs_set_buffer_lockdep_class(eb, found_level);
440 
441 	ret = csum_tree_block(root, eb, 1);
442 	if (ret)
443 		ret = -EIO;
444 
445 	end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
446 	end = eb->start + end - 1;
447 err:
448 	free_extent_buffer(eb);
449 out:
450 	return ret;
451 }
452 
453 static void end_workqueue_bio(struct bio *bio, int err)
454 {
455 	struct end_io_wq *end_io_wq = bio->bi_private;
456 	struct btrfs_fs_info *fs_info;
457 
458 	fs_info = end_io_wq->info;
459 	end_io_wq->error = err;
460 	end_io_wq->work.func = end_workqueue_fn;
461 	end_io_wq->work.flags = 0;
462 
463 	if (bio->bi_rw & (1 << BIO_RW)) {
464 		if (end_io_wq->metadata)
465 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
466 					   &end_io_wq->work);
467 		else
468 			btrfs_queue_worker(&fs_info->endio_write_workers,
469 					   &end_io_wq->work);
470 	} else {
471 		if (end_io_wq->metadata)
472 			btrfs_queue_worker(&fs_info->endio_meta_workers,
473 					   &end_io_wq->work);
474 		else
475 			btrfs_queue_worker(&fs_info->endio_workers,
476 					   &end_io_wq->work);
477 	}
478 }
479 
480 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
481 			int metadata)
482 {
483 	struct end_io_wq *end_io_wq;
484 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
485 	if (!end_io_wq)
486 		return -ENOMEM;
487 
488 	end_io_wq->private = bio->bi_private;
489 	end_io_wq->end_io = bio->bi_end_io;
490 	end_io_wq->info = info;
491 	end_io_wq->error = 0;
492 	end_io_wq->bio = bio;
493 	end_io_wq->metadata = metadata;
494 
495 	bio->bi_private = end_io_wq;
496 	bio->bi_end_io = end_workqueue_bio;
497 	return 0;
498 }
499 
500 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
501 {
502 	unsigned long limit = min_t(unsigned long,
503 				    info->workers.max_workers,
504 				    info->fs_devices->open_devices);
505 	return 256 * limit;
506 }
507 
508 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
509 {
510 	return atomic_read(&info->nr_async_bios) >
511 		btrfs_async_submit_limit(info);
512 }
513 
514 static void run_one_async_start(struct btrfs_work *work)
515 {
516 	struct btrfs_fs_info *fs_info;
517 	struct async_submit_bio *async;
518 
519 	async = container_of(work, struct  async_submit_bio, work);
520 	fs_info = BTRFS_I(async->inode)->root->fs_info;
521 	async->submit_bio_start(async->inode, async->rw, async->bio,
522 			       async->mirror_num, async->bio_flags);
523 }
524 
525 static void run_one_async_done(struct btrfs_work *work)
526 {
527 	struct btrfs_fs_info *fs_info;
528 	struct async_submit_bio *async;
529 	int limit;
530 
531 	async = container_of(work, struct  async_submit_bio, work);
532 	fs_info = BTRFS_I(async->inode)->root->fs_info;
533 
534 	limit = btrfs_async_submit_limit(fs_info);
535 	limit = limit * 2 / 3;
536 
537 	atomic_dec(&fs_info->nr_async_submits);
538 
539 	if (atomic_read(&fs_info->nr_async_submits) < limit &&
540 	    waitqueue_active(&fs_info->async_submit_wait))
541 		wake_up(&fs_info->async_submit_wait);
542 
543 	async->submit_bio_done(async->inode, async->rw, async->bio,
544 			       async->mirror_num, async->bio_flags);
545 }
546 
547 static void run_one_async_free(struct btrfs_work *work)
548 {
549 	struct async_submit_bio *async;
550 
551 	async = container_of(work, struct  async_submit_bio, work);
552 	kfree(async);
553 }
554 
555 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
556 			int rw, struct bio *bio, int mirror_num,
557 			unsigned long bio_flags,
558 			extent_submit_bio_hook_t *submit_bio_start,
559 			extent_submit_bio_hook_t *submit_bio_done)
560 {
561 	struct async_submit_bio *async;
562 
563 	async = kmalloc(sizeof(*async), GFP_NOFS);
564 	if (!async)
565 		return -ENOMEM;
566 
567 	async->inode = inode;
568 	async->rw = rw;
569 	async->bio = bio;
570 	async->mirror_num = mirror_num;
571 	async->submit_bio_start = submit_bio_start;
572 	async->submit_bio_done = submit_bio_done;
573 
574 	async->work.func = run_one_async_start;
575 	async->work.ordered_func = run_one_async_done;
576 	async->work.ordered_free = run_one_async_free;
577 
578 	async->work.flags = 0;
579 	async->bio_flags = bio_flags;
580 
581 	atomic_inc(&fs_info->nr_async_submits);
582 	btrfs_queue_worker(&fs_info->workers, &async->work);
583 #if 0
584 	int limit = btrfs_async_submit_limit(fs_info);
585 	if (atomic_read(&fs_info->nr_async_submits) > limit) {
586 		wait_event_timeout(fs_info->async_submit_wait,
587 			   (atomic_read(&fs_info->nr_async_submits) < limit),
588 			   HZ/10);
589 
590 		wait_event_timeout(fs_info->async_submit_wait,
591 			   (atomic_read(&fs_info->nr_async_bios) < limit),
592 			   HZ/10);
593 	}
594 #endif
595 	while (atomic_read(&fs_info->async_submit_draining) &&
596 	      atomic_read(&fs_info->nr_async_submits)) {
597 		wait_event(fs_info->async_submit_wait,
598 			   (atomic_read(&fs_info->nr_async_submits) == 0));
599 	}
600 
601 	return 0;
602 }
603 
604 static int btree_csum_one_bio(struct bio *bio)
605 {
606 	struct bio_vec *bvec = bio->bi_io_vec;
607 	int bio_index = 0;
608 	struct btrfs_root *root;
609 
610 	WARN_ON(bio->bi_vcnt <= 0);
611 	while (bio_index < bio->bi_vcnt) {
612 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
613 		csum_dirty_buffer(root, bvec->bv_page);
614 		bio_index++;
615 		bvec++;
616 	}
617 	return 0;
618 }
619 
620 static int __btree_submit_bio_start(struct inode *inode, int rw,
621 				    struct bio *bio, int mirror_num,
622 				    unsigned long bio_flags)
623 {
624 	/*
625 	 * when we're called for a write, we're already in the async
626 	 * submission context.  Just jump into btrfs_map_bio
627 	 */
628 	btree_csum_one_bio(bio);
629 	return 0;
630 }
631 
632 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
633 				 int mirror_num, unsigned long bio_flags)
634 {
635 	/*
636 	 * when we're called for a write, we're already in the async
637 	 * submission context.  Just jump into btrfs_map_bio
638 	 */
639 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
640 }
641 
642 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
643 				 int mirror_num, unsigned long bio_flags)
644 {
645 	int ret;
646 
647 	ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
648 					  bio, 1);
649 	BUG_ON(ret);
650 
651 	if (!(rw & (1 << BIO_RW))) {
652 		/*
653 		 * called for a read, do the setup so that checksum validation
654 		 * can happen in the async kernel threads
655 		 */
656 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
657 				     mirror_num, 0);
658 	}
659 	/*
660 	 * kthread helpers are used to submit writes so that checksumming
661 	 * can happen in parallel across all CPUs
662 	 */
663 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
664 				   inode, rw, bio, mirror_num, 0,
665 				   __btree_submit_bio_start,
666 				   __btree_submit_bio_done);
667 }
668 
669 static int btree_writepage(struct page *page, struct writeback_control *wbc)
670 {
671 	struct extent_io_tree *tree;
672 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
673 	struct extent_buffer *eb;
674 	int was_dirty;
675 
676 	tree = &BTRFS_I(page->mapping->host)->io_tree;
677 	if (!(current->flags & PF_MEMALLOC)) {
678 		return extent_write_full_page(tree, page,
679 					      btree_get_extent, wbc);
680 	}
681 
682 	redirty_page_for_writepage(wbc, page);
683 	eb = btrfs_find_tree_block(root, page_offset(page),
684 				      PAGE_CACHE_SIZE);
685 	WARN_ON(!eb);
686 
687 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
688 	if (!was_dirty) {
689 		spin_lock(&root->fs_info->delalloc_lock);
690 		root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
691 		spin_unlock(&root->fs_info->delalloc_lock);
692 	}
693 	free_extent_buffer(eb);
694 
695 	unlock_page(page);
696 	return 0;
697 }
698 
699 static int btree_writepages(struct address_space *mapping,
700 			    struct writeback_control *wbc)
701 {
702 	struct extent_io_tree *tree;
703 	tree = &BTRFS_I(mapping->host)->io_tree;
704 	if (wbc->sync_mode == WB_SYNC_NONE) {
705 		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
706 		u64 num_dirty;
707 		unsigned long thresh = 32 * 1024 * 1024;
708 
709 		if (wbc->for_kupdate)
710 			return 0;
711 
712 		/* this is a bit racy, but that's ok */
713 		num_dirty = root->fs_info->dirty_metadata_bytes;
714 		if (num_dirty < thresh)
715 			return 0;
716 	}
717 	return extent_writepages(tree, mapping, btree_get_extent, wbc);
718 }
719 
720 static int btree_readpage(struct file *file, struct page *page)
721 {
722 	struct extent_io_tree *tree;
723 	tree = &BTRFS_I(page->mapping->host)->io_tree;
724 	return extent_read_full_page(tree, page, btree_get_extent);
725 }
726 
727 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
728 {
729 	struct extent_io_tree *tree;
730 	struct extent_map_tree *map;
731 	int ret;
732 
733 	if (PageWriteback(page) || PageDirty(page))
734 		return 0;
735 
736 	tree = &BTRFS_I(page->mapping->host)->io_tree;
737 	map = &BTRFS_I(page->mapping->host)->extent_tree;
738 
739 	ret = try_release_extent_state(map, tree, page, gfp_flags);
740 	if (!ret)
741 		return 0;
742 
743 	ret = try_release_extent_buffer(tree, page);
744 	if (ret == 1) {
745 		ClearPagePrivate(page);
746 		set_page_private(page, 0);
747 		page_cache_release(page);
748 	}
749 
750 	return ret;
751 }
752 
753 static void btree_invalidatepage(struct page *page, unsigned long offset)
754 {
755 	struct extent_io_tree *tree;
756 	tree = &BTRFS_I(page->mapping->host)->io_tree;
757 	extent_invalidatepage(tree, page, offset);
758 	btree_releasepage(page, GFP_NOFS);
759 	if (PagePrivate(page)) {
760 		printk(KERN_WARNING "btrfs warning page private not zero "
761 		       "on page %llu\n", (unsigned long long)page_offset(page));
762 		ClearPagePrivate(page);
763 		set_page_private(page, 0);
764 		page_cache_release(page);
765 	}
766 }
767 
768 #if 0
769 static int btree_writepage(struct page *page, struct writeback_control *wbc)
770 {
771 	struct buffer_head *bh;
772 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
773 	struct buffer_head *head;
774 	if (!page_has_buffers(page)) {
775 		create_empty_buffers(page, root->fs_info->sb->s_blocksize,
776 					(1 << BH_Dirty)|(1 << BH_Uptodate));
777 	}
778 	head = page_buffers(page);
779 	bh = head;
780 	do {
781 		if (buffer_dirty(bh))
782 			csum_tree_block(root, bh, 0);
783 		bh = bh->b_this_page;
784 	} while (bh != head);
785 	return block_write_full_page(page, btree_get_block, wbc);
786 }
787 #endif
788 
789 static struct address_space_operations btree_aops = {
790 	.readpage	= btree_readpage,
791 	.writepage	= btree_writepage,
792 	.writepages	= btree_writepages,
793 	.releasepage	= btree_releasepage,
794 	.invalidatepage = btree_invalidatepage,
795 	.sync_page	= block_sync_page,
796 };
797 
798 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
799 			 u64 parent_transid)
800 {
801 	struct extent_buffer *buf = NULL;
802 	struct inode *btree_inode = root->fs_info->btree_inode;
803 	int ret = 0;
804 
805 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
806 	if (!buf)
807 		return 0;
808 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
809 				 buf, 0, 0, btree_get_extent, 0);
810 	free_extent_buffer(buf);
811 	return ret;
812 }
813 
814 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
815 					    u64 bytenr, u32 blocksize)
816 {
817 	struct inode *btree_inode = root->fs_info->btree_inode;
818 	struct extent_buffer *eb;
819 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
820 				bytenr, blocksize, GFP_NOFS);
821 	return eb;
822 }
823 
824 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
825 						 u64 bytenr, u32 blocksize)
826 {
827 	struct inode *btree_inode = root->fs_info->btree_inode;
828 	struct extent_buffer *eb;
829 
830 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
831 				 bytenr, blocksize, NULL, GFP_NOFS);
832 	return eb;
833 }
834 
835 
836 int btrfs_write_tree_block(struct extent_buffer *buf)
837 {
838 	return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
839 				      buf->start + buf->len - 1, WB_SYNC_ALL);
840 }
841 
842 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
843 {
844 	return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
845 				  buf->start, buf->start + buf->len - 1);
846 }
847 
848 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
849 				      u32 blocksize, u64 parent_transid)
850 {
851 	struct extent_buffer *buf = NULL;
852 	struct inode *btree_inode = root->fs_info->btree_inode;
853 	struct extent_io_tree *io_tree;
854 	int ret;
855 
856 	io_tree = &BTRFS_I(btree_inode)->io_tree;
857 
858 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
859 	if (!buf)
860 		return NULL;
861 
862 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
863 
864 	if (ret == 0)
865 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
866 	else
867 		WARN_ON(1);
868 	return buf;
869 
870 }
871 
872 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
873 		     struct extent_buffer *buf)
874 {
875 	struct inode *btree_inode = root->fs_info->btree_inode;
876 	if (btrfs_header_generation(buf) ==
877 	    root->fs_info->running_transaction->transid) {
878 		btrfs_assert_tree_locked(buf);
879 
880 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
881 			spin_lock(&root->fs_info->delalloc_lock);
882 			if (root->fs_info->dirty_metadata_bytes >= buf->len)
883 				root->fs_info->dirty_metadata_bytes -= buf->len;
884 			else
885 				WARN_ON(1);
886 			spin_unlock(&root->fs_info->delalloc_lock);
887 		}
888 
889 		/* ugh, clear_extent_buffer_dirty needs to lock the page */
890 		btrfs_set_lock_blocking(buf);
891 		clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
892 					  buf);
893 	}
894 	return 0;
895 }
896 
897 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
898 			u32 stripesize, struct btrfs_root *root,
899 			struct btrfs_fs_info *fs_info,
900 			u64 objectid)
901 {
902 	root->node = NULL;
903 	root->commit_root = NULL;
904 	root->ref_tree = NULL;
905 	root->sectorsize = sectorsize;
906 	root->nodesize = nodesize;
907 	root->leafsize = leafsize;
908 	root->stripesize = stripesize;
909 	root->ref_cows = 0;
910 	root->track_dirty = 0;
911 
912 	root->fs_info = fs_info;
913 	root->objectid = objectid;
914 	root->last_trans = 0;
915 	root->highest_inode = 0;
916 	root->last_inode_alloc = 0;
917 	root->name = NULL;
918 	root->in_sysfs = 0;
919 
920 	INIT_LIST_HEAD(&root->dirty_list);
921 	INIT_LIST_HEAD(&root->orphan_list);
922 	INIT_LIST_HEAD(&root->dead_list);
923 	spin_lock_init(&root->node_lock);
924 	spin_lock_init(&root->list_lock);
925 	mutex_init(&root->objectid_mutex);
926 	mutex_init(&root->log_mutex);
927 	init_waitqueue_head(&root->log_writer_wait);
928 	init_waitqueue_head(&root->log_commit_wait[0]);
929 	init_waitqueue_head(&root->log_commit_wait[1]);
930 	atomic_set(&root->log_commit[0], 0);
931 	atomic_set(&root->log_commit[1], 0);
932 	atomic_set(&root->log_writers, 0);
933 	root->log_batch = 0;
934 	root->log_transid = 0;
935 	extent_io_tree_init(&root->dirty_log_pages,
936 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
937 
938 	btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
939 	root->ref_tree = &root->ref_tree_struct;
940 
941 	memset(&root->root_key, 0, sizeof(root->root_key));
942 	memset(&root->root_item, 0, sizeof(root->root_item));
943 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
944 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
945 	root->defrag_trans_start = fs_info->generation;
946 	init_completion(&root->kobj_unregister);
947 	root->defrag_running = 0;
948 	root->defrag_level = 0;
949 	root->root_key.objectid = objectid;
950 	root->anon_super.s_root = NULL;
951 	root->anon_super.s_dev = 0;
952 	INIT_LIST_HEAD(&root->anon_super.s_list);
953 	INIT_LIST_HEAD(&root->anon_super.s_instances);
954 	init_rwsem(&root->anon_super.s_umount);
955 
956 	return 0;
957 }
958 
959 static int find_and_setup_root(struct btrfs_root *tree_root,
960 			       struct btrfs_fs_info *fs_info,
961 			       u64 objectid,
962 			       struct btrfs_root *root)
963 {
964 	int ret;
965 	u32 blocksize;
966 	u64 generation;
967 
968 	__setup_root(tree_root->nodesize, tree_root->leafsize,
969 		     tree_root->sectorsize, tree_root->stripesize,
970 		     root, fs_info, objectid);
971 	ret = btrfs_find_last_root(tree_root, objectid,
972 				   &root->root_item, &root->root_key);
973 	BUG_ON(ret);
974 
975 	generation = btrfs_root_generation(&root->root_item);
976 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
977 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
978 				     blocksize, generation);
979 	BUG_ON(!root->node);
980 	return 0;
981 }
982 
983 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
984 			     struct btrfs_fs_info *fs_info)
985 {
986 	struct extent_buffer *eb;
987 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
988 	u64 start = 0;
989 	u64 end = 0;
990 	int ret;
991 
992 	if (!log_root_tree)
993 		return 0;
994 
995 	while (1) {
996 		ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
997 				    0, &start, &end, EXTENT_DIRTY);
998 		if (ret)
999 			break;
1000 
1001 		clear_extent_dirty(&log_root_tree->dirty_log_pages,
1002 				   start, end, GFP_NOFS);
1003 	}
1004 	eb = fs_info->log_root_tree->node;
1005 
1006 	WARN_ON(btrfs_header_level(eb) != 0);
1007 	WARN_ON(btrfs_header_nritems(eb) != 0);
1008 
1009 	ret = btrfs_free_reserved_extent(fs_info->tree_root,
1010 				eb->start, eb->len);
1011 	BUG_ON(ret);
1012 
1013 	free_extent_buffer(eb);
1014 	kfree(fs_info->log_root_tree);
1015 	fs_info->log_root_tree = NULL;
1016 	return 0;
1017 }
1018 
1019 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1020 					 struct btrfs_fs_info *fs_info)
1021 {
1022 	struct btrfs_root *root;
1023 	struct btrfs_root *tree_root = fs_info->tree_root;
1024 	struct extent_buffer *leaf;
1025 
1026 	root = kzalloc(sizeof(*root), GFP_NOFS);
1027 	if (!root)
1028 		return ERR_PTR(-ENOMEM);
1029 
1030 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1031 		     tree_root->sectorsize, tree_root->stripesize,
1032 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1033 
1034 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1035 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1036 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1037 	/*
1038 	 * log trees do not get reference counted because they go away
1039 	 * before a real commit is actually done.  They do store pointers
1040 	 * to file data extents, and those reference counts still get
1041 	 * updated (along with back refs to the log tree).
1042 	 */
1043 	root->ref_cows = 0;
1044 
1045 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1046 				      0, BTRFS_TREE_LOG_OBJECTID,
1047 				      trans->transid, 0, 0, 0);
1048 	if (IS_ERR(leaf)) {
1049 		kfree(root);
1050 		return ERR_CAST(leaf);
1051 	}
1052 
1053 	root->node = leaf;
1054 	btrfs_set_header_nritems(root->node, 0);
1055 	btrfs_set_header_level(root->node, 0);
1056 	btrfs_set_header_bytenr(root->node, root->node->start);
1057 	btrfs_set_header_generation(root->node, trans->transid);
1058 	btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID);
1059 
1060 	write_extent_buffer(root->node, root->fs_info->fsid,
1061 			    (unsigned long)btrfs_header_fsid(root->node),
1062 			    BTRFS_FSID_SIZE);
1063 	btrfs_mark_buffer_dirty(root->node);
1064 	btrfs_tree_unlock(root->node);
1065 	return root;
1066 }
1067 
1068 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1069 			     struct btrfs_fs_info *fs_info)
1070 {
1071 	struct btrfs_root *log_root;
1072 
1073 	log_root = alloc_log_tree(trans, fs_info);
1074 	if (IS_ERR(log_root))
1075 		return PTR_ERR(log_root);
1076 	WARN_ON(fs_info->log_root_tree);
1077 	fs_info->log_root_tree = log_root;
1078 	return 0;
1079 }
1080 
1081 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1082 		       struct btrfs_root *root)
1083 {
1084 	struct btrfs_root *log_root;
1085 	struct btrfs_inode_item *inode_item;
1086 
1087 	log_root = alloc_log_tree(trans, root->fs_info);
1088 	if (IS_ERR(log_root))
1089 		return PTR_ERR(log_root);
1090 
1091 	log_root->last_trans = trans->transid;
1092 	log_root->root_key.offset = root->root_key.objectid;
1093 
1094 	inode_item = &log_root->root_item.inode;
1095 	inode_item->generation = cpu_to_le64(1);
1096 	inode_item->size = cpu_to_le64(3);
1097 	inode_item->nlink = cpu_to_le32(1);
1098 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1099 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1100 
1101 	btrfs_set_root_bytenr(&log_root->root_item, log_root->node->start);
1102 	btrfs_set_root_generation(&log_root->root_item, trans->transid);
1103 
1104 	WARN_ON(root->log_root);
1105 	root->log_root = log_root;
1106 	root->log_transid = 0;
1107 	return 0;
1108 }
1109 
1110 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1111 					       struct btrfs_key *location)
1112 {
1113 	struct btrfs_root *root;
1114 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1115 	struct btrfs_path *path;
1116 	struct extent_buffer *l;
1117 	u64 highest_inode;
1118 	u64 generation;
1119 	u32 blocksize;
1120 	int ret = 0;
1121 
1122 	root = kzalloc(sizeof(*root), GFP_NOFS);
1123 	if (!root)
1124 		return ERR_PTR(-ENOMEM);
1125 	if (location->offset == (u64)-1) {
1126 		ret = find_and_setup_root(tree_root, fs_info,
1127 					  location->objectid, root);
1128 		if (ret) {
1129 			kfree(root);
1130 			return ERR_PTR(ret);
1131 		}
1132 		goto insert;
1133 	}
1134 
1135 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1136 		     tree_root->sectorsize, tree_root->stripesize,
1137 		     root, fs_info, location->objectid);
1138 
1139 	path = btrfs_alloc_path();
1140 	BUG_ON(!path);
1141 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1142 	if (ret != 0) {
1143 		if (ret > 0)
1144 			ret = -ENOENT;
1145 		goto out;
1146 	}
1147 	l = path->nodes[0];
1148 	read_extent_buffer(l, &root->root_item,
1149 	       btrfs_item_ptr_offset(l, path->slots[0]),
1150 	       sizeof(root->root_item));
1151 	memcpy(&root->root_key, location, sizeof(*location));
1152 	ret = 0;
1153 out:
1154 	btrfs_release_path(root, path);
1155 	btrfs_free_path(path);
1156 	if (ret) {
1157 		kfree(root);
1158 		return ERR_PTR(ret);
1159 	}
1160 	generation = btrfs_root_generation(&root->root_item);
1161 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1162 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1163 				     blocksize, generation);
1164 	BUG_ON(!root->node);
1165 insert:
1166 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1167 		root->ref_cows = 1;
1168 		ret = btrfs_find_highest_inode(root, &highest_inode);
1169 		if (ret == 0) {
1170 			root->highest_inode = highest_inode;
1171 			root->last_inode_alloc = highest_inode;
1172 		}
1173 	}
1174 	return root;
1175 }
1176 
1177 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1178 					u64 root_objectid)
1179 {
1180 	struct btrfs_root *root;
1181 
1182 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1183 		return fs_info->tree_root;
1184 	if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1185 		return fs_info->extent_root;
1186 
1187 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1188 				 (unsigned long)root_objectid);
1189 	return root;
1190 }
1191 
1192 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1193 					      struct btrfs_key *location)
1194 {
1195 	struct btrfs_root *root;
1196 	int ret;
1197 
1198 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1199 		return fs_info->tree_root;
1200 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1201 		return fs_info->extent_root;
1202 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1203 		return fs_info->chunk_root;
1204 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1205 		return fs_info->dev_root;
1206 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1207 		return fs_info->csum_root;
1208 
1209 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1210 				 (unsigned long)location->objectid);
1211 	if (root)
1212 		return root;
1213 
1214 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1215 	if (IS_ERR(root))
1216 		return root;
1217 
1218 	set_anon_super(&root->anon_super, NULL);
1219 
1220 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1221 				(unsigned long)root->root_key.objectid,
1222 				root);
1223 	if (ret) {
1224 		free_extent_buffer(root->node);
1225 		kfree(root);
1226 		return ERR_PTR(ret);
1227 	}
1228 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
1229 		ret = btrfs_find_dead_roots(fs_info->tree_root,
1230 					    root->root_key.objectid, root);
1231 		BUG_ON(ret);
1232 		btrfs_orphan_cleanup(root);
1233 	}
1234 	return root;
1235 }
1236 
1237 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1238 				      struct btrfs_key *location,
1239 				      const char *name, int namelen)
1240 {
1241 	struct btrfs_root *root;
1242 	int ret;
1243 
1244 	root = btrfs_read_fs_root_no_name(fs_info, location);
1245 	if (!root)
1246 		return NULL;
1247 
1248 	if (root->in_sysfs)
1249 		return root;
1250 
1251 	ret = btrfs_set_root_name(root, name, namelen);
1252 	if (ret) {
1253 		free_extent_buffer(root->node);
1254 		kfree(root);
1255 		return ERR_PTR(ret);
1256 	}
1257 #if 0
1258 	ret = btrfs_sysfs_add_root(root);
1259 	if (ret) {
1260 		free_extent_buffer(root->node);
1261 		kfree(root->name);
1262 		kfree(root);
1263 		return ERR_PTR(ret);
1264 	}
1265 #endif
1266 	root->in_sysfs = 1;
1267 	return root;
1268 }
1269 
1270 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1271 {
1272 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1273 	int ret = 0;
1274 	struct btrfs_device *device;
1275 	struct backing_dev_info *bdi;
1276 #if 0
1277 	if ((bdi_bits & (1 << BDI_write_congested)) &&
1278 	    btrfs_congested_async(info, 0))
1279 		return 1;
1280 #endif
1281 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1282 		if (!device->bdev)
1283 			continue;
1284 		bdi = blk_get_backing_dev_info(device->bdev);
1285 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1286 			ret = 1;
1287 			break;
1288 		}
1289 	}
1290 	return ret;
1291 }
1292 
1293 /*
1294  * this unplugs every device on the box, and it is only used when page
1295  * is null
1296  */
1297 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1298 {
1299 	struct btrfs_device *device;
1300 	struct btrfs_fs_info *info;
1301 
1302 	info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1303 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1304 		if (!device->bdev)
1305 			continue;
1306 
1307 		bdi = blk_get_backing_dev_info(device->bdev);
1308 		if (bdi->unplug_io_fn)
1309 			bdi->unplug_io_fn(bdi, page);
1310 	}
1311 }
1312 
1313 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1314 {
1315 	struct inode *inode;
1316 	struct extent_map_tree *em_tree;
1317 	struct extent_map *em;
1318 	struct address_space *mapping;
1319 	u64 offset;
1320 
1321 	/* the generic O_DIRECT read code does this */
1322 	if (1 || !page) {
1323 		__unplug_io_fn(bdi, page);
1324 		return;
1325 	}
1326 
1327 	/*
1328 	 * page->mapping may change at any time.  Get a consistent copy
1329 	 * and use that for everything below
1330 	 */
1331 	smp_mb();
1332 	mapping = page->mapping;
1333 	if (!mapping)
1334 		return;
1335 
1336 	inode = mapping->host;
1337 
1338 	/*
1339 	 * don't do the expensive searching for a small number of
1340 	 * devices
1341 	 */
1342 	if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1343 		__unplug_io_fn(bdi, page);
1344 		return;
1345 	}
1346 
1347 	offset = page_offset(page);
1348 
1349 	em_tree = &BTRFS_I(inode)->extent_tree;
1350 	spin_lock(&em_tree->lock);
1351 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1352 	spin_unlock(&em_tree->lock);
1353 	if (!em) {
1354 		__unplug_io_fn(bdi, page);
1355 		return;
1356 	}
1357 
1358 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1359 		free_extent_map(em);
1360 		__unplug_io_fn(bdi, page);
1361 		return;
1362 	}
1363 	offset = offset - em->start;
1364 	btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1365 			  em->block_start + offset, page);
1366 	free_extent_map(em);
1367 }
1368 
1369 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1370 {
1371 	bdi_init(bdi);
1372 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1373 	bdi->state		= 0;
1374 	bdi->capabilities	= default_backing_dev_info.capabilities;
1375 	bdi->unplug_io_fn	= btrfs_unplug_io_fn;
1376 	bdi->unplug_io_data	= info;
1377 	bdi->congested_fn	= btrfs_congested_fn;
1378 	bdi->congested_data	= info;
1379 	return 0;
1380 }
1381 
1382 static int bio_ready_for_csum(struct bio *bio)
1383 {
1384 	u64 length = 0;
1385 	u64 buf_len = 0;
1386 	u64 start = 0;
1387 	struct page *page;
1388 	struct extent_io_tree *io_tree = NULL;
1389 	struct btrfs_fs_info *info = NULL;
1390 	struct bio_vec *bvec;
1391 	int i;
1392 	int ret;
1393 
1394 	bio_for_each_segment(bvec, bio, i) {
1395 		page = bvec->bv_page;
1396 		if (page->private == EXTENT_PAGE_PRIVATE) {
1397 			length += bvec->bv_len;
1398 			continue;
1399 		}
1400 		if (!page->private) {
1401 			length += bvec->bv_len;
1402 			continue;
1403 		}
1404 		length = bvec->bv_len;
1405 		buf_len = page->private >> 2;
1406 		start = page_offset(page) + bvec->bv_offset;
1407 		io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1408 		info = BTRFS_I(page->mapping->host)->root->fs_info;
1409 	}
1410 	/* are we fully contained in this bio? */
1411 	if (buf_len <= length)
1412 		return 1;
1413 
1414 	ret = extent_range_uptodate(io_tree, start + length,
1415 				    start + buf_len - 1);
1416 	return ret;
1417 }
1418 
1419 /*
1420  * called by the kthread helper functions to finally call the bio end_io
1421  * functions.  This is where read checksum verification actually happens
1422  */
1423 static void end_workqueue_fn(struct btrfs_work *work)
1424 {
1425 	struct bio *bio;
1426 	struct end_io_wq *end_io_wq;
1427 	struct btrfs_fs_info *fs_info;
1428 	int error;
1429 
1430 	end_io_wq = container_of(work, struct end_io_wq, work);
1431 	bio = end_io_wq->bio;
1432 	fs_info = end_io_wq->info;
1433 
1434 	/* metadata bio reads are special because the whole tree block must
1435 	 * be checksummed at once.  This makes sure the entire block is in
1436 	 * ram and up to date before trying to verify things.  For
1437 	 * blocksize <= pagesize, it is basically a noop
1438 	 */
1439 	if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1440 	    !bio_ready_for_csum(bio)) {
1441 		btrfs_queue_worker(&fs_info->endio_meta_workers,
1442 				   &end_io_wq->work);
1443 		return;
1444 	}
1445 	error = end_io_wq->error;
1446 	bio->bi_private = end_io_wq->private;
1447 	bio->bi_end_io = end_io_wq->end_io;
1448 	kfree(end_io_wq);
1449 	bio_endio(bio, error);
1450 }
1451 
1452 static int cleaner_kthread(void *arg)
1453 {
1454 	struct btrfs_root *root = arg;
1455 
1456 	do {
1457 		smp_mb();
1458 		if (root->fs_info->closing)
1459 			break;
1460 
1461 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1462 		mutex_lock(&root->fs_info->cleaner_mutex);
1463 		btrfs_clean_old_snapshots(root);
1464 		mutex_unlock(&root->fs_info->cleaner_mutex);
1465 
1466 		if (freezing(current)) {
1467 			refrigerator();
1468 		} else {
1469 			smp_mb();
1470 			if (root->fs_info->closing)
1471 				break;
1472 			set_current_state(TASK_INTERRUPTIBLE);
1473 			schedule();
1474 			__set_current_state(TASK_RUNNING);
1475 		}
1476 	} while (!kthread_should_stop());
1477 	return 0;
1478 }
1479 
1480 static int transaction_kthread(void *arg)
1481 {
1482 	struct btrfs_root *root = arg;
1483 	struct btrfs_trans_handle *trans;
1484 	struct btrfs_transaction *cur;
1485 	unsigned long now;
1486 	unsigned long delay;
1487 	int ret;
1488 
1489 	do {
1490 		smp_mb();
1491 		if (root->fs_info->closing)
1492 			break;
1493 
1494 		delay = HZ * 30;
1495 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1496 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1497 
1498 		mutex_lock(&root->fs_info->trans_mutex);
1499 		cur = root->fs_info->running_transaction;
1500 		if (!cur) {
1501 			mutex_unlock(&root->fs_info->trans_mutex);
1502 			goto sleep;
1503 		}
1504 
1505 		now = get_seconds();
1506 		if (now < cur->start_time || now - cur->start_time < 30) {
1507 			mutex_unlock(&root->fs_info->trans_mutex);
1508 			delay = HZ * 5;
1509 			goto sleep;
1510 		}
1511 		mutex_unlock(&root->fs_info->trans_mutex);
1512 		trans = btrfs_start_transaction(root, 1);
1513 		ret = btrfs_commit_transaction(trans, root);
1514 
1515 sleep:
1516 		wake_up_process(root->fs_info->cleaner_kthread);
1517 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1518 
1519 		if (freezing(current)) {
1520 			refrigerator();
1521 		} else {
1522 			if (root->fs_info->closing)
1523 				break;
1524 			set_current_state(TASK_INTERRUPTIBLE);
1525 			schedule_timeout(delay);
1526 			__set_current_state(TASK_RUNNING);
1527 		}
1528 	} while (!kthread_should_stop());
1529 	return 0;
1530 }
1531 
1532 struct btrfs_root *open_ctree(struct super_block *sb,
1533 			      struct btrfs_fs_devices *fs_devices,
1534 			      char *options)
1535 {
1536 	u32 sectorsize;
1537 	u32 nodesize;
1538 	u32 leafsize;
1539 	u32 blocksize;
1540 	u32 stripesize;
1541 	u64 generation;
1542 	u64 features;
1543 	struct btrfs_key location;
1544 	struct buffer_head *bh;
1545 	struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1546 						 GFP_NOFS);
1547 	struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1548 						 GFP_NOFS);
1549 	struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1550 					       GFP_NOFS);
1551 	struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1552 						GFP_NOFS);
1553 	struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1554 						GFP_NOFS);
1555 	struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1556 					      GFP_NOFS);
1557 	struct btrfs_root *log_tree_root;
1558 
1559 	int ret;
1560 	int err = -EINVAL;
1561 
1562 	struct btrfs_super_block *disk_super;
1563 
1564 	if (!extent_root || !tree_root || !fs_info ||
1565 	    !chunk_root || !dev_root || !csum_root) {
1566 		err = -ENOMEM;
1567 		goto fail;
1568 	}
1569 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1570 	INIT_LIST_HEAD(&fs_info->trans_list);
1571 	INIT_LIST_HEAD(&fs_info->dead_roots);
1572 	INIT_LIST_HEAD(&fs_info->hashers);
1573 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1574 	INIT_LIST_HEAD(&fs_info->ordered_operations);
1575 	spin_lock_init(&fs_info->delalloc_lock);
1576 	spin_lock_init(&fs_info->new_trans_lock);
1577 	spin_lock_init(&fs_info->ref_cache_lock);
1578 
1579 	init_completion(&fs_info->kobj_unregister);
1580 	fs_info->tree_root = tree_root;
1581 	fs_info->extent_root = extent_root;
1582 	fs_info->csum_root = csum_root;
1583 	fs_info->chunk_root = chunk_root;
1584 	fs_info->dev_root = dev_root;
1585 	fs_info->fs_devices = fs_devices;
1586 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1587 	INIT_LIST_HEAD(&fs_info->space_info);
1588 	btrfs_mapping_init(&fs_info->mapping_tree);
1589 	atomic_set(&fs_info->nr_async_submits, 0);
1590 	atomic_set(&fs_info->async_delalloc_pages, 0);
1591 	atomic_set(&fs_info->async_submit_draining, 0);
1592 	atomic_set(&fs_info->nr_async_bios, 0);
1593 	atomic_set(&fs_info->throttles, 0);
1594 	atomic_set(&fs_info->throttle_gen, 0);
1595 	fs_info->sb = sb;
1596 	fs_info->max_extent = (u64)-1;
1597 	fs_info->max_inline = 8192 * 1024;
1598 	setup_bdi(fs_info, &fs_info->bdi);
1599 	fs_info->btree_inode = new_inode(sb);
1600 	fs_info->btree_inode->i_ino = 1;
1601 	fs_info->btree_inode->i_nlink = 1;
1602 
1603 	fs_info->thread_pool_size = min_t(unsigned long,
1604 					  num_online_cpus() + 2, 8);
1605 
1606 	INIT_LIST_HEAD(&fs_info->ordered_extents);
1607 	spin_lock_init(&fs_info->ordered_extent_lock);
1608 
1609 	sb->s_blocksize = 4096;
1610 	sb->s_blocksize_bits = blksize_bits(4096);
1611 
1612 	/*
1613 	 * we set the i_size on the btree inode to the max possible int.
1614 	 * the real end of the address space is determined by all of
1615 	 * the devices in the system
1616 	 */
1617 	fs_info->btree_inode->i_size = OFFSET_MAX;
1618 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1619 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1620 
1621 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1622 			     fs_info->btree_inode->i_mapping,
1623 			     GFP_NOFS);
1624 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1625 			     GFP_NOFS);
1626 
1627 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1628 
1629 	spin_lock_init(&fs_info->block_group_cache_lock);
1630 	fs_info->block_group_cache_tree.rb_node = NULL;
1631 
1632 	extent_io_tree_init(&fs_info->pinned_extents,
1633 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1634 	fs_info->do_barriers = 1;
1635 
1636 	INIT_LIST_HEAD(&fs_info->dead_reloc_roots);
1637 	btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree);
1638 	btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree);
1639 
1640 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
1641 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1642 	       sizeof(struct btrfs_key));
1643 	insert_inode_hash(fs_info->btree_inode);
1644 
1645 	mutex_init(&fs_info->trans_mutex);
1646 	mutex_init(&fs_info->ordered_operations_mutex);
1647 	mutex_init(&fs_info->tree_log_mutex);
1648 	mutex_init(&fs_info->drop_mutex);
1649 	mutex_init(&fs_info->chunk_mutex);
1650 	mutex_init(&fs_info->transaction_kthread_mutex);
1651 	mutex_init(&fs_info->cleaner_mutex);
1652 	mutex_init(&fs_info->volume_mutex);
1653 	mutex_init(&fs_info->tree_reloc_mutex);
1654 
1655 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1656 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1657 
1658 	init_waitqueue_head(&fs_info->transaction_throttle);
1659 	init_waitqueue_head(&fs_info->transaction_wait);
1660 	init_waitqueue_head(&fs_info->async_submit_wait);
1661 
1662 	__setup_root(4096, 4096, 4096, 4096, tree_root,
1663 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
1664 
1665 
1666 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1667 	if (!bh)
1668 		goto fail_iput;
1669 
1670 	memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1671 	memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1672 	       sizeof(fs_info->super_for_commit));
1673 	brelse(bh);
1674 
1675 	memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1676 
1677 	disk_super = &fs_info->super_copy;
1678 	if (!btrfs_super_root(disk_super))
1679 		goto fail_iput;
1680 
1681 	ret = btrfs_parse_options(tree_root, options);
1682 	if (ret) {
1683 		err = ret;
1684 		goto fail_iput;
1685 	}
1686 
1687 	features = btrfs_super_incompat_flags(disk_super) &
1688 		~BTRFS_FEATURE_INCOMPAT_SUPP;
1689 	if (features) {
1690 		printk(KERN_ERR "BTRFS: couldn't mount because of "
1691 		       "unsupported optional features (%Lx).\n",
1692 		       features);
1693 		err = -EINVAL;
1694 		goto fail_iput;
1695 	}
1696 
1697 	features = btrfs_super_compat_ro_flags(disk_super) &
1698 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
1699 	if (!(sb->s_flags & MS_RDONLY) && features) {
1700 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1701 		       "unsupported option features (%Lx).\n",
1702 		       features);
1703 		err = -EINVAL;
1704 		goto fail_iput;
1705 	}
1706 
1707 	/*
1708 	 * we need to start all the end_io workers up front because the
1709 	 * queue work function gets called at interrupt time, and so it
1710 	 * cannot dynamically grow.
1711 	 */
1712 	btrfs_init_workers(&fs_info->workers, "worker",
1713 			   fs_info->thread_pool_size);
1714 
1715 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1716 			   fs_info->thread_pool_size);
1717 
1718 	btrfs_init_workers(&fs_info->submit_workers, "submit",
1719 			   min_t(u64, fs_devices->num_devices,
1720 			   fs_info->thread_pool_size));
1721 
1722 	/* a higher idle thresh on the submit workers makes it much more
1723 	 * likely that bios will be send down in a sane order to the
1724 	 * devices
1725 	 */
1726 	fs_info->submit_workers.idle_thresh = 64;
1727 
1728 	fs_info->workers.idle_thresh = 16;
1729 	fs_info->workers.ordered = 1;
1730 
1731 	fs_info->delalloc_workers.idle_thresh = 2;
1732 	fs_info->delalloc_workers.ordered = 1;
1733 
1734 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
1735 	btrfs_init_workers(&fs_info->endio_workers, "endio",
1736 			   fs_info->thread_pool_size);
1737 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1738 			   fs_info->thread_pool_size);
1739 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
1740 			   "endio-meta-write", fs_info->thread_pool_size);
1741 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1742 			   fs_info->thread_pool_size);
1743 
1744 	/*
1745 	 * endios are largely parallel and should have a very
1746 	 * low idle thresh
1747 	 */
1748 	fs_info->endio_workers.idle_thresh = 4;
1749 	fs_info->endio_meta_workers.idle_thresh = 4;
1750 
1751 	fs_info->endio_write_workers.idle_thresh = 64;
1752 	fs_info->endio_meta_write_workers.idle_thresh = 64;
1753 
1754 	btrfs_start_workers(&fs_info->workers, 1);
1755 	btrfs_start_workers(&fs_info->submit_workers, 1);
1756 	btrfs_start_workers(&fs_info->delalloc_workers, 1);
1757 	btrfs_start_workers(&fs_info->fixup_workers, 1);
1758 	btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1759 	btrfs_start_workers(&fs_info->endio_meta_workers,
1760 			    fs_info->thread_pool_size);
1761 	btrfs_start_workers(&fs_info->endio_meta_write_workers,
1762 			    fs_info->thread_pool_size);
1763 	btrfs_start_workers(&fs_info->endio_write_workers,
1764 			    fs_info->thread_pool_size);
1765 
1766 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1767 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1768 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1769 
1770 	nodesize = btrfs_super_nodesize(disk_super);
1771 	leafsize = btrfs_super_leafsize(disk_super);
1772 	sectorsize = btrfs_super_sectorsize(disk_super);
1773 	stripesize = btrfs_super_stripesize(disk_super);
1774 	tree_root->nodesize = nodesize;
1775 	tree_root->leafsize = leafsize;
1776 	tree_root->sectorsize = sectorsize;
1777 	tree_root->stripesize = stripesize;
1778 
1779 	sb->s_blocksize = sectorsize;
1780 	sb->s_blocksize_bits = blksize_bits(sectorsize);
1781 
1782 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1783 		    sizeof(disk_super->magic))) {
1784 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1785 		goto fail_sb_buffer;
1786 	}
1787 
1788 	mutex_lock(&fs_info->chunk_mutex);
1789 	ret = btrfs_read_sys_array(tree_root);
1790 	mutex_unlock(&fs_info->chunk_mutex);
1791 	if (ret) {
1792 		printk(KERN_WARNING "btrfs: failed to read the system "
1793 		       "array on %s\n", sb->s_id);
1794 		goto fail_sys_array;
1795 	}
1796 
1797 	blocksize = btrfs_level_size(tree_root,
1798 				     btrfs_super_chunk_root_level(disk_super));
1799 	generation = btrfs_super_chunk_root_generation(disk_super);
1800 
1801 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
1802 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1803 
1804 	chunk_root->node = read_tree_block(chunk_root,
1805 					   btrfs_super_chunk_root(disk_super),
1806 					   blocksize, generation);
1807 	BUG_ON(!chunk_root->node);
1808 
1809 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1810 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1811 	   BTRFS_UUID_SIZE);
1812 
1813 	mutex_lock(&fs_info->chunk_mutex);
1814 	ret = btrfs_read_chunk_tree(chunk_root);
1815 	mutex_unlock(&fs_info->chunk_mutex);
1816 	if (ret) {
1817 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1818 		       sb->s_id);
1819 		goto fail_chunk_root;
1820 	}
1821 
1822 	btrfs_close_extra_devices(fs_devices);
1823 
1824 	blocksize = btrfs_level_size(tree_root,
1825 				     btrfs_super_root_level(disk_super));
1826 	generation = btrfs_super_generation(disk_super);
1827 
1828 	tree_root->node = read_tree_block(tree_root,
1829 					  btrfs_super_root(disk_super),
1830 					  blocksize, generation);
1831 	if (!tree_root->node)
1832 		goto fail_chunk_root;
1833 
1834 
1835 	ret = find_and_setup_root(tree_root, fs_info,
1836 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1837 	if (ret)
1838 		goto fail_tree_root;
1839 	extent_root->track_dirty = 1;
1840 
1841 	ret = find_and_setup_root(tree_root, fs_info,
1842 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
1843 	dev_root->track_dirty = 1;
1844 	if (ret)
1845 		goto fail_extent_root;
1846 
1847 	ret = find_and_setup_root(tree_root, fs_info,
1848 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
1849 	if (ret)
1850 		goto fail_extent_root;
1851 
1852 	csum_root->track_dirty = 1;
1853 
1854 	btrfs_read_block_groups(extent_root);
1855 
1856 	fs_info->generation = generation;
1857 	fs_info->last_trans_committed = generation;
1858 	fs_info->data_alloc_profile = (u64)-1;
1859 	fs_info->metadata_alloc_profile = (u64)-1;
1860 	fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1861 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1862 					       "btrfs-cleaner");
1863 	if (IS_ERR(fs_info->cleaner_kthread))
1864 		goto fail_csum_root;
1865 
1866 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
1867 						   tree_root,
1868 						   "btrfs-transaction");
1869 	if (IS_ERR(fs_info->transaction_kthread))
1870 		goto fail_cleaner;
1871 
1872 	if (btrfs_super_log_root(disk_super) != 0) {
1873 		u64 bytenr = btrfs_super_log_root(disk_super);
1874 
1875 		if (fs_devices->rw_devices == 0) {
1876 			printk(KERN_WARNING "Btrfs log replay required "
1877 			       "on RO media\n");
1878 			err = -EIO;
1879 			goto fail_trans_kthread;
1880 		}
1881 		blocksize =
1882 		     btrfs_level_size(tree_root,
1883 				      btrfs_super_log_root_level(disk_super));
1884 
1885 		log_tree_root = kzalloc(sizeof(struct btrfs_root),
1886 						      GFP_NOFS);
1887 
1888 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
1889 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1890 
1891 		log_tree_root->node = read_tree_block(tree_root, bytenr,
1892 						      blocksize,
1893 						      generation + 1);
1894 		ret = btrfs_recover_log_trees(log_tree_root);
1895 		BUG_ON(ret);
1896 
1897 		if (sb->s_flags & MS_RDONLY) {
1898 			ret =  btrfs_commit_super(tree_root);
1899 			BUG_ON(ret);
1900 		}
1901 	}
1902 
1903 	if (!(sb->s_flags & MS_RDONLY)) {
1904 		ret = btrfs_cleanup_reloc_trees(tree_root);
1905 		BUG_ON(ret);
1906 	}
1907 
1908 	location.objectid = BTRFS_FS_TREE_OBJECTID;
1909 	location.type = BTRFS_ROOT_ITEM_KEY;
1910 	location.offset = (u64)-1;
1911 
1912 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1913 	if (!fs_info->fs_root)
1914 		goto fail_trans_kthread;
1915 	return tree_root;
1916 
1917 fail_trans_kthread:
1918 	kthread_stop(fs_info->transaction_kthread);
1919 fail_cleaner:
1920 	kthread_stop(fs_info->cleaner_kthread);
1921 
1922 	/*
1923 	 * make sure we're done with the btree inode before we stop our
1924 	 * kthreads
1925 	 */
1926 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1927 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1928 
1929 fail_csum_root:
1930 	free_extent_buffer(csum_root->node);
1931 fail_extent_root:
1932 	free_extent_buffer(extent_root->node);
1933 fail_tree_root:
1934 	free_extent_buffer(tree_root->node);
1935 fail_chunk_root:
1936 	free_extent_buffer(chunk_root->node);
1937 fail_sys_array:
1938 	free_extent_buffer(dev_root->node);
1939 fail_sb_buffer:
1940 	btrfs_stop_workers(&fs_info->fixup_workers);
1941 	btrfs_stop_workers(&fs_info->delalloc_workers);
1942 	btrfs_stop_workers(&fs_info->workers);
1943 	btrfs_stop_workers(&fs_info->endio_workers);
1944 	btrfs_stop_workers(&fs_info->endio_meta_workers);
1945 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1946 	btrfs_stop_workers(&fs_info->endio_write_workers);
1947 	btrfs_stop_workers(&fs_info->submit_workers);
1948 fail_iput:
1949 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1950 	iput(fs_info->btree_inode);
1951 
1952 	btrfs_close_devices(fs_info->fs_devices);
1953 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
1954 	bdi_destroy(&fs_info->bdi);
1955 
1956 fail:
1957 	kfree(extent_root);
1958 	kfree(tree_root);
1959 	kfree(fs_info);
1960 	kfree(chunk_root);
1961 	kfree(dev_root);
1962 	kfree(csum_root);
1963 	return ERR_PTR(err);
1964 }
1965 
1966 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1967 {
1968 	char b[BDEVNAME_SIZE];
1969 
1970 	if (uptodate) {
1971 		set_buffer_uptodate(bh);
1972 	} else {
1973 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1974 			printk(KERN_WARNING "lost page write due to "
1975 					"I/O error on %s\n",
1976 				       bdevname(bh->b_bdev, b));
1977 		}
1978 		/* note, we dont' set_buffer_write_io_error because we have
1979 		 * our own ways of dealing with the IO errors
1980 		 */
1981 		clear_buffer_uptodate(bh);
1982 	}
1983 	unlock_buffer(bh);
1984 	put_bh(bh);
1985 }
1986 
1987 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
1988 {
1989 	struct buffer_head *bh;
1990 	struct buffer_head *latest = NULL;
1991 	struct btrfs_super_block *super;
1992 	int i;
1993 	u64 transid = 0;
1994 	u64 bytenr;
1995 
1996 	/* we would like to check all the supers, but that would make
1997 	 * a btrfs mount succeed after a mkfs from a different FS.
1998 	 * So, we need to add a special mount option to scan for
1999 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2000 	 */
2001 	for (i = 0; i < 1; i++) {
2002 		bytenr = btrfs_sb_offset(i);
2003 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2004 			break;
2005 		bh = __bread(bdev, bytenr / 4096, 4096);
2006 		if (!bh)
2007 			continue;
2008 
2009 		super = (struct btrfs_super_block *)bh->b_data;
2010 		if (btrfs_super_bytenr(super) != bytenr ||
2011 		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2012 			    sizeof(super->magic))) {
2013 			brelse(bh);
2014 			continue;
2015 		}
2016 
2017 		if (!latest || btrfs_super_generation(super) > transid) {
2018 			brelse(latest);
2019 			latest = bh;
2020 			transid = btrfs_super_generation(super);
2021 		} else {
2022 			brelse(bh);
2023 		}
2024 	}
2025 	return latest;
2026 }
2027 
2028 static int write_dev_supers(struct btrfs_device *device,
2029 			    struct btrfs_super_block *sb,
2030 			    int do_barriers, int wait, int max_mirrors)
2031 {
2032 	struct buffer_head *bh;
2033 	int i;
2034 	int ret;
2035 	int errors = 0;
2036 	u32 crc;
2037 	u64 bytenr;
2038 	int last_barrier = 0;
2039 
2040 	if (max_mirrors == 0)
2041 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2042 
2043 	/* make sure only the last submit_bh does a barrier */
2044 	if (do_barriers) {
2045 		for (i = 0; i < max_mirrors; i++) {
2046 			bytenr = btrfs_sb_offset(i);
2047 			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2048 			    device->total_bytes)
2049 				break;
2050 			last_barrier = i;
2051 		}
2052 	}
2053 
2054 	for (i = 0; i < max_mirrors; i++) {
2055 		bytenr = btrfs_sb_offset(i);
2056 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2057 			break;
2058 
2059 		if (wait) {
2060 			bh = __find_get_block(device->bdev, bytenr / 4096,
2061 					      BTRFS_SUPER_INFO_SIZE);
2062 			BUG_ON(!bh);
2063 			brelse(bh);
2064 			wait_on_buffer(bh);
2065 			if (buffer_uptodate(bh)) {
2066 				brelse(bh);
2067 				continue;
2068 			}
2069 		} else {
2070 			btrfs_set_super_bytenr(sb, bytenr);
2071 
2072 			crc = ~(u32)0;
2073 			crc = btrfs_csum_data(NULL, (char *)sb +
2074 					      BTRFS_CSUM_SIZE, crc,
2075 					      BTRFS_SUPER_INFO_SIZE -
2076 					      BTRFS_CSUM_SIZE);
2077 			btrfs_csum_final(crc, sb->csum);
2078 
2079 			bh = __getblk(device->bdev, bytenr / 4096,
2080 				      BTRFS_SUPER_INFO_SIZE);
2081 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2082 
2083 			set_buffer_uptodate(bh);
2084 			get_bh(bh);
2085 			lock_buffer(bh);
2086 			bh->b_end_io = btrfs_end_buffer_write_sync;
2087 		}
2088 
2089 		if (i == last_barrier && do_barriers && device->barriers) {
2090 			ret = submit_bh(WRITE_BARRIER, bh);
2091 			if (ret == -EOPNOTSUPP) {
2092 				printk("btrfs: disabling barriers on dev %s\n",
2093 				       device->name);
2094 				set_buffer_uptodate(bh);
2095 				device->barriers = 0;
2096 				get_bh(bh);
2097 				lock_buffer(bh);
2098 				ret = submit_bh(WRITE, bh);
2099 			}
2100 		} else {
2101 			ret = submit_bh(WRITE, bh);
2102 		}
2103 
2104 		if (!ret && wait) {
2105 			wait_on_buffer(bh);
2106 			if (!buffer_uptodate(bh))
2107 				errors++;
2108 		} else if (ret) {
2109 			errors++;
2110 		}
2111 		if (wait)
2112 			brelse(bh);
2113 	}
2114 	return errors < i ? 0 : -1;
2115 }
2116 
2117 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2118 {
2119 	struct list_head *head = &root->fs_info->fs_devices->devices;
2120 	struct btrfs_device *dev;
2121 	struct btrfs_super_block *sb;
2122 	struct btrfs_dev_item *dev_item;
2123 	int ret;
2124 	int do_barriers;
2125 	int max_errors;
2126 	int total_errors = 0;
2127 	u64 flags;
2128 
2129 	max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2130 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2131 
2132 	sb = &root->fs_info->super_for_commit;
2133 	dev_item = &sb->dev_item;
2134 	list_for_each_entry(dev, head, dev_list) {
2135 		if (!dev->bdev) {
2136 			total_errors++;
2137 			continue;
2138 		}
2139 		if (!dev->in_fs_metadata || !dev->writeable)
2140 			continue;
2141 
2142 		btrfs_set_stack_device_generation(dev_item, 0);
2143 		btrfs_set_stack_device_type(dev_item, dev->type);
2144 		btrfs_set_stack_device_id(dev_item, dev->devid);
2145 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2146 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2147 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2148 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2149 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2150 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2151 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2152 
2153 		flags = btrfs_super_flags(sb);
2154 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2155 
2156 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2157 		if (ret)
2158 			total_errors++;
2159 	}
2160 	if (total_errors > max_errors) {
2161 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2162 		       total_errors);
2163 		BUG();
2164 	}
2165 
2166 	total_errors = 0;
2167 	list_for_each_entry(dev, head, dev_list) {
2168 		if (!dev->bdev)
2169 			continue;
2170 		if (!dev->in_fs_metadata || !dev->writeable)
2171 			continue;
2172 
2173 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2174 		if (ret)
2175 			total_errors++;
2176 	}
2177 	if (total_errors > max_errors) {
2178 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2179 		       total_errors);
2180 		BUG();
2181 	}
2182 	return 0;
2183 }
2184 
2185 int write_ctree_super(struct btrfs_trans_handle *trans,
2186 		      struct btrfs_root *root, int max_mirrors)
2187 {
2188 	int ret;
2189 
2190 	ret = write_all_supers(root, max_mirrors);
2191 	return ret;
2192 }
2193 
2194 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2195 {
2196 	radix_tree_delete(&fs_info->fs_roots_radix,
2197 			  (unsigned long)root->root_key.objectid);
2198 	if (root->anon_super.s_dev) {
2199 		down_write(&root->anon_super.s_umount);
2200 		kill_anon_super(&root->anon_super);
2201 	}
2202 	if (root->node)
2203 		free_extent_buffer(root->node);
2204 	if (root->commit_root)
2205 		free_extent_buffer(root->commit_root);
2206 	kfree(root->name);
2207 	kfree(root);
2208 	return 0;
2209 }
2210 
2211 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2212 {
2213 	int ret;
2214 	struct btrfs_root *gang[8];
2215 	int i;
2216 
2217 	while (1) {
2218 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2219 					     (void **)gang, 0,
2220 					     ARRAY_SIZE(gang));
2221 		if (!ret)
2222 			break;
2223 		for (i = 0; i < ret; i++)
2224 			btrfs_free_fs_root(fs_info, gang[i]);
2225 	}
2226 	return 0;
2227 }
2228 
2229 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2230 {
2231 	u64 root_objectid = 0;
2232 	struct btrfs_root *gang[8];
2233 	int i;
2234 	int ret;
2235 
2236 	while (1) {
2237 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2238 					     (void **)gang, root_objectid,
2239 					     ARRAY_SIZE(gang));
2240 		if (!ret)
2241 			break;
2242 		for (i = 0; i < ret; i++) {
2243 			root_objectid = gang[i]->root_key.objectid;
2244 			ret = btrfs_find_dead_roots(fs_info->tree_root,
2245 						    root_objectid, gang[i]);
2246 			BUG_ON(ret);
2247 			btrfs_orphan_cleanup(gang[i]);
2248 		}
2249 		root_objectid++;
2250 	}
2251 	return 0;
2252 }
2253 
2254 int btrfs_commit_super(struct btrfs_root *root)
2255 {
2256 	struct btrfs_trans_handle *trans;
2257 	int ret;
2258 
2259 	mutex_lock(&root->fs_info->cleaner_mutex);
2260 	btrfs_clean_old_snapshots(root);
2261 	mutex_unlock(&root->fs_info->cleaner_mutex);
2262 	trans = btrfs_start_transaction(root, 1);
2263 	ret = btrfs_commit_transaction(trans, root);
2264 	BUG_ON(ret);
2265 	/* run commit again to drop the original snapshot */
2266 	trans = btrfs_start_transaction(root, 1);
2267 	btrfs_commit_transaction(trans, root);
2268 	ret = btrfs_write_and_wait_transaction(NULL, root);
2269 	BUG_ON(ret);
2270 
2271 	ret = write_ctree_super(NULL, root, 0);
2272 	return ret;
2273 }
2274 
2275 int close_ctree(struct btrfs_root *root)
2276 {
2277 	struct btrfs_fs_info *fs_info = root->fs_info;
2278 	int ret;
2279 
2280 	fs_info->closing = 1;
2281 	smp_mb();
2282 
2283 	kthread_stop(root->fs_info->transaction_kthread);
2284 	kthread_stop(root->fs_info->cleaner_kthread);
2285 
2286 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2287 		ret =  btrfs_commit_super(root);
2288 		if (ret)
2289 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2290 	}
2291 
2292 	if (fs_info->delalloc_bytes) {
2293 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2294 		       fs_info->delalloc_bytes);
2295 	}
2296 	if (fs_info->total_ref_cache_size) {
2297 		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2298 		       (unsigned long long)fs_info->total_ref_cache_size);
2299 	}
2300 
2301 	if (fs_info->extent_root->node)
2302 		free_extent_buffer(fs_info->extent_root->node);
2303 
2304 	if (fs_info->tree_root->node)
2305 		free_extent_buffer(fs_info->tree_root->node);
2306 
2307 	if (root->fs_info->chunk_root->node)
2308 		free_extent_buffer(root->fs_info->chunk_root->node);
2309 
2310 	if (root->fs_info->dev_root->node)
2311 		free_extent_buffer(root->fs_info->dev_root->node);
2312 
2313 	if (root->fs_info->csum_root->node)
2314 		free_extent_buffer(root->fs_info->csum_root->node);
2315 
2316 	btrfs_free_block_groups(root->fs_info);
2317 
2318 	del_fs_roots(fs_info);
2319 
2320 	iput(fs_info->btree_inode);
2321 
2322 	btrfs_stop_workers(&fs_info->fixup_workers);
2323 	btrfs_stop_workers(&fs_info->delalloc_workers);
2324 	btrfs_stop_workers(&fs_info->workers);
2325 	btrfs_stop_workers(&fs_info->endio_workers);
2326 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2327 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2328 	btrfs_stop_workers(&fs_info->endio_write_workers);
2329 	btrfs_stop_workers(&fs_info->submit_workers);
2330 
2331 #if 0
2332 	while (!list_empty(&fs_info->hashers)) {
2333 		struct btrfs_hasher *hasher;
2334 		hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
2335 				    hashers);
2336 		list_del(&hasher->hashers);
2337 		crypto_free_hash(&fs_info->hash_tfm);
2338 		kfree(hasher);
2339 	}
2340 #endif
2341 	btrfs_close_devices(fs_info->fs_devices);
2342 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2343 
2344 	bdi_destroy(&fs_info->bdi);
2345 
2346 	kfree(fs_info->extent_root);
2347 	kfree(fs_info->tree_root);
2348 	kfree(fs_info->chunk_root);
2349 	kfree(fs_info->dev_root);
2350 	kfree(fs_info->csum_root);
2351 	return 0;
2352 }
2353 
2354 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2355 {
2356 	int ret;
2357 	struct inode *btree_inode = buf->first_page->mapping->host;
2358 
2359 	ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2360 	if (!ret)
2361 		return ret;
2362 
2363 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2364 				    parent_transid);
2365 	return !ret;
2366 }
2367 
2368 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2369 {
2370 	struct inode *btree_inode = buf->first_page->mapping->host;
2371 	return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2372 					  buf);
2373 }
2374 
2375 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2376 {
2377 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2378 	u64 transid = btrfs_header_generation(buf);
2379 	struct inode *btree_inode = root->fs_info->btree_inode;
2380 	int was_dirty;
2381 
2382 	btrfs_assert_tree_locked(buf);
2383 	if (transid != root->fs_info->generation) {
2384 		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2385 		       "found %llu running %llu\n",
2386 			(unsigned long long)buf->start,
2387 			(unsigned long long)transid,
2388 			(unsigned long long)root->fs_info->generation);
2389 		WARN_ON(1);
2390 	}
2391 	was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2392 					    buf);
2393 	if (!was_dirty) {
2394 		spin_lock(&root->fs_info->delalloc_lock);
2395 		root->fs_info->dirty_metadata_bytes += buf->len;
2396 		spin_unlock(&root->fs_info->delalloc_lock);
2397 	}
2398 }
2399 
2400 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2401 {
2402 	/*
2403 	 * looks as though older kernels can get into trouble with
2404 	 * this code, they end up stuck in balance_dirty_pages forever
2405 	 */
2406 	struct extent_io_tree *tree;
2407 	u64 num_dirty;
2408 	u64 start = 0;
2409 	unsigned long thresh = 32 * 1024 * 1024;
2410 	tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
2411 
2412 	if (current->flags & PF_MEMALLOC)
2413 		return;
2414 
2415 	num_dirty = count_range_bits(tree, &start, (u64)-1,
2416 				     thresh, EXTENT_DIRTY);
2417 	if (num_dirty > thresh) {
2418 		balance_dirty_pages_ratelimited_nr(
2419 				   root->fs_info->btree_inode->i_mapping, 1);
2420 	}
2421 	return;
2422 }
2423 
2424 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2425 {
2426 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2427 	int ret;
2428 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2429 	if (ret == 0)
2430 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2431 	return ret;
2432 }
2433 
2434 int btree_lock_page_hook(struct page *page)
2435 {
2436 	struct inode *inode = page->mapping->host;
2437 	struct btrfs_root *root = BTRFS_I(inode)->root;
2438 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2439 	struct extent_buffer *eb;
2440 	unsigned long len;
2441 	u64 bytenr = page_offset(page);
2442 
2443 	if (page->private == EXTENT_PAGE_PRIVATE)
2444 		goto out;
2445 
2446 	len = page->private >> 2;
2447 	eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2448 	if (!eb)
2449 		goto out;
2450 
2451 	btrfs_tree_lock(eb);
2452 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2453 
2454 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2455 		spin_lock(&root->fs_info->delalloc_lock);
2456 		if (root->fs_info->dirty_metadata_bytes >= eb->len)
2457 			root->fs_info->dirty_metadata_bytes -= eb->len;
2458 		else
2459 			WARN_ON(1);
2460 		spin_unlock(&root->fs_info->delalloc_lock);
2461 	}
2462 
2463 	btrfs_tree_unlock(eb);
2464 	free_extent_buffer(eb);
2465 out:
2466 	lock_page(page);
2467 	return 0;
2468 }
2469 
2470 static struct extent_io_ops btree_extent_io_ops = {
2471 	.write_cache_pages_lock_hook = btree_lock_page_hook,
2472 	.readpage_end_io_hook = btree_readpage_end_io_hook,
2473 	.submit_bio_hook = btree_submit_bio_hook,
2474 	/* note we're sharing with inode.c for the merge bio hook */
2475 	.merge_bio_hook = btrfs_merge_bio_hook,
2476 };
2477