1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 #include "block-group.h" 42 #include "discard.h" 43 #include "space-info.h" 44 #include "zoned.h" 45 46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 47 BTRFS_HEADER_FLAG_RELOC |\ 48 BTRFS_SUPER_FLAG_ERROR |\ 49 BTRFS_SUPER_FLAG_SEEDING |\ 50 BTRFS_SUPER_FLAG_METADUMP |\ 51 BTRFS_SUPER_FLAG_METADUMP_V2) 52 53 static void end_workqueue_fn(struct btrfs_work *work); 54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 56 struct btrfs_fs_info *fs_info); 57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 59 struct extent_io_tree *dirty_pages, 60 int mark); 61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 62 struct extent_io_tree *pinned_extents); 63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 65 66 /* 67 * btrfs_end_io_wq structs are used to do processing in task context when an IO 68 * is complete. This is used during reads to verify checksums, and it is used 69 * by writes to insert metadata for new file extents after IO is complete. 70 */ 71 struct btrfs_end_io_wq { 72 struct bio *bio; 73 bio_end_io_t *end_io; 74 void *private; 75 struct btrfs_fs_info *info; 76 blk_status_t status; 77 enum btrfs_wq_endio_type metadata; 78 struct btrfs_work work; 79 }; 80 81 static struct kmem_cache *btrfs_end_io_wq_cache; 82 83 int __init btrfs_end_io_wq_init(void) 84 { 85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 86 sizeof(struct btrfs_end_io_wq), 87 0, 88 SLAB_MEM_SPREAD, 89 NULL); 90 if (!btrfs_end_io_wq_cache) 91 return -ENOMEM; 92 return 0; 93 } 94 95 void __cold btrfs_end_io_wq_exit(void) 96 { 97 kmem_cache_destroy(btrfs_end_io_wq_cache); 98 } 99 100 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 101 { 102 if (fs_info->csum_shash) 103 crypto_free_shash(fs_info->csum_shash); 104 } 105 106 /* 107 * async submit bios are used to offload expensive checksumming 108 * onto the worker threads. They checksum file and metadata bios 109 * just before they are sent down the IO stack. 110 */ 111 struct async_submit_bio { 112 struct inode *inode; 113 struct bio *bio; 114 extent_submit_bio_start_t *submit_bio_start; 115 int mirror_num; 116 117 /* Optional parameter for submit_bio_start used by direct io */ 118 u64 dio_file_offset; 119 struct btrfs_work work; 120 blk_status_t status; 121 }; 122 123 /* 124 * Lockdep class keys for extent_buffer->lock's in this root. For a given 125 * eb, the lockdep key is determined by the btrfs_root it belongs to and 126 * the level the eb occupies in the tree. 127 * 128 * Different roots are used for different purposes and may nest inside each 129 * other and they require separate keysets. As lockdep keys should be 130 * static, assign keysets according to the purpose of the root as indicated 131 * by btrfs_root->root_key.objectid. This ensures that all special purpose 132 * roots have separate keysets. 133 * 134 * Lock-nesting across peer nodes is always done with the immediate parent 135 * node locked thus preventing deadlock. As lockdep doesn't know this, use 136 * subclass to avoid triggering lockdep warning in such cases. 137 * 138 * The key is set by the readpage_end_io_hook after the buffer has passed 139 * csum validation but before the pages are unlocked. It is also set by 140 * btrfs_init_new_buffer on freshly allocated blocks. 141 * 142 * We also add a check to make sure the highest level of the tree is the 143 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 144 * needs update as well. 145 */ 146 #ifdef CONFIG_DEBUG_LOCK_ALLOC 147 # if BTRFS_MAX_LEVEL != 8 148 # error 149 # endif 150 151 #define DEFINE_LEVEL(stem, level) \ 152 .names[level] = "btrfs-" stem "-0" #level, 153 154 #define DEFINE_NAME(stem) \ 155 DEFINE_LEVEL(stem, 0) \ 156 DEFINE_LEVEL(stem, 1) \ 157 DEFINE_LEVEL(stem, 2) \ 158 DEFINE_LEVEL(stem, 3) \ 159 DEFINE_LEVEL(stem, 4) \ 160 DEFINE_LEVEL(stem, 5) \ 161 DEFINE_LEVEL(stem, 6) \ 162 DEFINE_LEVEL(stem, 7) 163 164 static struct btrfs_lockdep_keyset { 165 u64 id; /* root objectid */ 166 /* Longest entry: btrfs-free-space-00 */ 167 char names[BTRFS_MAX_LEVEL][20]; 168 struct lock_class_key keys[BTRFS_MAX_LEVEL]; 169 } btrfs_lockdep_keysets[] = { 170 { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") }, 171 { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") }, 172 { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") }, 173 { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") }, 174 { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") }, 175 { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") }, 176 { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") }, 177 { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") }, 178 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") }, 179 { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") }, 180 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") }, 181 { .id = 0, DEFINE_NAME("tree") }, 182 }; 183 184 #undef DEFINE_LEVEL 185 #undef DEFINE_NAME 186 187 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 188 int level) 189 { 190 struct btrfs_lockdep_keyset *ks; 191 192 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 193 194 /* find the matching keyset, id 0 is the default entry */ 195 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 196 if (ks->id == objectid) 197 break; 198 199 lockdep_set_class_and_name(&eb->lock, 200 &ks->keys[level], ks->names[level]); 201 } 202 203 #endif 204 205 /* 206 * Compute the csum of a btree block and store the result to provided buffer. 207 */ 208 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 209 { 210 struct btrfs_fs_info *fs_info = buf->fs_info; 211 const int num_pages = fs_info->nodesize >> PAGE_SHIFT; 212 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 213 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 214 char *kaddr; 215 int i; 216 217 shash->tfm = fs_info->csum_shash; 218 crypto_shash_init(shash); 219 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start); 220 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 221 first_page_part - BTRFS_CSUM_SIZE); 222 223 for (i = 1; i < num_pages; i++) { 224 kaddr = page_address(buf->pages[i]); 225 crypto_shash_update(shash, kaddr, PAGE_SIZE); 226 } 227 memset(result, 0, BTRFS_CSUM_SIZE); 228 crypto_shash_final(shash, result); 229 } 230 231 /* 232 * we can't consider a given block up to date unless the transid of the 233 * block matches the transid in the parent node's pointer. This is how we 234 * detect blocks that either didn't get written at all or got written 235 * in the wrong place. 236 */ 237 static int verify_parent_transid(struct extent_io_tree *io_tree, 238 struct extent_buffer *eb, u64 parent_transid, 239 int atomic) 240 { 241 struct extent_state *cached_state = NULL; 242 int ret; 243 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 244 245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 246 return 0; 247 248 if (atomic) 249 return -EAGAIN; 250 251 if (need_lock) 252 btrfs_tree_read_lock(eb); 253 254 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 255 &cached_state); 256 if (extent_buffer_uptodate(eb) && 257 btrfs_header_generation(eb) == parent_transid) { 258 ret = 0; 259 goto out; 260 } 261 btrfs_err_rl(eb->fs_info, 262 "parent transid verify failed on %llu wanted %llu found %llu", 263 eb->start, 264 parent_transid, btrfs_header_generation(eb)); 265 ret = 1; 266 267 /* 268 * Things reading via commit roots that don't have normal protection, 269 * like send, can have a really old block in cache that may point at a 270 * block that has been freed and re-allocated. So don't clear uptodate 271 * if we find an eb that is under IO (dirty/writeback) because we could 272 * end up reading in the stale data and then writing it back out and 273 * making everybody very sad. 274 */ 275 if (!extent_buffer_under_io(eb)) 276 clear_extent_buffer_uptodate(eb); 277 out: 278 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 279 &cached_state); 280 if (need_lock) 281 btrfs_tree_read_unlock(eb); 282 return ret; 283 } 284 285 static bool btrfs_supported_super_csum(u16 csum_type) 286 { 287 switch (csum_type) { 288 case BTRFS_CSUM_TYPE_CRC32: 289 case BTRFS_CSUM_TYPE_XXHASH: 290 case BTRFS_CSUM_TYPE_SHA256: 291 case BTRFS_CSUM_TYPE_BLAKE2: 292 return true; 293 default: 294 return false; 295 } 296 } 297 298 /* 299 * Return 0 if the superblock checksum type matches the checksum value of that 300 * algorithm. Pass the raw disk superblock data. 301 */ 302 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 303 char *raw_disk_sb) 304 { 305 struct btrfs_super_block *disk_sb = 306 (struct btrfs_super_block *)raw_disk_sb; 307 char result[BTRFS_CSUM_SIZE]; 308 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 309 310 shash->tfm = fs_info->csum_shash; 311 312 /* 313 * The super_block structure does not span the whole 314 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 315 * filled with zeros and is included in the checksum. 316 */ 317 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE, 318 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 319 320 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 321 return 1; 322 323 return 0; 324 } 325 326 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 327 struct btrfs_key *first_key, u64 parent_transid) 328 { 329 struct btrfs_fs_info *fs_info = eb->fs_info; 330 int found_level; 331 struct btrfs_key found_key; 332 int ret; 333 334 found_level = btrfs_header_level(eb); 335 if (found_level != level) { 336 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 337 KERN_ERR "BTRFS: tree level check failed\n"); 338 btrfs_err(fs_info, 339 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 340 eb->start, level, found_level); 341 return -EIO; 342 } 343 344 if (!first_key) 345 return 0; 346 347 /* 348 * For live tree block (new tree blocks in current transaction), 349 * we need proper lock context to avoid race, which is impossible here. 350 * So we only checks tree blocks which is read from disk, whose 351 * generation <= fs_info->last_trans_committed. 352 */ 353 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 354 return 0; 355 356 /* We have @first_key, so this @eb must have at least one item */ 357 if (btrfs_header_nritems(eb) == 0) { 358 btrfs_err(fs_info, 359 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 360 eb->start); 361 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 362 return -EUCLEAN; 363 } 364 365 if (found_level) 366 btrfs_node_key_to_cpu(eb, &found_key, 0); 367 else 368 btrfs_item_key_to_cpu(eb, &found_key, 0); 369 ret = btrfs_comp_cpu_keys(first_key, &found_key); 370 371 if (ret) { 372 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 373 KERN_ERR "BTRFS: tree first key check failed\n"); 374 btrfs_err(fs_info, 375 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 376 eb->start, parent_transid, first_key->objectid, 377 first_key->type, first_key->offset, 378 found_key.objectid, found_key.type, 379 found_key.offset); 380 } 381 return ret; 382 } 383 384 /* 385 * helper to read a given tree block, doing retries as required when 386 * the checksums don't match and we have alternate mirrors to try. 387 * 388 * @parent_transid: expected transid, skip check if 0 389 * @level: expected level, mandatory check 390 * @first_key: expected key of first slot, skip check if NULL 391 */ 392 static int btree_read_extent_buffer_pages(struct extent_buffer *eb, 393 u64 parent_transid, int level, 394 struct btrfs_key *first_key) 395 { 396 struct btrfs_fs_info *fs_info = eb->fs_info; 397 struct extent_io_tree *io_tree; 398 int failed = 0; 399 int ret; 400 int num_copies = 0; 401 int mirror_num = 0; 402 int failed_mirror = 0; 403 404 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 405 while (1) { 406 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 407 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num); 408 if (!ret) { 409 if (verify_parent_transid(io_tree, eb, 410 parent_transid, 0)) 411 ret = -EIO; 412 else if (btrfs_verify_level_key(eb, level, 413 first_key, parent_transid)) 414 ret = -EUCLEAN; 415 else 416 break; 417 } 418 419 num_copies = btrfs_num_copies(fs_info, 420 eb->start, eb->len); 421 if (num_copies == 1) 422 break; 423 424 if (!failed_mirror) { 425 failed = 1; 426 failed_mirror = eb->read_mirror; 427 } 428 429 mirror_num++; 430 if (mirror_num == failed_mirror) 431 mirror_num++; 432 433 if (mirror_num > num_copies) 434 break; 435 } 436 437 if (failed && !ret && failed_mirror) 438 btrfs_repair_eb_io_failure(eb, failed_mirror); 439 440 return ret; 441 } 442 443 /* 444 * Checksum a dirty tree block before IO. This has extra checks to make sure 445 * we only fill in the checksum field in the first page of a multi-page block. 446 * For subpage extent buffers we need bvec to also read the offset in the page. 447 */ 448 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec) 449 { 450 struct page *page = bvec->bv_page; 451 u64 start = page_offset(page); 452 u64 found_start; 453 u8 result[BTRFS_CSUM_SIZE]; 454 struct extent_buffer *eb; 455 int ret; 456 457 eb = (struct extent_buffer *)page->private; 458 if (page != eb->pages[0]) 459 return 0; 460 461 found_start = btrfs_header_bytenr(eb); 462 /* 463 * Please do not consolidate these warnings into a single if. 464 * It is useful to know what went wrong. 465 */ 466 if (WARN_ON(found_start != start)) 467 return -EUCLEAN; 468 if (WARN_ON(!PageUptodate(page))) 469 return -EUCLEAN; 470 471 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 472 offsetof(struct btrfs_header, fsid), 473 BTRFS_FSID_SIZE) == 0); 474 475 csum_tree_block(eb, result); 476 477 if (btrfs_header_level(eb)) 478 ret = btrfs_check_node(eb); 479 else 480 ret = btrfs_check_leaf_full(eb); 481 482 if (ret < 0) { 483 btrfs_print_tree(eb, 0); 484 btrfs_err(fs_info, 485 "block=%llu write time tree block corruption detected", 486 eb->start); 487 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 488 return ret; 489 } 490 write_extent_buffer(eb, result, 0, fs_info->csum_size); 491 492 return 0; 493 } 494 495 static int check_tree_block_fsid(struct extent_buffer *eb) 496 { 497 struct btrfs_fs_info *fs_info = eb->fs_info; 498 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 499 u8 fsid[BTRFS_FSID_SIZE]; 500 u8 *metadata_uuid; 501 502 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 503 BTRFS_FSID_SIZE); 504 /* 505 * Checking the incompat flag is only valid for the current fs. For 506 * seed devices it's forbidden to have their uuid changed so reading 507 * ->fsid in this case is fine 508 */ 509 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 510 metadata_uuid = fs_devices->metadata_uuid; 511 else 512 metadata_uuid = fs_devices->fsid; 513 514 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) 515 return 0; 516 517 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 518 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 519 return 0; 520 521 return 1; 522 } 523 524 /* Do basic extent buffer checks at read time */ 525 static int validate_extent_buffer(struct extent_buffer *eb) 526 { 527 struct btrfs_fs_info *fs_info = eb->fs_info; 528 u64 found_start; 529 const u32 csum_size = fs_info->csum_size; 530 u8 found_level; 531 u8 result[BTRFS_CSUM_SIZE]; 532 int ret = 0; 533 534 found_start = btrfs_header_bytenr(eb); 535 if (found_start != eb->start) { 536 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 537 eb->start, found_start); 538 ret = -EIO; 539 goto out; 540 } 541 if (check_tree_block_fsid(eb)) { 542 btrfs_err_rl(fs_info, "bad fsid on block %llu", 543 eb->start); 544 ret = -EIO; 545 goto out; 546 } 547 found_level = btrfs_header_level(eb); 548 if (found_level >= BTRFS_MAX_LEVEL) { 549 btrfs_err(fs_info, "bad tree block level %d on %llu", 550 (int)btrfs_header_level(eb), eb->start); 551 ret = -EIO; 552 goto out; 553 } 554 555 csum_tree_block(eb, result); 556 557 if (memcmp_extent_buffer(eb, result, 0, csum_size)) { 558 u8 val[BTRFS_CSUM_SIZE] = { 0 }; 559 560 read_extent_buffer(eb, &val, 0, csum_size); 561 btrfs_warn_rl(fs_info, 562 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d", 563 fs_info->sb->s_id, eb->start, 564 CSUM_FMT_VALUE(csum_size, val), 565 CSUM_FMT_VALUE(csum_size, result), 566 btrfs_header_level(eb)); 567 ret = -EUCLEAN; 568 goto out; 569 } 570 571 /* 572 * If this is a leaf block and it is corrupt, set the corrupt bit so 573 * that we don't try and read the other copies of this block, just 574 * return -EIO. 575 */ 576 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 577 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 578 ret = -EIO; 579 } 580 581 if (found_level > 0 && btrfs_check_node(eb)) 582 ret = -EIO; 583 584 if (!ret) 585 set_extent_buffer_uptodate(eb); 586 else 587 btrfs_err(fs_info, 588 "block=%llu read time tree block corruption detected", 589 eb->start); 590 out: 591 return ret; 592 } 593 594 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, 595 struct page *page, u64 start, u64 end, 596 int mirror) 597 { 598 struct extent_buffer *eb; 599 int ret = 0; 600 int reads_done; 601 602 ASSERT(page->private); 603 eb = (struct extent_buffer *)page->private; 604 605 /* 606 * The pending IO might have been the only thing that kept this buffer 607 * in memory. Make sure we have a ref for all this other checks 608 */ 609 atomic_inc(&eb->refs); 610 611 reads_done = atomic_dec_and_test(&eb->io_pages); 612 if (!reads_done) 613 goto err; 614 615 eb->read_mirror = mirror; 616 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 617 ret = -EIO; 618 goto err; 619 } 620 ret = validate_extent_buffer(eb); 621 err: 622 if (reads_done && 623 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 624 btree_readahead_hook(eb, ret); 625 626 if (ret) { 627 /* 628 * our io error hook is going to dec the io pages 629 * again, we have to make sure it has something 630 * to decrement 631 */ 632 atomic_inc(&eb->io_pages); 633 clear_extent_buffer_uptodate(eb); 634 } 635 free_extent_buffer(eb); 636 637 return ret; 638 } 639 640 static void end_workqueue_bio(struct bio *bio) 641 { 642 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 643 struct btrfs_fs_info *fs_info; 644 struct btrfs_workqueue *wq; 645 646 fs_info = end_io_wq->info; 647 end_io_wq->status = bio->bi_status; 648 649 if (bio_op(bio) == REQ_OP_WRITE) { 650 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) 651 wq = fs_info->endio_meta_write_workers; 652 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) 653 wq = fs_info->endio_freespace_worker; 654 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 655 wq = fs_info->endio_raid56_workers; 656 else 657 wq = fs_info->endio_write_workers; 658 } else { 659 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 660 wq = fs_info->endio_raid56_workers; 661 else if (end_io_wq->metadata) 662 wq = fs_info->endio_meta_workers; 663 else 664 wq = fs_info->endio_workers; 665 } 666 667 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL); 668 btrfs_queue_work(wq, &end_io_wq->work); 669 } 670 671 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 672 enum btrfs_wq_endio_type metadata) 673 { 674 struct btrfs_end_io_wq *end_io_wq; 675 676 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 677 if (!end_io_wq) 678 return BLK_STS_RESOURCE; 679 680 end_io_wq->private = bio->bi_private; 681 end_io_wq->end_io = bio->bi_end_io; 682 end_io_wq->info = info; 683 end_io_wq->status = 0; 684 end_io_wq->bio = bio; 685 end_io_wq->metadata = metadata; 686 687 bio->bi_private = end_io_wq; 688 bio->bi_end_io = end_workqueue_bio; 689 return 0; 690 } 691 692 static void run_one_async_start(struct btrfs_work *work) 693 { 694 struct async_submit_bio *async; 695 blk_status_t ret; 696 697 async = container_of(work, struct async_submit_bio, work); 698 ret = async->submit_bio_start(async->inode, async->bio, 699 async->dio_file_offset); 700 if (ret) 701 async->status = ret; 702 } 703 704 /* 705 * In order to insert checksums into the metadata in large chunks, we wait 706 * until bio submission time. All the pages in the bio are checksummed and 707 * sums are attached onto the ordered extent record. 708 * 709 * At IO completion time the csums attached on the ordered extent record are 710 * inserted into the tree. 711 */ 712 static void run_one_async_done(struct btrfs_work *work) 713 { 714 struct async_submit_bio *async; 715 struct inode *inode; 716 blk_status_t ret; 717 718 async = container_of(work, struct async_submit_bio, work); 719 inode = async->inode; 720 721 /* If an error occurred we just want to clean up the bio and move on */ 722 if (async->status) { 723 async->bio->bi_status = async->status; 724 bio_endio(async->bio); 725 return; 726 } 727 728 /* 729 * All of the bios that pass through here are from async helpers. 730 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context. 731 * This changes nothing when cgroups aren't in use. 732 */ 733 async->bio->bi_opf |= REQ_CGROUP_PUNT; 734 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num); 735 if (ret) { 736 async->bio->bi_status = ret; 737 bio_endio(async->bio); 738 } 739 } 740 741 static void run_one_async_free(struct btrfs_work *work) 742 { 743 struct async_submit_bio *async; 744 745 async = container_of(work, struct async_submit_bio, work); 746 kfree(async); 747 } 748 749 blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio, 750 int mirror_num, unsigned long bio_flags, 751 u64 dio_file_offset, 752 extent_submit_bio_start_t *submit_bio_start) 753 { 754 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 755 struct async_submit_bio *async; 756 757 async = kmalloc(sizeof(*async), GFP_NOFS); 758 if (!async) 759 return BLK_STS_RESOURCE; 760 761 async->inode = inode; 762 async->bio = bio; 763 async->mirror_num = mirror_num; 764 async->submit_bio_start = submit_bio_start; 765 766 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, 767 run_one_async_free); 768 769 async->dio_file_offset = dio_file_offset; 770 771 async->status = 0; 772 773 if (op_is_sync(bio->bi_opf)) 774 btrfs_set_work_high_priority(&async->work); 775 776 btrfs_queue_work(fs_info->workers, &async->work); 777 return 0; 778 } 779 780 static blk_status_t btree_csum_one_bio(struct bio *bio) 781 { 782 struct bio_vec *bvec; 783 struct btrfs_root *root; 784 int ret = 0; 785 struct bvec_iter_all iter_all; 786 787 ASSERT(!bio_flagged(bio, BIO_CLONED)); 788 bio_for_each_segment_all(bvec, bio, iter_all) { 789 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 790 ret = csum_dirty_buffer(root->fs_info, bvec); 791 if (ret) 792 break; 793 } 794 795 return errno_to_blk_status(ret); 796 } 797 798 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio, 799 u64 dio_file_offset) 800 { 801 /* 802 * when we're called for a write, we're already in the async 803 * submission context. Just jump into btrfs_map_bio 804 */ 805 return btree_csum_one_bio(bio); 806 } 807 808 static int check_async_write(struct btrfs_fs_info *fs_info, 809 struct btrfs_inode *bi) 810 { 811 if (atomic_read(&bi->sync_writers)) 812 return 0; 813 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 814 return 0; 815 return 1; 816 } 817 818 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, 819 int mirror_num, unsigned long bio_flags) 820 { 821 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 822 int async = check_async_write(fs_info, BTRFS_I(inode)); 823 blk_status_t ret; 824 825 if (bio_op(bio) != REQ_OP_WRITE) { 826 /* 827 * called for a read, do the setup so that checksum validation 828 * can happen in the async kernel threads 829 */ 830 ret = btrfs_bio_wq_end_io(fs_info, bio, 831 BTRFS_WQ_ENDIO_METADATA); 832 if (ret) 833 goto out_w_error; 834 ret = btrfs_map_bio(fs_info, bio, mirror_num); 835 } else if (!async) { 836 ret = btree_csum_one_bio(bio); 837 if (ret) 838 goto out_w_error; 839 ret = btrfs_map_bio(fs_info, bio, mirror_num); 840 } else { 841 /* 842 * kthread helpers are used to submit writes so that 843 * checksumming can happen in parallel across all CPUs 844 */ 845 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0, 846 0, btree_submit_bio_start); 847 } 848 849 if (ret) 850 goto out_w_error; 851 return 0; 852 853 out_w_error: 854 bio->bi_status = ret; 855 bio_endio(bio); 856 return ret; 857 } 858 859 #ifdef CONFIG_MIGRATION 860 static int btree_migratepage(struct address_space *mapping, 861 struct page *newpage, struct page *page, 862 enum migrate_mode mode) 863 { 864 /* 865 * we can't safely write a btree page from here, 866 * we haven't done the locking hook 867 */ 868 if (PageDirty(page)) 869 return -EAGAIN; 870 /* 871 * Buffers may be managed in a filesystem specific way. 872 * We must have no buffers or drop them. 873 */ 874 if (page_has_private(page) && 875 !try_to_release_page(page, GFP_KERNEL)) 876 return -EAGAIN; 877 return migrate_page(mapping, newpage, page, mode); 878 } 879 #endif 880 881 882 static int btree_writepages(struct address_space *mapping, 883 struct writeback_control *wbc) 884 { 885 struct btrfs_fs_info *fs_info; 886 int ret; 887 888 if (wbc->sync_mode == WB_SYNC_NONE) { 889 890 if (wbc->for_kupdate) 891 return 0; 892 893 fs_info = BTRFS_I(mapping->host)->root->fs_info; 894 /* this is a bit racy, but that's ok */ 895 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 896 BTRFS_DIRTY_METADATA_THRESH, 897 fs_info->dirty_metadata_batch); 898 if (ret < 0) 899 return 0; 900 } 901 return btree_write_cache_pages(mapping, wbc); 902 } 903 904 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 905 { 906 if (PageWriteback(page) || PageDirty(page)) 907 return 0; 908 909 return try_release_extent_buffer(page); 910 } 911 912 static void btree_invalidatepage(struct page *page, unsigned int offset, 913 unsigned int length) 914 { 915 struct extent_io_tree *tree; 916 tree = &BTRFS_I(page->mapping->host)->io_tree; 917 extent_invalidatepage(tree, page, offset); 918 btree_releasepage(page, GFP_NOFS); 919 if (PagePrivate(page)) { 920 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 921 "page private not zero on page %llu", 922 (unsigned long long)page_offset(page)); 923 detach_page_private(page); 924 } 925 } 926 927 static int btree_set_page_dirty(struct page *page) 928 { 929 #ifdef DEBUG 930 struct extent_buffer *eb; 931 932 BUG_ON(!PagePrivate(page)); 933 eb = (struct extent_buffer *)page->private; 934 BUG_ON(!eb); 935 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 936 BUG_ON(!atomic_read(&eb->refs)); 937 btrfs_assert_tree_locked(eb); 938 #endif 939 return __set_page_dirty_nobuffers(page); 940 } 941 942 static const struct address_space_operations btree_aops = { 943 .writepages = btree_writepages, 944 .releasepage = btree_releasepage, 945 .invalidatepage = btree_invalidatepage, 946 #ifdef CONFIG_MIGRATION 947 .migratepage = btree_migratepage, 948 #endif 949 .set_page_dirty = btree_set_page_dirty, 950 }; 951 952 struct extent_buffer *btrfs_find_create_tree_block( 953 struct btrfs_fs_info *fs_info, 954 u64 bytenr, u64 owner_root, 955 int level) 956 { 957 if (btrfs_is_testing(fs_info)) 958 return alloc_test_extent_buffer(fs_info, bytenr); 959 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 960 } 961 962 /* 963 * Read tree block at logical address @bytenr and do variant basic but critical 964 * verification. 965 * 966 * @owner_root: the objectid of the root owner for this block. 967 * @parent_transid: expected transid of this tree block, skip check if 0 968 * @level: expected level, mandatory check 969 * @first_key: expected key in slot 0, skip check if NULL 970 */ 971 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 972 u64 owner_root, u64 parent_transid, 973 int level, struct btrfs_key *first_key) 974 { 975 struct extent_buffer *buf = NULL; 976 int ret; 977 978 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 979 if (IS_ERR(buf)) 980 return buf; 981 982 ret = btree_read_extent_buffer_pages(buf, parent_transid, 983 level, first_key); 984 if (ret) { 985 free_extent_buffer_stale(buf); 986 return ERR_PTR(ret); 987 } 988 return buf; 989 990 } 991 992 void btrfs_clean_tree_block(struct extent_buffer *buf) 993 { 994 struct btrfs_fs_info *fs_info = buf->fs_info; 995 if (btrfs_header_generation(buf) == 996 fs_info->running_transaction->transid) { 997 btrfs_assert_tree_locked(buf); 998 999 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1000 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1001 -buf->len, 1002 fs_info->dirty_metadata_batch); 1003 clear_extent_buffer_dirty(buf); 1004 } 1005 } 1006 } 1007 1008 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1009 u64 objectid) 1010 { 1011 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1012 root->fs_info = fs_info; 1013 root->node = NULL; 1014 root->commit_root = NULL; 1015 root->state = 0; 1016 root->orphan_cleanup_state = 0; 1017 1018 root->last_trans = 0; 1019 root->highest_objectid = 0; 1020 root->nr_delalloc_inodes = 0; 1021 root->nr_ordered_extents = 0; 1022 root->inode_tree = RB_ROOT; 1023 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1024 root->block_rsv = NULL; 1025 1026 INIT_LIST_HEAD(&root->dirty_list); 1027 INIT_LIST_HEAD(&root->root_list); 1028 INIT_LIST_HEAD(&root->delalloc_inodes); 1029 INIT_LIST_HEAD(&root->delalloc_root); 1030 INIT_LIST_HEAD(&root->ordered_extents); 1031 INIT_LIST_HEAD(&root->ordered_root); 1032 INIT_LIST_HEAD(&root->reloc_dirty_list); 1033 INIT_LIST_HEAD(&root->logged_list[0]); 1034 INIT_LIST_HEAD(&root->logged_list[1]); 1035 spin_lock_init(&root->inode_lock); 1036 spin_lock_init(&root->delalloc_lock); 1037 spin_lock_init(&root->ordered_extent_lock); 1038 spin_lock_init(&root->accounting_lock); 1039 spin_lock_init(&root->log_extents_lock[0]); 1040 spin_lock_init(&root->log_extents_lock[1]); 1041 spin_lock_init(&root->qgroup_meta_rsv_lock); 1042 mutex_init(&root->objectid_mutex); 1043 mutex_init(&root->log_mutex); 1044 mutex_init(&root->ordered_extent_mutex); 1045 mutex_init(&root->delalloc_mutex); 1046 init_waitqueue_head(&root->qgroup_flush_wait); 1047 init_waitqueue_head(&root->log_writer_wait); 1048 init_waitqueue_head(&root->log_commit_wait[0]); 1049 init_waitqueue_head(&root->log_commit_wait[1]); 1050 INIT_LIST_HEAD(&root->log_ctxs[0]); 1051 INIT_LIST_HEAD(&root->log_ctxs[1]); 1052 atomic_set(&root->log_commit[0], 0); 1053 atomic_set(&root->log_commit[1], 0); 1054 atomic_set(&root->log_writers, 0); 1055 atomic_set(&root->log_batch, 0); 1056 refcount_set(&root->refs, 1); 1057 atomic_set(&root->snapshot_force_cow, 0); 1058 atomic_set(&root->nr_swapfiles, 0); 1059 root->log_transid = 0; 1060 root->log_transid_committed = -1; 1061 root->last_log_commit = 0; 1062 if (!dummy) { 1063 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1064 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL); 1065 extent_io_tree_init(fs_info, &root->log_csum_range, 1066 IO_TREE_LOG_CSUM_RANGE, NULL); 1067 } 1068 1069 memset(&root->root_key, 0, sizeof(root->root_key)); 1070 memset(&root->root_item, 0, sizeof(root->root_item)); 1071 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1072 root->root_key.objectid = objectid; 1073 root->anon_dev = 0; 1074 1075 spin_lock_init(&root->root_item_lock); 1076 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1077 #ifdef CONFIG_BTRFS_DEBUG 1078 INIT_LIST_HEAD(&root->leak_list); 1079 spin_lock(&fs_info->fs_roots_radix_lock); 1080 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 1081 spin_unlock(&fs_info->fs_roots_radix_lock); 1082 #endif 1083 } 1084 1085 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1086 u64 objectid, gfp_t flags) 1087 { 1088 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1089 if (root) 1090 __setup_root(root, fs_info, objectid); 1091 return root; 1092 } 1093 1094 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1095 /* Should only be used by the testing infrastructure */ 1096 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1097 { 1098 struct btrfs_root *root; 1099 1100 if (!fs_info) 1101 return ERR_PTR(-EINVAL); 1102 1103 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 1104 if (!root) 1105 return ERR_PTR(-ENOMEM); 1106 1107 /* We don't use the stripesize in selftest, set it as sectorsize */ 1108 root->alloc_bytenr = 0; 1109 1110 return root; 1111 } 1112 #endif 1113 1114 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1115 u64 objectid) 1116 { 1117 struct btrfs_fs_info *fs_info = trans->fs_info; 1118 struct extent_buffer *leaf; 1119 struct btrfs_root *tree_root = fs_info->tree_root; 1120 struct btrfs_root *root; 1121 struct btrfs_key key; 1122 unsigned int nofs_flag; 1123 int ret = 0; 1124 1125 /* 1126 * We're holding a transaction handle, so use a NOFS memory allocation 1127 * context to avoid deadlock if reclaim happens. 1128 */ 1129 nofs_flag = memalloc_nofs_save(); 1130 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1131 memalloc_nofs_restore(nofs_flag); 1132 if (!root) 1133 return ERR_PTR(-ENOMEM); 1134 1135 root->root_key.objectid = objectid; 1136 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1137 root->root_key.offset = 0; 1138 1139 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 1140 BTRFS_NESTING_NORMAL); 1141 if (IS_ERR(leaf)) { 1142 ret = PTR_ERR(leaf); 1143 leaf = NULL; 1144 goto fail_unlock; 1145 } 1146 1147 root->node = leaf; 1148 btrfs_mark_buffer_dirty(leaf); 1149 1150 root->commit_root = btrfs_root_node(root); 1151 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1152 1153 btrfs_set_root_flags(&root->root_item, 0); 1154 btrfs_set_root_limit(&root->root_item, 0); 1155 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1156 btrfs_set_root_generation(&root->root_item, trans->transid); 1157 btrfs_set_root_level(&root->root_item, 0); 1158 btrfs_set_root_refs(&root->root_item, 1); 1159 btrfs_set_root_used(&root->root_item, leaf->len); 1160 btrfs_set_root_last_snapshot(&root->root_item, 0); 1161 btrfs_set_root_dirid(&root->root_item, 0); 1162 if (is_fstree(objectid)) 1163 generate_random_guid(root->root_item.uuid); 1164 else 1165 export_guid(root->root_item.uuid, &guid_null); 1166 btrfs_set_root_drop_level(&root->root_item, 0); 1167 1168 btrfs_tree_unlock(leaf); 1169 1170 key.objectid = objectid; 1171 key.type = BTRFS_ROOT_ITEM_KEY; 1172 key.offset = 0; 1173 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1174 if (ret) 1175 goto fail; 1176 1177 return root; 1178 1179 fail_unlock: 1180 if (leaf) 1181 btrfs_tree_unlock(leaf); 1182 fail: 1183 btrfs_put_root(root); 1184 1185 return ERR_PTR(ret); 1186 } 1187 1188 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1189 struct btrfs_fs_info *fs_info) 1190 { 1191 struct btrfs_root *root; 1192 struct extent_buffer *leaf; 1193 1194 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1195 if (!root) 1196 return ERR_PTR(-ENOMEM); 1197 1198 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1199 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1200 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1201 1202 /* 1203 * DON'T set SHAREABLE bit for log trees. 1204 * 1205 * Log trees are not exposed to user space thus can't be snapshotted, 1206 * and they go away before a real commit is actually done. 1207 * 1208 * They do store pointers to file data extents, and those reference 1209 * counts still get updated (along with back refs to the log tree). 1210 */ 1211 1212 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1213 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); 1214 if (IS_ERR(leaf)) { 1215 btrfs_put_root(root); 1216 return ERR_CAST(leaf); 1217 } 1218 1219 root->node = leaf; 1220 1221 btrfs_mark_buffer_dirty(root->node); 1222 btrfs_tree_unlock(root->node); 1223 return root; 1224 } 1225 1226 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1227 struct btrfs_fs_info *fs_info) 1228 { 1229 struct btrfs_root *log_root; 1230 1231 log_root = alloc_log_tree(trans, fs_info); 1232 if (IS_ERR(log_root)) 1233 return PTR_ERR(log_root); 1234 WARN_ON(fs_info->log_root_tree); 1235 fs_info->log_root_tree = log_root; 1236 return 0; 1237 } 1238 1239 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1240 struct btrfs_root *root) 1241 { 1242 struct btrfs_fs_info *fs_info = root->fs_info; 1243 struct btrfs_root *log_root; 1244 struct btrfs_inode_item *inode_item; 1245 1246 log_root = alloc_log_tree(trans, fs_info); 1247 if (IS_ERR(log_root)) 1248 return PTR_ERR(log_root); 1249 1250 log_root->last_trans = trans->transid; 1251 log_root->root_key.offset = root->root_key.objectid; 1252 1253 inode_item = &log_root->root_item.inode; 1254 btrfs_set_stack_inode_generation(inode_item, 1); 1255 btrfs_set_stack_inode_size(inode_item, 3); 1256 btrfs_set_stack_inode_nlink(inode_item, 1); 1257 btrfs_set_stack_inode_nbytes(inode_item, 1258 fs_info->nodesize); 1259 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1260 1261 btrfs_set_root_node(&log_root->root_item, log_root->node); 1262 1263 WARN_ON(root->log_root); 1264 root->log_root = log_root; 1265 root->log_transid = 0; 1266 root->log_transid_committed = -1; 1267 root->last_log_commit = 0; 1268 return 0; 1269 } 1270 1271 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1272 struct btrfs_path *path, 1273 struct btrfs_key *key) 1274 { 1275 struct btrfs_root *root; 1276 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1277 u64 generation; 1278 int ret; 1279 int level; 1280 1281 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1282 if (!root) 1283 return ERR_PTR(-ENOMEM); 1284 1285 ret = btrfs_find_root(tree_root, key, path, 1286 &root->root_item, &root->root_key); 1287 if (ret) { 1288 if (ret > 0) 1289 ret = -ENOENT; 1290 goto fail; 1291 } 1292 1293 generation = btrfs_root_generation(&root->root_item); 1294 level = btrfs_root_level(&root->root_item); 1295 root->node = read_tree_block(fs_info, 1296 btrfs_root_bytenr(&root->root_item), 1297 key->objectid, generation, level, NULL); 1298 if (IS_ERR(root->node)) { 1299 ret = PTR_ERR(root->node); 1300 root->node = NULL; 1301 goto fail; 1302 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1303 ret = -EIO; 1304 goto fail; 1305 } 1306 root->commit_root = btrfs_root_node(root); 1307 return root; 1308 fail: 1309 btrfs_put_root(root); 1310 return ERR_PTR(ret); 1311 } 1312 1313 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1314 struct btrfs_key *key) 1315 { 1316 struct btrfs_root *root; 1317 struct btrfs_path *path; 1318 1319 path = btrfs_alloc_path(); 1320 if (!path) 1321 return ERR_PTR(-ENOMEM); 1322 root = read_tree_root_path(tree_root, path, key); 1323 btrfs_free_path(path); 1324 1325 return root; 1326 } 1327 1328 /* 1329 * Initialize subvolume root in-memory structure 1330 * 1331 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1332 */ 1333 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1334 { 1335 int ret; 1336 unsigned int nofs_flag; 1337 1338 /* 1339 * We might be called under a transaction (e.g. indirect backref 1340 * resolution) which could deadlock if it triggers memory reclaim 1341 */ 1342 nofs_flag = memalloc_nofs_save(); 1343 ret = btrfs_drew_lock_init(&root->snapshot_lock); 1344 memalloc_nofs_restore(nofs_flag); 1345 if (ret) 1346 goto fail; 1347 1348 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1349 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 1350 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1351 btrfs_check_and_init_root_item(&root->root_item); 1352 } 1353 1354 /* 1355 * Don't assign anonymous block device to roots that are not exposed to 1356 * userspace, the id pool is limited to 1M 1357 */ 1358 if (is_fstree(root->root_key.objectid) && 1359 btrfs_root_refs(&root->root_item) > 0) { 1360 if (!anon_dev) { 1361 ret = get_anon_bdev(&root->anon_dev); 1362 if (ret) 1363 goto fail; 1364 } else { 1365 root->anon_dev = anon_dev; 1366 } 1367 } 1368 1369 mutex_lock(&root->objectid_mutex); 1370 ret = btrfs_find_highest_objectid(root, 1371 &root->highest_objectid); 1372 if (ret) { 1373 mutex_unlock(&root->objectid_mutex); 1374 goto fail; 1375 } 1376 1377 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1378 1379 mutex_unlock(&root->objectid_mutex); 1380 1381 return 0; 1382 fail: 1383 /* The caller is responsible to call btrfs_free_fs_root */ 1384 return ret; 1385 } 1386 1387 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1388 u64 root_id) 1389 { 1390 struct btrfs_root *root; 1391 1392 spin_lock(&fs_info->fs_roots_radix_lock); 1393 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1394 (unsigned long)root_id); 1395 if (root) 1396 root = btrfs_grab_root(root); 1397 spin_unlock(&fs_info->fs_roots_radix_lock); 1398 return root; 1399 } 1400 1401 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1402 u64 objectid) 1403 { 1404 if (objectid == BTRFS_ROOT_TREE_OBJECTID) 1405 return btrfs_grab_root(fs_info->tree_root); 1406 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 1407 return btrfs_grab_root(fs_info->extent_root); 1408 if (objectid == BTRFS_CHUNK_TREE_OBJECTID) 1409 return btrfs_grab_root(fs_info->chunk_root); 1410 if (objectid == BTRFS_DEV_TREE_OBJECTID) 1411 return btrfs_grab_root(fs_info->dev_root); 1412 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 1413 return btrfs_grab_root(fs_info->csum_root); 1414 if (objectid == BTRFS_QUOTA_TREE_OBJECTID) 1415 return btrfs_grab_root(fs_info->quota_root) ? 1416 fs_info->quota_root : ERR_PTR(-ENOENT); 1417 if (objectid == BTRFS_UUID_TREE_OBJECTID) 1418 return btrfs_grab_root(fs_info->uuid_root) ? 1419 fs_info->uuid_root : ERR_PTR(-ENOENT); 1420 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1421 return btrfs_grab_root(fs_info->free_space_root) ? 1422 fs_info->free_space_root : ERR_PTR(-ENOENT); 1423 return NULL; 1424 } 1425 1426 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1427 struct btrfs_root *root) 1428 { 1429 int ret; 1430 1431 ret = radix_tree_preload(GFP_NOFS); 1432 if (ret) 1433 return ret; 1434 1435 spin_lock(&fs_info->fs_roots_radix_lock); 1436 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1437 (unsigned long)root->root_key.objectid, 1438 root); 1439 if (ret == 0) { 1440 btrfs_grab_root(root); 1441 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1442 } 1443 spin_unlock(&fs_info->fs_roots_radix_lock); 1444 radix_tree_preload_end(); 1445 1446 return ret; 1447 } 1448 1449 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1450 { 1451 #ifdef CONFIG_BTRFS_DEBUG 1452 struct btrfs_root *root; 1453 1454 while (!list_empty(&fs_info->allocated_roots)) { 1455 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1456 1457 root = list_first_entry(&fs_info->allocated_roots, 1458 struct btrfs_root, leak_list); 1459 btrfs_err(fs_info, "leaked root %s refcount %d", 1460 btrfs_root_name(&root->root_key, buf), 1461 refcount_read(&root->refs)); 1462 while (refcount_read(&root->refs) > 1) 1463 btrfs_put_root(root); 1464 btrfs_put_root(root); 1465 } 1466 #endif 1467 } 1468 1469 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1470 { 1471 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1472 percpu_counter_destroy(&fs_info->delalloc_bytes); 1473 percpu_counter_destroy(&fs_info->dio_bytes); 1474 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1475 btrfs_free_csum_hash(fs_info); 1476 btrfs_free_stripe_hash_table(fs_info); 1477 btrfs_free_ref_cache(fs_info); 1478 kfree(fs_info->balance_ctl); 1479 kfree(fs_info->delayed_root); 1480 btrfs_put_root(fs_info->extent_root); 1481 btrfs_put_root(fs_info->tree_root); 1482 btrfs_put_root(fs_info->chunk_root); 1483 btrfs_put_root(fs_info->dev_root); 1484 btrfs_put_root(fs_info->csum_root); 1485 btrfs_put_root(fs_info->quota_root); 1486 btrfs_put_root(fs_info->uuid_root); 1487 btrfs_put_root(fs_info->free_space_root); 1488 btrfs_put_root(fs_info->fs_root); 1489 btrfs_put_root(fs_info->data_reloc_root); 1490 btrfs_check_leaked_roots(fs_info); 1491 btrfs_extent_buffer_leak_debug_check(fs_info); 1492 kfree(fs_info->super_copy); 1493 kfree(fs_info->super_for_commit); 1494 kvfree(fs_info); 1495 } 1496 1497 1498 /* 1499 * Get an in-memory reference of a root structure. 1500 * 1501 * For essential trees like root/extent tree, we grab it from fs_info directly. 1502 * For subvolume trees, we check the cached filesystem roots first. If not 1503 * found, then read it from disk and add it to cached fs roots. 1504 * 1505 * Caller should release the root by calling btrfs_put_root() after the usage. 1506 * 1507 * NOTE: Reloc and log trees can't be read by this function as they share the 1508 * same root objectid. 1509 * 1510 * @objectid: root id 1511 * @anon_dev: preallocated anonymous block device number for new roots, 1512 * pass 0 for new allocation. 1513 * @check_ref: whether to check root item references, If true, return -ENOENT 1514 * for orphan roots 1515 */ 1516 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1517 u64 objectid, dev_t anon_dev, 1518 bool check_ref) 1519 { 1520 struct btrfs_root *root; 1521 struct btrfs_path *path; 1522 struct btrfs_key key; 1523 int ret; 1524 1525 root = btrfs_get_global_root(fs_info, objectid); 1526 if (root) 1527 return root; 1528 again: 1529 root = btrfs_lookup_fs_root(fs_info, objectid); 1530 if (root) { 1531 /* Shouldn't get preallocated anon_dev for cached roots */ 1532 ASSERT(!anon_dev); 1533 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1534 btrfs_put_root(root); 1535 return ERR_PTR(-ENOENT); 1536 } 1537 return root; 1538 } 1539 1540 key.objectid = objectid; 1541 key.type = BTRFS_ROOT_ITEM_KEY; 1542 key.offset = (u64)-1; 1543 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1544 if (IS_ERR(root)) 1545 return root; 1546 1547 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1548 ret = -ENOENT; 1549 goto fail; 1550 } 1551 1552 ret = btrfs_init_fs_root(root, anon_dev); 1553 if (ret) 1554 goto fail; 1555 1556 path = btrfs_alloc_path(); 1557 if (!path) { 1558 ret = -ENOMEM; 1559 goto fail; 1560 } 1561 key.objectid = BTRFS_ORPHAN_OBJECTID; 1562 key.type = BTRFS_ORPHAN_ITEM_KEY; 1563 key.offset = objectid; 1564 1565 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1566 btrfs_free_path(path); 1567 if (ret < 0) 1568 goto fail; 1569 if (ret == 0) 1570 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1571 1572 ret = btrfs_insert_fs_root(fs_info, root); 1573 if (ret) { 1574 btrfs_put_root(root); 1575 if (ret == -EEXIST) 1576 goto again; 1577 goto fail; 1578 } 1579 return root; 1580 fail: 1581 btrfs_put_root(root); 1582 return ERR_PTR(ret); 1583 } 1584 1585 /* 1586 * Get in-memory reference of a root structure 1587 * 1588 * @objectid: tree objectid 1589 * @check_ref: if set, verify that the tree exists and the item has at least 1590 * one reference 1591 */ 1592 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1593 u64 objectid, bool check_ref) 1594 { 1595 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1596 } 1597 1598 /* 1599 * Get in-memory reference of a root structure, created as new, optionally pass 1600 * the anonymous block device id 1601 * 1602 * @objectid: tree objectid 1603 * @anon_dev: if zero, allocate a new anonymous block device or use the 1604 * parameter value 1605 */ 1606 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1607 u64 objectid, dev_t anon_dev) 1608 { 1609 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1610 } 1611 1612 /* 1613 * btrfs_get_fs_root_commit_root - return a root for the given objectid 1614 * @fs_info: the fs_info 1615 * @objectid: the objectid we need to lookup 1616 * 1617 * This is exclusively used for backref walking, and exists specifically because 1618 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1619 * creation time, which means we may have to read the tree_root in order to look 1620 * up a fs root that is not in memory. If the root is not in memory we will 1621 * read the tree root commit root and look up the fs root from there. This is a 1622 * temporary root, it will not be inserted into the radix tree as it doesn't 1623 * have the most uptodate information, it'll simply be discarded once the 1624 * backref code is finished using the root. 1625 */ 1626 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1627 struct btrfs_path *path, 1628 u64 objectid) 1629 { 1630 struct btrfs_root *root; 1631 struct btrfs_key key; 1632 1633 ASSERT(path->search_commit_root && path->skip_locking); 1634 1635 /* 1636 * This can return -ENOENT if we ask for a root that doesn't exist, but 1637 * since this is called via the backref walking code we won't be looking 1638 * up a root that doesn't exist, unless there's corruption. So if root 1639 * != NULL just return it. 1640 */ 1641 root = btrfs_get_global_root(fs_info, objectid); 1642 if (root) 1643 return root; 1644 1645 root = btrfs_lookup_fs_root(fs_info, objectid); 1646 if (root) 1647 return root; 1648 1649 key.objectid = objectid; 1650 key.type = BTRFS_ROOT_ITEM_KEY; 1651 key.offset = (u64)-1; 1652 root = read_tree_root_path(fs_info->tree_root, path, &key); 1653 btrfs_release_path(path); 1654 1655 return root; 1656 } 1657 1658 /* 1659 * called by the kthread helper functions to finally call the bio end_io 1660 * functions. This is where read checksum verification actually happens 1661 */ 1662 static void end_workqueue_fn(struct btrfs_work *work) 1663 { 1664 struct bio *bio; 1665 struct btrfs_end_io_wq *end_io_wq; 1666 1667 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1668 bio = end_io_wq->bio; 1669 1670 bio->bi_status = end_io_wq->status; 1671 bio->bi_private = end_io_wq->private; 1672 bio->bi_end_io = end_io_wq->end_io; 1673 bio_endio(bio); 1674 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1675 } 1676 1677 static int cleaner_kthread(void *arg) 1678 { 1679 struct btrfs_root *root = arg; 1680 struct btrfs_fs_info *fs_info = root->fs_info; 1681 int again; 1682 1683 while (1) { 1684 again = 0; 1685 1686 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1687 1688 /* Make the cleaner go to sleep early. */ 1689 if (btrfs_need_cleaner_sleep(fs_info)) 1690 goto sleep; 1691 1692 /* 1693 * Do not do anything if we might cause open_ctree() to block 1694 * before we have finished mounting the filesystem. 1695 */ 1696 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1697 goto sleep; 1698 1699 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1700 goto sleep; 1701 1702 /* 1703 * Avoid the problem that we change the status of the fs 1704 * during the above check and trylock. 1705 */ 1706 if (btrfs_need_cleaner_sleep(fs_info)) { 1707 mutex_unlock(&fs_info->cleaner_mutex); 1708 goto sleep; 1709 } 1710 1711 btrfs_run_delayed_iputs(fs_info); 1712 1713 again = btrfs_clean_one_deleted_snapshot(root); 1714 mutex_unlock(&fs_info->cleaner_mutex); 1715 1716 /* 1717 * The defragger has dealt with the R/O remount and umount, 1718 * needn't do anything special here. 1719 */ 1720 btrfs_run_defrag_inodes(fs_info); 1721 1722 /* 1723 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1724 * with relocation (btrfs_relocate_chunk) and relocation 1725 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1726 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1727 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1728 * unused block groups. 1729 */ 1730 btrfs_delete_unused_bgs(fs_info); 1731 sleep: 1732 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1733 if (kthread_should_park()) 1734 kthread_parkme(); 1735 if (kthread_should_stop()) 1736 return 0; 1737 if (!again) { 1738 set_current_state(TASK_INTERRUPTIBLE); 1739 schedule(); 1740 __set_current_state(TASK_RUNNING); 1741 } 1742 } 1743 } 1744 1745 static int transaction_kthread(void *arg) 1746 { 1747 struct btrfs_root *root = arg; 1748 struct btrfs_fs_info *fs_info = root->fs_info; 1749 struct btrfs_trans_handle *trans; 1750 struct btrfs_transaction *cur; 1751 u64 transid; 1752 time64_t delta; 1753 unsigned long delay; 1754 bool cannot_commit; 1755 1756 do { 1757 cannot_commit = false; 1758 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1759 mutex_lock(&fs_info->transaction_kthread_mutex); 1760 1761 spin_lock(&fs_info->trans_lock); 1762 cur = fs_info->running_transaction; 1763 if (!cur) { 1764 spin_unlock(&fs_info->trans_lock); 1765 goto sleep; 1766 } 1767 1768 delta = ktime_get_seconds() - cur->start_time; 1769 if (cur->state < TRANS_STATE_COMMIT_START && 1770 delta < fs_info->commit_interval) { 1771 spin_unlock(&fs_info->trans_lock); 1772 delay -= msecs_to_jiffies((delta - 1) * 1000); 1773 delay = min(delay, 1774 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1775 goto sleep; 1776 } 1777 transid = cur->transid; 1778 spin_unlock(&fs_info->trans_lock); 1779 1780 /* If the file system is aborted, this will always fail. */ 1781 trans = btrfs_attach_transaction(root); 1782 if (IS_ERR(trans)) { 1783 if (PTR_ERR(trans) != -ENOENT) 1784 cannot_commit = true; 1785 goto sleep; 1786 } 1787 if (transid == trans->transid) { 1788 btrfs_commit_transaction(trans); 1789 } else { 1790 btrfs_end_transaction(trans); 1791 } 1792 sleep: 1793 wake_up_process(fs_info->cleaner_kthread); 1794 mutex_unlock(&fs_info->transaction_kthread_mutex); 1795 1796 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1797 &fs_info->fs_state))) 1798 btrfs_cleanup_transaction(fs_info); 1799 if (!kthread_should_stop() && 1800 (!btrfs_transaction_blocked(fs_info) || 1801 cannot_commit)) 1802 schedule_timeout_interruptible(delay); 1803 } while (!kthread_should_stop()); 1804 return 0; 1805 } 1806 1807 /* 1808 * This will find the highest generation in the array of root backups. The 1809 * index of the highest array is returned, or -EINVAL if we can't find 1810 * anything. 1811 * 1812 * We check to make sure the array is valid by comparing the 1813 * generation of the latest root in the array with the generation 1814 * in the super block. If they don't match we pitch it. 1815 */ 1816 static int find_newest_super_backup(struct btrfs_fs_info *info) 1817 { 1818 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1819 u64 cur; 1820 struct btrfs_root_backup *root_backup; 1821 int i; 1822 1823 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1824 root_backup = info->super_copy->super_roots + i; 1825 cur = btrfs_backup_tree_root_gen(root_backup); 1826 if (cur == newest_gen) 1827 return i; 1828 } 1829 1830 return -EINVAL; 1831 } 1832 1833 /* 1834 * copy all the root pointers into the super backup array. 1835 * this will bump the backup pointer by one when it is 1836 * done 1837 */ 1838 static void backup_super_roots(struct btrfs_fs_info *info) 1839 { 1840 const int next_backup = info->backup_root_index; 1841 struct btrfs_root_backup *root_backup; 1842 1843 root_backup = info->super_for_commit->super_roots + next_backup; 1844 1845 /* 1846 * make sure all of our padding and empty slots get zero filled 1847 * regardless of which ones we use today 1848 */ 1849 memset(root_backup, 0, sizeof(*root_backup)); 1850 1851 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1852 1853 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1854 btrfs_set_backup_tree_root_gen(root_backup, 1855 btrfs_header_generation(info->tree_root->node)); 1856 1857 btrfs_set_backup_tree_root_level(root_backup, 1858 btrfs_header_level(info->tree_root->node)); 1859 1860 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1861 btrfs_set_backup_chunk_root_gen(root_backup, 1862 btrfs_header_generation(info->chunk_root->node)); 1863 btrfs_set_backup_chunk_root_level(root_backup, 1864 btrfs_header_level(info->chunk_root->node)); 1865 1866 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1867 btrfs_set_backup_extent_root_gen(root_backup, 1868 btrfs_header_generation(info->extent_root->node)); 1869 btrfs_set_backup_extent_root_level(root_backup, 1870 btrfs_header_level(info->extent_root->node)); 1871 1872 /* 1873 * we might commit during log recovery, which happens before we set 1874 * the fs_root. Make sure it is valid before we fill it in. 1875 */ 1876 if (info->fs_root && info->fs_root->node) { 1877 btrfs_set_backup_fs_root(root_backup, 1878 info->fs_root->node->start); 1879 btrfs_set_backup_fs_root_gen(root_backup, 1880 btrfs_header_generation(info->fs_root->node)); 1881 btrfs_set_backup_fs_root_level(root_backup, 1882 btrfs_header_level(info->fs_root->node)); 1883 } 1884 1885 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1886 btrfs_set_backup_dev_root_gen(root_backup, 1887 btrfs_header_generation(info->dev_root->node)); 1888 btrfs_set_backup_dev_root_level(root_backup, 1889 btrfs_header_level(info->dev_root->node)); 1890 1891 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1892 btrfs_set_backup_csum_root_gen(root_backup, 1893 btrfs_header_generation(info->csum_root->node)); 1894 btrfs_set_backup_csum_root_level(root_backup, 1895 btrfs_header_level(info->csum_root->node)); 1896 1897 btrfs_set_backup_total_bytes(root_backup, 1898 btrfs_super_total_bytes(info->super_copy)); 1899 btrfs_set_backup_bytes_used(root_backup, 1900 btrfs_super_bytes_used(info->super_copy)); 1901 btrfs_set_backup_num_devices(root_backup, 1902 btrfs_super_num_devices(info->super_copy)); 1903 1904 /* 1905 * if we don't copy this out to the super_copy, it won't get remembered 1906 * for the next commit 1907 */ 1908 memcpy(&info->super_copy->super_roots, 1909 &info->super_for_commit->super_roots, 1910 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1911 } 1912 1913 /* 1914 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 1915 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1916 * 1917 * fs_info - filesystem whose backup roots need to be read 1918 * priority - priority of backup root required 1919 * 1920 * Returns backup root index on success and -EINVAL otherwise. 1921 */ 1922 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1923 { 1924 int backup_index = find_newest_super_backup(fs_info); 1925 struct btrfs_super_block *super = fs_info->super_copy; 1926 struct btrfs_root_backup *root_backup; 1927 1928 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1929 if (priority == 0) 1930 return backup_index; 1931 1932 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1933 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1934 } else { 1935 return -EINVAL; 1936 } 1937 1938 root_backup = super->super_roots + backup_index; 1939 1940 btrfs_set_super_generation(super, 1941 btrfs_backup_tree_root_gen(root_backup)); 1942 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1943 btrfs_set_super_root_level(super, 1944 btrfs_backup_tree_root_level(root_backup)); 1945 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1946 1947 /* 1948 * Fixme: the total bytes and num_devices need to match or we should 1949 * need a fsck 1950 */ 1951 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1952 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1953 1954 return backup_index; 1955 } 1956 1957 /* helper to cleanup workers */ 1958 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1959 { 1960 btrfs_destroy_workqueue(fs_info->fixup_workers); 1961 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1962 btrfs_destroy_workqueue(fs_info->workers); 1963 btrfs_destroy_workqueue(fs_info->endio_workers); 1964 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 1965 btrfs_destroy_workqueue(fs_info->rmw_workers); 1966 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1967 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1968 btrfs_destroy_workqueue(fs_info->delayed_workers); 1969 btrfs_destroy_workqueue(fs_info->caching_workers); 1970 btrfs_destroy_workqueue(fs_info->readahead_workers); 1971 btrfs_destroy_workqueue(fs_info->flush_workers); 1972 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1973 if (fs_info->discard_ctl.discard_workers) 1974 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1975 /* 1976 * Now that all other work queues are destroyed, we can safely destroy 1977 * the queues used for metadata I/O, since tasks from those other work 1978 * queues can do metadata I/O operations. 1979 */ 1980 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 1981 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 1982 } 1983 1984 static void free_root_extent_buffers(struct btrfs_root *root) 1985 { 1986 if (root) { 1987 free_extent_buffer(root->node); 1988 free_extent_buffer(root->commit_root); 1989 root->node = NULL; 1990 root->commit_root = NULL; 1991 } 1992 } 1993 1994 /* helper to cleanup tree roots */ 1995 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1996 { 1997 free_root_extent_buffers(info->tree_root); 1998 1999 free_root_extent_buffers(info->dev_root); 2000 free_root_extent_buffers(info->extent_root); 2001 free_root_extent_buffers(info->csum_root); 2002 free_root_extent_buffers(info->quota_root); 2003 free_root_extent_buffers(info->uuid_root); 2004 free_root_extent_buffers(info->fs_root); 2005 free_root_extent_buffers(info->data_reloc_root); 2006 if (free_chunk_root) 2007 free_root_extent_buffers(info->chunk_root); 2008 free_root_extent_buffers(info->free_space_root); 2009 } 2010 2011 void btrfs_put_root(struct btrfs_root *root) 2012 { 2013 if (!root) 2014 return; 2015 2016 if (refcount_dec_and_test(&root->refs)) { 2017 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2018 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 2019 if (root->anon_dev) 2020 free_anon_bdev(root->anon_dev); 2021 btrfs_drew_lock_destroy(&root->snapshot_lock); 2022 free_root_extent_buffers(root); 2023 #ifdef CONFIG_BTRFS_DEBUG 2024 spin_lock(&root->fs_info->fs_roots_radix_lock); 2025 list_del_init(&root->leak_list); 2026 spin_unlock(&root->fs_info->fs_roots_radix_lock); 2027 #endif 2028 kfree(root); 2029 } 2030 } 2031 2032 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2033 { 2034 int ret; 2035 struct btrfs_root *gang[8]; 2036 int i; 2037 2038 while (!list_empty(&fs_info->dead_roots)) { 2039 gang[0] = list_entry(fs_info->dead_roots.next, 2040 struct btrfs_root, root_list); 2041 list_del(&gang[0]->root_list); 2042 2043 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2044 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2045 btrfs_put_root(gang[0]); 2046 } 2047 2048 while (1) { 2049 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2050 (void **)gang, 0, 2051 ARRAY_SIZE(gang)); 2052 if (!ret) 2053 break; 2054 for (i = 0; i < ret; i++) 2055 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2056 } 2057 } 2058 2059 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2060 { 2061 mutex_init(&fs_info->scrub_lock); 2062 atomic_set(&fs_info->scrubs_running, 0); 2063 atomic_set(&fs_info->scrub_pause_req, 0); 2064 atomic_set(&fs_info->scrubs_paused, 0); 2065 atomic_set(&fs_info->scrub_cancel_req, 0); 2066 init_waitqueue_head(&fs_info->scrub_pause_wait); 2067 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2068 } 2069 2070 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2071 { 2072 spin_lock_init(&fs_info->balance_lock); 2073 mutex_init(&fs_info->balance_mutex); 2074 atomic_set(&fs_info->balance_pause_req, 0); 2075 atomic_set(&fs_info->balance_cancel_req, 0); 2076 fs_info->balance_ctl = NULL; 2077 init_waitqueue_head(&fs_info->balance_wait_q); 2078 } 2079 2080 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2081 { 2082 struct inode *inode = fs_info->btree_inode; 2083 2084 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2085 set_nlink(inode, 1); 2086 /* 2087 * we set the i_size on the btree inode to the max possible int. 2088 * the real end of the address space is determined by all of 2089 * the devices in the system 2090 */ 2091 inode->i_size = OFFSET_MAX; 2092 inode->i_mapping->a_ops = &btree_aops; 2093 2094 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2095 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2096 IO_TREE_BTREE_INODE_IO, inode); 2097 BTRFS_I(inode)->io_tree.track_uptodate = false; 2098 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2099 2100 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2101 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2102 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2103 btrfs_insert_inode_hash(inode); 2104 } 2105 2106 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2107 { 2108 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2109 init_rwsem(&fs_info->dev_replace.rwsem); 2110 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2111 } 2112 2113 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2114 { 2115 spin_lock_init(&fs_info->qgroup_lock); 2116 mutex_init(&fs_info->qgroup_ioctl_lock); 2117 fs_info->qgroup_tree = RB_ROOT; 2118 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2119 fs_info->qgroup_seq = 1; 2120 fs_info->qgroup_ulist = NULL; 2121 fs_info->qgroup_rescan_running = false; 2122 mutex_init(&fs_info->qgroup_rescan_lock); 2123 } 2124 2125 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2126 struct btrfs_fs_devices *fs_devices) 2127 { 2128 u32 max_active = fs_info->thread_pool_size; 2129 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2130 2131 fs_info->workers = 2132 btrfs_alloc_workqueue(fs_info, "worker", 2133 flags | WQ_HIGHPRI, max_active, 16); 2134 2135 fs_info->delalloc_workers = 2136 btrfs_alloc_workqueue(fs_info, "delalloc", 2137 flags, max_active, 2); 2138 2139 fs_info->flush_workers = 2140 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2141 flags, max_active, 0); 2142 2143 fs_info->caching_workers = 2144 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2145 2146 fs_info->fixup_workers = 2147 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2148 2149 /* 2150 * endios are largely parallel and should have a very 2151 * low idle thresh 2152 */ 2153 fs_info->endio_workers = 2154 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2155 fs_info->endio_meta_workers = 2156 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2157 max_active, 4); 2158 fs_info->endio_meta_write_workers = 2159 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2160 max_active, 2); 2161 fs_info->endio_raid56_workers = 2162 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2163 max_active, 4); 2164 fs_info->rmw_workers = 2165 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2166 fs_info->endio_write_workers = 2167 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2168 max_active, 2); 2169 fs_info->endio_freespace_worker = 2170 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2171 max_active, 0); 2172 fs_info->delayed_workers = 2173 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2174 max_active, 0); 2175 fs_info->readahead_workers = 2176 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2177 max_active, 2); 2178 fs_info->qgroup_rescan_workers = 2179 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2180 fs_info->discard_ctl.discard_workers = 2181 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2182 2183 if (!(fs_info->workers && fs_info->delalloc_workers && 2184 fs_info->flush_workers && 2185 fs_info->endio_workers && fs_info->endio_meta_workers && 2186 fs_info->endio_meta_write_workers && 2187 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2188 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2189 fs_info->caching_workers && fs_info->readahead_workers && 2190 fs_info->fixup_workers && fs_info->delayed_workers && 2191 fs_info->qgroup_rescan_workers && 2192 fs_info->discard_ctl.discard_workers)) { 2193 return -ENOMEM; 2194 } 2195 2196 return 0; 2197 } 2198 2199 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2200 { 2201 struct crypto_shash *csum_shash; 2202 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2203 2204 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2205 2206 if (IS_ERR(csum_shash)) { 2207 btrfs_err(fs_info, "error allocating %s hash for checksum", 2208 csum_driver); 2209 return PTR_ERR(csum_shash); 2210 } 2211 2212 fs_info->csum_shash = csum_shash; 2213 2214 return 0; 2215 } 2216 2217 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2218 struct btrfs_fs_devices *fs_devices) 2219 { 2220 int ret; 2221 struct btrfs_root *log_tree_root; 2222 struct btrfs_super_block *disk_super = fs_info->super_copy; 2223 u64 bytenr = btrfs_super_log_root(disk_super); 2224 int level = btrfs_super_log_root_level(disk_super); 2225 2226 if (fs_devices->rw_devices == 0) { 2227 btrfs_warn(fs_info, "log replay required on RO media"); 2228 return -EIO; 2229 } 2230 2231 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2232 GFP_KERNEL); 2233 if (!log_tree_root) 2234 return -ENOMEM; 2235 2236 log_tree_root->node = read_tree_block(fs_info, bytenr, 2237 BTRFS_TREE_LOG_OBJECTID, 2238 fs_info->generation + 1, level, 2239 NULL); 2240 if (IS_ERR(log_tree_root->node)) { 2241 btrfs_warn(fs_info, "failed to read log tree"); 2242 ret = PTR_ERR(log_tree_root->node); 2243 log_tree_root->node = NULL; 2244 btrfs_put_root(log_tree_root); 2245 return ret; 2246 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2247 btrfs_err(fs_info, "failed to read log tree"); 2248 btrfs_put_root(log_tree_root); 2249 return -EIO; 2250 } 2251 /* returns with log_tree_root freed on success */ 2252 ret = btrfs_recover_log_trees(log_tree_root); 2253 if (ret) { 2254 btrfs_handle_fs_error(fs_info, ret, 2255 "Failed to recover log tree"); 2256 btrfs_put_root(log_tree_root); 2257 return ret; 2258 } 2259 2260 if (sb_rdonly(fs_info->sb)) { 2261 ret = btrfs_commit_super(fs_info); 2262 if (ret) 2263 return ret; 2264 } 2265 2266 return 0; 2267 } 2268 2269 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2270 { 2271 struct btrfs_root *tree_root = fs_info->tree_root; 2272 struct btrfs_root *root; 2273 struct btrfs_key location; 2274 int ret; 2275 2276 BUG_ON(!fs_info->tree_root); 2277 2278 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2279 location.type = BTRFS_ROOT_ITEM_KEY; 2280 location.offset = 0; 2281 2282 root = btrfs_read_tree_root(tree_root, &location); 2283 if (IS_ERR(root)) { 2284 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2285 ret = PTR_ERR(root); 2286 goto out; 2287 } 2288 } else { 2289 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2290 fs_info->extent_root = root; 2291 } 2292 2293 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2294 root = btrfs_read_tree_root(tree_root, &location); 2295 if (IS_ERR(root)) { 2296 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2297 ret = PTR_ERR(root); 2298 goto out; 2299 } 2300 } else { 2301 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2302 fs_info->dev_root = root; 2303 btrfs_init_devices_late(fs_info); 2304 } 2305 2306 /* If IGNOREDATACSUMS is set don't bother reading the csum root. */ 2307 if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2308 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2309 root = btrfs_read_tree_root(tree_root, &location); 2310 if (IS_ERR(root)) { 2311 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2312 ret = PTR_ERR(root); 2313 goto out; 2314 } 2315 } else { 2316 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2317 fs_info->csum_root = root; 2318 } 2319 } 2320 2321 /* 2322 * This tree can share blocks with some other fs tree during relocation 2323 * and we need a proper setup by btrfs_get_fs_root 2324 */ 2325 root = btrfs_get_fs_root(tree_root->fs_info, 2326 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2327 if (IS_ERR(root)) { 2328 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2329 ret = PTR_ERR(root); 2330 goto out; 2331 } 2332 } else { 2333 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2334 fs_info->data_reloc_root = root; 2335 } 2336 2337 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2338 root = btrfs_read_tree_root(tree_root, &location); 2339 if (!IS_ERR(root)) { 2340 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2341 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2342 fs_info->quota_root = root; 2343 } 2344 2345 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2346 root = btrfs_read_tree_root(tree_root, &location); 2347 if (IS_ERR(root)) { 2348 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2349 ret = PTR_ERR(root); 2350 if (ret != -ENOENT) 2351 goto out; 2352 } 2353 } else { 2354 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2355 fs_info->uuid_root = root; 2356 } 2357 2358 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2359 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2360 root = btrfs_read_tree_root(tree_root, &location); 2361 if (IS_ERR(root)) { 2362 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2363 ret = PTR_ERR(root); 2364 goto out; 2365 } 2366 } else { 2367 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2368 fs_info->free_space_root = root; 2369 } 2370 } 2371 2372 return 0; 2373 out: 2374 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2375 location.objectid, ret); 2376 return ret; 2377 } 2378 2379 /* 2380 * Real super block validation 2381 * NOTE: super csum type and incompat features will not be checked here. 2382 * 2383 * @sb: super block to check 2384 * @mirror_num: the super block number to check its bytenr: 2385 * 0 the primary (1st) sb 2386 * 1, 2 2nd and 3rd backup copy 2387 * -1 skip bytenr check 2388 */ 2389 static int validate_super(struct btrfs_fs_info *fs_info, 2390 struct btrfs_super_block *sb, int mirror_num) 2391 { 2392 u64 nodesize = btrfs_super_nodesize(sb); 2393 u64 sectorsize = btrfs_super_sectorsize(sb); 2394 int ret = 0; 2395 2396 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2397 btrfs_err(fs_info, "no valid FS found"); 2398 ret = -EINVAL; 2399 } 2400 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2401 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2402 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2403 ret = -EINVAL; 2404 } 2405 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2406 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2407 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2408 ret = -EINVAL; 2409 } 2410 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2411 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2412 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2413 ret = -EINVAL; 2414 } 2415 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2416 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2417 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2418 ret = -EINVAL; 2419 } 2420 2421 /* 2422 * Check sectorsize and nodesize first, other check will need it. 2423 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2424 */ 2425 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2426 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2427 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2428 ret = -EINVAL; 2429 } 2430 /* Only PAGE SIZE is supported yet */ 2431 if (sectorsize != PAGE_SIZE) { 2432 btrfs_err(fs_info, 2433 "sectorsize %llu not supported yet, only support %lu", 2434 sectorsize, PAGE_SIZE); 2435 ret = -EINVAL; 2436 } 2437 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2438 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2439 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2440 ret = -EINVAL; 2441 } 2442 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2443 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2444 le32_to_cpu(sb->__unused_leafsize), nodesize); 2445 ret = -EINVAL; 2446 } 2447 2448 /* Root alignment check */ 2449 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2450 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2451 btrfs_super_root(sb)); 2452 ret = -EINVAL; 2453 } 2454 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2455 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2456 btrfs_super_chunk_root(sb)); 2457 ret = -EINVAL; 2458 } 2459 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2460 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2461 btrfs_super_log_root(sb)); 2462 ret = -EINVAL; 2463 } 2464 2465 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2466 BTRFS_FSID_SIZE) != 0) { 2467 btrfs_err(fs_info, 2468 "dev_item UUID does not match metadata fsid: %pU != %pU", 2469 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2470 ret = -EINVAL; 2471 } 2472 2473 /* 2474 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2475 * done later 2476 */ 2477 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2478 btrfs_err(fs_info, "bytes_used is too small %llu", 2479 btrfs_super_bytes_used(sb)); 2480 ret = -EINVAL; 2481 } 2482 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2483 btrfs_err(fs_info, "invalid stripesize %u", 2484 btrfs_super_stripesize(sb)); 2485 ret = -EINVAL; 2486 } 2487 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2488 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2489 btrfs_super_num_devices(sb)); 2490 if (btrfs_super_num_devices(sb) == 0) { 2491 btrfs_err(fs_info, "number of devices is 0"); 2492 ret = -EINVAL; 2493 } 2494 2495 if (mirror_num >= 0 && 2496 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2497 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2498 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2499 ret = -EINVAL; 2500 } 2501 2502 /* 2503 * Obvious sys_chunk_array corruptions, it must hold at least one key 2504 * and one chunk 2505 */ 2506 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2507 btrfs_err(fs_info, "system chunk array too big %u > %u", 2508 btrfs_super_sys_array_size(sb), 2509 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2510 ret = -EINVAL; 2511 } 2512 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2513 + sizeof(struct btrfs_chunk)) { 2514 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2515 btrfs_super_sys_array_size(sb), 2516 sizeof(struct btrfs_disk_key) 2517 + sizeof(struct btrfs_chunk)); 2518 ret = -EINVAL; 2519 } 2520 2521 /* 2522 * The generation is a global counter, we'll trust it more than the others 2523 * but it's still possible that it's the one that's wrong. 2524 */ 2525 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2526 btrfs_warn(fs_info, 2527 "suspicious: generation < chunk_root_generation: %llu < %llu", 2528 btrfs_super_generation(sb), 2529 btrfs_super_chunk_root_generation(sb)); 2530 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2531 && btrfs_super_cache_generation(sb) != (u64)-1) 2532 btrfs_warn(fs_info, 2533 "suspicious: generation < cache_generation: %llu < %llu", 2534 btrfs_super_generation(sb), 2535 btrfs_super_cache_generation(sb)); 2536 2537 return ret; 2538 } 2539 2540 /* 2541 * Validation of super block at mount time. 2542 * Some checks already done early at mount time, like csum type and incompat 2543 * flags will be skipped. 2544 */ 2545 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2546 { 2547 return validate_super(fs_info, fs_info->super_copy, 0); 2548 } 2549 2550 /* 2551 * Validation of super block at write time. 2552 * Some checks like bytenr check will be skipped as their values will be 2553 * overwritten soon. 2554 * Extra checks like csum type and incompat flags will be done here. 2555 */ 2556 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2557 struct btrfs_super_block *sb) 2558 { 2559 int ret; 2560 2561 ret = validate_super(fs_info, sb, -1); 2562 if (ret < 0) 2563 goto out; 2564 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2565 ret = -EUCLEAN; 2566 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2567 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2568 goto out; 2569 } 2570 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2571 ret = -EUCLEAN; 2572 btrfs_err(fs_info, 2573 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2574 btrfs_super_incompat_flags(sb), 2575 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2576 goto out; 2577 } 2578 out: 2579 if (ret < 0) 2580 btrfs_err(fs_info, 2581 "super block corruption detected before writing it to disk"); 2582 return ret; 2583 } 2584 2585 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2586 { 2587 int backup_index = find_newest_super_backup(fs_info); 2588 struct btrfs_super_block *sb = fs_info->super_copy; 2589 struct btrfs_root *tree_root = fs_info->tree_root; 2590 bool handle_error = false; 2591 int ret = 0; 2592 int i; 2593 2594 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2595 u64 generation; 2596 int level; 2597 2598 if (handle_error) { 2599 if (!IS_ERR(tree_root->node)) 2600 free_extent_buffer(tree_root->node); 2601 tree_root->node = NULL; 2602 2603 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2604 break; 2605 2606 free_root_pointers(fs_info, 0); 2607 2608 /* 2609 * Don't use the log in recovery mode, it won't be 2610 * valid 2611 */ 2612 btrfs_set_super_log_root(sb, 0); 2613 2614 /* We can't trust the free space cache either */ 2615 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2616 2617 ret = read_backup_root(fs_info, i); 2618 backup_index = ret; 2619 if (ret < 0) 2620 return ret; 2621 } 2622 generation = btrfs_super_generation(sb); 2623 level = btrfs_super_root_level(sb); 2624 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb), 2625 BTRFS_ROOT_TREE_OBJECTID, 2626 generation, level, NULL); 2627 if (IS_ERR(tree_root->node)) { 2628 handle_error = true; 2629 ret = PTR_ERR(tree_root->node); 2630 tree_root->node = NULL; 2631 btrfs_warn(fs_info, "couldn't read tree root"); 2632 continue; 2633 2634 } else if (!extent_buffer_uptodate(tree_root->node)) { 2635 handle_error = true; 2636 ret = -EIO; 2637 btrfs_warn(fs_info, "error while reading tree root"); 2638 continue; 2639 } 2640 2641 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2642 tree_root->commit_root = btrfs_root_node(tree_root); 2643 btrfs_set_root_refs(&tree_root->root_item, 1); 2644 2645 /* 2646 * No need to hold btrfs_root::objectid_mutex since the fs 2647 * hasn't been fully initialised and we are the only user 2648 */ 2649 ret = btrfs_find_highest_objectid(tree_root, 2650 &tree_root->highest_objectid); 2651 if (ret < 0) { 2652 handle_error = true; 2653 continue; 2654 } 2655 2656 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2657 2658 ret = btrfs_read_roots(fs_info); 2659 if (ret < 0) { 2660 handle_error = true; 2661 continue; 2662 } 2663 2664 /* All successful */ 2665 fs_info->generation = generation; 2666 fs_info->last_trans_committed = generation; 2667 2668 /* Always begin writing backup roots after the one being used */ 2669 if (backup_index < 0) { 2670 fs_info->backup_root_index = 0; 2671 } else { 2672 fs_info->backup_root_index = backup_index + 1; 2673 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2674 } 2675 break; 2676 } 2677 2678 return ret; 2679 } 2680 2681 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2682 { 2683 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2684 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2685 INIT_LIST_HEAD(&fs_info->trans_list); 2686 INIT_LIST_HEAD(&fs_info->dead_roots); 2687 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2688 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2689 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2690 spin_lock_init(&fs_info->delalloc_root_lock); 2691 spin_lock_init(&fs_info->trans_lock); 2692 spin_lock_init(&fs_info->fs_roots_radix_lock); 2693 spin_lock_init(&fs_info->delayed_iput_lock); 2694 spin_lock_init(&fs_info->defrag_inodes_lock); 2695 spin_lock_init(&fs_info->super_lock); 2696 spin_lock_init(&fs_info->buffer_lock); 2697 spin_lock_init(&fs_info->unused_bgs_lock); 2698 rwlock_init(&fs_info->tree_mod_log_lock); 2699 mutex_init(&fs_info->unused_bg_unpin_mutex); 2700 mutex_init(&fs_info->delete_unused_bgs_mutex); 2701 mutex_init(&fs_info->reloc_mutex); 2702 mutex_init(&fs_info->delalloc_root_mutex); 2703 seqlock_init(&fs_info->profiles_lock); 2704 2705 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2706 INIT_LIST_HEAD(&fs_info->space_info); 2707 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2708 INIT_LIST_HEAD(&fs_info->unused_bgs); 2709 #ifdef CONFIG_BTRFS_DEBUG 2710 INIT_LIST_HEAD(&fs_info->allocated_roots); 2711 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2712 spin_lock_init(&fs_info->eb_leak_lock); 2713 #endif 2714 extent_map_tree_init(&fs_info->mapping_tree); 2715 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2716 BTRFS_BLOCK_RSV_GLOBAL); 2717 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2718 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2719 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2720 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2721 BTRFS_BLOCK_RSV_DELOPS); 2722 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2723 BTRFS_BLOCK_RSV_DELREFS); 2724 2725 atomic_set(&fs_info->async_delalloc_pages, 0); 2726 atomic_set(&fs_info->defrag_running, 0); 2727 atomic_set(&fs_info->reada_works_cnt, 0); 2728 atomic_set(&fs_info->nr_delayed_iputs, 0); 2729 atomic64_set(&fs_info->tree_mod_seq, 0); 2730 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2731 fs_info->metadata_ratio = 0; 2732 fs_info->defrag_inodes = RB_ROOT; 2733 atomic64_set(&fs_info->free_chunk_space, 0); 2734 fs_info->tree_mod_log = RB_ROOT; 2735 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2736 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2737 /* readahead state */ 2738 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2739 spin_lock_init(&fs_info->reada_lock); 2740 btrfs_init_ref_verify(fs_info); 2741 2742 fs_info->thread_pool_size = min_t(unsigned long, 2743 num_online_cpus() + 2, 8); 2744 2745 INIT_LIST_HEAD(&fs_info->ordered_roots); 2746 spin_lock_init(&fs_info->ordered_root_lock); 2747 2748 btrfs_init_scrub(fs_info); 2749 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2750 fs_info->check_integrity_print_mask = 0; 2751 #endif 2752 btrfs_init_balance(fs_info); 2753 btrfs_init_async_reclaim_work(fs_info); 2754 2755 spin_lock_init(&fs_info->block_group_cache_lock); 2756 fs_info->block_group_cache_tree = RB_ROOT; 2757 fs_info->first_logical_byte = (u64)-1; 2758 2759 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2760 IO_TREE_FS_EXCLUDED_EXTENTS, NULL); 2761 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2762 2763 mutex_init(&fs_info->ordered_operations_mutex); 2764 mutex_init(&fs_info->tree_log_mutex); 2765 mutex_init(&fs_info->chunk_mutex); 2766 mutex_init(&fs_info->transaction_kthread_mutex); 2767 mutex_init(&fs_info->cleaner_mutex); 2768 mutex_init(&fs_info->ro_block_group_mutex); 2769 init_rwsem(&fs_info->commit_root_sem); 2770 init_rwsem(&fs_info->cleanup_work_sem); 2771 init_rwsem(&fs_info->subvol_sem); 2772 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2773 2774 btrfs_init_dev_replace_locks(fs_info); 2775 btrfs_init_qgroup(fs_info); 2776 btrfs_discard_init(fs_info); 2777 2778 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2779 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2780 2781 init_waitqueue_head(&fs_info->transaction_throttle); 2782 init_waitqueue_head(&fs_info->transaction_wait); 2783 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2784 init_waitqueue_head(&fs_info->async_submit_wait); 2785 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2786 2787 /* Usable values until the real ones are cached from the superblock */ 2788 fs_info->nodesize = 4096; 2789 fs_info->sectorsize = 4096; 2790 fs_info->sectorsize_bits = ilog2(4096); 2791 fs_info->stripesize = 4096; 2792 2793 spin_lock_init(&fs_info->swapfile_pins_lock); 2794 fs_info->swapfile_pins = RB_ROOT; 2795 2796 fs_info->send_in_progress = 0; 2797 } 2798 2799 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2800 { 2801 int ret; 2802 2803 fs_info->sb = sb; 2804 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2805 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2806 2807 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL); 2808 if (ret) 2809 return ret; 2810 2811 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2812 if (ret) 2813 return ret; 2814 2815 fs_info->dirty_metadata_batch = PAGE_SIZE * 2816 (1 + ilog2(nr_cpu_ids)); 2817 2818 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2819 if (ret) 2820 return ret; 2821 2822 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2823 GFP_KERNEL); 2824 if (ret) 2825 return ret; 2826 2827 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2828 GFP_KERNEL); 2829 if (!fs_info->delayed_root) 2830 return -ENOMEM; 2831 btrfs_init_delayed_root(fs_info->delayed_root); 2832 2833 if (sb_rdonly(sb)) 2834 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2835 2836 return btrfs_alloc_stripe_hash_table(fs_info); 2837 } 2838 2839 static int btrfs_uuid_rescan_kthread(void *data) 2840 { 2841 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 2842 int ret; 2843 2844 /* 2845 * 1st step is to iterate through the existing UUID tree and 2846 * to delete all entries that contain outdated data. 2847 * 2nd step is to add all missing entries to the UUID tree. 2848 */ 2849 ret = btrfs_uuid_tree_iterate(fs_info); 2850 if (ret < 0) { 2851 if (ret != -EINTR) 2852 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2853 ret); 2854 up(&fs_info->uuid_tree_rescan_sem); 2855 return ret; 2856 } 2857 return btrfs_uuid_scan_kthread(data); 2858 } 2859 2860 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2861 { 2862 struct task_struct *task; 2863 2864 down(&fs_info->uuid_tree_rescan_sem); 2865 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2866 if (IS_ERR(task)) { 2867 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2868 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2869 up(&fs_info->uuid_tree_rescan_sem); 2870 return PTR_ERR(task); 2871 } 2872 2873 return 0; 2874 } 2875 2876 /* 2877 * Some options only have meaning at mount time and shouldn't persist across 2878 * remounts, or be displayed. Clear these at the end of mount and remount 2879 * code paths. 2880 */ 2881 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 2882 { 2883 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 2884 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 2885 } 2886 2887 /* 2888 * Mounting logic specific to read-write file systems. Shared by open_ctree 2889 * and btrfs_remount when remounting from read-only to read-write. 2890 */ 2891 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 2892 { 2893 int ret; 2894 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 2895 bool clear_free_space_tree = false; 2896 2897 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 2898 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2899 clear_free_space_tree = true; 2900 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 2901 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 2902 btrfs_warn(fs_info, "free space tree is invalid"); 2903 clear_free_space_tree = true; 2904 } 2905 2906 if (clear_free_space_tree) { 2907 btrfs_info(fs_info, "clearing free space tree"); 2908 ret = btrfs_clear_free_space_tree(fs_info); 2909 if (ret) { 2910 btrfs_warn(fs_info, 2911 "failed to clear free space tree: %d", ret); 2912 goto out; 2913 } 2914 } 2915 2916 ret = btrfs_cleanup_fs_roots(fs_info); 2917 if (ret) 2918 goto out; 2919 2920 down_read(&fs_info->cleanup_work_sem); 2921 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2922 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2923 up_read(&fs_info->cleanup_work_sem); 2924 goto out; 2925 } 2926 up_read(&fs_info->cleanup_work_sem); 2927 2928 mutex_lock(&fs_info->cleaner_mutex); 2929 ret = btrfs_recover_relocation(fs_info->tree_root); 2930 mutex_unlock(&fs_info->cleaner_mutex); 2931 if (ret < 0) { 2932 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 2933 goto out; 2934 } 2935 2936 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 2937 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2938 btrfs_info(fs_info, "creating free space tree"); 2939 ret = btrfs_create_free_space_tree(fs_info); 2940 if (ret) { 2941 btrfs_warn(fs_info, 2942 "failed to create free space tree: %d", ret); 2943 goto out; 2944 } 2945 } 2946 2947 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 2948 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 2949 if (ret) 2950 goto out; 2951 } 2952 2953 ret = btrfs_resume_balance_async(fs_info); 2954 if (ret) 2955 goto out; 2956 2957 ret = btrfs_resume_dev_replace_async(fs_info); 2958 if (ret) { 2959 btrfs_warn(fs_info, "failed to resume dev_replace"); 2960 goto out; 2961 } 2962 2963 btrfs_qgroup_rescan_resume(fs_info); 2964 2965 if (!fs_info->uuid_root) { 2966 btrfs_info(fs_info, "creating UUID tree"); 2967 ret = btrfs_create_uuid_tree(fs_info); 2968 if (ret) { 2969 btrfs_warn(fs_info, 2970 "failed to create the UUID tree %d", ret); 2971 goto out; 2972 } 2973 } 2974 2975 ret = btrfs_find_orphan_roots(fs_info); 2976 out: 2977 return ret; 2978 } 2979 2980 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 2981 char *options) 2982 { 2983 u32 sectorsize; 2984 u32 nodesize; 2985 u32 stripesize; 2986 u64 generation; 2987 u64 features; 2988 u16 csum_type; 2989 struct btrfs_super_block *disk_super; 2990 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2991 struct btrfs_root *tree_root; 2992 struct btrfs_root *chunk_root; 2993 int ret; 2994 int err = -EINVAL; 2995 int level; 2996 2997 ret = init_mount_fs_info(fs_info, sb); 2998 if (ret) { 2999 err = ret; 3000 goto fail; 3001 } 3002 3003 /* These need to be init'ed before we start creating inodes and such. */ 3004 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3005 GFP_KERNEL); 3006 fs_info->tree_root = tree_root; 3007 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3008 GFP_KERNEL); 3009 fs_info->chunk_root = chunk_root; 3010 if (!tree_root || !chunk_root) { 3011 err = -ENOMEM; 3012 goto fail; 3013 } 3014 3015 fs_info->btree_inode = new_inode(sb); 3016 if (!fs_info->btree_inode) { 3017 err = -ENOMEM; 3018 goto fail; 3019 } 3020 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 3021 btrfs_init_btree_inode(fs_info); 3022 3023 invalidate_bdev(fs_devices->latest_bdev); 3024 3025 /* 3026 * Read super block and check the signature bytes only 3027 */ 3028 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev); 3029 if (IS_ERR(disk_super)) { 3030 err = PTR_ERR(disk_super); 3031 goto fail_alloc; 3032 } 3033 3034 /* 3035 * Verify the type first, if that or the checksum value are 3036 * corrupted, we'll find out 3037 */ 3038 csum_type = btrfs_super_csum_type(disk_super); 3039 if (!btrfs_supported_super_csum(csum_type)) { 3040 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3041 csum_type); 3042 err = -EINVAL; 3043 btrfs_release_disk_super(disk_super); 3044 goto fail_alloc; 3045 } 3046 3047 ret = btrfs_init_csum_hash(fs_info, csum_type); 3048 if (ret) { 3049 err = ret; 3050 btrfs_release_disk_super(disk_super); 3051 goto fail_alloc; 3052 } 3053 3054 /* 3055 * We want to check superblock checksum, the type is stored inside. 3056 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3057 */ 3058 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) { 3059 btrfs_err(fs_info, "superblock checksum mismatch"); 3060 err = -EINVAL; 3061 btrfs_release_disk_super(disk_super); 3062 goto fail_alloc; 3063 } 3064 3065 /* 3066 * super_copy is zeroed at allocation time and we never touch the 3067 * following bytes up to INFO_SIZE, the checksum is calculated from 3068 * the whole block of INFO_SIZE 3069 */ 3070 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3071 btrfs_release_disk_super(disk_super); 3072 3073 disk_super = fs_info->super_copy; 3074 3075 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 3076 BTRFS_FSID_SIZE)); 3077 3078 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) { 3079 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid, 3080 fs_info->super_copy->metadata_uuid, 3081 BTRFS_FSID_SIZE)); 3082 } 3083 3084 features = btrfs_super_flags(disk_super); 3085 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 3086 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 3087 btrfs_set_super_flags(disk_super, features); 3088 btrfs_info(fs_info, 3089 "found metadata UUID change in progress flag, clearing"); 3090 } 3091 3092 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3093 sizeof(*fs_info->super_for_commit)); 3094 3095 ret = btrfs_validate_mount_super(fs_info); 3096 if (ret) { 3097 btrfs_err(fs_info, "superblock contains fatal errors"); 3098 err = -EINVAL; 3099 goto fail_alloc; 3100 } 3101 3102 if (!btrfs_super_root(disk_super)) 3103 goto fail_alloc; 3104 3105 /* check FS state, whether FS is broken. */ 3106 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3107 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 3108 3109 /* 3110 * In the long term, we'll store the compression type in the super 3111 * block, and it'll be used for per file compression control. 3112 */ 3113 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3114 3115 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3116 if (ret) { 3117 err = ret; 3118 goto fail_alloc; 3119 } 3120 3121 features = btrfs_super_incompat_flags(disk_super) & 3122 ~BTRFS_FEATURE_INCOMPAT_SUPP; 3123 if (features) { 3124 btrfs_err(fs_info, 3125 "cannot mount because of unsupported optional features (%llx)", 3126 features); 3127 err = -EINVAL; 3128 goto fail_alloc; 3129 } 3130 3131 features = btrfs_super_incompat_flags(disk_super); 3132 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3133 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3134 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3135 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3136 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3137 3138 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 3139 btrfs_info(fs_info, "has skinny extents"); 3140 3141 fs_info->zoned = (features & BTRFS_FEATURE_INCOMPAT_ZONED); 3142 3143 /* 3144 * flag our filesystem as having big metadata blocks if 3145 * they are bigger than the page size 3146 */ 3147 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 3148 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 3149 btrfs_info(fs_info, 3150 "flagging fs with big metadata feature"); 3151 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3152 } 3153 3154 nodesize = btrfs_super_nodesize(disk_super); 3155 sectorsize = btrfs_super_sectorsize(disk_super); 3156 stripesize = sectorsize; 3157 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3158 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3159 3160 /* Cache block sizes */ 3161 fs_info->nodesize = nodesize; 3162 fs_info->sectorsize = sectorsize; 3163 fs_info->sectorsize_bits = ilog2(sectorsize); 3164 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3165 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3166 fs_info->stripesize = stripesize; 3167 3168 /* 3169 * mixed block groups end up with duplicate but slightly offset 3170 * extent buffers for the same range. It leads to corruptions 3171 */ 3172 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3173 (sectorsize != nodesize)) { 3174 btrfs_err(fs_info, 3175 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3176 nodesize, sectorsize); 3177 goto fail_alloc; 3178 } 3179 3180 /* 3181 * Needn't use the lock because there is no other task which will 3182 * update the flag. 3183 */ 3184 btrfs_set_super_incompat_flags(disk_super, features); 3185 3186 features = btrfs_super_compat_ro_flags(disk_super) & 3187 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 3188 if (!sb_rdonly(sb) && features) { 3189 btrfs_err(fs_info, 3190 "cannot mount read-write because of unsupported optional features (%llx)", 3191 features); 3192 err = -EINVAL; 3193 goto fail_alloc; 3194 } 3195 3196 ret = btrfs_init_workqueues(fs_info, fs_devices); 3197 if (ret) { 3198 err = ret; 3199 goto fail_sb_buffer; 3200 } 3201 3202 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3203 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3204 3205 sb->s_blocksize = sectorsize; 3206 sb->s_blocksize_bits = blksize_bits(sectorsize); 3207 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3208 3209 mutex_lock(&fs_info->chunk_mutex); 3210 ret = btrfs_read_sys_array(fs_info); 3211 mutex_unlock(&fs_info->chunk_mutex); 3212 if (ret) { 3213 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3214 goto fail_sb_buffer; 3215 } 3216 3217 generation = btrfs_super_chunk_root_generation(disk_super); 3218 level = btrfs_super_chunk_root_level(disk_super); 3219 3220 chunk_root->node = read_tree_block(fs_info, 3221 btrfs_super_chunk_root(disk_super), 3222 BTRFS_CHUNK_TREE_OBJECTID, 3223 generation, level, NULL); 3224 if (IS_ERR(chunk_root->node) || 3225 !extent_buffer_uptodate(chunk_root->node)) { 3226 btrfs_err(fs_info, "failed to read chunk root"); 3227 if (!IS_ERR(chunk_root->node)) 3228 free_extent_buffer(chunk_root->node); 3229 chunk_root->node = NULL; 3230 goto fail_tree_roots; 3231 } 3232 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 3233 chunk_root->commit_root = btrfs_root_node(chunk_root); 3234 3235 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3236 offsetof(struct btrfs_header, chunk_tree_uuid), 3237 BTRFS_UUID_SIZE); 3238 3239 ret = btrfs_read_chunk_tree(fs_info); 3240 if (ret) { 3241 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3242 goto fail_tree_roots; 3243 } 3244 3245 /* 3246 * At this point we know all the devices that make this filesystem, 3247 * including the seed devices but we don't know yet if the replace 3248 * target is required. So free devices that are not part of this 3249 * filesystem but skip the replace traget device which is checked 3250 * below in btrfs_init_dev_replace(). 3251 */ 3252 btrfs_free_extra_devids(fs_devices); 3253 if (!fs_devices->latest_bdev) { 3254 btrfs_err(fs_info, "failed to read devices"); 3255 goto fail_tree_roots; 3256 } 3257 3258 ret = init_tree_roots(fs_info); 3259 if (ret) 3260 goto fail_tree_roots; 3261 3262 /* 3263 * If we have a uuid root and we're not being told to rescan we need to 3264 * check the generation here so we can set the 3265 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3266 * transaction during a balance or the log replay without updating the 3267 * uuid generation, and then if we crash we would rescan the uuid tree, 3268 * even though it was perfectly fine. 3269 */ 3270 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3271 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3272 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3273 3274 ret = btrfs_verify_dev_extents(fs_info); 3275 if (ret) { 3276 btrfs_err(fs_info, 3277 "failed to verify dev extents against chunks: %d", 3278 ret); 3279 goto fail_block_groups; 3280 } 3281 ret = btrfs_recover_balance(fs_info); 3282 if (ret) { 3283 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3284 goto fail_block_groups; 3285 } 3286 3287 ret = btrfs_init_dev_stats(fs_info); 3288 if (ret) { 3289 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3290 goto fail_block_groups; 3291 } 3292 3293 ret = btrfs_init_dev_replace(fs_info); 3294 if (ret) { 3295 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3296 goto fail_block_groups; 3297 } 3298 3299 ret = btrfs_check_zoned_mode(fs_info); 3300 if (ret) { 3301 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3302 ret); 3303 goto fail_block_groups; 3304 } 3305 3306 ret = btrfs_sysfs_add_fsid(fs_devices); 3307 if (ret) { 3308 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3309 ret); 3310 goto fail_block_groups; 3311 } 3312 3313 ret = btrfs_sysfs_add_mounted(fs_info); 3314 if (ret) { 3315 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3316 goto fail_fsdev_sysfs; 3317 } 3318 3319 ret = btrfs_init_space_info(fs_info); 3320 if (ret) { 3321 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3322 goto fail_sysfs; 3323 } 3324 3325 ret = btrfs_read_block_groups(fs_info); 3326 if (ret) { 3327 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3328 goto fail_sysfs; 3329 } 3330 3331 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 3332 btrfs_warn(fs_info, 3333 "writable mount is not allowed due to too many missing devices"); 3334 goto fail_sysfs; 3335 } 3336 3337 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3338 "btrfs-cleaner"); 3339 if (IS_ERR(fs_info->cleaner_kthread)) 3340 goto fail_sysfs; 3341 3342 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3343 tree_root, 3344 "btrfs-transaction"); 3345 if (IS_ERR(fs_info->transaction_kthread)) 3346 goto fail_cleaner; 3347 3348 if (!btrfs_test_opt(fs_info, NOSSD) && 3349 !fs_info->fs_devices->rotating) { 3350 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3351 } 3352 3353 /* 3354 * Mount does not set all options immediately, we can do it now and do 3355 * not have to wait for transaction commit 3356 */ 3357 btrfs_apply_pending_changes(fs_info); 3358 3359 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3360 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3361 ret = btrfsic_mount(fs_info, fs_devices, 3362 btrfs_test_opt(fs_info, 3363 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3364 1 : 0, 3365 fs_info->check_integrity_print_mask); 3366 if (ret) 3367 btrfs_warn(fs_info, 3368 "failed to initialize integrity check module: %d", 3369 ret); 3370 } 3371 #endif 3372 ret = btrfs_read_qgroup_config(fs_info); 3373 if (ret) 3374 goto fail_trans_kthread; 3375 3376 if (btrfs_build_ref_tree(fs_info)) 3377 btrfs_err(fs_info, "couldn't build ref tree"); 3378 3379 /* do not make disk changes in broken FS or nologreplay is given */ 3380 if (btrfs_super_log_root(disk_super) != 0 && 3381 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3382 btrfs_info(fs_info, "start tree-log replay"); 3383 ret = btrfs_replay_log(fs_info, fs_devices); 3384 if (ret) { 3385 err = ret; 3386 goto fail_qgroup; 3387 } 3388 } 3389 3390 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3391 if (IS_ERR(fs_info->fs_root)) { 3392 err = PTR_ERR(fs_info->fs_root); 3393 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3394 fs_info->fs_root = NULL; 3395 goto fail_qgroup; 3396 } 3397 3398 if (sb_rdonly(sb)) 3399 goto clear_oneshot; 3400 3401 ret = btrfs_start_pre_rw_mount(fs_info); 3402 if (ret) { 3403 close_ctree(fs_info); 3404 return ret; 3405 } 3406 btrfs_discard_resume(fs_info); 3407 3408 if (fs_info->uuid_root && 3409 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3410 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3411 btrfs_info(fs_info, "checking UUID tree"); 3412 ret = btrfs_check_uuid_tree(fs_info); 3413 if (ret) { 3414 btrfs_warn(fs_info, 3415 "failed to check the UUID tree: %d", ret); 3416 close_ctree(fs_info); 3417 return ret; 3418 } 3419 } 3420 3421 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3422 3423 clear_oneshot: 3424 btrfs_clear_oneshot_options(fs_info); 3425 return 0; 3426 3427 fail_qgroup: 3428 btrfs_free_qgroup_config(fs_info); 3429 fail_trans_kthread: 3430 kthread_stop(fs_info->transaction_kthread); 3431 btrfs_cleanup_transaction(fs_info); 3432 btrfs_free_fs_roots(fs_info); 3433 fail_cleaner: 3434 kthread_stop(fs_info->cleaner_kthread); 3435 3436 /* 3437 * make sure we're done with the btree inode before we stop our 3438 * kthreads 3439 */ 3440 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3441 3442 fail_sysfs: 3443 btrfs_sysfs_remove_mounted(fs_info); 3444 3445 fail_fsdev_sysfs: 3446 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3447 3448 fail_block_groups: 3449 btrfs_put_block_group_cache(fs_info); 3450 3451 fail_tree_roots: 3452 if (fs_info->data_reloc_root) 3453 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3454 free_root_pointers(fs_info, true); 3455 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3456 3457 fail_sb_buffer: 3458 btrfs_stop_all_workers(fs_info); 3459 btrfs_free_block_groups(fs_info); 3460 fail_alloc: 3461 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3462 3463 iput(fs_info->btree_inode); 3464 fail: 3465 btrfs_close_devices(fs_info->fs_devices); 3466 return err; 3467 } 3468 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3469 3470 static void btrfs_end_super_write(struct bio *bio) 3471 { 3472 struct btrfs_device *device = bio->bi_private; 3473 struct bio_vec *bvec; 3474 struct bvec_iter_all iter_all; 3475 struct page *page; 3476 3477 bio_for_each_segment_all(bvec, bio, iter_all) { 3478 page = bvec->bv_page; 3479 3480 if (bio->bi_status) { 3481 btrfs_warn_rl_in_rcu(device->fs_info, 3482 "lost page write due to IO error on %s (%d)", 3483 rcu_str_deref(device->name), 3484 blk_status_to_errno(bio->bi_status)); 3485 ClearPageUptodate(page); 3486 SetPageError(page); 3487 btrfs_dev_stat_inc_and_print(device, 3488 BTRFS_DEV_STAT_WRITE_ERRS); 3489 } else { 3490 SetPageUptodate(page); 3491 } 3492 3493 put_page(page); 3494 unlock_page(page); 3495 } 3496 3497 bio_put(bio); 3498 } 3499 3500 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3501 int copy_num) 3502 { 3503 struct btrfs_super_block *super; 3504 struct page *page; 3505 u64 bytenr, bytenr_orig; 3506 struct address_space *mapping = bdev->bd_inode->i_mapping; 3507 int ret; 3508 3509 bytenr_orig = btrfs_sb_offset(copy_num); 3510 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3511 if (ret == -ENOENT) 3512 return ERR_PTR(-EINVAL); 3513 else if (ret) 3514 return ERR_PTR(ret); 3515 3516 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3517 return ERR_PTR(-EINVAL); 3518 3519 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3520 if (IS_ERR(page)) 3521 return ERR_CAST(page); 3522 3523 super = page_address(page); 3524 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3525 btrfs_release_disk_super(super); 3526 return ERR_PTR(-ENODATA); 3527 } 3528 3529 if (btrfs_super_bytenr(super) != bytenr_orig) { 3530 btrfs_release_disk_super(super); 3531 return ERR_PTR(-EINVAL); 3532 } 3533 3534 return super; 3535 } 3536 3537 3538 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3539 { 3540 struct btrfs_super_block *super, *latest = NULL; 3541 int i; 3542 u64 transid = 0; 3543 3544 /* we would like to check all the supers, but that would make 3545 * a btrfs mount succeed after a mkfs from a different FS. 3546 * So, we need to add a special mount option to scan for 3547 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3548 */ 3549 for (i = 0; i < 1; i++) { 3550 super = btrfs_read_dev_one_super(bdev, i); 3551 if (IS_ERR(super)) 3552 continue; 3553 3554 if (!latest || btrfs_super_generation(super) > transid) { 3555 if (latest) 3556 btrfs_release_disk_super(super); 3557 3558 latest = super; 3559 transid = btrfs_super_generation(super); 3560 } 3561 } 3562 3563 return super; 3564 } 3565 3566 /* 3567 * Write superblock @sb to the @device. Do not wait for completion, all the 3568 * pages we use for writing are locked. 3569 * 3570 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3571 * the expected device size at commit time. Note that max_mirrors must be 3572 * same for write and wait phases. 3573 * 3574 * Return number of errors when page is not found or submission fails. 3575 */ 3576 static int write_dev_supers(struct btrfs_device *device, 3577 struct btrfs_super_block *sb, int max_mirrors) 3578 { 3579 struct btrfs_fs_info *fs_info = device->fs_info; 3580 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3581 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3582 int i; 3583 int errors = 0; 3584 int ret; 3585 u64 bytenr, bytenr_orig; 3586 3587 if (max_mirrors == 0) 3588 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3589 3590 shash->tfm = fs_info->csum_shash; 3591 3592 for (i = 0; i < max_mirrors; i++) { 3593 struct page *page; 3594 struct bio *bio; 3595 struct btrfs_super_block *disk_super; 3596 3597 bytenr_orig = btrfs_sb_offset(i); 3598 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3599 if (ret == -ENOENT) { 3600 continue; 3601 } else if (ret < 0) { 3602 btrfs_err(device->fs_info, 3603 "couldn't get super block location for mirror %d", 3604 i); 3605 errors++; 3606 continue; 3607 } 3608 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3609 device->commit_total_bytes) 3610 break; 3611 3612 btrfs_set_super_bytenr(sb, bytenr_orig); 3613 3614 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3615 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3616 sb->csum); 3617 3618 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3619 GFP_NOFS); 3620 if (!page) { 3621 btrfs_err(device->fs_info, 3622 "couldn't get super block page for bytenr %llu", 3623 bytenr); 3624 errors++; 3625 continue; 3626 } 3627 3628 /* Bump the refcount for wait_dev_supers() */ 3629 get_page(page); 3630 3631 disk_super = page_address(page); 3632 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3633 3634 /* 3635 * Directly use bios here instead of relying on the page cache 3636 * to do I/O, so we don't lose the ability to do integrity 3637 * checking. 3638 */ 3639 bio = bio_alloc(GFP_NOFS, 1); 3640 bio_set_dev(bio, device->bdev); 3641 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3642 bio->bi_private = device; 3643 bio->bi_end_io = btrfs_end_super_write; 3644 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 3645 offset_in_page(bytenr)); 3646 3647 /* 3648 * We FUA only the first super block. The others we allow to 3649 * go down lazy and there's a short window where the on-disk 3650 * copies might still contain the older version. 3651 */ 3652 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO; 3653 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3654 bio->bi_opf |= REQ_FUA; 3655 3656 btrfsic_submit_bio(bio); 3657 btrfs_advance_sb_log(device, i); 3658 } 3659 return errors < i ? 0 : -1; 3660 } 3661 3662 /* 3663 * Wait for write completion of superblocks done by write_dev_supers, 3664 * @max_mirrors same for write and wait phases. 3665 * 3666 * Return number of errors when page is not found or not marked up to 3667 * date. 3668 */ 3669 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3670 { 3671 int i; 3672 int errors = 0; 3673 bool primary_failed = false; 3674 int ret; 3675 u64 bytenr; 3676 3677 if (max_mirrors == 0) 3678 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3679 3680 for (i = 0; i < max_mirrors; i++) { 3681 struct page *page; 3682 3683 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 3684 if (ret == -ENOENT) { 3685 break; 3686 } else if (ret < 0) { 3687 errors++; 3688 if (i == 0) 3689 primary_failed = true; 3690 continue; 3691 } 3692 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3693 device->commit_total_bytes) 3694 break; 3695 3696 page = find_get_page(device->bdev->bd_inode->i_mapping, 3697 bytenr >> PAGE_SHIFT); 3698 if (!page) { 3699 errors++; 3700 if (i == 0) 3701 primary_failed = true; 3702 continue; 3703 } 3704 /* Page is submitted locked and unlocked once the IO completes */ 3705 wait_on_page_locked(page); 3706 if (PageError(page)) { 3707 errors++; 3708 if (i == 0) 3709 primary_failed = true; 3710 } 3711 3712 /* Drop our reference */ 3713 put_page(page); 3714 3715 /* Drop the reference from the writing run */ 3716 put_page(page); 3717 } 3718 3719 /* log error, force error return */ 3720 if (primary_failed) { 3721 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3722 device->devid); 3723 return -1; 3724 } 3725 3726 return errors < i ? 0 : -1; 3727 } 3728 3729 /* 3730 * endio for the write_dev_flush, this will wake anyone waiting 3731 * for the barrier when it is done 3732 */ 3733 static void btrfs_end_empty_barrier(struct bio *bio) 3734 { 3735 complete(bio->bi_private); 3736 } 3737 3738 /* 3739 * Submit a flush request to the device if it supports it. Error handling is 3740 * done in the waiting counterpart. 3741 */ 3742 static void write_dev_flush(struct btrfs_device *device) 3743 { 3744 struct request_queue *q = bdev_get_queue(device->bdev); 3745 struct bio *bio = device->flush_bio; 3746 3747 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3748 return; 3749 3750 bio_reset(bio); 3751 bio->bi_end_io = btrfs_end_empty_barrier; 3752 bio_set_dev(bio, device->bdev); 3753 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3754 init_completion(&device->flush_wait); 3755 bio->bi_private = &device->flush_wait; 3756 3757 btrfsic_submit_bio(bio); 3758 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3759 } 3760 3761 /* 3762 * If the flush bio has been submitted by write_dev_flush, wait for it. 3763 */ 3764 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3765 { 3766 struct bio *bio = device->flush_bio; 3767 3768 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3769 return BLK_STS_OK; 3770 3771 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3772 wait_for_completion_io(&device->flush_wait); 3773 3774 return bio->bi_status; 3775 } 3776 3777 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3778 { 3779 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3780 return -EIO; 3781 return 0; 3782 } 3783 3784 /* 3785 * send an empty flush down to each device in parallel, 3786 * then wait for them 3787 */ 3788 static int barrier_all_devices(struct btrfs_fs_info *info) 3789 { 3790 struct list_head *head; 3791 struct btrfs_device *dev; 3792 int errors_wait = 0; 3793 blk_status_t ret; 3794 3795 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3796 /* send down all the barriers */ 3797 head = &info->fs_devices->devices; 3798 list_for_each_entry(dev, head, dev_list) { 3799 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3800 continue; 3801 if (!dev->bdev) 3802 continue; 3803 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3804 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3805 continue; 3806 3807 write_dev_flush(dev); 3808 dev->last_flush_error = BLK_STS_OK; 3809 } 3810 3811 /* wait for all the barriers */ 3812 list_for_each_entry(dev, head, dev_list) { 3813 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3814 continue; 3815 if (!dev->bdev) { 3816 errors_wait++; 3817 continue; 3818 } 3819 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3820 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3821 continue; 3822 3823 ret = wait_dev_flush(dev); 3824 if (ret) { 3825 dev->last_flush_error = ret; 3826 btrfs_dev_stat_inc_and_print(dev, 3827 BTRFS_DEV_STAT_FLUSH_ERRS); 3828 errors_wait++; 3829 } 3830 } 3831 3832 if (errors_wait) { 3833 /* 3834 * At some point we need the status of all disks 3835 * to arrive at the volume status. So error checking 3836 * is being pushed to a separate loop. 3837 */ 3838 return check_barrier_error(info); 3839 } 3840 return 0; 3841 } 3842 3843 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3844 { 3845 int raid_type; 3846 int min_tolerated = INT_MAX; 3847 3848 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3849 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3850 min_tolerated = min_t(int, min_tolerated, 3851 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3852 tolerated_failures); 3853 3854 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3855 if (raid_type == BTRFS_RAID_SINGLE) 3856 continue; 3857 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3858 continue; 3859 min_tolerated = min_t(int, min_tolerated, 3860 btrfs_raid_array[raid_type]. 3861 tolerated_failures); 3862 } 3863 3864 if (min_tolerated == INT_MAX) { 3865 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3866 min_tolerated = 0; 3867 } 3868 3869 return min_tolerated; 3870 } 3871 3872 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3873 { 3874 struct list_head *head; 3875 struct btrfs_device *dev; 3876 struct btrfs_super_block *sb; 3877 struct btrfs_dev_item *dev_item; 3878 int ret; 3879 int do_barriers; 3880 int max_errors; 3881 int total_errors = 0; 3882 u64 flags; 3883 3884 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3885 3886 /* 3887 * max_mirrors == 0 indicates we're from commit_transaction, 3888 * not from fsync where the tree roots in fs_info have not 3889 * been consistent on disk. 3890 */ 3891 if (max_mirrors == 0) 3892 backup_super_roots(fs_info); 3893 3894 sb = fs_info->super_for_commit; 3895 dev_item = &sb->dev_item; 3896 3897 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3898 head = &fs_info->fs_devices->devices; 3899 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3900 3901 if (do_barriers) { 3902 ret = barrier_all_devices(fs_info); 3903 if (ret) { 3904 mutex_unlock( 3905 &fs_info->fs_devices->device_list_mutex); 3906 btrfs_handle_fs_error(fs_info, ret, 3907 "errors while submitting device barriers."); 3908 return ret; 3909 } 3910 } 3911 3912 list_for_each_entry(dev, head, dev_list) { 3913 if (!dev->bdev) { 3914 total_errors++; 3915 continue; 3916 } 3917 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3918 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3919 continue; 3920 3921 btrfs_set_stack_device_generation(dev_item, 0); 3922 btrfs_set_stack_device_type(dev_item, dev->type); 3923 btrfs_set_stack_device_id(dev_item, dev->devid); 3924 btrfs_set_stack_device_total_bytes(dev_item, 3925 dev->commit_total_bytes); 3926 btrfs_set_stack_device_bytes_used(dev_item, 3927 dev->commit_bytes_used); 3928 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3929 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3930 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3931 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3932 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 3933 BTRFS_FSID_SIZE); 3934 3935 flags = btrfs_super_flags(sb); 3936 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3937 3938 ret = btrfs_validate_write_super(fs_info, sb); 3939 if (ret < 0) { 3940 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3941 btrfs_handle_fs_error(fs_info, -EUCLEAN, 3942 "unexpected superblock corruption detected"); 3943 return -EUCLEAN; 3944 } 3945 3946 ret = write_dev_supers(dev, sb, max_mirrors); 3947 if (ret) 3948 total_errors++; 3949 } 3950 if (total_errors > max_errors) { 3951 btrfs_err(fs_info, "%d errors while writing supers", 3952 total_errors); 3953 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3954 3955 /* FUA is masked off if unsupported and can't be the reason */ 3956 btrfs_handle_fs_error(fs_info, -EIO, 3957 "%d errors while writing supers", 3958 total_errors); 3959 return -EIO; 3960 } 3961 3962 total_errors = 0; 3963 list_for_each_entry(dev, head, dev_list) { 3964 if (!dev->bdev) 3965 continue; 3966 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3967 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3968 continue; 3969 3970 ret = wait_dev_supers(dev, max_mirrors); 3971 if (ret) 3972 total_errors++; 3973 } 3974 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3975 if (total_errors > max_errors) { 3976 btrfs_handle_fs_error(fs_info, -EIO, 3977 "%d errors while writing supers", 3978 total_errors); 3979 return -EIO; 3980 } 3981 return 0; 3982 } 3983 3984 /* Drop a fs root from the radix tree and free it. */ 3985 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3986 struct btrfs_root *root) 3987 { 3988 bool drop_ref = false; 3989 3990 spin_lock(&fs_info->fs_roots_radix_lock); 3991 radix_tree_delete(&fs_info->fs_roots_radix, 3992 (unsigned long)root->root_key.objectid); 3993 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 3994 drop_ref = true; 3995 spin_unlock(&fs_info->fs_roots_radix_lock); 3996 3997 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3998 ASSERT(root->log_root == NULL); 3999 if (root->reloc_root) { 4000 btrfs_put_root(root->reloc_root); 4001 root->reloc_root = NULL; 4002 } 4003 } 4004 4005 if (drop_ref) 4006 btrfs_put_root(root); 4007 } 4008 4009 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 4010 { 4011 u64 root_objectid = 0; 4012 struct btrfs_root *gang[8]; 4013 int i = 0; 4014 int err = 0; 4015 unsigned int ret = 0; 4016 4017 while (1) { 4018 spin_lock(&fs_info->fs_roots_radix_lock); 4019 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4020 (void **)gang, root_objectid, 4021 ARRAY_SIZE(gang)); 4022 if (!ret) { 4023 spin_unlock(&fs_info->fs_roots_radix_lock); 4024 break; 4025 } 4026 root_objectid = gang[ret - 1]->root_key.objectid + 1; 4027 4028 for (i = 0; i < ret; i++) { 4029 /* Avoid to grab roots in dead_roots */ 4030 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 4031 gang[i] = NULL; 4032 continue; 4033 } 4034 /* grab all the search result for later use */ 4035 gang[i] = btrfs_grab_root(gang[i]); 4036 } 4037 spin_unlock(&fs_info->fs_roots_radix_lock); 4038 4039 for (i = 0; i < ret; i++) { 4040 if (!gang[i]) 4041 continue; 4042 root_objectid = gang[i]->root_key.objectid; 4043 err = btrfs_orphan_cleanup(gang[i]); 4044 if (err) 4045 break; 4046 btrfs_put_root(gang[i]); 4047 } 4048 root_objectid++; 4049 } 4050 4051 /* release the uncleaned roots due to error */ 4052 for (; i < ret; i++) { 4053 if (gang[i]) 4054 btrfs_put_root(gang[i]); 4055 } 4056 return err; 4057 } 4058 4059 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4060 { 4061 struct btrfs_root *root = fs_info->tree_root; 4062 struct btrfs_trans_handle *trans; 4063 4064 mutex_lock(&fs_info->cleaner_mutex); 4065 btrfs_run_delayed_iputs(fs_info); 4066 mutex_unlock(&fs_info->cleaner_mutex); 4067 wake_up_process(fs_info->cleaner_kthread); 4068 4069 /* wait until ongoing cleanup work done */ 4070 down_write(&fs_info->cleanup_work_sem); 4071 up_write(&fs_info->cleanup_work_sem); 4072 4073 trans = btrfs_join_transaction(root); 4074 if (IS_ERR(trans)) 4075 return PTR_ERR(trans); 4076 return btrfs_commit_transaction(trans); 4077 } 4078 4079 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4080 { 4081 int ret; 4082 4083 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4084 /* 4085 * We don't want the cleaner to start new transactions, add more delayed 4086 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4087 * because that frees the task_struct, and the transaction kthread might 4088 * still try to wake up the cleaner. 4089 */ 4090 kthread_park(fs_info->cleaner_kthread); 4091 4092 /* wait for the qgroup rescan worker to stop */ 4093 btrfs_qgroup_wait_for_completion(fs_info, false); 4094 4095 /* wait for the uuid_scan task to finish */ 4096 down(&fs_info->uuid_tree_rescan_sem); 4097 /* avoid complains from lockdep et al., set sem back to initial state */ 4098 up(&fs_info->uuid_tree_rescan_sem); 4099 4100 /* pause restriper - we want to resume on mount */ 4101 btrfs_pause_balance(fs_info); 4102 4103 btrfs_dev_replace_suspend_for_unmount(fs_info); 4104 4105 btrfs_scrub_cancel(fs_info); 4106 4107 /* wait for any defraggers to finish */ 4108 wait_event(fs_info->transaction_wait, 4109 (atomic_read(&fs_info->defrag_running) == 0)); 4110 4111 /* clear out the rbtree of defraggable inodes */ 4112 btrfs_cleanup_defrag_inodes(fs_info); 4113 4114 cancel_work_sync(&fs_info->async_reclaim_work); 4115 cancel_work_sync(&fs_info->async_data_reclaim_work); 4116 4117 /* Cancel or finish ongoing discard work */ 4118 btrfs_discard_cleanup(fs_info); 4119 4120 if (!sb_rdonly(fs_info->sb)) { 4121 /* 4122 * The cleaner kthread is stopped, so do one final pass over 4123 * unused block groups. 4124 */ 4125 btrfs_delete_unused_bgs(fs_info); 4126 4127 /* 4128 * There might be existing delayed inode workers still running 4129 * and holding an empty delayed inode item. We must wait for 4130 * them to complete first because they can create a transaction. 4131 * This happens when someone calls btrfs_balance_delayed_items() 4132 * and then a transaction commit runs the same delayed nodes 4133 * before any delayed worker has done something with the nodes. 4134 * We must wait for any worker here and not at transaction 4135 * commit time since that could cause a deadlock. 4136 * This is a very rare case. 4137 */ 4138 btrfs_flush_workqueue(fs_info->delayed_workers); 4139 4140 ret = btrfs_commit_super(fs_info); 4141 if (ret) 4142 btrfs_err(fs_info, "commit super ret %d", ret); 4143 } 4144 4145 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 4146 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 4147 btrfs_error_commit_super(fs_info); 4148 4149 kthread_stop(fs_info->transaction_kthread); 4150 kthread_stop(fs_info->cleaner_kthread); 4151 4152 ASSERT(list_empty(&fs_info->delayed_iputs)); 4153 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4154 4155 if (btrfs_check_quota_leak(fs_info)) { 4156 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4157 btrfs_err(fs_info, "qgroup reserved space leaked"); 4158 } 4159 4160 btrfs_free_qgroup_config(fs_info); 4161 ASSERT(list_empty(&fs_info->delalloc_roots)); 4162 4163 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4164 btrfs_info(fs_info, "at unmount delalloc count %lld", 4165 percpu_counter_sum(&fs_info->delalloc_bytes)); 4166 } 4167 4168 if (percpu_counter_sum(&fs_info->dio_bytes)) 4169 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4170 percpu_counter_sum(&fs_info->dio_bytes)); 4171 4172 btrfs_sysfs_remove_mounted(fs_info); 4173 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4174 4175 btrfs_put_block_group_cache(fs_info); 4176 4177 /* 4178 * we must make sure there is not any read request to 4179 * submit after we stopping all workers. 4180 */ 4181 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4182 btrfs_stop_all_workers(fs_info); 4183 4184 /* We shouldn't have any transaction open at this point */ 4185 ASSERT(list_empty(&fs_info->trans_list)); 4186 4187 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4188 free_root_pointers(fs_info, true); 4189 btrfs_free_fs_roots(fs_info); 4190 4191 /* 4192 * We must free the block groups after dropping the fs_roots as we could 4193 * have had an IO error and have left over tree log blocks that aren't 4194 * cleaned up until the fs roots are freed. This makes the block group 4195 * accounting appear to be wrong because there's pending reserved bytes, 4196 * so make sure we do the block group cleanup afterwards. 4197 */ 4198 btrfs_free_block_groups(fs_info); 4199 4200 iput(fs_info->btree_inode); 4201 4202 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4203 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4204 btrfsic_unmount(fs_info->fs_devices); 4205 #endif 4206 4207 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4208 btrfs_close_devices(fs_info->fs_devices); 4209 } 4210 4211 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4212 int atomic) 4213 { 4214 int ret; 4215 struct inode *btree_inode = buf->pages[0]->mapping->host; 4216 4217 ret = extent_buffer_uptodate(buf); 4218 if (!ret) 4219 return ret; 4220 4221 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4222 parent_transid, atomic); 4223 if (ret == -EAGAIN) 4224 return ret; 4225 return !ret; 4226 } 4227 4228 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4229 { 4230 struct btrfs_fs_info *fs_info = buf->fs_info; 4231 u64 transid = btrfs_header_generation(buf); 4232 int was_dirty; 4233 4234 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4235 /* 4236 * This is a fast path so only do this check if we have sanity tests 4237 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4238 * outside of the sanity tests. 4239 */ 4240 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4241 return; 4242 #endif 4243 btrfs_assert_tree_locked(buf); 4244 if (transid != fs_info->generation) 4245 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4246 buf->start, transid, fs_info->generation); 4247 was_dirty = set_extent_buffer_dirty(buf); 4248 if (!was_dirty) 4249 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4250 buf->len, 4251 fs_info->dirty_metadata_batch); 4252 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4253 /* 4254 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4255 * but item data not updated. 4256 * So here we should only check item pointers, not item data. 4257 */ 4258 if (btrfs_header_level(buf) == 0 && 4259 btrfs_check_leaf_relaxed(buf)) { 4260 btrfs_print_leaf(buf); 4261 ASSERT(0); 4262 } 4263 #endif 4264 } 4265 4266 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4267 int flush_delayed) 4268 { 4269 /* 4270 * looks as though older kernels can get into trouble with 4271 * this code, they end up stuck in balance_dirty_pages forever 4272 */ 4273 int ret; 4274 4275 if (current->flags & PF_MEMALLOC) 4276 return; 4277 4278 if (flush_delayed) 4279 btrfs_balance_delayed_items(fs_info); 4280 4281 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4282 BTRFS_DIRTY_METADATA_THRESH, 4283 fs_info->dirty_metadata_batch); 4284 if (ret > 0) { 4285 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4286 } 4287 } 4288 4289 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4290 { 4291 __btrfs_btree_balance_dirty(fs_info, 1); 4292 } 4293 4294 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4295 { 4296 __btrfs_btree_balance_dirty(fs_info, 0); 4297 } 4298 4299 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4300 struct btrfs_key *first_key) 4301 { 4302 return btree_read_extent_buffer_pages(buf, parent_transid, 4303 level, first_key); 4304 } 4305 4306 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4307 { 4308 /* cleanup FS via transaction */ 4309 btrfs_cleanup_transaction(fs_info); 4310 4311 mutex_lock(&fs_info->cleaner_mutex); 4312 btrfs_run_delayed_iputs(fs_info); 4313 mutex_unlock(&fs_info->cleaner_mutex); 4314 4315 down_write(&fs_info->cleanup_work_sem); 4316 up_write(&fs_info->cleanup_work_sem); 4317 } 4318 4319 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4320 { 4321 struct btrfs_root *gang[8]; 4322 u64 root_objectid = 0; 4323 int ret; 4324 4325 spin_lock(&fs_info->fs_roots_radix_lock); 4326 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4327 (void **)gang, root_objectid, 4328 ARRAY_SIZE(gang))) != 0) { 4329 int i; 4330 4331 for (i = 0; i < ret; i++) 4332 gang[i] = btrfs_grab_root(gang[i]); 4333 spin_unlock(&fs_info->fs_roots_radix_lock); 4334 4335 for (i = 0; i < ret; i++) { 4336 if (!gang[i]) 4337 continue; 4338 root_objectid = gang[i]->root_key.objectid; 4339 btrfs_free_log(NULL, gang[i]); 4340 btrfs_put_root(gang[i]); 4341 } 4342 root_objectid++; 4343 spin_lock(&fs_info->fs_roots_radix_lock); 4344 } 4345 spin_unlock(&fs_info->fs_roots_radix_lock); 4346 btrfs_free_log_root_tree(NULL, fs_info); 4347 } 4348 4349 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4350 { 4351 struct btrfs_ordered_extent *ordered; 4352 4353 spin_lock(&root->ordered_extent_lock); 4354 /* 4355 * This will just short circuit the ordered completion stuff which will 4356 * make sure the ordered extent gets properly cleaned up. 4357 */ 4358 list_for_each_entry(ordered, &root->ordered_extents, 4359 root_extent_list) 4360 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4361 spin_unlock(&root->ordered_extent_lock); 4362 } 4363 4364 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4365 { 4366 struct btrfs_root *root; 4367 struct list_head splice; 4368 4369 INIT_LIST_HEAD(&splice); 4370 4371 spin_lock(&fs_info->ordered_root_lock); 4372 list_splice_init(&fs_info->ordered_roots, &splice); 4373 while (!list_empty(&splice)) { 4374 root = list_first_entry(&splice, struct btrfs_root, 4375 ordered_root); 4376 list_move_tail(&root->ordered_root, 4377 &fs_info->ordered_roots); 4378 4379 spin_unlock(&fs_info->ordered_root_lock); 4380 btrfs_destroy_ordered_extents(root); 4381 4382 cond_resched(); 4383 spin_lock(&fs_info->ordered_root_lock); 4384 } 4385 spin_unlock(&fs_info->ordered_root_lock); 4386 4387 /* 4388 * We need this here because if we've been flipped read-only we won't 4389 * get sync() from the umount, so we need to make sure any ordered 4390 * extents that haven't had their dirty pages IO start writeout yet 4391 * actually get run and error out properly. 4392 */ 4393 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4394 } 4395 4396 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4397 struct btrfs_fs_info *fs_info) 4398 { 4399 struct rb_node *node; 4400 struct btrfs_delayed_ref_root *delayed_refs; 4401 struct btrfs_delayed_ref_node *ref; 4402 int ret = 0; 4403 4404 delayed_refs = &trans->delayed_refs; 4405 4406 spin_lock(&delayed_refs->lock); 4407 if (atomic_read(&delayed_refs->num_entries) == 0) { 4408 spin_unlock(&delayed_refs->lock); 4409 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4410 return ret; 4411 } 4412 4413 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4414 struct btrfs_delayed_ref_head *head; 4415 struct rb_node *n; 4416 bool pin_bytes = false; 4417 4418 head = rb_entry(node, struct btrfs_delayed_ref_head, 4419 href_node); 4420 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4421 continue; 4422 4423 spin_lock(&head->lock); 4424 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4425 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4426 ref_node); 4427 ref->in_tree = 0; 4428 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4429 RB_CLEAR_NODE(&ref->ref_node); 4430 if (!list_empty(&ref->add_list)) 4431 list_del(&ref->add_list); 4432 atomic_dec(&delayed_refs->num_entries); 4433 btrfs_put_delayed_ref(ref); 4434 } 4435 if (head->must_insert_reserved) 4436 pin_bytes = true; 4437 btrfs_free_delayed_extent_op(head->extent_op); 4438 btrfs_delete_ref_head(delayed_refs, head); 4439 spin_unlock(&head->lock); 4440 spin_unlock(&delayed_refs->lock); 4441 mutex_unlock(&head->mutex); 4442 4443 if (pin_bytes) { 4444 struct btrfs_block_group *cache; 4445 4446 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4447 BUG_ON(!cache); 4448 4449 spin_lock(&cache->space_info->lock); 4450 spin_lock(&cache->lock); 4451 cache->pinned += head->num_bytes; 4452 btrfs_space_info_update_bytes_pinned(fs_info, 4453 cache->space_info, head->num_bytes); 4454 cache->reserved -= head->num_bytes; 4455 cache->space_info->bytes_reserved -= head->num_bytes; 4456 spin_unlock(&cache->lock); 4457 spin_unlock(&cache->space_info->lock); 4458 percpu_counter_add_batch( 4459 &cache->space_info->total_bytes_pinned, 4460 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); 4461 4462 btrfs_put_block_group(cache); 4463 4464 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4465 head->bytenr + head->num_bytes - 1); 4466 } 4467 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4468 btrfs_put_delayed_ref_head(head); 4469 cond_resched(); 4470 spin_lock(&delayed_refs->lock); 4471 } 4472 btrfs_qgroup_destroy_extent_records(trans); 4473 4474 spin_unlock(&delayed_refs->lock); 4475 4476 return ret; 4477 } 4478 4479 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4480 { 4481 struct btrfs_inode *btrfs_inode; 4482 struct list_head splice; 4483 4484 INIT_LIST_HEAD(&splice); 4485 4486 spin_lock(&root->delalloc_lock); 4487 list_splice_init(&root->delalloc_inodes, &splice); 4488 4489 while (!list_empty(&splice)) { 4490 struct inode *inode = NULL; 4491 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4492 delalloc_inodes); 4493 __btrfs_del_delalloc_inode(root, btrfs_inode); 4494 spin_unlock(&root->delalloc_lock); 4495 4496 /* 4497 * Make sure we get a live inode and that it'll not disappear 4498 * meanwhile. 4499 */ 4500 inode = igrab(&btrfs_inode->vfs_inode); 4501 if (inode) { 4502 invalidate_inode_pages2(inode->i_mapping); 4503 iput(inode); 4504 } 4505 spin_lock(&root->delalloc_lock); 4506 } 4507 spin_unlock(&root->delalloc_lock); 4508 } 4509 4510 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4511 { 4512 struct btrfs_root *root; 4513 struct list_head splice; 4514 4515 INIT_LIST_HEAD(&splice); 4516 4517 spin_lock(&fs_info->delalloc_root_lock); 4518 list_splice_init(&fs_info->delalloc_roots, &splice); 4519 while (!list_empty(&splice)) { 4520 root = list_first_entry(&splice, struct btrfs_root, 4521 delalloc_root); 4522 root = btrfs_grab_root(root); 4523 BUG_ON(!root); 4524 spin_unlock(&fs_info->delalloc_root_lock); 4525 4526 btrfs_destroy_delalloc_inodes(root); 4527 btrfs_put_root(root); 4528 4529 spin_lock(&fs_info->delalloc_root_lock); 4530 } 4531 spin_unlock(&fs_info->delalloc_root_lock); 4532 } 4533 4534 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4535 struct extent_io_tree *dirty_pages, 4536 int mark) 4537 { 4538 int ret; 4539 struct extent_buffer *eb; 4540 u64 start = 0; 4541 u64 end; 4542 4543 while (1) { 4544 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4545 mark, NULL); 4546 if (ret) 4547 break; 4548 4549 clear_extent_bits(dirty_pages, start, end, mark); 4550 while (start <= end) { 4551 eb = find_extent_buffer(fs_info, start); 4552 start += fs_info->nodesize; 4553 if (!eb) 4554 continue; 4555 wait_on_extent_buffer_writeback(eb); 4556 4557 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4558 &eb->bflags)) 4559 clear_extent_buffer_dirty(eb); 4560 free_extent_buffer_stale(eb); 4561 } 4562 } 4563 4564 return ret; 4565 } 4566 4567 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4568 struct extent_io_tree *unpin) 4569 { 4570 u64 start; 4571 u64 end; 4572 int ret; 4573 4574 while (1) { 4575 struct extent_state *cached_state = NULL; 4576 4577 /* 4578 * The btrfs_finish_extent_commit() may get the same range as 4579 * ours between find_first_extent_bit and clear_extent_dirty. 4580 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4581 * the same extent range. 4582 */ 4583 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4584 ret = find_first_extent_bit(unpin, 0, &start, &end, 4585 EXTENT_DIRTY, &cached_state); 4586 if (ret) { 4587 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4588 break; 4589 } 4590 4591 clear_extent_dirty(unpin, start, end, &cached_state); 4592 free_extent_state(cached_state); 4593 btrfs_error_unpin_extent_range(fs_info, start, end); 4594 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4595 cond_resched(); 4596 } 4597 4598 return 0; 4599 } 4600 4601 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4602 { 4603 struct inode *inode; 4604 4605 inode = cache->io_ctl.inode; 4606 if (inode) { 4607 invalidate_inode_pages2(inode->i_mapping); 4608 BTRFS_I(inode)->generation = 0; 4609 cache->io_ctl.inode = NULL; 4610 iput(inode); 4611 } 4612 ASSERT(cache->io_ctl.pages == NULL); 4613 btrfs_put_block_group(cache); 4614 } 4615 4616 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4617 struct btrfs_fs_info *fs_info) 4618 { 4619 struct btrfs_block_group *cache; 4620 4621 spin_lock(&cur_trans->dirty_bgs_lock); 4622 while (!list_empty(&cur_trans->dirty_bgs)) { 4623 cache = list_first_entry(&cur_trans->dirty_bgs, 4624 struct btrfs_block_group, 4625 dirty_list); 4626 4627 if (!list_empty(&cache->io_list)) { 4628 spin_unlock(&cur_trans->dirty_bgs_lock); 4629 list_del_init(&cache->io_list); 4630 btrfs_cleanup_bg_io(cache); 4631 spin_lock(&cur_trans->dirty_bgs_lock); 4632 } 4633 4634 list_del_init(&cache->dirty_list); 4635 spin_lock(&cache->lock); 4636 cache->disk_cache_state = BTRFS_DC_ERROR; 4637 spin_unlock(&cache->lock); 4638 4639 spin_unlock(&cur_trans->dirty_bgs_lock); 4640 btrfs_put_block_group(cache); 4641 btrfs_delayed_refs_rsv_release(fs_info, 1); 4642 spin_lock(&cur_trans->dirty_bgs_lock); 4643 } 4644 spin_unlock(&cur_trans->dirty_bgs_lock); 4645 4646 /* 4647 * Refer to the definition of io_bgs member for details why it's safe 4648 * to use it without any locking 4649 */ 4650 while (!list_empty(&cur_trans->io_bgs)) { 4651 cache = list_first_entry(&cur_trans->io_bgs, 4652 struct btrfs_block_group, 4653 io_list); 4654 4655 list_del_init(&cache->io_list); 4656 spin_lock(&cache->lock); 4657 cache->disk_cache_state = BTRFS_DC_ERROR; 4658 spin_unlock(&cache->lock); 4659 btrfs_cleanup_bg_io(cache); 4660 } 4661 } 4662 4663 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4664 struct btrfs_fs_info *fs_info) 4665 { 4666 struct btrfs_device *dev, *tmp; 4667 4668 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4669 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4670 ASSERT(list_empty(&cur_trans->io_bgs)); 4671 4672 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4673 post_commit_list) { 4674 list_del_init(&dev->post_commit_list); 4675 } 4676 4677 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4678 4679 cur_trans->state = TRANS_STATE_COMMIT_START; 4680 wake_up(&fs_info->transaction_blocked_wait); 4681 4682 cur_trans->state = TRANS_STATE_UNBLOCKED; 4683 wake_up(&fs_info->transaction_wait); 4684 4685 btrfs_destroy_delayed_inodes(fs_info); 4686 4687 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4688 EXTENT_DIRTY); 4689 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4690 4691 cur_trans->state =TRANS_STATE_COMPLETED; 4692 wake_up(&cur_trans->commit_wait); 4693 } 4694 4695 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4696 { 4697 struct btrfs_transaction *t; 4698 4699 mutex_lock(&fs_info->transaction_kthread_mutex); 4700 4701 spin_lock(&fs_info->trans_lock); 4702 while (!list_empty(&fs_info->trans_list)) { 4703 t = list_first_entry(&fs_info->trans_list, 4704 struct btrfs_transaction, list); 4705 if (t->state >= TRANS_STATE_COMMIT_START) { 4706 refcount_inc(&t->use_count); 4707 spin_unlock(&fs_info->trans_lock); 4708 btrfs_wait_for_commit(fs_info, t->transid); 4709 btrfs_put_transaction(t); 4710 spin_lock(&fs_info->trans_lock); 4711 continue; 4712 } 4713 if (t == fs_info->running_transaction) { 4714 t->state = TRANS_STATE_COMMIT_DOING; 4715 spin_unlock(&fs_info->trans_lock); 4716 /* 4717 * We wait for 0 num_writers since we don't hold a trans 4718 * handle open currently for this transaction. 4719 */ 4720 wait_event(t->writer_wait, 4721 atomic_read(&t->num_writers) == 0); 4722 } else { 4723 spin_unlock(&fs_info->trans_lock); 4724 } 4725 btrfs_cleanup_one_transaction(t, fs_info); 4726 4727 spin_lock(&fs_info->trans_lock); 4728 if (t == fs_info->running_transaction) 4729 fs_info->running_transaction = NULL; 4730 list_del_init(&t->list); 4731 spin_unlock(&fs_info->trans_lock); 4732 4733 btrfs_put_transaction(t); 4734 trace_btrfs_transaction_commit(fs_info->tree_root); 4735 spin_lock(&fs_info->trans_lock); 4736 } 4737 spin_unlock(&fs_info->trans_lock); 4738 btrfs_destroy_all_ordered_extents(fs_info); 4739 btrfs_destroy_delayed_inodes(fs_info); 4740 btrfs_assert_delayed_root_empty(fs_info); 4741 btrfs_destroy_all_delalloc_inodes(fs_info); 4742 btrfs_drop_all_logs(fs_info); 4743 mutex_unlock(&fs_info->transaction_kthread_mutex); 4744 4745 return 0; 4746 } 4747 4748 int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid) 4749 { 4750 struct btrfs_path *path; 4751 int ret; 4752 struct extent_buffer *l; 4753 struct btrfs_key search_key; 4754 struct btrfs_key found_key; 4755 int slot; 4756 4757 path = btrfs_alloc_path(); 4758 if (!path) 4759 return -ENOMEM; 4760 4761 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 4762 search_key.type = -1; 4763 search_key.offset = (u64)-1; 4764 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 4765 if (ret < 0) 4766 goto error; 4767 BUG_ON(ret == 0); /* Corruption */ 4768 if (path->slots[0] > 0) { 4769 slot = path->slots[0] - 1; 4770 l = path->nodes[0]; 4771 btrfs_item_key_to_cpu(l, &found_key, slot); 4772 *objectid = max_t(u64, found_key.objectid, 4773 BTRFS_FIRST_FREE_OBJECTID - 1); 4774 } else { 4775 *objectid = BTRFS_FIRST_FREE_OBJECTID - 1; 4776 } 4777 ret = 0; 4778 error: 4779 btrfs_free_path(path); 4780 return ret; 4781 } 4782 4783 int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid) 4784 { 4785 int ret; 4786 mutex_lock(&root->objectid_mutex); 4787 4788 if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 4789 btrfs_warn(root->fs_info, 4790 "the objectid of root %llu reaches its highest value", 4791 root->root_key.objectid); 4792 ret = -ENOSPC; 4793 goto out; 4794 } 4795 4796 *objectid = ++root->highest_objectid; 4797 ret = 0; 4798 out: 4799 mutex_unlock(&root->objectid_mutex); 4800 return ret; 4801 } 4802