1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/slab.h> 29 #include <linux/migrate.h> 30 #include <linux/ratelimit.h> 31 #include <linux/uuid.h> 32 #include <linux/semaphore.h> 33 #include <linux/error-injection.h> 34 #include <linux/crc32c.h> 35 #include <asm/unaligned.h> 36 #include "ctree.h" 37 #include "disk-io.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "volumes.h" 41 #include "print-tree.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "free-space-tree.h" 46 #include "inode-map.h" 47 #include "check-integrity.h" 48 #include "rcu-string.h" 49 #include "dev-replace.h" 50 #include "raid56.h" 51 #include "sysfs.h" 52 #include "qgroup.h" 53 #include "compression.h" 54 #include "tree-checker.h" 55 #include "ref-verify.h" 56 57 #ifdef CONFIG_X86 58 #include <asm/cpufeature.h> 59 #endif 60 61 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 62 BTRFS_HEADER_FLAG_RELOC |\ 63 BTRFS_SUPER_FLAG_ERROR |\ 64 BTRFS_SUPER_FLAG_SEEDING |\ 65 BTRFS_SUPER_FLAG_METADUMP |\ 66 BTRFS_SUPER_FLAG_METADUMP_V2) 67 68 static const struct extent_io_ops btree_extent_io_ops; 69 static void end_workqueue_fn(struct btrfs_work *work); 70 static void free_fs_root(struct btrfs_root *root); 71 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info); 72 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 73 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 74 struct btrfs_fs_info *fs_info); 75 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 76 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 77 struct extent_io_tree *dirty_pages, 78 int mark); 79 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 80 struct extent_io_tree *pinned_extents); 81 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 82 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 83 84 /* 85 * btrfs_end_io_wq structs are used to do processing in task context when an IO 86 * is complete. This is used during reads to verify checksums, and it is used 87 * by writes to insert metadata for new file extents after IO is complete. 88 */ 89 struct btrfs_end_io_wq { 90 struct bio *bio; 91 bio_end_io_t *end_io; 92 void *private; 93 struct btrfs_fs_info *info; 94 blk_status_t status; 95 enum btrfs_wq_endio_type metadata; 96 struct btrfs_work work; 97 }; 98 99 static struct kmem_cache *btrfs_end_io_wq_cache; 100 101 int __init btrfs_end_io_wq_init(void) 102 { 103 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 104 sizeof(struct btrfs_end_io_wq), 105 0, 106 SLAB_MEM_SPREAD, 107 NULL); 108 if (!btrfs_end_io_wq_cache) 109 return -ENOMEM; 110 return 0; 111 } 112 113 void __cold btrfs_end_io_wq_exit(void) 114 { 115 kmem_cache_destroy(btrfs_end_io_wq_cache); 116 } 117 118 /* 119 * async submit bios are used to offload expensive checksumming 120 * onto the worker threads. They checksum file and metadata bios 121 * just before they are sent down the IO stack. 122 */ 123 struct async_submit_bio { 124 void *private_data; 125 struct btrfs_fs_info *fs_info; 126 struct bio *bio; 127 extent_submit_bio_start_t *submit_bio_start; 128 extent_submit_bio_done_t *submit_bio_done; 129 int mirror_num; 130 unsigned long bio_flags; 131 /* 132 * bio_offset is optional, can be used if the pages in the bio 133 * can't tell us where in the file the bio should go 134 */ 135 u64 bio_offset; 136 struct btrfs_work work; 137 blk_status_t status; 138 }; 139 140 /* 141 * Lockdep class keys for extent_buffer->lock's in this root. For a given 142 * eb, the lockdep key is determined by the btrfs_root it belongs to and 143 * the level the eb occupies in the tree. 144 * 145 * Different roots are used for different purposes and may nest inside each 146 * other and they require separate keysets. As lockdep keys should be 147 * static, assign keysets according to the purpose of the root as indicated 148 * by btrfs_root->objectid. This ensures that all special purpose roots 149 * have separate keysets. 150 * 151 * Lock-nesting across peer nodes is always done with the immediate parent 152 * node locked thus preventing deadlock. As lockdep doesn't know this, use 153 * subclass to avoid triggering lockdep warning in such cases. 154 * 155 * The key is set by the readpage_end_io_hook after the buffer has passed 156 * csum validation but before the pages are unlocked. It is also set by 157 * btrfs_init_new_buffer on freshly allocated blocks. 158 * 159 * We also add a check to make sure the highest level of the tree is the 160 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 161 * needs update as well. 162 */ 163 #ifdef CONFIG_DEBUG_LOCK_ALLOC 164 # if BTRFS_MAX_LEVEL != 8 165 # error 166 # endif 167 168 static struct btrfs_lockdep_keyset { 169 u64 id; /* root objectid */ 170 const char *name_stem; /* lock name stem */ 171 char names[BTRFS_MAX_LEVEL + 1][20]; 172 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 173 } btrfs_lockdep_keysets[] = { 174 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 175 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 176 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 177 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 178 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 179 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 180 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 181 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 182 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 183 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 184 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 185 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 186 { .id = 0, .name_stem = "tree" }, 187 }; 188 189 void __init btrfs_init_lockdep(void) 190 { 191 int i, j; 192 193 /* initialize lockdep class names */ 194 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 195 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 196 197 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 198 snprintf(ks->names[j], sizeof(ks->names[j]), 199 "btrfs-%s-%02d", ks->name_stem, j); 200 } 201 } 202 203 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 204 int level) 205 { 206 struct btrfs_lockdep_keyset *ks; 207 208 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 209 210 /* find the matching keyset, id 0 is the default entry */ 211 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 212 if (ks->id == objectid) 213 break; 214 215 lockdep_set_class_and_name(&eb->lock, 216 &ks->keys[level], ks->names[level]); 217 } 218 219 #endif 220 221 /* 222 * extents on the btree inode are pretty simple, there's one extent 223 * that covers the entire device 224 */ 225 struct extent_map *btree_get_extent(struct btrfs_inode *inode, 226 struct page *page, size_t pg_offset, u64 start, u64 len, 227 int create) 228 { 229 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 230 struct extent_map_tree *em_tree = &inode->extent_tree; 231 struct extent_map *em; 232 int ret; 233 234 read_lock(&em_tree->lock); 235 em = lookup_extent_mapping(em_tree, start, len); 236 if (em) { 237 em->bdev = fs_info->fs_devices->latest_bdev; 238 read_unlock(&em_tree->lock); 239 goto out; 240 } 241 read_unlock(&em_tree->lock); 242 243 em = alloc_extent_map(); 244 if (!em) { 245 em = ERR_PTR(-ENOMEM); 246 goto out; 247 } 248 em->start = 0; 249 em->len = (u64)-1; 250 em->block_len = (u64)-1; 251 em->block_start = 0; 252 em->bdev = fs_info->fs_devices->latest_bdev; 253 254 write_lock(&em_tree->lock); 255 ret = add_extent_mapping(em_tree, em, 0); 256 if (ret == -EEXIST) { 257 free_extent_map(em); 258 em = lookup_extent_mapping(em_tree, start, len); 259 if (!em) 260 em = ERR_PTR(-EIO); 261 } else if (ret) { 262 free_extent_map(em); 263 em = ERR_PTR(ret); 264 } 265 write_unlock(&em_tree->lock); 266 267 out: 268 return em; 269 } 270 271 u32 btrfs_csum_data(const char *data, u32 seed, size_t len) 272 { 273 return crc32c(seed, data, len); 274 } 275 276 void btrfs_csum_final(u32 crc, u8 *result) 277 { 278 put_unaligned_le32(~crc, result); 279 } 280 281 /* 282 * compute the csum for a btree block, and either verify it or write it 283 * into the csum field of the block. 284 */ 285 static int csum_tree_block(struct btrfs_fs_info *fs_info, 286 struct extent_buffer *buf, 287 int verify) 288 { 289 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 290 char result[BTRFS_CSUM_SIZE]; 291 unsigned long len; 292 unsigned long cur_len; 293 unsigned long offset = BTRFS_CSUM_SIZE; 294 char *kaddr; 295 unsigned long map_start; 296 unsigned long map_len; 297 int err; 298 u32 crc = ~(u32)0; 299 300 len = buf->len - offset; 301 while (len > 0) { 302 err = map_private_extent_buffer(buf, offset, 32, 303 &kaddr, &map_start, &map_len); 304 if (err) 305 return err; 306 cur_len = min(len, map_len - (offset - map_start)); 307 crc = btrfs_csum_data(kaddr + offset - map_start, 308 crc, cur_len); 309 len -= cur_len; 310 offset += cur_len; 311 } 312 memset(result, 0, BTRFS_CSUM_SIZE); 313 314 btrfs_csum_final(crc, result); 315 316 if (verify) { 317 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 318 u32 val; 319 u32 found = 0; 320 memcpy(&found, result, csum_size); 321 322 read_extent_buffer(buf, &val, 0, csum_size); 323 btrfs_warn_rl(fs_info, 324 "%s checksum verify failed on %llu wanted %X found %X level %d", 325 fs_info->sb->s_id, buf->start, 326 val, found, btrfs_header_level(buf)); 327 return -EUCLEAN; 328 } 329 } else { 330 write_extent_buffer(buf, result, 0, csum_size); 331 } 332 333 return 0; 334 } 335 336 /* 337 * we can't consider a given block up to date unless the transid of the 338 * block matches the transid in the parent node's pointer. This is how we 339 * detect blocks that either didn't get written at all or got written 340 * in the wrong place. 341 */ 342 static int verify_parent_transid(struct extent_io_tree *io_tree, 343 struct extent_buffer *eb, u64 parent_transid, 344 int atomic) 345 { 346 struct extent_state *cached_state = NULL; 347 int ret; 348 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 349 350 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 351 return 0; 352 353 if (atomic) 354 return -EAGAIN; 355 356 if (need_lock) { 357 btrfs_tree_read_lock(eb); 358 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 359 } 360 361 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 362 &cached_state); 363 if (extent_buffer_uptodate(eb) && 364 btrfs_header_generation(eb) == parent_transid) { 365 ret = 0; 366 goto out; 367 } 368 btrfs_err_rl(eb->fs_info, 369 "parent transid verify failed on %llu wanted %llu found %llu", 370 eb->start, 371 parent_transid, btrfs_header_generation(eb)); 372 ret = 1; 373 374 /* 375 * Things reading via commit roots that don't have normal protection, 376 * like send, can have a really old block in cache that may point at a 377 * block that has been freed and re-allocated. So don't clear uptodate 378 * if we find an eb that is under IO (dirty/writeback) because we could 379 * end up reading in the stale data and then writing it back out and 380 * making everybody very sad. 381 */ 382 if (!extent_buffer_under_io(eb)) 383 clear_extent_buffer_uptodate(eb); 384 out: 385 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 386 &cached_state); 387 if (need_lock) 388 btrfs_tree_read_unlock_blocking(eb); 389 return ret; 390 } 391 392 /* 393 * Return 0 if the superblock checksum type matches the checksum value of that 394 * algorithm. Pass the raw disk superblock data. 395 */ 396 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 397 char *raw_disk_sb) 398 { 399 struct btrfs_super_block *disk_sb = 400 (struct btrfs_super_block *)raw_disk_sb; 401 u16 csum_type = btrfs_super_csum_type(disk_sb); 402 int ret = 0; 403 404 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 405 u32 crc = ~(u32)0; 406 char result[sizeof(crc)]; 407 408 /* 409 * The super_block structure does not span the whole 410 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 411 * is filled with zeros and is included in the checksum. 412 */ 413 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 414 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 415 btrfs_csum_final(crc, result); 416 417 if (memcmp(raw_disk_sb, result, sizeof(result))) 418 ret = 1; 419 } 420 421 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 422 btrfs_err(fs_info, "unsupported checksum algorithm %u", 423 csum_type); 424 ret = 1; 425 } 426 427 return ret; 428 } 429 430 static int verify_level_key(struct btrfs_fs_info *fs_info, 431 struct extent_buffer *eb, int level, 432 struct btrfs_key *first_key) 433 { 434 int found_level; 435 struct btrfs_key found_key; 436 int ret; 437 438 found_level = btrfs_header_level(eb); 439 if (found_level != level) { 440 #ifdef CONFIG_BTRFS_DEBUG 441 WARN_ON(1); 442 btrfs_err(fs_info, 443 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 444 eb->start, level, found_level); 445 #endif 446 return -EIO; 447 } 448 449 if (!first_key) 450 return 0; 451 452 if (found_level) 453 btrfs_node_key_to_cpu(eb, &found_key, 0); 454 else 455 btrfs_item_key_to_cpu(eb, &found_key, 0); 456 ret = btrfs_comp_cpu_keys(first_key, &found_key); 457 458 #ifdef CONFIG_BTRFS_DEBUG 459 if (ret) { 460 WARN_ON(1); 461 btrfs_err(fs_info, 462 "tree first key mismatch detected, bytenr=%llu key expected=(%llu, %u, %llu) has=(%llu, %u, %llu)", 463 eb->start, first_key->objectid, first_key->type, 464 first_key->offset, found_key.objectid, 465 found_key.type, found_key.offset); 466 } 467 #endif 468 return ret; 469 } 470 471 /* 472 * helper to read a given tree block, doing retries as required when 473 * the checksums don't match and we have alternate mirrors to try. 474 * 475 * @parent_transid: expected transid, skip check if 0 476 * @level: expected level, mandatory check 477 * @first_key: expected key of first slot, skip check if NULL 478 */ 479 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info, 480 struct extent_buffer *eb, 481 u64 parent_transid, int level, 482 struct btrfs_key *first_key) 483 { 484 struct extent_io_tree *io_tree; 485 int failed = 0; 486 int ret; 487 int num_copies = 0; 488 int mirror_num = 0; 489 int failed_mirror = 0; 490 491 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 492 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 493 while (1) { 494 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE, 495 mirror_num); 496 if (!ret) { 497 if (verify_parent_transid(io_tree, eb, 498 parent_transid, 0)) 499 ret = -EIO; 500 else if (verify_level_key(fs_info, eb, level, 501 first_key)) 502 ret = -EUCLEAN; 503 else 504 break; 505 } 506 507 /* 508 * This buffer's crc is fine, but its contents are corrupted, so 509 * there is no reason to read the other copies, they won't be 510 * any less wrong. 511 */ 512 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags) || 513 ret == -EUCLEAN) 514 break; 515 516 num_copies = btrfs_num_copies(fs_info, 517 eb->start, eb->len); 518 if (num_copies == 1) 519 break; 520 521 if (!failed_mirror) { 522 failed = 1; 523 failed_mirror = eb->read_mirror; 524 } 525 526 mirror_num++; 527 if (mirror_num == failed_mirror) 528 mirror_num++; 529 530 if (mirror_num > num_copies) 531 break; 532 } 533 534 if (failed && !ret && failed_mirror) 535 repair_eb_io_failure(fs_info, eb, failed_mirror); 536 537 return ret; 538 } 539 540 /* 541 * checksum a dirty tree block before IO. This has extra checks to make sure 542 * we only fill in the checksum field in the first page of a multi-page block 543 */ 544 545 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 546 { 547 u64 start = page_offset(page); 548 u64 found_start; 549 struct extent_buffer *eb; 550 551 eb = (struct extent_buffer *)page->private; 552 if (page != eb->pages[0]) 553 return 0; 554 555 found_start = btrfs_header_bytenr(eb); 556 /* 557 * Please do not consolidate these warnings into a single if. 558 * It is useful to know what went wrong. 559 */ 560 if (WARN_ON(found_start != start)) 561 return -EUCLEAN; 562 if (WARN_ON(!PageUptodate(page))) 563 return -EUCLEAN; 564 565 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid, 566 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 567 568 return csum_tree_block(fs_info, eb, 0); 569 } 570 571 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 572 struct extent_buffer *eb) 573 { 574 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 575 u8 fsid[BTRFS_FSID_SIZE]; 576 int ret = 1; 577 578 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 579 while (fs_devices) { 580 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 581 ret = 0; 582 break; 583 } 584 fs_devices = fs_devices->seed; 585 } 586 return ret; 587 } 588 589 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 590 u64 phy_offset, struct page *page, 591 u64 start, u64 end, int mirror) 592 { 593 u64 found_start; 594 int found_level; 595 struct extent_buffer *eb; 596 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 597 struct btrfs_fs_info *fs_info = root->fs_info; 598 int ret = 0; 599 int reads_done; 600 601 if (!page->private) 602 goto out; 603 604 eb = (struct extent_buffer *)page->private; 605 606 /* the pending IO might have been the only thing that kept this buffer 607 * in memory. Make sure we have a ref for all this other checks 608 */ 609 extent_buffer_get(eb); 610 611 reads_done = atomic_dec_and_test(&eb->io_pages); 612 if (!reads_done) 613 goto err; 614 615 eb->read_mirror = mirror; 616 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 617 ret = -EIO; 618 goto err; 619 } 620 621 found_start = btrfs_header_bytenr(eb); 622 if (found_start != eb->start) { 623 btrfs_err_rl(fs_info, "bad tree block start %llu %llu", 624 found_start, eb->start); 625 ret = -EIO; 626 goto err; 627 } 628 if (check_tree_block_fsid(fs_info, eb)) { 629 btrfs_err_rl(fs_info, "bad fsid on block %llu", 630 eb->start); 631 ret = -EIO; 632 goto err; 633 } 634 found_level = btrfs_header_level(eb); 635 if (found_level >= BTRFS_MAX_LEVEL) { 636 btrfs_err(fs_info, "bad tree block level %d", 637 (int)btrfs_header_level(eb)); 638 ret = -EIO; 639 goto err; 640 } 641 642 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 643 eb, found_level); 644 645 ret = csum_tree_block(fs_info, eb, 1); 646 if (ret) 647 goto err; 648 649 /* 650 * If this is a leaf block and it is corrupt, set the corrupt bit so 651 * that we don't try and read the other copies of this block, just 652 * return -EIO. 653 */ 654 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) { 655 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 656 ret = -EIO; 657 } 658 659 if (found_level > 0 && btrfs_check_node(fs_info, eb)) 660 ret = -EIO; 661 662 if (!ret) 663 set_extent_buffer_uptodate(eb); 664 err: 665 if (reads_done && 666 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 667 btree_readahead_hook(eb, ret); 668 669 if (ret) { 670 /* 671 * our io error hook is going to dec the io pages 672 * again, we have to make sure it has something 673 * to decrement 674 */ 675 atomic_inc(&eb->io_pages); 676 clear_extent_buffer_uptodate(eb); 677 } 678 free_extent_buffer(eb); 679 out: 680 return ret; 681 } 682 683 static int btree_io_failed_hook(struct page *page, int failed_mirror) 684 { 685 struct extent_buffer *eb; 686 687 eb = (struct extent_buffer *)page->private; 688 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 689 eb->read_mirror = failed_mirror; 690 atomic_dec(&eb->io_pages); 691 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 692 btree_readahead_hook(eb, -EIO); 693 return -EIO; /* we fixed nothing */ 694 } 695 696 static void end_workqueue_bio(struct bio *bio) 697 { 698 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 699 struct btrfs_fs_info *fs_info; 700 struct btrfs_workqueue *wq; 701 btrfs_work_func_t func; 702 703 fs_info = end_io_wq->info; 704 end_io_wq->status = bio->bi_status; 705 706 if (bio_op(bio) == REQ_OP_WRITE) { 707 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 708 wq = fs_info->endio_meta_write_workers; 709 func = btrfs_endio_meta_write_helper; 710 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 711 wq = fs_info->endio_freespace_worker; 712 func = btrfs_freespace_write_helper; 713 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 714 wq = fs_info->endio_raid56_workers; 715 func = btrfs_endio_raid56_helper; 716 } else { 717 wq = fs_info->endio_write_workers; 718 func = btrfs_endio_write_helper; 719 } 720 } else { 721 if (unlikely(end_io_wq->metadata == 722 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 723 wq = fs_info->endio_repair_workers; 724 func = btrfs_endio_repair_helper; 725 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 726 wq = fs_info->endio_raid56_workers; 727 func = btrfs_endio_raid56_helper; 728 } else if (end_io_wq->metadata) { 729 wq = fs_info->endio_meta_workers; 730 func = btrfs_endio_meta_helper; 731 } else { 732 wq = fs_info->endio_workers; 733 func = btrfs_endio_helper; 734 } 735 } 736 737 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 738 btrfs_queue_work(wq, &end_io_wq->work); 739 } 740 741 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 742 enum btrfs_wq_endio_type metadata) 743 { 744 struct btrfs_end_io_wq *end_io_wq; 745 746 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 747 if (!end_io_wq) 748 return BLK_STS_RESOURCE; 749 750 end_io_wq->private = bio->bi_private; 751 end_io_wq->end_io = bio->bi_end_io; 752 end_io_wq->info = info; 753 end_io_wq->status = 0; 754 end_io_wq->bio = bio; 755 end_io_wq->metadata = metadata; 756 757 bio->bi_private = end_io_wq; 758 bio->bi_end_io = end_workqueue_bio; 759 return 0; 760 } 761 762 static void run_one_async_start(struct btrfs_work *work) 763 { 764 struct async_submit_bio *async; 765 blk_status_t ret; 766 767 async = container_of(work, struct async_submit_bio, work); 768 ret = async->submit_bio_start(async->private_data, async->bio, 769 async->bio_offset); 770 if (ret) 771 async->status = ret; 772 } 773 774 static void run_one_async_done(struct btrfs_work *work) 775 { 776 struct async_submit_bio *async; 777 778 async = container_of(work, struct async_submit_bio, work); 779 780 /* If an error occurred we just want to clean up the bio and move on */ 781 if (async->status) { 782 async->bio->bi_status = async->status; 783 bio_endio(async->bio); 784 return; 785 } 786 787 async->submit_bio_done(async->private_data, async->bio, async->mirror_num); 788 } 789 790 static void run_one_async_free(struct btrfs_work *work) 791 { 792 struct async_submit_bio *async; 793 794 async = container_of(work, struct async_submit_bio, work); 795 kfree(async); 796 } 797 798 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 799 int mirror_num, unsigned long bio_flags, 800 u64 bio_offset, void *private_data, 801 extent_submit_bio_start_t *submit_bio_start, 802 extent_submit_bio_done_t *submit_bio_done) 803 { 804 struct async_submit_bio *async; 805 806 async = kmalloc(sizeof(*async), GFP_NOFS); 807 if (!async) 808 return BLK_STS_RESOURCE; 809 810 async->private_data = private_data; 811 async->fs_info = fs_info; 812 async->bio = bio; 813 async->mirror_num = mirror_num; 814 async->submit_bio_start = submit_bio_start; 815 async->submit_bio_done = submit_bio_done; 816 817 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 818 run_one_async_done, run_one_async_free); 819 820 async->bio_flags = bio_flags; 821 async->bio_offset = bio_offset; 822 823 async->status = 0; 824 825 if (op_is_sync(bio->bi_opf)) 826 btrfs_set_work_high_priority(&async->work); 827 828 btrfs_queue_work(fs_info->workers, &async->work); 829 return 0; 830 } 831 832 static blk_status_t btree_csum_one_bio(struct bio *bio) 833 { 834 struct bio_vec *bvec; 835 struct btrfs_root *root; 836 int i, ret = 0; 837 838 ASSERT(!bio_flagged(bio, BIO_CLONED)); 839 bio_for_each_segment_all(bvec, bio, i) { 840 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 841 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 842 if (ret) 843 break; 844 } 845 846 return errno_to_blk_status(ret); 847 } 848 849 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, 850 u64 bio_offset) 851 { 852 /* 853 * when we're called for a write, we're already in the async 854 * submission context. Just jump into btrfs_map_bio 855 */ 856 return btree_csum_one_bio(bio); 857 } 858 859 static blk_status_t btree_submit_bio_done(void *private_data, struct bio *bio, 860 int mirror_num) 861 { 862 struct inode *inode = private_data; 863 blk_status_t ret; 864 865 /* 866 * when we're called for a write, we're already in the async 867 * submission context. Just jump into btrfs_map_bio 868 */ 869 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1); 870 if (ret) { 871 bio->bi_status = ret; 872 bio_endio(bio); 873 } 874 return ret; 875 } 876 877 static int check_async_write(struct btrfs_inode *bi) 878 { 879 if (atomic_read(&bi->sync_writers)) 880 return 0; 881 #ifdef CONFIG_X86 882 if (static_cpu_has(X86_FEATURE_XMM4_2)) 883 return 0; 884 #endif 885 return 1; 886 } 887 888 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio, 889 int mirror_num, unsigned long bio_flags, 890 u64 bio_offset) 891 { 892 struct inode *inode = private_data; 893 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 894 int async = check_async_write(BTRFS_I(inode)); 895 blk_status_t ret; 896 897 if (bio_op(bio) != REQ_OP_WRITE) { 898 /* 899 * called for a read, do the setup so that checksum validation 900 * can happen in the async kernel threads 901 */ 902 ret = btrfs_bio_wq_end_io(fs_info, bio, 903 BTRFS_WQ_ENDIO_METADATA); 904 if (ret) 905 goto out_w_error; 906 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 907 } else if (!async) { 908 ret = btree_csum_one_bio(bio); 909 if (ret) 910 goto out_w_error; 911 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 912 } else { 913 /* 914 * kthread helpers are used to submit writes so that 915 * checksumming can happen in parallel across all CPUs 916 */ 917 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 918 bio_offset, private_data, 919 btree_submit_bio_start, 920 btree_submit_bio_done); 921 } 922 923 if (ret) 924 goto out_w_error; 925 return 0; 926 927 out_w_error: 928 bio->bi_status = ret; 929 bio_endio(bio); 930 return ret; 931 } 932 933 #ifdef CONFIG_MIGRATION 934 static int btree_migratepage(struct address_space *mapping, 935 struct page *newpage, struct page *page, 936 enum migrate_mode mode) 937 { 938 /* 939 * we can't safely write a btree page from here, 940 * we haven't done the locking hook 941 */ 942 if (PageDirty(page)) 943 return -EAGAIN; 944 /* 945 * Buffers may be managed in a filesystem specific way. 946 * We must have no buffers or drop them. 947 */ 948 if (page_has_private(page) && 949 !try_to_release_page(page, GFP_KERNEL)) 950 return -EAGAIN; 951 return migrate_page(mapping, newpage, page, mode); 952 } 953 #endif 954 955 956 static int btree_writepages(struct address_space *mapping, 957 struct writeback_control *wbc) 958 { 959 struct btrfs_fs_info *fs_info; 960 int ret; 961 962 if (wbc->sync_mode == WB_SYNC_NONE) { 963 964 if (wbc->for_kupdate) 965 return 0; 966 967 fs_info = BTRFS_I(mapping->host)->root->fs_info; 968 /* this is a bit racy, but that's ok */ 969 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 970 BTRFS_DIRTY_METADATA_THRESH); 971 if (ret < 0) 972 return 0; 973 } 974 return btree_write_cache_pages(mapping, wbc); 975 } 976 977 static int btree_readpage(struct file *file, struct page *page) 978 { 979 struct extent_io_tree *tree; 980 tree = &BTRFS_I(page->mapping->host)->io_tree; 981 return extent_read_full_page(tree, page, btree_get_extent, 0); 982 } 983 984 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 985 { 986 if (PageWriteback(page) || PageDirty(page)) 987 return 0; 988 989 return try_release_extent_buffer(page); 990 } 991 992 static void btree_invalidatepage(struct page *page, unsigned int offset, 993 unsigned int length) 994 { 995 struct extent_io_tree *tree; 996 tree = &BTRFS_I(page->mapping->host)->io_tree; 997 extent_invalidatepage(tree, page, offset); 998 btree_releasepage(page, GFP_NOFS); 999 if (PagePrivate(page)) { 1000 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1001 "page private not zero on page %llu", 1002 (unsigned long long)page_offset(page)); 1003 ClearPagePrivate(page); 1004 set_page_private(page, 0); 1005 put_page(page); 1006 } 1007 } 1008 1009 static int btree_set_page_dirty(struct page *page) 1010 { 1011 #ifdef DEBUG 1012 struct extent_buffer *eb; 1013 1014 BUG_ON(!PagePrivate(page)); 1015 eb = (struct extent_buffer *)page->private; 1016 BUG_ON(!eb); 1017 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1018 BUG_ON(!atomic_read(&eb->refs)); 1019 btrfs_assert_tree_locked(eb); 1020 #endif 1021 return __set_page_dirty_nobuffers(page); 1022 } 1023 1024 static const struct address_space_operations btree_aops = { 1025 .readpage = btree_readpage, 1026 .writepages = btree_writepages, 1027 .releasepage = btree_releasepage, 1028 .invalidatepage = btree_invalidatepage, 1029 #ifdef CONFIG_MIGRATION 1030 .migratepage = btree_migratepage, 1031 #endif 1032 .set_page_dirty = btree_set_page_dirty, 1033 }; 1034 1035 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1036 { 1037 struct extent_buffer *buf = NULL; 1038 struct inode *btree_inode = fs_info->btree_inode; 1039 1040 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1041 if (IS_ERR(buf)) 1042 return; 1043 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1044 buf, WAIT_NONE, 0); 1045 free_extent_buffer(buf); 1046 } 1047 1048 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr, 1049 int mirror_num, struct extent_buffer **eb) 1050 { 1051 struct extent_buffer *buf = NULL; 1052 struct inode *btree_inode = fs_info->btree_inode; 1053 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1054 int ret; 1055 1056 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1057 if (IS_ERR(buf)) 1058 return 0; 1059 1060 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1061 1062 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK, 1063 mirror_num); 1064 if (ret) { 1065 free_extent_buffer(buf); 1066 return ret; 1067 } 1068 1069 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1070 free_extent_buffer(buf); 1071 return -EIO; 1072 } else if (extent_buffer_uptodate(buf)) { 1073 *eb = buf; 1074 } else { 1075 free_extent_buffer(buf); 1076 } 1077 return 0; 1078 } 1079 1080 struct extent_buffer *btrfs_find_create_tree_block( 1081 struct btrfs_fs_info *fs_info, 1082 u64 bytenr) 1083 { 1084 if (btrfs_is_testing(fs_info)) 1085 return alloc_test_extent_buffer(fs_info, bytenr); 1086 return alloc_extent_buffer(fs_info, bytenr); 1087 } 1088 1089 1090 int btrfs_write_tree_block(struct extent_buffer *buf) 1091 { 1092 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1093 buf->start + buf->len - 1); 1094 } 1095 1096 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1097 { 1098 filemap_fdatawait_range(buf->pages[0]->mapping, 1099 buf->start, buf->start + buf->len - 1); 1100 } 1101 1102 /* 1103 * Read tree block at logical address @bytenr and do variant basic but critical 1104 * verification. 1105 * 1106 * @parent_transid: expected transid of this tree block, skip check if 0 1107 * @level: expected level, mandatory check 1108 * @first_key: expected key in slot 0, skip check if NULL 1109 */ 1110 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1111 u64 parent_transid, int level, 1112 struct btrfs_key *first_key) 1113 { 1114 struct extent_buffer *buf = NULL; 1115 int ret; 1116 1117 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1118 if (IS_ERR(buf)) 1119 return buf; 1120 1121 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid, 1122 level, first_key); 1123 if (ret) { 1124 free_extent_buffer(buf); 1125 return ERR_PTR(ret); 1126 } 1127 return buf; 1128 1129 } 1130 1131 void clean_tree_block(struct btrfs_fs_info *fs_info, 1132 struct extent_buffer *buf) 1133 { 1134 if (btrfs_header_generation(buf) == 1135 fs_info->running_transaction->transid) { 1136 btrfs_assert_tree_locked(buf); 1137 1138 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1139 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1140 -buf->len, 1141 fs_info->dirty_metadata_batch); 1142 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1143 btrfs_set_lock_blocking(buf); 1144 clear_extent_buffer_dirty(buf); 1145 } 1146 } 1147 } 1148 1149 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1150 { 1151 struct btrfs_subvolume_writers *writers; 1152 int ret; 1153 1154 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1155 if (!writers) 1156 return ERR_PTR(-ENOMEM); 1157 1158 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS); 1159 if (ret < 0) { 1160 kfree(writers); 1161 return ERR_PTR(ret); 1162 } 1163 1164 init_waitqueue_head(&writers->wait); 1165 return writers; 1166 } 1167 1168 static void 1169 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1170 { 1171 percpu_counter_destroy(&writers->counter); 1172 kfree(writers); 1173 } 1174 1175 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1176 u64 objectid) 1177 { 1178 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1179 root->node = NULL; 1180 root->commit_root = NULL; 1181 root->state = 0; 1182 root->orphan_cleanup_state = 0; 1183 1184 root->objectid = objectid; 1185 root->last_trans = 0; 1186 root->highest_objectid = 0; 1187 root->nr_delalloc_inodes = 0; 1188 root->nr_ordered_extents = 0; 1189 root->name = NULL; 1190 root->inode_tree = RB_ROOT; 1191 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1192 root->block_rsv = NULL; 1193 root->orphan_block_rsv = NULL; 1194 1195 INIT_LIST_HEAD(&root->dirty_list); 1196 INIT_LIST_HEAD(&root->root_list); 1197 INIT_LIST_HEAD(&root->delalloc_inodes); 1198 INIT_LIST_HEAD(&root->delalloc_root); 1199 INIT_LIST_HEAD(&root->ordered_extents); 1200 INIT_LIST_HEAD(&root->ordered_root); 1201 INIT_LIST_HEAD(&root->logged_list[0]); 1202 INIT_LIST_HEAD(&root->logged_list[1]); 1203 spin_lock_init(&root->orphan_lock); 1204 spin_lock_init(&root->inode_lock); 1205 spin_lock_init(&root->delalloc_lock); 1206 spin_lock_init(&root->ordered_extent_lock); 1207 spin_lock_init(&root->accounting_lock); 1208 spin_lock_init(&root->log_extents_lock[0]); 1209 spin_lock_init(&root->log_extents_lock[1]); 1210 spin_lock_init(&root->qgroup_meta_rsv_lock); 1211 mutex_init(&root->objectid_mutex); 1212 mutex_init(&root->log_mutex); 1213 mutex_init(&root->ordered_extent_mutex); 1214 mutex_init(&root->delalloc_mutex); 1215 init_waitqueue_head(&root->log_writer_wait); 1216 init_waitqueue_head(&root->log_commit_wait[0]); 1217 init_waitqueue_head(&root->log_commit_wait[1]); 1218 INIT_LIST_HEAD(&root->log_ctxs[0]); 1219 INIT_LIST_HEAD(&root->log_ctxs[1]); 1220 atomic_set(&root->log_commit[0], 0); 1221 atomic_set(&root->log_commit[1], 0); 1222 atomic_set(&root->log_writers, 0); 1223 atomic_set(&root->log_batch, 0); 1224 atomic_set(&root->orphan_inodes, 0); 1225 refcount_set(&root->refs, 1); 1226 atomic_set(&root->will_be_snapshotted, 0); 1227 root->log_transid = 0; 1228 root->log_transid_committed = -1; 1229 root->last_log_commit = 0; 1230 if (!dummy) 1231 extent_io_tree_init(&root->dirty_log_pages, NULL); 1232 1233 memset(&root->root_key, 0, sizeof(root->root_key)); 1234 memset(&root->root_item, 0, sizeof(root->root_item)); 1235 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1236 if (!dummy) 1237 root->defrag_trans_start = fs_info->generation; 1238 else 1239 root->defrag_trans_start = 0; 1240 root->root_key.objectid = objectid; 1241 root->anon_dev = 0; 1242 1243 spin_lock_init(&root->root_item_lock); 1244 } 1245 1246 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1247 gfp_t flags) 1248 { 1249 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1250 if (root) 1251 root->fs_info = fs_info; 1252 return root; 1253 } 1254 1255 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1256 /* Should only be used by the testing infrastructure */ 1257 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1258 { 1259 struct btrfs_root *root; 1260 1261 if (!fs_info) 1262 return ERR_PTR(-EINVAL); 1263 1264 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1265 if (!root) 1266 return ERR_PTR(-ENOMEM); 1267 1268 /* We don't use the stripesize in selftest, set it as sectorsize */ 1269 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 1270 root->alloc_bytenr = 0; 1271 1272 return root; 1273 } 1274 #endif 1275 1276 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1277 struct btrfs_fs_info *fs_info, 1278 u64 objectid) 1279 { 1280 struct extent_buffer *leaf; 1281 struct btrfs_root *tree_root = fs_info->tree_root; 1282 struct btrfs_root *root; 1283 struct btrfs_key key; 1284 int ret = 0; 1285 uuid_le uuid = NULL_UUID_LE; 1286 1287 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1288 if (!root) 1289 return ERR_PTR(-ENOMEM); 1290 1291 __setup_root(root, fs_info, objectid); 1292 root->root_key.objectid = objectid; 1293 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1294 root->root_key.offset = 0; 1295 1296 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1297 if (IS_ERR(leaf)) { 1298 ret = PTR_ERR(leaf); 1299 leaf = NULL; 1300 goto fail; 1301 } 1302 1303 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 1304 btrfs_set_header_bytenr(leaf, leaf->start); 1305 btrfs_set_header_generation(leaf, trans->transid); 1306 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1307 btrfs_set_header_owner(leaf, objectid); 1308 root->node = leaf; 1309 1310 write_extent_buffer_fsid(leaf, fs_info->fsid); 1311 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid); 1312 btrfs_mark_buffer_dirty(leaf); 1313 1314 root->commit_root = btrfs_root_node(root); 1315 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1316 1317 root->root_item.flags = 0; 1318 root->root_item.byte_limit = 0; 1319 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1320 btrfs_set_root_generation(&root->root_item, trans->transid); 1321 btrfs_set_root_level(&root->root_item, 0); 1322 btrfs_set_root_refs(&root->root_item, 1); 1323 btrfs_set_root_used(&root->root_item, leaf->len); 1324 btrfs_set_root_last_snapshot(&root->root_item, 0); 1325 btrfs_set_root_dirid(&root->root_item, 0); 1326 if (is_fstree(objectid)) 1327 uuid_le_gen(&uuid); 1328 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1329 root->root_item.drop_level = 0; 1330 1331 key.objectid = objectid; 1332 key.type = BTRFS_ROOT_ITEM_KEY; 1333 key.offset = 0; 1334 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1335 if (ret) 1336 goto fail; 1337 1338 btrfs_tree_unlock(leaf); 1339 1340 return root; 1341 1342 fail: 1343 if (leaf) { 1344 btrfs_tree_unlock(leaf); 1345 free_extent_buffer(root->commit_root); 1346 free_extent_buffer(leaf); 1347 } 1348 kfree(root); 1349 1350 return ERR_PTR(ret); 1351 } 1352 1353 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1354 struct btrfs_fs_info *fs_info) 1355 { 1356 struct btrfs_root *root; 1357 struct extent_buffer *leaf; 1358 1359 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1360 if (!root) 1361 return ERR_PTR(-ENOMEM); 1362 1363 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1364 1365 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1366 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1367 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1368 1369 /* 1370 * DON'T set REF_COWS for log trees 1371 * 1372 * log trees do not get reference counted because they go away 1373 * before a real commit is actually done. They do store pointers 1374 * to file data extents, and those reference counts still get 1375 * updated (along with back refs to the log tree). 1376 */ 1377 1378 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1379 NULL, 0, 0, 0); 1380 if (IS_ERR(leaf)) { 1381 kfree(root); 1382 return ERR_CAST(leaf); 1383 } 1384 1385 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 1386 btrfs_set_header_bytenr(leaf, leaf->start); 1387 btrfs_set_header_generation(leaf, trans->transid); 1388 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1389 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1390 root->node = leaf; 1391 1392 write_extent_buffer_fsid(root->node, fs_info->fsid); 1393 btrfs_mark_buffer_dirty(root->node); 1394 btrfs_tree_unlock(root->node); 1395 return root; 1396 } 1397 1398 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1399 struct btrfs_fs_info *fs_info) 1400 { 1401 struct btrfs_root *log_root; 1402 1403 log_root = alloc_log_tree(trans, fs_info); 1404 if (IS_ERR(log_root)) 1405 return PTR_ERR(log_root); 1406 WARN_ON(fs_info->log_root_tree); 1407 fs_info->log_root_tree = log_root; 1408 return 0; 1409 } 1410 1411 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1412 struct btrfs_root *root) 1413 { 1414 struct btrfs_fs_info *fs_info = root->fs_info; 1415 struct btrfs_root *log_root; 1416 struct btrfs_inode_item *inode_item; 1417 1418 log_root = alloc_log_tree(trans, fs_info); 1419 if (IS_ERR(log_root)) 1420 return PTR_ERR(log_root); 1421 1422 log_root->last_trans = trans->transid; 1423 log_root->root_key.offset = root->root_key.objectid; 1424 1425 inode_item = &log_root->root_item.inode; 1426 btrfs_set_stack_inode_generation(inode_item, 1); 1427 btrfs_set_stack_inode_size(inode_item, 3); 1428 btrfs_set_stack_inode_nlink(inode_item, 1); 1429 btrfs_set_stack_inode_nbytes(inode_item, 1430 fs_info->nodesize); 1431 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1432 1433 btrfs_set_root_node(&log_root->root_item, log_root->node); 1434 1435 WARN_ON(root->log_root); 1436 root->log_root = log_root; 1437 root->log_transid = 0; 1438 root->log_transid_committed = -1; 1439 root->last_log_commit = 0; 1440 return 0; 1441 } 1442 1443 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1444 struct btrfs_key *key) 1445 { 1446 struct btrfs_root *root; 1447 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1448 struct btrfs_path *path; 1449 u64 generation; 1450 int ret; 1451 int level; 1452 1453 path = btrfs_alloc_path(); 1454 if (!path) 1455 return ERR_PTR(-ENOMEM); 1456 1457 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1458 if (!root) { 1459 ret = -ENOMEM; 1460 goto alloc_fail; 1461 } 1462 1463 __setup_root(root, fs_info, key->objectid); 1464 1465 ret = btrfs_find_root(tree_root, key, path, 1466 &root->root_item, &root->root_key); 1467 if (ret) { 1468 if (ret > 0) 1469 ret = -ENOENT; 1470 goto find_fail; 1471 } 1472 1473 generation = btrfs_root_generation(&root->root_item); 1474 level = btrfs_root_level(&root->root_item); 1475 root->node = read_tree_block(fs_info, 1476 btrfs_root_bytenr(&root->root_item), 1477 generation, level, NULL); 1478 if (IS_ERR(root->node)) { 1479 ret = PTR_ERR(root->node); 1480 goto find_fail; 1481 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1482 ret = -EIO; 1483 free_extent_buffer(root->node); 1484 goto find_fail; 1485 } 1486 root->commit_root = btrfs_root_node(root); 1487 out: 1488 btrfs_free_path(path); 1489 return root; 1490 1491 find_fail: 1492 kfree(root); 1493 alloc_fail: 1494 root = ERR_PTR(ret); 1495 goto out; 1496 } 1497 1498 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1499 struct btrfs_key *location) 1500 { 1501 struct btrfs_root *root; 1502 1503 root = btrfs_read_tree_root(tree_root, location); 1504 if (IS_ERR(root)) 1505 return root; 1506 1507 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1508 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1509 btrfs_check_and_init_root_item(&root->root_item); 1510 } 1511 1512 return root; 1513 } 1514 1515 int btrfs_init_fs_root(struct btrfs_root *root) 1516 { 1517 int ret; 1518 struct btrfs_subvolume_writers *writers; 1519 1520 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1521 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1522 GFP_NOFS); 1523 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1524 ret = -ENOMEM; 1525 goto fail; 1526 } 1527 1528 writers = btrfs_alloc_subvolume_writers(); 1529 if (IS_ERR(writers)) { 1530 ret = PTR_ERR(writers); 1531 goto fail; 1532 } 1533 root->subv_writers = writers; 1534 1535 btrfs_init_free_ino_ctl(root); 1536 spin_lock_init(&root->ino_cache_lock); 1537 init_waitqueue_head(&root->ino_cache_wait); 1538 1539 ret = get_anon_bdev(&root->anon_dev); 1540 if (ret) 1541 goto fail; 1542 1543 mutex_lock(&root->objectid_mutex); 1544 ret = btrfs_find_highest_objectid(root, 1545 &root->highest_objectid); 1546 if (ret) { 1547 mutex_unlock(&root->objectid_mutex); 1548 goto fail; 1549 } 1550 1551 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1552 1553 mutex_unlock(&root->objectid_mutex); 1554 1555 return 0; 1556 fail: 1557 /* the caller is responsible to call free_fs_root */ 1558 return ret; 1559 } 1560 1561 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1562 u64 root_id) 1563 { 1564 struct btrfs_root *root; 1565 1566 spin_lock(&fs_info->fs_roots_radix_lock); 1567 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1568 (unsigned long)root_id); 1569 spin_unlock(&fs_info->fs_roots_radix_lock); 1570 return root; 1571 } 1572 1573 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1574 struct btrfs_root *root) 1575 { 1576 int ret; 1577 1578 ret = radix_tree_preload(GFP_NOFS); 1579 if (ret) 1580 return ret; 1581 1582 spin_lock(&fs_info->fs_roots_radix_lock); 1583 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1584 (unsigned long)root->root_key.objectid, 1585 root); 1586 if (ret == 0) 1587 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1588 spin_unlock(&fs_info->fs_roots_radix_lock); 1589 radix_tree_preload_end(); 1590 1591 return ret; 1592 } 1593 1594 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1595 struct btrfs_key *location, 1596 bool check_ref) 1597 { 1598 struct btrfs_root *root; 1599 struct btrfs_path *path; 1600 struct btrfs_key key; 1601 int ret; 1602 1603 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1604 return fs_info->tree_root; 1605 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1606 return fs_info->extent_root; 1607 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1608 return fs_info->chunk_root; 1609 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1610 return fs_info->dev_root; 1611 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1612 return fs_info->csum_root; 1613 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1614 return fs_info->quota_root ? fs_info->quota_root : 1615 ERR_PTR(-ENOENT); 1616 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1617 return fs_info->uuid_root ? fs_info->uuid_root : 1618 ERR_PTR(-ENOENT); 1619 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1620 return fs_info->free_space_root ? fs_info->free_space_root : 1621 ERR_PTR(-ENOENT); 1622 again: 1623 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1624 if (root) { 1625 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1626 return ERR_PTR(-ENOENT); 1627 return root; 1628 } 1629 1630 root = btrfs_read_fs_root(fs_info->tree_root, location); 1631 if (IS_ERR(root)) 1632 return root; 1633 1634 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1635 ret = -ENOENT; 1636 goto fail; 1637 } 1638 1639 ret = btrfs_init_fs_root(root); 1640 if (ret) 1641 goto fail; 1642 1643 path = btrfs_alloc_path(); 1644 if (!path) { 1645 ret = -ENOMEM; 1646 goto fail; 1647 } 1648 key.objectid = BTRFS_ORPHAN_OBJECTID; 1649 key.type = BTRFS_ORPHAN_ITEM_KEY; 1650 key.offset = location->objectid; 1651 1652 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1653 btrfs_free_path(path); 1654 if (ret < 0) 1655 goto fail; 1656 if (ret == 0) 1657 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1658 1659 ret = btrfs_insert_fs_root(fs_info, root); 1660 if (ret) { 1661 if (ret == -EEXIST) { 1662 free_fs_root(root); 1663 goto again; 1664 } 1665 goto fail; 1666 } 1667 return root; 1668 fail: 1669 free_fs_root(root); 1670 return ERR_PTR(ret); 1671 } 1672 1673 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1674 { 1675 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1676 int ret = 0; 1677 struct btrfs_device *device; 1678 struct backing_dev_info *bdi; 1679 1680 rcu_read_lock(); 1681 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1682 if (!device->bdev) 1683 continue; 1684 bdi = device->bdev->bd_bdi; 1685 if (bdi_congested(bdi, bdi_bits)) { 1686 ret = 1; 1687 break; 1688 } 1689 } 1690 rcu_read_unlock(); 1691 return ret; 1692 } 1693 1694 /* 1695 * called by the kthread helper functions to finally call the bio end_io 1696 * functions. This is where read checksum verification actually happens 1697 */ 1698 static void end_workqueue_fn(struct btrfs_work *work) 1699 { 1700 struct bio *bio; 1701 struct btrfs_end_io_wq *end_io_wq; 1702 1703 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1704 bio = end_io_wq->bio; 1705 1706 bio->bi_status = end_io_wq->status; 1707 bio->bi_private = end_io_wq->private; 1708 bio->bi_end_io = end_io_wq->end_io; 1709 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1710 bio_endio(bio); 1711 } 1712 1713 static int cleaner_kthread(void *arg) 1714 { 1715 struct btrfs_root *root = arg; 1716 struct btrfs_fs_info *fs_info = root->fs_info; 1717 int again; 1718 struct btrfs_trans_handle *trans; 1719 1720 do { 1721 again = 0; 1722 1723 /* Make the cleaner go to sleep early. */ 1724 if (btrfs_need_cleaner_sleep(fs_info)) 1725 goto sleep; 1726 1727 /* 1728 * Do not do anything if we might cause open_ctree() to block 1729 * before we have finished mounting the filesystem. 1730 */ 1731 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1732 goto sleep; 1733 1734 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1735 goto sleep; 1736 1737 /* 1738 * Avoid the problem that we change the status of the fs 1739 * during the above check and trylock. 1740 */ 1741 if (btrfs_need_cleaner_sleep(fs_info)) { 1742 mutex_unlock(&fs_info->cleaner_mutex); 1743 goto sleep; 1744 } 1745 1746 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 1747 btrfs_run_delayed_iputs(fs_info); 1748 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 1749 1750 again = btrfs_clean_one_deleted_snapshot(root); 1751 mutex_unlock(&fs_info->cleaner_mutex); 1752 1753 /* 1754 * The defragger has dealt with the R/O remount and umount, 1755 * needn't do anything special here. 1756 */ 1757 btrfs_run_defrag_inodes(fs_info); 1758 1759 /* 1760 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1761 * with relocation (btrfs_relocate_chunk) and relocation 1762 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1763 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1764 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1765 * unused block groups. 1766 */ 1767 btrfs_delete_unused_bgs(fs_info); 1768 sleep: 1769 if (!again) { 1770 set_current_state(TASK_INTERRUPTIBLE); 1771 if (!kthread_should_stop()) 1772 schedule(); 1773 __set_current_state(TASK_RUNNING); 1774 } 1775 } while (!kthread_should_stop()); 1776 1777 /* 1778 * Transaction kthread is stopped before us and wakes us up. 1779 * However we might have started a new transaction and COWed some 1780 * tree blocks when deleting unused block groups for example. So 1781 * make sure we commit the transaction we started to have a clean 1782 * shutdown when evicting the btree inode - if it has dirty pages 1783 * when we do the final iput() on it, eviction will trigger a 1784 * writeback for it which will fail with null pointer dereferences 1785 * since work queues and other resources were already released and 1786 * destroyed by the time the iput/eviction/writeback is made. 1787 */ 1788 trans = btrfs_attach_transaction(root); 1789 if (IS_ERR(trans)) { 1790 if (PTR_ERR(trans) != -ENOENT) 1791 btrfs_err(fs_info, 1792 "cleaner transaction attach returned %ld", 1793 PTR_ERR(trans)); 1794 } else { 1795 int ret; 1796 1797 ret = btrfs_commit_transaction(trans); 1798 if (ret) 1799 btrfs_err(fs_info, 1800 "cleaner open transaction commit returned %d", 1801 ret); 1802 } 1803 1804 return 0; 1805 } 1806 1807 static int transaction_kthread(void *arg) 1808 { 1809 struct btrfs_root *root = arg; 1810 struct btrfs_fs_info *fs_info = root->fs_info; 1811 struct btrfs_trans_handle *trans; 1812 struct btrfs_transaction *cur; 1813 u64 transid; 1814 unsigned long now; 1815 unsigned long delay; 1816 bool cannot_commit; 1817 1818 do { 1819 cannot_commit = false; 1820 delay = HZ * fs_info->commit_interval; 1821 mutex_lock(&fs_info->transaction_kthread_mutex); 1822 1823 spin_lock(&fs_info->trans_lock); 1824 cur = fs_info->running_transaction; 1825 if (!cur) { 1826 spin_unlock(&fs_info->trans_lock); 1827 goto sleep; 1828 } 1829 1830 now = get_seconds(); 1831 if (cur->state < TRANS_STATE_BLOCKED && 1832 (now < cur->start_time || 1833 now - cur->start_time < fs_info->commit_interval)) { 1834 spin_unlock(&fs_info->trans_lock); 1835 delay = HZ * 5; 1836 goto sleep; 1837 } 1838 transid = cur->transid; 1839 spin_unlock(&fs_info->trans_lock); 1840 1841 /* If the file system is aborted, this will always fail. */ 1842 trans = btrfs_attach_transaction(root); 1843 if (IS_ERR(trans)) { 1844 if (PTR_ERR(trans) != -ENOENT) 1845 cannot_commit = true; 1846 goto sleep; 1847 } 1848 if (transid == trans->transid) { 1849 btrfs_commit_transaction(trans); 1850 } else { 1851 btrfs_end_transaction(trans); 1852 } 1853 sleep: 1854 wake_up_process(fs_info->cleaner_kthread); 1855 mutex_unlock(&fs_info->transaction_kthread_mutex); 1856 1857 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1858 &fs_info->fs_state))) 1859 btrfs_cleanup_transaction(fs_info); 1860 if (!kthread_should_stop() && 1861 (!btrfs_transaction_blocked(fs_info) || 1862 cannot_commit)) 1863 schedule_timeout_interruptible(delay); 1864 } while (!kthread_should_stop()); 1865 return 0; 1866 } 1867 1868 /* 1869 * this will find the highest generation in the array of 1870 * root backups. The index of the highest array is returned, 1871 * or -1 if we can't find anything. 1872 * 1873 * We check to make sure the array is valid by comparing the 1874 * generation of the latest root in the array with the generation 1875 * in the super block. If they don't match we pitch it. 1876 */ 1877 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1878 { 1879 u64 cur; 1880 int newest_index = -1; 1881 struct btrfs_root_backup *root_backup; 1882 int i; 1883 1884 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1885 root_backup = info->super_copy->super_roots + i; 1886 cur = btrfs_backup_tree_root_gen(root_backup); 1887 if (cur == newest_gen) 1888 newest_index = i; 1889 } 1890 1891 /* check to see if we actually wrapped around */ 1892 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1893 root_backup = info->super_copy->super_roots; 1894 cur = btrfs_backup_tree_root_gen(root_backup); 1895 if (cur == newest_gen) 1896 newest_index = 0; 1897 } 1898 return newest_index; 1899 } 1900 1901 1902 /* 1903 * find the oldest backup so we know where to store new entries 1904 * in the backup array. This will set the backup_root_index 1905 * field in the fs_info struct 1906 */ 1907 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1908 u64 newest_gen) 1909 { 1910 int newest_index = -1; 1911 1912 newest_index = find_newest_super_backup(info, newest_gen); 1913 /* if there was garbage in there, just move along */ 1914 if (newest_index == -1) { 1915 info->backup_root_index = 0; 1916 } else { 1917 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1918 } 1919 } 1920 1921 /* 1922 * copy all the root pointers into the super backup array. 1923 * this will bump the backup pointer by one when it is 1924 * done 1925 */ 1926 static void backup_super_roots(struct btrfs_fs_info *info) 1927 { 1928 int next_backup; 1929 struct btrfs_root_backup *root_backup; 1930 int last_backup; 1931 1932 next_backup = info->backup_root_index; 1933 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1934 BTRFS_NUM_BACKUP_ROOTS; 1935 1936 /* 1937 * just overwrite the last backup if we're at the same generation 1938 * this happens only at umount 1939 */ 1940 root_backup = info->super_for_commit->super_roots + last_backup; 1941 if (btrfs_backup_tree_root_gen(root_backup) == 1942 btrfs_header_generation(info->tree_root->node)) 1943 next_backup = last_backup; 1944 1945 root_backup = info->super_for_commit->super_roots + next_backup; 1946 1947 /* 1948 * make sure all of our padding and empty slots get zero filled 1949 * regardless of which ones we use today 1950 */ 1951 memset(root_backup, 0, sizeof(*root_backup)); 1952 1953 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1954 1955 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1956 btrfs_set_backup_tree_root_gen(root_backup, 1957 btrfs_header_generation(info->tree_root->node)); 1958 1959 btrfs_set_backup_tree_root_level(root_backup, 1960 btrfs_header_level(info->tree_root->node)); 1961 1962 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1963 btrfs_set_backup_chunk_root_gen(root_backup, 1964 btrfs_header_generation(info->chunk_root->node)); 1965 btrfs_set_backup_chunk_root_level(root_backup, 1966 btrfs_header_level(info->chunk_root->node)); 1967 1968 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1969 btrfs_set_backup_extent_root_gen(root_backup, 1970 btrfs_header_generation(info->extent_root->node)); 1971 btrfs_set_backup_extent_root_level(root_backup, 1972 btrfs_header_level(info->extent_root->node)); 1973 1974 /* 1975 * we might commit during log recovery, which happens before we set 1976 * the fs_root. Make sure it is valid before we fill it in. 1977 */ 1978 if (info->fs_root && info->fs_root->node) { 1979 btrfs_set_backup_fs_root(root_backup, 1980 info->fs_root->node->start); 1981 btrfs_set_backup_fs_root_gen(root_backup, 1982 btrfs_header_generation(info->fs_root->node)); 1983 btrfs_set_backup_fs_root_level(root_backup, 1984 btrfs_header_level(info->fs_root->node)); 1985 } 1986 1987 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1988 btrfs_set_backup_dev_root_gen(root_backup, 1989 btrfs_header_generation(info->dev_root->node)); 1990 btrfs_set_backup_dev_root_level(root_backup, 1991 btrfs_header_level(info->dev_root->node)); 1992 1993 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1994 btrfs_set_backup_csum_root_gen(root_backup, 1995 btrfs_header_generation(info->csum_root->node)); 1996 btrfs_set_backup_csum_root_level(root_backup, 1997 btrfs_header_level(info->csum_root->node)); 1998 1999 btrfs_set_backup_total_bytes(root_backup, 2000 btrfs_super_total_bytes(info->super_copy)); 2001 btrfs_set_backup_bytes_used(root_backup, 2002 btrfs_super_bytes_used(info->super_copy)); 2003 btrfs_set_backup_num_devices(root_backup, 2004 btrfs_super_num_devices(info->super_copy)); 2005 2006 /* 2007 * if we don't copy this out to the super_copy, it won't get remembered 2008 * for the next commit 2009 */ 2010 memcpy(&info->super_copy->super_roots, 2011 &info->super_for_commit->super_roots, 2012 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2013 } 2014 2015 /* 2016 * this copies info out of the root backup array and back into 2017 * the in-memory super block. It is meant to help iterate through 2018 * the array, so you send it the number of backups you've already 2019 * tried and the last backup index you used. 2020 * 2021 * this returns -1 when it has tried all the backups 2022 */ 2023 static noinline int next_root_backup(struct btrfs_fs_info *info, 2024 struct btrfs_super_block *super, 2025 int *num_backups_tried, int *backup_index) 2026 { 2027 struct btrfs_root_backup *root_backup; 2028 int newest = *backup_index; 2029 2030 if (*num_backups_tried == 0) { 2031 u64 gen = btrfs_super_generation(super); 2032 2033 newest = find_newest_super_backup(info, gen); 2034 if (newest == -1) 2035 return -1; 2036 2037 *backup_index = newest; 2038 *num_backups_tried = 1; 2039 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2040 /* we've tried all the backups, all done */ 2041 return -1; 2042 } else { 2043 /* jump to the next oldest backup */ 2044 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2045 BTRFS_NUM_BACKUP_ROOTS; 2046 *backup_index = newest; 2047 *num_backups_tried += 1; 2048 } 2049 root_backup = super->super_roots + newest; 2050 2051 btrfs_set_super_generation(super, 2052 btrfs_backup_tree_root_gen(root_backup)); 2053 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2054 btrfs_set_super_root_level(super, 2055 btrfs_backup_tree_root_level(root_backup)); 2056 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2057 2058 /* 2059 * fixme: the total bytes and num_devices need to match or we should 2060 * need a fsck 2061 */ 2062 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2063 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2064 return 0; 2065 } 2066 2067 /* helper to cleanup workers */ 2068 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2069 { 2070 btrfs_destroy_workqueue(fs_info->fixup_workers); 2071 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2072 btrfs_destroy_workqueue(fs_info->workers); 2073 btrfs_destroy_workqueue(fs_info->endio_workers); 2074 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2075 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2076 btrfs_destroy_workqueue(fs_info->rmw_workers); 2077 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2078 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2079 btrfs_destroy_workqueue(fs_info->submit_workers); 2080 btrfs_destroy_workqueue(fs_info->delayed_workers); 2081 btrfs_destroy_workqueue(fs_info->caching_workers); 2082 btrfs_destroy_workqueue(fs_info->readahead_workers); 2083 btrfs_destroy_workqueue(fs_info->flush_workers); 2084 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2085 btrfs_destroy_workqueue(fs_info->extent_workers); 2086 /* 2087 * Now that all other work queues are destroyed, we can safely destroy 2088 * the queues used for metadata I/O, since tasks from those other work 2089 * queues can do metadata I/O operations. 2090 */ 2091 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2092 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2093 } 2094 2095 static void free_root_extent_buffers(struct btrfs_root *root) 2096 { 2097 if (root) { 2098 free_extent_buffer(root->node); 2099 free_extent_buffer(root->commit_root); 2100 root->node = NULL; 2101 root->commit_root = NULL; 2102 } 2103 } 2104 2105 /* helper to cleanup tree roots */ 2106 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2107 { 2108 free_root_extent_buffers(info->tree_root); 2109 2110 free_root_extent_buffers(info->dev_root); 2111 free_root_extent_buffers(info->extent_root); 2112 free_root_extent_buffers(info->csum_root); 2113 free_root_extent_buffers(info->quota_root); 2114 free_root_extent_buffers(info->uuid_root); 2115 if (chunk_root) 2116 free_root_extent_buffers(info->chunk_root); 2117 free_root_extent_buffers(info->free_space_root); 2118 } 2119 2120 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2121 { 2122 int ret; 2123 struct btrfs_root *gang[8]; 2124 int i; 2125 2126 while (!list_empty(&fs_info->dead_roots)) { 2127 gang[0] = list_entry(fs_info->dead_roots.next, 2128 struct btrfs_root, root_list); 2129 list_del(&gang[0]->root_list); 2130 2131 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2132 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2133 } else { 2134 free_extent_buffer(gang[0]->node); 2135 free_extent_buffer(gang[0]->commit_root); 2136 btrfs_put_fs_root(gang[0]); 2137 } 2138 } 2139 2140 while (1) { 2141 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2142 (void **)gang, 0, 2143 ARRAY_SIZE(gang)); 2144 if (!ret) 2145 break; 2146 for (i = 0; i < ret; i++) 2147 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2148 } 2149 2150 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2151 btrfs_free_log_root_tree(NULL, fs_info); 2152 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 2153 } 2154 } 2155 2156 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2157 { 2158 mutex_init(&fs_info->scrub_lock); 2159 atomic_set(&fs_info->scrubs_running, 0); 2160 atomic_set(&fs_info->scrub_pause_req, 0); 2161 atomic_set(&fs_info->scrubs_paused, 0); 2162 atomic_set(&fs_info->scrub_cancel_req, 0); 2163 init_waitqueue_head(&fs_info->scrub_pause_wait); 2164 fs_info->scrub_workers_refcnt = 0; 2165 } 2166 2167 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2168 { 2169 spin_lock_init(&fs_info->balance_lock); 2170 mutex_init(&fs_info->balance_mutex); 2171 atomic_set(&fs_info->balance_running, 0); 2172 atomic_set(&fs_info->balance_pause_req, 0); 2173 atomic_set(&fs_info->balance_cancel_req, 0); 2174 fs_info->balance_ctl = NULL; 2175 init_waitqueue_head(&fs_info->balance_wait_q); 2176 } 2177 2178 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2179 { 2180 struct inode *inode = fs_info->btree_inode; 2181 2182 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2183 set_nlink(inode, 1); 2184 /* 2185 * we set the i_size on the btree inode to the max possible int. 2186 * the real end of the address space is determined by all of 2187 * the devices in the system 2188 */ 2189 inode->i_size = OFFSET_MAX; 2190 inode->i_mapping->a_ops = &btree_aops; 2191 2192 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2193 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode); 2194 BTRFS_I(inode)->io_tree.track_uptodate = 0; 2195 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2196 2197 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2198 2199 BTRFS_I(inode)->root = fs_info->tree_root; 2200 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2201 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2202 btrfs_insert_inode_hash(inode); 2203 } 2204 2205 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2206 { 2207 fs_info->dev_replace.lock_owner = 0; 2208 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2209 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2210 rwlock_init(&fs_info->dev_replace.lock); 2211 atomic_set(&fs_info->dev_replace.read_locks, 0); 2212 atomic_set(&fs_info->dev_replace.blocking_readers, 0); 2213 init_waitqueue_head(&fs_info->replace_wait); 2214 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq); 2215 } 2216 2217 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2218 { 2219 spin_lock_init(&fs_info->qgroup_lock); 2220 mutex_init(&fs_info->qgroup_ioctl_lock); 2221 fs_info->qgroup_tree = RB_ROOT; 2222 fs_info->qgroup_op_tree = RB_ROOT; 2223 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2224 fs_info->qgroup_seq = 1; 2225 fs_info->qgroup_ulist = NULL; 2226 fs_info->qgroup_rescan_running = false; 2227 mutex_init(&fs_info->qgroup_rescan_lock); 2228 } 2229 2230 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2231 struct btrfs_fs_devices *fs_devices) 2232 { 2233 u32 max_active = fs_info->thread_pool_size; 2234 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2235 2236 fs_info->workers = 2237 btrfs_alloc_workqueue(fs_info, "worker", 2238 flags | WQ_HIGHPRI, max_active, 16); 2239 2240 fs_info->delalloc_workers = 2241 btrfs_alloc_workqueue(fs_info, "delalloc", 2242 flags, max_active, 2); 2243 2244 fs_info->flush_workers = 2245 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2246 flags, max_active, 0); 2247 2248 fs_info->caching_workers = 2249 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2250 2251 /* 2252 * a higher idle thresh on the submit workers makes it much more 2253 * likely that bios will be send down in a sane order to the 2254 * devices 2255 */ 2256 fs_info->submit_workers = 2257 btrfs_alloc_workqueue(fs_info, "submit", flags, 2258 min_t(u64, fs_devices->num_devices, 2259 max_active), 64); 2260 2261 fs_info->fixup_workers = 2262 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2263 2264 /* 2265 * endios are largely parallel and should have a very 2266 * low idle thresh 2267 */ 2268 fs_info->endio_workers = 2269 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2270 fs_info->endio_meta_workers = 2271 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2272 max_active, 4); 2273 fs_info->endio_meta_write_workers = 2274 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2275 max_active, 2); 2276 fs_info->endio_raid56_workers = 2277 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2278 max_active, 4); 2279 fs_info->endio_repair_workers = 2280 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2281 fs_info->rmw_workers = 2282 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2283 fs_info->endio_write_workers = 2284 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2285 max_active, 2); 2286 fs_info->endio_freespace_worker = 2287 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2288 max_active, 0); 2289 fs_info->delayed_workers = 2290 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2291 max_active, 0); 2292 fs_info->readahead_workers = 2293 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2294 max_active, 2); 2295 fs_info->qgroup_rescan_workers = 2296 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2297 fs_info->extent_workers = 2298 btrfs_alloc_workqueue(fs_info, "extent-refs", flags, 2299 min_t(u64, fs_devices->num_devices, 2300 max_active), 8); 2301 2302 if (!(fs_info->workers && fs_info->delalloc_workers && 2303 fs_info->submit_workers && fs_info->flush_workers && 2304 fs_info->endio_workers && fs_info->endio_meta_workers && 2305 fs_info->endio_meta_write_workers && 2306 fs_info->endio_repair_workers && 2307 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2308 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2309 fs_info->caching_workers && fs_info->readahead_workers && 2310 fs_info->fixup_workers && fs_info->delayed_workers && 2311 fs_info->extent_workers && 2312 fs_info->qgroup_rescan_workers)) { 2313 return -ENOMEM; 2314 } 2315 2316 return 0; 2317 } 2318 2319 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2320 struct btrfs_fs_devices *fs_devices) 2321 { 2322 int ret; 2323 struct btrfs_root *log_tree_root; 2324 struct btrfs_super_block *disk_super = fs_info->super_copy; 2325 u64 bytenr = btrfs_super_log_root(disk_super); 2326 int level = btrfs_super_log_root_level(disk_super); 2327 2328 if (fs_devices->rw_devices == 0) { 2329 btrfs_warn(fs_info, "log replay required on RO media"); 2330 return -EIO; 2331 } 2332 2333 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2334 if (!log_tree_root) 2335 return -ENOMEM; 2336 2337 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2338 2339 log_tree_root->node = read_tree_block(fs_info, bytenr, 2340 fs_info->generation + 1, 2341 level, NULL); 2342 if (IS_ERR(log_tree_root->node)) { 2343 btrfs_warn(fs_info, "failed to read log tree"); 2344 ret = PTR_ERR(log_tree_root->node); 2345 kfree(log_tree_root); 2346 return ret; 2347 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2348 btrfs_err(fs_info, "failed to read log tree"); 2349 free_extent_buffer(log_tree_root->node); 2350 kfree(log_tree_root); 2351 return -EIO; 2352 } 2353 /* returns with log_tree_root freed on success */ 2354 ret = btrfs_recover_log_trees(log_tree_root); 2355 if (ret) { 2356 btrfs_handle_fs_error(fs_info, ret, 2357 "Failed to recover log tree"); 2358 free_extent_buffer(log_tree_root->node); 2359 kfree(log_tree_root); 2360 return ret; 2361 } 2362 2363 if (sb_rdonly(fs_info->sb)) { 2364 ret = btrfs_commit_super(fs_info); 2365 if (ret) 2366 return ret; 2367 } 2368 2369 return 0; 2370 } 2371 2372 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2373 { 2374 struct btrfs_root *tree_root = fs_info->tree_root; 2375 struct btrfs_root *root; 2376 struct btrfs_key location; 2377 int ret; 2378 2379 BUG_ON(!fs_info->tree_root); 2380 2381 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2382 location.type = BTRFS_ROOT_ITEM_KEY; 2383 location.offset = 0; 2384 2385 root = btrfs_read_tree_root(tree_root, &location); 2386 if (IS_ERR(root)) { 2387 ret = PTR_ERR(root); 2388 goto out; 2389 } 2390 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2391 fs_info->extent_root = root; 2392 2393 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2394 root = btrfs_read_tree_root(tree_root, &location); 2395 if (IS_ERR(root)) { 2396 ret = PTR_ERR(root); 2397 goto out; 2398 } 2399 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2400 fs_info->dev_root = root; 2401 btrfs_init_devices_late(fs_info); 2402 2403 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2404 root = btrfs_read_tree_root(tree_root, &location); 2405 if (IS_ERR(root)) { 2406 ret = PTR_ERR(root); 2407 goto out; 2408 } 2409 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2410 fs_info->csum_root = root; 2411 2412 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2413 root = btrfs_read_tree_root(tree_root, &location); 2414 if (!IS_ERR(root)) { 2415 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2416 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2417 fs_info->quota_root = root; 2418 } 2419 2420 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2421 root = btrfs_read_tree_root(tree_root, &location); 2422 if (IS_ERR(root)) { 2423 ret = PTR_ERR(root); 2424 if (ret != -ENOENT) 2425 goto out; 2426 } else { 2427 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2428 fs_info->uuid_root = root; 2429 } 2430 2431 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2432 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2433 root = btrfs_read_tree_root(tree_root, &location); 2434 if (IS_ERR(root)) { 2435 ret = PTR_ERR(root); 2436 goto out; 2437 } 2438 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2439 fs_info->free_space_root = root; 2440 } 2441 2442 return 0; 2443 out: 2444 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2445 location.objectid, ret); 2446 return ret; 2447 } 2448 2449 int open_ctree(struct super_block *sb, 2450 struct btrfs_fs_devices *fs_devices, 2451 char *options) 2452 { 2453 u32 sectorsize; 2454 u32 nodesize; 2455 u32 stripesize; 2456 u64 generation; 2457 u64 features; 2458 struct btrfs_key location; 2459 struct buffer_head *bh; 2460 struct btrfs_super_block *disk_super; 2461 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2462 struct btrfs_root *tree_root; 2463 struct btrfs_root *chunk_root; 2464 int ret; 2465 int err = -EINVAL; 2466 int num_backups_tried = 0; 2467 int backup_index = 0; 2468 int clear_free_space_tree = 0; 2469 int level; 2470 2471 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2472 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2473 if (!tree_root || !chunk_root) { 2474 err = -ENOMEM; 2475 goto fail; 2476 } 2477 2478 ret = init_srcu_struct(&fs_info->subvol_srcu); 2479 if (ret) { 2480 err = ret; 2481 goto fail; 2482 } 2483 2484 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2485 if (ret) { 2486 err = ret; 2487 goto fail_srcu; 2488 } 2489 fs_info->dirty_metadata_batch = PAGE_SIZE * 2490 (1 + ilog2(nr_cpu_ids)); 2491 2492 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2493 if (ret) { 2494 err = ret; 2495 goto fail_dirty_metadata_bytes; 2496 } 2497 2498 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2499 if (ret) { 2500 err = ret; 2501 goto fail_delalloc_bytes; 2502 } 2503 2504 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2505 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2506 INIT_LIST_HEAD(&fs_info->trans_list); 2507 INIT_LIST_HEAD(&fs_info->dead_roots); 2508 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2509 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2510 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2511 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs); 2512 spin_lock_init(&fs_info->pending_raid_kobjs_lock); 2513 spin_lock_init(&fs_info->delalloc_root_lock); 2514 spin_lock_init(&fs_info->trans_lock); 2515 spin_lock_init(&fs_info->fs_roots_radix_lock); 2516 spin_lock_init(&fs_info->delayed_iput_lock); 2517 spin_lock_init(&fs_info->defrag_inodes_lock); 2518 spin_lock_init(&fs_info->tree_mod_seq_lock); 2519 spin_lock_init(&fs_info->super_lock); 2520 spin_lock_init(&fs_info->qgroup_op_lock); 2521 spin_lock_init(&fs_info->buffer_lock); 2522 spin_lock_init(&fs_info->unused_bgs_lock); 2523 rwlock_init(&fs_info->tree_mod_log_lock); 2524 mutex_init(&fs_info->unused_bg_unpin_mutex); 2525 mutex_init(&fs_info->delete_unused_bgs_mutex); 2526 mutex_init(&fs_info->reloc_mutex); 2527 mutex_init(&fs_info->delalloc_root_mutex); 2528 mutex_init(&fs_info->cleaner_delayed_iput_mutex); 2529 seqlock_init(&fs_info->profiles_lock); 2530 2531 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2532 INIT_LIST_HEAD(&fs_info->space_info); 2533 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2534 INIT_LIST_HEAD(&fs_info->unused_bgs); 2535 btrfs_mapping_init(&fs_info->mapping_tree); 2536 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2537 BTRFS_BLOCK_RSV_GLOBAL); 2538 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2539 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2540 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2541 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2542 BTRFS_BLOCK_RSV_DELOPS); 2543 atomic_set(&fs_info->async_delalloc_pages, 0); 2544 atomic_set(&fs_info->defrag_running, 0); 2545 atomic_set(&fs_info->qgroup_op_seq, 0); 2546 atomic_set(&fs_info->reada_works_cnt, 0); 2547 atomic64_set(&fs_info->tree_mod_seq, 0); 2548 fs_info->sb = sb; 2549 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2550 fs_info->metadata_ratio = 0; 2551 fs_info->defrag_inodes = RB_ROOT; 2552 atomic64_set(&fs_info->free_chunk_space, 0); 2553 fs_info->tree_mod_log = RB_ROOT; 2554 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2555 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2556 /* readahead state */ 2557 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2558 spin_lock_init(&fs_info->reada_lock); 2559 btrfs_init_ref_verify(fs_info); 2560 2561 fs_info->thread_pool_size = min_t(unsigned long, 2562 num_online_cpus() + 2, 8); 2563 2564 INIT_LIST_HEAD(&fs_info->ordered_roots); 2565 spin_lock_init(&fs_info->ordered_root_lock); 2566 2567 fs_info->btree_inode = new_inode(sb); 2568 if (!fs_info->btree_inode) { 2569 err = -ENOMEM; 2570 goto fail_bio_counter; 2571 } 2572 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2573 2574 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2575 GFP_KERNEL); 2576 if (!fs_info->delayed_root) { 2577 err = -ENOMEM; 2578 goto fail_iput; 2579 } 2580 btrfs_init_delayed_root(fs_info->delayed_root); 2581 2582 btrfs_init_scrub(fs_info); 2583 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2584 fs_info->check_integrity_print_mask = 0; 2585 #endif 2586 btrfs_init_balance(fs_info); 2587 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2588 2589 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2590 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2591 2592 btrfs_init_btree_inode(fs_info); 2593 2594 spin_lock_init(&fs_info->block_group_cache_lock); 2595 fs_info->block_group_cache_tree = RB_ROOT; 2596 fs_info->first_logical_byte = (u64)-1; 2597 2598 extent_io_tree_init(&fs_info->freed_extents[0], NULL); 2599 extent_io_tree_init(&fs_info->freed_extents[1], NULL); 2600 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2601 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2602 2603 mutex_init(&fs_info->ordered_operations_mutex); 2604 mutex_init(&fs_info->tree_log_mutex); 2605 mutex_init(&fs_info->chunk_mutex); 2606 mutex_init(&fs_info->transaction_kthread_mutex); 2607 mutex_init(&fs_info->cleaner_mutex); 2608 mutex_init(&fs_info->volume_mutex); 2609 mutex_init(&fs_info->ro_block_group_mutex); 2610 init_rwsem(&fs_info->commit_root_sem); 2611 init_rwsem(&fs_info->cleanup_work_sem); 2612 init_rwsem(&fs_info->subvol_sem); 2613 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2614 2615 btrfs_init_dev_replace_locks(fs_info); 2616 btrfs_init_qgroup(fs_info); 2617 2618 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2619 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2620 2621 init_waitqueue_head(&fs_info->transaction_throttle); 2622 init_waitqueue_head(&fs_info->transaction_wait); 2623 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2624 init_waitqueue_head(&fs_info->async_submit_wait); 2625 2626 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2627 2628 /* Usable values until the real ones are cached from the superblock */ 2629 fs_info->nodesize = 4096; 2630 fs_info->sectorsize = 4096; 2631 fs_info->stripesize = 4096; 2632 2633 ret = btrfs_alloc_stripe_hash_table(fs_info); 2634 if (ret) { 2635 err = ret; 2636 goto fail_alloc; 2637 } 2638 2639 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 2640 2641 invalidate_bdev(fs_devices->latest_bdev); 2642 2643 /* 2644 * Read super block and check the signature bytes only 2645 */ 2646 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2647 if (IS_ERR(bh)) { 2648 err = PTR_ERR(bh); 2649 goto fail_alloc; 2650 } 2651 2652 /* 2653 * We want to check superblock checksum, the type is stored inside. 2654 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2655 */ 2656 if (btrfs_check_super_csum(fs_info, bh->b_data)) { 2657 btrfs_err(fs_info, "superblock checksum mismatch"); 2658 err = -EINVAL; 2659 brelse(bh); 2660 goto fail_alloc; 2661 } 2662 2663 /* 2664 * super_copy is zeroed at allocation time and we never touch the 2665 * following bytes up to INFO_SIZE, the checksum is calculated from 2666 * the whole block of INFO_SIZE 2667 */ 2668 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2669 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2670 sizeof(*fs_info->super_for_commit)); 2671 brelse(bh); 2672 2673 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2674 2675 ret = btrfs_check_super_valid(fs_info); 2676 if (ret) { 2677 btrfs_err(fs_info, "superblock contains fatal errors"); 2678 err = -EINVAL; 2679 goto fail_alloc; 2680 } 2681 2682 disk_super = fs_info->super_copy; 2683 if (!btrfs_super_root(disk_super)) 2684 goto fail_alloc; 2685 2686 /* check FS state, whether FS is broken. */ 2687 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2688 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2689 2690 /* 2691 * run through our array of backup supers and setup 2692 * our ring pointer to the oldest one 2693 */ 2694 generation = btrfs_super_generation(disk_super); 2695 find_oldest_super_backup(fs_info, generation); 2696 2697 /* 2698 * In the long term, we'll store the compression type in the super 2699 * block, and it'll be used for per file compression control. 2700 */ 2701 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2702 2703 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2704 if (ret) { 2705 err = ret; 2706 goto fail_alloc; 2707 } 2708 2709 features = btrfs_super_incompat_flags(disk_super) & 2710 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2711 if (features) { 2712 btrfs_err(fs_info, 2713 "cannot mount because of unsupported optional features (%llx)", 2714 features); 2715 err = -EINVAL; 2716 goto fail_alloc; 2717 } 2718 2719 features = btrfs_super_incompat_flags(disk_super); 2720 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2721 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2722 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2723 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 2724 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 2725 2726 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2727 btrfs_info(fs_info, "has skinny extents"); 2728 2729 /* 2730 * flag our filesystem as having big metadata blocks if 2731 * they are bigger than the page size 2732 */ 2733 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2734 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2735 btrfs_info(fs_info, 2736 "flagging fs with big metadata feature"); 2737 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2738 } 2739 2740 nodesize = btrfs_super_nodesize(disk_super); 2741 sectorsize = btrfs_super_sectorsize(disk_super); 2742 stripesize = sectorsize; 2743 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2744 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2745 2746 /* Cache block sizes */ 2747 fs_info->nodesize = nodesize; 2748 fs_info->sectorsize = sectorsize; 2749 fs_info->stripesize = stripesize; 2750 2751 /* 2752 * mixed block groups end up with duplicate but slightly offset 2753 * extent buffers for the same range. It leads to corruptions 2754 */ 2755 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2756 (sectorsize != nodesize)) { 2757 btrfs_err(fs_info, 2758 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2759 nodesize, sectorsize); 2760 goto fail_alloc; 2761 } 2762 2763 /* 2764 * Needn't use the lock because there is no other task which will 2765 * update the flag. 2766 */ 2767 btrfs_set_super_incompat_flags(disk_super, features); 2768 2769 features = btrfs_super_compat_ro_flags(disk_super) & 2770 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2771 if (!sb_rdonly(sb) && features) { 2772 btrfs_err(fs_info, 2773 "cannot mount read-write because of unsupported optional features (%llx)", 2774 features); 2775 err = -EINVAL; 2776 goto fail_alloc; 2777 } 2778 2779 ret = btrfs_init_workqueues(fs_info, fs_devices); 2780 if (ret) { 2781 err = ret; 2782 goto fail_sb_buffer; 2783 } 2784 2785 sb->s_bdi->congested_fn = btrfs_congested_fn; 2786 sb->s_bdi->congested_data = fs_info; 2787 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 2788 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE; 2789 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 2790 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 2791 2792 sb->s_blocksize = sectorsize; 2793 sb->s_blocksize_bits = blksize_bits(sectorsize); 2794 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE); 2795 2796 mutex_lock(&fs_info->chunk_mutex); 2797 ret = btrfs_read_sys_array(fs_info); 2798 mutex_unlock(&fs_info->chunk_mutex); 2799 if (ret) { 2800 btrfs_err(fs_info, "failed to read the system array: %d", ret); 2801 goto fail_sb_buffer; 2802 } 2803 2804 generation = btrfs_super_chunk_root_generation(disk_super); 2805 level = btrfs_super_chunk_root_level(disk_super); 2806 2807 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2808 2809 chunk_root->node = read_tree_block(fs_info, 2810 btrfs_super_chunk_root(disk_super), 2811 generation, level, NULL); 2812 if (IS_ERR(chunk_root->node) || 2813 !extent_buffer_uptodate(chunk_root->node)) { 2814 btrfs_err(fs_info, "failed to read chunk root"); 2815 if (!IS_ERR(chunk_root->node)) 2816 free_extent_buffer(chunk_root->node); 2817 chunk_root->node = NULL; 2818 goto fail_tree_roots; 2819 } 2820 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2821 chunk_root->commit_root = btrfs_root_node(chunk_root); 2822 2823 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2824 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2825 2826 ret = btrfs_read_chunk_tree(fs_info); 2827 if (ret) { 2828 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 2829 goto fail_tree_roots; 2830 } 2831 2832 /* 2833 * Keep the devid that is marked to be the target device for the 2834 * device replace procedure 2835 */ 2836 btrfs_free_extra_devids(fs_devices, 0); 2837 2838 if (!fs_devices->latest_bdev) { 2839 btrfs_err(fs_info, "failed to read devices"); 2840 goto fail_tree_roots; 2841 } 2842 2843 retry_root_backup: 2844 generation = btrfs_super_generation(disk_super); 2845 level = btrfs_super_root_level(disk_super); 2846 2847 tree_root->node = read_tree_block(fs_info, 2848 btrfs_super_root(disk_super), 2849 generation, level, NULL); 2850 if (IS_ERR(tree_root->node) || 2851 !extent_buffer_uptodate(tree_root->node)) { 2852 btrfs_warn(fs_info, "failed to read tree root"); 2853 if (!IS_ERR(tree_root->node)) 2854 free_extent_buffer(tree_root->node); 2855 tree_root->node = NULL; 2856 goto recovery_tree_root; 2857 } 2858 2859 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2860 tree_root->commit_root = btrfs_root_node(tree_root); 2861 btrfs_set_root_refs(&tree_root->root_item, 1); 2862 2863 mutex_lock(&tree_root->objectid_mutex); 2864 ret = btrfs_find_highest_objectid(tree_root, 2865 &tree_root->highest_objectid); 2866 if (ret) { 2867 mutex_unlock(&tree_root->objectid_mutex); 2868 goto recovery_tree_root; 2869 } 2870 2871 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2872 2873 mutex_unlock(&tree_root->objectid_mutex); 2874 2875 ret = btrfs_read_roots(fs_info); 2876 if (ret) 2877 goto recovery_tree_root; 2878 2879 fs_info->generation = generation; 2880 fs_info->last_trans_committed = generation; 2881 2882 ret = btrfs_recover_balance(fs_info); 2883 if (ret) { 2884 btrfs_err(fs_info, "failed to recover balance: %d", ret); 2885 goto fail_block_groups; 2886 } 2887 2888 ret = btrfs_init_dev_stats(fs_info); 2889 if (ret) { 2890 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 2891 goto fail_block_groups; 2892 } 2893 2894 ret = btrfs_init_dev_replace(fs_info); 2895 if (ret) { 2896 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 2897 goto fail_block_groups; 2898 } 2899 2900 btrfs_free_extra_devids(fs_devices, 1); 2901 2902 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 2903 if (ret) { 2904 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 2905 ret); 2906 goto fail_block_groups; 2907 } 2908 2909 ret = btrfs_sysfs_add_device(fs_devices); 2910 if (ret) { 2911 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 2912 ret); 2913 goto fail_fsdev_sysfs; 2914 } 2915 2916 ret = btrfs_sysfs_add_mounted(fs_info); 2917 if (ret) { 2918 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 2919 goto fail_fsdev_sysfs; 2920 } 2921 2922 ret = btrfs_init_space_info(fs_info); 2923 if (ret) { 2924 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 2925 goto fail_sysfs; 2926 } 2927 2928 ret = btrfs_read_block_groups(fs_info); 2929 if (ret) { 2930 btrfs_err(fs_info, "failed to read block groups: %d", ret); 2931 goto fail_sysfs; 2932 } 2933 2934 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 2935 btrfs_warn(fs_info, 2936 "writeable mount is not allowed due to too many missing devices"); 2937 goto fail_sysfs; 2938 } 2939 2940 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2941 "btrfs-cleaner"); 2942 if (IS_ERR(fs_info->cleaner_kthread)) 2943 goto fail_sysfs; 2944 2945 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2946 tree_root, 2947 "btrfs-transaction"); 2948 if (IS_ERR(fs_info->transaction_kthread)) 2949 goto fail_cleaner; 2950 2951 if (!btrfs_test_opt(fs_info, NOSSD) && 2952 !fs_info->fs_devices->rotating) { 2953 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 2954 } 2955 2956 /* 2957 * Mount does not set all options immediately, we can do it now and do 2958 * not have to wait for transaction commit 2959 */ 2960 btrfs_apply_pending_changes(fs_info); 2961 2962 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2963 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 2964 ret = btrfsic_mount(fs_info, fs_devices, 2965 btrfs_test_opt(fs_info, 2966 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2967 1 : 0, 2968 fs_info->check_integrity_print_mask); 2969 if (ret) 2970 btrfs_warn(fs_info, 2971 "failed to initialize integrity check module: %d", 2972 ret); 2973 } 2974 #endif 2975 ret = btrfs_read_qgroup_config(fs_info); 2976 if (ret) 2977 goto fail_trans_kthread; 2978 2979 if (btrfs_build_ref_tree(fs_info)) 2980 btrfs_err(fs_info, "couldn't build ref tree"); 2981 2982 /* do not make disk changes in broken FS or nologreplay is given */ 2983 if (btrfs_super_log_root(disk_super) != 0 && 2984 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 2985 ret = btrfs_replay_log(fs_info, fs_devices); 2986 if (ret) { 2987 err = ret; 2988 goto fail_qgroup; 2989 } 2990 } 2991 2992 ret = btrfs_find_orphan_roots(fs_info); 2993 if (ret) 2994 goto fail_qgroup; 2995 2996 if (!sb_rdonly(sb)) { 2997 ret = btrfs_cleanup_fs_roots(fs_info); 2998 if (ret) 2999 goto fail_qgroup; 3000 3001 mutex_lock(&fs_info->cleaner_mutex); 3002 ret = btrfs_recover_relocation(tree_root); 3003 mutex_unlock(&fs_info->cleaner_mutex); 3004 if (ret < 0) { 3005 btrfs_warn(fs_info, "failed to recover relocation: %d", 3006 ret); 3007 err = -EINVAL; 3008 goto fail_qgroup; 3009 } 3010 } 3011 3012 location.objectid = BTRFS_FS_TREE_OBJECTID; 3013 location.type = BTRFS_ROOT_ITEM_KEY; 3014 location.offset = 0; 3015 3016 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3017 if (IS_ERR(fs_info->fs_root)) { 3018 err = PTR_ERR(fs_info->fs_root); 3019 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3020 goto fail_qgroup; 3021 } 3022 3023 if (sb_rdonly(sb)) 3024 return 0; 3025 3026 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3027 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3028 clear_free_space_tree = 1; 3029 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3030 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3031 btrfs_warn(fs_info, "free space tree is invalid"); 3032 clear_free_space_tree = 1; 3033 } 3034 3035 if (clear_free_space_tree) { 3036 btrfs_info(fs_info, "clearing free space tree"); 3037 ret = btrfs_clear_free_space_tree(fs_info); 3038 if (ret) { 3039 btrfs_warn(fs_info, 3040 "failed to clear free space tree: %d", ret); 3041 close_ctree(fs_info); 3042 return ret; 3043 } 3044 } 3045 3046 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3047 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3048 btrfs_info(fs_info, "creating free space tree"); 3049 ret = btrfs_create_free_space_tree(fs_info); 3050 if (ret) { 3051 btrfs_warn(fs_info, 3052 "failed to create free space tree: %d", ret); 3053 close_ctree(fs_info); 3054 return ret; 3055 } 3056 } 3057 3058 down_read(&fs_info->cleanup_work_sem); 3059 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3060 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3061 up_read(&fs_info->cleanup_work_sem); 3062 close_ctree(fs_info); 3063 return ret; 3064 } 3065 up_read(&fs_info->cleanup_work_sem); 3066 3067 ret = btrfs_resume_balance_async(fs_info); 3068 if (ret) { 3069 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3070 close_ctree(fs_info); 3071 return ret; 3072 } 3073 3074 ret = btrfs_resume_dev_replace_async(fs_info); 3075 if (ret) { 3076 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3077 close_ctree(fs_info); 3078 return ret; 3079 } 3080 3081 btrfs_qgroup_rescan_resume(fs_info); 3082 3083 if (!fs_info->uuid_root) { 3084 btrfs_info(fs_info, "creating UUID tree"); 3085 ret = btrfs_create_uuid_tree(fs_info); 3086 if (ret) { 3087 btrfs_warn(fs_info, 3088 "failed to create the UUID tree: %d", ret); 3089 close_ctree(fs_info); 3090 return ret; 3091 } 3092 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3093 fs_info->generation != 3094 btrfs_super_uuid_tree_generation(disk_super)) { 3095 btrfs_info(fs_info, "checking UUID tree"); 3096 ret = btrfs_check_uuid_tree(fs_info); 3097 if (ret) { 3098 btrfs_warn(fs_info, 3099 "failed to check the UUID tree: %d", ret); 3100 close_ctree(fs_info); 3101 return ret; 3102 } 3103 } else { 3104 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3105 } 3106 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3107 3108 /* 3109 * backuproot only affect mount behavior, and if open_ctree succeeded, 3110 * no need to keep the flag 3111 */ 3112 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3113 3114 return 0; 3115 3116 fail_qgroup: 3117 btrfs_free_qgroup_config(fs_info); 3118 fail_trans_kthread: 3119 kthread_stop(fs_info->transaction_kthread); 3120 btrfs_cleanup_transaction(fs_info); 3121 btrfs_free_fs_roots(fs_info); 3122 fail_cleaner: 3123 kthread_stop(fs_info->cleaner_kthread); 3124 3125 /* 3126 * make sure we're done with the btree inode before we stop our 3127 * kthreads 3128 */ 3129 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3130 3131 fail_sysfs: 3132 btrfs_sysfs_remove_mounted(fs_info); 3133 3134 fail_fsdev_sysfs: 3135 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3136 3137 fail_block_groups: 3138 btrfs_put_block_group_cache(fs_info); 3139 3140 fail_tree_roots: 3141 free_root_pointers(fs_info, 1); 3142 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3143 3144 fail_sb_buffer: 3145 btrfs_stop_all_workers(fs_info); 3146 btrfs_free_block_groups(fs_info); 3147 fail_alloc: 3148 fail_iput: 3149 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3150 3151 iput(fs_info->btree_inode); 3152 fail_bio_counter: 3153 percpu_counter_destroy(&fs_info->bio_counter); 3154 fail_delalloc_bytes: 3155 percpu_counter_destroy(&fs_info->delalloc_bytes); 3156 fail_dirty_metadata_bytes: 3157 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3158 fail_srcu: 3159 cleanup_srcu_struct(&fs_info->subvol_srcu); 3160 fail: 3161 btrfs_free_stripe_hash_table(fs_info); 3162 btrfs_close_devices(fs_info->fs_devices); 3163 return err; 3164 3165 recovery_tree_root: 3166 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 3167 goto fail_tree_roots; 3168 3169 free_root_pointers(fs_info, 0); 3170 3171 /* don't use the log in recovery mode, it won't be valid */ 3172 btrfs_set_super_log_root(disk_super, 0); 3173 3174 /* we can't trust the free space cache either */ 3175 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3176 3177 ret = next_root_backup(fs_info, fs_info->super_copy, 3178 &num_backups_tried, &backup_index); 3179 if (ret == -1) 3180 goto fail_block_groups; 3181 goto retry_root_backup; 3182 } 3183 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3184 3185 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3186 { 3187 if (uptodate) { 3188 set_buffer_uptodate(bh); 3189 } else { 3190 struct btrfs_device *device = (struct btrfs_device *) 3191 bh->b_private; 3192 3193 btrfs_warn_rl_in_rcu(device->fs_info, 3194 "lost page write due to IO error on %s", 3195 rcu_str_deref(device->name)); 3196 /* note, we don't set_buffer_write_io_error because we have 3197 * our own ways of dealing with the IO errors 3198 */ 3199 clear_buffer_uptodate(bh); 3200 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3201 } 3202 unlock_buffer(bh); 3203 put_bh(bh); 3204 } 3205 3206 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3207 struct buffer_head **bh_ret) 3208 { 3209 struct buffer_head *bh; 3210 struct btrfs_super_block *super; 3211 u64 bytenr; 3212 3213 bytenr = btrfs_sb_offset(copy_num); 3214 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3215 return -EINVAL; 3216 3217 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE); 3218 /* 3219 * If we fail to read from the underlying devices, as of now 3220 * the best option we have is to mark it EIO. 3221 */ 3222 if (!bh) 3223 return -EIO; 3224 3225 super = (struct btrfs_super_block *)bh->b_data; 3226 if (btrfs_super_bytenr(super) != bytenr || 3227 btrfs_super_magic(super) != BTRFS_MAGIC) { 3228 brelse(bh); 3229 return -EINVAL; 3230 } 3231 3232 *bh_ret = bh; 3233 return 0; 3234 } 3235 3236 3237 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3238 { 3239 struct buffer_head *bh; 3240 struct buffer_head *latest = NULL; 3241 struct btrfs_super_block *super; 3242 int i; 3243 u64 transid = 0; 3244 int ret = -EINVAL; 3245 3246 /* we would like to check all the supers, but that would make 3247 * a btrfs mount succeed after a mkfs from a different FS. 3248 * So, we need to add a special mount option to scan for 3249 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3250 */ 3251 for (i = 0; i < 1; i++) { 3252 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3253 if (ret) 3254 continue; 3255 3256 super = (struct btrfs_super_block *)bh->b_data; 3257 3258 if (!latest || btrfs_super_generation(super) > transid) { 3259 brelse(latest); 3260 latest = bh; 3261 transid = btrfs_super_generation(super); 3262 } else { 3263 brelse(bh); 3264 } 3265 } 3266 3267 if (!latest) 3268 return ERR_PTR(ret); 3269 3270 return latest; 3271 } 3272 3273 /* 3274 * Write superblock @sb to the @device. Do not wait for completion, all the 3275 * buffer heads we write are pinned. 3276 * 3277 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3278 * the expected device size at commit time. Note that max_mirrors must be 3279 * same for write and wait phases. 3280 * 3281 * Return number of errors when buffer head is not found or submission fails. 3282 */ 3283 static int write_dev_supers(struct btrfs_device *device, 3284 struct btrfs_super_block *sb, int max_mirrors) 3285 { 3286 struct buffer_head *bh; 3287 int i; 3288 int ret; 3289 int errors = 0; 3290 u32 crc; 3291 u64 bytenr; 3292 int op_flags; 3293 3294 if (max_mirrors == 0) 3295 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3296 3297 for (i = 0; i < max_mirrors; i++) { 3298 bytenr = btrfs_sb_offset(i); 3299 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3300 device->commit_total_bytes) 3301 break; 3302 3303 btrfs_set_super_bytenr(sb, bytenr); 3304 3305 crc = ~(u32)0; 3306 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc, 3307 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 3308 btrfs_csum_final(crc, sb->csum); 3309 3310 /* One reference for us, and we leave it for the caller */ 3311 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, 3312 BTRFS_SUPER_INFO_SIZE); 3313 if (!bh) { 3314 btrfs_err(device->fs_info, 3315 "couldn't get super buffer head for bytenr %llu", 3316 bytenr); 3317 errors++; 3318 continue; 3319 } 3320 3321 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3322 3323 /* one reference for submit_bh */ 3324 get_bh(bh); 3325 3326 set_buffer_uptodate(bh); 3327 lock_buffer(bh); 3328 bh->b_end_io = btrfs_end_buffer_write_sync; 3329 bh->b_private = device; 3330 3331 /* 3332 * we fua the first super. The others we allow 3333 * to go down lazy. 3334 */ 3335 op_flags = REQ_SYNC | REQ_META | REQ_PRIO; 3336 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3337 op_flags |= REQ_FUA; 3338 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh); 3339 if (ret) 3340 errors++; 3341 } 3342 return errors < i ? 0 : -1; 3343 } 3344 3345 /* 3346 * Wait for write completion of superblocks done by write_dev_supers, 3347 * @max_mirrors same for write and wait phases. 3348 * 3349 * Return number of errors when buffer head is not found or not marked up to 3350 * date. 3351 */ 3352 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3353 { 3354 struct buffer_head *bh; 3355 int i; 3356 int errors = 0; 3357 bool primary_failed = false; 3358 u64 bytenr; 3359 3360 if (max_mirrors == 0) 3361 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3362 3363 for (i = 0; i < max_mirrors; i++) { 3364 bytenr = btrfs_sb_offset(i); 3365 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3366 device->commit_total_bytes) 3367 break; 3368 3369 bh = __find_get_block(device->bdev, 3370 bytenr / BTRFS_BDEV_BLOCKSIZE, 3371 BTRFS_SUPER_INFO_SIZE); 3372 if (!bh) { 3373 errors++; 3374 if (i == 0) 3375 primary_failed = true; 3376 continue; 3377 } 3378 wait_on_buffer(bh); 3379 if (!buffer_uptodate(bh)) { 3380 errors++; 3381 if (i == 0) 3382 primary_failed = true; 3383 } 3384 3385 /* drop our reference */ 3386 brelse(bh); 3387 3388 /* drop the reference from the writing run */ 3389 brelse(bh); 3390 } 3391 3392 /* log error, force error return */ 3393 if (primary_failed) { 3394 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3395 device->devid); 3396 return -1; 3397 } 3398 3399 return errors < i ? 0 : -1; 3400 } 3401 3402 /* 3403 * endio for the write_dev_flush, this will wake anyone waiting 3404 * for the barrier when it is done 3405 */ 3406 static void btrfs_end_empty_barrier(struct bio *bio) 3407 { 3408 complete(bio->bi_private); 3409 } 3410 3411 /* 3412 * Submit a flush request to the device if it supports it. Error handling is 3413 * done in the waiting counterpart. 3414 */ 3415 static void write_dev_flush(struct btrfs_device *device) 3416 { 3417 struct request_queue *q = bdev_get_queue(device->bdev); 3418 struct bio *bio = device->flush_bio; 3419 3420 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3421 return; 3422 3423 bio_reset(bio); 3424 bio->bi_end_io = btrfs_end_empty_barrier; 3425 bio_set_dev(bio, device->bdev); 3426 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3427 init_completion(&device->flush_wait); 3428 bio->bi_private = &device->flush_wait; 3429 3430 btrfsic_submit_bio(bio); 3431 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3432 } 3433 3434 /* 3435 * If the flush bio has been submitted by write_dev_flush, wait for it. 3436 */ 3437 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3438 { 3439 struct bio *bio = device->flush_bio; 3440 3441 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3442 return BLK_STS_OK; 3443 3444 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3445 wait_for_completion_io(&device->flush_wait); 3446 3447 return bio->bi_status; 3448 } 3449 3450 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3451 { 3452 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3453 return -EIO; 3454 return 0; 3455 } 3456 3457 /* 3458 * send an empty flush down to each device in parallel, 3459 * then wait for them 3460 */ 3461 static int barrier_all_devices(struct btrfs_fs_info *info) 3462 { 3463 struct list_head *head; 3464 struct btrfs_device *dev; 3465 int errors_wait = 0; 3466 blk_status_t ret; 3467 3468 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3469 /* send down all the barriers */ 3470 head = &info->fs_devices->devices; 3471 list_for_each_entry(dev, head, dev_list) { 3472 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3473 continue; 3474 if (!dev->bdev) 3475 continue; 3476 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3477 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3478 continue; 3479 3480 write_dev_flush(dev); 3481 dev->last_flush_error = BLK_STS_OK; 3482 } 3483 3484 /* wait for all the barriers */ 3485 list_for_each_entry(dev, head, dev_list) { 3486 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3487 continue; 3488 if (!dev->bdev) { 3489 errors_wait++; 3490 continue; 3491 } 3492 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3493 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3494 continue; 3495 3496 ret = wait_dev_flush(dev); 3497 if (ret) { 3498 dev->last_flush_error = ret; 3499 btrfs_dev_stat_inc_and_print(dev, 3500 BTRFS_DEV_STAT_FLUSH_ERRS); 3501 errors_wait++; 3502 } 3503 } 3504 3505 if (errors_wait) { 3506 /* 3507 * At some point we need the status of all disks 3508 * to arrive at the volume status. So error checking 3509 * is being pushed to a separate loop. 3510 */ 3511 return check_barrier_error(info); 3512 } 3513 return 0; 3514 } 3515 3516 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3517 { 3518 int raid_type; 3519 int min_tolerated = INT_MAX; 3520 3521 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3522 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3523 min_tolerated = min(min_tolerated, 3524 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3525 tolerated_failures); 3526 3527 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3528 if (raid_type == BTRFS_RAID_SINGLE) 3529 continue; 3530 if (!(flags & btrfs_raid_group[raid_type])) 3531 continue; 3532 min_tolerated = min(min_tolerated, 3533 btrfs_raid_array[raid_type]. 3534 tolerated_failures); 3535 } 3536 3537 if (min_tolerated == INT_MAX) { 3538 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3539 min_tolerated = 0; 3540 } 3541 3542 return min_tolerated; 3543 } 3544 3545 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3546 { 3547 struct list_head *head; 3548 struct btrfs_device *dev; 3549 struct btrfs_super_block *sb; 3550 struct btrfs_dev_item *dev_item; 3551 int ret; 3552 int do_barriers; 3553 int max_errors; 3554 int total_errors = 0; 3555 u64 flags; 3556 3557 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3558 3559 /* 3560 * max_mirrors == 0 indicates we're from commit_transaction, 3561 * not from fsync where the tree roots in fs_info have not 3562 * been consistent on disk. 3563 */ 3564 if (max_mirrors == 0) 3565 backup_super_roots(fs_info); 3566 3567 sb = fs_info->super_for_commit; 3568 dev_item = &sb->dev_item; 3569 3570 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3571 head = &fs_info->fs_devices->devices; 3572 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3573 3574 if (do_barriers) { 3575 ret = barrier_all_devices(fs_info); 3576 if (ret) { 3577 mutex_unlock( 3578 &fs_info->fs_devices->device_list_mutex); 3579 btrfs_handle_fs_error(fs_info, ret, 3580 "errors while submitting device barriers."); 3581 return ret; 3582 } 3583 } 3584 3585 list_for_each_entry(dev, head, dev_list) { 3586 if (!dev->bdev) { 3587 total_errors++; 3588 continue; 3589 } 3590 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3591 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3592 continue; 3593 3594 btrfs_set_stack_device_generation(dev_item, 0); 3595 btrfs_set_stack_device_type(dev_item, dev->type); 3596 btrfs_set_stack_device_id(dev_item, dev->devid); 3597 btrfs_set_stack_device_total_bytes(dev_item, 3598 dev->commit_total_bytes); 3599 btrfs_set_stack_device_bytes_used(dev_item, 3600 dev->commit_bytes_used); 3601 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3602 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3603 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3604 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3605 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE); 3606 3607 flags = btrfs_super_flags(sb); 3608 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3609 3610 ret = write_dev_supers(dev, sb, max_mirrors); 3611 if (ret) 3612 total_errors++; 3613 } 3614 if (total_errors > max_errors) { 3615 btrfs_err(fs_info, "%d errors while writing supers", 3616 total_errors); 3617 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3618 3619 /* FUA is masked off if unsupported and can't be the reason */ 3620 btrfs_handle_fs_error(fs_info, -EIO, 3621 "%d errors while writing supers", 3622 total_errors); 3623 return -EIO; 3624 } 3625 3626 total_errors = 0; 3627 list_for_each_entry(dev, head, dev_list) { 3628 if (!dev->bdev) 3629 continue; 3630 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3631 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3632 continue; 3633 3634 ret = wait_dev_supers(dev, max_mirrors); 3635 if (ret) 3636 total_errors++; 3637 } 3638 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3639 if (total_errors > max_errors) { 3640 btrfs_handle_fs_error(fs_info, -EIO, 3641 "%d errors while writing supers", 3642 total_errors); 3643 return -EIO; 3644 } 3645 return 0; 3646 } 3647 3648 /* Drop a fs root from the radix tree and free it. */ 3649 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3650 struct btrfs_root *root) 3651 { 3652 spin_lock(&fs_info->fs_roots_radix_lock); 3653 radix_tree_delete(&fs_info->fs_roots_radix, 3654 (unsigned long)root->root_key.objectid); 3655 spin_unlock(&fs_info->fs_roots_radix_lock); 3656 3657 if (btrfs_root_refs(&root->root_item) == 0) 3658 synchronize_srcu(&fs_info->subvol_srcu); 3659 3660 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3661 btrfs_free_log(NULL, root); 3662 if (root->reloc_root) { 3663 free_extent_buffer(root->reloc_root->node); 3664 free_extent_buffer(root->reloc_root->commit_root); 3665 btrfs_put_fs_root(root->reloc_root); 3666 root->reloc_root = NULL; 3667 } 3668 } 3669 3670 if (root->free_ino_pinned) 3671 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3672 if (root->free_ino_ctl) 3673 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3674 free_fs_root(root); 3675 } 3676 3677 static void free_fs_root(struct btrfs_root *root) 3678 { 3679 iput(root->ino_cache_inode); 3680 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3681 btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv); 3682 root->orphan_block_rsv = NULL; 3683 if (root->anon_dev) 3684 free_anon_bdev(root->anon_dev); 3685 if (root->subv_writers) 3686 btrfs_free_subvolume_writers(root->subv_writers); 3687 free_extent_buffer(root->node); 3688 free_extent_buffer(root->commit_root); 3689 kfree(root->free_ino_ctl); 3690 kfree(root->free_ino_pinned); 3691 kfree(root->name); 3692 btrfs_put_fs_root(root); 3693 } 3694 3695 void btrfs_free_fs_root(struct btrfs_root *root) 3696 { 3697 free_fs_root(root); 3698 } 3699 3700 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3701 { 3702 u64 root_objectid = 0; 3703 struct btrfs_root *gang[8]; 3704 int i = 0; 3705 int err = 0; 3706 unsigned int ret = 0; 3707 int index; 3708 3709 while (1) { 3710 index = srcu_read_lock(&fs_info->subvol_srcu); 3711 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3712 (void **)gang, root_objectid, 3713 ARRAY_SIZE(gang)); 3714 if (!ret) { 3715 srcu_read_unlock(&fs_info->subvol_srcu, index); 3716 break; 3717 } 3718 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3719 3720 for (i = 0; i < ret; i++) { 3721 /* Avoid to grab roots in dead_roots */ 3722 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3723 gang[i] = NULL; 3724 continue; 3725 } 3726 /* grab all the search result for later use */ 3727 gang[i] = btrfs_grab_fs_root(gang[i]); 3728 } 3729 srcu_read_unlock(&fs_info->subvol_srcu, index); 3730 3731 for (i = 0; i < ret; i++) { 3732 if (!gang[i]) 3733 continue; 3734 root_objectid = gang[i]->root_key.objectid; 3735 err = btrfs_orphan_cleanup(gang[i]); 3736 if (err) 3737 break; 3738 btrfs_put_fs_root(gang[i]); 3739 } 3740 root_objectid++; 3741 } 3742 3743 /* release the uncleaned roots due to error */ 3744 for (; i < ret; i++) { 3745 if (gang[i]) 3746 btrfs_put_fs_root(gang[i]); 3747 } 3748 return err; 3749 } 3750 3751 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3752 { 3753 struct btrfs_root *root = fs_info->tree_root; 3754 struct btrfs_trans_handle *trans; 3755 3756 mutex_lock(&fs_info->cleaner_mutex); 3757 btrfs_run_delayed_iputs(fs_info); 3758 mutex_unlock(&fs_info->cleaner_mutex); 3759 wake_up_process(fs_info->cleaner_kthread); 3760 3761 /* wait until ongoing cleanup work done */ 3762 down_write(&fs_info->cleanup_work_sem); 3763 up_write(&fs_info->cleanup_work_sem); 3764 3765 trans = btrfs_join_transaction(root); 3766 if (IS_ERR(trans)) 3767 return PTR_ERR(trans); 3768 return btrfs_commit_transaction(trans); 3769 } 3770 3771 void close_ctree(struct btrfs_fs_info *fs_info) 3772 { 3773 struct btrfs_root *root = fs_info->tree_root; 3774 int ret; 3775 3776 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3777 3778 /* wait for the qgroup rescan worker to stop */ 3779 btrfs_qgroup_wait_for_completion(fs_info, false); 3780 3781 /* wait for the uuid_scan task to finish */ 3782 down(&fs_info->uuid_tree_rescan_sem); 3783 /* avoid complains from lockdep et al., set sem back to initial state */ 3784 up(&fs_info->uuid_tree_rescan_sem); 3785 3786 /* pause restriper - we want to resume on mount */ 3787 btrfs_pause_balance(fs_info); 3788 3789 btrfs_dev_replace_suspend_for_unmount(fs_info); 3790 3791 btrfs_scrub_cancel(fs_info); 3792 3793 /* wait for any defraggers to finish */ 3794 wait_event(fs_info->transaction_wait, 3795 (atomic_read(&fs_info->defrag_running) == 0)); 3796 3797 /* clear out the rbtree of defraggable inodes */ 3798 btrfs_cleanup_defrag_inodes(fs_info); 3799 3800 cancel_work_sync(&fs_info->async_reclaim_work); 3801 3802 if (!sb_rdonly(fs_info->sb)) { 3803 /* 3804 * If the cleaner thread is stopped and there are 3805 * block groups queued for removal, the deletion will be 3806 * skipped when we quit the cleaner thread. 3807 */ 3808 btrfs_delete_unused_bgs(fs_info); 3809 3810 ret = btrfs_commit_super(fs_info); 3811 if (ret) 3812 btrfs_err(fs_info, "commit super ret %d", ret); 3813 } 3814 3815 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3816 btrfs_error_commit_super(fs_info); 3817 3818 kthread_stop(fs_info->transaction_kthread); 3819 kthread_stop(fs_info->cleaner_kthread); 3820 3821 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 3822 3823 btrfs_free_qgroup_config(fs_info); 3824 3825 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3826 btrfs_info(fs_info, "at unmount delalloc count %lld", 3827 percpu_counter_sum(&fs_info->delalloc_bytes)); 3828 } 3829 3830 btrfs_sysfs_remove_mounted(fs_info); 3831 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3832 3833 btrfs_free_fs_roots(fs_info); 3834 3835 btrfs_put_block_group_cache(fs_info); 3836 3837 /* 3838 * we must make sure there is not any read request to 3839 * submit after we stopping all workers. 3840 */ 3841 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3842 btrfs_stop_all_workers(fs_info); 3843 3844 btrfs_free_block_groups(fs_info); 3845 3846 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 3847 free_root_pointers(fs_info, 1); 3848 3849 iput(fs_info->btree_inode); 3850 3851 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3852 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 3853 btrfsic_unmount(fs_info->fs_devices); 3854 #endif 3855 3856 btrfs_close_devices(fs_info->fs_devices); 3857 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3858 3859 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3860 percpu_counter_destroy(&fs_info->delalloc_bytes); 3861 percpu_counter_destroy(&fs_info->bio_counter); 3862 cleanup_srcu_struct(&fs_info->subvol_srcu); 3863 3864 btrfs_free_stripe_hash_table(fs_info); 3865 btrfs_free_ref_cache(fs_info); 3866 3867 __btrfs_free_block_rsv(root->orphan_block_rsv); 3868 root->orphan_block_rsv = NULL; 3869 3870 while (!list_empty(&fs_info->pinned_chunks)) { 3871 struct extent_map *em; 3872 3873 em = list_first_entry(&fs_info->pinned_chunks, 3874 struct extent_map, list); 3875 list_del_init(&em->list); 3876 free_extent_map(em); 3877 } 3878 } 3879 3880 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3881 int atomic) 3882 { 3883 int ret; 3884 struct inode *btree_inode = buf->pages[0]->mapping->host; 3885 3886 ret = extent_buffer_uptodate(buf); 3887 if (!ret) 3888 return ret; 3889 3890 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3891 parent_transid, atomic); 3892 if (ret == -EAGAIN) 3893 return ret; 3894 return !ret; 3895 } 3896 3897 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3898 { 3899 struct btrfs_fs_info *fs_info; 3900 struct btrfs_root *root; 3901 u64 transid = btrfs_header_generation(buf); 3902 int was_dirty; 3903 3904 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3905 /* 3906 * This is a fast path so only do this check if we have sanity tests 3907 * enabled. Normal people shouldn't be marking dummy buffers as dirty 3908 * outside of the sanity tests. 3909 */ 3910 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 3911 return; 3912 #endif 3913 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3914 fs_info = root->fs_info; 3915 btrfs_assert_tree_locked(buf); 3916 if (transid != fs_info->generation) 3917 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 3918 buf->start, transid, fs_info->generation); 3919 was_dirty = set_extent_buffer_dirty(buf); 3920 if (!was_dirty) 3921 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3922 buf->len, 3923 fs_info->dirty_metadata_batch); 3924 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3925 /* 3926 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 3927 * but item data not updated. 3928 * So here we should only check item pointers, not item data. 3929 */ 3930 if (btrfs_header_level(buf) == 0 && 3931 btrfs_check_leaf_relaxed(fs_info, buf)) { 3932 btrfs_print_leaf(buf); 3933 ASSERT(0); 3934 } 3935 #endif 3936 } 3937 3938 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 3939 int flush_delayed) 3940 { 3941 /* 3942 * looks as though older kernels can get into trouble with 3943 * this code, they end up stuck in balance_dirty_pages forever 3944 */ 3945 int ret; 3946 3947 if (current->flags & PF_MEMALLOC) 3948 return; 3949 3950 if (flush_delayed) 3951 btrfs_balance_delayed_items(fs_info); 3952 3953 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 3954 BTRFS_DIRTY_METADATA_THRESH); 3955 if (ret > 0) { 3956 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 3957 } 3958 } 3959 3960 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 3961 { 3962 __btrfs_btree_balance_dirty(fs_info, 1); 3963 } 3964 3965 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 3966 { 3967 __btrfs_btree_balance_dirty(fs_info, 0); 3968 } 3969 3970 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 3971 struct btrfs_key *first_key) 3972 { 3973 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3974 struct btrfs_fs_info *fs_info = root->fs_info; 3975 3976 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid, 3977 level, first_key); 3978 } 3979 3980 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info) 3981 { 3982 struct btrfs_super_block *sb = fs_info->super_copy; 3983 u64 nodesize = btrfs_super_nodesize(sb); 3984 u64 sectorsize = btrfs_super_sectorsize(sb); 3985 int ret = 0; 3986 3987 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 3988 btrfs_err(fs_info, "no valid FS found"); 3989 ret = -EINVAL; 3990 } 3991 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 3992 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 3993 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 3994 ret = -EINVAL; 3995 } 3996 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 3997 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 3998 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 3999 ret = -EINVAL; 4000 } 4001 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 4002 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 4003 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 4004 ret = -EINVAL; 4005 } 4006 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 4007 btrfs_err(fs_info, "log_root level too big: %d >= %d", 4008 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 4009 ret = -EINVAL; 4010 } 4011 4012 /* 4013 * Check sectorsize and nodesize first, other check will need it. 4014 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 4015 */ 4016 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 4017 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4018 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 4019 ret = -EINVAL; 4020 } 4021 /* Only PAGE SIZE is supported yet */ 4022 if (sectorsize != PAGE_SIZE) { 4023 btrfs_err(fs_info, 4024 "sectorsize %llu not supported yet, only support %lu", 4025 sectorsize, PAGE_SIZE); 4026 ret = -EINVAL; 4027 } 4028 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 4029 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4030 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 4031 ret = -EINVAL; 4032 } 4033 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 4034 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 4035 le32_to_cpu(sb->__unused_leafsize), nodesize); 4036 ret = -EINVAL; 4037 } 4038 4039 /* Root alignment check */ 4040 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 4041 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 4042 btrfs_super_root(sb)); 4043 ret = -EINVAL; 4044 } 4045 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 4046 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 4047 btrfs_super_chunk_root(sb)); 4048 ret = -EINVAL; 4049 } 4050 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 4051 btrfs_warn(fs_info, "log_root block unaligned: %llu", 4052 btrfs_super_log_root(sb)); 4053 ret = -EINVAL; 4054 } 4055 4056 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) { 4057 btrfs_err(fs_info, 4058 "dev_item UUID does not match fsid: %pU != %pU", 4059 fs_info->fsid, sb->dev_item.fsid); 4060 ret = -EINVAL; 4061 } 4062 4063 /* 4064 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 4065 * done later 4066 */ 4067 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 4068 btrfs_err(fs_info, "bytes_used is too small %llu", 4069 btrfs_super_bytes_used(sb)); 4070 ret = -EINVAL; 4071 } 4072 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 4073 btrfs_err(fs_info, "invalid stripesize %u", 4074 btrfs_super_stripesize(sb)); 4075 ret = -EINVAL; 4076 } 4077 if (btrfs_super_num_devices(sb) > (1UL << 31)) 4078 btrfs_warn(fs_info, "suspicious number of devices: %llu", 4079 btrfs_super_num_devices(sb)); 4080 if (btrfs_super_num_devices(sb) == 0) { 4081 btrfs_err(fs_info, "number of devices is 0"); 4082 ret = -EINVAL; 4083 } 4084 4085 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { 4086 btrfs_err(fs_info, "super offset mismatch %llu != %u", 4087 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 4088 ret = -EINVAL; 4089 } 4090 4091 /* 4092 * Obvious sys_chunk_array corruptions, it must hold at least one key 4093 * and one chunk 4094 */ 4095 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4096 btrfs_err(fs_info, "system chunk array too big %u > %u", 4097 btrfs_super_sys_array_size(sb), 4098 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 4099 ret = -EINVAL; 4100 } 4101 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 4102 + sizeof(struct btrfs_chunk)) { 4103 btrfs_err(fs_info, "system chunk array too small %u < %zu", 4104 btrfs_super_sys_array_size(sb), 4105 sizeof(struct btrfs_disk_key) 4106 + sizeof(struct btrfs_chunk)); 4107 ret = -EINVAL; 4108 } 4109 4110 /* 4111 * The generation is a global counter, we'll trust it more than the others 4112 * but it's still possible that it's the one that's wrong. 4113 */ 4114 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 4115 btrfs_warn(fs_info, 4116 "suspicious: generation < chunk_root_generation: %llu < %llu", 4117 btrfs_super_generation(sb), 4118 btrfs_super_chunk_root_generation(sb)); 4119 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 4120 && btrfs_super_cache_generation(sb) != (u64)-1) 4121 btrfs_warn(fs_info, 4122 "suspicious: generation < cache_generation: %llu < %llu", 4123 btrfs_super_generation(sb), 4124 btrfs_super_cache_generation(sb)); 4125 4126 return ret; 4127 } 4128 4129 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4130 { 4131 mutex_lock(&fs_info->cleaner_mutex); 4132 btrfs_run_delayed_iputs(fs_info); 4133 mutex_unlock(&fs_info->cleaner_mutex); 4134 4135 down_write(&fs_info->cleanup_work_sem); 4136 up_write(&fs_info->cleanup_work_sem); 4137 4138 /* cleanup FS via transaction */ 4139 btrfs_cleanup_transaction(fs_info); 4140 } 4141 4142 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4143 { 4144 struct btrfs_ordered_extent *ordered; 4145 4146 spin_lock(&root->ordered_extent_lock); 4147 /* 4148 * This will just short circuit the ordered completion stuff which will 4149 * make sure the ordered extent gets properly cleaned up. 4150 */ 4151 list_for_each_entry(ordered, &root->ordered_extents, 4152 root_extent_list) 4153 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4154 spin_unlock(&root->ordered_extent_lock); 4155 } 4156 4157 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4158 { 4159 struct btrfs_root *root; 4160 struct list_head splice; 4161 4162 INIT_LIST_HEAD(&splice); 4163 4164 spin_lock(&fs_info->ordered_root_lock); 4165 list_splice_init(&fs_info->ordered_roots, &splice); 4166 while (!list_empty(&splice)) { 4167 root = list_first_entry(&splice, struct btrfs_root, 4168 ordered_root); 4169 list_move_tail(&root->ordered_root, 4170 &fs_info->ordered_roots); 4171 4172 spin_unlock(&fs_info->ordered_root_lock); 4173 btrfs_destroy_ordered_extents(root); 4174 4175 cond_resched(); 4176 spin_lock(&fs_info->ordered_root_lock); 4177 } 4178 spin_unlock(&fs_info->ordered_root_lock); 4179 } 4180 4181 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4182 struct btrfs_fs_info *fs_info) 4183 { 4184 struct rb_node *node; 4185 struct btrfs_delayed_ref_root *delayed_refs; 4186 struct btrfs_delayed_ref_node *ref; 4187 int ret = 0; 4188 4189 delayed_refs = &trans->delayed_refs; 4190 4191 spin_lock(&delayed_refs->lock); 4192 if (atomic_read(&delayed_refs->num_entries) == 0) { 4193 spin_unlock(&delayed_refs->lock); 4194 btrfs_info(fs_info, "delayed_refs has NO entry"); 4195 return ret; 4196 } 4197 4198 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 4199 struct btrfs_delayed_ref_head *head; 4200 struct rb_node *n; 4201 bool pin_bytes = false; 4202 4203 head = rb_entry(node, struct btrfs_delayed_ref_head, 4204 href_node); 4205 if (!mutex_trylock(&head->mutex)) { 4206 refcount_inc(&head->refs); 4207 spin_unlock(&delayed_refs->lock); 4208 4209 mutex_lock(&head->mutex); 4210 mutex_unlock(&head->mutex); 4211 btrfs_put_delayed_ref_head(head); 4212 spin_lock(&delayed_refs->lock); 4213 continue; 4214 } 4215 spin_lock(&head->lock); 4216 while ((n = rb_first(&head->ref_tree)) != NULL) { 4217 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4218 ref_node); 4219 ref->in_tree = 0; 4220 rb_erase(&ref->ref_node, &head->ref_tree); 4221 RB_CLEAR_NODE(&ref->ref_node); 4222 if (!list_empty(&ref->add_list)) 4223 list_del(&ref->add_list); 4224 atomic_dec(&delayed_refs->num_entries); 4225 btrfs_put_delayed_ref(ref); 4226 } 4227 if (head->must_insert_reserved) 4228 pin_bytes = true; 4229 btrfs_free_delayed_extent_op(head->extent_op); 4230 delayed_refs->num_heads--; 4231 if (head->processing == 0) 4232 delayed_refs->num_heads_ready--; 4233 atomic_dec(&delayed_refs->num_entries); 4234 rb_erase(&head->href_node, &delayed_refs->href_root); 4235 RB_CLEAR_NODE(&head->href_node); 4236 spin_unlock(&head->lock); 4237 spin_unlock(&delayed_refs->lock); 4238 mutex_unlock(&head->mutex); 4239 4240 if (pin_bytes) 4241 btrfs_pin_extent(fs_info, head->bytenr, 4242 head->num_bytes, 1); 4243 btrfs_put_delayed_ref_head(head); 4244 cond_resched(); 4245 spin_lock(&delayed_refs->lock); 4246 } 4247 4248 spin_unlock(&delayed_refs->lock); 4249 4250 return ret; 4251 } 4252 4253 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4254 { 4255 struct btrfs_inode *btrfs_inode; 4256 struct list_head splice; 4257 4258 INIT_LIST_HEAD(&splice); 4259 4260 spin_lock(&root->delalloc_lock); 4261 list_splice_init(&root->delalloc_inodes, &splice); 4262 4263 while (!list_empty(&splice)) { 4264 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4265 delalloc_inodes); 4266 4267 list_del_init(&btrfs_inode->delalloc_inodes); 4268 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 4269 &btrfs_inode->runtime_flags); 4270 spin_unlock(&root->delalloc_lock); 4271 4272 btrfs_invalidate_inodes(btrfs_inode->root); 4273 4274 spin_lock(&root->delalloc_lock); 4275 } 4276 4277 spin_unlock(&root->delalloc_lock); 4278 } 4279 4280 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4281 { 4282 struct btrfs_root *root; 4283 struct list_head splice; 4284 4285 INIT_LIST_HEAD(&splice); 4286 4287 spin_lock(&fs_info->delalloc_root_lock); 4288 list_splice_init(&fs_info->delalloc_roots, &splice); 4289 while (!list_empty(&splice)) { 4290 root = list_first_entry(&splice, struct btrfs_root, 4291 delalloc_root); 4292 list_del_init(&root->delalloc_root); 4293 root = btrfs_grab_fs_root(root); 4294 BUG_ON(!root); 4295 spin_unlock(&fs_info->delalloc_root_lock); 4296 4297 btrfs_destroy_delalloc_inodes(root); 4298 btrfs_put_fs_root(root); 4299 4300 spin_lock(&fs_info->delalloc_root_lock); 4301 } 4302 spin_unlock(&fs_info->delalloc_root_lock); 4303 } 4304 4305 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4306 struct extent_io_tree *dirty_pages, 4307 int mark) 4308 { 4309 int ret; 4310 struct extent_buffer *eb; 4311 u64 start = 0; 4312 u64 end; 4313 4314 while (1) { 4315 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4316 mark, NULL); 4317 if (ret) 4318 break; 4319 4320 clear_extent_bits(dirty_pages, start, end, mark); 4321 while (start <= end) { 4322 eb = find_extent_buffer(fs_info, start); 4323 start += fs_info->nodesize; 4324 if (!eb) 4325 continue; 4326 wait_on_extent_buffer_writeback(eb); 4327 4328 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4329 &eb->bflags)) 4330 clear_extent_buffer_dirty(eb); 4331 free_extent_buffer_stale(eb); 4332 } 4333 } 4334 4335 return ret; 4336 } 4337 4338 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4339 struct extent_io_tree *pinned_extents) 4340 { 4341 struct extent_io_tree *unpin; 4342 u64 start; 4343 u64 end; 4344 int ret; 4345 bool loop = true; 4346 4347 unpin = pinned_extents; 4348 again: 4349 while (1) { 4350 ret = find_first_extent_bit(unpin, 0, &start, &end, 4351 EXTENT_DIRTY, NULL); 4352 if (ret) 4353 break; 4354 4355 clear_extent_dirty(unpin, start, end); 4356 btrfs_error_unpin_extent_range(fs_info, start, end); 4357 cond_resched(); 4358 } 4359 4360 if (loop) { 4361 if (unpin == &fs_info->freed_extents[0]) 4362 unpin = &fs_info->freed_extents[1]; 4363 else 4364 unpin = &fs_info->freed_extents[0]; 4365 loop = false; 4366 goto again; 4367 } 4368 4369 return 0; 4370 } 4371 4372 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) 4373 { 4374 struct inode *inode; 4375 4376 inode = cache->io_ctl.inode; 4377 if (inode) { 4378 invalidate_inode_pages2(inode->i_mapping); 4379 BTRFS_I(inode)->generation = 0; 4380 cache->io_ctl.inode = NULL; 4381 iput(inode); 4382 } 4383 btrfs_put_block_group(cache); 4384 } 4385 4386 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4387 struct btrfs_fs_info *fs_info) 4388 { 4389 struct btrfs_block_group_cache *cache; 4390 4391 spin_lock(&cur_trans->dirty_bgs_lock); 4392 while (!list_empty(&cur_trans->dirty_bgs)) { 4393 cache = list_first_entry(&cur_trans->dirty_bgs, 4394 struct btrfs_block_group_cache, 4395 dirty_list); 4396 4397 if (!list_empty(&cache->io_list)) { 4398 spin_unlock(&cur_trans->dirty_bgs_lock); 4399 list_del_init(&cache->io_list); 4400 btrfs_cleanup_bg_io(cache); 4401 spin_lock(&cur_trans->dirty_bgs_lock); 4402 } 4403 4404 list_del_init(&cache->dirty_list); 4405 spin_lock(&cache->lock); 4406 cache->disk_cache_state = BTRFS_DC_ERROR; 4407 spin_unlock(&cache->lock); 4408 4409 spin_unlock(&cur_trans->dirty_bgs_lock); 4410 btrfs_put_block_group(cache); 4411 spin_lock(&cur_trans->dirty_bgs_lock); 4412 } 4413 spin_unlock(&cur_trans->dirty_bgs_lock); 4414 4415 /* 4416 * Refer to the definition of io_bgs member for details why it's safe 4417 * to use it without any locking 4418 */ 4419 while (!list_empty(&cur_trans->io_bgs)) { 4420 cache = list_first_entry(&cur_trans->io_bgs, 4421 struct btrfs_block_group_cache, 4422 io_list); 4423 4424 list_del_init(&cache->io_list); 4425 spin_lock(&cache->lock); 4426 cache->disk_cache_state = BTRFS_DC_ERROR; 4427 spin_unlock(&cache->lock); 4428 btrfs_cleanup_bg_io(cache); 4429 } 4430 } 4431 4432 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4433 struct btrfs_fs_info *fs_info) 4434 { 4435 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4436 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4437 ASSERT(list_empty(&cur_trans->io_bgs)); 4438 4439 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4440 4441 cur_trans->state = TRANS_STATE_COMMIT_START; 4442 wake_up(&fs_info->transaction_blocked_wait); 4443 4444 cur_trans->state = TRANS_STATE_UNBLOCKED; 4445 wake_up(&fs_info->transaction_wait); 4446 4447 btrfs_destroy_delayed_inodes(fs_info); 4448 btrfs_assert_delayed_root_empty(fs_info); 4449 4450 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4451 EXTENT_DIRTY); 4452 btrfs_destroy_pinned_extent(fs_info, 4453 fs_info->pinned_extents); 4454 4455 cur_trans->state =TRANS_STATE_COMPLETED; 4456 wake_up(&cur_trans->commit_wait); 4457 } 4458 4459 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4460 { 4461 struct btrfs_transaction *t; 4462 4463 mutex_lock(&fs_info->transaction_kthread_mutex); 4464 4465 spin_lock(&fs_info->trans_lock); 4466 while (!list_empty(&fs_info->trans_list)) { 4467 t = list_first_entry(&fs_info->trans_list, 4468 struct btrfs_transaction, list); 4469 if (t->state >= TRANS_STATE_COMMIT_START) { 4470 refcount_inc(&t->use_count); 4471 spin_unlock(&fs_info->trans_lock); 4472 btrfs_wait_for_commit(fs_info, t->transid); 4473 btrfs_put_transaction(t); 4474 spin_lock(&fs_info->trans_lock); 4475 continue; 4476 } 4477 if (t == fs_info->running_transaction) { 4478 t->state = TRANS_STATE_COMMIT_DOING; 4479 spin_unlock(&fs_info->trans_lock); 4480 /* 4481 * We wait for 0 num_writers since we don't hold a trans 4482 * handle open currently for this transaction. 4483 */ 4484 wait_event(t->writer_wait, 4485 atomic_read(&t->num_writers) == 0); 4486 } else { 4487 spin_unlock(&fs_info->trans_lock); 4488 } 4489 btrfs_cleanup_one_transaction(t, fs_info); 4490 4491 spin_lock(&fs_info->trans_lock); 4492 if (t == fs_info->running_transaction) 4493 fs_info->running_transaction = NULL; 4494 list_del_init(&t->list); 4495 spin_unlock(&fs_info->trans_lock); 4496 4497 btrfs_put_transaction(t); 4498 trace_btrfs_transaction_commit(fs_info->tree_root); 4499 spin_lock(&fs_info->trans_lock); 4500 } 4501 spin_unlock(&fs_info->trans_lock); 4502 btrfs_destroy_all_ordered_extents(fs_info); 4503 btrfs_destroy_delayed_inodes(fs_info); 4504 btrfs_assert_delayed_root_empty(fs_info); 4505 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 4506 btrfs_destroy_all_delalloc_inodes(fs_info); 4507 mutex_unlock(&fs_info->transaction_kthread_mutex); 4508 4509 return 0; 4510 } 4511 4512 static struct btrfs_fs_info *btree_fs_info(void *private_data) 4513 { 4514 struct inode *inode = private_data; 4515 return btrfs_sb(inode->i_sb); 4516 } 4517 4518 static const struct extent_io_ops btree_extent_io_ops = { 4519 /* mandatory callbacks */ 4520 .submit_bio_hook = btree_submit_bio_hook, 4521 .readpage_end_io_hook = btree_readpage_end_io_hook, 4522 /* note we're sharing with inode.c for the merge bio hook */ 4523 .merge_bio_hook = btrfs_merge_bio_hook, 4524 .readpage_io_failed_hook = btree_io_failed_hook, 4525 .set_range_writeback = btrfs_set_range_writeback, 4526 .tree_fs_info = btree_fs_info, 4527 4528 /* optional callbacks */ 4529 }; 4530