1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/slab.h> 29 #include <linux/migrate.h> 30 #include <linux/ratelimit.h> 31 #include <linux/uuid.h> 32 #include <linux/semaphore.h> 33 #include <asm/unaligned.h> 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "hash.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "locking.h" 42 #include "tree-log.h" 43 #include "free-space-cache.h" 44 #include "free-space-tree.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 #include "dev-replace.h" 49 #include "raid56.h" 50 #include "sysfs.h" 51 #include "qgroup.h" 52 #include "compression.h" 53 54 #ifdef CONFIG_X86 55 #include <asm/cpufeature.h> 56 #endif 57 58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 59 BTRFS_HEADER_FLAG_RELOC |\ 60 BTRFS_SUPER_FLAG_ERROR |\ 61 BTRFS_SUPER_FLAG_SEEDING |\ 62 BTRFS_SUPER_FLAG_METADUMP) 63 64 static const struct extent_io_ops btree_extent_io_ops; 65 static void end_workqueue_fn(struct btrfs_work *work); 66 static void free_fs_root(struct btrfs_root *root); 67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 68 int read_only); 69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 71 struct btrfs_fs_info *fs_info); 72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 73 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 74 struct extent_io_tree *dirty_pages, 75 int mark); 76 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 77 struct extent_io_tree *pinned_extents); 78 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 79 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 80 81 /* 82 * btrfs_end_io_wq structs are used to do processing in task context when an IO 83 * is complete. This is used during reads to verify checksums, and it is used 84 * by writes to insert metadata for new file extents after IO is complete. 85 */ 86 struct btrfs_end_io_wq { 87 struct bio *bio; 88 bio_end_io_t *end_io; 89 void *private; 90 struct btrfs_fs_info *info; 91 int error; 92 enum btrfs_wq_endio_type metadata; 93 struct list_head list; 94 struct btrfs_work work; 95 }; 96 97 static struct kmem_cache *btrfs_end_io_wq_cache; 98 99 int __init btrfs_end_io_wq_init(void) 100 { 101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 102 sizeof(struct btrfs_end_io_wq), 103 0, 104 SLAB_MEM_SPREAD, 105 NULL); 106 if (!btrfs_end_io_wq_cache) 107 return -ENOMEM; 108 return 0; 109 } 110 111 void btrfs_end_io_wq_exit(void) 112 { 113 kmem_cache_destroy(btrfs_end_io_wq_cache); 114 } 115 116 /* 117 * async submit bios are used to offload expensive checksumming 118 * onto the worker threads. They checksum file and metadata bios 119 * just before they are sent down the IO stack. 120 */ 121 struct async_submit_bio { 122 struct inode *inode; 123 struct bio *bio; 124 struct list_head list; 125 extent_submit_bio_hook_t *submit_bio_start; 126 extent_submit_bio_hook_t *submit_bio_done; 127 int mirror_num; 128 unsigned long bio_flags; 129 /* 130 * bio_offset is optional, can be used if the pages in the bio 131 * can't tell us where in the file the bio should go 132 */ 133 u64 bio_offset; 134 struct btrfs_work work; 135 int error; 136 }; 137 138 /* 139 * Lockdep class keys for extent_buffer->lock's in this root. For a given 140 * eb, the lockdep key is determined by the btrfs_root it belongs to and 141 * the level the eb occupies in the tree. 142 * 143 * Different roots are used for different purposes and may nest inside each 144 * other and they require separate keysets. As lockdep keys should be 145 * static, assign keysets according to the purpose of the root as indicated 146 * by btrfs_root->objectid. This ensures that all special purpose roots 147 * have separate keysets. 148 * 149 * Lock-nesting across peer nodes is always done with the immediate parent 150 * node locked thus preventing deadlock. As lockdep doesn't know this, use 151 * subclass to avoid triggering lockdep warning in such cases. 152 * 153 * The key is set by the readpage_end_io_hook after the buffer has passed 154 * csum validation but before the pages are unlocked. It is also set by 155 * btrfs_init_new_buffer on freshly allocated blocks. 156 * 157 * We also add a check to make sure the highest level of the tree is the 158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 159 * needs update as well. 160 */ 161 #ifdef CONFIG_DEBUG_LOCK_ALLOC 162 # if BTRFS_MAX_LEVEL != 8 163 # error 164 # endif 165 166 static struct btrfs_lockdep_keyset { 167 u64 id; /* root objectid */ 168 const char *name_stem; /* lock name stem */ 169 char names[BTRFS_MAX_LEVEL + 1][20]; 170 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 171 } btrfs_lockdep_keysets[] = { 172 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 173 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 174 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 175 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 176 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 177 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 178 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 179 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 180 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 182 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 184 { .id = 0, .name_stem = "tree" }, 185 }; 186 187 void __init btrfs_init_lockdep(void) 188 { 189 int i, j; 190 191 /* initialize lockdep class names */ 192 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 193 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 194 195 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 196 snprintf(ks->names[j], sizeof(ks->names[j]), 197 "btrfs-%s-%02d", ks->name_stem, j); 198 } 199 } 200 201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 202 int level) 203 { 204 struct btrfs_lockdep_keyset *ks; 205 206 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 207 208 /* find the matching keyset, id 0 is the default entry */ 209 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 210 if (ks->id == objectid) 211 break; 212 213 lockdep_set_class_and_name(&eb->lock, 214 &ks->keys[level], ks->names[level]); 215 } 216 217 #endif 218 219 /* 220 * extents on the btree inode are pretty simple, there's one extent 221 * that covers the entire device 222 */ 223 static struct extent_map *btree_get_extent(struct inode *inode, 224 struct page *page, size_t pg_offset, u64 start, u64 len, 225 int create) 226 { 227 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 228 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 229 struct extent_map *em; 230 int ret; 231 232 read_lock(&em_tree->lock); 233 em = lookup_extent_mapping(em_tree, start, len); 234 if (em) { 235 em->bdev = fs_info->fs_devices->latest_bdev; 236 read_unlock(&em_tree->lock); 237 goto out; 238 } 239 read_unlock(&em_tree->lock); 240 241 em = alloc_extent_map(); 242 if (!em) { 243 em = ERR_PTR(-ENOMEM); 244 goto out; 245 } 246 em->start = 0; 247 em->len = (u64)-1; 248 em->block_len = (u64)-1; 249 em->block_start = 0; 250 em->bdev = fs_info->fs_devices->latest_bdev; 251 252 write_lock(&em_tree->lock); 253 ret = add_extent_mapping(em_tree, em, 0); 254 if (ret == -EEXIST) { 255 free_extent_map(em); 256 em = lookup_extent_mapping(em_tree, start, len); 257 if (!em) 258 em = ERR_PTR(-EIO); 259 } else if (ret) { 260 free_extent_map(em); 261 em = ERR_PTR(ret); 262 } 263 write_unlock(&em_tree->lock); 264 265 out: 266 return em; 267 } 268 269 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 270 { 271 return btrfs_crc32c(seed, data, len); 272 } 273 274 void btrfs_csum_final(u32 crc, u8 *result) 275 { 276 put_unaligned_le32(~crc, result); 277 } 278 279 /* 280 * compute the csum for a btree block, and either verify it or write it 281 * into the csum field of the block. 282 */ 283 static int csum_tree_block(struct btrfs_fs_info *fs_info, 284 struct extent_buffer *buf, 285 int verify) 286 { 287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 288 char *result = NULL; 289 unsigned long len; 290 unsigned long cur_len; 291 unsigned long offset = BTRFS_CSUM_SIZE; 292 char *kaddr; 293 unsigned long map_start; 294 unsigned long map_len; 295 int err; 296 u32 crc = ~(u32)0; 297 unsigned long inline_result; 298 299 len = buf->len - offset; 300 while (len > 0) { 301 err = map_private_extent_buffer(buf, offset, 32, 302 &kaddr, &map_start, &map_len); 303 if (err) 304 return err; 305 cur_len = min(len, map_len - (offset - map_start)); 306 crc = btrfs_csum_data(kaddr + offset - map_start, 307 crc, cur_len); 308 len -= cur_len; 309 offset += cur_len; 310 } 311 if (csum_size > sizeof(inline_result)) { 312 result = kzalloc(csum_size, GFP_NOFS); 313 if (!result) 314 return -ENOMEM; 315 } else { 316 result = (char *)&inline_result; 317 } 318 319 btrfs_csum_final(crc, result); 320 321 if (verify) { 322 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 323 u32 val; 324 u32 found = 0; 325 memcpy(&found, result, csum_size); 326 327 read_extent_buffer(buf, &val, 0, csum_size); 328 btrfs_warn_rl(fs_info, 329 "%s checksum verify failed on %llu wanted %X found %X level %d", 330 fs_info->sb->s_id, buf->start, 331 val, found, btrfs_header_level(buf)); 332 if (result != (char *)&inline_result) 333 kfree(result); 334 return -EUCLEAN; 335 } 336 } else { 337 write_extent_buffer(buf, result, 0, csum_size); 338 } 339 if (result != (char *)&inline_result) 340 kfree(result); 341 return 0; 342 } 343 344 /* 345 * we can't consider a given block up to date unless the transid of the 346 * block matches the transid in the parent node's pointer. This is how we 347 * detect blocks that either didn't get written at all or got written 348 * in the wrong place. 349 */ 350 static int verify_parent_transid(struct extent_io_tree *io_tree, 351 struct extent_buffer *eb, u64 parent_transid, 352 int atomic) 353 { 354 struct extent_state *cached_state = NULL; 355 int ret; 356 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 357 358 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 359 return 0; 360 361 if (atomic) 362 return -EAGAIN; 363 364 if (need_lock) { 365 btrfs_tree_read_lock(eb); 366 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 367 } 368 369 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 370 &cached_state); 371 if (extent_buffer_uptodate(eb) && 372 btrfs_header_generation(eb) == parent_transid) { 373 ret = 0; 374 goto out; 375 } 376 btrfs_err_rl(eb->fs_info, 377 "parent transid verify failed on %llu wanted %llu found %llu", 378 eb->start, 379 parent_transid, btrfs_header_generation(eb)); 380 ret = 1; 381 382 /* 383 * Things reading via commit roots that don't have normal protection, 384 * like send, can have a really old block in cache that may point at a 385 * block that has been freed and re-allocated. So don't clear uptodate 386 * if we find an eb that is under IO (dirty/writeback) because we could 387 * end up reading in the stale data and then writing it back out and 388 * making everybody very sad. 389 */ 390 if (!extent_buffer_under_io(eb)) 391 clear_extent_buffer_uptodate(eb); 392 out: 393 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 394 &cached_state, GFP_NOFS); 395 if (need_lock) 396 btrfs_tree_read_unlock_blocking(eb); 397 return ret; 398 } 399 400 /* 401 * Return 0 if the superblock checksum type matches the checksum value of that 402 * algorithm. Pass the raw disk superblock data. 403 */ 404 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 405 char *raw_disk_sb) 406 { 407 struct btrfs_super_block *disk_sb = 408 (struct btrfs_super_block *)raw_disk_sb; 409 u16 csum_type = btrfs_super_csum_type(disk_sb); 410 int ret = 0; 411 412 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 413 u32 crc = ~(u32)0; 414 const int csum_size = sizeof(crc); 415 char result[csum_size]; 416 417 /* 418 * The super_block structure does not span the whole 419 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 420 * is filled with zeros and is included in the checksum. 421 */ 422 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 423 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 424 btrfs_csum_final(crc, result); 425 426 if (memcmp(raw_disk_sb, result, csum_size)) 427 ret = 1; 428 } 429 430 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 431 btrfs_err(fs_info, "unsupported checksum algorithm %u", 432 csum_type); 433 ret = 1; 434 } 435 436 return ret; 437 } 438 439 /* 440 * helper to read a given tree block, doing retries as required when 441 * the checksums don't match and we have alternate mirrors to try. 442 */ 443 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info, 444 struct extent_buffer *eb, 445 u64 parent_transid) 446 { 447 struct extent_io_tree *io_tree; 448 int failed = 0; 449 int ret; 450 int num_copies = 0; 451 int mirror_num = 0; 452 int failed_mirror = 0; 453 454 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 455 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 456 while (1) { 457 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE, 458 btree_get_extent, mirror_num); 459 if (!ret) { 460 if (!verify_parent_transid(io_tree, eb, 461 parent_transid, 0)) 462 break; 463 else 464 ret = -EIO; 465 } 466 467 /* 468 * This buffer's crc is fine, but its contents are corrupted, so 469 * there is no reason to read the other copies, they won't be 470 * any less wrong. 471 */ 472 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 473 break; 474 475 num_copies = btrfs_num_copies(fs_info, 476 eb->start, eb->len); 477 if (num_copies == 1) 478 break; 479 480 if (!failed_mirror) { 481 failed = 1; 482 failed_mirror = eb->read_mirror; 483 } 484 485 mirror_num++; 486 if (mirror_num == failed_mirror) 487 mirror_num++; 488 489 if (mirror_num > num_copies) 490 break; 491 } 492 493 if (failed && !ret && failed_mirror) 494 repair_eb_io_failure(fs_info, eb, failed_mirror); 495 496 return ret; 497 } 498 499 /* 500 * checksum a dirty tree block before IO. This has extra checks to make sure 501 * we only fill in the checksum field in the first page of a multi-page block 502 */ 503 504 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 505 { 506 u64 start = page_offset(page); 507 u64 found_start; 508 struct extent_buffer *eb; 509 510 eb = (struct extent_buffer *)page->private; 511 if (page != eb->pages[0]) 512 return 0; 513 514 found_start = btrfs_header_bytenr(eb); 515 /* 516 * Please do not consolidate these warnings into a single if. 517 * It is useful to know what went wrong. 518 */ 519 if (WARN_ON(found_start != start)) 520 return -EUCLEAN; 521 if (WARN_ON(!PageUptodate(page))) 522 return -EUCLEAN; 523 524 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid, 525 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 526 527 return csum_tree_block(fs_info, eb, 0); 528 } 529 530 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 531 struct extent_buffer *eb) 532 { 533 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 534 u8 fsid[BTRFS_UUID_SIZE]; 535 int ret = 1; 536 537 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 538 while (fs_devices) { 539 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 540 ret = 0; 541 break; 542 } 543 fs_devices = fs_devices->seed; 544 } 545 return ret; 546 } 547 548 #define CORRUPT(reason, eb, root, slot) \ 549 btrfs_crit(root->fs_info, \ 550 "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \ 551 btrfs_header_level(eb) == 0 ? "leaf" : "node", \ 552 reason, btrfs_header_bytenr(eb), root->objectid, slot) 553 554 static noinline int check_leaf(struct btrfs_root *root, 555 struct extent_buffer *leaf) 556 { 557 struct btrfs_fs_info *fs_info = root->fs_info; 558 struct btrfs_key key; 559 struct btrfs_key leaf_key; 560 u32 nritems = btrfs_header_nritems(leaf); 561 int slot; 562 563 /* 564 * Extent buffers from a relocation tree have a owner field that 565 * corresponds to the subvolume tree they are based on. So just from an 566 * extent buffer alone we can not find out what is the id of the 567 * corresponding subvolume tree, so we can not figure out if the extent 568 * buffer corresponds to the root of the relocation tree or not. So skip 569 * this check for relocation trees. 570 */ 571 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) { 572 struct btrfs_root *check_root; 573 574 key.objectid = btrfs_header_owner(leaf); 575 key.type = BTRFS_ROOT_ITEM_KEY; 576 key.offset = (u64)-1; 577 578 check_root = btrfs_get_fs_root(fs_info, &key, false); 579 /* 580 * The only reason we also check NULL here is that during 581 * open_ctree() some roots has not yet been set up. 582 */ 583 if (!IS_ERR_OR_NULL(check_root)) { 584 struct extent_buffer *eb; 585 586 eb = btrfs_root_node(check_root); 587 /* if leaf is the root, then it's fine */ 588 if (leaf != eb) { 589 CORRUPT("non-root leaf's nritems is 0", 590 leaf, check_root, 0); 591 free_extent_buffer(eb); 592 return -EIO; 593 } 594 free_extent_buffer(eb); 595 } 596 return 0; 597 } 598 599 if (nritems == 0) 600 return 0; 601 602 /* Check the 0 item */ 603 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 604 BTRFS_LEAF_DATA_SIZE(fs_info)) { 605 CORRUPT("invalid item offset size pair", leaf, root, 0); 606 return -EIO; 607 } 608 609 /* 610 * Check to make sure each items keys are in the correct order and their 611 * offsets make sense. We only have to loop through nritems-1 because 612 * we check the current slot against the next slot, which verifies the 613 * next slot's offset+size makes sense and that the current's slot 614 * offset is correct. 615 */ 616 for (slot = 0; slot < nritems - 1; slot++) { 617 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 618 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 619 620 /* Make sure the keys are in the right order */ 621 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 622 CORRUPT("bad key order", leaf, root, slot); 623 return -EIO; 624 } 625 626 /* 627 * Make sure the offset and ends are right, remember that the 628 * item data starts at the end of the leaf and grows towards the 629 * front. 630 */ 631 if (btrfs_item_offset_nr(leaf, slot) != 632 btrfs_item_end_nr(leaf, slot + 1)) { 633 CORRUPT("slot offset bad", leaf, root, slot); 634 return -EIO; 635 } 636 637 /* 638 * Check to make sure that we don't point outside of the leaf, 639 * just in case all the items are consistent to each other, but 640 * all point outside of the leaf. 641 */ 642 if (btrfs_item_end_nr(leaf, slot) > 643 BTRFS_LEAF_DATA_SIZE(fs_info)) { 644 CORRUPT("slot end outside of leaf", leaf, root, slot); 645 return -EIO; 646 } 647 } 648 649 return 0; 650 } 651 652 static int check_node(struct btrfs_root *root, struct extent_buffer *node) 653 { 654 unsigned long nr = btrfs_header_nritems(node); 655 struct btrfs_key key, next_key; 656 int slot; 657 u64 bytenr; 658 int ret = 0; 659 660 if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) { 661 btrfs_crit(root->fs_info, 662 "corrupt node: block %llu root %llu nritems %lu", 663 node->start, root->objectid, nr); 664 return -EIO; 665 } 666 667 for (slot = 0; slot < nr - 1; slot++) { 668 bytenr = btrfs_node_blockptr(node, slot); 669 btrfs_node_key_to_cpu(node, &key, slot); 670 btrfs_node_key_to_cpu(node, &next_key, slot + 1); 671 672 if (!bytenr) { 673 CORRUPT("invalid item slot", node, root, slot); 674 ret = -EIO; 675 goto out; 676 } 677 678 if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) { 679 CORRUPT("bad key order", node, root, slot); 680 ret = -EIO; 681 goto out; 682 } 683 } 684 out: 685 return ret; 686 } 687 688 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 689 u64 phy_offset, struct page *page, 690 u64 start, u64 end, int mirror) 691 { 692 u64 found_start; 693 int found_level; 694 struct extent_buffer *eb; 695 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 696 struct btrfs_fs_info *fs_info = root->fs_info; 697 int ret = 0; 698 int reads_done; 699 700 if (!page->private) 701 goto out; 702 703 eb = (struct extent_buffer *)page->private; 704 705 /* the pending IO might have been the only thing that kept this buffer 706 * in memory. Make sure we have a ref for all this other checks 707 */ 708 extent_buffer_get(eb); 709 710 reads_done = atomic_dec_and_test(&eb->io_pages); 711 if (!reads_done) 712 goto err; 713 714 eb->read_mirror = mirror; 715 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 716 ret = -EIO; 717 goto err; 718 } 719 720 found_start = btrfs_header_bytenr(eb); 721 if (found_start != eb->start) { 722 btrfs_err_rl(fs_info, "bad tree block start %llu %llu", 723 found_start, eb->start); 724 ret = -EIO; 725 goto err; 726 } 727 if (check_tree_block_fsid(fs_info, eb)) { 728 btrfs_err_rl(fs_info, "bad fsid on block %llu", 729 eb->start); 730 ret = -EIO; 731 goto err; 732 } 733 found_level = btrfs_header_level(eb); 734 if (found_level >= BTRFS_MAX_LEVEL) { 735 btrfs_err(fs_info, "bad tree block level %d", 736 (int)btrfs_header_level(eb)); 737 ret = -EIO; 738 goto err; 739 } 740 741 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 742 eb, found_level); 743 744 ret = csum_tree_block(fs_info, eb, 1); 745 if (ret) 746 goto err; 747 748 /* 749 * If this is a leaf block and it is corrupt, set the corrupt bit so 750 * that we don't try and read the other copies of this block, just 751 * return -EIO. 752 */ 753 if (found_level == 0 && check_leaf(root, eb)) { 754 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 755 ret = -EIO; 756 } 757 758 if (found_level > 0 && check_node(root, eb)) 759 ret = -EIO; 760 761 if (!ret) 762 set_extent_buffer_uptodate(eb); 763 err: 764 if (reads_done && 765 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 766 btree_readahead_hook(fs_info, eb, ret); 767 768 if (ret) { 769 /* 770 * our io error hook is going to dec the io pages 771 * again, we have to make sure it has something 772 * to decrement 773 */ 774 atomic_inc(&eb->io_pages); 775 clear_extent_buffer_uptodate(eb); 776 } 777 free_extent_buffer(eb); 778 out: 779 return ret; 780 } 781 782 static int btree_io_failed_hook(struct page *page, int failed_mirror) 783 { 784 struct extent_buffer *eb; 785 786 eb = (struct extent_buffer *)page->private; 787 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 788 eb->read_mirror = failed_mirror; 789 atomic_dec(&eb->io_pages); 790 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 791 btree_readahead_hook(eb->fs_info, eb, -EIO); 792 return -EIO; /* we fixed nothing */ 793 } 794 795 static void end_workqueue_bio(struct bio *bio) 796 { 797 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 798 struct btrfs_fs_info *fs_info; 799 struct btrfs_workqueue *wq; 800 btrfs_work_func_t func; 801 802 fs_info = end_io_wq->info; 803 end_io_wq->error = bio->bi_error; 804 805 if (bio_op(bio) == REQ_OP_WRITE) { 806 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 807 wq = fs_info->endio_meta_write_workers; 808 func = btrfs_endio_meta_write_helper; 809 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 810 wq = fs_info->endio_freespace_worker; 811 func = btrfs_freespace_write_helper; 812 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 813 wq = fs_info->endio_raid56_workers; 814 func = btrfs_endio_raid56_helper; 815 } else { 816 wq = fs_info->endio_write_workers; 817 func = btrfs_endio_write_helper; 818 } 819 } else { 820 if (unlikely(end_io_wq->metadata == 821 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 822 wq = fs_info->endio_repair_workers; 823 func = btrfs_endio_repair_helper; 824 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 825 wq = fs_info->endio_raid56_workers; 826 func = btrfs_endio_raid56_helper; 827 } else if (end_io_wq->metadata) { 828 wq = fs_info->endio_meta_workers; 829 func = btrfs_endio_meta_helper; 830 } else { 831 wq = fs_info->endio_workers; 832 func = btrfs_endio_helper; 833 } 834 } 835 836 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 837 btrfs_queue_work(wq, &end_io_wq->work); 838 } 839 840 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 841 enum btrfs_wq_endio_type metadata) 842 { 843 struct btrfs_end_io_wq *end_io_wq; 844 845 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 846 if (!end_io_wq) 847 return -ENOMEM; 848 849 end_io_wq->private = bio->bi_private; 850 end_io_wq->end_io = bio->bi_end_io; 851 end_io_wq->info = info; 852 end_io_wq->error = 0; 853 end_io_wq->bio = bio; 854 end_io_wq->metadata = metadata; 855 856 bio->bi_private = end_io_wq; 857 bio->bi_end_io = end_workqueue_bio; 858 return 0; 859 } 860 861 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 862 { 863 unsigned long limit = min_t(unsigned long, 864 info->thread_pool_size, 865 info->fs_devices->open_devices); 866 return 256 * limit; 867 } 868 869 static void run_one_async_start(struct btrfs_work *work) 870 { 871 struct async_submit_bio *async; 872 int ret; 873 874 async = container_of(work, struct async_submit_bio, work); 875 ret = async->submit_bio_start(async->inode, async->bio, 876 async->mirror_num, async->bio_flags, 877 async->bio_offset); 878 if (ret) 879 async->error = ret; 880 } 881 882 static void run_one_async_done(struct btrfs_work *work) 883 { 884 struct btrfs_fs_info *fs_info; 885 struct async_submit_bio *async; 886 int limit; 887 888 async = container_of(work, struct async_submit_bio, work); 889 fs_info = BTRFS_I(async->inode)->root->fs_info; 890 891 limit = btrfs_async_submit_limit(fs_info); 892 limit = limit * 2 / 3; 893 894 /* 895 * atomic_dec_return implies a barrier for waitqueue_active 896 */ 897 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 898 waitqueue_active(&fs_info->async_submit_wait)) 899 wake_up(&fs_info->async_submit_wait); 900 901 /* If an error occurred we just want to clean up the bio and move on */ 902 if (async->error) { 903 async->bio->bi_error = async->error; 904 bio_endio(async->bio); 905 return; 906 } 907 908 async->submit_bio_done(async->inode, async->bio, async->mirror_num, 909 async->bio_flags, async->bio_offset); 910 } 911 912 static void run_one_async_free(struct btrfs_work *work) 913 { 914 struct async_submit_bio *async; 915 916 async = container_of(work, struct async_submit_bio, work); 917 kfree(async); 918 } 919 920 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 921 struct bio *bio, int mirror_num, 922 unsigned long bio_flags, 923 u64 bio_offset, 924 extent_submit_bio_hook_t *submit_bio_start, 925 extent_submit_bio_hook_t *submit_bio_done) 926 { 927 struct async_submit_bio *async; 928 929 async = kmalloc(sizeof(*async), GFP_NOFS); 930 if (!async) 931 return -ENOMEM; 932 933 async->inode = inode; 934 async->bio = bio; 935 async->mirror_num = mirror_num; 936 async->submit_bio_start = submit_bio_start; 937 async->submit_bio_done = submit_bio_done; 938 939 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 940 run_one_async_done, run_one_async_free); 941 942 async->bio_flags = bio_flags; 943 async->bio_offset = bio_offset; 944 945 async->error = 0; 946 947 atomic_inc(&fs_info->nr_async_submits); 948 949 if (op_is_sync(bio->bi_opf)) 950 btrfs_set_work_high_priority(&async->work); 951 952 btrfs_queue_work(fs_info->workers, &async->work); 953 954 while (atomic_read(&fs_info->async_submit_draining) && 955 atomic_read(&fs_info->nr_async_submits)) { 956 wait_event(fs_info->async_submit_wait, 957 (atomic_read(&fs_info->nr_async_submits) == 0)); 958 } 959 960 return 0; 961 } 962 963 static int btree_csum_one_bio(struct bio *bio) 964 { 965 struct bio_vec *bvec; 966 struct btrfs_root *root; 967 int i, ret = 0; 968 969 bio_for_each_segment_all(bvec, bio, i) { 970 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 971 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 972 if (ret) 973 break; 974 } 975 976 return ret; 977 } 978 979 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio, 980 int mirror_num, unsigned long bio_flags, 981 u64 bio_offset) 982 { 983 /* 984 * when we're called for a write, we're already in the async 985 * submission context. Just jump into btrfs_map_bio 986 */ 987 return btree_csum_one_bio(bio); 988 } 989 990 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio, 991 int mirror_num, unsigned long bio_flags, 992 u64 bio_offset) 993 { 994 int ret; 995 996 /* 997 * when we're called for a write, we're already in the async 998 * submission context. Just jump into btrfs_map_bio 999 */ 1000 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1); 1001 if (ret) { 1002 bio->bi_error = ret; 1003 bio_endio(bio); 1004 } 1005 return ret; 1006 } 1007 1008 static int check_async_write(struct inode *inode, unsigned long bio_flags) 1009 { 1010 if (bio_flags & EXTENT_BIO_TREE_LOG) 1011 return 0; 1012 #ifdef CONFIG_X86 1013 if (static_cpu_has(X86_FEATURE_XMM4_2)) 1014 return 0; 1015 #endif 1016 return 1; 1017 } 1018 1019 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio, 1020 int mirror_num, unsigned long bio_flags, 1021 u64 bio_offset) 1022 { 1023 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1024 int async = check_async_write(inode, bio_flags); 1025 int ret; 1026 1027 if (bio_op(bio) != REQ_OP_WRITE) { 1028 /* 1029 * called for a read, do the setup so that checksum validation 1030 * can happen in the async kernel threads 1031 */ 1032 ret = btrfs_bio_wq_end_io(fs_info, bio, 1033 BTRFS_WQ_ENDIO_METADATA); 1034 if (ret) 1035 goto out_w_error; 1036 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 1037 } else if (!async) { 1038 ret = btree_csum_one_bio(bio); 1039 if (ret) 1040 goto out_w_error; 1041 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 1042 } else { 1043 /* 1044 * kthread helpers are used to submit writes so that 1045 * checksumming can happen in parallel across all CPUs 1046 */ 1047 ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0, 1048 bio_offset, 1049 __btree_submit_bio_start, 1050 __btree_submit_bio_done); 1051 } 1052 1053 if (ret) 1054 goto out_w_error; 1055 return 0; 1056 1057 out_w_error: 1058 bio->bi_error = ret; 1059 bio_endio(bio); 1060 return ret; 1061 } 1062 1063 #ifdef CONFIG_MIGRATION 1064 static int btree_migratepage(struct address_space *mapping, 1065 struct page *newpage, struct page *page, 1066 enum migrate_mode mode) 1067 { 1068 /* 1069 * we can't safely write a btree page from here, 1070 * we haven't done the locking hook 1071 */ 1072 if (PageDirty(page)) 1073 return -EAGAIN; 1074 /* 1075 * Buffers may be managed in a filesystem specific way. 1076 * We must have no buffers or drop them. 1077 */ 1078 if (page_has_private(page) && 1079 !try_to_release_page(page, GFP_KERNEL)) 1080 return -EAGAIN; 1081 return migrate_page(mapping, newpage, page, mode); 1082 } 1083 #endif 1084 1085 1086 static int btree_writepages(struct address_space *mapping, 1087 struct writeback_control *wbc) 1088 { 1089 struct btrfs_fs_info *fs_info; 1090 int ret; 1091 1092 if (wbc->sync_mode == WB_SYNC_NONE) { 1093 1094 if (wbc->for_kupdate) 1095 return 0; 1096 1097 fs_info = BTRFS_I(mapping->host)->root->fs_info; 1098 /* this is a bit racy, but that's ok */ 1099 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 1100 BTRFS_DIRTY_METADATA_THRESH); 1101 if (ret < 0) 1102 return 0; 1103 } 1104 return btree_write_cache_pages(mapping, wbc); 1105 } 1106 1107 static int btree_readpage(struct file *file, struct page *page) 1108 { 1109 struct extent_io_tree *tree; 1110 tree = &BTRFS_I(page->mapping->host)->io_tree; 1111 return extent_read_full_page(tree, page, btree_get_extent, 0); 1112 } 1113 1114 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1115 { 1116 if (PageWriteback(page) || PageDirty(page)) 1117 return 0; 1118 1119 return try_release_extent_buffer(page); 1120 } 1121 1122 static void btree_invalidatepage(struct page *page, unsigned int offset, 1123 unsigned int length) 1124 { 1125 struct extent_io_tree *tree; 1126 tree = &BTRFS_I(page->mapping->host)->io_tree; 1127 extent_invalidatepage(tree, page, offset); 1128 btree_releasepage(page, GFP_NOFS); 1129 if (PagePrivate(page)) { 1130 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1131 "page private not zero on page %llu", 1132 (unsigned long long)page_offset(page)); 1133 ClearPagePrivate(page); 1134 set_page_private(page, 0); 1135 put_page(page); 1136 } 1137 } 1138 1139 static int btree_set_page_dirty(struct page *page) 1140 { 1141 #ifdef DEBUG 1142 struct extent_buffer *eb; 1143 1144 BUG_ON(!PagePrivate(page)); 1145 eb = (struct extent_buffer *)page->private; 1146 BUG_ON(!eb); 1147 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1148 BUG_ON(!atomic_read(&eb->refs)); 1149 btrfs_assert_tree_locked(eb); 1150 #endif 1151 return __set_page_dirty_nobuffers(page); 1152 } 1153 1154 static const struct address_space_operations btree_aops = { 1155 .readpage = btree_readpage, 1156 .writepages = btree_writepages, 1157 .releasepage = btree_releasepage, 1158 .invalidatepage = btree_invalidatepage, 1159 #ifdef CONFIG_MIGRATION 1160 .migratepage = btree_migratepage, 1161 #endif 1162 .set_page_dirty = btree_set_page_dirty, 1163 }; 1164 1165 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1166 { 1167 struct extent_buffer *buf = NULL; 1168 struct inode *btree_inode = fs_info->btree_inode; 1169 1170 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1171 if (IS_ERR(buf)) 1172 return; 1173 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1174 buf, WAIT_NONE, btree_get_extent, 0); 1175 free_extent_buffer(buf); 1176 } 1177 1178 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr, 1179 int mirror_num, struct extent_buffer **eb) 1180 { 1181 struct extent_buffer *buf = NULL; 1182 struct inode *btree_inode = fs_info->btree_inode; 1183 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1184 int ret; 1185 1186 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1187 if (IS_ERR(buf)) 1188 return 0; 1189 1190 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1191 1192 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK, 1193 btree_get_extent, mirror_num); 1194 if (ret) { 1195 free_extent_buffer(buf); 1196 return ret; 1197 } 1198 1199 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1200 free_extent_buffer(buf); 1201 return -EIO; 1202 } else if (extent_buffer_uptodate(buf)) { 1203 *eb = buf; 1204 } else { 1205 free_extent_buffer(buf); 1206 } 1207 return 0; 1208 } 1209 1210 struct extent_buffer *btrfs_find_create_tree_block( 1211 struct btrfs_fs_info *fs_info, 1212 u64 bytenr) 1213 { 1214 if (btrfs_is_testing(fs_info)) 1215 return alloc_test_extent_buffer(fs_info, bytenr); 1216 return alloc_extent_buffer(fs_info, bytenr); 1217 } 1218 1219 1220 int btrfs_write_tree_block(struct extent_buffer *buf) 1221 { 1222 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1223 buf->start + buf->len - 1); 1224 } 1225 1226 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1227 { 1228 return filemap_fdatawait_range(buf->pages[0]->mapping, 1229 buf->start, buf->start + buf->len - 1); 1230 } 1231 1232 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1233 u64 parent_transid) 1234 { 1235 struct extent_buffer *buf = NULL; 1236 int ret; 1237 1238 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1239 if (IS_ERR(buf)) 1240 return buf; 1241 1242 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid); 1243 if (ret) { 1244 free_extent_buffer(buf); 1245 return ERR_PTR(ret); 1246 } 1247 return buf; 1248 1249 } 1250 1251 void clean_tree_block(struct btrfs_trans_handle *trans, 1252 struct btrfs_fs_info *fs_info, 1253 struct extent_buffer *buf) 1254 { 1255 if (btrfs_header_generation(buf) == 1256 fs_info->running_transaction->transid) { 1257 btrfs_assert_tree_locked(buf); 1258 1259 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1260 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1261 -buf->len, 1262 fs_info->dirty_metadata_batch); 1263 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1264 btrfs_set_lock_blocking(buf); 1265 clear_extent_buffer_dirty(buf); 1266 } 1267 } 1268 } 1269 1270 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1271 { 1272 struct btrfs_subvolume_writers *writers; 1273 int ret; 1274 1275 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1276 if (!writers) 1277 return ERR_PTR(-ENOMEM); 1278 1279 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL); 1280 if (ret < 0) { 1281 kfree(writers); 1282 return ERR_PTR(ret); 1283 } 1284 1285 init_waitqueue_head(&writers->wait); 1286 return writers; 1287 } 1288 1289 static void 1290 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1291 { 1292 percpu_counter_destroy(&writers->counter); 1293 kfree(writers); 1294 } 1295 1296 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1297 u64 objectid) 1298 { 1299 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1300 root->node = NULL; 1301 root->commit_root = NULL; 1302 root->state = 0; 1303 root->orphan_cleanup_state = 0; 1304 1305 root->objectid = objectid; 1306 root->last_trans = 0; 1307 root->highest_objectid = 0; 1308 root->nr_delalloc_inodes = 0; 1309 root->nr_ordered_extents = 0; 1310 root->name = NULL; 1311 root->inode_tree = RB_ROOT; 1312 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1313 root->block_rsv = NULL; 1314 root->orphan_block_rsv = NULL; 1315 1316 INIT_LIST_HEAD(&root->dirty_list); 1317 INIT_LIST_HEAD(&root->root_list); 1318 INIT_LIST_HEAD(&root->delalloc_inodes); 1319 INIT_LIST_HEAD(&root->delalloc_root); 1320 INIT_LIST_HEAD(&root->ordered_extents); 1321 INIT_LIST_HEAD(&root->ordered_root); 1322 INIT_LIST_HEAD(&root->logged_list[0]); 1323 INIT_LIST_HEAD(&root->logged_list[1]); 1324 spin_lock_init(&root->orphan_lock); 1325 spin_lock_init(&root->inode_lock); 1326 spin_lock_init(&root->delalloc_lock); 1327 spin_lock_init(&root->ordered_extent_lock); 1328 spin_lock_init(&root->accounting_lock); 1329 spin_lock_init(&root->log_extents_lock[0]); 1330 spin_lock_init(&root->log_extents_lock[1]); 1331 mutex_init(&root->objectid_mutex); 1332 mutex_init(&root->log_mutex); 1333 mutex_init(&root->ordered_extent_mutex); 1334 mutex_init(&root->delalloc_mutex); 1335 init_waitqueue_head(&root->log_writer_wait); 1336 init_waitqueue_head(&root->log_commit_wait[0]); 1337 init_waitqueue_head(&root->log_commit_wait[1]); 1338 INIT_LIST_HEAD(&root->log_ctxs[0]); 1339 INIT_LIST_HEAD(&root->log_ctxs[1]); 1340 atomic_set(&root->log_commit[0], 0); 1341 atomic_set(&root->log_commit[1], 0); 1342 atomic_set(&root->log_writers, 0); 1343 atomic_set(&root->log_batch, 0); 1344 atomic_set(&root->orphan_inodes, 0); 1345 atomic_set(&root->refs, 1); 1346 atomic_set(&root->will_be_snapshoted, 0); 1347 atomic_set(&root->qgroup_meta_rsv, 0); 1348 root->log_transid = 0; 1349 root->log_transid_committed = -1; 1350 root->last_log_commit = 0; 1351 if (!dummy) 1352 extent_io_tree_init(&root->dirty_log_pages, 1353 fs_info->btree_inode->i_mapping); 1354 1355 memset(&root->root_key, 0, sizeof(root->root_key)); 1356 memset(&root->root_item, 0, sizeof(root->root_item)); 1357 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1358 if (!dummy) 1359 root->defrag_trans_start = fs_info->generation; 1360 else 1361 root->defrag_trans_start = 0; 1362 root->root_key.objectid = objectid; 1363 root->anon_dev = 0; 1364 1365 spin_lock_init(&root->root_item_lock); 1366 } 1367 1368 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1369 gfp_t flags) 1370 { 1371 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1372 if (root) 1373 root->fs_info = fs_info; 1374 return root; 1375 } 1376 1377 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1378 /* Should only be used by the testing infrastructure */ 1379 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1380 { 1381 struct btrfs_root *root; 1382 1383 if (!fs_info) 1384 return ERR_PTR(-EINVAL); 1385 1386 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1387 if (!root) 1388 return ERR_PTR(-ENOMEM); 1389 1390 /* We don't use the stripesize in selftest, set it as sectorsize */ 1391 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 1392 root->alloc_bytenr = 0; 1393 1394 return root; 1395 } 1396 #endif 1397 1398 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1399 struct btrfs_fs_info *fs_info, 1400 u64 objectid) 1401 { 1402 struct extent_buffer *leaf; 1403 struct btrfs_root *tree_root = fs_info->tree_root; 1404 struct btrfs_root *root; 1405 struct btrfs_key key; 1406 int ret = 0; 1407 uuid_le uuid; 1408 1409 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1410 if (!root) 1411 return ERR_PTR(-ENOMEM); 1412 1413 __setup_root(root, fs_info, objectid); 1414 root->root_key.objectid = objectid; 1415 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1416 root->root_key.offset = 0; 1417 1418 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1419 if (IS_ERR(leaf)) { 1420 ret = PTR_ERR(leaf); 1421 leaf = NULL; 1422 goto fail; 1423 } 1424 1425 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 1426 btrfs_set_header_bytenr(leaf, leaf->start); 1427 btrfs_set_header_generation(leaf, trans->transid); 1428 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1429 btrfs_set_header_owner(leaf, objectid); 1430 root->node = leaf; 1431 1432 write_extent_buffer_fsid(leaf, fs_info->fsid); 1433 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid); 1434 btrfs_mark_buffer_dirty(leaf); 1435 1436 root->commit_root = btrfs_root_node(root); 1437 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1438 1439 root->root_item.flags = 0; 1440 root->root_item.byte_limit = 0; 1441 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1442 btrfs_set_root_generation(&root->root_item, trans->transid); 1443 btrfs_set_root_level(&root->root_item, 0); 1444 btrfs_set_root_refs(&root->root_item, 1); 1445 btrfs_set_root_used(&root->root_item, leaf->len); 1446 btrfs_set_root_last_snapshot(&root->root_item, 0); 1447 btrfs_set_root_dirid(&root->root_item, 0); 1448 uuid_le_gen(&uuid); 1449 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1450 root->root_item.drop_level = 0; 1451 1452 key.objectid = objectid; 1453 key.type = BTRFS_ROOT_ITEM_KEY; 1454 key.offset = 0; 1455 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1456 if (ret) 1457 goto fail; 1458 1459 btrfs_tree_unlock(leaf); 1460 1461 return root; 1462 1463 fail: 1464 if (leaf) { 1465 btrfs_tree_unlock(leaf); 1466 free_extent_buffer(root->commit_root); 1467 free_extent_buffer(leaf); 1468 } 1469 kfree(root); 1470 1471 return ERR_PTR(ret); 1472 } 1473 1474 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1475 struct btrfs_fs_info *fs_info) 1476 { 1477 struct btrfs_root *root; 1478 struct extent_buffer *leaf; 1479 1480 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1481 if (!root) 1482 return ERR_PTR(-ENOMEM); 1483 1484 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1485 1486 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1487 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1488 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1489 1490 /* 1491 * DON'T set REF_COWS for log trees 1492 * 1493 * log trees do not get reference counted because they go away 1494 * before a real commit is actually done. They do store pointers 1495 * to file data extents, and those reference counts still get 1496 * updated (along with back refs to the log tree). 1497 */ 1498 1499 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1500 NULL, 0, 0, 0); 1501 if (IS_ERR(leaf)) { 1502 kfree(root); 1503 return ERR_CAST(leaf); 1504 } 1505 1506 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 1507 btrfs_set_header_bytenr(leaf, leaf->start); 1508 btrfs_set_header_generation(leaf, trans->transid); 1509 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1510 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1511 root->node = leaf; 1512 1513 write_extent_buffer_fsid(root->node, fs_info->fsid); 1514 btrfs_mark_buffer_dirty(root->node); 1515 btrfs_tree_unlock(root->node); 1516 return root; 1517 } 1518 1519 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1520 struct btrfs_fs_info *fs_info) 1521 { 1522 struct btrfs_root *log_root; 1523 1524 log_root = alloc_log_tree(trans, fs_info); 1525 if (IS_ERR(log_root)) 1526 return PTR_ERR(log_root); 1527 WARN_ON(fs_info->log_root_tree); 1528 fs_info->log_root_tree = log_root; 1529 return 0; 1530 } 1531 1532 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1533 struct btrfs_root *root) 1534 { 1535 struct btrfs_fs_info *fs_info = root->fs_info; 1536 struct btrfs_root *log_root; 1537 struct btrfs_inode_item *inode_item; 1538 1539 log_root = alloc_log_tree(trans, fs_info); 1540 if (IS_ERR(log_root)) 1541 return PTR_ERR(log_root); 1542 1543 log_root->last_trans = trans->transid; 1544 log_root->root_key.offset = root->root_key.objectid; 1545 1546 inode_item = &log_root->root_item.inode; 1547 btrfs_set_stack_inode_generation(inode_item, 1); 1548 btrfs_set_stack_inode_size(inode_item, 3); 1549 btrfs_set_stack_inode_nlink(inode_item, 1); 1550 btrfs_set_stack_inode_nbytes(inode_item, 1551 fs_info->nodesize); 1552 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1553 1554 btrfs_set_root_node(&log_root->root_item, log_root->node); 1555 1556 WARN_ON(root->log_root); 1557 root->log_root = log_root; 1558 root->log_transid = 0; 1559 root->log_transid_committed = -1; 1560 root->last_log_commit = 0; 1561 return 0; 1562 } 1563 1564 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1565 struct btrfs_key *key) 1566 { 1567 struct btrfs_root *root; 1568 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1569 struct btrfs_path *path; 1570 u64 generation; 1571 int ret; 1572 1573 path = btrfs_alloc_path(); 1574 if (!path) 1575 return ERR_PTR(-ENOMEM); 1576 1577 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1578 if (!root) { 1579 ret = -ENOMEM; 1580 goto alloc_fail; 1581 } 1582 1583 __setup_root(root, fs_info, key->objectid); 1584 1585 ret = btrfs_find_root(tree_root, key, path, 1586 &root->root_item, &root->root_key); 1587 if (ret) { 1588 if (ret > 0) 1589 ret = -ENOENT; 1590 goto find_fail; 1591 } 1592 1593 generation = btrfs_root_generation(&root->root_item); 1594 root->node = read_tree_block(fs_info, 1595 btrfs_root_bytenr(&root->root_item), 1596 generation); 1597 if (IS_ERR(root->node)) { 1598 ret = PTR_ERR(root->node); 1599 goto find_fail; 1600 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1601 ret = -EIO; 1602 free_extent_buffer(root->node); 1603 goto find_fail; 1604 } 1605 root->commit_root = btrfs_root_node(root); 1606 out: 1607 btrfs_free_path(path); 1608 return root; 1609 1610 find_fail: 1611 kfree(root); 1612 alloc_fail: 1613 root = ERR_PTR(ret); 1614 goto out; 1615 } 1616 1617 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1618 struct btrfs_key *location) 1619 { 1620 struct btrfs_root *root; 1621 1622 root = btrfs_read_tree_root(tree_root, location); 1623 if (IS_ERR(root)) 1624 return root; 1625 1626 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1627 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1628 btrfs_check_and_init_root_item(&root->root_item); 1629 } 1630 1631 return root; 1632 } 1633 1634 int btrfs_init_fs_root(struct btrfs_root *root) 1635 { 1636 int ret; 1637 struct btrfs_subvolume_writers *writers; 1638 1639 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1640 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1641 GFP_NOFS); 1642 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1643 ret = -ENOMEM; 1644 goto fail; 1645 } 1646 1647 writers = btrfs_alloc_subvolume_writers(); 1648 if (IS_ERR(writers)) { 1649 ret = PTR_ERR(writers); 1650 goto fail; 1651 } 1652 root->subv_writers = writers; 1653 1654 btrfs_init_free_ino_ctl(root); 1655 spin_lock_init(&root->ino_cache_lock); 1656 init_waitqueue_head(&root->ino_cache_wait); 1657 1658 ret = get_anon_bdev(&root->anon_dev); 1659 if (ret) 1660 goto fail; 1661 1662 mutex_lock(&root->objectid_mutex); 1663 ret = btrfs_find_highest_objectid(root, 1664 &root->highest_objectid); 1665 if (ret) { 1666 mutex_unlock(&root->objectid_mutex); 1667 goto fail; 1668 } 1669 1670 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1671 1672 mutex_unlock(&root->objectid_mutex); 1673 1674 return 0; 1675 fail: 1676 /* the caller is responsible to call free_fs_root */ 1677 return ret; 1678 } 1679 1680 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1681 u64 root_id) 1682 { 1683 struct btrfs_root *root; 1684 1685 spin_lock(&fs_info->fs_roots_radix_lock); 1686 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1687 (unsigned long)root_id); 1688 spin_unlock(&fs_info->fs_roots_radix_lock); 1689 return root; 1690 } 1691 1692 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1693 struct btrfs_root *root) 1694 { 1695 int ret; 1696 1697 ret = radix_tree_preload(GFP_NOFS); 1698 if (ret) 1699 return ret; 1700 1701 spin_lock(&fs_info->fs_roots_radix_lock); 1702 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1703 (unsigned long)root->root_key.objectid, 1704 root); 1705 if (ret == 0) 1706 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1707 spin_unlock(&fs_info->fs_roots_radix_lock); 1708 radix_tree_preload_end(); 1709 1710 return ret; 1711 } 1712 1713 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1714 struct btrfs_key *location, 1715 bool check_ref) 1716 { 1717 struct btrfs_root *root; 1718 struct btrfs_path *path; 1719 struct btrfs_key key; 1720 int ret; 1721 1722 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1723 return fs_info->tree_root; 1724 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1725 return fs_info->extent_root; 1726 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1727 return fs_info->chunk_root; 1728 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1729 return fs_info->dev_root; 1730 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1731 return fs_info->csum_root; 1732 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1733 return fs_info->quota_root ? fs_info->quota_root : 1734 ERR_PTR(-ENOENT); 1735 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1736 return fs_info->uuid_root ? fs_info->uuid_root : 1737 ERR_PTR(-ENOENT); 1738 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1739 return fs_info->free_space_root ? fs_info->free_space_root : 1740 ERR_PTR(-ENOENT); 1741 again: 1742 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1743 if (root) { 1744 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1745 return ERR_PTR(-ENOENT); 1746 return root; 1747 } 1748 1749 root = btrfs_read_fs_root(fs_info->tree_root, location); 1750 if (IS_ERR(root)) 1751 return root; 1752 1753 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1754 ret = -ENOENT; 1755 goto fail; 1756 } 1757 1758 ret = btrfs_init_fs_root(root); 1759 if (ret) 1760 goto fail; 1761 1762 path = btrfs_alloc_path(); 1763 if (!path) { 1764 ret = -ENOMEM; 1765 goto fail; 1766 } 1767 key.objectid = BTRFS_ORPHAN_OBJECTID; 1768 key.type = BTRFS_ORPHAN_ITEM_KEY; 1769 key.offset = location->objectid; 1770 1771 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1772 btrfs_free_path(path); 1773 if (ret < 0) 1774 goto fail; 1775 if (ret == 0) 1776 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1777 1778 ret = btrfs_insert_fs_root(fs_info, root); 1779 if (ret) { 1780 if (ret == -EEXIST) { 1781 free_fs_root(root); 1782 goto again; 1783 } 1784 goto fail; 1785 } 1786 return root; 1787 fail: 1788 free_fs_root(root); 1789 return ERR_PTR(ret); 1790 } 1791 1792 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1793 { 1794 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1795 int ret = 0; 1796 struct btrfs_device *device; 1797 struct backing_dev_info *bdi; 1798 1799 rcu_read_lock(); 1800 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1801 if (!device->bdev) 1802 continue; 1803 bdi = blk_get_backing_dev_info(device->bdev); 1804 if (bdi_congested(bdi, bdi_bits)) { 1805 ret = 1; 1806 break; 1807 } 1808 } 1809 rcu_read_unlock(); 1810 return ret; 1811 } 1812 1813 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1814 { 1815 int err; 1816 1817 err = bdi_setup_and_register(bdi, "btrfs"); 1818 if (err) 1819 return err; 1820 1821 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE; 1822 bdi->congested_fn = btrfs_congested_fn; 1823 bdi->congested_data = info; 1824 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 1825 return 0; 1826 } 1827 1828 /* 1829 * called by the kthread helper functions to finally call the bio end_io 1830 * functions. This is where read checksum verification actually happens 1831 */ 1832 static void end_workqueue_fn(struct btrfs_work *work) 1833 { 1834 struct bio *bio; 1835 struct btrfs_end_io_wq *end_io_wq; 1836 1837 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1838 bio = end_io_wq->bio; 1839 1840 bio->bi_error = end_io_wq->error; 1841 bio->bi_private = end_io_wq->private; 1842 bio->bi_end_io = end_io_wq->end_io; 1843 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1844 bio_endio(bio); 1845 } 1846 1847 static int cleaner_kthread(void *arg) 1848 { 1849 struct btrfs_root *root = arg; 1850 struct btrfs_fs_info *fs_info = root->fs_info; 1851 int again; 1852 struct btrfs_trans_handle *trans; 1853 1854 do { 1855 again = 0; 1856 1857 /* Make the cleaner go to sleep early. */ 1858 if (btrfs_need_cleaner_sleep(fs_info)) 1859 goto sleep; 1860 1861 /* 1862 * Do not do anything if we might cause open_ctree() to block 1863 * before we have finished mounting the filesystem. 1864 */ 1865 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1866 goto sleep; 1867 1868 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1869 goto sleep; 1870 1871 /* 1872 * Avoid the problem that we change the status of the fs 1873 * during the above check and trylock. 1874 */ 1875 if (btrfs_need_cleaner_sleep(fs_info)) { 1876 mutex_unlock(&fs_info->cleaner_mutex); 1877 goto sleep; 1878 } 1879 1880 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 1881 btrfs_run_delayed_iputs(fs_info); 1882 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 1883 1884 again = btrfs_clean_one_deleted_snapshot(root); 1885 mutex_unlock(&fs_info->cleaner_mutex); 1886 1887 /* 1888 * The defragger has dealt with the R/O remount and umount, 1889 * needn't do anything special here. 1890 */ 1891 btrfs_run_defrag_inodes(fs_info); 1892 1893 /* 1894 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1895 * with relocation (btrfs_relocate_chunk) and relocation 1896 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1897 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1898 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1899 * unused block groups. 1900 */ 1901 btrfs_delete_unused_bgs(fs_info); 1902 sleep: 1903 if (!again) { 1904 set_current_state(TASK_INTERRUPTIBLE); 1905 if (!kthread_should_stop()) 1906 schedule(); 1907 __set_current_state(TASK_RUNNING); 1908 } 1909 } while (!kthread_should_stop()); 1910 1911 /* 1912 * Transaction kthread is stopped before us and wakes us up. 1913 * However we might have started a new transaction and COWed some 1914 * tree blocks when deleting unused block groups for example. So 1915 * make sure we commit the transaction we started to have a clean 1916 * shutdown when evicting the btree inode - if it has dirty pages 1917 * when we do the final iput() on it, eviction will trigger a 1918 * writeback for it which will fail with null pointer dereferences 1919 * since work queues and other resources were already released and 1920 * destroyed by the time the iput/eviction/writeback is made. 1921 */ 1922 trans = btrfs_attach_transaction(root); 1923 if (IS_ERR(trans)) { 1924 if (PTR_ERR(trans) != -ENOENT) 1925 btrfs_err(fs_info, 1926 "cleaner transaction attach returned %ld", 1927 PTR_ERR(trans)); 1928 } else { 1929 int ret; 1930 1931 ret = btrfs_commit_transaction(trans); 1932 if (ret) 1933 btrfs_err(fs_info, 1934 "cleaner open transaction commit returned %d", 1935 ret); 1936 } 1937 1938 return 0; 1939 } 1940 1941 static int transaction_kthread(void *arg) 1942 { 1943 struct btrfs_root *root = arg; 1944 struct btrfs_fs_info *fs_info = root->fs_info; 1945 struct btrfs_trans_handle *trans; 1946 struct btrfs_transaction *cur; 1947 u64 transid; 1948 unsigned long now; 1949 unsigned long delay; 1950 bool cannot_commit; 1951 1952 do { 1953 cannot_commit = false; 1954 delay = HZ * fs_info->commit_interval; 1955 mutex_lock(&fs_info->transaction_kthread_mutex); 1956 1957 spin_lock(&fs_info->trans_lock); 1958 cur = fs_info->running_transaction; 1959 if (!cur) { 1960 spin_unlock(&fs_info->trans_lock); 1961 goto sleep; 1962 } 1963 1964 now = get_seconds(); 1965 if (cur->state < TRANS_STATE_BLOCKED && 1966 (now < cur->start_time || 1967 now - cur->start_time < fs_info->commit_interval)) { 1968 spin_unlock(&fs_info->trans_lock); 1969 delay = HZ * 5; 1970 goto sleep; 1971 } 1972 transid = cur->transid; 1973 spin_unlock(&fs_info->trans_lock); 1974 1975 /* If the file system is aborted, this will always fail. */ 1976 trans = btrfs_attach_transaction(root); 1977 if (IS_ERR(trans)) { 1978 if (PTR_ERR(trans) != -ENOENT) 1979 cannot_commit = true; 1980 goto sleep; 1981 } 1982 if (transid == trans->transid) { 1983 btrfs_commit_transaction(trans); 1984 } else { 1985 btrfs_end_transaction(trans); 1986 } 1987 sleep: 1988 wake_up_process(fs_info->cleaner_kthread); 1989 mutex_unlock(&fs_info->transaction_kthread_mutex); 1990 1991 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1992 &fs_info->fs_state))) 1993 btrfs_cleanup_transaction(fs_info); 1994 set_current_state(TASK_INTERRUPTIBLE); 1995 if (!kthread_should_stop() && 1996 (!btrfs_transaction_blocked(fs_info) || 1997 cannot_commit)) 1998 schedule_timeout(delay); 1999 __set_current_state(TASK_RUNNING); 2000 } while (!kthread_should_stop()); 2001 return 0; 2002 } 2003 2004 /* 2005 * this will find the highest generation in the array of 2006 * root backups. The index of the highest array is returned, 2007 * or -1 if we can't find anything. 2008 * 2009 * We check to make sure the array is valid by comparing the 2010 * generation of the latest root in the array with the generation 2011 * in the super block. If they don't match we pitch it. 2012 */ 2013 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 2014 { 2015 u64 cur; 2016 int newest_index = -1; 2017 struct btrfs_root_backup *root_backup; 2018 int i; 2019 2020 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2021 root_backup = info->super_copy->super_roots + i; 2022 cur = btrfs_backup_tree_root_gen(root_backup); 2023 if (cur == newest_gen) 2024 newest_index = i; 2025 } 2026 2027 /* check to see if we actually wrapped around */ 2028 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 2029 root_backup = info->super_copy->super_roots; 2030 cur = btrfs_backup_tree_root_gen(root_backup); 2031 if (cur == newest_gen) 2032 newest_index = 0; 2033 } 2034 return newest_index; 2035 } 2036 2037 2038 /* 2039 * find the oldest backup so we know where to store new entries 2040 * in the backup array. This will set the backup_root_index 2041 * field in the fs_info struct 2042 */ 2043 static void find_oldest_super_backup(struct btrfs_fs_info *info, 2044 u64 newest_gen) 2045 { 2046 int newest_index = -1; 2047 2048 newest_index = find_newest_super_backup(info, newest_gen); 2049 /* if there was garbage in there, just move along */ 2050 if (newest_index == -1) { 2051 info->backup_root_index = 0; 2052 } else { 2053 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 2054 } 2055 } 2056 2057 /* 2058 * copy all the root pointers into the super backup array. 2059 * this will bump the backup pointer by one when it is 2060 * done 2061 */ 2062 static void backup_super_roots(struct btrfs_fs_info *info) 2063 { 2064 int next_backup; 2065 struct btrfs_root_backup *root_backup; 2066 int last_backup; 2067 2068 next_backup = info->backup_root_index; 2069 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 2070 BTRFS_NUM_BACKUP_ROOTS; 2071 2072 /* 2073 * just overwrite the last backup if we're at the same generation 2074 * this happens only at umount 2075 */ 2076 root_backup = info->super_for_commit->super_roots + last_backup; 2077 if (btrfs_backup_tree_root_gen(root_backup) == 2078 btrfs_header_generation(info->tree_root->node)) 2079 next_backup = last_backup; 2080 2081 root_backup = info->super_for_commit->super_roots + next_backup; 2082 2083 /* 2084 * make sure all of our padding and empty slots get zero filled 2085 * regardless of which ones we use today 2086 */ 2087 memset(root_backup, 0, sizeof(*root_backup)); 2088 2089 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 2090 2091 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 2092 btrfs_set_backup_tree_root_gen(root_backup, 2093 btrfs_header_generation(info->tree_root->node)); 2094 2095 btrfs_set_backup_tree_root_level(root_backup, 2096 btrfs_header_level(info->tree_root->node)); 2097 2098 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 2099 btrfs_set_backup_chunk_root_gen(root_backup, 2100 btrfs_header_generation(info->chunk_root->node)); 2101 btrfs_set_backup_chunk_root_level(root_backup, 2102 btrfs_header_level(info->chunk_root->node)); 2103 2104 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 2105 btrfs_set_backup_extent_root_gen(root_backup, 2106 btrfs_header_generation(info->extent_root->node)); 2107 btrfs_set_backup_extent_root_level(root_backup, 2108 btrfs_header_level(info->extent_root->node)); 2109 2110 /* 2111 * we might commit during log recovery, which happens before we set 2112 * the fs_root. Make sure it is valid before we fill it in. 2113 */ 2114 if (info->fs_root && info->fs_root->node) { 2115 btrfs_set_backup_fs_root(root_backup, 2116 info->fs_root->node->start); 2117 btrfs_set_backup_fs_root_gen(root_backup, 2118 btrfs_header_generation(info->fs_root->node)); 2119 btrfs_set_backup_fs_root_level(root_backup, 2120 btrfs_header_level(info->fs_root->node)); 2121 } 2122 2123 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2124 btrfs_set_backup_dev_root_gen(root_backup, 2125 btrfs_header_generation(info->dev_root->node)); 2126 btrfs_set_backup_dev_root_level(root_backup, 2127 btrfs_header_level(info->dev_root->node)); 2128 2129 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 2130 btrfs_set_backup_csum_root_gen(root_backup, 2131 btrfs_header_generation(info->csum_root->node)); 2132 btrfs_set_backup_csum_root_level(root_backup, 2133 btrfs_header_level(info->csum_root->node)); 2134 2135 btrfs_set_backup_total_bytes(root_backup, 2136 btrfs_super_total_bytes(info->super_copy)); 2137 btrfs_set_backup_bytes_used(root_backup, 2138 btrfs_super_bytes_used(info->super_copy)); 2139 btrfs_set_backup_num_devices(root_backup, 2140 btrfs_super_num_devices(info->super_copy)); 2141 2142 /* 2143 * if we don't copy this out to the super_copy, it won't get remembered 2144 * for the next commit 2145 */ 2146 memcpy(&info->super_copy->super_roots, 2147 &info->super_for_commit->super_roots, 2148 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2149 } 2150 2151 /* 2152 * this copies info out of the root backup array and back into 2153 * the in-memory super block. It is meant to help iterate through 2154 * the array, so you send it the number of backups you've already 2155 * tried and the last backup index you used. 2156 * 2157 * this returns -1 when it has tried all the backups 2158 */ 2159 static noinline int next_root_backup(struct btrfs_fs_info *info, 2160 struct btrfs_super_block *super, 2161 int *num_backups_tried, int *backup_index) 2162 { 2163 struct btrfs_root_backup *root_backup; 2164 int newest = *backup_index; 2165 2166 if (*num_backups_tried == 0) { 2167 u64 gen = btrfs_super_generation(super); 2168 2169 newest = find_newest_super_backup(info, gen); 2170 if (newest == -1) 2171 return -1; 2172 2173 *backup_index = newest; 2174 *num_backups_tried = 1; 2175 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2176 /* we've tried all the backups, all done */ 2177 return -1; 2178 } else { 2179 /* jump to the next oldest backup */ 2180 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2181 BTRFS_NUM_BACKUP_ROOTS; 2182 *backup_index = newest; 2183 *num_backups_tried += 1; 2184 } 2185 root_backup = super->super_roots + newest; 2186 2187 btrfs_set_super_generation(super, 2188 btrfs_backup_tree_root_gen(root_backup)); 2189 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2190 btrfs_set_super_root_level(super, 2191 btrfs_backup_tree_root_level(root_backup)); 2192 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2193 2194 /* 2195 * fixme: the total bytes and num_devices need to match or we should 2196 * need a fsck 2197 */ 2198 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2199 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2200 return 0; 2201 } 2202 2203 /* helper to cleanup workers */ 2204 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2205 { 2206 btrfs_destroy_workqueue(fs_info->fixup_workers); 2207 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2208 btrfs_destroy_workqueue(fs_info->workers); 2209 btrfs_destroy_workqueue(fs_info->endio_workers); 2210 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2211 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2212 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2213 btrfs_destroy_workqueue(fs_info->rmw_workers); 2214 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2215 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2216 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2217 btrfs_destroy_workqueue(fs_info->submit_workers); 2218 btrfs_destroy_workqueue(fs_info->delayed_workers); 2219 btrfs_destroy_workqueue(fs_info->caching_workers); 2220 btrfs_destroy_workqueue(fs_info->readahead_workers); 2221 btrfs_destroy_workqueue(fs_info->flush_workers); 2222 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2223 btrfs_destroy_workqueue(fs_info->extent_workers); 2224 } 2225 2226 static void free_root_extent_buffers(struct btrfs_root *root) 2227 { 2228 if (root) { 2229 free_extent_buffer(root->node); 2230 free_extent_buffer(root->commit_root); 2231 root->node = NULL; 2232 root->commit_root = NULL; 2233 } 2234 } 2235 2236 /* helper to cleanup tree roots */ 2237 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2238 { 2239 free_root_extent_buffers(info->tree_root); 2240 2241 free_root_extent_buffers(info->dev_root); 2242 free_root_extent_buffers(info->extent_root); 2243 free_root_extent_buffers(info->csum_root); 2244 free_root_extent_buffers(info->quota_root); 2245 free_root_extent_buffers(info->uuid_root); 2246 if (chunk_root) 2247 free_root_extent_buffers(info->chunk_root); 2248 free_root_extent_buffers(info->free_space_root); 2249 } 2250 2251 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2252 { 2253 int ret; 2254 struct btrfs_root *gang[8]; 2255 int i; 2256 2257 while (!list_empty(&fs_info->dead_roots)) { 2258 gang[0] = list_entry(fs_info->dead_roots.next, 2259 struct btrfs_root, root_list); 2260 list_del(&gang[0]->root_list); 2261 2262 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2263 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2264 } else { 2265 free_extent_buffer(gang[0]->node); 2266 free_extent_buffer(gang[0]->commit_root); 2267 btrfs_put_fs_root(gang[0]); 2268 } 2269 } 2270 2271 while (1) { 2272 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2273 (void **)gang, 0, 2274 ARRAY_SIZE(gang)); 2275 if (!ret) 2276 break; 2277 for (i = 0; i < ret; i++) 2278 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2279 } 2280 2281 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2282 btrfs_free_log_root_tree(NULL, fs_info); 2283 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 2284 } 2285 } 2286 2287 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2288 { 2289 mutex_init(&fs_info->scrub_lock); 2290 atomic_set(&fs_info->scrubs_running, 0); 2291 atomic_set(&fs_info->scrub_pause_req, 0); 2292 atomic_set(&fs_info->scrubs_paused, 0); 2293 atomic_set(&fs_info->scrub_cancel_req, 0); 2294 init_waitqueue_head(&fs_info->scrub_pause_wait); 2295 fs_info->scrub_workers_refcnt = 0; 2296 } 2297 2298 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2299 { 2300 spin_lock_init(&fs_info->balance_lock); 2301 mutex_init(&fs_info->balance_mutex); 2302 atomic_set(&fs_info->balance_running, 0); 2303 atomic_set(&fs_info->balance_pause_req, 0); 2304 atomic_set(&fs_info->balance_cancel_req, 0); 2305 fs_info->balance_ctl = NULL; 2306 init_waitqueue_head(&fs_info->balance_wait_q); 2307 } 2308 2309 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2310 { 2311 struct inode *inode = fs_info->btree_inode; 2312 2313 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2314 set_nlink(inode, 1); 2315 /* 2316 * we set the i_size on the btree inode to the max possible int. 2317 * the real end of the address space is determined by all of 2318 * the devices in the system 2319 */ 2320 inode->i_size = OFFSET_MAX; 2321 inode->i_mapping->a_ops = &btree_aops; 2322 2323 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2324 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping); 2325 BTRFS_I(inode)->io_tree.track_uptodate = 0; 2326 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2327 2328 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2329 2330 BTRFS_I(inode)->root = fs_info->tree_root; 2331 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2332 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2333 btrfs_insert_inode_hash(inode); 2334 } 2335 2336 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2337 { 2338 fs_info->dev_replace.lock_owner = 0; 2339 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2340 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2341 rwlock_init(&fs_info->dev_replace.lock); 2342 atomic_set(&fs_info->dev_replace.read_locks, 0); 2343 atomic_set(&fs_info->dev_replace.blocking_readers, 0); 2344 init_waitqueue_head(&fs_info->replace_wait); 2345 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq); 2346 } 2347 2348 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2349 { 2350 spin_lock_init(&fs_info->qgroup_lock); 2351 mutex_init(&fs_info->qgroup_ioctl_lock); 2352 fs_info->qgroup_tree = RB_ROOT; 2353 fs_info->qgroup_op_tree = RB_ROOT; 2354 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2355 fs_info->qgroup_seq = 1; 2356 fs_info->qgroup_ulist = NULL; 2357 fs_info->qgroup_rescan_running = false; 2358 mutex_init(&fs_info->qgroup_rescan_lock); 2359 } 2360 2361 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2362 struct btrfs_fs_devices *fs_devices) 2363 { 2364 int max_active = fs_info->thread_pool_size; 2365 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2366 2367 fs_info->workers = 2368 btrfs_alloc_workqueue(fs_info, "worker", 2369 flags | WQ_HIGHPRI, max_active, 16); 2370 2371 fs_info->delalloc_workers = 2372 btrfs_alloc_workqueue(fs_info, "delalloc", 2373 flags, max_active, 2); 2374 2375 fs_info->flush_workers = 2376 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2377 flags, max_active, 0); 2378 2379 fs_info->caching_workers = 2380 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2381 2382 /* 2383 * a higher idle thresh on the submit workers makes it much more 2384 * likely that bios will be send down in a sane order to the 2385 * devices 2386 */ 2387 fs_info->submit_workers = 2388 btrfs_alloc_workqueue(fs_info, "submit", flags, 2389 min_t(u64, fs_devices->num_devices, 2390 max_active), 64); 2391 2392 fs_info->fixup_workers = 2393 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2394 2395 /* 2396 * endios are largely parallel and should have a very 2397 * low idle thresh 2398 */ 2399 fs_info->endio_workers = 2400 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2401 fs_info->endio_meta_workers = 2402 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2403 max_active, 4); 2404 fs_info->endio_meta_write_workers = 2405 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2406 max_active, 2); 2407 fs_info->endio_raid56_workers = 2408 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2409 max_active, 4); 2410 fs_info->endio_repair_workers = 2411 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2412 fs_info->rmw_workers = 2413 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2414 fs_info->endio_write_workers = 2415 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2416 max_active, 2); 2417 fs_info->endio_freespace_worker = 2418 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2419 max_active, 0); 2420 fs_info->delayed_workers = 2421 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2422 max_active, 0); 2423 fs_info->readahead_workers = 2424 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2425 max_active, 2); 2426 fs_info->qgroup_rescan_workers = 2427 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2428 fs_info->extent_workers = 2429 btrfs_alloc_workqueue(fs_info, "extent-refs", flags, 2430 min_t(u64, fs_devices->num_devices, 2431 max_active), 8); 2432 2433 if (!(fs_info->workers && fs_info->delalloc_workers && 2434 fs_info->submit_workers && fs_info->flush_workers && 2435 fs_info->endio_workers && fs_info->endio_meta_workers && 2436 fs_info->endio_meta_write_workers && 2437 fs_info->endio_repair_workers && 2438 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2439 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2440 fs_info->caching_workers && fs_info->readahead_workers && 2441 fs_info->fixup_workers && fs_info->delayed_workers && 2442 fs_info->extent_workers && 2443 fs_info->qgroup_rescan_workers)) { 2444 return -ENOMEM; 2445 } 2446 2447 return 0; 2448 } 2449 2450 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2451 struct btrfs_fs_devices *fs_devices) 2452 { 2453 int ret; 2454 struct btrfs_root *log_tree_root; 2455 struct btrfs_super_block *disk_super = fs_info->super_copy; 2456 u64 bytenr = btrfs_super_log_root(disk_super); 2457 2458 if (fs_devices->rw_devices == 0) { 2459 btrfs_warn(fs_info, "log replay required on RO media"); 2460 return -EIO; 2461 } 2462 2463 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2464 if (!log_tree_root) 2465 return -ENOMEM; 2466 2467 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2468 2469 log_tree_root->node = read_tree_block(fs_info, bytenr, 2470 fs_info->generation + 1); 2471 if (IS_ERR(log_tree_root->node)) { 2472 btrfs_warn(fs_info, "failed to read log tree"); 2473 ret = PTR_ERR(log_tree_root->node); 2474 kfree(log_tree_root); 2475 return ret; 2476 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2477 btrfs_err(fs_info, "failed to read log tree"); 2478 free_extent_buffer(log_tree_root->node); 2479 kfree(log_tree_root); 2480 return -EIO; 2481 } 2482 /* returns with log_tree_root freed on success */ 2483 ret = btrfs_recover_log_trees(log_tree_root); 2484 if (ret) { 2485 btrfs_handle_fs_error(fs_info, ret, 2486 "Failed to recover log tree"); 2487 free_extent_buffer(log_tree_root->node); 2488 kfree(log_tree_root); 2489 return ret; 2490 } 2491 2492 if (fs_info->sb->s_flags & MS_RDONLY) { 2493 ret = btrfs_commit_super(fs_info); 2494 if (ret) 2495 return ret; 2496 } 2497 2498 return 0; 2499 } 2500 2501 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2502 { 2503 struct btrfs_root *tree_root = fs_info->tree_root; 2504 struct btrfs_root *root; 2505 struct btrfs_key location; 2506 int ret; 2507 2508 BUG_ON(!fs_info->tree_root); 2509 2510 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2511 location.type = BTRFS_ROOT_ITEM_KEY; 2512 location.offset = 0; 2513 2514 root = btrfs_read_tree_root(tree_root, &location); 2515 if (IS_ERR(root)) 2516 return PTR_ERR(root); 2517 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2518 fs_info->extent_root = root; 2519 2520 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2521 root = btrfs_read_tree_root(tree_root, &location); 2522 if (IS_ERR(root)) 2523 return PTR_ERR(root); 2524 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2525 fs_info->dev_root = root; 2526 btrfs_init_devices_late(fs_info); 2527 2528 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2529 root = btrfs_read_tree_root(tree_root, &location); 2530 if (IS_ERR(root)) 2531 return PTR_ERR(root); 2532 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2533 fs_info->csum_root = root; 2534 2535 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2536 root = btrfs_read_tree_root(tree_root, &location); 2537 if (!IS_ERR(root)) { 2538 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2539 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2540 fs_info->quota_root = root; 2541 } 2542 2543 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2544 root = btrfs_read_tree_root(tree_root, &location); 2545 if (IS_ERR(root)) { 2546 ret = PTR_ERR(root); 2547 if (ret != -ENOENT) 2548 return ret; 2549 } else { 2550 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2551 fs_info->uuid_root = root; 2552 } 2553 2554 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2555 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2556 root = btrfs_read_tree_root(tree_root, &location); 2557 if (IS_ERR(root)) 2558 return PTR_ERR(root); 2559 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2560 fs_info->free_space_root = root; 2561 } 2562 2563 return 0; 2564 } 2565 2566 int open_ctree(struct super_block *sb, 2567 struct btrfs_fs_devices *fs_devices, 2568 char *options) 2569 { 2570 u32 sectorsize; 2571 u32 nodesize; 2572 u32 stripesize; 2573 u64 generation; 2574 u64 features; 2575 struct btrfs_key location; 2576 struct buffer_head *bh; 2577 struct btrfs_super_block *disk_super; 2578 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2579 struct btrfs_root *tree_root; 2580 struct btrfs_root *chunk_root; 2581 int ret; 2582 int err = -EINVAL; 2583 int num_backups_tried = 0; 2584 int backup_index = 0; 2585 int max_active; 2586 int clear_free_space_tree = 0; 2587 2588 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2589 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2590 if (!tree_root || !chunk_root) { 2591 err = -ENOMEM; 2592 goto fail; 2593 } 2594 2595 ret = init_srcu_struct(&fs_info->subvol_srcu); 2596 if (ret) { 2597 err = ret; 2598 goto fail; 2599 } 2600 2601 ret = setup_bdi(fs_info, &fs_info->bdi); 2602 if (ret) { 2603 err = ret; 2604 goto fail_srcu; 2605 } 2606 2607 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2608 if (ret) { 2609 err = ret; 2610 goto fail_bdi; 2611 } 2612 fs_info->dirty_metadata_batch = PAGE_SIZE * 2613 (1 + ilog2(nr_cpu_ids)); 2614 2615 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2616 if (ret) { 2617 err = ret; 2618 goto fail_dirty_metadata_bytes; 2619 } 2620 2621 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2622 if (ret) { 2623 err = ret; 2624 goto fail_delalloc_bytes; 2625 } 2626 2627 fs_info->btree_inode = new_inode(sb); 2628 if (!fs_info->btree_inode) { 2629 err = -ENOMEM; 2630 goto fail_bio_counter; 2631 } 2632 2633 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2634 2635 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2636 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2637 INIT_LIST_HEAD(&fs_info->trans_list); 2638 INIT_LIST_HEAD(&fs_info->dead_roots); 2639 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2640 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2641 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2642 spin_lock_init(&fs_info->delalloc_root_lock); 2643 spin_lock_init(&fs_info->trans_lock); 2644 spin_lock_init(&fs_info->fs_roots_radix_lock); 2645 spin_lock_init(&fs_info->delayed_iput_lock); 2646 spin_lock_init(&fs_info->defrag_inodes_lock); 2647 spin_lock_init(&fs_info->free_chunk_lock); 2648 spin_lock_init(&fs_info->tree_mod_seq_lock); 2649 spin_lock_init(&fs_info->super_lock); 2650 spin_lock_init(&fs_info->qgroup_op_lock); 2651 spin_lock_init(&fs_info->buffer_lock); 2652 spin_lock_init(&fs_info->unused_bgs_lock); 2653 rwlock_init(&fs_info->tree_mod_log_lock); 2654 mutex_init(&fs_info->unused_bg_unpin_mutex); 2655 mutex_init(&fs_info->delete_unused_bgs_mutex); 2656 mutex_init(&fs_info->reloc_mutex); 2657 mutex_init(&fs_info->delalloc_root_mutex); 2658 mutex_init(&fs_info->cleaner_delayed_iput_mutex); 2659 seqlock_init(&fs_info->profiles_lock); 2660 2661 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2662 INIT_LIST_HEAD(&fs_info->space_info); 2663 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2664 INIT_LIST_HEAD(&fs_info->unused_bgs); 2665 btrfs_mapping_init(&fs_info->mapping_tree); 2666 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2667 BTRFS_BLOCK_RSV_GLOBAL); 2668 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2669 BTRFS_BLOCK_RSV_DELALLOC); 2670 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2671 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2672 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2673 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2674 BTRFS_BLOCK_RSV_DELOPS); 2675 atomic_set(&fs_info->nr_async_submits, 0); 2676 atomic_set(&fs_info->async_delalloc_pages, 0); 2677 atomic_set(&fs_info->async_submit_draining, 0); 2678 atomic_set(&fs_info->nr_async_bios, 0); 2679 atomic_set(&fs_info->defrag_running, 0); 2680 atomic_set(&fs_info->qgroup_op_seq, 0); 2681 atomic_set(&fs_info->reada_works_cnt, 0); 2682 atomic64_set(&fs_info->tree_mod_seq, 0); 2683 fs_info->fs_frozen = 0; 2684 fs_info->sb = sb; 2685 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2686 fs_info->metadata_ratio = 0; 2687 fs_info->defrag_inodes = RB_ROOT; 2688 fs_info->free_chunk_space = 0; 2689 fs_info->tree_mod_log = RB_ROOT; 2690 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2691 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2692 /* readahead state */ 2693 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2694 spin_lock_init(&fs_info->reada_lock); 2695 2696 fs_info->thread_pool_size = min_t(unsigned long, 2697 num_online_cpus() + 2, 8); 2698 2699 INIT_LIST_HEAD(&fs_info->ordered_roots); 2700 spin_lock_init(&fs_info->ordered_root_lock); 2701 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2702 GFP_KERNEL); 2703 if (!fs_info->delayed_root) { 2704 err = -ENOMEM; 2705 goto fail_iput; 2706 } 2707 btrfs_init_delayed_root(fs_info->delayed_root); 2708 2709 btrfs_init_scrub(fs_info); 2710 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2711 fs_info->check_integrity_print_mask = 0; 2712 #endif 2713 btrfs_init_balance(fs_info); 2714 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2715 2716 sb->s_blocksize = 4096; 2717 sb->s_blocksize_bits = blksize_bits(4096); 2718 sb->s_bdi = &fs_info->bdi; 2719 2720 btrfs_init_btree_inode(fs_info); 2721 2722 spin_lock_init(&fs_info->block_group_cache_lock); 2723 fs_info->block_group_cache_tree = RB_ROOT; 2724 fs_info->first_logical_byte = (u64)-1; 2725 2726 extent_io_tree_init(&fs_info->freed_extents[0], 2727 fs_info->btree_inode->i_mapping); 2728 extent_io_tree_init(&fs_info->freed_extents[1], 2729 fs_info->btree_inode->i_mapping); 2730 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2731 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2732 2733 mutex_init(&fs_info->ordered_operations_mutex); 2734 mutex_init(&fs_info->tree_log_mutex); 2735 mutex_init(&fs_info->chunk_mutex); 2736 mutex_init(&fs_info->transaction_kthread_mutex); 2737 mutex_init(&fs_info->cleaner_mutex); 2738 mutex_init(&fs_info->volume_mutex); 2739 mutex_init(&fs_info->ro_block_group_mutex); 2740 init_rwsem(&fs_info->commit_root_sem); 2741 init_rwsem(&fs_info->cleanup_work_sem); 2742 init_rwsem(&fs_info->subvol_sem); 2743 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2744 2745 btrfs_init_dev_replace_locks(fs_info); 2746 btrfs_init_qgroup(fs_info); 2747 2748 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2749 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2750 2751 init_waitqueue_head(&fs_info->transaction_throttle); 2752 init_waitqueue_head(&fs_info->transaction_wait); 2753 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2754 init_waitqueue_head(&fs_info->async_submit_wait); 2755 2756 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2757 2758 /* Usable values until the real ones are cached from the superblock */ 2759 fs_info->nodesize = 4096; 2760 fs_info->sectorsize = 4096; 2761 fs_info->stripesize = 4096; 2762 2763 ret = btrfs_alloc_stripe_hash_table(fs_info); 2764 if (ret) { 2765 err = ret; 2766 goto fail_alloc; 2767 } 2768 2769 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 2770 2771 invalidate_bdev(fs_devices->latest_bdev); 2772 2773 /* 2774 * Read super block and check the signature bytes only 2775 */ 2776 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2777 if (IS_ERR(bh)) { 2778 err = PTR_ERR(bh); 2779 goto fail_alloc; 2780 } 2781 2782 /* 2783 * We want to check superblock checksum, the type is stored inside. 2784 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2785 */ 2786 if (btrfs_check_super_csum(fs_info, bh->b_data)) { 2787 btrfs_err(fs_info, "superblock checksum mismatch"); 2788 err = -EINVAL; 2789 brelse(bh); 2790 goto fail_alloc; 2791 } 2792 2793 /* 2794 * super_copy is zeroed at allocation time and we never touch the 2795 * following bytes up to INFO_SIZE, the checksum is calculated from 2796 * the whole block of INFO_SIZE 2797 */ 2798 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2799 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2800 sizeof(*fs_info->super_for_commit)); 2801 brelse(bh); 2802 2803 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2804 2805 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2806 if (ret) { 2807 btrfs_err(fs_info, "superblock contains fatal errors"); 2808 err = -EINVAL; 2809 goto fail_alloc; 2810 } 2811 2812 disk_super = fs_info->super_copy; 2813 if (!btrfs_super_root(disk_super)) 2814 goto fail_alloc; 2815 2816 /* check FS state, whether FS is broken. */ 2817 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2818 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2819 2820 /* 2821 * run through our array of backup supers and setup 2822 * our ring pointer to the oldest one 2823 */ 2824 generation = btrfs_super_generation(disk_super); 2825 find_oldest_super_backup(fs_info, generation); 2826 2827 /* 2828 * In the long term, we'll store the compression type in the super 2829 * block, and it'll be used for per file compression control. 2830 */ 2831 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2832 2833 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2834 if (ret) { 2835 err = ret; 2836 goto fail_alloc; 2837 } 2838 2839 features = btrfs_super_incompat_flags(disk_super) & 2840 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2841 if (features) { 2842 btrfs_err(fs_info, 2843 "cannot mount because of unsupported optional features (%llx)", 2844 features); 2845 err = -EINVAL; 2846 goto fail_alloc; 2847 } 2848 2849 features = btrfs_super_incompat_flags(disk_super); 2850 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2851 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2852 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2853 2854 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2855 btrfs_info(fs_info, "has skinny extents"); 2856 2857 /* 2858 * flag our filesystem as having big metadata blocks if 2859 * they are bigger than the page size 2860 */ 2861 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2862 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2863 btrfs_info(fs_info, 2864 "flagging fs with big metadata feature"); 2865 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2866 } 2867 2868 nodesize = btrfs_super_nodesize(disk_super); 2869 sectorsize = btrfs_super_sectorsize(disk_super); 2870 stripesize = sectorsize; 2871 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2872 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2873 2874 /* Cache block sizes */ 2875 fs_info->nodesize = nodesize; 2876 fs_info->sectorsize = sectorsize; 2877 fs_info->stripesize = stripesize; 2878 2879 /* 2880 * mixed block groups end up with duplicate but slightly offset 2881 * extent buffers for the same range. It leads to corruptions 2882 */ 2883 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2884 (sectorsize != nodesize)) { 2885 btrfs_err(fs_info, 2886 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2887 nodesize, sectorsize); 2888 goto fail_alloc; 2889 } 2890 2891 /* 2892 * Needn't use the lock because there is no other task which will 2893 * update the flag. 2894 */ 2895 btrfs_set_super_incompat_flags(disk_super, features); 2896 2897 features = btrfs_super_compat_ro_flags(disk_super) & 2898 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2899 if (!(sb->s_flags & MS_RDONLY) && features) { 2900 btrfs_err(fs_info, 2901 "cannot mount read-write because of unsupported optional features (%llx)", 2902 features); 2903 err = -EINVAL; 2904 goto fail_alloc; 2905 } 2906 2907 max_active = fs_info->thread_pool_size; 2908 2909 ret = btrfs_init_workqueues(fs_info, fs_devices); 2910 if (ret) { 2911 err = ret; 2912 goto fail_sb_buffer; 2913 } 2914 2915 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2916 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2917 SZ_4M / PAGE_SIZE); 2918 2919 sb->s_blocksize = sectorsize; 2920 sb->s_blocksize_bits = blksize_bits(sectorsize); 2921 2922 mutex_lock(&fs_info->chunk_mutex); 2923 ret = btrfs_read_sys_array(fs_info); 2924 mutex_unlock(&fs_info->chunk_mutex); 2925 if (ret) { 2926 btrfs_err(fs_info, "failed to read the system array: %d", ret); 2927 goto fail_sb_buffer; 2928 } 2929 2930 generation = btrfs_super_chunk_root_generation(disk_super); 2931 2932 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2933 2934 chunk_root->node = read_tree_block(fs_info, 2935 btrfs_super_chunk_root(disk_super), 2936 generation); 2937 if (IS_ERR(chunk_root->node) || 2938 !extent_buffer_uptodate(chunk_root->node)) { 2939 btrfs_err(fs_info, "failed to read chunk root"); 2940 if (!IS_ERR(chunk_root->node)) 2941 free_extent_buffer(chunk_root->node); 2942 chunk_root->node = NULL; 2943 goto fail_tree_roots; 2944 } 2945 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2946 chunk_root->commit_root = btrfs_root_node(chunk_root); 2947 2948 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2949 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2950 2951 ret = btrfs_read_chunk_tree(fs_info); 2952 if (ret) { 2953 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 2954 goto fail_tree_roots; 2955 } 2956 2957 /* 2958 * keep the device that is marked to be the target device for the 2959 * dev_replace procedure 2960 */ 2961 btrfs_close_extra_devices(fs_devices, 0); 2962 2963 if (!fs_devices->latest_bdev) { 2964 btrfs_err(fs_info, "failed to read devices"); 2965 goto fail_tree_roots; 2966 } 2967 2968 retry_root_backup: 2969 generation = btrfs_super_generation(disk_super); 2970 2971 tree_root->node = read_tree_block(fs_info, 2972 btrfs_super_root(disk_super), 2973 generation); 2974 if (IS_ERR(tree_root->node) || 2975 !extent_buffer_uptodate(tree_root->node)) { 2976 btrfs_warn(fs_info, "failed to read tree root"); 2977 if (!IS_ERR(tree_root->node)) 2978 free_extent_buffer(tree_root->node); 2979 tree_root->node = NULL; 2980 goto recovery_tree_root; 2981 } 2982 2983 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2984 tree_root->commit_root = btrfs_root_node(tree_root); 2985 btrfs_set_root_refs(&tree_root->root_item, 1); 2986 2987 mutex_lock(&tree_root->objectid_mutex); 2988 ret = btrfs_find_highest_objectid(tree_root, 2989 &tree_root->highest_objectid); 2990 if (ret) { 2991 mutex_unlock(&tree_root->objectid_mutex); 2992 goto recovery_tree_root; 2993 } 2994 2995 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2996 2997 mutex_unlock(&tree_root->objectid_mutex); 2998 2999 ret = btrfs_read_roots(fs_info); 3000 if (ret) 3001 goto recovery_tree_root; 3002 3003 fs_info->generation = generation; 3004 fs_info->last_trans_committed = generation; 3005 3006 ret = btrfs_recover_balance(fs_info); 3007 if (ret) { 3008 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3009 goto fail_block_groups; 3010 } 3011 3012 ret = btrfs_init_dev_stats(fs_info); 3013 if (ret) { 3014 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3015 goto fail_block_groups; 3016 } 3017 3018 ret = btrfs_init_dev_replace(fs_info); 3019 if (ret) { 3020 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3021 goto fail_block_groups; 3022 } 3023 3024 btrfs_close_extra_devices(fs_devices, 1); 3025 3026 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 3027 if (ret) { 3028 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3029 ret); 3030 goto fail_block_groups; 3031 } 3032 3033 ret = btrfs_sysfs_add_device(fs_devices); 3034 if (ret) { 3035 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 3036 ret); 3037 goto fail_fsdev_sysfs; 3038 } 3039 3040 ret = btrfs_sysfs_add_mounted(fs_info); 3041 if (ret) { 3042 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3043 goto fail_fsdev_sysfs; 3044 } 3045 3046 ret = btrfs_init_space_info(fs_info); 3047 if (ret) { 3048 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3049 goto fail_sysfs; 3050 } 3051 3052 ret = btrfs_read_block_groups(fs_info); 3053 if (ret) { 3054 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3055 goto fail_sysfs; 3056 } 3057 fs_info->num_tolerated_disk_barrier_failures = 3058 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3059 if (fs_info->fs_devices->missing_devices > 3060 fs_info->num_tolerated_disk_barrier_failures && 3061 !(sb->s_flags & MS_RDONLY)) { 3062 btrfs_warn(fs_info, 3063 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed", 3064 fs_info->fs_devices->missing_devices, 3065 fs_info->num_tolerated_disk_barrier_failures); 3066 goto fail_sysfs; 3067 } 3068 3069 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3070 "btrfs-cleaner"); 3071 if (IS_ERR(fs_info->cleaner_kthread)) 3072 goto fail_sysfs; 3073 3074 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3075 tree_root, 3076 "btrfs-transaction"); 3077 if (IS_ERR(fs_info->transaction_kthread)) 3078 goto fail_cleaner; 3079 3080 if (!btrfs_test_opt(fs_info, SSD) && 3081 !btrfs_test_opt(fs_info, NOSSD) && 3082 !fs_info->fs_devices->rotating) { 3083 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode"); 3084 btrfs_set_opt(fs_info->mount_opt, SSD); 3085 } 3086 3087 /* 3088 * Mount does not set all options immediately, we can do it now and do 3089 * not have to wait for transaction commit 3090 */ 3091 btrfs_apply_pending_changes(fs_info); 3092 3093 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3094 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3095 ret = btrfsic_mount(fs_info, fs_devices, 3096 btrfs_test_opt(fs_info, 3097 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3098 1 : 0, 3099 fs_info->check_integrity_print_mask); 3100 if (ret) 3101 btrfs_warn(fs_info, 3102 "failed to initialize integrity check module: %d", 3103 ret); 3104 } 3105 #endif 3106 ret = btrfs_read_qgroup_config(fs_info); 3107 if (ret) 3108 goto fail_trans_kthread; 3109 3110 /* do not make disk changes in broken FS or nologreplay is given */ 3111 if (btrfs_super_log_root(disk_super) != 0 && 3112 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3113 ret = btrfs_replay_log(fs_info, fs_devices); 3114 if (ret) { 3115 err = ret; 3116 goto fail_qgroup; 3117 } 3118 } 3119 3120 ret = btrfs_find_orphan_roots(fs_info); 3121 if (ret) 3122 goto fail_qgroup; 3123 3124 if (!(sb->s_flags & MS_RDONLY)) { 3125 ret = btrfs_cleanup_fs_roots(fs_info); 3126 if (ret) 3127 goto fail_qgroup; 3128 3129 mutex_lock(&fs_info->cleaner_mutex); 3130 ret = btrfs_recover_relocation(tree_root); 3131 mutex_unlock(&fs_info->cleaner_mutex); 3132 if (ret < 0) { 3133 btrfs_warn(fs_info, "failed to recover relocation: %d", 3134 ret); 3135 err = -EINVAL; 3136 goto fail_qgroup; 3137 } 3138 } 3139 3140 location.objectid = BTRFS_FS_TREE_OBJECTID; 3141 location.type = BTRFS_ROOT_ITEM_KEY; 3142 location.offset = 0; 3143 3144 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3145 if (IS_ERR(fs_info->fs_root)) { 3146 err = PTR_ERR(fs_info->fs_root); 3147 goto fail_qgroup; 3148 } 3149 3150 if (sb->s_flags & MS_RDONLY) 3151 return 0; 3152 3153 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3154 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3155 clear_free_space_tree = 1; 3156 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3157 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3158 btrfs_warn(fs_info, "free space tree is invalid"); 3159 clear_free_space_tree = 1; 3160 } 3161 3162 if (clear_free_space_tree) { 3163 btrfs_info(fs_info, "clearing free space tree"); 3164 ret = btrfs_clear_free_space_tree(fs_info); 3165 if (ret) { 3166 btrfs_warn(fs_info, 3167 "failed to clear free space tree: %d", ret); 3168 close_ctree(fs_info); 3169 return ret; 3170 } 3171 } 3172 3173 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3174 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3175 btrfs_info(fs_info, "creating free space tree"); 3176 ret = btrfs_create_free_space_tree(fs_info); 3177 if (ret) { 3178 btrfs_warn(fs_info, 3179 "failed to create free space tree: %d", ret); 3180 close_ctree(fs_info); 3181 return ret; 3182 } 3183 } 3184 3185 down_read(&fs_info->cleanup_work_sem); 3186 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3187 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3188 up_read(&fs_info->cleanup_work_sem); 3189 close_ctree(fs_info); 3190 return ret; 3191 } 3192 up_read(&fs_info->cleanup_work_sem); 3193 3194 ret = btrfs_resume_balance_async(fs_info); 3195 if (ret) { 3196 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3197 close_ctree(fs_info); 3198 return ret; 3199 } 3200 3201 ret = btrfs_resume_dev_replace_async(fs_info); 3202 if (ret) { 3203 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3204 close_ctree(fs_info); 3205 return ret; 3206 } 3207 3208 btrfs_qgroup_rescan_resume(fs_info); 3209 3210 if (!fs_info->uuid_root) { 3211 btrfs_info(fs_info, "creating UUID tree"); 3212 ret = btrfs_create_uuid_tree(fs_info); 3213 if (ret) { 3214 btrfs_warn(fs_info, 3215 "failed to create the UUID tree: %d", ret); 3216 close_ctree(fs_info); 3217 return ret; 3218 } 3219 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3220 fs_info->generation != 3221 btrfs_super_uuid_tree_generation(disk_super)) { 3222 btrfs_info(fs_info, "checking UUID tree"); 3223 ret = btrfs_check_uuid_tree(fs_info); 3224 if (ret) { 3225 btrfs_warn(fs_info, 3226 "failed to check the UUID tree: %d", ret); 3227 close_ctree(fs_info); 3228 return ret; 3229 } 3230 } else { 3231 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3232 } 3233 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3234 3235 /* 3236 * backuproot only affect mount behavior, and if open_ctree succeeded, 3237 * no need to keep the flag 3238 */ 3239 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3240 3241 return 0; 3242 3243 fail_qgroup: 3244 btrfs_free_qgroup_config(fs_info); 3245 fail_trans_kthread: 3246 kthread_stop(fs_info->transaction_kthread); 3247 btrfs_cleanup_transaction(fs_info); 3248 btrfs_free_fs_roots(fs_info); 3249 fail_cleaner: 3250 kthread_stop(fs_info->cleaner_kthread); 3251 3252 /* 3253 * make sure we're done with the btree inode before we stop our 3254 * kthreads 3255 */ 3256 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3257 3258 fail_sysfs: 3259 btrfs_sysfs_remove_mounted(fs_info); 3260 3261 fail_fsdev_sysfs: 3262 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3263 3264 fail_block_groups: 3265 btrfs_put_block_group_cache(fs_info); 3266 btrfs_free_block_groups(fs_info); 3267 3268 fail_tree_roots: 3269 free_root_pointers(fs_info, 1); 3270 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3271 3272 fail_sb_buffer: 3273 btrfs_stop_all_workers(fs_info); 3274 fail_alloc: 3275 fail_iput: 3276 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3277 3278 iput(fs_info->btree_inode); 3279 fail_bio_counter: 3280 percpu_counter_destroy(&fs_info->bio_counter); 3281 fail_delalloc_bytes: 3282 percpu_counter_destroy(&fs_info->delalloc_bytes); 3283 fail_dirty_metadata_bytes: 3284 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3285 fail_bdi: 3286 bdi_destroy(&fs_info->bdi); 3287 fail_srcu: 3288 cleanup_srcu_struct(&fs_info->subvol_srcu); 3289 fail: 3290 btrfs_free_stripe_hash_table(fs_info); 3291 btrfs_close_devices(fs_info->fs_devices); 3292 return err; 3293 3294 recovery_tree_root: 3295 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 3296 goto fail_tree_roots; 3297 3298 free_root_pointers(fs_info, 0); 3299 3300 /* don't use the log in recovery mode, it won't be valid */ 3301 btrfs_set_super_log_root(disk_super, 0); 3302 3303 /* we can't trust the free space cache either */ 3304 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3305 3306 ret = next_root_backup(fs_info, fs_info->super_copy, 3307 &num_backups_tried, &backup_index); 3308 if (ret == -1) 3309 goto fail_block_groups; 3310 goto retry_root_backup; 3311 } 3312 3313 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3314 { 3315 if (uptodate) { 3316 set_buffer_uptodate(bh); 3317 } else { 3318 struct btrfs_device *device = (struct btrfs_device *) 3319 bh->b_private; 3320 3321 btrfs_warn_rl_in_rcu(device->fs_info, 3322 "lost page write due to IO error on %s", 3323 rcu_str_deref(device->name)); 3324 /* note, we don't set_buffer_write_io_error because we have 3325 * our own ways of dealing with the IO errors 3326 */ 3327 clear_buffer_uptodate(bh); 3328 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3329 } 3330 unlock_buffer(bh); 3331 put_bh(bh); 3332 } 3333 3334 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3335 struct buffer_head **bh_ret) 3336 { 3337 struct buffer_head *bh; 3338 struct btrfs_super_block *super; 3339 u64 bytenr; 3340 3341 bytenr = btrfs_sb_offset(copy_num); 3342 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3343 return -EINVAL; 3344 3345 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE); 3346 /* 3347 * If we fail to read from the underlying devices, as of now 3348 * the best option we have is to mark it EIO. 3349 */ 3350 if (!bh) 3351 return -EIO; 3352 3353 super = (struct btrfs_super_block *)bh->b_data; 3354 if (btrfs_super_bytenr(super) != bytenr || 3355 btrfs_super_magic(super) != BTRFS_MAGIC) { 3356 brelse(bh); 3357 return -EINVAL; 3358 } 3359 3360 *bh_ret = bh; 3361 return 0; 3362 } 3363 3364 3365 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3366 { 3367 struct buffer_head *bh; 3368 struct buffer_head *latest = NULL; 3369 struct btrfs_super_block *super; 3370 int i; 3371 u64 transid = 0; 3372 int ret = -EINVAL; 3373 3374 /* we would like to check all the supers, but that would make 3375 * a btrfs mount succeed after a mkfs from a different FS. 3376 * So, we need to add a special mount option to scan for 3377 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3378 */ 3379 for (i = 0; i < 1; i++) { 3380 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3381 if (ret) 3382 continue; 3383 3384 super = (struct btrfs_super_block *)bh->b_data; 3385 3386 if (!latest || btrfs_super_generation(super) > transid) { 3387 brelse(latest); 3388 latest = bh; 3389 transid = btrfs_super_generation(super); 3390 } else { 3391 brelse(bh); 3392 } 3393 } 3394 3395 if (!latest) 3396 return ERR_PTR(ret); 3397 3398 return latest; 3399 } 3400 3401 /* 3402 * this should be called twice, once with wait == 0 and 3403 * once with wait == 1. When wait == 0 is done, all the buffer heads 3404 * we write are pinned. 3405 * 3406 * They are released when wait == 1 is done. 3407 * max_mirrors must be the same for both runs, and it indicates how 3408 * many supers on this one device should be written. 3409 * 3410 * max_mirrors == 0 means to write them all. 3411 */ 3412 static int write_dev_supers(struct btrfs_device *device, 3413 struct btrfs_super_block *sb, 3414 int do_barriers, int wait, int max_mirrors) 3415 { 3416 struct buffer_head *bh; 3417 int i; 3418 int ret; 3419 int errors = 0; 3420 u32 crc; 3421 u64 bytenr; 3422 3423 if (max_mirrors == 0) 3424 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3425 3426 for (i = 0; i < max_mirrors; i++) { 3427 bytenr = btrfs_sb_offset(i); 3428 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3429 device->commit_total_bytes) 3430 break; 3431 3432 if (wait) { 3433 bh = __find_get_block(device->bdev, bytenr / 4096, 3434 BTRFS_SUPER_INFO_SIZE); 3435 if (!bh) { 3436 errors++; 3437 continue; 3438 } 3439 wait_on_buffer(bh); 3440 if (!buffer_uptodate(bh)) 3441 errors++; 3442 3443 /* drop our reference */ 3444 brelse(bh); 3445 3446 /* drop the reference from the wait == 0 run */ 3447 brelse(bh); 3448 continue; 3449 } else { 3450 btrfs_set_super_bytenr(sb, bytenr); 3451 3452 crc = ~(u32)0; 3453 crc = btrfs_csum_data((char *)sb + 3454 BTRFS_CSUM_SIZE, crc, 3455 BTRFS_SUPER_INFO_SIZE - 3456 BTRFS_CSUM_SIZE); 3457 btrfs_csum_final(crc, sb->csum); 3458 3459 /* 3460 * one reference for us, and we leave it for the 3461 * caller 3462 */ 3463 bh = __getblk(device->bdev, bytenr / 4096, 3464 BTRFS_SUPER_INFO_SIZE); 3465 if (!bh) { 3466 btrfs_err(device->fs_info, 3467 "couldn't get super buffer head for bytenr %llu", 3468 bytenr); 3469 errors++; 3470 continue; 3471 } 3472 3473 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3474 3475 /* one reference for submit_bh */ 3476 get_bh(bh); 3477 3478 set_buffer_uptodate(bh); 3479 lock_buffer(bh); 3480 bh->b_end_io = btrfs_end_buffer_write_sync; 3481 bh->b_private = device; 3482 } 3483 3484 /* 3485 * we fua the first super. The others we allow 3486 * to go down lazy. 3487 */ 3488 if (i == 0) 3489 ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_FUA, bh); 3490 else 3491 ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_SYNC, bh); 3492 if (ret) 3493 errors++; 3494 } 3495 return errors < i ? 0 : -1; 3496 } 3497 3498 /* 3499 * endio for the write_dev_flush, this will wake anyone waiting 3500 * for the barrier when it is done 3501 */ 3502 static void btrfs_end_empty_barrier(struct bio *bio) 3503 { 3504 if (bio->bi_private) 3505 complete(bio->bi_private); 3506 bio_put(bio); 3507 } 3508 3509 /* 3510 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3511 * sent down. With wait == 1, it waits for the previous flush. 3512 * 3513 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3514 * capable 3515 */ 3516 static int write_dev_flush(struct btrfs_device *device, int wait) 3517 { 3518 struct bio *bio; 3519 int ret = 0; 3520 3521 if (device->nobarriers) 3522 return 0; 3523 3524 if (wait) { 3525 bio = device->flush_bio; 3526 if (!bio) 3527 return 0; 3528 3529 wait_for_completion(&device->flush_wait); 3530 3531 if (bio->bi_error) { 3532 ret = bio->bi_error; 3533 btrfs_dev_stat_inc_and_print(device, 3534 BTRFS_DEV_STAT_FLUSH_ERRS); 3535 } 3536 3537 /* drop the reference from the wait == 0 run */ 3538 bio_put(bio); 3539 device->flush_bio = NULL; 3540 3541 return ret; 3542 } 3543 3544 /* 3545 * one reference for us, and we leave it for the 3546 * caller 3547 */ 3548 device->flush_bio = NULL; 3549 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3550 if (!bio) 3551 return -ENOMEM; 3552 3553 bio->bi_end_io = btrfs_end_empty_barrier; 3554 bio->bi_bdev = device->bdev; 3555 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 3556 init_completion(&device->flush_wait); 3557 bio->bi_private = &device->flush_wait; 3558 device->flush_bio = bio; 3559 3560 bio_get(bio); 3561 btrfsic_submit_bio(bio); 3562 3563 return 0; 3564 } 3565 3566 /* 3567 * send an empty flush down to each device in parallel, 3568 * then wait for them 3569 */ 3570 static int barrier_all_devices(struct btrfs_fs_info *info) 3571 { 3572 struct list_head *head; 3573 struct btrfs_device *dev; 3574 int errors_send = 0; 3575 int errors_wait = 0; 3576 int ret; 3577 3578 /* send down all the barriers */ 3579 head = &info->fs_devices->devices; 3580 list_for_each_entry_rcu(dev, head, dev_list) { 3581 if (dev->missing) 3582 continue; 3583 if (!dev->bdev) { 3584 errors_send++; 3585 continue; 3586 } 3587 if (!dev->in_fs_metadata || !dev->writeable) 3588 continue; 3589 3590 ret = write_dev_flush(dev, 0); 3591 if (ret) 3592 errors_send++; 3593 } 3594 3595 /* wait for all the barriers */ 3596 list_for_each_entry_rcu(dev, head, dev_list) { 3597 if (dev->missing) 3598 continue; 3599 if (!dev->bdev) { 3600 errors_wait++; 3601 continue; 3602 } 3603 if (!dev->in_fs_metadata || !dev->writeable) 3604 continue; 3605 3606 ret = write_dev_flush(dev, 1); 3607 if (ret) 3608 errors_wait++; 3609 } 3610 if (errors_send > info->num_tolerated_disk_barrier_failures || 3611 errors_wait > info->num_tolerated_disk_barrier_failures) 3612 return -EIO; 3613 return 0; 3614 } 3615 3616 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3617 { 3618 int raid_type; 3619 int min_tolerated = INT_MAX; 3620 3621 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3622 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3623 min_tolerated = min(min_tolerated, 3624 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3625 tolerated_failures); 3626 3627 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3628 if (raid_type == BTRFS_RAID_SINGLE) 3629 continue; 3630 if (!(flags & btrfs_raid_group[raid_type])) 3631 continue; 3632 min_tolerated = min(min_tolerated, 3633 btrfs_raid_array[raid_type]. 3634 tolerated_failures); 3635 } 3636 3637 if (min_tolerated == INT_MAX) { 3638 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3639 min_tolerated = 0; 3640 } 3641 3642 return min_tolerated; 3643 } 3644 3645 int btrfs_calc_num_tolerated_disk_barrier_failures( 3646 struct btrfs_fs_info *fs_info) 3647 { 3648 struct btrfs_ioctl_space_info space; 3649 struct btrfs_space_info *sinfo; 3650 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3651 BTRFS_BLOCK_GROUP_SYSTEM, 3652 BTRFS_BLOCK_GROUP_METADATA, 3653 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3654 int i; 3655 int c; 3656 int num_tolerated_disk_barrier_failures = 3657 (int)fs_info->fs_devices->num_devices; 3658 3659 for (i = 0; i < ARRAY_SIZE(types); i++) { 3660 struct btrfs_space_info *tmp; 3661 3662 sinfo = NULL; 3663 rcu_read_lock(); 3664 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3665 if (tmp->flags == types[i]) { 3666 sinfo = tmp; 3667 break; 3668 } 3669 } 3670 rcu_read_unlock(); 3671 3672 if (!sinfo) 3673 continue; 3674 3675 down_read(&sinfo->groups_sem); 3676 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3677 u64 flags; 3678 3679 if (list_empty(&sinfo->block_groups[c])) 3680 continue; 3681 3682 btrfs_get_block_group_info(&sinfo->block_groups[c], 3683 &space); 3684 if (space.total_bytes == 0 || space.used_bytes == 0) 3685 continue; 3686 flags = space.flags; 3687 3688 num_tolerated_disk_barrier_failures = min( 3689 num_tolerated_disk_barrier_failures, 3690 btrfs_get_num_tolerated_disk_barrier_failures( 3691 flags)); 3692 } 3693 up_read(&sinfo->groups_sem); 3694 } 3695 3696 return num_tolerated_disk_barrier_failures; 3697 } 3698 3699 static int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3700 { 3701 struct list_head *head; 3702 struct btrfs_device *dev; 3703 struct btrfs_super_block *sb; 3704 struct btrfs_dev_item *dev_item; 3705 int ret; 3706 int do_barriers; 3707 int max_errors; 3708 int total_errors = 0; 3709 u64 flags; 3710 3711 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3712 backup_super_roots(fs_info); 3713 3714 sb = fs_info->super_for_commit; 3715 dev_item = &sb->dev_item; 3716 3717 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3718 head = &fs_info->fs_devices->devices; 3719 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3720 3721 if (do_barriers) { 3722 ret = barrier_all_devices(fs_info); 3723 if (ret) { 3724 mutex_unlock( 3725 &fs_info->fs_devices->device_list_mutex); 3726 btrfs_handle_fs_error(fs_info, ret, 3727 "errors while submitting device barriers."); 3728 return ret; 3729 } 3730 } 3731 3732 list_for_each_entry_rcu(dev, head, dev_list) { 3733 if (!dev->bdev) { 3734 total_errors++; 3735 continue; 3736 } 3737 if (!dev->in_fs_metadata || !dev->writeable) 3738 continue; 3739 3740 btrfs_set_stack_device_generation(dev_item, 0); 3741 btrfs_set_stack_device_type(dev_item, dev->type); 3742 btrfs_set_stack_device_id(dev_item, dev->devid); 3743 btrfs_set_stack_device_total_bytes(dev_item, 3744 dev->commit_total_bytes); 3745 btrfs_set_stack_device_bytes_used(dev_item, 3746 dev->commit_bytes_used); 3747 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3748 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3749 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3750 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3751 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3752 3753 flags = btrfs_super_flags(sb); 3754 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3755 3756 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3757 if (ret) 3758 total_errors++; 3759 } 3760 if (total_errors > max_errors) { 3761 btrfs_err(fs_info, "%d errors while writing supers", 3762 total_errors); 3763 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3764 3765 /* FUA is masked off if unsupported and can't be the reason */ 3766 btrfs_handle_fs_error(fs_info, -EIO, 3767 "%d errors while writing supers", 3768 total_errors); 3769 return -EIO; 3770 } 3771 3772 total_errors = 0; 3773 list_for_each_entry_rcu(dev, head, dev_list) { 3774 if (!dev->bdev) 3775 continue; 3776 if (!dev->in_fs_metadata || !dev->writeable) 3777 continue; 3778 3779 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3780 if (ret) 3781 total_errors++; 3782 } 3783 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3784 if (total_errors > max_errors) { 3785 btrfs_handle_fs_error(fs_info, -EIO, 3786 "%d errors while writing supers", 3787 total_errors); 3788 return -EIO; 3789 } 3790 return 0; 3791 } 3792 3793 int write_ctree_super(struct btrfs_trans_handle *trans, 3794 struct btrfs_fs_info *fs_info, int max_mirrors) 3795 { 3796 return write_all_supers(fs_info, max_mirrors); 3797 } 3798 3799 /* Drop a fs root from the radix tree and free it. */ 3800 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3801 struct btrfs_root *root) 3802 { 3803 spin_lock(&fs_info->fs_roots_radix_lock); 3804 radix_tree_delete(&fs_info->fs_roots_radix, 3805 (unsigned long)root->root_key.objectid); 3806 spin_unlock(&fs_info->fs_roots_radix_lock); 3807 3808 if (btrfs_root_refs(&root->root_item) == 0) 3809 synchronize_srcu(&fs_info->subvol_srcu); 3810 3811 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3812 btrfs_free_log(NULL, root); 3813 if (root->reloc_root) { 3814 free_extent_buffer(root->reloc_root->node); 3815 free_extent_buffer(root->reloc_root->commit_root); 3816 btrfs_put_fs_root(root->reloc_root); 3817 root->reloc_root = NULL; 3818 } 3819 } 3820 3821 if (root->free_ino_pinned) 3822 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3823 if (root->free_ino_ctl) 3824 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3825 free_fs_root(root); 3826 } 3827 3828 static void free_fs_root(struct btrfs_root *root) 3829 { 3830 iput(root->ino_cache_inode); 3831 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3832 btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv); 3833 root->orphan_block_rsv = NULL; 3834 if (root->anon_dev) 3835 free_anon_bdev(root->anon_dev); 3836 if (root->subv_writers) 3837 btrfs_free_subvolume_writers(root->subv_writers); 3838 free_extent_buffer(root->node); 3839 free_extent_buffer(root->commit_root); 3840 kfree(root->free_ino_ctl); 3841 kfree(root->free_ino_pinned); 3842 kfree(root->name); 3843 btrfs_put_fs_root(root); 3844 } 3845 3846 void btrfs_free_fs_root(struct btrfs_root *root) 3847 { 3848 free_fs_root(root); 3849 } 3850 3851 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3852 { 3853 u64 root_objectid = 0; 3854 struct btrfs_root *gang[8]; 3855 int i = 0; 3856 int err = 0; 3857 unsigned int ret = 0; 3858 int index; 3859 3860 while (1) { 3861 index = srcu_read_lock(&fs_info->subvol_srcu); 3862 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3863 (void **)gang, root_objectid, 3864 ARRAY_SIZE(gang)); 3865 if (!ret) { 3866 srcu_read_unlock(&fs_info->subvol_srcu, index); 3867 break; 3868 } 3869 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3870 3871 for (i = 0; i < ret; i++) { 3872 /* Avoid to grab roots in dead_roots */ 3873 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3874 gang[i] = NULL; 3875 continue; 3876 } 3877 /* grab all the search result for later use */ 3878 gang[i] = btrfs_grab_fs_root(gang[i]); 3879 } 3880 srcu_read_unlock(&fs_info->subvol_srcu, index); 3881 3882 for (i = 0; i < ret; i++) { 3883 if (!gang[i]) 3884 continue; 3885 root_objectid = gang[i]->root_key.objectid; 3886 err = btrfs_orphan_cleanup(gang[i]); 3887 if (err) 3888 break; 3889 btrfs_put_fs_root(gang[i]); 3890 } 3891 root_objectid++; 3892 } 3893 3894 /* release the uncleaned roots due to error */ 3895 for (; i < ret; i++) { 3896 if (gang[i]) 3897 btrfs_put_fs_root(gang[i]); 3898 } 3899 return err; 3900 } 3901 3902 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3903 { 3904 struct btrfs_root *root = fs_info->tree_root; 3905 struct btrfs_trans_handle *trans; 3906 3907 mutex_lock(&fs_info->cleaner_mutex); 3908 btrfs_run_delayed_iputs(fs_info); 3909 mutex_unlock(&fs_info->cleaner_mutex); 3910 wake_up_process(fs_info->cleaner_kthread); 3911 3912 /* wait until ongoing cleanup work done */ 3913 down_write(&fs_info->cleanup_work_sem); 3914 up_write(&fs_info->cleanup_work_sem); 3915 3916 trans = btrfs_join_transaction(root); 3917 if (IS_ERR(trans)) 3918 return PTR_ERR(trans); 3919 return btrfs_commit_transaction(trans); 3920 } 3921 3922 void close_ctree(struct btrfs_fs_info *fs_info) 3923 { 3924 struct btrfs_root *root = fs_info->tree_root; 3925 int ret; 3926 3927 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3928 3929 /* wait for the qgroup rescan worker to stop */ 3930 btrfs_qgroup_wait_for_completion(fs_info, false); 3931 3932 /* wait for the uuid_scan task to finish */ 3933 down(&fs_info->uuid_tree_rescan_sem); 3934 /* avoid complains from lockdep et al., set sem back to initial state */ 3935 up(&fs_info->uuid_tree_rescan_sem); 3936 3937 /* pause restriper - we want to resume on mount */ 3938 btrfs_pause_balance(fs_info); 3939 3940 btrfs_dev_replace_suspend_for_unmount(fs_info); 3941 3942 btrfs_scrub_cancel(fs_info); 3943 3944 /* wait for any defraggers to finish */ 3945 wait_event(fs_info->transaction_wait, 3946 (atomic_read(&fs_info->defrag_running) == 0)); 3947 3948 /* clear out the rbtree of defraggable inodes */ 3949 btrfs_cleanup_defrag_inodes(fs_info); 3950 3951 cancel_work_sync(&fs_info->async_reclaim_work); 3952 3953 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3954 /* 3955 * If the cleaner thread is stopped and there are 3956 * block groups queued for removal, the deletion will be 3957 * skipped when we quit the cleaner thread. 3958 */ 3959 btrfs_delete_unused_bgs(fs_info); 3960 3961 ret = btrfs_commit_super(fs_info); 3962 if (ret) 3963 btrfs_err(fs_info, "commit super ret %d", ret); 3964 } 3965 3966 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3967 btrfs_error_commit_super(fs_info); 3968 3969 kthread_stop(fs_info->transaction_kthread); 3970 kthread_stop(fs_info->cleaner_kthread); 3971 3972 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 3973 3974 btrfs_free_qgroup_config(fs_info); 3975 3976 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3977 btrfs_info(fs_info, "at unmount delalloc count %lld", 3978 percpu_counter_sum(&fs_info->delalloc_bytes)); 3979 } 3980 3981 btrfs_sysfs_remove_mounted(fs_info); 3982 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3983 3984 btrfs_free_fs_roots(fs_info); 3985 3986 btrfs_put_block_group_cache(fs_info); 3987 3988 btrfs_free_block_groups(fs_info); 3989 3990 /* 3991 * we must make sure there is not any read request to 3992 * submit after we stopping all workers. 3993 */ 3994 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3995 btrfs_stop_all_workers(fs_info); 3996 3997 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 3998 free_root_pointers(fs_info, 1); 3999 4000 iput(fs_info->btree_inode); 4001 4002 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4003 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4004 btrfsic_unmount(fs_info->fs_devices); 4005 #endif 4006 4007 btrfs_close_devices(fs_info->fs_devices); 4008 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4009 4010 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 4011 percpu_counter_destroy(&fs_info->delalloc_bytes); 4012 percpu_counter_destroy(&fs_info->bio_counter); 4013 bdi_destroy(&fs_info->bdi); 4014 cleanup_srcu_struct(&fs_info->subvol_srcu); 4015 4016 btrfs_free_stripe_hash_table(fs_info); 4017 4018 __btrfs_free_block_rsv(root->orphan_block_rsv); 4019 root->orphan_block_rsv = NULL; 4020 4021 mutex_lock(&fs_info->chunk_mutex); 4022 while (!list_empty(&fs_info->pinned_chunks)) { 4023 struct extent_map *em; 4024 4025 em = list_first_entry(&fs_info->pinned_chunks, 4026 struct extent_map, list); 4027 list_del_init(&em->list); 4028 free_extent_map(em); 4029 } 4030 mutex_unlock(&fs_info->chunk_mutex); 4031 } 4032 4033 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4034 int atomic) 4035 { 4036 int ret; 4037 struct inode *btree_inode = buf->pages[0]->mapping->host; 4038 4039 ret = extent_buffer_uptodate(buf); 4040 if (!ret) 4041 return ret; 4042 4043 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4044 parent_transid, atomic); 4045 if (ret == -EAGAIN) 4046 return ret; 4047 return !ret; 4048 } 4049 4050 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4051 { 4052 struct btrfs_fs_info *fs_info; 4053 struct btrfs_root *root; 4054 u64 transid = btrfs_header_generation(buf); 4055 int was_dirty; 4056 4057 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4058 /* 4059 * This is a fast path so only do this check if we have sanity tests 4060 * enabled. Normal people shouldn't be marking dummy buffers as dirty 4061 * outside of the sanity tests. 4062 */ 4063 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 4064 return; 4065 #endif 4066 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4067 fs_info = root->fs_info; 4068 btrfs_assert_tree_locked(buf); 4069 if (transid != fs_info->generation) 4070 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4071 buf->start, transid, fs_info->generation); 4072 was_dirty = set_extent_buffer_dirty(buf); 4073 if (!was_dirty) 4074 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 4075 buf->len, 4076 fs_info->dirty_metadata_batch); 4077 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4078 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) { 4079 btrfs_print_leaf(fs_info, buf); 4080 ASSERT(0); 4081 } 4082 #endif 4083 } 4084 4085 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4086 int flush_delayed) 4087 { 4088 /* 4089 * looks as though older kernels can get into trouble with 4090 * this code, they end up stuck in balance_dirty_pages forever 4091 */ 4092 int ret; 4093 4094 if (current->flags & PF_MEMALLOC) 4095 return; 4096 4097 if (flush_delayed) 4098 btrfs_balance_delayed_items(fs_info); 4099 4100 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4101 BTRFS_DIRTY_METADATA_THRESH); 4102 if (ret > 0) { 4103 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4104 } 4105 } 4106 4107 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4108 { 4109 __btrfs_btree_balance_dirty(fs_info, 1); 4110 } 4111 4112 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4113 { 4114 __btrfs_btree_balance_dirty(fs_info, 0); 4115 } 4116 4117 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 4118 { 4119 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4120 struct btrfs_fs_info *fs_info = root->fs_info; 4121 4122 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid); 4123 } 4124 4125 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 4126 int read_only) 4127 { 4128 struct btrfs_super_block *sb = fs_info->super_copy; 4129 u64 nodesize = btrfs_super_nodesize(sb); 4130 u64 sectorsize = btrfs_super_sectorsize(sb); 4131 int ret = 0; 4132 4133 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 4134 btrfs_err(fs_info, "no valid FS found"); 4135 ret = -EINVAL; 4136 } 4137 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) 4138 btrfs_warn(fs_info, "unrecognized super flag: %llu", 4139 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 4140 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 4141 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 4142 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 4143 ret = -EINVAL; 4144 } 4145 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 4146 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 4147 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 4148 ret = -EINVAL; 4149 } 4150 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 4151 btrfs_err(fs_info, "log_root level too big: %d >= %d", 4152 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 4153 ret = -EINVAL; 4154 } 4155 4156 /* 4157 * Check sectorsize and nodesize first, other check will need it. 4158 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 4159 */ 4160 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 4161 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4162 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 4163 ret = -EINVAL; 4164 } 4165 /* Only PAGE SIZE is supported yet */ 4166 if (sectorsize != PAGE_SIZE) { 4167 btrfs_err(fs_info, 4168 "sectorsize %llu not supported yet, only support %lu", 4169 sectorsize, PAGE_SIZE); 4170 ret = -EINVAL; 4171 } 4172 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 4173 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4174 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 4175 ret = -EINVAL; 4176 } 4177 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 4178 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 4179 le32_to_cpu(sb->__unused_leafsize), nodesize); 4180 ret = -EINVAL; 4181 } 4182 4183 /* Root alignment check */ 4184 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 4185 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 4186 btrfs_super_root(sb)); 4187 ret = -EINVAL; 4188 } 4189 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 4190 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 4191 btrfs_super_chunk_root(sb)); 4192 ret = -EINVAL; 4193 } 4194 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 4195 btrfs_warn(fs_info, "log_root block unaligned: %llu", 4196 btrfs_super_log_root(sb)); 4197 ret = -EINVAL; 4198 } 4199 4200 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) { 4201 btrfs_err(fs_info, 4202 "dev_item UUID does not match fsid: %pU != %pU", 4203 fs_info->fsid, sb->dev_item.fsid); 4204 ret = -EINVAL; 4205 } 4206 4207 /* 4208 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 4209 * done later 4210 */ 4211 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 4212 btrfs_err(fs_info, "bytes_used is too small %llu", 4213 btrfs_super_bytes_used(sb)); 4214 ret = -EINVAL; 4215 } 4216 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 4217 btrfs_err(fs_info, "invalid stripesize %u", 4218 btrfs_super_stripesize(sb)); 4219 ret = -EINVAL; 4220 } 4221 if (btrfs_super_num_devices(sb) > (1UL << 31)) 4222 btrfs_warn(fs_info, "suspicious number of devices: %llu", 4223 btrfs_super_num_devices(sb)); 4224 if (btrfs_super_num_devices(sb) == 0) { 4225 btrfs_err(fs_info, "number of devices is 0"); 4226 ret = -EINVAL; 4227 } 4228 4229 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { 4230 btrfs_err(fs_info, "super offset mismatch %llu != %u", 4231 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 4232 ret = -EINVAL; 4233 } 4234 4235 /* 4236 * Obvious sys_chunk_array corruptions, it must hold at least one key 4237 * and one chunk 4238 */ 4239 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4240 btrfs_err(fs_info, "system chunk array too big %u > %u", 4241 btrfs_super_sys_array_size(sb), 4242 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 4243 ret = -EINVAL; 4244 } 4245 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 4246 + sizeof(struct btrfs_chunk)) { 4247 btrfs_err(fs_info, "system chunk array too small %u < %zu", 4248 btrfs_super_sys_array_size(sb), 4249 sizeof(struct btrfs_disk_key) 4250 + sizeof(struct btrfs_chunk)); 4251 ret = -EINVAL; 4252 } 4253 4254 /* 4255 * The generation is a global counter, we'll trust it more than the others 4256 * but it's still possible that it's the one that's wrong. 4257 */ 4258 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 4259 btrfs_warn(fs_info, 4260 "suspicious: generation < chunk_root_generation: %llu < %llu", 4261 btrfs_super_generation(sb), 4262 btrfs_super_chunk_root_generation(sb)); 4263 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 4264 && btrfs_super_cache_generation(sb) != (u64)-1) 4265 btrfs_warn(fs_info, 4266 "suspicious: generation < cache_generation: %llu < %llu", 4267 btrfs_super_generation(sb), 4268 btrfs_super_cache_generation(sb)); 4269 4270 return ret; 4271 } 4272 4273 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4274 { 4275 mutex_lock(&fs_info->cleaner_mutex); 4276 btrfs_run_delayed_iputs(fs_info); 4277 mutex_unlock(&fs_info->cleaner_mutex); 4278 4279 down_write(&fs_info->cleanup_work_sem); 4280 up_write(&fs_info->cleanup_work_sem); 4281 4282 /* cleanup FS via transaction */ 4283 btrfs_cleanup_transaction(fs_info); 4284 } 4285 4286 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4287 { 4288 struct btrfs_ordered_extent *ordered; 4289 4290 spin_lock(&root->ordered_extent_lock); 4291 /* 4292 * This will just short circuit the ordered completion stuff which will 4293 * make sure the ordered extent gets properly cleaned up. 4294 */ 4295 list_for_each_entry(ordered, &root->ordered_extents, 4296 root_extent_list) 4297 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4298 spin_unlock(&root->ordered_extent_lock); 4299 } 4300 4301 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4302 { 4303 struct btrfs_root *root; 4304 struct list_head splice; 4305 4306 INIT_LIST_HEAD(&splice); 4307 4308 spin_lock(&fs_info->ordered_root_lock); 4309 list_splice_init(&fs_info->ordered_roots, &splice); 4310 while (!list_empty(&splice)) { 4311 root = list_first_entry(&splice, struct btrfs_root, 4312 ordered_root); 4313 list_move_tail(&root->ordered_root, 4314 &fs_info->ordered_roots); 4315 4316 spin_unlock(&fs_info->ordered_root_lock); 4317 btrfs_destroy_ordered_extents(root); 4318 4319 cond_resched(); 4320 spin_lock(&fs_info->ordered_root_lock); 4321 } 4322 spin_unlock(&fs_info->ordered_root_lock); 4323 } 4324 4325 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4326 struct btrfs_fs_info *fs_info) 4327 { 4328 struct rb_node *node; 4329 struct btrfs_delayed_ref_root *delayed_refs; 4330 struct btrfs_delayed_ref_node *ref; 4331 int ret = 0; 4332 4333 delayed_refs = &trans->delayed_refs; 4334 4335 spin_lock(&delayed_refs->lock); 4336 if (atomic_read(&delayed_refs->num_entries) == 0) { 4337 spin_unlock(&delayed_refs->lock); 4338 btrfs_info(fs_info, "delayed_refs has NO entry"); 4339 return ret; 4340 } 4341 4342 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 4343 struct btrfs_delayed_ref_head *head; 4344 struct btrfs_delayed_ref_node *tmp; 4345 bool pin_bytes = false; 4346 4347 head = rb_entry(node, struct btrfs_delayed_ref_head, 4348 href_node); 4349 if (!mutex_trylock(&head->mutex)) { 4350 atomic_inc(&head->node.refs); 4351 spin_unlock(&delayed_refs->lock); 4352 4353 mutex_lock(&head->mutex); 4354 mutex_unlock(&head->mutex); 4355 btrfs_put_delayed_ref(&head->node); 4356 spin_lock(&delayed_refs->lock); 4357 continue; 4358 } 4359 spin_lock(&head->lock); 4360 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list, 4361 list) { 4362 ref->in_tree = 0; 4363 list_del(&ref->list); 4364 if (!list_empty(&ref->add_list)) 4365 list_del(&ref->add_list); 4366 atomic_dec(&delayed_refs->num_entries); 4367 btrfs_put_delayed_ref(ref); 4368 } 4369 if (head->must_insert_reserved) 4370 pin_bytes = true; 4371 btrfs_free_delayed_extent_op(head->extent_op); 4372 delayed_refs->num_heads--; 4373 if (head->processing == 0) 4374 delayed_refs->num_heads_ready--; 4375 atomic_dec(&delayed_refs->num_entries); 4376 head->node.in_tree = 0; 4377 rb_erase(&head->href_node, &delayed_refs->href_root); 4378 spin_unlock(&head->lock); 4379 spin_unlock(&delayed_refs->lock); 4380 mutex_unlock(&head->mutex); 4381 4382 if (pin_bytes) 4383 btrfs_pin_extent(fs_info, head->node.bytenr, 4384 head->node.num_bytes, 1); 4385 btrfs_put_delayed_ref(&head->node); 4386 cond_resched(); 4387 spin_lock(&delayed_refs->lock); 4388 } 4389 4390 spin_unlock(&delayed_refs->lock); 4391 4392 return ret; 4393 } 4394 4395 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4396 { 4397 struct btrfs_inode *btrfs_inode; 4398 struct list_head splice; 4399 4400 INIT_LIST_HEAD(&splice); 4401 4402 spin_lock(&root->delalloc_lock); 4403 list_splice_init(&root->delalloc_inodes, &splice); 4404 4405 while (!list_empty(&splice)) { 4406 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4407 delalloc_inodes); 4408 4409 list_del_init(&btrfs_inode->delalloc_inodes); 4410 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 4411 &btrfs_inode->runtime_flags); 4412 spin_unlock(&root->delalloc_lock); 4413 4414 btrfs_invalidate_inodes(btrfs_inode->root); 4415 4416 spin_lock(&root->delalloc_lock); 4417 } 4418 4419 spin_unlock(&root->delalloc_lock); 4420 } 4421 4422 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4423 { 4424 struct btrfs_root *root; 4425 struct list_head splice; 4426 4427 INIT_LIST_HEAD(&splice); 4428 4429 spin_lock(&fs_info->delalloc_root_lock); 4430 list_splice_init(&fs_info->delalloc_roots, &splice); 4431 while (!list_empty(&splice)) { 4432 root = list_first_entry(&splice, struct btrfs_root, 4433 delalloc_root); 4434 list_del_init(&root->delalloc_root); 4435 root = btrfs_grab_fs_root(root); 4436 BUG_ON(!root); 4437 spin_unlock(&fs_info->delalloc_root_lock); 4438 4439 btrfs_destroy_delalloc_inodes(root); 4440 btrfs_put_fs_root(root); 4441 4442 spin_lock(&fs_info->delalloc_root_lock); 4443 } 4444 spin_unlock(&fs_info->delalloc_root_lock); 4445 } 4446 4447 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4448 struct extent_io_tree *dirty_pages, 4449 int mark) 4450 { 4451 int ret; 4452 struct extent_buffer *eb; 4453 u64 start = 0; 4454 u64 end; 4455 4456 while (1) { 4457 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4458 mark, NULL); 4459 if (ret) 4460 break; 4461 4462 clear_extent_bits(dirty_pages, start, end, mark); 4463 while (start <= end) { 4464 eb = find_extent_buffer(fs_info, start); 4465 start += fs_info->nodesize; 4466 if (!eb) 4467 continue; 4468 wait_on_extent_buffer_writeback(eb); 4469 4470 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4471 &eb->bflags)) 4472 clear_extent_buffer_dirty(eb); 4473 free_extent_buffer_stale(eb); 4474 } 4475 } 4476 4477 return ret; 4478 } 4479 4480 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4481 struct extent_io_tree *pinned_extents) 4482 { 4483 struct extent_io_tree *unpin; 4484 u64 start; 4485 u64 end; 4486 int ret; 4487 bool loop = true; 4488 4489 unpin = pinned_extents; 4490 again: 4491 while (1) { 4492 ret = find_first_extent_bit(unpin, 0, &start, &end, 4493 EXTENT_DIRTY, NULL); 4494 if (ret) 4495 break; 4496 4497 clear_extent_dirty(unpin, start, end); 4498 btrfs_error_unpin_extent_range(fs_info, start, end); 4499 cond_resched(); 4500 } 4501 4502 if (loop) { 4503 if (unpin == &fs_info->freed_extents[0]) 4504 unpin = &fs_info->freed_extents[1]; 4505 else 4506 unpin = &fs_info->freed_extents[0]; 4507 loop = false; 4508 goto again; 4509 } 4510 4511 return 0; 4512 } 4513 4514 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) 4515 { 4516 struct inode *inode; 4517 4518 inode = cache->io_ctl.inode; 4519 if (inode) { 4520 invalidate_inode_pages2(inode->i_mapping); 4521 BTRFS_I(inode)->generation = 0; 4522 cache->io_ctl.inode = NULL; 4523 iput(inode); 4524 } 4525 btrfs_put_block_group(cache); 4526 } 4527 4528 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4529 struct btrfs_fs_info *fs_info) 4530 { 4531 struct btrfs_block_group_cache *cache; 4532 4533 spin_lock(&cur_trans->dirty_bgs_lock); 4534 while (!list_empty(&cur_trans->dirty_bgs)) { 4535 cache = list_first_entry(&cur_trans->dirty_bgs, 4536 struct btrfs_block_group_cache, 4537 dirty_list); 4538 if (!cache) { 4539 btrfs_err(fs_info, "orphan block group dirty_bgs list"); 4540 spin_unlock(&cur_trans->dirty_bgs_lock); 4541 return; 4542 } 4543 4544 if (!list_empty(&cache->io_list)) { 4545 spin_unlock(&cur_trans->dirty_bgs_lock); 4546 list_del_init(&cache->io_list); 4547 btrfs_cleanup_bg_io(cache); 4548 spin_lock(&cur_trans->dirty_bgs_lock); 4549 } 4550 4551 list_del_init(&cache->dirty_list); 4552 spin_lock(&cache->lock); 4553 cache->disk_cache_state = BTRFS_DC_ERROR; 4554 spin_unlock(&cache->lock); 4555 4556 spin_unlock(&cur_trans->dirty_bgs_lock); 4557 btrfs_put_block_group(cache); 4558 spin_lock(&cur_trans->dirty_bgs_lock); 4559 } 4560 spin_unlock(&cur_trans->dirty_bgs_lock); 4561 4562 while (!list_empty(&cur_trans->io_bgs)) { 4563 cache = list_first_entry(&cur_trans->io_bgs, 4564 struct btrfs_block_group_cache, 4565 io_list); 4566 if (!cache) { 4567 btrfs_err(fs_info, "orphan block group on io_bgs list"); 4568 return; 4569 } 4570 4571 list_del_init(&cache->io_list); 4572 spin_lock(&cache->lock); 4573 cache->disk_cache_state = BTRFS_DC_ERROR; 4574 spin_unlock(&cache->lock); 4575 btrfs_cleanup_bg_io(cache); 4576 } 4577 } 4578 4579 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4580 struct btrfs_fs_info *fs_info) 4581 { 4582 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4583 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4584 ASSERT(list_empty(&cur_trans->io_bgs)); 4585 4586 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4587 4588 cur_trans->state = TRANS_STATE_COMMIT_START; 4589 wake_up(&fs_info->transaction_blocked_wait); 4590 4591 cur_trans->state = TRANS_STATE_UNBLOCKED; 4592 wake_up(&fs_info->transaction_wait); 4593 4594 btrfs_destroy_delayed_inodes(fs_info); 4595 btrfs_assert_delayed_root_empty(fs_info); 4596 4597 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4598 EXTENT_DIRTY); 4599 btrfs_destroy_pinned_extent(fs_info, 4600 fs_info->pinned_extents); 4601 4602 cur_trans->state =TRANS_STATE_COMPLETED; 4603 wake_up(&cur_trans->commit_wait); 4604 4605 /* 4606 memset(cur_trans, 0, sizeof(*cur_trans)); 4607 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4608 */ 4609 } 4610 4611 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4612 { 4613 struct btrfs_transaction *t; 4614 4615 mutex_lock(&fs_info->transaction_kthread_mutex); 4616 4617 spin_lock(&fs_info->trans_lock); 4618 while (!list_empty(&fs_info->trans_list)) { 4619 t = list_first_entry(&fs_info->trans_list, 4620 struct btrfs_transaction, list); 4621 if (t->state >= TRANS_STATE_COMMIT_START) { 4622 atomic_inc(&t->use_count); 4623 spin_unlock(&fs_info->trans_lock); 4624 btrfs_wait_for_commit(fs_info, t->transid); 4625 btrfs_put_transaction(t); 4626 spin_lock(&fs_info->trans_lock); 4627 continue; 4628 } 4629 if (t == fs_info->running_transaction) { 4630 t->state = TRANS_STATE_COMMIT_DOING; 4631 spin_unlock(&fs_info->trans_lock); 4632 /* 4633 * We wait for 0 num_writers since we don't hold a trans 4634 * handle open currently for this transaction. 4635 */ 4636 wait_event(t->writer_wait, 4637 atomic_read(&t->num_writers) == 0); 4638 } else { 4639 spin_unlock(&fs_info->trans_lock); 4640 } 4641 btrfs_cleanup_one_transaction(t, fs_info); 4642 4643 spin_lock(&fs_info->trans_lock); 4644 if (t == fs_info->running_transaction) 4645 fs_info->running_transaction = NULL; 4646 list_del_init(&t->list); 4647 spin_unlock(&fs_info->trans_lock); 4648 4649 btrfs_put_transaction(t); 4650 trace_btrfs_transaction_commit(fs_info->tree_root); 4651 spin_lock(&fs_info->trans_lock); 4652 } 4653 spin_unlock(&fs_info->trans_lock); 4654 btrfs_destroy_all_ordered_extents(fs_info); 4655 btrfs_destroy_delayed_inodes(fs_info); 4656 btrfs_assert_delayed_root_empty(fs_info); 4657 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 4658 btrfs_destroy_all_delalloc_inodes(fs_info); 4659 mutex_unlock(&fs_info->transaction_kthread_mutex); 4660 4661 return 0; 4662 } 4663 4664 static const struct extent_io_ops btree_extent_io_ops = { 4665 .readpage_end_io_hook = btree_readpage_end_io_hook, 4666 .readpage_io_failed_hook = btree_io_failed_hook, 4667 .submit_bio_hook = btree_submit_bio_hook, 4668 /* note we're sharing with inode.c for the merge bio hook */ 4669 .merge_bio_hook = btrfs_merge_bio_hook, 4670 }; 4671