xref: /openbmc/linux/fs/btrfs/disk-io.c (revision adb57164)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
43 #include "discard.h"
44 #include "space-info.h"
45 
46 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
47 				 BTRFS_HEADER_FLAG_RELOC |\
48 				 BTRFS_SUPER_FLAG_ERROR |\
49 				 BTRFS_SUPER_FLAG_SEEDING |\
50 				 BTRFS_SUPER_FLAG_METADUMP |\
51 				 BTRFS_SUPER_FLAG_METADUMP_V2)
52 
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 				      struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60 					struct extent_io_tree *dirty_pages,
61 					int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63 				       struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66 
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73 	struct bio *bio;
74 	bio_end_io_t *end_io;
75 	void *private;
76 	struct btrfs_fs_info *info;
77 	blk_status_t status;
78 	enum btrfs_wq_endio_type metadata;
79 	struct btrfs_work work;
80 };
81 
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83 
84 int __init btrfs_end_io_wq_init(void)
85 {
86 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 					sizeof(struct btrfs_end_io_wq),
88 					0,
89 					SLAB_MEM_SPREAD,
90 					NULL);
91 	if (!btrfs_end_io_wq_cache)
92 		return -ENOMEM;
93 	return 0;
94 }
95 
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98 	kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100 
101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103 	if (fs_info->csum_shash)
104 		crypto_free_shash(fs_info->csum_shash);
105 }
106 
107 /*
108  * async submit bios are used to offload expensive checksumming
109  * onto the worker threads.  They checksum file and metadata bios
110  * just before they are sent down the IO stack.
111  */
112 struct async_submit_bio {
113 	void *private_data;
114 	struct bio *bio;
115 	extent_submit_bio_start_t *submit_bio_start;
116 	int mirror_num;
117 	/*
118 	 * bio_offset is optional, can be used if the pages in the bio
119 	 * can't tell us where in the file the bio should go
120 	 */
121 	u64 bio_offset;
122 	struct btrfs_work work;
123 	blk_status_t status;
124 };
125 
126 /*
127  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
128  * eb, the lockdep key is determined by the btrfs_root it belongs to and
129  * the level the eb occupies in the tree.
130  *
131  * Different roots are used for different purposes and may nest inside each
132  * other and they require separate keysets.  As lockdep keys should be
133  * static, assign keysets according to the purpose of the root as indicated
134  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
135  * roots have separate keysets.
136  *
137  * Lock-nesting across peer nodes is always done with the immediate parent
138  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
139  * subclass to avoid triggering lockdep warning in such cases.
140  *
141  * The key is set by the readpage_end_io_hook after the buffer has passed
142  * csum validation but before the pages are unlocked.  It is also set by
143  * btrfs_init_new_buffer on freshly allocated blocks.
144  *
145  * We also add a check to make sure the highest level of the tree is the
146  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
147  * needs update as well.
148  */
149 #ifdef CONFIG_DEBUG_LOCK_ALLOC
150 # if BTRFS_MAX_LEVEL != 8
151 #  error
152 # endif
153 
154 static struct btrfs_lockdep_keyset {
155 	u64			id;		/* root objectid */
156 	const char		*name_stem;	/* lock name stem */
157 	char			names[BTRFS_MAX_LEVEL + 1][20];
158 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
159 } btrfs_lockdep_keysets[] = {
160 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
161 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
162 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
163 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
164 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
165 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
166 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
167 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
168 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
169 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
170 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
171 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
172 	{ .id = 0,				.name_stem = "tree"	},
173 };
174 
175 void __init btrfs_init_lockdep(void)
176 {
177 	int i, j;
178 
179 	/* initialize lockdep class names */
180 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182 
183 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184 			snprintf(ks->names[j], sizeof(ks->names[j]),
185 				 "btrfs-%s-%02d", ks->name_stem, j);
186 	}
187 }
188 
189 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 				    int level)
191 {
192 	struct btrfs_lockdep_keyset *ks;
193 
194 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
195 
196 	/* find the matching keyset, id 0 is the default entry */
197 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198 		if (ks->id == objectid)
199 			break;
200 
201 	lockdep_set_class_and_name(&eb->lock,
202 				   &ks->keys[level], ks->names[level]);
203 }
204 
205 #endif
206 
207 /*
208  * extents on the btree inode are pretty simple, there's one extent
209  * that covers the entire device
210  */
211 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
212 				    struct page *page, size_t pg_offset,
213 				    u64 start, u64 len)
214 {
215 	struct extent_map_tree *em_tree = &inode->extent_tree;
216 	struct extent_map *em;
217 	int ret;
218 
219 	read_lock(&em_tree->lock);
220 	em = lookup_extent_mapping(em_tree, start, len);
221 	if (em) {
222 		read_unlock(&em_tree->lock);
223 		goto out;
224 	}
225 	read_unlock(&em_tree->lock);
226 
227 	em = alloc_extent_map();
228 	if (!em) {
229 		em = ERR_PTR(-ENOMEM);
230 		goto out;
231 	}
232 	em->start = 0;
233 	em->len = (u64)-1;
234 	em->block_len = (u64)-1;
235 	em->block_start = 0;
236 
237 	write_lock(&em_tree->lock);
238 	ret = add_extent_mapping(em_tree, em, 0);
239 	if (ret == -EEXIST) {
240 		free_extent_map(em);
241 		em = lookup_extent_mapping(em_tree, start, len);
242 		if (!em)
243 			em = ERR_PTR(-EIO);
244 	} else if (ret) {
245 		free_extent_map(em);
246 		em = ERR_PTR(ret);
247 	}
248 	write_unlock(&em_tree->lock);
249 
250 out:
251 	return em;
252 }
253 
254 /*
255  * Compute the csum of a btree block and store the result to provided buffer.
256  */
257 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
258 {
259 	struct btrfs_fs_info *fs_info = buf->fs_info;
260 	const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
261 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
262 	char *kaddr;
263 	int i;
264 
265 	shash->tfm = fs_info->csum_shash;
266 	crypto_shash_init(shash);
267 	kaddr = page_address(buf->pages[0]);
268 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
269 			    PAGE_SIZE - BTRFS_CSUM_SIZE);
270 
271 	for (i = 1; i < num_pages; i++) {
272 		kaddr = page_address(buf->pages[i]);
273 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
274 	}
275 	memset(result, 0, BTRFS_CSUM_SIZE);
276 	crypto_shash_final(shash, result);
277 }
278 
279 /*
280  * we can't consider a given block up to date unless the transid of the
281  * block matches the transid in the parent node's pointer.  This is how we
282  * detect blocks that either didn't get written at all or got written
283  * in the wrong place.
284  */
285 static int verify_parent_transid(struct extent_io_tree *io_tree,
286 				 struct extent_buffer *eb, u64 parent_transid,
287 				 int atomic)
288 {
289 	struct extent_state *cached_state = NULL;
290 	int ret;
291 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
292 
293 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
294 		return 0;
295 
296 	if (atomic)
297 		return -EAGAIN;
298 
299 	if (need_lock) {
300 		btrfs_tree_read_lock(eb);
301 		btrfs_set_lock_blocking_read(eb);
302 	}
303 
304 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
305 			 &cached_state);
306 	if (extent_buffer_uptodate(eb) &&
307 	    btrfs_header_generation(eb) == parent_transid) {
308 		ret = 0;
309 		goto out;
310 	}
311 	btrfs_err_rl(eb->fs_info,
312 		"parent transid verify failed on %llu wanted %llu found %llu",
313 			eb->start,
314 			parent_transid, btrfs_header_generation(eb));
315 	ret = 1;
316 
317 	/*
318 	 * Things reading via commit roots that don't have normal protection,
319 	 * like send, can have a really old block in cache that may point at a
320 	 * block that has been freed and re-allocated.  So don't clear uptodate
321 	 * if we find an eb that is under IO (dirty/writeback) because we could
322 	 * end up reading in the stale data and then writing it back out and
323 	 * making everybody very sad.
324 	 */
325 	if (!extent_buffer_under_io(eb))
326 		clear_extent_buffer_uptodate(eb);
327 out:
328 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
329 			     &cached_state);
330 	if (need_lock)
331 		btrfs_tree_read_unlock_blocking(eb);
332 	return ret;
333 }
334 
335 static bool btrfs_supported_super_csum(u16 csum_type)
336 {
337 	switch (csum_type) {
338 	case BTRFS_CSUM_TYPE_CRC32:
339 	case BTRFS_CSUM_TYPE_XXHASH:
340 	case BTRFS_CSUM_TYPE_SHA256:
341 	case BTRFS_CSUM_TYPE_BLAKE2:
342 		return true;
343 	default:
344 		return false;
345 	}
346 }
347 
348 /*
349  * Return 0 if the superblock checksum type matches the checksum value of that
350  * algorithm. Pass the raw disk superblock data.
351  */
352 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
353 				  char *raw_disk_sb)
354 {
355 	struct btrfs_super_block *disk_sb =
356 		(struct btrfs_super_block *)raw_disk_sb;
357 	char result[BTRFS_CSUM_SIZE];
358 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
359 
360 	shash->tfm = fs_info->csum_shash;
361 	crypto_shash_init(shash);
362 
363 	/*
364 	 * The super_block structure does not span the whole
365 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
366 	 * filled with zeros and is included in the checksum.
367 	 */
368 	crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
369 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
370 	crypto_shash_final(shash, result);
371 
372 	if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
373 		return 1;
374 
375 	return 0;
376 }
377 
378 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
379 			   struct btrfs_key *first_key, u64 parent_transid)
380 {
381 	struct btrfs_fs_info *fs_info = eb->fs_info;
382 	int found_level;
383 	struct btrfs_key found_key;
384 	int ret;
385 
386 	found_level = btrfs_header_level(eb);
387 	if (found_level != level) {
388 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
389 		     KERN_ERR "BTRFS: tree level check failed\n");
390 		btrfs_err(fs_info,
391 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
392 			  eb->start, level, found_level);
393 		return -EIO;
394 	}
395 
396 	if (!first_key)
397 		return 0;
398 
399 	/*
400 	 * For live tree block (new tree blocks in current transaction),
401 	 * we need proper lock context to avoid race, which is impossible here.
402 	 * So we only checks tree blocks which is read from disk, whose
403 	 * generation <= fs_info->last_trans_committed.
404 	 */
405 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
406 		return 0;
407 
408 	/* We have @first_key, so this @eb must have at least one item */
409 	if (btrfs_header_nritems(eb) == 0) {
410 		btrfs_err(fs_info,
411 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
412 			  eb->start);
413 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
414 		return -EUCLEAN;
415 	}
416 
417 	if (found_level)
418 		btrfs_node_key_to_cpu(eb, &found_key, 0);
419 	else
420 		btrfs_item_key_to_cpu(eb, &found_key, 0);
421 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
422 
423 	if (ret) {
424 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
425 		     KERN_ERR "BTRFS: tree first key check failed\n");
426 		btrfs_err(fs_info,
427 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
428 			  eb->start, parent_transid, first_key->objectid,
429 			  first_key->type, first_key->offset,
430 			  found_key.objectid, found_key.type,
431 			  found_key.offset);
432 	}
433 	return ret;
434 }
435 
436 /*
437  * helper to read a given tree block, doing retries as required when
438  * the checksums don't match and we have alternate mirrors to try.
439  *
440  * @parent_transid:	expected transid, skip check if 0
441  * @level:		expected level, mandatory check
442  * @first_key:		expected key of first slot, skip check if NULL
443  */
444 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
445 					  u64 parent_transid, int level,
446 					  struct btrfs_key *first_key)
447 {
448 	struct btrfs_fs_info *fs_info = eb->fs_info;
449 	struct extent_io_tree *io_tree;
450 	int failed = 0;
451 	int ret;
452 	int num_copies = 0;
453 	int mirror_num = 0;
454 	int failed_mirror = 0;
455 
456 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
457 	while (1) {
458 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
459 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
460 		if (!ret) {
461 			if (verify_parent_transid(io_tree, eb,
462 						   parent_transid, 0))
463 				ret = -EIO;
464 			else if (btrfs_verify_level_key(eb, level,
465 						first_key, parent_transid))
466 				ret = -EUCLEAN;
467 			else
468 				break;
469 		}
470 
471 		num_copies = btrfs_num_copies(fs_info,
472 					      eb->start, eb->len);
473 		if (num_copies == 1)
474 			break;
475 
476 		if (!failed_mirror) {
477 			failed = 1;
478 			failed_mirror = eb->read_mirror;
479 		}
480 
481 		mirror_num++;
482 		if (mirror_num == failed_mirror)
483 			mirror_num++;
484 
485 		if (mirror_num > num_copies)
486 			break;
487 	}
488 
489 	if (failed && !ret && failed_mirror)
490 		btrfs_repair_eb_io_failure(eb, failed_mirror);
491 
492 	return ret;
493 }
494 
495 /*
496  * checksum a dirty tree block before IO.  This has extra checks to make sure
497  * we only fill in the checksum field in the first page of a multi-page block
498  */
499 
500 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
501 {
502 	u64 start = page_offset(page);
503 	u64 found_start;
504 	u8 result[BTRFS_CSUM_SIZE];
505 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
506 	struct extent_buffer *eb;
507 	int ret;
508 
509 	eb = (struct extent_buffer *)page->private;
510 	if (page != eb->pages[0])
511 		return 0;
512 
513 	found_start = btrfs_header_bytenr(eb);
514 	/*
515 	 * Please do not consolidate these warnings into a single if.
516 	 * It is useful to know what went wrong.
517 	 */
518 	if (WARN_ON(found_start != start))
519 		return -EUCLEAN;
520 	if (WARN_ON(!PageUptodate(page)))
521 		return -EUCLEAN;
522 
523 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
524 				    offsetof(struct btrfs_header, fsid),
525 				    BTRFS_FSID_SIZE) == 0);
526 
527 	csum_tree_block(eb, result);
528 
529 	if (btrfs_header_level(eb))
530 		ret = btrfs_check_node(eb);
531 	else
532 		ret = btrfs_check_leaf_full(eb);
533 
534 	if (ret < 0) {
535 		btrfs_print_tree(eb, 0);
536 		btrfs_err(fs_info,
537 		"block=%llu write time tree block corruption detected",
538 			  eb->start);
539 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
540 		return ret;
541 	}
542 	write_extent_buffer(eb, result, 0, csum_size);
543 
544 	return 0;
545 }
546 
547 static int check_tree_block_fsid(struct extent_buffer *eb)
548 {
549 	struct btrfs_fs_info *fs_info = eb->fs_info;
550 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
551 	u8 fsid[BTRFS_FSID_SIZE];
552 	int ret = 1;
553 
554 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
555 			   BTRFS_FSID_SIZE);
556 	while (fs_devices) {
557 		u8 *metadata_uuid;
558 
559 		/*
560 		 * Checking the incompat flag is only valid for the current
561 		 * fs. For seed devices it's forbidden to have their uuid
562 		 * changed so reading ->fsid in this case is fine
563 		 */
564 		if (fs_devices == fs_info->fs_devices &&
565 		    btrfs_fs_incompat(fs_info, METADATA_UUID))
566 			metadata_uuid = fs_devices->metadata_uuid;
567 		else
568 			metadata_uuid = fs_devices->fsid;
569 
570 		if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
571 			ret = 0;
572 			break;
573 		}
574 		fs_devices = fs_devices->seed;
575 	}
576 	return ret;
577 }
578 
579 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
580 				      u64 phy_offset, struct page *page,
581 				      u64 start, u64 end, int mirror)
582 {
583 	u64 found_start;
584 	int found_level;
585 	struct extent_buffer *eb;
586 	struct btrfs_fs_info *fs_info;
587 	u16 csum_size;
588 	int ret = 0;
589 	u8 result[BTRFS_CSUM_SIZE];
590 	int reads_done;
591 
592 	if (!page->private)
593 		goto out;
594 
595 	eb = (struct extent_buffer *)page->private;
596 	fs_info = eb->fs_info;
597 	csum_size = btrfs_super_csum_size(fs_info->super_copy);
598 
599 	/* the pending IO might have been the only thing that kept this buffer
600 	 * in memory.  Make sure we have a ref for all this other checks
601 	 */
602 	atomic_inc(&eb->refs);
603 
604 	reads_done = atomic_dec_and_test(&eb->io_pages);
605 	if (!reads_done)
606 		goto err;
607 
608 	eb->read_mirror = mirror;
609 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
610 		ret = -EIO;
611 		goto err;
612 	}
613 
614 	found_start = btrfs_header_bytenr(eb);
615 	if (found_start != eb->start) {
616 		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
617 			     eb->start, found_start);
618 		ret = -EIO;
619 		goto err;
620 	}
621 	if (check_tree_block_fsid(eb)) {
622 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
623 			     eb->start);
624 		ret = -EIO;
625 		goto err;
626 	}
627 	found_level = btrfs_header_level(eb);
628 	if (found_level >= BTRFS_MAX_LEVEL) {
629 		btrfs_err(fs_info, "bad tree block level %d on %llu",
630 			  (int)btrfs_header_level(eb), eb->start);
631 		ret = -EIO;
632 		goto err;
633 	}
634 
635 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
636 				       eb, found_level);
637 
638 	csum_tree_block(eb, result);
639 
640 	if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
641 		u32 val;
642 		u32 found = 0;
643 
644 		memcpy(&found, result, csum_size);
645 
646 		read_extent_buffer(eb, &val, 0, csum_size);
647 		btrfs_warn_rl(fs_info,
648 		"%s checksum verify failed on %llu wanted %x found %x level %d",
649 			      fs_info->sb->s_id, eb->start,
650 			      val, found, btrfs_header_level(eb));
651 		ret = -EUCLEAN;
652 		goto err;
653 	}
654 
655 	/*
656 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
657 	 * that we don't try and read the other copies of this block, just
658 	 * return -EIO.
659 	 */
660 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
661 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
662 		ret = -EIO;
663 	}
664 
665 	if (found_level > 0 && btrfs_check_node(eb))
666 		ret = -EIO;
667 
668 	if (!ret)
669 		set_extent_buffer_uptodate(eb);
670 	else
671 		btrfs_err(fs_info,
672 			  "block=%llu read time tree block corruption detected",
673 			  eb->start);
674 err:
675 	if (reads_done &&
676 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
677 		btree_readahead_hook(eb, ret);
678 
679 	if (ret) {
680 		/*
681 		 * our io error hook is going to dec the io pages
682 		 * again, we have to make sure it has something
683 		 * to decrement
684 		 */
685 		atomic_inc(&eb->io_pages);
686 		clear_extent_buffer_uptodate(eb);
687 	}
688 	free_extent_buffer(eb);
689 out:
690 	return ret;
691 }
692 
693 static void end_workqueue_bio(struct bio *bio)
694 {
695 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
696 	struct btrfs_fs_info *fs_info;
697 	struct btrfs_workqueue *wq;
698 
699 	fs_info = end_io_wq->info;
700 	end_io_wq->status = bio->bi_status;
701 
702 	if (bio_op(bio) == REQ_OP_WRITE) {
703 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
704 			wq = fs_info->endio_meta_write_workers;
705 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
706 			wq = fs_info->endio_freespace_worker;
707 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
708 			wq = fs_info->endio_raid56_workers;
709 		else
710 			wq = fs_info->endio_write_workers;
711 	} else {
712 		if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
713 			wq = fs_info->endio_repair_workers;
714 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
715 			wq = fs_info->endio_raid56_workers;
716 		else if (end_io_wq->metadata)
717 			wq = fs_info->endio_meta_workers;
718 		else
719 			wq = fs_info->endio_workers;
720 	}
721 
722 	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
723 	btrfs_queue_work(wq, &end_io_wq->work);
724 }
725 
726 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
727 			enum btrfs_wq_endio_type metadata)
728 {
729 	struct btrfs_end_io_wq *end_io_wq;
730 
731 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
732 	if (!end_io_wq)
733 		return BLK_STS_RESOURCE;
734 
735 	end_io_wq->private = bio->bi_private;
736 	end_io_wq->end_io = bio->bi_end_io;
737 	end_io_wq->info = info;
738 	end_io_wq->status = 0;
739 	end_io_wq->bio = bio;
740 	end_io_wq->metadata = metadata;
741 
742 	bio->bi_private = end_io_wq;
743 	bio->bi_end_io = end_workqueue_bio;
744 	return 0;
745 }
746 
747 static void run_one_async_start(struct btrfs_work *work)
748 {
749 	struct async_submit_bio *async;
750 	blk_status_t ret;
751 
752 	async = container_of(work, struct  async_submit_bio, work);
753 	ret = async->submit_bio_start(async->private_data, async->bio,
754 				      async->bio_offset);
755 	if (ret)
756 		async->status = ret;
757 }
758 
759 /*
760  * In order to insert checksums into the metadata in large chunks, we wait
761  * until bio submission time.   All the pages in the bio are checksummed and
762  * sums are attached onto the ordered extent record.
763  *
764  * At IO completion time the csums attached on the ordered extent record are
765  * inserted into the tree.
766  */
767 static void run_one_async_done(struct btrfs_work *work)
768 {
769 	struct async_submit_bio *async;
770 	struct inode *inode;
771 	blk_status_t ret;
772 
773 	async = container_of(work, struct  async_submit_bio, work);
774 	inode = async->private_data;
775 
776 	/* If an error occurred we just want to clean up the bio and move on */
777 	if (async->status) {
778 		async->bio->bi_status = async->status;
779 		bio_endio(async->bio);
780 		return;
781 	}
782 
783 	/*
784 	 * All of the bios that pass through here are from async helpers.
785 	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
786 	 * This changes nothing when cgroups aren't in use.
787 	 */
788 	async->bio->bi_opf |= REQ_CGROUP_PUNT;
789 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
790 	if (ret) {
791 		async->bio->bi_status = ret;
792 		bio_endio(async->bio);
793 	}
794 }
795 
796 static void run_one_async_free(struct btrfs_work *work)
797 {
798 	struct async_submit_bio *async;
799 
800 	async = container_of(work, struct  async_submit_bio, work);
801 	kfree(async);
802 }
803 
804 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
805 				 int mirror_num, unsigned long bio_flags,
806 				 u64 bio_offset, void *private_data,
807 				 extent_submit_bio_start_t *submit_bio_start)
808 {
809 	struct async_submit_bio *async;
810 
811 	async = kmalloc(sizeof(*async), GFP_NOFS);
812 	if (!async)
813 		return BLK_STS_RESOURCE;
814 
815 	async->private_data = private_data;
816 	async->bio = bio;
817 	async->mirror_num = mirror_num;
818 	async->submit_bio_start = submit_bio_start;
819 
820 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
821 			run_one_async_free);
822 
823 	async->bio_offset = bio_offset;
824 
825 	async->status = 0;
826 
827 	if (op_is_sync(bio->bi_opf))
828 		btrfs_set_work_high_priority(&async->work);
829 
830 	btrfs_queue_work(fs_info->workers, &async->work);
831 	return 0;
832 }
833 
834 static blk_status_t btree_csum_one_bio(struct bio *bio)
835 {
836 	struct bio_vec *bvec;
837 	struct btrfs_root *root;
838 	int ret = 0;
839 	struct bvec_iter_all iter_all;
840 
841 	ASSERT(!bio_flagged(bio, BIO_CLONED));
842 	bio_for_each_segment_all(bvec, bio, iter_all) {
843 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
844 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
845 		if (ret)
846 			break;
847 	}
848 
849 	return errno_to_blk_status(ret);
850 }
851 
852 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
853 					     u64 bio_offset)
854 {
855 	/*
856 	 * when we're called for a write, we're already in the async
857 	 * submission context.  Just jump into btrfs_map_bio
858 	 */
859 	return btree_csum_one_bio(bio);
860 }
861 
862 static int check_async_write(struct btrfs_fs_info *fs_info,
863 			     struct btrfs_inode *bi)
864 {
865 	if (atomic_read(&bi->sync_writers))
866 		return 0;
867 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
868 		return 0;
869 	return 1;
870 }
871 
872 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
873 					  int mirror_num,
874 					  unsigned long bio_flags)
875 {
876 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
877 	int async = check_async_write(fs_info, BTRFS_I(inode));
878 	blk_status_t ret;
879 
880 	if (bio_op(bio) != REQ_OP_WRITE) {
881 		/*
882 		 * called for a read, do the setup so that checksum validation
883 		 * can happen in the async kernel threads
884 		 */
885 		ret = btrfs_bio_wq_end_io(fs_info, bio,
886 					  BTRFS_WQ_ENDIO_METADATA);
887 		if (ret)
888 			goto out_w_error;
889 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
890 	} else if (!async) {
891 		ret = btree_csum_one_bio(bio);
892 		if (ret)
893 			goto out_w_error;
894 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
895 	} else {
896 		/*
897 		 * kthread helpers are used to submit writes so that
898 		 * checksumming can happen in parallel across all CPUs
899 		 */
900 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
901 					  0, inode, btree_submit_bio_start);
902 	}
903 
904 	if (ret)
905 		goto out_w_error;
906 	return 0;
907 
908 out_w_error:
909 	bio->bi_status = ret;
910 	bio_endio(bio);
911 	return ret;
912 }
913 
914 #ifdef CONFIG_MIGRATION
915 static int btree_migratepage(struct address_space *mapping,
916 			struct page *newpage, struct page *page,
917 			enum migrate_mode mode)
918 {
919 	/*
920 	 * we can't safely write a btree page from here,
921 	 * we haven't done the locking hook
922 	 */
923 	if (PageDirty(page))
924 		return -EAGAIN;
925 	/*
926 	 * Buffers may be managed in a filesystem specific way.
927 	 * We must have no buffers or drop them.
928 	 */
929 	if (page_has_private(page) &&
930 	    !try_to_release_page(page, GFP_KERNEL))
931 		return -EAGAIN;
932 	return migrate_page(mapping, newpage, page, mode);
933 }
934 #endif
935 
936 
937 static int btree_writepages(struct address_space *mapping,
938 			    struct writeback_control *wbc)
939 {
940 	struct btrfs_fs_info *fs_info;
941 	int ret;
942 
943 	if (wbc->sync_mode == WB_SYNC_NONE) {
944 
945 		if (wbc->for_kupdate)
946 			return 0;
947 
948 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
949 		/* this is a bit racy, but that's ok */
950 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
951 					     BTRFS_DIRTY_METADATA_THRESH,
952 					     fs_info->dirty_metadata_batch);
953 		if (ret < 0)
954 			return 0;
955 	}
956 	return btree_write_cache_pages(mapping, wbc);
957 }
958 
959 static int btree_readpage(struct file *file, struct page *page)
960 {
961 	return extent_read_full_page(page, btree_get_extent, 0);
962 }
963 
964 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
965 {
966 	if (PageWriteback(page) || PageDirty(page))
967 		return 0;
968 
969 	return try_release_extent_buffer(page);
970 }
971 
972 static void btree_invalidatepage(struct page *page, unsigned int offset,
973 				 unsigned int length)
974 {
975 	struct extent_io_tree *tree;
976 	tree = &BTRFS_I(page->mapping->host)->io_tree;
977 	extent_invalidatepage(tree, page, offset);
978 	btree_releasepage(page, GFP_NOFS);
979 	if (PagePrivate(page)) {
980 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
981 			   "page private not zero on page %llu",
982 			   (unsigned long long)page_offset(page));
983 		ClearPagePrivate(page);
984 		set_page_private(page, 0);
985 		put_page(page);
986 	}
987 }
988 
989 static int btree_set_page_dirty(struct page *page)
990 {
991 #ifdef DEBUG
992 	struct extent_buffer *eb;
993 
994 	BUG_ON(!PagePrivate(page));
995 	eb = (struct extent_buffer *)page->private;
996 	BUG_ON(!eb);
997 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
998 	BUG_ON(!atomic_read(&eb->refs));
999 	btrfs_assert_tree_locked(eb);
1000 #endif
1001 	return __set_page_dirty_nobuffers(page);
1002 }
1003 
1004 static const struct address_space_operations btree_aops = {
1005 	.readpage	= btree_readpage,
1006 	.writepages	= btree_writepages,
1007 	.releasepage	= btree_releasepage,
1008 	.invalidatepage = btree_invalidatepage,
1009 #ifdef CONFIG_MIGRATION
1010 	.migratepage	= btree_migratepage,
1011 #endif
1012 	.set_page_dirty = btree_set_page_dirty,
1013 };
1014 
1015 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1016 {
1017 	struct extent_buffer *buf = NULL;
1018 	int ret;
1019 
1020 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1021 	if (IS_ERR(buf))
1022 		return;
1023 
1024 	ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1025 	if (ret < 0)
1026 		free_extent_buffer_stale(buf);
1027 	else
1028 		free_extent_buffer(buf);
1029 }
1030 
1031 struct extent_buffer *btrfs_find_create_tree_block(
1032 						struct btrfs_fs_info *fs_info,
1033 						u64 bytenr)
1034 {
1035 	if (btrfs_is_testing(fs_info))
1036 		return alloc_test_extent_buffer(fs_info, bytenr);
1037 	return alloc_extent_buffer(fs_info, bytenr);
1038 }
1039 
1040 /*
1041  * Read tree block at logical address @bytenr and do variant basic but critical
1042  * verification.
1043  *
1044  * @parent_transid:	expected transid of this tree block, skip check if 0
1045  * @level:		expected level, mandatory check
1046  * @first_key:		expected key in slot 0, skip check if NULL
1047  */
1048 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1049 				      u64 parent_transid, int level,
1050 				      struct btrfs_key *first_key)
1051 {
1052 	struct extent_buffer *buf = NULL;
1053 	int ret;
1054 
1055 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1056 	if (IS_ERR(buf))
1057 		return buf;
1058 
1059 	ret = btree_read_extent_buffer_pages(buf, parent_transid,
1060 					     level, first_key);
1061 	if (ret) {
1062 		free_extent_buffer_stale(buf);
1063 		return ERR_PTR(ret);
1064 	}
1065 	return buf;
1066 
1067 }
1068 
1069 void btrfs_clean_tree_block(struct extent_buffer *buf)
1070 {
1071 	struct btrfs_fs_info *fs_info = buf->fs_info;
1072 	if (btrfs_header_generation(buf) ==
1073 	    fs_info->running_transaction->transid) {
1074 		btrfs_assert_tree_locked(buf);
1075 
1076 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1077 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1078 						 -buf->len,
1079 						 fs_info->dirty_metadata_batch);
1080 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1081 			btrfs_set_lock_blocking_write(buf);
1082 			clear_extent_buffer_dirty(buf);
1083 		}
1084 	}
1085 }
1086 
1087 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1088 			 u64 objectid)
1089 {
1090 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1091 	root->fs_info = fs_info;
1092 	root->node = NULL;
1093 	root->commit_root = NULL;
1094 	root->state = 0;
1095 	root->orphan_cleanup_state = 0;
1096 
1097 	root->last_trans = 0;
1098 	root->highest_objectid = 0;
1099 	root->nr_delalloc_inodes = 0;
1100 	root->nr_ordered_extents = 0;
1101 	root->inode_tree = RB_ROOT;
1102 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1103 	root->block_rsv = NULL;
1104 
1105 	INIT_LIST_HEAD(&root->dirty_list);
1106 	INIT_LIST_HEAD(&root->root_list);
1107 	INIT_LIST_HEAD(&root->delalloc_inodes);
1108 	INIT_LIST_HEAD(&root->delalloc_root);
1109 	INIT_LIST_HEAD(&root->ordered_extents);
1110 	INIT_LIST_HEAD(&root->ordered_root);
1111 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1112 	INIT_LIST_HEAD(&root->logged_list[0]);
1113 	INIT_LIST_HEAD(&root->logged_list[1]);
1114 	spin_lock_init(&root->inode_lock);
1115 	spin_lock_init(&root->delalloc_lock);
1116 	spin_lock_init(&root->ordered_extent_lock);
1117 	spin_lock_init(&root->accounting_lock);
1118 	spin_lock_init(&root->log_extents_lock[0]);
1119 	spin_lock_init(&root->log_extents_lock[1]);
1120 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1121 	mutex_init(&root->objectid_mutex);
1122 	mutex_init(&root->log_mutex);
1123 	mutex_init(&root->ordered_extent_mutex);
1124 	mutex_init(&root->delalloc_mutex);
1125 	init_waitqueue_head(&root->log_writer_wait);
1126 	init_waitqueue_head(&root->log_commit_wait[0]);
1127 	init_waitqueue_head(&root->log_commit_wait[1]);
1128 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1129 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1130 	atomic_set(&root->log_commit[0], 0);
1131 	atomic_set(&root->log_commit[1], 0);
1132 	atomic_set(&root->log_writers, 0);
1133 	atomic_set(&root->log_batch, 0);
1134 	refcount_set(&root->refs, 1);
1135 	atomic_set(&root->snapshot_force_cow, 0);
1136 	atomic_set(&root->nr_swapfiles, 0);
1137 	root->log_transid = 0;
1138 	root->log_transid_committed = -1;
1139 	root->last_log_commit = 0;
1140 	if (!dummy)
1141 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1142 				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1143 
1144 	memset(&root->root_key, 0, sizeof(root->root_key));
1145 	memset(&root->root_item, 0, sizeof(root->root_item));
1146 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1147 	if (!dummy)
1148 		root->defrag_trans_start = fs_info->generation;
1149 	else
1150 		root->defrag_trans_start = 0;
1151 	root->root_key.objectid = objectid;
1152 	root->anon_dev = 0;
1153 
1154 	spin_lock_init(&root->root_item_lock);
1155 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1156 #ifdef CONFIG_BTRFS_DEBUG
1157 	INIT_LIST_HEAD(&root->leak_list);
1158 	spin_lock(&fs_info->fs_roots_radix_lock);
1159 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1160 	spin_unlock(&fs_info->fs_roots_radix_lock);
1161 #endif
1162 }
1163 
1164 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1165 					   u64 objectid, gfp_t flags)
1166 {
1167 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1168 	if (root)
1169 		__setup_root(root, fs_info, objectid);
1170 	return root;
1171 }
1172 
1173 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1174 /* Should only be used by the testing infrastructure */
1175 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1176 {
1177 	struct btrfs_root *root;
1178 
1179 	if (!fs_info)
1180 		return ERR_PTR(-EINVAL);
1181 
1182 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1183 	if (!root)
1184 		return ERR_PTR(-ENOMEM);
1185 
1186 	/* We don't use the stripesize in selftest, set it as sectorsize */
1187 	root->alloc_bytenr = 0;
1188 
1189 	return root;
1190 }
1191 #endif
1192 
1193 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1194 				     u64 objectid)
1195 {
1196 	struct btrfs_fs_info *fs_info = trans->fs_info;
1197 	struct extent_buffer *leaf;
1198 	struct btrfs_root *tree_root = fs_info->tree_root;
1199 	struct btrfs_root *root;
1200 	struct btrfs_key key;
1201 	unsigned int nofs_flag;
1202 	int ret = 0;
1203 
1204 	/*
1205 	 * We're holding a transaction handle, so use a NOFS memory allocation
1206 	 * context to avoid deadlock if reclaim happens.
1207 	 */
1208 	nofs_flag = memalloc_nofs_save();
1209 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1210 	memalloc_nofs_restore(nofs_flag);
1211 	if (!root)
1212 		return ERR_PTR(-ENOMEM);
1213 
1214 	root->root_key.objectid = objectid;
1215 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1216 	root->root_key.offset = 0;
1217 
1218 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1219 	if (IS_ERR(leaf)) {
1220 		ret = PTR_ERR(leaf);
1221 		leaf = NULL;
1222 		goto fail;
1223 	}
1224 
1225 	root->node = leaf;
1226 	btrfs_mark_buffer_dirty(leaf);
1227 
1228 	root->commit_root = btrfs_root_node(root);
1229 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1230 
1231 	root->root_item.flags = 0;
1232 	root->root_item.byte_limit = 0;
1233 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1234 	btrfs_set_root_generation(&root->root_item, trans->transid);
1235 	btrfs_set_root_level(&root->root_item, 0);
1236 	btrfs_set_root_refs(&root->root_item, 1);
1237 	btrfs_set_root_used(&root->root_item, leaf->len);
1238 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1239 	btrfs_set_root_dirid(&root->root_item, 0);
1240 	if (is_fstree(objectid))
1241 		generate_random_guid(root->root_item.uuid);
1242 	else
1243 		export_guid(root->root_item.uuid, &guid_null);
1244 	root->root_item.drop_level = 0;
1245 
1246 	key.objectid = objectid;
1247 	key.type = BTRFS_ROOT_ITEM_KEY;
1248 	key.offset = 0;
1249 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1250 	if (ret)
1251 		goto fail;
1252 
1253 	btrfs_tree_unlock(leaf);
1254 
1255 	return root;
1256 
1257 fail:
1258 	if (leaf)
1259 		btrfs_tree_unlock(leaf);
1260 	btrfs_put_root(root);
1261 
1262 	return ERR_PTR(ret);
1263 }
1264 
1265 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1266 					 struct btrfs_fs_info *fs_info)
1267 {
1268 	struct btrfs_root *root;
1269 	struct extent_buffer *leaf;
1270 
1271 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1272 	if (!root)
1273 		return ERR_PTR(-ENOMEM);
1274 
1275 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1276 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1277 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1278 
1279 	/*
1280 	 * DON'T set REF_COWS for log trees
1281 	 *
1282 	 * log trees do not get reference counted because they go away
1283 	 * before a real commit is actually done.  They do store pointers
1284 	 * to file data extents, and those reference counts still get
1285 	 * updated (along with back refs to the log tree).
1286 	 */
1287 
1288 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1289 			NULL, 0, 0, 0);
1290 	if (IS_ERR(leaf)) {
1291 		btrfs_put_root(root);
1292 		return ERR_CAST(leaf);
1293 	}
1294 
1295 	root->node = leaf;
1296 
1297 	btrfs_mark_buffer_dirty(root->node);
1298 	btrfs_tree_unlock(root->node);
1299 	return root;
1300 }
1301 
1302 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1303 			     struct btrfs_fs_info *fs_info)
1304 {
1305 	struct btrfs_root *log_root;
1306 
1307 	log_root = alloc_log_tree(trans, fs_info);
1308 	if (IS_ERR(log_root))
1309 		return PTR_ERR(log_root);
1310 	WARN_ON(fs_info->log_root_tree);
1311 	fs_info->log_root_tree = log_root;
1312 	return 0;
1313 }
1314 
1315 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1316 		       struct btrfs_root *root)
1317 {
1318 	struct btrfs_fs_info *fs_info = root->fs_info;
1319 	struct btrfs_root *log_root;
1320 	struct btrfs_inode_item *inode_item;
1321 
1322 	log_root = alloc_log_tree(trans, fs_info);
1323 	if (IS_ERR(log_root))
1324 		return PTR_ERR(log_root);
1325 
1326 	log_root->last_trans = trans->transid;
1327 	log_root->root_key.offset = root->root_key.objectid;
1328 
1329 	inode_item = &log_root->root_item.inode;
1330 	btrfs_set_stack_inode_generation(inode_item, 1);
1331 	btrfs_set_stack_inode_size(inode_item, 3);
1332 	btrfs_set_stack_inode_nlink(inode_item, 1);
1333 	btrfs_set_stack_inode_nbytes(inode_item,
1334 				     fs_info->nodesize);
1335 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1336 
1337 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1338 
1339 	WARN_ON(root->log_root);
1340 	root->log_root = log_root;
1341 	root->log_transid = 0;
1342 	root->log_transid_committed = -1;
1343 	root->last_log_commit = 0;
1344 	return 0;
1345 }
1346 
1347 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1348 					struct btrfs_key *key)
1349 {
1350 	struct btrfs_root *root;
1351 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1352 	struct btrfs_path *path;
1353 	u64 generation;
1354 	int ret;
1355 	int level;
1356 
1357 	path = btrfs_alloc_path();
1358 	if (!path)
1359 		return ERR_PTR(-ENOMEM);
1360 
1361 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1362 	if (!root) {
1363 		ret = -ENOMEM;
1364 		goto alloc_fail;
1365 	}
1366 
1367 	ret = btrfs_find_root(tree_root, key, path,
1368 			      &root->root_item, &root->root_key);
1369 	if (ret) {
1370 		if (ret > 0)
1371 			ret = -ENOENT;
1372 		goto find_fail;
1373 	}
1374 
1375 	generation = btrfs_root_generation(&root->root_item);
1376 	level = btrfs_root_level(&root->root_item);
1377 	root->node = read_tree_block(fs_info,
1378 				     btrfs_root_bytenr(&root->root_item),
1379 				     generation, level, NULL);
1380 	if (IS_ERR(root->node)) {
1381 		ret = PTR_ERR(root->node);
1382 		root->node = NULL;
1383 		goto find_fail;
1384 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1385 		ret = -EIO;
1386 		goto find_fail;
1387 	}
1388 	root->commit_root = btrfs_root_node(root);
1389 out:
1390 	btrfs_free_path(path);
1391 	return root;
1392 
1393 find_fail:
1394 	btrfs_put_root(root);
1395 alloc_fail:
1396 	root = ERR_PTR(ret);
1397 	goto out;
1398 }
1399 
1400 static int btrfs_init_fs_root(struct btrfs_root *root)
1401 {
1402 	int ret;
1403 	unsigned int nofs_flag;
1404 
1405 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1406 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1407 					GFP_NOFS);
1408 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1409 		ret = -ENOMEM;
1410 		goto fail;
1411 	}
1412 
1413 	/*
1414 	 * We might be called under a transaction (e.g. indirect backref
1415 	 * resolution) which could deadlock if it triggers memory reclaim
1416 	 */
1417 	nofs_flag = memalloc_nofs_save();
1418 	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1419 	memalloc_nofs_restore(nofs_flag);
1420 	if (ret)
1421 		goto fail;
1422 
1423 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1424 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1425 		btrfs_check_and_init_root_item(&root->root_item);
1426 	}
1427 
1428 	btrfs_init_free_ino_ctl(root);
1429 	spin_lock_init(&root->ino_cache_lock);
1430 	init_waitqueue_head(&root->ino_cache_wait);
1431 
1432 	ret = get_anon_bdev(&root->anon_dev);
1433 	if (ret)
1434 		goto fail;
1435 
1436 	mutex_lock(&root->objectid_mutex);
1437 	ret = btrfs_find_highest_objectid(root,
1438 					&root->highest_objectid);
1439 	if (ret) {
1440 		mutex_unlock(&root->objectid_mutex);
1441 		goto fail;
1442 	}
1443 
1444 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1445 
1446 	mutex_unlock(&root->objectid_mutex);
1447 
1448 	return 0;
1449 fail:
1450 	/* The caller is responsible to call btrfs_free_fs_root */
1451 	return ret;
1452 }
1453 
1454 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1455 					       u64 root_id)
1456 {
1457 	struct btrfs_root *root;
1458 
1459 	spin_lock(&fs_info->fs_roots_radix_lock);
1460 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1461 				 (unsigned long)root_id);
1462 	if (root)
1463 		root = btrfs_grab_root(root);
1464 	spin_unlock(&fs_info->fs_roots_radix_lock);
1465 	return root;
1466 }
1467 
1468 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1469 			 struct btrfs_root *root)
1470 {
1471 	int ret;
1472 
1473 	ret = radix_tree_preload(GFP_NOFS);
1474 	if (ret)
1475 		return ret;
1476 
1477 	spin_lock(&fs_info->fs_roots_radix_lock);
1478 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1479 				(unsigned long)root->root_key.objectid,
1480 				root);
1481 	if (ret == 0) {
1482 		btrfs_grab_root(root);
1483 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1484 	}
1485 	spin_unlock(&fs_info->fs_roots_radix_lock);
1486 	radix_tree_preload_end();
1487 
1488 	return ret;
1489 }
1490 
1491 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1492 {
1493 #ifdef CONFIG_BTRFS_DEBUG
1494 	struct btrfs_root *root;
1495 
1496 	while (!list_empty(&fs_info->allocated_roots)) {
1497 		root = list_first_entry(&fs_info->allocated_roots,
1498 					struct btrfs_root, leak_list);
1499 		btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1500 			  root->root_key.objectid, root->root_key.offset,
1501 			  refcount_read(&root->refs));
1502 		while (refcount_read(&root->refs) > 1)
1503 			btrfs_put_root(root);
1504 		btrfs_put_root(root);
1505 	}
1506 #endif
1507 }
1508 
1509 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1510 {
1511 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1512 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1513 	percpu_counter_destroy(&fs_info->dio_bytes);
1514 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1515 	btrfs_free_csum_hash(fs_info);
1516 	btrfs_free_stripe_hash_table(fs_info);
1517 	btrfs_free_ref_cache(fs_info);
1518 	kfree(fs_info->balance_ctl);
1519 	kfree(fs_info->delayed_root);
1520 	btrfs_put_root(fs_info->extent_root);
1521 	btrfs_put_root(fs_info->tree_root);
1522 	btrfs_put_root(fs_info->chunk_root);
1523 	btrfs_put_root(fs_info->dev_root);
1524 	btrfs_put_root(fs_info->csum_root);
1525 	btrfs_put_root(fs_info->quota_root);
1526 	btrfs_put_root(fs_info->uuid_root);
1527 	btrfs_put_root(fs_info->free_space_root);
1528 	btrfs_put_root(fs_info->fs_root);
1529 	btrfs_check_leaked_roots(fs_info);
1530 	btrfs_extent_buffer_leak_debug_check(fs_info);
1531 	kfree(fs_info->super_copy);
1532 	kfree(fs_info->super_for_commit);
1533 	kvfree(fs_info);
1534 }
1535 
1536 
1537 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1538 				     struct btrfs_key *location,
1539 				     bool check_ref)
1540 {
1541 	struct btrfs_root *root;
1542 	struct btrfs_path *path;
1543 	struct btrfs_key key;
1544 	int ret;
1545 
1546 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1547 		return btrfs_grab_root(fs_info->tree_root);
1548 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1549 		return btrfs_grab_root(fs_info->extent_root);
1550 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1551 		return btrfs_grab_root(fs_info->chunk_root);
1552 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1553 		return btrfs_grab_root(fs_info->dev_root);
1554 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1555 		return btrfs_grab_root(fs_info->csum_root);
1556 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1557 		return btrfs_grab_root(fs_info->quota_root) ?
1558 			fs_info->quota_root : ERR_PTR(-ENOENT);
1559 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1560 		return btrfs_grab_root(fs_info->uuid_root) ?
1561 			fs_info->uuid_root : ERR_PTR(-ENOENT);
1562 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1563 		return btrfs_grab_root(fs_info->free_space_root) ?
1564 			fs_info->free_space_root : ERR_PTR(-ENOENT);
1565 again:
1566 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1567 	if (root) {
1568 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1569 			btrfs_put_root(root);
1570 			return ERR_PTR(-ENOENT);
1571 		}
1572 		return root;
1573 	}
1574 
1575 	root = btrfs_read_tree_root(fs_info->tree_root, location);
1576 	if (IS_ERR(root))
1577 		return root;
1578 
1579 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1580 		ret = -ENOENT;
1581 		goto fail;
1582 	}
1583 
1584 	ret = btrfs_init_fs_root(root);
1585 	if (ret)
1586 		goto fail;
1587 
1588 	path = btrfs_alloc_path();
1589 	if (!path) {
1590 		ret = -ENOMEM;
1591 		goto fail;
1592 	}
1593 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1594 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1595 	key.offset = location->objectid;
1596 
1597 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1598 	btrfs_free_path(path);
1599 	if (ret < 0)
1600 		goto fail;
1601 	if (ret == 0)
1602 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1603 
1604 	ret = btrfs_insert_fs_root(fs_info, root);
1605 	if (ret) {
1606 		btrfs_put_root(root);
1607 		if (ret == -EEXIST)
1608 			goto again;
1609 		goto fail;
1610 	}
1611 	return root;
1612 fail:
1613 	btrfs_put_root(root);
1614 	return ERR_PTR(ret);
1615 }
1616 
1617 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1618 {
1619 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1620 	int ret = 0;
1621 	struct btrfs_device *device;
1622 	struct backing_dev_info *bdi;
1623 
1624 	rcu_read_lock();
1625 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1626 		if (!device->bdev)
1627 			continue;
1628 		bdi = device->bdev->bd_bdi;
1629 		if (bdi_congested(bdi, bdi_bits)) {
1630 			ret = 1;
1631 			break;
1632 		}
1633 	}
1634 	rcu_read_unlock();
1635 	return ret;
1636 }
1637 
1638 /*
1639  * called by the kthread helper functions to finally call the bio end_io
1640  * functions.  This is where read checksum verification actually happens
1641  */
1642 static void end_workqueue_fn(struct btrfs_work *work)
1643 {
1644 	struct bio *bio;
1645 	struct btrfs_end_io_wq *end_io_wq;
1646 
1647 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1648 	bio = end_io_wq->bio;
1649 
1650 	bio->bi_status = end_io_wq->status;
1651 	bio->bi_private = end_io_wq->private;
1652 	bio->bi_end_io = end_io_wq->end_io;
1653 	bio_endio(bio);
1654 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1655 }
1656 
1657 static int cleaner_kthread(void *arg)
1658 {
1659 	struct btrfs_root *root = arg;
1660 	struct btrfs_fs_info *fs_info = root->fs_info;
1661 	int again;
1662 
1663 	while (1) {
1664 		again = 0;
1665 
1666 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1667 
1668 		/* Make the cleaner go to sleep early. */
1669 		if (btrfs_need_cleaner_sleep(fs_info))
1670 			goto sleep;
1671 
1672 		/*
1673 		 * Do not do anything if we might cause open_ctree() to block
1674 		 * before we have finished mounting the filesystem.
1675 		 */
1676 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1677 			goto sleep;
1678 
1679 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1680 			goto sleep;
1681 
1682 		/*
1683 		 * Avoid the problem that we change the status of the fs
1684 		 * during the above check and trylock.
1685 		 */
1686 		if (btrfs_need_cleaner_sleep(fs_info)) {
1687 			mutex_unlock(&fs_info->cleaner_mutex);
1688 			goto sleep;
1689 		}
1690 
1691 		btrfs_run_delayed_iputs(fs_info);
1692 
1693 		again = btrfs_clean_one_deleted_snapshot(root);
1694 		mutex_unlock(&fs_info->cleaner_mutex);
1695 
1696 		/*
1697 		 * The defragger has dealt with the R/O remount and umount,
1698 		 * needn't do anything special here.
1699 		 */
1700 		btrfs_run_defrag_inodes(fs_info);
1701 
1702 		/*
1703 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1704 		 * with relocation (btrfs_relocate_chunk) and relocation
1705 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1706 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1707 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1708 		 * unused block groups.
1709 		 */
1710 		btrfs_delete_unused_bgs(fs_info);
1711 sleep:
1712 		clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1713 		if (kthread_should_park())
1714 			kthread_parkme();
1715 		if (kthread_should_stop())
1716 			return 0;
1717 		if (!again) {
1718 			set_current_state(TASK_INTERRUPTIBLE);
1719 			schedule();
1720 			__set_current_state(TASK_RUNNING);
1721 		}
1722 	}
1723 }
1724 
1725 static int transaction_kthread(void *arg)
1726 {
1727 	struct btrfs_root *root = arg;
1728 	struct btrfs_fs_info *fs_info = root->fs_info;
1729 	struct btrfs_trans_handle *trans;
1730 	struct btrfs_transaction *cur;
1731 	u64 transid;
1732 	time64_t now;
1733 	unsigned long delay;
1734 	bool cannot_commit;
1735 
1736 	do {
1737 		cannot_commit = false;
1738 		delay = HZ * fs_info->commit_interval;
1739 		mutex_lock(&fs_info->transaction_kthread_mutex);
1740 
1741 		spin_lock(&fs_info->trans_lock);
1742 		cur = fs_info->running_transaction;
1743 		if (!cur) {
1744 			spin_unlock(&fs_info->trans_lock);
1745 			goto sleep;
1746 		}
1747 
1748 		now = ktime_get_seconds();
1749 		if (cur->state < TRANS_STATE_COMMIT_START &&
1750 		    !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1751 		    (now < cur->start_time ||
1752 		     now - cur->start_time < fs_info->commit_interval)) {
1753 			spin_unlock(&fs_info->trans_lock);
1754 			delay = HZ * 5;
1755 			goto sleep;
1756 		}
1757 		transid = cur->transid;
1758 		spin_unlock(&fs_info->trans_lock);
1759 
1760 		/* If the file system is aborted, this will always fail. */
1761 		trans = btrfs_attach_transaction(root);
1762 		if (IS_ERR(trans)) {
1763 			if (PTR_ERR(trans) != -ENOENT)
1764 				cannot_commit = true;
1765 			goto sleep;
1766 		}
1767 		if (transid == trans->transid) {
1768 			btrfs_commit_transaction(trans);
1769 		} else {
1770 			btrfs_end_transaction(trans);
1771 		}
1772 sleep:
1773 		wake_up_process(fs_info->cleaner_kthread);
1774 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1775 
1776 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1777 				      &fs_info->fs_state)))
1778 			btrfs_cleanup_transaction(fs_info);
1779 		if (!kthread_should_stop() &&
1780 				(!btrfs_transaction_blocked(fs_info) ||
1781 				 cannot_commit))
1782 			schedule_timeout_interruptible(delay);
1783 	} while (!kthread_should_stop());
1784 	return 0;
1785 }
1786 
1787 /*
1788  * This will find the highest generation in the array of root backups.  The
1789  * index of the highest array is returned, or -EINVAL if we can't find
1790  * anything.
1791  *
1792  * We check to make sure the array is valid by comparing the
1793  * generation of the latest  root in the array with the generation
1794  * in the super block.  If they don't match we pitch it.
1795  */
1796 static int find_newest_super_backup(struct btrfs_fs_info *info)
1797 {
1798 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1799 	u64 cur;
1800 	struct btrfs_root_backup *root_backup;
1801 	int i;
1802 
1803 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1804 		root_backup = info->super_copy->super_roots + i;
1805 		cur = btrfs_backup_tree_root_gen(root_backup);
1806 		if (cur == newest_gen)
1807 			return i;
1808 	}
1809 
1810 	return -EINVAL;
1811 }
1812 
1813 /*
1814  * copy all the root pointers into the super backup array.
1815  * this will bump the backup pointer by one when it is
1816  * done
1817  */
1818 static void backup_super_roots(struct btrfs_fs_info *info)
1819 {
1820 	const int next_backup = info->backup_root_index;
1821 	struct btrfs_root_backup *root_backup;
1822 
1823 	root_backup = info->super_for_commit->super_roots + next_backup;
1824 
1825 	/*
1826 	 * make sure all of our padding and empty slots get zero filled
1827 	 * regardless of which ones we use today
1828 	 */
1829 	memset(root_backup, 0, sizeof(*root_backup));
1830 
1831 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1832 
1833 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1834 	btrfs_set_backup_tree_root_gen(root_backup,
1835 			       btrfs_header_generation(info->tree_root->node));
1836 
1837 	btrfs_set_backup_tree_root_level(root_backup,
1838 			       btrfs_header_level(info->tree_root->node));
1839 
1840 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1841 	btrfs_set_backup_chunk_root_gen(root_backup,
1842 			       btrfs_header_generation(info->chunk_root->node));
1843 	btrfs_set_backup_chunk_root_level(root_backup,
1844 			       btrfs_header_level(info->chunk_root->node));
1845 
1846 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1847 	btrfs_set_backup_extent_root_gen(root_backup,
1848 			       btrfs_header_generation(info->extent_root->node));
1849 	btrfs_set_backup_extent_root_level(root_backup,
1850 			       btrfs_header_level(info->extent_root->node));
1851 
1852 	/*
1853 	 * we might commit during log recovery, which happens before we set
1854 	 * the fs_root.  Make sure it is valid before we fill it in.
1855 	 */
1856 	if (info->fs_root && info->fs_root->node) {
1857 		btrfs_set_backup_fs_root(root_backup,
1858 					 info->fs_root->node->start);
1859 		btrfs_set_backup_fs_root_gen(root_backup,
1860 			       btrfs_header_generation(info->fs_root->node));
1861 		btrfs_set_backup_fs_root_level(root_backup,
1862 			       btrfs_header_level(info->fs_root->node));
1863 	}
1864 
1865 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1866 	btrfs_set_backup_dev_root_gen(root_backup,
1867 			       btrfs_header_generation(info->dev_root->node));
1868 	btrfs_set_backup_dev_root_level(root_backup,
1869 				       btrfs_header_level(info->dev_root->node));
1870 
1871 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1872 	btrfs_set_backup_csum_root_gen(root_backup,
1873 			       btrfs_header_generation(info->csum_root->node));
1874 	btrfs_set_backup_csum_root_level(root_backup,
1875 			       btrfs_header_level(info->csum_root->node));
1876 
1877 	btrfs_set_backup_total_bytes(root_backup,
1878 			     btrfs_super_total_bytes(info->super_copy));
1879 	btrfs_set_backup_bytes_used(root_backup,
1880 			     btrfs_super_bytes_used(info->super_copy));
1881 	btrfs_set_backup_num_devices(root_backup,
1882 			     btrfs_super_num_devices(info->super_copy));
1883 
1884 	/*
1885 	 * if we don't copy this out to the super_copy, it won't get remembered
1886 	 * for the next commit
1887 	 */
1888 	memcpy(&info->super_copy->super_roots,
1889 	       &info->super_for_commit->super_roots,
1890 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1891 }
1892 
1893 /*
1894  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1895  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1896  *
1897  * fs_info - filesystem whose backup roots need to be read
1898  * priority - priority of backup root required
1899  *
1900  * Returns backup root index on success and -EINVAL otherwise.
1901  */
1902 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1903 {
1904 	int backup_index = find_newest_super_backup(fs_info);
1905 	struct btrfs_super_block *super = fs_info->super_copy;
1906 	struct btrfs_root_backup *root_backup;
1907 
1908 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1909 		if (priority == 0)
1910 			return backup_index;
1911 
1912 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1913 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1914 	} else {
1915 		return -EINVAL;
1916 	}
1917 
1918 	root_backup = super->super_roots + backup_index;
1919 
1920 	btrfs_set_super_generation(super,
1921 				   btrfs_backup_tree_root_gen(root_backup));
1922 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1923 	btrfs_set_super_root_level(super,
1924 				   btrfs_backup_tree_root_level(root_backup));
1925 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1926 
1927 	/*
1928 	 * Fixme: the total bytes and num_devices need to match or we should
1929 	 * need a fsck
1930 	 */
1931 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1932 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1933 
1934 	return backup_index;
1935 }
1936 
1937 /* helper to cleanup workers */
1938 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1939 {
1940 	btrfs_destroy_workqueue(fs_info->fixup_workers);
1941 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1942 	btrfs_destroy_workqueue(fs_info->workers);
1943 	btrfs_destroy_workqueue(fs_info->endio_workers);
1944 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1945 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
1946 	btrfs_destroy_workqueue(fs_info->rmw_workers);
1947 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1948 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1949 	btrfs_destroy_workqueue(fs_info->delayed_workers);
1950 	btrfs_destroy_workqueue(fs_info->caching_workers);
1951 	btrfs_destroy_workqueue(fs_info->readahead_workers);
1952 	btrfs_destroy_workqueue(fs_info->flush_workers);
1953 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1954 	if (fs_info->discard_ctl.discard_workers)
1955 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1956 	/*
1957 	 * Now that all other work queues are destroyed, we can safely destroy
1958 	 * the queues used for metadata I/O, since tasks from those other work
1959 	 * queues can do metadata I/O operations.
1960 	 */
1961 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1962 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
1963 }
1964 
1965 static void free_root_extent_buffers(struct btrfs_root *root)
1966 {
1967 	if (root) {
1968 		free_extent_buffer(root->node);
1969 		free_extent_buffer(root->commit_root);
1970 		root->node = NULL;
1971 		root->commit_root = NULL;
1972 	}
1973 }
1974 
1975 /* helper to cleanup tree roots */
1976 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1977 {
1978 	free_root_extent_buffers(info->tree_root);
1979 
1980 	free_root_extent_buffers(info->dev_root);
1981 	free_root_extent_buffers(info->extent_root);
1982 	free_root_extent_buffers(info->csum_root);
1983 	free_root_extent_buffers(info->quota_root);
1984 	free_root_extent_buffers(info->uuid_root);
1985 	free_root_extent_buffers(info->fs_root);
1986 	if (free_chunk_root)
1987 		free_root_extent_buffers(info->chunk_root);
1988 	free_root_extent_buffers(info->free_space_root);
1989 }
1990 
1991 void btrfs_put_root(struct btrfs_root *root)
1992 {
1993 	if (!root)
1994 		return;
1995 
1996 	if (refcount_dec_and_test(&root->refs)) {
1997 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1998 		if (root->anon_dev)
1999 			free_anon_bdev(root->anon_dev);
2000 		btrfs_drew_lock_destroy(&root->snapshot_lock);
2001 		free_extent_buffer(root->node);
2002 		free_extent_buffer(root->commit_root);
2003 		kfree(root->free_ino_ctl);
2004 		kfree(root->free_ino_pinned);
2005 #ifdef CONFIG_BTRFS_DEBUG
2006 		spin_lock(&root->fs_info->fs_roots_radix_lock);
2007 		list_del_init(&root->leak_list);
2008 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2009 #endif
2010 		kfree(root);
2011 	}
2012 }
2013 
2014 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2015 {
2016 	int ret;
2017 	struct btrfs_root *gang[8];
2018 	int i;
2019 
2020 	while (!list_empty(&fs_info->dead_roots)) {
2021 		gang[0] = list_entry(fs_info->dead_roots.next,
2022 				     struct btrfs_root, root_list);
2023 		list_del(&gang[0]->root_list);
2024 
2025 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2026 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2027 		btrfs_put_root(gang[0]);
2028 	}
2029 
2030 	while (1) {
2031 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2032 					     (void **)gang, 0,
2033 					     ARRAY_SIZE(gang));
2034 		if (!ret)
2035 			break;
2036 		for (i = 0; i < ret; i++)
2037 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2038 	}
2039 }
2040 
2041 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2042 {
2043 	mutex_init(&fs_info->scrub_lock);
2044 	atomic_set(&fs_info->scrubs_running, 0);
2045 	atomic_set(&fs_info->scrub_pause_req, 0);
2046 	atomic_set(&fs_info->scrubs_paused, 0);
2047 	atomic_set(&fs_info->scrub_cancel_req, 0);
2048 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2049 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2050 }
2051 
2052 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2053 {
2054 	spin_lock_init(&fs_info->balance_lock);
2055 	mutex_init(&fs_info->balance_mutex);
2056 	atomic_set(&fs_info->balance_pause_req, 0);
2057 	atomic_set(&fs_info->balance_cancel_req, 0);
2058 	fs_info->balance_ctl = NULL;
2059 	init_waitqueue_head(&fs_info->balance_wait_q);
2060 }
2061 
2062 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2063 {
2064 	struct inode *inode = fs_info->btree_inode;
2065 
2066 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2067 	set_nlink(inode, 1);
2068 	/*
2069 	 * we set the i_size on the btree inode to the max possible int.
2070 	 * the real end of the address space is determined by all of
2071 	 * the devices in the system
2072 	 */
2073 	inode->i_size = OFFSET_MAX;
2074 	inode->i_mapping->a_ops = &btree_aops;
2075 
2076 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2077 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2078 			    IO_TREE_INODE_IO, inode);
2079 	BTRFS_I(inode)->io_tree.track_uptodate = false;
2080 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2081 
2082 	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2083 
2084 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2085 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2086 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2087 	btrfs_insert_inode_hash(inode);
2088 }
2089 
2090 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2091 {
2092 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2093 	init_rwsem(&fs_info->dev_replace.rwsem);
2094 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2095 }
2096 
2097 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2098 {
2099 	spin_lock_init(&fs_info->qgroup_lock);
2100 	mutex_init(&fs_info->qgroup_ioctl_lock);
2101 	fs_info->qgroup_tree = RB_ROOT;
2102 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2103 	fs_info->qgroup_seq = 1;
2104 	fs_info->qgroup_ulist = NULL;
2105 	fs_info->qgroup_rescan_running = false;
2106 	mutex_init(&fs_info->qgroup_rescan_lock);
2107 }
2108 
2109 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2110 		struct btrfs_fs_devices *fs_devices)
2111 {
2112 	u32 max_active = fs_info->thread_pool_size;
2113 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2114 
2115 	fs_info->workers =
2116 		btrfs_alloc_workqueue(fs_info, "worker",
2117 				      flags | WQ_HIGHPRI, max_active, 16);
2118 
2119 	fs_info->delalloc_workers =
2120 		btrfs_alloc_workqueue(fs_info, "delalloc",
2121 				      flags, max_active, 2);
2122 
2123 	fs_info->flush_workers =
2124 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2125 				      flags, max_active, 0);
2126 
2127 	fs_info->caching_workers =
2128 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2129 
2130 	fs_info->fixup_workers =
2131 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2132 
2133 	/*
2134 	 * endios are largely parallel and should have a very
2135 	 * low idle thresh
2136 	 */
2137 	fs_info->endio_workers =
2138 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2139 	fs_info->endio_meta_workers =
2140 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2141 				      max_active, 4);
2142 	fs_info->endio_meta_write_workers =
2143 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2144 				      max_active, 2);
2145 	fs_info->endio_raid56_workers =
2146 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2147 				      max_active, 4);
2148 	fs_info->endio_repair_workers =
2149 		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2150 	fs_info->rmw_workers =
2151 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2152 	fs_info->endio_write_workers =
2153 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2154 				      max_active, 2);
2155 	fs_info->endio_freespace_worker =
2156 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2157 				      max_active, 0);
2158 	fs_info->delayed_workers =
2159 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2160 				      max_active, 0);
2161 	fs_info->readahead_workers =
2162 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2163 				      max_active, 2);
2164 	fs_info->qgroup_rescan_workers =
2165 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2166 	fs_info->discard_ctl.discard_workers =
2167 		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2168 
2169 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2170 	      fs_info->flush_workers &&
2171 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2172 	      fs_info->endio_meta_write_workers &&
2173 	      fs_info->endio_repair_workers &&
2174 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2175 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2176 	      fs_info->caching_workers && fs_info->readahead_workers &&
2177 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2178 	      fs_info->qgroup_rescan_workers &&
2179 	      fs_info->discard_ctl.discard_workers)) {
2180 		return -ENOMEM;
2181 	}
2182 
2183 	return 0;
2184 }
2185 
2186 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2187 {
2188 	struct crypto_shash *csum_shash;
2189 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2190 
2191 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2192 
2193 	if (IS_ERR(csum_shash)) {
2194 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2195 			  csum_driver);
2196 		return PTR_ERR(csum_shash);
2197 	}
2198 
2199 	fs_info->csum_shash = csum_shash;
2200 
2201 	return 0;
2202 }
2203 
2204 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2205 			    struct btrfs_fs_devices *fs_devices)
2206 {
2207 	int ret;
2208 	struct btrfs_root *log_tree_root;
2209 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2210 	u64 bytenr = btrfs_super_log_root(disk_super);
2211 	int level = btrfs_super_log_root_level(disk_super);
2212 
2213 	if (fs_devices->rw_devices == 0) {
2214 		btrfs_warn(fs_info, "log replay required on RO media");
2215 		return -EIO;
2216 	}
2217 
2218 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2219 					 GFP_KERNEL);
2220 	if (!log_tree_root)
2221 		return -ENOMEM;
2222 
2223 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2224 					      fs_info->generation + 1,
2225 					      level, NULL);
2226 	if (IS_ERR(log_tree_root->node)) {
2227 		btrfs_warn(fs_info, "failed to read log tree");
2228 		ret = PTR_ERR(log_tree_root->node);
2229 		log_tree_root->node = NULL;
2230 		btrfs_put_root(log_tree_root);
2231 		return ret;
2232 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2233 		btrfs_err(fs_info, "failed to read log tree");
2234 		btrfs_put_root(log_tree_root);
2235 		return -EIO;
2236 	}
2237 	/* returns with log_tree_root freed on success */
2238 	ret = btrfs_recover_log_trees(log_tree_root);
2239 	if (ret) {
2240 		btrfs_handle_fs_error(fs_info, ret,
2241 				      "Failed to recover log tree");
2242 		btrfs_put_root(log_tree_root);
2243 		return ret;
2244 	}
2245 
2246 	if (sb_rdonly(fs_info->sb)) {
2247 		ret = btrfs_commit_super(fs_info);
2248 		if (ret)
2249 			return ret;
2250 	}
2251 
2252 	return 0;
2253 }
2254 
2255 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2256 {
2257 	struct btrfs_root *tree_root = fs_info->tree_root;
2258 	struct btrfs_root *root;
2259 	struct btrfs_key location;
2260 	int ret;
2261 
2262 	BUG_ON(!fs_info->tree_root);
2263 
2264 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2265 	location.type = BTRFS_ROOT_ITEM_KEY;
2266 	location.offset = 0;
2267 
2268 	root = btrfs_read_tree_root(tree_root, &location);
2269 	if (IS_ERR(root)) {
2270 		ret = PTR_ERR(root);
2271 		goto out;
2272 	}
2273 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2274 	fs_info->extent_root = root;
2275 
2276 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2277 	root = btrfs_read_tree_root(tree_root, &location);
2278 	if (IS_ERR(root)) {
2279 		ret = PTR_ERR(root);
2280 		goto out;
2281 	}
2282 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2283 	fs_info->dev_root = root;
2284 	btrfs_init_devices_late(fs_info);
2285 
2286 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2287 	root = btrfs_read_tree_root(tree_root, &location);
2288 	if (IS_ERR(root)) {
2289 		ret = PTR_ERR(root);
2290 		goto out;
2291 	}
2292 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2293 	fs_info->csum_root = root;
2294 
2295 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2296 	root = btrfs_read_tree_root(tree_root, &location);
2297 	if (!IS_ERR(root)) {
2298 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2299 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2300 		fs_info->quota_root = root;
2301 	}
2302 
2303 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2304 	root = btrfs_read_tree_root(tree_root, &location);
2305 	if (IS_ERR(root)) {
2306 		ret = PTR_ERR(root);
2307 		if (ret != -ENOENT)
2308 			goto out;
2309 	} else {
2310 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2311 		fs_info->uuid_root = root;
2312 	}
2313 
2314 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2315 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2316 		root = btrfs_read_tree_root(tree_root, &location);
2317 		if (IS_ERR(root)) {
2318 			ret = PTR_ERR(root);
2319 			goto out;
2320 		}
2321 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2322 		fs_info->free_space_root = root;
2323 	}
2324 
2325 	return 0;
2326 out:
2327 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2328 		   location.objectid, ret);
2329 	return ret;
2330 }
2331 
2332 /*
2333  * Real super block validation
2334  * NOTE: super csum type and incompat features will not be checked here.
2335  *
2336  * @sb:		super block to check
2337  * @mirror_num:	the super block number to check its bytenr:
2338  * 		0	the primary (1st) sb
2339  * 		1, 2	2nd and 3rd backup copy
2340  * 	       -1	skip bytenr check
2341  */
2342 static int validate_super(struct btrfs_fs_info *fs_info,
2343 			    struct btrfs_super_block *sb, int mirror_num)
2344 {
2345 	u64 nodesize = btrfs_super_nodesize(sb);
2346 	u64 sectorsize = btrfs_super_sectorsize(sb);
2347 	int ret = 0;
2348 
2349 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2350 		btrfs_err(fs_info, "no valid FS found");
2351 		ret = -EINVAL;
2352 	}
2353 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2354 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2355 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2356 		ret = -EINVAL;
2357 	}
2358 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2359 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2360 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2361 		ret = -EINVAL;
2362 	}
2363 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2364 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2365 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2366 		ret = -EINVAL;
2367 	}
2368 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2369 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2370 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2371 		ret = -EINVAL;
2372 	}
2373 
2374 	/*
2375 	 * Check sectorsize and nodesize first, other check will need it.
2376 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2377 	 */
2378 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2379 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2380 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2381 		ret = -EINVAL;
2382 	}
2383 	/* Only PAGE SIZE is supported yet */
2384 	if (sectorsize != PAGE_SIZE) {
2385 		btrfs_err(fs_info,
2386 			"sectorsize %llu not supported yet, only support %lu",
2387 			sectorsize, PAGE_SIZE);
2388 		ret = -EINVAL;
2389 	}
2390 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2391 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2392 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2393 		ret = -EINVAL;
2394 	}
2395 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2396 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2397 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2398 		ret = -EINVAL;
2399 	}
2400 
2401 	/* Root alignment check */
2402 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2403 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2404 			   btrfs_super_root(sb));
2405 		ret = -EINVAL;
2406 	}
2407 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2408 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2409 			   btrfs_super_chunk_root(sb));
2410 		ret = -EINVAL;
2411 	}
2412 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2413 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2414 			   btrfs_super_log_root(sb));
2415 		ret = -EINVAL;
2416 	}
2417 
2418 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2419 		   BTRFS_FSID_SIZE) != 0) {
2420 		btrfs_err(fs_info,
2421 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2422 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2423 		ret = -EINVAL;
2424 	}
2425 
2426 	/*
2427 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2428 	 * done later
2429 	 */
2430 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2431 		btrfs_err(fs_info, "bytes_used is too small %llu",
2432 			  btrfs_super_bytes_used(sb));
2433 		ret = -EINVAL;
2434 	}
2435 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2436 		btrfs_err(fs_info, "invalid stripesize %u",
2437 			  btrfs_super_stripesize(sb));
2438 		ret = -EINVAL;
2439 	}
2440 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2441 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2442 			   btrfs_super_num_devices(sb));
2443 	if (btrfs_super_num_devices(sb) == 0) {
2444 		btrfs_err(fs_info, "number of devices is 0");
2445 		ret = -EINVAL;
2446 	}
2447 
2448 	if (mirror_num >= 0 &&
2449 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2450 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2451 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2452 		ret = -EINVAL;
2453 	}
2454 
2455 	/*
2456 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2457 	 * and one chunk
2458 	 */
2459 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2460 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2461 			  btrfs_super_sys_array_size(sb),
2462 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2463 		ret = -EINVAL;
2464 	}
2465 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2466 			+ sizeof(struct btrfs_chunk)) {
2467 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2468 			  btrfs_super_sys_array_size(sb),
2469 			  sizeof(struct btrfs_disk_key)
2470 			  + sizeof(struct btrfs_chunk));
2471 		ret = -EINVAL;
2472 	}
2473 
2474 	/*
2475 	 * The generation is a global counter, we'll trust it more than the others
2476 	 * but it's still possible that it's the one that's wrong.
2477 	 */
2478 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2479 		btrfs_warn(fs_info,
2480 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2481 			btrfs_super_generation(sb),
2482 			btrfs_super_chunk_root_generation(sb));
2483 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2484 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2485 		btrfs_warn(fs_info,
2486 			"suspicious: generation < cache_generation: %llu < %llu",
2487 			btrfs_super_generation(sb),
2488 			btrfs_super_cache_generation(sb));
2489 
2490 	return ret;
2491 }
2492 
2493 /*
2494  * Validation of super block at mount time.
2495  * Some checks already done early at mount time, like csum type and incompat
2496  * flags will be skipped.
2497  */
2498 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2499 {
2500 	return validate_super(fs_info, fs_info->super_copy, 0);
2501 }
2502 
2503 /*
2504  * Validation of super block at write time.
2505  * Some checks like bytenr check will be skipped as their values will be
2506  * overwritten soon.
2507  * Extra checks like csum type and incompat flags will be done here.
2508  */
2509 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2510 				      struct btrfs_super_block *sb)
2511 {
2512 	int ret;
2513 
2514 	ret = validate_super(fs_info, sb, -1);
2515 	if (ret < 0)
2516 		goto out;
2517 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2518 		ret = -EUCLEAN;
2519 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2520 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2521 		goto out;
2522 	}
2523 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2524 		ret = -EUCLEAN;
2525 		btrfs_err(fs_info,
2526 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2527 			  btrfs_super_incompat_flags(sb),
2528 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2529 		goto out;
2530 	}
2531 out:
2532 	if (ret < 0)
2533 		btrfs_err(fs_info,
2534 		"super block corruption detected before writing it to disk");
2535 	return ret;
2536 }
2537 
2538 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2539 {
2540 	int backup_index = find_newest_super_backup(fs_info);
2541 	struct btrfs_super_block *sb = fs_info->super_copy;
2542 	struct btrfs_root *tree_root = fs_info->tree_root;
2543 	bool handle_error = false;
2544 	int ret = 0;
2545 	int i;
2546 
2547 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2548 		u64 generation;
2549 		int level;
2550 
2551 		if (handle_error) {
2552 			if (!IS_ERR(tree_root->node))
2553 				free_extent_buffer(tree_root->node);
2554 			tree_root->node = NULL;
2555 
2556 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2557 				break;
2558 
2559 			free_root_pointers(fs_info, 0);
2560 
2561 			/*
2562 			 * Don't use the log in recovery mode, it won't be
2563 			 * valid
2564 			 */
2565 			btrfs_set_super_log_root(sb, 0);
2566 
2567 			/* We can't trust the free space cache either */
2568 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2569 
2570 			ret = read_backup_root(fs_info, i);
2571 			backup_index = ret;
2572 			if (ret < 0)
2573 				return ret;
2574 		}
2575 		generation = btrfs_super_generation(sb);
2576 		level = btrfs_super_root_level(sb);
2577 		tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2578 						  generation, level, NULL);
2579 		if (IS_ERR(tree_root->node) ||
2580 		    !extent_buffer_uptodate(tree_root->node)) {
2581 			handle_error = true;
2582 
2583 			if (IS_ERR(tree_root->node))
2584 				ret = PTR_ERR(tree_root->node);
2585 			else if (!extent_buffer_uptodate(tree_root->node))
2586 				ret = -EUCLEAN;
2587 
2588 			btrfs_warn(fs_info, "failed to read tree root");
2589 			continue;
2590 		}
2591 
2592 		btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2593 		tree_root->commit_root = btrfs_root_node(tree_root);
2594 		btrfs_set_root_refs(&tree_root->root_item, 1);
2595 
2596 		/*
2597 		 * No need to hold btrfs_root::objectid_mutex since the fs
2598 		 * hasn't been fully initialised and we are the only user
2599 		 */
2600 		ret = btrfs_find_highest_objectid(tree_root,
2601 						&tree_root->highest_objectid);
2602 		if (ret < 0) {
2603 			handle_error = true;
2604 			continue;
2605 		}
2606 
2607 		ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2608 
2609 		ret = btrfs_read_roots(fs_info);
2610 		if (ret < 0) {
2611 			handle_error = true;
2612 			continue;
2613 		}
2614 
2615 		/* All successful */
2616 		fs_info->generation = generation;
2617 		fs_info->last_trans_committed = generation;
2618 
2619 		/* Always begin writing backup roots after the one being used */
2620 		if (backup_index < 0) {
2621 			fs_info->backup_root_index = 0;
2622 		} else {
2623 			fs_info->backup_root_index = backup_index + 1;
2624 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2625 		}
2626 		break;
2627 	}
2628 
2629 	return ret;
2630 }
2631 
2632 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2633 {
2634 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2635 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2636 	INIT_LIST_HEAD(&fs_info->trans_list);
2637 	INIT_LIST_HEAD(&fs_info->dead_roots);
2638 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2639 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2640 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2641 	spin_lock_init(&fs_info->delalloc_root_lock);
2642 	spin_lock_init(&fs_info->trans_lock);
2643 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2644 	spin_lock_init(&fs_info->delayed_iput_lock);
2645 	spin_lock_init(&fs_info->defrag_inodes_lock);
2646 	spin_lock_init(&fs_info->super_lock);
2647 	spin_lock_init(&fs_info->buffer_lock);
2648 	spin_lock_init(&fs_info->unused_bgs_lock);
2649 	rwlock_init(&fs_info->tree_mod_log_lock);
2650 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2651 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2652 	mutex_init(&fs_info->reloc_mutex);
2653 	mutex_init(&fs_info->delalloc_root_mutex);
2654 	seqlock_init(&fs_info->profiles_lock);
2655 
2656 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2657 	INIT_LIST_HEAD(&fs_info->space_info);
2658 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2659 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2660 #ifdef CONFIG_BTRFS_DEBUG
2661 	INIT_LIST_HEAD(&fs_info->allocated_roots);
2662 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2663 	spin_lock_init(&fs_info->eb_leak_lock);
2664 #endif
2665 	extent_map_tree_init(&fs_info->mapping_tree);
2666 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2667 			     BTRFS_BLOCK_RSV_GLOBAL);
2668 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2669 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2670 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2671 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2672 			     BTRFS_BLOCK_RSV_DELOPS);
2673 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2674 			     BTRFS_BLOCK_RSV_DELREFS);
2675 
2676 	atomic_set(&fs_info->async_delalloc_pages, 0);
2677 	atomic_set(&fs_info->defrag_running, 0);
2678 	atomic_set(&fs_info->reada_works_cnt, 0);
2679 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2680 	atomic64_set(&fs_info->tree_mod_seq, 0);
2681 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2682 	fs_info->metadata_ratio = 0;
2683 	fs_info->defrag_inodes = RB_ROOT;
2684 	atomic64_set(&fs_info->free_chunk_space, 0);
2685 	fs_info->tree_mod_log = RB_ROOT;
2686 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2687 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2688 	/* readahead state */
2689 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2690 	spin_lock_init(&fs_info->reada_lock);
2691 	btrfs_init_ref_verify(fs_info);
2692 
2693 	fs_info->thread_pool_size = min_t(unsigned long,
2694 					  num_online_cpus() + 2, 8);
2695 
2696 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2697 	spin_lock_init(&fs_info->ordered_root_lock);
2698 
2699 	btrfs_init_scrub(fs_info);
2700 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2701 	fs_info->check_integrity_print_mask = 0;
2702 #endif
2703 	btrfs_init_balance(fs_info);
2704 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2705 
2706 	spin_lock_init(&fs_info->block_group_cache_lock);
2707 	fs_info->block_group_cache_tree = RB_ROOT;
2708 	fs_info->first_logical_byte = (u64)-1;
2709 
2710 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2711 			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2712 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2713 
2714 	mutex_init(&fs_info->ordered_operations_mutex);
2715 	mutex_init(&fs_info->tree_log_mutex);
2716 	mutex_init(&fs_info->chunk_mutex);
2717 	mutex_init(&fs_info->transaction_kthread_mutex);
2718 	mutex_init(&fs_info->cleaner_mutex);
2719 	mutex_init(&fs_info->ro_block_group_mutex);
2720 	init_rwsem(&fs_info->commit_root_sem);
2721 	init_rwsem(&fs_info->cleanup_work_sem);
2722 	init_rwsem(&fs_info->subvol_sem);
2723 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2724 
2725 	btrfs_init_dev_replace_locks(fs_info);
2726 	btrfs_init_qgroup(fs_info);
2727 	btrfs_discard_init(fs_info);
2728 
2729 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2730 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2731 
2732 	init_waitqueue_head(&fs_info->transaction_throttle);
2733 	init_waitqueue_head(&fs_info->transaction_wait);
2734 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2735 	init_waitqueue_head(&fs_info->async_submit_wait);
2736 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2737 
2738 	/* Usable values until the real ones are cached from the superblock */
2739 	fs_info->nodesize = 4096;
2740 	fs_info->sectorsize = 4096;
2741 	fs_info->stripesize = 4096;
2742 
2743 	spin_lock_init(&fs_info->swapfile_pins_lock);
2744 	fs_info->swapfile_pins = RB_ROOT;
2745 
2746 	fs_info->send_in_progress = 0;
2747 }
2748 
2749 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2750 {
2751 	int ret;
2752 
2753 	fs_info->sb = sb;
2754 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2755 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2756 
2757 	ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2758 	if (ret)
2759 		return ret;
2760 
2761 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2762 	if (ret)
2763 		return ret;
2764 
2765 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2766 					(1 + ilog2(nr_cpu_ids));
2767 
2768 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2769 	if (ret)
2770 		return ret;
2771 
2772 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2773 			GFP_KERNEL);
2774 	if (ret)
2775 		return ret;
2776 
2777 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2778 					GFP_KERNEL);
2779 	if (!fs_info->delayed_root)
2780 		return -ENOMEM;
2781 	btrfs_init_delayed_root(fs_info->delayed_root);
2782 
2783 	return btrfs_alloc_stripe_hash_table(fs_info);
2784 }
2785 
2786 static int btrfs_uuid_rescan_kthread(void *data)
2787 {
2788 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2789 	int ret;
2790 
2791 	/*
2792 	 * 1st step is to iterate through the existing UUID tree and
2793 	 * to delete all entries that contain outdated data.
2794 	 * 2nd step is to add all missing entries to the UUID tree.
2795 	 */
2796 	ret = btrfs_uuid_tree_iterate(fs_info);
2797 	if (ret < 0) {
2798 		if (ret != -EINTR)
2799 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2800 				   ret);
2801 		up(&fs_info->uuid_tree_rescan_sem);
2802 		return ret;
2803 	}
2804 	return btrfs_uuid_scan_kthread(data);
2805 }
2806 
2807 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2808 {
2809 	struct task_struct *task;
2810 
2811 	down(&fs_info->uuid_tree_rescan_sem);
2812 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2813 	if (IS_ERR(task)) {
2814 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2815 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2816 		up(&fs_info->uuid_tree_rescan_sem);
2817 		return PTR_ERR(task);
2818 	}
2819 
2820 	return 0;
2821 }
2822 
2823 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2824 		      char *options)
2825 {
2826 	u32 sectorsize;
2827 	u32 nodesize;
2828 	u32 stripesize;
2829 	u64 generation;
2830 	u64 features;
2831 	u16 csum_type;
2832 	struct btrfs_key location;
2833 	struct btrfs_super_block *disk_super;
2834 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2835 	struct btrfs_root *tree_root;
2836 	struct btrfs_root *chunk_root;
2837 	int ret;
2838 	int err = -EINVAL;
2839 	int clear_free_space_tree = 0;
2840 	int level;
2841 
2842 	ret = init_mount_fs_info(fs_info, sb);
2843 	if (ret) {
2844 		err = ret;
2845 		goto fail;
2846 	}
2847 
2848 	/* These need to be init'ed before we start creating inodes and such. */
2849 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2850 				     GFP_KERNEL);
2851 	fs_info->tree_root = tree_root;
2852 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2853 				      GFP_KERNEL);
2854 	fs_info->chunk_root = chunk_root;
2855 	if (!tree_root || !chunk_root) {
2856 		err = -ENOMEM;
2857 		goto fail;
2858 	}
2859 
2860 	fs_info->btree_inode = new_inode(sb);
2861 	if (!fs_info->btree_inode) {
2862 		err = -ENOMEM;
2863 		goto fail;
2864 	}
2865 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2866 	btrfs_init_btree_inode(fs_info);
2867 
2868 	invalidate_bdev(fs_devices->latest_bdev);
2869 
2870 	/*
2871 	 * Read super block and check the signature bytes only
2872 	 */
2873 	disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2874 	if (IS_ERR(disk_super)) {
2875 		err = PTR_ERR(disk_super);
2876 		goto fail_alloc;
2877 	}
2878 
2879 	/*
2880 	 * Verify the type first, if that or the the checksum value are
2881 	 * corrupted, we'll find out
2882 	 */
2883 	csum_type = btrfs_super_csum_type(disk_super);
2884 	if (!btrfs_supported_super_csum(csum_type)) {
2885 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2886 			  csum_type);
2887 		err = -EINVAL;
2888 		btrfs_release_disk_super(disk_super);
2889 		goto fail_alloc;
2890 	}
2891 
2892 	ret = btrfs_init_csum_hash(fs_info, csum_type);
2893 	if (ret) {
2894 		err = ret;
2895 		btrfs_release_disk_super(disk_super);
2896 		goto fail_alloc;
2897 	}
2898 
2899 	/*
2900 	 * We want to check superblock checksum, the type is stored inside.
2901 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2902 	 */
2903 	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2904 		btrfs_err(fs_info, "superblock checksum mismatch");
2905 		err = -EINVAL;
2906 		btrfs_release_disk_super(disk_super);
2907 		goto fail_alloc;
2908 	}
2909 
2910 	/*
2911 	 * super_copy is zeroed at allocation time and we never touch the
2912 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2913 	 * the whole block of INFO_SIZE
2914 	 */
2915 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2916 	btrfs_release_disk_super(disk_super);
2917 
2918 	disk_super = fs_info->super_copy;
2919 
2920 	ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2921 		       BTRFS_FSID_SIZE));
2922 
2923 	if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2924 		ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2925 				fs_info->super_copy->metadata_uuid,
2926 				BTRFS_FSID_SIZE));
2927 	}
2928 
2929 	features = btrfs_super_flags(disk_super);
2930 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2931 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2932 		btrfs_set_super_flags(disk_super, features);
2933 		btrfs_info(fs_info,
2934 			"found metadata UUID change in progress flag, clearing");
2935 	}
2936 
2937 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2938 	       sizeof(*fs_info->super_for_commit));
2939 
2940 	ret = btrfs_validate_mount_super(fs_info);
2941 	if (ret) {
2942 		btrfs_err(fs_info, "superblock contains fatal errors");
2943 		err = -EINVAL;
2944 		goto fail_alloc;
2945 	}
2946 
2947 	if (!btrfs_super_root(disk_super))
2948 		goto fail_alloc;
2949 
2950 	/* check FS state, whether FS is broken. */
2951 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2952 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2953 
2954 	/*
2955 	 * In the long term, we'll store the compression type in the super
2956 	 * block, and it'll be used for per file compression control.
2957 	 */
2958 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2959 
2960 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2961 	if (ret) {
2962 		err = ret;
2963 		goto fail_alloc;
2964 	}
2965 
2966 	features = btrfs_super_incompat_flags(disk_super) &
2967 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2968 	if (features) {
2969 		btrfs_err(fs_info,
2970 		    "cannot mount because of unsupported optional features (%llx)",
2971 		    features);
2972 		err = -EINVAL;
2973 		goto fail_alloc;
2974 	}
2975 
2976 	features = btrfs_super_incompat_flags(disk_super);
2977 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2978 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2979 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2980 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2981 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2982 
2983 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2984 		btrfs_info(fs_info, "has skinny extents");
2985 
2986 	/*
2987 	 * flag our filesystem as having big metadata blocks if
2988 	 * they are bigger than the page size
2989 	 */
2990 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2991 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2992 			btrfs_info(fs_info,
2993 				"flagging fs with big metadata feature");
2994 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2995 	}
2996 
2997 	nodesize = btrfs_super_nodesize(disk_super);
2998 	sectorsize = btrfs_super_sectorsize(disk_super);
2999 	stripesize = sectorsize;
3000 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3001 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3002 
3003 	/* Cache block sizes */
3004 	fs_info->nodesize = nodesize;
3005 	fs_info->sectorsize = sectorsize;
3006 	fs_info->stripesize = stripesize;
3007 
3008 	/*
3009 	 * mixed block groups end up with duplicate but slightly offset
3010 	 * extent buffers for the same range.  It leads to corruptions
3011 	 */
3012 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3013 	    (sectorsize != nodesize)) {
3014 		btrfs_err(fs_info,
3015 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3016 			nodesize, sectorsize);
3017 		goto fail_alloc;
3018 	}
3019 
3020 	/*
3021 	 * Needn't use the lock because there is no other task which will
3022 	 * update the flag.
3023 	 */
3024 	btrfs_set_super_incompat_flags(disk_super, features);
3025 
3026 	features = btrfs_super_compat_ro_flags(disk_super) &
3027 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3028 	if (!sb_rdonly(sb) && features) {
3029 		btrfs_err(fs_info,
3030 	"cannot mount read-write because of unsupported optional features (%llx)",
3031 		       features);
3032 		err = -EINVAL;
3033 		goto fail_alloc;
3034 	}
3035 
3036 	ret = btrfs_init_workqueues(fs_info, fs_devices);
3037 	if (ret) {
3038 		err = ret;
3039 		goto fail_sb_buffer;
3040 	}
3041 
3042 	sb->s_bdi->congested_fn = btrfs_congested_fn;
3043 	sb->s_bdi->congested_data = fs_info;
3044 	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3045 	sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3046 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3047 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3048 
3049 	sb->s_blocksize = sectorsize;
3050 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3051 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3052 
3053 	mutex_lock(&fs_info->chunk_mutex);
3054 	ret = btrfs_read_sys_array(fs_info);
3055 	mutex_unlock(&fs_info->chunk_mutex);
3056 	if (ret) {
3057 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3058 		goto fail_sb_buffer;
3059 	}
3060 
3061 	generation = btrfs_super_chunk_root_generation(disk_super);
3062 	level = btrfs_super_chunk_root_level(disk_super);
3063 
3064 	chunk_root->node = read_tree_block(fs_info,
3065 					   btrfs_super_chunk_root(disk_super),
3066 					   generation, level, NULL);
3067 	if (IS_ERR(chunk_root->node) ||
3068 	    !extent_buffer_uptodate(chunk_root->node)) {
3069 		btrfs_err(fs_info, "failed to read chunk root");
3070 		if (!IS_ERR(chunk_root->node))
3071 			free_extent_buffer(chunk_root->node);
3072 		chunk_root->node = NULL;
3073 		goto fail_tree_roots;
3074 	}
3075 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3076 	chunk_root->commit_root = btrfs_root_node(chunk_root);
3077 
3078 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3079 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3080 			   BTRFS_UUID_SIZE);
3081 
3082 	ret = btrfs_read_chunk_tree(fs_info);
3083 	if (ret) {
3084 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3085 		goto fail_tree_roots;
3086 	}
3087 
3088 	/*
3089 	 * Keep the devid that is marked to be the target device for the
3090 	 * device replace procedure
3091 	 */
3092 	btrfs_free_extra_devids(fs_devices, 0);
3093 
3094 	if (!fs_devices->latest_bdev) {
3095 		btrfs_err(fs_info, "failed to read devices");
3096 		goto fail_tree_roots;
3097 	}
3098 
3099 	ret = init_tree_roots(fs_info);
3100 	if (ret)
3101 		goto fail_tree_roots;
3102 
3103 	/*
3104 	 * If we have a uuid root and we're not being told to rescan we need to
3105 	 * check the generation here so we can set the
3106 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3107 	 * transaction during a balance or the log replay without updating the
3108 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3109 	 * even though it was perfectly fine.
3110 	 */
3111 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3112 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3113 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3114 
3115 	ret = btrfs_verify_dev_extents(fs_info);
3116 	if (ret) {
3117 		btrfs_err(fs_info,
3118 			  "failed to verify dev extents against chunks: %d",
3119 			  ret);
3120 		goto fail_block_groups;
3121 	}
3122 	ret = btrfs_recover_balance(fs_info);
3123 	if (ret) {
3124 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3125 		goto fail_block_groups;
3126 	}
3127 
3128 	ret = btrfs_init_dev_stats(fs_info);
3129 	if (ret) {
3130 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3131 		goto fail_block_groups;
3132 	}
3133 
3134 	ret = btrfs_init_dev_replace(fs_info);
3135 	if (ret) {
3136 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3137 		goto fail_block_groups;
3138 	}
3139 
3140 	btrfs_free_extra_devids(fs_devices, 1);
3141 
3142 	ret = btrfs_sysfs_add_fsid(fs_devices);
3143 	if (ret) {
3144 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3145 				ret);
3146 		goto fail_block_groups;
3147 	}
3148 
3149 	ret = btrfs_sysfs_add_mounted(fs_info);
3150 	if (ret) {
3151 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3152 		goto fail_fsdev_sysfs;
3153 	}
3154 
3155 	ret = btrfs_init_space_info(fs_info);
3156 	if (ret) {
3157 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3158 		goto fail_sysfs;
3159 	}
3160 
3161 	ret = btrfs_read_block_groups(fs_info);
3162 	if (ret) {
3163 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3164 		goto fail_sysfs;
3165 	}
3166 
3167 	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3168 		btrfs_warn(fs_info,
3169 		"writable mount is not allowed due to too many missing devices");
3170 		goto fail_sysfs;
3171 	}
3172 
3173 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3174 					       "btrfs-cleaner");
3175 	if (IS_ERR(fs_info->cleaner_kthread))
3176 		goto fail_sysfs;
3177 
3178 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3179 						   tree_root,
3180 						   "btrfs-transaction");
3181 	if (IS_ERR(fs_info->transaction_kthread))
3182 		goto fail_cleaner;
3183 
3184 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3185 	    !fs_info->fs_devices->rotating) {
3186 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3187 	}
3188 
3189 	/*
3190 	 * Mount does not set all options immediately, we can do it now and do
3191 	 * not have to wait for transaction commit
3192 	 */
3193 	btrfs_apply_pending_changes(fs_info);
3194 
3195 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3196 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3197 		ret = btrfsic_mount(fs_info, fs_devices,
3198 				    btrfs_test_opt(fs_info,
3199 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3200 				    1 : 0,
3201 				    fs_info->check_integrity_print_mask);
3202 		if (ret)
3203 			btrfs_warn(fs_info,
3204 				"failed to initialize integrity check module: %d",
3205 				ret);
3206 	}
3207 #endif
3208 	ret = btrfs_read_qgroup_config(fs_info);
3209 	if (ret)
3210 		goto fail_trans_kthread;
3211 
3212 	if (btrfs_build_ref_tree(fs_info))
3213 		btrfs_err(fs_info, "couldn't build ref tree");
3214 
3215 	/* do not make disk changes in broken FS or nologreplay is given */
3216 	if (btrfs_super_log_root(disk_super) != 0 &&
3217 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3218 		btrfs_info(fs_info, "start tree-log replay");
3219 		ret = btrfs_replay_log(fs_info, fs_devices);
3220 		if (ret) {
3221 			err = ret;
3222 			goto fail_qgroup;
3223 		}
3224 	}
3225 
3226 	ret = btrfs_find_orphan_roots(fs_info);
3227 	if (ret)
3228 		goto fail_qgroup;
3229 
3230 	if (!sb_rdonly(sb)) {
3231 		ret = btrfs_cleanup_fs_roots(fs_info);
3232 		if (ret)
3233 			goto fail_qgroup;
3234 
3235 		mutex_lock(&fs_info->cleaner_mutex);
3236 		ret = btrfs_recover_relocation(tree_root);
3237 		mutex_unlock(&fs_info->cleaner_mutex);
3238 		if (ret < 0) {
3239 			btrfs_warn(fs_info, "failed to recover relocation: %d",
3240 					ret);
3241 			err = -EINVAL;
3242 			goto fail_qgroup;
3243 		}
3244 	}
3245 
3246 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3247 	location.type = BTRFS_ROOT_ITEM_KEY;
3248 	location.offset = 0;
3249 
3250 	fs_info->fs_root = btrfs_get_fs_root(fs_info, &location, true);
3251 	if (IS_ERR(fs_info->fs_root)) {
3252 		err = PTR_ERR(fs_info->fs_root);
3253 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3254 		fs_info->fs_root = NULL;
3255 		goto fail_qgroup;
3256 	}
3257 
3258 	if (sb_rdonly(sb))
3259 		return 0;
3260 
3261 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3262 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3263 		clear_free_space_tree = 1;
3264 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3265 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3266 		btrfs_warn(fs_info, "free space tree is invalid");
3267 		clear_free_space_tree = 1;
3268 	}
3269 
3270 	if (clear_free_space_tree) {
3271 		btrfs_info(fs_info, "clearing free space tree");
3272 		ret = btrfs_clear_free_space_tree(fs_info);
3273 		if (ret) {
3274 			btrfs_warn(fs_info,
3275 				   "failed to clear free space tree: %d", ret);
3276 			close_ctree(fs_info);
3277 			return ret;
3278 		}
3279 	}
3280 
3281 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3282 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3283 		btrfs_info(fs_info, "creating free space tree");
3284 		ret = btrfs_create_free_space_tree(fs_info);
3285 		if (ret) {
3286 			btrfs_warn(fs_info,
3287 				"failed to create free space tree: %d", ret);
3288 			close_ctree(fs_info);
3289 			return ret;
3290 		}
3291 	}
3292 
3293 	down_read(&fs_info->cleanup_work_sem);
3294 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3295 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3296 		up_read(&fs_info->cleanup_work_sem);
3297 		close_ctree(fs_info);
3298 		return ret;
3299 	}
3300 	up_read(&fs_info->cleanup_work_sem);
3301 
3302 	ret = btrfs_resume_balance_async(fs_info);
3303 	if (ret) {
3304 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3305 		close_ctree(fs_info);
3306 		return ret;
3307 	}
3308 
3309 	ret = btrfs_resume_dev_replace_async(fs_info);
3310 	if (ret) {
3311 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3312 		close_ctree(fs_info);
3313 		return ret;
3314 	}
3315 
3316 	btrfs_qgroup_rescan_resume(fs_info);
3317 	btrfs_discard_resume(fs_info);
3318 
3319 	if (!fs_info->uuid_root) {
3320 		btrfs_info(fs_info, "creating UUID tree");
3321 		ret = btrfs_create_uuid_tree(fs_info);
3322 		if (ret) {
3323 			btrfs_warn(fs_info,
3324 				"failed to create the UUID tree: %d", ret);
3325 			close_ctree(fs_info);
3326 			return ret;
3327 		}
3328 	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3329 		   fs_info->generation !=
3330 				btrfs_super_uuid_tree_generation(disk_super)) {
3331 		btrfs_info(fs_info, "checking UUID tree");
3332 		ret = btrfs_check_uuid_tree(fs_info);
3333 		if (ret) {
3334 			btrfs_warn(fs_info,
3335 				"failed to check the UUID tree: %d", ret);
3336 			close_ctree(fs_info);
3337 			return ret;
3338 		}
3339 	}
3340 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3341 
3342 	/*
3343 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3344 	 * no need to keep the flag
3345 	 */
3346 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3347 
3348 	return 0;
3349 
3350 fail_qgroup:
3351 	btrfs_free_qgroup_config(fs_info);
3352 fail_trans_kthread:
3353 	kthread_stop(fs_info->transaction_kthread);
3354 	btrfs_cleanup_transaction(fs_info);
3355 	btrfs_free_fs_roots(fs_info);
3356 fail_cleaner:
3357 	kthread_stop(fs_info->cleaner_kthread);
3358 
3359 	/*
3360 	 * make sure we're done with the btree inode before we stop our
3361 	 * kthreads
3362 	 */
3363 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3364 
3365 fail_sysfs:
3366 	btrfs_sysfs_remove_mounted(fs_info);
3367 
3368 fail_fsdev_sysfs:
3369 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3370 
3371 fail_block_groups:
3372 	btrfs_put_block_group_cache(fs_info);
3373 
3374 fail_tree_roots:
3375 	free_root_pointers(fs_info, true);
3376 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3377 
3378 fail_sb_buffer:
3379 	btrfs_stop_all_workers(fs_info);
3380 	btrfs_free_block_groups(fs_info);
3381 fail_alloc:
3382 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3383 
3384 	iput(fs_info->btree_inode);
3385 fail:
3386 	btrfs_close_devices(fs_info->fs_devices);
3387 	return err;
3388 }
3389 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3390 
3391 static void btrfs_end_super_write(struct bio *bio)
3392 {
3393 	struct btrfs_device *device = bio->bi_private;
3394 	struct bio_vec *bvec;
3395 	struct bvec_iter_all iter_all;
3396 	struct page *page;
3397 
3398 	bio_for_each_segment_all(bvec, bio, iter_all) {
3399 		page = bvec->bv_page;
3400 
3401 		if (bio->bi_status) {
3402 			btrfs_warn_rl_in_rcu(device->fs_info,
3403 				"lost page write due to IO error on %s (%d)",
3404 				rcu_str_deref(device->name),
3405 				blk_status_to_errno(bio->bi_status));
3406 			ClearPageUptodate(page);
3407 			SetPageError(page);
3408 			btrfs_dev_stat_inc_and_print(device,
3409 						     BTRFS_DEV_STAT_WRITE_ERRS);
3410 		} else {
3411 			SetPageUptodate(page);
3412 		}
3413 
3414 		put_page(page);
3415 		unlock_page(page);
3416 	}
3417 
3418 	bio_put(bio);
3419 }
3420 
3421 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3422 						   int copy_num)
3423 {
3424 	struct btrfs_super_block *super;
3425 	struct page *page;
3426 	u64 bytenr;
3427 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3428 
3429 	bytenr = btrfs_sb_offset(copy_num);
3430 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3431 		return ERR_PTR(-EINVAL);
3432 
3433 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3434 	if (IS_ERR(page))
3435 		return ERR_CAST(page);
3436 
3437 	super = page_address(page);
3438 	if (btrfs_super_bytenr(super) != bytenr ||
3439 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3440 		btrfs_release_disk_super(super);
3441 		return ERR_PTR(-EINVAL);
3442 	}
3443 
3444 	return super;
3445 }
3446 
3447 
3448 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3449 {
3450 	struct btrfs_super_block *super, *latest = NULL;
3451 	int i;
3452 	u64 transid = 0;
3453 
3454 	/* we would like to check all the supers, but that would make
3455 	 * a btrfs mount succeed after a mkfs from a different FS.
3456 	 * So, we need to add a special mount option to scan for
3457 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3458 	 */
3459 	for (i = 0; i < 1; i++) {
3460 		super = btrfs_read_dev_one_super(bdev, i);
3461 		if (IS_ERR(super))
3462 			continue;
3463 
3464 		if (!latest || btrfs_super_generation(super) > transid) {
3465 			if (latest)
3466 				btrfs_release_disk_super(super);
3467 
3468 			latest = super;
3469 			transid = btrfs_super_generation(super);
3470 		}
3471 	}
3472 
3473 	return super;
3474 }
3475 
3476 /*
3477  * Write superblock @sb to the @device. Do not wait for completion, all the
3478  * pages we use for writing are locked.
3479  *
3480  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3481  * the expected device size at commit time. Note that max_mirrors must be
3482  * same for write and wait phases.
3483  *
3484  * Return number of errors when page is not found or submission fails.
3485  */
3486 static int write_dev_supers(struct btrfs_device *device,
3487 			    struct btrfs_super_block *sb, int max_mirrors)
3488 {
3489 	struct btrfs_fs_info *fs_info = device->fs_info;
3490 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3491 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3492 	int i;
3493 	int errors = 0;
3494 	u64 bytenr;
3495 
3496 	if (max_mirrors == 0)
3497 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3498 
3499 	shash->tfm = fs_info->csum_shash;
3500 
3501 	for (i = 0; i < max_mirrors; i++) {
3502 		struct page *page;
3503 		struct bio *bio;
3504 		struct btrfs_super_block *disk_super;
3505 
3506 		bytenr = btrfs_sb_offset(i);
3507 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3508 		    device->commit_total_bytes)
3509 			break;
3510 
3511 		btrfs_set_super_bytenr(sb, bytenr);
3512 
3513 		crypto_shash_init(shash);
3514 		crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3515 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3516 		crypto_shash_final(shash, sb->csum);
3517 
3518 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3519 					   GFP_NOFS);
3520 		if (!page) {
3521 			btrfs_err(device->fs_info,
3522 			    "couldn't get super block page for bytenr %llu",
3523 			    bytenr);
3524 			errors++;
3525 			continue;
3526 		}
3527 
3528 		/* Bump the refcount for wait_dev_supers() */
3529 		get_page(page);
3530 
3531 		disk_super = page_address(page);
3532 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3533 
3534 		/*
3535 		 * Directly use bios here instead of relying on the page cache
3536 		 * to do I/O, so we don't lose the ability to do integrity
3537 		 * checking.
3538 		 */
3539 		bio = bio_alloc(GFP_NOFS, 1);
3540 		bio_set_dev(bio, device->bdev);
3541 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3542 		bio->bi_private = device;
3543 		bio->bi_end_io = btrfs_end_super_write;
3544 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3545 			       offset_in_page(bytenr));
3546 
3547 		/*
3548 		 * We FUA only the first super block.  The others we allow to
3549 		 * go down lazy and there's a short window where the on-disk
3550 		 * copies might still contain the older version.
3551 		 */
3552 		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3553 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3554 			bio->bi_opf |= REQ_FUA;
3555 
3556 		btrfsic_submit_bio(bio);
3557 	}
3558 	return errors < i ? 0 : -1;
3559 }
3560 
3561 /*
3562  * Wait for write completion of superblocks done by write_dev_supers,
3563  * @max_mirrors same for write and wait phases.
3564  *
3565  * Return number of errors when page is not found or not marked up to
3566  * date.
3567  */
3568 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3569 {
3570 	int i;
3571 	int errors = 0;
3572 	bool primary_failed = false;
3573 	u64 bytenr;
3574 
3575 	if (max_mirrors == 0)
3576 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3577 
3578 	for (i = 0; i < max_mirrors; i++) {
3579 		struct page *page;
3580 
3581 		bytenr = btrfs_sb_offset(i);
3582 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3583 		    device->commit_total_bytes)
3584 			break;
3585 
3586 		page = find_get_page(device->bdev->bd_inode->i_mapping,
3587 				     bytenr >> PAGE_SHIFT);
3588 		if (!page) {
3589 			errors++;
3590 			if (i == 0)
3591 				primary_failed = true;
3592 			continue;
3593 		}
3594 		/* Page is submitted locked and unlocked once the IO completes */
3595 		wait_on_page_locked(page);
3596 		if (PageError(page)) {
3597 			errors++;
3598 			if (i == 0)
3599 				primary_failed = true;
3600 		}
3601 
3602 		/* Drop our reference */
3603 		put_page(page);
3604 
3605 		/* Drop the reference from the writing run */
3606 		put_page(page);
3607 	}
3608 
3609 	/* log error, force error return */
3610 	if (primary_failed) {
3611 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3612 			  device->devid);
3613 		return -1;
3614 	}
3615 
3616 	return errors < i ? 0 : -1;
3617 }
3618 
3619 /*
3620  * endio for the write_dev_flush, this will wake anyone waiting
3621  * for the barrier when it is done
3622  */
3623 static void btrfs_end_empty_barrier(struct bio *bio)
3624 {
3625 	complete(bio->bi_private);
3626 }
3627 
3628 /*
3629  * Submit a flush request to the device if it supports it. Error handling is
3630  * done in the waiting counterpart.
3631  */
3632 static void write_dev_flush(struct btrfs_device *device)
3633 {
3634 	struct request_queue *q = bdev_get_queue(device->bdev);
3635 	struct bio *bio = device->flush_bio;
3636 
3637 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3638 		return;
3639 
3640 	bio_reset(bio);
3641 	bio->bi_end_io = btrfs_end_empty_barrier;
3642 	bio_set_dev(bio, device->bdev);
3643 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3644 	init_completion(&device->flush_wait);
3645 	bio->bi_private = &device->flush_wait;
3646 
3647 	btrfsic_submit_bio(bio);
3648 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3649 }
3650 
3651 /*
3652  * If the flush bio has been submitted by write_dev_flush, wait for it.
3653  */
3654 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3655 {
3656 	struct bio *bio = device->flush_bio;
3657 
3658 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3659 		return BLK_STS_OK;
3660 
3661 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3662 	wait_for_completion_io(&device->flush_wait);
3663 
3664 	return bio->bi_status;
3665 }
3666 
3667 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3668 {
3669 	if (!btrfs_check_rw_degradable(fs_info, NULL))
3670 		return -EIO;
3671 	return 0;
3672 }
3673 
3674 /*
3675  * send an empty flush down to each device in parallel,
3676  * then wait for them
3677  */
3678 static int barrier_all_devices(struct btrfs_fs_info *info)
3679 {
3680 	struct list_head *head;
3681 	struct btrfs_device *dev;
3682 	int errors_wait = 0;
3683 	blk_status_t ret;
3684 
3685 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3686 	/* send down all the barriers */
3687 	head = &info->fs_devices->devices;
3688 	list_for_each_entry(dev, head, dev_list) {
3689 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3690 			continue;
3691 		if (!dev->bdev)
3692 			continue;
3693 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3694 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3695 			continue;
3696 
3697 		write_dev_flush(dev);
3698 		dev->last_flush_error = BLK_STS_OK;
3699 	}
3700 
3701 	/* wait for all the barriers */
3702 	list_for_each_entry(dev, head, dev_list) {
3703 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3704 			continue;
3705 		if (!dev->bdev) {
3706 			errors_wait++;
3707 			continue;
3708 		}
3709 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3710 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3711 			continue;
3712 
3713 		ret = wait_dev_flush(dev);
3714 		if (ret) {
3715 			dev->last_flush_error = ret;
3716 			btrfs_dev_stat_inc_and_print(dev,
3717 					BTRFS_DEV_STAT_FLUSH_ERRS);
3718 			errors_wait++;
3719 		}
3720 	}
3721 
3722 	if (errors_wait) {
3723 		/*
3724 		 * At some point we need the status of all disks
3725 		 * to arrive at the volume status. So error checking
3726 		 * is being pushed to a separate loop.
3727 		 */
3728 		return check_barrier_error(info);
3729 	}
3730 	return 0;
3731 }
3732 
3733 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3734 {
3735 	int raid_type;
3736 	int min_tolerated = INT_MAX;
3737 
3738 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3739 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3740 		min_tolerated = min_t(int, min_tolerated,
3741 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3742 				    tolerated_failures);
3743 
3744 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3745 		if (raid_type == BTRFS_RAID_SINGLE)
3746 			continue;
3747 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3748 			continue;
3749 		min_tolerated = min_t(int, min_tolerated,
3750 				    btrfs_raid_array[raid_type].
3751 				    tolerated_failures);
3752 	}
3753 
3754 	if (min_tolerated == INT_MAX) {
3755 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3756 		min_tolerated = 0;
3757 	}
3758 
3759 	return min_tolerated;
3760 }
3761 
3762 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3763 {
3764 	struct list_head *head;
3765 	struct btrfs_device *dev;
3766 	struct btrfs_super_block *sb;
3767 	struct btrfs_dev_item *dev_item;
3768 	int ret;
3769 	int do_barriers;
3770 	int max_errors;
3771 	int total_errors = 0;
3772 	u64 flags;
3773 
3774 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3775 
3776 	/*
3777 	 * max_mirrors == 0 indicates we're from commit_transaction,
3778 	 * not from fsync where the tree roots in fs_info have not
3779 	 * been consistent on disk.
3780 	 */
3781 	if (max_mirrors == 0)
3782 		backup_super_roots(fs_info);
3783 
3784 	sb = fs_info->super_for_commit;
3785 	dev_item = &sb->dev_item;
3786 
3787 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3788 	head = &fs_info->fs_devices->devices;
3789 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3790 
3791 	if (do_barriers) {
3792 		ret = barrier_all_devices(fs_info);
3793 		if (ret) {
3794 			mutex_unlock(
3795 				&fs_info->fs_devices->device_list_mutex);
3796 			btrfs_handle_fs_error(fs_info, ret,
3797 					      "errors while submitting device barriers.");
3798 			return ret;
3799 		}
3800 	}
3801 
3802 	list_for_each_entry(dev, head, dev_list) {
3803 		if (!dev->bdev) {
3804 			total_errors++;
3805 			continue;
3806 		}
3807 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3808 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3809 			continue;
3810 
3811 		btrfs_set_stack_device_generation(dev_item, 0);
3812 		btrfs_set_stack_device_type(dev_item, dev->type);
3813 		btrfs_set_stack_device_id(dev_item, dev->devid);
3814 		btrfs_set_stack_device_total_bytes(dev_item,
3815 						   dev->commit_total_bytes);
3816 		btrfs_set_stack_device_bytes_used(dev_item,
3817 						  dev->commit_bytes_used);
3818 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3819 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3820 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3821 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3822 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3823 		       BTRFS_FSID_SIZE);
3824 
3825 		flags = btrfs_super_flags(sb);
3826 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3827 
3828 		ret = btrfs_validate_write_super(fs_info, sb);
3829 		if (ret < 0) {
3830 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3831 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
3832 				"unexpected superblock corruption detected");
3833 			return -EUCLEAN;
3834 		}
3835 
3836 		ret = write_dev_supers(dev, sb, max_mirrors);
3837 		if (ret)
3838 			total_errors++;
3839 	}
3840 	if (total_errors > max_errors) {
3841 		btrfs_err(fs_info, "%d errors while writing supers",
3842 			  total_errors);
3843 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3844 
3845 		/* FUA is masked off if unsupported and can't be the reason */
3846 		btrfs_handle_fs_error(fs_info, -EIO,
3847 				      "%d errors while writing supers",
3848 				      total_errors);
3849 		return -EIO;
3850 	}
3851 
3852 	total_errors = 0;
3853 	list_for_each_entry(dev, head, dev_list) {
3854 		if (!dev->bdev)
3855 			continue;
3856 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3857 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3858 			continue;
3859 
3860 		ret = wait_dev_supers(dev, max_mirrors);
3861 		if (ret)
3862 			total_errors++;
3863 	}
3864 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3865 	if (total_errors > max_errors) {
3866 		btrfs_handle_fs_error(fs_info, -EIO,
3867 				      "%d errors while writing supers",
3868 				      total_errors);
3869 		return -EIO;
3870 	}
3871 	return 0;
3872 }
3873 
3874 /* Drop a fs root from the radix tree and free it. */
3875 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3876 				  struct btrfs_root *root)
3877 {
3878 	bool drop_ref = false;
3879 
3880 	spin_lock(&fs_info->fs_roots_radix_lock);
3881 	radix_tree_delete(&fs_info->fs_roots_radix,
3882 			  (unsigned long)root->root_key.objectid);
3883 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3884 		drop_ref = true;
3885 	spin_unlock(&fs_info->fs_roots_radix_lock);
3886 
3887 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3888 		ASSERT(root->log_root == NULL);
3889 		if (root->reloc_root) {
3890 			btrfs_put_root(root->reloc_root);
3891 			root->reloc_root = NULL;
3892 		}
3893 	}
3894 
3895 	if (root->free_ino_pinned)
3896 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3897 	if (root->free_ino_ctl)
3898 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3899 	if (root->ino_cache_inode) {
3900 		iput(root->ino_cache_inode);
3901 		root->ino_cache_inode = NULL;
3902 	}
3903 	if (drop_ref)
3904 		btrfs_put_root(root);
3905 }
3906 
3907 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3908 {
3909 	u64 root_objectid = 0;
3910 	struct btrfs_root *gang[8];
3911 	int i = 0;
3912 	int err = 0;
3913 	unsigned int ret = 0;
3914 
3915 	while (1) {
3916 		spin_lock(&fs_info->fs_roots_radix_lock);
3917 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3918 					     (void **)gang, root_objectid,
3919 					     ARRAY_SIZE(gang));
3920 		if (!ret) {
3921 			spin_unlock(&fs_info->fs_roots_radix_lock);
3922 			break;
3923 		}
3924 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3925 
3926 		for (i = 0; i < ret; i++) {
3927 			/* Avoid to grab roots in dead_roots */
3928 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3929 				gang[i] = NULL;
3930 				continue;
3931 			}
3932 			/* grab all the search result for later use */
3933 			gang[i] = btrfs_grab_root(gang[i]);
3934 		}
3935 		spin_unlock(&fs_info->fs_roots_radix_lock);
3936 
3937 		for (i = 0; i < ret; i++) {
3938 			if (!gang[i])
3939 				continue;
3940 			root_objectid = gang[i]->root_key.objectid;
3941 			err = btrfs_orphan_cleanup(gang[i]);
3942 			if (err)
3943 				break;
3944 			btrfs_put_root(gang[i]);
3945 		}
3946 		root_objectid++;
3947 	}
3948 
3949 	/* release the uncleaned roots due to error */
3950 	for (; i < ret; i++) {
3951 		if (gang[i])
3952 			btrfs_put_root(gang[i]);
3953 	}
3954 	return err;
3955 }
3956 
3957 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3958 {
3959 	struct btrfs_root *root = fs_info->tree_root;
3960 	struct btrfs_trans_handle *trans;
3961 
3962 	mutex_lock(&fs_info->cleaner_mutex);
3963 	btrfs_run_delayed_iputs(fs_info);
3964 	mutex_unlock(&fs_info->cleaner_mutex);
3965 	wake_up_process(fs_info->cleaner_kthread);
3966 
3967 	/* wait until ongoing cleanup work done */
3968 	down_write(&fs_info->cleanup_work_sem);
3969 	up_write(&fs_info->cleanup_work_sem);
3970 
3971 	trans = btrfs_join_transaction(root);
3972 	if (IS_ERR(trans))
3973 		return PTR_ERR(trans);
3974 	return btrfs_commit_transaction(trans);
3975 }
3976 
3977 void __cold close_ctree(struct btrfs_fs_info *fs_info)
3978 {
3979 	int ret;
3980 
3981 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3982 	/*
3983 	 * We don't want the cleaner to start new transactions, add more delayed
3984 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3985 	 * because that frees the task_struct, and the transaction kthread might
3986 	 * still try to wake up the cleaner.
3987 	 */
3988 	kthread_park(fs_info->cleaner_kthread);
3989 
3990 	/* wait for the qgroup rescan worker to stop */
3991 	btrfs_qgroup_wait_for_completion(fs_info, false);
3992 
3993 	/* wait for the uuid_scan task to finish */
3994 	down(&fs_info->uuid_tree_rescan_sem);
3995 	/* avoid complains from lockdep et al., set sem back to initial state */
3996 	up(&fs_info->uuid_tree_rescan_sem);
3997 
3998 	/* pause restriper - we want to resume on mount */
3999 	btrfs_pause_balance(fs_info);
4000 
4001 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4002 
4003 	btrfs_scrub_cancel(fs_info);
4004 
4005 	/* wait for any defraggers to finish */
4006 	wait_event(fs_info->transaction_wait,
4007 		   (atomic_read(&fs_info->defrag_running) == 0));
4008 
4009 	/* clear out the rbtree of defraggable inodes */
4010 	btrfs_cleanup_defrag_inodes(fs_info);
4011 
4012 	cancel_work_sync(&fs_info->async_reclaim_work);
4013 
4014 	/* Cancel or finish ongoing discard work */
4015 	btrfs_discard_cleanup(fs_info);
4016 
4017 	if (!sb_rdonly(fs_info->sb)) {
4018 		/*
4019 		 * The cleaner kthread is stopped, so do one final pass over
4020 		 * unused block groups.
4021 		 */
4022 		btrfs_delete_unused_bgs(fs_info);
4023 
4024 		/*
4025 		 * There might be existing delayed inode workers still running
4026 		 * and holding an empty delayed inode item. We must wait for
4027 		 * them to complete first because they can create a transaction.
4028 		 * This happens when someone calls btrfs_balance_delayed_items()
4029 		 * and then a transaction commit runs the same delayed nodes
4030 		 * before any delayed worker has done something with the nodes.
4031 		 * We must wait for any worker here and not at transaction
4032 		 * commit time since that could cause a deadlock.
4033 		 * This is a very rare case.
4034 		 */
4035 		btrfs_flush_workqueue(fs_info->delayed_workers);
4036 
4037 		ret = btrfs_commit_super(fs_info);
4038 		if (ret)
4039 			btrfs_err(fs_info, "commit super ret %d", ret);
4040 	}
4041 
4042 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4043 	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4044 		btrfs_error_commit_super(fs_info);
4045 
4046 	kthread_stop(fs_info->transaction_kthread);
4047 	kthread_stop(fs_info->cleaner_kthread);
4048 
4049 	ASSERT(list_empty(&fs_info->delayed_iputs));
4050 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4051 
4052 	btrfs_free_qgroup_config(fs_info);
4053 	ASSERT(list_empty(&fs_info->delalloc_roots));
4054 
4055 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4056 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4057 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4058 	}
4059 
4060 	if (percpu_counter_sum(&fs_info->dio_bytes))
4061 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4062 			   percpu_counter_sum(&fs_info->dio_bytes));
4063 
4064 	btrfs_sysfs_remove_mounted(fs_info);
4065 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4066 
4067 	btrfs_put_block_group_cache(fs_info);
4068 
4069 	/*
4070 	 * we must make sure there is not any read request to
4071 	 * submit after we stopping all workers.
4072 	 */
4073 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4074 	btrfs_stop_all_workers(fs_info);
4075 
4076 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4077 	free_root_pointers(fs_info, true);
4078 	btrfs_free_fs_roots(fs_info);
4079 
4080 	/*
4081 	 * We must free the block groups after dropping the fs_roots as we could
4082 	 * have had an IO error and have left over tree log blocks that aren't
4083 	 * cleaned up until the fs roots are freed.  This makes the block group
4084 	 * accounting appear to be wrong because there's pending reserved bytes,
4085 	 * so make sure we do the block group cleanup afterwards.
4086 	 */
4087 	btrfs_free_block_groups(fs_info);
4088 
4089 	iput(fs_info->btree_inode);
4090 
4091 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4092 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4093 		btrfsic_unmount(fs_info->fs_devices);
4094 #endif
4095 
4096 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4097 	btrfs_close_devices(fs_info->fs_devices);
4098 }
4099 
4100 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4101 			  int atomic)
4102 {
4103 	int ret;
4104 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4105 
4106 	ret = extent_buffer_uptodate(buf);
4107 	if (!ret)
4108 		return ret;
4109 
4110 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4111 				    parent_transid, atomic);
4112 	if (ret == -EAGAIN)
4113 		return ret;
4114 	return !ret;
4115 }
4116 
4117 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4118 {
4119 	struct btrfs_fs_info *fs_info;
4120 	struct btrfs_root *root;
4121 	u64 transid = btrfs_header_generation(buf);
4122 	int was_dirty;
4123 
4124 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4125 	/*
4126 	 * This is a fast path so only do this check if we have sanity tests
4127 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4128 	 * outside of the sanity tests.
4129 	 */
4130 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4131 		return;
4132 #endif
4133 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4134 	fs_info = root->fs_info;
4135 	btrfs_assert_tree_locked(buf);
4136 	if (transid != fs_info->generation)
4137 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4138 			buf->start, transid, fs_info->generation);
4139 	was_dirty = set_extent_buffer_dirty(buf);
4140 	if (!was_dirty)
4141 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4142 					 buf->len,
4143 					 fs_info->dirty_metadata_batch);
4144 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4145 	/*
4146 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4147 	 * but item data not updated.
4148 	 * So here we should only check item pointers, not item data.
4149 	 */
4150 	if (btrfs_header_level(buf) == 0 &&
4151 	    btrfs_check_leaf_relaxed(buf)) {
4152 		btrfs_print_leaf(buf);
4153 		ASSERT(0);
4154 	}
4155 #endif
4156 }
4157 
4158 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4159 					int flush_delayed)
4160 {
4161 	/*
4162 	 * looks as though older kernels can get into trouble with
4163 	 * this code, they end up stuck in balance_dirty_pages forever
4164 	 */
4165 	int ret;
4166 
4167 	if (current->flags & PF_MEMALLOC)
4168 		return;
4169 
4170 	if (flush_delayed)
4171 		btrfs_balance_delayed_items(fs_info);
4172 
4173 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4174 				     BTRFS_DIRTY_METADATA_THRESH,
4175 				     fs_info->dirty_metadata_batch);
4176 	if (ret > 0) {
4177 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4178 	}
4179 }
4180 
4181 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4182 {
4183 	__btrfs_btree_balance_dirty(fs_info, 1);
4184 }
4185 
4186 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4187 {
4188 	__btrfs_btree_balance_dirty(fs_info, 0);
4189 }
4190 
4191 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4192 		      struct btrfs_key *first_key)
4193 {
4194 	return btree_read_extent_buffer_pages(buf, parent_transid,
4195 					      level, first_key);
4196 }
4197 
4198 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4199 {
4200 	/* cleanup FS via transaction */
4201 	btrfs_cleanup_transaction(fs_info);
4202 
4203 	mutex_lock(&fs_info->cleaner_mutex);
4204 	btrfs_run_delayed_iputs(fs_info);
4205 	mutex_unlock(&fs_info->cleaner_mutex);
4206 
4207 	down_write(&fs_info->cleanup_work_sem);
4208 	up_write(&fs_info->cleanup_work_sem);
4209 }
4210 
4211 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4212 {
4213 	struct btrfs_root *gang[8];
4214 	u64 root_objectid = 0;
4215 	int ret;
4216 
4217 	spin_lock(&fs_info->fs_roots_radix_lock);
4218 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4219 					     (void **)gang, root_objectid,
4220 					     ARRAY_SIZE(gang))) != 0) {
4221 		int i;
4222 
4223 		for (i = 0; i < ret; i++)
4224 			gang[i] = btrfs_grab_root(gang[i]);
4225 		spin_unlock(&fs_info->fs_roots_radix_lock);
4226 
4227 		for (i = 0; i < ret; i++) {
4228 			if (!gang[i])
4229 				continue;
4230 			root_objectid = gang[i]->root_key.objectid;
4231 			btrfs_free_log(NULL, gang[i]);
4232 			btrfs_put_root(gang[i]);
4233 		}
4234 		root_objectid++;
4235 		spin_lock(&fs_info->fs_roots_radix_lock);
4236 	}
4237 	spin_unlock(&fs_info->fs_roots_radix_lock);
4238 	btrfs_free_log_root_tree(NULL, fs_info);
4239 }
4240 
4241 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4242 {
4243 	struct btrfs_ordered_extent *ordered;
4244 
4245 	spin_lock(&root->ordered_extent_lock);
4246 	/*
4247 	 * This will just short circuit the ordered completion stuff which will
4248 	 * make sure the ordered extent gets properly cleaned up.
4249 	 */
4250 	list_for_each_entry(ordered, &root->ordered_extents,
4251 			    root_extent_list)
4252 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4253 	spin_unlock(&root->ordered_extent_lock);
4254 }
4255 
4256 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4257 {
4258 	struct btrfs_root *root;
4259 	struct list_head splice;
4260 
4261 	INIT_LIST_HEAD(&splice);
4262 
4263 	spin_lock(&fs_info->ordered_root_lock);
4264 	list_splice_init(&fs_info->ordered_roots, &splice);
4265 	while (!list_empty(&splice)) {
4266 		root = list_first_entry(&splice, struct btrfs_root,
4267 					ordered_root);
4268 		list_move_tail(&root->ordered_root,
4269 			       &fs_info->ordered_roots);
4270 
4271 		spin_unlock(&fs_info->ordered_root_lock);
4272 		btrfs_destroy_ordered_extents(root);
4273 
4274 		cond_resched();
4275 		spin_lock(&fs_info->ordered_root_lock);
4276 	}
4277 	spin_unlock(&fs_info->ordered_root_lock);
4278 
4279 	/*
4280 	 * We need this here because if we've been flipped read-only we won't
4281 	 * get sync() from the umount, so we need to make sure any ordered
4282 	 * extents that haven't had their dirty pages IO start writeout yet
4283 	 * actually get run and error out properly.
4284 	 */
4285 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4286 }
4287 
4288 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4289 				      struct btrfs_fs_info *fs_info)
4290 {
4291 	struct rb_node *node;
4292 	struct btrfs_delayed_ref_root *delayed_refs;
4293 	struct btrfs_delayed_ref_node *ref;
4294 	int ret = 0;
4295 
4296 	delayed_refs = &trans->delayed_refs;
4297 
4298 	spin_lock(&delayed_refs->lock);
4299 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4300 		spin_unlock(&delayed_refs->lock);
4301 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4302 		return ret;
4303 	}
4304 
4305 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4306 		struct btrfs_delayed_ref_head *head;
4307 		struct rb_node *n;
4308 		bool pin_bytes = false;
4309 
4310 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4311 				href_node);
4312 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4313 			continue;
4314 
4315 		spin_lock(&head->lock);
4316 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4317 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4318 				       ref_node);
4319 			ref->in_tree = 0;
4320 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4321 			RB_CLEAR_NODE(&ref->ref_node);
4322 			if (!list_empty(&ref->add_list))
4323 				list_del(&ref->add_list);
4324 			atomic_dec(&delayed_refs->num_entries);
4325 			btrfs_put_delayed_ref(ref);
4326 		}
4327 		if (head->must_insert_reserved)
4328 			pin_bytes = true;
4329 		btrfs_free_delayed_extent_op(head->extent_op);
4330 		btrfs_delete_ref_head(delayed_refs, head);
4331 		spin_unlock(&head->lock);
4332 		spin_unlock(&delayed_refs->lock);
4333 		mutex_unlock(&head->mutex);
4334 
4335 		if (pin_bytes) {
4336 			struct btrfs_block_group *cache;
4337 
4338 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4339 			BUG_ON(!cache);
4340 
4341 			spin_lock(&cache->space_info->lock);
4342 			spin_lock(&cache->lock);
4343 			cache->pinned += head->num_bytes;
4344 			btrfs_space_info_update_bytes_pinned(fs_info,
4345 				cache->space_info, head->num_bytes);
4346 			cache->reserved -= head->num_bytes;
4347 			cache->space_info->bytes_reserved -= head->num_bytes;
4348 			spin_unlock(&cache->lock);
4349 			spin_unlock(&cache->space_info->lock);
4350 			percpu_counter_add_batch(
4351 				&cache->space_info->total_bytes_pinned,
4352 				head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4353 
4354 			btrfs_put_block_group(cache);
4355 
4356 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4357 				head->bytenr + head->num_bytes - 1);
4358 		}
4359 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4360 		btrfs_put_delayed_ref_head(head);
4361 		cond_resched();
4362 		spin_lock(&delayed_refs->lock);
4363 	}
4364 	btrfs_qgroup_destroy_extent_records(trans);
4365 
4366 	spin_unlock(&delayed_refs->lock);
4367 
4368 	return ret;
4369 }
4370 
4371 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4372 {
4373 	struct btrfs_inode *btrfs_inode;
4374 	struct list_head splice;
4375 
4376 	INIT_LIST_HEAD(&splice);
4377 
4378 	spin_lock(&root->delalloc_lock);
4379 	list_splice_init(&root->delalloc_inodes, &splice);
4380 
4381 	while (!list_empty(&splice)) {
4382 		struct inode *inode = NULL;
4383 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4384 					       delalloc_inodes);
4385 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4386 		spin_unlock(&root->delalloc_lock);
4387 
4388 		/*
4389 		 * Make sure we get a live inode and that it'll not disappear
4390 		 * meanwhile.
4391 		 */
4392 		inode = igrab(&btrfs_inode->vfs_inode);
4393 		if (inode) {
4394 			invalidate_inode_pages2(inode->i_mapping);
4395 			iput(inode);
4396 		}
4397 		spin_lock(&root->delalloc_lock);
4398 	}
4399 	spin_unlock(&root->delalloc_lock);
4400 }
4401 
4402 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4403 {
4404 	struct btrfs_root *root;
4405 	struct list_head splice;
4406 
4407 	INIT_LIST_HEAD(&splice);
4408 
4409 	spin_lock(&fs_info->delalloc_root_lock);
4410 	list_splice_init(&fs_info->delalloc_roots, &splice);
4411 	while (!list_empty(&splice)) {
4412 		root = list_first_entry(&splice, struct btrfs_root,
4413 					 delalloc_root);
4414 		root = btrfs_grab_root(root);
4415 		BUG_ON(!root);
4416 		spin_unlock(&fs_info->delalloc_root_lock);
4417 
4418 		btrfs_destroy_delalloc_inodes(root);
4419 		btrfs_put_root(root);
4420 
4421 		spin_lock(&fs_info->delalloc_root_lock);
4422 	}
4423 	spin_unlock(&fs_info->delalloc_root_lock);
4424 }
4425 
4426 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4427 					struct extent_io_tree *dirty_pages,
4428 					int mark)
4429 {
4430 	int ret;
4431 	struct extent_buffer *eb;
4432 	u64 start = 0;
4433 	u64 end;
4434 
4435 	while (1) {
4436 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4437 					    mark, NULL);
4438 		if (ret)
4439 			break;
4440 
4441 		clear_extent_bits(dirty_pages, start, end, mark);
4442 		while (start <= end) {
4443 			eb = find_extent_buffer(fs_info, start);
4444 			start += fs_info->nodesize;
4445 			if (!eb)
4446 				continue;
4447 			wait_on_extent_buffer_writeback(eb);
4448 
4449 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4450 					       &eb->bflags))
4451 				clear_extent_buffer_dirty(eb);
4452 			free_extent_buffer_stale(eb);
4453 		}
4454 	}
4455 
4456 	return ret;
4457 }
4458 
4459 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4460 				       struct extent_io_tree *unpin)
4461 {
4462 	u64 start;
4463 	u64 end;
4464 	int ret;
4465 
4466 	while (1) {
4467 		struct extent_state *cached_state = NULL;
4468 
4469 		/*
4470 		 * The btrfs_finish_extent_commit() may get the same range as
4471 		 * ours between find_first_extent_bit and clear_extent_dirty.
4472 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4473 		 * the same extent range.
4474 		 */
4475 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4476 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4477 					    EXTENT_DIRTY, &cached_state);
4478 		if (ret) {
4479 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4480 			break;
4481 		}
4482 
4483 		clear_extent_dirty(unpin, start, end, &cached_state);
4484 		free_extent_state(cached_state);
4485 		btrfs_error_unpin_extent_range(fs_info, start, end);
4486 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4487 		cond_resched();
4488 	}
4489 
4490 	return 0;
4491 }
4492 
4493 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4494 {
4495 	struct inode *inode;
4496 
4497 	inode = cache->io_ctl.inode;
4498 	if (inode) {
4499 		invalidate_inode_pages2(inode->i_mapping);
4500 		BTRFS_I(inode)->generation = 0;
4501 		cache->io_ctl.inode = NULL;
4502 		iput(inode);
4503 	}
4504 	btrfs_put_block_group(cache);
4505 }
4506 
4507 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4508 			     struct btrfs_fs_info *fs_info)
4509 {
4510 	struct btrfs_block_group *cache;
4511 
4512 	spin_lock(&cur_trans->dirty_bgs_lock);
4513 	while (!list_empty(&cur_trans->dirty_bgs)) {
4514 		cache = list_first_entry(&cur_trans->dirty_bgs,
4515 					 struct btrfs_block_group,
4516 					 dirty_list);
4517 
4518 		if (!list_empty(&cache->io_list)) {
4519 			spin_unlock(&cur_trans->dirty_bgs_lock);
4520 			list_del_init(&cache->io_list);
4521 			btrfs_cleanup_bg_io(cache);
4522 			spin_lock(&cur_trans->dirty_bgs_lock);
4523 		}
4524 
4525 		list_del_init(&cache->dirty_list);
4526 		spin_lock(&cache->lock);
4527 		cache->disk_cache_state = BTRFS_DC_ERROR;
4528 		spin_unlock(&cache->lock);
4529 
4530 		spin_unlock(&cur_trans->dirty_bgs_lock);
4531 		btrfs_put_block_group(cache);
4532 		btrfs_delayed_refs_rsv_release(fs_info, 1);
4533 		spin_lock(&cur_trans->dirty_bgs_lock);
4534 	}
4535 	spin_unlock(&cur_trans->dirty_bgs_lock);
4536 
4537 	/*
4538 	 * Refer to the definition of io_bgs member for details why it's safe
4539 	 * to use it without any locking
4540 	 */
4541 	while (!list_empty(&cur_trans->io_bgs)) {
4542 		cache = list_first_entry(&cur_trans->io_bgs,
4543 					 struct btrfs_block_group,
4544 					 io_list);
4545 
4546 		list_del_init(&cache->io_list);
4547 		spin_lock(&cache->lock);
4548 		cache->disk_cache_state = BTRFS_DC_ERROR;
4549 		spin_unlock(&cache->lock);
4550 		btrfs_cleanup_bg_io(cache);
4551 	}
4552 }
4553 
4554 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4555 				   struct btrfs_fs_info *fs_info)
4556 {
4557 	struct btrfs_device *dev, *tmp;
4558 
4559 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4560 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4561 	ASSERT(list_empty(&cur_trans->io_bgs));
4562 
4563 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4564 				 post_commit_list) {
4565 		list_del_init(&dev->post_commit_list);
4566 	}
4567 
4568 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4569 
4570 	cur_trans->state = TRANS_STATE_COMMIT_START;
4571 	wake_up(&fs_info->transaction_blocked_wait);
4572 
4573 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4574 	wake_up(&fs_info->transaction_wait);
4575 
4576 	btrfs_destroy_delayed_inodes(fs_info);
4577 
4578 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4579 				     EXTENT_DIRTY);
4580 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4581 
4582 	cur_trans->state =TRANS_STATE_COMPLETED;
4583 	wake_up(&cur_trans->commit_wait);
4584 }
4585 
4586 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4587 {
4588 	struct btrfs_transaction *t;
4589 
4590 	mutex_lock(&fs_info->transaction_kthread_mutex);
4591 
4592 	spin_lock(&fs_info->trans_lock);
4593 	while (!list_empty(&fs_info->trans_list)) {
4594 		t = list_first_entry(&fs_info->trans_list,
4595 				     struct btrfs_transaction, list);
4596 		if (t->state >= TRANS_STATE_COMMIT_START) {
4597 			refcount_inc(&t->use_count);
4598 			spin_unlock(&fs_info->trans_lock);
4599 			btrfs_wait_for_commit(fs_info, t->transid);
4600 			btrfs_put_transaction(t);
4601 			spin_lock(&fs_info->trans_lock);
4602 			continue;
4603 		}
4604 		if (t == fs_info->running_transaction) {
4605 			t->state = TRANS_STATE_COMMIT_DOING;
4606 			spin_unlock(&fs_info->trans_lock);
4607 			/*
4608 			 * We wait for 0 num_writers since we don't hold a trans
4609 			 * handle open currently for this transaction.
4610 			 */
4611 			wait_event(t->writer_wait,
4612 				   atomic_read(&t->num_writers) == 0);
4613 		} else {
4614 			spin_unlock(&fs_info->trans_lock);
4615 		}
4616 		btrfs_cleanup_one_transaction(t, fs_info);
4617 
4618 		spin_lock(&fs_info->trans_lock);
4619 		if (t == fs_info->running_transaction)
4620 			fs_info->running_transaction = NULL;
4621 		list_del_init(&t->list);
4622 		spin_unlock(&fs_info->trans_lock);
4623 
4624 		btrfs_put_transaction(t);
4625 		trace_btrfs_transaction_commit(fs_info->tree_root);
4626 		spin_lock(&fs_info->trans_lock);
4627 	}
4628 	spin_unlock(&fs_info->trans_lock);
4629 	btrfs_destroy_all_ordered_extents(fs_info);
4630 	btrfs_destroy_delayed_inodes(fs_info);
4631 	btrfs_assert_delayed_root_empty(fs_info);
4632 	btrfs_destroy_all_delalloc_inodes(fs_info);
4633 	btrfs_drop_all_logs(fs_info);
4634 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4635 
4636 	return 0;
4637 }
4638 
4639 static const struct extent_io_ops btree_extent_io_ops = {
4640 	/* mandatory callbacks */
4641 	.submit_bio_hook = btree_submit_bio_hook,
4642 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4643 };
4644