1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "inode-map.h" 33 #include "check-integrity.h" 34 #include "rcu-string.h" 35 #include "dev-replace.h" 36 #include "raid56.h" 37 #include "sysfs.h" 38 #include "qgroup.h" 39 #include "compression.h" 40 #include "tree-checker.h" 41 #include "ref-verify.h" 42 #include "block-group.h" 43 #include "discard.h" 44 #include "space-info.h" 45 46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 47 BTRFS_HEADER_FLAG_RELOC |\ 48 BTRFS_SUPER_FLAG_ERROR |\ 49 BTRFS_SUPER_FLAG_SEEDING |\ 50 BTRFS_SUPER_FLAG_METADUMP |\ 51 BTRFS_SUPER_FLAG_METADUMP_V2) 52 53 static const struct extent_io_ops btree_extent_io_ops; 54 static void end_workqueue_fn(struct btrfs_work *work); 55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 57 struct btrfs_fs_info *fs_info); 58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 60 struct extent_io_tree *dirty_pages, 61 int mark); 62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 63 struct extent_io_tree *pinned_extents); 64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 66 67 /* 68 * btrfs_end_io_wq structs are used to do processing in task context when an IO 69 * is complete. This is used during reads to verify checksums, and it is used 70 * by writes to insert metadata for new file extents after IO is complete. 71 */ 72 struct btrfs_end_io_wq { 73 struct bio *bio; 74 bio_end_io_t *end_io; 75 void *private; 76 struct btrfs_fs_info *info; 77 blk_status_t status; 78 enum btrfs_wq_endio_type metadata; 79 struct btrfs_work work; 80 }; 81 82 static struct kmem_cache *btrfs_end_io_wq_cache; 83 84 int __init btrfs_end_io_wq_init(void) 85 { 86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 87 sizeof(struct btrfs_end_io_wq), 88 0, 89 SLAB_MEM_SPREAD, 90 NULL); 91 if (!btrfs_end_io_wq_cache) 92 return -ENOMEM; 93 return 0; 94 } 95 96 void __cold btrfs_end_io_wq_exit(void) 97 { 98 kmem_cache_destroy(btrfs_end_io_wq_cache); 99 } 100 101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 102 { 103 if (fs_info->csum_shash) 104 crypto_free_shash(fs_info->csum_shash); 105 } 106 107 /* 108 * async submit bios are used to offload expensive checksumming 109 * onto the worker threads. They checksum file and metadata bios 110 * just before they are sent down the IO stack. 111 */ 112 struct async_submit_bio { 113 void *private_data; 114 struct bio *bio; 115 extent_submit_bio_start_t *submit_bio_start; 116 int mirror_num; 117 /* 118 * bio_offset is optional, can be used if the pages in the bio 119 * can't tell us where in the file the bio should go 120 */ 121 u64 bio_offset; 122 struct btrfs_work work; 123 blk_status_t status; 124 }; 125 126 /* 127 * Lockdep class keys for extent_buffer->lock's in this root. For a given 128 * eb, the lockdep key is determined by the btrfs_root it belongs to and 129 * the level the eb occupies in the tree. 130 * 131 * Different roots are used for different purposes and may nest inside each 132 * other and they require separate keysets. As lockdep keys should be 133 * static, assign keysets according to the purpose of the root as indicated 134 * by btrfs_root->root_key.objectid. This ensures that all special purpose 135 * roots have separate keysets. 136 * 137 * Lock-nesting across peer nodes is always done with the immediate parent 138 * node locked thus preventing deadlock. As lockdep doesn't know this, use 139 * subclass to avoid triggering lockdep warning in such cases. 140 * 141 * The key is set by the readpage_end_io_hook after the buffer has passed 142 * csum validation but before the pages are unlocked. It is also set by 143 * btrfs_init_new_buffer on freshly allocated blocks. 144 * 145 * We also add a check to make sure the highest level of the tree is the 146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 147 * needs update as well. 148 */ 149 #ifdef CONFIG_DEBUG_LOCK_ALLOC 150 # if BTRFS_MAX_LEVEL != 8 151 # error 152 # endif 153 154 static struct btrfs_lockdep_keyset { 155 u64 id; /* root objectid */ 156 const char *name_stem; /* lock name stem */ 157 char names[BTRFS_MAX_LEVEL + 1][20]; 158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 159 } btrfs_lockdep_keysets[] = { 160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 172 { .id = 0, .name_stem = "tree" }, 173 }; 174 175 void __init btrfs_init_lockdep(void) 176 { 177 int i, j; 178 179 /* initialize lockdep class names */ 180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 182 183 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 184 snprintf(ks->names[j], sizeof(ks->names[j]), 185 "btrfs-%s-%02d", ks->name_stem, j); 186 } 187 } 188 189 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 190 int level) 191 { 192 struct btrfs_lockdep_keyset *ks; 193 194 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 195 196 /* find the matching keyset, id 0 is the default entry */ 197 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 198 if (ks->id == objectid) 199 break; 200 201 lockdep_set_class_and_name(&eb->lock, 202 &ks->keys[level], ks->names[level]); 203 } 204 205 #endif 206 207 /* 208 * extents on the btree inode are pretty simple, there's one extent 209 * that covers the entire device 210 */ 211 struct extent_map *btree_get_extent(struct btrfs_inode *inode, 212 struct page *page, size_t pg_offset, 213 u64 start, u64 len) 214 { 215 struct extent_map_tree *em_tree = &inode->extent_tree; 216 struct extent_map *em; 217 int ret; 218 219 read_lock(&em_tree->lock); 220 em = lookup_extent_mapping(em_tree, start, len); 221 if (em) { 222 read_unlock(&em_tree->lock); 223 goto out; 224 } 225 read_unlock(&em_tree->lock); 226 227 em = alloc_extent_map(); 228 if (!em) { 229 em = ERR_PTR(-ENOMEM); 230 goto out; 231 } 232 em->start = 0; 233 em->len = (u64)-1; 234 em->block_len = (u64)-1; 235 em->block_start = 0; 236 237 write_lock(&em_tree->lock); 238 ret = add_extent_mapping(em_tree, em, 0); 239 if (ret == -EEXIST) { 240 free_extent_map(em); 241 em = lookup_extent_mapping(em_tree, start, len); 242 if (!em) 243 em = ERR_PTR(-EIO); 244 } else if (ret) { 245 free_extent_map(em); 246 em = ERR_PTR(ret); 247 } 248 write_unlock(&em_tree->lock); 249 250 out: 251 return em; 252 } 253 254 /* 255 * Compute the csum of a btree block and store the result to provided buffer. 256 */ 257 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 258 { 259 struct btrfs_fs_info *fs_info = buf->fs_info; 260 const int num_pages = fs_info->nodesize >> PAGE_SHIFT; 261 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 262 char *kaddr; 263 int i; 264 265 shash->tfm = fs_info->csum_shash; 266 crypto_shash_init(shash); 267 kaddr = page_address(buf->pages[0]); 268 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 269 PAGE_SIZE - BTRFS_CSUM_SIZE); 270 271 for (i = 1; i < num_pages; i++) { 272 kaddr = page_address(buf->pages[i]); 273 crypto_shash_update(shash, kaddr, PAGE_SIZE); 274 } 275 memset(result, 0, BTRFS_CSUM_SIZE); 276 crypto_shash_final(shash, result); 277 } 278 279 /* 280 * we can't consider a given block up to date unless the transid of the 281 * block matches the transid in the parent node's pointer. This is how we 282 * detect blocks that either didn't get written at all or got written 283 * in the wrong place. 284 */ 285 static int verify_parent_transid(struct extent_io_tree *io_tree, 286 struct extent_buffer *eb, u64 parent_transid, 287 int atomic) 288 { 289 struct extent_state *cached_state = NULL; 290 int ret; 291 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 292 293 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 294 return 0; 295 296 if (atomic) 297 return -EAGAIN; 298 299 if (need_lock) { 300 btrfs_tree_read_lock(eb); 301 btrfs_set_lock_blocking_read(eb); 302 } 303 304 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 305 &cached_state); 306 if (extent_buffer_uptodate(eb) && 307 btrfs_header_generation(eb) == parent_transid) { 308 ret = 0; 309 goto out; 310 } 311 btrfs_err_rl(eb->fs_info, 312 "parent transid verify failed on %llu wanted %llu found %llu", 313 eb->start, 314 parent_transid, btrfs_header_generation(eb)); 315 ret = 1; 316 317 /* 318 * Things reading via commit roots that don't have normal protection, 319 * like send, can have a really old block in cache that may point at a 320 * block that has been freed and re-allocated. So don't clear uptodate 321 * if we find an eb that is under IO (dirty/writeback) because we could 322 * end up reading in the stale data and then writing it back out and 323 * making everybody very sad. 324 */ 325 if (!extent_buffer_under_io(eb)) 326 clear_extent_buffer_uptodate(eb); 327 out: 328 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 329 &cached_state); 330 if (need_lock) 331 btrfs_tree_read_unlock_blocking(eb); 332 return ret; 333 } 334 335 static bool btrfs_supported_super_csum(u16 csum_type) 336 { 337 switch (csum_type) { 338 case BTRFS_CSUM_TYPE_CRC32: 339 case BTRFS_CSUM_TYPE_XXHASH: 340 case BTRFS_CSUM_TYPE_SHA256: 341 case BTRFS_CSUM_TYPE_BLAKE2: 342 return true; 343 default: 344 return false; 345 } 346 } 347 348 /* 349 * Return 0 if the superblock checksum type matches the checksum value of that 350 * algorithm. Pass the raw disk superblock data. 351 */ 352 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 353 char *raw_disk_sb) 354 { 355 struct btrfs_super_block *disk_sb = 356 (struct btrfs_super_block *)raw_disk_sb; 357 char result[BTRFS_CSUM_SIZE]; 358 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 359 360 shash->tfm = fs_info->csum_shash; 361 crypto_shash_init(shash); 362 363 /* 364 * The super_block structure does not span the whole 365 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 366 * filled with zeros and is included in the checksum. 367 */ 368 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE, 369 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 370 crypto_shash_final(shash, result); 371 372 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb))) 373 return 1; 374 375 return 0; 376 } 377 378 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 379 struct btrfs_key *first_key, u64 parent_transid) 380 { 381 struct btrfs_fs_info *fs_info = eb->fs_info; 382 int found_level; 383 struct btrfs_key found_key; 384 int ret; 385 386 found_level = btrfs_header_level(eb); 387 if (found_level != level) { 388 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 389 KERN_ERR "BTRFS: tree level check failed\n"); 390 btrfs_err(fs_info, 391 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 392 eb->start, level, found_level); 393 return -EIO; 394 } 395 396 if (!first_key) 397 return 0; 398 399 /* 400 * For live tree block (new tree blocks in current transaction), 401 * we need proper lock context to avoid race, which is impossible here. 402 * So we only checks tree blocks which is read from disk, whose 403 * generation <= fs_info->last_trans_committed. 404 */ 405 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 406 return 0; 407 408 /* We have @first_key, so this @eb must have at least one item */ 409 if (btrfs_header_nritems(eb) == 0) { 410 btrfs_err(fs_info, 411 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 412 eb->start); 413 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 414 return -EUCLEAN; 415 } 416 417 if (found_level) 418 btrfs_node_key_to_cpu(eb, &found_key, 0); 419 else 420 btrfs_item_key_to_cpu(eb, &found_key, 0); 421 ret = btrfs_comp_cpu_keys(first_key, &found_key); 422 423 if (ret) { 424 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 425 KERN_ERR "BTRFS: tree first key check failed\n"); 426 btrfs_err(fs_info, 427 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 428 eb->start, parent_transid, first_key->objectid, 429 first_key->type, first_key->offset, 430 found_key.objectid, found_key.type, 431 found_key.offset); 432 } 433 return ret; 434 } 435 436 /* 437 * helper to read a given tree block, doing retries as required when 438 * the checksums don't match and we have alternate mirrors to try. 439 * 440 * @parent_transid: expected transid, skip check if 0 441 * @level: expected level, mandatory check 442 * @first_key: expected key of first slot, skip check if NULL 443 */ 444 static int btree_read_extent_buffer_pages(struct extent_buffer *eb, 445 u64 parent_transid, int level, 446 struct btrfs_key *first_key) 447 { 448 struct btrfs_fs_info *fs_info = eb->fs_info; 449 struct extent_io_tree *io_tree; 450 int failed = 0; 451 int ret; 452 int num_copies = 0; 453 int mirror_num = 0; 454 int failed_mirror = 0; 455 456 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 457 while (1) { 458 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 459 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num); 460 if (!ret) { 461 if (verify_parent_transid(io_tree, eb, 462 parent_transid, 0)) 463 ret = -EIO; 464 else if (btrfs_verify_level_key(eb, level, 465 first_key, parent_transid)) 466 ret = -EUCLEAN; 467 else 468 break; 469 } 470 471 num_copies = btrfs_num_copies(fs_info, 472 eb->start, eb->len); 473 if (num_copies == 1) 474 break; 475 476 if (!failed_mirror) { 477 failed = 1; 478 failed_mirror = eb->read_mirror; 479 } 480 481 mirror_num++; 482 if (mirror_num == failed_mirror) 483 mirror_num++; 484 485 if (mirror_num > num_copies) 486 break; 487 } 488 489 if (failed && !ret && failed_mirror) 490 btrfs_repair_eb_io_failure(eb, failed_mirror); 491 492 return ret; 493 } 494 495 /* 496 * checksum a dirty tree block before IO. This has extra checks to make sure 497 * we only fill in the checksum field in the first page of a multi-page block 498 */ 499 500 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 501 { 502 u64 start = page_offset(page); 503 u64 found_start; 504 u8 result[BTRFS_CSUM_SIZE]; 505 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 506 struct extent_buffer *eb; 507 int ret; 508 509 eb = (struct extent_buffer *)page->private; 510 if (page != eb->pages[0]) 511 return 0; 512 513 found_start = btrfs_header_bytenr(eb); 514 /* 515 * Please do not consolidate these warnings into a single if. 516 * It is useful to know what went wrong. 517 */ 518 if (WARN_ON(found_start != start)) 519 return -EUCLEAN; 520 if (WARN_ON(!PageUptodate(page))) 521 return -EUCLEAN; 522 523 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 524 offsetof(struct btrfs_header, fsid), 525 BTRFS_FSID_SIZE) == 0); 526 527 csum_tree_block(eb, result); 528 529 if (btrfs_header_level(eb)) 530 ret = btrfs_check_node(eb); 531 else 532 ret = btrfs_check_leaf_full(eb); 533 534 if (ret < 0) { 535 btrfs_print_tree(eb, 0); 536 btrfs_err(fs_info, 537 "block=%llu write time tree block corruption detected", 538 eb->start); 539 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 540 return ret; 541 } 542 write_extent_buffer(eb, result, 0, csum_size); 543 544 return 0; 545 } 546 547 static int check_tree_block_fsid(struct extent_buffer *eb) 548 { 549 struct btrfs_fs_info *fs_info = eb->fs_info; 550 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 551 u8 fsid[BTRFS_FSID_SIZE]; 552 int ret = 1; 553 554 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 555 BTRFS_FSID_SIZE); 556 while (fs_devices) { 557 u8 *metadata_uuid; 558 559 /* 560 * Checking the incompat flag is only valid for the current 561 * fs. For seed devices it's forbidden to have their uuid 562 * changed so reading ->fsid in this case is fine 563 */ 564 if (fs_devices == fs_info->fs_devices && 565 btrfs_fs_incompat(fs_info, METADATA_UUID)) 566 metadata_uuid = fs_devices->metadata_uuid; 567 else 568 metadata_uuid = fs_devices->fsid; 569 570 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) { 571 ret = 0; 572 break; 573 } 574 fs_devices = fs_devices->seed; 575 } 576 return ret; 577 } 578 579 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 580 u64 phy_offset, struct page *page, 581 u64 start, u64 end, int mirror) 582 { 583 u64 found_start; 584 int found_level; 585 struct extent_buffer *eb; 586 struct btrfs_fs_info *fs_info; 587 u16 csum_size; 588 int ret = 0; 589 u8 result[BTRFS_CSUM_SIZE]; 590 int reads_done; 591 592 if (!page->private) 593 goto out; 594 595 eb = (struct extent_buffer *)page->private; 596 fs_info = eb->fs_info; 597 csum_size = btrfs_super_csum_size(fs_info->super_copy); 598 599 /* the pending IO might have been the only thing that kept this buffer 600 * in memory. Make sure we have a ref for all this other checks 601 */ 602 atomic_inc(&eb->refs); 603 604 reads_done = atomic_dec_and_test(&eb->io_pages); 605 if (!reads_done) 606 goto err; 607 608 eb->read_mirror = mirror; 609 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 610 ret = -EIO; 611 goto err; 612 } 613 614 found_start = btrfs_header_bytenr(eb); 615 if (found_start != eb->start) { 616 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 617 eb->start, found_start); 618 ret = -EIO; 619 goto err; 620 } 621 if (check_tree_block_fsid(eb)) { 622 btrfs_err_rl(fs_info, "bad fsid on block %llu", 623 eb->start); 624 ret = -EIO; 625 goto err; 626 } 627 found_level = btrfs_header_level(eb); 628 if (found_level >= BTRFS_MAX_LEVEL) { 629 btrfs_err(fs_info, "bad tree block level %d on %llu", 630 (int)btrfs_header_level(eb), eb->start); 631 ret = -EIO; 632 goto err; 633 } 634 635 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 636 eb, found_level); 637 638 csum_tree_block(eb, result); 639 640 if (memcmp_extent_buffer(eb, result, 0, csum_size)) { 641 u32 val; 642 u32 found = 0; 643 644 memcpy(&found, result, csum_size); 645 646 read_extent_buffer(eb, &val, 0, csum_size); 647 btrfs_warn_rl(fs_info, 648 "%s checksum verify failed on %llu wanted %x found %x level %d", 649 fs_info->sb->s_id, eb->start, 650 val, found, btrfs_header_level(eb)); 651 ret = -EUCLEAN; 652 goto err; 653 } 654 655 /* 656 * If this is a leaf block and it is corrupt, set the corrupt bit so 657 * that we don't try and read the other copies of this block, just 658 * return -EIO. 659 */ 660 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 661 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 662 ret = -EIO; 663 } 664 665 if (found_level > 0 && btrfs_check_node(eb)) 666 ret = -EIO; 667 668 if (!ret) 669 set_extent_buffer_uptodate(eb); 670 else 671 btrfs_err(fs_info, 672 "block=%llu read time tree block corruption detected", 673 eb->start); 674 err: 675 if (reads_done && 676 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 677 btree_readahead_hook(eb, ret); 678 679 if (ret) { 680 /* 681 * our io error hook is going to dec the io pages 682 * again, we have to make sure it has something 683 * to decrement 684 */ 685 atomic_inc(&eb->io_pages); 686 clear_extent_buffer_uptodate(eb); 687 } 688 free_extent_buffer(eb); 689 out: 690 return ret; 691 } 692 693 static void end_workqueue_bio(struct bio *bio) 694 { 695 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 696 struct btrfs_fs_info *fs_info; 697 struct btrfs_workqueue *wq; 698 699 fs_info = end_io_wq->info; 700 end_io_wq->status = bio->bi_status; 701 702 if (bio_op(bio) == REQ_OP_WRITE) { 703 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) 704 wq = fs_info->endio_meta_write_workers; 705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) 706 wq = fs_info->endio_freespace_worker; 707 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 708 wq = fs_info->endio_raid56_workers; 709 else 710 wq = fs_info->endio_write_workers; 711 } else { 712 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR)) 713 wq = fs_info->endio_repair_workers; 714 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 715 wq = fs_info->endio_raid56_workers; 716 else if (end_io_wq->metadata) 717 wq = fs_info->endio_meta_workers; 718 else 719 wq = fs_info->endio_workers; 720 } 721 722 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL); 723 btrfs_queue_work(wq, &end_io_wq->work); 724 } 725 726 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 727 enum btrfs_wq_endio_type metadata) 728 { 729 struct btrfs_end_io_wq *end_io_wq; 730 731 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 732 if (!end_io_wq) 733 return BLK_STS_RESOURCE; 734 735 end_io_wq->private = bio->bi_private; 736 end_io_wq->end_io = bio->bi_end_io; 737 end_io_wq->info = info; 738 end_io_wq->status = 0; 739 end_io_wq->bio = bio; 740 end_io_wq->metadata = metadata; 741 742 bio->bi_private = end_io_wq; 743 bio->bi_end_io = end_workqueue_bio; 744 return 0; 745 } 746 747 static void run_one_async_start(struct btrfs_work *work) 748 { 749 struct async_submit_bio *async; 750 blk_status_t ret; 751 752 async = container_of(work, struct async_submit_bio, work); 753 ret = async->submit_bio_start(async->private_data, async->bio, 754 async->bio_offset); 755 if (ret) 756 async->status = ret; 757 } 758 759 /* 760 * In order to insert checksums into the metadata in large chunks, we wait 761 * until bio submission time. All the pages in the bio are checksummed and 762 * sums are attached onto the ordered extent record. 763 * 764 * At IO completion time the csums attached on the ordered extent record are 765 * inserted into the tree. 766 */ 767 static void run_one_async_done(struct btrfs_work *work) 768 { 769 struct async_submit_bio *async; 770 struct inode *inode; 771 blk_status_t ret; 772 773 async = container_of(work, struct async_submit_bio, work); 774 inode = async->private_data; 775 776 /* If an error occurred we just want to clean up the bio and move on */ 777 if (async->status) { 778 async->bio->bi_status = async->status; 779 bio_endio(async->bio); 780 return; 781 } 782 783 /* 784 * All of the bios that pass through here are from async helpers. 785 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context. 786 * This changes nothing when cgroups aren't in use. 787 */ 788 async->bio->bi_opf |= REQ_CGROUP_PUNT; 789 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num); 790 if (ret) { 791 async->bio->bi_status = ret; 792 bio_endio(async->bio); 793 } 794 } 795 796 static void run_one_async_free(struct btrfs_work *work) 797 { 798 struct async_submit_bio *async; 799 800 async = container_of(work, struct async_submit_bio, work); 801 kfree(async); 802 } 803 804 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 805 int mirror_num, unsigned long bio_flags, 806 u64 bio_offset, void *private_data, 807 extent_submit_bio_start_t *submit_bio_start) 808 { 809 struct async_submit_bio *async; 810 811 async = kmalloc(sizeof(*async), GFP_NOFS); 812 if (!async) 813 return BLK_STS_RESOURCE; 814 815 async->private_data = private_data; 816 async->bio = bio; 817 async->mirror_num = mirror_num; 818 async->submit_bio_start = submit_bio_start; 819 820 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, 821 run_one_async_free); 822 823 async->bio_offset = bio_offset; 824 825 async->status = 0; 826 827 if (op_is_sync(bio->bi_opf)) 828 btrfs_set_work_high_priority(&async->work); 829 830 btrfs_queue_work(fs_info->workers, &async->work); 831 return 0; 832 } 833 834 static blk_status_t btree_csum_one_bio(struct bio *bio) 835 { 836 struct bio_vec *bvec; 837 struct btrfs_root *root; 838 int ret = 0; 839 struct bvec_iter_all iter_all; 840 841 ASSERT(!bio_flagged(bio, BIO_CLONED)); 842 bio_for_each_segment_all(bvec, bio, iter_all) { 843 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 844 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 845 if (ret) 846 break; 847 } 848 849 return errno_to_blk_status(ret); 850 } 851 852 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, 853 u64 bio_offset) 854 { 855 /* 856 * when we're called for a write, we're already in the async 857 * submission context. Just jump into btrfs_map_bio 858 */ 859 return btree_csum_one_bio(bio); 860 } 861 862 static int check_async_write(struct btrfs_fs_info *fs_info, 863 struct btrfs_inode *bi) 864 { 865 if (atomic_read(&bi->sync_writers)) 866 return 0; 867 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 868 return 0; 869 return 1; 870 } 871 872 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio, 873 int mirror_num, 874 unsigned long bio_flags) 875 { 876 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 877 int async = check_async_write(fs_info, BTRFS_I(inode)); 878 blk_status_t ret; 879 880 if (bio_op(bio) != REQ_OP_WRITE) { 881 /* 882 * called for a read, do the setup so that checksum validation 883 * can happen in the async kernel threads 884 */ 885 ret = btrfs_bio_wq_end_io(fs_info, bio, 886 BTRFS_WQ_ENDIO_METADATA); 887 if (ret) 888 goto out_w_error; 889 ret = btrfs_map_bio(fs_info, bio, mirror_num); 890 } else if (!async) { 891 ret = btree_csum_one_bio(bio); 892 if (ret) 893 goto out_w_error; 894 ret = btrfs_map_bio(fs_info, bio, mirror_num); 895 } else { 896 /* 897 * kthread helpers are used to submit writes so that 898 * checksumming can happen in parallel across all CPUs 899 */ 900 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 901 0, inode, btree_submit_bio_start); 902 } 903 904 if (ret) 905 goto out_w_error; 906 return 0; 907 908 out_w_error: 909 bio->bi_status = ret; 910 bio_endio(bio); 911 return ret; 912 } 913 914 #ifdef CONFIG_MIGRATION 915 static int btree_migratepage(struct address_space *mapping, 916 struct page *newpage, struct page *page, 917 enum migrate_mode mode) 918 { 919 /* 920 * we can't safely write a btree page from here, 921 * we haven't done the locking hook 922 */ 923 if (PageDirty(page)) 924 return -EAGAIN; 925 /* 926 * Buffers may be managed in a filesystem specific way. 927 * We must have no buffers or drop them. 928 */ 929 if (page_has_private(page) && 930 !try_to_release_page(page, GFP_KERNEL)) 931 return -EAGAIN; 932 return migrate_page(mapping, newpage, page, mode); 933 } 934 #endif 935 936 937 static int btree_writepages(struct address_space *mapping, 938 struct writeback_control *wbc) 939 { 940 struct btrfs_fs_info *fs_info; 941 int ret; 942 943 if (wbc->sync_mode == WB_SYNC_NONE) { 944 945 if (wbc->for_kupdate) 946 return 0; 947 948 fs_info = BTRFS_I(mapping->host)->root->fs_info; 949 /* this is a bit racy, but that's ok */ 950 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 951 BTRFS_DIRTY_METADATA_THRESH, 952 fs_info->dirty_metadata_batch); 953 if (ret < 0) 954 return 0; 955 } 956 return btree_write_cache_pages(mapping, wbc); 957 } 958 959 static int btree_readpage(struct file *file, struct page *page) 960 { 961 return extent_read_full_page(page, btree_get_extent, 0); 962 } 963 964 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 965 { 966 if (PageWriteback(page) || PageDirty(page)) 967 return 0; 968 969 return try_release_extent_buffer(page); 970 } 971 972 static void btree_invalidatepage(struct page *page, unsigned int offset, 973 unsigned int length) 974 { 975 struct extent_io_tree *tree; 976 tree = &BTRFS_I(page->mapping->host)->io_tree; 977 extent_invalidatepage(tree, page, offset); 978 btree_releasepage(page, GFP_NOFS); 979 if (PagePrivate(page)) { 980 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 981 "page private not zero on page %llu", 982 (unsigned long long)page_offset(page)); 983 ClearPagePrivate(page); 984 set_page_private(page, 0); 985 put_page(page); 986 } 987 } 988 989 static int btree_set_page_dirty(struct page *page) 990 { 991 #ifdef DEBUG 992 struct extent_buffer *eb; 993 994 BUG_ON(!PagePrivate(page)); 995 eb = (struct extent_buffer *)page->private; 996 BUG_ON(!eb); 997 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 998 BUG_ON(!atomic_read(&eb->refs)); 999 btrfs_assert_tree_locked(eb); 1000 #endif 1001 return __set_page_dirty_nobuffers(page); 1002 } 1003 1004 static const struct address_space_operations btree_aops = { 1005 .readpage = btree_readpage, 1006 .writepages = btree_writepages, 1007 .releasepage = btree_releasepage, 1008 .invalidatepage = btree_invalidatepage, 1009 #ifdef CONFIG_MIGRATION 1010 .migratepage = btree_migratepage, 1011 #endif 1012 .set_page_dirty = btree_set_page_dirty, 1013 }; 1014 1015 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1016 { 1017 struct extent_buffer *buf = NULL; 1018 int ret; 1019 1020 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1021 if (IS_ERR(buf)) 1022 return; 1023 1024 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0); 1025 if (ret < 0) 1026 free_extent_buffer_stale(buf); 1027 else 1028 free_extent_buffer(buf); 1029 } 1030 1031 struct extent_buffer *btrfs_find_create_tree_block( 1032 struct btrfs_fs_info *fs_info, 1033 u64 bytenr) 1034 { 1035 if (btrfs_is_testing(fs_info)) 1036 return alloc_test_extent_buffer(fs_info, bytenr); 1037 return alloc_extent_buffer(fs_info, bytenr); 1038 } 1039 1040 /* 1041 * Read tree block at logical address @bytenr and do variant basic but critical 1042 * verification. 1043 * 1044 * @parent_transid: expected transid of this tree block, skip check if 0 1045 * @level: expected level, mandatory check 1046 * @first_key: expected key in slot 0, skip check if NULL 1047 */ 1048 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1049 u64 parent_transid, int level, 1050 struct btrfs_key *first_key) 1051 { 1052 struct extent_buffer *buf = NULL; 1053 int ret; 1054 1055 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1056 if (IS_ERR(buf)) 1057 return buf; 1058 1059 ret = btree_read_extent_buffer_pages(buf, parent_transid, 1060 level, first_key); 1061 if (ret) { 1062 free_extent_buffer_stale(buf); 1063 return ERR_PTR(ret); 1064 } 1065 return buf; 1066 1067 } 1068 1069 void btrfs_clean_tree_block(struct extent_buffer *buf) 1070 { 1071 struct btrfs_fs_info *fs_info = buf->fs_info; 1072 if (btrfs_header_generation(buf) == 1073 fs_info->running_transaction->transid) { 1074 btrfs_assert_tree_locked(buf); 1075 1076 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1077 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1078 -buf->len, 1079 fs_info->dirty_metadata_batch); 1080 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1081 btrfs_set_lock_blocking_write(buf); 1082 clear_extent_buffer_dirty(buf); 1083 } 1084 } 1085 } 1086 1087 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1088 u64 objectid) 1089 { 1090 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1091 root->fs_info = fs_info; 1092 root->node = NULL; 1093 root->commit_root = NULL; 1094 root->state = 0; 1095 root->orphan_cleanup_state = 0; 1096 1097 root->last_trans = 0; 1098 root->highest_objectid = 0; 1099 root->nr_delalloc_inodes = 0; 1100 root->nr_ordered_extents = 0; 1101 root->inode_tree = RB_ROOT; 1102 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1103 root->block_rsv = NULL; 1104 1105 INIT_LIST_HEAD(&root->dirty_list); 1106 INIT_LIST_HEAD(&root->root_list); 1107 INIT_LIST_HEAD(&root->delalloc_inodes); 1108 INIT_LIST_HEAD(&root->delalloc_root); 1109 INIT_LIST_HEAD(&root->ordered_extents); 1110 INIT_LIST_HEAD(&root->ordered_root); 1111 INIT_LIST_HEAD(&root->reloc_dirty_list); 1112 INIT_LIST_HEAD(&root->logged_list[0]); 1113 INIT_LIST_HEAD(&root->logged_list[1]); 1114 spin_lock_init(&root->inode_lock); 1115 spin_lock_init(&root->delalloc_lock); 1116 spin_lock_init(&root->ordered_extent_lock); 1117 spin_lock_init(&root->accounting_lock); 1118 spin_lock_init(&root->log_extents_lock[0]); 1119 spin_lock_init(&root->log_extents_lock[1]); 1120 spin_lock_init(&root->qgroup_meta_rsv_lock); 1121 mutex_init(&root->objectid_mutex); 1122 mutex_init(&root->log_mutex); 1123 mutex_init(&root->ordered_extent_mutex); 1124 mutex_init(&root->delalloc_mutex); 1125 init_waitqueue_head(&root->log_writer_wait); 1126 init_waitqueue_head(&root->log_commit_wait[0]); 1127 init_waitqueue_head(&root->log_commit_wait[1]); 1128 INIT_LIST_HEAD(&root->log_ctxs[0]); 1129 INIT_LIST_HEAD(&root->log_ctxs[1]); 1130 atomic_set(&root->log_commit[0], 0); 1131 atomic_set(&root->log_commit[1], 0); 1132 atomic_set(&root->log_writers, 0); 1133 atomic_set(&root->log_batch, 0); 1134 refcount_set(&root->refs, 1); 1135 atomic_set(&root->snapshot_force_cow, 0); 1136 atomic_set(&root->nr_swapfiles, 0); 1137 root->log_transid = 0; 1138 root->log_transid_committed = -1; 1139 root->last_log_commit = 0; 1140 if (!dummy) 1141 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1142 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL); 1143 1144 memset(&root->root_key, 0, sizeof(root->root_key)); 1145 memset(&root->root_item, 0, sizeof(root->root_item)); 1146 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1147 if (!dummy) 1148 root->defrag_trans_start = fs_info->generation; 1149 else 1150 root->defrag_trans_start = 0; 1151 root->root_key.objectid = objectid; 1152 root->anon_dev = 0; 1153 1154 spin_lock_init(&root->root_item_lock); 1155 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1156 #ifdef CONFIG_BTRFS_DEBUG 1157 INIT_LIST_HEAD(&root->leak_list); 1158 spin_lock(&fs_info->fs_roots_radix_lock); 1159 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 1160 spin_unlock(&fs_info->fs_roots_radix_lock); 1161 #endif 1162 } 1163 1164 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1165 u64 objectid, gfp_t flags) 1166 { 1167 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1168 if (root) 1169 __setup_root(root, fs_info, objectid); 1170 return root; 1171 } 1172 1173 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1174 /* Should only be used by the testing infrastructure */ 1175 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1176 { 1177 struct btrfs_root *root; 1178 1179 if (!fs_info) 1180 return ERR_PTR(-EINVAL); 1181 1182 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 1183 if (!root) 1184 return ERR_PTR(-ENOMEM); 1185 1186 /* We don't use the stripesize in selftest, set it as sectorsize */ 1187 root->alloc_bytenr = 0; 1188 1189 return root; 1190 } 1191 #endif 1192 1193 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1194 u64 objectid) 1195 { 1196 struct btrfs_fs_info *fs_info = trans->fs_info; 1197 struct extent_buffer *leaf; 1198 struct btrfs_root *tree_root = fs_info->tree_root; 1199 struct btrfs_root *root; 1200 struct btrfs_key key; 1201 unsigned int nofs_flag; 1202 int ret = 0; 1203 1204 /* 1205 * We're holding a transaction handle, so use a NOFS memory allocation 1206 * context to avoid deadlock if reclaim happens. 1207 */ 1208 nofs_flag = memalloc_nofs_save(); 1209 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1210 memalloc_nofs_restore(nofs_flag); 1211 if (!root) 1212 return ERR_PTR(-ENOMEM); 1213 1214 root->root_key.objectid = objectid; 1215 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1216 root->root_key.offset = 0; 1217 1218 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1219 if (IS_ERR(leaf)) { 1220 ret = PTR_ERR(leaf); 1221 leaf = NULL; 1222 goto fail; 1223 } 1224 1225 root->node = leaf; 1226 btrfs_mark_buffer_dirty(leaf); 1227 1228 root->commit_root = btrfs_root_node(root); 1229 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1230 1231 root->root_item.flags = 0; 1232 root->root_item.byte_limit = 0; 1233 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1234 btrfs_set_root_generation(&root->root_item, trans->transid); 1235 btrfs_set_root_level(&root->root_item, 0); 1236 btrfs_set_root_refs(&root->root_item, 1); 1237 btrfs_set_root_used(&root->root_item, leaf->len); 1238 btrfs_set_root_last_snapshot(&root->root_item, 0); 1239 btrfs_set_root_dirid(&root->root_item, 0); 1240 if (is_fstree(objectid)) 1241 generate_random_guid(root->root_item.uuid); 1242 else 1243 export_guid(root->root_item.uuid, &guid_null); 1244 root->root_item.drop_level = 0; 1245 1246 key.objectid = objectid; 1247 key.type = BTRFS_ROOT_ITEM_KEY; 1248 key.offset = 0; 1249 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1250 if (ret) 1251 goto fail; 1252 1253 btrfs_tree_unlock(leaf); 1254 1255 return root; 1256 1257 fail: 1258 if (leaf) 1259 btrfs_tree_unlock(leaf); 1260 btrfs_put_root(root); 1261 1262 return ERR_PTR(ret); 1263 } 1264 1265 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1266 struct btrfs_fs_info *fs_info) 1267 { 1268 struct btrfs_root *root; 1269 struct extent_buffer *leaf; 1270 1271 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1272 if (!root) 1273 return ERR_PTR(-ENOMEM); 1274 1275 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1276 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1277 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1278 1279 /* 1280 * DON'T set REF_COWS for log trees 1281 * 1282 * log trees do not get reference counted because they go away 1283 * before a real commit is actually done. They do store pointers 1284 * to file data extents, and those reference counts still get 1285 * updated (along with back refs to the log tree). 1286 */ 1287 1288 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1289 NULL, 0, 0, 0); 1290 if (IS_ERR(leaf)) { 1291 btrfs_put_root(root); 1292 return ERR_CAST(leaf); 1293 } 1294 1295 root->node = leaf; 1296 1297 btrfs_mark_buffer_dirty(root->node); 1298 btrfs_tree_unlock(root->node); 1299 return root; 1300 } 1301 1302 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1303 struct btrfs_fs_info *fs_info) 1304 { 1305 struct btrfs_root *log_root; 1306 1307 log_root = alloc_log_tree(trans, fs_info); 1308 if (IS_ERR(log_root)) 1309 return PTR_ERR(log_root); 1310 WARN_ON(fs_info->log_root_tree); 1311 fs_info->log_root_tree = log_root; 1312 return 0; 1313 } 1314 1315 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1316 struct btrfs_root *root) 1317 { 1318 struct btrfs_fs_info *fs_info = root->fs_info; 1319 struct btrfs_root *log_root; 1320 struct btrfs_inode_item *inode_item; 1321 1322 log_root = alloc_log_tree(trans, fs_info); 1323 if (IS_ERR(log_root)) 1324 return PTR_ERR(log_root); 1325 1326 log_root->last_trans = trans->transid; 1327 log_root->root_key.offset = root->root_key.objectid; 1328 1329 inode_item = &log_root->root_item.inode; 1330 btrfs_set_stack_inode_generation(inode_item, 1); 1331 btrfs_set_stack_inode_size(inode_item, 3); 1332 btrfs_set_stack_inode_nlink(inode_item, 1); 1333 btrfs_set_stack_inode_nbytes(inode_item, 1334 fs_info->nodesize); 1335 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1336 1337 btrfs_set_root_node(&log_root->root_item, log_root->node); 1338 1339 WARN_ON(root->log_root); 1340 root->log_root = log_root; 1341 root->log_transid = 0; 1342 root->log_transid_committed = -1; 1343 root->last_log_commit = 0; 1344 return 0; 1345 } 1346 1347 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1348 struct btrfs_key *key) 1349 { 1350 struct btrfs_root *root; 1351 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1352 struct btrfs_path *path; 1353 u64 generation; 1354 int ret; 1355 int level; 1356 1357 path = btrfs_alloc_path(); 1358 if (!path) 1359 return ERR_PTR(-ENOMEM); 1360 1361 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1362 if (!root) { 1363 ret = -ENOMEM; 1364 goto alloc_fail; 1365 } 1366 1367 ret = btrfs_find_root(tree_root, key, path, 1368 &root->root_item, &root->root_key); 1369 if (ret) { 1370 if (ret > 0) 1371 ret = -ENOENT; 1372 goto find_fail; 1373 } 1374 1375 generation = btrfs_root_generation(&root->root_item); 1376 level = btrfs_root_level(&root->root_item); 1377 root->node = read_tree_block(fs_info, 1378 btrfs_root_bytenr(&root->root_item), 1379 generation, level, NULL); 1380 if (IS_ERR(root->node)) { 1381 ret = PTR_ERR(root->node); 1382 root->node = NULL; 1383 goto find_fail; 1384 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1385 ret = -EIO; 1386 goto find_fail; 1387 } 1388 root->commit_root = btrfs_root_node(root); 1389 out: 1390 btrfs_free_path(path); 1391 return root; 1392 1393 find_fail: 1394 btrfs_put_root(root); 1395 alloc_fail: 1396 root = ERR_PTR(ret); 1397 goto out; 1398 } 1399 1400 static int btrfs_init_fs_root(struct btrfs_root *root) 1401 { 1402 int ret; 1403 unsigned int nofs_flag; 1404 1405 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1406 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1407 GFP_NOFS); 1408 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1409 ret = -ENOMEM; 1410 goto fail; 1411 } 1412 1413 /* 1414 * We might be called under a transaction (e.g. indirect backref 1415 * resolution) which could deadlock if it triggers memory reclaim 1416 */ 1417 nofs_flag = memalloc_nofs_save(); 1418 ret = btrfs_drew_lock_init(&root->snapshot_lock); 1419 memalloc_nofs_restore(nofs_flag); 1420 if (ret) 1421 goto fail; 1422 1423 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1424 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1425 btrfs_check_and_init_root_item(&root->root_item); 1426 } 1427 1428 btrfs_init_free_ino_ctl(root); 1429 spin_lock_init(&root->ino_cache_lock); 1430 init_waitqueue_head(&root->ino_cache_wait); 1431 1432 ret = get_anon_bdev(&root->anon_dev); 1433 if (ret) 1434 goto fail; 1435 1436 mutex_lock(&root->objectid_mutex); 1437 ret = btrfs_find_highest_objectid(root, 1438 &root->highest_objectid); 1439 if (ret) { 1440 mutex_unlock(&root->objectid_mutex); 1441 goto fail; 1442 } 1443 1444 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1445 1446 mutex_unlock(&root->objectid_mutex); 1447 1448 return 0; 1449 fail: 1450 /* The caller is responsible to call btrfs_free_fs_root */ 1451 return ret; 1452 } 1453 1454 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1455 u64 root_id) 1456 { 1457 struct btrfs_root *root; 1458 1459 spin_lock(&fs_info->fs_roots_radix_lock); 1460 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1461 (unsigned long)root_id); 1462 if (root) 1463 root = btrfs_grab_root(root); 1464 spin_unlock(&fs_info->fs_roots_radix_lock); 1465 return root; 1466 } 1467 1468 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1469 struct btrfs_root *root) 1470 { 1471 int ret; 1472 1473 ret = radix_tree_preload(GFP_NOFS); 1474 if (ret) 1475 return ret; 1476 1477 spin_lock(&fs_info->fs_roots_radix_lock); 1478 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1479 (unsigned long)root->root_key.objectid, 1480 root); 1481 if (ret == 0) { 1482 btrfs_grab_root(root); 1483 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1484 } 1485 spin_unlock(&fs_info->fs_roots_radix_lock); 1486 radix_tree_preload_end(); 1487 1488 return ret; 1489 } 1490 1491 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1492 { 1493 #ifdef CONFIG_BTRFS_DEBUG 1494 struct btrfs_root *root; 1495 1496 while (!list_empty(&fs_info->allocated_roots)) { 1497 root = list_first_entry(&fs_info->allocated_roots, 1498 struct btrfs_root, leak_list); 1499 btrfs_err(fs_info, "leaked root %llu-%llu refcount %d", 1500 root->root_key.objectid, root->root_key.offset, 1501 refcount_read(&root->refs)); 1502 while (refcount_read(&root->refs) > 1) 1503 btrfs_put_root(root); 1504 btrfs_put_root(root); 1505 } 1506 #endif 1507 } 1508 1509 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1510 { 1511 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1512 percpu_counter_destroy(&fs_info->delalloc_bytes); 1513 percpu_counter_destroy(&fs_info->dio_bytes); 1514 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1515 btrfs_free_csum_hash(fs_info); 1516 btrfs_free_stripe_hash_table(fs_info); 1517 btrfs_free_ref_cache(fs_info); 1518 kfree(fs_info->balance_ctl); 1519 kfree(fs_info->delayed_root); 1520 btrfs_put_root(fs_info->extent_root); 1521 btrfs_put_root(fs_info->tree_root); 1522 btrfs_put_root(fs_info->chunk_root); 1523 btrfs_put_root(fs_info->dev_root); 1524 btrfs_put_root(fs_info->csum_root); 1525 btrfs_put_root(fs_info->quota_root); 1526 btrfs_put_root(fs_info->uuid_root); 1527 btrfs_put_root(fs_info->free_space_root); 1528 btrfs_put_root(fs_info->fs_root); 1529 btrfs_check_leaked_roots(fs_info); 1530 btrfs_extent_buffer_leak_debug_check(fs_info); 1531 kfree(fs_info->super_copy); 1532 kfree(fs_info->super_for_commit); 1533 kvfree(fs_info); 1534 } 1535 1536 1537 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1538 struct btrfs_key *location, 1539 bool check_ref) 1540 { 1541 struct btrfs_root *root; 1542 struct btrfs_path *path; 1543 struct btrfs_key key; 1544 int ret; 1545 1546 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1547 return btrfs_grab_root(fs_info->tree_root); 1548 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1549 return btrfs_grab_root(fs_info->extent_root); 1550 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1551 return btrfs_grab_root(fs_info->chunk_root); 1552 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1553 return btrfs_grab_root(fs_info->dev_root); 1554 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1555 return btrfs_grab_root(fs_info->csum_root); 1556 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1557 return btrfs_grab_root(fs_info->quota_root) ? 1558 fs_info->quota_root : ERR_PTR(-ENOENT); 1559 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1560 return btrfs_grab_root(fs_info->uuid_root) ? 1561 fs_info->uuid_root : ERR_PTR(-ENOENT); 1562 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1563 return btrfs_grab_root(fs_info->free_space_root) ? 1564 fs_info->free_space_root : ERR_PTR(-ENOENT); 1565 again: 1566 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1567 if (root) { 1568 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1569 btrfs_put_root(root); 1570 return ERR_PTR(-ENOENT); 1571 } 1572 return root; 1573 } 1574 1575 root = btrfs_read_tree_root(fs_info->tree_root, location); 1576 if (IS_ERR(root)) 1577 return root; 1578 1579 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1580 ret = -ENOENT; 1581 goto fail; 1582 } 1583 1584 ret = btrfs_init_fs_root(root); 1585 if (ret) 1586 goto fail; 1587 1588 path = btrfs_alloc_path(); 1589 if (!path) { 1590 ret = -ENOMEM; 1591 goto fail; 1592 } 1593 key.objectid = BTRFS_ORPHAN_OBJECTID; 1594 key.type = BTRFS_ORPHAN_ITEM_KEY; 1595 key.offset = location->objectid; 1596 1597 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1598 btrfs_free_path(path); 1599 if (ret < 0) 1600 goto fail; 1601 if (ret == 0) 1602 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1603 1604 ret = btrfs_insert_fs_root(fs_info, root); 1605 if (ret) { 1606 btrfs_put_root(root); 1607 if (ret == -EEXIST) 1608 goto again; 1609 goto fail; 1610 } 1611 return root; 1612 fail: 1613 btrfs_put_root(root); 1614 return ERR_PTR(ret); 1615 } 1616 1617 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1618 { 1619 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1620 int ret = 0; 1621 struct btrfs_device *device; 1622 struct backing_dev_info *bdi; 1623 1624 rcu_read_lock(); 1625 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1626 if (!device->bdev) 1627 continue; 1628 bdi = device->bdev->bd_bdi; 1629 if (bdi_congested(bdi, bdi_bits)) { 1630 ret = 1; 1631 break; 1632 } 1633 } 1634 rcu_read_unlock(); 1635 return ret; 1636 } 1637 1638 /* 1639 * called by the kthread helper functions to finally call the bio end_io 1640 * functions. This is where read checksum verification actually happens 1641 */ 1642 static void end_workqueue_fn(struct btrfs_work *work) 1643 { 1644 struct bio *bio; 1645 struct btrfs_end_io_wq *end_io_wq; 1646 1647 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1648 bio = end_io_wq->bio; 1649 1650 bio->bi_status = end_io_wq->status; 1651 bio->bi_private = end_io_wq->private; 1652 bio->bi_end_io = end_io_wq->end_io; 1653 bio_endio(bio); 1654 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1655 } 1656 1657 static int cleaner_kthread(void *arg) 1658 { 1659 struct btrfs_root *root = arg; 1660 struct btrfs_fs_info *fs_info = root->fs_info; 1661 int again; 1662 1663 while (1) { 1664 again = 0; 1665 1666 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1667 1668 /* Make the cleaner go to sleep early. */ 1669 if (btrfs_need_cleaner_sleep(fs_info)) 1670 goto sleep; 1671 1672 /* 1673 * Do not do anything if we might cause open_ctree() to block 1674 * before we have finished mounting the filesystem. 1675 */ 1676 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1677 goto sleep; 1678 1679 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1680 goto sleep; 1681 1682 /* 1683 * Avoid the problem that we change the status of the fs 1684 * during the above check and trylock. 1685 */ 1686 if (btrfs_need_cleaner_sleep(fs_info)) { 1687 mutex_unlock(&fs_info->cleaner_mutex); 1688 goto sleep; 1689 } 1690 1691 btrfs_run_delayed_iputs(fs_info); 1692 1693 again = btrfs_clean_one_deleted_snapshot(root); 1694 mutex_unlock(&fs_info->cleaner_mutex); 1695 1696 /* 1697 * The defragger has dealt with the R/O remount and umount, 1698 * needn't do anything special here. 1699 */ 1700 btrfs_run_defrag_inodes(fs_info); 1701 1702 /* 1703 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1704 * with relocation (btrfs_relocate_chunk) and relocation 1705 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1706 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1707 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1708 * unused block groups. 1709 */ 1710 btrfs_delete_unused_bgs(fs_info); 1711 sleep: 1712 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1713 if (kthread_should_park()) 1714 kthread_parkme(); 1715 if (kthread_should_stop()) 1716 return 0; 1717 if (!again) { 1718 set_current_state(TASK_INTERRUPTIBLE); 1719 schedule(); 1720 __set_current_state(TASK_RUNNING); 1721 } 1722 } 1723 } 1724 1725 static int transaction_kthread(void *arg) 1726 { 1727 struct btrfs_root *root = arg; 1728 struct btrfs_fs_info *fs_info = root->fs_info; 1729 struct btrfs_trans_handle *trans; 1730 struct btrfs_transaction *cur; 1731 u64 transid; 1732 time64_t now; 1733 unsigned long delay; 1734 bool cannot_commit; 1735 1736 do { 1737 cannot_commit = false; 1738 delay = HZ * fs_info->commit_interval; 1739 mutex_lock(&fs_info->transaction_kthread_mutex); 1740 1741 spin_lock(&fs_info->trans_lock); 1742 cur = fs_info->running_transaction; 1743 if (!cur) { 1744 spin_unlock(&fs_info->trans_lock); 1745 goto sleep; 1746 } 1747 1748 now = ktime_get_seconds(); 1749 if (cur->state < TRANS_STATE_COMMIT_START && 1750 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) && 1751 (now < cur->start_time || 1752 now - cur->start_time < fs_info->commit_interval)) { 1753 spin_unlock(&fs_info->trans_lock); 1754 delay = HZ * 5; 1755 goto sleep; 1756 } 1757 transid = cur->transid; 1758 spin_unlock(&fs_info->trans_lock); 1759 1760 /* If the file system is aborted, this will always fail. */ 1761 trans = btrfs_attach_transaction(root); 1762 if (IS_ERR(trans)) { 1763 if (PTR_ERR(trans) != -ENOENT) 1764 cannot_commit = true; 1765 goto sleep; 1766 } 1767 if (transid == trans->transid) { 1768 btrfs_commit_transaction(trans); 1769 } else { 1770 btrfs_end_transaction(trans); 1771 } 1772 sleep: 1773 wake_up_process(fs_info->cleaner_kthread); 1774 mutex_unlock(&fs_info->transaction_kthread_mutex); 1775 1776 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1777 &fs_info->fs_state))) 1778 btrfs_cleanup_transaction(fs_info); 1779 if (!kthread_should_stop() && 1780 (!btrfs_transaction_blocked(fs_info) || 1781 cannot_commit)) 1782 schedule_timeout_interruptible(delay); 1783 } while (!kthread_should_stop()); 1784 return 0; 1785 } 1786 1787 /* 1788 * This will find the highest generation in the array of root backups. The 1789 * index of the highest array is returned, or -EINVAL if we can't find 1790 * anything. 1791 * 1792 * We check to make sure the array is valid by comparing the 1793 * generation of the latest root in the array with the generation 1794 * in the super block. If they don't match we pitch it. 1795 */ 1796 static int find_newest_super_backup(struct btrfs_fs_info *info) 1797 { 1798 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1799 u64 cur; 1800 struct btrfs_root_backup *root_backup; 1801 int i; 1802 1803 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1804 root_backup = info->super_copy->super_roots + i; 1805 cur = btrfs_backup_tree_root_gen(root_backup); 1806 if (cur == newest_gen) 1807 return i; 1808 } 1809 1810 return -EINVAL; 1811 } 1812 1813 /* 1814 * copy all the root pointers into the super backup array. 1815 * this will bump the backup pointer by one when it is 1816 * done 1817 */ 1818 static void backup_super_roots(struct btrfs_fs_info *info) 1819 { 1820 const int next_backup = info->backup_root_index; 1821 struct btrfs_root_backup *root_backup; 1822 1823 root_backup = info->super_for_commit->super_roots + next_backup; 1824 1825 /* 1826 * make sure all of our padding and empty slots get zero filled 1827 * regardless of which ones we use today 1828 */ 1829 memset(root_backup, 0, sizeof(*root_backup)); 1830 1831 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1832 1833 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1834 btrfs_set_backup_tree_root_gen(root_backup, 1835 btrfs_header_generation(info->tree_root->node)); 1836 1837 btrfs_set_backup_tree_root_level(root_backup, 1838 btrfs_header_level(info->tree_root->node)); 1839 1840 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1841 btrfs_set_backup_chunk_root_gen(root_backup, 1842 btrfs_header_generation(info->chunk_root->node)); 1843 btrfs_set_backup_chunk_root_level(root_backup, 1844 btrfs_header_level(info->chunk_root->node)); 1845 1846 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1847 btrfs_set_backup_extent_root_gen(root_backup, 1848 btrfs_header_generation(info->extent_root->node)); 1849 btrfs_set_backup_extent_root_level(root_backup, 1850 btrfs_header_level(info->extent_root->node)); 1851 1852 /* 1853 * we might commit during log recovery, which happens before we set 1854 * the fs_root. Make sure it is valid before we fill it in. 1855 */ 1856 if (info->fs_root && info->fs_root->node) { 1857 btrfs_set_backup_fs_root(root_backup, 1858 info->fs_root->node->start); 1859 btrfs_set_backup_fs_root_gen(root_backup, 1860 btrfs_header_generation(info->fs_root->node)); 1861 btrfs_set_backup_fs_root_level(root_backup, 1862 btrfs_header_level(info->fs_root->node)); 1863 } 1864 1865 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1866 btrfs_set_backup_dev_root_gen(root_backup, 1867 btrfs_header_generation(info->dev_root->node)); 1868 btrfs_set_backup_dev_root_level(root_backup, 1869 btrfs_header_level(info->dev_root->node)); 1870 1871 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1872 btrfs_set_backup_csum_root_gen(root_backup, 1873 btrfs_header_generation(info->csum_root->node)); 1874 btrfs_set_backup_csum_root_level(root_backup, 1875 btrfs_header_level(info->csum_root->node)); 1876 1877 btrfs_set_backup_total_bytes(root_backup, 1878 btrfs_super_total_bytes(info->super_copy)); 1879 btrfs_set_backup_bytes_used(root_backup, 1880 btrfs_super_bytes_used(info->super_copy)); 1881 btrfs_set_backup_num_devices(root_backup, 1882 btrfs_super_num_devices(info->super_copy)); 1883 1884 /* 1885 * if we don't copy this out to the super_copy, it won't get remembered 1886 * for the next commit 1887 */ 1888 memcpy(&info->super_copy->super_roots, 1889 &info->super_for_commit->super_roots, 1890 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1891 } 1892 1893 /* 1894 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 1895 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1896 * 1897 * fs_info - filesystem whose backup roots need to be read 1898 * priority - priority of backup root required 1899 * 1900 * Returns backup root index on success and -EINVAL otherwise. 1901 */ 1902 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1903 { 1904 int backup_index = find_newest_super_backup(fs_info); 1905 struct btrfs_super_block *super = fs_info->super_copy; 1906 struct btrfs_root_backup *root_backup; 1907 1908 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1909 if (priority == 0) 1910 return backup_index; 1911 1912 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1913 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1914 } else { 1915 return -EINVAL; 1916 } 1917 1918 root_backup = super->super_roots + backup_index; 1919 1920 btrfs_set_super_generation(super, 1921 btrfs_backup_tree_root_gen(root_backup)); 1922 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1923 btrfs_set_super_root_level(super, 1924 btrfs_backup_tree_root_level(root_backup)); 1925 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1926 1927 /* 1928 * Fixme: the total bytes and num_devices need to match or we should 1929 * need a fsck 1930 */ 1931 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1932 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1933 1934 return backup_index; 1935 } 1936 1937 /* helper to cleanup workers */ 1938 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1939 { 1940 btrfs_destroy_workqueue(fs_info->fixup_workers); 1941 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1942 btrfs_destroy_workqueue(fs_info->workers); 1943 btrfs_destroy_workqueue(fs_info->endio_workers); 1944 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 1945 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 1946 btrfs_destroy_workqueue(fs_info->rmw_workers); 1947 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1948 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1949 btrfs_destroy_workqueue(fs_info->delayed_workers); 1950 btrfs_destroy_workqueue(fs_info->caching_workers); 1951 btrfs_destroy_workqueue(fs_info->readahead_workers); 1952 btrfs_destroy_workqueue(fs_info->flush_workers); 1953 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1954 if (fs_info->discard_ctl.discard_workers) 1955 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1956 /* 1957 * Now that all other work queues are destroyed, we can safely destroy 1958 * the queues used for metadata I/O, since tasks from those other work 1959 * queues can do metadata I/O operations. 1960 */ 1961 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 1962 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 1963 } 1964 1965 static void free_root_extent_buffers(struct btrfs_root *root) 1966 { 1967 if (root) { 1968 free_extent_buffer(root->node); 1969 free_extent_buffer(root->commit_root); 1970 root->node = NULL; 1971 root->commit_root = NULL; 1972 } 1973 } 1974 1975 /* helper to cleanup tree roots */ 1976 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1977 { 1978 free_root_extent_buffers(info->tree_root); 1979 1980 free_root_extent_buffers(info->dev_root); 1981 free_root_extent_buffers(info->extent_root); 1982 free_root_extent_buffers(info->csum_root); 1983 free_root_extent_buffers(info->quota_root); 1984 free_root_extent_buffers(info->uuid_root); 1985 free_root_extent_buffers(info->fs_root); 1986 if (free_chunk_root) 1987 free_root_extent_buffers(info->chunk_root); 1988 free_root_extent_buffers(info->free_space_root); 1989 } 1990 1991 void btrfs_put_root(struct btrfs_root *root) 1992 { 1993 if (!root) 1994 return; 1995 1996 if (refcount_dec_and_test(&root->refs)) { 1997 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 1998 if (root->anon_dev) 1999 free_anon_bdev(root->anon_dev); 2000 btrfs_drew_lock_destroy(&root->snapshot_lock); 2001 free_extent_buffer(root->node); 2002 free_extent_buffer(root->commit_root); 2003 kfree(root->free_ino_ctl); 2004 kfree(root->free_ino_pinned); 2005 #ifdef CONFIG_BTRFS_DEBUG 2006 spin_lock(&root->fs_info->fs_roots_radix_lock); 2007 list_del_init(&root->leak_list); 2008 spin_unlock(&root->fs_info->fs_roots_radix_lock); 2009 #endif 2010 kfree(root); 2011 } 2012 } 2013 2014 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2015 { 2016 int ret; 2017 struct btrfs_root *gang[8]; 2018 int i; 2019 2020 while (!list_empty(&fs_info->dead_roots)) { 2021 gang[0] = list_entry(fs_info->dead_roots.next, 2022 struct btrfs_root, root_list); 2023 list_del(&gang[0]->root_list); 2024 2025 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2026 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2027 btrfs_put_root(gang[0]); 2028 } 2029 2030 while (1) { 2031 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2032 (void **)gang, 0, 2033 ARRAY_SIZE(gang)); 2034 if (!ret) 2035 break; 2036 for (i = 0; i < ret; i++) 2037 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2038 } 2039 } 2040 2041 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2042 { 2043 mutex_init(&fs_info->scrub_lock); 2044 atomic_set(&fs_info->scrubs_running, 0); 2045 atomic_set(&fs_info->scrub_pause_req, 0); 2046 atomic_set(&fs_info->scrubs_paused, 0); 2047 atomic_set(&fs_info->scrub_cancel_req, 0); 2048 init_waitqueue_head(&fs_info->scrub_pause_wait); 2049 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2050 } 2051 2052 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2053 { 2054 spin_lock_init(&fs_info->balance_lock); 2055 mutex_init(&fs_info->balance_mutex); 2056 atomic_set(&fs_info->balance_pause_req, 0); 2057 atomic_set(&fs_info->balance_cancel_req, 0); 2058 fs_info->balance_ctl = NULL; 2059 init_waitqueue_head(&fs_info->balance_wait_q); 2060 } 2061 2062 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2063 { 2064 struct inode *inode = fs_info->btree_inode; 2065 2066 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2067 set_nlink(inode, 1); 2068 /* 2069 * we set the i_size on the btree inode to the max possible int. 2070 * the real end of the address space is determined by all of 2071 * the devices in the system 2072 */ 2073 inode->i_size = OFFSET_MAX; 2074 inode->i_mapping->a_ops = &btree_aops; 2075 2076 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2077 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2078 IO_TREE_INODE_IO, inode); 2079 BTRFS_I(inode)->io_tree.track_uptodate = false; 2080 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2081 2082 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2083 2084 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2085 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2086 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2087 btrfs_insert_inode_hash(inode); 2088 } 2089 2090 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2091 { 2092 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2093 init_rwsem(&fs_info->dev_replace.rwsem); 2094 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2095 } 2096 2097 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2098 { 2099 spin_lock_init(&fs_info->qgroup_lock); 2100 mutex_init(&fs_info->qgroup_ioctl_lock); 2101 fs_info->qgroup_tree = RB_ROOT; 2102 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2103 fs_info->qgroup_seq = 1; 2104 fs_info->qgroup_ulist = NULL; 2105 fs_info->qgroup_rescan_running = false; 2106 mutex_init(&fs_info->qgroup_rescan_lock); 2107 } 2108 2109 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2110 struct btrfs_fs_devices *fs_devices) 2111 { 2112 u32 max_active = fs_info->thread_pool_size; 2113 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2114 2115 fs_info->workers = 2116 btrfs_alloc_workqueue(fs_info, "worker", 2117 flags | WQ_HIGHPRI, max_active, 16); 2118 2119 fs_info->delalloc_workers = 2120 btrfs_alloc_workqueue(fs_info, "delalloc", 2121 flags, max_active, 2); 2122 2123 fs_info->flush_workers = 2124 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2125 flags, max_active, 0); 2126 2127 fs_info->caching_workers = 2128 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2129 2130 fs_info->fixup_workers = 2131 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2132 2133 /* 2134 * endios are largely parallel and should have a very 2135 * low idle thresh 2136 */ 2137 fs_info->endio_workers = 2138 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2139 fs_info->endio_meta_workers = 2140 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2141 max_active, 4); 2142 fs_info->endio_meta_write_workers = 2143 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2144 max_active, 2); 2145 fs_info->endio_raid56_workers = 2146 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2147 max_active, 4); 2148 fs_info->endio_repair_workers = 2149 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2150 fs_info->rmw_workers = 2151 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2152 fs_info->endio_write_workers = 2153 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2154 max_active, 2); 2155 fs_info->endio_freespace_worker = 2156 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2157 max_active, 0); 2158 fs_info->delayed_workers = 2159 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2160 max_active, 0); 2161 fs_info->readahead_workers = 2162 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2163 max_active, 2); 2164 fs_info->qgroup_rescan_workers = 2165 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2166 fs_info->discard_ctl.discard_workers = 2167 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2168 2169 if (!(fs_info->workers && fs_info->delalloc_workers && 2170 fs_info->flush_workers && 2171 fs_info->endio_workers && fs_info->endio_meta_workers && 2172 fs_info->endio_meta_write_workers && 2173 fs_info->endio_repair_workers && 2174 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2175 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2176 fs_info->caching_workers && fs_info->readahead_workers && 2177 fs_info->fixup_workers && fs_info->delayed_workers && 2178 fs_info->qgroup_rescan_workers && 2179 fs_info->discard_ctl.discard_workers)) { 2180 return -ENOMEM; 2181 } 2182 2183 return 0; 2184 } 2185 2186 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2187 { 2188 struct crypto_shash *csum_shash; 2189 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2190 2191 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2192 2193 if (IS_ERR(csum_shash)) { 2194 btrfs_err(fs_info, "error allocating %s hash for checksum", 2195 csum_driver); 2196 return PTR_ERR(csum_shash); 2197 } 2198 2199 fs_info->csum_shash = csum_shash; 2200 2201 return 0; 2202 } 2203 2204 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2205 struct btrfs_fs_devices *fs_devices) 2206 { 2207 int ret; 2208 struct btrfs_root *log_tree_root; 2209 struct btrfs_super_block *disk_super = fs_info->super_copy; 2210 u64 bytenr = btrfs_super_log_root(disk_super); 2211 int level = btrfs_super_log_root_level(disk_super); 2212 2213 if (fs_devices->rw_devices == 0) { 2214 btrfs_warn(fs_info, "log replay required on RO media"); 2215 return -EIO; 2216 } 2217 2218 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2219 GFP_KERNEL); 2220 if (!log_tree_root) 2221 return -ENOMEM; 2222 2223 log_tree_root->node = read_tree_block(fs_info, bytenr, 2224 fs_info->generation + 1, 2225 level, NULL); 2226 if (IS_ERR(log_tree_root->node)) { 2227 btrfs_warn(fs_info, "failed to read log tree"); 2228 ret = PTR_ERR(log_tree_root->node); 2229 log_tree_root->node = NULL; 2230 btrfs_put_root(log_tree_root); 2231 return ret; 2232 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2233 btrfs_err(fs_info, "failed to read log tree"); 2234 btrfs_put_root(log_tree_root); 2235 return -EIO; 2236 } 2237 /* returns with log_tree_root freed on success */ 2238 ret = btrfs_recover_log_trees(log_tree_root); 2239 if (ret) { 2240 btrfs_handle_fs_error(fs_info, ret, 2241 "Failed to recover log tree"); 2242 btrfs_put_root(log_tree_root); 2243 return ret; 2244 } 2245 2246 if (sb_rdonly(fs_info->sb)) { 2247 ret = btrfs_commit_super(fs_info); 2248 if (ret) 2249 return ret; 2250 } 2251 2252 return 0; 2253 } 2254 2255 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2256 { 2257 struct btrfs_root *tree_root = fs_info->tree_root; 2258 struct btrfs_root *root; 2259 struct btrfs_key location; 2260 int ret; 2261 2262 BUG_ON(!fs_info->tree_root); 2263 2264 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2265 location.type = BTRFS_ROOT_ITEM_KEY; 2266 location.offset = 0; 2267 2268 root = btrfs_read_tree_root(tree_root, &location); 2269 if (IS_ERR(root)) { 2270 ret = PTR_ERR(root); 2271 goto out; 2272 } 2273 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2274 fs_info->extent_root = root; 2275 2276 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2277 root = btrfs_read_tree_root(tree_root, &location); 2278 if (IS_ERR(root)) { 2279 ret = PTR_ERR(root); 2280 goto out; 2281 } 2282 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2283 fs_info->dev_root = root; 2284 btrfs_init_devices_late(fs_info); 2285 2286 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2287 root = btrfs_read_tree_root(tree_root, &location); 2288 if (IS_ERR(root)) { 2289 ret = PTR_ERR(root); 2290 goto out; 2291 } 2292 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2293 fs_info->csum_root = root; 2294 2295 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2296 root = btrfs_read_tree_root(tree_root, &location); 2297 if (!IS_ERR(root)) { 2298 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2299 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2300 fs_info->quota_root = root; 2301 } 2302 2303 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2304 root = btrfs_read_tree_root(tree_root, &location); 2305 if (IS_ERR(root)) { 2306 ret = PTR_ERR(root); 2307 if (ret != -ENOENT) 2308 goto out; 2309 } else { 2310 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2311 fs_info->uuid_root = root; 2312 } 2313 2314 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2315 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2316 root = btrfs_read_tree_root(tree_root, &location); 2317 if (IS_ERR(root)) { 2318 ret = PTR_ERR(root); 2319 goto out; 2320 } 2321 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2322 fs_info->free_space_root = root; 2323 } 2324 2325 return 0; 2326 out: 2327 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2328 location.objectid, ret); 2329 return ret; 2330 } 2331 2332 /* 2333 * Real super block validation 2334 * NOTE: super csum type and incompat features will not be checked here. 2335 * 2336 * @sb: super block to check 2337 * @mirror_num: the super block number to check its bytenr: 2338 * 0 the primary (1st) sb 2339 * 1, 2 2nd and 3rd backup copy 2340 * -1 skip bytenr check 2341 */ 2342 static int validate_super(struct btrfs_fs_info *fs_info, 2343 struct btrfs_super_block *sb, int mirror_num) 2344 { 2345 u64 nodesize = btrfs_super_nodesize(sb); 2346 u64 sectorsize = btrfs_super_sectorsize(sb); 2347 int ret = 0; 2348 2349 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2350 btrfs_err(fs_info, "no valid FS found"); 2351 ret = -EINVAL; 2352 } 2353 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2354 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2355 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2356 ret = -EINVAL; 2357 } 2358 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2359 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2360 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2361 ret = -EINVAL; 2362 } 2363 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2364 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2365 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2366 ret = -EINVAL; 2367 } 2368 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2369 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2370 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2371 ret = -EINVAL; 2372 } 2373 2374 /* 2375 * Check sectorsize and nodesize first, other check will need it. 2376 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2377 */ 2378 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2379 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2380 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2381 ret = -EINVAL; 2382 } 2383 /* Only PAGE SIZE is supported yet */ 2384 if (sectorsize != PAGE_SIZE) { 2385 btrfs_err(fs_info, 2386 "sectorsize %llu not supported yet, only support %lu", 2387 sectorsize, PAGE_SIZE); 2388 ret = -EINVAL; 2389 } 2390 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2391 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2392 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2393 ret = -EINVAL; 2394 } 2395 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2396 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2397 le32_to_cpu(sb->__unused_leafsize), nodesize); 2398 ret = -EINVAL; 2399 } 2400 2401 /* Root alignment check */ 2402 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2403 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2404 btrfs_super_root(sb)); 2405 ret = -EINVAL; 2406 } 2407 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2408 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2409 btrfs_super_chunk_root(sb)); 2410 ret = -EINVAL; 2411 } 2412 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2413 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2414 btrfs_super_log_root(sb)); 2415 ret = -EINVAL; 2416 } 2417 2418 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2419 BTRFS_FSID_SIZE) != 0) { 2420 btrfs_err(fs_info, 2421 "dev_item UUID does not match metadata fsid: %pU != %pU", 2422 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2423 ret = -EINVAL; 2424 } 2425 2426 /* 2427 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2428 * done later 2429 */ 2430 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2431 btrfs_err(fs_info, "bytes_used is too small %llu", 2432 btrfs_super_bytes_used(sb)); 2433 ret = -EINVAL; 2434 } 2435 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2436 btrfs_err(fs_info, "invalid stripesize %u", 2437 btrfs_super_stripesize(sb)); 2438 ret = -EINVAL; 2439 } 2440 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2441 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2442 btrfs_super_num_devices(sb)); 2443 if (btrfs_super_num_devices(sb) == 0) { 2444 btrfs_err(fs_info, "number of devices is 0"); 2445 ret = -EINVAL; 2446 } 2447 2448 if (mirror_num >= 0 && 2449 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2450 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2451 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2452 ret = -EINVAL; 2453 } 2454 2455 /* 2456 * Obvious sys_chunk_array corruptions, it must hold at least one key 2457 * and one chunk 2458 */ 2459 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2460 btrfs_err(fs_info, "system chunk array too big %u > %u", 2461 btrfs_super_sys_array_size(sb), 2462 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2463 ret = -EINVAL; 2464 } 2465 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2466 + sizeof(struct btrfs_chunk)) { 2467 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2468 btrfs_super_sys_array_size(sb), 2469 sizeof(struct btrfs_disk_key) 2470 + sizeof(struct btrfs_chunk)); 2471 ret = -EINVAL; 2472 } 2473 2474 /* 2475 * The generation is a global counter, we'll trust it more than the others 2476 * but it's still possible that it's the one that's wrong. 2477 */ 2478 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2479 btrfs_warn(fs_info, 2480 "suspicious: generation < chunk_root_generation: %llu < %llu", 2481 btrfs_super_generation(sb), 2482 btrfs_super_chunk_root_generation(sb)); 2483 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2484 && btrfs_super_cache_generation(sb) != (u64)-1) 2485 btrfs_warn(fs_info, 2486 "suspicious: generation < cache_generation: %llu < %llu", 2487 btrfs_super_generation(sb), 2488 btrfs_super_cache_generation(sb)); 2489 2490 return ret; 2491 } 2492 2493 /* 2494 * Validation of super block at mount time. 2495 * Some checks already done early at mount time, like csum type and incompat 2496 * flags will be skipped. 2497 */ 2498 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2499 { 2500 return validate_super(fs_info, fs_info->super_copy, 0); 2501 } 2502 2503 /* 2504 * Validation of super block at write time. 2505 * Some checks like bytenr check will be skipped as their values will be 2506 * overwritten soon. 2507 * Extra checks like csum type and incompat flags will be done here. 2508 */ 2509 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2510 struct btrfs_super_block *sb) 2511 { 2512 int ret; 2513 2514 ret = validate_super(fs_info, sb, -1); 2515 if (ret < 0) 2516 goto out; 2517 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2518 ret = -EUCLEAN; 2519 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2520 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2521 goto out; 2522 } 2523 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2524 ret = -EUCLEAN; 2525 btrfs_err(fs_info, 2526 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2527 btrfs_super_incompat_flags(sb), 2528 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2529 goto out; 2530 } 2531 out: 2532 if (ret < 0) 2533 btrfs_err(fs_info, 2534 "super block corruption detected before writing it to disk"); 2535 return ret; 2536 } 2537 2538 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2539 { 2540 int backup_index = find_newest_super_backup(fs_info); 2541 struct btrfs_super_block *sb = fs_info->super_copy; 2542 struct btrfs_root *tree_root = fs_info->tree_root; 2543 bool handle_error = false; 2544 int ret = 0; 2545 int i; 2546 2547 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2548 u64 generation; 2549 int level; 2550 2551 if (handle_error) { 2552 if (!IS_ERR(tree_root->node)) 2553 free_extent_buffer(tree_root->node); 2554 tree_root->node = NULL; 2555 2556 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2557 break; 2558 2559 free_root_pointers(fs_info, 0); 2560 2561 /* 2562 * Don't use the log in recovery mode, it won't be 2563 * valid 2564 */ 2565 btrfs_set_super_log_root(sb, 0); 2566 2567 /* We can't trust the free space cache either */ 2568 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2569 2570 ret = read_backup_root(fs_info, i); 2571 backup_index = ret; 2572 if (ret < 0) 2573 return ret; 2574 } 2575 generation = btrfs_super_generation(sb); 2576 level = btrfs_super_root_level(sb); 2577 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb), 2578 generation, level, NULL); 2579 if (IS_ERR(tree_root->node) || 2580 !extent_buffer_uptodate(tree_root->node)) { 2581 handle_error = true; 2582 2583 if (IS_ERR(tree_root->node)) 2584 ret = PTR_ERR(tree_root->node); 2585 else if (!extent_buffer_uptodate(tree_root->node)) 2586 ret = -EUCLEAN; 2587 2588 btrfs_warn(fs_info, "failed to read tree root"); 2589 continue; 2590 } 2591 2592 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2593 tree_root->commit_root = btrfs_root_node(tree_root); 2594 btrfs_set_root_refs(&tree_root->root_item, 1); 2595 2596 /* 2597 * No need to hold btrfs_root::objectid_mutex since the fs 2598 * hasn't been fully initialised and we are the only user 2599 */ 2600 ret = btrfs_find_highest_objectid(tree_root, 2601 &tree_root->highest_objectid); 2602 if (ret < 0) { 2603 handle_error = true; 2604 continue; 2605 } 2606 2607 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2608 2609 ret = btrfs_read_roots(fs_info); 2610 if (ret < 0) { 2611 handle_error = true; 2612 continue; 2613 } 2614 2615 /* All successful */ 2616 fs_info->generation = generation; 2617 fs_info->last_trans_committed = generation; 2618 2619 /* Always begin writing backup roots after the one being used */ 2620 if (backup_index < 0) { 2621 fs_info->backup_root_index = 0; 2622 } else { 2623 fs_info->backup_root_index = backup_index + 1; 2624 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2625 } 2626 break; 2627 } 2628 2629 return ret; 2630 } 2631 2632 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2633 { 2634 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2635 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2636 INIT_LIST_HEAD(&fs_info->trans_list); 2637 INIT_LIST_HEAD(&fs_info->dead_roots); 2638 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2639 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2640 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2641 spin_lock_init(&fs_info->delalloc_root_lock); 2642 spin_lock_init(&fs_info->trans_lock); 2643 spin_lock_init(&fs_info->fs_roots_radix_lock); 2644 spin_lock_init(&fs_info->delayed_iput_lock); 2645 spin_lock_init(&fs_info->defrag_inodes_lock); 2646 spin_lock_init(&fs_info->super_lock); 2647 spin_lock_init(&fs_info->buffer_lock); 2648 spin_lock_init(&fs_info->unused_bgs_lock); 2649 rwlock_init(&fs_info->tree_mod_log_lock); 2650 mutex_init(&fs_info->unused_bg_unpin_mutex); 2651 mutex_init(&fs_info->delete_unused_bgs_mutex); 2652 mutex_init(&fs_info->reloc_mutex); 2653 mutex_init(&fs_info->delalloc_root_mutex); 2654 seqlock_init(&fs_info->profiles_lock); 2655 2656 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2657 INIT_LIST_HEAD(&fs_info->space_info); 2658 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2659 INIT_LIST_HEAD(&fs_info->unused_bgs); 2660 #ifdef CONFIG_BTRFS_DEBUG 2661 INIT_LIST_HEAD(&fs_info->allocated_roots); 2662 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2663 spin_lock_init(&fs_info->eb_leak_lock); 2664 #endif 2665 extent_map_tree_init(&fs_info->mapping_tree); 2666 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2667 BTRFS_BLOCK_RSV_GLOBAL); 2668 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2669 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2670 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2671 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2672 BTRFS_BLOCK_RSV_DELOPS); 2673 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2674 BTRFS_BLOCK_RSV_DELREFS); 2675 2676 atomic_set(&fs_info->async_delalloc_pages, 0); 2677 atomic_set(&fs_info->defrag_running, 0); 2678 atomic_set(&fs_info->reada_works_cnt, 0); 2679 atomic_set(&fs_info->nr_delayed_iputs, 0); 2680 atomic64_set(&fs_info->tree_mod_seq, 0); 2681 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2682 fs_info->metadata_ratio = 0; 2683 fs_info->defrag_inodes = RB_ROOT; 2684 atomic64_set(&fs_info->free_chunk_space, 0); 2685 fs_info->tree_mod_log = RB_ROOT; 2686 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2687 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2688 /* readahead state */ 2689 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2690 spin_lock_init(&fs_info->reada_lock); 2691 btrfs_init_ref_verify(fs_info); 2692 2693 fs_info->thread_pool_size = min_t(unsigned long, 2694 num_online_cpus() + 2, 8); 2695 2696 INIT_LIST_HEAD(&fs_info->ordered_roots); 2697 spin_lock_init(&fs_info->ordered_root_lock); 2698 2699 btrfs_init_scrub(fs_info); 2700 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2701 fs_info->check_integrity_print_mask = 0; 2702 #endif 2703 btrfs_init_balance(fs_info); 2704 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2705 2706 spin_lock_init(&fs_info->block_group_cache_lock); 2707 fs_info->block_group_cache_tree = RB_ROOT; 2708 fs_info->first_logical_byte = (u64)-1; 2709 2710 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2711 IO_TREE_FS_EXCLUDED_EXTENTS, NULL); 2712 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2713 2714 mutex_init(&fs_info->ordered_operations_mutex); 2715 mutex_init(&fs_info->tree_log_mutex); 2716 mutex_init(&fs_info->chunk_mutex); 2717 mutex_init(&fs_info->transaction_kthread_mutex); 2718 mutex_init(&fs_info->cleaner_mutex); 2719 mutex_init(&fs_info->ro_block_group_mutex); 2720 init_rwsem(&fs_info->commit_root_sem); 2721 init_rwsem(&fs_info->cleanup_work_sem); 2722 init_rwsem(&fs_info->subvol_sem); 2723 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2724 2725 btrfs_init_dev_replace_locks(fs_info); 2726 btrfs_init_qgroup(fs_info); 2727 btrfs_discard_init(fs_info); 2728 2729 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2730 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2731 2732 init_waitqueue_head(&fs_info->transaction_throttle); 2733 init_waitqueue_head(&fs_info->transaction_wait); 2734 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2735 init_waitqueue_head(&fs_info->async_submit_wait); 2736 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2737 2738 /* Usable values until the real ones are cached from the superblock */ 2739 fs_info->nodesize = 4096; 2740 fs_info->sectorsize = 4096; 2741 fs_info->stripesize = 4096; 2742 2743 spin_lock_init(&fs_info->swapfile_pins_lock); 2744 fs_info->swapfile_pins = RB_ROOT; 2745 2746 fs_info->send_in_progress = 0; 2747 } 2748 2749 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2750 { 2751 int ret; 2752 2753 fs_info->sb = sb; 2754 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2755 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2756 2757 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL); 2758 if (ret) 2759 return ret; 2760 2761 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2762 if (ret) 2763 return ret; 2764 2765 fs_info->dirty_metadata_batch = PAGE_SIZE * 2766 (1 + ilog2(nr_cpu_ids)); 2767 2768 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2769 if (ret) 2770 return ret; 2771 2772 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2773 GFP_KERNEL); 2774 if (ret) 2775 return ret; 2776 2777 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2778 GFP_KERNEL); 2779 if (!fs_info->delayed_root) 2780 return -ENOMEM; 2781 btrfs_init_delayed_root(fs_info->delayed_root); 2782 2783 return btrfs_alloc_stripe_hash_table(fs_info); 2784 } 2785 2786 static int btrfs_uuid_rescan_kthread(void *data) 2787 { 2788 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 2789 int ret; 2790 2791 /* 2792 * 1st step is to iterate through the existing UUID tree and 2793 * to delete all entries that contain outdated data. 2794 * 2nd step is to add all missing entries to the UUID tree. 2795 */ 2796 ret = btrfs_uuid_tree_iterate(fs_info); 2797 if (ret < 0) { 2798 if (ret != -EINTR) 2799 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2800 ret); 2801 up(&fs_info->uuid_tree_rescan_sem); 2802 return ret; 2803 } 2804 return btrfs_uuid_scan_kthread(data); 2805 } 2806 2807 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2808 { 2809 struct task_struct *task; 2810 2811 down(&fs_info->uuid_tree_rescan_sem); 2812 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2813 if (IS_ERR(task)) { 2814 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2815 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2816 up(&fs_info->uuid_tree_rescan_sem); 2817 return PTR_ERR(task); 2818 } 2819 2820 return 0; 2821 } 2822 2823 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 2824 char *options) 2825 { 2826 u32 sectorsize; 2827 u32 nodesize; 2828 u32 stripesize; 2829 u64 generation; 2830 u64 features; 2831 u16 csum_type; 2832 struct btrfs_key location; 2833 struct btrfs_super_block *disk_super; 2834 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2835 struct btrfs_root *tree_root; 2836 struct btrfs_root *chunk_root; 2837 int ret; 2838 int err = -EINVAL; 2839 int clear_free_space_tree = 0; 2840 int level; 2841 2842 ret = init_mount_fs_info(fs_info, sb); 2843 if (ret) { 2844 err = ret; 2845 goto fail; 2846 } 2847 2848 /* These need to be init'ed before we start creating inodes and such. */ 2849 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 2850 GFP_KERNEL); 2851 fs_info->tree_root = tree_root; 2852 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 2853 GFP_KERNEL); 2854 fs_info->chunk_root = chunk_root; 2855 if (!tree_root || !chunk_root) { 2856 err = -ENOMEM; 2857 goto fail; 2858 } 2859 2860 fs_info->btree_inode = new_inode(sb); 2861 if (!fs_info->btree_inode) { 2862 err = -ENOMEM; 2863 goto fail; 2864 } 2865 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2866 btrfs_init_btree_inode(fs_info); 2867 2868 invalidate_bdev(fs_devices->latest_bdev); 2869 2870 /* 2871 * Read super block and check the signature bytes only 2872 */ 2873 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev); 2874 if (IS_ERR(disk_super)) { 2875 err = PTR_ERR(disk_super); 2876 goto fail_alloc; 2877 } 2878 2879 /* 2880 * Verify the type first, if that or the the checksum value are 2881 * corrupted, we'll find out 2882 */ 2883 csum_type = btrfs_super_csum_type(disk_super); 2884 if (!btrfs_supported_super_csum(csum_type)) { 2885 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 2886 csum_type); 2887 err = -EINVAL; 2888 btrfs_release_disk_super(disk_super); 2889 goto fail_alloc; 2890 } 2891 2892 ret = btrfs_init_csum_hash(fs_info, csum_type); 2893 if (ret) { 2894 err = ret; 2895 btrfs_release_disk_super(disk_super); 2896 goto fail_alloc; 2897 } 2898 2899 /* 2900 * We want to check superblock checksum, the type is stored inside. 2901 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2902 */ 2903 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) { 2904 btrfs_err(fs_info, "superblock checksum mismatch"); 2905 err = -EINVAL; 2906 btrfs_release_disk_super(disk_super); 2907 goto fail_alloc; 2908 } 2909 2910 /* 2911 * super_copy is zeroed at allocation time and we never touch the 2912 * following bytes up to INFO_SIZE, the checksum is calculated from 2913 * the whole block of INFO_SIZE 2914 */ 2915 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 2916 btrfs_release_disk_super(disk_super); 2917 2918 disk_super = fs_info->super_copy; 2919 2920 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2921 BTRFS_FSID_SIZE)); 2922 2923 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) { 2924 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid, 2925 fs_info->super_copy->metadata_uuid, 2926 BTRFS_FSID_SIZE)); 2927 } 2928 2929 features = btrfs_super_flags(disk_super); 2930 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 2931 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 2932 btrfs_set_super_flags(disk_super, features); 2933 btrfs_info(fs_info, 2934 "found metadata UUID change in progress flag, clearing"); 2935 } 2936 2937 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2938 sizeof(*fs_info->super_for_commit)); 2939 2940 ret = btrfs_validate_mount_super(fs_info); 2941 if (ret) { 2942 btrfs_err(fs_info, "superblock contains fatal errors"); 2943 err = -EINVAL; 2944 goto fail_alloc; 2945 } 2946 2947 if (!btrfs_super_root(disk_super)) 2948 goto fail_alloc; 2949 2950 /* check FS state, whether FS is broken. */ 2951 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2952 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2953 2954 /* 2955 * In the long term, we'll store the compression type in the super 2956 * block, and it'll be used for per file compression control. 2957 */ 2958 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2959 2960 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2961 if (ret) { 2962 err = ret; 2963 goto fail_alloc; 2964 } 2965 2966 features = btrfs_super_incompat_flags(disk_super) & 2967 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2968 if (features) { 2969 btrfs_err(fs_info, 2970 "cannot mount because of unsupported optional features (%llx)", 2971 features); 2972 err = -EINVAL; 2973 goto fail_alloc; 2974 } 2975 2976 features = btrfs_super_incompat_flags(disk_super); 2977 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2978 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2979 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2980 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 2981 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 2982 2983 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2984 btrfs_info(fs_info, "has skinny extents"); 2985 2986 /* 2987 * flag our filesystem as having big metadata blocks if 2988 * they are bigger than the page size 2989 */ 2990 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2991 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2992 btrfs_info(fs_info, 2993 "flagging fs with big metadata feature"); 2994 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2995 } 2996 2997 nodesize = btrfs_super_nodesize(disk_super); 2998 sectorsize = btrfs_super_sectorsize(disk_super); 2999 stripesize = sectorsize; 3000 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3001 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3002 3003 /* Cache block sizes */ 3004 fs_info->nodesize = nodesize; 3005 fs_info->sectorsize = sectorsize; 3006 fs_info->stripesize = stripesize; 3007 3008 /* 3009 * mixed block groups end up with duplicate but slightly offset 3010 * extent buffers for the same range. It leads to corruptions 3011 */ 3012 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3013 (sectorsize != nodesize)) { 3014 btrfs_err(fs_info, 3015 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3016 nodesize, sectorsize); 3017 goto fail_alloc; 3018 } 3019 3020 /* 3021 * Needn't use the lock because there is no other task which will 3022 * update the flag. 3023 */ 3024 btrfs_set_super_incompat_flags(disk_super, features); 3025 3026 features = btrfs_super_compat_ro_flags(disk_super) & 3027 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 3028 if (!sb_rdonly(sb) && features) { 3029 btrfs_err(fs_info, 3030 "cannot mount read-write because of unsupported optional features (%llx)", 3031 features); 3032 err = -EINVAL; 3033 goto fail_alloc; 3034 } 3035 3036 ret = btrfs_init_workqueues(fs_info, fs_devices); 3037 if (ret) { 3038 err = ret; 3039 goto fail_sb_buffer; 3040 } 3041 3042 sb->s_bdi->congested_fn = btrfs_congested_fn; 3043 sb->s_bdi->congested_data = fs_info; 3044 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 3045 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES; 3046 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3047 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3048 3049 sb->s_blocksize = sectorsize; 3050 sb->s_blocksize_bits = blksize_bits(sectorsize); 3051 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3052 3053 mutex_lock(&fs_info->chunk_mutex); 3054 ret = btrfs_read_sys_array(fs_info); 3055 mutex_unlock(&fs_info->chunk_mutex); 3056 if (ret) { 3057 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3058 goto fail_sb_buffer; 3059 } 3060 3061 generation = btrfs_super_chunk_root_generation(disk_super); 3062 level = btrfs_super_chunk_root_level(disk_super); 3063 3064 chunk_root->node = read_tree_block(fs_info, 3065 btrfs_super_chunk_root(disk_super), 3066 generation, level, NULL); 3067 if (IS_ERR(chunk_root->node) || 3068 !extent_buffer_uptodate(chunk_root->node)) { 3069 btrfs_err(fs_info, "failed to read chunk root"); 3070 if (!IS_ERR(chunk_root->node)) 3071 free_extent_buffer(chunk_root->node); 3072 chunk_root->node = NULL; 3073 goto fail_tree_roots; 3074 } 3075 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 3076 chunk_root->commit_root = btrfs_root_node(chunk_root); 3077 3078 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3079 offsetof(struct btrfs_header, chunk_tree_uuid), 3080 BTRFS_UUID_SIZE); 3081 3082 ret = btrfs_read_chunk_tree(fs_info); 3083 if (ret) { 3084 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3085 goto fail_tree_roots; 3086 } 3087 3088 /* 3089 * Keep the devid that is marked to be the target device for the 3090 * device replace procedure 3091 */ 3092 btrfs_free_extra_devids(fs_devices, 0); 3093 3094 if (!fs_devices->latest_bdev) { 3095 btrfs_err(fs_info, "failed to read devices"); 3096 goto fail_tree_roots; 3097 } 3098 3099 ret = init_tree_roots(fs_info); 3100 if (ret) 3101 goto fail_tree_roots; 3102 3103 /* 3104 * If we have a uuid root and we're not being told to rescan we need to 3105 * check the generation here so we can set the 3106 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3107 * transaction during a balance or the log replay without updating the 3108 * uuid generation, and then if we crash we would rescan the uuid tree, 3109 * even though it was perfectly fine. 3110 */ 3111 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3112 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3113 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3114 3115 ret = btrfs_verify_dev_extents(fs_info); 3116 if (ret) { 3117 btrfs_err(fs_info, 3118 "failed to verify dev extents against chunks: %d", 3119 ret); 3120 goto fail_block_groups; 3121 } 3122 ret = btrfs_recover_balance(fs_info); 3123 if (ret) { 3124 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3125 goto fail_block_groups; 3126 } 3127 3128 ret = btrfs_init_dev_stats(fs_info); 3129 if (ret) { 3130 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3131 goto fail_block_groups; 3132 } 3133 3134 ret = btrfs_init_dev_replace(fs_info); 3135 if (ret) { 3136 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3137 goto fail_block_groups; 3138 } 3139 3140 btrfs_free_extra_devids(fs_devices, 1); 3141 3142 ret = btrfs_sysfs_add_fsid(fs_devices); 3143 if (ret) { 3144 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3145 ret); 3146 goto fail_block_groups; 3147 } 3148 3149 ret = btrfs_sysfs_add_mounted(fs_info); 3150 if (ret) { 3151 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3152 goto fail_fsdev_sysfs; 3153 } 3154 3155 ret = btrfs_init_space_info(fs_info); 3156 if (ret) { 3157 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3158 goto fail_sysfs; 3159 } 3160 3161 ret = btrfs_read_block_groups(fs_info); 3162 if (ret) { 3163 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3164 goto fail_sysfs; 3165 } 3166 3167 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 3168 btrfs_warn(fs_info, 3169 "writable mount is not allowed due to too many missing devices"); 3170 goto fail_sysfs; 3171 } 3172 3173 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3174 "btrfs-cleaner"); 3175 if (IS_ERR(fs_info->cleaner_kthread)) 3176 goto fail_sysfs; 3177 3178 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3179 tree_root, 3180 "btrfs-transaction"); 3181 if (IS_ERR(fs_info->transaction_kthread)) 3182 goto fail_cleaner; 3183 3184 if (!btrfs_test_opt(fs_info, NOSSD) && 3185 !fs_info->fs_devices->rotating) { 3186 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3187 } 3188 3189 /* 3190 * Mount does not set all options immediately, we can do it now and do 3191 * not have to wait for transaction commit 3192 */ 3193 btrfs_apply_pending_changes(fs_info); 3194 3195 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3196 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3197 ret = btrfsic_mount(fs_info, fs_devices, 3198 btrfs_test_opt(fs_info, 3199 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3200 1 : 0, 3201 fs_info->check_integrity_print_mask); 3202 if (ret) 3203 btrfs_warn(fs_info, 3204 "failed to initialize integrity check module: %d", 3205 ret); 3206 } 3207 #endif 3208 ret = btrfs_read_qgroup_config(fs_info); 3209 if (ret) 3210 goto fail_trans_kthread; 3211 3212 if (btrfs_build_ref_tree(fs_info)) 3213 btrfs_err(fs_info, "couldn't build ref tree"); 3214 3215 /* do not make disk changes in broken FS or nologreplay is given */ 3216 if (btrfs_super_log_root(disk_super) != 0 && 3217 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3218 btrfs_info(fs_info, "start tree-log replay"); 3219 ret = btrfs_replay_log(fs_info, fs_devices); 3220 if (ret) { 3221 err = ret; 3222 goto fail_qgroup; 3223 } 3224 } 3225 3226 ret = btrfs_find_orphan_roots(fs_info); 3227 if (ret) 3228 goto fail_qgroup; 3229 3230 if (!sb_rdonly(sb)) { 3231 ret = btrfs_cleanup_fs_roots(fs_info); 3232 if (ret) 3233 goto fail_qgroup; 3234 3235 mutex_lock(&fs_info->cleaner_mutex); 3236 ret = btrfs_recover_relocation(tree_root); 3237 mutex_unlock(&fs_info->cleaner_mutex); 3238 if (ret < 0) { 3239 btrfs_warn(fs_info, "failed to recover relocation: %d", 3240 ret); 3241 err = -EINVAL; 3242 goto fail_qgroup; 3243 } 3244 } 3245 3246 location.objectid = BTRFS_FS_TREE_OBJECTID; 3247 location.type = BTRFS_ROOT_ITEM_KEY; 3248 location.offset = 0; 3249 3250 fs_info->fs_root = btrfs_get_fs_root(fs_info, &location, true); 3251 if (IS_ERR(fs_info->fs_root)) { 3252 err = PTR_ERR(fs_info->fs_root); 3253 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3254 fs_info->fs_root = NULL; 3255 goto fail_qgroup; 3256 } 3257 3258 if (sb_rdonly(sb)) 3259 return 0; 3260 3261 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3262 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3263 clear_free_space_tree = 1; 3264 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3265 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3266 btrfs_warn(fs_info, "free space tree is invalid"); 3267 clear_free_space_tree = 1; 3268 } 3269 3270 if (clear_free_space_tree) { 3271 btrfs_info(fs_info, "clearing free space tree"); 3272 ret = btrfs_clear_free_space_tree(fs_info); 3273 if (ret) { 3274 btrfs_warn(fs_info, 3275 "failed to clear free space tree: %d", ret); 3276 close_ctree(fs_info); 3277 return ret; 3278 } 3279 } 3280 3281 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3282 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3283 btrfs_info(fs_info, "creating free space tree"); 3284 ret = btrfs_create_free_space_tree(fs_info); 3285 if (ret) { 3286 btrfs_warn(fs_info, 3287 "failed to create free space tree: %d", ret); 3288 close_ctree(fs_info); 3289 return ret; 3290 } 3291 } 3292 3293 down_read(&fs_info->cleanup_work_sem); 3294 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3295 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3296 up_read(&fs_info->cleanup_work_sem); 3297 close_ctree(fs_info); 3298 return ret; 3299 } 3300 up_read(&fs_info->cleanup_work_sem); 3301 3302 ret = btrfs_resume_balance_async(fs_info); 3303 if (ret) { 3304 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3305 close_ctree(fs_info); 3306 return ret; 3307 } 3308 3309 ret = btrfs_resume_dev_replace_async(fs_info); 3310 if (ret) { 3311 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3312 close_ctree(fs_info); 3313 return ret; 3314 } 3315 3316 btrfs_qgroup_rescan_resume(fs_info); 3317 btrfs_discard_resume(fs_info); 3318 3319 if (!fs_info->uuid_root) { 3320 btrfs_info(fs_info, "creating UUID tree"); 3321 ret = btrfs_create_uuid_tree(fs_info); 3322 if (ret) { 3323 btrfs_warn(fs_info, 3324 "failed to create the UUID tree: %d", ret); 3325 close_ctree(fs_info); 3326 return ret; 3327 } 3328 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3329 fs_info->generation != 3330 btrfs_super_uuid_tree_generation(disk_super)) { 3331 btrfs_info(fs_info, "checking UUID tree"); 3332 ret = btrfs_check_uuid_tree(fs_info); 3333 if (ret) { 3334 btrfs_warn(fs_info, 3335 "failed to check the UUID tree: %d", ret); 3336 close_ctree(fs_info); 3337 return ret; 3338 } 3339 } 3340 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3341 3342 /* 3343 * backuproot only affect mount behavior, and if open_ctree succeeded, 3344 * no need to keep the flag 3345 */ 3346 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3347 3348 return 0; 3349 3350 fail_qgroup: 3351 btrfs_free_qgroup_config(fs_info); 3352 fail_trans_kthread: 3353 kthread_stop(fs_info->transaction_kthread); 3354 btrfs_cleanup_transaction(fs_info); 3355 btrfs_free_fs_roots(fs_info); 3356 fail_cleaner: 3357 kthread_stop(fs_info->cleaner_kthread); 3358 3359 /* 3360 * make sure we're done with the btree inode before we stop our 3361 * kthreads 3362 */ 3363 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3364 3365 fail_sysfs: 3366 btrfs_sysfs_remove_mounted(fs_info); 3367 3368 fail_fsdev_sysfs: 3369 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3370 3371 fail_block_groups: 3372 btrfs_put_block_group_cache(fs_info); 3373 3374 fail_tree_roots: 3375 free_root_pointers(fs_info, true); 3376 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3377 3378 fail_sb_buffer: 3379 btrfs_stop_all_workers(fs_info); 3380 btrfs_free_block_groups(fs_info); 3381 fail_alloc: 3382 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3383 3384 iput(fs_info->btree_inode); 3385 fail: 3386 btrfs_close_devices(fs_info->fs_devices); 3387 return err; 3388 } 3389 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3390 3391 static void btrfs_end_super_write(struct bio *bio) 3392 { 3393 struct btrfs_device *device = bio->bi_private; 3394 struct bio_vec *bvec; 3395 struct bvec_iter_all iter_all; 3396 struct page *page; 3397 3398 bio_for_each_segment_all(bvec, bio, iter_all) { 3399 page = bvec->bv_page; 3400 3401 if (bio->bi_status) { 3402 btrfs_warn_rl_in_rcu(device->fs_info, 3403 "lost page write due to IO error on %s (%d)", 3404 rcu_str_deref(device->name), 3405 blk_status_to_errno(bio->bi_status)); 3406 ClearPageUptodate(page); 3407 SetPageError(page); 3408 btrfs_dev_stat_inc_and_print(device, 3409 BTRFS_DEV_STAT_WRITE_ERRS); 3410 } else { 3411 SetPageUptodate(page); 3412 } 3413 3414 put_page(page); 3415 unlock_page(page); 3416 } 3417 3418 bio_put(bio); 3419 } 3420 3421 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3422 int copy_num) 3423 { 3424 struct btrfs_super_block *super; 3425 struct page *page; 3426 u64 bytenr; 3427 struct address_space *mapping = bdev->bd_inode->i_mapping; 3428 3429 bytenr = btrfs_sb_offset(copy_num); 3430 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3431 return ERR_PTR(-EINVAL); 3432 3433 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3434 if (IS_ERR(page)) 3435 return ERR_CAST(page); 3436 3437 super = page_address(page); 3438 if (btrfs_super_bytenr(super) != bytenr || 3439 btrfs_super_magic(super) != BTRFS_MAGIC) { 3440 btrfs_release_disk_super(super); 3441 return ERR_PTR(-EINVAL); 3442 } 3443 3444 return super; 3445 } 3446 3447 3448 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3449 { 3450 struct btrfs_super_block *super, *latest = NULL; 3451 int i; 3452 u64 transid = 0; 3453 3454 /* we would like to check all the supers, but that would make 3455 * a btrfs mount succeed after a mkfs from a different FS. 3456 * So, we need to add a special mount option to scan for 3457 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3458 */ 3459 for (i = 0; i < 1; i++) { 3460 super = btrfs_read_dev_one_super(bdev, i); 3461 if (IS_ERR(super)) 3462 continue; 3463 3464 if (!latest || btrfs_super_generation(super) > transid) { 3465 if (latest) 3466 btrfs_release_disk_super(super); 3467 3468 latest = super; 3469 transid = btrfs_super_generation(super); 3470 } 3471 } 3472 3473 return super; 3474 } 3475 3476 /* 3477 * Write superblock @sb to the @device. Do not wait for completion, all the 3478 * pages we use for writing are locked. 3479 * 3480 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3481 * the expected device size at commit time. Note that max_mirrors must be 3482 * same for write and wait phases. 3483 * 3484 * Return number of errors when page is not found or submission fails. 3485 */ 3486 static int write_dev_supers(struct btrfs_device *device, 3487 struct btrfs_super_block *sb, int max_mirrors) 3488 { 3489 struct btrfs_fs_info *fs_info = device->fs_info; 3490 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3491 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3492 int i; 3493 int errors = 0; 3494 u64 bytenr; 3495 3496 if (max_mirrors == 0) 3497 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3498 3499 shash->tfm = fs_info->csum_shash; 3500 3501 for (i = 0; i < max_mirrors; i++) { 3502 struct page *page; 3503 struct bio *bio; 3504 struct btrfs_super_block *disk_super; 3505 3506 bytenr = btrfs_sb_offset(i); 3507 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3508 device->commit_total_bytes) 3509 break; 3510 3511 btrfs_set_super_bytenr(sb, bytenr); 3512 3513 crypto_shash_init(shash); 3514 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3515 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 3516 crypto_shash_final(shash, sb->csum); 3517 3518 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3519 GFP_NOFS); 3520 if (!page) { 3521 btrfs_err(device->fs_info, 3522 "couldn't get super block page for bytenr %llu", 3523 bytenr); 3524 errors++; 3525 continue; 3526 } 3527 3528 /* Bump the refcount for wait_dev_supers() */ 3529 get_page(page); 3530 3531 disk_super = page_address(page); 3532 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3533 3534 /* 3535 * Directly use bios here instead of relying on the page cache 3536 * to do I/O, so we don't lose the ability to do integrity 3537 * checking. 3538 */ 3539 bio = bio_alloc(GFP_NOFS, 1); 3540 bio_set_dev(bio, device->bdev); 3541 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3542 bio->bi_private = device; 3543 bio->bi_end_io = btrfs_end_super_write; 3544 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 3545 offset_in_page(bytenr)); 3546 3547 /* 3548 * We FUA only the first super block. The others we allow to 3549 * go down lazy and there's a short window where the on-disk 3550 * copies might still contain the older version. 3551 */ 3552 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO; 3553 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3554 bio->bi_opf |= REQ_FUA; 3555 3556 btrfsic_submit_bio(bio); 3557 } 3558 return errors < i ? 0 : -1; 3559 } 3560 3561 /* 3562 * Wait for write completion of superblocks done by write_dev_supers, 3563 * @max_mirrors same for write and wait phases. 3564 * 3565 * Return number of errors when page is not found or not marked up to 3566 * date. 3567 */ 3568 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3569 { 3570 int i; 3571 int errors = 0; 3572 bool primary_failed = false; 3573 u64 bytenr; 3574 3575 if (max_mirrors == 0) 3576 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3577 3578 for (i = 0; i < max_mirrors; i++) { 3579 struct page *page; 3580 3581 bytenr = btrfs_sb_offset(i); 3582 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3583 device->commit_total_bytes) 3584 break; 3585 3586 page = find_get_page(device->bdev->bd_inode->i_mapping, 3587 bytenr >> PAGE_SHIFT); 3588 if (!page) { 3589 errors++; 3590 if (i == 0) 3591 primary_failed = true; 3592 continue; 3593 } 3594 /* Page is submitted locked and unlocked once the IO completes */ 3595 wait_on_page_locked(page); 3596 if (PageError(page)) { 3597 errors++; 3598 if (i == 0) 3599 primary_failed = true; 3600 } 3601 3602 /* Drop our reference */ 3603 put_page(page); 3604 3605 /* Drop the reference from the writing run */ 3606 put_page(page); 3607 } 3608 3609 /* log error, force error return */ 3610 if (primary_failed) { 3611 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3612 device->devid); 3613 return -1; 3614 } 3615 3616 return errors < i ? 0 : -1; 3617 } 3618 3619 /* 3620 * endio for the write_dev_flush, this will wake anyone waiting 3621 * for the barrier when it is done 3622 */ 3623 static void btrfs_end_empty_barrier(struct bio *bio) 3624 { 3625 complete(bio->bi_private); 3626 } 3627 3628 /* 3629 * Submit a flush request to the device if it supports it. Error handling is 3630 * done in the waiting counterpart. 3631 */ 3632 static void write_dev_flush(struct btrfs_device *device) 3633 { 3634 struct request_queue *q = bdev_get_queue(device->bdev); 3635 struct bio *bio = device->flush_bio; 3636 3637 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3638 return; 3639 3640 bio_reset(bio); 3641 bio->bi_end_io = btrfs_end_empty_barrier; 3642 bio_set_dev(bio, device->bdev); 3643 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3644 init_completion(&device->flush_wait); 3645 bio->bi_private = &device->flush_wait; 3646 3647 btrfsic_submit_bio(bio); 3648 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3649 } 3650 3651 /* 3652 * If the flush bio has been submitted by write_dev_flush, wait for it. 3653 */ 3654 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3655 { 3656 struct bio *bio = device->flush_bio; 3657 3658 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3659 return BLK_STS_OK; 3660 3661 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3662 wait_for_completion_io(&device->flush_wait); 3663 3664 return bio->bi_status; 3665 } 3666 3667 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3668 { 3669 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3670 return -EIO; 3671 return 0; 3672 } 3673 3674 /* 3675 * send an empty flush down to each device in parallel, 3676 * then wait for them 3677 */ 3678 static int barrier_all_devices(struct btrfs_fs_info *info) 3679 { 3680 struct list_head *head; 3681 struct btrfs_device *dev; 3682 int errors_wait = 0; 3683 blk_status_t ret; 3684 3685 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3686 /* send down all the barriers */ 3687 head = &info->fs_devices->devices; 3688 list_for_each_entry(dev, head, dev_list) { 3689 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3690 continue; 3691 if (!dev->bdev) 3692 continue; 3693 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3694 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3695 continue; 3696 3697 write_dev_flush(dev); 3698 dev->last_flush_error = BLK_STS_OK; 3699 } 3700 3701 /* wait for all the barriers */ 3702 list_for_each_entry(dev, head, dev_list) { 3703 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3704 continue; 3705 if (!dev->bdev) { 3706 errors_wait++; 3707 continue; 3708 } 3709 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3710 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3711 continue; 3712 3713 ret = wait_dev_flush(dev); 3714 if (ret) { 3715 dev->last_flush_error = ret; 3716 btrfs_dev_stat_inc_and_print(dev, 3717 BTRFS_DEV_STAT_FLUSH_ERRS); 3718 errors_wait++; 3719 } 3720 } 3721 3722 if (errors_wait) { 3723 /* 3724 * At some point we need the status of all disks 3725 * to arrive at the volume status. So error checking 3726 * is being pushed to a separate loop. 3727 */ 3728 return check_barrier_error(info); 3729 } 3730 return 0; 3731 } 3732 3733 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3734 { 3735 int raid_type; 3736 int min_tolerated = INT_MAX; 3737 3738 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3739 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3740 min_tolerated = min_t(int, min_tolerated, 3741 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3742 tolerated_failures); 3743 3744 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3745 if (raid_type == BTRFS_RAID_SINGLE) 3746 continue; 3747 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3748 continue; 3749 min_tolerated = min_t(int, min_tolerated, 3750 btrfs_raid_array[raid_type]. 3751 tolerated_failures); 3752 } 3753 3754 if (min_tolerated == INT_MAX) { 3755 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3756 min_tolerated = 0; 3757 } 3758 3759 return min_tolerated; 3760 } 3761 3762 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3763 { 3764 struct list_head *head; 3765 struct btrfs_device *dev; 3766 struct btrfs_super_block *sb; 3767 struct btrfs_dev_item *dev_item; 3768 int ret; 3769 int do_barriers; 3770 int max_errors; 3771 int total_errors = 0; 3772 u64 flags; 3773 3774 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3775 3776 /* 3777 * max_mirrors == 0 indicates we're from commit_transaction, 3778 * not from fsync where the tree roots in fs_info have not 3779 * been consistent on disk. 3780 */ 3781 if (max_mirrors == 0) 3782 backup_super_roots(fs_info); 3783 3784 sb = fs_info->super_for_commit; 3785 dev_item = &sb->dev_item; 3786 3787 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3788 head = &fs_info->fs_devices->devices; 3789 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3790 3791 if (do_barriers) { 3792 ret = barrier_all_devices(fs_info); 3793 if (ret) { 3794 mutex_unlock( 3795 &fs_info->fs_devices->device_list_mutex); 3796 btrfs_handle_fs_error(fs_info, ret, 3797 "errors while submitting device barriers."); 3798 return ret; 3799 } 3800 } 3801 3802 list_for_each_entry(dev, head, dev_list) { 3803 if (!dev->bdev) { 3804 total_errors++; 3805 continue; 3806 } 3807 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3808 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3809 continue; 3810 3811 btrfs_set_stack_device_generation(dev_item, 0); 3812 btrfs_set_stack_device_type(dev_item, dev->type); 3813 btrfs_set_stack_device_id(dev_item, dev->devid); 3814 btrfs_set_stack_device_total_bytes(dev_item, 3815 dev->commit_total_bytes); 3816 btrfs_set_stack_device_bytes_used(dev_item, 3817 dev->commit_bytes_used); 3818 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3819 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3820 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3821 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3822 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 3823 BTRFS_FSID_SIZE); 3824 3825 flags = btrfs_super_flags(sb); 3826 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3827 3828 ret = btrfs_validate_write_super(fs_info, sb); 3829 if (ret < 0) { 3830 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3831 btrfs_handle_fs_error(fs_info, -EUCLEAN, 3832 "unexpected superblock corruption detected"); 3833 return -EUCLEAN; 3834 } 3835 3836 ret = write_dev_supers(dev, sb, max_mirrors); 3837 if (ret) 3838 total_errors++; 3839 } 3840 if (total_errors > max_errors) { 3841 btrfs_err(fs_info, "%d errors while writing supers", 3842 total_errors); 3843 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3844 3845 /* FUA is masked off if unsupported and can't be the reason */ 3846 btrfs_handle_fs_error(fs_info, -EIO, 3847 "%d errors while writing supers", 3848 total_errors); 3849 return -EIO; 3850 } 3851 3852 total_errors = 0; 3853 list_for_each_entry(dev, head, dev_list) { 3854 if (!dev->bdev) 3855 continue; 3856 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3857 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3858 continue; 3859 3860 ret = wait_dev_supers(dev, max_mirrors); 3861 if (ret) 3862 total_errors++; 3863 } 3864 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3865 if (total_errors > max_errors) { 3866 btrfs_handle_fs_error(fs_info, -EIO, 3867 "%d errors while writing supers", 3868 total_errors); 3869 return -EIO; 3870 } 3871 return 0; 3872 } 3873 3874 /* Drop a fs root from the radix tree and free it. */ 3875 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3876 struct btrfs_root *root) 3877 { 3878 bool drop_ref = false; 3879 3880 spin_lock(&fs_info->fs_roots_radix_lock); 3881 radix_tree_delete(&fs_info->fs_roots_radix, 3882 (unsigned long)root->root_key.objectid); 3883 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 3884 drop_ref = true; 3885 spin_unlock(&fs_info->fs_roots_radix_lock); 3886 3887 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3888 ASSERT(root->log_root == NULL); 3889 if (root->reloc_root) { 3890 btrfs_put_root(root->reloc_root); 3891 root->reloc_root = NULL; 3892 } 3893 } 3894 3895 if (root->free_ino_pinned) 3896 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3897 if (root->free_ino_ctl) 3898 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3899 if (root->ino_cache_inode) { 3900 iput(root->ino_cache_inode); 3901 root->ino_cache_inode = NULL; 3902 } 3903 if (drop_ref) 3904 btrfs_put_root(root); 3905 } 3906 3907 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3908 { 3909 u64 root_objectid = 0; 3910 struct btrfs_root *gang[8]; 3911 int i = 0; 3912 int err = 0; 3913 unsigned int ret = 0; 3914 3915 while (1) { 3916 spin_lock(&fs_info->fs_roots_radix_lock); 3917 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3918 (void **)gang, root_objectid, 3919 ARRAY_SIZE(gang)); 3920 if (!ret) { 3921 spin_unlock(&fs_info->fs_roots_radix_lock); 3922 break; 3923 } 3924 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3925 3926 for (i = 0; i < ret; i++) { 3927 /* Avoid to grab roots in dead_roots */ 3928 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3929 gang[i] = NULL; 3930 continue; 3931 } 3932 /* grab all the search result for later use */ 3933 gang[i] = btrfs_grab_root(gang[i]); 3934 } 3935 spin_unlock(&fs_info->fs_roots_radix_lock); 3936 3937 for (i = 0; i < ret; i++) { 3938 if (!gang[i]) 3939 continue; 3940 root_objectid = gang[i]->root_key.objectid; 3941 err = btrfs_orphan_cleanup(gang[i]); 3942 if (err) 3943 break; 3944 btrfs_put_root(gang[i]); 3945 } 3946 root_objectid++; 3947 } 3948 3949 /* release the uncleaned roots due to error */ 3950 for (; i < ret; i++) { 3951 if (gang[i]) 3952 btrfs_put_root(gang[i]); 3953 } 3954 return err; 3955 } 3956 3957 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3958 { 3959 struct btrfs_root *root = fs_info->tree_root; 3960 struct btrfs_trans_handle *trans; 3961 3962 mutex_lock(&fs_info->cleaner_mutex); 3963 btrfs_run_delayed_iputs(fs_info); 3964 mutex_unlock(&fs_info->cleaner_mutex); 3965 wake_up_process(fs_info->cleaner_kthread); 3966 3967 /* wait until ongoing cleanup work done */ 3968 down_write(&fs_info->cleanup_work_sem); 3969 up_write(&fs_info->cleanup_work_sem); 3970 3971 trans = btrfs_join_transaction(root); 3972 if (IS_ERR(trans)) 3973 return PTR_ERR(trans); 3974 return btrfs_commit_transaction(trans); 3975 } 3976 3977 void __cold close_ctree(struct btrfs_fs_info *fs_info) 3978 { 3979 int ret; 3980 3981 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3982 /* 3983 * We don't want the cleaner to start new transactions, add more delayed 3984 * iputs, etc. while we're closing. We can't use kthread_stop() yet 3985 * because that frees the task_struct, and the transaction kthread might 3986 * still try to wake up the cleaner. 3987 */ 3988 kthread_park(fs_info->cleaner_kthread); 3989 3990 /* wait for the qgroup rescan worker to stop */ 3991 btrfs_qgroup_wait_for_completion(fs_info, false); 3992 3993 /* wait for the uuid_scan task to finish */ 3994 down(&fs_info->uuid_tree_rescan_sem); 3995 /* avoid complains from lockdep et al., set sem back to initial state */ 3996 up(&fs_info->uuid_tree_rescan_sem); 3997 3998 /* pause restriper - we want to resume on mount */ 3999 btrfs_pause_balance(fs_info); 4000 4001 btrfs_dev_replace_suspend_for_unmount(fs_info); 4002 4003 btrfs_scrub_cancel(fs_info); 4004 4005 /* wait for any defraggers to finish */ 4006 wait_event(fs_info->transaction_wait, 4007 (atomic_read(&fs_info->defrag_running) == 0)); 4008 4009 /* clear out the rbtree of defraggable inodes */ 4010 btrfs_cleanup_defrag_inodes(fs_info); 4011 4012 cancel_work_sync(&fs_info->async_reclaim_work); 4013 4014 /* Cancel or finish ongoing discard work */ 4015 btrfs_discard_cleanup(fs_info); 4016 4017 if (!sb_rdonly(fs_info->sb)) { 4018 /* 4019 * The cleaner kthread is stopped, so do one final pass over 4020 * unused block groups. 4021 */ 4022 btrfs_delete_unused_bgs(fs_info); 4023 4024 /* 4025 * There might be existing delayed inode workers still running 4026 * and holding an empty delayed inode item. We must wait for 4027 * them to complete first because they can create a transaction. 4028 * This happens when someone calls btrfs_balance_delayed_items() 4029 * and then a transaction commit runs the same delayed nodes 4030 * before any delayed worker has done something with the nodes. 4031 * We must wait for any worker here and not at transaction 4032 * commit time since that could cause a deadlock. 4033 * This is a very rare case. 4034 */ 4035 btrfs_flush_workqueue(fs_info->delayed_workers); 4036 4037 ret = btrfs_commit_super(fs_info); 4038 if (ret) 4039 btrfs_err(fs_info, "commit super ret %d", ret); 4040 } 4041 4042 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 4043 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 4044 btrfs_error_commit_super(fs_info); 4045 4046 kthread_stop(fs_info->transaction_kthread); 4047 kthread_stop(fs_info->cleaner_kthread); 4048 4049 ASSERT(list_empty(&fs_info->delayed_iputs)); 4050 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4051 4052 btrfs_free_qgroup_config(fs_info); 4053 ASSERT(list_empty(&fs_info->delalloc_roots)); 4054 4055 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4056 btrfs_info(fs_info, "at unmount delalloc count %lld", 4057 percpu_counter_sum(&fs_info->delalloc_bytes)); 4058 } 4059 4060 if (percpu_counter_sum(&fs_info->dio_bytes)) 4061 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4062 percpu_counter_sum(&fs_info->dio_bytes)); 4063 4064 btrfs_sysfs_remove_mounted(fs_info); 4065 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4066 4067 btrfs_put_block_group_cache(fs_info); 4068 4069 /* 4070 * we must make sure there is not any read request to 4071 * submit after we stopping all workers. 4072 */ 4073 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4074 btrfs_stop_all_workers(fs_info); 4075 4076 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4077 free_root_pointers(fs_info, true); 4078 btrfs_free_fs_roots(fs_info); 4079 4080 /* 4081 * We must free the block groups after dropping the fs_roots as we could 4082 * have had an IO error and have left over tree log blocks that aren't 4083 * cleaned up until the fs roots are freed. This makes the block group 4084 * accounting appear to be wrong because there's pending reserved bytes, 4085 * so make sure we do the block group cleanup afterwards. 4086 */ 4087 btrfs_free_block_groups(fs_info); 4088 4089 iput(fs_info->btree_inode); 4090 4091 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4092 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4093 btrfsic_unmount(fs_info->fs_devices); 4094 #endif 4095 4096 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4097 btrfs_close_devices(fs_info->fs_devices); 4098 } 4099 4100 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4101 int atomic) 4102 { 4103 int ret; 4104 struct inode *btree_inode = buf->pages[0]->mapping->host; 4105 4106 ret = extent_buffer_uptodate(buf); 4107 if (!ret) 4108 return ret; 4109 4110 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4111 parent_transid, atomic); 4112 if (ret == -EAGAIN) 4113 return ret; 4114 return !ret; 4115 } 4116 4117 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4118 { 4119 struct btrfs_fs_info *fs_info; 4120 struct btrfs_root *root; 4121 u64 transid = btrfs_header_generation(buf); 4122 int was_dirty; 4123 4124 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4125 /* 4126 * This is a fast path so only do this check if we have sanity tests 4127 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4128 * outside of the sanity tests. 4129 */ 4130 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4131 return; 4132 #endif 4133 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4134 fs_info = root->fs_info; 4135 btrfs_assert_tree_locked(buf); 4136 if (transid != fs_info->generation) 4137 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4138 buf->start, transid, fs_info->generation); 4139 was_dirty = set_extent_buffer_dirty(buf); 4140 if (!was_dirty) 4141 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4142 buf->len, 4143 fs_info->dirty_metadata_batch); 4144 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4145 /* 4146 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4147 * but item data not updated. 4148 * So here we should only check item pointers, not item data. 4149 */ 4150 if (btrfs_header_level(buf) == 0 && 4151 btrfs_check_leaf_relaxed(buf)) { 4152 btrfs_print_leaf(buf); 4153 ASSERT(0); 4154 } 4155 #endif 4156 } 4157 4158 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4159 int flush_delayed) 4160 { 4161 /* 4162 * looks as though older kernels can get into trouble with 4163 * this code, they end up stuck in balance_dirty_pages forever 4164 */ 4165 int ret; 4166 4167 if (current->flags & PF_MEMALLOC) 4168 return; 4169 4170 if (flush_delayed) 4171 btrfs_balance_delayed_items(fs_info); 4172 4173 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4174 BTRFS_DIRTY_METADATA_THRESH, 4175 fs_info->dirty_metadata_batch); 4176 if (ret > 0) { 4177 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4178 } 4179 } 4180 4181 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4182 { 4183 __btrfs_btree_balance_dirty(fs_info, 1); 4184 } 4185 4186 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4187 { 4188 __btrfs_btree_balance_dirty(fs_info, 0); 4189 } 4190 4191 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4192 struct btrfs_key *first_key) 4193 { 4194 return btree_read_extent_buffer_pages(buf, parent_transid, 4195 level, first_key); 4196 } 4197 4198 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4199 { 4200 /* cleanup FS via transaction */ 4201 btrfs_cleanup_transaction(fs_info); 4202 4203 mutex_lock(&fs_info->cleaner_mutex); 4204 btrfs_run_delayed_iputs(fs_info); 4205 mutex_unlock(&fs_info->cleaner_mutex); 4206 4207 down_write(&fs_info->cleanup_work_sem); 4208 up_write(&fs_info->cleanup_work_sem); 4209 } 4210 4211 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4212 { 4213 struct btrfs_root *gang[8]; 4214 u64 root_objectid = 0; 4215 int ret; 4216 4217 spin_lock(&fs_info->fs_roots_radix_lock); 4218 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4219 (void **)gang, root_objectid, 4220 ARRAY_SIZE(gang))) != 0) { 4221 int i; 4222 4223 for (i = 0; i < ret; i++) 4224 gang[i] = btrfs_grab_root(gang[i]); 4225 spin_unlock(&fs_info->fs_roots_radix_lock); 4226 4227 for (i = 0; i < ret; i++) { 4228 if (!gang[i]) 4229 continue; 4230 root_objectid = gang[i]->root_key.objectid; 4231 btrfs_free_log(NULL, gang[i]); 4232 btrfs_put_root(gang[i]); 4233 } 4234 root_objectid++; 4235 spin_lock(&fs_info->fs_roots_radix_lock); 4236 } 4237 spin_unlock(&fs_info->fs_roots_radix_lock); 4238 btrfs_free_log_root_tree(NULL, fs_info); 4239 } 4240 4241 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4242 { 4243 struct btrfs_ordered_extent *ordered; 4244 4245 spin_lock(&root->ordered_extent_lock); 4246 /* 4247 * This will just short circuit the ordered completion stuff which will 4248 * make sure the ordered extent gets properly cleaned up. 4249 */ 4250 list_for_each_entry(ordered, &root->ordered_extents, 4251 root_extent_list) 4252 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4253 spin_unlock(&root->ordered_extent_lock); 4254 } 4255 4256 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4257 { 4258 struct btrfs_root *root; 4259 struct list_head splice; 4260 4261 INIT_LIST_HEAD(&splice); 4262 4263 spin_lock(&fs_info->ordered_root_lock); 4264 list_splice_init(&fs_info->ordered_roots, &splice); 4265 while (!list_empty(&splice)) { 4266 root = list_first_entry(&splice, struct btrfs_root, 4267 ordered_root); 4268 list_move_tail(&root->ordered_root, 4269 &fs_info->ordered_roots); 4270 4271 spin_unlock(&fs_info->ordered_root_lock); 4272 btrfs_destroy_ordered_extents(root); 4273 4274 cond_resched(); 4275 spin_lock(&fs_info->ordered_root_lock); 4276 } 4277 spin_unlock(&fs_info->ordered_root_lock); 4278 4279 /* 4280 * We need this here because if we've been flipped read-only we won't 4281 * get sync() from the umount, so we need to make sure any ordered 4282 * extents that haven't had their dirty pages IO start writeout yet 4283 * actually get run and error out properly. 4284 */ 4285 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4286 } 4287 4288 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4289 struct btrfs_fs_info *fs_info) 4290 { 4291 struct rb_node *node; 4292 struct btrfs_delayed_ref_root *delayed_refs; 4293 struct btrfs_delayed_ref_node *ref; 4294 int ret = 0; 4295 4296 delayed_refs = &trans->delayed_refs; 4297 4298 spin_lock(&delayed_refs->lock); 4299 if (atomic_read(&delayed_refs->num_entries) == 0) { 4300 spin_unlock(&delayed_refs->lock); 4301 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4302 return ret; 4303 } 4304 4305 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4306 struct btrfs_delayed_ref_head *head; 4307 struct rb_node *n; 4308 bool pin_bytes = false; 4309 4310 head = rb_entry(node, struct btrfs_delayed_ref_head, 4311 href_node); 4312 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4313 continue; 4314 4315 spin_lock(&head->lock); 4316 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4317 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4318 ref_node); 4319 ref->in_tree = 0; 4320 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4321 RB_CLEAR_NODE(&ref->ref_node); 4322 if (!list_empty(&ref->add_list)) 4323 list_del(&ref->add_list); 4324 atomic_dec(&delayed_refs->num_entries); 4325 btrfs_put_delayed_ref(ref); 4326 } 4327 if (head->must_insert_reserved) 4328 pin_bytes = true; 4329 btrfs_free_delayed_extent_op(head->extent_op); 4330 btrfs_delete_ref_head(delayed_refs, head); 4331 spin_unlock(&head->lock); 4332 spin_unlock(&delayed_refs->lock); 4333 mutex_unlock(&head->mutex); 4334 4335 if (pin_bytes) { 4336 struct btrfs_block_group *cache; 4337 4338 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4339 BUG_ON(!cache); 4340 4341 spin_lock(&cache->space_info->lock); 4342 spin_lock(&cache->lock); 4343 cache->pinned += head->num_bytes; 4344 btrfs_space_info_update_bytes_pinned(fs_info, 4345 cache->space_info, head->num_bytes); 4346 cache->reserved -= head->num_bytes; 4347 cache->space_info->bytes_reserved -= head->num_bytes; 4348 spin_unlock(&cache->lock); 4349 spin_unlock(&cache->space_info->lock); 4350 percpu_counter_add_batch( 4351 &cache->space_info->total_bytes_pinned, 4352 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); 4353 4354 btrfs_put_block_group(cache); 4355 4356 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4357 head->bytenr + head->num_bytes - 1); 4358 } 4359 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4360 btrfs_put_delayed_ref_head(head); 4361 cond_resched(); 4362 spin_lock(&delayed_refs->lock); 4363 } 4364 btrfs_qgroup_destroy_extent_records(trans); 4365 4366 spin_unlock(&delayed_refs->lock); 4367 4368 return ret; 4369 } 4370 4371 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4372 { 4373 struct btrfs_inode *btrfs_inode; 4374 struct list_head splice; 4375 4376 INIT_LIST_HEAD(&splice); 4377 4378 spin_lock(&root->delalloc_lock); 4379 list_splice_init(&root->delalloc_inodes, &splice); 4380 4381 while (!list_empty(&splice)) { 4382 struct inode *inode = NULL; 4383 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4384 delalloc_inodes); 4385 __btrfs_del_delalloc_inode(root, btrfs_inode); 4386 spin_unlock(&root->delalloc_lock); 4387 4388 /* 4389 * Make sure we get a live inode and that it'll not disappear 4390 * meanwhile. 4391 */ 4392 inode = igrab(&btrfs_inode->vfs_inode); 4393 if (inode) { 4394 invalidate_inode_pages2(inode->i_mapping); 4395 iput(inode); 4396 } 4397 spin_lock(&root->delalloc_lock); 4398 } 4399 spin_unlock(&root->delalloc_lock); 4400 } 4401 4402 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4403 { 4404 struct btrfs_root *root; 4405 struct list_head splice; 4406 4407 INIT_LIST_HEAD(&splice); 4408 4409 spin_lock(&fs_info->delalloc_root_lock); 4410 list_splice_init(&fs_info->delalloc_roots, &splice); 4411 while (!list_empty(&splice)) { 4412 root = list_first_entry(&splice, struct btrfs_root, 4413 delalloc_root); 4414 root = btrfs_grab_root(root); 4415 BUG_ON(!root); 4416 spin_unlock(&fs_info->delalloc_root_lock); 4417 4418 btrfs_destroy_delalloc_inodes(root); 4419 btrfs_put_root(root); 4420 4421 spin_lock(&fs_info->delalloc_root_lock); 4422 } 4423 spin_unlock(&fs_info->delalloc_root_lock); 4424 } 4425 4426 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4427 struct extent_io_tree *dirty_pages, 4428 int mark) 4429 { 4430 int ret; 4431 struct extent_buffer *eb; 4432 u64 start = 0; 4433 u64 end; 4434 4435 while (1) { 4436 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4437 mark, NULL); 4438 if (ret) 4439 break; 4440 4441 clear_extent_bits(dirty_pages, start, end, mark); 4442 while (start <= end) { 4443 eb = find_extent_buffer(fs_info, start); 4444 start += fs_info->nodesize; 4445 if (!eb) 4446 continue; 4447 wait_on_extent_buffer_writeback(eb); 4448 4449 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4450 &eb->bflags)) 4451 clear_extent_buffer_dirty(eb); 4452 free_extent_buffer_stale(eb); 4453 } 4454 } 4455 4456 return ret; 4457 } 4458 4459 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4460 struct extent_io_tree *unpin) 4461 { 4462 u64 start; 4463 u64 end; 4464 int ret; 4465 4466 while (1) { 4467 struct extent_state *cached_state = NULL; 4468 4469 /* 4470 * The btrfs_finish_extent_commit() may get the same range as 4471 * ours between find_first_extent_bit and clear_extent_dirty. 4472 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4473 * the same extent range. 4474 */ 4475 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4476 ret = find_first_extent_bit(unpin, 0, &start, &end, 4477 EXTENT_DIRTY, &cached_state); 4478 if (ret) { 4479 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4480 break; 4481 } 4482 4483 clear_extent_dirty(unpin, start, end, &cached_state); 4484 free_extent_state(cached_state); 4485 btrfs_error_unpin_extent_range(fs_info, start, end); 4486 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4487 cond_resched(); 4488 } 4489 4490 return 0; 4491 } 4492 4493 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4494 { 4495 struct inode *inode; 4496 4497 inode = cache->io_ctl.inode; 4498 if (inode) { 4499 invalidate_inode_pages2(inode->i_mapping); 4500 BTRFS_I(inode)->generation = 0; 4501 cache->io_ctl.inode = NULL; 4502 iput(inode); 4503 } 4504 btrfs_put_block_group(cache); 4505 } 4506 4507 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4508 struct btrfs_fs_info *fs_info) 4509 { 4510 struct btrfs_block_group *cache; 4511 4512 spin_lock(&cur_trans->dirty_bgs_lock); 4513 while (!list_empty(&cur_trans->dirty_bgs)) { 4514 cache = list_first_entry(&cur_trans->dirty_bgs, 4515 struct btrfs_block_group, 4516 dirty_list); 4517 4518 if (!list_empty(&cache->io_list)) { 4519 spin_unlock(&cur_trans->dirty_bgs_lock); 4520 list_del_init(&cache->io_list); 4521 btrfs_cleanup_bg_io(cache); 4522 spin_lock(&cur_trans->dirty_bgs_lock); 4523 } 4524 4525 list_del_init(&cache->dirty_list); 4526 spin_lock(&cache->lock); 4527 cache->disk_cache_state = BTRFS_DC_ERROR; 4528 spin_unlock(&cache->lock); 4529 4530 spin_unlock(&cur_trans->dirty_bgs_lock); 4531 btrfs_put_block_group(cache); 4532 btrfs_delayed_refs_rsv_release(fs_info, 1); 4533 spin_lock(&cur_trans->dirty_bgs_lock); 4534 } 4535 spin_unlock(&cur_trans->dirty_bgs_lock); 4536 4537 /* 4538 * Refer to the definition of io_bgs member for details why it's safe 4539 * to use it without any locking 4540 */ 4541 while (!list_empty(&cur_trans->io_bgs)) { 4542 cache = list_first_entry(&cur_trans->io_bgs, 4543 struct btrfs_block_group, 4544 io_list); 4545 4546 list_del_init(&cache->io_list); 4547 spin_lock(&cache->lock); 4548 cache->disk_cache_state = BTRFS_DC_ERROR; 4549 spin_unlock(&cache->lock); 4550 btrfs_cleanup_bg_io(cache); 4551 } 4552 } 4553 4554 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4555 struct btrfs_fs_info *fs_info) 4556 { 4557 struct btrfs_device *dev, *tmp; 4558 4559 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4560 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4561 ASSERT(list_empty(&cur_trans->io_bgs)); 4562 4563 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4564 post_commit_list) { 4565 list_del_init(&dev->post_commit_list); 4566 } 4567 4568 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4569 4570 cur_trans->state = TRANS_STATE_COMMIT_START; 4571 wake_up(&fs_info->transaction_blocked_wait); 4572 4573 cur_trans->state = TRANS_STATE_UNBLOCKED; 4574 wake_up(&fs_info->transaction_wait); 4575 4576 btrfs_destroy_delayed_inodes(fs_info); 4577 4578 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4579 EXTENT_DIRTY); 4580 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4581 4582 cur_trans->state =TRANS_STATE_COMPLETED; 4583 wake_up(&cur_trans->commit_wait); 4584 } 4585 4586 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4587 { 4588 struct btrfs_transaction *t; 4589 4590 mutex_lock(&fs_info->transaction_kthread_mutex); 4591 4592 spin_lock(&fs_info->trans_lock); 4593 while (!list_empty(&fs_info->trans_list)) { 4594 t = list_first_entry(&fs_info->trans_list, 4595 struct btrfs_transaction, list); 4596 if (t->state >= TRANS_STATE_COMMIT_START) { 4597 refcount_inc(&t->use_count); 4598 spin_unlock(&fs_info->trans_lock); 4599 btrfs_wait_for_commit(fs_info, t->transid); 4600 btrfs_put_transaction(t); 4601 spin_lock(&fs_info->trans_lock); 4602 continue; 4603 } 4604 if (t == fs_info->running_transaction) { 4605 t->state = TRANS_STATE_COMMIT_DOING; 4606 spin_unlock(&fs_info->trans_lock); 4607 /* 4608 * We wait for 0 num_writers since we don't hold a trans 4609 * handle open currently for this transaction. 4610 */ 4611 wait_event(t->writer_wait, 4612 atomic_read(&t->num_writers) == 0); 4613 } else { 4614 spin_unlock(&fs_info->trans_lock); 4615 } 4616 btrfs_cleanup_one_transaction(t, fs_info); 4617 4618 spin_lock(&fs_info->trans_lock); 4619 if (t == fs_info->running_transaction) 4620 fs_info->running_transaction = NULL; 4621 list_del_init(&t->list); 4622 spin_unlock(&fs_info->trans_lock); 4623 4624 btrfs_put_transaction(t); 4625 trace_btrfs_transaction_commit(fs_info->tree_root); 4626 spin_lock(&fs_info->trans_lock); 4627 } 4628 spin_unlock(&fs_info->trans_lock); 4629 btrfs_destroy_all_ordered_extents(fs_info); 4630 btrfs_destroy_delayed_inodes(fs_info); 4631 btrfs_assert_delayed_root_empty(fs_info); 4632 btrfs_destroy_all_delalloc_inodes(fs_info); 4633 btrfs_drop_all_logs(fs_info); 4634 mutex_unlock(&fs_info->transaction_kthread_mutex); 4635 4636 return 0; 4637 } 4638 4639 static const struct extent_io_ops btree_extent_io_ops = { 4640 /* mandatory callbacks */ 4641 .submit_bio_hook = btree_submit_bio_hook, 4642 .readpage_end_io_hook = btree_readpage_end_io_hook, 4643 }; 4644