1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 #include "block-group.h" 42 #include "discard.h" 43 #include "space-info.h" 44 #include "zoned.h" 45 #include "subpage.h" 46 #include "fs.h" 47 #include "accessors.h" 48 #include "extent-tree.h" 49 #include "root-tree.h" 50 #include "defrag.h" 51 #include "uuid-tree.h" 52 #include "relocation.h" 53 #include "scrub.h" 54 #include "super.h" 55 56 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 57 BTRFS_HEADER_FLAG_RELOC |\ 58 BTRFS_SUPER_FLAG_ERROR |\ 59 BTRFS_SUPER_FLAG_SEEDING |\ 60 BTRFS_SUPER_FLAG_METADUMP |\ 61 BTRFS_SUPER_FLAG_METADUMP_V2) 62 63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 65 struct btrfs_fs_info *fs_info); 66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 67 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 68 struct extent_io_tree *dirty_pages, 69 int mark); 70 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 71 struct extent_io_tree *pinned_extents); 72 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 73 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 74 75 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 76 { 77 if (fs_info->csum_shash) 78 crypto_free_shash(fs_info->csum_shash); 79 } 80 81 /* 82 * Compute the csum of a btree block and store the result to provided buffer. 83 */ 84 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 85 { 86 struct btrfs_fs_info *fs_info = buf->fs_info; 87 const int num_pages = num_extent_pages(buf); 88 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 89 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 90 char *kaddr; 91 int i; 92 93 shash->tfm = fs_info->csum_shash; 94 crypto_shash_init(shash); 95 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start); 96 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 97 first_page_part - BTRFS_CSUM_SIZE); 98 99 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { 100 kaddr = page_address(buf->pages[i]); 101 crypto_shash_update(shash, kaddr, PAGE_SIZE); 102 } 103 memset(result, 0, BTRFS_CSUM_SIZE); 104 crypto_shash_final(shash, result); 105 } 106 107 /* 108 * we can't consider a given block up to date unless the transid of the 109 * block matches the transid in the parent node's pointer. This is how we 110 * detect blocks that either didn't get written at all or got written 111 * in the wrong place. 112 */ 113 static int verify_parent_transid(struct extent_io_tree *io_tree, 114 struct extent_buffer *eb, u64 parent_transid, 115 int atomic) 116 { 117 struct extent_state *cached_state = NULL; 118 int ret; 119 120 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 121 return 0; 122 123 if (atomic) 124 return -EAGAIN; 125 126 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state); 127 if (extent_buffer_uptodate(eb) && 128 btrfs_header_generation(eb) == parent_transid) { 129 ret = 0; 130 goto out; 131 } 132 btrfs_err_rl(eb->fs_info, 133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 134 eb->start, eb->read_mirror, 135 parent_transid, btrfs_header_generation(eb)); 136 ret = 1; 137 clear_extent_buffer_uptodate(eb); 138 out: 139 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 140 &cached_state); 141 return ret; 142 } 143 144 static bool btrfs_supported_super_csum(u16 csum_type) 145 { 146 switch (csum_type) { 147 case BTRFS_CSUM_TYPE_CRC32: 148 case BTRFS_CSUM_TYPE_XXHASH: 149 case BTRFS_CSUM_TYPE_SHA256: 150 case BTRFS_CSUM_TYPE_BLAKE2: 151 return true; 152 default: 153 return false; 154 } 155 } 156 157 /* 158 * Return 0 if the superblock checksum type matches the checksum value of that 159 * algorithm. Pass the raw disk superblock data. 160 */ 161 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 162 const struct btrfs_super_block *disk_sb) 163 { 164 char result[BTRFS_CSUM_SIZE]; 165 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 166 167 shash->tfm = fs_info->csum_shash; 168 169 /* 170 * The super_block structure does not span the whole 171 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 172 * filled with zeros and is included in the checksum. 173 */ 174 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 175 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 176 177 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 178 return 1; 179 180 return 0; 181 } 182 183 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 184 struct btrfs_key *first_key, u64 parent_transid) 185 { 186 struct btrfs_fs_info *fs_info = eb->fs_info; 187 int found_level; 188 struct btrfs_key found_key; 189 int ret; 190 191 found_level = btrfs_header_level(eb); 192 if (found_level != level) { 193 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 194 KERN_ERR "BTRFS: tree level check failed\n"); 195 btrfs_err(fs_info, 196 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 197 eb->start, level, found_level); 198 return -EIO; 199 } 200 201 if (!first_key) 202 return 0; 203 204 /* 205 * For live tree block (new tree blocks in current transaction), 206 * we need proper lock context to avoid race, which is impossible here. 207 * So we only checks tree blocks which is read from disk, whose 208 * generation <= fs_info->last_trans_committed. 209 */ 210 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 211 return 0; 212 213 /* We have @first_key, so this @eb must have at least one item */ 214 if (btrfs_header_nritems(eb) == 0) { 215 btrfs_err(fs_info, 216 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 217 eb->start); 218 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 219 return -EUCLEAN; 220 } 221 222 if (found_level) 223 btrfs_node_key_to_cpu(eb, &found_key, 0); 224 else 225 btrfs_item_key_to_cpu(eb, &found_key, 0); 226 ret = btrfs_comp_cpu_keys(first_key, &found_key); 227 228 if (ret) { 229 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 230 KERN_ERR "BTRFS: tree first key check failed\n"); 231 btrfs_err(fs_info, 232 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 233 eb->start, parent_transid, first_key->objectid, 234 first_key->type, first_key->offset, 235 found_key.objectid, found_key.type, 236 found_key.offset); 237 } 238 return ret; 239 } 240 241 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 242 int mirror_num) 243 { 244 struct btrfs_fs_info *fs_info = eb->fs_info; 245 int i, num_pages = num_extent_pages(eb); 246 int ret = 0; 247 248 if (sb_rdonly(fs_info->sb)) 249 return -EROFS; 250 251 for (i = 0; i < num_pages; i++) { 252 struct page *p = eb->pages[i]; 253 u64 start = max_t(u64, eb->start, page_offset(p)); 254 u64 end = min_t(u64, eb->start + eb->len, page_offset(p) + PAGE_SIZE); 255 u32 len = end - start; 256 257 ret = btrfs_repair_io_failure(fs_info, 0, start, len, 258 start, p, offset_in_page(start), mirror_num); 259 if (ret) 260 break; 261 } 262 263 return ret; 264 } 265 266 /* 267 * helper to read a given tree block, doing retries as required when 268 * the checksums don't match and we have alternate mirrors to try. 269 * 270 * @check: expected tree parentness check, see the comments of the 271 * structure for details. 272 */ 273 int btrfs_read_extent_buffer(struct extent_buffer *eb, 274 struct btrfs_tree_parent_check *check) 275 { 276 struct btrfs_fs_info *fs_info = eb->fs_info; 277 int failed = 0; 278 int ret; 279 int num_copies = 0; 280 int mirror_num = 0; 281 int failed_mirror = 0; 282 283 ASSERT(check); 284 285 while (1) { 286 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 287 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check); 288 if (!ret) 289 break; 290 291 num_copies = btrfs_num_copies(fs_info, 292 eb->start, eb->len); 293 if (num_copies == 1) 294 break; 295 296 if (!failed_mirror) { 297 failed = 1; 298 failed_mirror = eb->read_mirror; 299 } 300 301 mirror_num++; 302 if (mirror_num == failed_mirror) 303 mirror_num++; 304 305 if (mirror_num > num_copies) 306 break; 307 } 308 309 if (failed && !ret && failed_mirror) 310 btrfs_repair_eb_io_failure(eb, failed_mirror); 311 312 return ret; 313 } 314 315 static int csum_one_extent_buffer(struct extent_buffer *eb) 316 { 317 struct btrfs_fs_info *fs_info = eb->fs_info; 318 u8 result[BTRFS_CSUM_SIZE]; 319 int ret; 320 321 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 322 offsetof(struct btrfs_header, fsid), 323 BTRFS_FSID_SIZE) == 0); 324 csum_tree_block(eb, result); 325 326 if (btrfs_header_level(eb)) 327 ret = btrfs_check_node(eb); 328 else 329 ret = btrfs_check_leaf_full(eb); 330 331 if (ret < 0) 332 goto error; 333 334 /* 335 * Also check the generation, the eb reached here must be newer than 336 * last committed. Or something seriously wrong happened. 337 */ 338 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) { 339 ret = -EUCLEAN; 340 btrfs_err(fs_info, 341 "block=%llu bad generation, have %llu expect > %llu", 342 eb->start, btrfs_header_generation(eb), 343 fs_info->last_trans_committed); 344 goto error; 345 } 346 write_extent_buffer(eb, result, 0, fs_info->csum_size); 347 348 return 0; 349 350 error: 351 btrfs_print_tree(eb, 0); 352 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 353 eb->start); 354 /* 355 * Be noisy if this is an extent buffer from a log tree. We don't abort 356 * a transaction in case there's a bad log tree extent buffer, we just 357 * fallback to a transaction commit. Still we want to know when there is 358 * a bad log tree extent buffer, as that may signal a bug somewhere. 359 */ 360 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 361 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 362 return ret; 363 } 364 365 /* Checksum all dirty extent buffers in one bio_vec */ 366 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info, 367 struct bio_vec *bvec) 368 { 369 struct page *page = bvec->bv_page; 370 u64 bvec_start = page_offset(page) + bvec->bv_offset; 371 u64 cur; 372 int ret = 0; 373 374 for (cur = bvec_start; cur < bvec_start + bvec->bv_len; 375 cur += fs_info->nodesize) { 376 struct extent_buffer *eb; 377 bool uptodate; 378 379 eb = find_extent_buffer(fs_info, cur); 380 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur, 381 fs_info->nodesize); 382 383 /* A dirty eb shouldn't disappear from buffer_radix */ 384 if (WARN_ON(!eb)) 385 return -EUCLEAN; 386 387 if (WARN_ON(cur != btrfs_header_bytenr(eb))) { 388 free_extent_buffer(eb); 389 return -EUCLEAN; 390 } 391 if (WARN_ON(!uptodate)) { 392 free_extent_buffer(eb); 393 return -EUCLEAN; 394 } 395 396 ret = csum_one_extent_buffer(eb); 397 free_extent_buffer(eb); 398 if (ret < 0) 399 return ret; 400 } 401 return ret; 402 } 403 404 /* 405 * Checksum a dirty tree block before IO. This has extra checks to make sure 406 * we only fill in the checksum field in the first page of a multi-page block. 407 * For subpage extent buffers we need bvec to also read the offset in the page. 408 */ 409 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec) 410 { 411 struct page *page = bvec->bv_page; 412 u64 start = page_offset(page); 413 u64 found_start; 414 struct extent_buffer *eb; 415 416 if (fs_info->nodesize < PAGE_SIZE) 417 return csum_dirty_subpage_buffers(fs_info, bvec); 418 419 eb = (struct extent_buffer *)page->private; 420 if (page != eb->pages[0]) 421 return 0; 422 423 found_start = btrfs_header_bytenr(eb); 424 425 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) { 426 WARN_ON(found_start != 0); 427 return 0; 428 } 429 430 /* 431 * Please do not consolidate these warnings into a single if. 432 * It is useful to know what went wrong. 433 */ 434 if (WARN_ON(found_start != start)) 435 return -EUCLEAN; 436 if (WARN_ON(!PageUptodate(page))) 437 return -EUCLEAN; 438 439 return csum_one_extent_buffer(eb); 440 } 441 442 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio) 443 { 444 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info; 445 struct bvec_iter iter; 446 struct bio_vec bv; 447 int ret = 0; 448 449 bio_for_each_segment(bv, &bbio->bio, iter) { 450 ret = csum_dirty_buffer(fs_info, &bv); 451 if (ret) 452 break; 453 } 454 455 return errno_to_blk_status(ret); 456 } 457 458 static int check_tree_block_fsid(struct extent_buffer *eb) 459 { 460 struct btrfs_fs_info *fs_info = eb->fs_info; 461 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 462 u8 fsid[BTRFS_FSID_SIZE]; 463 u8 *metadata_uuid; 464 465 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 466 BTRFS_FSID_SIZE); 467 /* 468 * Checking the incompat flag is only valid for the current fs. For 469 * seed devices it's forbidden to have their uuid changed so reading 470 * ->fsid in this case is fine 471 */ 472 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 473 metadata_uuid = fs_devices->metadata_uuid; 474 else 475 metadata_uuid = fs_devices->fsid; 476 477 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) 478 return 0; 479 480 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 481 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 482 return 0; 483 484 return 1; 485 } 486 487 /* Do basic extent buffer checks at read time */ 488 static int validate_extent_buffer(struct extent_buffer *eb, 489 struct btrfs_tree_parent_check *check) 490 { 491 struct btrfs_fs_info *fs_info = eb->fs_info; 492 u64 found_start; 493 const u32 csum_size = fs_info->csum_size; 494 u8 found_level; 495 u8 result[BTRFS_CSUM_SIZE]; 496 const u8 *header_csum; 497 int ret = 0; 498 499 ASSERT(check); 500 501 found_start = btrfs_header_bytenr(eb); 502 if (found_start != eb->start) { 503 btrfs_err_rl(fs_info, 504 "bad tree block start, mirror %u want %llu have %llu", 505 eb->read_mirror, eb->start, found_start); 506 ret = -EIO; 507 goto out; 508 } 509 if (check_tree_block_fsid(eb)) { 510 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 511 eb->start, eb->read_mirror); 512 ret = -EIO; 513 goto out; 514 } 515 found_level = btrfs_header_level(eb); 516 if (found_level >= BTRFS_MAX_LEVEL) { 517 btrfs_err(fs_info, 518 "bad tree block level, mirror %u level %d on logical %llu", 519 eb->read_mirror, btrfs_header_level(eb), eb->start); 520 ret = -EIO; 521 goto out; 522 } 523 524 csum_tree_block(eb, result); 525 header_csum = page_address(eb->pages[0]) + 526 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum)); 527 528 if (memcmp(result, header_csum, csum_size) != 0) { 529 btrfs_warn_rl(fs_info, 530 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d", 531 eb->start, eb->read_mirror, 532 CSUM_FMT_VALUE(csum_size, header_csum), 533 CSUM_FMT_VALUE(csum_size, result), 534 btrfs_header_level(eb)); 535 ret = -EUCLEAN; 536 goto out; 537 } 538 539 if (found_level != check->level) { 540 btrfs_err(fs_info, 541 "level verify failed on logical %llu mirror %u wanted %u found %u", 542 eb->start, eb->read_mirror, check->level, found_level); 543 ret = -EIO; 544 goto out; 545 } 546 if (unlikely(check->transid && 547 btrfs_header_generation(eb) != check->transid)) { 548 btrfs_err_rl(eb->fs_info, 549 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 550 eb->start, eb->read_mirror, check->transid, 551 btrfs_header_generation(eb)); 552 ret = -EIO; 553 goto out; 554 } 555 if (check->has_first_key) { 556 struct btrfs_key *expect_key = &check->first_key; 557 struct btrfs_key found_key; 558 559 if (found_level) 560 btrfs_node_key_to_cpu(eb, &found_key, 0); 561 else 562 btrfs_item_key_to_cpu(eb, &found_key, 0); 563 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 564 btrfs_err(fs_info, 565 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 566 eb->start, check->transid, 567 expect_key->objectid, 568 expect_key->type, expect_key->offset, 569 found_key.objectid, found_key.type, 570 found_key.offset); 571 ret = -EUCLEAN; 572 goto out; 573 } 574 } 575 if (check->owner_root) { 576 ret = btrfs_check_eb_owner(eb, check->owner_root); 577 if (ret < 0) 578 goto out; 579 } 580 581 /* 582 * If this is a leaf block and it is corrupt, set the corrupt bit so 583 * that we don't try and read the other copies of this block, just 584 * return -EIO. 585 */ 586 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 587 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 588 ret = -EIO; 589 } 590 591 if (found_level > 0 && btrfs_check_node(eb)) 592 ret = -EIO; 593 594 if (!ret) 595 set_extent_buffer_uptodate(eb); 596 else 597 btrfs_err(fs_info, 598 "read time tree block corruption detected on logical %llu mirror %u", 599 eb->start, eb->read_mirror); 600 out: 601 return ret; 602 } 603 604 static int validate_subpage_buffer(struct page *page, u64 start, u64 end, 605 int mirror, struct btrfs_tree_parent_check *check) 606 { 607 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 608 struct extent_buffer *eb; 609 bool reads_done; 610 int ret = 0; 611 612 ASSERT(check); 613 614 /* 615 * We don't allow bio merge for subpage metadata read, so we should 616 * only get one eb for each endio hook. 617 */ 618 ASSERT(end == start + fs_info->nodesize - 1); 619 ASSERT(PagePrivate(page)); 620 621 eb = find_extent_buffer(fs_info, start); 622 /* 623 * When we are reading one tree block, eb must have been inserted into 624 * the radix tree. If not, something is wrong. 625 */ 626 ASSERT(eb); 627 628 reads_done = atomic_dec_and_test(&eb->io_pages); 629 /* Subpage read must finish in page read */ 630 ASSERT(reads_done); 631 632 eb->read_mirror = mirror; 633 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 634 ret = -EIO; 635 goto err; 636 } 637 ret = validate_extent_buffer(eb, check); 638 if (ret < 0) 639 goto err; 640 641 set_extent_buffer_uptodate(eb); 642 643 free_extent_buffer(eb); 644 return ret; 645 err: 646 /* 647 * end_bio_extent_readpage decrements io_pages in case of error, 648 * make sure it has something to decrement. 649 */ 650 atomic_inc(&eb->io_pages); 651 clear_extent_buffer_uptodate(eb); 652 free_extent_buffer(eb); 653 return ret; 654 } 655 656 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio, 657 struct page *page, u64 start, u64 end, 658 int mirror) 659 { 660 struct extent_buffer *eb; 661 int ret = 0; 662 int reads_done; 663 664 ASSERT(page->private); 665 666 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 667 return validate_subpage_buffer(page, start, end, mirror, 668 &bbio->parent_check); 669 670 eb = (struct extent_buffer *)page->private; 671 672 /* 673 * The pending IO might have been the only thing that kept this buffer 674 * in memory. Make sure we have a ref for all this other checks 675 */ 676 atomic_inc(&eb->refs); 677 678 reads_done = atomic_dec_and_test(&eb->io_pages); 679 if (!reads_done) 680 goto err; 681 682 eb->read_mirror = mirror; 683 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 684 ret = -EIO; 685 goto err; 686 } 687 ret = validate_extent_buffer(eb, &bbio->parent_check); 688 err: 689 if (ret) { 690 /* 691 * our io error hook is going to dec the io pages 692 * again, we have to make sure it has something 693 * to decrement 694 */ 695 atomic_inc(&eb->io_pages); 696 clear_extent_buffer_uptodate(eb); 697 } 698 free_extent_buffer(eb); 699 700 return ret; 701 } 702 703 #ifdef CONFIG_MIGRATION 704 static int btree_migrate_folio(struct address_space *mapping, 705 struct folio *dst, struct folio *src, enum migrate_mode mode) 706 { 707 /* 708 * we can't safely write a btree page from here, 709 * we haven't done the locking hook 710 */ 711 if (folio_test_dirty(src)) 712 return -EAGAIN; 713 /* 714 * Buffers may be managed in a filesystem specific way. 715 * We must have no buffers or drop them. 716 */ 717 if (folio_get_private(src) && 718 !filemap_release_folio(src, GFP_KERNEL)) 719 return -EAGAIN; 720 return migrate_folio(mapping, dst, src, mode); 721 } 722 #else 723 #define btree_migrate_folio NULL 724 #endif 725 726 static int btree_writepages(struct address_space *mapping, 727 struct writeback_control *wbc) 728 { 729 struct btrfs_fs_info *fs_info; 730 int ret; 731 732 if (wbc->sync_mode == WB_SYNC_NONE) { 733 734 if (wbc->for_kupdate) 735 return 0; 736 737 fs_info = BTRFS_I(mapping->host)->root->fs_info; 738 /* this is a bit racy, but that's ok */ 739 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 740 BTRFS_DIRTY_METADATA_THRESH, 741 fs_info->dirty_metadata_batch); 742 if (ret < 0) 743 return 0; 744 } 745 return btree_write_cache_pages(mapping, wbc); 746 } 747 748 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 749 { 750 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 751 return false; 752 753 return try_release_extent_buffer(&folio->page); 754 } 755 756 static void btree_invalidate_folio(struct folio *folio, size_t offset, 757 size_t length) 758 { 759 struct extent_io_tree *tree; 760 tree = &BTRFS_I(folio->mapping->host)->io_tree; 761 extent_invalidate_folio(tree, folio, offset); 762 btree_release_folio(folio, GFP_NOFS); 763 if (folio_get_private(folio)) { 764 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info, 765 "folio private not zero on folio %llu", 766 (unsigned long long)folio_pos(folio)); 767 folio_detach_private(folio); 768 } 769 } 770 771 #ifdef DEBUG 772 static bool btree_dirty_folio(struct address_space *mapping, 773 struct folio *folio) 774 { 775 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 776 struct btrfs_subpage *subpage; 777 struct extent_buffer *eb; 778 int cur_bit = 0; 779 u64 page_start = folio_pos(folio); 780 781 if (fs_info->sectorsize == PAGE_SIZE) { 782 eb = folio_get_private(folio); 783 BUG_ON(!eb); 784 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 785 BUG_ON(!atomic_read(&eb->refs)); 786 btrfs_assert_tree_write_locked(eb); 787 return filemap_dirty_folio(mapping, folio); 788 } 789 subpage = folio_get_private(folio); 790 791 ASSERT(subpage->dirty_bitmap); 792 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) { 793 unsigned long flags; 794 u64 cur; 795 u16 tmp = (1 << cur_bit); 796 797 spin_lock_irqsave(&subpage->lock, flags); 798 if (!(tmp & subpage->dirty_bitmap)) { 799 spin_unlock_irqrestore(&subpage->lock, flags); 800 cur_bit++; 801 continue; 802 } 803 spin_unlock_irqrestore(&subpage->lock, flags); 804 cur = page_start + cur_bit * fs_info->sectorsize; 805 806 eb = find_extent_buffer(fs_info, cur); 807 ASSERT(eb); 808 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 809 ASSERT(atomic_read(&eb->refs)); 810 btrfs_assert_tree_write_locked(eb); 811 free_extent_buffer(eb); 812 813 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits); 814 } 815 return filemap_dirty_folio(mapping, folio); 816 } 817 #else 818 #define btree_dirty_folio filemap_dirty_folio 819 #endif 820 821 static const struct address_space_operations btree_aops = { 822 .writepages = btree_writepages, 823 .release_folio = btree_release_folio, 824 .invalidate_folio = btree_invalidate_folio, 825 .migrate_folio = btree_migrate_folio, 826 .dirty_folio = btree_dirty_folio, 827 }; 828 829 struct extent_buffer *btrfs_find_create_tree_block( 830 struct btrfs_fs_info *fs_info, 831 u64 bytenr, u64 owner_root, 832 int level) 833 { 834 if (btrfs_is_testing(fs_info)) 835 return alloc_test_extent_buffer(fs_info, bytenr); 836 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 837 } 838 839 /* 840 * Read tree block at logical address @bytenr and do variant basic but critical 841 * verification. 842 * 843 * @check: expected tree parentness check, see comments of the 844 * structure for details. 845 */ 846 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 847 struct btrfs_tree_parent_check *check) 848 { 849 struct extent_buffer *buf = NULL; 850 int ret; 851 852 ASSERT(check); 853 854 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 855 check->level); 856 if (IS_ERR(buf)) 857 return buf; 858 859 ret = btrfs_read_extent_buffer(buf, check); 860 if (ret) { 861 free_extent_buffer_stale(buf); 862 return ERR_PTR(ret); 863 } 864 if (btrfs_check_eb_owner(buf, check->owner_root)) { 865 free_extent_buffer_stale(buf); 866 return ERR_PTR(-EUCLEAN); 867 } 868 return buf; 869 870 } 871 872 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 873 u64 objectid) 874 { 875 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 876 877 memset(&root->root_key, 0, sizeof(root->root_key)); 878 memset(&root->root_item, 0, sizeof(root->root_item)); 879 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 880 root->fs_info = fs_info; 881 root->root_key.objectid = objectid; 882 root->node = NULL; 883 root->commit_root = NULL; 884 root->state = 0; 885 RB_CLEAR_NODE(&root->rb_node); 886 887 root->last_trans = 0; 888 root->free_objectid = 0; 889 root->nr_delalloc_inodes = 0; 890 root->nr_ordered_extents = 0; 891 root->inode_tree = RB_ROOT; 892 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 893 894 btrfs_init_root_block_rsv(root); 895 896 INIT_LIST_HEAD(&root->dirty_list); 897 INIT_LIST_HEAD(&root->root_list); 898 INIT_LIST_HEAD(&root->delalloc_inodes); 899 INIT_LIST_HEAD(&root->delalloc_root); 900 INIT_LIST_HEAD(&root->ordered_extents); 901 INIT_LIST_HEAD(&root->ordered_root); 902 INIT_LIST_HEAD(&root->reloc_dirty_list); 903 INIT_LIST_HEAD(&root->logged_list[0]); 904 INIT_LIST_HEAD(&root->logged_list[1]); 905 spin_lock_init(&root->inode_lock); 906 spin_lock_init(&root->delalloc_lock); 907 spin_lock_init(&root->ordered_extent_lock); 908 spin_lock_init(&root->accounting_lock); 909 spin_lock_init(&root->log_extents_lock[0]); 910 spin_lock_init(&root->log_extents_lock[1]); 911 spin_lock_init(&root->qgroup_meta_rsv_lock); 912 mutex_init(&root->objectid_mutex); 913 mutex_init(&root->log_mutex); 914 mutex_init(&root->ordered_extent_mutex); 915 mutex_init(&root->delalloc_mutex); 916 init_waitqueue_head(&root->qgroup_flush_wait); 917 init_waitqueue_head(&root->log_writer_wait); 918 init_waitqueue_head(&root->log_commit_wait[0]); 919 init_waitqueue_head(&root->log_commit_wait[1]); 920 INIT_LIST_HEAD(&root->log_ctxs[0]); 921 INIT_LIST_HEAD(&root->log_ctxs[1]); 922 atomic_set(&root->log_commit[0], 0); 923 atomic_set(&root->log_commit[1], 0); 924 atomic_set(&root->log_writers, 0); 925 atomic_set(&root->log_batch, 0); 926 refcount_set(&root->refs, 1); 927 atomic_set(&root->snapshot_force_cow, 0); 928 atomic_set(&root->nr_swapfiles, 0); 929 root->log_transid = 0; 930 root->log_transid_committed = -1; 931 root->last_log_commit = 0; 932 root->anon_dev = 0; 933 if (!dummy) { 934 extent_io_tree_init(fs_info, &root->dirty_log_pages, 935 IO_TREE_ROOT_DIRTY_LOG_PAGES); 936 extent_io_tree_init(fs_info, &root->log_csum_range, 937 IO_TREE_LOG_CSUM_RANGE); 938 } 939 940 spin_lock_init(&root->root_item_lock); 941 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 942 #ifdef CONFIG_BTRFS_DEBUG 943 INIT_LIST_HEAD(&root->leak_list); 944 spin_lock(&fs_info->fs_roots_radix_lock); 945 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 946 spin_unlock(&fs_info->fs_roots_radix_lock); 947 #endif 948 } 949 950 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 951 u64 objectid, gfp_t flags) 952 { 953 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 954 if (root) 955 __setup_root(root, fs_info, objectid); 956 return root; 957 } 958 959 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 960 /* Should only be used by the testing infrastructure */ 961 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 962 { 963 struct btrfs_root *root; 964 965 if (!fs_info) 966 return ERR_PTR(-EINVAL); 967 968 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 969 if (!root) 970 return ERR_PTR(-ENOMEM); 971 972 /* We don't use the stripesize in selftest, set it as sectorsize */ 973 root->alloc_bytenr = 0; 974 975 return root; 976 } 977 #endif 978 979 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 980 { 981 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 982 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 983 984 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 985 } 986 987 static int global_root_key_cmp(const void *k, const struct rb_node *node) 988 { 989 const struct btrfs_key *key = k; 990 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 991 992 return btrfs_comp_cpu_keys(key, &root->root_key); 993 } 994 995 int btrfs_global_root_insert(struct btrfs_root *root) 996 { 997 struct btrfs_fs_info *fs_info = root->fs_info; 998 struct rb_node *tmp; 999 int ret = 0; 1000 1001 write_lock(&fs_info->global_root_lock); 1002 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 1003 write_unlock(&fs_info->global_root_lock); 1004 1005 if (tmp) { 1006 ret = -EEXIST; 1007 btrfs_warn(fs_info, "global root %llu %llu already exists", 1008 root->root_key.objectid, root->root_key.offset); 1009 } 1010 return ret; 1011 } 1012 1013 void btrfs_global_root_delete(struct btrfs_root *root) 1014 { 1015 struct btrfs_fs_info *fs_info = root->fs_info; 1016 1017 write_lock(&fs_info->global_root_lock); 1018 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1019 write_unlock(&fs_info->global_root_lock); 1020 } 1021 1022 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 1023 struct btrfs_key *key) 1024 { 1025 struct rb_node *node; 1026 struct btrfs_root *root = NULL; 1027 1028 read_lock(&fs_info->global_root_lock); 1029 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 1030 if (node) 1031 root = container_of(node, struct btrfs_root, rb_node); 1032 read_unlock(&fs_info->global_root_lock); 1033 1034 return root; 1035 } 1036 1037 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 1038 { 1039 struct btrfs_block_group *block_group; 1040 u64 ret; 1041 1042 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 1043 return 0; 1044 1045 if (bytenr) 1046 block_group = btrfs_lookup_block_group(fs_info, bytenr); 1047 else 1048 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 1049 ASSERT(block_group); 1050 if (!block_group) 1051 return 0; 1052 ret = block_group->global_root_id; 1053 btrfs_put_block_group(block_group); 1054 1055 return ret; 1056 } 1057 1058 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1059 { 1060 struct btrfs_key key = { 1061 .objectid = BTRFS_CSUM_TREE_OBJECTID, 1062 .type = BTRFS_ROOT_ITEM_KEY, 1063 .offset = btrfs_global_root_id(fs_info, bytenr), 1064 }; 1065 1066 return btrfs_global_root(fs_info, &key); 1067 } 1068 1069 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1070 { 1071 struct btrfs_key key = { 1072 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 1073 .type = BTRFS_ROOT_ITEM_KEY, 1074 .offset = btrfs_global_root_id(fs_info, bytenr), 1075 }; 1076 1077 return btrfs_global_root(fs_info, &key); 1078 } 1079 1080 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 1081 { 1082 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 1083 return fs_info->block_group_root; 1084 return btrfs_extent_root(fs_info, 0); 1085 } 1086 1087 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1088 u64 objectid) 1089 { 1090 struct btrfs_fs_info *fs_info = trans->fs_info; 1091 struct extent_buffer *leaf; 1092 struct btrfs_root *tree_root = fs_info->tree_root; 1093 struct btrfs_root *root; 1094 struct btrfs_key key; 1095 unsigned int nofs_flag; 1096 int ret = 0; 1097 1098 /* 1099 * We're holding a transaction handle, so use a NOFS memory allocation 1100 * context to avoid deadlock if reclaim happens. 1101 */ 1102 nofs_flag = memalloc_nofs_save(); 1103 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1104 memalloc_nofs_restore(nofs_flag); 1105 if (!root) 1106 return ERR_PTR(-ENOMEM); 1107 1108 root->root_key.objectid = objectid; 1109 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1110 root->root_key.offset = 0; 1111 1112 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 1113 BTRFS_NESTING_NORMAL); 1114 if (IS_ERR(leaf)) { 1115 ret = PTR_ERR(leaf); 1116 leaf = NULL; 1117 goto fail; 1118 } 1119 1120 root->node = leaf; 1121 btrfs_mark_buffer_dirty(leaf); 1122 1123 root->commit_root = btrfs_root_node(root); 1124 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1125 1126 btrfs_set_root_flags(&root->root_item, 0); 1127 btrfs_set_root_limit(&root->root_item, 0); 1128 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1129 btrfs_set_root_generation(&root->root_item, trans->transid); 1130 btrfs_set_root_level(&root->root_item, 0); 1131 btrfs_set_root_refs(&root->root_item, 1); 1132 btrfs_set_root_used(&root->root_item, leaf->len); 1133 btrfs_set_root_last_snapshot(&root->root_item, 0); 1134 btrfs_set_root_dirid(&root->root_item, 0); 1135 if (is_fstree(objectid)) 1136 generate_random_guid(root->root_item.uuid); 1137 else 1138 export_guid(root->root_item.uuid, &guid_null); 1139 btrfs_set_root_drop_level(&root->root_item, 0); 1140 1141 btrfs_tree_unlock(leaf); 1142 1143 key.objectid = objectid; 1144 key.type = BTRFS_ROOT_ITEM_KEY; 1145 key.offset = 0; 1146 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1147 if (ret) 1148 goto fail; 1149 1150 return root; 1151 1152 fail: 1153 btrfs_put_root(root); 1154 1155 return ERR_PTR(ret); 1156 } 1157 1158 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1159 struct btrfs_fs_info *fs_info) 1160 { 1161 struct btrfs_root *root; 1162 1163 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1164 if (!root) 1165 return ERR_PTR(-ENOMEM); 1166 1167 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1168 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1169 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1170 1171 return root; 1172 } 1173 1174 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 1175 struct btrfs_root *root) 1176 { 1177 struct extent_buffer *leaf; 1178 1179 /* 1180 * DON'T set SHAREABLE bit for log trees. 1181 * 1182 * Log trees are not exposed to user space thus can't be snapshotted, 1183 * and they go away before a real commit is actually done. 1184 * 1185 * They do store pointers to file data extents, and those reference 1186 * counts still get updated (along with back refs to the log tree). 1187 */ 1188 1189 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1190 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); 1191 if (IS_ERR(leaf)) 1192 return PTR_ERR(leaf); 1193 1194 root->node = leaf; 1195 1196 btrfs_mark_buffer_dirty(root->node); 1197 btrfs_tree_unlock(root->node); 1198 1199 return 0; 1200 } 1201 1202 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1203 struct btrfs_fs_info *fs_info) 1204 { 1205 struct btrfs_root *log_root; 1206 1207 log_root = alloc_log_tree(trans, fs_info); 1208 if (IS_ERR(log_root)) 1209 return PTR_ERR(log_root); 1210 1211 if (!btrfs_is_zoned(fs_info)) { 1212 int ret = btrfs_alloc_log_tree_node(trans, log_root); 1213 1214 if (ret) { 1215 btrfs_put_root(log_root); 1216 return ret; 1217 } 1218 } 1219 1220 WARN_ON(fs_info->log_root_tree); 1221 fs_info->log_root_tree = log_root; 1222 return 0; 1223 } 1224 1225 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1226 struct btrfs_root *root) 1227 { 1228 struct btrfs_fs_info *fs_info = root->fs_info; 1229 struct btrfs_root *log_root; 1230 struct btrfs_inode_item *inode_item; 1231 int ret; 1232 1233 log_root = alloc_log_tree(trans, fs_info); 1234 if (IS_ERR(log_root)) 1235 return PTR_ERR(log_root); 1236 1237 ret = btrfs_alloc_log_tree_node(trans, log_root); 1238 if (ret) { 1239 btrfs_put_root(log_root); 1240 return ret; 1241 } 1242 1243 log_root->last_trans = trans->transid; 1244 log_root->root_key.offset = root->root_key.objectid; 1245 1246 inode_item = &log_root->root_item.inode; 1247 btrfs_set_stack_inode_generation(inode_item, 1); 1248 btrfs_set_stack_inode_size(inode_item, 3); 1249 btrfs_set_stack_inode_nlink(inode_item, 1); 1250 btrfs_set_stack_inode_nbytes(inode_item, 1251 fs_info->nodesize); 1252 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1253 1254 btrfs_set_root_node(&log_root->root_item, log_root->node); 1255 1256 WARN_ON(root->log_root); 1257 root->log_root = log_root; 1258 root->log_transid = 0; 1259 root->log_transid_committed = -1; 1260 root->last_log_commit = 0; 1261 return 0; 1262 } 1263 1264 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1265 struct btrfs_path *path, 1266 struct btrfs_key *key) 1267 { 1268 struct btrfs_root *root; 1269 struct btrfs_tree_parent_check check = { 0 }; 1270 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1271 u64 generation; 1272 int ret; 1273 int level; 1274 1275 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1276 if (!root) 1277 return ERR_PTR(-ENOMEM); 1278 1279 ret = btrfs_find_root(tree_root, key, path, 1280 &root->root_item, &root->root_key); 1281 if (ret) { 1282 if (ret > 0) 1283 ret = -ENOENT; 1284 goto fail; 1285 } 1286 1287 generation = btrfs_root_generation(&root->root_item); 1288 level = btrfs_root_level(&root->root_item); 1289 check.level = level; 1290 check.transid = generation; 1291 check.owner_root = key->objectid; 1292 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1293 &check); 1294 if (IS_ERR(root->node)) { 1295 ret = PTR_ERR(root->node); 1296 root->node = NULL; 1297 goto fail; 1298 } 1299 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1300 ret = -EIO; 1301 goto fail; 1302 } 1303 1304 /* 1305 * For real fs, and not log/reloc trees, root owner must 1306 * match its root node owner 1307 */ 1308 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) && 1309 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1310 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1311 root->root_key.objectid != btrfs_header_owner(root->node)) { 1312 btrfs_crit(fs_info, 1313 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1314 root->root_key.objectid, root->node->start, 1315 btrfs_header_owner(root->node), 1316 root->root_key.objectid); 1317 ret = -EUCLEAN; 1318 goto fail; 1319 } 1320 root->commit_root = btrfs_root_node(root); 1321 return root; 1322 fail: 1323 btrfs_put_root(root); 1324 return ERR_PTR(ret); 1325 } 1326 1327 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1328 struct btrfs_key *key) 1329 { 1330 struct btrfs_root *root; 1331 struct btrfs_path *path; 1332 1333 path = btrfs_alloc_path(); 1334 if (!path) 1335 return ERR_PTR(-ENOMEM); 1336 root = read_tree_root_path(tree_root, path, key); 1337 btrfs_free_path(path); 1338 1339 return root; 1340 } 1341 1342 /* 1343 * Initialize subvolume root in-memory structure 1344 * 1345 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1346 */ 1347 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1348 { 1349 int ret; 1350 1351 btrfs_drew_lock_init(&root->snapshot_lock); 1352 1353 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1354 !btrfs_is_data_reloc_root(root)) { 1355 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1356 btrfs_check_and_init_root_item(&root->root_item); 1357 } 1358 1359 /* 1360 * Don't assign anonymous block device to roots that are not exposed to 1361 * userspace, the id pool is limited to 1M 1362 */ 1363 if (is_fstree(root->root_key.objectid) && 1364 btrfs_root_refs(&root->root_item) > 0) { 1365 if (!anon_dev) { 1366 ret = get_anon_bdev(&root->anon_dev); 1367 if (ret) 1368 goto fail; 1369 } else { 1370 root->anon_dev = anon_dev; 1371 } 1372 } 1373 1374 mutex_lock(&root->objectid_mutex); 1375 ret = btrfs_init_root_free_objectid(root); 1376 if (ret) { 1377 mutex_unlock(&root->objectid_mutex); 1378 goto fail; 1379 } 1380 1381 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1382 1383 mutex_unlock(&root->objectid_mutex); 1384 1385 return 0; 1386 fail: 1387 /* The caller is responsible to call btrfs_free_fs_root */ 1388 return ret; 1389 } 1390 1391 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1392 u64 root_id) 1393 { 1394 struct btrfs_root *root; 1395 1396 spin_lock(&fs_info->fs_roots_radix_lock); 1397 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1398 (unsigned long)root_id); 1399 if (root) 1400 root = btrfs_grab_root(root); 1401 spin_unlock(&fs_info->fs_roots_radix_lock); 1402 return root; 1403 } 1404 1405 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1406 u64 objectid) 1407 { 1408 struct btrfs_key key = { 1409 .objectid = objectid, 1410 .type = BTRFS_ROOT_ITEM_KEY, 1411 .offset = 0, 1412 }; 1413 1414 if (objectid == BTRFS_ROOT_TREE_OBJECTID) 1415 return btrfs_grab_root(fs_info->tree_root); 1416 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 1417 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1418 if (objectid == BTRFS_CHUNK_TREE_OBJECTID) 1419 return btrfs_grab_root(fs_info->chunk_root); 1420 if (objectid == BTRFS_DEV_TREE_OBJECTID) 1421 return btrfs_grab_root(fs_info->dev_root); 1422 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 1423 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1424 if (objectid == BTRFS_QUOTA_TREE_OBJECTID) 1425 return btrfs_grab_root(fs_info->quota_root) ? 1426 fs_info->quota_root : ERR_PTR(-ENOENT); 1427 if (objectid == BTRFS_UUID_TREE_OBJECTID) 1428 return btrfs_grab_root(fs_info->uuid_root) ? 1429 fs_info->uuid_root : ERR_PTR(-ENOENT); 1430 if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID) 1431 return btrfs_grab_root(fs_info->block_group_root) ? 1432 fs_info->block_group_root : ERR_PTR(-ENOENT); 1433 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) { 1434 struct btrfs_root *root = btrfs_global_root(fs_info, &key); 1435 1436 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT); 1437 } 1438 return NULL; 1439 } 1440 1441 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1442 struct btrfs_root *root) 1443 { 1444 int ret; 1445 1446 ret = radix_tree_preload(GFP_NOFS); 1447 if (ret) 1448 return ret; 1449 1450 spin_lock(&fs_info->fs_roots_radix_lock); 1451 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1452 (unsigned long)root->root_key.objectid, 1453 root); 1454 if (ret == 0) { 1455 btrfs_grab_root(root); 1456 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1457 } 1458 spin_unlock(&fs_info->fs_roots_radix_lock); 1459 radix_tree_preload_end(); 1460 1461 return ret; 1462 } 1463 1464 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1465 { 1466 #ifdef CONFIG_BTRFS_DEBUG 1467 struct btrfs_root *root; 1468 1469 while (!list_empty(&fs_info->allocated_roots)) { 1470 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1471 1472 root = list_first_entry(&fs_info->allocated_roots, 1473 struct btrfs_root, leak_list); 1474 btrfs_err(fs_info, "leaked root %s refcount %d", 1475 btrfs_root_name(&root->root_key, buf), 1476 refcount_read(&root->refs)); 1477 while (refcount_read(&root->refs) > 1) 1478 btrfs_put_root(root); 1479 btrfs_put_root(root); 1480 } 1481 #endif 1482 } 1483 1484 static void free_global_roots(struct btrfs_fs_info *fs_info) 1485 { 1486 struct btrfs_root *root; 1487 struct rb_node *node; 1488 1489 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1490 root = rb_entry(node, struct btrfs_root, rb_node); 1491 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1492 btrfs_put_root(root); 1493 } 1494 } 1495 1496 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1497 { 1498 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1499 percpu_counter_destroy(&fs_info->delalloc_bytes); 1500 percpu_counter_destroy(&fs_info->ordered_bytes); 1501 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1502 btrfs_free_csum_hash(fs_info); 1503 btrfs_free_stripe_hash_table(fs_info); 1504 btrfs_free_ref_cache(fs_info); 1505 kfree(fs_info->balance_ctl); 1506 kfree(fs_info->delayed_root); 1507 free_global_roots(fs_info); 1508 btrfs_put_root(fs_info->tree_root); 1509 btrfs_put_root(fs_info->chunk_root); 1510 btrfs_put_root(fs_info->dev_root); 1511 btrfs_put_root(fs_info->quota_root); 1512 btrfs_put_root(fs_info->uuid_root); 1513 btrfs_put_root(fs_info->fs_root); 1514 btrfs_put_root(fs_info->data_reloc_root); 1515 btrfs_put_root(fs_info->block_group_root); 1516 btrfs_check_leaked_roots(fs_info); 1517 btrfs_extent_buffer_leak_debug_check(fs_info); 1518 kfree(fs_info->super_copy); 1519 kfree(fs_info->super_for_commit); 1520 kfree(fs_info->subpage_info); 1521 kvfree(fs_info); 1522 } 1523 1524 1525 /* 1526 * Get an in-memory reference of a root structure. 1527 * 1528 * For essential trees like root/extent tree, we grab it from fs_info directly. 1529 * For subvolume trees, we check the cached filesystem roots first. If not 1530 * found, then read it from disk and add it to cached fs roots. 1531 * 1532 * Caller should release the root by calling btrfs_put_root() after the usage. 1533 * 1534 * NOTE: Reloc and log trees can't be read by this function as they share the 1535 * same root objectid. 1536 * 1537 * @objectid: root id 1538 * @anon_dev: preallocated anonymous block device number for new roots, 1539 * pass 0 for new allocation. 1540 * @check_ref: whether to check root item references, If true, return -ENOENT 1541 * for orphan roots 1542 */ 1543 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1544 u64 objectid, dev_t anon_dev, 1545 bool check_ref) 1546 { 1547 struct btrfs_root *root; 1548 struct btrfs_path *path; 1549 struct btrfs_key key; 1550 int ret; 1551 1552 root = btrfs_get_global_root(fs_info, objectid); 1553 if (root) 1554 return root; 1555 again: 1556 root = btrfs_lookup_fs_root(fs_info, objectid); 1557 if (root) { 1558 /* Shouldn't get preallocated anon_dev for cached roots */ 1559 ASSERT(!anon_dev); 1560 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1561 btrfs_put_root(root); 1562 return ERR_PTR(-ENOENT); 1563 } 1564 return root; 1565 } 1566 1567 key.objectid = objectid; 1568 key.type = BTRFS_ROOT_ITEM_KEY; 1569 key.offset = (u64)-1; 1570 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1571 if (IS_ERR(root)) 1572 return root; 1573 1574 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1575 ret = -ENOENT; 1576 goto fail; 1577 } 1578 1579 ret = btrfs_init_fs_root(root, anon_dev); 1580 if (ret) 1581 goto fail; 1582 1583 path = btrfs_alloc_path(); 1584 if (!path) { 1585 ret = -ENOMEM; 1586 goto fail; 1587 } 1588 key.objectid = BTRFS_ORPHAN_OBJECTID; 1589 key.type = BTRFS_ORPHAN_ITEM_KEY; 1590 key.offset = objectid; 1591 1592 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1593 btrfs_free_path(path); 1594 if (ret < 0) 1595 goto fail; 1596 if (ret == 0) 1597 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1598 1599 ret = btrfs_insert_fs_root(fs_info, root); 1600 if (ret) { 1601 if (ret == -EEXIST) { 1602 btrfs_put_root(root); 1603 goto again; 1604 } 1605 goto fail; 1606 } 1607 return root; 1608 fail: 1609 /* 1610 * If our caller provided us an anonymous device, then it's his 1611 * responsibility to free it in case we fail. So we have to set our 1612 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1613 * and once again by our caller. 1614 */ 1615 if (anon_dev) 1616 root->anon_dev = 0; 1617 btrfs_put_root(root); 1618 return ERR_PTR(ret); 1619 } 1620 1621 /* 1622 * Get in-memory reference of a root structure 1623 * 1624 * @objectid: tree objectid 1625 * @check_ref: if set, verify that the tree exists and the item has at least 1626 * one reference 1627 */ 1628 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1629 u64 objectid, bool check_ref) 1630 { 1631 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1632 } 1633 1634 /* 1635 * Get in-memory reference of a root structure, created as new, optionally pass 1636 * the anonymous block device id 1637 * 1638 * @objectid: tree objectid 1639 * @anon_dev: if zero, allocate a new anonymous block device or use the 1640 * parameter value 1641 */ 1642 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1643 u64 objectid, dev_t anon_dev) 1644 { 1645 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1646 } 1647 1648 /* 1649 * btrfs_get_fs_root_commit_root - return a root for the given objectid 1650 * @fs_info: the fs_info 1651 * @objectid: the objectid we need to lookup 1652 * 1653 * This is exclusively used for backref walking, and exists specifically because 1654 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1655 * creation time, which means we may have to read the tree_root in order to look 1656 * up a fs root that is not in memory. If the root is not in memory we will 1657 * read the tree root commit root and look up the fs root from there. This is a 1658 * temporary root, it will not be inserted into the radix tree as it doesn't 1659 * have the most uptodate information, it'll simply be discarded once the 1660 * backref code is finished using the root. 1661 */ 1662 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1663 struct btrfs_path *path, 1664 u64 objectid) 1665 { 1666 struct btrfs_root *root; 1667 struct btrfs_key key; 1668 1669 ASSERT(path->search_commit_root && path->skip_locking); 1670 1671 /* 1672 * This can return -ENOENT if we ask for a root that doesn't exist, but 1673 * since this is called via the backref walking code we won't be looking 1674 * up a root that doesn't exist, unless there's corruption. So if root 1675 * != NULL just return it. 1676 */ 1677 root = btrfs_get_global_root(fs_info, objectid); 1678 if (root) 1679 return root; 1680 1681 root = btrfs_lookup_fs_root(fs_info, objectid); 1682 if (root) 1683 return root; 1684 1685 key.objectid = objectid; 1686 key.type = BTRFS_ROOT_ITEM_KEY; 1687 key.offset = (u64)-1; 1688 root = read_tree_root_path(fs_info->tree_root, path, &key); 1689 btrfs_release_path(path); 1690 1691 return root; 1692 } 1693 1694 static int cleaner_kthread(void *arg) 1695 { 1696 struct btrfs_fs_info *fs_info = arg; 1697 int again; 1698 1699 while (1) { 1700 again = 0; 1701 1702 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1703 1704 /* Make the cleaner go to sleep early. */ 1705 if (btrfs_need_cleaner_sleep(fs_info)) 1706 goto sleep; 1707 1708 /* 1709 * Do not do anything if we might cause open_ctree() to block 1710 * before we have finished mounting the filesystem. 1711 */ 1712 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1713 goto sleep; 1714 1715 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1716 goto sleep; 1717 1718 /* 1719 * Avoid the problem that we change the status of the fs 1720 * during the above check and trylock. 1721 */ 1722 if (btrfs_need_cleaner_sleep(fs_info)) { 1723 mutex_unlock(&fs_info->cleaner_mutex); 1724 goto sleep; 1725 } 1726 1727 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1728 btrfs_sysfs_feature_update(fs_info); 1729 1730 btrfs_run_delayed_iputs(fs_info); 1731 1732 again = btrfs_clean_one_deleted_snapshot(fs_info); 1733 mutex_unlock(&fs_info->cleaner_mutex); 1734 1735 /* 1736 * The defragger has dealt with the R/O remount and umount, 1737 * needn't do anything special here. 1738 */ 1739 btrfs_run_defrag_inodes(fs_info); 1740 1741 /* 1742 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1743 * with relocation (btrfs_relocate_chunk) and relocation 1744 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1745 * after acquiring fs_info->reclaim_bgs_lock. So we 1746 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1747 * unused block groups. 1748 */ 1749 btrfs_delete_unused_bgs(fs_info); 1750 1751 /* 1752 * Reclaim block groups in the reclaim_bgs list after we deleted 1753 * all unused block_groups. This possibly gives us some more free 1754 * space. 1755 */ 1756 btrfs_reclaim_bgs(fs_info); 1757 sleep: 1758 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1759 if (kthread_should_park()) 1760 kthread_parkme(); 1761 if (kthread_should_stop()) 1762 return 0; 1763 if (!again) { 1764 set_current_state(TASK_INTERRUPTIBLE); 1765 schedule(); 1766 __set_current_state(TASK_RUNNING); 1767 } 1768 } 1769 } 1770 1771 static int transaction_kthread(void *arg) 1772 { 1773 struct btrfs_root *root = arg; 1774 struct btrfs_fs_info *fs_info = root->fs_info; 1775 struct btrfs_trans_handle *trans; 1776 struct btrfs_transaction *cur; 1777 u64 transid; 1778 time64_t delta; 1779 unsigned long delay; 1780 bool cannot_commit; 1781 1782 do { 1783 cannot_commit = false; 1784 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1785 mutex_lock(&fs_info->transaction_kthread_mutex); 1786 1787 spin_lock(&fs_info->trans_lock); 1788 cur = fs_info->running_transaction; 1789 if (!cur) { 1790 spin_unlock(&fs_info->trans_lock); 1791 goto sleep; 1792 } 1793 1794 delta = ktime_get_seconds() - cur->start_time; 1795 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1796 cur->state < TRANS_STATE_COMMIT_START && 1797 delta < fs_info->commit_interval) { 1798 spin_unlock(&fs_info->trans_lock); 1799 delay -= msecs_to_jiffies((delta - 1) * 1000); 1800 delay = min(delay, 1801 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1802 goto sleep; 1803 } 1804 transid = cur->transid; 1805 spin_unlock(&fs_info->trans_lock); 1806 1807 /* If the file system is aborted, this will always fail. */ 1808 trans = btrfs_attach_transaction(root); 1809 if (IS_ERR(trans)) { 1810 if (PTR_ERR(trans) != -ENOENT) 1811 cannot_commit = true; 1812 goto sleep; 1813 } 1814 if (transid == trans->transid) { 1815 btrfs_commit_transaction(trans); 1816 } else { 1817 btrfs_end_transaction(trans); 1818 } 1819 sleep: 1820 wake_up_process(fs_info->cleaner_kthread); 1821 mutex_unlock(&fs_info->transaction_kthread_mutex); 1822 1823 if (BTRFS_FS_ERROR(fs_info)) 1824 btrfs_cleanup_transaction(fs_info); 1825 if (!kthread_should_stop() && 1826 (!btrfs_transaction_blocked(fs_info) || 1827 cannot_commit)) 1828 schedule_timeout_interruptible(delay); 1829 } while (!kthread_should_stop()); 1830 return 0; 1831 } 1832 1833 /* 1834 * This will find the highest generation in the array of root backups. The 1835 * index of the highest array is returned, or -EINVAL if we can't find 1836 * anything. 1837 * 1838 * We check to make sure the array is valid by comparing the 1839 * generation of the latest root in the array with the generation 1840 * in the super block. If they don't match we pitch it. 1841 */ 1842 static int find_newest_super_backup(struct btrfs_fs_info *info) 1843 { 1844 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1845 u64 cur; 1846 struct btrfs_root_backup *root_backup; 1847 int i; 1848 1849 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1850 root_backup = info->super_copy->super_roots + i; 1851 cur = btrfs_backup_tree_root_gen(root_backup); 1852 if (cur == newest_gen) 1853 return i; 1854 } 1855 1856 return -EINVAL; 1857 } 1858 1859 /* 1860 * copy all the root pointers into the super backup array. 1861 * this will bump the backup pointer by one when it is 1862 * done 1863 */ 1864 static void backup_super_roots(struct btrfs_fs_info *info) 1865 { 1866 const int next_backup = info->backup_root_index; 1867 struct btrfs_root_backup *root_backup; 1868 1869 root_backup = info->super_for_commit->super_roots + next_backup; 1870 1871 /* 1872 * make sure all of our padding and empty slots get zero filled 1873 * regardless of which ones we use today 1874 */ 1875 memset(root_backup, 0, sizeof(*root_backup)); 1876 1877 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1878 1879 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1880 btrfs_set_backup_tree_root_gen(root_backup, 1881 btrfs_header_generation(info->tree_root->node)); 1882 1883 btrfs_set_backup_tree_root_level(root_backup, 1884 btrfs_header_level(info->tree_root->node)); 1885 1886 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1887 btrfs_set_backup_chunk_root_gen(root_backup, 1888 btrfs_header_generation(info->chunk_root->node)); 1889 btrfs_set_backup_chunk_root_level(root_backup, 1890 btrfs_header_level(info->chunk_root->node)); 1891 1892 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1893 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1894 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1895 1896 btrfs_set_backup_extent_root(root_backup, 1897 extent_root->node->start); 1898 btrfs_set_backup_extent_root_gen(root_backup, 1899 btrfs_header_generation(extent_root->node)); 1900 btrfs_set_backup_extent_root_level(root_backup, 1901 btrfs_header_level(extent_root->node)); 1902 1903 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1904 btrfs_set_backup_csum_root_gen(root_backup, 1905 btrfs_header_generation(csum_root->node)); 1906 btrfs_set_backup_csum_root_level(root_backup, 1907 btrfs_header_level(csum_root->node)); 1908 } 1909 1910 /* 1911 * we might commit during log recovery, which happens before we set 1912 * the fs_root. Make sure it is valid before we fill it in. 1913 */ 1914 if (info->fs_root && info->fs_root->node) { 1915 btrfs_set_backup_fs_root(root_backup, 1916 info->fs_root->node->start); 1917 btrfs_set_backup_fs_root_gen(root_backup, 1918 btrfs_header_generation(info->fs_root->node)); 1919 btrfs_set_backup_fs_root_level(root_backup, 1920 btrfs_header_level(info->fs_root->node)); 1921 } 1922 1923 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1924 btrfs_set_backup_dev_root_gen(root_backup, 1925 btrfs_header_generation(info->dev_root->node)); 1926 btrfs_set_backup_dev_root_level(root_backup, 1927 btrfs_header_level(info->dev_root->node)); 1928 1929 btrfs_set_backup_total_bytes(root_backup, 1930 btrfs_super_total_bytes(info->super_copy)); 1931 btrfs_set_backup_bytes_used(root_backup, 1932 btrfs_super_bytes_used(info->super_copy)); 1933 btrfs_set_backup_num_devices(root_backup, 1934 btrfs_super_num_devices(info->super_copy)); 1935 1936 /* 1937 * if we don't copy this out to the super_copy, it won't get remembered 1938 * for the next commit 1939 */ 1940 memcpy(&info->super_copy->super_roots, 1941 &info->super_for_commit->super_roots, 1942 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1943 } 1944 1945 /* 1946 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 1947 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1948 * 1949 * fs_info - filesystem whose backup roots need to be read 1950 * priority - priority of backup root required 1951 * 1952 * Returns backup root index on success and -EINVAL otherwise. 1953 */ 1954 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1955 { 1956 int backup_index = find_newest_super_backup(fs_info); 1957 struct btrfs_super_block *super = fs_info->super_copy; 1958 struct btrfs_root_backup *root_backup; 1959 1960 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1961 if (priority == 0) 1962 return backup_index; 1963 1964 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1965 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1966 } else { 1967 return -EINVAL; 1968 } 1969 1970 root_backup = super->super_roots + backup_index; 1971 1972 btrfs_set_super_generation(super, 1973 btrfs_backup_tree_root_gen(root_backup)); 1974 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1975 btrfs_set_super_root_level(super, 1976 btrfs_backup_tree_root_level(root_backup)); 1977 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1978 1979 /* 1980 * Fixme: the total bytes and num_devices need to match or we should 1981 * need a fsck 1982 */ 1983 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1984 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1985 1986 return backup_index; 1987 } 1988 1989 /* helper to cleanup workers */ 1990 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1991 { 1992 btrfs_destroy_workqueue(fs_info->fixup_workers); 1993 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1994 btrfs_destroy_workqueue(fs_info->hipri_workers); 1995 btrfs_destroy_workqueue(fs_info->workers); 1996 if (fs_info->endio_workers) 1997 destroy_workqueue(fs_info->endio_workers); 1998 if (fs_info->rmw_workers) 1999 destroy_workqueue(fs_info->rmw_workers); 2000 if (fs_info->compressed_write_workers) 2001 destroy_workqueue(fs_info->compressed_write_workers); 2002 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2003 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2004 btrfs_destroy_workqueue(fs_info->delayed_workers); 2005 btrfs_destroy_workqueue(fs_info->caching_workers); 2006 btrfs_destroy_workqueue(fs_info->flush_workers); 2007 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2008 if (fs_info->discard_ctl.discard_workers) 2009 destroy_workqueue(fs_info->discard_ctl.discard_workers); 2010 /* 2011 * Now that all other work queues are destroyed, we can safely destroy 2012 * the queues used for metadata I/O, since tasks from those other work 2013 * queues can do metadata I/O operations. 2014 */ 2015 if (fs_info->endio_meta_workers) 2016 destroy_workqueue(fs_info->endio_meta_workers); 2017 } 2018 2019 static void free_root_extent_buffers(struct btrfs_root *root) 2020 { 2021 if (root) { 2022 free_extent_buffer(root->node); 2023 free_extent_buffer(root->commit_root); 2024 root->node = NULL; 2025 root->commit_root = NULL; 2026 } 2027 } 2028 2029 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 2030 { 2031 struct btrfs_root *root, *tmp; 2032 2033 rbtree_postorder_for_each_entry_safe(root, tmp, 2034 &fs_info->global_root_tree, 2035 rb_node) 2036 free_root_extent_buffers(root); 2037 } 2038 2039 /* helper to cleanup tree roots */ 2040 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 2041 { 2042 free_root_extent_buffers(info->tree_root); 2043 2044 free_global_root_pointers(info); 2045 free_root_extent_buffers(info->dev_root); 2046 free_root_extent_buffers(info->quota_root); 2047 free_root_extent_buffers(info->uuid_root); 2048 free_root_extent_buffers(info->fs_root); 2049 free_root_extent_buffers(info->data_reloc_root); 2050 free_root_extent_buffers(info->block_group_root); 2051 if (free_chunk_root) 2052 free_root_extent_buffers(info->chunk_root); 2053 } 2054 2055 void btrfs_put_root(struct btrfs_root *root) 2056 { 2057 if (!root) 2058 return; 2059 2060 if (refcount_dec_and_test(&root->refs)) { 2061 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2062 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 2063 if (root->anon_dev) 2064 free_anon_bdev(root->anon_dev); 2065 free_root_extent_buffers(root); 2066 #ifdef CONFIG_BTRFS_DEBUG 2067 spin_lock(&root->fs_info->fs_roots_radix_lock); 2068 list_del_init(&root->leak_list); 2069 spin_unlock(&root->fs_info->fs_roots_radix_lock); 2070 #endif 2071 kfree(root); 2072 } 2073 } 2074 2075 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2076 { 2077 int ret; 2078 struct btrfs_root *gang[8]; 2079 int i; 2080 2081 while (!list_empty(&fs_info->dead_roots)) { 2082 gang[0] = list_entry(fs_info->dead_roots.next, 2083 struct btrfs_root, root_list); 2084 list_del(&gang[0]->root_list); 2085 2086 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2087 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2088 btrfs_put_root(gang[0]); 2089 } 2090 2091 while (1) { 2092 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2093 (void **)gang, 0, 2094 ARRAY_SIZE(gang)); 2095 if (!ret) 2096 break; 2097 for (i = 0; i < ret; i++) 2098 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2099 } 2100 } 2101 2102 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2103 { 2104 mutex_init(&fs_info->scrub_lock); 2105 atomic_set(&fs_info->scrubs_running, 0); 2106 atomic_set(&fs_info->scrub_pause_req, 0); 2107 atomic_set(&fs_info->scrubs_paused, 0); 2108 atomic_set(&fs_info->scrub_cancel_req, 0); 2109 init_waitqueue_head(&fs_info->scrub_pause_wait); 2110 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2111 } 2112 2113 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2114 { 2115 spin_lock_init(&fs_info->balance_lock); 2116 mutex_init(&fs_info->balance_mutex); 2117 atomic_set(&fs_info->balance_pause_req, 0); 2118 atomic_set(&fs_info->balance_cancel_req, 0); 2119 fs_info->balance_ctl = NULL; 2120 init_waitqueue_head(&fs_info->balance_wait_q); 2121 atomic_set(&fs_info->reloc_cancel_req, 0); 2122 } 2123 2124 static int btrfs_init_btree_inode(struct super_block *sb) 2125 { 2126 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2127 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 2128 fs_info->tree_root); 2129 struct inode *inode; 2130 2131 inode = new_inode(sb); 2132 if (!inode) 2133 return -ENOMEM; 2134 2135 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2136 set_nlink(inode, 1); 2137 /* 2138 * we set the i_size on the btree inode to the max possible int. 2139 * the real end of the address space is determined by all of 2140 * the devices in the system 2141 */ 2142 inode->i_size = OFFSET_MAX; 2143 inode->i_mapping->a_ops = &btree_aops; 2144 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); 2145 2146 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2147 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2148 IO_TREE_BTREE_INODE_IO); 2149 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2150 2151 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2152 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID; 2153 BTRFS_I(inode)->location.type = 0; 2154 BTRFS_I(inode)->location.offset = 0; 2155 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2156 __insert_inode_hash(inode, hash); 2157 fs_info->btree_inode = inode; 2158 2159 return 0; 2160 } 2161 2162 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2163 { 2164 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2165 init_rwsem(&fs_info->dev_replace.rwsem); 2166 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2167 } 2168 2169 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2170 { 2171 spin_lock_init(&fs_info->qgroup_lock); 2172 mutex_init(&fs_info->qgroup_ioctl_lock); 2173 fs_info->qgroup_tree = RB_ROOT; 2174 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2175 fs_info->qgroup_seq = 1; 2176 fs_info->qgroup_ulist = NULL; 2177 fs_info->qgroup_rescan_running = false; 2178 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL; 2179 mutex_init(&fs_info->qgroup_rescan_lock); 2180 } 2181 2182 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 2183 { 2184 u32 max_active = fs_info->thread_pool_size; 2185 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2186 2187 fs_info->workers = 2188 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 2189 fs_info->hipri_workers = 2190 btrfs_alloc_workqueue(fs_info, "worker-high", 2191 flags | WQ_HIGHPRI, max_active, 16); 2192 2193 fs_info->delalloc_workers = 2194 btrfs_alloc_workqueue(fs_info, "delalloc", 2195 flags, max_active, 2); 2196 2197 fs_info->flush_workers = 2198 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2199 flags, max_active, 0); 2200 2201 fs_info->caching_workers = 2202 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2203 2204 fs_info->fixup_workers = 2205 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2206 2207 fs_info->endio_workers = 2208 alloc_workqueue("btrfs-endio", flags, max_active); 2209 fs_info->endio_meta_workers = 2210 alloc_workqueue("btrfs-endio-meta", flags, max_active); 2211 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 2212 fs_info->endio_write_workers = 2213 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2214 max_active, 2); 2215 fs_info->compressed_write_workers = 2216 alloc_workqueue("btrfs-compressed-write", flags, max_active); 2217 fs_info->endio_freespace_worker = 2218 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2219 max_active, 0); 2220 fs_info->delayed_workers = 2221 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2222 max_active, 0); 2223 fs_info->qgroup_rescan_workers = 2224 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2225 fs_info->discard_ctl.discard_workers = 2226 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2227 2228 if (!(fs_info->workers && fs_info->hipri_workers && 2229 fs_info->delalloc_workers && fs_info->flush_workers && 2230 fs_info->endio_workers && fs_info->endio_meta_workers && 2231 fs_info->compressed_write_workers && 2232 fs_info->endio_write_workers && 2233 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2234 fs_info->caching_workers && fs_info->fixup_workers && 2235 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2236 fs_info->discard_ctl.discard_workers)) { 2237 return -ENOMEM; 2238 } 2239 2240 return 0; 2241 } 2242 2243 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2244 { 2245 struct crypto_shash *csum_shash; 2246 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2247 2248 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2249 2250 if (IS_ERR(csum_shash)) { 2251 btrfs_err(fs_info, "error allocating %s hash for checksum", 2252 csum_driver); 2253 return PTR_ERR(csum_shash); 2254 } 2255 2256 fs_info->csum_shash = csum_shash; 2257 2258 /* 2259 * Check if the checksum implementation is a fast accelerated one. 2260 * As-is this is a bit of a hack and should be replaced once the csum 2261 * implementations provide that information themselves. 2262 */ 2263 switch (csum_type) { 2264 case BTRFS_CSUM_TYPE_CRC32: 2265 if (!strstr(crypto_shash_driver_name(csum_shash), "generic")) 2266 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2267 break; 2268 default: 2269 break; 2270 } 2271 2272 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2273 btrfs_super_csum_name(csum_type), 2274 crypto_shash_driver_name(csum_shash)); 2275 return 0; 2276 } 2277 2278 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2279 struct btrfs_fs_devices *fs_devices) 2280 { 2281 int ret; 2282 struct btrfs_tree_parent_check check = { 0 }; 2283 struct btrfs_root *log_tree_root; 2284 struct btrfs_super_block *disk_super = fs_info->super_copy; 2285 u64 bytenr = btrfs_super_log_root(disk_super); 2286 int level = btrfs_super_log_root_level(disk_super); 2287 2288 if (fs_devices->rw_devices == 0) { 2289 btrfs_warn(fs_info, "log replay required on RO media"); 2290 return -EIO; 2291 } 2292 2293 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2294 GFP_KERNEL); 2295 if (!log_tree_root) 2296 return -ENOMEM; 2297 2298 check.level = level; 2299 check.transid = fs_info->generation + 1; 2300 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2301 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2302 if (IS_ERR(log_tree_root->node)) { 2303 btrfs_warn(fs_info, "failed to read log tree"); 2304 ret = PTR_ERR(log_tree_root->node); 2305 log_tree_root->node = NULL; 2306 btrfs_put_root(log_tree_root); 2307 return ret; 2308 } 2309 if (!extent_buffer_uptodate(log_tree_root->node)) { 2310 btrfs_err(fs_info, "failed to read log tree"); 2311 btrfs_put_root(log_tree_root); 2312 return -EIO; 2313 } 2314 2315 /* returns with log_tree_root freed on success */ 2316 ret = btrfs_recover_log_trees(log_tree_root); 2317 if (ret) { 2318 btrfs_handle_fs_error(fs_info, ret, 2319 "Failed to recover log tree"); 2320 btrfs_put_root(log_tree_root); 2321 return ret; 2322 } 2323 2324 if (sb_rdonly(fs_info->sb)) { 2325 ret = btrfs_commit_super(fs_info); 2326 if (ret) 2327 return ret; 2328 } 2329 2330 return 0; 2331 } 2332 2333 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2334 struct btrfs_path *path, u64 objectid, 2335 const char *name) 2336 { 2337 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2338 struct btrfs_root *root; 2339 u64 max_global_id = 0; 2340 int ret; 2341 struct btrfs_key key = { 2342 .objectid = objectid, 2343 .type = BTRFS_ROOT_ITEM_KEY, 2344 .offset = 0, 2345 }; 2346 bool found = false; 2347 2348 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2349 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2350 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2351 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2352 return 0; 2353 } 2354 2355 while (1) { 2356 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2357 if (ret < 0) 2358 break; 2359 2360 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2361 ret = btrfs_next_leaf(tree_root, path); 2362 if (ret) { 2363 if (ret > 0) 2364 ret = 0; 2365 break; 2366 } 2367 } 2368 ret = 0; 2369 2370 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2371 if (key.objectid != objectid) 2372 break; 2373 btrfs_release_path(path); 2374 2375 /* 2376 * Just worry about this for extent tree, it'll be the same for 2377 * everybody. 2378 */ 2379 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2380 max_global_id = max(max_global_id, key.offset); 2381 2382 found = true; 2383 root = read_tree_root_path(tree_root, path, &key); 2384 if (IS_ERR(root)) { 2385 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2386 ret = PTR_ERR(root); 2387 break; 2388 } 2389 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2390 ret = btrfs_global_root_insert(root); 2391 if (ret) { 2392 btrfs_put_root(root); 2393 break; 2394 } 2395 key.offset++; 2396 } 2397 btrfs_release_path(path); 2398 2399 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2400 fs_info->nr_global_roots = max_global_id + 1; 2401 2402 if (!found || ret) { 2403 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2404 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2405 2406 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2407 ret = ret ? ret : -ENOENT; 2408 else 2409 ret = 0; 2410 btrfs_err(fs_info, "failed to load root %s", name); 2411 } 2412 return ret; 2413 } 2414 2415 static int load_global_roots(struct btrfs_root *tree_root) 2416 { 2417 struct btrfs_path *path; 2418 int ret = 0; 2419 2420 path = btrfs_alloc_path(); 2421 if (!path) 2422 return -ENOMEM; 2423 2424 ret = load_global_roots_objectid(tree_root, path, 2425 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2426 if (ret) 2427 goto out; 2428 ret = load_global_roots_objectid(tree_root, path, 2429 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2430 if (ret) 2431 goto out; 2432 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2433 goto out; 2434 ret = load_global_roots_objectid(tree_root, path, 2435 BTRFS_FREE_SPACE_TREE_OBJECTID, 2436 "free space"); 2437 out: 2438 btrfs_free_path(path); 2439 return ret; 2440 } 2441 2442 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2443 { 2444 struct btrfs_root *tree_root = fs_info->tree_root; 2445 struct btrfs_root *root; 2446 struct btrfs_key location; 2447 int ret; 2448 2449 BUG_ON(!fs_info->tree_root); 2450 2451 ret = load_global_roots(tree_root); 2452 if (ret) 2453 return ret; 2454 2455 location.type = BTRFS_ROOT_ITEM_KEY; 2456 location.offset = 0; 2457 2458 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2459 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2460 root = btrfs_read_tree_root(tree_root, &location); 2461 if (IS_ERR(root)) { 2462 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2463 ret = PTR_ERR(root); 2464 goto out; 2465 } 2466 } else { 2467 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2468 fs_info->block_group_root = root; 2469 } 2470 } 2471 2472 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2473 root = btrfs_read_tree_root(tree_root, &location); 2474 if (IS_ERR(root)) { 2475 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2476 ret = PTR_ERR(root); 2477 goto out; 2478 } 2479 } else { 2480 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2481 fs_info->dev_root = root; 2482 } 2483 /* Initialize fs_info for all devices in any case */ 2484 ret = btrfs_init_devices_late(fs_info); 2485 if (ret) 2486 goto out; 2487 2488 /* 2489 * This tree can share blocks with some other fs tree during relocation 2490 * and we need a proper setup by btrfs_get_fs_root 2491 */ 2492 root = btrfs_get_fs_root(tree_root->fs_info, 2493 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2494 if (IS_ERR(root)) { 2495 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2496 ret = PTR_ERR(root); 2497 goto out; 2498 } 2499 } else { 2500 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2501 fs_info->data_reloc_root = root; 2502 } 2503 2504 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2505 root = btrfs_read_tree_root(tree_root, &location); 2506 if (!IS_ERR(root)) { 2507 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2508 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2509 fs_info->quota_root = root; 2510 } 2511 2512 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2513 root = btrfs_read_tree_root(tree_root, &location); 2514 if (IS_ERR(root)) { 2515 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2516 ret = PTR_ERR(root); 2517 if (ret != -ENOENT) 2518 goto out; 2519 } 2520 } else { 2521 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2522 fs_info->uuid_root = root; 2523 } 2524 2525 return 0; 2526 out: 2527 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2528 location.objectid, ret); 2529 return ret; 2530 } 2531 2532 /* 2533 * Real super block validation 2534 * NOTE: super csum type and incompat features will not be checked here. 2535 * 2536 * @sb: super block to check 2537 * @mirror_num: the super block number to check its bytenr: 2538 * 0 the primary (1st) sb 2539 * 1, 2 2nd and 3rd backup copy 2540 * -1 skip bytenr check 2541 */ 2542 int btrfs_validate_super(struct btrfs_fs_info *fs_info, 2543 struct btrfs_super_block *sb, int mirror_num) 2544 { 2545 u64 nodesize = btrfs_super_nodesize(sb); 2546 u64 sectorsize = btrfs_super_sectorsize(sb); 2547 int ret = 0; 2548 2549 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2550 btrfs_err(fs_info, "no valid FS found"); 2551 ret = -EINVAL; 2552 } 2553 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2554 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2555 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2556 ret = -EINVAL; 2557 } 2558 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2559 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2560 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2561 ret = -EINVAL; 2562 } 2563 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2564 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2565 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2566 ret = -EINVAL; 2567 } 2568 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2569 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2570 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2571 ret = -EINVAL; 2572 } 2573 2574 /* 2575 * Check sectorsize and nodesize first, other check will need it. 2576 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2577 */ 2578 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2579 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2580 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2581 ret = -EINVAL; 2582 } 2583 2584 /* 2585 * We only support at most two sectorsizes: 4K and PAGE_SIZE. 2586 * 2587 * We can support 16K sectorsize with 64K page size without problem, 2588 * but such sectorsize/pagesize combination doesn't make much sense. 2589 * 4K will be our future standard, PAGE_SIZE is supported from the very 2590 * beginning. 2591 */ 2592 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { 2593 btrfs_err(fs_info, 2594 "sectorsize %llu not yet supported for page size %lu", 2595 sectorsize, PAGE_SIZE); 2596 ret = -EINVAL; 2597 } 2598 2599 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2600 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2601 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2602 ret = -EINVAL; 2603 } 2604 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2605 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2606 le32_to_cpu(sb->__unused_leafsize), nodesize); 2607 ret = -EINVAL; 2608 } 2609 2610 /* Root alignment check */ 2611 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2612 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2613 btrfs_super_root(sb)); 2614 ret = -EINVAL; 2615 } 2616 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2617 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2618 btrfs_super_chunk_root(sb)); 2619 ret = -EINVAL; 2620 } 2621 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2622 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2623 btrfs_super_log_root(sb)); 2624 ret = -EINVAL; 2625 } 2626 2627 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2628 BTRFS_FSID_SIZE)) { 2629 btrfs_err(fs_info, 2630 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2631 fs_info->super_copy->fsid, fs_info->fs_devices->fsid); 2632 ret = -EINVAL; 2633 } 2634 2635 if (btrfs_fs_incompat(fs_info, METADATA_UUID) && 2636 memcmp(fs_info->fs_devices->metadata_uuid, 2637 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) { 2638 btrfs_err(fs_info, 2639 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2640 fs_info->super_copy->metadata_uuid, 2641 fs_info->fs_devices->metadata_uuid); 2642 ret = -EINVAL; 2643 } 2644 2645 /* 2646 * Artificial requirement for block-group-tree to force newer features 2647 * (free-space-tree, no-holes) so the test matrix is smaller. 2648 */ 2649 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2650 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2651 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2652 btrfs_err(fs_info, 2653 "block-group-tree feature requires fres-space-tree and no-holes"); 2654 ret = -EINVAL; 2655 } 2656 2657 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2658 BTRFS_FSID_SIZE) != 0) { 2659 btrfs_err(fs_info, 2660 "dev_item UUID does not match metadata fsid: %pU != %pU", 2661 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2662 ret = -EINVAL; 2663 } 2664 2665 /* 2666 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2667 * done later 2668 */ 2669 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2670 btrfs_err(fs_info, "bytes_used is too small %llu", 2671 btrfs_super_bytes_used(sb)); 2672 ret = -EINVAL; 2673 } 2674 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2675 btrfs_err(fs_info, "invalid stripesize %u", 2676 btrfs_super_stripesize(sb)); 2677 ret = -EINVAL; 2678 } 2679 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2680 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2681 btrfs_super_num_devices(sb)); 2682 if (btrfs_super_num_devices(sb) == 0) { 2683 btrfs_err(fs_info, "number of devices is 0"); 2684 ret = -EINVAL; 2685 } 2686 2687 if (mirror_num >= 0 && 2688 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2689 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2690 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2691 ret = -EINVAL; 2692 } 2693 2694 /* 2695 * Obvious sys_chunk_array corruptions, it must hold at least one key 2696 * and one chunk 2697 */ 2698 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2699 btrfs_err(fs_info, "system chunk array too big %u > %u", 2700 btrfs_super_sys_array_size(sb), 2701 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2702 ret = -EINVAL; 2703 } 2704 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2705 + sizeof(struct btrfs_chunk)) { 2706 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2707 btrfs_super_sys_array_size(sb), 2708 sizeof(struct btrfs_disk_key) 2709 + sizeof(struct btrfs_chunk)); 2710 ret = -EINVAL; 2711 } 2712 2713 /* 2714 * The generation is a global counter, we'll trust it more than the others 2715 * but it's still possible that it's the one that's wrong. 2716 */ 2717 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2718 btrfs_warn(fs_info, 2719 "suspicious: generation < chunk_root_generation: %llu < %llu", 2720 btrfs_super_generation(sb), 2721 btrfs_super_chunk_root_generation(sb)); 2722 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2723 && btrfs_super_cache_generation(sb) != (u64)-1) 2724 btrfs_warn(fs_info, 2725 "suspicious: generation < cache_generation: %llu < %llu", 2726 btrfs_super_generation(sb), 2727 btrfs_super_cache_generation(sb)); 2728 2729 return ret; 2730 } 2731 2732 /* 2733 * Validation of super block at mount time. 2734 * Some checks already done early at mount time, like csum type and incompat 2735 * flags will be skipped. 2736 */ 2737 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2738 { 2739 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2740 } 2741 2742 /* 2743 * Validation of super block at write time. 2744 * Some checks like bytenr check will be skipped as their values will be 2745 * overwritten soon. 2746 * Extra checks like csum type and incompat flags will be done here. 2747 */ 2748 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2749 struct btrfs_super_block *sb) 2750 { 2751 int ret; 2752 2753 ret = btrfs_validate_super(fs_info, sb, -1); 2754 if (ret < 0) 2755 goto out; 2756 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2757 ret = -EUCLEAN; 2758 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2759 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2760 goto out; 2761 } 2762 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2763 ret = -EUCLEAN; 2764 btrfs_err(fs_info, 2765 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2766 btrfs_super_incompat_flags(sb), 2767 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2768 goto out; 2769 } 2770 out: 2771 if (ret < 0) 2772 btrfs_err(fs_info, 2773 "super block corruption detected before writing it to disk"); 2774 return ret; 2775 } 2776 2777 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2778 { 2779 struct btrfs_tree_parent_check check = { 2780 .level = level, 2781 .transid = gen, 2782 .owner_root = root->root_key.objectid 2783 }; 2784 int ret = 0; 2785 2786 root->node = read_tree_block(root->fs_info, bytenr, &check); 2787 if (IS_ERR(root->node)) { 2788 ret = PTR_ERR(root->node); 2789 root->node = NULL; 2790 return ret; 2791 } 2792 if (!extent_buffer_uptodate(root->node)) { 2793 free_extent_buffer(root->node); 2794 root->node = NULL; 2795 return -EIO; 2796 } 2797 2798 btrfs_set_root_node(&root->root_item, root->node); 2799 root->commit_root = btrfs_root_node(root); 2800 btrfs_set_root_refs(&root->root_item, 1); 2801 return ret; 2802 } 2803 2804 static int load_important_roots(struct btrfs_fs_info *fs_info) 2805 { 2806 struct btrfs_super_block *sb = fs_info->super_copy; 2807 u64 gen, bytenr; 2808 int level, ret; 2809 2810 bytenr = btrfs_super_root(sb); 2811 gen = btrfs_super_generation(sb); 2812 level = btrfs_super_root_level(sb); 2813 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2814 if (ret) { 2815 btrfs_warn(fs_info, "couldn't read tree root"); 2816 return ret; 2817 } 2818 return 0; 2819 } 2820 2821 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2822 { 2823 int backup_index = find_newest_super_backup(fs_info); 2824 struct btrfs_super_block *sb = fs_info->super_copy; 2825 struct btrfs_root *tree_root = fs_info->tree_root; 2826 bool handle_error = false; 2827 int ret = 0; 2828 int i; 2829 2830 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2831 if (handle_error) { 2832 if (!IS_ERR(tree_root->node)) 2833 free_extent_buffer(tree_root->node); 2834 tree_root->node = NULL; 2835 2836 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2837 break; 2838 2839 free_root_pointers(fs_info, 0); 2840 2841 /* 2842 * Don't use the log in recovery mode, it won't be 2843 * valid 2844 */ 2845 btrfs_set_super_log_root(sb, 0); 2846 2847 /* We can't trust the free space cache either */ 2848 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2849 2850 btrfs_warn(fs_info, "try to load backup roots slot %d", i); 2851 ret = read_backup_root(fs_info, i); 2852 backup_index = ret; 2853 if (ret < 0) 2854 return ret; 2855 } 2856 2857 ret = load_important_roots(fs_info); 2858 if (ret) { 2859 handle_error = true; 2860 continue; 2861 } 2862 2863 /* 2864 * No need to hold btrfs_root::objectid_mutex since the fs 2865 * hasn't been fully initialised and we are the only user 2866 */ 2867 ret = btrfs_init_root_free_objectid(tree_root); 2868 if (ret < 0) { 2869 handle_error = true; 2870 continue; 2871 } 2872 2873 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2874 2875 ret = btrfs_read_roots(fs_info); 2876 if (ret < 0) { 2877 handle_error = true; 2878 continue; 2879 } 2880 2881 /* All successful */ 2882 fs_info->generation = btrfs_header_generation(tree_root->node); 2883 fs_info->last_trans_committed = fs_info->generation; 2884 fs_info->last_reloc_trans = 0; 2885 2886 /* Always begin writing backup roots after the one being used */ 2887 if (backup_index < 0) { 2888 fs_info->backup_root_index = 0; 2889 } else { 2890 fs_info->backup_root_index = backup_index + 1; 2891 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2892 } 2893 break; 2894 } 2895 2896 return ret; 2897 } 2898 2899 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2900 { 2901 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2902 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2903 INIT_LIST_HEAD(&fs_info->trans_list); 2904 INIT_LIST_HEAD(&fs_info->dead_roots); 2905 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2906 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2907 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2908 spin_lock_init(&fs_info->delalloc_root_lock); 2909 spin_lock_init(&fs_info->trans_lock); 2910 spin_lock_init(&fs_info->fs_roots_radix_lock); 2911 spin_lock_init(&fs_info->delayed_iput_lock); 2912 spin_lock_init(&fs_info->defrag_inodes_lock); 2913 spin_lock_init(&fs_info->super_lock); 2914 spin_lock_init(&fs_info->buffer_lock); 2915 spin_lock_init(&fs_info->unused_bgs_lock); 2916 spin_lock_init(&fs_info->treelog_bg_lock); 2917 spin_lock_init(&fs_info->zone_active_bgs_lock); 2918 spin_lock_init(&fs_info->relocation_bg_lock); 2919 rwlock_init(&fs_info->tree_mod_log_lock); 2920 rwlock_init(&fs_info->global_root_lock); 2921 mutex_init(&fs_info->unused_bg_unpin_mutex); 2922 mutex_init(&fs_info->reclaim_bgs_lock); 2923 mutex_init(&fs_info->reloc_mutex); 2924 mutex_init(&fs_info->delalloc_root_mutex); 2925 mutex_init(&fs_info->zoned_meta_io_lock); 2926 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2927 seqlock_init(&fs_info->profiles_lock); 2928 2929 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2930 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2931 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2932 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2933 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start, 2934 BTRFS_LOCKDEP_TRANS_COMMIT_START); 2935 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2936 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2937 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2938 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2939 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2940 BTRFS_LOCKDEP_TRANS_COMPLETED); 2941 2942 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2943 INIT_LIST_HEAD(&fs_info->space_info); 2944 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2945 INIT_LIST_HEAD(&fs_info->unused_bgs); 2946 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2947 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2948 #ifdef CONFIG_BTRFS_DEBUG 2949 INIT_LIST_HEAD(&fs_info->allocated_roots); 2950 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2951 spin_lock_init(&fs_info->eb_leak_lock); 2952 #endif 2953 extent_map_tree_init(&fs_info->mapping_tree); 2954 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2955 BTRFS_BLOCK_RSV_GLOBAL); 2956 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2957 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2958 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2959 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2960 BTRFS_BLOCK_RSV_DELOPS); 2961 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2962 BTRFS_BLOCK_RSV_DELREFS); 2963 2964 atomic_set(&fs_info->async_delalloc_pages, 0); 2965 atomic_set(&fs_info->defrag_running, 0); 2966 atomic_set(&fs_info->nr_delayed_iputs, 0); 2967 atomic64_set(&fs_info->tree_mod_seq, 0); 2968 fs_info->global_root_tree = RB_ROOT; 2969 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2970 fs_info->metadata_ratio = 0; 2971 fs_info->defrag_inodes = RB_ROOT; 2972 atomic64_set(&fs_info->free_chunk_space, 0); 2973 fs_info->tree_mod_log = RB_ROOT; 2974 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2975 btrfs_init_ref_verify(fs_info); 2976 2977 fs_info->thread_pool_size = min_t(unsigned long, 2978 num_online_cpus() + 2, 8); 2979 2980 INIT_LIST_HEAD(&fs_info->ordered_roots); 2981 spin_lock_init(&fs_info->ordered_root_lock); 2982 2983 btrfs_init_scrub(fs_info); 2984 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2985 fs_info->check_integrity_print_mask = 0; 2986 #endif 2987 btrfs_init_balance(fs_info); 2988 btrfs_init_async_reclaim_work(fs_info); 2989 2990 rwlock_init(&fs_info->block_group_cache_lock); 2991 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2992 2993 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2994 IO_TREE_FS_EXCLUDED_EXTENTS); 2995 2996 mutex_init(&fs_info->ordered_operations_mutex); 2997 mutex_init(&fs_info->tree_log_mutex); 2998 mutex_init(&fs_info->chunk_mutex); 2999 mutex_init(&fs_info->transaction_kthread_mutex); 3000 mutex_init(&fs_info->cleaner_mutex); 3001 mutex_init(&fs_info->ro_block_group_mutex); 3002 init_rwsem(&fs_info->commit_root_sem); 3003 init_rwsem(&fs_info->cleanup_work_sem); 3004 init_rwsem(&fs_info->subvol_sem); 3005 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 3006 3007 btrfs_init_dev_replace_locks(fs_info); 3008 btrfs_init_qgroup(fs_info); 3009 btrfs_discard_init(fs_info); 3010 3011 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 3012 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 3013 3014 init_waitqueue_head(&fs_info->transaction_throttle); 3015 init_waitqueue_head(&fs_info->transaction_wait); 3016 init_waitqueue_head(&fs_info->transaction_blocked_wait); 3017 init_waitqueue_head(&fs_info->async_submit_wait); 3018 init_waitqueue_head(&fs_info->delayed_iputs_wait); 3019 3020 /* Usable values until the real ones are cached from the superblock */ 3021 fs_info->nodesize = 4096; 3022 fs_info->sectorsize = 4096; 3023 fs_info->sectorsize_bits = ilog2(4096); 3024 fs_info->stripesize = 4096; 3025 3026 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 3027 3028 spin_lock_init(&fs_info->swapfile_pins_lock); 3029 fs_info->swapfile_pins = RB_ROOT; 3030 3031 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 3032 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 3033 } 3034 3035 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 3036 { 3037 int ret; 3038 3039 fs_info->sb = sb; 3040 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 3041 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 3042 3043 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 3044 if (ret) 3045 return ret; 3046 3047 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 3048 if (ret) 3049 return ret; 3050 3051 fs_info->dirty_metadata_batch = PAGE_SIZE * 3052 (1 + ilog2(nr_cpu_ids)); 3053 3054 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 3055 if (ret) 3056 return ret; 3057 3058 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 3059 GFP_KERNEL); 3060 if (ret) 3061 return ret; 3062 3063 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 3064 GFP_KERNEL); 3065 if (!fs_info->delayed_root) 3066 return -ENOMEM; 3067 btrfs_init_delayed_root(fs_info->delayed_root); 3068 3069 if (sb_rdonly(sb)) 3070 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 3071 3072 return btrfs_alloc_stripe_hash_table(fs_info); 3073 } 3074 3075 static int btrfs_uuid_rescan_kthread(void *data) 3076 { 3077 struct btrfs_fs_info *fs_info = data; 3078 int ret; 3079 3080 /* 3081 * 1st step is to iterate through the existing UUID tree and 3082 * to delete all entries that contain outdated data. 3083 * 2nd step is to add all missing entries to the UUID tree. 3084 */ 3085 ret = btrfs_uuid_tree_iterate(fs_info); 3086 if (ret < 0) { 3087 if (ret != -EINTR) 3088 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 3089 ret); 3090 up(&fs_info->uuid_tree_rescan_sem); 3091 return ret; 3092 } 3093 return btrfs_uuid_scan_kthread(data); 3094 } 3095 3096 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 3097 { 3098 struct task_struct *task; 3099 3100 down(&fs_info->uuid_tree_rescan_sem); 3101 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 3102 if (IS_ERR(task)) { 3103 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3104 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 3105 up(&fs_info->uuid_tree_rescan_sem); 3106 return PTR_ERR(task); 3107 } 3108 3109 return 0; 3110 } 3111 3112 /* 3113 * Some options only have meaning at mount time and shouldn't persist across 3114 * remounts, or be displayed. Clear these at the end of mount and remount 3115 * code paths. 3116 */ 3117 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 3118 { 3119 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3120 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 3121 } 3122 3123 /* 3124 * Mounting logic specific to read-write file systems. Shared by open_ctree 3125 * and btrfs_remount when remounting from read-only to read-write. 3126 */ 3127 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 3128 { 3129 int ret; 3130 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 3131 bool rebuild_free_space_tree = false; 3132 3133 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3134 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3135 rebuild_free_space_tree = true; 3136 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3137 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3138 btrfs_warn(fs_info, "free space tree is invalid"); 3139 rebuild_free_space_tree = true; 3140 } 3141 3142 if (rebuild_free_space_tree) { 3143 btrfs_info(fs_info, "rebuilding free space tree"); 3144 ret = btrfs_rebuild_free_space_tree(fs_info); 3145 if (ret) { 3146 btrfs_warn(fs_info, 3147 "failed to rebuild free space tree: %d", ret); 3148 goto out; 3149 } 3150 } 3151 3152 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3153 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 3154 btrfs_info(fs_info, "disabling free space tree"); 3155 ret = btrfs_delete_free_space_tree(fs_info); 3156 if (ret) { 3157 btrfs_warn(fs_info, 3158 "failed to disable free space tree: %d", ret); 3159 goto out; 3160 } 3161 } 3162 3163 /* 3164 * btrfs_find_orphan_roots() is responsible for finding all the dead 3165 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3166 * them into the fs_info->fs_roots_radix tree. This must be done before 3167 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3168 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3169 * item before the root's tree is deleted - this means that if we unmount 3170 * or crash before the deletion completes, on the next mount we will not 3171 * delete what remains of the tree because the orphan item does not 3172 * exists anymore, which is what tells us we have a pending deletion. 3173 */ 3174 ret = btrfs_find_orphan_roots(fs_info); 3175 if (ret) 3176 goto out; 3177 3178 ret = btrfs_cleanup_fs_roots(fs_info); 3179 if (ret) 3180 goto out; 3181 3182 down_read(&fs_info->cleanup_work_sem); 3183 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3184 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3185 up_read(&fs_info->cleanup_work_sem); 3186 goto out; 3187 } 3188 up_read(&fs_info->cleanup_work_sem); 3189 3190 mutex_lock(&fs_info->cleaner_mutex); 3191 ret = btrfs_recover_relocation(fs_info); 3192 mutex_unlock(&fs_info->cleaner_mutex); 3193 if (ret < 0) { 3194 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3195 goto out; 3196 } 3197 3198 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3199 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3200 btrfs_info(fs_info, "creating free space tree"); 3201 ret = btrfs_create_free_space_tree(fs_info); 3202 if (ret) { 3203 btrfs_warn(fs_info, 3204 "failed to create free space tree: %d", ret); 3205 goto out; 3206 } 3207 } 3208 3209 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3210 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3211 if (ret) 3212 goto out; 3213 } 3214 3215 ret = btrfs_resume_balance_async(fs_info); 3216 if (ret) 3217 goto out; 3218 3219 ret = btrfs_resume_dev_replace_async(fs_info); 3220 if (ret) { 3221 btrfs_warn(fs_info, "failed to resume dev_replace"); 3222 goto out; 3223 } 3224 3225 btrfs_qgroup_rescan_resume(fs_info); 3226 3227 if (!fs_info->uuid_root) { 3228 btrfs_info(fs_info, "creating UUID tree"); 3229 ret = btrfs_create_uuid_tree(fs_info); 3230 if (ret) { 3231 btrfs_warn(fs_info, 3232 "failed to create the UUID tree %d", ret); 3233 goto out; 3234 } 3235 } 3236 3237 out: 3238 return ret; 3239 } 3240 3241 /* 3242 * Do various sanity and dependency checks of different features. 3243 * 3244 * @is_rw_mount: If the mount is read-write. 3245 * 3246 * This is the place for less strict checks (like for subpage or artificial 3247 * feature dependencies). 3248 * 3249 * For strict checks or possible corruption detection, see 3250 * btrfs_validate_super(). 3251 * 3252 * This should be called after btrfs_parse_options(), as some mount options 3253 * (space cache related) can modify on-disk format like free space tree and 3254 * screw up certain feature dependencies. 3255 */ 3256 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3257 { 3258 struct btrfs_super_block *disk_super = fs_info->super_copy; 3259 u64 incompat = btrfs_super_incompat_flags(disk_super); 3260 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3261 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3262 3263 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3264 btrfs_err(fs_info, 3265 "cannot mount because of unknown incompat features (0x%llx)", 3266 incompat); 3267 return -EINVAL; 3268 } 3269 3270 /* Runtime limitation for mixed block groups. */ 3271 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3272 (fs_info->sectorsize != fs_info->nodesize)) { 3273 btrfs_err(fs_info, 3274 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3275 fs_info->nodesize, fs_info->sectorsize); 3276 return -EINVAL; 3277 } 3278 3279 /* Mixed backref is an always-enabled feature. */ 3280 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3281 3282 /* Set compression related flags just in case. */ 3283 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3284 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3285 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3286 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3287 3288 /* 3289 * An ancient flag, which should really be marked deprecated. 3290 * Such runtime limitation doesn't really need a incompat flag. 3291 */ 3292 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3293 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3294 3295 if (compat_ro_unsupp && is_rw_mount) { 3296 btrfs_err(fs_info, 3297 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3298 compat_ro); 3299 return -EINVAL; 3300 } 3301 3302 /* 3303 * We have unsupported RO compat features, although RO mounted, we 3304 * should not cause any metadata writes, including log replay. 3305 * Or we could screw up whatever the new feature requires. 3306 */ 3307 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3308 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3309 btrfs_err(fs_info, 3310 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3311 compat_ro); 3312 return -EINVAL; 3313 } 3314 3315 /* 3316 * Artificial limitations for block group tree, to force 3317 * block-group-tree to rely on no-holes and free-space-tree. 3318 */ 3319 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3320 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3321 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3322 btrfs_err(fs_info, 3323 "block-group-tree feature requires no-holes and free-space-tree features"); 3324 return -EINVAL; 3325 } 3326 3327 /* 3328 * Subpage runtime limitation on v1 cache. 3329 * 3330 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3331 * we're already defaulting to v2 cache, no need to bother v1 as it's 3332 * going to be deprecated anyway. 3333 */ 3334 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3335 btrfs_warn(fs_info, 3336 "v1 space cache is not supported for page size %lu with sectorsize %u", 3337 PAGE_SIZE, fs_info->sectorsize); 3338 return -EINVAL; 3339 } 3340 3341 /* This can be called by remount, we need to protect the super block. */ 3342 spin_lock(&fs_info->super_lock); 3343 btrfs_set_super_incompat_flags(disk_super, incompat); 3344 spin_unlock(&fs_info->super_lock); 3345 3346 return 0; 3347 } 3348 3349 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3350 char *options) 3351 { 3352 u32 sectorsize; 3353 u32 nodesize; 3354 u32 stripesize; 3355 u64 generation; 3356 u64 features; 3357 u16 csum_type; 3358 struct btrfs_super_block *disk_super; 3359 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3360 struct btrfs_root *tree_root; 3361 struct btrfs_root *chunk_root; 3362 int ret; 3363 int level; 3364 3365 ret = init_mount_fs_info(fs_info, sb); 3366 if (ret) 3367 goto fail; 3368 3369 /* These need to be init'ed before we start creating inodes and such. */ 3370 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3371 GFP_KERNEL); 3372 fs_info->tree_root = tree_root; 3373 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3374 GFP_KERNEL); 3375 fs_info->chunk_root = chunk_root; 3376 if (!tree_root || !chunk_root) { 3377 ret = -ENOMEM; 3378 goto fail; 3379 } 3380 3381 ret = btrfs_init_btree_inode(sb); 3382 if (ret) 3383 goto fail; 3384 3385 invalidate_bdev(fs_devices->latest_dev->bdev); 3386 3387 /* 3388 * Read super block and check the signature bytes only 3389 */ 3390 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3391 if (IS_ERR(disk_super)) { 3392 ret = PTR_ERR(disk_super); 3393 goto fail_alloc; 3394 } 3395 3396 /* 3397 * Verify the type first, if that or the checksum value are 3398 * corrupted, we'll find out 3399 */ 3400 csum_type = btrfs_super_csum_type(disk_super); 3401 if (!btrfs_supported_super_csum(csum_type)) { 3402 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3403 csum_type); 3404 ret = -EINVAL; 3405 btrfs_release_disk_super(disk_super); 3406 goto fail_alloc; 3407 } 3408 3409 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3410 3411 ret = btrfs_init_csum_hash(fs_info, csum_type); 3412 if (ret) { 3413 btrfs_release_disk_super(disk_super); 3414 goto fail_alloc; 3415 } 3416 3417 /* 3418 * We want to check superblock checksum, the type is stored inside. 3419 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3420 */ 3421 if (btrfs_check_super_csum(fs_info, disk_super)) { 3422 btrfs_err(fs_info, "superblock checksum mismatch"); 3423 ret = -EINVAL; 3424 btrfs_release_disk_super(disk_super); 3425 goto fail_alloc; 3426 } 3427 3428 /* 3429 * super_copy is zeroed at allocation time and we never touch the 3430 * following bytes up to INFO_SIZE, the checksum is calculated from 3431 * the whole block of INFO_SIZE 3432 */ 3433 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3434 btrfs_release_disk_super(disk_super); 3435 3436 disk_super = fs_info->super_copy; 3437 3438 3439 features = btrfs_super_flags(disk_super); 3440 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 3441 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 3442 btrfs_set_super_flags(disk_super, features); 3443 btrfs_info(fs_info, 3444 "found metadata UUID change in progress flag, clearing"); 3445 } 3446 3447 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3448 sizeof(*fs_info->super_for_commit)); 3449 3450 ret = btrfs_validate_mount_super(fs_info); 3451 if (ret) { 3452 btrfs_err(fs_info, "superblock contains fatal errors"); 3453 ret = -EINVAL; 3454 goto fail_alloc; 3455 } 3456 3457 if (!btrfs_super_root(disk_super)) { 3458 btrfs_err(fs_info, "invalid superblock tree root bytenr"); 3459 ret = -EINVAL; 3460 goto fail_alloc; 3461 } 3462 3463 /* check FS state, whether FS is broken. */ 3464 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3465 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 3466 3467 /* 3468 * In the long term, we'll store the compression type in the super 3469 * block, and it'll be used for per file compression control. 3470 */ 3471 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3472 3473 3474 /* Set up fs_info before parsing mount options */ 3475 nodesize = btrfs_super_nodesize(disk_super); 3476 sectorsize = btrfs_super_sectorsize(disk_super); 3477 stripesize = sectorsize; 3478 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3479 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3480 3481 fs_info->nodesize = nodesize; 3482 fs_info->sectorsize = sectorsize; 3483 fs_info->sectorsize_bits = ilog2(sectorsize); 3484 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3485 fs_info->stripesize = stripesize; 3486 3487 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3488 if (ret) 3489 goto fail_alloc; 3490 3491 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3492 if (ret < 0) 3493 goto fail_alloc; 3494 3495 if (sectorsize < PAGE_SIZE) { 3496 struct btrfs_subpage_info *subpage_info; 3497 3498 /* 3499 * V1 space cache has some hardcoded PAGE_SIZE usage, and is 3500 * going to be deprecated. 3501 * 3502 * Force to use v2 cache for subpage case. 3503 */ 3504 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 3505 btrfs_set_and_info(fs_info, FREE_SPACE_TREE, 3506 "forcing free space tree for sector size %u with page size %lu", 3507 sectorsize, PAGE_SIZE); 3508 3509 btrfs_warn(fs_info, 3510 "read-write for sector size %u with page size %lu is experimental", 3511 sectorsize, PAGE_SIZE); 3512 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL); 3513 if (!subpage_info) { 3514 ret = -ENOMEM; 3515 goto fail_alloc; 3516 } 3517 btrfs_init_subpage_info(subpage_info, sectorsize); 3518 fs_info->subpage_info = subpage_info; 3519 } 3520 3521 ret = btrfs_init_workqueues(fs_info); 3522 if (ret) 3523 goto fail_sb_buffer; 3524 3525 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3526 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3527 3528 sb->s_blocksize = sectorsize; 3529 sb->s_blocksize_bits = blksize_bits(sectorsize); 3530 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3531 3532 mutex_lock(&fs_info->chunk_mutex); 3533 ret = btrfs_read_sys_array(fs_info); 3534 mutex_unlock(&fs_info->chunk_mutex); 3535 if (ret) { 3536 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3537 goto fail_sb_buffer; 3538 } 3539 3540 generation = btrfs_super_chunk_root_generation(disk_super); 3541 level = btrfs_super_chunk_root_level(disk_super); 3542 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3543 generation, level); 3544 if (ret) { 3545 btrfs_err(fs_info, "failed to read chunk root"); 3546 goto fail_tree_roots; 3547 } 3548 3549 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3550 offsetof(struct btrfs_header, chunk_tree_uuid), 3551 BTRFS_UUID_SIZE); 3552 3553 ret = btrfs_read_chunk_tree(fs_info); 3554 if (ret) { 3555 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3556 goto fail_tree_roots; 3557 } 3558 3559 /* 3560 * At this point we know all the devices that make this filesystem, 3561 * including the seed devices but we don't know yet if the replace 3562 * target is required. So free devices that are not part of this 3563 * filesystem but skip the replace target device which is checked 3564 * below in btrfs_init_dev_replace(). 3565 */ 3566 btrfs_free_extra_devids(fs_devices); 3567 if (!fs_devices->latest_dev->bdev) { 3568 btrfs_err(fs_info, "failed to read devices"); 3569 ret = -EIO; 3570 goto fail_tree_roots; 3571 } 3572 3573 ret = init_tree_roots(fs_info); 3574 if (ret) 3575 goto fail_tree_roots; 3576 3577 /* 3578 * Get zone type information of zoned block devices. This will also 3579 * handle emulation of a zoned filesystem if a regular device has the 3580 * zoned incompat feature flag set. 3581 */ 3582 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3583 if (ret) { 3584 btrfs_err(fs_info, 3585 "zoned: failed to read device zone info: %d", ret); 3586 goto fail_block_groups; 3587 } 3588 3589 /* 3590 * If we have a uuid root and we're not being told to rescan we need to 3591 * check the generation here so we can set the 3592 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3593 * transaction during a balance or the log replay without updating the 3594 * uuid generation, and then if we crash we would rescan the uuid tree, 3595 * even though it was perfectly fine. 3596 */ 3597 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3598 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3599 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3600 3601 ret = btrfs_verify_dev_extents(fs_info); 3602 if (ret) { 3603 btrfs_err(fs_info, 3604 "failed to verify dev extents against chunks: %d", 3605 ret); 3606 goto fail_block_groups; 3607 } 3608 ret = btrfs_recover_balance(fs_info); 3609 if (ret) { 3610 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3611 goto fail_block_groups; 3612 } 3613 3614 ret = btrfs_init_dev_stats(fs_info); 3615 if (ret) { 3616 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3617 goto fail_block_groups; 3618 } 3619 3620 ret = btrfs_init_dev_replace(fs_info); 3621 if (ret) { 3622 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3623 goto fail_block_groups; 3624 } 3625 3626 ret = btrfs_check_zoned_mode(fs_info); 3627 if (ret) { 3628 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3629 ret); 3630 goto fail_block_groups; 3631 } 3632 3633 ret = btrfs_sysfs_add_fsid(fs_devices); 3634 if (ret) { 3635 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3636 ret); 3637 goto fail_block_groups; 3638 } 3639 3640 ret = btrfs_sysfs_add_mounted(fs_info); 3641 if (ret) { 3642 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3643 goto fail_fsdev_sysfs; 3644 } 3645 3646 ret = btrfs_init_space_info(fs_info); 3647 if (ret) { 3648 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3649 goto fail_sysfs; 3650 } 3651 3652 ret = btrfs_read_block_groups(fs_info); 3653 if (ret) { 3654 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3655 goto fail_sysfs; 3656 } 3657 3658 btrfs_free_zone_cache(fs_info); 3659 3660 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3661 !btrfs_check_rw_degradable(fs_info, NULL)) { 3662 btrfs_warn(fs_info, 3663 "writable mount is not allowed due to too many missing devices"); 3664 ret = -EINVAL; 3665 goto fail_sysfs; 3666 } 3667 3668 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3669 "btrfs-cleaner"); 3670 if (IS_ERR(fs_info->cleaner_kthread)) { 3671 ret = PTR_ERR(fs_info->cleaner_kthread); 3672 goto fail_sysfs; 3673 } 3674 3675 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3676 tree_root, 3677 "btrfs-transaction"); 3678 if (IS_ERR(fs_info->transaction_kthread)) { 3679 ret = PTR_ERR(fs_info->transaction_kthread); 3680 goto fail_cleaner; 3681 } 3682 3683 if (!btrfs_test_opt(fs_info, NOSSD) && 3684 !fs_info->fs_devices->rotating) { 3685 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3686 } 3687 3688 /* 3689 * For devices supporting discard turn on discard=async automatically, 3690 * unless it's already set or disabled. This could be turned off by 3691 * nodiscard for the same mount. 3692 */ 3693 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) || 3694 btrfs_test_opt(fs_info, DISCARD_ASYNC) || 3695 btrfs_test_opt(fs_info, NODISCARD)) && 3696 fs_info->fs_devices->discardable) { 3697 btrfs_set_and_info(fs_info, DISCARD_ASYNC, 3698 "auto enabling async discard"); 3699 } 3700 3701 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3702 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3703 ret = btrfsic_mount(fs_info, fs_devices, 3704 btrfs_test_opt(fs_info, 3705 CHECK_INTEGRITY_DATA) ? 1 : 0, 3706 fs_info->check_integrity_print_mask); 3707 if (ret) 3708 btrfs_warn(fs_info, 3709 "failed to initialize integrity check module: %d", 3710 ret); 3711 } 3712 #endif 3713 ret = btrfs_read_qgroup_config(fs_info); 3714 if (ret) 3715 goto fail_trans_kthread; 3716 3717 if (btrfs_build_ref_tree(fs_info)) 3718 btrfs_err(fs_info, "couldn't build ref tree"); 3719 3720 /* do not make disk changes in broken FS or nologreplay is given */ 3721 if (btrfs_super_log_root(disk_super) != 0 && 3722 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3723 btrfs_info(fs_info, "start tree-log replay"); 3724 ret = btrfs_replay_log(fs_info, fs_devices); 3725 if (ret) 3726 goto fail_qgroup; 3727 } 3728 3729 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3730 if (IS_ERR(fs_info->fs_root)) { 3731 ret = PTR_ERR(fs_info->fs_root); 3732 btrfs_warn(fs_info, "failed to read fs tree: %d", ret); 3733 fs_info->fs_root = NULL; 3734 goto fail_qgroup; 3735 } 3736 3737 if (sb_rdonly(sb)) 3738 goto clear_oneshot; 3739 3740 ret = btrfs_start_pre_rw_mount(fs_info); 3741 if (ret) { 3742 close_ctree(fs_info); 3743 return ret; 3744 } 3745 btrfs_discard_resume(fs_info); 3746 3747 if (fs_info->uuid_root && 3748 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3749 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3750 btrfs_info(fs_info, "checking UUID tree"); 3751 ret = btrfs_check_uuid_tree(fs_info); 3752 if (ret) { 3753 btrfs_warn(fs_info, 3754 "failed to check the UUID tree: %d", ret); 3755 close_ctree(fs_info); 3756 return ret; 3757 } 3758 } 3759 3760 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3761 3762 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3763 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3764 wake_up_process(fs_info->cleaner_kthread); 3765 3766 clear_oneshot: 3767 btrfs_clear_oneshot_options(fs_info); 3768 return 0; 3769 3770 fail_qgroup: 3771 btrfs_free_qgroup_config(fs_info); 3772 fail_trans_kthread: 3773 kthread_stop(fs_info->transaction_kthread); 3774 btrfs_cleanup_transaction(fs_info); 3775 btrfs_free_fs_roots(fs_info); 3776 fail_cleaner: 3777 kthread_stop(fs_info->cleaner_kthread); 3778 3779 /* 3780 * make sure we're done with the btree inode before we stop our 3781 * kthreads 3782 */ 3783 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3784 3785 fail_sysfs: 3786 btrfs_sysfs_remove_mounted(fs_info); 3787 3788 fail_fsdev_sysfs: 3789 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3790 3791 fail_block_groups: 3792 btrfs_put_block_group_cache(fs_info); 3793 3794 fail_tree_roots: 3795 if (fs_info->data_reloc_root) 3796 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3797 free_root_pointers(fs_info, true); 3798 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3799 3800 fail_sb_buffer: 3801 btrfs_stop_all_workers(fs_info); 3802 btrfs_free_block_groups(fs_info); 3803 fail_alloc: 3804 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3805 3806 iput(fs_info->btree_inode); 3807 fail: 3808 btrfs_close_devices(fs_info->fs_devices); 3809 ASSERT(ret < 0); 3810 return ret; 3811 } 3812 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3813 3814 static void btrfs_end_super_write(struct bio *bio) 3815 { 3816 struct btrfs_device *device = bio->bi_private; 3817 struct bio_vec *bvec; 3818 struct bvec_iter_all iter_all; 3819 struct page *page; 3820 3821 bio_for_each_segment_all(bvec, bio, iter_all) { 3822 page = bvec->bv_page; 3823 3824 if (bio->bi_status) { 3825 btrfs_warn_rl_in_rcu(device->fs_info, 3826 "lost page write due to IO error on %s (%d)", 3827 btrfs_dev_name(device), 3828 blk_status_to_errno(bio->bi_status)); 3829 ClearPageUptodate(page); 3830 SetPageError(page); 3831 btrfs_dev_stat_inc_and_print(device, 3832 BTRFS_DEV_STAT_WRITE_ERRS); 3833 } else { 3834 SetPageUptodate(page); 3835 } 3836 3837 put_page(page); 3838 unlock_page(page); 3839 } 3840 3841 bio_put(bio); 3842 } 3843 3844 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3845 int copy_num, bool drop_cache) 3846 { 3847 struct btrfs_super_block *super; 3848 struct page *page; 3849 u64 bytenr, bytenr_orig; 3850 struct address_space *mapping = bdev->bd_inode->i_mapping; 3851 int ret; 3852 3853 bytenr_orig = btrfs_sb_offset(copy_num); 3854 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3855 if (ret == -ENOENT) 3856 return ERR_PTR(-EINVAL); 3857 else if (ret) 3858 return ERR_PTR(ret); 3859 3860 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 3861 return ERR_PTR(-EINVAL); 3862 3863 if (drop_cache) { 3864 /* This should only be called with the primary sb. */ 3865 ASSERT(copy_num == 0); 3866 3867 /* 3868 * Drop the page of the primary superblock, so later read will 3869 * always read from the device. 3870 */ 3871 invalidate_inode_pages2_range(mapping, 3872 bytenr >> PAGE_SHIFT, 3873 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 3874 } 3875 3876 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3877 if (IS_ERR(page)) 3878 return ERR_CAST(page); 3879 3880 super = page_address(page); 3881 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3882 btrfs_release_disk_super(super); 3883 return ERR_PTR(-ENODATA); 3884 } 3885 3886 if (btrfs_super_bytenr(super) != bytenr_orig) { 3887 btrfs_release_disk_super(super); 3888 return ERR_PTR(-EINVAL); 3889 } 3890 3891 return super; 3892 } 3893 3894 3895 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3896 { 3897 struct btrfs_super_block *super, *latest = NULL; 3898 int i; 3899 u64 transid = 0; 3900 3901 /* we would like to check all the supers, but that would make 3902 * a btrfs mount succeed after a mkfs from a different FS. 3903 * So, we need to add a special mount option to scan for 3904 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3905 */ 3906 for (i = 0; i < 1; i++) { 3907 super = btrfs_read_dev_one_super(bdev, i, false); 3908 if (IS_ERR(super)) 3909 continue; 3910 3911 if (!latest || btrfs_super_generation(super) > transid) { 3912 if (latest) 3913 btrfs_release_disk_super(super); 3914 3915 latest = super; 3916 transid = btrfs_super_generation(super); 3917 } 3918 } 3919 3920 return super; 3921 } 3922 3923 /* 3924 * Write superblock @sb to the @device. Do not wait for completion, all the 3925 * pages we use for writing are locked. 3926 * 3927 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3928 * the expected device size at commit time. Note that max_mirrors must be 3929 * same for write and wait phases. 3930 * 3931 * Return number of errors when page is not found or submission fails. 3932 */ 3933 static int write_dev_supers(struct btrfs_device *device, 3934 struct btrfs_super_block *sb, int max_mirrors) 3935 { 3936 struct btrfs_fs_info *fs_info = device->fs_info; 3937 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3938 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3939 int i; 3940 int errors = 0; 3941 int ret; 3942 u64 bytenr, bytenr_orig; 3943 3944 if (max_mirrors == 0) 3945 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3946 3947 shash->tfm = fs_info->csum_shash; 3948 3949 for (i = 0; i < max_mirrors; i++) { 3950 struct page *page; 3951 struct bio *bio; 3952 struct btrfs_super_block *disk_super; 3953 3954 bytenr_orig = btrfs_sb_offset(i); 3955 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3956 if (ret == -ENOENT) { 3957 continue; 3958 } else if (ret < 0) { 3959 btrfs_err(device->fs_info, 3960 "couldn't get super block location for mirror %d", 3961 i); 3962 errors++; 3963 continue; 3964 } 3965 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3966 device->commit_total_bytes) 3967 break; 3968 3969 btrfs_set_super_bytenr(sb, bytenr_orig); 3970 3971 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3972 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3973 sb->csum); 3974 3975 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3976 GFP_NOFS); 3977 if (!page) { 3978 btrfs_err(device->fs_info, 3979 "couldn't get super block page for bytenr %llu", 3980 bytenr); 3981 errors++; 3982 continue; 3983 } 3984 3985 /* Bump the refcount for wait_dev_supers() */ 3986 get_page(page); 3987 3988 disk_super = page_address(page); 3989 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3990 3991 /* 3992 * Directly use bios here instead of relying on the page cache 3993 * to do I/O, so we don't lose the ability to do integrity 3994 * checking. 3995 */ 3996 bio = bio_alloc(device->bdev, 1, 3997 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3998 GFP_NOFS); 3999 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 4000 bio->bi_private = device; 4001 bio->bi_end_io = btrfs_end_super_write; 4002 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 4003 offset_in_page(bytenr)); 4004 4005 /* 4006 * We FUA only the first super block. The others we allow to 4007 * go down lazy and there's a short window where the on-disk 4008 * copies might still contain the older version. 4009 */ 4010 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 4011 bio->bi_opf |= REQ_FUA; 4012 4013 btrfsic_check_bio(bio); 4014 submit_bio(bio); 4015 4016 if (btrfs_advance_sb_log(device, i)) 4017 errors++; 4018 } 4019 return errors < i ? 0 : -1; 4020 } 4021 4022 /* 4023 * Wait for write completion of superblocks done by write_dev_supers, 4024 * @max_mirrors same for write and wait phases. 4025 * 4026 * Return number of errors when page is not found or not marked up to 4027 * date. 4028 */ 4029 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 4030 { 4031 int i; 4032 int errors = 0; 4033 bool primary_failed = false; 4034 int ret; 4035 u64 bytenr; 4036 4037 if (max_mirrors == 0) 4038 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 4039 4040 for (i = 0; i < max_mirrors; i++) { 4041 struct page *page; 4042 4043 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 4044 if (ret == -ENOENT) { 4045 break; 4046 } else if (ret < 0) { 4047 errors++; 4048 if (i == 0) 4049 primary_failed = true; 4050 continue; 4051 } 4052 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 4053 device->commit_total_bytes) 4054 break; 4055 4056 page = find_get_page(device->bdev->bd_inode->i_mapping, 4057 bytenr >> PAGE_SHIFT); 4058 if (!page) { 4059 errors++; 4060 if (i == 0) 4061 primary_failed = true; 4062 continue; 4063 } 4064 /* Page is submitted locked and unlocked once the IO completes */ 4065 wait_on_page_locked(page); 4066 if (PageError(page)) { 4067 errors++; 4068 if (i == 0) 4069 primary_failed = true; 4070 } 4071 4072 /* Drop our reference */ 4073 put_page(page); 4074 4075 /* Drop the reference from the writing run */ 4076 put_page(page); 4077 } 4078 4079 /* log error, force error return */ 4080 if (primary_failed) { 4081 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 4082 device->devid); 4083 return -1; 4084 } 4085 4086 return errors < i ? 0 : -1; 4087 } 4088 4089 /* 4090 * endio for the write_dev_flush, this will wake anyone waiting 4091 * for the barrier when it is done 4092 */ 4093 static void btrfs_end_empty_barrier(struct bio *bio) 4094 { 4095 bio_uninit(bio); 4096 complete(bio->bi_private); 4097 } 4098 4099 /* 4100 * Submit a flush request to the device if it supports it. Error handling is 4101 * done in the waiting counterpart. 4102 */ 4103 static void write_dev_flush(struct btrfs_device *device) 4104 { 4105 struct bio *bio = &device->flush_bio; 4106 4107 device->last_flush_error = BLK_STS_OK; 4108 4109 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4110 /* 4111 * When a disk has write caching disabled, we skip submission of a bio 4112 * with flush and sync requests before writing the superblock, since 4113 * it's not needed. However when the integrity checker is enabled, this 4114 * results in reports that there are metadata blocks referred by a 4115 * superblock that were not properly flushed. So don't skip the bio 4116 * submission only when the integrity checker is enabled for the sake 4117 * of simplicity, since this is a debug tool and not meant for use in 4118 * non-debug builds. 4119 */ 4120 if (!bdev_write_cache(device->bdev)) 4121 return; 4122 #endif 4123 4124 bio_init(bio, device->bdev, NULL, 0, 4125 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 4126 bio->bi_end_io = btrfs_end_empty_barrier; 4127 init_completion(&device->flush_wait); 4128 bio->bi_private = &device->flush_wait; 4129 4130 btrfsic_check_bio(bio); 4131 submit_bio(bio); 4132 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 4133 } 4134 4135 /* 4136 * If the flush bio has been submitted by write_dev_flush, wait for it. 4137 * Return true for any error, and false otherwise. 4138 */ 4139 static bool wait_dev_flush(struct btrfs_device *device) 4140 { 4141 struct bio *bio = &device->flush_bio; 4142 4143 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 4144 return false; 4145 4146 wait_for_completion_io(&device->flush_wait); 4147 4148 if (bio->bi_status) { 4149 device->last_flush_error = bio->bi_status; 4150 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); 4151 return true; 4152 } 4153 4154 return false; 4155 } 4156 4157 /* 4158 * send an empty flush down to each device in parallel, 4159 * then wait for them 4160 */ 4161 static int barrier_all_devices(struct btrfs_fs_info *info) 4162 { 4163 struct list_head *head; 4164 struct btrfs_device *dev; 4165 int errors_wait = 0; 4166 4167 lockdep_assert_held(&info->fs_devices->device_list_mutex); 4168 /* send down all the barriers */ 4169 head = &info->fs_devices->devices; 4170 list_for_each_entry(dev, head, dev_list) { 4171 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4172 continue; 4173 if (!dev->bdev) 4174 continue; 4175 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4176 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4177 continue; 4178 4179 write_dev_flush(dev); 4180 } 4181 4182 /* wait for all the barriers */ 4183 list_for_each_entry(dev, head, dev_list) { 4184 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4185 continue; 4186 if (!dev->bdev) { 4187 errors_wait++; 4188 continue; 4189 } 4190 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4191 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4192 continue; 4193 4194 if (wait_dev_flush(dev)) 4195 errors_wait++; 4196 } 4197 4198 /* 4199 * Checks last_flush_error of disks in order to determine the device 4200 * state. 4201 */ 4202 if (errors_wait && !btrfs_check_rw_degradable(info, NULL)) 4203 return -EIO; 4204 4205 return 0; 4206 } 4207 4208 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 4209 { 4210 int raid_type; 4211 int min_tolerated = INT_MAX; 4212 4213 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 4214 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 4215 min_tolerated = min_t(int, min_tolerated, 4216 btrfs_raid_array[BTRFS_RAID_SINGLE]. 4217 tolerated_failures); 4218 4219 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4220 if (raid_type == BTRFS_RAID_SINGLE) 4221 continue; 4222 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 4223 continue; 4224 min_tolerated = min_t(int, min_tolerated, 4225 btrfs_raid_array[raid_type]. 4226 tolerated_failures); 4227 } 4228 4229 if (min_tolerated == INT_MAX) { 4230 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4231 min_tolerated = 0; 4232 } 4233 4234 return min_tolerated; 4235 } 4236 4237 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4238 { 4239 struct list_head *head; 4240 struct btrfs_device *dev; 4241 struct btrfs_super_block *sb; 4242 struct btrfs_dev_item *dev_item; 4243 int ret; 4244 int do_barriers; 4245 int max_errors; 4246 int total_errors = 0; 4247 u64 flags; 4248 4249 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4250 4251 /* 4252 * max_mirrors == 0 indicates we're from commit_transaction, 4253 * not from fsync where the tree roots in fs_info have not 4254 * been consistent on disk. 4255 */ 4256 if (max_mirrors == 0) 4257 backup_super_roots(fs_info); 4258 4259 sb = fs_info->super_for_commit; 4260 dev_item = &sb->dev_item; 4261 4262 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4263 head = &fs_info->fs_devices->devices; 4264 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4265 4266 if (do_barriers) { 4267 ret = barrier_all_devices(fs_info); 4268 if (ret) { 4269 mutex_unlock( 4270 &fs_info->fs_devices->device_list_mutex); 4271 btrfs_handle_fs_error(fs_info, ret, 4272 "errors while submitting device barriers."); 4273 return ret; 4274 } 4275 } 4276 4277 list_for_each_entry(dev, head, dev_list) { 4278 if (!dev->bdev) { 4279 total_errors++; 4280 continue; 4281 } 4282 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4283 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4284 continue; 4285 4286 btrfs_set_stack_device_generation(dev_item, 0); 4287 btrfs_set_stack_device_type(dev_item, dev->type); 4288 btrfs_set_stack_device_id(dev_item, dev->devid); 4289 btrfs_set_stack_device_total_bytes(dev_item, 4290 dev->commit_total_bytes); 4291 btrfs_set_stack_device_bytes_used(dev_item, 4292 dev->commit_bytes_used); 4293 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4294 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4295 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4296 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4297 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4298 BTRFS_FSID_SIZE); 4299 4300 flags = btrfs_super_flags(sb); 4301 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4302 4303 ret = btrfs_validate_write_super(fs_info, sb); 4304 if (ret < 0) { 4305 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4306 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4307 "unexpected superblock corruption detected"); 4308 return -EUCLEAN; 4309 } 4310 4311 ret = write_dev_supers(dev, sb, max_mirrors); 4312 if (ret) 4313 total_errors++; 4314 } 4315 if (total_errors > max_errors) { 4316 btrfs_err(fs_info, "%d errors while writing supers", 4317 total_errors); 4318 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4319 4320 /* FUA is masked off if unsupported and can't be the reason */ 4321 btrfs_handle_fs_error(fs_info, -EIO, 4322 "%d errors while writing supers", 4323 total_errors); 4324 return -EIO; 4325 } 4326 4327 total_errors = 0; 4328 list_for_each_entry(dev, head, dev_list) { 4329 if (!dev->bdev) 4330 continue; 4331 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4332 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4333 continue; 4334 4335 ret = wait_dev_supers(dev, max_mirrors); 4336 if (ret) 4337 total_errors++; 4338 } 4339 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4340 if (total_errors > max_errors) { 4341 btrfs_handle_fs_error(fs_info, -EIO, 4342 "%d errors while writing supers", 4343 total_errors); 4344 return -EIO; 4345 } 4346 return 0; 4347 } 4348 4349 /* Drop a fs root from the radix tree and free it. */ 4350 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4351 struct btrfs_root *root) 4352 { 4353 bool drop_ref = false; 4354 4355 spin_lock(&fs_info->fs_roots_radix_lock); 4356 radix_tree_delete(&fs_info->fs_roots_radix, 4357 (unsigned long)root->root_key.objectid); 4358 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4359 drop_ref = true; 4360 spin_unlock(&fs_info->fs_roots_radix_lock); 4361 4362 if (BTRFS_FS_ERROR(fs_info)) { 4363 ASSERT(root->log_root == NULL); 4364 if (root->reloc_root) { 4365 btrfs_put_root(root->reloc_root); 4366 root->reloc_root = NULL; 4367 } 4368 } 4369 4370 if (drop_ref) 4371 btrfs_put_root(root); 4372 } 4373 4374 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 4375 { 4376 u64 root_objectid = 0; 4377 struct btrfs_root *gang[8]; 4378 int i = 0; 4379 int err = 0; 4380 unsigned int ret = 0; 4381 4382 while (1) { 4383 spin_lock(&fs_info->fs_roots_radix_lock); 4384 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4385 (void **)gang, root_objectid, 4386 ARRAY_SIZE(gang)); 4387 if (!ret) { 4388 spin_unlock(&fs_info->fs_roots_radix_lock); 4389 break; 4390 } 4391 root_objectid = gang[ret - 1]->root_key.objectid + 1; 4392 4393 for (i = 0; i < ret; i++) { 4394 /* Avoid to grab roots in dead_roots */ 4395 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 4396 gang[i] = NULL; 4397 continue; 4398 } 4399 /* grab all the search result for later use */ 4400 gang[i] = btrfs_grab_root(gang[i]); 4401 } 4402 spin_unlock(&fs_info->fs_roots_radix_lock); 4403 4404 for (i = 0; i < ret; i++) { 4405 if (!gang[i]) 4406 continue; 4407 root_objectid = gang[i]->root_key.objectid; 4408 err = btrfs_orphan_cleanup(gang[i]); 4409 if (err) 4410 goto out; 4411 btrfs_put_root(gang[i]); 4412 } 4413 root_objectid++; 4414 } 4415 out: 4416 /* release the uncleaned roots due to error */ 4417 for (; i < ret; i++) { 4418 if (gang[i]) 4419 btrfs_put_root(gang[i]); 4420 } 4421 return err; 4422 } 4423 4424 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4425 { 4426 struct btrfs_root *root = fs_info->tree_root; 4427 struct btrfs_trans_handle *trans; 4428 4429 mutex_lock(&fs_info->cleaner_mutex); 4430 btrfs_run_delayed_iputs(fs_info); 4431 mutex_unlock(&fs_info->cleaner_mutex); 4432 wake_up_process(fs_info->cleaner_kthread); 4433 4434 /* wait until ongoing cleanup work done */ 4435 down_write(&fs_info->cleanup_work_sem); 4436 up_write(&fs_info->cleanup_work_sem); 4437 4438 trans = btrfs_join_transaction(root); 4439 if (IS_ERR(trans)) 4440 return PTR_ERR(trans); 4441 return btrfs_commit_transaction(trans); 4442 } 4443 4444 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4445 { 4446 struct btrfs_transaction *trans; 4447 struct btrfs_transaction *tmp; 4448 bool found = false; 4449 4450 if (list_empty(&fs_info->trans_list)) 4451 return; 4452 4453 /* 4454 * This function is only called at the very end of close_ctree(), 4455 * thus no other running transaction, no need to take trans_lock. 4456 */ 4457 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4458 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4459 struct extent_state *cached = NULL; 4460 u64 dirty_bytes = 0; 4461 u64 cur = 0; 4462 u64 found_start; 4463 u64 found_end; 4464 4465 found = true; 4466 while (!find_first_extent_bit(&trans->dirty_pages, cur, 4467 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4468 dirty_bytes += found_end + 1 - found_start; 4469 cur = found_end + 1; 4470 } 4471 btrfs_warn(fs_info, 4472 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4473 trans->transid, dirty_bytes); 4474 btrfs_cleanup_one_transaction(trans, fs_info); 4475 4476 if (trans == fs_info->running_transaction) 4477 fs_info->running_transaction = NULL; 4478 list_del_init(&trans->list); 4479 4480 btrfs_put_transaction(trans); 4481 trace_btrfs_transaction_commit(fs_info); 4482 } 4483 ASSERT(!found); 4484 } 4485 4486 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4487 { 4488 int ret; 4489 4490 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4491 4492 /* 4493 * If we had UNFINISHED_DROPS we could still be processing them, so 4494 * clear that bit and wake up relocation so it can stop. 4495 * We must do this before stopping the block group reclaim task, because 4496 * at btrfs_relocate_block_group() we wait for this bit, and after the 4497 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4498 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4499 * return 1. 4500 */ 4501 btrfs_wake_unfinished_drop(fs_info); 4502 4503 /* 4504 * We may have the reclaim task running and relocating a data block group, 4505 * in which case it may create delayed iputs. So stop it before we park 4506 * the cleaner kthread otherwise we can get new delayed iputs after 4507 * parking the cleaner, and that can make the async reclaim task to hang 4508 * if it's waiting for delayed iputs to complete, since the cleaner is 4509 * parked and can not run delayed iputs - this will make us hang when 4510 * trying to stop the async reclaim task. 4511 */ 4512 cancel_work_sync(&fs_info->reclaim_bgs_work); 4513 /* 4514 * We don't want the cleaner to start new transactions, add more delayed 4515 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4516 * because that frees the task_struct, and the transaction kthread might 4517 * still try to wake up the cleaner. 4518 */ 4519 kthread_park(fs_info->cleaner_kthread); 4520 4521 /* wait for the qgroup rescan worker to stop */ 4522 btrfs_qgroup_wait_for_completion(fs_info, false); 4523 4524 /* wait for the uuid_scan task to finish */ 4525 down(&fs_info->uuid_tree_rescan_sem); 4526 /* avoid complains from lockdep et al., set sem back to initial state */ 4527 up(&fs_info->uuid_tree_rescan_sem); 4528 4529 /* pause restriper - we want to resume on mount */ 4530 btrfs_pause_balance(fs_info); 4531 4532 btrfs_dev_replace_suspend_for_unmount(fs_info); 4533 4534 btrfs_scrub_cancel(fs_info); 4535 4536 /* wait for any defraggers to finish */ 4537 wait_event(fs_info->transaction_wait, 4538 (atomic_read(&fs_info->defrag_running) == 0)); 4539 4540 /* clear out the rbtree of defraggable inodes */ 4541 btrfs_cleanup_defrag_inodes(fs_info); 4542 4543 /* 4544 * After we parked the cleaner kthread, ordered extents may have 4545 * completed and created new delayed iputs. If one of the async reclaim 4546 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4547 * can hang forever trying to stop it, because if a delayed iput is 4548 * added after it ran btrfs_run_delayed_iputs() and before it called 4549 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4550 * no one else to run iputs. 4551 * 4552 * So wait for all ongoing ordered extents to complete and then run 4553 * delayed iputs. This works because once we reach this point no one 4554 * can either create new ordered extents nor create delayed iputs 4555 * through some other means. 4556 * 4557 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4558 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4559 * but the delayed iput for the respective inode is made only when doing 4560 * the final btrfs_put_ordered_extent() (which must happen at 4561 * btrfs_finish_ordered_io() when we are unmounting). 4562 */ 4563 btrfs_flush_workqueue(fs_info->endio_write_workers); 4564 /* Ordered extents for free space inodes. */ 4565 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4566 btrfs_run_delayed_iputs(fs_info); 4567 4568 cancel_work_sync(&fs_info->async_reclaim_work); 4569 cancel_work_sync(&fs_info->async_data_reclaim_work); 4570 cancel_work_sync(&fs_info->preempt_reclaim_work); 4571 4572 /* Cancel or finish ongoing discard work */ 4573 btrfs_discard_cleanup(fs_info); 4574 4575 if (!sb_rdonly(fs_info->sb)) { 4576 /* 4577 * The cleaner kthread is stopped, so do one final pass over 4578 * unused block groups. 4579 */ 4580 btrfs_delete_unused_bgs(fs_info); 4581 4582 /* 4583 * There might be existing delayed inode workers still running 4584 * and holding an empty delayed inode item. We must wait for 4585 * them to complete first because they can create a transaction. 4586 * This happens when someone calls btrfs_balance_delayed_items() 4587 * and then a transaction commit runs the same delayed nodes 4588 * before any delayed worker has done something with the nodes. 4589 * We must wait for any worker here and not at transaction 4590 * commit time since that could cause a deadlock. 4591 * This is a very rare case. 4592 */ 4593 btrfs_flush_workqueue(fs_info->delayed_workers); 4594 4595 ret = btrfs_commit_super(fs_info); 4596 if (ret) 4597 btrfs_err(fs_info, "commit super ret %d", ret); 4598 } 4599 4600 if (BTRFS_FS_ERROR(fs_info)) 4601 btrfs_error_commit_super(fs_info); 4602 4603 kthread_stop(fs_info->transaction_kthread); 4604 kthread_stop(fs_info->cleaner_kthread); 4605 4606 ASSERT(list_empty(&fs_info->delayed_iputs)); 4607 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4608 4609 if (btrfs_check_quota_leak(fs_info)) { 4610 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4611 btrfs_err(fs_info, "qgroup reserved space leaked"); 4612 } 4613 4614 btrfs_free_qgroup_config(fs_info); 4615 ASSERT(list_empty(&fs_info->delalloc_roots)); 4616 4617 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4618 btrfs_info(fs_info, "at unmount delalloc count %lld", 4619 percpu_counter_sum(&fs_info->delalloc_bytes)); 4620 } 4621 4622 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4623 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4624 percpu_counter_sum(&fs_info->ordered_bytes)); 4625 4626 btrfs_sysfs_remove_mounted(fs_info); 4627 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4628 4629 btrfs_put_block_group_cache(fs_info); 4630 4631 /* 4632 * we must make sure there is not any read request to 4633 * submit after we stopping all workers. 4634 */ 4635 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4636 btrfs_stop_all_workers(fs_info); 4637 4638 /* We shouldn't have any transaction open at this point */ 4639 warn_about_uncommitted_trans(fs_info); 4640 4641 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4642 free_root_pointers(fs_info, true); 4643 btrfs_free_fs_roots(fs_info); 4644 4645 /* 4646 * We must free the block groups after dropping the fs_roots as we could 4647 * have had an IO error and have left over tree log blocks that aren't 4648 * cleaned up until the fs roots are freed. This makes the block group 4649 * accounting appear to be wrong because there's pending reserved bytes, 4650 * so make sure we do the block group cleanup afterwards. 4651 */ 4652 btrfs_free_block_groups(fs_info); 4653 4654 iput(fs_info->btree_inode); 4655 4656 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4657 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4658 btrfsic_unmount(fs_info->fs_devices); 4659 #endif 4660 4661 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4662 btrfs_close_devices(fs_info->fs_devices); 4663 } 4664 4665 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4666 int atomic) 4667 { 4668 int ret; 4669 struct inode *btree_inode = buf->pages[0]->mapping->host; 4670 4671 ret = extent_buffer_uptodate(buf); 4672 if (!ret) 4673 return ret; 4674 4675 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4676 parent_transid, atomic); 4677 if (ret == -EAGAIN) 4678 return ret; 4679 return !ret; 4680 } 4681 4682 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4683 { 4684 struct btrfs_fs_info *fs_info = buf->fs_info; 4685 u64 transid = btrfs_header_generation(buf); 4686 int was_dirty; 4687 4688 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4689 /* 4690 * This is a fast path so only do this check if we have sanity tests 4691 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4692 * outside of the sanity tests. 4693 */ 4694 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4695 return; 4696 #endif 4697 btrfs_assert_tree_write_locked(buf); 4698 if (transid != fs_info->generation) 4699 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4700 buf->start, transid, fs_info->generation); 4701 was_dirty = set_extent_buffer_dirty(buf); 4702 if (!was_dirty) 4703 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4704 buf->len, 4705 fs_info->dirty_metadata_batch); 4706 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4707 /* 4708 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4709 * but item data not updated. 4710 * So here we should only check item pointers, not item data. 4711 */ 4712 if (btrfs_header_level(buf) == 0 && 4713 btrfs_check_leaf_relaxed(buf)) { 4714 btrfs_print_leaf(buf); 4715 ASSERT(0); 4716 } 4717 #endif 4718 } 4719 4720 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4721 int flush_delayed) 4722 { 4723 /* 4724 * looks as though older kernels can get into trouble with 4725 * this code, they end up stuck in balance_dirty_pages forever 4726 */ 4727 int ret; 4728 4729 if (current->flags & PF_MEMALLOC) 4730 return; 4731 4732 if (flush_delayed) 4733 btrfs_balance_delayed_items(fs_info); 4734 4735 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4736 BTRFS_DIRTY_METADATA_THRESH, 4737 fs_info->dirty_metadata_batch); 4738 if (ret > 0) { 4739 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4740 } 4741 } 4742 4743 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4744 { 4745 __btrfs_btree_balance_dirty(fs_info, 1); 4746 } 4747 4748 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4749 { 4750 __btrfs_btree_balance_dirty(fs_info, 0); 4751 } 4752 4753 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4754 { 4755 /* cleanup FS via transaction */ 4756 btrfs_cleanup_transaction(fs_info); 4757 4758 mutex_lock(&fs_info->cleaner_mutex); 4759 btrfs_run_delayed_iputs(fs_info); 4760 mutex_unlock(&fs_info->cleaner_mutex); 4761 4762 down_write(&fs_info->cleanup_work_sem); 4763 up_write(&fs_info->cleanup_work_sem); 4764 } 4765 4766 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4767 { 4768 struct btrfs_root *gang[8]; 4769 u64 root_objectid = 0; 4770 int ret; 4771 4772 spin_lock(&fs_info->fs_roots_radix_lock); 4773 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4774 (void **)gang, root_objectid, 4775 ARRAY_SIZE(gang))) != 0) { 4776 int i; 4777 4778 for (i = 0; i < ret; i++) 4779 gang[i] = btrfs_grab_root(gang[i]); 4780 spin_unlock(&fs_info->fs_roots_radix_lock); 4781 4782 for (i = 0; i < ret; i++) { 4783 if (!gang[i]) 4784 continue; 4785 root_objectid = gang[i]->root_key.objectid; 4786 btrfs_free_log(NULL, gang[i]); 4787 btrfs_put_root(gang[i]); 4788 } 4789 root_objectid++; 4790 spin_lock(&fs_info->fs_roots_radix_lock); 4791 } 4792 spin_unlock(&fs_info->fs_roots_radix_lock); 4793 btrfs_free_log_root_tree(NULL, fs_info); 4794 } 4795 4796 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4797 { 4798 struct btrfs_ordered_extent *ordered; 4799 4800 spin_lock(&root->ordered_extent_lock); 4801 /* 4802 * This will just short circuit the ordered completion stuff which will 4803 * make sure the ordered extent gets properly cleaned up. 4804 */ 4805 list_for_each_entry(ordered, &root->ordered_extents, 4806 root_extent_list) 4807 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4808 spin_unlock(&root->ordered_extent_lock); 4809 } 4810 4811 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4812 { 4813 struct btrfs_root *root; 4814 struct list_head splice; 4815 4816 INIT_LIST_HEAD(&splice); 4817 4818 spin_lock(&fs_info->ordered_root_lock); 4819 list_splice_init(&fs_info->ordered_roots, &splice); 4820 while (!list_empty(&splice)) { 4821 root = list_first_entry(&splice, struct btrfs_root, 4822 ordered_root); 4823 list_move_tail(&root->ordered_root, 4824 &fs_info->ordered_roots); 4825 4826 spin_unlock(&fs_info->ordered_root_lock); 4827 btrfs_destroy_ordered_extents(root); 4828 4829 cond_resched(); 4830 spin_lock(&fs_info->ordered_root_lock); 4831 } 4832 spin_unlock(&fs_info->ordered_root_lock); 4833 4834 /* 4835 * We need this here because if we've been flipped read-only we won't 4836 * get sync() from the umount, so we need to make sure any ordered 4837 * extents that haven't had their dirty pages IO start writeout yet 4838 * actually get run and error out properly. 4839 */ 4840 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4841 } 4842 4843 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4844 struct btrfs_fs_info *fs_info) 4845 { 4846 struct rb_node *node; 4847 struct btrfs_delayed_ref_root *delayed_refs; 4848 struct btrfs_delayed_ref_node *ref; 4849 int ret = 0; 4850 4851 delayed_refs = &trans->delayed_refs; 4852 4853 spin_lock(&delayed_refs->lock); 4854 if (atomic_read(&delayed_refs->num_entries) == 0) { 4855 spin_unlock(&delayed_refs->lock); 4856 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4857 return ret; 4858 } 4859 4860 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4861 struct btrfs_delayed_ref_head *head; 4862 struct rb_node *n; 4863 bool pin_bytes = false; 4864 4865 head = rb_entry(node, struct btrfs_delayed_ref_head, 4866 href_node); 4867 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4868 continue; 4869 4870 spin_lock(&head->lock); 4871 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4872 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4873 ref_node); 4874 ref->in_tree = 0; 4875 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4876 RB_CLEAR_NODE(&ref->ref_node); 4877 if (!list_empty(&ref->add_list)) 4878 list_del(&ref->add_list); 4879 atomic_dec(&delayed_refs->num_entries); 4880 btrfs_put_delayed_ref(ref); 4881 } 4882 if (head->must_insert_reserved) 4883 pin_bytes = true; 4884 btrfs_free_delayed_extent_op(head->extent_op); 4885 btrfs_delete_ref_head(delayed_refs, head); 4886 spin_unlock(&head->lock); 4887 spin_unlock(&delayed_refs->lock); 4888 mutex_unlock(&head->mutex); 4889 4890 if (pin_bytes) { 4891 struct btrfs_block_group *cache; 4892 4893 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4894 BUG_ON(!cache); 4895 4896 spin_lock(&cache->space_info->lock); 4897 spin_lock(&cache->lock); 4898 cache->pinned += head->num_bytes; 4899 btrfs_space_info_update_bytes_pinned(fs_info, 4900 cache->space_info, head->num_bytes); 4901 cache->reserved -= head->num_bytes; 4902 cache->space_info->bytes_reserved -= head->num_bytes; 4903 spin_unlock(&cache->lock); 4904 spin_unlock(&cache->space_info->lock); 4905 4906 btrfs_put_block_group(cache); 4907 4908 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4909 head->bytenr + head->num_bytes - 1); 4910 } 4911 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4912 btrfs_put_delayed_ref_head(head); 4913 cond_resched(); 4914 spin_lock(&delayed_refs->lock); 4915 } 4916 btrfs_qgroup_destroy_extent_records(trans); 4917 4918 spin_unlock(&delayed_refs->lock); 4919 4920 return ret; 4921 } 4922 4923 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4924 { 4925 struct btrfs_inode *btrfs_inode; 4926 struct list_head splice; 4927 4928 INIT_LIST_HEAD(&splice); 4929 4930 spin_lock(&root->delalloc_lock); 4931 list_splice_init(&root->delalloc_inodes, &splice); 4932 4933 while (!list_empty(&splice)) { 4934 struct inode *inode = NULL; 4935 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4936 delalloc_inodes); 4937 __btrfs_del_delalloc_inode(root, btrfs_inode); 4938 spin_unlock(&root->delalloc_lock); 4939 4940 /* 4941 * Make sure we get a live inode and that it'll not disappear 4942 * meanwhile. 4943 */ 4944 inode = igrab(&btrfs_inode->vfs_inode); 4945 if (inode) { 4946 unsigned int nofs_flag; 4947 4948 nofs_flag = memalloc_nofs_save(); 4949 invalidate_inode_pages2(inode->i_mapping); 4950 memalloc_nofs_restore(nofs_flag); 4951 iput(inode); 4952 } 4953 spin_lock(&root->delalloc_lock); 4954 } 4955 spin_unlock(&root->delalloc_lock); 4956 } 4957 4958 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4959 { 4960 struct btrfs_root *root; 4961 struct list_head splice; 4962 4963 INIT_LIST_HEAD(&splice); 4964 4965 spin_lock(&fs_info->delalloc_root_lock); 4966 list_splice_init(&fs_info->delalloc_roots, &splice); 4967 while (!list_empty(&splice)) { 4968 root = list_first_entry(&splice, struct btrfs_root, 4969 delalloc_root); 4970 root = btrfs_grab_root(root); 4971 BUG_ON(!root); 4972 spin_unlock(&fs_info->delalloc_root_lock); 4973 4974 btrfs_destroy_delalloc_inodes(root); 4975 btrfs_put_root(root); 4976 4977 spin_lock(&fs_info->delalloc_root_lock); 4978 } 4979 spin_unlock(&fs_info->delalloc_root_lock); 4980 } 4981 4982 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4983 struct extent_io_tree *dirty_pages, 4984 int mark) 4985 { 4986 int ret; 4987 struct extent_buffer *eb; 4988 u64 start = 0; 4989 u64 end; 4990 4991 while (1) { 4992 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4993 mark, NULL); 4994 if (ret) 4995 break; 4996 4997 clear_extent_bits(dirty_pages, start, end, mark); 4998 while (start <= end) { 4999 eb = find_extent_buffer(fs_info, start); 5000 start += fs_info->nodesize; 5001 if (!eb) 5002 continue; 5003 5004 btrfs_tree_lock(eb); 5005 wait_on_extent_buffer_writeback(eb); 5006 btrfs_clear_buffer_dirty(NULL, eb); 5007 btrfs_tree_unlock(eb); 5008 5009 free_extent_buffer_stale(eb); 5010 } 5011 } 5012 5013 return ret; 5014 } 5015 5016 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 5017 struct extent_io_tree *unpin) 5018 { 5019 u64 start; 5020 u64 end; 5021 int ret; 5022 5023 while (1) { 5024 struct extent_state *cached_state = NULL; 5025 5026 /* 5027 * The btrfs_finish_extent_commit() may get the same range as 5028 * ours between find_first_extent_bit and clear_extent_dirty. 5029 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 5030 * the same extent range. 5031 */ 5032 mutex_lock(&fs_info->unused_bg_unpin_mutex); 5033 ret = find_first_extent_bit(unpin, 0, &start, &end, 5034 EXTENT_DIRTY, &cached_state); 5035 if (ret) { 5036 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5037 break; 5038 } 5039 5040 clear_extent_dirty(unpin, start, end, &cached_state); 5041 free_extent_state(cached_state); 5042 btrfs_error_unpin_extent_range(fs_info, start, end); 5043 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5044 cond_resched(); 5045 } 5046 5047 return 0; 5048 } 5049 5050 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 5051 { 5052 struct inode *inode; 5053 5054 inode = cache->io_ctl.inode; 5055 if (inode) { 5056 unsigned int nofs_flag; 5057 5058 nofs_flag = memalloc_nofs_save(); 5059 invalidate_inode_pages2(inode->i_mapping); 5060 memalloc_nofs_restore(nofs_flag); 5061 5062 BTRFS_I(inode)->generation = 0; 5063 cache->io_ctl.inode = NULL; 5064 iput(inode); 5065 } 5066 ASSERT(cache->io_ctl.pages == NULL); 5067 btrfs_put_block_group(cache); 5068 } 5069 5070 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 5071 struct btrfs_fs_info *fs_info) 5072 { 5073 struct btrfs_block_group *cache; 5074 5075 spin_lock(&cur_trans->dirty_bgs_lock); 5076 while (!list_empty(&cur_trans->dirty_bgs)) { 5077 cache = list_first_entry(&cur_trans->dirty_bgs, 5078 struct btrfs_block_group, 5079 dirty_list); 5080 5081 if (!list_empty(&cache->io_list)) { 5082 spin_unlock(&cur_trans->dirty_bgs_lock); 5083 list_del_init(&cache->io_list); 5084 btrfs_cleanup_bg_io(cache); 5085 spin_lock(&cur_trans->dirty_bgs_lock); 5086 } 5087 5088 list_del_init(&cache->dirty_list); 5089 spin_lock(&cache->lock); 5090 cache->disk_cache_state = BTRFS_DC_ERROR; 5091 spin_unlock(&cache->lock); 5092 5093 spin_unlock(&cur_trans->dirty_bgs_lock); 5094 btrfs_put_block_group(cache); 5095 btrfs_delayed_refs_rsv_release(fs_info, 1); 5096 spin_lock(&cur_trans->dirty_bgs_lock); 5097 } 5098 spin_unlock(&cur_trans->dirty_bgs_lock); 5099 5100 /* 5101 * Refer to the definition of io_bgs member for details why it's safe 5102 * to use it without any locking 5103 */ 5104 while (!list_empty(&cur_trans->io_bgs)) { 5105 cache = list_first_entry(&cur_trans->io_bgs, 5106 struct btrfs_block_group, 5107 io_list); 5108 5109 list_del_init(&cache->io_list); 5110 spin_lock(&cache->lock); 5111 cache->disk_cache_state = BTRFS_DC_ERROR; 5112 spin_unlock(&cache->lock); 5113 btrfs_cleanup_bg_io(cache); 5114 } 5115 } 5116 5117 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 5118 struct btrfs_fs_info *fs_info) 5119 { 5120 struct btrfs_device *dev, *tmp; 5121 5122 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 5123 ASSERT(list_empty(&cur_trans->dirty_bgs)); 5124 ASSERT(list_empty(&cur_trans->io_bgs)); 5125 5126 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 5127 post_commit_list) { 5128 list_del_init(&dev->post_commit_list); 5129 } 5130 5131 btrfs_destroy_delayed_refs(cur_trans, fs_info); 5132 5133 cur_trans->state = TRANS_STATE_COMMIT_START; 5134 wake_up(&fs_info->transaction_blocked_wait); 5135 5136 cur_trans->state = TRANS_STATE_UNBLOCKED; 5137 wake_up(&fs_info->transaction_wait); 5138 5139 btrfs_destroy_delayed_inodes(fs_info); 5140 5141 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 5142 EXTENT_DIRTY); 5143 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 5144 5145 btrfs_free_redirty_list(cur_trans); 5146 5147 cur_trans->state =TRANS_STATE_COMPLETED; 5148 wake_up(&cur_trans->commit_wait); 5149 } 5150 5151 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 5152 { 5153 struct btrfs_transaction *t; 5154 5155 mutex_lock(&fs_info->transaction_kthread_mutex); 5156 5157 spin_lock(&fs_info->trans_lock); 5158 while (!list_empty(&fs_info->trans_list)) { 5159 t = list_first_entry(&fs_info->trans_list, 5160 struct btrfs_transaction, list); 5161 if (t->state >= TRANS_STATE_COMMIT_START) { 5162 refcount_inc(&t->use_count); 5163 spin_unlock(&fs_info->trans_lock); 5164 btrfs_wait_for_commit(fs_info, t->transid); 5165 btrfs_put_transaction(t); 5166 spin_lock(&fs_info->trans_lock); 5167 continue; 5168 } 5169 if (t == fs_info->running_transaction) { 5170 t->state = TRANS_STATE_COMMIT_DOING; 5171 spin_unlock(&fs_info->trans_lock); 5172 /* 5173 * We wait for 0 num_writers since we don't hold a trans 5174 * handle open currently for this transaction. 5175 */ 5176 wait_event(t->writer_wait, 5177 atomic_read(&t->num_writers) == 0); 5178 } else { 5179 spin_unlock(&fs_info->trans_lock); 5180 } 5181 btrfs_cleanup_one_transaction(t, fs_info); 5182 5183 spin_lock(&fs_info->trans_lock); 5184 if (t == fs_info->running_transaction) 5185 fs_info->running_transaction = NULL; 5186 list_del_init(&t->list); 5187 spin_unlock(&fs_info->trans_lock); 5188 5189 btrfs_put_transaction(t); 5190 trace_btrfs_transaction_commit(fs_info); 5191 spin_lock(&fs_info->trans_lock); 5192 } 5193 spin_unlock(&fs_info->trans_lock); 5194 btrfs_destroy_all_ordered_extents(fs_info); 5195 btrfs_destroy_delayed_inodes(fs_info); 5196 btrfs_assert_delayed_root_empty(fs_info); 5197 btrfs_destroy_all_delalloc_inodes(fs_info); 5198 btrfs_drop_all_logs(fs_info); 5199 mutex_unlock(&fs_info->transaction_kthread_mutex); 5200 5201 return 0; 5202 } 5203 5204 int btrfs_init_root_free_objectid(struct btrfs_root *root) 5205 { 5206 struct btrfs_path *path; 5207 int ret; 5208 struct extent_buffer *l; 5209 struct btrfs_key search_key; 5210 struct btrfs_key found_key; 5211 int slot; 5212 5213 path = btrfs_alloc_path(); 5214 if (!path) 5215 return -ENOMEM; 5216 5217 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 5218 search_key.type = -1; 5219 search_key.offset = (u64)-1; 5220 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5221 if (ret < 0) 5222 goto error; 5223 BUG_ON(ret == 0); /* Corruption */ 5224 if (path->slots[0] > 0) { 5225 slot = path->slots[0] - 1; 5226 l = path->nodes[0]; 5227 btrfs_item_key_to_cpu(l, &found_key, slot); 5228 root->free_objectid = max_t(u64, found_key.objectid + 1, 5229 BTRFS_FIRST_FREE_OBJECTID); 5230 } else { 5231 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 5232 } 5233 ret = 0; 5234 error: 5235 btrfs_free_path(path); 5236 return ret; 5237 } 5238 5239 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 5240 { 5241 int ret; 5242 mutex_lock(&root->objectid_mutex); 5243 5244 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 5245 btrfs_warn(root->fs_info, 5246 "the objectid of root %llu reaches its highest value", 5247 root->root_key.objectid); 5248 ret = -ENOSPC; 5249 goto out; 5250 } 5251 5252 *objectid = root->free_objectid++; 5253 ret = 0; 5254 out: 5255 mutex_unlock(&root->objectid_mutex); 5256 return ret; 5257 } 5258