xref: /openbmc/linux/fs/btrfs/disk-io.c (revision ad10c920)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46 #include "fs.h"
47 #include "accessors.h"
48 #include "extent-tree.h"
49 #include "root-tree.h"
50 #include "defrag.h"
51 #include "uuid-tree.h"
52 #include "relocation.h"
53 #include "scrub.h"
54 #include "super.h"
55 
56 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
57 				 BTRFS_HEADER_FLAG_RELOC |\
58 				 BTRFS_SUPER_FLAG_ERROR |\
59 				 BTRFS_SUPER_FLAG_SEEDING |\
60 				 BTRFS_SUPER_FLAG_METADUMP |\
61 				 BTRFS_SUPER_FLAG_METADUMP_V2)
62 
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 				      struct btrfs_fs_info *fs_info);
66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
67 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
68 					struct extent_io_tree *dirty_pages,
69 					int mark);
70 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
71 				       struct extent_io_tree *pinned_extents);
72 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
73 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
74 
75 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
76 {
77 	if (fs_info->csum_shash)
78 		crypto_free_shash(fs_info->csum_shash);
79 }
80 
81 /*
82  * async submit bios are used to offload expensive checksumming
83  * onto the worker threads.  They checksum file and metadata bios
84  * just before they are sent down the IO stack.
85  */
86 struct async_submit_bio {
87 	struct btrfs_inode *inode;
88 	struct bio *bio;
89 	enum btrfs_wq_submit_cmd submit_cmd;
90 	int mirror_num;
91 
92 	/* Optional parameter for used by direct io */
93 	u64 dio_file_offset;
94 	struct btrfs_work work;
95 	blk_status_t status;
96 };
97 
98 /*
99  * Compute the csum of a btree block and store the result to provided buffer.
100  */
101 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
102 {
103 	struct btrfs_fs_info *fs_info = buf->fs_info;
104 	const int num_pages = num_extent_pages(buf);
105 	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
106 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
107 	char *kaddr;
108 	int i;
109 
110 	shash->tfm = fs_info->csum_shash;
111 	crypto_shash_init(shash);
112 	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
113 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
114 			    first_page_part - BTRFS_CSUM_SIZE);
115 
116 	for (i = 1; i < num_pages; i++) {
117 		kaddr = page_address(buf->pages[i]);
118 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
119 	}
120 	memset(result, 0, BTRFS_CSUM_SIZE);
121 	crypto_shash_final(shash, result);
122 }
123 
124 /*
125  * we can't consider a given block up to date unless the transid of the
126  * block matches the transid in the parent node's pointer.  This is how we
127  * detect blocks that either didn't get written at all or got written
128  * in the wrong place.
129  */
130 static int verify_parent_transid(struct extent_io_tree *io_tree,
131 				 struct extent_buffer *eb, u64 parent_transid,
132 				 int atomic)
133 {
134 	struct extent_state *cached_state = NULL;
135 	int ret;
136 
137 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
138 		return 0;
139 
140 	if (atomic)
141 		return -EAGAIN;
142 
143 	lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state);
144 	if (extent_buffer_uptodate(eb) &&
145 	    btrfs_header_generation(eb) == parent_transid) {
146 		ret = 0;
147 		goto out;
148 	}
149 	btrfs_err_rl(eb->fs_info,
150 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
151 			eb->start, eb->read_mirror,
152 			parent_transid, btrfs_header_generation(eb));
153 	ret = 1;
154 	clear_extent_buffer_uptodate(eb);
155 out:
156 	unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
157 		      &cached_state);
158 	return ret;
159 }
160 
161 static bool btrfs_supported_super_csum(u16 csum_type)
162 {
163 	switch (csum_type) {
164 	case BTRFS_CSUM_TYPE_CRC32:
165 	case BTRFS_CSUM_TYPE_XXHASH:
166 	case BTRFS_CSUM_TYPE_SHA256:
167 	case BTRFS_CSUM_TYPE_BLAKE2:
168 		return true;
169 	default:
170 		return false;
171 	}
172 }
173 
174 /*
175  * Return 0 if the superblock checksum type matches the checksum value of that
176  * algorithm. Pass the raw disk superblock data.
177  */
178 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
179 			   const struct btrfs_super_block *disk_sb)
180 {
181 	char result[BTRFS_CSUM_SIZE];
182 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
183 
184 	shash->tfm = fs_info->csum_shash;
185 
186 	/*
187 	 * The super_block structure does not span the whole
188 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
189 	 * filled with zeros and is included in the checksum.
190 	 */
191 	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
192 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
193 
194 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
195 		return 1;
196 
197 	return 0;
198 }
199 
200 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
201 			   struct btrfs_key *first_key, u64 parent_transid)
202 {
203 	struct btrfs_fs_info *fs_info = eb->fs_info;
204 	int found_level;
205 	struct btrfs_key found_key;
206 	int ret;
207 
208 	found_level = btrfs_header_level(eb);
209 	if (found_level != level) {
210 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
211 		     KERN_ERR "BTRFS: tree level check failed\n");
212 		btrfs_err(fs_info,
213 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
214 			  eb->start, level, found_level);
215 		return -EIO;
216 	}
217 
218 	if (!first_key)
219 		return 0;
220 
221 	/*
222 	 * For live tree block (new tree blocks in current transaction),
223 	 * we need proper lock context to avoid race, which is impossible here.
224 	 * So we only checks tree blocks which is read from disk, whose
225 	 * generation <= fs_info->last_trans_committed.
226 	 */
227 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
228 		return 0;
229 
230 	/* We have @first_key, so this @eb must have at least one item */
231 	if (btrfs_header_nritems(eb) == 0) {
232 		btrfs_err(fs_info,
233 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
234 			  eb->start);
235 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
236 		return -EUCLEAN;
237 	}
238 
239 	if (found_level)
240 		btrfs_node_key_to_cpu(eb, &found_key, 0);
241 	else
242 		btrfs_item_key_to_cpu(eb, &found_key, 0);
243 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
244 
245 	if (ret) {
246 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
247 		     KERN_ERR "BTRFS: tree first key check failed\n");
248 		btrfs_err(fs_info,
249 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
250 			  eb->start, parent_transid, first_key->objectid,
251 			  first_key->type, first_key->offset,
252 			  found_key.objectid, found_key.type,
253 			  found_key.offset);
254 	}
255 	return ret;
256 }
257 
258 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
259 				      int mirror_num)
260 {
261 	struct btrfs_fs_info *fs_info = eb->fs_info;
262 	u64 start = eb->start;
263 	int i, num_pages = num_extent_pages(eb);
264 	int ret = 0;
265 
266 	if (sb_rdonly(fs_info->sb))
267 		return -EROFS;
268 
269 	for (i = 0; i < num_pages; i++) {
270 		struct page *p = eb->pages[i];
271 
272 		ret = btrfs_repair_io_failure(fs_info, 0, start, PAGE_SIZE,
273 				start, p, start - page_offset(p), mirror_num);
274 		if (ret)
275 			break;
276 		start += PAGE_SIZE;
277 	}
278 
279 	return ret;
280 }
281 
282 /*
283  * helper to read a given tree block, doing retries as required when
284  * the checksums don't match and we have alternate mirrors to try.
285  *
286  * @check:		expected tree parentness check, see the comments of the
287  *			structure for details.
288  */
289 int btrfs_read_extent_buffer(struct extent_buffer *eb,
290 			     struct btrfs_tree_parent_check *check)
291 {
292 	struct btrfs_fs_info *fs_info = eb->fs_info;
293 	int failed = 0;
294 	int ret;
295 	int num_copies = 0;
296 	int mirror_num = 0;
297 	int failed_mirror = 0;
298 
299 	ASSERT(check);
300 
301 	while (1) {
302 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
303 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
304 		if (!ret)
305 			break;
306 
307 		num_copies = btrfs_num_copies(fs_info,
308 					      eb->start, eb->len);
309 		if (num_copies == 1)
310 			break;
311 
312 		if (!failed_mirror) {
313 			failed = 1;
314 			failed_mirror = eb->read_mirror;
315 		}
316 
317 		mirror_num++;
318 		if (mirror_num == failed_mirror)
319 			mirror_num++;
320 
321 		if (mirror_num > num_copies)
322 			break;
323 	}
324 
325 	if (failed && !ret && failed_mirror)
326 		btrfs_repair_eb_io_failure(eb, failed_mirror);
327 
328 	return ret;
329 }
330 
331 static int csum_one_extent_buffer(struct extent_buffer *eb)
332 {
333 	struct btrfs_fs_info *fs_info = eb->fs_info;
334 	u8 result[BTRFS_CSUM_SIZE];
335 	int ret;
336 
337 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
338 				    offsetof(struct btrfs_header, fsid),
339 				    BTRFS_FSID_SIZE) == 0);
340 	csum_tree_block(eb, result);
341 
342 	if (btrfs_header_level(eb))
343 		ret = btrfs_check_node(eb);
344 	else
345 		ret = btrfs_check_leaf_full(eb);
346 
347 	if (ret < 0)
348 		goto error;
349 
350 	/*
351 	 * Also check the generation, the eb reached here must be newer than
352 	 * last committed. Or something seriously wrong happened.
353 	 */
354 	if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
355 		ret = -EUCLEAN;
356 		btrfs_err(fs_info,
357 			"block=%llu bad generation, have %llu expect > %llu",
358 			  eb->start, btrfs_header_generation(eb),
359 			  fs_info->last_trans_committed);
360 		goto error;
361 	}
362 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
363 
364 	return 0;
365 
366 error:
367 	btrfs_print_tree(eb, 0);
368 	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
369 		  eb->start);
370 	/*
371 	 * Be noisy if this is an extent buffer from a log tree. We don't abort
372 	 * a transaction in case there's a bad log tree extent buffer, we just
373 	 * fallback to a transaction commit. Still we want to know when there is
374 	 * a bad log tree extent buffer, as that may signal a bug somewhere.
375 	 */
376 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
377 		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
378 	return ret;
379 }
380 
381 /* Checksum all dirty extent buffers in one bio_vec */
382 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
383 				      struct bio_vec *bvec)
384 {
385 	struct page *page = bvec->bv_page;
386 	u64 bvec_start = page_offset(page) + bvec->bv_offset;
387 	u64 cur;
388 	int ret = 0;
389 
390 	for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
391 	     cur += fs_info->nodesize) {
392 		struct extent_buffer *eb;
393 		bool uptodate;
394 
395 		eb = find_extent_buffer(fs_info, cur);
396 		uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
397 						       fs_info->nodesize);
398 
399 		/* A dirty eb shouldn't disappear from buffer_radix */
400 		if (WARN_ON(!eb))
401 			return -EUCLEAN;
402 
403 		if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
404 			free_extent_buffer(eb);
405 			return -EUCLEAN;
406 		}
407 		if (WARN_ON(!uptodate)) {
408 			free_extent_buffer(eb);
409 			return -EUCLEAN;
410 		}
411 
412 		ret = csum_one_extent_buffer(eb);
413 		free_extent_buffer(eb);
414 		if (ret < 0)
415 			return ret;
416 	}
417 	return ret;
418 }
419 
420 /*
421  * Checksum a dirty tree block before IO.  This has extra checks to make sure
422  * we only fill in the checksum field in the first page of a multi-page block.
423  * For subpage extent buffers we need bvec to also read the offset in the page.
424  */
425 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
426 {
427 	struct page *page = bvec->bv_page;
428 	u64 start = page_offset(page);
429 	u64 found_start;
430 	struct extent_buffer *eb;
431 
432 	if (fs_info->nodesize < PAGE_SIZE)
433 		return csum_dirty_subpage_buffers(fs_info, bvec);
434 
435 	eb = (struct extent_buffer *)page->private;
436 	if (page != eb->pages[0])
437 		return 0;
438 
439 	found_start = btrfs_header_bytenr(eb);
440 
441 	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
442 		WARN_ON(found_start != 0);
443 		return 0;
444 	}
445 
446 	/*
447 	 * Please do not consolidate these warnings into a single if.
448 	 * It is useful to know what went wrong.
449 	 */
450 	if (WARN_ON(found_start != start))
451 		return -EUCLEAN;
452 	if (WARN_ON(!PageUptodate(page)))
453 		return -EUCLEAN;
454 
455 	return csum_one_extent_buffer(eb);
456 }
457 
458 static int check_tree_block_fsid(struct extent_buffer *eb)
459 {
460 	struct btrfs_fs_info *fs_info = eb->fs_info;
461 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
462 	u8 fsid[BTRFS_FSID_SIZE];
463 	u8 *metadata_uuid;
464 
465 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
466 			   BTRFS_FSID_SIZE);
467 	/*
468 	 * Checking the incompat flag is only valid for the current fs. For
469 	 * seed devices it's forbidden to have their uuid changed so reading
470 	 * ->fsid in this case is fine
471 	 */
472 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
473 		metadata_uuid = fs_devices->metadata_uuid;
474 	else
475 		metadata_uuid = fs_devices->fsid;
476 
477 	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
478 		return 0;
479 
480 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
481 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
482 			return 0;
483 
484 	return 1;
485 }
486 
487 /* Do basic extent buffer checks at read time */
488 static int validate_extent_buffer(struct extent_buffer *eb,
489 				  struct btrfs_tree_parent_check *check)
490 {
491 	struct btrfs_fs_info *fs_info = eb->fs_info;
492 	u64 found_start;
493 	const u32 csum_size = fs_info->csum_size;
494 	u8 found_level;
495 	u8 result[BTRFS_CSUM_SIZE];
496 	const u8 *header_csum;
497 	int ret = 0;
498 
499 	ASSERT(check);
500 
501 	found_start = btrfs_header_bytenr(eb);
502 	if (found_start != eb->start) {
503 		btrfs_err_rl(fs_info,
504 			"bad tree block start, mirror %u want %llu have %llu",
505 			     eb->read_mirror, eb->start, found_start);
506 		ret = -EIO;
507 		goto out;
508 	}
509 	if (check_tree_block_fsid(eb)) {
510 		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
511 			     eb->start, eb->read_mirror);
512 		ret = -EIO;
513 		goto out;
514 	}
515 	found_level = btrfs_header_level(eb);
516 	if (found_level >= BTRFS_MAX_LEVEL) {
517 		btrfs_err(fs_info,
518 			"bad tree block level, mirror %u level %d on logical %llu",
519 			eb->read_mirror, btrfs_header_level(eb), eb->start);
520 		ret = -EIO;
521 		goto out;
522 	}
523 
524 	csum_tree_block(eb, result);
525 	header_csum = page_address(eb->pages[0]) +
526 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
527 
528 	if (memcmp(result, header_csum, csum_size) != 0) {
529 		btrfs_warn_rl(fs_info,
530 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
531 			      eb->start, eb->read_mirror,
532 			      CSUM_FMT_VALUE(csum_size, header_csum),
533 			      CSUM_FMT_VALUE(csum_size, result),
534 			      btrfs_header_level(eb));
535 		ret = -EUCLEAN;
536 		goto out;
537 	}
538 
539 	if (found_level != check->level) {
540 		btrfs_err(fs_info,
541 		"level verify failed on logical %llu mirror %u wanted %u found %u",
542 			  eb->start, eb->read_mirror, check->level, found_level);
543 		ret = -EIO;
544 		goto out;
545 	}
546 	if (unlikely(check->transid &&
547 		     btrfs_header_generation(eb) != check->transid)) {
548 		btrfs_err_rl(eb->fs_info,
549 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
550 				eb->start, eb->read_mirror, check->transid,
551 				btrfs_header_generation(eb));
552 		ret = -EIO;
553 		goto out;
554 	}
555 	if (check->has_first_key) {
556 		struct btrfs_key *expect_key = &check->first_key;
557 		struct btrfs_key found_key;
558 
559 		if (found_level)
560 			btrfs_node_key_to_cpu(eb, &found_key, 0);
561 		else
562 			btrfs_item_key_to_cpu(eb, &found_key, 0);
563 		if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
564 			btrfs_err(fs_info,
565 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
566 				  eb->start, check->transid,
567 				  expect_key->objectid,
568 				  expect_key->type, expect_key->offset,
569 				  found_key.objectid, found_key.type,
570 				  found_key.offset);
571 			ret = -EUCLEAN;
572 			goto out;
573 		}
574 	}
575 	if (check->owner_root) {
576 		ret = btrfs_check_eb_owner(eb, check->owner_root);
577 		if (ret < 0)
578 			goto out;
579 	}
580 
581 	/*
582 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
583 	 * that we don't try and read the other copies of this block, just
584 	 * return -EIO.
585 	 */
586 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
587 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
588 		ret = -EIO;
589 	}
590 
591 	if (found_level > 0 && btrfs_check_node(eb))
592 		ret = -EIO;
593 
594 	if (!ret)
595 		set_extent_buffer_uptodate(eb);
596 	else
597 		btrfs_err(fs_info,
598 		"read time tree block corruption detected on logical %llu mirror %u",
599 			  eb->start, eb->read_mirror);
600 out:
601 	return ret;
602 }
603 
604 static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
605 				   int mirror, struct btrfs_tree_parent_check *check)
606 {
607 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
608 	struct extent_buffer *eb;
609 	bool reads_done;
610 	int ret = 0;
611 
612 	ASSERT(check);
613 
614 	/*
615 	 * We don't allow bio merge for subpage metadata read, so we should
616 	 * only get one eb for each endio hook.
617 	 */
618 	ASSERT(end == start + fs_info->nodesize - 1);
619 	ASSERT(PagePrivate(page));
620 
621 	eb = find_extent_buffer(fs_info, start);
622 	/*
623 	 * When we are reading one tree block, eb must have been inserted into
624 	 * the radix tree. If not, something is wrong.
625 	 */
626 	ASSERT(eb);
627 
628 	reads_done = atomic_dec_and_test(&eb->io_pages);
629 	/* Subpage read must finish in page read */
630 	ASSERT(reads_done);
631 
632 	eb->read_mirror = mirror;
633 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
634 		ret = -EIO;
635 		goto err;
636 	}
637 	ret = validate_extent_buffer(eb, check);
638 	if (ret < 0)
639 		goto err;
640 
641 	set_extent_buffer_uptodate(eb);
642 
643 	free_extent_buffer(eb);
644 	return ret;
645 err:
646 	/*
647 	 * end_bio_extent_readpage decrements io_pages in case of error,
648 	 * make sure it has something to decrement.
649 	 */
650 	atomic_inc(&eb->io_pages);
651 	clear_extent_buffer_uptodate(eb);
652 	free_extent_buffer(eb);
653 	return ret;
654 }
655 
656 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
657 				   struct page *page, u64 start, u64 end,
658 				   int mirror)
659 {
660 	struct extent_buffer *eb;
661 	int ret = 0;
662 	int reads_done;
663 
664 	ASSERT(page->private);
665 
666 	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
667 		return validate_subpage_buffer(page, start, end, mirror,
668 					       &bbio->parent_check);
669 
670 	eb = (struct extent_buffer *)page->private;
671 
672 	/*
673 	 * The pending IO might have been the only thing that kept this buffer
674 	 * in memory.  Make sure we have a ref for all this other checks
675 	 */
676 	atomic_inc(&eb->refs);
677 
678 	reads_done = atomic_dec_and_test(&eb->io_pages);
679 	if (!reads_done)
680 		goto err;
681 
682 	eb->read_mirror = mirror;
683 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
684 		ret = -EIO;
685 		goto err;
686 	}
687 	ret = validate_extent_buffer(eb, &bbio->parent_check);
688 err:
689 	if (ret) {
690 		/*
691 		 * our io error hook is going to dec the io pages
692 		 * again, we have to make sure it has something
693 		 * to decrement
694 		 */
695 		atomic_inc(&eb->io_pages);
696 		clear_extent_buffer_uptodate(eb);
697 	}
698 	free_extent_buffer(eb);
699 
700 	return ret;
701 }
702 
703 static void run_one_async_start(struct btrfs_work *work)
704 {
705 	struct async_submit_bio *async;
706 	blk_status_t ret;
707 
708 	async = container_of(work, struct  async_submit_bio, work);
709 	switch (async->submit_cmd) {
710 	case WQ_SUBMIT_METADATA:
711 		ret = btree_submit_bio_start(async->bio);
712 		break;
713 	case WQ_SUBMIT_DATA:
714 		ret = btrfs_submit_bio_start(async->inode, async->bio);
715 		break;
716 	case WQ_SUBMIT_DATA_DIO:
717 		ret = btrfs_submit_bio_start_direct_io(async->inode,
718 				async->bio, async->dio_file_offset);
719 		break;
720 	}
721 	if (ret)
722 		async->status = ret;
723 }
724 
725 /*
726  * In order to insert checksums into the metadata in large chunks, we wait
727  * until bio submission time.   All the pages in the bio are checksummed and
728  * sums are attached onto the ordered extent record.
729  *
730  * At IO completion time the csums attached on the ordered extent record are
731  * inserted into the tree.
732  */
733 static void run_one_async_done(struct btrfs_work *work)
734 {
735 	struct async_submit_bio *async =
736 		container_of(work, struct  async_submit_bio, work);
737 	struct btrfs_inode *inode = async->inode;
738 	struct btrfs_bio *bbio = btrfs_bio(async->bio);
739 
740 	/* If an error occurred we just want to clean up the bio and move on */
741 	if (async->status) {
742 		btrfs_bio_end_io(bbio, async->status);
743 		return;
744 	}
745 
746 	/*
747 	 * All of the bios that pass through here are from async helpers.
748 	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
749 	 * This changes nothing when cgroups aren't in use.
750 	 */
751 	async->bio->bi_opf |= REQ_CGROUP_PUNT;
752 	btrfs_submit_bio(inode->root->fs_info, async->bio, async->mirror_num);
753 }
754 
755 static void run_one_async_free(struct btrfs_work *work)
756 {
757 	struct async_submit_bio *async;
758 
759 	async = container_of(work, struct  async_submit_bio, work);
760 	kfree(async);
761 }
762 
763 /*
764  * Submit bio to an async queue.
765  *
766  * Retrun:
767  * - true if the work has been succesfuly submitted
768  * - false in case of error
769  */
770 bool btrfs_wq_submit_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num,
771 			 u64 dio_file_offset, enum btrfs_wq_submit_cmd cmd)
772 {
773 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
774 	struct async_submit_bio *async;
775 
776 	async = kmalloc(sizeof(*async), GFP_NOFS);
777 	if (!async)
778 		return false;
779 
780 	async->inode = inode;
781 	async->bio = bio;
782 	async->mirror_num = mirror_num;
783 	async->submit_cmd = cmd;
784 
785 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
786 			run_one_async_free);
787 
788 	async->dio_file_offset = dio_file_offset;
789 
790 	async->status = 0;
791 
792 	if (op_is_sync(bio->bi_opf))
793 		btrfs_queue_work(fs_info->hipri_workers, &async->work);
794 	else
795 		btrfs_queue_work(fs_info->workers, &async->work);
796 	return true;
797 }
798 
799 static blk_status_t btree_csum_one_bio(struct bio *bio)
800 {
801 	struct bio_vec *bvec;
802 	struct btrfs_root *root;
803 	int ret = 0;
804 	struct bvec_iter_all iter_all;
805 
806 	ASSERT(!bio_flagged(bio, BIO_CLONED));
807 	bio_for_each_segment_all(bvec, bio, iter_all) {
808 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
809 		ret = csum_dirty_buffer(root->fs_info, bvec);
810 		if (ret)
811 			break;
812 	}
813 
814 	return errno_to_blk_status(ret);
815 }
816 
817 blk_status_t btree_submit_bio_start(struct bio *bio)
818 {
819 	/*
820 	 * when we're called for a write, we're already in the async
821 	 * submission context.  Just jump into btrfs_submit_bio.
822 	 */
823 	return btree_csum_one_bio(bio);
824 }
825 
826 static bool should_async_write(struct btrfs_fs_info *fs_info,
827 			     struct btrfs_inode *bi)
828 {
829 	if (btrfs_is_zoned(fs_info))
830 		return false;
831 	if (atomic_read(&bi->sync_writers))
832 		return false;
833 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
834 		return false;
835 	return true;
836 }
837 
838 void btrfs_submit_metadata_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num)
839 {
840 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
841 	struct btrfs_bio *bbio = btrfs_bio(bio);
842 	blk_status_t ret;
843 
844 	bio->bi_opf |= REQ_META;
845 	bbio->is_metadata = 1;
846 
847 	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
848 		btrfs_submit_bio(fs_info, bio, mirror_num);
849 		return;
850 	}
851 
852 	/*
853 	 * Kthread helpers are used to submit writes so that checksumming can
854 	 * happen in parallel across all CPUs.
855 	 */
856 	if (should_async_write(fs_info, inode) &&
857 	    btrfs_wq_submit_bio(inode, bio, mirror_num, 0, WQ_SUBMIT_METADATA))
858 		return;
859 
860 	ret = btree_csum_one_bio(bio);
861 	if (ret) {
862 		btrfs_bio_end_io(bbio, ret);
863 		return;
864 	}
865 
866 	btrfs_submit_bio(fs_info, bio, mirror_num);
867 }
868 
869 #ifdef CONFIG_MIGRATION
870 static int btree_migrate_folio(struct address_space *mapping,
871 		struct folio *dst, struct folio *src, enum migrate_mode mode)
872 {
873 	/*
874 	 * we can't safely write a btree page from here,
875 	 * we haven't done the locking hook
876 	 */
877 	if (folio_test_dirty(src))
878 		return -EAGAIN;
879 	/*
880 	 * Buffers may be managed in a filesystem specific way.
881 	 * We must have no buffers or drop them.
882 	 */
883 	if (folio_get_private(src) &&
884 	    !filemap_release_folio(src, GFP_KERNEL))
885 		return -EAGAIN;
886 	return migrate_folio(mapping, dst, src, mode);
887 }
888 #else
889 #define btree_migrate_folio NULL
890 #endif
891 
892 static int btree_writepages(struct address_space *mapping,
893 			    struct writeback_control *wbc)
894 {
895 	struct btrfs_fs_info *fs_info;
896 	int ret;
897 
898 	if (wbc->sync_mode == WB_SYNC_NONE) {
899 
900 		if (wbc->for_kupdate)
901 			return 0;
902 
903 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
904 		/* this is a bit racy, but that's ok */
905 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
906 					     BTRFS_DIRTY_METADATA_THRESH,
907 					     fs_info->dirty_metadata_batch);
908 		if (ret < 0)
909 			return 0;
910 	}
911 	return btree_write_cache_pages(mapping, wbc);
912 }
913 
914 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
915 {
916 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
917 		return false;
918 
919 	return try_release_extent_buffer(&folio->page);
920 }
921 
922 static void btree_invalidate_folio(struct folio *folio, size_t offset,
923 				 size_t length)
924 {
925 	struct extent_io_tree *tree;
926 	tree = &BTRFS_I(folio->mapping->host)->io_tree;
927 	extent_invalidate_folio(tree, folio, offset);
928 	btree_release_folio(folio, GFP_NOFS);
929 	if (folio_get_private(folio)) {
930 		btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
931 			   "folio private not zero on folio %llu",
932 			   (unsigned long long)folio_pos(folio));
933 		folio_detach_private(folio);
934 	}
935 }
936 
937 #ifdef DEBUG
938 static bool btree_dirty_folio(struct address_space *mapping,
939 		struct folio *folio)
940 {
941 	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
942 	struct btrfs_subpage *subpage;
943 	struct extent_buffer *eb;
944 	int cur_bit = 0;
945 	u64 page_start = folio_pos(folio);
946 
947 	if (fs_info->sectorsize == PAGE_SIZE) {
948 		eb = folio_get_private(folio);
949 		BUG_ON(!eb);
950 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
951 		BUG_ON(!atomic_read(&eb->refs));
952 		btrfs_assert_tree_write_locked(eb);
953 		return filemap_dirty_folio(mapping, folio);
954 	}
955 	subpage = folio_get_private(folio);
956 
957 	ASSERT(subpage->dirty_bitmap);
958 	while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
959 		unsigned long flags;
960 		u64 cur;
961 		u16 tmp = (1 << cur_bit);
962 
963 		spin_lock_irqsave(&subpage->lock, flags);
964 		if (!(tmp & subpage->dirty_bitmap)) {
965 			spin_unlock_irqrestore(&subpage->lock, flags);
966 			cur_bit++;
967 			continue;
968 		}
969 		spin_unlock_irqrestore(&subpage->lock, flags);
970 		cur = page_start + cur_bit * fs_info->sectorsize;
971 
972 		eb = find_extent_buffer(fs_info, cur);
973 		ASSERT(eb);
974 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
975 		ASSERT(atomic_read(&eb->refs));
976 		btrfs_assert_tree_write_locked(eb);
977 		free_extent_buffer(eb);
978 
979 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
980 	}
981 	return filemap_dirty_folio(mapping, folio);
982 }
983 #else
984 #define btree_dirty_folio filemap_dirty_folio
985 #endif
986 
987 static const struct address_space_operations btree_aops = {
988 	.writepages	= btree_writepages,
989 	.release_folio	= btree_release_folio,
990 	.invalidate_folio = btree_invalidate_folio,
991 	.migrate_folio	= btree_migrate_folio,
992 	.dirty_folio	= btree_dirty_folio,
993 };
994 
995 struct extent_buffer *btrfs_find_create_tree_block(
996 						struct btrfs_fs_info *fs_info,
997 						u64 bytenr, u64 owner_root,
998 						int level)
999 {
1000 	if (btrfs_is_testing(fs_info))
1001 		return alloc_test_extent_buffer(fs_info, bytenr);
1002 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
1003 }
1004 
1005 /*
1006  * Read tree block at logical address @bytenr and do variant basic but critical
1007  * verification.
1008  *
1009  * @check:		expected tree parentness check, see comments of the
1010  *			structure for details.
1011  */
1012 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1013 				      struct btrfs_tree_parent_check *check)
1014 {
1015 	struct extent_buffer *buf = NULL;
1016 	int ret;
1017 
1018 	ASSERT(check);
1019 
1020 	buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
1021 					   check->level);
1022 	if (IS_ERR(buf))
1023 		return buf;
1024 
1025 	ret = btrfs_read_extent_buffer(buf, check);
1026 	if (ret) {
1027 		free_extent_buffer_stale(buf);
1028 		return ERR_PTR(ret);
1029 	}
1030 	if (btrfs_check_eb_owner(buf, check->owner_root)) {
1031 		free_extent_buffer_stale(buf);
1032 		return ERR_PTR(-EUCLEAN);
1033 	}
1034 	return buf;
1035 
1036 }
1037 
1038 void btrfs_clean_tree_block(struct extent_buffer *buf)
1039 {
1040 	struct btrfs_fs_info *fs_info = buf->fs_info;
1041 	if (btrfs_header_generation(buf) ==
1042 	    fs_info->running_transaction->transid) {
1043 		btrfs_assert_tree_write_locked(buf);
1044 
1045 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1046 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1047 						 -buf->len,
1048 						 fs_info->dirty_metadata_batch);
1049 			clear_extent_buffer_dirty(buf);
1050 		}
1051 	}
1052 }
1053 
1054 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1055 			 u64 objectid)
1056 {
1057 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1058 
1059 	memset(&root->root_key, 0, sizeof(root->root_key));
1060 	memset(&root->root_item, 0, sizeof(root->root_item));
1061 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1062 	root->fs_info = fs_info;
1063 	root->root_key.objectid = objectid;
1064 	root->node = NULL;
1065 	root->commit_root = NULL;
1066 	root->state = 0;
1067 	RB_CLEAR_NODE(&root->rb_node);
1068 
1069 	root->last_trans = 0;
1070 	root->free_objectid = 0;
1071 	root->nr_delalloc_inodes = 0;
1072 	root->nr_ordered_extents = 0;
1073 	root->inode_tree = RB_ROOT;
1074 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1075 
1076 	btrfs_init_root_block_rsv(root);
1077 
1078 	INIT_LIST_HEAD(&root->dirty_list);
1079 	INIT_LIST_HEAD(&root->root_list);
1080 	INIT_LIST_HEAD(&root->delalloc_inodes);
1081 	INIT_LIST_HEAD(&root->delalloc_root);
1082 	INIT_LIST_HEAD(&root->ordered_extents);
1083 	INIT_LIST_HEAD(&root->ordered_root);
1084 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1085 	INIT_LIST_HEAD(&root->logged_list[0]);
1086 	INIT_LIST_HEAD(&root->logged_list[1]);
1087 	spin_lock_init(&root->inode_lock);
1088 	spin_lock_init(&root->delalloc_lock);
1089 	spin_lock_init(&root->ordered_extent_lock);
1090 	spin_lock_init(&root->accounting_lock);
1091 	spin_lock_init(&root->log_extents_lock[0]);
1092 	spin_lock_init(&root->log_extents_lock[1]);
1093 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1094 	mutex_init(&root->objectid_mutex);
1095 	mutex_init(&root->log_mutex);
1096 	mutex_init(&root->ordered_extent_mutex);
1097 	mutex_init(&root->delalloc_mutex);
1098 	init_waitqueue_head(&root->qgroup_flush_wait);
1099 	init_waitqueue_head(&root->log_writer_wait);
1100 	init_waitqueue_head(&root->log_commit_wait[0]);
1101 	init_waitqueue_head(&root->log_commit_wait[1]);
1102 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1103 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1104 	atomic_set(&root->log_commit[0], 0);
1105 	atomic_set(&root->log_commit[1], 0);
1106 	atomic_set(&root->log_writers, 0);
1107 	atomic_set(&root->log_batch, 0);
1108 	refcount_set(&root->refs, 1);
1109 	atomic_set(&root->snapshot_force_cow, 0);
1110 	atomic_set(&root->nr_swapfiles, 0);
1111 	root->log_transid = 0;
1112 	root->log_transid_committed = -1;
1113 	root->last_log_commit = 0;
1114 	root->anon_dev = 0;
1115 	if (!dummy) {
1116 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1117 				    IO_TREE_ROOT_DIRTY_LOG_PAGES);
1118 		extent_io_tree_init(fs_info, &root->log_csum_range,
1119 				    IO_TREE_LOG_CSUM_RANGE);
1120 	}
1121 
1122 	spin_lock_init(&root->root_item_lock);
1123 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1124 #ifdef CONFIG_BTRFS_DEBUG
1125 	INIT_LIST_HEAD(&root->leak_list);
1126 	spin_lock(&fs_info->fs_roots_radix_lock);
1127 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1128 	spin_unlock(&fs_info->fs_roots_radix_lock);
1129 #endif
1130 }
1131 
1132 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1133 					   u64 objectid, gfp_t flags)
1134 {
1135 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1136 	if (root)
1137 		__setup_root(root, fs_info, objectid);
1138 	return root;
1139 }
1140 
1141 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1142 /* Should only be used by the testing infrastructure */
1143 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1144 {
1145 	struct btrfs_root *root;
1146 
1147 	if (!fs_info)
1148 		return ERR_PTR(-EINVAL);
1149 
1150 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1151 	if (!root)
1152 		return ERR_PTR(-ENOMEM);
1153 
1154 	/* We don't use the stripesize in selftest, set it as sectorsize */
1155 	root->alloc_bytenr = 0;
1156 
1157 	return root;
1158 }
1159 #endif
1160 
1161 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1162 {
1163 	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1164 	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1165 
1166 	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1167 }
1168 
1169 static int global_root_key_cmp(const void *k, const struct rb_node *node)
1170 {
1171 	const struct btrfs_key *key = k;
1172 	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1173 
1174 	return btrfs_comp_cpu_keys(key, &root->root_key);
1175 }
1176 
1177 int btrfs_global_root_insert(struct btrfs_root *root)
1178 {
1179 	struct btrfs_fs_info *fs_info = root->fs_info;
1180 	struct rb_node *tmp;
1181 
1182 	write_lock(&fs_info->global_root_lock);
1183 	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1184 	write_unlock(&fs_info->global_root_lock);
1185 	ASSERT(!tmp);
1186 
1187 	return tmp ? -EEXIST : 0;
1188 }
1189 
1190 void btrfs_global_root_delete(struct btrfs_root *root)
1191 {
1192 	struct btrfs_fs_info *fs_info = root->fs_info;
1193 
1194 	write_lock(&fs_info->global_root_lock);
1195 	rb_erase(&root->rb_node, &fs_info->global_root_tree);
1196 	write_unlock(&fs_info->global_root_lock);
1197 }
1198 
1199 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1200 				     struct btrfs_key *key)
1201 {
1202 	struct rb_node *node;
1203 	struct btrfs_root *root = NULL;
1204 
1205 	read_lock(&fs_info->global_root_lock);
1206 	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1207 	if (node)
1208 		root = container_of(node, struct btrfs_root, rb_node);
1209 	read_unlock(&fs_info->global_root_lock);
1210 
1211 	return root;
1212 }
1213 
1214 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1215 {
1216 	struct btrfs_block_group *block_group;
1217 	u64 ret;
1218 
1219 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1220 		return 0;
1221 
1222 	if (bytenr)
1223 		block_group = btrfs_lookup_block_group(fs_info, bytenr);
1224 	else
1225 		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1226 	ASSERT(block_group);
1227 	if (!block_group)
1228 		return 0;
1229 	ret = block_group->global_root_id;
1230 	btrfs_put_block_group(block_group);
1231 
1232 	return ret;
1233 }
1234 
1235 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1236 {
1237 	struct btrfs_key key = {
1238 		.objectid = BTRFS_CSUM_TREE_OBJECTID,
1239 		.type = BTRFS_ROOT_ITEM_KEY,
1240 		.offset = btrfs_global_root_id(fs_info, bytenr),
1241 	};
1242 
1243 	return btrfs_global_root(fs_info, &key);
1244 }
1245 
1246 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1247 {
1248 	struct btrfs_key key = {
1249 		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
1250 		.type = BTRFS_ROOT_ITEM_KEY,
1251 		.offset = btrfs_global_root_id(fs_info, bytenr),
1252 	};
1253 
1254 	return btrfs_global_root(fs_info, &key);
1255 }
1256 
1257 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
1258 {
1259 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
1260 		return fs_info->block_group_root;
1261 	return btrfs_extent_root(fs_info, 0);
1262 }
1263 
1264 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1265 				     u64 objectid)
1266 {
1267 	struct btrfs_fs_info *fs_info = trans->fs_info;
1268 	struct extent_buffer *leaf;
1269 	struct btrfs_root *tree_root = fs_info->tree_root;
1270 	struct btrfs_root *root;
1271 	struct btrfs_key key;
1272 	unsigned int nofs_flag;
1273 	int ret = 0;
1274 
1275 	/*
1276 	 * We're holding a transaction handle, so use a NOFS memory allocation
1277 	 * context to avoid deadlock if reclaim happens.
1278 	 */
1279 	nofs_flag = memalloc_nofs_save();
1280 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1281 	memalloc_nofs_restore(nofs_flag);
1282 	if (!root)
1283 		return ERR_PTR(-ENOMEM);
1284 
1285 	root->root_key.objectid = objectid;
1286 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1287 	root->root_key.offset = 0;
1288 
1289 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1290 				      BTRFS_NESTING_NORMAL);
1291 	if (IS_ERR(leaf)) {
1292 		ret = PTR_ERR(leaf);
1293 		leaf = NULL;
1294 		goto fail;
1295 	}
1296 
1297 	root->node = leaf;
1298 	btrfs_mark_buffer_dirty(leaf);
1299 
1300 	root->commit_root = btrfs_root_node(root);
1301 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1302 
1303 	btrfs_set_root_flags(&root->root_item, 0);
1304 	btrfs_set_root_limit(&root->root_item, 0);
1305 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1306 	btrfs_set_root_generation(&root->root_item, trans->transid);
1307 	btrfs_set_root_level(&root->root_item, 0);
1308 	btrfs_set_root_refs(&root->root_item, 1);
1309 	btrfs_set_root_used(&root->root_item, leaf->len);
1310 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1311 	btrfs_set_root_dirid(&root->root_item, 0);
1312 	if (is_fstree(objectid))
1313 		generate_random_guid(root->root_item.uuid);
1314 	else
1315 		export_guid(root->root_item.uuid, &guid_null);
1316 	btrfs_set_root_drop_level(&root->root_item, 0);
1317 
1318 	btrfs_tree_unlock(leaf);
1319 
1320 	key.objectid = objectid;
1321 	key.type = BTRFS_ROOT_ITEM_KEY;
1322 	key.offset = 0;
1323 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1324 	if (ret)
1325 		goto fail;
1326 
1327 	return root;
1328 
1329 fail:
1330 	btrfs_put_root(root);
1331 
1332 	return ERR_PTR(ret);
1333 }
1334 
1335 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1336 					 struct btrfs_fs_info *fs_info)
1337 {
1338 	struct btrfs_root *root;
1339 
1340 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1341 	if (!root)
1342 		return ERR_PTR(-ENOMEM);
1343 
1344 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1345 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1346 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1347 
1348 	return root;
1349 }
1350 
1351 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1352 			      struct btrfs_root *root)
1353 {
1354 	struct extent_buffer *leaf;
1355 
1356 	/*
1357 	 * DON'T set SHAREABLE bit for log trees.
1358 	 *
1359 	 * Log trees are not exposed to user space thus can't be snapshotted,
1360 	 * and they go away before a real commit is actually done.
1361 	 *
1362 	 * They do store pointers to file data extents, and those reference
1363 	 * counts still get updated (along with back refs to the log tree).
1364 	 */
1365 
1366 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1367 			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1368 	if (IS_ERR(leaf))
1369 		return PTR_ERR(leaf);
1370 
1371 	root->node = leaf;
1372 
1373 	btrfs_mark_buffer_dirty(root->node);
1374 	btrfs_tree_unlock(root->node);
1375 
1376 	return 0;
1377 }
1378 
1379 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1380 			     struct btrfs_fs_info *fs_info)
1381 {
1382 	struct btrfs_root *log_root;
1383 
1384 	log_root = alloc_log_tree(trans, fs_info);
1385 	if (IS_ERR(log_root))
1386 		return PTR_ERR(log_root);
1387 
1388 	if (!btrfs_is_zoned(fs_info)) {
1389 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
1390 
1391 		if (ret) {
1392 			btrfs_put_root(log_root);
1393 			return ret;
1394 		}
1395 	}
1396 
1397 	WARN_ON(fs_info->log_root_tree);
1398 	fs_info->log_root_tree = log_root;
1399 	return 0;
1400 }
1401 
1402 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1403 		       struct btrfs_root *root)
1404 {
1405 	struct btrfs_fs_info *fs_info = root->fs_info;
1406 	struct btrfs_root *log_root;
1407 	struct btrfs_inode_item *inode_item;
1408 	int ret;
1409 
1410 	log_root = alloc_log_tree(trans, fs_info);
1411 	if (IS_ERR(log_root))
1412 		return PTR_ERR(log_root);
1413 
1414 	ret = btrfs_alloc_log_tree_node(trans, log_root);
1415 	if (ret) {
1416 		btrfs_put_root(log_root);
1417 		return ret;
1418 	}
1419 
1420 	log_root->last_trans = trans->transid;
1421 	log_root->root_key.offset = root->root_key.objectid;
1422 
1423 	inode_item = &log_root->root_item.inode;
1424 	btrfs_set_stack_inode_generation(inode_item, 1);
1425 	btrfs_set_stack_inode_size(inode_item, 3);
1426 	btrfs_set_stack_inode_nlink(inode_item, 1);
1427 	btrfs_set_stack_inode_nbytes(inode_item,
1428 				     fs_info->nodesize);
1429 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1430 
1431 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1432 
1433 	WARN_ON(root->log_root);
1434 	root->log_root = log_root;
1435 	root->log_transid = 0;
1436 	root->log_transid_committed = -1;
1437 	root->last_log_commit = 0;
1438 	return 0;
1439 }
1440 
1441 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1442 					      struct btrfs_path *path,
1443 					      struct btrfs_key *key)
1444 {
1445 	struct btrfs_root *root;
1446 	struct btrfs_tree_parent_check check = { 0 };
1447 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1448 	u64 generation;
1449 	int ret;
1450 	int level;
1451 
1452 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1453 	if (!root)
1454 		return ERR_PTR(-ENOMEM);
1455 
1456 	ret = btrfs_find_root(tree_root, key, path,
1457 			      &root->root_item, &root->root_key);
1458 	if (ret) {
1459 		if (ret > 0)
1460 			ret = -ENOENT;
1461 		goto fail;
1462 	}
1463 
1464 	generation = btrfs_root_generation(&root->root_item);
1465 	level = btrfs_root_level(&root->root_item);
1466 	check.level = level;
1467 	check.transid = generation;
1468 	check.owner_root = key->objectid;
1469 	root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1470 				     &check);
1471 	if (IS_ERR(root->node)) {
1472 		ret = PTR_ERR(root->node);
1473 		root->node = NULL;
1474 		goto fail;
1475 	}
1476 	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1477 		ret = -EIO;
1478 		goto fail;
1479 	}
1480 
1481 	/*
1482 	 * For real fs, and not log/reloc trees, root owner must
1483 	 * match its root node owner
1484 	 */
1485 	if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1486 	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1487 	    root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1488 	    root->root_key.objectid != btrfs_header_owner(root->node)) {
1489 		btrfs_crit(fs_info,
1490 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1491 			   root->root_key.objectid, root->node->start,
1492 			   btrfs_header_owner(root->node),
1493 			   root->root_key.objectid);
1494 		ret = -EUCLEAN;
1495 		goto fail;
1496 	}
1497 	root->commit_root = btrfs_root_node(root);
1498 	return root;
1499 fail:
1500 	btrfs_put_root(root);
1501 	return ERR_PTR(ret);
1502 }
1503 
1504 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1505 					struct btrfs_key *key)
1506 {
1507 	struct btrfs_root *root;
1508 	struct btrfs_path *path;
1509 
1510 	path = btrfs_alloc_path();
1511 	if (!path)
1512 		return ERR_PTR(-ENOMEM);
1513 	root = read_tree_root_path(tree_root, path, key);
1514 	btrfs_free_path(path);
1515 
1516 	return root;
1517 }
1518 
1519 /*
1520  * Initialize subvolume root in-memory structure
1521  *
1522  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1523  */
1524 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1525 {
1526 	int ret;
1527 	unsigned int nofs_flag;
1528 
1529 	/*
1530 	 * We might be called under a transaction (e.g. indirect backref
1531 	 * resolution) which could deadlock if it triggers memory reclaim
1532 	 */
1533 	nofs_flag = memalloc_nofs_save();
1534 	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1535 	memalloc_nofs_restore(nofs_flag);
1536 	if (ret)
1537 		goto fail;
1538 
1539 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1540 	    !btrfs_is_data_reloc_root(root)) {
1541 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1542 		btrfs_check_and_init_root_item(&root->root_item);
1543 	}
1544 
1545 	/*
1546 	 * Don't assign anonymous block device to roots that are not exposed to
1547 	 * userspace, the id pool is limited to 1M
1548 	 */
1549 	if (is_fstree(root->root_key.objectid) &&
1550 	    btrfs_root_refs(&root->root_item) > 0) {
1551 		if (!anon_dev) {
1552 			ret = get_anon_bdev(&root->anon_dev);
1553 			if (ret)
1554 				goto fail;
1555 		} else {
1556 			root->anon_dev = anon_dev;
1557 		}
1558 	}
1559 
1560 	mutex_lock(&root->objectid_mutex);
1561 	ret = btrfs_init_root_free_objectid(root);
1562 	if (ret) {
1563 		mutex_unlock(&root->objectid_mutex);
1564 		goto fail;
1565 	}
1566 
1567 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1568 
1569 	mutex_unlock(&root->objectid_mutex);
1570 
1571 	return 0;
1572 fail:
1573 	/* The caller is responsible to call btrfs_free_fs_root */
1574 	return ret;
1575 }
1576 
1577 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1578 					       u64 root_id)
1579 {
1580 	struct btrfs_root *root;
1581 
1582 	spin_lock(&fs_info->fs_roots_radix_lock);
1583 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1584 				 (unsigned long)root_id);
1585 	if (root)
1586 		root = btrfs_grab_root(root);
1587 	spin_unlock(&fs_info->fs_roots_radix_lock);
1588 	return root;
1589 }
1590 
1591 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1592 						u64 objectid)
1593 {
1594 	struct btrfs_key key = {
1595 		.objectid = objectid,
1596 		.type = BTRFS_ROOT_ITEM_KEY,
1597 		.offset = 0,
1598 	};
1599 
1600 	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1601 		return btrfs_grab_root(fs_info->tree_root);
1602 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1603 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1604 	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1605 		return btrfs_grab_root(fs_info->chunk_root);
1606 	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1607 		return btrfs_grab_root(fs_info->dev_root);
1608 	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1609 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1610 	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1611 		return btrfs_grab_root(fs_info->quota_root) ?
1612 			fs_info->quota_root : ERR_PTR(-ENOENT);
1613 	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1614 		return btrfs_grab_root(fs_info->uuid_root) ?
1615 			fs_info->uuid_root : ERR_PTR(-ENOENT);
1616 	if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID)
1617 		return btrfs_grab_root(fs_info->block_group_root) ?
1618 			fs_info->block_group_root : ERR_PTR(-ENOENT);
1619 	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1620 		struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1621 
1622 		return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1623 	}
1624 	return NULL;
1625 }
1626 
1627 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1628 			 struct btrfs_root *root)
1629 {
1630 	int ret;
1631 
1632 	ret = radix_tree_preload(GFP_NOFS);
1633 	if (ret)
1634 		return ret;
1635 
1636 	spin_lock(&fs_info->fs_roots_radix_lock);
1637 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1638 				(unsigned long)root->root_key.objectid,
1639 				root);
1640 	if (ret == 0) {
1641 		btrfs_grab_root(root);
1642 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1643 	}
1644 	spin_unlock(&fs_info->fs_roots_radix_lock);
1645 	radix_tree_preload_end();
1646 
1647 	return ret;
1648 }
1649 
1650 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1651 {
1652 #ifdef CONFIG_BTRFS_DEBUG
1653 	struct btrfs_root *root;
1654 
1655 	while (!list_empty(&fs_info->allocated_roots)) {
1656 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1657 
1658 		root = list_first_entry(&fs_info->allocated_roots,
1659 					struct btrfs_root, leak_list);
1660 		btrfs_err(fs_info, "leaked root %s refcount %d",
1661 			  btrfs_root_name(&root->root_key, buf),
1662 			  refcount_read(&root->refs));
1663 		while (refcount_read(&root->refs) > 1)
1664 			btrfs_put_root(root);
1665 		btrfs_put_root(root);
1666 	}
1667 #endif
1668 }
1669 
1670 static void free_global_roots(struct btrfs_fs_info *fs_info)
1671 {
1672 	struct btrfs_root *root;
1673 	struct rb_node *node;
1674 
1675 	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1676 		root = rb_entry(node, struct btrfs_root, rb_node);
1677 		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1678 		btrfs_put_root(root);
1679 	}
1680 }
1681 
1682 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1683 {
1684 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1685 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1686 	percpu_counter_destroy(&fs_info->ordered_bytes);
1687 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1688 	btrfs_free_csum_hash(fs_info);
1689 	btrfs_free_stripe_hash_table(fs_info);
1690 	btrfs_free_ref_cache(fs_info);
1691 	kfree(fs_info->balance_ctl);
1692 	kfree(fs_info->delayed_root);
1693 	free_global_roots(fs_info);
1694 	btrfs_put_root(fs_info->tree_root);
1695 	btrfs_put_root(fs_info->chunk_root);
1696 	btrfs_put_root(fs_info->dev_root);
1697 	btrfs_put_root(fs_info->quota_root);
1698 	btrfs_put_root(fs_info->uuid_root);
1699 	btrfs_put_root(fs_info->fs_root);
1700 	btrfs_put_root(fs_info->data_reloc_root);
1701 	btrfs_put_root(fs_info->block_group_root);
1702 	btrfs_check_leaked_roots(fs_info);
1703 	btrfs_extent_buffer_leak_debug_check(fs_info);
1704 	kfree(fs_info->super_copy);
1705 	kfree(fs_info->super_for_commit);
1706 	kfree(fs_info->subpage_info);
1707 	kvfree(fs_info);
1708 }
1709 
1710 
1711 /*
1712  * Get an in-memory reference of a root structure.
1713  *
1714  * For essential trees like root/extent tree, we grab it from fs_info directly.
1715  * For subvolume trees, we check the cached filesystem roots first. If not
1716  * found, then read it from disk and add it to cached fs roots.
1717  *
1718  * Caller should release the root by calling btrfs_put_root() after the usage.
1719  *
1720  * NOTE: Reloc and log trees can't be read by this function as they share the
1721  *	 same root objectid.
1722  *
1723  * @objectid:	root id
1724  * @anon_dev:	preallocated anonymous block device number for new roots,
1725  * 		pass 0 for new allocation.
1726  * @check_ref:	whether to check root item references, If true, return -ENOENT
1727  *		for orphan roots
1728  */
1729 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1730 					     u64 objectid, dev_t anon_dev,
1731 					     bool check_ref)
1732 {
1733 	struct btrfs_root *root;
1734 	struct btrfs_path *path;
1735 	struct btrfs_key key;
1736 	int ret;
1737 
1738 	root = btrfs_get_global_root(fs_info, objectid);
1739 	if (root)
1740 		return root;
1741 again:
1742 	root = btrfs_lookup_fs_root(fs_info, objectid);
1743 	if (root) {
1744 		/* Shouldn't get preallocated anon_dev for cached roots */
1745 		ASSERT(!anon_dev);
1746 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1747 			btrfs_put_root(root);
1748 			return ERR_PTR(-ENOENT);
1749 		}
1750 		return root;
1751 	}
1752 
1753 	key.objectid = objectid;
1754 	key.type = BTRFS_ROOT_ITEM_KEY;
1755 	key.offset = (u64)-1;
1756 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1757 	if (IS_ERR(root))
1758 		return root;
1759 
1760 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1761 		ret = -ENOENT;
1762 		goto fail;
1763 	}
1764 
1765 	ret = btrfs_init_fs_root(root, anon_dev);
1766 	if (ret)
1767 		goto fail;
1768 
1769 	path = btrfs_alloc_path();
1770 	if (!path) {
1771 		ret = -ENOMEM;
1772 		goto fail;
1773 	}
1774 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1775 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1776 	key.offset = objectid;
1777 
1778 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1779 	btrfs_free_path(path);
1780 	if (ret < 0)
1781 		goto fail;
1782 	if (ret == 0)
1783 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1784 
1785 	ret = btrfs_insert_fs_root(fs_info, root);
1786 	if (ret) {
1787 		if (ret == -EEXIST) {
1788 			btrfs_put_root(root);
1789 			goto again;
1790 		}
1791 		goto fail;
1792 	}
1793 	return root;
1794 fail:
1795 	/*
1796 	 * If our caller provided us an anonymous device, then it's his
1797 	 * responsibility to free it in case we fail. So we have to set our
1798 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1799 	 * and once again by our caller.
1800 	 */
1801 	if (anon_dev)
1802 		root->anon_dev = 0;
1803 	btrfs_put_root(root);
1804 	return ERR_PTR(ret);
1805 }
1806 
1807 /*
1808  * Get in-memory reference of a root structure
1809  *
1810  * @objectid:	tree objectid
1811  * @check_ref:	if set, verify that the tree exists and the item has at least
1812  *		one reference
1813  */
1814 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1815 				     u64 objectid, bool check_ref)
1816 {
1817 	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1818 }
1819 
1820 /*
1821  * Get in-memory reference of a root structure, created as new, optionally pass
1822  * the anonymous block device id
1823  *
1824  * @objectid:	tree objectid
1825  * @anon_dev:	if zero, allocate a new anonymous block device or use the
1826  *		parameter value
1827  */
1828 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1829 					 u64 objectid, dev_t anon_dev)
1830 {
1831 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1832 }
1833 
1834 /*
1835  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1836  * @fs_info:	the fs_info
1837  * @objectid:	the objectid we need to lookup
1838  *
1839  * This is exclusively used for backref walking, and exists specifically because
1840  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1841  * creation time, which means we may have to read the tree_root in order to look
1842  * up a fs root that is not in memory.  If the root is not in memory we will
1843  * read the tree root commit root and look up the fs root from there.  This is a
1844  * temporary root, it will not be inserted into the radix tree as it doesn't
1845  * have the most uptodate information, it'll simply be discarded once the
1846  * backref code is finished using the root.
1847  */
1848 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1849 						 struct btrfs_path *path,
1850 						 u64 objectid)
1851 {
1852 	struct btrfs_root *root;
1853 	struct btrfs_key key;
1854 
1855 	ASSERT(path->search_commit_root && path->skip_locking);
1856 
1857 	/*
1858 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1859 	 * since this is called via the backref walking code we won't be looking
1860 	 * up a root that doesn't exist, unless there's corruption.  So if root
1861 	 * != NULL just return it.
1862 	 */
1863 	root = btrfs_get_global_root(fs_info, objectid);
1864 	if (root)
1865 		return root;
1866 
1867 	root = btrfs_lookup_fs_root(fs_info, objectid);
1868 	if (root)
1869 		return root;
1870 
1871 	key.objectid = objectid;
1872 	key.type = BTRFS_ROOT_ITEM_KEY;
1873 	key.offset = (u64)-1;
1874 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1875 	btrfs_release_path(path);
1876 
1877 	return root;
1878 }
1879 
1880 static int cleaner_kthread(void *arg)
1881 {
1882 	struct btrfs_fs_info *fs_info = arg;
1883 	int again;
1884 
1885 	while (1) {
1886 		again = 0;
1887 
1888 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1889 
1890 		/* Make the cleaner go to sleep early. */
1891 		if (btrfs_need_cleaner_sleep(fs_info))
1892 			goto sleep;
1893 
1894 		/*
1895 		 * Do not do anything if we might cause open_ctree() to block
1896 		 * before we have finished mounting the filesystem.
1897 		 */
1898 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1899 			goto sleep;
1900 
1901 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1902 			goto sleep;
1903 
1904 		/*
1905 		 * Avoid the problem that we change the status of the fs
1906 		 * during the above check and trylock.
1907 		 */
1908 		if (btrfs_need_cleaner_sleep(fs_info)) {
1909 			mutex_unlock(&fs_info->cleaner_mutex);
1910 			goto sleep;
1911 		}
1912 
1913 		btrfs_run_delayed_iputs(fs_info);
1914 
1915 		again = btrfs_clean_one_deleted_snapshot(fs_info);
1916 		mutex_unlock(&fs_info->cleaner_mutex);
1917 
1918 		/*
1919 		 * The defragger has dealt with the R/O remount and umount,
1920 		 * needn't do anything special here.
1921 		 */
1922 		btrfs_run_defrag_inodes(fs_info);
1923 
1924 		/*
1925 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1926 		 * with relocation (btrfs_relocate_chunk) and relocation
1927 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1928 		 * after acquiring fs_info->reclaim_bgs_lock. So we
1929 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1930 		 * unused block groups.
1931 		 */
1932 		btrfs_delete_unused_bgs(fs_info);
1933 
1934 		/*
1935 		 * Reclaim block groups in the reclaim_bgs list after we deleted
1936 		 * all unused block_groups. This possibly gives us some more free
1937 		 * space.
1938 		 */
1939 		btrfs_reclaim_bgs(fs_info);
1940 sleep:
1941 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1942 		if (kthread_should_park())
1943 			kthread_parkme();
1944 		if (kthread_should_stop())
1945 			return 0;
1946 		if (!again) {
1947 			set_current_state(TASK_INTERRUPTIBLE);
1948 			schedule();
1949 			__set_current_state(TASK_RUNNING);
1950 		}
1951 	}
1952 }
1953 
1954 static int transaction_kthread(void *arg)
1955 {
1956 	struct btrfs_root *root = arg;
1957 	struct btrfs_fs_info *fs_info = root->fs_info;
1958 	struct btrfs_trans_handle *trans;
1959 	struct btrfs_transaction *cur;
1960 	u64 transid;
1961 	time64_t delta;
1962 	unsigned long delay;
1963 	bool cannot_commit;
1964 
1965 	do {
1966 		cannot_commit = false;
1967 		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1968 		mutex_lock(&fs_info->transaction_kthread_mutex);
1969 
1970 		spin_lock(&fs_info->trans_lock);
1971 		cur = fs_info->running_transaction;
1972 		if (!cur) {
1973 			spin_unlock(&fs_info->trans_lock);
1974 			goto sleep;
1975 		}
1976 
1977 		delta = ktime_get_seconds() - cur->start_time;
1978 		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1979 		    cur->state < TRANS_STATE_COMMIT_START &&
1980 		    delta < fs_info->commit_interval) {
1981 			spin_unlock(&fs_info->trans_lock);
1982 			delay -= msecs_to_jiffies((delta - 1) * 1000);
1983 			delay = min(delay,
1984 				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1985 			goto sleep;
1986 		}
1987 		transid = cur->transid;
1988 		spin_unlock(&fs_info->trans_lock);
1989 
1990 		/* If the file system is aborted, this will always fail. */
1991 		trans = btrfs_attach_transaction(root);
1992 		if (IS_ERR(trans)) {
1993 			if (PTR_ERR(trans) != -ENOENT)
1994 				cannot_commit = true;
1995 			goto sleep;
1996 		}
1997 		if (transid == trans->transid) {
1998 			btrfs_commit_transaction(trans);
1999 		} else {
2000 			btrfs_end_transaction(trans);
2001 		}
2002 sleep:
2003 		wake_up_process(fs_info->cleaner_kthread);
2004 		mutex_unlock(&fs_info->transaction_kthread_mutex);
2005 
2006 		if (BTRFS_FS_ERROR(fs_info))
2007 			btrfs_cleanup_transaction(fs_info);
2008 		if (!kthread_should_stop() &&
2009 				(!btrfs_transaction_blocked(fs_info) ||
2010 				 cannot_commit))
2011 			schedule_timeout_interruptible(delay);
2012 	} while (!kthread_should_stop());
2013 	return 0;
2014 }
2015 
2016 /*
2017  * This will find the highest generation in the array of root backups.  The
2018  * index of the highest array is returned, or -EINVAL if we can't find
2019  * anything.
2020  *
2021  * We check to make sure the array is valid by comparing the
2022  * generation of the latest  root in the array with the generation
2023  * in the super block.  If they don't match we pitch it.
2024  */
2025 static int find_newest_super_backup(struct btrfs_fs_info *info)
2026 {
2027 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
2028 	u64 cur;
2029 	struct btrfs_root_backup *root_backup;
2030 	int i;
2031 
2032 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2033 		root_backup = info->super_copy->super_roots + i;
2034 		cur = btrfs_backup_tree_root_gen(root_backup);
2035 		if (cur == newest_gen)
2036 			return i;
2037 	}
2038 
2039 	return -EINVAL;
2040 }
2041 
2042 /*
2043  * copy all the root pointers into the super backup array.
2044  * this will bump the backup pointer by one when it is
2045  * done
2046  */
2047 static void backup_super_roots(struct btrfs_fs_info *info)
2048 {
2049 	const int next_backup = info->backup_root_index;
2050 	struct btrfs_root_backup *root_backup;
2051 
2052 	root_backup = info->super_for_commit->super_roots + next_backup;
2053 
2054 	/*
2055 	 * make sure all of our padding and empty slots get zero filled
2056 	 * regardless of which ones we use today
2057 	 */
2058 	memset(root_backup, 0, sizeof(*root_backup));
2059 
2060 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2061 
2062 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2063 	btrfs_set_backup_tree_root_gen(root_backup,
2064 			       btrfs_header_generation(info->tree_root->node));
2065 
2066 	btrfs_set_backup_tree_root_level(root_backup,
2067 			       btrfs_header_level(info->tree_root->node));
2068 
2069 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2070 	btrfs_set_backup_chunk_root_gen(root_backup,
2071 			       btrfs_header_generation(info->chunk_root->node));
2072 	btrfs_set_backup_chunk_root_level(root_backup,
2073 			       btrfs_header_level(info->chunk_root->node));
2074 
2075 	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
2076 		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
2077 		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
2078 
2079 		btrfs_set_backup_extent_root(root_backup,
2080 					     extent_root->node->start);
2081 		btrfs_set_backup_extent_root_gen(root_backup,
2082 				btrfs_header_generation(extent_root->node));
2083 		btrfs_set_backup_extent_root_level(root_backup,
2084 					btrfs_header_level(extent_root->node));
2085 
2086 		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
2087 		btrfs_set_backup_csum_root_gen(root_backup,
2088 					       btrfs_header_generation(csum_root->node));
2089 		btrfs_set_backup_csum_root_level(root_backup,
2090 						 btrfs_header_level(csum_root->node));
2091 	}
2092 
2093 	/*
2094 	 * we might commit during log recovery, which happens before we set
2095 	 * the fs_root.  Make sure it is valid before we fill it in.
2096 	 */
2097 	if (info->fs_root && info->fs_root->node) {
2098 		btrfs_set_backup_fs_root(root_backup,
2099 					 info->fs_root->node->start);
2100 		btrfs_set_backup_fs_root_gen(root_backup,
2101 			       btrfs_header_generation(info->fs_root->node));
2102 		btrfs_set_backup_fs_root_level(root_backup,
2103 			       btrfs_header_level(info->fs_root->node));
2104 	}
2105 
2106 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2107 	btrfs_set_backup_dev_root_gen(root_backup,
2108 			       btrfs_header_generation(info->dev_root->node));
2109 	btrfs_set_backup_dev_root_level(root_backup,
2110 				       btrfs_header_level(info->dev_root->node));
2111 
2112 	btrfs_set_backup_total_bytes(root_backup,
2113 			     btrfs_super_total_bytes(info->super_copy));
2114 	btrfs_set_backup_bytes_used(root_backup,
2115 			     btrfs_super_bytes_used(info->super_copy));
2116 	btrfs_set_backup_num_devices(root_backup,
2117 			     btrfs_super_num_devices(info->super_copy));
2118 
2119 	/*
2120 	 * if we don't copy this out to the super_copy, it won't get remembered
2121 	 * for the next commit
2122 	 */
2123 	memcpy(&info->super_copy->super_roots,
2124 	       &info->super_for_commit->super_roots,
2125 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2126 }
2127 
2128 /*
2129  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2130  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2131  *
2132  * fs_info - filesystem whose backup roots need to be read
2133  * priority - priority of backup root required
2134  *
2135  * Returns backup root index on success and -EINVAL otherwise.
2136  */
2137 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2138 {
2139 	int backup_index = find_newest_super_backup(fs_info);
2140 	struct btrfs_super_block *super = fs_info->super_copy;
2141 	struct btrfs_root_backup *root_backup;
2142 
2143 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2144 		if (priority == 0)
2145 			return backup_index;
2146 
2147 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2148 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2149 	} else {
2150 		return -EINVAL;
2151 	}
2152 
2153 	root_backup = super->super_roots + backup_index;
2154 
2155 	btrfs_set_super_generation(super,
2156 				   btrfs_backup_tree_root_gen(root_backup));
2157 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2158 	btrfs_set_super_root_level(super,
2159 				   btrfs_backup_tree_root_level(root_backup));
2160 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2161 
2162 	/*
2163 	 * Fixme: the total bytes and num_devices need to match or we should
2164 	 * need a fsck
2165 	 */
2166 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2167 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2168 
2169 	return backup_index;
2170 }
2171 
2172 /* helper to cleanup workers */
2173 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2174 {
2175 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2176 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2177 	btrfs_destroy_workqueue(fs_info->hipri_workers);
2178 	btrfs_destroy_workqueue(fs_info->workers);
2179 	if (fs_info->endio_workers)
2180 		destroy_workqueue(fs_info->endio_workers);
2181 	if (fs_info->rmw_workers)
2182 		destroy_workqueue(fs_info->rmw_workers);
2183 	if (fs_info->compressed_write_workers)
2184 		destroy_workqueue(fs_info->compressed_write_workers);
2185 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2186 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2187 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2188 	btrfs_destroy_workqueue(fs_info->caching_workers);
2189 	btrfs_destroy_workqueue(fs_info->flush_workers);
2190 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2191 	if (fs_info->discard_ctl.discard_workers)
2192 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
2193 	/*
2194 	 * Now that all other work queues are destroyed, we can safely destroy
2195 	 * the queues used for metadata I/O, since tasks from those other work
2196 	 * queues can do metadata I/O operations.
2197 	 */
2198 	if (fs_info->endio_meta_workers)
2199 		destroy_workqueue(fs_info->endio_meta_workers);
2200 }
2201 
2202 static void free_root_extent_buffers(struct btrfs_root *root)
2203 {
2204 	if (root) {
2205 		free_extent_buffer(root->node);
2206 		free_extent_buffer(root->commit_root);
2207 		root->node = NULL;
2208 		root->commit_root = NULL;
2209 	}
2210 }
2211 
2212 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2213 {
2214 	struct btrfs_root *root, *tmp;
2215 
2216 	rbtree_postorder_for_each_entry_safe(root, tmp,
2217 					     &fs_info->global_root_tree,
2218 					     rb_node)
2219 		free_root_extent_buffers(root);
2220 }
2221 
2222 /* helper to cleanup tree roots */
2223 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2224 {
2225 	free_root_extent_buffers(info->tree_root);
2226 
2227 	free_global_root_pointers(info);
2228 	free_root_extent_buffers(info->dev_root);
2229 	free_root_extent_buffers(info->quota_root);
2230 	free_root_extent_buffers(info->uuid_root);
2231 	free_root_extent_buffers(info->fs_root);
2232 	free_root_extent_buffers(info->data_reloc_root);
2233 	free_root_extent_buffers(info->block_group_root);
2234 	if (free_chunk_root)
2235 		free_root_extent_buffers(info->chunk_root);
2236 }
2237 
2238 void btrfs_put_root(struct btrfs_root *root)
2239 {
2240 	if (!root)
2241 		return;
2242 
2243 	if (refcount_dec_and_test(&root->refs)) {
2244 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2245 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2246 		if (root->anon_dev)
2247 			free_anon_bdev(root->anon_dev);
2248 		btrfs_drew_lock_destroy(&root->snapshot_lock);
2249 		free_root_extent_buffers(root);
2250 #ifdef CONFIG_BTRFS_DEBUG
2251 		spin_lock(&root->fs_info->fs_roots_radix_lock);
2252 		list_del_init(&root->leak_list);
2253 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2254 #endif
2255 		kfree(root);
2256 	}
2257 }
2258 
2259 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2260 {
2261 	int ret;
2262 	struct btrfs_root *gang[8];
2263 	int i;
2264 
2265 	while (!list_empty(&fs_info->dead_roots)) {
2266 		gang[0] = list_entry(fs_info->dead_roots.next,
2267 				     struct btrfs_root, root_list);
2268 		list_del(&gang[0]->root_list);
2269 
2270 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2271 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2272 		btrfs_put_root(gang[0]);
2273 	}
2274 
2275 	while (1) {
2276 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2277 					     (void **)gang, 0,
2278 					     ARRAY_SIZE(gang));
2279 		if (!ret)
2280 			break;
2281 		for (i = 0; i < ret; i++)
2282 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2283 	}
2284 }
2285 
2286 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2287 {
2288 	mutex_init(&fs_info->scrub_lock);
2289 	atomic_set(&fs_info->scrubs_running, 0);
2290 	atomic_set(&fs_info->scrub_pause_req, 0);
2291 	atomic_set(&fs_info->scrubs_paused, 0);
2292 	atomic_set(&fs_info->scrub_cancel_req, 0);
2293 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2294 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2295 }
2296 
2297 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2298 {
2299 	spin_lock_init(&fs_info->balance_lock);
2300 	mutex_init(&fs_info->balance_mutex);
2301 	atomic_set(&fs_info->balance_pause_req, 0);
2302 	atomic_set(&fs_info->balance_cancel_req, 0);
2303 	fs_info->balance_ctl = NULL;
2304 	init_waitqueue_head(&fs_info->balance_wait_q);
2305 	atomic_set(&fs_info->reloc_cancel_req, 0);
2306 }
2307 
2308 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2309 {
2310 	struct inode *inode = fs_info->btree_inode;
2311 	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
2312 					      fs_info->tree_root);
2313 
2314 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2315 	set_nlink(inode, 1);
2316 	/*
2317 	 * we set the i_size on the btree inode to the max possible int.
2318 	 * the real end of the address space is determined by all of
2319 	 * the devices in the system
2320 	 */
2321 	inode->i_size = OFFSET_MAX;
2322 	inode->i_mapping->a_ops = &btree_aops;
2323 
2324 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2325 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2326 			    IO_TREE_BTREE_INODE_IO);
2327 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2328 
2329 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2330 	BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
2331 	BTRFS_I(inode)->location.type = 0;
2332 	BTRFS_I(inode)->location.offset = 0;
2333 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2334 	__insert_inode_hash(inode, hash);
2335 }
2336 
2337 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2338 {
2339 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2340 	init_rwsem(&fs_info->dev_replace.rwsem);
2341 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2342 }
2343 
2344 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2345 {
2346 	spin_lock_init(&fs_info->qgroup_lock);
2347 	mutex_init(&fs_info->qgroup_ioctl_lock);
2348 	fs_info->qgroup_tree = RB_ROOT;
2349 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2350 	fs_info->qgroup_seq = 1;
2351 	fs_info->qgroup_ulist = NULL;
2352 	fs_info->qgroup_rescan_running = false;
2353 	fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
2354 	mutex_init(&fs_info->qgroup_rescan_lock);
2355 }
2356 
2357 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2358 {
2359 	u32 max_active = fs_info->thread_pool_size;
2360 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2361 
2362 	fs_info->workers =
2363 		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2364 	fs_info->hipri_workers =
2365 		btrfs_alloc_workqueue(fs_info, "worker-high",
2366 				      flags | WQ_HIGHPRI, max_active, 16);
2367 
2368 	fs_info->delalloc_workers =
2369 		btrfs_alloc_workqueue(fs_info, "delalloc",
2370 				      flags, max_active, 2);
2371 
2372 	fs_info->flush_workers =
2373 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2374 				      flags, max_active, 0);
2375 
2376 	fs_info->caching_workers =
2377 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2378 
2379 	fs_info->fixup_workers =
2380 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2381 
2382 	fs_info->endio_workers =
2383 		alloc_workqueue("btrfs-endio", flags, max_active);
2384 	fs_info->endio_meta_workers =
2385 		alloc_workqueue("btrfs-endio-meta", flags, max_active);
2386 	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2387 	fs_info->endio_write_workers =
2388 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2389 				      max_active, 2);
2390 	fs_info->compressed_write_workers =
2391 		alloc_workqueue("btrfs-compressed-write", flags, max_active);
2392 	fs_info->endio_freespace_worker =
2393 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2394 				      max_active, 0);
2395 	fs_info->delayed_workers =
2396 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2397 				      max_active, 0);
2398 	fs_info->qgroup_rescan_workers =
2399 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2400 	fs_info->discard_ctl.discard_workers =
2401 		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2402 
2403 	if (!(fs_info->workers && fs_info->hipri_workers &&
2404 	      fs_info->delalloc_workers && fs_info->flush_workers &&
2405 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2406 	      fs_info->compressed_write_workers &&
2407 	      fs_info->endio_write_workers &&
2408 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2409 	      fs_info->caching_workers && fs_info->fixup_workers &&
2410 	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2411 	      fs_info->discard_ctl.discard_workers)) {
2412 		return -ENOMEM;
2413 	}
2414 
2415 	return 0;
2416 }
2417 
2418 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2419 {
2420 	struct crypto_shash *csum_shash;
2421 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2422 
2423 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2424 
2425 	if (IS_ERR(csum_shash)) {
2426 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2427 			  csum_driver);
2428 		return PTR_ERR(csum_shash);
2429 	}
2430 
2431 	fs_info->csum_shash = csum_shash;
2432 
2433 	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2434 			btrfs_super_csum_name(csum_type),
2435 			crypto_shash_driver_name(csum_shash));
2436 	return 0;
2437 }
2438 
2439 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2440 			    struct btrfs_fs_devices *fs_devices)
2441 {
2442 	int ret;
2443 	struct btrfs_tree_parent_check check = { 0 };
2444 	struct btrfs_root *log_tree_root;
2445 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2446 	u64 bytenr = btrfs_super_log_root(disk_super);
2447 	int level = btrfs_super_log_root_level(disk_super);
2448 
2449 	if (fs_devices->rw_devices == 0) {
2450 		btrfs_warn(fs_info, "log replay required on RO media");
2451 		return -EIO;
2452 	}
2453 
2454 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2455 					 GFP_KERNEL);
2456 	if (!log_tree_root)
2457 		return -ENOMEM;
2458 
2459 	check.level = level;
2460 	check.transid = fs_info->generation + 1;
2461 	check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2462 	log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2463 	if (IS_ERR(log_tree_root->node)) {
2464 		btrfs_warn(fs_info, "failed to read log tree");
2465 		ret = PTR_ERR(log_tree_root->node);
2466 		log_tree_root->node = NULL;
2467 		btrfs_put_root(log_tree_root);
2468 		return ret;
2469 	}
2470 	if (!extent_buffer_uptodate(log_tree_root->node)) {
2471 		btrfs_err(fs_info, "failed to read log tree");
2472 		btrfs_put_root(log_tree_root);
2473 		return -EIO;
2474 	}
2475 
2476 	/* returns with log_tree_root freed on success */
2477 	ret = btrfs_recover_log_trees(log_tree_root);
2478 	if (ret) {
2479 		btrfs_handle_fs_error(fs_info, ret,
2480 				      "Failed to recover log tree");
2481 		btrfs_put_root(log_tree_root);
2482 		return ret;
2483 	}
2484 
2485 	if (sb_rdonly(fs_info->sb)) {
2486 		ret = btrfs_commit_super(fs_info);
2487 		if (ret)
2488 			return ret;
2489 	}
2490 
2491 	return 0;
2492 }
2493 
2494 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2495 				      struct btrfs_path *path, u64 objectid,
2496 				      const char *name)
2497 {
2498 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2499 	struct btrfs_root *root;
2500 	u64 max_global_id = 0;
2501 	int ret;
2502 	struct btrfs_key key = {
2503 		.objectid = objectid,
2504 		.type = BTRFS_ROOT_ITEM_KEY,
2505 		.offset = 0,
2506 	};
2507 	bool found = false;
2508 
2509 	/* If we have IGNOREDATACSUMS skip loading these roots. */
2510 	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2511 	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2512 		set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2513 		return 0;
2514 	}
2515 
2516 	while (1) {
2517 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2518 		if (ret < 0)
2519 			break;
2520 
2521 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2522 			ret = btrfs_next_leaf(tree_root, path);
2523 			if (ret) {
2524 				if (ret > 0)
2525 					ret = 0;
2526 				break;
2527 			}
2528 		}
2529 		ret = 0;
2530 
2531 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2532 		if (key.objectid != objectid)
2533 			break;
2534 		btrfs_release_path(path);
2535 
2536 		/*
2537 		 * Just worry about this for extent tree, it'll be the same for
2538 		 * everybody.
2539 		 */
2540 		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2541 			max_global_id = max(max_global_id, key.offset);
2542 
2543 		found = true;
2544 		root = read_tree_root_path(tree_root, path, &key);
2545 		if (IS_ERR(root)) {
2546 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2547 				ret = PTR_ERR(root);
2548 			break;
2549 		}
2550 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2551 		ret = btrfs_global_root_insert(root);
2552 		if (ret) {
2553 			btrfs_put_root(root);
2554 			break;
2555 		}
2556 		key.offset++;
2557 	}
2558 	btrfs_release_path(path);
2559 
2560 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2561 		fs_info->nr_global_roots = max_global_id + 1;
2562 
2563 	if (!found || ret) {
2564 		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2565 			set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2566 
2567 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2568 			ret = ret ? ret : -ENOENT;
2569 		else
2570 			ret = 0;
2571 		btrfs_err(fs_info, "failed to load root %s", name);
2572 	}
2573 	return ret;
2574 }
2575 
2576 static int load_global_roots(struct btrfs_root *tree_root)
2577 {
2578 	struct btrfs_path *path;
2579 	int ret = 0;
2580 
2581 	path = btrfs_alloc_path();
2582 	if (!path)
2583 		return -ENOMEM;
2584 
2585 	ret = load_global_roots_objectid(tree_root, path,
2586 					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2587 	if (ret)
2588 		goto out;
2589 	ret = load_global_roots_objectid(tree_root, path,
2590 					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2591 	if (ret)
2592 		goto out;
2593 	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2594 		goto out;
2595 	ret = load_global_roots_objectid(tree_root, path,
2596 					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2597 					 "free space");
2598 out:
2599 	btrfs_free_path(path);
2600 	return ret;
2601 }
2602 
2603 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2604 {
2605 	struct btrfs_root *tree_root = fs_info->tree_root;
2606 	struct btrfs_root *root;
2607 	struct btrfs_key location;
2608 	int ret;
2609 
2610 	BUG_ON(!fs_info->tree_root);
2611 
2612 	ret = load_global_roots(tree_root);
2613 	if (ret)
2614 		return ret;
2615 
2616 	location.type = BTRFS_ROOT_ITEM_KEY;
2617 	location.offset = 0;
2618 
2619 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2620 		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2621 		root = btrfs_read_tree_root(tree_root, &location);
2622 		if (IS_ERR(root)) {
2623 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2624 				ret = PTR_ERR(root);
2625 				goto out;
2626 			}
2627 		} else {
2628 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2629 			fs_info->block_group_root = root;
2630 		}
2631 	}
2632 
2633 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2634 	root = btrfs_read_tree_root(tree_root, &location);
2635 	if (IS_ERR(root)) {
2636 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2637 			ret = PTR_ERR(root);
2638 			goto out;
2639 		}
2640 	} else {
2641 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2642 		fs_info->dev_root = root;
2643 	}
2644 	/* Initialize fs_info for all devices in any case */
2645 	ret = btrfs_init_devices_late(fs_info);
2646 	if (ret)
2647 		goto out;
2648 
2649 	/*
2650 	 * This tree can share blocks with some other fs tree during relocation
2651 	 * and we need a proper setup by btrfs_get_fs_root
2652 	 */
2653 	root = btrfs_get_fs_root(tree_root->fs_info,
2654 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2655 	if (IS_ERR(root)) {
2656 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2657 			ret = PTR_ERR(root);
2658 			goto out;
2659 		}
2660 	} else {
2661 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2662 		fs_info->data_reloc_root = root;
2663 	}
2664 
2665 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2666 	root = btrfs_read_tree_root(tree_root, &location);
2667 	if (!IS_ERR(root)) {
2668 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2669 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2670 		fs_info->quota_root = root;
2671 	}
2672 
2673 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2674 	root = btrfs_read_tree_root(tree_root, &location);
2675 	if (IS_ERR(root)) {
2676 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2677 			ret = PTR_ERR(root);
2678 			if (ret != -ENOENT)
2679 				goto out;
2680 		}
2681 	} else {
2682 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2683 		fs_info->uuid_root = root;
2684 	}
2685 
2686 	return 0;
2687 out:
2688 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2689 		   location.objectid, ret);
2690 	return ret;
2691 }
2692 
2693 /*
2694  * Real super block validation
2695  * NOTE: super csum type and incompat features will not be checked here.
2696  *
2697  * @sb:		super block to check
2698  * @mirror_num:	the super block number to check its bytenr:
2699  * 		0	the primary (1st) sb
2700  * 		1, 2	2nd and 3rd backup copy
2701  * 	       -1	skip bytenr check
2702  */
2703 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2704 			 struct btrfs_super_block *sb, int mirror_num)
2705 {
2706 	u64 nodesize = btrfs_super_nodesize(sb);
2707 	u64 sectorsize = btrfs_super_sectorsize(sb);
2708 	int ret = 0;
2709 
2710 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2711 		btrfs_err(fs_info, "no valid FS found");
2712 		ret = -EINVAL;
2713 	}
2714 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2715 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2716 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2717 		ret = -EINVAL;
2718 	}
2719 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2720 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2721 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2722 		ret = -EINVAL;
2723 	}
2724 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2725 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2726 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2727 		ret = -EINVAL;
2728 	}
2729 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2730 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2731 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2732 		ret = -EINVAL;
2733 	}
2734 
2735 	/*
2736 	 * Check sectorsize and nodesize first, other check will need it.
2737 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2738 	 */
2739 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2740 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2741 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2742 		ret = -EINVAL;
2743 	}
2744 
2745 	/*
2746 	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2747 	 *
2748 	 * We can support 16K sectorsize with 64K page size without problem,
2749 	 * but such sectorsize/pagesize combination doesn't make much sense.
2750 	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2751 	 * beginning.
2752 	 */
2753 	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2754 		btrfs_err(fs_info,
2755 			"sectorsize %llu not yet supported for page size %lu",
2756 			sectorsize, PAGE_SIZE);
2757 		ret = -EINVAL;
2758 	}
2759 
2760 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2761 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2762 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2763 		ret = -EINVAL;
2764 	}
2765 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2766 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2767 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2768 		ret = -EINVAL;
2769 	}
2770 
2771 	/* Root alignment check */
2772 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2773 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2774 			   btrfs_super_root(sb));
2775 		ret = -EINVAL;
2776 	}
2777 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2778 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2779 			   btrfs_super_chunk_root(sb));
2780 		ret = -EINVAL;
2781 	}
2782 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2783 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2784 			   btrfs_super_log_root(sb));
2785 		ret = -EINVAL;
2786 	}
2787 
2788 	if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2789 		   BTRFS_FSID_SIZE)) {
2790 		btrfs_err(fs_info,
2791 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2792 			fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2793 		ret = -EINVAL;
2794 	}
2795 
2796 	if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2797 	    memcmp(fs_info->fs_devices->metadata_uuid,
2798 		   fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2799 		btrfs_err(fs_info,
2800 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2801 			fs_info->super_copy->metadata_uuid,
2802 			fs_info->fs_devices->metadata_uuid);
2803 		ret = -EINVAL;
2804 	}
2805 
2806 	/*
2807 	 * Artificial requirement for block-group-tree to force newer features
2808 	 * (free-space-tree, no-holes) so the test matrix is smaller.
2809 	 */
2810 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2811 	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2812 	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2813 		btrfs_err(fs_info,
2814 		"block-group-tree feature requires fres-space-tree and no-holes");
2815 		ret = -EINVAL;
2816 	}
2817 
2818 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2819 		   BTRFS_FSID_SIZE) != 0) {
2820 		btrfs_err(fs_info,
2821 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2822 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2823 		ret = -EINVAL;
2824 	}
2825 
2826 	/*
2827 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2828 	 * done later
2829 	 */
2830 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2831 		btrfs_err(fs_info, "bytes_used is too small %llu",
2832 			  btrfs_super_bytes_used(sb));
2833 		ret = -EINVAL;
2834 	}
2835 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2836 		btrfs_err(fs_info, "invalid stripesize %u",
2837 			  btrfs_super_stripesize(sb));
2838 		ret = -EINVAL;
2839 	}
2840 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2841 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2842 			   btrfs_super_num_devices(sb));
2843 	if (btrfs_super_num_devices(sb) == 0) {
2844 		btrfs_err(fs_info, "number of devices is 0");
2845 		ret = -EINVAL;
2846 	}
2847 
2848 	if (mirror_num >= 0 &&
2849 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2850 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2851 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2852 		ret = -EINVAL;
2853 	}
2854 
2855 	/*
2856 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2857 	 * and one chunk
2858 	 */
2859 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2860 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2861 			  btrfs_super_sys_array_size(sb),
2862 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2863 		ret = -EINVAL;
2864 	}
2865 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2866 			+ sizeof(struct btrfs_chunk)) {
2867 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2868 			  btrfs_super_sys_array_size(sb),
2869 			  sizeof(struct btrfs_disk_key)
2870 			  + sizeof(struct btrfs_chunk));
2871 		ret = -EINVAL;
2872 	}
2873 
2874 	/*
2875 	 * The generation is a global counter, we'll trust it more than the others
2876 	 * but it's still possible that it's the one that's wrong.
2877 	 */
2878 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2879 		btrfs_warn(fs_info,
2880 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2881 			btrfs_super_generation(sb),
2882 			btrfs_super_chunk_root_generation(sb));
2883 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2884 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2885 		btrfs_warn(fs_info,
2886 			"suspicious: generation < cache_generation: %llu < %llu",
2887 			btrfs_super_generation(sb),
2888 			btrfs_super_cache_generation(sb));
2889 
2890 	return ret;
2891 }
2892 
2893 /*
2894  * Validation of super block at mount time.
2895  * Some checks already done early at mount time, like csum type and incompat
2896  * flags will be skipped.
2897  */
2898 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2899 {
2900 	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2901 }
2902 
2903 /*
2904  * Validation of super block at write time.
2905  * Some checks like bytenr check will be skipped as their values will be
2906  * overwritten soon.
2907  * Extra checks like csum type and incompat flags will be done here.
2908  */
2909 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2910 				      struct btrfs_super_block *sb)
2911 {
2912 	int ret;
2913 
2914 	ret = btrfs_validate_super(fs_info, sb, -1);
2915 	if (ret < 0)
2916 		goto out;
2917 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2918 		ret = -EUCLEAN;
2919 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2920 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2921 		goto out;
2922 	}
2923 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2924 		ret = -EUCLEAN;
2925 		btrfs_err(fs_info,
2926 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2927 			  btrfs_super_incompat_flags(sb),
2928 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2929 		goto out;
2930 	}
2931 out:
2932 	if (ret < 0)
2933 		btrfs_err(fs_info,
2934 		"super block corruption detected before writing it to disk");
2935 	return ret;
2936 }
2937 
2938 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2939 {
2940 	struct btrfs_tree_parent_check check = {
2941 		.level = level,
2942 		.transid = gen,
2943 		.owner_root = root->root_key.objectid
2944 	};
2945 	int ret = 0;
2946 
2947 	root->node = read_tree_block(root->fs_info, bytenr, &check);
2948 	if (IS_ERR(root->node)) {
2949 		ret = PTR_ERR(root->node);
2950 		root->node = NULL;
2951 		return ret;
2952 	}
2953 	if (!extent_buffer_uptodate(root->node)) {
2954 		free_extent_buffer(root->node);
2955 		root->node = NULL;
2956 		return -EIO;
2957 	}
2958 
2959 	btrfs_set_root_node(&root->root_item, root->node);
2960 	root->commit_root = btrfs_root_node(root);
2961 	btrfs_set_root_refs(&root->root_item, 1);
2962 	return ret;
2963 }
2964 
2965 static int load_important_roots(struct btrfs_fs_info *fs_info)
2966 {
2967 	struct btrfs_super_block *sb = fs_info->super_copy;
2968 	u64 gen, bytenr;
2969 	int level, ret;
2970 
2971 	bytenr = btrfs_super_root(sb);
2972 	gen = btrfs_super_generation(sb);
2973 	level = btrfs_super_root_level(sb);
2974 	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2975 	if (ret) {
2976 		btrfs_warn(fs_info, "couldn't read tree root");
2977 		return ret;
2978 	}
2979 	return 0;
2980 }
2981 
2982 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2983 {
2984 	int backup_index = find_newest_super_backup(fs_info);
2985 	struct btrfs_super_block *sb = fs_info->super_copy;
2986 	struct btrfs_root *tree_root = fs_info->tree_root;
2987 	bool handle_error = false;
2988 	int ret = 0;
2989 	int i;
2990 
2991 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2992 		if (handle_error) {
2993 			if (!IS_ERR(tree_root->node))
2994 				free_extent_buffer(tree_root->node);
2995 			tree_root->node = NULL;
2996 
2997 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2998 				break;
2999 
3000 			free_root_pointers(fs_info, 0);
3001 
3002 			/*
3003 			 * Don't use the log in recovery mode, it won't be
3004 			 * valid
3005 			 */
3006 			btrfs_set_super_log_root(sb, 0);
3007 
3008 			/* We can't trust the free space cache either */
3009 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3010 
3011 			ret = read_backup_root(fs_info, i);
3012 			backup_index = ret;
3013 			if (ret < 0)
3014 				return ret;
3015 		}
3016 
3017 		ret = load_important_roots(fs_info);
3018 		if (ret) {
3019 			handle_error = true;
3020 			continue;
3021 		}
3022 
3023 		/*
3024 		 * No need to hold btrfs_root::objectid_mutex since the fs
3025 		 * hasn't been fully initialised and we are the only user
3026 		 */
3027 		ret = btrfs_init_root_free_objectid(tree_root);
3028 		if (ret < 0) {
3029 			handle_error = true;
3030 			continue;
3031 		}
3032 
3033 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
3034 
3035 		ret = btrfs_read_roots(fs_info);
3036 		if (ret < 0) {
3037 			handle_error = true;
3038 			continue;
3039 		}
3040 
3041 		/* All successful */
3042 		fs_info->generation = btrfs_header_generation(tree_root->node);
3043 		fs_info->last_trans_committed = fs_info->generation;
3044 		fs_info->last_reloc_trans = 0;
3045 
3046 		/* Always begin writing backup roots after the one being used */
3047 		if (backup_index < 0) {
3048 			fs_info->backup_root_index = 0;
3049 		} else {
3050 			fs_info->backup_root_index = backup_index + 1;
3051 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
3052 		}
3053 		break;
3054 	}
3055 
3056 	return ret;
3057 }
3058 
3059 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
3060 {
3061 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
3062 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
3063 	INIT_LIST_HEAD(&fs_info->trans_list);
3064 	INIT_LIST_HEAD(&fs_info->dead_roots);
3065 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
3066 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
3067 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
3068 	spin_lock_init(&fs_info->delalloc_root_lock);
3069 	spin_lock_init(&fs_info->trans_lock);
3070 	spin_lock_init(&fs_info->fs_roots_radix_lock);
3071 	spin_lock_init(&fs_info->delayed_iput_lock);
3072 	spin_lock_init(&fs_info->defrag_inodes_lock);
3073 	spin_lock_init(&fs_info->super_lock);
3074 	spin_lock_init(&fs_info->buffer_lock);
3075 	spin_lock_init(&fs_info->unused_bgs_lock);
3076 	spin_lock_init(&fs_info->treelog_bg_lock);
3077 	spin_lock_init(&fs_info->zone_active_bgs_lock);
3078 	spin_lock_init(&fs_info->relocation_bg_lock);
3079 	rwlock_init(&fs_info->tree_mod_log_lock);
3080 	rwlock_init(&fs_info->global_root_lock);
3081 	mutex_init(&fs_info->unused_bg_unpin_mutex);
3082 	mutex_init(&fs_info->reclaim_bgs_lock);
3083 	mutex_init(&fs_info->reloc_mutex);
3084 	mutex_init(&fs_info->delalloc_root_mutex);
3085 	mutex_init(&fs_info->zoned_meta_io_lock);
3086 	mutex_init(&fs_info->zoned_data_reloc_io_lock);
3087 	seqlock_init(&fs_info->profiles_lock);
3088 
3089 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
3090 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
3091 	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
3092 	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
3093 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
3094 				     BTRFS_LOCKDEP_TRANS_COMMIT_START);
3095 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
3096 				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
3097 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
3098 				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
3099 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
3100 				     BTRFS_LOCKDEP_TRANS_COMPLETED);
3101 
3102 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
3103 	INIT_LIST_HEAD(&fs_info->space_info);
3104 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
3105 	INIT_LIST_HEAD(&fs_info->unused_bgs);
3106 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
3107 	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
3108 #ifdef CONFIG_BTRFS_DEBUG
3109 	INIT_LIST_HEAD(&fs_info->allocated_roots);
3110 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
3111 	spin_lock_init(&fs_info->eb_leak_lock);
3112 #endif
3113 	extent_map_tree_init(&fs_info->mapping_tree);
3114 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
3115 			     BTRFS_BLOCK_RSV_GLOBAL);
3116 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3117 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3118 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3119 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3120 			     BTRFS_BLOCK_RSV_DELOPS);
3121 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3122 			     BTRFS_BLOCK_RSV_DELREFS);
3123 
3124 	atomic_set(&fs_info->async_delalloc_pages, 0);
3125 	atomic_set(&fs_info->defrag_running, 0);
3126 	atomic_set(&fs_info->nr_delayed_iputs, 0);
3127 	atomic64_set(&fs_info->tree_mod_seq, 0);
3128 	fs_info->global_root_tree = RB_ROOT;
3129 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
3130 	fs_info->metadata_ratio = 0;
3131 	fs_info->defrag_inodes = RB_ROOT;
3132 	atomic64_set(&fs_info->free_chunk_space, 0);
3133 	fs_info->tree_mod_log = RB_ROOT;
3134 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
3135 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
3136 	btrfs_init_ref_verify(fs_info);
3137 
3138 	fs_info->thread_pool_size = min_t(unsigned long,
3139 					  num_online_cpus() + 2, 8);
3140 
3141 	INIT_LIST_HEAD(&fs_info->ordered_roots);
3142 	spin_lock_init(&fs_info->ordered_root_lock);
3143 
3144 	btrfs_init_scrub(fs_info);
3145 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3146 	fs_info->check_integrity_print_mask = 0;
3147 #endif
3148 	btrfs_init_balance(fs_info);
3149 	btrfs_init_async_reclaim_work(fs_info);
3150 
3151 	rwlock_init(&fs_info->block_group_cache_lock);
3152 	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
3153 
3154 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3155 			    IO_TREE_FS_EXCLUDED_EXTENTS);
3156 
3157 	mutex_init(&fs_info->ordered_operations_mutex);
3158 	mutex_init(&fs_info->tree_log_mutex);
3159 	mutex_init(&fs_info->chunk_mutex);
3160 	mutex_init(&fs_info->transaction_kthread_mutex);
3161 	mutex_init(&fs_info->cleaner_mutex);
3162 	mutex_init(&fs_info->ro_block_group_mutex);
3163 	init_rwsem(&fs_info->commit_root_sem);
3164 	init_rwsem(&fs_info->cleanup_work_sem);
3165 	init_rwsem(&fs_info->subvol_sem);
3166 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
3167 
3168 	btrfs_init_dev_replace_locks(fs_info);
3169 	btrfs_init_qgroup(fs_info);
3170 	btrfs_discard_init(fs_info);
3171 
3172 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3173 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3174 
3175 	init_waitqueue_head(&fs_info->transaction_throttle);
3176 	init_waitqueue_head(&fs_info->transaction_wait);
3177 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
3178 	init_waitqueue_head(&fs_info->async_submit_wait);
3179 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
3180 
3181 	/* Usable values until the real ones are cached from the superblock */
3182 	fs_info->nodesize = 4096;
3183 	fs_info->sectorsize = 4096;
3184 	fs_info->sectorsize_bits = ilog2(4096);
3185 	fs_info->stripesize = 4096;
3186 
3187 	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
3188 
3189 	spin_lock_init(&fs_info->swapfile_pins_lock);
3190 	fs_info->swapfile_pins = RB_ROOT;
3191 
3192 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3193 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
3194 }
3195 
3196 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3197 {
3198 	int ret;
3199 
3200 	fs_info->sb = sb;
3201 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3202 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3203 
3204 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3205 	if (ret)
3206 		return ret;
3207 
3208 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3209 	if (ret)
3210 		return ret;
3211 
3212 	fs_info->dirty_metadata_batch = PAGE_SIZE *
3213 					(1 + ilog2(nr_cpu_ids));
3214 
3215 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3216 	if (ret)
3217 		return ret;
3218 
3219 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3220 			GFP_KERNEL);
3221 	if (ret)
3222 		return ret;
3223 
3224 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3225 					GFP_KERNEL);
3226 	if (!fs_info->delayed_root)
3227 		return -ENOMEM;
3228 	btrfs_init_delayed_root(fs_info->delayed_root);
3229 
3230 	if (sb_rdonly(sb))
3231 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3232 
3233 	return btrfs_alloc_stripe_hash_table(fs_info);
3234 }
3235 
3236 static int btrfs_uuid_rescan_kthread(void *data)
3237 {
3238 	struct btrfs_fs_info *fs_info = data;
3239 	int ret;
3240 
3241 	/*
3242 	 * 1st step is to iterate through the existing UUID tree and
3243 	 * to delete all entries that contain outdated data.
3244 	 * 2nd step is to add all missing entries to the UUID tree.
3245 	 */
3246 	ret = btrfs_uuid_tree_iterate(fs_info);
3247 	if (ret < 0) {
3248 		if (ret != -EINTR)
3249 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3250 				   ret);
3251 		up(&fs_info->uuid_tree_rescan_sem);
3252 		return ret;
3253 	}
3254 	return btrfs_uuid_scan_kthread(data);
3255 }
3256 
3257 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3258 {
3259 	struct task_struct *task;
3260 
3261 	down(&fs_info->uuid_tree_rescan_sem);
3262 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3263 	if (IS_ERR(task)) {
3264 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3265 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
3266 		up(&fs_info->uuid_tree_rescan_sem);
3267 		return PTR_ERR(task);
3268 	}
3269 
3270 	return 0;
3271 }
3272 
3273 /*
3274  * Some options only have meaning at mount time and shouldn't persist across
3275  * remounts, or be displayed. Clear these at the end of mount and remount
3276  * code paths.
3277  */
3278 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3279 {
3280 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3281 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3282 }
3283 
3284 /*
3285  * Mounting logic specific to read-write file systems. Shared by open_ctree
3286  * and btrfs_remount when remounting from read-only to read-write.
3287  */
3288 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3289 {
3290 	int ret;
3291 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3292 	bool clear_free_space_tree = false;
3293 
3294 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3295 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3296 		clear_free_space_tree = true;
3297 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3298 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3299 		btrfs_warn(fs_info, "free space tree is invalid");
3300 		clear_free_space_tree = true;
3301 	}
3302 
3303 	if (clear_free_space_tree) {
3304 		btrfs_info(fs_info, "clearing free space tree");
3305 		ret = btrfs_clear_free_space_tree(fs_info);
3306 		if (ret) {
3307 			btrfs_warn(fs_info,
3308 				   "failed to clear free space tree: %d", ret);
3309 			goto out;
3310 		}
3311 	}
3312 
3313 	/*
3314 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3315 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3316 	 * them into the fs_info->fs_roots_radix tree. This must be done before
3317 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3318 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3319 	 * item before the root's tree is deleted - this means that if we unmount
3320 	 * or crash before the deletion completes, on the next mount we will not
3321 	 * delete what remains of the tree because the orphan item does not
3322 	 * exists anymore, which is what tells us we have a pending deletion.
3323 	 */
3324 	ret = btrfs_find_orphan_roots(fs_info);
3325 	if (ret)
3326 		goto out;
3327 
3328 	ret = btrfs_cleanup_fs_roots(fs_info);
3329 	if (ret)
3330 		goto out;
3331 
3332 	down_read(&fs_info->cleanup_work_sem);
3333 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3334 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3335 		up_read(&fs_info->cleanup_work_sem);
3336 		goto out;
3337 	}
3338 	up_read(&fs_info->cleanup_work_sem);
3339 
3340 	mutex_lock(&fs_info->cleaner_mutex);
3341 	ret = btrfs_recover_relocation(fs_info);
3342 	mutex_unlock(&fs_info->cleaner_mutex);
3343 	if (ret < 0) {
3344 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3345 		goto out;
3346 	}
3347 
3348 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3349 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3350 		btrfs_info(fs_info, "creating free space tree");
3351 		ret = btrfs_create_free_space_tree(fs_info);
3352 		if (ret) {
3353 			btrfs_warn(fs_info,
3354 				"failed to create free space tree: %d", ret);
3355 			goto out;
3356 		}
3357 	}
3358 
3359 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3360 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3361 		if (ret)
3362 			goto out;
3363 	}
3364 
3365 	ret = btrfs_resume_balance_async(fs_info);
3366 	if (ret)
3367 		goto out;
3368 
3369 	ret = btrfs_resume_dev_replace_async(fs_info);
3370 	if (ret) {
3371 		btrfs_warn(fs_info, "failed to resume dev_replace");
3372 		goto out;
3373 	}
3374 
3375 	btrfs_qgroup_rescan_resume(fs_info);
3376 
3377 	if (!fs_info->uuid_root) {
3378 		btrfs_info(fs_info, "creating UUID tree");
3379 		ret = btrfs_create_uuid_tree(fs_info);
3380 		if (ret) {
3381 			btrfs_warn(fs_info,
3382 				   "failed to create the UUID tree %d", ret);
3383 			goto out;
3384 		}
3385 	}
3386 
3387 out:
3388 	return ret;
3389 }
3390 
3391 /*
3392  * Do various sanity and dependency checks of different features.
3393  *
3394  * @is_rw_mount:	If the mount is read-write.
3395  *
3396  * This is the place for less strict checks (like for subpage or artificial
3397  * feature dependencies).
3398  *
3399  * For strict checks or possible corruption detection, see
3400  * btrfs_validate_super().
3401  *
3402  * This should be called after btrfs_parse_options(), as some mount options
3403  * (space cache related) can modify on-disk format like free space tree and
3404  * screw up certain feature dependencies.
3405  */
3406 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3407 {
3408 	struct btrfs_super_block *disk_super = fs_info->super_copy;
3409 	u64 incompat = btrfs_super_incompat_flags(disk_super);
3410 	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3411 	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3412 
3413 	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3414 		btrfs_err(fs_info,
3415 		"cannot mount because of unknown incompat features (0x%llx)",
3416 		    incompat);
3417 		return -EINVAL;
3418 	}
3419 
3420 	/* Runtime limitation for mixed block groups. */
3421 	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3422 	    (fs_info->sectorsize != fs_info->nodesize)) {
3423 		btrfs_err(fs_info,
3424 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3425 			fs_info->nodesize, fs_info->sectorsize);
3426 		return -EINVAL;
3427 	}
3428 
3429 	/* Mixed backref is an always-enabled feature. */
3430 	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3431 
3432 	/* Set compression related flags just in case. */
3433 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3434 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3435 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3436 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3437 
3438 	/*
3439 	 * An ancient flag, which should really be marked deprecated.
3440 	 * Such runtime limitation doesn't really need a incompat flag.
3441 	 */
3442 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3443 		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3444 
3445 	if (compat_ro_unsupp && is_rw_mount) {
3446 		btrfs_err(fs_info,
3447 	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3448 		       compat_ro);
3449 		return -EINVAL;
3450 	}
3451 
3452 	/*
3453 	 * We have unsupported RO compat features, although RO mounted, we
3454 	 * should not cause any metadata writes, including log replay.
3455 	 * Or we could screw up whatever the new feature requires.
3456 	 */
3457 	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3458 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3459 		btrfs_err(fs_info,
3460 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3461 			  compat_ro);
3462 		return -EINVAL;
3463 	}
3464 
3465 	/*
3466 	 * Artificial limitations for block group tree, to force
3467 	 * block-group-tree to rely on no-holes and free-space-tree.
3468 	 */
3469 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3470 	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3471 	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3472 		btrfs_err(fs_info,
3473 "block-group-tree feature requires no-holes and free-space-tree features");
3474 		return -EINVAL;
3475 	}
3476 
3477 	/*
3478 	 * Subpage runtime limitation on v1 cache.
3479 	 *
3480 	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3481 	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3482 	 * going to be deprecated anyway.
3483 	 */
3484 	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3485 		btrfs_warn(fs_info,
3486 	"v1 space cache is not supported for page size %lu with sectorsize %u",
3487 			   PAGE_SIZE, fs_info->sectorsize);
3488 		return -EINVAL;
3489 	}
3490 
3491 	/* This can be called by remount, we need to protect the super block. */
3492 	spin_lock(&fs_info->super_lock);
3493 	btrfs_set_super_incompat_flags(disk_super, incompat);
3494 	spin_unlock(&fs_info->super_lock);
3495 
3496 	return 0;
3497 }
3498 
3499 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3500 		      char *options)
3501 {
3502 	u32 sectorsize;
3503 	u32 nodesize;
3504 	u32 stripesize;
3505 	u64 generation;
3506 	u64 features;
3507 	u16 csum_type;
3508 	struct btrfs_super_block *disk_super;
3509 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3510 	struct btrfs_root *tree_root;
3511 	struct btrfs_root *chunk_root;
3512 	int ret;
3513 	int err = -EINVAL;
3514 	int level;
3515 
3516 	ret = init_mount_fs_info(fs_info, sb);
3517 	if (ret) {
3518 		err = ret;
3519 		goto fail;
3520 	}
3521 
3522 	/* These need to be init'ed before we start creating inodes and such. */
3523 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3524 				     GFP_KERNEL);
3525 	fs_info->tree_root = tree_root;
3526 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3527 				      GFP_KERNEL);
3528 	fs_info->chunk_root = chunk_root;
3529 	if (!tree_root || !chunk_root) {
3530 		err = -ENOMEM;
3531 		goto fail;
3532 	}
3533 
3534 	fs_info->btree_inode = new_inode(sb);
3535 	if (!fs_info->btree_inode) {
3536 		err = -ENOMEM;
3537 		goto fail;
3538 	}
3539 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3540 	btrfs_init_btree_inode(fs_info);
3541 
3542 	invalidate_bdev(fs_devices->latest_dev->bdev);
3543 
3544 	/*
3545 	 * Read super block and check the signature bytes only
3546 	 */
3547 	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3548 	if (IS_ERR(disk_super)) {
3549 		err = PTR_ERR(disk_super);
3550 		goto fail_alloc;
3551 	}
3552 
3553 	/*
3554 	 * Verify the type first, if that or the checksum value are
3555 	 * corrupted, we'll find out
3556 	 */
3557 	csum_type = btrfs_super_csum_type(disk_super);
3558 	if (!btrfs_supported_super_csum(csum_type)) {
3559 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3560 			  csum_type);
3561 		err = -EINVAL;
3562 		btrfs_release_disk_super(disk_super);
3563 		goto fail_alloc;
3564 	}
3565 
3566 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3567 
3568 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3569 	if (ret) {
3570 		err = ret;
3571 		btrfs_release_disk_super(disk_super);
3572 		goto fail_alloc;
3573 	}
3574 
3575 	/*
3576 	 * We want to check superblock checksum, the type is stored inside.
3577 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3578 	 */
3579 	if (btrfs_check_super_csum(fs_info, disk_super)) {
3580 		btrfs_err(fs_info, "superblock checksum mismatch");
3581 		err = -EINVAL;
3582 		btrfs_release_disk_super(disk_super);
3583 		goto fail_alloc;
3584 	}
3585 
3586 	/*
3587 	 * super_copy is zeroed at allocation time and we never touch the
3588 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3589 	 * the whole block of INFO_SIZE
3590 	 */
3591 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3592 	btrfs_release_disk_super(disk_super);
3593 
3594 	disk_super = fs_info->super_copy;
3595 
3596 
3597 	features = btrfs_super_flags(disk_super);
3598 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3599 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3600 		btrfs_set_super_flags(disk_super, features);
3601 		btrfs_info(fs_info,
3602 			"found metadata UUID change in progress flag, clearing");
3603 	}
3604 
3605 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3606 	       sizeof(*fs_info->super_for_commit));
3607 
3608 	ret = btrfs_validate_mount_super(fs_info);
3609 	if (ret) {
3610 		btrfs_err(fs_info, "superblock contains fatal errors");
3611 		err = -EINVAL;
3612 		goto fail_alloc;
3613 	}
3614 
3615 	if (!btrfs_super_root(disk_super))
3616 		goto fail_alloc;
3617 
3618 	/* check FS state, whether FS is broken. */
3619 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3620 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3621 
3622 	/*
3623 	 * In the long term, we'll store the compression type in the super
3624 	 * block, and it'll be used for per file compression control.
3625 	 */
3626 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3627 
3628 
3629 	/* Set up fs_info before parsing mount options */
3630 	nodesize = btrfs_super_nodesize(disk_super);
3631 	sectorsize = btrfs_super_sectorsize(disk_super);
3632 	stripesize = sectorsize;
3633 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3634 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3635 
3636 	fs_info->nodesize = nodesize;
3637 	fs_info->sectorsize = sectorsize;
3638 	fs_info->sectorsize_bits = ilog2(sectorsize);
3639 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3640 	fs_info->stripesize = stripesize;
3641 
3642 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3643 	if (ret) {
3644 		err = ret;
3645 		goto fail_alloc;
3646 	}
3647 
3648 	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3649 	if (ret < 0) {
3650 		err = ret;
3651 		goto fail_alloc;
3652 	}
3653 
3654 	if (sectorsize < PAGE_SIZE) {
3655 		struct btrfs_subpage_info *subpage_info;
3656 
3657 		/*
3658 		 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3659 		 * going to be deprecated.
3660 		 *
3661 		 * Force to use v2 cache for subpage case.
3662 		 */
3663 		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3664 		btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3665 			"forcing free space tree for sector size %u with page size %lu",
3666 			sectorsize, PAGE_SIZE);
3667 
3668 		btrfs_warn(fs_info,
3669 		"read-write for sector size %u with page size %lu is experimental",
3670 			   sectorsize, PAGE_SIZE);
3671 		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3672 		if (!subpage_info)
3673 			goto fail_alloc;
3674 		btrfs_init_subpage_info(subpage_info, sectorsize);
3675 		fs_info->subpage_info = subpage_info;
3676 	}
3677 
3678 	ret = btrfs_init_workqueues(fs_info);
3679 	if (ret) {
3680 		err = ret;
3681 		goto fail_sb_buffer;
3682 	}
3683 
3684 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3685 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3686 
3687 	sb->s_blocksize = sectorsize;
3688 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3689 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3690 
3691 	mutex_lock(&fs_info->chunk_mutex);
3692 	ret = btrfs_read_sys_array(fs_info);
3693 	mutex_unlock(&fs_info->chunk_mutex);
3694 	if (ret) {
3695 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3696 		goto fail_sb_buffer;
3697 	}
3698 
3699 	generation = btrfs_super_chunk_root_generation(disk_super);
3700 	level = btrfs_super_chunk_root_level(disk_super);
3701 	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3702 			      generation, level);
3703 	if (ret) {
3704 		btrfs_err(fs_info, "failed to read chunk root");
3705 		goto fail_tree_roots;
3706 	}
3707 
3708 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3709 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3710 			   BTRFS_UUID_SIZE);
3711 
3712 	ret = btrfs_read_chunk_tree(fs_info);
3713 	if (ret) {
3714 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3715 		goto fail_tree_roots;
3716 	}
3717 
3718 	/*
3719 	 * At this point we know all the devices that make this filesystem,
3720 	 * including the seed devices but we don't know yet if the replace
3721 	 * target is required. So free devices that are not part of this
3722 	 * filesystem but skip the replace target device which is checked
3723 	 * below in btrfs_init_dev_replace().
3724 	 */
3725 	btrfs_free_extra_devids(fs_devices);
3726 	if (!fs_devices->latest_dev->bdev) {
3727 		btrfs_err(fs_info, "failed to read devices");
3728 		goto fail_tree_roots;
3729 	}
3730 
3731 	ret = init_tree_roots(fs_info);
3732 	if (ret)
3733 		goto fail_tree_roots;
3734 
3735 	/*
3736 	 * Get zone type information of zoned block devices. This will also
3737 	 * handle emulation of a zoned filesystem if a regular device has the
3738 	 * zoned incompat feature flag set.
3739 	 */
3740 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3741 	if (ret) {
3742 		btrfs_err(fs_info,
3743 			  "zoned: failed to read device zone info: %d",
3744 			  ret);
3745 		goto fail_block_groups;
3746 	}
3747 
3748 	/*
3749 	 * If we have a uuid root and we're not being told to rescan we need to
3750 	 * check the generation here so we can set the
3751 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3752 	 * transaction during a balance or the log replay without updating the
3753 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3754 	 * even though it was perfectly fine.
3755 	 */
3756 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3757 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3758 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3759 
3760 	ret = btrfs_verify_dev_extents(fs_info);
3761 	if (ret) {
3762 		btrfs_err(fs_info,
3763 			  "failed to verify dev extents against chunks: %d",
3764 			  ret);
3765 		goto fail_block_groups;
3766 	}
3767 	ret = btrfs_recover_balance(fs_info);
3768 	if (ret) {
3769 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3770 		goto fail_block_groups;
3771 	}
3772 
3773 	ret = btrfs_init_dev_stats(fs_info);
3774 	if (ret) {
3775 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3776 		goto fail_block_groups;
3777 	}
3778 
3779 	ret = btrfs_init_dev_replace(fs_info);
3780 	if (ret) {
3781 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3782 		goto fail_block_groups;
3783 	}
3784 
3785 	ret = btrfs_check_zoned_mode(fs_info);
3786 	if (ret) {
3787 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3788 			  ret);
3789 		goto fail_block_groups;
3790 	}
3791 
3792 	ret = btrfs_sysfs_add_fsid(fs_devices);
3793 	if (ret) {
3794 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3795 				ret);
3796 		goto fail_block_groups;
3797 	}
3798 
3799 	ret = btrfs_sysfs_add_mounted(fs_info);
3800 	if (ret) {
3801 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3802 		goto fail_fsdev_sysfs;
3803 	}
3804 
3805 	ret = btrfs_init_space_info(fs_info);
3806 	if (ret) {
3807 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3808 		goto fail_sysfs;
3809 	}
3810 
3811 	ret = btrfs_read_block_groups(fs_info);
3812 	if (ret) {
3813 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3814 		goto fail_sysfs;
3815 	}
3816 
3817 	btrfs_free_zone_cache(fs_info);
3818 
3819 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3820 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3821 		btrfs_warn(fs_info,
3822 		"writable mount is not allowed due to too many missing devices");
3823 		goto fail_sysfs;
3824 	}
3825 
3826 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3827 					       "btrfs-cleaner");
3828 	if (IS_ERR(fs_info->cleaner_kthread))
3829 		goto fail_sysfs;
3830 
3831 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3832 						   tree_root,
3833 						   "btrfs-transaction");
3834 	if (IS_ERR(fs_info->transaction_kthread))
3835 		goto fail_cleaner;
3836 
3837 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3838 	    !fs_info->fs_devices->rotating) {
3839 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3840 	}
3841 
3842 	/*
3843 	 * For devices supporting discard turn on discard=async automatically,
3844 	 * unless it's already set or disabled. This could be turned off by
3845 	 * nodiscard for the same mount.
3846 	 */
3847 	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
3848 	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
3849 	      btrfs_test_opt(fs_info, NODISCARD)) &&
3850 	    fs_info->fs_devices->discardable) {
3851 		btrfs_set_and_info(fs_info, DISCARD_ASYNC,
3852 				   "auto enabling async discard");
3853 		btrfs_clear_opt(fs_info->mount_opt, NODISCARD);
3854 	}
3855 
3856 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3857 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3858 		ret = btrfsic_mount(fs_info, fs_devices,
3859 				    btrfs_test_opt(fs_info,
3860 					CHECK_INTEGRITY_DATA) ? 1 : 0,
3861 				    fs_info->check_integrity_print_mask);
3862 		if (ret)
3863 			btrfs_warn(fs_info,
3864 				"failed to initialize integrity check module: %d",
3865 				ret);
3866 	}
3867 #endif
3868 	ret = btrfs_read_qgroup_config(fs_info);
3869 	if (ret)
3870 		goto fail_trans_kthread;
3871 
3872 	if (btrfs_build_ref_tree(fs_info))
3873 		btrfs_err(fs_info, "couldn't build ref tree");
3874 
3875 	/* do not make disk changes in broken FS or nologreplay is given */
3876 	if (btrfs_super_log_root(disk_super) != 0 &&
3877 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3878 		btrfs_info(fs_info, "start tree-log replay");
3879 		ret = btrfs_replay_log(fs_info, fs_devices);
3880 		if (ret) {
3881 			err = ret;
3882 			goto fail_qgroup;
3883 		}
3884 	}
3885 
3886 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3887 	if (IS_ERR(fs_info->fs_root)) {
3888 		err = PTR_ERR(fs_info->fs_root);
3889 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3890 		fs_info->fs_root = NULL;
3891 		goto fail_qgroup;
3892 	}
3893 
3894 	if (sb_rdonly(sb))
3895 		goto clear_oneshot;
3896 
3897 	ret = btrfs_start_pre_rw_mount(fs_info);
3898 	if (ret) {
3899 		close_ctree(fs_info);
3900 		return ret;
3901 	}
3902 	btrfs_discard_resume(fs_info);
3903 
3904 	if (fs_info->uuid_root &&
3905 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3906 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3907 		btrfs_info(fs_info, "checking UUID tree");
3908 		ret = btrfs_check_uuid_tree(fs_info);
3909 		if (ret) {
3910 			btrfs_warn(fs_info,
3911 				"failed to check the UUID tree: %d", ret);
3912 			close_ctree(fs_info);
3913 			return ret;
3914 		}
3915 	}
3916 
3917 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3918 
3919 	/* Kick the cleaner thread so it'll start deleting snapshots. */
3920 	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3921 		wake_up_process(fs_info->cleaner_kthread);
3922 
3923 clear_oneshot:
3924 	btrfs_clear_oneshot_options(fs_info);
3925 	return 0;
3926 
3927 fail_qgroup:
3928 	btrfs_free_qgroup_config(fs_info);
3929 fail_trans_kthread:
3930 	kthread_stop(fs_info->transaction_kthread);
3931 	btrfs_cleanup_transaction(fs_info);
3932 	btrfs_free_fs_roots(fs_info);
3933 fail_cleaner:
3934 	kthread_stop(fs_info->cleaner_kthread);
3935 
3936 	/*
3937 	 * make sure we're done with the btree inode before we stop our
3938 	 * kthreads
3939 	 */
3940 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3941 
3942 fail_sysfs:
3943 	btrfs_sysfs_remove_mounted(fs_info);
3944 
3945 fail_fsdev_sysfs:
3946 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3947 
3948 fail_block_groups:
3949 	btrfs_put_block_group_cache(fs_info);
3950 
3951 fail_tree_roots:
3952 	if (fs_info->data_reloc_root)
3953 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3954 	free_root_pointers(fs_info, true);
3955 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3956 
3957 fail_sb_buffer:
3958 	btrfs_stop_all_workers(fs_info);
3959 	btrfs_free_block_groups(fs_info);
3960 fail_alloc:
3961 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3962 
3963 	iput(fs_info->btree_inode);
3964 fail:
3965 	btrfs_close_devices(fs_info->fs_devices);
3966 	return err;
3967 }
3968 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3969 
3970 static void btrfs_end_super_write(struct bio *bio)
3971 {
3972 	struct btrfs_device *device = bio->bi_private;
3973 	struct bio_vec *bvec;
3974 	struct bvec_iter_all iter_all;
3975 	struct page *page;
3976 
3977 	bio_for_each_segment_all(bvec, bio, iter_all) {
3978 		page = bvec->bv_page;
3979 
3980 		if (bio->bi_status) {
3981 			btrfs_warn_rl_in_rcu(device->fs_info,
3982 				"lost page write due to IO error on %s (%d)",
3983 				btrfs_dev_name(device),
3984 				blk_status_to_errno(bio->bi_status));
3985 			ClearPageUptodate(page);
3986 			SetPageError(page);
3987 			btrfs_dev_stat_inc_and_print(device,
3988 						     BTRFS_DEV_STAT_WRITE_ERRS);
3989 		} else {
3990 			SetPageUptodate(page);
3991 		}
3992 
3993 		put_page(page);
3994 		unlock_page(page);
3995 	}
3996 
3997 	bio_put(bio);
3998 }
3999 
4000 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
4001 						   int copy_num, bool drop_cache)
4002 {
4003 	struct btrfs_super_block *super;
4004 	struct page *page;
4005 	u64 bytenr, bytenr_orig;
4006 	struct address_space *mapping = bdev->bd_inode->i_mapping;
4007 	int ret;
4008 
4009 	bytenr_orig = btrfs_sb_offset(copy_num);
4010 	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
4011 	if (ret == -ENOENT)
4012 		return ERR_PTR(-EINVAL);
4013 	else if (ret)
4014 		return ERR_PTR(ret);
4015 
4016 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
4017 		return ERR_PTR(-EINVAL);
4018 
4019 	if (drop_cache) {
4020 		/* This should only be called with the primary sb. */
4021 		ASSERT(copy_num == 0);
4022 
4023 		/*
4024 		 * Drop the page of the primary superblock, so later read will
4025 		 * always read from the device.
4026 		 */
4027 		invalidate_inode_pages2_range(mapping,
4028 				bytenr >> PAGE_SHIFT,
4029 				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
4030 	}
4031 
4032 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
4033 	if (IS_ERR(page))
4034 		return ERR_CAST(page);
4035 
4036 	super = page_address(page);
4037 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
4038 		btrfs_release_disk_super(super);
4039 		return ERR_PTR(-ENODATA);
4040 	}
4041 
4042 	if (btrfs_super_bytenr(super) != bytenr_orig) {
4043 		btrfs_release_disk_super(super);
4044 		return ERR_PTR(-EINVAL);
4045 	}
4046 
4047 	return super;
4048 }
4049 
4050 
4051 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
4052 {
4053 	struct btrfs_super_block *super, *latest = NULL;
4054 	int i;
4055 	u64 transid = 0;
4056 
4057 	/* we would like to check all the supers, but that would make
4058 	 * a btrfs mount succeed after a mkfs from a different FS.
4059 	 * So, we need to add a special mount option to scan for
4060 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
4061 	 */
4062 	for (i = 0; i < 1; i++) {
4063 		super = btrfs_read_dev_one_super(bdev, i, false);
4064 		if (IS_ERR(super))
4065 			continue;
4066 
4067 		if (!latest || btrfs_super_generation(super) > transid) {
4068 			if (latest)
4069 				btrfs_release_disk_super(super);
4070 
4071 			latest = super;
4072 			transid = btrfs_super_generation(super);
4073 		}
4074 	}
4075 
4076 	return super;
4077 }
4078 
4079 /*
4080  * Write superblock @sb to the @device. Do not wait for completion, all the
4081  * pages we use for writing are locked.
4082  *
4083  * Write @max_mirrors copies of the superblock, where 0 means default that fit
4084  * the expected device size at commit time. Note that max_mirrors must be
4085  * same for write and wait phases.
4086  *
4087  * Return number of errors when page is not found or submission fails.
4088  */
4089 static int write_dev_supers(struct btrfs_device *device,
4090 			    struct btrfs_super_block *sb, int max_mirrors)
4091 {
4092 	struct btrfs_fs_info *fs_info = device->fs_info;
4093 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
4094 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
4095 	int i;
4096 	int errors = 0;
4097 	int ret;
4098 	u64 bytenr, bytenr_orig;
4099 
4100 	if (max_mirrors == 0)
4101 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4102 
4103 	shash->tfm = fs_info->csum_shash;
4104 
4105 	for (i = 0; i < max_mirrors; i++) {
4106 		struct page *page;
4107 		struct bio *bio;
4108 		struct btrfs_super_block *disk_super;
4109 
4110 		bytenr_orig = btrfs_sb_offset(i);
4111 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
4112 		if (ret == -ENOENT) {
4113 			continue;
4114 		} else if (ret < 0) {
4115 			btrfs_err(device->fs_info,
4116 				"couldn't get super block location for mirror %d",
4117 				i);
4118 			errors++;
4119 			continue;
4120 		}
4121 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4122 		    device->commit_total_bytes)
4123 			break;
4124 
4125 		btrfs_set_super_bytenr(sb, bytenr_orig);
4126 
4127 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
4128 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
4129 				    sb->csum);
4130 
4131 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
4132 					   GFP_NOFS);
4133 		if (!page) {
4134 			btrfs_err(device->fs_info,
4135 			    "couldn't get super block page for bytenr %llu",
4136 			    bytenr);
4137 			errors++;
4138 			continue;
4139 		}
4140 
4141 		/* Bump the refcount for wait_dev_supers() */
4142 		get_page(page);
4143 
4144 		disk_super = page_address(page);
4145 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4146 
4147 		/*
4148 		 * Directly use bios here instead of relying on the page cache
4149 		 * to do I/O, so we don't lose the ability to do integrity
4150 		 * checking.
4151 		 */
4152 		bio = bio_alloc(device->bdev, 1,
4153 				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
4154 				GFP_NOFS);
4155 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4156 		bio->bi_private = device;
4157 		bio->bi_end_io = btrfs_end_super_write;
4158 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4159 			       offset_in_page(bytenr));
4160 
4161 		/*
4162 		 * We FUA only the first super block.  The others we allow to
4163 		 * go down lazy and there's a short window where the on-disk
4164 		 * copies might still contain the older version.
4165 		 */
4166 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
4167 			bio->bi_opf |= REQ_FUA;
4168 
4169 		btrfsic_check_bio(bio);
4170 		submit_bio(bio);
4171 
4172 		if (btrfs_advance_sb_log(device, i))
4173 			errors++;
4174 	}
4175 	return errors < i ? 0 : -1;
4176 }
4177 
4178 /*
4179  * Wait for write completion of superblocks done by write_dev_supers,
4180  * @max_mirrors same for write and wait phases.
4181  *
4182  * Return number of errors when page is not found or not marked up to
4183  * date.
4184  */
4185 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4186 {
4187 	int i;
4188 	int errors = 0;
4189 	bool primary_failed = false;
4190 	int ret;
4191 	u64 bytenr;
4192 
4193 	if (max_mirrors == 0)
4194 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4195 
4196 	for (i = 0; i < max_mirrors; i++) {
4197 		struct page *page;
4198 
4199 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4200 		if (ret == -ENOENT) {
4201 			break;
4202 		} else if (ret < 0) {
4203 			errors++;
4204 			if (i == 0)
4205 				primary_failed = true;
4206 			continue;
4207 		}
4208 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4209 		    device->commit_total_bytes)
4210 			break;
4211 
4212 		page = find_get_page(device->bdev->bd_inode->i_mapping,
4213 				     bytenr >> PAGE_SHIFT);
4214 		if (!page) {
4215 			errors++;
4216 			if (i == 0)
4217 				primary_failed = true;
4218 			continue;
4219 		}
4220 		/* Page is submitted locked and unlocked once the IO completes */
4221 		wait_on_page_locked(page);
4222 		if (PageError(page)) {
4223 			errors++;
4224 			if (i == 0)
4225 				primary_failed = true;
4226 		}
4227 
4228 		/* Drop our reference */
4229 		put_page(page);
4230 
4231 		/* Drop the reference from the writing run */
4232 		put_page(page);
4233 	}
4234 
4235 	/* log error, force error return */
4236 	if (primary_failed) {
4237 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4238 			  device->devid);
4239 		return -1;
4240 	}
4241 
4242 	return errors < i ? 0 : -1;
4243 }
4244 
4245 /*
4246  * endio for the write_dev_flush, this will wake anyone waiting
4247  * for the barrier when it is done
4248  */
4249 static void btrfs_end_empty_barrier(struct bio *bio)
4250 {
4251 	bio_uninit(bio);
4252 	complete(bio->bi_private);
4253 }
4254 
4255 /*
4256  * Submit a flush request to the device if it supports it. Error handling is
4257  * done in the waiting counterpart.
4258  */
4259 static void write_dev_flush(struct btrfs_device *device)
4260 {
4261 	struct bio *bio = &device->flush_bio;
4262 
4263 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4264 	/*
4265 	 * When a disk has write caching disabled, we skip submission of a bio
4266 	 * with flush and sync requests before writing the superblock, since
4267 	 * it's not needed. However when the integrity checker is enabled, this
4268 	 * results in reports that there are metadata blocks referred by a
4269 	 * superblock that were not properly flushed. So don't skip the bio
4270 	 * submission only when the integrity checker is enabled for the sake
4271 	 * of simplicity, since this is a debug tool and not meant for use in
4272 	 * non-debug builds.
4273 	 */
4274 	if (!bdev_write_cache(device->bdev))
4275 		return;
4276 #endif
4277 
4278 	bio_init(bio, device->bdev, NULL, 0,
4279 		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
4280 	bio->bi_end_io = btrfs_end_empty_barrier;
4281 	init_completion(&device->flush_wait);
4282 	bio->bi_private = &device->flush_wait;
4283 
4284 	btrfsic_check_bio(bio);
4285 	submit_bio(bio);
4286 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4287 }
4288 
4289 /*
4290  * If the flush bio has been submitted by write_dev_flush, wait for it.
4291  */
4292 static blk_status_t wait_dev_flush(struct btrfs_device *device)
4293 {
4294 	struct bio *bio = &device->flush_bio;
4295 
4296 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4297 		return BLK_STS_OK;
4298 
4299 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4300 	wait_for_completion_io(&device->flush_wait);
4301 
4302 	return bio->bi_status;
4303 }
4304 
4305 static int check_barrier_error(struct btrfs_fs_info *fs_info)
4306 {
4307 	if (!btrfs_check_rw_degradable(fs_info, NULL))
4308 		return -EIO;
4309 	return 0;
4310 }
4311 
4312 /*
4313  * send an empty flush down to each device in parallel,
4314  * then wait for them
4315  */
4316 static int barrier_all_devices(struct btrfs_fs_info *info)
4317 {
4318 	struct list_head *head;
4319 	struct btrfs_device *dev;
4320 	int errors_wait = 0;
4321 	blk_status_t ret;
4322 
4323 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
4324 	/* send down all the barriers */
4325 	head = &info->fs_devices->devices;
4326 	list_for_each_entry(dev, head, dev_list) {
4327 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4328 			continue;
4329 		if (!dev->bdev)
4330 			continue;
4331 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4332 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4333 			continue;
4334 
4335 		write_dev_flush(dev);
4336 		dev->last_flush_error = BLK_STS_OK;
4337 	}
4338 
4339 	/* wait for all the barriers */
4340 	list_for_each_entry(dev, head, dev_list) {
4341 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4342 			continue;
4343 		if (!dev->bdev) {
4344 			errors_wait++;
4345 			continue;
4346 		}
4347 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4348 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4349 			continue;
4350 
4351 		ret = wait_dev_flush(dev);
4352 		if (ret) {
4353 			dev->last_flush_error = ret;
4354 			btrfs_dev_stat_inc_and_print(dev,
4355 					BTRFS_DEV_STAT_FLUSH_ERRS);
4356 			errors_wait++;
4357 		}
4358 	}
4359 
4360 	if (errors_wait) {
4361 		/*
4362 		 * At some point we need the status of all disks
4363 		 * to arrive at the volume status. So error checking
4364 		 * is being pushed to a separate loop.
4365 		 */
4366 		return check_barrier_error(info);
4367 	}
4368 	return 0;
4369 }
4370 
4371 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4372 {
4373 	int raid_type;
4374 	int min_tolerated = INT_MAX;
4375 
4376 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4377 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4378 		min_tolerated = min_t(int, min_tolerated,
4379 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4380 				    tolerated_failures);
4381 
4382 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4383 		if (raid_type == BTRFS_RAID_SINGLE)
4384 			continue;
4385 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4386 			continue;
4387 		min_tolerated = min_t(int, min_tolerated,
4388 				    btrfs_raid_array[raid_type].
4389 				    tolerated_failures);
4390 	}
4391 
4392 	if (min_tolerated == INT_MAX) {
4393 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4394 		min_tolerated = 0;
4395 	}
4396 
4397 	return min_tolerated;
4398 }
4399 
4400 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4401 {
4402 	struct list_head *head;
4403 	struct btrfs_device *dev;
4404 	struct btrfs_super_block *sb;
4405 	struct btrfs_dev_item *dev_item;
4406 	int ret;
4407 	int do_barriers;
4408 	int max_errors;
4409 	int total_errors = 0;
4410 	u64 flags;
4411 
4412 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4413 
4414 	/*
4415 	 * max_mirrors == 0 indicates we're from commit_transaction,
4416 	 * not from fsync where the tree roots in fs_info have not
4417 	 * been consistent on disk.
4418 	 */
4419 	if (max_mirrors == 0)
4420 		backup_super_roots(fs_info);
4421 
4422 	sb = fs_info->super_for_commit;
4423 	dev_item = &sb->dev_item;
4424 
4425 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4426 	head = &fs_info->fs_devices->devices;
4427 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4428 
4429 	if (do_barriers) {
4430 		ret = barrier_all_devices(fs_info);
4431 		if (ret) {
4432 			mutex_unlock(
4433 				&fs_info->fs_devices->device_list_mutex);
4434 			btrfs_handle_fs_error(fs_info, ret,
4435 					      "errors while submitting device barriers.");
4436 			return ret;
4437 		}
4438 	}
4439 
4440 	list_for_each_entry(dev, head, dev_list) {
4441 		if (!dev->bdev) {
4442 			total_errors++;
4443 			continue;
4444 		}
4445 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4446 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4447 			continue;
4448 
4449 		btrfs_set_stack_device_generation(dev_item, 0);
4450 		btrfs_set_stack_device_type(dev_item, dev->type);
4451 		btrfs_set_stack_device_id(dev_item, dev->devid);
4452 		btrfs_set_stack_device_total_bytes(dev_item,
4453 						   dev->commit_total_bytes);
4454 		btrfs_set_stack_device_bytes_used(dev_item,
4455 						  dev->commit_bytes_used);
4456 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4457 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4458 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4459 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4460 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4461 		       BTRFS_FSID_SIZE);
4462 
4463 		flags = btrfs_super_flags(sb);
4464 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4465 
4466 		ret = btrfs_validate_write_super(fs_info, sb);
4467 		if (ret < 0) {
4468 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4469 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4470 				"unexpected superblock corruption detected");
4471 			return -EUCLEAN;
4472 		}
4473 
4474 		ret = write_dev_supers(dev, sb, max_mirrors);
4475 		if (ret)
4476 			total_errors++;
4477 	}
4478 	if (total_errors > max_errors) {
4479 		btrfs_err(fs_info, "%d errors while writing supers",
4480 			  total_errors);
4481 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4482 
4483 		/* FUA is masked off if unsupported and can't be the reason */
4484 		btrfs_handle_fs_error(fs_info, -EIO,
4485 				      "%d errors while writing supers",
4486 				      total_errors);
4487 		return -EIO;
4488 	}
4489 
4490 	total_errors = 0;
4491 	list_for_each_entry(dev, head, dev_list) {
4492 		if (!dev->bdev)
4493 			continue;
4494 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4495 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4496 			continue;
4497 
4498 		ret = wait_dev_supers(dev, max_mirrors);
4499 		if (ret)
4500 			total_errors++;
4501 	}
4502 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4503 	if (total_errors > max_errors) {
4504 		btrfs_handle_fs_error(fs_info, -EIO,
4505 				      "%d errors while writing supers",
4506 				      total_errors);
4507 		return -EIO;
4508 	}
4509 	return 0;
4510 }
4511 
4512 /* Drop a fs root from the radix tree and free it. */
4513 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4514 				  struct btrfs_root *root)
4515 {
4516 	bool drop_ref = false;
4517 
4518 	spin_lock(&fs_info->fs_roots_radix_lock);
4519 	radix_tree_delete(&fs_info->fs_roots_radix,
4520 			  (unsigned long)root->root_key.objectid);
4521 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4522 		drop_ref = true;
4523 	spin_unlock(&fs_info->fs_roots_radix_lock);
4524 
4525 	if (BTRFS_FS_ERROR(fs_info)) {
4526 		ASSERT(root->log_root == NULL);
4527 		if (root->reloc_root) {
4528 			btrfs_put_root(root->reloc_root);
4529 			root->reloc_root = NULL;
4530 		}
4531 	}
4532 
4533 	if (drop_ref)
4534 		btrfs_put_root(root);
4535 }
4536 
4537 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4538 {
4539 	u64 root_objectid = 0;
4540 	struct btrfs_root *gang[8];
4541 	int i = 0;
4542 	int err = 0;
4543 	unsigned int ret = 0;
4544 
4545 	while (1) {
4546 		spin_lock(&fs_info->fs_roots_radix_lock);
4547 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4548 					     (void **)gang, root_objectid,
4549 					     ARRAY_SIZE(gang));
4550 		if (!ret) {
4551 			spin_unlock(&fs_info->fs_roots_radix_lock);
4552 			break;
4553 		}
4554 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4555 
4556 		for (i = 0; i < ret; i++) {
4557 			/* Avoid to grab roots in dead_roots */
4558 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4559 				gang[i] = NULL;
4560 				continue;
4561 			}
4562 			/* grab all the search result for later use */
4563 			gang[i] = btrfs_grab_root(gang[i]);
4564 		}
4565 		spin_unlock(&fs_info->fs_roots_radix_lock);
4566 
4567 		for (i = 0; i < ret; i++) {
4568 			if (!gang[i])
4569 				continue;
4570 			root_objectid = gang[i]->root_key.objectid;
4571 			err = btrfs_orphan_cleanup(gang[i]);
4572 			if (err)
4573 				break;
4574 			btrfs_put_root(gang[i]);
4575 		}
4576 		root_objectid++;
4577 	}
4578 
4579 	/* release the uncleaned roots due to error */
4580 	for (; i < ret; i++) {
4581 		if (gang[i])
4582 			btrfs_put_root(gang[i]);
4583 	}
4584 	return err;
4585 }
4586 
4587 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4588 {
4589 	struct btrfs_root *root = fs_info->tree_root;
4590 	struct btrfs_trans_handle *trans;
4591 
4592 	mutex_lock(&fs_info->cleaner_mutex);
4593 	btrfs_run_delayed_iputs(fs_info);
4594 	mutex_unlock(&fs_info->cleaner_mutex);
4595 	wake_up_process(fs_info->cleaner_kthread);
4596 
4597 	/* wait until ongoing cleanup work done */
4598 	down_write(&fs_info->cleanup_work_sem);
4599 	up_write(&fs_info->cleanup_work_sem);
4600 
4601 	trans = btrfs_join_transaction(root);
4602 	if (IS_ERR(trans))
4603 		return PTR_ERR(trans);
4604 	return btrfs_commit_transaction(trans);
4605 }
4606 
4607 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4608 {
4609 	struct btrfs_transaction *trans;
4610 	struct btrfs_transaction *tmp;
4611 	bool found = false;
4612 
4613 	if (list_empty(&fs_info->trans_list))
4614 		return;
4615 
4616 	/*
4617 	 * This function is only called at the very end of close_ctree(),
4618 	 * thus no other running transaction, no need to take trans_lock.
4619 	 */
4620 	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4621 	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4622 		struct extent_state *cached = NULL;
4623 		u64 dirty_bytes = 0;
4624 		u64 cur = 0;
4625 		u64 found_start;
4626 		u64 found_end;
4627 
4628 		found = true;
4629 		while (!find_first_extent_bit(&trans->dirty_pages, cur,
4630 			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4631 			dirty_bytes += found_end + 1 - found_start;
4632 			cur = found_end + 1;
4633 		}
4634 		btrfs_warn(fs_info,
4635 	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4636 			   trans->transid, dirty_bytes);
4637 		btrfs_cleanup_one_transaction(trans, fs_info);
4638 
4639 		if (trans == fs_info->running_transaction)
4640 			fs_info->running_transaction = NULL;
4641 		list_del_init(&trans->list);
4642 
4643 		btrfs_put_transaction(trans);
4644 		trace_btrfs_transaction_commit(fs_info);
4645 	}
4646 	ASSERT(!found);
4647 }
4648 
4649 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4650 {
4651 	int ret;
4652 
4653 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4654 
4655 	/*
4656 	 * If we had UNFINISHED_DROPS we could still be processing them, so
4657 	 * clear that bit and wake up relocation so it can stop.
4658 	 * We must do this before stopping the block group reclaim task, because
4659 	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4660 	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4661 	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4662 	 * return 1.
4663 	 */
4664 	btrfs_wake_unfinished_drop(fs_info);
4665 
4666 	/*
4667 	 * We may have the reclaim task running and relocating a data block group,
4668 	 * in which case it may create delayed iputs. So stop it before we park
4669 	 * the cleaner kthread otherwise we can get new delayed iputs after
4670 	 * parking the cleaner, and that can make the async reclaim task to hang
4671 	 * if it's waiting for delayed iputs to complete, since the cleaner is
4672 	 * parked and can not run delayed iputs - this will make us hang when
4673 	 * trying to stop the async reclaim task.
4674 	 */
4675 	cancel_work_sync(&fs_info->reclaim_bgs_work);
4676 	/*
4677 	 * We don't want the cleaner to start new transactions, add more delayed
4678 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4679 	 * because that frees the task_struct, and the transaction kthread might
4680 	 * still try to wake up the cleaner.
4681 	 */
4682 	kthread_park(fs_info->cleaner_kthread);
4683 
4684 	/* wait for the qgroup rescan worker to stop */
4685 	btrfs_qgroup_wait_for_completion(fs_info, false);
4686 
4687 	/* wait for the uuid_scan task to finish */
4688 	down(&fs_info->uuid_tree_rescan_sem);
4689 	/* avoid complains from lockdep et al., set sem back to initial state */
4690 	up(&fs_info->uuid_tree_rescan_sem);
4691 
4692 	/* pause restriper - we want to resume on mount */
4693 	btrfs_pause_balance(fs_info);
4694 
4695 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4696 
4697 	btrfs_scrub_cancel(fs_info);
4698 
4699 	/* wait for any defraggers to finish */
4700 	wait_event(fs_info->transaction_wait,
4701 		   (atomic_read(&fs_info->defrag_running) == 0));
4702 
4703 	/* clear out the rbtree of defraggable inodes */
4704 	btrfs_cleanup_defrag_inodes(fs_info);
4705 
4706 	/*
4707 	 * After we parked the cleaner kthread, ordered extents may have
4708 	 * completed and created new delayed iputs. If one of the async reclaim
4709 	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4710 	 * can hang forever trying to stop it, because if a delayed iput is
4711 	 * added after it ran btrfs_run_delayed_iputs() and before it called
4712 	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4713 	 * no one else to run iputs.
4714 	 *
4715 	 * So wait for all ongoing ordered extents to complete and then run
4716 	 * delayed iputs. This works because once we reach this point no one
4717 	 * can either create new ordered extents nor create delayed iputs
4718 	 * through some other means.
4719 	 *
4720 	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4721 	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4722 	 * but the delayed iput for the respective inode is made only when doing
4723 	 * the final btrfs_put_ordered_extent() (which must happen at
4724 	 * btrfs_finish_ordered_io() when we are unmounting).
4725 	 */
4726 	btrfs_flush_workqueue(fs_info->endio_write_workers);
4727 	/* Ordered extents for free space inodes. */
4728 	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4729 	btrfs_run_delayed_iputs(fs_info);
4730 
4731 	cancel_work_sync(&fs_info->async_reclaim_work);
4732 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4733 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4734 
4735 	/* Cancel or finish ongoing discard work */
4736 	btrfs_discard_cleanup(fs_info);
4737 
4738 	if (!sb_rdonly(fs_info->sb)) {
4739 		/*
4740 		 * The cleaner kthread is stopped, so do one final pass over
4741 		 * unused block groups.
4742 		 */
4743 		btrfs_delete_unused_bgs(fs_info);
4744 
4745 		/*
4746 		 * There might be existing delayed inode workers still running
4747 		 * and holding an empty delayed inode item. We must wait for
4748 		 * them to complete first because they can create a transaction.
4749 		 * This happens when someone calls btrfs_balance_delayed_items()
4750 		 * and then a transaction commit runs the same delayed nodes
4751 		 * before any delayed worker has done something with the nodes.
4752 		 * We must wait for any worker here and not at transaction
4753 		 * commit time since that could cause a deadlock.
4754 		 * This is a very rare case.
4755 		 */
4756 		btrfs_flush_workqueue(fs_info->delayed_workers);
4757 
4758 		ret = btrfs_commit_super(fs_info);
4759 		if (ret)
4760 			btrfs_err(fs_info, "commit super ret %d", ret);
4761 	}
4762 
4763 	if (BTRFS_FS_ERROR(fs_info))
4764 		btrfs_error_commit_super(fs_info);
4765 
4766 	kthread_stop(fs_info->transaction_kthread);
4767 	kthread_stop(fs_info->cleaner_kthread);
4768 
4769 	ASSERT(list_empty(&fs_info->delayed_iputs));
4770 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4771 
4772 	if (btrfs_check_quota_leak(fs_info)) {
4773 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4774 		btrfs_err(fs_info, "qgroup reserved space leaked");
4775 	}
4776 
4777 	btrfs_free_qgroup_config(fs_info);
4778 	ASSERT(list_empty(&fs_info->delalloc_roots));
4779 
4780 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4781 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4782 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4783 	}
4784 
4785 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4786 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4787 			   percpu_counter_sum(&fs_info->ordered_bytes));
4788 
4789 	btrfs_sysfs_remove_mounted(fs_info);
4790 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4791 
4792 	btrfs_put_block_group_cache(fs_info);
4793 
4794 	/*
4795 	 * we must make sure there is not any read request to
4796 	 * submit after we stopping all workers.
4797 	 */
4798 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4799 	btrfs_stop_all_workers(fs_info);
4800 
4801 	/* We shouldn't have any transaction open at this point */
4802 	warn_about_uncommitted_trans(fs_info);
4803 
4804 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4805 	free_root_pointers(fs_info, true);
4806 	btrfs_free_fs_roots(fs_info);
4807 
4808 	/*
4809 	 * We must free the block groups after dropping the fs_roots as we could
4810 	 * have had an IO error and have left over tree log blocks that aren't
4811 	 * cleaned up until the fs roots are freed.  This makes the block group
4812 	 * accounting appear to be wrong because there's pending reserved bytes,
4813 	 * so make sure we do the block group cleanup afterwards.
4814 	 */
4815 	btrfs_free_block_groups(fs_info);
4816 
4817 	iput(fs_info->btree_inode);
4818 
4819 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4820 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4821 		btrfsic_unmount(fs_info->fs_devices);
4822 #endif
4823 
4824 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4825 	btrfs_close_devices(fs_info->fs_devices);
4826 }
4827 
4828 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4829 			  int atomic)
4830 {
4831 	int ret;
4832 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4833 
4834 	ret = extent_buffer_uptodate(buf);
4835 	if (!ret)
4836 		return ret;
4837 
4838 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4839 				    parent_transid, atomic);
4840 	if (ret == -EAGAIN)
4841 		return ret;
4842 	return !ret;
4843 }
4844 
4845 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4846 {
4847 	struct btrfs_fs_info *fs_info = buf->fs_info;
4848 	u64 transid = btrfs_header_generation(buf);
4849 	int was_dirty;
4850 
4851 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4852 	/*
4853 	 * This is a fast path so only do this check if we have sanity tests
4854 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4855 	 * outside of the sanity tests.
4856 	 */
4857 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4858 		return;
4859 #endif
4860 	btrfs_assert_tree_write_locked(buf);
4861 	if (transid != fs_info->generation)
4862 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4863 			buf->start, transid, fs_info->generation);
4864 	was_dirty = set_extent_buffer_dirty(buf);
4865 	if (!was_dirty)
4866 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4867 					 buf->len,
4868 					 fs_info->dirty_metadata_batch);
4869 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4870 	/*
4871 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4872 	 * but item data not updated.
4873 	 * So here we should only check item pointers, not item data.
4874 	 */
4875 	if (btrfs_header_level(buf) == 0 &&
4876 	    btrfs_check_leaf_relaxed(buf)) {
4877 		btrfs_print_leaf(buf);
4878 		ASSERT(0);
4879 	}
4880 #endif
4881 }
4882 
4883 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4884 					int flush_delayed)
4885 {
4886 	/*
4887 	 * looks as though older kernels can get into trouble with
4888 	 * this code, they end up stuck in balance_dirty_pages forever
4889 	 */
4890 	int ret;
4891 
4892 	if (current->flags & PF_MEMALLOC)
4893 		return;
4894 
4895 	if (flush_delayed)
4896 		btrfs_balance_delayed_items(fs_info);
4897 
4898 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4899 				     BTRFS_DIRTY_METADATA_THRESH,
4900 				     fs_info->dirty_metadata_batch);
4901 	if (ret > 0) {
4902 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4903 	}
4904 }
4905 
4906 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4907 {
4908 	__btrfs_btree_balance_dirty(fs_info, 1);
4909 }
4910 
4911 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4912 {
4913 	__btrfs_btree_balance_dirty(fs_info, 0);
4914 }
4915 
4916 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4917 {
4918 	/* cleanup FS via transaction */
4919 	btrfs_cleanup_transaction(fs_info);
4920 
4921 	mutex_lock(&fs_info->cleaner_mutex);
4922 	btrfs_run_delayed_iputs(fs_info);
4923 	mutex_unlock(&fs_info->cleaner_mutex);
4924 
4925 	down_write(&fs_info->cleanup_work_sem);
4926 	up_write(&fs_info->cleanup_work_sem);
4927 }
4928 
4929 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4930 {
4931 	struct btrfs_root *gang[8];
4932 	u64 root_objectid = 0;
4933 	int ret;
4934 
4935 	spin_lock(&fs_info->fs_roots_radix_lock);
4936 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4937 					     (void **)gang, root_objectid,
4938 					     ARRAY_SIZE(gang))) != 0) {
4939 		int i;
4940 
4941 		for (i = 0; i < ret; i++)
4942 			gang[i] = btrfs_grab_root(gang[i]);
4943 		spin_unlock(&fs_info->fs_roots_radix_lock);
4944 
4945 		for (i = 0; i < ret; i++) {
4946 			if (!gang[i])
4947 				continue;
4948 			root_objectid = gang[i]->root_key.objectid;
4949 			btrfs_free_log(NULL, gang[i]);
4950 			btrfs_put_root(gang[i]);
4951 		}
4952 		root_objectid++;
4953 		spin_lock(&fs_info->fs_roots_radix_lock);
4954 	}
4955 	spin_unlock(&fs_info->fs_roots_radix_lock);
4956 	btrfs_free_log_root_tree(NULL, fs_info);
4957 }
4958 
4959 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4960 {
4961 	struct btrfs_ordered_extent *ordered;
4962 
4963 	spin_lock(&root->ordered_extent_lock);
4964 	/*
4965 	 * This will just short circuit the ordered completion stuff which will
4966 	 * make sure the ordered extent gets properly cleaned up.
4967 	 */
4968 	list_for_each_entry(ordered, &root->ordered_extents,
4969 			    root_extent_list)
4970 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4971 	spin_unlock(&root->ordered_extent_lock);
4972 }
4973 
4974 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4975 {
4976 	struct btrfs_root *root;
4977 	struct list_head splice;
4978 
4979 	INIT_LIST_HEAD(&splice);
4980 
4981 	spin_lock(&fs_info->ordered_root_lock);
4982 	list_splice_init(&fs_info->ordered_roots, &splice);
4983 	while (!list_empty(&splice)) {
4984 		root = list_first_entry(&splice, struct btrfs_root,
4985 					ordered_root);
4986 		list_move_tail(&root->ordered_root,
4987 			       &fs_info->ordered_roots);
4988 
4989 		spin_unlock(&fs_info->ordered_root_lock);
4990 		btrfs_destroy_ordered_extents(root);
4991 
4992 		cond_resched();
4993 		spin_lock(&fs_info->ordered_root_lock);
4994 	}
4995 	spin_unlock(&fs_info->ordered_root_lock);
4996 
4997 	/*
4998 	 * We need this here because if we've been flipped read-only we won't
4999 	 * get sync() from the umount, so we need to make sure any ordered
5000 	 * extents that haven't had their dirty pages IO start writeout yet
5001 	 * actually get run and error out properly.
5002 	 */
5003 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
5004 }
5005 
5006 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
5007 				      struct btrfs_fs_info *fs_info)
5008 {
5009 	struct rb_node *node;
5010 	struct btrfs_delayed_ref_root *delayed_refs;
5011 	struct btrfs_delayed_ref_node *ref;
5012 	int ret = 0;
5013 
5014 	delayed_refs = &trans->delayed_refs;
5015 
5016 	spin_lock(&delayed_refs->lock);
5017 	if (atomic_read(&delayed_refs->num_entries) == 0) {
5018 		spin_unlock(&delayed_refs->lock);
5019 		btrfs_debug(fs_info, "delayed_refs has NO entry");
5020 		return ret;
5021 	}
5022 
5023 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
5024 		struct btrfs_delayed_ref_head *head;
5025 		struct rb_node *n;
5026 		bool pin_bytes = false;
5027 
5028 		head = rb_entry(node, struct btrfs_delayed_ref_head,
5029 				href_node);
5030 		if (btrfs_delayed_ref_lock(delayed_refs, head))
5031 			continue;
5032 
5033 		spin_lock(&head->lock);
5034 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
5035 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
5036 				       ref_node);
5037 			ref->in_tree = 0;
5038 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
5039 			RB_CLEAR_NODE(&ref->ref_node);
5040 			if (!list_empty(&ref->add_list))
5041 				list_del(&ref->add_list);
5042 			atomic_dec(&delayed_refs->num_entries);
5043 			btrfs_put_delayed_ref(ref);
5044 		}
5045 		if (head->must_insert_reserved)
5046 			pin_bytes = true;
5047 		btrfs_free_delayed_extent_op(head->extent_op);
5048 		btrfs_delete_ref_head(delayed_refs, head);
5049 		spin_unlock(&head->lock);
5050 		spin_unlock(&delayed_refs->lock);
5051 		mutex_unlock(&head->mutex);
5052 
5053 		if (pin_bytes) {
5054 			struct btrfs_block_group *cache;
5055 
5056 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
5057 			BUG_ON(!cache);
5058 
5059 			spin_lock(&cache->space_info->lock);
5060 			spin_lock(&cache->lock);
5061 			cache->pinned += head->num_bytes;
5062 			btrfs_space_info_update_bytes_pinned(fs_info,
5063 				cache->space_info, head->num_bytes);
5064 			cache->reserved -= head->num_bytes;
5065 			cache->space_info->bytes_reserved -= head->num_bytes;
5066 			spin_unlock(&cache->lock);
5067 			spin_unlock(&cache->space_info->lock);
5068 
5069 			btrfs_put_block_group(cache);
5070 
5071 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
5072 				head->bytenr + head->num_bytes - 1);
5073 		}
5074 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
5075 		btrfs_put_delayed_ref_head(head);
5076 		cond_resched();
5077 		spin_lock(&delayed_refs->lock);
5078 	}
5079 	btrfs_qgroup_destroy_extent_records(trans);
5080 
5081 	spin_unlock(&delayed_refs->lock);
5082 
5083 	return ret;
5084 }
5085 
5086 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
5087 {
5088 	struct btrfs_inode *btrfs_inode;
5089 	struct list_head splice;
5090 
5091 	INIT_LIST_HEAD(&splice);
5092 
5093 	spin_lock(&root->delalloc_lock);
5094 	list_splice_init(&root->delalloc_inodes, &splice);
5095 
5096 	while (!list_empty(&splice)) {
5097 		struct inode *inode = NULL;
5098 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
5099 					       delalloc_inodes);
5100 		__btrfs_del_delalloc_inode(root, btrfs_inode);
5101 		spin_unlock(&root->delalloc_lock);
5102 
5103 		/*
5104 		 * Make sure we get a live inode and that it'll not disappear
5105 		 * meanwhile.
5106 		 */
5107 		inode = igrab(&btrfs_inode->vfs_inode);
5108 		if (inode) {
5109 			invalidate_inode_pages2(inode->i_mapping);
5110 			iput(inode);
5111 		}
5112 		spin_lock(&root->delalloc_lock);
5113 	}
5114 	spin_unlock(&root->delalloc_lock);
5115 }
5116 
5117 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
5118 {
5119 	struct btrfs_root *root;
5120 	struct list_head splice;
5121 
5122 	INIT_LIST_HEAD(&splice);
5123 
5124 	spin_lock(&fs_info->delalloc_root_lock);
5125 	list_splice_init(&fs_info->delalloc_roots, &splice);
5126 	while (!list_empty(&splice)) {
5127 		root = list_first_entry(&splice, struct btrfs_root,
5128 					 delalloc_root);
5129 		root = btrfs_grab_root(root);
5130 		BUG_ON(!root);
5131 		spin_unlock(&fs_info->delalloc_root_lock);
5132 
5133 		btrfs_destroy_delalloc_inodes(root);
5134 		btrfs_put_root(root);
5135 
5136 		spin_lock(&fs_info->delalloc_root_lock);
5137 	}
5138 	spin_unlock(&fs_info->delalloc_root_lock);
5139 }
5140 
5141 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
5142 					struct extent_io_tree *dirty_pages,
5143 					int mark)
5144 {
5145 	int ret;
5146 	struct extent_buffer *eb;
5147 	u64 start = 0;
5148 	u64 end;
5149 
5150 	while (1) {
5151 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
5152 					    mark, NULL);
5153 		if (ret)
5154 			break;
5155 
5156 		clear_extent_bits(dirty_pages, start, end, mark);
5157 		while (start <= end) {
5158 			eb = find_extent_buffer(fs_info, start);
5159 			start += fs_info->nodesize;
5160 			if (!eb)
5161 				continue;
5162 			wait_on_extent_buffer_writeback(eb);
5163 
5164 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5165 					       &eb->bflags))
5166 				clear_extent_buffer_dirty(eb);
5167 			free_extent_buffer_stale(eb);
5168 		}
5169 	}
5170 
5171 	return ret;
5172 }
5173 
5174 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
5175 				       struct extent_io_tree *unpin)
5176 {
5177 	u64 start;
5178 	u64 end;
5179 	int ret;
5180 
5181 	while (1) {
5182 		struct extent_state *cached_state = NULL;
5183 
5184 		/*
5185 		 * The btrfs_finish_extent_commit() may get the same range as
5186 		 * ours between find_first_extent_bit and clear_extent_dirty.
5187 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5188 		 * the same extent range.
5189 		 */
5190 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
5191 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5192 					    EXTENT_DIRTY, &cached_state);
5193 		if (ret) {
5194 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5195 			break;
5196 		}
5197 
5198 		clear_extent_dirty(unpin, start, end, &cached_state);
5199 		free_extent_state(cached_state);
5200 		btrfs_error_unpin_extent_range(fs_info, start, end);
5201 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5202 		cond_resched();
5203 	}
5204 
5205 	return 0;
5206 }
5207 
5208 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
5209 {
5210 	struct inode *inode;
5211 
5212 	inode = cache->io_ctl.inode;
5213 	if (inode) {
5214 		invalidate_inode_pages2(inode->i_mapping);
5215 		BTRFS_I(inode)->generation = 0;
5216 		cache->io_ctl.inode = NULL;
5217 		iput(inode);
5218 	}
5219 	ASSERT(cache->io_ctl.pages == NULL);
5220 	btrfs_put_block_group(cache);
5221 }
5222 
5223 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
5224 			     struct btrfs_fs_info *fs_info)
5225 {
5226 	struct btrfs_block_group *cache;
5227 
5228 	spin_lock(&cur_trans->dirty_bgs_lock);
5229 	while (!list_empty(&cur_trans->dirty_bgs)) {
5230 		cache = list_first_entry(&cur_trans->dirty_bgs,
5231 					 struct btrfs_block_group,
5232 					 dirty_list);
5233 
5234 		if (!list_empty(&cache->io_list)) {
5235 			spin_unlock(&cur_trans->dirty_bgs_lock);
5236 			list_del_init(&cache->io_list);
5237 			btrfs_cleanup_bg_io(cache);
5238 			spin_lock(&cur_trans->dirty_bgs_lock);
5239 		}
5240 
5241 		list_del_init(&cache->dirty_list);
5242 		spin_lock(&cache->lock);
5243 		cache->disk_cache_state = BTRFS_DC_ERROR;
5244 		spin_unlock(&cache->lock);
5245 
5246 		spin_unlock(&cur_trans->dirty_bgs_lock);
5247 		btrfs_put_block_group(cache);
5248 		btrfs_delayed_refs_rsv_release(fs_info, 1);
5249 		spin_lock(&cur_trans->dirty_bgs_lock);
5250 	}
5251 	spin_unlock(&cur_trans->dirty_bgs_lock);
5252 
5253 	/*
5254 	 * Refer to the definition of io_bgs member for details why it's safe
5255 	 * to use it without any locking
5256 	 */
5257 	while (!list_empty(&cur_trans->io_bgs)) {
5258 		cache = list_first_entry(&cur_trans->io_bgs,
5259 					 struct btrfs_block_group,
5260 					 io_list);
5261 
5262 		list_del_init(&cache->io_list);
5263 		spin_lock(&cache->lock);
5264 		cache->disk_cache_state = BTRFS_DC_ERROR;
5265 		spin_unlock(&cache->lock);
5266 		btrfs_cleanup_bg_io(cache);
5267 	}
5268 }
5269 
5270 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
5271 				   struct btrfs_fs_info *fs_info)
5272 {
5273 	struct btrfs_device *dev, *tmp;
5274 
5275 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
5276 	ASSERT(list_empty(&cur_trans->dirty_bgs));
5277 	ASSERT(list_empty(&cur_trans->io_bgs));
5278 
5279 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5280 				 post_commit_list) {
5281 		list_del_init(&dev->post_commit_list);
5282 	}
5283 
5284 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
5285 
5286 	cur_trans->state = TRANS_STATE_COMMIT_START;
5287 	wake_up(&fs_info->transaction_blocked_wait);
5288 
5289 	cur_trans->state = TRANS_STATE_UNBLOCKED;
5290 	wake_up(&fs_info->transaction_wait);
5291 
5292 	btrfs_destroy_delayed_inodes(fs_info);
5293 
5294 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
5295 				     EXTENT_DIRTY);
5296 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
5297 
5298 	btrfs_free_redirty_list(cur_trans);
5299 
5300 	cur_trans->state =TRANS_STATE_COMPLETED;
5301 	wake_up(&cur_trans->commit_wait);
5302 }
5303 
5304 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
5305 {
5306 	struct btrfs_transaction *t;
5307 
5308 	mutex_lock(&fs_info->transaction_kthread_mutex);
5309 
5310 	spin_lock(&fs_info->trans_lock);
5311 	while (!list_empty(&fs_info->trans_list)) {
5312 		t = list_first_entry(&fs_info->trans_list,
5313 				     struct btrfs_transaction, list);
5314 		if (t->state >= TRANS_STATE_COMMIT_START) {
5315 			refcount_inc(&t->use_count);
5316 			spin_unlock(&fs_info->trans_lock);
5317 			btrfs_wait_for_commit(fs_info, t->transid);
5318 			btrfs_put_transaction(t);
5319 			spin_lock(&fs_info->trans_lock);
5320 			continue;
5321 		}
5322 		if (t == fs_info->running_transaction) {
5323 			t->state = TRANS_STATE_COMMIT_DOING;
5324 			spin_unlock(&fs_info->trans_lock);
5325 			/*
5326 			 * We wait for 0 num_writers since we don't hold a trans
5327 			 * handle open currently for this transaction.
5328 			 */
5329 			wait_event(t->writer_wait,
5330 				   atomic_read(&t->num_writers) == 0);
5331 		} else {
5332 			spin_unlock(&fs_info->trans_lock);
5333 		}
5334 		btrfs_cleanup_one_transaction(t, fs_info);
5335 
5336 		spin_lock(&fs_info->trans_lock);
5337 		if (t == fs_info->running_transaction)
5338 			fs_info->running_transaction = NULL;
5339 		list_del_init(&t->list);
5340 		spin_unlock(&fs_info->trans_lock);
5341 
5342 		btrfs_put_transaction(t);
5343 		trace_btrfs_transaction_commit(fs_info);
5344 		spin_lock(&fs_info->trans_lock);
5345 	}
5346 	spin_unlock(&fs_info->trans_lock);
5347 	btrfs_destroy_all_ordered_extents(fs_info);
5348 	btrfs_destroy_delayed_inodes(fs_info);
5349 	btrfs_assert_delayed_root_empty(fs_info);
5350 	btrfs_destroy_all_delalloc_inodes(fs_info);
5351 	btrfs_drop_all_logs(fs_info);
5352 	mutex_unlock(&fs_info->transaction_kthread_mutex);
5353 
5354 	return 0;
5355 }
5356 
5357 int btrfs_init_root_free_objectid(struct btrfs_root *root)
5358 {
5359 	struct btrfs_path *path;
5360 	int ret;
5361 	struct extent_buffer *l;
5362 	struct btrfs_key search_key;
5363 	struct btrfs_key found_key;
5364 	int slot;
5365 
5366 	path = btrfs_alloc_path();
5367 	if (!path)
5368 		return -ENOMEM;
5369 
5370 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5371 	search_key.type = -1;
5372 	search_key.offset = (u64)-1;
5373 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5374 	if (ret < 0)
5375 		goto error;
5376 	BUG_ON(ret == 0); /* Corruption */
5377 	if (path->slots[0] > 0) {
5378 		slot = path->slots[0] - 1;
5379 		l = path->nodes[0];
5380 		btrfs_item_key_to_cpu(l, &found_key, slot);
5381 		root->free_objectid = max_t(u64, found_key.objectid + 1,
5382 					    BTRFS_FIRST_FREE_OBJECTID);
5383 	} else {
5384 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5385 	}
5386 	ret = 0;
5387 error:
5388 	btrfs_free_path(path);
5389 	return ret;
5390 }
5391 
5392 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5393 {
5394 	int ret;
5395 	mutex_lock(&root->objectid_mutex);
5396 
5397 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5398 		btrfs_warn(root->fs_info,
5399 			   "the objectid of root %llu reaches its highest value",
5400 			   root->root_key.objectid);
5401 		ret = -ENOSPC;
5402 		goto out;
5403 	}
5404 
5405 	*objectid = root->free_objectid++;
5406 	ret = 0;
5407 out:
5408 	mutex_unlock(&root->objectid_mutex);
5409 	return ret;
5410 }
5411