xref: /openbmc/linux/fs/btrfs/disk-io.c (revision ac73d4bf2cdaf2cb8a43df8ee4a5c066d2c5d7b4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46 
47 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
48 				 BTRFS_HEADER_FLAG_RELOC |\
49 				 BTRFS_SUPER_FLAG_ERROR |\
50 				 BTRFS_SUPER_FLAG_SEEDING |\
51 				 BTRFS_SUPER_FLAG_METADUMP |\
52 				 BTRFS_SUPER_FLAG_METADUMP_V2)
53 
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 				      struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59 					struct extent_io_tree *dirty_pages,
60 					int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62 				       struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65 
66 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
67 {
68 	if (fs_info->csum_shash)
69 		crypto_free_shash(fs_info->csum_shash);
70 }
71 
72 /*
73  * async submit bios are used to offload expensive checksumming
74  * onto the worker threads.  They checksum file and metadata bios
75  * just before they are sent down the IO stack.
76  */
77 struct async_submit_bio {
78 	struct inode *inode;
79 	struct bio *bio;
80 	extent_submit_bio_start_t *submit_bio_start;
81 	int mirror_num;
82 
83 	/* Optional parameter for submit_bio_start used by direct io */
84 	u64 dio_file_offset;
85 	struct btrfs_work work;
86 	blk_status_t status;
87 };
88 
89 /*
90  * Compute the csum of a btree block and store the result to provided buffer.
91  */
92 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
93 {
94 	struct btrfs_fs_info *fs_info = buf->fs_info;
95 	const int num_pages = num_extent_pages(buf);
96 	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
97 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
98 	char *kaddr;
99 	int i;
100 
101 	shash->tfm = fs_info->csum_shash;
102 	crypto_shash_init(shash);
103 	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
104 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
105 			    first_page_part - BTRFS_CSUM_SIZE);
106 
107 	for (i = 1; i < num_pages; i++) {
108 		kaddr = page_address(buf->pages[i]);
109 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
110 	}
111 	memset(result, 0, BTRFS_CSUM_SIZE);
112 	crypto_shash_final(shash, result);
113 }
114 
115 /*
116  * we can't consider a given block up to date unless the transid of the
117  * block matches the transid in the parent node's pointer.  This is how we
118  * detect blocks that either didn't get written at all or got written
119  * in the wrong place.
120  */
121 static int verify_parent_transid(struct extent_io_tree *io_tree,
122 				 struct extent_buffer *eb, u64 parent_transid,
123 				 int atomic)
124 {
125 	struct extent_state *cached_state = NULL;
126 	int ret;
127 
128 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
129 		return 0;
130 
131 	if (atomic)
132 		return -EAGAIN;
133 
134 	lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state);
135 	if (extent_buffer_uptodate(eb) &&
136 	    btrfs_header_generation(eb) == parent_transid) {
137 		ret = 0;
138 		goto out;
139 	}
140 	btrfs_err_rl(eb->fs_info,
141 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
142 			eb->start, eb->read_mirror,
143 			parent_transid, btrfs_header_generation(eb));
144 	ret = 1;
145 	clear_extent_buffer_uptodate(eb);
146 out:
147 	unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
148 		      &cached_state);
149 	return ret;
150 }
151 
152 static bool btrfs_supported_super_csum(u16 csum_type)
153 {
154 	switch (csum_type) {
155 	case BTRFS_CSUM_TYPE_CRC32:
156 	case BTRFS_CSUM_TYPE_XXHASH:
157 	case BTRFS_CSUM_TYPE_SHA256:
158 	case BTRFS_CSUM_TYPE_BLAKE2:
159 		return true;
160 	default:
161 		return false;
162 	}
163 }
164 
165 /*
166  * Return 0 if the superblock checksum type matches the checksum value of that
167  * algorithm. Pass the raw disk superblock data.
168  */
169 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
170 			   const struct btrfs_super_block *disk_sb)
171 {
172 	char result[BTRFS_CSUM_SIZE];
173 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
174 
175 	shash->tfm = fs_info->csum_shash;
176 
177 	/*
178 	 * The super_block structure does not span the whole
179 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
180 	 * filled with zeros and is included in the checksum.
181 	 */
182 	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
183 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
184 
185 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
186 		return 1;
187 
188 	return 0;
189 }
190 
191 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
192 			   struct btrfs_key *first_key, u64 parent_transid)
193 {
194 	struct btrfs_fs_info *fs_info = eb->fs_info;
195 	int found_level;
196 	struct btrfs_key found_key;
197 	int ret;
198 
199 	found_level = btrfs_header_level(eb);
200 	if (found_level != level) {
201 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
202 		     KERN_ERR "BTRFS: tree level check failed\n");
203 		btrfs_err(fs_info,
204 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
205 			  eb->start, level, found_level);
206 		return -EIO;
207 	}
208 
209 	if (!first_key)
210 		return 0;
211 
212 	/*
213 	 * For live tree block (new tree blocks in current transaction),
214 	 * we need proper lock context to avoid race, which is impossible here.
215 	 * So we only checks tree blocks which is read from disk, whose
216 	 * generation <= fs_info->last_trans_committed.
217 	 */
218 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
219 		return 0;
220 
221 	/* We have @first_key, so this @eb must have at least one item */
222 	if (btrfs_header_nritems(eb) == 0) {
223 		btrfs_err(fs_info,
224 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
225 			  eb->start);
226 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
227 		return -EUCLEAN;
228 	}
229 
230 	if (found_level)
231 		btrfs_node_key_to_cpu(eb, &found_key, 0);
232 	else
233 		btrfs_item_key_to_cpu(eb, &found_key, 0);
234 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
235 
236 	if (ret) {
237 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
238 		     KERN_ERR "BTRFS: tree first key check failed\n");
239 		btrfs_err(fs_info,
240 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
241 			  eb->start, parent_transid, first_key->objectid,
242 			  first_key->type, first_key->offset,
243 			  found_key.objectid, found_key.type,
244 			  found_key.offset);
245 	}
246 	return ret;
247 }
248 
249 /*
250  * helper to read a given tree block, doing retries as required when
251  * the checksums don't match and we have alternate mirrors to try.
252  *
253  * @parent_transid:	expected transid, skip check if 0
254  * @level:		expected level, mandatory check
255  * @first_key:		expected key of first slot, skip check if NULL
256  */
257 int btrfs_read_extent_buffer(struct extent_buffer *eb,
258 			     u64 parent_transid, int level,
259 			     struct btrfs_key *first_key)
260 {
261 	struct btrfs_fs_info *fs_info = eb->fs_info;
262 	struct extent_io_tree *io_tree;
263 	int failed = 0;
264 	int ret;
265 	int num_copies = 0;
266 	int mirror_num = 0;
267 	int failed_mirror = 0;
268 
269 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
270 	while (1) {
271 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
272 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
273 		if (!ret) {
274 			if (verify_parent_transid(io_tree, eb,
275 						   parent_transid, 0))
276 				ret = -EIO;
277 			else if (btrfs_verify_level_key(eb, level,
278 						first_key, parent_transid))
279 				ret = -EUCLEAN;
280 			else
281 				break;
282 		}
283 
284 		num_copies = btrfs_num_copies(fs_info,
285 					      eb->start, eb->len);
286 		if (num_copies == 1)
287 			break;
288 
289 		if (!failed_mirror) {
290 			failed = 1;
291 			failed_mirror = eb->read_mirror;
292 		}
293 
294 		mirror_num++;
295 		if (mirror_num == failed_mirror)
296 			mirror_num++;
297 
298 		if (mirror_num > num_copies)
299 			break;
300 	}
301 
302 	if (failed && !ret && failed_mirror)
303 		btrfs_repair_eb_io_failure(eb, failed_mirror);
304 
305 	return ret;
306 }
307 
308 static int csum_one_extent_buffer(struct extent_buffer *eb)
309 {
310 	struct btrfs_fs_info *fs_info = eb->fs_info;
311 	u8 result[BTRFS_CSUM_SIZE];
312 	int ret;
313 
314 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
315 				    offsetof(struct btrfs_header, fsid),
316 				    BTRFS_FSID_SIZE) == 0);
317 	csum_tree_block(eb, result);
318 
319 	if (btrfs_header_level(eb))
320 		ret = btrfs_check_node(eb);
321 	else
322 		ret = btrfs_check_leaf_full(eb);
323 
324 	if (ret < 0)
325 		goto error;
326 
327 	/*
328 	 * Also check the generation, the eb reached here must be newer than
329 	 * last committed. Or something seriously wrong happened.
330 	 */
331 	if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
332 		ret = -EUCLEAN;
333 		btrfs_err(fs_info,
334 			"block=%llu bad generation, have %llu expect > %llu",
335 			  eb->start, btrfs_header_generation(eb),
336 			  fs_info->last_trans_committed);
337 		goto error;
338 	}
339 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
340 
341 	return 0;
342 
343 error:
344 	btrfs_print_tree(eb, 0);
345 	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
346 		  eb->start);
347 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
348 	return ret;
349 }
350 
351 /* Checksum all dirty extent buffers in one bio_vec */
352 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
353 				      struct bio_vec *bvec)
354 {
355 	struct page *page = bvec->bv_page;
356 	u64 bvec_start = page_offset(page) + bvec->bv_offset;
357 	u64 cur;
358 	int ret = 0;
359 
360 	for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
361 	     cur += fs_info->nodesize) {
362 		struct extent_buffer *eb;
363 		bool uptodate;
364 
365 		eb = find_extent_buffer(fs_info, cur);
366 		uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
367 						       fs_info->nodesize);
368 
369 		/* A dirty eb shouldn't disappear from buffer_radix */
370 		if (WARN_ON(!eb))
371 			return -EUCLEAN;
372 
373 		if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
374 			free_extent_buffer(eb);
375 			return -EUCLEAN;
376 		}
377 		if (WARN_ON(!uptodate)) {
378 			free_extent_buffer(eb);
379 			return -EUCLEAN;
380 		}
381 
382 		ret = csum_one_extent_buffer(eb);
383 		free_extent_buffer(eb);
384 		if (ret < 0)
385 			return ret;
386 	}
387 	return ret;
388 }
389 
390 /*
391  * Checksum a dirty tree block before IO.  This has extra checks to make sure
392  * we only fill in the checksum field in the first page of a multi-page block.
393  * For subpage extent buffers we need bvec to also read the offset in the page.
394  */
395 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
396 {
397 	struct page *page = bvec->bv_page;
398 	u64 start = page_offset(page);
399 	u64 found_start;
400 	struct extent_buffer *eb;
401 
402 	if (fs_info->nodesize < PAGE_SIZE)
403 		return csum_dirty_subpage_buffers(fs_info, bvec);
404 
405 	eb = (struct extent_buffer *)page->private;
406 	if (page != eb->pages[0])
407 		return 0;
408 
409 	found_start = btrfs_header_bytenr(eb);
410 
411 	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
412 		WARN_ON(found_start != 0);
413 		return 0;
414 	}
415 
416 	/*
417 	 * Please do not consolidate these warnings into a single if.
418 	 * It is useful to know what went wrong.
419 	 */
420 	if (WARN_ON(found_start != start))
421 		return -EUCLEAN;
422 	if (WARN_ON(!PageUptodate(page)))
423 		return -EUCLEAN;
424 
425 	return csum_one_extent_buffer(eb);
426 }
427 
428 static int check_tree_block_fsid(struct extent_buffer *eb)
429 {
430 	struct btrfs_fs_info *fs_info = eb->fs_info;
431 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
432 	u8 fsid[BTRFS_FSID_SIZE];
433 	u8 *metadata_uuid;
434 
435 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
436 			   BTRFS_FSID_SIZE);
437 	/*
438 	 * Checking the incompat flag is only valid for the current fs. For
439 	 * seed devices it's forbidden to have their uuid changed so reading
440 	 * ->fsid in this case is fine
441 	 */
442 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
443 		metadata_uuid = fs_devices->metadata_uuid;
444 	else
445 		metadata_uuid = fs_devices->fsid;
446 
447 	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
448 		return 0;
449 
450 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
451 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
452 			return 0;
453 
454 	return 1;
455 }
456 
457 /* Do basic extent buffer checks at read time */
458 static int validate_extent_buffer(struct extent_buffer *eb)
459 {
460 	struct btrfs_fs_info *fs_info = eb->fs_info;
461 	u64 found_start;
462 	const u32 csum_size = fs_info->csum_size;
463 	u8 found_level;
464 	u8 result[BTRFS_CSUM_SIZE];
465 	const u8 *header_csum;
466 	int ret = 0;
467 
468 	found_start = btrfs_header_bytenr(eb);
469 	if (found_start != eb->start) {
470 		btrfs_err_rl(fs_info,
471 			"bad tree block start, mirror %u want %llu have %llu",
472 			     eb->read_mirror, eb->start, found_start);
473 		ret = -EIO;
474 		goto out;
475 	}
476 	if (check_tree_block_fsid(eb)) {
477 		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
478 			     eb->start, eb->read_mirror);
479 		ret = -EIO;
480 		goto out;
481 	}
482 	found_level = btrfs_header_level(eb);
483 	if (found_level >= BTRFS_MAX_LEVEL) {
484 		btrfs_err(fs_info,
485 			"bad tree block level, mirror %u level %d on logical %llu",
486 			eb->read_mirror, btrfs_header_level(eb), eb->start);
487 		ret = -EIO;
488 		goto out;
489 	}
490 
491 	csum_tree_block(eb, result);
492 	header_csum = page_address(eb->pages[0]) +
493 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
494 
495 	if (memcmp(result, header_csum, csum_size) != 0) {
496 		btrfs_warn_rl(fs_info,
497 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
498 			      eb->start, eb->read_mirror,
499 			      CSUM_FMT_VALUE(csum_size, header_csum),
500 			      CSUM_FMT_VALUE(csum_size, result),
501 			      btrfs_header_level(eb));
502 		ret = -EUCLEAN;
503 		goto out;
504 	}
505 
506 	/*
507 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
508 	 * that we don't try and read the other copies of this block, just
509 	 * return -EIO.
510 	 */
511 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
512 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
513 		ret = -EIO;
514 	}
515 
516 	if (found_level > 0 && btrfs_check_node(eb))
517 		ret = -EIO;
518 
519 	if (!ret)
520 		set_extent_buffer_uptodate(eb);
521 	else
522 		btrfs_err(fs_info,
523 		"read time tree block corruption detected on logical %llu mirror %u",
524 			  eb->start, eb->read_mirror);
525 out:
526 	return ret;
527 }
528 
529 static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
530 				   int mirror)
531 {
532 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
533 	struct extent_buffer *eb;
534 	bool reads_done;
535 	int ret = 0;
536 
537 	/*
538 	 * We don't allow bio merge for subpage metadata read, so we should
539 	 * only get one eb for each endio hook.
540 	 */
541 	ASSERT(end == start + fs_info->nodesize - 1);
542 	ASSERT(PagePrivate(page));
543 
544 	eb = find_extent_buffer(fs_info, start);
545 	/*
546 	 * When we are reading one tree block, eb must have been inserted into
547 	 * the radix tree. If not, something is wrong.
548 	 */
549 	ASSERT(eb);
550 
551 	reads_done = atomic_dec_and_test(&eb->io_pages);
552 	/* Subpage read must finish in page read */
553 	ASSERT(reads_done);
554 
555 	eb->read_mirror = mirror;
556 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
557 		ret = -EIO;
558 		goto err;
559 	}
560 	ret = validate_extent_buffer(eb);
561 	if (ret < 0)
562 		goto err;
563 
564 	set_extent_buffer_uptodate(eb);
565 
566 	free_extent_buffer(eb);
567 	return ret;
568 err:
569 	/*
570 	 * end_bio_extent_readpage decrements io_pages in case of error,
571 	 * make sure it has something to decrement.
572 	 */
573 	atomic_inc(&eb->io_pages);
574 	clear_extent_buffer_uptodate(eb);
575 	free_extent_buffer(eb);
576 	return ret;
577 }
578 
579 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
580 				   struct page *page, u64 start, u64 end,
581 				   int mirror)
582 {
583 	struct extent_buffer *eb;
584 	int ret = 0;
585 	int reads_done;
586 
587 	ASSERT(page->private);
588 
589 	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
590 		return validate_subpage_buffer(page, start, end, mirror);
591 
592 	eb = (struct extent_buffer *)page->private;
593 
594 	/*
595 	 * The pending IO might have been the only thing that kept this buffer
596 	 * in memory.  Make sure we have a ref for all this other checks
597 	 */
598 	atomic_inc(&eb->refs);
599 
600 	reads_done = atomic_dec_and_test(&eb->io_pages);
601 	if (!reads_done)
602 		goto err;
603 
604 	eb->read_mirror = mirror;
605 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
606 		ret = -EIO;
607 		goto err;
608 	}
609 	ret = validate_extent_buffer(eb);
610 err:
611 	if (ret) {
612 		/*
613 		 * our io error hook is going to dec the io pages
614 		 * again, we have to make sure it has something
615 		 * to decrement
616 		 */
617 		atomic_inc(&eb->io_pages);
618 		clear_extent_buffer_uptodate(eb);
619 	}
620 	free_extent_buffer(eb);
621 
622 	return ret;
623 }
624 
625 static void run_one_async_start(struct btrfs_work *work)
626 {
627 	struct async_submit_bio *async;
628 	blk_status_t ret;
629 
630 	async = container_of(work, struct  async_submit_bio, work);
631 	ret = async->submit_bio_start(async->inode, async->bio,
632 				      async->dio_file_offset);
633 	if (ret)
634 		async->status = ret;
635 }
636 
637 /*
638  * In order to insert checksums into the metadata in large chunks, we wait
639  * until bio submission time.   All the pages in the bio are checksummed and
640  * sums are attached onto the ordered extent record.
641  *
642  * At IO completion time the csums attached on the ordered extent record are
643  * inserted into the tree.
644  */
645 static void run_one_async_done(struct btrfs_work *work)
646 {
647 	struct async_submit_bio *async =
648 		container_of(work, struct  async_submit_bio, work);
649 	struct inode *inode = async->inode;
650 	struct btrfs_bio *bbio = btrfs_bio(async->bio);
651 
652 	/* If an error occurred we just want to clean up the bio and move on */
653 	if (async->status) {
654 		btrfs_bio_end_io(bbio, async->status);
655 		return;
656 	}
657 
658 	/*
659 	 * All of the bios that pass through here are from async helpers.
660 	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
661 	 * This changes nothing when cgroups aren't in use.
662 	 */
663 	async->bio->bi_opf |= REQ_CGROUP_PUNT;
664 	btrfs_submit_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
665 }
666 
667 static void run_one_async_free(struct btrfs_work *work)
668 {
669 	struct async_submit_bio *async;
670 
671 	async = container_of(work, struct  async_submit_bio, work);
672 	kfree(async);
673 }
674 
675 /*
676  * Submit bio to an async queue.
677  *
678  * Retrun:
679  * - true if the work has been succesfuly submitted
680  * - false in case of error
681  */
682 bool btrfs_wq_submit_bio(struct inode *inode, struct bio *bio, int mirror_num,
683 			 u64 dio_file_offset,
684 			 extent_submit_bio_start_t *submit_bio_start)
685 {
686 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
687 	struct async_submit_bio *async;
688 
689 	async = kmalloc(sizeof(*async), GFP_NOFS);
690 	if (!async)
691 		return false;
692 
693 	async->inode = inode;
694 	async->bio = bio;
695 	async->mirror_num = mirror_num;
696 	async->submit_bio_start = submit_bio_start;
697 
698 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
699 			run_one_async_free);
700 
701 	async->dio_file_offset = dio_file_offset;
702 
703 	async->status = 0;
704 
705 	if (op_is_sync(bio->bi_opf))
706 		btrfs_queue_work(fs_info->hipri_workers, &async->work);
707 	else
708 		btrfs_queue_work(fs_info->workers, &async->work);
709 	return true;
710 }
711 
712 static blk_status_t btree_csum_one_bio(struct bio *bio)
713 {
714 	struct bio_vec *bvec;
715 	struct btrfs_root *root;
716 	int ret = 0;
717 	struct bvec_iter_all iter_all;
718 
719 	ASSERT(!bio_flagged(bio, BIO_CLONED));
720 	bio_for_each_segment_all(bvec, bio, iter_all) {
721 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
722 		ret = csum_dirty_buffer(root->fs_info, bvec);
723 		if (ret)
724 			break;
725 	}
726 
727 	return errno_to_blk_status(ret);
728 }
729 
730 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
731 					   u64 dio_file_offset)
732 {
733 	/*
734 	 * when we're called for a write, we're already in the async
735 	 * submission context.  Just jump into btrfs_submit_bio.
736 	 */
737 	return btree_csum_one_bio(bio);
738 }
739 
740 static bool should_async_write(struct btrfs_fs_info *fs_info,
741 			     struct btrfs_inode *bi)
742 {
743 	if (btrfs_is_zoned(fs_info))
744 		return false;
745 	if (atomic_read(&bi->sync_writers))
746 		return false;
747 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
748 		return false;
749 	return true;
750 }
751 
752 void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num)
753 {
754 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
755 	struct btrfs_bio *bbio = btrfs_bio(bio);
756 	blk_status_t ret;
757 
758 	bio->bi_opf |= REQ_META;
759 
760 	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
761 		btrfs_submit_bio(fs_info, bio, mirror_num);
762 		return;
763 	}
764 
765 	/*
766 	 * Kthread helpers are used to submit writes so that checksumming can
767 	 * happen in parallel across all CPUs.
768 	 */
769 	if (should_async_write(fs_info, BTRFS_I(inode)) &&
770 	    btrfs_wq_submit_bio(inode, bio, mirror_num, 0, btree_submit_bio_start))
771 		return;
772 
773 	ret = btree_csum_one_bio(bio);
774 	if (ret) {
775 		btrfs_bio_end_io(bbio, ret);
776 		return;
777 	}
778 
779 	btrfs_submit_bio(fs_info, bio, mirror_num);
780 }
781 
782 #ifdef CONFIG_MIGRATION
783 static int btree_migrate_folio(struct address_space *mapping,
784 		struct folio *dst, struct folio *src, enum migrate_mode mode)
785 {
786 	/*
787 	 * we can't safely write a btree page from here,
788 	 * we haven't done the locking hook
789 	 */
790 	if (folio_test_dirty(src))
791 		return -EAGAIN;
792 	/*
793 	 * Buffers may be managed in a filesystem specific way.
794 	 * We must have no buffers or drop them.
795 	 */
796 	if (folio_get_private(src) &&
797 	    !filemap_release_folio(src, GFP_KERNEL))
798 		return -EAGAIN;
799 	return migrate_folio(mapping, dst, src, mode);
800 }
801 #else
802 #define btree_migrate_folio NULL
803 #endif
804 
805 static int btree_writepages(struct address_space *mapping,
806 			    struct writeback_control *wbc)
807 {
808 	struct btrfs_fs_info *fs_info;
809 	int ret;
810 
811 	if (wbc->sync_mode == WB_SYNC_NONE) {
812 
813 		if (wbc->for_kupdate)
814 			return 0;
815 
816 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
817 		/* this is a bit racy, but that's ok */
818 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
819 					     BTRFS_DIRTY_METADATA_THRESH,
820 					     fs_info->dirty_metadata_batch);
821 		if (ret < 0)
822 			return 0;
823 	}
824 	return btree_write_cache_pages(mapping, wbc);
825 }
826 
827 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
828 {
829 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
830 		return false;
831 
832 	return try_release_extent_buffer(&folio->page);
833 }
834 
835 static void btree_invalidate_folio(struct folio *folio, size_t offset,
836 				 size_t length)
837 {
838 	struct extent_io_tree *tree;
839 	tree = &BTRFS_I(folio->mapping->host)->io_tree;
840 	extent_invalidate_folio(tree, folio, offset);
841 	btree_release_folio(folio, GFP_NOFS);
842 	if (folio_get_private(folio)) {
843 		btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
844 			   "folio private not zero on folio %llu",
845 			   (unsigned long long)folio_pos(folio));
846 		folio_detach_private(folio);
847 	}
848 }
849 
850 #ifdef DEBUG
851 static bool btree_dirty_folio(struct address_space *mapping,
852 		struct folio *folio)
853 {
854 	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
855 	struct btrfs_subpage *subpage;
856 	struct extent_buffer *eb;
857 	int cur_bit = 0;
858 	u64 page_start = folio_pos(folio);
859 
860 	if (fs_info->sectorsize == PAGE_SIZE) {
861 		eb = folio_get_private(folio);
862 		BUG_ON(!eb);
863 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
864 		BUG_ON(!atomic_read(&eb->refs));
865 		btrfs_assert_tree_write_locked(eb);
866 		return filemap_dirty_folio(mapping, folio);
867 	}
868 	subpage = folio_get_private(folio);
869 
870 	ASSERT(subpage->dirty_bitmap);
871 	while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
872 		unsigned long flags;
873 		u64 cur;
874 		u16 tmp = (1 << cur_bit);
875 
876 		spin_lock_irqsave(&subpage->lock, flags);
877 		if (!(tmp & subpage->dirty_bitmap)) {
878 			spin_unlock_irqrestore(&subpage->lock, flags);
879 			cur_bit++;
880 			continue;
881 		}
882 		spin_unlock_irqrestore(&subpage->lock, flags);
883 		cur = page_start + cur_bit * fs_info->sectorsize;
884 
885 		eb = find_extent_buffer(fs_info, cur);
886 		ASSERT(eb);
887 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
888 		ASSERT(atomic_read(&eb->refs));
889 		btrfs_assert_tree_write_locked(eb);
890 		free_extent_buffer(eb);
891 
892 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
893 	}
894 	return filemap_dirty_folio(mapping, folio);
895 }
896 #else
897 #define btree_dirty_folio filemap_dirty_folio
898 #endif
899 
900 static const struct address_space_operations btree_aops = {
901 	.writepages	= btree_writepages,
902 	.release_folio	= btree_release_folio,
903 	.invalidate_folio = btree_invalidate_folio,
904 	.migrate_folio	= btree_migrate_folio,
905 	.dirty_folio	= btree_dirty_folio,
906 };
907 
908 struct extent_buffer *btrfs_find_create_tree_block(
909 						struct btrfs_fs_info *fs_info,
910 						u64 bytenr, u64 owner_root,
911 						int level)
912 {
913 	if (btrfs_is_testing(fs_info))
914 		return alloc_test_extent_buffer(fs_info, bytenr);
915 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
916 }
917 
918 /*
919  * Read tree block at logical address @bytenr and do variant basic but critical
920  * verification.
921  *
922  * @owner_root:		the objectid of the root owner for this block.
923  * @parent_transid:	expected transid of this tree block, skip check if 0
924  * @level:		expected level, mandatory check
925  * @first_key:		expected key in slot 0, skip check if NULL
926  */
927 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
928 				      u64 owner_root, u64 parent_transid,
929 				      int level, struct btrfs_key *first_key)
930 {
931 	struct extent_buffer *buf = NULL;
932 	int ret;
933 
934 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
935 	if (IS_ERR(buf))
936 		return buf;
937 
938 	ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key);
939 	if (ret) {
940 		free_extent_buffer_stale(buf);
941 		return ERR_PTR(ret);
942 	}
943 	if (btrfs_check_eb_owner(buf, owner_root)) {
944 		free_extent_buffer_stale(buf);
945 		return ERR_PTR(-EUCLEAN);
946 	}
947 	return buf;
948 
949 }
950 
951 void btrfs_clean_tree_block(struct extent_buffer *buf)
952 {
953 	struct btrfs_fs_info *fs_info = buf->fs_info;
954 	if (btrfs_header_generation(buf) ==
955 	    fs_info->running_transaction->transid) {
956 		btrfs_assert_tree_write_locked(buf);
957 
958 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
959 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
960 						 -buf->len,
961 						 fs_info->dirty_metadata_batch);
962 			clear_extent_buffer_dirty(buf);
963 		}
964 	}
965 }
966 
967 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
968 			 u64 objectid)
969 {
970 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
971 
972 	memset(&root->root_key, 0, sizeof(root->root_key));
973 	memset(&root->root_item, 0, sizeof(root->root_item));
974 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
975 	root->fs_info = fs_info;
976 	root->root_key.objectid = objectid;
977 	root->node = NULL;
978 	root->commit_root = NULL;
979 	root->state = 0;
980 	RB_CLEAR_NODE(&root->rb_node);
981 
982 	root->last_trans = 0;
983 	root->free_objectid = 0;
984 	root->nr_delalloc_inodes = 0;
985 	root->nr_ordered_extents = 0;
986 	root->inode_tree = RB_ROOT;
987 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
988 
989 	btrfs_init_root_block_rsv(root);
990 
991 	INIT_LIST_HEAD(&root->dirty_list);
992 	INIT_LIST_HEAD(&root->root_list);
993 	INIT_LIST_HEAD(&root->delalloc_inodes);
994 	INIT_LIST_HEAD(&root->delalloc_root);
995 	INIT_LIST_HEAD(&root->ordered_extents);
996 	INIT_LIST_HEAD(&root->ordered_root);
997 	INIT_LIST_HEAD(&root->reloc_dirty_list);
998 	INIT_LIST_HEAD(&root->logged_list[0]);
999 	INIT_LIST_HEAD(&root->logged_list[1]);
1000 	spin_lock_init(&root->inode_lock);
1001 	spin_lock_init(&root->delalloc_lock);
1002 	spin_lock_init(&root->ordered_extent_lock);
1003 	spin_lock_init(&root->accounting_lock);
1004 	spin_lock_init(&root->log_extents_lock[0]);
1005 	spin_lock_init(&root->log_extents_lock[1]);
1006 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1007 	mutex_init(&root->objectid_mutex);
1008 	mutex_init(&root->log_mutex);
1009 	mutex_init(&root->ordered_extent_mutex);
1010 	mutex_init(&root->delalloc_mutex);
1011 	init_waitqueue_head(&root->qgroup_flush_wait);
1012 	init_waitqueue_head(&root->log_writer_wait);
1013 	init_waitqueue_head(&root->log_commit_wait[0]);
1014 	init_waitqueue_head(&root->log_commit_wait[1]);
1015 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1016 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1017 	atomic_set(&root->log_commit[0], 0);
1018 	atomic_set(&root->log_commit[1], 0);
1019 	atomic_set(&root->log_writers, 0);
1020 	atomic_set(&root->log_batch, 0);
1021 	refcount_set(&root->refs, 1);
1022 	atomic_set(&root->snapshot_force_cow, 0);
1023 	atomic_set(&root->nr_swapfiles, 0);
1024 	root->log_transid = 0;
1025 	root->log_transid_committed = -1;
1026 	root->last_log_commit = 0;
1027 	root->anon_dev = 0;
1028 	if (!dummy) {
1029 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1030 				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1031 		extent_io_tree_init(fs_info, &root->log_csum_range,
1032 				    IO_TREE_LOG_CSUM_RANGE, NULL);
1033 	}
1034 
1035 	spin_lock_init(&root->root_item_lock);
1036 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1037 #ifdef CONFIG_BTRFS_DEBUG
1038 	INIT_LIST_HEAD(&root->leak_list);
1039 	spin_lock(&fs_info->fs_roots_radix_lock);
1040 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1041 	spin_unlock(&fs_info->fs_roots_radix_lock);
1042 #endif
1043 }
1044 
1045 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1046 					   u64 objectid, gfp_t flags)
1047 {
1048 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1049 	if (root)
1050 		__setup_root(root, fs_info, objectid);
1051 	return root;
1052 }
1053 
1054 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1055 /* Should only be used by the testing infrastructure */
1056 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1057 {
1058 	struct btrfs_root *root;
1059 
1060 	if (!fs_info)
1061 		return ERR_PTR(-EINVAL);
1062 
1063 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1064 	if (!root)
1065 		return ERR_PTR(-ENOMEM);
1066 
1067 	/* We don't use the stripesize in selftest, set it as sectorsize */
1068 	root->alloc_bytenr = 0;
1069 
1070 	return root;
1071 }
1072 #endif
1073 
1074 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1075 {
1076 	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1077 	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1078 
1079 	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1080 }
1081 
1082 static int global_root_key_cmp(const void *k, const struct rb_node *node)
1083 {
1084 	const struct btrfs_key *key = k;
1085 	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1086 
1087 	return btrfs_comp_cpu_keys(key, &root->root_key);
1088 }
1089 
1090 int btrfs_global_root_insert(struct btrfs_root *root)
1091 {
1092 	struct btrfs_fs_info *fs_info = root->fs_info;
1093 	struct rb_node *tmp;
1094 
1095 	write_lock(&fs_info->global_root_lock);
1096 	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1097 	write_unlock(&fs_info->global_root_lock);
1098 	ASSERT(!tmp);
1099 
1100 	return tmp ? -EEXIST : 0;
1101 }
1102 
1103 void btrfs_global_root_delete(struct btrfs_root *root)
1104 {
1105 	struct btrfs_fs_info *fs_info = root->fs_info;
1106 
1107 	write_lock(&fs_info->global_root_lock);
1108 	rb_erase(&root->rb_node, &fs_info->global_root_tree);
1109 	write_unlock(&fs_info->global_root_lock);
1110 }
1111 
1112 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1113 				     struct btrfs_key *key)
1114 {
1115 	struct rb_node *node;
1116 	struct btrfs_root *root = NULL;
1117 
1118 	read_lock(&fs_info->global_root_lock);
1119 	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1120 	if (node)
1121 		root = container_of(node, struct btrfs_root, rb_node);
1122 	read_unlock(&fs_info->global_root_lock);
1123 
1124 	return root;
1125 }
1126 
1127 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1128 {
1129 	struct btrfs_block_group *block_group;
1130 	u64 ret;
1131 
1132 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1133 		return 0;
1134 
1135 	if (bytenr)
1136 		block_group = btrfs_lookup_block_group(fs_info, bytenr);
1137 	else
1138 		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1139 	ASSERT(block_group);
1140 	if (!block_group)
1141 		return 0;
1142 	ret = block_group->global_root_id;
1143 	btrfs_put_block_group(block_group);
1144 
1145 	return ret;
1146 }
1147 
1148 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1149 {
1150 	struct btrfs_key key = {
1151 		.objectid = BTRFS_CSUM_TREE_OBJECTID,
1152 		.type = BTRFS_ROOT_ITEM_KEY,
1153 		.offset = btrfs_global_root_id(fs_info, bytenr),
1154 	};
1155 
1156 	return btrfs_global_root(fs_info, &key);
1157 }
1158 
1159 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1160 {
1161 	struct btrfs_key key = {
1162 		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
1163 		.type = BTRFS_ROOT_ITEM_KEY,
1164 		.offset = btrfs_global_root_id(fs_info, bytenr),
1165 	};
1166 
1167 	return btrfs_global_root(fs_info, &key);
1168 }
1169 
1170 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1171 				     u64 objectid)
1172 {
1173 	struct btrfs_fs_info *fs_info = trans->fs_info;
1174 	struct extent_buffer *leaf;
1175 	struct btrfs_root *tree_root = fs_info->tree_root;
1176 	struct btrfs_root *root;
1177 	struct btrfs_key key;
1178 	unsigned int nofs_flag;
1179 	int ret = 0;
1180 
1181 	/*
1182 	 * We're holding a transaction handle, so use a NOFS memory allocation
1183 	 * context to avoid deadlock if reclaim happens.
1184 	 */
1185 	nofs_flag = memalloc_nofs_save();
1186 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1187 	memalloc_nofs_restore(nofs_flag);
1188 	if (!root)
1189 		return ERR_PTR(-ENOMEM);
1190 
1191 	root->root_key.objectid = objectid;
1192 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1193 	root->root_key.offset = 0;
1194 
1195 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1196 				      BTRFS_NESTING_NORMAL);
1197 	if (IS_ERR(leaf)) {
1198 		ret = PTR_ERR(leaf);
1199 		leaf = NULL;
1200 		goto fail_unlock;
1201 	}
1202 
1203 	root->node = leaf;
1204 	btrfs_mark_buffer_dirty(leaf);
1205 
1206 	root->commit_root = btrfs_root_node(root);
1207 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1208 
1209 	btrfs_set_root_flags(&root->root_item, 0);
1210 	btrfs_set_root_limit(&root->root_item, 0);
1211 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1212 	btrfs_set_root_generation(&root->root_item, trans->transid);
1213 	btrfs_set_root_level(&root->root_item, 0);
1214 	btrfs_set_root_refs(&root->root_item, 1);
1215 	btrfs_set_root_used(&root->root_item, leaf->len);
1216 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1217 	btrfs_set_root_dirid(&root->root_item, 0);
1218 	if (is_fstree(objectid))
1219 		generate_random_guid(root->root_item.uuid);
1220 	else
1221 		export_guid(root->root_item.uuid, &guid_null);
1222 	btrfs_set_root_drop_level(&root->root_item, 0);
1223 
1224 	btrfs_tree_unlock(leaf);
1225 
1226 	key.objectid = objectid;
1227 	key.type = BTRFS_ROOT_ITEM_KEY;
1228 	key.offset = 0;
1229 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1230 	if (ret)
1231 		goto fail;
1232 
1233 	return root;
1234 
1235 fail_unlock:
1236 	if (leaf)
1237 		btrfs_tree_unlock(leaf);
1238 fail:
1239 	btrfs_put_root(root);
1240 
1241 	return ERR_PTR(ret);
1242 }
1243 
1244 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1245 					 struct btrfs_fs_info *fs_info)
1246 {
1247 	struct btrfs_root *root;
1248 
1249 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1250 	if (!root)
1251 		return ERR_PTR(-ENOMEM);
1252 
1253 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1254 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1255 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1256 
1257 	return root;
1258 }
1259 
1260 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1261 			      struct btrfs_root *root)
1262 {
1263 	struct extent_buffer *leaf;
1264 
1265 	/*
1266 	 * DON'T set SHAREABLE bit for log trees.
1267 	 *
1268 	 * Log trees are not exposed to user space thus can't be snapshotted,
1269 	 * and they go away before a real commit is actually done.
1270 	 *
1271 	 * They do store pointers to file data extents, and those reference
1272 	 * counts still get updated (along with back refs to the log tree).
1273 	 */
1274 
1275 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1276 			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1277 	if (IS_ERR(leaf))
1278 		return PTR_ERR(leaf);
1279 
1280 	root->node = leaf;
1281 
1282 	btrfs_mark_buffer_dirty(root->node);
1283 	btrfs_tree_unlock(root->node);
1284 
1285 	return 0;
1286 }
1287 
1288 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1289 			     struct btrfs_fs_info *fs_info)
1290 {
1291 	struct btrfs_root *log_root;
1292 
1293 	log_root = alloc_log_tree(trans, fs_info);
1294 	if (IS_ERR(log_root))
1295 		return PTR_ERR(log_root);
1296 
1297 	if (!btrfs_is_zoned(fs_info)) {
1298 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
1299 
1300 		if (ret) {
1301 			btrfs_put_root(log_root);
1302 			return ret;
1303 		}
1304 	}
1305 
1306 	WARN_ON(fs_info->log_root_tree);
1307 	fs_info->log_root_tree = log_root;
1308 	return 0;
1309 }
1310 
1311 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1312 		       struct btrfs_root *root)
1313 {
1314 	struct btrfs_fs_info *fs_info = root->fs_info;
1315 	struct btrfs_root *log_root;
1316 	struct btrfs_inode_item *inode_item;
1317 	int ret;
1318 
1319 	log_root = alloc_log_tree(trans, fs_info);
1320 	if (IS_ERR(log_root))
1321 		return PTR_ERR(log_root);
1322 
1323 	ret = btrfs_alloc_log_tree_node(trans, log_root);
1324 	if (ret) {
1325 		btrfs_put_root(log_root);
1326 		return ret;
1327 	}
1328 
1329 	log_root->last_trans = trans->transid;
1330 	log_root->root_key.offset = root->root_key.objectid;
1331 
1332 	inode_item = &log_root->root_item.inode;
1333 	btrfs_set_stack_inode_generation(inode_item, 1);
1334 	btrfs_set_stack_inode_size(inode_item, 3);
1335 	btrfs_set_stack_inode_nlink(inode_item, 1);
1336 	btrfs_set_stack_inode_nbytes(inode_item,
1337 				     fs_info->nodesize);
1338 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1339 
1340 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1341 
1342 	WARN_ON(root->log_root);
1343 	root->log_root = log_root;
1344 	root->log_transid = 0;
1345 	root->log_transid_committed = -1;
1346 	root->last_log_commit = 0;
1347 	return 0;
1348 }
1349 
1350 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1351 					      struct btrfs_path *path,
1352 					      struct btrfs_key *key)
1353 {
1354 	struct btrfs_root *root;
1355 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1356 	u64 generation;
1357 	int ret;
1358 	int level;
1359 
1360 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1361 	if (!root)
1362 		return ERR_PTR(-ENOMEM);
1363 
1364 	ret = btrfs_find_root(tree_root, key, path,
1365 			      &root->root_item, &root->root_key);
1366 	if (ret) {
1367 		if (ret > 0)
1368 			ret = -ENOENT;
1369 		goto fail;
1370 	}
1371 
1372 	generation = btrfs_root_generation(&root->root_item);
1373 	level = btrfs_root_level(&root->root_item);
1374 	root->node = read_tree_block(fs_info,
1375 				     btrfs_root_bytenr(&root->root_item),
1376 				     key->objectid, generation, level, NULL);
1377 	if (IS_ERR(root->node)) {
1378 		ret = PTR_ERR(root->node);
1379 		root->node = NULL;
1380 		goto fail;
1381 	}
1382 	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1383 		ret = -EIO;
1384 		goto fail;
1385 	}
1386 
1387 	/*
1388 	 * For real fs, and not log/reloc trees, root owner must
1389 	 * match its root node owner
1390 	 */
1391 	if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1392 	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1393 	    root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1394 	    root->root_key.objectid != btrfs_header_owner(root->node)) {
1395 		btrfs_crit(fs_info,
1396 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1397 			   root->root_key.objectid, root->node->start,
1398 			   btrfs_header_owner(root->node),
1399 			   root->root_key.objectid);
1400 		ret = -EUCLEAN;
1401 		goto fail;
1402 	}
1403 	root->commit_root = btrfs_root_node(root);
1404 	return root;
1405 fail:
1406 	btrfs_put_root(root);
1407 	return ERR_PTR(ret);
1408 }
1409 
1410 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1411 					struct btrfs_key *key)
1412 {
1413 	struct btrfs_root *root;
1414 	struct btrfs_path *path;
1415 
1416 	path = btrfs_alloc_path();
1417 	if (!path)
1418 		return ERR_PTR(-ENOMEM);
1419 	root = read_tree_root_path(tree_root, path, key);
1420 	btrfs_free_path(path);
1421 
1422 	return root;
1423 }
1424 
1425 /*
1426  * Initialize subvolume root in-memory structure
1427  *
1428  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1429  */
1430 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1431 {
1432 	int ret;
1433 	unsigned int nofs_flag;
1434 
1435 	/*
1436 	 * We might be called under a transaction (e.g. indirect backref
1437 	 * resolution) which could deadlock if it triggers memory reclaim
1438 	 */
1439 	nofs_flag = memalloc_nofs_save();
1440 	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1441 	memalloc_nofs_restore(nofs_flag);
1442 	if (ret)
1443 		goto fail;
1444 
1445 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1446 	    !btrfs_is_data_reloc_root(root)) {
1447 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1448 		btrfs_check_and_init_root_item(&root->root_item);
1449 	}
1450 
1451 	/*
1452 	 * Don't assign anonymous block device to roots that are not exposed to
1453 	 * userspace, the id pool is limited to 1M
1454 	 */
1455 	if (is_fstree(root->root_key.objectid) &&
1456 	    btrfs_root_refs(&root->root_item) > 0) {
1457 		if (!anon_dev) {
1458 			ret = get_anon_bdev(&root->anon_dev);
1459 			if (ret)
1460 				goto fail;
1461 		} else {
1462 			root->anon_dev = anon_dev;
1463 		}
1464 	}
1465 
1466 	mutex_lock(&root->objectid_mutex);
1467 	ret = btrfs_init_root_free_objectid(root);
1468 	if (ret) {
1469 		mutex_unlock(&root->objectid_mutex);
1470 		goto fail;
1471 	}
1472 
1473 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1474 
1475 	mutex_unlock(&root->objectid_mutex);
1476 
1477 	return 0;
1478 fail:
1479 	/* The caller is responsible to call btrfs_free_fs_root */
1480 	return ret;
1481 }
1482 
1483 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1484 					       u64 root_id)
1485 {
1486 	struct btrfs_root *root;
1487 
1488 	spin_lock(&fs_info->fs_roots_radix_lock);
1489 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1490 				 (unsigned long)root_id);
1491 	if (root)
1492 		root = btrfs_grab_root(root);
1493 	spin_unlock(&fs_info->fs_roots_radix_lock);
1494 	return root;
1495 }
1496 
1497 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1498 						u64 objectid)
1499 {
1500 	struct btrfs_key key = {
1501 		.objectid = objectid,
1502 		.type = BTRFS_ROOT_ITEM_KEY,
1503 		.offset = 0,
1504 	};
1505 
1506 	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1507 		return btrfs_grab_root(fs_info->tree_root);
1508 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1509 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1510 	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1511 		return btrfs_grab_root(fs_info->chunk_root);
1512 	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1513 		return btrfs_grab_root(fs_info->dev_root);
1514 	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1515 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1516 	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1517 		return btrfs_grab_root(fs_info->quota_root) ?
1518 			fs_info->quota_root : ERR_PTR(-ENOENT);
1519 	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1520 		return btrfs_grab_root(fs_info->uuid_root) ?
1521 			fs_info->uuid_root : ERR_PTR(-ENOENT);
1522 	if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID)
1523 		return btrfs_grab_root(fs_info->block_group_root) ?
1524 			fs_info->block_group_root : ERR_PTR(-ENOENT);
1525 	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1526 		struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1527 
1528 		return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1529 	}
1530 	return NULL;
1531 }
1532 
1533 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1534 			 struct btrfs_root *root)
1535 {
1536 	int ret;
1537 
1538 	ret = radix_tree_preload(GFP_NOFS);
1539 	if (ret)
1540 		return ret;
1541 
1542 	spin_lock(&fs_info->fs_roots_radix_lock);
1543 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1544 				(unsigned long)root->root_key.objectid,
1545 				root);
1546 	if (ret == 0) {
1547 		btrfs_grab_root(root);
1548 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1549 	}
1550 	spin_unlock(&fs_info->fs_roots_radix_lock);
1551 	radix_tree_preload_end();
1552 
1553 	return ret;
1554 }
1555 
1556 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1557 {
1558 #ifdef CONFIG_BTRFS_DEBUG
1559 	struct btrfs_root *root;
1560 
1561 	while (!list_empty(&fs_info->allocated_roots)) {
1562 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1563 
1564 		root = list_first_entry(&fs_info->allocated_roots,
1565 					struct btrfs_root, leak_list);
1566 		btrfs_err(fs_info, "leaked root %s refcount %d",
1567 			  btrfs_root_name(&root->root_key, buf),
1568 			  refcount_read(&root->refs));
1569 		while (refcount_read(&root->refs) > 1)
1570 			btrfs_put_root(root);
1571 		btrfs_put_root(root);
1572 	}
1573 #endif
1574 }
1575 
1576 static void free_global_roots(struct btrfs_fs_info *fs_info)
1577 {
1578 	struct btrfs_root *root;
1579 	struct rb_node *node;
1580 
1581 	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1582 		root = rb_entry(node, struct btrfs_root, rb_node);
1583 		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1584 		btrfs_put_root(root);
1585 	}
1586 }
1587 
1588 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1589 {
1590 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1591 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1592 	percpu_counter_destroy(&fs_info->ordered_bytes);
1593 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1594 	btrfs_free_csum_hash(fs_info);
1595 	btrfs_free_stripe_hash_table(fs_info);
1596 	btrfs_free_ref_cache(fs_info);
1597 	kfree(fs_info->balance_ctl);
1598 	kfree(fs_info->delayed_root);
1599 	free_global_roots(fs_info);
1600 	btrfs_put_root(fs_info->tree_root);
1601 	btrfs_put_root(fs_info->chunk_root);
1602 	btrfs_put_root(fs_info->dev_root);
1603 	btrfs_put_root(fs_info->quota_root);
1604 	btrfs_put_root(fs_info->uuid_root);
1605 	btrfs_put_root(fs_info->fs_root);
1606 	btrfs_put_root(fs_info->data_reloc_root);
1607 	btrfs_put_root(fs_info->block_group_root);
1608 	btrfs_check_leaked_roots(fs_info);
1609 	btrfs_extent_buffer_leak_debug_check(fs_info);
1610 	kfree(fs_info->super_copy);
1611 	kfree(fs_info->super_for_commit);
1612 	kfree(fs_info->subpage_info);
1613 	kvfree(fs_info);
1614 }
1615 
1616 
1617 /*
1618  * Get an in-memory reference of a root structure.
1619  *
1620  * For essential trees like root/extent tree, we grab it from fs_info directly.
1621  * For subvolume trees, we check the cached filesystem roots first. If not
1622  * found, then read it from disk and add it to cached fs roots.
1623  *
1624  * Caller should release the root by calling btrfs_put_root() after the usage.
1625  *
1626  * NOTE: Reloc and log trees can't be read by this function as they share the
1627  *	 same root objectid.
1628  *
1629  * @objectid:	root id
1630  * @anon_dev:	preallocated anonymous block device number for new roots,
1631  * 		pass 0 for new allocation.
1632  * @check_ref:	whether to check root item references, If true, return -ENOENT
1633  *		for orphan roots
1634  */
1635 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1636 					     u64 objectid, dev_t anon_dev,
1637 					     bool check_ref)
1638 {
1639 	struct btrfs_root *root;
1640 	struct btrfs_path *path;
1641 	struct btrfs_key key;
1642 	int ret;
1643 
1644 	root = btrfs_get_global_root(fs_info, objectid);
1645 	if (root)
1646 		return root;
1647 again:
1648 	root = btrfs_lookup_fs_root(fs_info, objectid);
1649 	if (root) {
1650 		/* Shouldn't get preallocated anon_dev for cached roots */
1651 		ASSERT(!anon_dev);
1652 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1653 			btrfs_put_root(root);
1654 			return ERR_PTR(-ENOENT);
1655 		}
1656 		return root;
1657 	}
1658 
1659 	key.objectid = objectid;
1660 	key.type = BTRFS_ROOT_ITEM_KEY;
1661 	key.offset = (u64)-1;
1662 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1663 	if (IS_ERR(root))
1664 		return root;
1665 
1666 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1667 		ret = -ENOENT;
1668 		goto fail;
1669 	}
1670 
1671 	ret = btrfs_init_fs_root(root, anon_dev);
1672 	if (ret)
1673 		goto fail;
1674 
1675 	path = btrfs_alloc_path();
1676 	if (!path) {
1677 		ret = -ENOMEM;
1678 		goto fail;
1679 	}
1680 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1681 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1682 	key.offset = objectid;
1683 
1684 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1685 	btrfs_free_path(path);
1686 	if (ret < 0)
1687 		goto fail;
1688 	if (ret == 0)
1689 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1690 
1691 	ret = btrfs_insert_fs_root(fs_info, root);
1692 	if (ret) {
1693 		if (ret == -EEXIST) {
1694 			btrfs_put_root(root);
1695 			goto again;
1696 		}
1697 		goto fail;
1698 	}
1699 	return root;
1700 fail:
1701 	/*
1702 	 * If our caller provided us an anonymous device, then it's his
1703 	 * responsibility to free it in case we fail. So we have to set our
1704 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1705 	 * and once again by our caller.
1706 	 */
1707 	if (anon_dev)
1708 		root->anon_dev = 0;
1709 	btrfs_put_root(root);
1710 	return ERR_PTR(ret);
1711 }
1712 
1713 /*
1714  * Get in-memory reference of a root structure
1715  *
1716  * @objectid:	tree objectid
1717  * @check_ref:	if set, verify that the tree exists and the item has at least
1718  *		one reference
1719  */
1720 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1721 				     u64 objectid, bool check_ref)
1722 {
1723 	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1724 }
1725 
1726 /*
1727  * Get in-memory reference of a root structure, created as new, optionally pass
1728  * the anonymous block device id
1729  *
1730  * @objectid:	tree objectid
1731  * @anon_dev:	if zero, allocate a new anonymous block device or use the
1732  *		parameter value
1733  */
1734 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1735 					 u64 objectid, dev_t anon_dev)
1736 {
1737 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1738 }
1739 
1740 /*
1741  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1742  * @fs_info:	the fs_info
1743  * @objectid:	the objectid we need to lookup
1744  *
1745  * This is exclusively used for backref walking, and exists specifically because
1746  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1747  * creation time, which means we may have to read the tree_root in order to look
1748  * up a fs root that is not in memory.  If the root is not in memory we will
1749  * read the tree root commit root and look up the fs root from there.  This is a
1750  * temporary root, it will not be inserted into the radix tree as it doesn't
1751  * have the most uptodate information, it'll simply be discarded once the
1752  * backref code is finished using the root.
1753  */
1754 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1755 						 struct btrfs_path *path,
1756 						 u64 objectid)
1757 {
1758 	struct btrfs_root *root;
1759 	struct btrfs_key key;
1760 
1761 	ASSERT(path->search_commit_root && path->skip_locking);
1762 
1763 	/*
1764 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1765 	 * since this is called via the backref walking code we won't be looking
1766 	 * up a root that doesn't exist, unless there's corruption.  So if root
1767 	 * != NULL just return it.
1768 	 */
1769 	root = btrfs_get_global_root(fs_info, objectid);
1770 	if (root)
1771 		return root;
1772 
1773 	root = btrfs_lookup_fs_root(fs_info, objectid);
1774 	if (root)
1775 		return root;
1776 
1777 	key.objectid = objectid;
1778 	key.type = BTRFS_ROOT_ITEM_KEY;
1779 	key.offset = (u64)-1;
1780 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1781 	btrfs_release_path(path);
1782 
1783 	return root;
1784 }
1785 
1786 static int cleaner_kthread(void *arg)
1787 {
1788 	struct btrfs_fs_info *fs_info = arg;
1789 	int again;
1790 
1791 	while (1) {
1792 		again = 0;
1793 
1794 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1795 
1796 		/* Make the cleaner go to sleep early. */
1797 		if (btrfs_need_cleaner_sleep(fs_info))
1798 			goto sleep;
1799 
1800 		/*
1801 		 * Do not do anything if we might cause open_ctree() to block
1802 		 * before we have finished mounting the filesystem.
1803 		 */
1804 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1805 			goto sleep;
1806 
1807 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1808 			goto sleep;
1809 
1810 		/*
1811 		 * Avoid the problem that we change the status of the fs
1812 		 * during the above check and trylock.
1813 		 */
1814 		if (btrfs_need_cleaner_sleep(fs_info)) {
1815 			mutex_unlock(&fs_info->cleaner_mutex);
1816 			goto sleep;
1817 		}
1818 
1819 		btrfs_run_delayed_iputs(fs_info);
1820 
1821 		again = btrfs_clean_one_deleted_snapshot(fs_info);
1822 		mutex_unlock(&fs_info->cleaner_mutex);
1823 
1824 		/*
1825 		 * The defragger has dealt with the R/O remount and umount,
1826 		 * needn't do anything special here.
1827 		 */
1828 		btrfs_run_defrag_inodes(fs_info);
1829 
1830 		/*
1831 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1832 		 * with relocation (btrfs_relocate_chunk) and relocation
1833 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1834 		 * after acquiring fs_info->reclaim_bgs_lock. So we
1835 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1836 		 * unused block groups.
1837 		 */
1838 		btrfs_delete_unused_bgs(fs_info);
1839 
1840 		/*
1841 		 * Reclaim block groups in the reclaim_bgs list after we deleted
1842 		 * all unused block_groups. This possibly gives us some more free
1843 		 * space.
1844 		 */
1845 		btrfs_reclaim_bgs(fs_info);
1846 sleep:
1847 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1848 		if (kthread_should_park())
1849 			kthread_parkme();
1850 		if (kthread_should_stop())
1851 			return 0;
1852 		if (!again) {
1853 			set_current_state(TASK_INTERRUPTIBLE);
1854 			schedule();
1855 			__set_current_state(TASK_RUNNING);
1856 		}
1857 	}
1858 }
1859 
1860 static int transaction_kthread(void *arg)
1861 {
1862 	struct btrfs_root *root = arg;
1863 	struct btrfs_fs_info *fs_info = root->fs_info;
1864 	struct btrfs_trans_handle *trans;
1865 	struct btrfs_transaction *cur;
1866 	u64 transid;
1867 	time64_t delta;
1868 	unsigned long delay;
1869 	bool cannot_commit;
1870 
1871 	do {
1872 		cannot_commit = false;
1873 		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1874 		mutex_lock(&fs_info->transaction_kthread_mutex);
1875 
1876 		spin_lock(&fs_info->trans_lock);
1877 		cur = fs_info->running_transaction;
1878 		if (!cur) {
1879 			spin_unlock(&fs_info->trans_lock);
1880 			goto sleep;
1881 		}
1882 
1883 		delta = ktime_get_seconds() - cur->start_time;
1884 		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1885 		    cur->state < TRANS_STATE_COMMIT_START &&
1886 		    delta < fs_info->commit_interval) {
1887 			spin_unlock(&fs_info->trans_lock);
1888 			delay -= msecs_to_jiffies((delta - 1) * 1000);
1889 			delay = min(delay,
1890 				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1891 			goto sleep;
1892 		}
1893 		transid = cur->transid;
1894 		spin_unlock(&fs_info->trans_lock);
1895 
1896 		/* If the file system is aborted, this will always fail. */
1897 		trans = btrfs_attach_transaction(root);
1898 		if (IS_ERR(trans)) {
1899 			if (PTR_ERR(trans) != -ENOENT)
1900 				cannot_commit = true;
1901 			goto sleep;
1902 		}
1903 		if (transid == trans->transid) {
1904 			btrfs_commit_transaction(trans);
1905 		} else {
1906 			btrfs_end_transaction(trans);
1907 		}
1908 sleep:
1909 		wake_up_process(fs_info->cleaner_kthread);
1910 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1911 
1912 		if (BTRFS_FS_ERROR(fs_info))
1913 			btrfs_cleanup_transaction(fs_info);
1914 		if (!kthread_should_stop() &&
1915 				(!btrfs_transaction_blocked(fs_info) ||
1916 				 cannot_commit))
1917 			schedule_timeout_interruptible(delay);
1918 	} while (!kthread_should_stop());
1919 	return 0;
1920 }
1921 
1922 /*
1923  * This will find the highest generation in the array of root backups.  The
1924  * index of the highest array is returned, or -EINVAL if we can't find
1925  * anything.
1926  *
1927  * We check to make sure the array is valid by comparing the
1928  * generation of the latest  root in the array with the generation
1929  * in the super block.  If they don't match we pitch it.
1930  */
1931 static int find_newest_super_backup(struct btrfs_fs_info *info)
1932 {
1933 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1934 	u64 cur;
1935 	struct btrfs_root_backup *root_backup;
1936 	int i;
1937 
1938 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1939 		root_backup = info->super_copy->super_roots + i;
1940 		cur = btrfs_backup_tree_root_gen(root_backup);
1941 		if (cur == newest_gen)
1942 			return i;
1943 	}
1944 
1945 	return -EINVAL;
1946 }
1947 
1948 /*
1949  * copy all the root pointers into the super backup array.
1950  * this will bump the backup pointer by one when it is
1951  * done
1952  */
1953 static void backup_super_roots(struct btrfs_fs_info *info)
1954 {
1955 	const int next_backup = info->backup_root_index;
1956 	struct btrfs_root_backup *root_backup;
1957 
1958 	root_backup = info->super_for_commit->super_roots + next_backup;
1959 
1960 	/*
1961 	 * make sure all of our padding and empty slots get zero filled
1962 	 * regardless of which ones we use today
1963 	 */
1964 	memset(root_backup, 0, sizeof(*root_backup));
1965 
1966 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1967 
1968 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1969 	btrfs_set_backup_tree_root_gen(root_backup,
1970 			       btrfs_header_generation(info->tree_root->node));
1971 
1972 	btrfs_set_backup_tree_root_level(root_backup,
1973 			       btrfs_header_level(info->tree_root->node));
1974 
1975 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1976 	btrfs_set_backup_chunk_root_gen(root_backup,
1977 			       btrfs_header_generation(info->chunk_root->node));
1978 	btrfs_set_backup_chunk_root_level(root_backup,
1979 			       btrfs_header_level(info->chunk_root->node));
1980 
1981 	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1982 		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1983 		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1984 
1985 		btrfs_set_backup_extent_root(root_backup,
1986 					     extent_root->node->start);
1987 		btrfs_set_backup_extent_root_gen(root_backup,
1988 				btrfs_header_generation(extent_root->node));
1989 		btrfs_set_backup_extent_root_level(root_backup,
1990 					btrfs_header_level(extent_root->node));
1991 
1992 		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1993 		btrfs_set_backup_csum_root_gen(root_backup,
1994 					       btrfs_header_generation(csum_root->node));
1995 		btrfs_set_backup_csum_root_level(root_backup,
1996 						 btrfs_header_level(csum_root->node));
1997 	}
1998 
1999 	/*
2000 	 * we might commit during log recovery, which happens before we set
2001 	 * the fs_root.  Make sure it is valid before we fill it in.
2002 	 */
2003 	if (info->fs_root && info->fs_root->node) {
2004 		btrfs_set_backup_fs_root(root_backup,
2005 					 info->fs_root->node->start);
2006 		btrfs_set_backup_fs_root_gen(root_backup,
2007 			       btrfs_header_generation(info->fs_root->node));
2008 		btrfs_set_backup_fs_root_level(root_backup,
2009 			       btrfs_header_level(info->fs_root->node));
2010 	}
2011 
2012 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2013 	btrfs_set_backup_dev_root_gen(root_backup,
2014 			       btrfs_header_generation(info->dev_root->node));
2015 	btrfs_set_backup_dev_root_level(root_backup,
2016 				       btrfs_header_level(info->dev_root->node));
2017 
2018 	btrfs_set_backup_total_bytes(root_backup,
2019 			     btrfs_super_total_bytes(info->super_copy));
2020 	btrfs_set_backup_bytes_used(root_backup,
2021 			     btrfs_super_bytes_used(info->super_copy));
2022 	btrfs_set_backup_num_devices(root_backup,
2023 			     btrfs_super_num_devices(info->super_copy));
2024 
2025 	/*
2026 	 * if we don't copy this out to the super_copy, it won't get remembered
2027 	 * for the next commit
2028 	 */
2029 	memcpy(&info->super_copy->super_roots,
2030 	       &info->super_for_commit->super_roots,
2031 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2032 }
2033 
2034 /*
2035  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2036  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2037  *
2038  * fs_info - filesystem whose backup roots need to be read
2039  * priority - priority of backup root required
2040  *
2041  * Returns backup root index on success and -EINVAL otherwise.
2042  */
2043 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2044 {
2045 	int backup_index = find_newest_super_backup(fs_info);
2046 	struct btrfs_super_block *super = fs_info->super_copy;
2047 	struct btrfs_root_backup *root_backup;
2048 
2049 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2050 		if (priority == 0)
2051 			return backup_index;
2052 
2053 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2054 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2055 	} else {
2056 		return -EINVAL;
2057 	}
2058 
2059 	root_backup = super->super_roots + backup_index;
2060 
2061 	btrfs_set_super_generation(super,
2062 				   btrfs_backup_tree_root_gen(root_backup));
2063 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2064 	btrfs_set_super_root_level(super,
2065 				   btrfs_backup_tree_root_level(root_backup));
2066 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2067 
2068 	/*
2069 	 * Fixme: the total bytes and num_devices need to match or we should
2070 	 * need a fsck
2071 	 */
2072 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2073 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2074 
2075 	return backup_index;
2076 }
2077 
2078 /* helper to cleanup workers */
2079 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2080 {
2081 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2082 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2083 	btrfs_destroy_workqueue(fs_info->hipri_workers);
2084 	btrfs_destroy_workqueue(fs_info->workers);
2085 	if (fs_info->endio_workers)
2086 		destroy_workqueue(fs_info->endio_workers);
2087 	if (fs_info->endio_raid56_workers)
2088 		destroy_workqueue(fs_info->endio_raid56_workers);
2089 	if (fs_info->rmw_workers)
2090 		destroy_workqueue(fs_info->rmw_workers);
2091 	if (fs_info->compressed_write_workers)
2092 		destroy_workqueue(fs_info->compressed_write_workers);
2093 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2094 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2095 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2096 	btrfs_destroy_workqueue(fs_info->caching_workers);
2097 	btrfs_destroy_workqueue(fs_info->flush_workers);
2098 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2099 	if (fs_info->discard_ctl.discard_workers)
2100 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
2101 	/*
2102 	 * Now that all other work queues are destroyed, we can safely destroy
2103 	 * the queues used for metadata I/O, since tasks from those other work
2104 	 * queues can do metadata I/O operations.
2105 	 */
2106 	if (fs_info->endio_meta_workers)
2107 		destroy_workqueue(fs_info->endio_meta_workers);
2108 }
2109 
2110 static void free_root_extent_buffers(struct btrfs_root *root)
2111 {
2112 	if (root) {
2113 		free_extent_buffer(root->node);
2114 		free_extent_buffer(root->commit_root);
2115 		root->node = NULL;
2116 		root->commit_root = NULL;
2117 	}
2118 }
2119 
2120 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2121 {
2122 	struct btrfs_root *root, *tmp;
2123 
2124 	rbtree_postorder_for_each_entry_safe(root, tmp,
2125 					     &fs_info->global_root_tree,
2126 					     rb_node)
2127 		free_root_extent_buffers(root);
2128 }
2129 
2130 /* helper to cleanup tree roots */
2131 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2132 {
2133 	free_root_extent_buffers(info->tree_root);
2134 
2135 	free_global_root_pointers(info);
2136 	free_root_extent_buffers(info->dev_root);
2137 	free_root_extent_buffers(info->quota_root);
2138 	free_root_extent_buffers(info->uuid_root);
2139 	free_root_extent_buffers(info->fs_root);
2140 	free_root_extent_buffers(info->data_reloc_root);
2141 	free_root_extent_buffers(info->block_group_root);
2142 	if (free_chunk_root)
2143 		free_root_extent_buffers(info->chunk_root);
2144 }
2145 
2146 void btrfs_put_root(struct btrfs_root *root)
2147 {
2148 	if (!root)
2149 		return;
2150 
2151 	if (refcount_dec_and_test(&root->refs)) {
2152 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2153 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2154 		if (root->anon_dev)
2155 			free_anon_bdev(root->anon_dev);
2156 		btrfs_drew_lock_destroy(&root->snapshot_lock);
2157 		free_root_extent_buffers(root);
2158 #ifdef CONFIG_BTRFS_DEBUG
2159 		spin_lock(&root->fs_info->fs_roots_radix_lock);
2160 		list_del_init(&root->leak_list);
2161 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2162 #endif
2163 		kfree(root);
2164 	}
2165 }
2166 
2167 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2168 {
2169 	int ret;
2170 	struct btrfs_root *gang[8];
2171 	int i;
2172 
2173 	while (!list_empty(&fs_info->dead_roots)) {
2174 		gang[0] = list_entry(fs_info->dead_roots.next,
2175 				     struct btrfs_root, root_list);
2176 		list_del(&gang[0]->root_list);
2177 
2178 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2179 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2180 		btrfs_put_root(gang[0]);
2181 	}
2182 
2183 	while (1) {
2184 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2185 					     (void **)gang, 0,
2186 					     ARRAY_SIZE(gang));
2187 		if (!ret)
2188 			break;
2189 		for (i = 0; i < ret; i++)
2190 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2191 	}
2192 }
2193 
2194 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2195 {
2196 	mutex_init(&fs_info->scrub_lock);
2197 	atomic_set(&fs_info->scrubs_running, 0);
2198 	atomic_set(&fs_info->scrub_pause_req, 0);
2199 	atomic_set(&fs_info->scrubs_paused, 0);
2200 	atomic_set(&fs_info->scrub_cancel_req, 0);
2201 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2202 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2203 }
2204 
2205 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2206 {
2207 	spin_lock_init(&fs_info->balance_lock);
2208 	mutex_init(&fs_info->balance_mutex);
2209 	atomic_set(&fs_info->balance_pause_req, 0);
2210 	atomic_set(&fs_info->balance_cancel_req, 0);
2211 	fs_info->balance_ctl = NULL;
2212 	init_waitqueue_head(&fs_info->balance_wait_q);
2213 	atomic_set(&fs_info->reloc_cancel_req, 0);
2214 }
2215 
2216 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2217 {
2218 	struct inode *inode = fs_info->btree_inode;
2219 	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
2220 					      fs_info->tree_root);
2221 
2222 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2223 	set_nlink(inode, 1);
2224 	/*
2225 	 * we set the i_size on the btree inode to the max possible int.
2226 	 * the real end of the address space is determined by all of
2227 	 * the devices in the system
2228 	 */
2229 	inode->i_size = OFFSET_MAX;
2230 	inode->i_mapping->a_ops = &btree_aops;
2231 
2232 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2233 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2234 			    IO_TREE_BTREE_INODE_IO, NULL);
2235 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2236 
2237 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2238 	BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
2239 	BTRFS_I(inode)->location.type = 0;
2240 	BTRFS_I(inode)->location.offset = 0;
2241 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2242 	__insert_inode_hash(inode, hash);
2243 }
2244 
2245 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2246 {
2247 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2248 	init_rwsem(&fs_info->dev_replace.rwsem);
2249 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2250 }
2251 
2252 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2253 {
2254 	spin_lock_init(&fs_info->qgroup_lock);
2255 	mutex_init(&fs_info->qgroup_ioctl_lock);
2256 	fs_info->qgroup_tree = RB_ROOT;
2257 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2258 	fs_info->qgroup_seq = 1;
2259 	fs_info->qgroup_ulist = NULL;
2260 	fs_info->qgroup_rescan_running = false;
2261 	fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
2262 	mutex_init(&fs_info->qgroup_rescan_lock);
2263 }
2264 
2265 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2266 {
2267 	u32 max_active = fs_info->thread_pool_size;
2268 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2269 
2270 	fs_info->workers =
2271 		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2272 	fs_info->hipri_workers =
2273 		btrfs_alloc_workqueue(fs_info, "worker-high",
2274 				      flags | WQ_HIGHPRI, max_active, 16);
2275 
2276 	fs_info->delalloc_workers =
2277 		btrfs_alloc_workqueue(fs_info, "delalloc",
2278 				      flags, max_active, 2);
2279 
2280 	fs_info->flush_workers =
2281 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2282 				      flags, max_active, 0);
2283 
2284 	fs_info->caching_workers =
2285 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2286 
2287 	fs_info->fixup_workers =
2288 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2289 
2290 	fs_info->endio_workers =
2291 		alloc_workqueue("btrfs-endio", flags, max_active);
2292 	fs_info->endio_meta_workers =
2293 		alloc_workqueue("btrfs-endio-meta", flags, max_active);
2294 	fs_info->endio_raid56_workers =
2295 		alloc_workqueue("btrfs-endio-raid56", flags, max_active);
2296 	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2297 	fs_info->endio_write_workers =
2298 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2299 				      max_active, 2);
2300 	fs_info->compressed_write_workers =
2301 		alloc_workqueue("btrfs-compressed-write", flags, max_active);
2302 	fs_info->endio_freespace_worker =
2303 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2304 				      max_active, 0);
2305 	fs_info->delayed_workers =
2306 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2307 				      max_active, 0);
2308 	fs_info->qgroup_rescan_workers =
2309 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2310 	fs_info->discard_ctl.discard_workers =
2311 		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2312 
2313 	if (!(fs_info->workers && fs_info->hipri_workers &&
2314 	      fs_info->delalloc_workers && fs_info->flush_workers &&
2315 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2316 	      fs_info->compressed_write_workers &&
2317 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2318 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2319 	      fs_info->caching_workers && fs_info->fixup_workers &&
2320 	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2321 	      fs_info->discard_ctl.discard_workers)) {
2322 		return -ENOMEM;
2323 	}
2324 
2325 	return 0;
2326 }
2327 
2328 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2329 {
2330 	struct crypto_shash *csum_shash;
2331 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2332 
2333 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2334 
2335 	if (IS_ERR(csum_shash)) {
2336 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2337 			  csum_driver);
2338 		return PTR_ERR(csum_shash);
2339 	}
2340 
2341 	fs_info->csum_shash = csum_shash;
2342 
2343 	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2344 			btrfs_super_csum_name(csum_type),
2345 			crypto_shash_driver_name(csum_shash));
2346 	return 0;
2347 }
2348 
2349 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2350 			    struct btrfs_fs_devices *fs_devices)
2351 {
2352 	int ret;
2353 	struct btrfs_root *log_tree_root;
2354 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2355 	u64 bytenr = btrfs_super_log_root(disk_super);
2356 	int level = btrfs_super_log_root_level(disk_super);
2357 
2358 	if (fs_devices->rw_devices == 0) {
2359 		btrfs_warn(fs_info, "log replay required on RO media");
2360 		return -EIO;
2361 	}
2362 
2363 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2364 					 GFP_KERNEL);
2365 	if (!log_tree_root)
2366 		return -ENOMEM;
2367 
2368 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2369 					      BTRFS_TREE_LOG_OBJECTID,
2370 					      fs_info->generation + 1, level,
2371 					      NULL);
2372 	if (IS_ERR(log_tree_root->node)) {
2373 		btrfs_warn(fs_info, "failed to read log tree");
2374 		ret = PTR_ERR(log_tree_root->node);
2375 		log_tree_root->node = NULL;
2376 		btrfs_put_root(log_tree_root);
2377 		return ret;
2378 	}
2379 	if (!extent_buffer_uptodate(log_tree_root->node)) {
2380 		btrfs_err(fs_info, "failed to read log tree");
2381 		btrfs_put_root(log_tree_root);
2382 		return -EIO;
2383 	}
2384 
2385 	/* returns with log_tree_root freed on success */
2386 	ret = btrfs_recover_log_trees(log_tree_root);
2387 	if (ret) {
2388 		btrfs_handle_fs_error(fs_info, ret,
2389 				      "Failed to recover log tree");
2390 		btrfs_put_root(log_tree_root);
2391 		return ret;
2392 	}
2393 
2394 	if (sb_rdonly(fs_info->sb)) {
2395 		ret = btrfs_commit_super(fs_info);
2396 		if (ret)
2397 			return ret;
2398 	}
2399 
2400 	return 0;
2401 }
2402 
2403 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2404 				      struct btrfs_path *path, u64 objectid,
2405 				      const char *name)
2406 {
2407 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2408 	struct btrfs_root *root;
2409 	u64 max_global_id = 0;
2410 	int ret;
2411 	struct btrfs_key key = {
2412 		.objectid = objectid,
2413 		.type = BTRFS_ROOT_ITEM_KEY,
2414 		.offset = 0,
2415 	};
2416 	bool found = false;
2417 
2418 	/* If we have IGNOREDATACSUMS skip loading these roots. */
2419 	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2420 	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2421 		set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2422 		return 0;
2423 	}
2424 
2425 	while (1) {
2426 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2427 		if (ret < 0)
2428 			break;
2429 
2430 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2431 			ret = btrfs_next_leaf(tree_root, path);
2432 			if (ret) {
2433 				if (ret > 0)
2434 					ret = 0;
2435 				break;
2436 			}
2437 		}
2438 		ret = 0;
2439 
2440 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2441 		if (key.objectid != objectid)
2442 			break;
2443 		btrfs_release_path(path);
2444 
2445 		/*
2446 		 * Just worry about this for extent tree, it'll be the same for
2447 		 * everybody.
2448 		 */
2449 		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2450 			max_global_id = max(max_global_id, key.offset);
2451 
2452 		found = true;
2453 		root = read_tree_root_path(tree_root, path, &key);
2454 		if (IS_ERR(root)) {
2455 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2456 				ret = PTR_ERR(root);
2457 			break;
2458 		}
2459 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2460 		ret = btrfs_global_root_insert(root);
2461 		if (ret) {
2462 			btrfs_put_root(root);
2463 			break;
2464 		}
2465 		key.offset++;
2466 	}
2467 	btrfs_release_path(path);
2468 
2469 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2470 		fs_info->nr_global_roots = max_global_id + 1;
2471 
2472 	if (!found || ret) {
2473 		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2474 			set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2475 
2476 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2477 			ret = ret ? ret : -ENOENT;
2478 		else
2479 			ret = 0;
2480 		btrfs_err(fs_info, "failed to load root %s", name);
2481 	}
2482 	return ret;
2483 }
2484 
2485 static int load_global_roots(struct btrfs_root *tree_root)
2486 {
2487 	struct btrfs_path *path;
2488 	int ret = 0;
2489 
2490 	path = btrfs_alloc_path();
2491 	if (!path)
2492 		return -ENOMEM;
2493 
2494 	ret = load_global_roots_objectid(tree_root, path,
2495 					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2496 	if (ret)
2497 		goto out;
2498 	ret = load_global_roots_objectid(tree_root, path,
2499 					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2500 	if (ret)
2501 		goto out;
2502 	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2503 		goto out;
2504 	ret = load_global_roots_objectid(tree_root, path,
2505 					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2506 					 "free space");
2507 out:
2508 	btrfs_free_path(path);
2509 	return ret;
2510 }
2511 
2512 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2513 {
2514 	struct btrfs_root *tree_root = fs_info->tree_root;
2515 	struct btrfs_root *root;
2516 	struct btrfs_key location;
2517 	int ret;
2518 
2519 	BUG_ON(!fs_info->tree_root);
2520 
2521 	ret = load_global_roots(tree_root);
2522 	if (ret)
2523 		return ret;
2524 
2525 	location.type = BTRFS_ROOT_ITEM_KEY;
2526 	location.offset = 0;
2527 
2528 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2529 		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2530 		root = btrfs_read_tree_root(tree_root, &location);
2531 		if (IS_ERR(root)) {
2532 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2533 				ret = PTR_ERR(root);
2534 				goto out;
2535 			}
2536 		} else {
2537 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2538 			fs_info->block_group_root = root;
2539 		}
2540 	}
2541 
2542 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2543 	root = btrfs_read_tree_root(tree_root, &location);
2544 	if (IS_ERR(root)) {
2545 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2546 			ret = PTR_ERR(root);
2547 			goto out;
2548 		}
2549 	} else {
2550 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2551 		fs_info->dev_root = root;
2552 	}
2553 	/* Initialize fs_info for all devices in any case */
2554 	btrfs_init_devices_late(fs_info);
2555 
2556 	/*
2557 	 * This tree can share blocks with some other fs tree during relocation
2558 	 * and we need a proper setup by btrfs_get_fs_root
2559 	 */
2560 	root = btrfs_get_fs_root(tree_root->fs_info,
2561 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2562 	if (IS_ERR(root)) {
2563 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2564 			ret = PTR_ERR(root);
2565 			goto out;
2566 		}
2567 	} else {
2568 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2569 		fs_info->data_reloc_root = root;
2570 	}
2571 
2572 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2573 	root = btrfs_read_tree_root(tree_root, &location);
2574 	if (!IS_ERR(root)) {
2575 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2576 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2577 		fs_info->quota_root = root;
2578 	}
2579 
2580 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2581 	root = btrfs_read_tree_root(tree_root, &location);
2582 	if (IS_ERR(root)) {
2583 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2584 			ret = PTR_ERR(root);
2585 			if (ret != -ENOENT)
2586 				goto out;
2587 		}
2588 	} else {
2589 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2590 		fs_info->uuid_root = root;
2591 	}
2592 
2593 	return 0;
2594 out:
2595 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2596 		   location.objectid, ret);
2597 	return ret;
2598 }
2599 
2600 /*
2601  * Real super block validation
2602  * NOTE: super csum type and incompat features will not be checked here.
2603  *
2604  * @sb:		super block to check
2605  * @mirror_num:	the super block number to check its bytenr:
2606  * 		0	the primary (1st) sb
2607  * 		1, 2	2nd and 3rd backup copy
2608  * 	       -1	skip bytenr check
2609  */
2610 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2611 			 struct btrfs_super_block *sb, int mirror_num)
2612 {
2613 	u64 nodesize = btrfs_super_nodesize(sb);
2614 	u64 sectorsize = btrfs_super_sectorsize(sb);
2615 	int ret = 0;
2616 
2617 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2618 		btrfs_err(fs_info, "no valid FS found");
2619 		ret = -EINVAL;
2620 	}
2621 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2622 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2623 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2624 		ret = -EINVAL;
2625 	}
2626 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2627 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2628 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2629 		ret = -EINVAL;
2630 	}
2631 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2632 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2633 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2634 		ret = -EINVAL;
2635 	}
2636 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2637 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2638 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2639 		ret = -EINVAL;
2640 	}
2641 
2642 	/*
2643 	 * Check sectorsize and nodesize first, other check will need it.
2644 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2645 	 */
2646 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2647 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2648 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2649 		ret = -EINVAL;
2650 	}
2651 
2652 	/*
2653 	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2654 	 *
2655 	 * We can support 16K sectorsize with 64K page size without problem,
2656 	 * but such sectorsize/pagesize combination doesn't make much sense.
2657 	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2658 	 * beginning.
2659 	 */
2660 	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2661 		btrfs_err(fs_info,
2662 			"sectorsize %llu not yet supported for page size %lu",
2663 			sectorsize, PAGE_SIZE);
2664 		ret = -EINVAL;
2665 	}
2666 
2667 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2668 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2669 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2670 		ret = -EINVAL;
2671 	}
2672 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2673 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2674 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2675 		ret = -EINVAL;
2676 	}
2677 
2678 	/* Root alignment check */
2679 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2680 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2681 			   btrfs_super_root(sb));
2682 		ret = -EINVAL;
2683 	}
2684 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2685 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2686 			   btrfs_super_chunk_root(sb));
2687 		ret = -EINVAL;
2688 	}
2689 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2690 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2691 			   btrfs_super_log_root(sb));
2692 		ret = -EINVAL;
2693 	}
2694 
2695 	if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2696 		   BTRFS_FSID_SIZE)) {
2697 		btrfs_err(fs_info,
2698 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2699 			fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2700 		ret = -EINVAL;
2701 	}
2702 
2703 	if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2704 	    memcmp(fs_info->fs_devices->metadata_uuid,
2705 		   fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2706 		btrfs_err(fs_info,
2707 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2708 			fs_info->super_copy->metadata_uuid,
2709 			fs_info->fs_devices->metadata_uuid);
2710 		ret = -EINVAL;
2711 	}
2712 
2713 	/*
2714 	 * Artificial requirement for block-group-tree to force newer features
2715 	 * (free-space-tree, no-holes) so the test matrix is smaller.
2716 	 */
2717 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2718 	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2719 	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2720 		btrfs_err(fs_info,
2721 		"block-group-tree feature requires fres-space-tree and no-holes");
2722 		ret = -EINVAL;
2723 	}
2724 
2725 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2726 		   BTRFS_FSID_SIZE) != 0) {
2727 		btrfs_err(fs_info,
2728 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2729 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2730 		ret = -EINVAL;
2731 	}
2732 
2733 	/*
2734 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2735 	 * done later
2736 	 */
2737 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2738 		btrfs_err(fs_info, "bytes_used is too small %llu",
2739 			  btrfs_super_bytes_used(sb));
2740 		ret = -EINVAL;
2741 	}
2742 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2743 		btrfs_err(fs_info, "invalid stripesize %u",
2744 			  btrfs_super_stripesize(sb));
2745 		ret = -EINVAL;
2746 	}
2747 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2748 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2749 			   btrfs_super_num_devices(sb));
2750 	if (btrfs_super_num_devices(sb) == 0) {
2751 		btrfs_err(fs_info, "number of devices is 0");
2752 		ret = -EINVAL;
2753 	}
2754 
2755 	if (mirror_num >= 0 &&
2756 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2757 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2758 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2759 		ret = -EINVAL;
2760 	}
2761 
2762 	/*
2763 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2764 	 * and one chunk
2765 	 */
2766 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2767 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2768 			  btrfs_super_sys_array_size(sb),
2769 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2770 		ret = -EINVAL;
2771 	}
2772 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2773 			+ sizeof(struct btrfs_chunk)) {
2774 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2775 			  btrfs_super_sys_array_size(sb),
2776 			  sizeof(struct btrfs_disk_key)
2777 			  + sizeof(struct btrfs_chunk));
2778 		ret = -EINVAL;
2779 	}
2780 
2781 	/*
2782 	 * The generation is a global counter, we'll trust it more than the others
2783 	 * but it's still possible that it's the one that's wrong.
2784 	 */
2785 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2786 		btrfs_warn(fs_info,
2787 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2788 			btrfs_super_generation(sb),
2789 			btrfs_super_chunk_root_generation(sb));
2790 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2791 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2792 		btrfs_warn(fs_info,
2793 			"suspicious: generation < cache_generation: %llu < %llu",
2794 			btrfs_super_generation(sb),
2795 			btrfs_super_cache_generation(sb));
2796 
2797 	return ret;
2798 }
2799 
2800 /*
2801  * Validation of super block at mount time.
2802  * Some checks already done early at mount time, like csum type and incompat
2803  * flags will be skipped.
2804  */
2805 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2806 {
2807 	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2808 }
2809 
2810 /*
2811  * Validation of super block at write time.
2812  * Some checks like bytenr check will be skipped as their values will be
2813  * overwritten soon.
2814  * Extra checks like csum type and incompat flags will be done here.
2815  */
2816 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2817 				      struct btrfs_super_block *sb)
2818 {
2819 	int ret;
2820 
2821 	ret = btrfs_validate_super(fs_info, sb, -1);
2822 	if (ret < 0)
2823 		goto out;
2824 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2825 		ret = -EUCLEAN;
2826 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2827 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2828 		goto out;
2829 	}
2830 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2831 		ret = -EUCLEAN;
2832 		btrfs_err(fs_info,
2833 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2834 			  btrfs_super_incompat_flags(sb),
2835 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2836 		goto out;
2837 	}
2838 out:
2839 	if (ret < 0)
2840 		btrfs_err(fs_info,
2841 		"super block corruption detected before writing it to disk");
2842 	return ret;
2843 }
2844 
2845 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2846 {
2847 	int ret = 0;
2848 
2849 	root->node = read_tree_block(root->fs_info, bytenr,
2850 				     root->root_key.objectid, gen, level, NULL);
2851 	if (IS_ERR(root->node)) {
2852 		ret = PTR_ERR(root->node);
2853 		root->node = NULL;
2854 		return ret;
2855 	}
2856 	if (!extent_buffer_uptodate(root->node)) {
2857 		free_extent_buffer(root->node);
2858 		root->node = NULL;
2859 		return -EIO;
2860 	}
2861 
2862 	btrfs_set_root_node(&root->root_item, root->node);
2863 	root->commit_root = btrfs_root_node(root);
2864 	btrfs_set_root_refs(&root->root_item, 1);
2865 	return ret;
2866 }
2867 
2868 static int load_important_roots(struct btrfs_fs_info *fs_info)
2869 {
2870 	struct btrfs_super_block *sb = fs_info->super_copy;
2871 	u64 gen, bytenr;
2872 	int level, ret;
2873 
2874 	bytenr = btrfs_super_root(sb);
2875 	gen = btrfs_super_generation(sb);
2876 	level = btrfs_super_root_level(sb);
2877 	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2878 	if (ret) {
2879 		btrfs_warn(fs_info, "couldn't read tree root");
2880 		return ret;
2881 	}
2882 	return 0;
2883 }
2884 
2885 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2886 {
2887 	int backup_index = find_newest_super_backup(fs_info);
2888 	struct btrfs_super_block *sb = fs_info->super_copy;
2889 	struct btrfs_root *tree_root = fs_info->tree_root;
2890 	bool handle_error = false;
2891 	int ret = 0;
2892 	int i;
2893 
2894 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2895 		if (handle_error) {
2896 			if (!IS_ERR(tree_root->node))
2897 				free_extent_buffer(tree_root->node);
2898 			tree_root->node = NULL;
2899 
2900 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2901 				break;
2902 
2903 			free_root_pointers(fs_info, 0);
2904 
2905 			/*
2906 			 * Don't use the log in recovery mode, it won't be
2907 			 * valid
2908 			 */
2909 			btrfs_set_super_log_root(sb, 0);
2910 
2911 			/* We can't trust the free space cache either */
2912 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2913 
2914 			ret = read_backup_root(fs_info, i);
2915 			backup_index = ret;
2916 			if (ret < 0)
2917 				return ret;
2918 		}
2919 
2920 		ret = load_important_roots(fs_info);
2921 		if (ret) {
2922 			handle_error = true;
2923 			continue;
2924 		}
2925 
2926 		/*
2927 		 * No need to hold btrfs_root::objectid_mutex since the fs
2928 		 * hasn't been fully initialised and we are the only user
2929 		 */
2930 		ret = btrfs_init_root_free_objectid(tree_root);
2931 		if (ret < 0) {
2932 			handle_error = true;
2933 			continue;
2934 		}
2935 
2936 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2937 
2938 		ret = btrfs_read_roots(fs_info);
2939 		if (ret < 0) {
2940 			handle_error = true;
2941 			continue;
2942 		}
2943 
2944 		/* All successful */
2945 		fs_info->generation = btrfs_header_generation(tree_root->node);
2946 		fs_info->last_trans_committed = fs_info->generation;
2947 		fs_info->last_reloc_trans = 0;
2948 
2949 		/* Always begin writing backup roots after the one being used */
2950 		if (backup_index < 0) {
2951 			fs_info->backup_root_index = 0;
2952 		} else {
2953 			fs_info->backup_root_index = backup_index + 1;
2954 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2955 		}
2956 		break;
2957 	}
2958 
2959 	return ret;
2960 }
2961 
2962 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2963 {
2964 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2965 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2966 	INIT_LIST_HEAD(&fs_info->trans_list);
2967 	INIT_LIST_HEAD(&fs_info->dead_roots);
2968 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2969 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2970 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2971 	spin_lock_init(&fs_info->delalloc_root_lock);
2972 	spin_lock_init(&fs_info->trans_lock);
2973 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2974 	spin_lock_init(&fs_info->delayed_iput_lock);
2975 	spin_lock_init(&fs_info->defrag_inodes_lock);
2976 	spin_lock_init(&fs_info->super_lock);
2977 	spin_lock_init(&fs_info->buffer_lock);
2978 	spin_lock_init(&fs_info->unused_bgs_lock);
2979 	spin_lock_init(&fs_info->treelog_bg_lock);
2980 	spin_lock_init(&fs_info->zone_active_bgs_lock);
2981 	spin_lock_init(&fs_info->relocation_bg_lock);
2982 	rwlock_init(&fs_info->tree_mod_log_lock);
2983 	rwlock_init(&fs_info->global_root_lock);
2984 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2985 	mutex_init(&fs_info->reclaim_bgs_lock);
2986 	mutex_init(&fs_info->reloc_mutex);
2987 	mutex_init(&fs_info->delalloc_root_mutex);
2988 	mutex_init(&fs_info->zoned_meta_io_lock);
2989 	mutex_init(&fs_info->zoned_data_reloc_io_lock);
2990 	seqlock_init(&fs_info->profiles_lock);
2991 
2992 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2993 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2994 	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2995 	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2996 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
2997 				     BTRFS_LOCKDEP_TRANS_COMMIT_START);
2998 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2999 				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
3000 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
3001 				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
3002 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
3003 				     BTRFS_LOCKDEP_TRANS_COMPLETED);
3004 
3005 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
3006 	INIT_LIST_HEAD(&fs_info->space_info);
3007 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
3008 	INIT_LIST_HEAD(&fs_info->unused_bgs);
3009 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
3010 	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
3011 #ifdef CONFIG_BTRFS_DEBUG
3012 	INIT_LIST_HEAD(&fs_info->allocated_roots);
3013 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
3014 	spin_lock_init(&fs_info->eb_leak_lock);
3015 #endif
3016 	extent_map_tree_init(&fs_info->mapping_tree);
3017 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
3018 			     BTRFS_BLOCK_RSV_GLOBAL);
3019 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3020 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3021 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3022 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3023 			     BTRFS_BLOCK_RSV_DELOPS);
3024 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3025 			     BTRFS_BLOCK_RSV_DELREFS);
3026 
3027 	atomic_set(&fs_info->async_delalloc_pages, 0);
3028 	atomic_set(&fs_info->defrag_running, 0);
3029 	atomic_set(&fs_info->nr_delayed_iputs, 0);
3030 	atomic64_set(&fs_info->tree_mod_seq, 0);
3031 	fs_info->global_root_tree = RB_ROOT;
3032 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
3033 	fs_info->metadata_ratio = 0;
3034 	fs_info->defrag_inodes = RB_ROOT;
3035 	atomic64_set(&fs_info->free_chunk_space, 0);
3036 	fs_info->tree_mod_log = RB_ROOT;
3037 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
3038 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
3039 	btrfs_init_ref_verify(fs_info);
3040 
3041 	fs_info->thread_pool_size = min_t(unsigned long,
3042 					  num_online_cpus() + 2, 8);
3043 
3044 	INIT_LIST_HEAD(&fs_info->ordered_roots);
3045 	spin_lock_init(&fs_info->ordered_root_lock);
3046 
3047 	btrfs_init_scrub(fs_info);
3048 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3049 	fs_info->check_integrity_print_mask = 0;
3050 #endif
3051 	btrfs_init_balance(fs_info);
3052 	btrfs_init_async_reclaim_work(fs_info);
3053 
3054 	rwlock_init(&fs_info->block_group_cache_lock);
3055 	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
3056 
3057 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3058 			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
3059 
3060 	mutex_init(&fs_info->ordered_operations_mutex);
3061 	mutex_init(&fs_info->tree_log_mutex);
3062 	mutex_init(&fs_info->chunk_mutex);
3063 	mutex_init(&fs_info->transaction_kthread_mutex);
3064 	mutex_init(&fs_info->cleaner_mutex);
3065 	mutex_init(&fs_info->ro_block_group_mutex);
3066 	init_rwsem(&fs_info->commit_root_sem);
3067 	init_rwsem(&fs_info->cleanup_work_sem);
3068 	init_rwsem(&fs_info->subvol_sem);
3069 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
3070 
3071 	btrfs_init_dev_replace_locks(fs_info);
3072 	btrfs_init_qgroup(fs_info);
3073 	btrfs_discard_init(fs_info);
3074 
3075 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3076 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3077 
3078 	init_waitqueue_head(&fs_info->transaction_throttle);
3079 	init_waitqueue_head(&fs_info->transaction_wait);
3080 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
3081 	init_waitqueue_head(&fs_info->async_submit_wait);
3082 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
3083 
3084 	/* Usable values until the real ones are cached from the superblock */
3085 	fs_info->nodesize = 4096;
3086 	fs_info->sectorsize = 4096;
3087 	fs_info->sectorsize_bits = ilog2(4096);
3088 	fs_info->stripesize = 4096;
3089 
3090 	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
3091 
3092 	spin_lock_init(&fs_info->swapfile_pins_lock);
3093 	fs_info->swapfile_pins = RB_ROOT;
3094 
3095 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3096 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
3097 }
3098 
3099 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3100 {
3101 	int ret;
3102 
3103 	fs_info->sb = sb;
3104 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3105 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3106 
3107 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3108 	if (ret)
3109 		return ret;
3110 
3111 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3112 	if (ret)
3113 		return ret;
3114 
3115 	fs_info->dirty_metadata_batch = PAGE_SIZE *
3116 					(1 + ilog2(nr_cpu_ids));
3117 
3118 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3119 	if (ret)
3120 		return ret;
3121 
3122 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3123 			GFP_KERNEL);
3124 	if (ret)
3125 		return ret;
3126 
3127 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3128 					GFP_KERNEL);
3129 	if (!fs_info->delayed_root)
3130 		return -ENOMEM;
3131 	btrfs_init_delayed_root(fs_info->delayed_root);
3132 
3133 	if (sb_rdonly(sb))
3134 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3135 
3136 	return btrfs_alloc_stripe_hash_table(fs_info);
3137 }
3138 
3139 static int btrfs_uuid_rescan_kthread(void *data)
3140 {
3141 	struct btrfs_fs_info *fs_info = data;
3142 	int ret;
3143 
3144 	/*
3145 	 * 1st step is to iterate through the existing UUID tree and
3146 	 * to delete all entries that contain outdated data.
3147 	 * 2nd step is to add all missing entries to the UUID tree.
3148 	 */
3149 	ret = btrfs_uuid_tree_iterate(fs_info);
3150 	if (ret < 0) {
3151 		if (ret != -EINTR)
3152 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3153 				   ret);
3154 		up(&fs_info->uuid_tree_rescan_sem);
3155 		return ret;
3156 	}
3157 	return btrfs_uuid_scan_kthread(data);
3158 }
3159 
3160 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3161 {
3162 	struct task_struct *task;
3163 
3164 	down(&fs_info->uuid_tree_rescan_sem);
3165 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3166 	if (IS_ERR(task)) {
3167 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3168 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
3169 		up(&fs_info->uuid_tree_rescan_sem);
3170 		return PTR_ERR(task);
3171 	}
3172 
3173 	return 0;
3174 }
3175 
3176 /*
3177  * Some options only have meaning at mount time and shouldn't persist across
3178  * remounts, or be displayed. Clear these at the end of mount and remount
3179  * code paths.
3180  */
3181 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3182 {
3183 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3184 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3185 }
3186 
3187 /*
3188  * Mounting logic specific to read-write file systems. Shared by open_ctree
3189  * and btrfs_remount when remounting from read-only to read-write.
3190  */
3191 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3192 {
3193 	int ret;
3194 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3195 	bool clear_free_space_tree = false;
3196 
3197 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3198 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3199 		clear_free_space_tree = true;
3200 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3201 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3202 		btrfs_warn(fs_info, "free space tree is invalid");
3203 		clear_free_space_tree = true;
3204 	}
3205 
3206 	if (clear_free_space_tree) {
3207 		btrfs_info(fs_info, "clearing free space tree");
3208 		ret = btrfs_clear_free_space_tree(fs_info);
3209 		if (ret) {
3210 			btrfs_warn(fs_info,
3211 				   "failed to clear free space tree: %d", ret);
3212 			goto out;
3213 		}
3214 	}
3215 
3216 	/*
3217 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3218 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3219 	 * them into the fs_info->fs_roots_radix tree. This must be done before
3220 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3221 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3222 	 * item before the root's tree is deleted - this means that if we unmount
3223 	 * or crash before the deletion completes, on the next mount we will not
3224 	 * delete what remains of the tree because the orphan item does not
3225 	 * exists anymore, which is what tells us we have a pending deletion.
3226 	 */
3227 	ret = btrfs_find_orphan_roots(fs_info);
3228 	if (ret)
3229 		goto out;
3230 
3231 	ret = btrfs_cleanup_fs_roots(fs_info);
3232 	if (ret)
3233 		goto out;
3234 
3235 	down_read(&fs_info->cleanup_work_sem);
3236 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3237 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3238 		up_read(&fs_info->cleanup_work_sem);
3239 		goto out;
3240 	}
3241 	up_read(&fs_info->cleanup_work_sem);
3242 
3243 	mutex_lock(&fs_info->cleaner_mutex);
3244 	ret = btrfs_recover_relocation(fs_info);
3245 	mutex_unlock(&fs_info->cleaner_mutex);
3246 	if (ret < 0) {
3247 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3248 		goto out;
3249 	}
3250 
3251 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3252 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3253 		btrfs_info(fs_info, "creating free space tree");
3254 		ret = btrfs_create_free_space_tree(fs_info);
3255 		if (ret) {
3256 			btrfs_warn(fs_info,
3257 				"failed to create free space tree: %d", ret);
3258 			goto out;
3259 		}
3260 	}
3261 
3262 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3263 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3264 		if (ret)
3265 			goto out;
3266 	}
3267 
3268 	ret = btrfs_resume_balance_async(fs_info);
3269 	if (ret)
3270 		goto out;
3271 
3272 	ret = btrfs_resume_dev_replace_async(fs_info);
3273 	if (ret) {
3274 		btrfs_warn(fs_info, "failed to resume dev_replace");
3275 		goto out;
3276 	}
3277 
3278 	btrfs_qgroup_rescan_resume(fs_info);
3279 
3280 	if (!fs_info->uuid_root) {
3281 		btrfs_info(fs_info, "creating UUID tree");
3282 		ret = btrfs_create_uuid_tree(fs_info);
3283 		if (ret) {
3284 			btrfs_warn(fs_info,
3285 				   "failed to create the UUID tree %d", ret);
3286 			goto out;
3287 		}
3288 	}
3289 
3290 out:
3291 	return ret;
3292 }
3293 
3294 /*
3295  * Do various sanity and dependency checks of different features.
3296  *
3297  * This is the place for less strict checks (like for subpage or artificial
3298  * feature dependencies).
3299  *
3300  * For strict checks or possible corruption detection, see
3301  * btrfs_validate_super().
3302  *
3303  * This should be called after btrfs_parse_options(), as some mount options
3304  * (space cache related) can modify on-disk format like free space tree and
3305  * screw up certain feature dependencies.
3306  */
3307 int btrfs_check_features(struct btrfs_fs_info *fs_info, struct super_block *sb)
3308 {
3309 	struct btrfs_super_block *disk_super = fs_info->super_copy;
3310 	u64 incompat = btrfs_super_incompat_flags(disk_super);
3311 	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3312 	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3313 
3314 	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3315 		btrfs_err(fs_info,
3316 		"cannot mount because of unknown incompat features (0x%llx)",
3317 		    incompat);
3318 		return -EINVAL;
3319 	}
3320 
3321 	/* Runtime limitation for mixed block groups. */
3322 	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3323 	    (fs_info->sectorsize != fs_info->nodesize)) {
3324 		btrfs_err(fs_info,
3325 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3326 			fs_info->nodesize, fs_info->sectorsize);
3327 		return -EINVAL;
3328 	}
3329 
3330 	/* Mixed backref is an always-enabled feature. */
3331 	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3332 
3333 	/* Set compression related flags just in case. */
3334 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3335 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3336 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3337 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3338 
3339 	/*
3340 	 * An ancient flag, which should really be marked deprecated.
3341 	 * Such runtime limitation doesn't really need a incompat flag.
3342 	 */
3343 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3344 		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3345 
3346 	if (compat_ro_unsupp && !sb_rdonly(sb)) {
3347 		btrfs_err(fs_info,
3348 	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3349 		       compat_ro);
3350 		return -EINVAL;
3351 	}
3352 
3353 	/*
3354 	 * We have unsupported RO compat features, although RO mounted, we
3355 	 * should not cause any metadata writes, including log replay.
3356 	 * Or we could screw up whatever the new feature requires.
3357 	 */
3358 	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3359 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3360 		btrfs_err(fs_info,
3361 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3362 			  compat_ro);
3363 		return -EINVAL;
3364 	}
3365 
3366 	/*
3367 	 * Artificial limitations for block group tree, to force
3368 	 * block-group-tree to rely on no-holes and free-space-tree.
3369 	 */
3370 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3371 	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3372 	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3373 		btrfs_err(fs_info,
3374 "block-group-tree feature requires no-holes and free-space-tree features");
3375 		return -EINVAL;
3376 	}
3377 
3378 	/*
3379 	 * Subpage runtime limitation on v1 cache.
3380 	 *
3381 	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3382 	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3383 	 * going to be deprecated anyway.
3384 	 */
3385 	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3386 		btrfs_warn(fs_info,
3387 	"v1 space cache is not supported for page size %lu with sectorsize %u",
3388 			   PAGE_SIZE, fs_info->sectorsize);
3389 		return -EINVAL;
3390 	}
3391 
3392 	/* This can be called by remount, we need to protect the super block. */
3393 	spin_lock(&fs_info->super_lock);
3394 	btrfs_set_super_incompat_flags(disk_super, incompat);
3395 	spin_unlock(&fs_info->super_lock);
3396 
3397 	return 0;
3398 }
3399 
3400 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3401 		      char *options)
3402 {
3403 	u32 sectorsize;
3404 	u32 nodesize;
3405 	u32 stripesize;
3406 	u64 generation;
3407 	u64 features;
3408 	u16 csum_type;
3409 	struct btrfs_super_block *disk_super;
3410 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3411 	struct btrfs_root *tree_root;
3412 	struct btrfs_root *chunk_root;
3413 	int ret;
3414 	int err = -EINVAL;
3415 	int level;
3416 
3417 	ret = init_mount_fs_info(fs_info, sb);
3418 	if (ret) {
3419 		err = ret;
3420 		goto fail;
3421 	}
3422 
3423 	/* These need to be init'ed before we start creating inodes and such. */
3424 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3425 				     GFP_KERNEL);
3426 	fs_info->tree_root = tree_root;
3427 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3428 				      GFP_KERNEL);
3429 	fs_info->chunk_root = chunk_root;
3430 	if (!tree_root || !chunk_root) {
3431 		err = -ENOMEM;
3432 		goto fail;
3433 	}
3434 
3435 	fs_info->btree_inode = new_inode(sb);
3436 	if (!fs_info->btree_inode) {
3437 		err = -ENOMEM;
3438 		goto fail;
3439 	}
3440 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3441 	btrfs_init_btree_inode(fs_info);
3442 
3443 	invalidate_bdev(fs_devices->latest_dev->bdev);
3444 
3445 	/*
3446 	 * Read super block and check the signature bytes only
3447 	 */
3448 	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3449 	if (IS_ERR(disk_super)) {
3450 		err = PTR_ERR(disk_super);
3451 		goto fail_alloc;
3452 	}
3453 
3454 	/*
3455 	 * Verify the type first, if that or the checksum value are
3456 	 * corrupted, we'll find out
3457 	 */
3458 	csum_type = btrfs_super_csum_type(disk_super);
3459 	if (!btrfs_supported_super_csum(csum_type)) {
3460 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3461 			  csum_type);
3462 		err = -EINVAL;
3463 		btrfs_release_disk_super(disk_super);
3464 		goto fail_alloc;
3465 	}
3466 
3467 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3468 
3469 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3470 	if (ret) {
3471 		err = ret;
3472 		btrfs_release_disk_super(disk_super);
3473 		goto fail_alloc;
3474 	}
3475 
3476 	/*
3477 	 * We want to check superblock checksum, the type is stored inside.
3478 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3479 	 */
3480 	if (btrfs_check_super_csum(fs_info, disk_super)) {
3481 		btrfs_err(fs_info, "superblock checksum mismatch");
3482 		err = -EINVAL;
3483 		btrfs_release_disk_super(disk_super);
3484 		goto fail_alloc;
3485 	}
3486 
3487 	/*
3488 	 * super_copy is zeroed at allocation time and we never touch the
3489 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3490 	 * the whole block of INFO_SIZE
3491 	 */
3492 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3493 	btrfs_release_disk_super(disk_super);
3494 
3495 	disk_super = fs_info->super_copy;
3496 
3497 
3498 	features = btrfs_super_flags(disk_super);
3499 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3500 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3501 		btrfs_set_super_flags(disk_super, features);
3502 		btrfs_info(fs_info,
3503 			"found metadata UUID change in progress flag, clearing");
3504 	}
3505 
3506 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3507 	       sizeof(*fs_info->super_for_commit));
3508 
3509 	ret = btrfs_validate_mount_super(fs_info);
3510 	if (ret) {
3511 		btrfs_err(fs_info, "superblock contains fatal errors");
3512 		err = -EINVAL;
3513 		goto fail_alloc;
3514 	}
3515 
3516 	if (!btrfs_super_root(disk_super))
3517 		goto fail_alloc;
3518 
3519 	/* check FS state, whether FS is broken. */
3520 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3521 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3522 
3523 	/*
3524 	 * In the long term, we'll store the compression type in the super
3525 	 * block, and it'll be used for per file compression control.
3526 	 */
3527 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3528 
3529 
3530 	/* Set up fs_info before parsing mount options */
3531 	nodesize = btrfs_super_nodesize(disk_super);
3532 	sectorsize = btrfs_super_sectorsize(disk_super);
3533 	stripesize = sectorsize;
3534 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3535 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3536 
3537 	fs_info->nodesize = nodesize;
3538 	fs_info->sectorsize = sectorsize;
3539 	fs_info->sectorsize_bits = ilog2(sectorsize);
3540 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3541 	fs_info->stripesize = stripesize;
3542 
3543 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3544 	if (ret) {
3545 		err = ret;
3546 		goto fail_alloc;
3547 	}
3548 
3549 	ret = btrfs_check_features(fs_info, sb);
3550 	if (ret < 0) {
3551 		err = ret;
3552 		goto fail_alloc;
3553 	}
3554 
3555 	if (sectorsize < PAGE_SIZE) {
3556 		struct btrfs_subpage_info *subpage_info;
3557 
3558 		/*
3559 		 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3560 		 * going to be deprecated.
3561 		 *
3562 		 * Force to use v2 cache for subpage case.
3563 		 */
3564 		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3565 		btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3566 			"forcing free space tree for sector size %u with page size %lu",
3567 			sectorsize, PAGE_SIZE);
3568 
3569 		btrfs_warn(fs_info,
3570 		"read-write for sector size %u with page size %lu is experimental",
3571 			   sectorsize, PAGE_SIZE);
3572 		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3573 		if (!subpage_info)
3574 			goto fail_alloc;
3575 		btrfs_init_subpage_info(subpage_info, sectorsize);
3576 		fs_info->subpage_info = subpage_info;
3577 	}
3578 
3579 	ret = btrfs_init_workqueues(fs_info);
3580 	if (ret) {
3581 		err = ret;
3582 		goto fail_sb_buffer;
3583 	}
3584 
3585 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3586 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3587 
3588 	sb->s_blocksize = sectorsize;
3589 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3590 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3591 
3592 	mutex_lock(&fs_info->chunk_mutex);
3593 	ret = btrfs_read_sys_array(fs_info);
3594 	mutex_unlock(&fs_info->chunk_mutex);
3595 	if (ret) {
3596 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3597 		goto fail_sb_buffer;
3598 	}
3599 
3600 	generation = btrfs_super_chunk_root_generation(disk_super);
3601 	level = btrfs_super_chunk_root_level(disk_super);
3602 	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3603 			      generation, level);
3604 	if (ret) {
3605 		btrfs_err(fs_info, "failed to read chunk root");
3606 		goto fail_tree_roots;
3607 	}
3608 
3609 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3610 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3611 			   BTRFS_UUID_SIZE);
3612 
3613 	ret = btrfs_read_chunk_tree(fs_info);
3614 	if (ret) {
3615 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3616 		goto fail_tree_roots;
3617 	}
3618 
3619 	/*
3620 	 * At this point we know all the devices that make this filesystem,
3621 	 * including the seed devices but we don't know yet if the replace
3622 	 * target is required. So free devices that are not part of this
3623 	 * filesystem but skip the replace target device which is checked
3624 	 * below in btrfs_init_dev_replace().
3625 	 */
3626 	btrfs_free_extra_devids(fs_devices);
3627 	if (!fs_devices->latest_dev->bdev) {
3628 		btrfs_err(fs_info, "failed to read devices");
3629 		goto fail_tree_roots;
3630 	}
3631 
3632 	ret = init_tree_roots(fs_info);
3633 	if (ret)
3634 		goto fail_tree_roots;
3635 
3636 	/*
3637 	 * Get zone type information of zoned block devices. This will also
3638 	 * handle emulation of a zoned filesystem if a regular device has the
3639 	 * zoned incompat feature flag set.
3640 	 */
3641 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3642 	if (ret) {
3643 		btrfs_err(fs_info,
3644 			  "zoned: failed to read device zone info: %d",
3645 			  ret);
3646 		goto fail_block_groups;
3647 	}
3648 
3649 	/*
3650 	 * If we have a uuid root and we're not being told to rescan we need to
3651 	 * check the generation here so we can set the
3652 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3653 	 * transaction during a balance or the log replay without updating the
3654 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3655 	 * even though it was perfectly fine.
3656 	 */
3657 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3658 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3659 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3660 
3661 	ret = btrfs_verify_dev_extents(fs_info);
3662 	if (ret) {
3663 		btrfs_err(fs_info,
3664 			  "failed to verify dev extents against chunks: %d",
3665 			  ret);
3666 		goto fail_block_groups;
3667 	}
3668 	ret = btrfs_recover_balance(fs_info);
3669 	if (ret) {
3670 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3671 		goto fail_block_groups;
3672 	}
3673 
3674 	ret = btrfs_init_dev_stats(fs_info);
3675 	if (ret) {
3676 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3677 		goto fail_block_groups;
3678 	}
3679 
3680 	ret = btrfs_init_dev_replace(fs_info);
3681 	if (ret) {
3682 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3683 		goto fail_block_groups;
3684 	}
3685 
3686 	ret = btrfs_check_zoned_mode(fs_info);
3687 	if (ret) {
3688 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3689 			  ret);
3690 		goto fail_block_groups;
3691 	}
3692 
3693 	ret = btrfs_sysfs_add_fsid(fs_devices);
3694 	if (ret) {
3695 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3696 				ret);
3697 		goto fail_block_groups;
3698 	}
3699 
3700 	ret = btrfs_sysfs_add_mounted(fs_info);
3701 	if (ret) {
3702 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3703 		goto fail_fsdev_sysfs;
3704 	}
3705 
3706 	ret = btrfs_init_space_info(fs_info);
3707 	if (ret) {
3708 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3709 		goto fail_sysfs;
3710 	}
3711 
3712 	ret = btrfs_read_block_groups(fs_info);
3713 	if (ret) {
3714 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3715 		goto fail_sysfs;
3716 	}
3717 
3718 	btrfs_free_zone_cache(fs_info);
3719 
3720 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3721 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3722 		btrfs_warn(fs_info,
3723 		"writable mount is not allowed due to too many missing devices");
3724 		goto fail_sysfs;
3725 	}
3726 
3727 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3728 					       "btrfs-cleaner");
3729 	if (IS_ERR(fs_info->cleaner_kthread))
3730 		goto fail_sysfs;
3731 
3732 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3733 						   tree_root,
3734 						   "btrfs-transaction");
3735 	if (IS_ERR(fs_info->transaction_kthread))
3736 		goto fail_cleaner;
3737 
3738 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3739 	    !fs_info->fs_devices->rotating) {
3740 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3741 	}
3742 
3743 	/*
3744 	 * Mount does not set all options immediately, we can do it now and do
3745 	 * not have to wait for transaction commit
3746 	 */
3747 	btrfs_apply_pending_changes(fs_info);
3748 
3749 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3750 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3751 		ret = btrfsic_mount(fs_info, fs_devices,
3752 				    btrfs_test_opt(fs_info,
3753 					CHECK_INTEGRITY_DATA) ? 1 : 0,
3754 				    fs_info->check_integrity_print_mask);
3755 		if (ret)
3756 			btrfs_warn(fs_info,
3757 				"failed to initialize integrity check module: %d",
3758 				ret);
3759 	}
3760 #endif
3761 	ret = btrfs_read_qgroup_config(fs_info);
3762 	if (ret)
3763 		goto fail_trans_kthread;
3764 
3765 	if (btrfs_build_ref_tree(fs_info))
3766 		btrfs_err(fs_info, "couldn't build ref tree");
3767 
3768 	/* do not make disk changes in broken FS or nologreplay is given */
3769 	if (btrfs_super_log_root(disk_super) != 0 &&
3770 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3771 		btrfs_info(fs_info, "start tree-log replay");
3772 		ret = btrfs_replay_log(fs_info, fs_devices);
3773 		if (ret) {
3774 			err = ret;
3775 			goto fail_qgroup;
3776 		}
3777 	}
3778 
3779 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3780 	if (IS_ERR(fs_info->fs_root)) {
3781 		err = PTR_ERR(fs_info->fs_root);
3782 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3783 		fs_info->fs_root = NULL;
3784 		goto fail_qgroup;
3785 	}
3786 
3787 	if (sb_rdonly(sb))
3788 		goto clear_oneshot;
3789 
3790 	ret = btrfs_start_pre_rw_mount(fs_info);
3791 	if (ret) {
3792 		close_ctree(fs_info);
3793 		return ret;
3794 	}
3795 	btrfs_discard_resume(fs_info);
3796 
3797 	if (fs_info->uuid_root &&
3798 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3799 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3800 		btrfs_info(fs_info, "checking UUID tree");
3801 		ret = btrfs_check_uuid_tree(fs_info);
3802 		if (ret) {
3803 			btrfs_warn(fs_info,
3804 				"failed to check the UUID tree: %d", ret);
3805 			close_ctree(fs_info);
3806 			return ret;
3807 		}
3808 	}
3809 
3810 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3811 
3812 	/* Kick the cleaner thread so it'll start deleting snapshots. */
3813 	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3814 		wake_up_process(fs_info->cleaner_kthread);
3815 
3816 clear_oneshot:
3817 	btrfs_clear_oneshot_options(fs_info);
3818 	return 0;
3819 
3820 fail_qgroup:
3821 	btrfs_free_qgroup_config(fs_info);
3822 fail_trans_kthread:
3823 	kthread_stop(fs_info->transaction_kthread);
3824 	btrfs_cleanup_transaction(fs_info);
3825 	btrfs_free_fs_roots(fs_info);
3826 fail_cleaner:
3827 	kthread_stop(fs_info->cleaner_kthread);
3828 
3829 	/*
3830 	 * make sure we're done with the btree inode before we stop our
3831 	 * kthreads
3832 	 */
3833 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3834 
3835 fail_sysfs:
3836 	btrfs_sysfs_remove_mounted(fs_info);
3837 
3838 fail_fsdev_sysfs:
3839 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3840 
3841 fail_block_groups:
3842 	btrfs_put_block_group_cache(fs_info);
3843 
3844 fail_tree_roots:
3845 	if (fs_info->data_reloc_root)
3846 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3847 	free_root_pointers(fs_info, true);
3848 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3849 
3850 fail_sb_buffer:
3851 	btrfs_stop_all_workers(fs_info);
3852 	btrfs_free_block_groups(fs_info);
3853 fail_alloc:
3854 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3855 
3856 	iput(fs_info->btree_inode);
3857 fail:
3858 	btrfs_close_devices(fs_info->fs_devices);
3859 	return err;
3860 }
3861 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3862 
3863 static void btrfs_end_super_write(struct bio *bio)
3864 {
3865 	struct btrfs_device *device = bio->bi_private;
3866 	struct bio_vec *bvec;
3867 	struct bvec_iter_all iter_all;
3868 	struct page *page;
3869 
3870 	bio_for_each_segment_all(bvec, bio, iter_all) {
3871 		page = bvec->bv_page;
3872 
3873 		if (bio->bi_status) {
3874 			btrfs_warn_rl_in_rcu(device->fs_info,
3875 				"lost page write due to IO error on %s (%d)",
3876 				rcu_str_deref(device->name),
3877 				blk_status_to_errno(bio->bi_status));
3878 			ClearPageUptodate(page);
3879 			SetPageError(page);
3880 			btrfs_dev_stat_inc_and_print(device,
3881 						     BTRFS_DEV_STAT_WRITE_ERRS);
3882 		} else {
3883 			SetPageUptodate(page);
3884 		}
3885 
3886 		put_page(page);
3887 		unlock_page(page);
3888 	}
3889 
3890 	bio_put(bio);
3891 }
3892 
3893 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3894 						   int copy_num, bool drop_cache)
3895 {
3896 	struct btrfs_super_block *super;
3897 	struct page *page;
3898 	u64 bytenr, bytenr_orig;
3899 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3900 	int ret;
3901 
3902 	bytenr_orig = btrfs_sb_offset(copy_num);
3903 	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3904 	if (ret == -ENOENT)
3905 		return ERR_PTR(-EINVAL);
3906 	else if (ret)
3907 		return ERR_PTR(ret);
3908 
3909 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3910 		return ERR_PTR(-EINVAL);
3911 
3912 	if (drop_cache) {
3913 		/* This should only be called with the primary sb. */
3914 		ASSERT(copy_num == 0);
3915 
3916 		/*
3917 		 * Drop the page of the primary superblock, so later read will
3918 		 * always read from the device.
3919 		 */
3920 		invalidate_inode_pages2_range(mapping,
3921 				bytenr >> PAGE_SHIFT,
3922 				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3923 	}
3924 
3925 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3926 	if (IS_ERR(page))
3927 		return ERR_CAST(page);
3928 
3929 	super = page_address(page);
3930 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3931 		btrfs_release_disk_super(super);
3932 		return ERR_PTR(-ENODATA);
3933 	}
3934 
3935 	if (btrfs_super_bytenr(super) != bytenr_orig) {
3936 		btrfs_release_disk_super(super);
3937 		return ERR_PTR(-EINVAL);
3938 	}
3939 
3940 	return super;
3941 }
3942 
3943 
3944 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3945 {
3946 	struct btrfs_super_block *super, *latest = NULL;
3947 	int i;
3948 	u64 transid = 0;
3949 
3950 	/* we would like to check all the supers, but that would make
3951 	 * a btrfs mount succeed after a mkfs from a different FS.
3952 	 * So, we need to add a special mount option to scan for
3953 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3954 	 */
3955 	for (i = 0; i < 1; i++) {
3956 		super = btrfs_read_dev_one_super(bdev, i, false);
3957 		if (IS_ERR(super))
3958 			continue;
3959 
3960 		if (!latest || btrfs_super_generation(super) > transid) {
3961 			if (latest)
3962 				btrfs_release_disk_super(super);
3963 
3964 			latest = super;
3965 			transid = btrfs_super_generation(super);
3966 		}
3967 	}
3968 
3969 	return super;
3970 }
3971 
3972 /*
3973  * Write superblock @sb to the @device. Do not wait for completion, all the
3974  * pages we use for writing are locked.
3975  *
3976  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3977  * the expected device size at commit time. Note that max_mirrors must be
3978  * same for write and wait phases.
3979  *
3980  * Return number of errors when page is not found or submission fails.
3981  */
3982 static int write_dev_supers(struct btrfs_device *device,
3983 			    struct btrfs_super_block *sb, int max_mirrors)
3984 {
3985 	struct btrfs_fs_info *fs_info = device->fs_info;
3986 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3987 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3988 	int i;
3989 	int errors = 0;
3990 	int ret;
3991 	u64 bytenr, bytenr_orig;
3992 
3993 	if (max_mirrors == 0)
3994 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3995 
3996 	shash->tfm = fs_info->csum_shash;
3997 
3998 	for (i = 0; i < max_mirrors; i++) {
3999 		struct page *page;
4000 		struct bio *bio;
4001 		struct btrfs_super_block *disk_super;
4002 
4003 		bytenr_orig = btrfs_sb_offset(i);
4004 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
4005 		if (ret == -ENOENT) {
4006 			continue;
4007 		} else if (ret < 0) {
4008 			btrfs_err(device->fs_info,
4009 				"couldn't get super block location for mirror %d",
4010 				i);
4011 			errors++;
4012 			continue;
4013 		}
4014 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4015 		    device->commit_total_bytes)
4016 			break;
4017 
4018 		btrfs_set_super_bytenr(sb, bytenr_orig);
4019 
4020 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
4021 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
4022 				    sb->csum);
4023 
4024 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
4025 					   GFP_NOFS);
4026 		if (!page) {
4027 			btrfs_err(device->fs_info,
4028 			    "couldn't get super block page for bytenr %llu",
4029 			    bytenr);
4030 			errors++;
4031 			continue;
4032 		}
4033 
4034 		/* Bump the refcount for wait_dev_supers() */
4035 		get_page(page);
4036 
4037 		disk_super = page_address(page);
4038 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4039 
4040 		/*
4041 		 * Directly use bios here instead of relying on the page cache
4042 		 * to do I/O, so we don't lose the ability to do integrity
4043 		 * checking.
4044 		 */
4045 		bio = bio_alloc(device->bdev, 1,
4046 				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
4047 				GFP_NOFS);
4048 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4049 		bio->bi_private = device;
4050 		bio->bi_end_io = btrfs_end_super_write;
4051 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4052 			       offset_in_page(bytenr));
4053 
4054 		/*
4055 		 * We FUA only the first super block.  The others we allow to
4056 		 * go down lazy and there's a short window where the on-disk
4057 		 * copies might still contain the older version.
4058 		 */
4059 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
4060 			bio->bi_opf |= REQ_FUA;
4061 
4062 		btrfsic_check_bio(bio);
4063 		submit_bio(bio);
4064 
4065 		if (btrfs_advance_sb_log(device, i))
4066 			errors++;
4067 	}
4068 	return errors < i ? 0 : -1;
4069 }
4070 
4071 /*
4072  * Wait for write completion of superblocks done by write_dev_supers,
4073  * @max_mirrors same for write and wait phases.
4074  *
4075  * Return number of errors when page is not found or not marked up to
4076  * date.
4077  */
4078 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4079 {
4080 	int i;
4081 	int errors = 0;
4082 	bool primary_failed = false;
4083 	int ret;
4084 	u64 bytenr;
4085 
4086 	if (max_mirrors == 0)
4087 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4088 
4089 	for (i = 0; i < max_mirrors; i++) {
4090 		struct page *page;
4091 
4092 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4093 		if (ret == -ENOENT) {
4094 			break;
4095 		} else if (ret < 0) {
4096 			errors++;
4097 			if (i == 0)
4098 				primary_failed = true;
4099 			continue;
4100 		}
4101 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4102 		    device->commit_total_bytes)
4103 			break;
4104 
4105 		page = find_get_page(device->bdev->bd_inode->i_mapping,
4106 				     bytenr >> PAGE_SHIFT);
4107 		if (!page) {
4108 			errors++;
4109 			if (i == 0)
4110 				primary_failed = true;
4111 			continue;
4112 		}
4113 		/* Page is submitted locked and unlocked once the IO completes */
4114 		wait_on_page_locked(page);
4115 		if (PageError(page)) {
4116 			errors++;
4117 			if (i == 0)
4118 				primary_failed = true;
4119 		}
4120 
4121 		/* Drop our reference */
4122 		put_page(page);
4123 
4124 		/* Drop the reference from the writing run */
4125 		put_page(page);
4126 	}
4127 
4128 	/* log error, force error return */
4129 	if (primary_failed) {
4130 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4131 			  device->devid);
4132 		return -1;
4133 	}
4134 
4135 	return errors < i ? 0 : -1;
4136 }
4137 
4138 /*
4139  * endio for the write_dev_flush, this will wake anyone waiting
4140  * for the barrier when it is done
4141  */
4142 static void btrfs_end_empty_barrier(struct bio *bio)
4143 {
4144 	bio_uninit(bio);
4145 	complete(bio->bi_private);
4146 }
4147 
4148 /*
4149  * Submit a flush request to the device if it supports it. Error handling is
4150  * done in the waiting counterpart.
4151  */
4152 static void write_dev_flush(struct btrfs_device *device)
4153 {
4154 	struct bio *bio = &device->flush_bio;
4155 
4156 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4157 	/*
4158 	 * When a disk has write caching disabled, we skip submission of a bio
4159 	 * with flush and sync requests before writing the superblock, since
4160 	 * it's not needed. However when the integrity checker is enabled, this
4161 	 * results in reports that there are metadata blocks referred by a
4162 	 * superblock that were not properly flushed. So don't skip the bio
4163 	 * submission only when the integrity checker is enabled for the sake
4164 	 * of simplicity, since this is a debug tool and not meant for use in
4165 	 * non-debug builds.
4166 	 */
4167 	if (!bdev_write_cache(device->bdev))
4168 		return;
4169 #endif
4170 
4171 	bio_init(bio, device->bdev, NULL, 0,
4172 		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
4173 	bio->bi_end_io = btrfs_end_empty_barrier;
4174 	init_completion(&device->flush_wait);
4175 	bio->bi_private = &device->flush_wait;
4176 
4177 	btrfsic_check_bio(bio);
4178 	submit_bio(bio);
4179 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4180 }
4181 
4182 /*
4183  * If the flush bio has been submitted by write_dev_flush, wait for it.
4184  */
4185 static blk_status_t wait_dev_flush(struct btrfs_device *device)
4186 {
4187 	struct bio *bio = &device->flush_bio;
4188 
4189 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4190 		return BLK_STS_OK;
4191 
4192 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4193 	wait_for_completion_io(&device->flush_wait);
4194 
4195 	return bio->bi_status;
4196 }
4197 
4198 static int check_barrier_error(struct btrfs_fs_info *fs_info)
4199 {
4200 	if (!btrfs_check_rw_degradable(fs_info, NULL))
4201 		return -EIO;
4202 	return 0;
4203 }
4204 
4205 /*
4206  * send an empty flush down to each device in parallel,
4207  * then wait for them
4208  */
4209 static int barrier_all_devices(struct btrfs_fs_info *info)
4210 {
4211 	struct list_head *head;
4212 	struct btrfs_device *dev;
4213 	int errors_wait = 0;
4214 	blk_status_t ret;
4215 
4216 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
4217 	/* send down all the barriers */
4218 	head = &info->fs_devices->devices;
4219 	list_for_each_entry(dev, head, dev_list) {
4220 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4221 			continue;
4222 		if (!dev->bdev)
4223 			continue;
4224 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4225 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4226 			continue;
4227 
4228 		write_dev_flush(dev);
4229 		dev->last_flush_error = BLK_STS_OK;
4230 	}
4231 
4232 	/* wait for all the barriers */
4233 	list_for_each_entry(dev, head, dev_list) {
4234 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4235 			continue;
4236 		if (!dev->bdev) {
4237 			errors_wait++;
4238 			continue;
4239 		}
4240 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4241 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4242 			continue;
4243 
4244 		ret = wait_dev_flush(dev);
4245 		if (ret) {
4246 			dev->last_flush_error = ret;
4247 			btrfs_dev_stat_inc_and_print(dev,
4248 					BTRFS_DEV_STAT_FLUSH_ERRS);
4249 			errors_wait++;
4250 		}
4251 	}
4252 
4253 	if (errors_wait) {
4254 		/*
4255 		 * At some point we need the status of all disks
4256 		 * to arrive at the volume status. So error checking
4257 		 * is being pushed to a separate loop.
4258 		 */
4259 		return check_barrier_error(info);
4260 	}
4261 	return 0;
4262 }
4263 
4264 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4265 {
4266 	int raid_type;
4267 	int min_tolerated = INT_MAX;
4268 
4269 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4270 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4271 		min_tolerated = min_t(int, min_tolerated,
4272 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4273 				    tolerated_failures);
4274 
4275 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4276 		if (raid_type == BTRFS_RAID_SINGLE)
4277 			continue;
4278 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4279 			continue;
4280 		min_tolerated = min_t(int, min_tolerated,
4281 				    btrfs_raid_array[raid_type].
4282 				    tolerated_failures);
4283 	}
4284 
4285 	if (min_tolerated == INT_MAX) {
4286 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4287 		min_tolerated = 0;
4288 	}
4289 
4290 	return min_tolerated;
4291 }
4292 
4293 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4294 {
4295 	struct list_head *head;
4296 	struct btrfs_device *dev;
4297 	struct btrfs_super_block *sb;
4298 	struct btrfs_dev_item *dev_item;
4299 	int ret;
4300 	int do_barriers;
4301 	int max_errors;
4302 	int total_errors = 0;
4303 	u64 flags;
4304 
4305 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4306 
4307 	/*
4308 	 * max_mirrors == 0 indicates we're from commit_transaction,
4309 	 * not from fsync where the tree roots in fs_info have not
4310 	 * been consistent on disk.
4311 	 */
4312 	if (max_mirrors == 0)
4313 		backup_super_roots(fs_info);
4314 
4315 	sb = fs_info->super_for_commit;
4316 	dev_item = &sb->dev_item;
4317 
4318 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4319 	head = &fs_info->fs_devices->devices;
4320 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4321 
4322 	if (do_barriers) {
4323 		ret = barrier_all_devices(fs_info);
4324 		if (ret) {
4325 			mutex_unlock(
4326 				&fs_info->fs_devices->device_list_mutex);
4327 			btrfs_handle_fs_error(fs_info, ret,
4328 					      "errors while submitting device barriers.");
4329 			return ret;
4330 		}
4331 	}
4332 
4333 	list_for_each_entry(dev, head, dev_list) {
4334 		if (!dev->bdev) {
4335 			total_errors++;
4336 			continue;
4337 		}
4338 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4339 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4340 			continue;
4341 
4342 		btrfs_set_stack_device_generation(dev_item, 0);
4343 		btrfs_set_stack_device_type(dev_item, dev->type);
4344 		btrfs_set_stack_device_id(dev_item, dev->devid);
4345 		btrfs_set_stack_device_total_bytes(dev_item,
4346 						   dev->commit_total_bytes);
4347 		btrfs_set_stack_device_bytes_used(dev_item,
4348 						  dev->commit_bytes_used);
4349 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4350 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4351 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4352 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4353 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4354 		       BTRFS_FSID_SIZE);
4355 
4356 		flags = btrfs_super_flags(sb);
4357 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4358 
4359 		ret = btrfs_validate_write_super(fs_info, sb);
4360 		if (ret < 0) {
4361 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4362 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4363 				"unexpected superblock corruption detected");
4364 			return -EUCLEAN;
4365 		}
4366 
4367 		ret = write_dev_supers(dev, sb, max_mirrors);
4368 		if (ret)
4369 			total_errors++;
4370 	}
4371 	if (total_errors > max_errors) {
4372 		btrfs_err(fs_info, "%d errors while writing supers",
4373 			  total_errors);
4374 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4375 
4376 		/* FUA is masked off if unsupported and can't be the reason */
4377 		btrfs_handle_fs_error(fs_info, -EIO,
4378 				      "%d errors while writing supers",
4379 				      total_errors);
4380 		return -EIO;
4381 	}
4382 
4383 	total_errors = 0;
4384 	list_for_each_entry(dev, head, dev_list) {
4385 		if (!dev->bdev)
4386 			continue;
4387 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4388 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4389 			continue;
4390 
4391 		ret = wait_dev_supers(dev, max_mirrors);
4392 		if (ret)
4393 			total_errors++;
4394 	}
4395 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4396 	if (total_errors > max_errors) {
4397 		btrfs_handle_fs_error(fs_info, -EIO,
4398 				      "%d errors while writing supers",
4399 				      total_errors);
4400 		return -EIO;
4401 	}
4402 	return 0;
4403 }
4404 
4405 /* Drop a fs root from the radix tree and free it. */
4406 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4407 				  struct btrfs_root *root)
4408 {
4409 	bool drop_ref = false;
4410 
4411 	spin_lock(&fs_info->fs_roots_radix_lock);
4412 	radix_tree_delete(&fs_info->fs_roots_radix,
4413 			  (unsigned long)root->root_key.objectid);
4414 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4415 		drop_ref = true;
4416 	spin_unlock(&fs_info->fs_roots_radix_lock);
4417 
4418 	if (BTRFS_FS_ERROR(fs_info)) {
4419 		ASSERT(root->log_root == NULL);
4420 		if (root->reloc_root) {
4421 			btrfs_put_root(root->reloc_root);
4422 			root->reloc_root = NULL;
4423 		}
4424 	}
4425 
4426 	if (drop_ref)
4427 		btrfs_put_root(root);
4428 }
4429 
4430 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4431 {
4432 	u64 root_objectid = 0;
4433 	struct btrfs_root *gang[8];
4434 	int i = 0;
4435 	int err = 0;
4436 	unsigned int ret = 0;
4437 
4438 	while (1) {
4439 		spin_lock(&fs_info->fs_roots_radix_lock);
4440 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4441 					     (void **)gang, root_objectid,
4442 					     ARRAY_SIZE(gang));
4443 		if (!ret) {
4444 			spin_unlock(&fs_info->fs_roots_radix_lock);
4445 			break;
4446 		}
4447 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4448 
4449 		for (i = 0; i < ret; i++) {
4450 			/* Avoid to grab roots in dead_roots */
4451 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4452 				gang[i] = NULL;
4453 				continue;
4454 			}
4455 			/* grab all the search result for later use */
4456 			gang[i] = btrfs_grab_root(gang[i]);
4457 		}
4458 		spin_unlock(&fs_info->fs_roots_radix_lock);
4459 
4460 		for (i = 0; i < ret; i++) {
4461 			if (!gang[i])
4462 				continue;
4463 			root_objectid = gang[i]->root_key.objectid;
4464 			err = btrfs_orphan_cleanup(gang[i]);
4465 			if (err)
4466 				break;
4467 			btrfs_put_root(gang[i]);
4468 		}
4469 		root_objectid++;
4470 	}
4471 
4472 	/* release the uncleaned roots due to error */
4473 	for (; i < ret; i++) {
4474 		if (gang[i])
4475 			btrfs_put_root(gang[i]);
4476 	}
4477 	return err;
4478 }
4479 
4480 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4481 {
4482 	struct btrfs_root *root = fs_info->tree_root;
4483 	struct btrfs_trans_handle *trans;
4484 
4485 	mutex_lock(&fs_info->cleaner_mutex);
4486 	btrfs_run_delayed_iputs(fs_info);
4487 	mutex_unlock(&fs_info->cleaner_mutex);
4488 	wake_up_process(fs_info->cleaner_kthread);
4489 
4490 	/* wait until ongoing cleanup work done */
4491 	down_write(&fs_info->cleanup_work_sem);
4492 	up_write(&fs_info->cleanup_work_sem);
4493 
4494 	trans = btrfs_join_transaction(root);
4495 	if (IS_ERR(trans))
4496 		return PTR_ERR(trans);
4497 	return btrfs_commit_transaction(trans);
4498 }
4499 
4500 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4501 {
4502 	struct btrfs_transaction *trans;
4503 	struct btrfs_transaction *tmp;
4504 	bool found = false;
4505 
4506 	if (list_empty(&fs_info->trans_list))
4507 		return;
4508 
4509 	/*
4510 	 * This function is only called at the very end of close_ctree(),
4511 	 * thus no other running transaction, no need to take trans_lock.
4512 	 */
4513 	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4514 	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4515 		struct extent_state *cached = NULL;
4516 		u64 dirty_bytes = 0;
4517 		u64 cur = 0;
4518 		u64 found_start;
4519 		u64 found_end;
4520 
4521 		found = true;
4522 		while (!find_first_extent_bit(&trans->dirty_pages, cur,
4523 			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4524 			dirty_bytes += found_end + 1 - found_start;
4525 			cur = found_end + 1;
4526 		}
4527 		btrfs_warn(fs_info,
4528 	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4529 			   trans->transid, dirty_bytes);
4530 		btrfs_cleanup_one_transaction(trans, fs_info);
4531 
4532 		if (trans == fs_info->running_transaction)
4533 			fs_info->running_transaction = NULL;
4534 		list_del_init(&trans->list);
4535 
4536 		btrfs_put_transaction(trans);
4537 		trace_btrfs_transaction_commit(fs_info);
4538 	}
4539 	ASSERT(!found);
4540 }
4541 
4542 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4543 {
4544 	int ret;
4545 
4546 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4547 
4548 	/*
4549 	 * If we had UNFINISHED_DROPS we could still be processing them, so
4550 	 * clear that bit and wake up relocation so it can stop.
4551 	 * We must do this before stopping the block group reclaim task, because
4552 	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4553 	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4554 	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4555 	 * return 1.
4556 	 */
4557 	btrfs_wake_unfinished_drop(fs_info);
4558 
4559 	/*
4560 	 * We may have the reclaim task running and relocating a data block group,
4561 	 * in which case it may create delayed iputs. So stop it before we park
4562 	 * the cleaner kthread otherwise we can get new delayed iputs after
4563 	 * parking the cleaner, and that can make the async reclaim task to hang
4564 	 * if it's waiting for delayed iputs to complete, since the cleaner is
4565 	 * parked and can not run delayed iputs - this will make us hang when
4566 	 * trying to stop the async reclaim task.
4567 	 */
4568 	cancel_work_sync(&fs_info->reclaim_bgs_work);
4569 	/*
4570 	 * We don't want the cleaner to start new transactions, add more delayed
4571 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4572 	 * because that frees the task_struct, and the transaction kthread might
4573 	 * still try to wake up the cleaner.
4574 	 */
4575 	kthread_park(fs_info->cleaner_kthread);
4576 
4577 	/* wait for the qgroup rescan worker to stop */
4578 	btrfs_qgroup_wait_for_completion(fs_info, false);
4579 
4580 	/* wait for the uuid_scan task to finish */
4581 	down(&fs_info->uuid_tree_rescan_sem);
4582 	/* avoid complains from lockdep et al., set sem back to initial state */
4583 	up(&fs_info->uuid_tree_rescan_sem);
4584 
4585 	/* pause restriper - we want to resume on mount */
4586 	btrfs_pause_balance(fs_info);
4587 
4588 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4589 
4590 	btrfs_scrub_cancel(fs_info);
4591 
4592 	/* wait for any defraggers to finish */
4593 	wait_event(fs_info->transaction_wait,
4594 		   (atomic_read(&fs_info->defrag_running) == 0));
4595 
4596 	/* clear out the rbtree of defraggable inodes */
4597 	btrfs_cleanup_defrag_inodes(fs_info);
4598 
4599 	/*
4600 	 * After we parked the cleaner kthread, ordered extents may have
4601 	 * completed and created new delayed iputs. If one of the async reclaim
4602 	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4603 	 * can hang forever trying to stop it, because if a delayed iput is
4604 	 * added after it ran btrfs_run_delayed_iputs() and before it called
4605 	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4606 	 * no one else to run iputs.
4607 	 *
4608 	 * So wait for all ongoing ordered extents to complete and then run
4609 	 * delayed iputs. This works because once we reach this point no one
4610 	 * can either create new ordered extents nor create delayed iputs
4611 	 * through some other means.
4612 	 *
4613 	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4614 	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4615 	 * but the delayed iput for the respective inode is made only when doing
4616 	 * the final btrfs_put_ordered_extent() (which must happen at
4617 	 * btrfs_finish_ordered_io() when we are unmounting).
4618 	 */
4619 	btrfs_flush_workqueue(fs_info->endio_write_workers);
4620 	/* Ordered extents for free space inodes. */
4621 	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4622 	btrfs_run_delayed_iputs(fs_info);
4623 
4624 	cancel_work_sync(&fs_info->async_reclaim_work);
4625 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4626 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4627 
4628 	/* Cancel or finish ongoing discard work */
4629 	btrfs_discard_cleanup(fs_info);
4630 
4631 	if (!sb_rdonly(fs_info->sb)) {
4632 		/*
4633 		 * The cleaner kthread is stopped, so do one final pass over
4634 		 * unused block groups.
4635 		 */
4636 		btrfs_delete_unused_bgs(fs_info);
4637 
4638 		/*
4639 		 * There might be existing delayed inode workers still running
4640 		 * and holding an empty delayed inode item. We must wait for
4641 		 * them to complete first because they can create a transaction.
4642 		 * This happens when someone calls btrfs_balance_delayed_items()
4643 		 * and then a transaction commit runs the same delayed nodes
4644 		 * before any delayed worker has done something with the nodes.
4645 		 * We must wait for any worker here and not at transaction
4646 		 * commit time since that could cause a deadlock.
4647 		 * This is a very rare case.
4648 		 */
4649 		btrfs_flush_workqueue(fs_info->delayed_workers);
4650 
4651 		ret = btrfs_commit_super(fs_info);
4652 		if (ret)
4653 			btrfs_err(fs_info, "commit super ret %d", ret);
4654 	}
4655 
4656 	if (BTRFS_FS_ERROR(fs_info))
4657 		btrfs_error_commit_super(fs_info);
4658 
4659 	kthread_stop(fs_info->transaction_kthread);
4660 	kthread_stop(fs_info->cleaner_kthread);
4661 
4662 	ASSERT(list_empty(&fs_info->delayed_iputs));
4663 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4664 
4665 	if (btrfs_check_quota_leak(fs_info)) {
4666 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4667 		btrfs_err(fs_info, "qgroup reserved space leaked");
4668 	}
4669 
4670 	btrfs_free_qgroup_config(fs_info);
4671 	ASSERT(list_empty(&fs_info->delalloc_roots));
4672 
4673 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4674 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4675 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4676 	}
4677 
4678 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4679 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4680 			   percpu_counter_sum(&fs_info->ordered_bytes));
4681 
4682 	btrfs_sysfs_remove_mounted(fs_info);
4683 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4684 
4685 	btrfs_put_block_group_cache(fs_info);
4686 
4687 	/*
4688 	 * we must make sure there is not any read request to
4689 	 * submit after we stopping all workers.
4690 	 */
4691 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4692 	btrfs_stop_all_workers(fs_info);
4693 
4694 	/* We shouldn't have any transaction open at this point */
4695 	warn_about_uncommitted_trans(fs_info);
4696 
4697 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4698 	free_root_pointers(fs_info, true);
4699 	btrfs_free_fs_roots(fs_info);
4700 
4701 	/*
4702 	 * We must free the block groups after dropping the fs_roots as we could
4703 	 * have had an IO error and have left over tree log blocks that aren't
4704 	 * cleaned up until the fs roots are freed.  This makes the block group
4705 	 * accounting appear to be wrong because there's pending reserved bytes,
4706 	 * so make sure we do the block group cleanup afterwards.
4707 	 */
4708 	btrfs_free_block_groups(fs_info);
4709 
4710 	iput(fs_info->btree_inode);
4711 
4712 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4713 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4714 		btrfsic_unmount(fs_info->fs_devices);
4715 #endif
4716 
4717 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4718 	btrfs_close_devices(fs_info->fs_devices);
4719 }
4720 
4721 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4722 			  int atomic)
4723 {
4724 	int ret;
4725 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4726 
4727 	ret = extent_buffer_uptodate(buf);
4728 	if (!ret)
4729 		return ret;
4730 
4731 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4732 				    parent_transid, atomic);
4733 	if (ret == -EAGAIN)
4734 		return ret;
4735 	return !ret;
4736 }
4737 
4738 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4739 {
4740 	struct btrfs_fs_info *fs_info = buf->fs_info;
4741 	u64 transid = btrfs_header_generation(buf);
4742 	int was_dirty;
4743 
4744 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4745 	/*
4746 	 * This is a fast path so only do this check if we have sanity tests
4747 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4748 	 * outside of the sanity tests.
4749 	 */
4750 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4751 		return;
4752 #endif
4753 	btrfs_assert_tree_write_locked(buf);
4754 	if (transid != fs_info->generation)
4755 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4756 			buf->start, transid, fs_info->generation);
4757 	was_dirty = set_extent_buffer_dirty(buf);
4758 	if (!was_dirty)
4759 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4760 					 buf->len,
4761 					 fs_info->dirty_metadata_batch);
4762 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4763 	/*
4764 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4765 	 * but item data not updated.
4766 	 * So here we should only check item pointers, not item data.
4767 	 */
4768 	if (btrfs_header_level(buf) == 0 &&
4769 	    btrfs_check_leaf_relaxed(buf)) {
4770 		btrfs_print_leaf(buf);
4771 		ASSERT(0);
4772 	}
4773 #endif
4774 }
4775 
4776 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4777 					int flush_delayed)
4778 {
4779 	/*
4780 	 * looks as though older kernels can get into trouble with
4781 	 * this code, they end up stuck in balance_dirty_pages forever
4782 	 */
4783 	int ret;
4784 
4785 	if (current->flags & PF_MEMALLOC)
4786 		return;
4787 
4788 	if (flush_delayed)
4789 		btrfs_balance_delayed_items(fs_info);
4790 
4791 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4792 				     BTRFS_DIRTY_METADATA_THRESH,
4793 				     fs_info->dirty_metadata_batch);
4794 	if (ret > 0) {
4795 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4796 	}
4797 }
4798 
4799 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4800 {
4801 	__btrfs_btree_balance_dirty(fs_info, 1);
4802 }
4803 
4804 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4805 {
4806 	__btrfs_btree_balance_dirty(fs_info, 0);
4807 }
4808 
4809 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4810 {
4811 	/* cleanup FS via transaction */
4812 	btrfs_cleanup_transaction(fs_info);
4813 
4814 	mutex_lock(&fs_info->cleaner_mutex);
4815 	btrfs_run_delayed_iputs(fs_info);
4816 	mutex_unlock(&fs_info->cleaner_mutex);
4817 
4818 	down_write(&fs_info->cleanup_work_sem);
4819 	up_write(&fs_info->cleanup_work_sem);
4820 }
4821 
4822 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4823 {
4824 	struct btrfs_root *gang[8];
4825 	u64 root_objectid = 0;
4826 	int ret;
4827 
4828 	spin_lock(&fs_info->fs_roots_radix_lock);
4829 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4830 					     (void **)gang, root_objectid,
4831 					     ARRAY_SIZE(gang))) != 0) {
4832 		int i;
4833 
4834 		for (i = 0; i < ret; i++)
4835 			gang[i] = btrfs_grab_root(gang[i]);
4836 		spin_unlock(&fs_info->fs_roots_radix_lock);
4837 
4838 		for (i = 0; i < ret; i++) {
4839 			if (!gang[i])
4840 				continue;
4841 			root_objectid = gang[i]->root_key.objectid;
4842 			btrfs_free_log(NULL, gang[i]);
4843 			btrfs_put_root(gang[i]);
4844 		}
4845 		root_objectid++;
4846 		spin_lock(&fs_info->fs_roots_radix_lock);
4847 	}
4848 	spin_unlock(&fs_info->fs_roots_radix_lock);
4849 	btrfs_free_log_root_tree(NULL, fs_info);
4850 }
4851 
4852 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4853 {
4854 	struct btrfs_ordered_extent *ordered;
4855 
4856 	spin_lock(&root->ordered_extent_lock);
4857 	/*
4858 	 * This will just short circuit the ordered completion stuff which will
4859 	 * make sure the ordered extent gets properly cleaned up.
4860 	 */
4861 	list_for_each_entry(ordered, &root->ordered_extents,
4862 			    root_extent_list)
4863 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4864 	spin_unlock(&root->ordered_extent_lock);
4865 }
4866 
4867 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4868 {
4869 	struct btrfs_root *root;
4870 	struct list_head splice;
4871 
4872 	INIT_LIST_HEAD(&splice);
4873 
4874 	spin_lock(&fs_info->ordered_root_lock);
4875 	list_splice_init(&fs_info->ordered_roots, &splice);
4876 	while (!list_empty(&splice)) {
4877 		root = list_first_entry(&splice, struct btrfs_root,
4878 					ordered_root);
4879 		list_move_tail(&root->ordered_root,
4880 			       &fs_info->ordered_roots);
4881 
4882 		spin_unlock(&fs_info->ordered_root_lock);
4883 		btrfs_destroy_ordered_extents(root);
4884 
4885 		cond_resched();
4886 		spin_lock(&fs_info->ordered_root_lock);
4887 	}
4888 	spin_unlock(&fs_info->ordered_root_lock);
4889 
4890 	/*
4891 	 * We need this here because if we've been flipped read-only we won't
4892 	 * get sync() from the umount, so we need to make sure any ordered
4893 	 * extents that haven't had their dirty pages IO start writeout yet
4894 	 * actually get run and error out properly.
4895 	 */
4896 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4897 }
4898 
4899 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4900 				      struct btrfs_fs_info *fs_info)
4901 {
4902 	struct rb_node *node;
4903 	struct btrfs_delayed_ref_root *delayed_refs;
4904 	struct btrfs_delayed_ref_node *ref;
4905 	int ret = 0;
4906 
4907 	delayed_refs = &trans->delayed_refs;
4908 
4909 	spin_lock(&delayed_refs->lock);
4910 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4911 		spin_unlock(&delayed_refs->lock);
4912 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4913 		return ret;
4914 	}
4915 
4916 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4917 		struct btrfs_delayed_ref_head *head;
4918 		struct rb_node *n;
4919 		bool pin_bytes = false;
4920 
4921 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4922 				href_node);
4923 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4924 			continue;
4925 
4926 		spin_lock(&head->lock);
4927 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4928 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4929 				       ref_node);
4930 			ref->in_tree = 0;
4931 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4932 			RB_CLEAR_NODE(&ref->ref_node);
4933 			if (!list_empty(&ref->add_list))
4934 				list_del(&ref->add_list);
4935 			atomic_dec(&delayed_refs->num_entries);
4936 			btrfs_put_delayed_ref(ref);
4937 		}
4938 		if (head->must_insert_reserved)
4939 			pin_bytes = true;
4940 		btrfs_free_delayed_extent_op(head->extent_op);
4941 		btrfs_delete_ref_head(delayed_refs, head);
4942 		spin_unlock(&head->lock);
4943 		spin_unlock(&delayed_refs->lock);
4944 		mutex_unlock(&head->mutex);
4945 
4946 		if (pin_bytes) {
4947 			struct btrfs_block_group *cache;
4948 
4949 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4950 			BUG_ON(!cache);
4951 
4952 			spin_lock(&cache->space_info->lock);
4953 			spin_lock(&cache->lock);
4954 			cache->pinned += head->num_bytes;
4955 			btrfs_space_info_update_bytes_pinned(fs_info,
4956 				cache->space_info, head->num_bytes);
4957 			cache->reserved -= head->num_bytes;
4958 			cache->space_info->bytes_reserved -= head->num_bytes;
4959 			spin_unlock(&cache->lock);
4960 			spin_unlock(&cache->space_info->lock);
4961 
4962 			btrfs_put_block_group(cache);
4963 
4964 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4965 				head->bytenr + head->num_bytes - 1);
4966 		}
4967 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4968 		btrfs_put_delayed_ref_head(head);
4969 		cond_resched();
4970 		spin_lock(&delayed_refs->lock);
4971 	}
4972 	btrfs_qgroup_destroy_extent_records(trans);
4973 
4974 	spin_unlock(&delayed_refs->lock);
4975 
4976 	return ret;
4977 }
4978 
4979 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4980 {
4981 	struct btrfs_inode *btrfs_inode;
4982 	struct list_head splice;
4983 
4984 	INIT_LIST_HEAD(&splice);
4985 
4986 	spin_lock(&root->delalloc_lock);
4987 	list_splice_init(&root->delalloc_inodes, &splice);
4988 
4989 	while (!list_empty(&splice)) {
4990 		struct inode *inode = NULL;
4991 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4992 					       delalloc_inodes);
4993 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4994 		spin_unlock(&root->delalloc_lock);
4995 
4996 		/*
4997 		 * Make sure we get a live inode and that it'll not disappear
4998 		 * meanwhile.
4999 		 */
5000 		inode = igrab(&btrfs_inode->vfs_inode);
5001 		if (inode) {
5002 			invalidate_inode_pages2(inode->i_mapping);
5003 			iput(inode);
5004 		}
5005 		spin_lock(&root->delalloc_lock);
5006 	}
5007 	spin_unlock(&root->delalloc_lock);
5008 }
5009 
5010 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
5011 {
5012 	struct btrfs_root *root;
5013 	struct list_head splice;
5014 
5015 	INIT_LIST_HEAD(&splice);
5016 
5017 	spin_lock(&fs_info->delalloc_root_lock);
5018 	list_splice_init(&fs_info->delalloc_roots, &splice);
5019 	while (!list_empty(&splice)) {
5020 		root = list_first_entry(&splice, struct btrfs_root,
5021 					 delalloc_root);
5022 		root = btrfs_grab_root(root);
5023 		BUG_ON(!root);
5024 		spin_unlock(&fs_info->delalloc_root_lock);
5025 
5026 		btrfs_destroy_delalloc_inodes(root);
5027 		btrfs_put_root(root);
5028 
5029 		spin_lock(&fs_info->delalloc_root_lock);
5030 	}
5031 	spin_unlock(&fs_info->delalloc_root_lock);
5032 }
5033 
5034 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
5035 					struct extent_io_tree *dirty_pages,
5036 					int mark)
5037 {
5038 	int ret;
5039 	struct extent_buffer *eb;
5040 	u64 start = 0;
5041 	u64 end;
5042 
5043 	while (1) {
5044 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
5045 					    mark, NULL);
5046 		if (ret)
5047 			break;
5048 
5049 		clear_extent_bits(dirty_pages, start, end, mark);
5050 		while (start <= end) {
5051 			eb = find_extent_buffer(fs_info, start);
5052 			start += fs_info->nodesize;
5053 			if (!eb)
5054 				continue;
5055 			wait_on_extent_buffer_writeback(eb);
5056 
5057 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5058 					       &eb->bflags))
5059 				clear_extent_buffer_dirty(eb);
5060 			free_extent_buffer_stale(eb);
5061 		}
5062 	}
5063 
5064 	return ret;
5065 }
5066 
5067 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
5068 				       struct extent_io_tree *unpin)
5069 {
5070 	u64 start;
5071 	u64 end;
5072 	int ret;
5073 
5074 	while (1) {
5075 		struct extent_state *cached_state = NULL;
5076 
5077 		/*
5078 		 * The btrfs_finish_extent_commit() may get the same range as
5079 		 * ours between find_first_extent_bit and clear_extent_dirty.
5080 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5081 		 * the same extent range.
5082 		 */
5083 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
5084 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5085 					    EXTENT_DIRTY, &cached_state);
5086 		if (ret) {
5087 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5088 			break;
5089 		}
5090 
5091 		clear_extent_dirty(unpin, start, end, &cached_state);
5092 		free_extent_state(cached_state);
5093 		btrfs_error_unpin_extent_range(fs_info, start, end);
5094 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5095 		cond_resched();
5096 	}
5097 
5098 	return 0;
5099 }
5100 
5101 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
5102 {
5103 	struct inode *inode;
5104 
5105 	inode = cache->io_ctl.inode;
5106 	if (inode) {
5107 		invalidate_inode_pages2(inode->i_mapping);
5108 		BTRFS_I(inode)->generation = 0;
5109 		cache->io_ctl.inode = NULL;
5110 		iput(inode);
5111 	}
5112 	ASSERT(cache->io_ctl.pages == NULL);
5113 	btrfs_put_block_group(cache);
5114 }
5115 
5116 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
5117 			     struct btrfs_fs_info *fs_info)
5118 {
5119 	struct btrfs_block_group *cache;
5120 
5121 	spin_lock(&cur_trans->dirty_bgs_lock);
5122 	while (!list_empty(&cur_trans->dirty_bgs)) {
5123 		cache = list_first_entry(&cur_trans->dirty_bgs,
5124 					 struct btrfs_block_group,
5125 					 dirty_list);
5126 
5127 		if (!list_empty(&cache->io_list)) {
5128 			spin_unlock(&cur_trans->dirty_bgs_lock);
5129 			list_del_init(&cache->io_list);
5130 			btrfs_cleanup_bg_io(cache);
5131 			spin_lock(&cur_trans->dirty_bgs_lock);
5132 		}
5133 
5134 		list_del_init(&cache->dirty_list);
5135 		spin_lock(&cache->lock);
5136 		cache->disk_cache_state = BTRFS_DC_ERROR;
5137 		spin_unlock(&cache->lock);
5138 
5139 		spin_unlock(&cur_trans->dirty_bgs_lock);
5140 		btrfs_put_block_group(cache);
5141 		btrfs_delayed_refs_rsv_release(fs_info, 1);
5142 		spin_lock(&cur_trans->dirty_bgs_lock);
5143 	}
5144 	spin_unlock(&cur_trans->dirty_bgs_lock);
5145 
5146 	/*
5147 	 * Refer to the definition of io_bgs member for details why it's safe
5148 	 * to use it without any locking
5149 	 */
5150 	while (!list_empty(&cur_trans->io_bgs)) {
5151 		cache = list_first_entry(&cur_trans->io_bgs,
5152 					 struct btrfs_block_group,
5153 					 io_list);
5154 
5155 		list_del_init(&cache->io_list);
5156 		spin_lock(&cache->lock);
5157 		cache->disk_cache_state = BTRFS_DC_ERROR;
5158 		spin_unlock(&cache->lock);
5159 		btrfs_cleanup_bg_io(cache);
5160 	}
5161 }
5162 
5163 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
5164 				   struct btrfs_fs_info *fs_info)
5165 {
5166 	struct btrfs_device *dev, *tmp;
5167 
5168 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
5169 	ASSERT(list_empty(&cur_trans->dirty_bgs));
5170 	ASSERT(list_empty(&cur_trans->io_bgs));
5171 
5172 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5173 				 post_commit_list) {
5174 		list_del_init(&dev->post_commit_list);
5175 	}
5176 
5177 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
5178 
5179 	cur_trans->state = TRANS_STATE_COMMIT_START;
5180 	wake_up(&fs_info->transaction_blocked_wait);
5181 
5182 	cur_trans->state = TRANS_STATE_UNBLOCKED;
5183 	wake_up(&fs_info->transaction_wait);
5184 
5185 	btrfs_destroy_delayed_inodes(fs_info);
5186 
5187 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
5188 				     EXTENT_DIRTY);
5189 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
5190 
5191 	btrfs_free_redirty_list(cur_trans);
5192 
5193 	cur_trans->state =TRANS_STATE_COMPLETED;
5194 	wake_up(&cur_trans->commit_wait);
5195 }
5196 
5197 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
5198 {
5199 	struct btrfs_transaction *t;
5200 
5201 	mutex_lock(&fs_info->transaction_kthread_mutex);
5202 
5203 	spin_lock(&fs_info->trans_lock);
5204 	while (!list_empty(&fs_info->trans_list)) {
5205 		t = list_first_entry(&fs_info->trans_list,
5206 				     struct btrfs_transaction, list);
5207 		if (t->state >= TRANS_STATE_COMMIT_START) {
5208 			refcount_inc(&t->use_count);
5209 			spin_unlock(&fs_info->trans_lock);
5210 			btrfs_wait_for_commit(fs_info, t->transid);
5211 			btrfs_put_transaction(t);
5212 			spin_lock(&fs_info->trans_lock);
5213 			continue;
5214 		}
5215 		if (t == fs_info->running_transaction) {
5216 			t->state = TRANS_STATE_COMMIT_DOING;
5217 			spin_unlock(&fs_info->trans_lock);
5218 			/*
5219 			 * We wait for 0 num_writers since we don't hold a trans
5220 			 * handle open currently for this transaction.
5221 			 */
5222 			wait_event(t->writer_wait,
5223 				   atomic_read(&t->num_writers) == 0);
5224 		} else {
5225 			spin_unlock(&fs_info->trans_lock);
5226 		}
5227 		btrfs_cleanup_one_transaction(t, fs_info);
5228 
5229 		spin_lock(&fs_info->trans_lock);
5230 		if (t == fs_info->running_transaction)
5231 			fs_info->running_transaction = NULL;
5232 		list_del_init(&t->list);
5233 		spin_unlock(&fs_info->trans_lock);
5234 
5235 		btrfs_put_transaction(t);
5236 		trace_btrfs_transaction_commit(fs_info);
5237 		spin_lock(&fs_info->trans_lock);
5238 	}
5239 	spin_unlock(&fs_info->trans_lock);
5240 	btrfs_destroy_all_ordered_extents(fs_info);
5241 	btrfs_destroy_delayed_inodes(fs_info);
5242 	btrfs_assert_delayed_root_empty(fs_info);
5243 	btrfs_destroy_all_delalloc_inodes(fs_info);
5244 	btrfs_drop_all_logs(fs_info);
5245 	mutex_unlock(&fs_info->transaction_kthread_mutex);
5246 
5247 	return 0;
5248 }
5249 
5250 int btrfs_init_root_free_objectid(struct btrfs_root *root)
5251 {
5252 	struct btrfs_path *path;
5253 	int ret;
5254 	struct extent_buffer *l;
5255 	struct btrfs_key search_key;
5256 	struct btrfs_key found_key;
5257 	int slot;
5258 
5259 	path = btrfs_alloc_path();
5260 	if (!path)
5261 		return -ENOMEM;
5262 
5263 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5264 	search_key.type = -1;
5265 	search_key.offset = (u64)-1;
5266 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5267 	if (ret < 0)
5268 		goto error;
5269 	BUG_ON(ret == 0); /* Corruption */
5270 	if (path->slots[0] > 0) {
5271 		slot = path->slots[0] - 1;
5272 		l = path->nodes[0];
5273 		btrfs_item_key_to_cpu(l, &found_key, slot);
5274 		root->free_objectid = max_t(u64, found_key.objectid + 1,
5275 					    BTRFS_FIRST_FREE_OBJECTID);
5276 	} else {
5277 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5278 	}
5279 	ret = 0;
5280 error:
5281 	btrfs_free_path(path);
5282 	return ret;
5283 }
5284 
5285 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5286 {
5287 	int ret;
5288 	mutex_lock(&root->objectid_mutex);
5289 
5290 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5291 		btrfs_warn(root->fs_info,
5292 			   "the objectid of root %llu reaches its highest value",
5293 			   root->root_key.objectid);
5294 		ret = -ENOSPC;
5295 		goto out;
5296 	}
5297 
5298 	*objectid = root->free_objectid++;
5299 	ret = 0;
5300 out:
5301 	mutex_unlock(&root->objectid_mutex);
5302 	return ret;
5303 }
5304