1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 #include "block-group.h" 42 #include "discard.h" 43 #include "space-info.h" 44 #include "zoned.h" 45 #include "subpage.h" 46 47 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 48 BTRFS_HEADER_FLAG_RELOC |\ 49 BTRFS_SUPER_FLAG_ERROR |\ 50 BTRFS_SUPER_FLAG_SEEDING |\ 51 BTRFS_SUPER_FLAG_METADUMP |\ 52 BTRFS_SUPER_FLAG_METADUMP_V2) 53 54 static void end_workqueue_fn(struct btrfs_work *work); 55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 57 struct btrfs_fs_info *fs_info); 58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 60 struct extent_io_tree *dirty_pages, 61 int mark); 62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 63 struct extent_io_tree *pinned_extents); 64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 66 67 /* 68 * btrfs_end_io_wq structs are used to do processing in task context when an IO 69 * is complete. This is used during reads to verify checksums, and it is used 70 * by writes to insert metadata for new file extents after IO is complete. 71 */ 72 struct btrfs_end_io_wq { 73 struct bio *bio; 74 bio_end_io_t *end_io; 75 void *private; 76 struct btrfs_fs_info *info; 77 blk_status_t status; 78 enum btrfs_wq_endio_type metadata; 79 struct btrfs_work work; 80 }; 81 82 static struct kmem_cache *btrfs_end_io_wq_cache; 83 84 int __init btrfs_end_io_wq_init(void) 85 { 86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 87 sizeof(struct btrfs_end_io_wq), 88 0, 89 SLAB_MEM_SPREAD, 90 NULL); 91 if (!btrfs_end_io_wq_cache) 92 return -ENOMEM; 93 return 0; 94 } 95 96 void __cold btrfs_end_io_wq_exit(void) 97 { 98 kmem_cache_destroy(btrfs_end_io_wq_cache); 99 } 100 101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 102 { 103 if (fs_info->csum_shash) 104 crypto_free_shash(fs_info->csum_shash); 105 } 106 107 /* 108 * async submit bios are used to offload expensive checksumming 109 * onto the worker threads. They checksum file and metadata bios 110 * just before they are sent down the IO stack. 111 */ 112 struct async_submit_bio { 113 struct inode *inode; 114 struct bio *bio; 115 extent_submit_bio_start_t *submit_bio_start; 116 int mirror_num; 117 118 /* Optional parameter for submit_bio_start used by direct io */ 119 u64 dio_file_offset; 120 struct btrfs_work work; 121 blk_status_t status; 122 }; 123 124 /* 125 * Lockdep class keys for extent_buffer->lock's in this root. For a given 126 * eb, the lockdep key is determined by the btrfs_root it belongs to and 127 * the level the eb occupies in the tree. 128 * 129 * Different roots are used for different purposes and may nest inside each 130 * other and they require separate keysets. As lockdep keys should be 131 * static, assign keysets according to the purpose of the root as indicated 132 * by btrfs_root->root_key.objectid. This ensures that all special purpose 133 * roots have separate keysets. 134 * 135 * Lock-nesting across peer nodes is always done with the immediate parent 136 * node locked thus preventing deadlock. As lockdep doesn't know this, use 137 * subclass to avoid triggering lockdep warning in such cases. 138 * 139 * The key is set by the readpage_end_io_hook after the buffer has passed 140 * csum validation but before the pages are unlocked. It is also set by 141 * btrfs_init_new_buffer on freshly allocated blocks. 142 * 143 * We also add a check to make sure the highest level of the tree is the 144 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 145 * needs update as well. 146 */ 147 #ifdef CONFIG_DEBUG_LOCK_ALLOC 148 # if BTRFS_MAX_LEVEL != 8 149 # error 150 # endif 151 152 #define DEFINE_LEVEL(stem, level) \ 153 .names[level] = "btrfs-" stem "-0" #level, 154 155 #define DEFINE_NAME(stem) \ 156 DEFINE_LEVEL(stem, 0) \ 157 DEFINE_LEVEL(stem, 1) \ 158 DEFINE_LEVEL(stem, 2) \ 159 DEFINE_LEVEL(stem, 3) \ 160 DEFINE_LEVEL(stem, 4) \ 161 DEFINE_LEVEL(stem, 5) \ 162 DEFINE_LEVEL(stem, 6) \ 163 DEFINE_LEVEL(stem, 7) 164 165 static struct btrfs_lockdep_keyset { 166 u64 id; /* root objectid */ 167 /* Longest entry: btrfs-free-space-00 */ 168 char names[BTRFS_MAX_LEVEL][20]; 169 struct lock_class_key keys[BTRFS_MAX_LEVEL]; 170 } btrfs_lockdep_keysets[] = { 171 { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") }, 172 { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") }, 173 { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") }, 174 { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") }, 175 { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") }, 176 { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") }, 177 { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") }, 178 { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") }, 179 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") }, 180 { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") }, 181 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") }, 182 { .id = 0, DEFINE_NAME("tree") }, 183 }; 184 185 #undef DEFINE_LEVEL 186 #undef DEFINE_NAME 187 188 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 189 int level) 190 { 191 struct btrfs_lockdep_keyset *ks; 192 193 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 194 195 /* find the matching keyset, id 0 is the default entry */ 196 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 197 if (ks->id == objectid) 198 break; 199 200 lockdep_set_class_and_name(&eb->lock, 201 &ks->keys[level], ks->names[level]); 202 } 203 204 #endif 205 206 /* 207 * Compute the csum of a btree block and store the result to provided buffer. 208 */ 209 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 210 { 211 struct btrfs_fs_info *fs_info = buf->fs_info; 212 const int num_pages = fs_info->nodesize >> PAGE_SHIFT; 213 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 214 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 215 char *kaddr; 216 int i; 217 218 shash->tfm = fs_info->csum_shash; 219 crypto_shash_init(shash); 220 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start); 221 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 222 first_page_part - BTRFS_CSUM_SIZE); 223 224 for (i = 1; i < num_pages; i++) { 225 kaddr = page_address(buf->pages[i]); 226 crypto_shash_update(shash, kaddr, PAGE_SIZE); 227 } 228 memset(result, 0, BTRFS_CSUM_SIZE); 229 crypto_shash_final(shash, result); 230 } 231 232 /* 233 * we can't consider a given block up to date unless the transid of the 234 * block matches the transid in the parent node's pointer. This is how we 235 * detect blocks that either didn't get written at all or got written 236 * in the wrong place. 237 */ 238 static int verify_parent_transid(struct extent_io_tree *io_tree, 239 struct extent_buffer *eb, u64 parent_transid, 240 int atomic) 241 { 242 struct extent_state *cached_state = NULL; 243 int ret; 244 245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 246 return 0; 247 248 if (atomic) 249 return -EAGAIN; 250 251 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 252 &cached_state); 253 if (extent_buffer_uptodate(eb) && 254 btrfs_header_generation(eb) == parent_transid) { 255 ret = 0; 256 goto out; 257 } 258 btrfs_err_rl(eb->fs_info, 259 "parent transid verify failed on %llu wanted %llu found %llu", 260 eb->start, 261 parent_transid, btrfs_header_generation(eb)); 262 ret = 1; 263 clear_extent_buffer_uptodate(eb); 264 out: 265 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 266 &cached_state); 267 return ret; 268 } 269 270 static bool btrfs_supported_super_csum(u16 csum_type) 271 { 272 switch (csum_type) { 273 case BTRFS_CSUM_TYPE_CRC32: 274 case BTRFS_CSUM_TYPE_XXHASH: 275 case BTRFS_CSUM_TYPE_SHA256: 276 case BTRFS_CSUM_TYPE_BLAKE2: 277 return true; 278 default: 279 return false; 280 } 281 } 282 283 /* 284 * Return 0 if the superblock checksum type matches the checksum value of that 285 * algorithm. Pass the raw disk superblock data. 286 */ 287 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 288 char *raw_disk_sb) 289 { 290 struct btrfs_super_block *disk_sb = 291 (struct btrfs_super_block *)raw_disk_sb; 292 char result[BTRFS_CSUM_SIZE]; 293 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 294 295 shash->tfm = fs_info->csum_shash; 296 297 /* 298 * The super_block structure does not span the whole 299 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 300 * filled with zeros and is included in the checksum. 301 */ 302 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE, 303 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 304 305 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 306 return 1; 307 308 return 0; 309 } 310 311 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 312 struct btrfs_key *first_key, u64 parent_transid) 313 { 314 struct btrfs_fs_info *fs_info = eb->fs_info; 315 int found_level; 316 struct btrfs_key found_key; 317 int ret; 318 319 found_level = btrfs_header_level(eb); 320 if (found_level != level) { 321 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 322 KERN_ERR "BTRFS: tree level check failed\n"); 323 btrfs_err(fs_info, 324 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 325 eb->start, level, found_level); 326 return -EIO; 327 } 328 329 if (!first_key) 330 return 0; 331 332 /* 333 * For live tree block (new tree blocks in current transaction), 334 * we need proper lock context to avoid race, which is impossible here. 335 * So we only checks tree blocks which is read from disk, whose 336 * generation <= fs_info->last_trans_committed. 337 */ 338 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 339 return 0; 340 341 /* We have @first_key, so this @eb must have at least one item */ 342 if (btrfs_header_nritems(eb) == 0) { 343 btrfs_err(fs_info, 344 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 345 eb->start); 346 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 347 return -EUCLEAN; 348 } 349 350 if (found_level) 351 btrfs_node_key_to_cpu(eb, &found_key, 0); 352 else 353 btrfs_item_key_to_cpu(eb, &found_key, 0); 354 ret = btrfs_comp_cpu_keys(first_key, &found_key); 355 356 if (ret) { 357 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 358 KERN_ERR "BTRFS: tree first key check failed\n"); 359 btrfs_err(fs_info, 360 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 361 eb->start, parent_transid, first_key->objectid, 362 first_key->type, first_key->offset, 363 found_key.objectid, found_key.type, 364 found_key.offset); 365 } 366 return ret; 367 } 368 369 /* 370 * helper to read a given tree block, doing retries as required when 371 * the checksums don't match and we have alternate mirrors to try. 372 * 373 * @parent_transid: expected transid, skip check if 0 374 * @level: expected level, mandatory check 375 * @first_key: expected key of first slot, skip check if NULL 376 */ 377 static int btree_read_extent_buffer_pages(struct extent_buffer *eb, 378 u64 parent_transid, int level, 379 struct btrfs_key *first_key) 380 { 381 struct btrfs_fs_info *fs_info = eb->fs_info; 382 struct extent_io_tree *io_tree; 383 int failed = 0; 384 int ret; 385 int num_copies = 0; 386 int mirror_num = 0; 387 int failed_mirror = 0; 388 389 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 390 while (1) { 391 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 392 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num); 393 if (!ret) { 394 if (verify_parent_transid(io_tree, eb, 395 parent_transid, 0)) 396 ret = -EIO; 397 else if (btrfs_verify_level_key(eb, level, 398 first_key, parent_transid)) 399 ret = -EUCLEAN; 400 else 401 break; 402 } 403 404 num_copies = btrfs_num_copies(fs_info, 405 eb->start, eb->len); 406 if (num_copies == 1) 407 break; 408 409 if (!failed_mirror) { 410 failed = 1; 411 failed_mirror = eb->read_mirror; 412 } 413 414 mirror_num++; 415 if (mirror_num == failed_mirror) 416 mirror_num++; 417 418 if (mirror_num > num_copies) 419 break; 420 } 421 422 if (failed && !ret && failed_mirror) 423 btrfs_repair_eb_io_failure(eb, failed_mirror); 424 425 return ret; 426 } 427 428 static int csum_one_extent_buffer(struct extent_buffer *eb) 429 { 430 struct btrfs_fs_info *fs_info = eb->fs_info; 431 u8 result[BTRFS_CSUM_SIZE]; 432 int ret; 433 434 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 435 offsetof(struct btrfs_header, fsid), 436 BTRFS_FSID_SIZE) == 0); 437 csum_tree_block(eb, result); 438 439 if (btrfs_header_level(eb)) 440 ret = btrfs_check_node(eb); 441 else 442 ret = btrfs_check_leaf_full(eb); 443 444 if (ret < 0) { 445 btrfs_print_tree(eb, 0); 446 btrfs_err(fs_info, 447 "block=%llu write time tree block corruption detected", 448 eb->start); 449 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 450 return ret; 451 } 452 write_extent_buffer(eb, result, 0, fs_info->csum_size); 453 454 return 0; 455 } 456 457 /* Checksum all dirty extent buffers in one bio_vec */ 458 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info, 459 struct bio_vec *bvec) 460 { 461 struct page *page = bvec->bv_page; 462 u64 bvec_start = page_offset(page) + bvec->bv_offset; 463 u64 cur; 464 int ret = 0; 465 466 for (cur = bvec_start; cur < bvec_start + bvec->bv_len; 467 cur += fs_info->nodesize) { 468 struct extent_buffer *eb; 469 bool uptodate; 470 471 eb = find_extent_buffer(fs_info, cur); 472 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur, 473 fs_info->nodesize); 474 475 /* A dirty eb shouldn't disappear from buffer_radix */ 476 if (WARN_ON(!eb)) 477 return -EUCLEAN; 478 479 if (WARN_ON(cur != btrfs_header_bytenr(eb))) { 480 free_extent_buffer(eb); 481 return -EUCLEAN; 482 } 483 if (WARN_ON(!uptodate)) { 484 free_extent_buffer(eb); 485 return -EUCLEAN; 486 } 487 488 ret = csum_one_extent_buffer(eb); 489 free_extent_buffer(eb); 490 if (ret < 0) 491 return ret; 492 } 493 return ret; 494 } 495 496 /* 497 * Checksum a dirty tree block before IO. This has extra checks to make sure 498 * we only fill in the checksum field in the first page of a multi-page block. 499 * For subpage extent buffers we need bvec to also read the offset in the page. 500 */ 501 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec) 502 { 503 struct page *page = bvec->bv_page; 504 u64 start = page_offset(page); 505 u64 found_start; 506 struct extent_buffer *eb; 507 508 if (fs_info->sectorsize < PAGE_SIZE) 509 return csum_dirty_subpage_buffers(fs_info, bvec); 510 511 eb = (struct extent_buffer *)page->private; 512 if (page != eb->pages[0]) 513 return 0; 514 515 found_start = btrfs_header_bytenr(eb); 516 517 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) { 518 WARN_ON(found_start != 0); 519 return 0; 520 } 521 522 /* 523 * Please do not consolidate these warnings into a single if. 524 * It is useful to know what went wrong. 525 */ 526 if (WARN_ON(found_start != start)) 527 return -EUCLEAN; 528 if (WARN_ON(!PageUptodate(page))) 529 return -EUCLEAN; 530 531 return csum_one_extent_buffer(eb); 532 } 533 534 static int check_tree_block_fsid(struct extent_buffer *eb) 535 { 536 struct btrfs_fs_info *fs_info = eb->fs_info; 537 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 538 u8 fsid[BTRFS_FSID_SIZE]; 539 u8 *metadata_uuid; 540 541 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 542 BTRFS_FSID_SIZE); 543 /* 544 * Checking the incompat flag is only valid for the current fs. For 545 * seed devices it's forbidden to have their uuid changed so reading 546 * ->fsid in this case is fine 547 */ 548 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 549 metadata_uuid = fs_devices->metadata_uuid; 550 else 551 metadata_uuid = fs_devices->fsid; 552 553 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) 554 return 0; 555 556 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 557 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 558 return 0; 559 560 return 1; 561 } 562 563 /* Do basic extent buffer checks at read time */ 564 static int validate_extent_buffer(struct extent_buffer *eb) 565 { 566 struct btrfs_fs_info *fs_info = eb->fs_info; 567 u64 found_start; 568 const u32 csum_size = fs_info->csum_size; 569 u8 found_level; 570 u8 result[BTRFS_CSUM_SIZE]; 571 const u8 *header_csum; 572 int ret = 0; 573 574 found_start = btrfs_header_bytenr(eb); 575 if (found_start != eb->start) { 576 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 577 eb->start, found_start); 578 ret = -EIO; 579 goto out; 580 } 581 if (check_tree_block_fsid(eb)) { 582 btrfs_err_rl(fs_info, "bad fsid on block %llu", 583 eb->start); 584 ret = -EIO; 585 goto out; 586 } 587 found_level = btrfs_header_level(eb); 588 if (found_level >= BTRFS_MAX_LEVEL) { 589 btrfs_err(fs_info, "bad tree block level %d on %llu", 590 (int)btrfs_header_level(eb), eb->start); 591 ret = -EIO; 592 goto out; 593 } 594 595 csum_tree_block(eb, result); 596 header_csum = page_address(eb->pages[0]) + 597 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum)); 598 599 if (memcmp(result, header_csum, csum_size) != 0) { 600 btrfs_warn_rl(fs_info, 601 "checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d", 602 eb->start, 603 CSUM_FMT_VALUE(csum_size, header_csum), 604 CSUM_FMT_VALUE(csum_size, result), 605 btrfs_header_level(eb)); 606 ret = -EUCLEAN; 607 goto out; 608 } 609 610 /* 611 * If this is a leaf block and it is corrupt, set the corrupt bit so 612 * that we don't try and read the other copies of this block, just 613 * return -EIO. 614 */ 615 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 616 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 617 ret = -EIO; 618 } 619 620 if (found_level > 0 && btrfs_check_node(eb)) 621 ret = -EIO; 622 623 if (!ret) 624 set_extent_buffer_uptodate(eb); 625 else 626 btrfs_err(fs_info, 627 "block=%llu read time tree block corruption detected", 628 eb->start); 629 out: 630 return ret; 631 } 632 633 static int validate_subpage_buffer(struct page *page, u64 start, u64 end, 634 int mirror) 635 { 636 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 637 struct extent_buffer *eb; 638 bool reads_done; 639 int ret = 0; 640 641 /* 642 * We don't allow bio merge for subpage metadata read, so we should 643 * only get one eb for each endio hook. 644 */ 645 ASSERT(end == start + fs_info->nodesize - 1); 646 ASSERT(PagePrivate(page)); 647 648 eb = find_extent_buffer(fs_info, start); 649 /* 650 * When we are reading one tree block, eb must have been inserted into 651 * the radix tree. If not, something is wrong. 652 */ 653 ASSERT(eb); 654 655 reads_done = atomic_dec_and_test(&eb->io_pages); 656 /* Subpage read must finish in page read */ 657 ASSERT(reads_done); 658 659 eb->read_mirror = mirror; 660 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 661 ret = -EIO; 662 goto err; 663 } 664 ret = validate_extent_buffer(eb); 665 if (ret < 0) 666 goto err; 667 668 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 669 btree_readahead_hook(eb, ret); 670 671 set_extent_buffer_uptodate(eb); 672 673 free_extent_buffer(eb); 674 return ret; 675 err: 676 /* 677 * end_bio_extent_readpage decrements io_pages in case of error, 678 * make sure it has something to decrement. 679 */ 680 atomic_inc(&eb->io_pages); 681 clear_extent_buffer_uptodate(eb); 682 free_extent_buffer(eb); 683 return ret; 684 } 685 686 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, 687 struct page *page, u64 start, u64 end, 688 int mirror) 689 { 690 struct extent_buffer *eb; 691 int ret = 0; 692 int reads_done; 693 694 ASSERT(page->private); 695 696 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE) 697 return validate_subpage_buffer(page, start, end, mirror); 698 699 eb = (struct extent_buffer *)page->private; 700 701 /* 702 * The pending IO might have been the only thing that kept this buffer 703 * in memory. Make sure we have a ref for all this other checks 704 */ 705 atomic_inc(&eb->refs); 706 707 reads_done = atomic_dec_and_test(&eb->io_pages); 708 if (!reads_done) 709 goto err; 710 711 eb->read_mirror = mirror; 712 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 713 ret = -EIO; 714 goto err; 715 } 716 ret = validate_extent_buffer(eb); 717 err: 718 if (reads_done && 719 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 720 btree_readahead_hook(eb, ret); 721 722 if (ret) { 723 /* 724 * our io error hook is going to dec the io pages 725 * again, we have to make sure it has something 726 * to decrement 727 */ 728 atomic_inc(&eb->io_pages); 729 clear_extent_buffer_uptodate(eb); 730 } 731 free_extent_buffer(eb); 732 733 return ret; 734 } 735 736 static void end_workqueue_bio(struct bio *bio) 737 { 738 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 739 struct btrfs_fs_info *fs_info; 740 struct btrfs_workqueue *wq; 741 742 fs_info = end_io_wq->info; 743 end_io_wq->status = bio->bi_status; 744 745 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 746 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) 747 wq = fs_info->endio_meta_write_workers; 748 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) 749 wq = fs_info->endio_freespace_worker; 750 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 751 wq = fs_info->endio_raid56_workers; 752 else 753 wq = fs_info->endio_write_workers; 754 } else { 755 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 756 wq = fs_info->endio_raid56_workers; 757 else if (end_io_wq->metadata) 758 wq = fs_info->endio_meta_workers; 759 else 760 wq = fs_info->endio_workers; 761 } 762 763 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL); 764 btrfs_queue_work(wq, &end_io_wq->work); 765 } 766 767 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 768 enum btrfs_wq_endio_type metadata) 769 { 770 struct btrfs_end_io_wq *end_io_wq; 771 772 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 773 if (!end_io_wq) 774 return BLK_STS_RESOURCE; 775 776 end_io_wq->private = bio->bi_private; 777 end_io_wq->end_io = bio->bi_end_io; 778 end_io_wq->info = info; 779 end_io_wq->status = 0; 780 end_io_wq->bio = bio; 781 end_io_wq->metadata = metadata; 782 783 bio->bi_private = end_io_wq; 784 bio->bi_end_io = end_workqueue_bio; 785 return 0; 786 } 787 788 static void run_one_async_start(struct btrfs_work *work) 789 { 790 struct async_submit_bio *async; 791 blk_status_t ret; 792 793 async = container_of(work, struct async_submit_bio, work); 794 ret = async->submit_bio_start(async->inode, async->bio, 795 async->dio_file_offset); 796 if (ret) 797 async->status = ret; 798 } 799 800 /* 801 * In order to insert checksums into the metadata in large chunks, we wait 802 * until bio submission time. All the pages in the bio are checksummed and 803 * sums are attached onto the ordered extent record. 804 * 805 * At IO completion time the csums attached on the ordered extent record are 806 * inserted into the tree. 807 */ 808 static void run_one_async_done(struct btrfs_work *work) 809 { 810 struct async_submit_bio *async; 811 struct inode *inode; 812 blk_status_t ret; 813 814 async = container_of(work, struct async_submit_bio, work); 815 inode = async->inode; 816 817 /* If an error occurred we just want to clean up the bio and move on */ 818 if (async->status) { 819 async->bio->bi_status = async->status; 820 bio_endio(async->bio); 821 return; 822 } 823 824 /* 825 * All of the bios that pass through here are from async helpers. 826 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context. 827 * This changes nothing when cgroups aren't in use. 828 */ 829 async->bio->bi_opf |= REQ_CGROUP_PUNT; 830 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num); 831 if (ret) { 832 async->bio->bi_status = ret; 833 bio_endio(async->bio); 834 } 835 } 836 837 static void run_one_async_free(struct btrfs_work *work) 838 { 839 struct async_submit_bio *async; 840 841 async = container_of(work, struct async_submit_bio, work); 842 kfree(async); 843 } 844 845 blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio, 846 int mirror_num, unsigned long bio_flags, 847 u64 dio_file_offset, 848 extent_submit_bio_start_t *submit_bio_start) 849 { 850 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 851 struct async_submit_bio *async; 852 853 async = kmalloc(sizeof(*async), GFP_NOFS); 854 if (!async) 855 return BLK_STS_RESOURCE; 856 857 async->inode = inode; 858 async->bio = bio; 859 async->mirror_num = mirror_num; 860 async->submit_bio_start = submit_bio_start; 861 862 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, 863 run_one_async_free); 864 865 async->dio_file_offset = dio_file_offset; 866 867 async->status = 0; 868 869 if (op_is_sync(bio->bi_opf)) 870 btrfs_set_work_high_priority(&async->work); 871 872 btrfs_queue_work(fs_info->workers, &async->work); 873 return 0; 874 } 875 876 static blk_status_t btree_csum_one_bio(struct bio *bio) 877 { 878 struct bio_vec *bvec; 879 struct btrfs_root *root; 880 int ret = 0; 881 struct bvec_iter_all iter_all; 882 883 ASSERT(!bio_flagged(bio, BIO_CLONED)); 884 bio_for_each_segment_all(bvec, bio, iter_all) { 885 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 886 ret = csum_dirty_buffer(root->fs_info, bvec); 887 if (ret) 888 break; 889 } 890 891 return errno_to_blk_status(ret); 892 } 893 894 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio, 895 u64 dio_file_offset) 896 { 897 /* 898 * when we're called for a write, we're already in the async 899 * submission context. Just jump into btrfs_map_bio 900 */ 901 return btree_csum_one_bio(bio); 902 } 903 904 static bool should_async_write(struct btrfs_fs_info *fs_info, 905 struct btrfs_inode *bi) 906 { 907 if (btrfs_is_zoned(fs_info)) 908 return false; 909 if (atomic_read(&bi->sync_writers)) 910 return false; 911 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 912 return false; 913 return true; 914 } 915 916 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, 917 int mirror_num, unsigned long bio_flags) 918 { 919 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 920 blk_status_t ret; 921 922 if (btrfs_op(bio) != BTRFS_MAP_WRITE) { 923 /* 924 * called for a read, do the setup so that checksum validation 925 * can happen in the async kernel threads 926 */ 927 ret = btrfs_bio_wq_end_io(fs_info, bio, 928 BTRFS_WQ_ENDIO_METADATA); 929 if (ret) 930 goto out_w_error; 931 ret = btrfs_map_bio(fs_info, bio, mirror_num); 932 } else if (!should_async_write(fs_info, BTRFS_I(inode))) { 933 ret = btree_csum_one_bio(bio); 934 if (ret) 935 goto out_w_error; 936 ret = btrfs_map_bio(fs_info, bio, mirror_num); 937 } else { 938 /* 939 * kthread helpers are used to submit writes so that 940 * checksumming can happen in parallel across all CPUs 941 */ 942 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0, 943 0, btree_submit_bio_start); 944 } 945 946 if (ret) 947 goto out_w_error; 948 return 0; 949 950 out_w_error: 951 bio->bi_status = ret; 952 bio_endio(bio); 953 return ret; 954 } 955 956 #ifdef CONFIG_MIGRATION 957 static int btree_migratepage(struct address_space *mapping, 958 struct page *newpage, struct page *page, 959 enum migrate_mode mode) 960 { 961 /* 962 * we can't safely write a btree page from here, 963 * we haven't done the locking hook 964 */ 965 if (PageDirty(page)) 966 return -EAGAIN; 967 /* 968 * Buffers may be managed in a filesystem specific way. 969 * We must have no buffers or drop them. 970 */ 971 if (page_has_private(page) && 972 !try_to_release_page(page, GFP_KERNEL)) 973 return -EAGAIN; 974 return migrate_page(mapping, newpage, page, mode); 975 } 976 #endif 977 978 979 static int btree_writepages(struct address_space *mapping, 980 struct writeback_control *wbc) 981 { 982 struct btrfs_fs_info *fs_info; 983 int ret; 984 985 if (wbc->sync_mode == WB_SYNC_NONE) { 986 987 if (wbc->for_kupdate) 988 return 0; 989 990 fs_info = BTRFS_I(mapping->host)->root->fs_info; 991 /* this is a bit racy, but that's ok */ 992 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 993 BTRFS_DIRTY_METADATA_THRESH, 994 fs_info->dirty_metadata_batch); 995 if (ret < 0) 996 return 0; 997 } 998 return btree_write_cache_pages(mapping, wbc); 999 } 1000 1001 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1002 { 1003 if (PageWriteback(page) || PageDirty(page)) 1004 return 0; 1005 1006 return try_release_extent_buffer(page); 1007 } 1008 1009 static void btree_invalidatepage(struct page *page, unsigned int offset, 1010 unsigned int length) 1011 { 1012 struct extent_io_tree *tree; 1013 tree = &BTRFS_I(page->mapping->host)->io_tree; 1014 extent_invalidatepage(tree, page, offset); 1015 btree_releasepage(page, GFP_NOFS); 1016 if (PagePrivate(page)) { 1017 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1018 "page private not zero on page %llu", 1019 (unsigned long long)page_offset(page)); 1020 detach_page_private(page); 1021 } 1022 } 1023 1024 static int btree_set_page_dirty(struct page *page) 1025 { 1026 #ifdef DEBUG 1027 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 1028 struct btrfs_subpage *subpage; 1029 struct extent_buffer *eb; 1030 int cur_bit = 0; 1031 u64 page_start = page_offset(page); 1032 1033 if (fs_info->sectorsize == PAGE_SIZE) { 1034 BUG_ON(!PagePrivate(page)); 1035 eb = (struct extent_buffer *)page->private; 1036 BUG_ON(!eb); 1037 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1038 BUG_ON(!atomic_read(&eb->refs)); 1039 btrfs_assert_tree_locked(eb); 1040 return __set_page_dirty_nobuffers(page); 1041 } 1042 ASSERT(PagePrivate(page) && page->private); 1043 subpage = (struct btrfs_subpage *)page->private; 1044 1045 ASSERT(subpage->dirty_bitmap); 1046 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) { 1047 unsigned long flags; 1048 u64 cur; 1049 u16 tmp = (1 << cur_bit); 1050 1051 spin_lock_irqsave(&subpage->lock, flags); 1052 if (!(tmp & subpage->dirty_bitmap)) { 1053 spin_unlock_irqrestore(&subpage->lock, flags); 1054 cur_bit++; 1055 continue; 1056 } 1057 spin_unlock_irqrestore(&subpage->lock, flags); 1058 cur = page_start + cur_bit * fs_info->sectorsize; 1059 1060 eb = find_extent_buffer(fs_info, cur); 1061 ASSERT(eb); 1062 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1063 ASSERT(atomic_read(&eb->refs)); 1064 btrfs_assert_tree_locked(eb); 1065 free_extent_buffer(eb); 1066 1067 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits); 1068 } 1069 #endif 1070 return __set_page_dirty_nobuffers(page); 1071 } 1072 1073 static const struct address_space_operations btree_aops = { 1074 .writepages = btree_writepages, 1075 .releasepage = btree_releasepage, 1076 .invalidatepage = btree_invalidatepage, 1077 #ifdef CONFIG_MIGRATION 1078 .migratepage = btree_migratepage, 1079 #endif 1080 .set_page_dirty = btree_set_page_dirty, 1081 }; 1082 1083 struct extent_buffer *btrfs_find_create_tree_block( 1084 struct btrfs_fs_info *fs_info, 1085 u64 bytenr, u64 owner_root, 1086 int level) 1087 { 1088 if (btrfs_is_testing(fs_info)) 1089 return alloc_test_extent_buffer(fs_info, bytenr); 1090 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 1091 } 1092 1093 /* 1094 * Read tree block at logical address @bytenr and do variant basic but critical 1095 * verification. 1096 * 1097 * @owner_root: the objectid of the root owner for this block. 1098 * @parent_transid: expected transid of this tree block, skip check if 0 1099 * @level: expected level, mandatory check 1100 * @first_key: expected key in slot 0, skip check if NULL 1101 */ 1102 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1103 u64 owner_root, u64 parent_transid, 1104 int level, struct btrfs_key *first_key) 1105 { 1106 struct extent_buffer *buf = NULL; 1107 int ret; 1108 1109 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 1110 if (IS_ERR(buf)) 1111 return buf; 1112 1113 ret = btree_read_extent_buffer_pages(buf, parent_transid, 1114 level, first_key); 1115 if (ret) { 1116 free_extent_buffer_stale(buf); 1117 return ERR_PTR(ret); 1118 } 1119 return buf; 1120 1121 } 1122 1123 void btrfs_clean_tree_block(struct extent_buffer *buf) 1124 { 1125 struct btrfs_fs_info *fs_info = buf->fs_info; 1126 if (btrfs_header_generation(buf) == 1127 fs_info->running_transaction->transid) { 1128 btrfs_assert_tree_locked(buf); 1129 1130 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1131 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1132 -buf->len, 1133 fs_info->dirty_metadata_batch); 1134 clear_extent_buffer_dirty(buf); 1135 } 1136 } 1137 } 1138 1139 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1140 u64 objectid) 1141 { 1142 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1143 root->fs_info = fs_info; 1144 root->node = NULL; 1145 root->commit_root = NULL; 1146 root->state = 0; 1147 root->orphan_cleanup_state = 0; 1148 1149 root->last_trans = 0; 1150 root->free_objectid = 0; 1151 root->nr_delalloc_inodes = 0; 1152 root->nr_ordered_extents = 0; 1153 root->inode_tree = RB_ROOT; 1154 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1155 root->block_rsv = NULL; 1156 1157 INIT_LIST_HEAD(&root->dirty_list); 1158 INIT_LIST_HEAD(&root->root_list); 1159 INIT_LIST_HEAD(&root->delalloc_inodes); 1160 INIT_LIST_HEAD(&root->delalloc_root); 1161 INIT_LIST_HEAD(&root->ordered_extents); 1162 INIT_LIST_HEAD(&root->ordered_root); 1163 INIT_LIST_HEAD(&root->reloc_dirty_list); 1164 INIT_LIST_HEAD(&root->logged_list[0]); 1165 INIT_LIST_HEAD(&root->logged_list[1]); 1166 spin_lock_init(&root->inode_lock); 1167 spin_lock_init(&root->delalloc_lock); 1168 spin_lock_init(&root->ordered_extent_lock); 1169 spin_lock_init(&root->accounting_lock); 1170 spin_lock_init(&root->log_extents_lock[0]); 1171 spin_lock_init(&root->log_extents_lock[1]); 1172 spin_lock_init(&root->qgroup_meta_rsv_lock); 1173 mutex_init(&root->objectid_mutex); 1174 mutex_init(&root->log_mutex); 1175 mutex_init(&root->ordered_extent_mutex); 1176 mutex_init(&root->delalloc_mutex); 1177 init_waitqueue_head(&root->qgroup_flush_wait); 1178 init_waitqueue_head(&root->log_writer_wait); 1179 init_waitqueue_head(&root->log_commit_wait[0]); 1180 init_waitqueue_head(&root->log_commit_wait[1]); 1181 INIT_LIST_HEAD(&root->log_ctxs[0]); 1182 INIT_LIST_HEAD(&root->log_ctxs[1]); 1183 atomic_set(&root->log_commit[0], 0); 1184 atomic_set(&root->log_commit[1], 0); 1185 atomic_set(&root->log_writers, 0); 1186 atomic_set(&root->log_batch, 0); 1187 refcount_set(&root->refs, 1); 1188 atomic_set(&root->snapshot_force_cow, 0); 1189 atomic_set(&root->nr_swapfiles, 0); 1190 root->log_transid = 0; 1191 root->log_transid_committed = -1; 1192 root->last_log_commit = 0; 1193 if (!dummy) { 1194 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1195 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL); 1196 extent_io_tree_init(fs_info, &root->log_csum_range, 1197 IO_TREE_LOG_CSUM_RANGE, NULL); 1198 } 1199 1200 memset(&root->root_key, 0, sizeof(root->root_key)); 1201 memset(&root->root_item, 0, sizeof(root->root_item)); 1202 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1203 root->root_key.objectid = objectid; 1204 root->anon_dev = 0; 1205 1206 spin_lock_init(&root->root_item_lock); 1207 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1208 #ifdef CONFIG_BTRFS_DEBUG 1209 INIT_LIST_HEAD(&root->leak_list); 1210 spin_lock(&fs_info->fs_roots_radix_lock); 1211 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 1212 spin_unlock(&fs_info->fs_roots_radix_lock); 1213 #endif 1214 } 1215 1216 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1217 u64 objectid, gfp_t flags) 1218 { 1219 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1220 if (root) 1221 __setup_root(root, fs_info, objectid); 1222 return root; 1223 } 1224 1225 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1226 /* Should only be used by the testing infrastructure */ 1227 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1228 { 1229 struct btrfs_root *root; 1230 1231 if (!fs_info) 1232 return ERR_PTR(-EINVAL); 1233 1234 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 1235 if (!root) 1236 return ERR_PTR(-ENOMEM); 1237 1238 /* We don't use the stripesize in selftest, set it as sectorsize */ 1239 root->alloc_bytenr = 0; 1240 1241 return root; 1242 } 1243 #endif 1244 1245 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1246 u64 objectid) 1247 { 1248 struct btrfs_fs_info *fs_info = trans->fs_info; 1249 struct extent_buffer *leaf; 1250 struct btrfs_root *tree_root = fs_info->tree_root; 1251 struct btrfs_root *root; 1252 struct btrfs_key key; 1253 unsigned int nofs_flag; 1254 int ret = 0; 1255 1256 /* 1257 * We're holding a transaction handle, so use a NOFS memory allocation 1258 * context to avoid deadlock if reclaim happens. 1259 */ 1260 nofs_flag = memalloc_nofs_save(); 1261 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1262 memalloc_nofs_restore(nofs_flag); 1263 if (!root) 1264 return ERR_PTR(-ENOMEM); 1265 1266 root->root_key.objectid = objectid; 1267 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1268 root->root_key.offset = 0; 1269 1270 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 1271 BTRFS_NESTING_NORMAL); 1272 if (IS_ERR(leaf)) { 1273 ret = PTR_ERR(leaf); 1274 leaf = NULL; 1275 goto fail_unlock; 1276 } 1277 1278 root->node = leaf; 1279 btrfs_mark_buffer_dirty(leaf); 1280 1281 root->commit_root = btrfs_root_node(root); 1282 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1283 1284 btrfs_set_root_flags(&root->root_item, 0); 1285 btrfs_set_root_limit(&root->root_item, 0); 1286 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1287 btrfs_set_root_generation(&root->root_item, trans->transid); 1288 btrfs_set_root_level(&root->root_item, 0); 1289 btrfs_set_root_refs(&root->root_item, 1); 1290 btrfs_set_root_used(&root->root_item, leaf->len); 1291 btrfs_set_root_last_snapshot(&root->root_item, 0); 1292 btrfs_set_root_dirid(&root->root_item, 0); 1293 if (is_fstree(objectid)) 1294 generate_random_guid(root->root_item.uuid); 1295 else 1296 export_guid(root->root_item.uuid, &guid_null); 1297 btrfs_set_root_drop_level(&root->root_item, 0); 1298 1299 btrfs_tree_unlock(leaf); 1300 1301 key.objectid = objectid; 1302 key.type = BTRFS_ROOT_ITEM_KEY; 1303 key.offset = 0; 1304 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1305 if (ret) 1306 goto fail; 1307 1308 return root; 1309 1310 fail_unlock: 1311 if (leaf) 1312 btrfs_tree_unlock(leaf); 1313 fail: 1314 btrfs_put_root(root); 1315 1316 return ERR_PTR(ret); 1317 } 1318 1319 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1320 struct btrfs_fs_info *fs_info) 1321 { 1322 struct btrfs_root *root; 1323 1324 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1325 if (!root) 1326 return ERR_PTR(-ENOMEM); 1327 1328 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1329 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1330 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1331 1332 return root; 1333 } 1334 1335 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 1336 struct btrfs_root *root) 1337 { 1338 struct extent_buffer *leaf; 1339 1340 /* 1341 * DON'T set SHAREABLE bit for log trees. 1342 * 1343 * Log trees are not exposed to user space thus can't be snapshotted, 1344 * and they go away before a real commit is actually done. 1345 * 1346 * They do store pointers to file data extents, and those reference 1347 * counts still get updated (along with back refs to the log tree). 1348 */ 1349 1350 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1351 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); 1352 if (IS_ERR(leaf)) 1353 return PTR_ERR(leaf); 1354 1355 root->node = leaf; 1356 1357 btrfs_mark_buffer_dirty(root->node); 1358 btrfs_tree_unlock(root->node); 1359 1360 return 0; 1361 } 1362 1363 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1364 struct btrfs_fs_info *fs_info) 1365 { 1366 struct btrfs_root *log_root; 1367 1368 log_root = alloc_log_tree(trans, fs_info); 1369 if (IS_ERR(log_root)) 1370 return PTR_ERR(log_root); 1371 1372 if (!btrfs_is_zoned(fs_info)) { 1373 int ret = btrfs_alloc_log_tree_node(trans, log_root); 1374 1375 if (ret) { 1376 btrfs_put_root(log_root); 1377 return ret; 1378 } 1379 } 1380 1381 WARN_ON(fs_info->log_root_tree); 1382 fs_info->log_root_tree = log_root; 1383 return 0; 1384 } 1385 1386 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1387 struct btrfs_root *root) 1388 { 1389 struct btrfs_fs_info *fs_info = root->fs_info; 1390 struct btrfs_root *log_root; 1391 struct btrfs_inode_item *inode_item; 1392 int ret; 1393 1394 log_root = alloc_log_tree(trans, fs_info); 1395 if (IS_ERR(log_root)) 1396 return PTR_ERR(log_root); 1397 1398 ret = btrfs_alloc_log_tree_node(trans, log_root); 1399 if (ret) { 1400 btrfs_put_root(log_root); 1401 return ret; 1402 } 1403 1404 log_root->last_trans = trans->transid; 1405 log_root->root_key.offset = root->root_key.objectid; 1406 1407 inode_item = &log_root->root_item.inode; 1408 btrfs_set_stack_inode_generation(inode_item, 1); 1409 btrfs_set_stack_inode_size(inode_item, 3); 1410 btrfs_set_stack_inode_nlink(inode_item, 1); 1411 btrfs_set_stack_inode_nbytes(inode_item, 1412 fs_info->nodesize); 1413 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1414 1415 btrfs_set_root_node(&log_root->root_item, log_root->node); 1416 1417 WARN_ON(root->log_root); 1418 root->log_root = log_root; 1419 root->log_transid = 0; 1420 root->log_transid_committed = -1; 1421 root->last_log_commit = 0; 1422 return 0; 1423 } 1424 1425 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1426 struct btrfs_path *path, 1427 struct btrfs_key *key) 1428 { 1429 struct btrfs_root *root; 1430 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1431 u64 generation; 1432 int ret; 1433 int level; 1434 1435 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1436 if (!root) 1437 return ERR_PTR(-ENOMEM); 1438 1439 ret = btrfs_find_root(tree_root, key, path, 1440 &root->root_item, &root->root_key); 1441 if (ret) { 1442 if (ret > 0) 1443 ret = -ENOENT; 1444 goto fail; 1445 } 1446 1447 generation = btrfs_root_generation(&root->root_item); 1448 level = btrfs_root_level(&root->root_item); 1449 root->node = read_tree_block(fs_info, 1450 btrfs_root_bytenr(&root->root_item), 1451 key->objectid, generation, level, NULL); 1452 if (IS_ERR(root->node)) { 1453 ret = PTR_ERR(root->node); 1454 root->node = NULL; 1455 goto fail; 1456 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1457 ret = -EIO; 1458 goto fail; 1459 } 1460 root->commit_root = btrfs_root_node(root); 1461 return root; 1462 fail: 1463 btrfs_put_root(root); 1464 return ERR_PTR(ret); 1465 } 1466 1467 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1468 struct btrfs_key *key) 1469 { 1470 struct btrfs_root *root; 1471 struct btrfs_path *path; 1472 1473 path = btrfs_alloc_path(); 1474 if (!path) 1475 return ERR_PTR(-ENOMEM); 1476 root = read_tree_root_path(tree_root, path, key); 1477 btrfs_free_path(path); 1478 1479 return root; 1480 } 1481 1482 /* 1483 * Initialize subvolume root in-memory structure 1484 * 1485 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1486 */ 1487 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1488 { 1489 int ret; 1490 unsigned int nofs_flag; 1491 1492 /* 1493 * We might be called under a transaction (e.g. indirect backref 1494 * resolution) which could deadlock if it triggers memory reclaim 1495 */ 1496 nofs_flag = memalloc_nofs_save(); 1497 ret = btrfs_drew_lock_init(&root->snapshot_lock); 1498 memalloc_nofs_restore(nofs_flag); 1499 if (ret) 1500 goto fail; 1501 1502 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1503 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 1504 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1505 btrfs_check_and_init_root_item(&root->root_item); 1506 } 1507 1508 /* 1509 * Don't assign anonymous block device to roots that are not exposed to 1510 * userspace, the id pool is limited to 1M 1511 */ 1512 if (is_fstree(root->root_key.objectid) && 1513 btrfs_root_refs(&root->root_item) > 0) { 1514 if (!anon_dev) { 1515 ret = get_anon_bdev(&root->anon_dev); 1516 if (ret) 1517 goto fail; 1518 } else { 1519 root->anon_dev = anon_dev; 1520 } 1521 } 1522 1523 mutex_lock(&root->objectid_mutex); 1524 ret = btrfs_init_root_free_objectid(root); 1525 if (ret) { 1526 mutex_unlock(&root->objectid_mutex); 1527 goto fail; 1528 } 1529 1530 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1531 1532 mutex_unlock(&root->objectid_mutex); 1533 1534 return 0; 1535 fail: 1536 /* The caller is responsible to call btrfs_free_fs_root */ 1537 return ret; 1538 } 1539 1540 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1541 u64 root_id) 1542 { 1543 struct btrfs_root *root; 1544 1545 spin_lock(&fs_info->fs_roots_radix_lock); 1546 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1547 (unsigned long)root_id); 1548 if (root) 1549 root = btrfs_grab_root(root); 1550 spin_unlock(&fs_info->fs_roots_radix_lock); 1551 return root; 1552 } 1553 1554 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1555 u64 objectid) 1556 { 1557 if (objectid == BTRFS_ROOT_TREE_OBJECTID) 1558 return btrfs_grab_root(fs_info->tree_root); 1559 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 1560 return btrfs_grab_root(fs_info->extent_root); 1561 if (objectid == BTRFS_CHUNK_TREE_OBJECTID) 1562 return btrfs_grab_root(fs_info->chunk_root); 1563 if (objectid == BTRFS_DEV_TREE_OBJECTID) 1564 return btrfs_grab_root(fs_info->dev_root); 1565 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 1566 return btrfs_grab_root(fs_info->csum_root); 1567 if (objectid == BTRFS_QUOTA_TREE_OBJECTID) 1568 return btrfs_grab_root(fs_info->quota_root) ? 1569 fs_info->quota_root : ERR_PTR(-ENOENT); 1570 if (objectid == BTRFS_UUID_TREE_OBJECTID) 1571 return btrfs_grab_root(fs_info->uuid_root) ? 1572 fs_info->uuid_root : ERR_PTR(-ENOENT); 1573 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1574 return btrfs_grab_root(fs_info->free_space_root) ? 1575 fs_info->free_space_root : ERR_PTR(-ENOENT); 1576 return NULL; 1577 } 1578 1579 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1580 struct btrfs_root *root) 1581 { 1582 int ret; 1583 1584 ret = radix_tree_preload(GFP_NOFS); 1585 if (ret) 1586 return ret; 1587 1588 spin_lock(&fs_info->fs_roots_radix_lock); 1589 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1590 (unsigned long)root->root_key.objectid, 1591 root); 1592 if (ret == 0) { 1593 btrfs_grab_root(root); 1594 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1595 } 1596 spin_unlock(&fs_info->fs_roots_radix_lock); 1597 radix_tree_preload_end(); 1598 1599 return ret; 1600 } 1601 1602 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1603 { 1604 #ifdef CONFIG_BTRFS_DEBUG 1605 struct btrfs_root *root; 1606 1607 while (!list_empty(&fs_info->allocated_roots)) { 1608 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1609 1610 root = list_first_entry(&fs_info->allocated_roots, 1611 struct btrfs_root, leak_list); 1612 btrfs_err(fs_info, "leaked root %s refcount %d", 1613 btrfs_root_name(&root->root_key, buf), 1614 refcount_read(&root->refs)); 1615 while (refcount_read(&root->refs) > 1) 1616 btrfs_put_root(root); 1617 btrfs_put_root(root); 1618 } 1619 #endif 1620 } 1621 1622 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1623 { 1624 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1625 percpu_counter_destroy(&fs_info->delalloc_bytes); 1626 percpu_counter_destroy(&fs_info->ordered_bytes); 1627 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1628 btrfs_free_csum_hash(fs_info); 1629 btrfs_free_stripe_hash_table(fs_info); 1630 btrfs_free_ref_cache(fs_info); 1631 kfree(fs_info->balance_ctl); 1632 kfree(fs_info->delayed_root); 1633 btrfs_put_root(fs_info->extent_root); 1634 btrfs_put_root(fs_info->tree_root); 1635 btrfs_put_root(fs_info->chunk_root); 1636 btrfs_put_root(fs_info->dev_root); 1637 btrfs_put_root(fs_info->csum_root); 1638 btrfs_put_root(fs_info->quota_root); 1639 btrfs_put_root(fs_info->uuid_root); 1640 btrfs_put_root(fs_info->free_space_root); 1641 btrfs_put_root(fs_info->fs_root); 1642 btrfs_put_root(fs_info->data_reloc_root); 1643 btrfs_check_leaked_roots(fs_info); 1644 btrfs_extent_buffer_leak_debug_check(fs_info); 1645 kfree(fs_info->super_copy); 1646 kfree(fs_info->super_for_commit); 1647 kvfree(fs_info); 1648 } 1649 1650 1651 /* 1652 * Get an in-memory reference of a root structure. 1653 * 1654 * For essential trees like root/extent tree, we grab it from fs_info directly. 1655 * For subvolume trees, we check the cached filesystem roots first. If not 1656 * found, then read it from disk and add it to cached fs roots. 1657 * 1658 * Caller should release the root by calling btrfs_put_root() after the usage. 1659 * 1660 * NOTE: Reloc and log trees can't be read by this function as they share the 1661 * same root objectid. 1662 * 1663 * @objectid: root id 1664 * @anon_dev: preallocated anonymous block device number for new roots, 1665 * pass 0 for new allocation. 1666 * @check_ref: whether to check root item references, If true, return -ENOENT 1667 * for orphan roots 1668 */ 1669 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1670 u64 objectid, dev_t anon_dev, 1671 bool check_ref) 1672 { 1673 struct btrfs_root *root; 1674 struct btrfs_path *path; 1675 struct btrfs_key key; 1676 int ret; 1677 1678 root = btrfs_get_global_root(fs_info, objectid); 1679 if (root) 1680 return root; 1681 again: 1682 root = btrfs_lookup_fs_root(fs_info, objectid); 1683 if (root) { 1684 /* Shouldn't get preallocated anon_dev for cached roots */ 1685 ASSERT(!anon_dev); 1686 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1687 btrfs_put_root(root); 1688 return ERR_PTR(-ENOENT); 1689 } 1690 return root; 1691 } 1692 1693 key.objectid = objectid; 1694 key.type = BTRFS_ROOT_ITEM_KEY; 1695 key.offset = (u64)-1; 1696 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1697 if (IS_ERR(root)) 1698 return root; 1699 1700 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1701 ret = -ENOENT; 1702 goto fail; 1703 } 1704 1705 ret = btrfs_init_fs_root(root, anon_dev); 1706 if (ret) 1707 goto fail; 1708 1709 path = btrfs_alloc_path(); 1710 if (!path) { 1711 ret = -ENOMEM; 1712 goto fail; 1713 } 1714 key.objectid = BTRFS_ORPHAN_OBJECTID; 1715 key.type = BTRFS_ORPHAN_ITEM_KEY; 1716 key.offset = objectid; 1717 1718 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1719 btrfs_free_path(path); 1720 if (ret < 0) 1721 goto fail; 1722 if (ret == 0) 1723 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1724 1725 ret = btrfs_insert_fs_root(fs_info, root); 1726 if (ret) { 1727 btrfs_put_root(root); 1728 if (ret == -EEXIST) 1729 goto again; 1730 goto fail; 1731 } 1732 return root; 1733 fail: 1734 btrfs_put_root(root); 1735 return ERR_PTR(ret); 1736 } 1737 1738 /* 1739 * Get in-memory reference of a root structure 1740 * 1741 * @objectid: tree objectid 1742 * @check_ref: if set, verify that the tree exists and the item has at least 1743 * one reference 1744 */ 1745 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1746 u64 objectid, bool check_ref) 1747 { 1748 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1749 } 1750 1751 /* 1752 * Get in-memory reference of a root structure, created as new, optionally pass 1753 * the anonymous block device id 1754 * 1755 * @objectid: tree objectid 1756 * @anon_dev: if zero, allocate a new anonymous block device or use the 1757 * parameter value 1758 */ 1759 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1760 u64 objectid, dev_t anon_dev) 1761 { 1762 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1763 } 1764 1765 /* 1766 * btrfs_get_fs_root_commit_root - return a root for the given objectid 1767 * @fs_info: the fs_info 1768 * @objectid: the objectid we need to lookup 1769 * 1770 * This is exclusively used for backref walking, and exists specifically because 1771 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1772 * creation time, which means we may have to read the tree_root in order to look 1773 * up a fs root that is not in memory. If the root is not in memory we will 1774 * read the tree root commit root and look up the fs root from there. This is a 1775 * temporary root, it will not be inserted into the radix tree as it doesn't 1776 * have the most uptodate information, it'll simply be discarded once the 1777 * backref code is finished using the root. 1778 */ 1779 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1780 struct btrfs_path *path, 1781 u64 objectid) 1782 { 1783 struct btrfs_root *root; 1784 struct btrfs_key key; 1785 1786 ASSERT(path->search_commit_root && path->skip_locking); 1787 1788 /* 1789 * This can return -ENOENT if we ask for a root that doesn't exist, but 1790 * since this is called via the backref walking code we won't be looking 1791 * up a root that doesn't exist, unless there's corruption. So if root 1792 * != NULL just return it. 1793 */ 1794 root = btrfs_get_global_root(fs_info, objectid); 1795 if (root) 1796 return root; 1797 1798 root = btrfs_lookup_fs_root(fs_info, objectid); 1799 if (root) 1800 return root; 1801 1802 key.objectid = objectid; 1803 key.type = BTRFS_ROOT_ITEM_KEY; 1804 key.offset = (u64)-1; 1805 root = read_tree_root_path(fs_info->tree_root, path, &key); 1806 btrfs_release_path(path); 1807 1808 return root; 1809 } 1810 1811 /* 1812 * called by the kthread helper functions to finally call the bio end_io 1813 * functions. This is where read checksum verification actually happens 1814 */ 1815 static void end_workqueue_fn(struct btrfs_work *work) 1816 { 1817 struct bio *bio; 1818 struct btrfs_end_io_wq *end_io_wq; 1819 1820 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1821 bio = end_io_wq->bio; 1822 1823 bio->bi_status = end_io_wq->status; 1824 bio->bi_private = end_io_wq->private; 1825 bio->bi_end_io = end_io_wq->end_io; 1826 bio_endio(bio); 1827 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1828 } 1829 1830 static int cleaner_kthread(void *arg) 1831 { 1832 struct btrfs_root *root = arg; 1833 struct btrfs_fs_info *fs_info = root->fs_info; 1834 int again; 1835 1836 while (1) { 1837 again = 0; 1838 1839 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1840 1841 /* Make the cleaner go to sleep early. */ 1842 if (btrfs_need_cleaner_sleep(fs_info)) 1843 goto sleep; 1844 1845 /* 1846 * Do not do anything if we might cause open_ctree() to block 1847 * before we have finished mounting the filesystem. 1848 */ 1849 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1850 goto sleep; 1851 1852 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1853 goto sleep; 1854 1855 /* 1856 * Avoid the problem that we change the status of the fs 1857 * during the above check and trylock. 1858 */ 1859 if (btrfs_need_cleaner_sleep(fs_info)) { 1860 mutex_unlock(&fs_info->cleaner_mutex); 1861 goto sleep; 1862 } 1863 1864 btrfs_run_delayed_iputs(fs_info); 1865 1866 again = btrfs_clean_one_deleted_snapshot(root); 1867 mutex_unlock(&fs_info->cleaner_mutex); 1868 1869 /* 1870 * The defragger has dealt with the R/O remount and umount, 1871 * needn't do anything special here. 1872 */ 1873 btrfs_run_defrag_inodes(fs_info); 1874 1875 /* 1876 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1877 * with relocation (btrfs_relocate_chunk) and relocation 1878 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1879 * after acquiring fs_info->reclaim_bgs_lock. So we 1880 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1881 * unused block groups. 1882 */ 1883 btrfs_delete_unused_bgs(fs_info); 1884 1885 /* 1886 * Reclaim block groups in the reclaim_bgs list after we deleted 1887 * all unused block_groups. This possibly gives us some more free 1888 * space. 1889 */ 1890 btrfs_reclaim_bgs(fs_info); 1891 sleep: 1892 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1893 if (kthread_should_park()) 1894 kthread_parkme(); 1895 if (kthread_should_stop()) 1896 return 0; 1897 if (!again) { 1898 set_current_state(TASK_INTERRUPTIBLE); 1899 schedule(); 1900 __set_current_state(TASK_RUNNING); 1901 } 1902 } 1903 } 1904 1905 static int transaction_kthread(void *arg) 1906 { 1907 struct btrfs_root *root = arg; 1908 struct btrfs_fs_info *fs_info = root->fs_info; 1909 struct btrfs_trans_handle *trans; 1910 struct btrfs_transaction *cur; 1911 u64 transid; 1912 time64_t delta; 1913 unsigned long delay; 1914 bool cannot_commit; 1915 1916 do { 1917 cannot_commit = false; 1918 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1919 mutex_lock(&fs_info->transaction_kthread_mutex); 1920 1921 spin_lock(&fs_info->trans_lock); 1922 cur = fs_info->running_transaction; 1923 if (!cur) { 1924 spin_unlock(&fs_info->trans_lock); 1925 goto sleep; 1926 } 1927 1928 delta = ktime_get_seconds() - cur->start_time; 1929 if (cur->state < TRANS_STATE_COMMIT_START && 1930 delta < fs_info->commit_interval) { 1931 spin_unlock(&fs_info->trans_lock); 1932 delay -= msecs_to_jiffies((delta - 1) * 1000); 1933 delay = min(delay, 1934 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1935 goto sleep; 1936 } 1937 transid = cur->transid; 1938 spin_unlock(&fs_info->trans_lock); 1939 1940 /* If the file system is aborted, this will always fail. */ 1941 trans = btrfs_attach_transaction(root); 1942 if (IS_ERR(trans)) { 1943 if (PTR_ERR(trans) != -ENOENT) 1944 cannot_commit = true; 1945 goto sleep; 1946 } 1947 if (transid == trans->transid) { 1948 btrfs_commit_transaction(trans); 1949 } else { 1950 btrfs_end_transaction(trans); 1951 } 1952 sleep: 1953 wake_up_process(fs_info->cleaner_kthread); 1954 mutex_unlock(&fs_info->transaction_kthread_mutex); 1955 1956 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1957 &fs_info->fs_state))) 1958 btrfs_cleanup_transaction(fs_info); 1959 if (!kthread_should_stop() && 1960 (!btrfs_transaction_blocked(fs_info) || 1961 cannot_commit)) 1962 schedule_timeout_interruptible(delay); 1963 } while (!kthread_should_stop()); 1964 return 0; 1965 } 1966 1967 /* 1968 * This will find the highest generation in the array of root backups. The 1969 * index of the highest array is returned, or -EINVAL if we can't find 1970 * anything. 1971 * 1972 * We check to make sure the array is valid by comparing the 1973 * generation of the latest root in the array with the generation 1974 * in the super block. If they don't match we pitch it. 1975 */ 1976 static int find_newest_super_backup(struct btrfs_fs_info *info) 1977 { 1978 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1979 u64 cur; 1980 struct btrfs_root_backup *root_backup; 1981 int i; 1982 1983 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1984 root_backup = info->super_copy->super_roots + i; 1985 cur = btrfs_backup_tree_root_gen(root_backup); 1986 if (cur == newest_gen) 1987 return i; 1988 } 1989 1990 return -EINVAL; 1991 } 1992 1993 /* 1994 * copy all the root pointers into the super backup array. 1995 * this will bump the backup pointer by one when it is 1996 * done 1997 */ 1998 static void backup_super_roots(struct btrfs_fs_info *info) 1999 { 2000 const int next_backup = info->backup_root_index; 2001 struct btrfs_root_backup *root_backup; 2002 2003 root_backup = info->super_for_commit->super_roots + next_backup; 2004 2005 /* 2006 * make sure all of our padding and empty slots get zero filled 2007 * regardless of which ones we use today 2008 */ 2009 memset(root_backup, 0, sizeof(*root_backup)); 2010 2011 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 2012 2013 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 2014 btrfs_set_backup_tree_root_gen(root_backup, 2015 btrfs_header_generation(info->tree_root->node)); 2016 2017 btrfs_set_backup_tree_root_level(root_backup, 2018 btrfs_header_level(info->tree_root->node)); 2019 2020 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 2021 btrfs_set_backup_chunk_root_gen(root_backup, 2022 btrfs_header_generation(info->chunk_root->node)); 2023 btrfs_set_backup_chunk_root_level(root_backup, 2024 btrfs_header_level(info->chunk_root->node)); 2025 2026 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 2027 btrfs_set_backup_extent_root_gen(root_backup, 2028 btrfs_header_generation(info->extent_root->node)); 2029 btrfs_set_backup_extent_root_level(root_backup, 2030 btrfs_header_level(info->extent_root->node)); 2031 2032 /* 2033 * we might commit during log recovery, which happens before we set 2034 * the fs_root. Make sure it is valid before we fill it in. 2035 */ 2036 if (info->fs_root && info->fs_root->node) { 2037 btrfs_set_backup_fs_root(root_backup, 2038 info->fs_root->node->start); 2039 btrfs_set_backup_fs_root_gen(root_backup, 2040 btrfs_header_generation(info->fs_root->node)); 2041 btrfs_set_backup_fs_root_level(root_backup, 2042 btrfs_header_level(info->fs_root->node)); 2043 } 2044 2045 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2046 btrfs_set_backup_dev_root_gen(root_backup, 2047 btrfs_header_generation(info->dev_root->node)); 2048 btrfs_set_backup_dev_root_level(root_backup, 2049 btrfs_header_level(info->dev_root->node)); 2050 2051 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 2052 btrfs_set_backup_csum_root_gen(root_backup, 2053 btrfs_header_generation(info->csum_root->node)); 2054 btrfs_set_backup_csum_root_level(root_backup, 2055 btrfs_header_level(info->csum_root->node)); 2056 2057 btrfs_set_backup_total_bytes(root_backup, 2058 btrfs_super_total_bytes(info->super_copy)); 2059 btrfs_set_backup_bytes_used(root_backup, 2060 btrfs_super_bytes_used(info->super_copy)); 2061 btrfs_set_backup_num_devices(root_backup, 2062 btrfs_super_num_devices(info->super_copy)); 2063 2064 /* 2065 * if we don't copy this out to the super_copy, it won't get remembered 2066 * for the next commit 2067 */ 2068 memcpy(&info->super_copy->super_roots, 2069 &info->super_for_commit->super_roots, 2070 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2071 } 2072 2073 /* 2074 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 2075 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 2076 * 2077 * fs_info - filesystem whose backup roots need to be read 2078 * priority - priority of backup root required 2079 * 2080 * Returns backup root index on success and -EINVAL otherwise. 2081 */ 2082 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 2083 { 2084 int backup_index = find_newest_super_backup(fs_info); 2085 struct btrfs_super_block *super = fs_info->super_copy; 2086 struct btrfs_root_backup *root_backup; 2087 2088 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 2089 if (priority == 0) 2090 return backup_index; 2091 2092 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 2093 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 2094 } else { 2095 return -EINVAL; 2096 } 2097 2098 root_backup = super->super_roots + backup_index; 2099 2100 btrfs_set_super_generation(super, 2101 btrfs_backup_tree_root_gen(root_backup)); 2102 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2103 btrfs_set_super_root_level(super, 2104 btrfs_backup_tree_root_level(root_backup)); 2105 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2106 2107 /* 2108 * Fixme: the total bytes and num_devices need to match or we should 2109 * need a fsck 2110 */ 2111 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2112 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2113 2114 return backup_index; 2115 } 2116 2117 /* helper to cleanup workers */ 2118 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2119 { 2120 btrfs_destroy_workqueue(fs_info->fixup_workers); 2121 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2122 btrfs_destroy_workqueue(fs_info->workers); 2123 btrfs_destroy_workqueue(fs_info->endio_workers); 2124 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2125 btrfs_destroy_workqueue(fs_info->rmw_workers); 2126 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2127 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2128 btrfs_destroy_workqueue(fs_info->delayed_workers); 2129 btrfs_destroy_workqueue(fs_info->caching_workers); 2130 btrfs_destroy_workqueue(fs_info->readahead_workers); 2131 btrfs_destroy_workqueue(fs_info->flush_workers); 2132 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2133 if (fs_info->discard_ctl.discard_workers) 2134 destroy_workqueue(fs_info->discard_ctl.discard_workers); 2135 /* 2136 * Now that all other work queues are destroyed, we can safely destroy 2137 * the queues used for metadata I/O, since tasks from those other work 2138 * queues can do metadata I/O operations. 2139 */ 2140 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2141 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2142 } 2143 2144 static void free_root_extent_buffers(struct btrfs_root *root) 2145 { 2146 if (root) { 2147 free_extent_buffer(root->node); 2148 free_extent_buffer(root->commit_root); 2149 root->node = NULL; 2150 root->commit_root = NULL; 2151 } 2152 } 2153 2154 /* helper to cleanup tree roots */ 2155 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 2156 { 2157 free_root_extent_buffers(info->tree_root); 2158 2159 free_root_extent_buffers(info->dev_root); 2160 free_root_extent_buffers(info->extent_root); 2161 free_root_extent_buffers(info->csum_root); 2162 free_root_extent_buffers(info->quota_root); 2163 free_root_extent_buffers(info->uuid_root); 2164 free_root_extent_buffers(info->fs_root); 2165 free_root_extent_buffers(info->data_reloc_root); 2166 if (free_chunk_root) 2167 free_root_extent_buffers(info->chunk_root); 2168 free_root_extent_buffers(info->free_space_root); 2169 } 2170 2171 void btrfs_put_root(struct btrfs_root *root) 2172 { 2173 if (!root) 2174 return; 2175 2176 if (refcount_dec_and_test(&root->refs)) { 2177 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2178 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 2179 if (root->anon_dev) 2180 free_anon_bdev(root->anon_dev); 2181 btrfs_drew_lock_destroy(&root->snapshot_lock); 2182 free_root_extent_buffers(root); 2183 #ifdef CONFIG_BTRFS_DEBUG 2184 spin_lock(&root->fs_info->fs_roots_radix_lock); 2185 list_del_init(&root->leak_list); 2186 spin_unlock(&root->fs_info->fs_roots_radix_lock); 2187 #endif 2188 kfree(root); 2189 } 2190 } 2191 2192 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2193 { 2194 int ret; 2195 struct btrfs_root *gang[8]; 2196 int i; 2197 2198 while (!list_empty(&fs_info->dead_roots)) { 2199 gang[0] = list_entry(fs_info->dead_roots.next, 2200 struct btrfs_root, root_list); 2201 list_del(&gang[0]->root_list); 2202 2203 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2204 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2205 btrfs_put_root(gang[0]); 2206 } 2207 2208 while (1) { 2209 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2210 (void **)gang, 0, 2211 ARRAY_SIZE(gang)); 2212 if (!ret) 2213 break; 2214 for (i = 0; i < ret; i++) 2215 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2216 } 2217 } 2218 2219 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2220 { 2221 mutex_init(&fs_info->scrub_lock); 2222 atomic_set(&fs_info->scrubs_running, 0); 2223 atomic_set(&fs_info->scrub_pause_req, 0); 2224 atomic_set(&fs_info->scrubs_paused, 0); 2225 atomic_set(&fs_info->scrub_cancel_req, 0); 2226 init_waitqueue_head(&fs_info->scrub_pause_wait); 2227 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2228 } 2229 2230 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2231 { 2232 spin_lock_init(&fs_info->balance_lock); 2233 mutex_init(&fs_info->balance_mutex); 2234 atomic_set(&fs_info->balance_pause_req, 0); 2235 atomic_set(&fs_info->balance_cancel_req, 0); 2236 fs_info->balance_ctl = NULL; 2237 init_waitqueue_head(&fs_info->balance_wait_q); 2238 atomic_set(&fs_info->reloc_cancel_req, 0); 2239 } 2240 2241 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2242 { 2243 struct inode *inode = fs_info->btree_inode; 2244 2245 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2246 set_nlink(inode, 1); 2247 /* 2248 * we set the i_size on the btree inode to the max possible int. 2249 * the real end of the address space is determined by all of 2250 * the devices in the system 2251 */ 2252 inode->i_size = OFFSET_MAX; 2253 inode->i_mapping->a_ops = &btree_aops; 2254 2255 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2256 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2257 IO_TREE_BTREE_INODE_IO, inode); 2258 BTRFS_I(inode)->io_tree.track_uptodate = false; 2259 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2260 2261 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2262 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2263 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2264 btrfs_insert_inode_hash(inode); 2265 } 2266 2267 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2268 { 2269 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2270 init_rwsem(&fs_info->dev_replace.rwsem); 2271 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2272 } 2273 2274 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2275 { 2276 spin_lock_init(&fs_info->qgroup_lock); 2277 mutex_init(&fs_info->qgroup_ioctl_lock); 2278 fs_info->qgroup_tree = RB_ROOT; 2279 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2280 fs_info->qgroup_seq = 1; 2281 fs_info->qgroup_ulist = NULL; 2282 fs_info->qgroup_rescan_running = false; 2283 mutex_init(&fs_info->qgroup_rescan_lock); 2284 } 2285 2286 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2287 struct btrfs_fs_devices *fs_devices) 2288 { 2289 u32 max_active = fs_info->thread_pool_size; 2290 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2291 2292 fs_info->workers = 2293 btrfs_alloc_workqueue(fs_info, "worker", 2294 flags | WQ_HIGHPRI, max_active, 16); 2295 2296 fs_info->delalloc_workers = 2297 btrfs_alloc_workqueue(fs_info, "delalloc", 2298 flags, max_active, 2); 2299 2300 fs_info->flush_workers = 2301 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2302 flags, max_active, 0); 2303 2304 fs_info->caching_workers = 2305 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2306 2307 fs_info->fixup_workers = 2308 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2309 2310 /* 2311 * endios are largely parallel and should have a very 2312 * low idle thresh 2313 */ 2314 fs_info->endio_workers = 2315 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2316 fs_info->endio_meta_workers = 2317 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2318 max_active, 4); 2319 fs_info->endio_meta_write_workers = 2320 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2321 max_active, 2); 2322 fs_info->endio_raid56_workers = 2323 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2324 max_active, 4); 2325 fs_info->rmw_workers = 2326 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2327 fs_info->endio_write_workers = 2328 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2329 max_active, 2); 2330 fs_info->endio_freespace_worker = 2331 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2332 max_active, 0); 2333 fs_info->delayed_workers = 2334 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2335 max_active, 0); 2336 fs_info->readahead_workers = 2337 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2338 max_active, 2); 2339 fs_info->qgroup_rescan_workers = 2340 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2341 fs_info->discard_ctl.discard_workers = 2342 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2343 2344 if (!(fs_info->workers && fs_info->delalloc_workers && 2345 fs_info->flush_workers && 2346 fs_info->endio_workers && fs_info->endio_meta_workers && 2347 fs_info->endio_meta_write_workers && 2348 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2349 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2350 fs_info->caching_workers && fs_info->readahead_workers && 2351 fs_info->fixup_workers && fs_info->delayed_workers && 2352 fs_info->qgroup_rescan_workers && 2353 fs_info->discard_ctl.discard_workers)) { 2354 return -ENOMEM; 2355 } 2356 2357 return 0; 2358 } 2359 2360 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2361 { 2362 struct crypto_shash *csum_shash; 2363 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2364 2365 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2366 2367 if (IS_ERR(csum_shash)) { 2368 btrfs_err(fs_info, "error allocating %s hash for checksum", 2369 csum_driver); 2370 return PTR_ERR(csum_shash); 2371 } 2372 2373 fs_info->csum_shash = csum_shash; 2374 2375 return 0; 2376 } 2377 2378 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2379 struct btrfs_fs_devices *fs_devices) 2380 { 2381 int ret; 2382 struct btrfs_root *log_tree_root; 2383 struct btrfs_super_block *disk_super = fs_info->super_copy; 2384 u64 bytenr = btrfs_super_log_root(disk_super); 2385 int level = btrfs_super_log_root_level(disk_super); 2386 2387 if (fs_devices->rw_devices == 0) { 2388 btrfs_warn(fs_info, "log replay required on RO media"); 2389 return -EIO; 2390 } 2391 2392 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2393 GFP_KERNEL); 2394 if (!log_tree_root) 2395 return -ENOMEM; 2396 2397 log_tree_root->node = read_tree_block(fs_info, bytenr, 2398 BTRFS_TREE_LOG_OBJECTID, 2399 fs_info->generation + 1, level, 2400 NULL); 2401 if (IS_ERR(log_tree_root->node)) { 2402 btrfs_warn(fs_info, "failed to read log tree"); 2403 ret = PTR_ERR(log_tree_root->node); 2404 log_tree_root->node = NULL; 2405 btrfs_put_root(log_tree_root); 2406 return ret; 2407 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2408 btrfs_err(fs_info, "failed to read log tree"); 2409 btrfs_put_root(log_tree_root); 2410 return -EIO; 2411 } 2412 /* returns with log_tree_root freed on success */ 2413 ret = btrfs_recover_log_trees(log_tree_root); 2414 if (ret) { 2415 btrfs_handle_fs_error(fs_info, ret, 2416 "Failed to recover log tree"); 2417 btrfs_put_root(log_tree_root); 2418 return ret; 2419 } 2420 2421 if (sb_rdonly(fs_info->sb)) { 2422 ret = btrfs_commit_super(fs_info); 2423 if (ret) 2424 return ret; 2425 } 2426 2427 return 0; 2428 } 2429 2430 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2431 { 2432 struct btrfs_root *tree_root = fs_info->tree_root; 2433 struct btrfs_root *root; 2434 struct btrfs_key location; 2435 int ret; 2436 2437 BUG_ON(!fs_info->tree_root); 2438 2439 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2440 location.type = BTRFS_ROOT_ITEM_KEY; 2441 location.offset = 0; 2442 2443 root = btrfs_read_tree_root(tree_root, &location); 2444 if (IS_ERR(root)) { 2445 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2446 ret = PTR_ERR(root); 2447 goto out; 2448 } 2449 } else { 2450 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2451 fs_info->extent_root = root; 2452 } 2453 2454 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2455 root = btrfs_read_tree_root(tree_root, &location); 2456 if (IS_ERR(root)) { 2457 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2458 ret = PTR_ERR(root); 2459 goto out; 2460 } 2461 } else { 2462 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2463 fs_info->dev_root = root; 2464 } 2465 /* Initialize fs_info for all devices in any case */ 2466 btrfs_init_devices_late(fs_info); 2467 2468 /* If IGNOREDATACSUMS is set don't bother reading the csum root. */ 2469 if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2470 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2471 root = btrfs_read_tree_root(tree_root, &location); 2472 if (IS_ERR(root)) { 2473 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2474 ret = PTR_ERR(root); 2475 goto out; 2476 } 2477 } else { 2478 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2479 fs_info->csum_root = root; 2480 } 2481 } 2482 2483 /* 2484 * This tree can share blocks with some other fs tree during relocation 2485 * and we need a proper setup by btrfs_get_fs_root 2486 */ 2487 root = btrfs_get_fs_root(tree_root->fs_info, 2488 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2489 if (IS_ERR(root)) { 2490 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2491 ret = PTR_ERR(root); 2492 goto out; 2493 } 2494 } else { 2495 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2496 fs_info->data_reloc_root = root; 2497 } 2498 2499 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2500 root = btrfs_read_tree_root(tree_root, &location); 2501 if (!IS_ERR(root)) { 2502 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2503 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2504 fs_info->quota_root = root; 2505 } 2506 2507 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2508 root = btrfs_read_tree_root(tree_root, &location); 2509 if (IS_ERR(root)) { 2510 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2511 ret = PTR_ERR(root); 2512 if (ret != -ENOENT) 2513 goto out; 2514 } 2515 } else { 2516 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2517 fs_info->uuid_root = root; 2518 } 2519 2520 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2521 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2522 root = btrfs_read_tree_root(tree_root, &location); 2523 if (IS_ERR(root)) { 2524 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2525 ret = PTR_ERR(root); 2526 goto out; 2527 } 2528 } else { 2529 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2530 fs_info->free_space_root = root; 2531 } 2532 } 2533 2534 return 0; 2535 out: 2536 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2537 location.objectid, ret); 2538 return ret; 2539 } 2540 2541 /* 2542 * Real super block validation 2543 * NOTE: super csum type and incompat features will not be checked here. 2544 * 2545 * @sb: super block to check 2546 * @mirror_num: the super block number to check its bytenr: 2547 * 0 the primary (1st) sb 2548 * 1, 2 2nd and 3rd backup copy 2549 * -1 skip bytenr check 2550 */ 2551 static int validate_super(struct btrfs_fs_info *fs_info, 2552 struct btrfs_super_block *sb, int mirror_num) 2553 { 2554 u64 nodesize = btrfs_super_nodesize(sb); 2555 u64 sectorsize = btrfs_super_sectorsize(sb); 2556 int ret = 0; 2557 2558 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2559 btrfs_err(fs_info, "no valid FS found"); 2560 ret = -EINVAL; 2561 } 2562 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2563 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2564 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2565 ret = -EINVAL; 2566 } 2567 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2568 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2569 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2570 ret = -EINVAL; 2571 } 2572 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2573 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2574 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2575 ret = -EINVAL; 2576 } 2577 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2578 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2579 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2580 ret = -EINVAL; 2581 } 2582 2583 /* 2584 * Check sectorsize and nodesize first, other check will need it. 2585 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2586 */ 2587 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2588 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2589 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2590 ret = -EINVAL; 2591 } 2592 2593 /* 2594 * For 4K page size, we only support 4K sector size. 2595 * For 64K page size, we support read-write for 64K sector size, and 2596 * read-only for 4K sector size. 2597 */ 2598 if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) || 2599 (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K && 2600 sectorsize != SZ_64K))) { 2601 btrfs_err(fs_info, 2602 "sectorsize %llu not yet supported for page size %lu", 2603 sectorsize, PAGE_SIZE); 2604 ret = -EINVAL; 2605 } 2606 2607 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2608 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2609 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2610 ret = -EINVAL; 2611 } 2612 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2613 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2614 le32_to_cpu(sb->__unused_leafsize), nodesize); 2615 ret = -EINVAL; 2616 } 2617 2618 /* Root alignment check */ 2619 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2620 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2621 btrfs_super_root(sb)); 2622 ret = -EINVAL; 2623 } 2624 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2625 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2626 btrfs_super_chunk_root(sb)); 2627 ret = -EINVAL; 2628 } 2629 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2630 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2631 btrfs_super_log_root(sb)); 2632 ret = -EINVAL; 2633 } 2634 2635 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2636 BTRFS_FSID_SIZE)) { 2637 btrfs_err(fs_info, 2638 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2639 fs_info->super_copy->fsid, fs_info->fs_devices->fsid); 2640 ret = -EINVAL; 2641 } 2642 2643 if (btrfs_fs_incompat(fs_info, METADATA_UUID) && 2644 memcmp(fs_info->fs_devices->metadata_uuid, 2645 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) { 2646 btrfs_err(fs_info, 2647 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2648 fs_info->super_copy->metadata_uuid, 2649 fs_info->fs_devices->metadata_uuid); 2650 ret = -EINVAL; 2651 } 2652 2653 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2654 BTRFS_FSID_SIZE) != 0) { 2655 btrfs_err(fs_info, 2656 "dev_item UUID does not match metadata fsid: %pU != %pU", 2657 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2658 ret = -EINVAL; 2659 } 2660 2661 /* 2662 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2663 * done later 2664 */ 2665 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2666 btrfs_err(fs_info, "bytes_used is too small %llu", 2667 btrfs_super_bytes_used(sb)); 2668 ret = -EINVAL; 2669 } 2670 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2671 btrfs_err(fs_info, "invalid stripesize %u", 2672 btrfs_super_stripesize(sb)); 2673 ret = -EINVAL; 2674 } 2675 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2676 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2677 btrfs_super_num_devices(sb)); 2678 if (btrfs_super_num_devices(sb) == 0) { 2679 btrfs_err(fs_info, "number of devices is 0"); 2680 ret = -EINVAL; 2681 } 2682 2683 if (mirror_num >= 0 && 2684 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2685 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2686 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2687 ret = -EINVAL; 2688 } 2689 2690 /* 2691 * Obvious sys_chunk_array corruptions, it must hold at least one key 2692 * and one chunk 2693 */ 2694 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2695 btrfs_err(fs_info, "system chunk array too big %u > %u", 2696 btrfs_super_sys_array_size(sb), 2697 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2698 ret = -EINVAL; 2699 } 2700 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2701 + sizeof(struct btrfs_chunk)) { 2702 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2703 btrfs_super_sys_array_size(sb), 2704 sizeof(struct btrfs_disk_key) 2705 + sizeof(struct btrfs_chunk)); 2706 ret = -EINVAL; 2707 } 2708 2709 /* 2710 * The generation is a global counter, we'll trust it more than the others 2711 * but it's still possible that it's the one that's wrong. 2712 */ 2713 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2714 btrfs_warn(fs_info, 2715 "suspicious: generation < chunk_root_generation: %llu < %llu", 2716 btrfs_super_generation(sb), 2717 btrfs_super_chunk_root_generation(sb)); 2718 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2719 && btrfs_super_cache_generation(sb) != (u64)-1) 2720 btrfs_warn(fs_info, 2721 "suspicious: generation < cache_generation: %llu < %llu", 2722 btrfs_super_generation(sb), 2723 btrfs_super_cache_generation(sb)); 2724 2725 return ret; 2726 } 2727 2728 /* 2729 * Validation of super block at mount time. 2730 * Some checks already done early at mount time, like csum type and incompat 2731 * flags will be skipped. 2732 */ 2733 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2734 { 2735 return validate_super(fs_info, fs_info->super_copy, 0); 2736 } 2737 2738 /* 2739 * Validation of super block at write time. 2740 * Some checks like bytenr check will be skipped as their values will be 2741 * overwritten soon. 2742 * Extra checks like csum type and incompat flags will be done here. 2743 */ 2744 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2745 struct btrfs_super_block *sb) 2746 { 2747 int ret; 2748 2749 ret = validate_super(fs_info, sb, -1); 2750 if (ret < 0) 2751 goto out; 2752 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2753 ret = -EUCLEAN; 2754 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2755 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2756 goto out; 2757 } 2758 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2759 ret = -EUCLEAN; 2760 btrfs_err(fs_info, 2761 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2762 btrfs_super_incompat_flags(sb), 2763 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2764 goto out; 2765 } 2766 out: 2767 if (ret < 0) 2768 btrfs_err(fs_info, 2769 "super block corruption detected before writing it to disk"); 2770 return ret; 2771 } 2772 2773 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2774 { 2775 int backup_index = find_newest_super_backup(fs_info); 2776 struct btrfs_super_block *sb = fs_info->super_copy; 2777 struct btrfs_root *tree_root = fs_info->tree_root; 2778 bool handle_error = false; 2779 int ret = 0; 2780 int i; 2781 2782 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2783 u64 generation; 2784 int level; 2785 2786 if (handle_error) { 2787 if (!IS_ERR(tree_root->node)) 2788 free_extent_buffer(tree_root->node); 2789 tree_root->node = NULL; 2790 2791 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2792 break; 2793 2794 free_root_pointers(fs_info, 0); 2795 2796 /* 2797 * Don't use the log in recovery mode, it won't be 2798 * valid 2799 */ 2800 btrfs_set_super_log_root(sb, 0); 2801 2802 /* We can't trust the free space cache either */ 2803 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2804 2805 ret = read_backup_root(fs_info, i); 2806 backup_index = ret; 2807 if (ret < 0) 2808 return ret; 2809 } 2810 generation = btrfs_super_generation(sb); 2811 level = btrfs_super_root_level(sb); 2812 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb), 2813 BTRFS_ROOT_TREE_OBJECTID, 2814 generation, level, NULL); 2815 if (IS_ERR(tree_root->node)) { 2816 handle_error = true; 2817 ret = PTR_ERR(tree_root->node); 2818 tree_root->node = NULL; 2819 btrfs_warn(fs_info, "couldn't read tree root"); 2820 continue; 2821 2822 } else if (!extent_buffer_uptodate(tree_root->node)) { 2823 handle_error = true; 2824 ret = -EIO; 2825 btrfs_warn(fs_info, "error while reading tree root"); 2826 continue; 2827 } 2828 2829 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2830 tree_root->commit_root = btrfs_root_node(tree_root); 2831 btrfs_set_root_refs(&tree_root->root_item, 1); 2832 2833 /* 2834 * No need to hold btrfs_root::objectid_mutex since the fs 2835 * hasn't been fully initialised and we are the only user 2836 */ 2837 ret = btrfs_init_root_free_objectid(tree_root); 2838 if (ret < 0) { 2839 handle_error = true; 2840 continue; 2841 } 2842 2843 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2844 2845 ret = btrfs_read_roots(fs_info); 2846 if (ret < 0) { 2847 handle_error = true; 2848 continue; 2849 } 2850 2851 /* All successful */ 2852 fs_info->generation = generation; 2853 fs_info->last_trans_committed = generation; 2854 2855 /* Always begin writing backup roots after the one being used */ 2856 if (backup_index < 0) { 2857 fs_info->backup_root_index = 0; 2858 } else { 2859 fs_info->backup_root_index = backup_index + 1; 2860 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2861 } 2862 break; 2863 } 2864 2865 return ret; 2866 } 2867 2868 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2869 { 2870 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2871 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2872 INIT_LIST_HEAD(&fs_info->trans_list); 2873 INIT_LIST_HEAD(&fs_info->dead_roots); 2874 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2875 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2876 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2877 spin_lock_init(&fs_info->delalloc_root_lock); 2878 spin_lock_init(&fs_info->trans_lock); 2879 spin_lock_init(&fs_info->fs_roots_radix_lock); 2880 spin_lock_init(&fs_info->delayed_iput_lock); 2881 spin_lock_init(&fs_info->defrag_inodes_lock); 2882 spin_lock_init(&fs_info->super_lock); 2883 spin_lock_init(&fs_info->buffer_lock); 2884 spin_lock_init(&fs_info->unused_bgs_lock); 2885 spin_lock_init(&fs_info->treelog_bg_lock); 2886 rwlock_init(&fs_info->tree_mod_log_lock); 2887 mutex_init(&fs_info->unused_bg_unpin_mutex); 2888 mutex_init(&fs_info->reclaim_bgs_lock); 2889 mutex_init(&fs_info->reloc_mutex); 2890 mutex_init(&fs_info->delalloc_root_mutex); 2891 mutex_init(&fs_info->zoned_meta_io_lock); 2892 seqlock_init(&fs_info->profiles_lock); 2893 2894 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2895 INIT_LIST_HEAD(&fs_info->space_info); 2896 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2897 INIT_LIST_HEAD(&fs_info->unused_bgs); 2898 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2899 #ifdef CONFIG_BTRFS_DEBUG 2900 INIT_LIST_HEAD(&fs_info->allocated_roots); 2901 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2902 spin_lock_init(&fs_info->eb_leak_lock); 2903 #endif 2904 extent_map_tree_init(&fs_info->mapping_tree); 2905 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2906 BTRFS_BLOCK_RSV_GLOBAL); 2907 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2908 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2909 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2910 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2911 BTRFS_BLOCK_RSV_DELOPS); 2912 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2913 BTRFS_BLOCK_RSV_DELREFS); 2914 2915 atomic_set(&fs_info->async_delalloc_pages, 0); 2916 atomic_set(&fs_info->defrag_running, 0); 2917 atomic_set(&fs_info->reada_works_cnt, 0); 2918 atomic_set(&fs_info->nr_delayed_iputs, 0); 2919 atomic64_set(&fs_info->tree_mod_seq, 0); 2920 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2921 fs_info->metadata_ratio = 0; 2922 fs_info->defrag_inodes = RB_ROOT; 2923 atomic64_set(&fs_info->free_chunk_space, 0); 2924 fs_info->tree_mod_log = RB_ROOT; 2925 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2926 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2927 /* readahead state */ 2928 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2929 spin_lock_init(&fs_info->reada_lock); 2930 btrfs_init_ref_verify(fs_info); 2931 2932 fs_info->thread_pool_size = min_t(unsigned long, 2933 num_online_cpus() + 2, 8); 2934 2935 INIT_LIST_HEAD(&fs_info->ordered_roots); 2936 spin_lock_init(&fs_info->ordered_root_lock); 2937 2938 btrfs_init_scrub(fs_info); 2939 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2940 fs_info->check_integrity_print_mask = 0; 2941 #endif 2942 btrfs_init_balance(fs_info); 2943 btrfs_init_async_reclaim_work(fs_info); 2944 2945 spin_lock_init(&fs_info->block_group_cache_lock); 2946 fs_info->block_group_cache_tree = RB_ROOT; 2947 fs_info->first_logical_byte = (u64)-1; 2948 2949 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2950 IO_TREE_FS_EXCLUDED_EXTENTS, NULL); 2951 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2952 2953 mutex_init(&fs_info->ordered_operations_mutex); 2954 mutex_init(&fs_info->tree_log_mutex); 2955 mutex_init(&fs_info->chunk_mutex); 2956 mutex_init(&fs_info->transaction_kthread_mutex); 2957 mutex_init(&fs_info->cleaner_mutex); 2958 mutex_init(&fs_info->ro_block_group_mutex); 2959 init_rwsem(&fs_info->commit_root_sem); 2960 init_rwsem(&fs_info->cleanup_work_sem); 2961 init_rwsem(&fs_info->subvol_sem); 2962 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2963 2964 btrfs_init_dev_replace_locks(fs_info); 2965 btrfs_init_qgroup(fs_info); 2966 btrfs_discard_init(fs_info); 2967 2968 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2969 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2970 2971 init_waitqueue_head(&fs_info->transaction_throttle); 2972 init_waitqueue_head(&fs_info->transaction_wait); 2973 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2974 init_waitqueue_head(&fs_info->async_submit_wait); 2975 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2976 2977 /* Usable values until the real ones are cached from the superblock */ 2978 fs_info->nodesize = 4096; 2979 fs_info->sectorsize = 4096; 2980 fs_info->sectorsize_bits = ilog2(4096); 2981 fs_info->stripesize = 4096; 2982 2983 spin_lock_init(&fs_info->swapfile_pins_lock); 2984 fs_info->swapfile_pins = RB_ROOT; 2985 2986 spin_lock_init(&fs_info->send_reloc_lock); 2987 fs_info->send_in_progress = 0; 2988 2989 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 2990 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 2991 } 2992 2993 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2994 { 2995 int ret; 2996 2997 fs_info->sb = sb; 2998 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2999 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 3000 3001 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 3002 if (ret) 3003 return ret; 3004 3005 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 3006 if (ret) 3007 return ret; 3008 3009 fs_info->dirty_metadata_batch = PAGE_SIZE * 3010 (1 + ilog2(nr_cpu_ids)); 3011 3012 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 3013 if (ret) 3014 return ret; 3015 3016 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 3017 GFP_KERNEL); 3018 if (ret) 3019 return ret; 3020 3021 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 3022 GFP_KERNEL); 3023 if (!fs_info->delayed_root) 3024 return -ENOMEM; 3025 btrfs_init_delayed_root(fs_info->delayed_root); 3026 3027 if (sb_rdonly(sb)) 3028 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 3029 3030 return btrfs_alloc_stripe_hash_table(fs_info); 3031 } 3032 3033 static int btrfs_uuid_rescan_kthread(void *data) 3034 { 3035 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 3036 int ret; 3037 3038 /* 3039 * 1st step is to iterate through the existing UUID tree and 3040 * to delete all entries that contain outdated data. 3041 * 2nd step is to add all missing entries to the UUID tree. 3042 */ 3043 ret = btrfs_uuid_tree_iterate(fs_info); 3044 if (ret < 0) { 3045 if (ret != -EINTR) 3046 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 3047 ret); 3048 up(&fs_info->uuid_tree_rescan_sem); 3049 return ret; 3050 } 3051 return btrfs_uuid_scan_kthread(data); 3052 } 3053 3054 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 3055 { 3056 struct task_struct *task; 3057 3058 down(&fs_info->uuid_tree_rescan_sem); 3059 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 3060 if (IS_ERR(task)) { 3061 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3062 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 3063 up(&fs_info->uuid_tree_rescan_sem); 3064 return PTR_ERR(task); 3065 } 3066 3067 return 0; 3068 } 3069 3070 /* 3071 * Some options only have meaning at mount time and shouldn't persist across 3072 * remounts, or be displayed. Clear these at the end of mount and remount 3073 * code paths. 3074 */ 3075 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 3076 { 3077 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3078 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 3079 } 3080 3081 /* 3082 * Mounting logic specific to read-write file systems. Shared by open_ctree 3083 * and btrfs_remount when remounting from read-only to read-write. 3084 */ 3085 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 3086 { 3087 int ret; 3088 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 3089 bool clear_free_space_tree = false; 3090 3091 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3092 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3093 clear_free_space_tree = true; 3094 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3095 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3096 btrfs_warn(fs_info, "free space tree is invalid"); 3097 clear_free_space_tree = true; 3098 } 3099 3100 if (clear_free_space_tree) { 3101 btrfs_info(fs_info, "clearing free space tree"); 3102 ret = btrfs_clear_free_space_tree(fs_info); 3103 if (ret) { 3104 btrfs_warn(fs_info, 3105 "failed to clear free space tree: %d", ret); 3106 goto out; 3107 } 3108 } 3109 3110 /* 3111 * btrfs_find_orphan_roots() is responsible for finding all the dead 3112 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3113 * them into the fs_info->fs_roots_radix tree. This must be done before 3114 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3115 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3116 * item before the root's tree is deleted - this means that if we unmount 3117 * or crash before the deletion completes, on the next mount we will not 3118 * delete what remains of the tree because the orphan item does not 3119 * exists anymore, which is what tells us we have a pending deletion. 3120 */ 3121 ret = btrfs_find_orphan_roots(fs_info); 3122 if (ret) 3123 goto out; 3124 3125 ret = btrfs_cleanup_fs_roots(fs_info); 3126 if (ret) 3127 goto out; 3128 3129 down_read(&fs_info->cleanup_work_sem); 3130 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3131 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3132 up_read(&fs_info->cleanup_work_sem); 3133 goto out; 3134 } 3135 up_read(&fs_info->cleanup_work_sem); 3136 3137 mutex_lock(&fs_info->cleaner_mutex); 3138 ret = btrfs_recover_relocation(fs_info->tree_root); 3139 mutex_unlock(&fs_info->cleaner_mutex); 3140 if (ret < 0) { 3141 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3142 goto out; 3143 } 3144 3145 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3146 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3147 btrfs_info(fs_info, "creating free space tree"); 3148 ret = btrfs_create_free_space_tree(fs_info); 3149 if (ret) { 3150 btrfs_warn(fs_info, 3151 "failed to create free space tree: %d", ret); 3152 goto out; 3153 } 3154 } 3155 3156 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3157 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3158 if (ret) 3159 goto out; 3160 } 3161 3162 ret = btrfs_resume_balance_async(fs_info); 3163 if (ret) 3164 goto out; 3165 3166 ret = btrfs_resume_dev_replace_async(fs_info); 3167 if (ret) { 3168 btrfs_warn(fs_info, "failed to resume dev_replace"); 3169 goto out; 3170 } 3171 3172 btrfs_qgroup_rescan_resume(fs_info); 3173 3174 if (!fs_info->uuid_root) { 3175 btrfs_info(fs_info, "creating UUID tree"); 3176 ret = btrfs_create_uuid_tree(fs_info); 3177 if (ret) { 3178 btrfs_warn(fs_info, 3179 "failed to create the UUID tree %d", ret); 3180 goto out; 3181 } 3182 } 3183 3184 out: 3185 return ret; 3186 } 3187 3188 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3189 char *options) 3190 { 3191 u32 sectorsize; 3192 u32 nodesize; 3193 u32 stripesize; 3194 u64 generation; 3195 u64 features; 3196 u16 csum_type; 3197 struct btrfs_super_block *disk_super; 3198 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3199 struct btrfs_root *tree_root; 3200 struct btrfs_root *chunk_root; 3201 int ret; 3202 int err = -EINVAL; 3203 int level; 3204 3205 ret = init_mount_fs_info(fs_info, sb); 3206 if (ret) { 3207 err = ret; 3208 goto fail; 3209 } 3210 3211 /* These need to be init'ed before we start creating inodes and such. */ 3212 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3213 GFP_KERNEL); 3214 fs_info->tree_root = tree_root; 3215 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3216 GFP_KERNEL); 3217 fs_info->chunk_root = chunk_root; 3218 if (!tree_root || !chunk_root) { 3219 err = -ENOMEM; 3220 goto fail; 3221 } 3222 3223 fs_info->btree_inode = new_inode(sb); 3224 if (!fs_info->btree_inode) { 3225 err = -ENOMEM; 3226 goto fail; 3227 } 3228 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 3229 btrfs_init_btree_inode(fs_info); 3230 3231 invalidate_bdev(fs_devices->latest_bdev); 3232 3233 /* 3234 * Read super block and check the signature bytes only 3235 */ 3236 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev); 3237 if (IS_ERR(disk_super)) { 3238 err = PTR_ERR(disk_super); 3239 goto fail_alloc; 3240 } 3241 3242 /* 3243 * Verify the type first, if that or the checksum value are 3244 * corrupted, we'll find out 3245 */ 3246 csum_type = btrfs_super_csum_type(disk_super); 3247 if (!btrfs_supported_super_csum(csum_type)) { 3248 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3249 csum_type); 3250 err = -EINVAL; 3251 btrfs_release_disk_super(disk_super); 3252 goto fail_alloc; 3253 } 3254 3255 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3256 3257 ret = btrfs_init_csum_hash(fs_info, csum_type); 3258 if (ret) { 3259 err = ret; 3260 btrfs_release_disk_super(disk_super); 3261 goto fail_alloc; 3262 } 3263 3264 /* 3265 * We want to check superblock checksum, the type is stored inside. 3266 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3267 */ 3268 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) { 3269 btrfs_err(fs_info, "superblock checksum mismatch"); 3270 err = -EINVAL; 3271 btrfs_release_disk_super(disk_super); 3272 goto fail_alloc; 3273 } 3274 3275 /* 3276 * super_copy is zeroed at allocation time and we never touch the 3277 * following bytes up to INFO_SIZE, the checksum is calculated from 3278 * the whole block of INFO_SIZE 3279 */ 3280 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3281 btrfs_release_disk_super(disk_super); 3282 3283 disk_super = fs_info->super_copy; 3284 3285 3286 features = btrfs_super_flags(disk_super); 3287 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 3288 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 3289 btrfs_set_super_flags(disk_super, features); 3290 btrfs_info(fs_info, 3291 "found metadata UUID change in progress flag, clearing"); 3292 } 3293 3294 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3295 sizeof(*fs_info->super_for_commit)); 3296 3297 ret = btrfs_validate_mount_super(fs_info); 3298 if (ret) { 3299 btrfs_err(fs_info, "superblock contains fatal errors"); 3300 err = -EINVAL; 3301 goto fail_alloc; 3302 } 3303 3304 if (!btrfs_super_root(disk_super)) 3305 goto fail_alloc; 3306 3307 /* check FS state, whether FS is broken. */ 3308 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3309 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 3310 3311 /* 3312 * In the long term, we'll store the compression type in the super 3313 * block, and it'll be used for per file compression control. 3314 */ 3315 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3316 3317 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3318 if (ret) { 3319 err = ret; 3320 goto fail_alloc; 3321 } 3322 3323 features = btrfs_super_incompat_flags(disk_super) & 3324 ~BTRFS_FEATURE_INCOMPAT_SUPP; 3325 if (features) { 3326 btrfs_err(fs_info, 3327 "cannot mount because of unsupported optional features (%llx)", 3328 features); 3329 err = -EINVAL; 3330 goto fail_alloc; 3331 } 3332 3333 features = btrfs_super_incompat_flags(disk_super); 3334 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3335 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3336 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3337 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3338 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3339 3340 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 3341 btrfs_info(fs_info, "has skinny extents"); 3342 3343 /* 3344 * flag our filesystem as having big metadata blocks if 3345 * they are bigger than the page size 3346 */ 3347 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 3348 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 3349 btrfs_info(fs_info, 3350 "flagging fs with big metadata feature"); 3351 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3352 } 3353 3354 nodesize = btrfs_super_nodesize(disk_super); 3355 sectorsize = btrfs_super_sectorsize(disk_super); 3356 stripesize = sectorsize; 3357 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3358 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3359 3360 /* Cache block sizes */ 3361 fs_info->nodesize = nodesize; 3362 fs_info->sectorsize = sectorsize; 3363 fs_info->sectorsize_bits = ilog2(sectorsize); 3364 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3365 fs_info->stripesize = stripesize; 3366 3367 /* 3368 * mixed block groups end up with duplicate but slightly offset 3369 * extent buffers for the same range. It leads to corruptions 3370 */ 3371 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3372 (sectorsize != nodesize)) { 3373 btrfs_err(fs_info, 3374 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3375 nodesize, sectorsize); 3376 goto fail_alloc; 3377 } 3378 3379 /* 3380 * Needn't use the lock because there is no other task which will 3381 * update the flag. 3382 */ 3383 btrfs_set_super_incompat_flags(disk_super, features); 3384 3385 features = btrfs_super_compat_ro_flags(disk_super) & 3386 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 3387 if (!sb_rdonly(sb) && features) { 3388 btrfs_err(fs_info, 3389 "cannot mount read-write because of unsupported optional features (%llx)", 3390 features); 3391 err = -EINVAL; 3392 goto fail_alloc; 3393 } 3394 3395 /* For 4K sector size support, it's only read-only */ 3396 if (PAGE_SIZE == SZ_64K && sectorsize == SZ_4K) { 3397 if (!sb_rdonly(sb) || btrfs_super_log_root(disk_super)) { 3398 btrfs_err(fs_info, 3399 "subpage sectorsize %u only supported read-only for page size %lu", 3400 sectorsize, PAGE_SIZE); 3401 err = -EINVAL; 3402 goto fail_alloc; 3403 } 3404 } 3405 3406 ret = btrfs_init_workqueues(fs_info, fs_devices); 3407 if (ret) { 3408 err = ret; 3409 goto fail_sb_buffer; 3410 } 3411 3412 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3413 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3414 3415 sb->s_blocksize = sectorsize; 3416 sb->s_blocksize_bits = blksize_bits(sectorsize); 3417 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3418 3419 mutex_lock(&fs_info->chunk_mutex); 3420 ret = btrfs_read_sys_array(fs_info); 3421 mutex_unlock(&fs_info->chunk_mutex); 3422 if (ret) { 3423 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3424 goto fail_sb_buffer; 3425 } 3426 3427 generation = btrfs_super_chunk_root_generation(disk_super); 3428 level = btrfs_super_chunk_root_level(disk_super); 3429 3430 chunk_root->node = read_tree_block(fs_info, 3431 btrfs_super_chunk_root(disk_super), 3432 BTRFS_CHUNK_TREE_OBJECTID, 3433 generation, level, NULL); 3434 if (IS_ERR(chunk_root->node) || 3435 !extent_buffer_uptodate(chunk_root->node)) { 3436 btrfs_err(fs_info, "failed to read chunk root"); 3437 if (!IS_ERR(chunk_root->node)) 3438 free_extent_buffer(chunk_root->node); 3439 chunk_root->node = NULL; 3440 goto fail_tree_roots; 3441 } 3442 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 3443 chunk_root->commit_root = btrfs_root_node(chunk_root); 3444 3445 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3446 offsetof(struct btrfs_header, chunk_tree_uuid), 3447 BTRFS_UUID_SIZE); 3448 3449 ret = btrfs_read_chunk_tree(fs_info); 3450 if (ret) { 3451 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3452 goto fail_tree_roots; 3453 } 3454 3455 /* 3456 * At this point we know all the devices that make this filesystem, 3457 * including the seed devices but we don't know yet if the replace 3458 * target is required. So free devices that are not part of this 3459 * filesystem but skip the replace target device which is checked 3460 * below in btrfs_init_dev_replace(). 3461 */ 3462 btrfs_free_extra_devids(fs_devices); 3463 if (!fs_devices->latest_bdev) { 3464 btrfs_err(fs_info, "failed to read devices"); 3465 goto fail_tree_roots; 3466 } 3467 3468 ret = init_tree_roots(fs_info); 3469 if (ret) 3470 goto fail_tree_roots; 3471 3472 /* 3473 * Get zone type information of zoned block devices. This will also 3474 * handle emulation of a zoned filesystem if a regular device has the 3475 * zoned incompat feature flag set. 3476 */ 3477 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3478 if (ret) { 3479 btrfs_err(fs_info, 3480 "zoned: failed to read device zone info: %d", 3481 ret); 3482 goto fail_block_groups; 3483 } 3484 3485 /* 3486 * If we have a uuid root and we're not being told to rescan we need to 3487 * check the generation here so we can set the 3488 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3489 * transaction during a balance or the log replay without updating the 3490 * uuid generation, and then if we crash we would rescan the uuid tree, 3491 * even though it was perfectly fine. 3492 */ 3493 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3494 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3495 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3496 3497 ret = btrfs_verify_dev_extents(fs_info); 3498 if (ret) { 3499 btrfs_err(fs_info, 3500 "failed to verify dev extents against chunks: %d", 3501 ret); 3502 goto fail_block_groups; 3503 } 3504 ret = btrfs_recover_balance(fs_info); 3505 if (ret) { 3506 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3507 goto fail_block_groups; 3508 } 3509 3510 ret = btrfs_init_dev_stats(fs_info); 3511 if (ret) { 3512 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3513 goto fail_block_groups; 3514 } 3515 3516 ret = btrfs_init_dev_replace(fs_info); 3517 if (ret) { 3518 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3519 goto fail_block_groups; 3520 } 3521 3522 ret = btrfs_check_zoned_mode(fs_info); 3523 if (ret) { 3524 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3525 ret); 3526 goto fail_block_groups; 3527 } 3528 3529 ret = btrfs_sysfs_add_fsid(fs_devices); 3530 if (ret) { 3531 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3532 ret); 3533 goto fail_block_groups; 3534 } 3535 3536 ret = btrfs_sysfs_add_mounted(fs_info); 3537 if (ret) { 3538 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3539 goto fail_fsdev_sysfs; 3540 } 3541 3542 ret = btrfs_init_space_info(fs_info); 3543 if (ret) { 3544 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3545 goto fail_sysfs; 3546 } 3547 3548 ret = btrfs_read_block_groups(fs_info); 3549 if (ret) { 3550 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3551 goto fail_sysfs; 3552 } 3553 3554 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 3555 btrfs_warn(fs_info, 3556 "writable mount is not allowed due to too many missing devices"); 3557 goto fail_sysfs; 3558 } 3559 3560 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3561 "btrfs-cleaner"); 3562 if (IS_ERR(fs_info->cleaner_kthread)) 3563 goto fail_sysfs; 3564 3565 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3566 tree_root, 3567 "btrfs-transaction"); 3568 if (IS_ERR(fs_info->transaction_kthread)) 3569 goto fail_cleaner; 3570 3571 if (!btrfs_test_opt(fs_info, NOSSD) && 3572 !fs_info->fs_devices->rotating) { 3573 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3574 } 3575 3576 /* 3577 * Mount does not set all options immediately, we can do it now and do 3578 * not have to wait for transaction commit 3579 */ 3580 btrfs_apply_pending_changes(fs_info); 3581 3582 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3583 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3584 ret = btrfsic_mount(fs_info, fs_devices, 3585 btrfs_test_opt(fs_info, 3586 CHECK_INTEGRITY_DATA) ? 1 : 0, 3587 fs_info->check_integrity_print_mask); 3588 if (ret) 3589 btrfs_warn(fs_info, 3590 "failed to initialize integrity check module: %d", 3591 ret); 3592 } 3593 #endif 3594 ret = btrfs_read_qgroup_config(fs_info); 3595 if (ret) 3596 goto fail_trans_kthread; 3597 3598 if (btrfs_build_ref_tree(fs_info)) 3599 btrfs_err(fs_info, "couldn't build ref tree"); 3600 3601 /* do not make disk changes in broken FS or nologreplay is given */ 3602 if (btrfs_super_log_root(disk_super) != 0 && 3603 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3604 btrfs_info(fs_info, "start tree-log replay"); 3605 ret = btrfs_replay_log(fs_info, fs_devices); 3606 if (ret) { 3607 err = ret; 3608 goto fail_qgroup; 3609 } 3610 } 3611 3612 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3613 if (IS_ERR(fs_info->fs_root)) { 3614 err = PTR_ERR(fs_info->fs_root); 3615 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3616 fs_info->fs_root = NULL; 3617 goto fail_qgroup; 3618 } 3619 3620 if (sb_rdonly(sb)) 3621 goto clear_oneshot; 3622 3623 ret = btrfs_start_pre_rw_mount(fs_info); 3624 if (ret) { 3625 close_ctree(fs_info); 3626 return ret; 3627 } 3628 btrfs_discard_resume(fs_info); 3629 3630 if (fs_info->uuid_root && 3631 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3632 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3633 btrfs_info(fs_info, "checking UUID tree"); 3634 ret = btrfs_check_uuid_tree(fs_info); 3635 if (ret) { 3636 btrfs_warn(fs_info, 3637 "failed to check the UUID tree: %d", ret); 3638 close_ctree(fs_info); 3639 return ret; 3640 } 3641 } 3642 3643 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3644 3645 clear_oneshot: 3646 btrfs_clear_oneshot_options(fs_info); 3647 return 0; 3648 3649 fail_qgroup: 3650 btrfs_free_qgroup_config(fs_info); 3651 fail_trans_kthread: 3652 kthread_stop(fs_info->transaction_kthread); 3653 btrfs_cleanup_transaction(fs_info); 3654 btrfs_free_fs_roots(fs_info); 3655 fail_cleaner: 3656 kthread_stop(fs_info->cleaner_kthread); 3657 3658 /* 3659 * make sure we're done with the btree inode before we stop our 3660 * kthreads 3661 */ 3662 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3663 3664 fail_sysfs: 3665 btrfs_sysfs_remove_mounted(fs_info); 3666 3667 fail_fsdev_sysfs: 3668 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3669 3670 fail_block_groups: 3671 btrfs_put_block_group_cache(fs_info); 3672 3673 fail_tree_roots: 3674 if (fs_info->data_reloc_root) 3675 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3676 free_root_pointers(fs_info, true); 3677 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3678 3679 fail_sb_buffer: 3680 btrfs_stop_all_workers(fs_info); 3681 btrfs_free_block_groups(fs_info); 3682 fail_alloc: 3683 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3684 3685 iput(fs_info->btree_inode); 3686 fail: 3687 btrfs_close_devices(fs_info->fs_devices); 3688 return err; 3689 } 3690 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3691 3692 static void btrfs_end_super_write(struct bio *bio) 3693 { 3694 struct btrfs_device *device = bio->bi_private; 3695 struct bio_vec *bvec; 3696 struct bvec_iter_all iter_all; 3697 struct page *page; 3698 3699 bio_for_each_segment_all(bvec, bio, iter_all) { 3700 page = bvec->bv_page; 3701 3702 if (bio->bi_status) { 3703 btrfs_warn_rl_in_rcu(device->fs_info, 3704 "lost page write due to IO error on %s (%d)", 3705 rcu_str_deref(device->name), 3706 blk_status_to_errno(bio->bi_status)); 3707 ClearPageUptodate(page); 3708 SetPageError(page); 3709 btrfs_dev_stat_inc_and_print(device, 3710 BTRFS_DEV_STAT_WRITE_ERRS); 3711 } else { 3712 SetPageUptodate(page); 3713 } 3714 3715 put_page(page); 3716 unlock_page(page); 3717 } 3718 3719 bio_put(bio); 3720 } 3721 3722 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3723 int copy_num) 3724 { 3725 struct btrfs_super_block *super; 3726 struct page *page; 3727 u64 bytenr, bytenr_orig; 3728 struct address_space *mapping = bdev->bd_inode->i_mapping; 3729 int ret; 3730 3731 bytenr_orig = btrfs_sb_offset(copy_num); 3732 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3733 if (ret == -ENOENT) 3734 return ERR_PTR(-EINVAL); 3735 else if (ret) 3736 return ERR_PTR(ret); 3737 3738 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3739 return ERR_PTR(-EINVAL); 3740 3741 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3742 if (IS_ERR(page)) 3743 return ERR_CAST(page); 3744 3745 super = page_address(page); 3746 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3747 btrfs_release_disk_super(super); 3748 return ERR_PTR(-ENODATA); 3749 } 3750 3751 if (btrfs_super_bytenr(super) != bytenr_orig) { 3752 btrfs_release_disk_super(super); 3753 return ERR_PTR(-EINVAL); 3754 } 3755 3756 return super; 3757 } 3758 3759 3760 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3761 { 3762 struct btrfs_super_block *super, *latest = NULL; 3763 int i; 3764 u64 transid = 0; 3765 3766 /* we would like to check all the supers, but that would make 3767 * a btrfs mount succeed after a mkfs from a different FS. 3768 * So, we need to add a special mount option to scan for 3769 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3770 */ 3771 for (i = 0; i < 1; i++) { 3772 super = btrfs_read_dev_one_super(bdev, i); 3773 if (IS_ERR(super)) 3774 continue; 3775 3776 if (!latest || btrfs_super_generation(super) > transid) { 3777 if (latest) 3778 btrfs_release_disk_super(super); 3779 3780 latest = super; 3781 transid = btrfs_super_generation(super); 3782 } 3783 } 3784 3785 return super; 3786 } 3787 3788 /* 3789 * Write superblock @sb to the @device. Do not wait for completion, all the 3790 * pages we use for writing are locked. 3791 * 3792 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3793 * the expected device size at commit time. Note that max_mirrors must be 3794 * same for write and wait phases. 3795 * 3796 * Return number of errors when page is not found or submission fails. 3797 */ 3798 static int write_dev_supers(struct btrfs_device *device, 3799 struct btrfs_super_block *sb, int max_mirrors) 3800 { 3801 struct btrfs_fs_info *fs_info = device->fs_info; 3802 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3803 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3804 int i; 3805 int errors = 0; 3806 int ret; 3807 u64 bytenr, bytenr_orig; 3808 3809 if (max_mirrors == 0) 3810 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3811 3812 shash->tfm = fs_info->csum_shash; 3813 3814 for (i = 0; i < max_mirrors; i++) { 3815 struct page *page; 3816 struct bio *bio; 3817 struct btrfs_super_block *disk_super; 3818 3819 bytenr_orig = btrfs_sb_offset(i); 3820 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3821 if (ret == -ENOENT) { 3822 continue; 3823 } else if (ret < 0) { 3824 btrfs_err(device->fs_info, 3825 "couldn't get super block location for mirror %d", 3826 i); 3827 errors++; 3828 continue; 3829 } 3830 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3831 device->commit_total_bytes) 3832 break; 3833 3834 btrfs_set_super_bytenr(sb, bytenr_orig); 3835 3836 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3837 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3838 sb->csum); 3839 3840 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3841 GFP_NOFS); 3842 if (!page) { 3843 btrfs_err(device->fs_info, 3844 "couldn't get super block page for bytenr %llu", 3845 bytenr); 3846 errors++; 3847 continue; 3848 } 3849 3850 /* Bump the refcount for wait_dev_supers() */ 3851 get_page(page); 3852 3853 disk_super = page_address(page); 3854 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3855 3856 /* 3857 * Directly use bios here instead of relying on the page cache 3858 * to do I/O, so we don't lose the ability to do integrity 3859 * checking. 3860 */ 3861 bio = bio_alloc(GFP_NOFS, 1); 3862 bio_set_dev(bio, device->bdev); 3863 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3864 bio->bi_private = device; 3865 bio->bi_end_io = btrfs_end_super_write; 3866 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 3867 offset_in_page(bytenr)); 3868 3869 /* 3870 * We FUA only the first super block. The others we allow to 3871 * go down lazy and there's a short window where the on-disk 3872 * copies might still contain the older version. 3873 */ 3874 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO; 3875 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3876 bio->bi_opf |= REQ_FUA; 3877 3878 btrfsic_submit_bio(bio); 3879 btrfs_advance_sb_log(device, i); 3880 } 3881 return errors < i ? 0 : -1; 3882 } 3883 3884 /* 3885 * Wait for write completion of superblocks done by write_dev_supers, 3886 * @max_mirrors same for write and wait phases. 3887 * 3888 * Return number of errors when page is not found or not marked up to 3889 * date. 3890 */ 3891 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3892 { 3893 int i; 3894 int errors = 0; 3895 bool primary_failed = false; 3896 int ret; 3897 u64 bytenr; 3898 3899 if (max_mirrors == 0) 3900 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3901 3902 for (i = 0; i < max_mirrors; i++) { 3903 struct page *page; 3904 3905 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 3906 if (ret == -ENOENT) { 3907 break; 3908 } else if (ret < 0) { 3909 errors++; 3910 if (i == 0) 3911 primary_failed = true; 3912 continue; 3913 } 3914 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3915 device->commit_total_bytes) 3916 break; 3917 3918 page = find_get_page(device->bdev->bd_inode->i_mapping, 3919 bytenr >> PAGE_SHIFT); 3920 if (!page) { 3921 errors++; 3922 if (i == 0) 3923 primary_failed = true; 3924 continue; 3925 } 3926 /* Page is submitted locked and unlocked once the IO completes */ 3927 wait_on_page_locked(page); 3928 if (PageError(page)) { 3929 errors++; 3930 if (i == 0) 3931 primary_failed = true; 3932 } 3933 3934 /* Drop our reference */ 3935 put_page(page); 3936 3937 /* Drop the reference from the writing run */ 3938 put_page(page); 3939 } 3940 3941 /* log error, force error return */ 3942 if (primary_failed) { 3943 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3944 device->devid); 3945 return -1; 3946 } 3947 3948 return errors < i ? 0 : -1; 3949 } 3950 3951 /* 3952 * endio for the write_dev_flush, this will wake anyone waiting 3953 * for the barrier when it is done 3954 */ 3955 static void btrfs_end_empty_barrier(struct bio *bio) 3956 { 3957 complete(bio->bi_private); 3958 } 3959 3960 /* 3961 * Submit a flush request to the device if it supports it. Error handling is 3962 * done in the waiting counterpart. 3963 */ 3964 static void write_dev_flush(struct btrfs_device *device) 3965 { 3966 struct request_queue *q = bdev_get_queue(device->bdev); 3967 struct bio *bio = device->flush_bio; 3968 3969 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3970 return; 3971 3972 bio_reset(bio); 3973 bio->bi_end_io = btrfs_end_empty_barrier; 3974 bio_set_dev(bio, device->bdev); 3975 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3976 init_completion(&device->flush_wait); 3977 bio->bi_private = &device->flush_wait; 3978 3979 btrfsic_submit_bio(bio); 3980 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3981 } 3982 3983 /* 3984 * If the flush bio has been submitted by write_dev_flush, wait for it. 3985 */ 3986 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3987 { 3988 struct bio *bio = device->flush_bio; 3989 3990 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3991 return BLK_STS_OK; 3992 3993 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3994 wait_for_completion_io(&device->flush_wait); 3995 3996 return bio->bi_status; 3997 } 3998 3999 static int check_barrier_error(struct btrfs_fs_info *fs_info) 4000 { 4001 if (!btrfs_check_rw_degradable(fs_info, NULL)) 4002 return -EIO; 4003 return 0; 4004 } 4005 4006 /* 4007 * send an empty flush down to each device in parallel, 4008 * then wait for them 4009 */ 4010 static int barrier_all_devices(struct btrfs_fs_info *info) 4011 { 4012 struct list_head *head; 4013 struct btrfs_device *dev; 4014 int errors_wait = 0; 4015 blk_status_t ret; 4016 4017 lockdep_assert_held(&info->fs_devices->device_list_mutex); 4018 /* send down all the barriers */ 4019 head = &info->fs_devices->devices; 4020 list_for_each_entry(dev, head, dev_list) { 4021 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4022 continue; 4023 if (!dev->bdev) 4024 continue; 4025 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4026 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4027 continue; 4028 4029 write_dev_flush(dev); 4030 dev->last_flush_error = BLK_STS_OK; 4031 } 4032 4033 /* wait for all the barriers */ 4034 list_for_each_entry(dev, head, dev_list) { 4035 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4036 continue; 4037 if (!dev->bdev) { 4038 errors_wait++; 4039 continue; 4040 } 4041 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4042 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4043 continue; 4044 4045 ret = wait_dev_flush(dev); 4046 if (ret) { 4047 dev->last_flush_error = ret; 4048 btrfs_dev_stat_inc_and_print(dev, 4049 BTRFS_DEV_STAT_FLUSH_ERRS); 4050 errors_wait++; 4051 } 4052 } 4053 4054 if (errors_wait) { 4055 /* 4056 * At some point we need the status of all disks 4057 * to arrive at the volume status. So error checking 4058 * is being pushed to a separate loop. 4059 */ 4060 return check_barrier_error(info); 4061 } 4062 return 0; 4063 } 4064 4065 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 4066 { 4067 int raid_type; 4068 int min_tolerated = INT_MAX; 4069 4070 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 4071 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 4072 min_tolerated = min_t(int, min_tolerated, 4073 btrfs_raid_array[BTRFS_RAID_SINGLE]. 4074 tolerated_failures); 4075 4076 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4077 if (raid_type == BTRFS_RAID_SINGLE) 4078 continue; 4079 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 4080 continue; 4081 min_tolerated = min_t(int, min_tolerated, 4082 btrfs_raid_array[raid_type]. 4083 tolerated_failures); 4084 } 4085 4086 if (min_tolerated == INT_MAX) { 4087 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4088 min_tolerated = 0; 4089 } 4090 4091 return min_tolerated; 4092 } 4093 4094 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4095 { 4096 struct list_head *head; 4097 struct btrfs_device *dev; 4098 struct btrfs_super_block *sb; 4099 struct btrfs_dev_item *dev_item; 4100 int ret; 4101 int do_barriers; 4102 int max_errors; 4103 int total_errors = 0; 4104 u64 flags; 4105 4106 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4107 4108 /* 4109 * max_mirrors == 0 indicates we're from commit_transaction, 4110 * not from fsync where the tree roots in fs_info have not 4111 * been consistent on disk. 4112 */ 4113 if (max_mirrors == 0) 4114 backup_super_roots(fs_info); 4115 4116 sb = fs_info->super_for_commit; 4117 dev_item = &sb->dev_item; 4118 4119 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4120 head = &fs_info->fs_devices->devices; 4121 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4122 4123 if (do_barriers) { 4124 ret = barrier_all_devices(fs_info); 4125 if (ret) { 4126 mutex_unlock( 4127 &fs_info->fs_devices->device_list_mutex); 4128 btrfs_handle_fs_error(fs_info, ret, 4129 "errors while submitting device barriers."); 4130 return ret; 4131 } 4132 } 4133 4134 list_for_each_entry(dev, head, dev_list) { 4135 if (!dev->bdev) { 4136 total_errors++; 4137 continue; 4138 } 4139 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4140 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4141 continue; 4142 4143 btrfs_set_stack_device_generation(dev_item, 0); 4144 btrfs_set_stack_device_type(dev_item, dev->type); 4145 btrfs_set_stack_device_id(dev_item, dev->devid); 4146 btrfs_set_stack_device_total_bytes(dev_item, 4147 dev->commit_total_bytes); 4148 btrfs_set_stack_device_bytes_used(dev_item, 4149 dev->commit_bytes_used); 4150 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4151 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4152 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4153 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4154 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4155 BTRFS_FSID_SIZE); 4156 4157 flags = btrfs_super_flags(sb); 4158 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4159 4160 ret = btrfs_validate_write_super(fs_info, sb); 4161 if (ret < 0) { 4162 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4163 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4164 "unexpected superblock corruption detected"); 4165 return -EUCLEAN; 4166 } 4167 4168 ret = write_dev_supers(dev, sb, max_mirrors); 4169 if (ret) 4170 total_errors++; 4171 } 4172 if (total_errors > max_errors) { 4173 btrfs_err(fs_info, "%d errors while writing supers", 4174 total_errors); 4175 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4176 4177 /* FUA is masked off if unsupported and can't be the reason */ 4178 btrfs_handle_fs_error(fs_info, -EIO, 4179 "%d errors while writing supers", 4180 total_errors); 4181 return -EIO; 4182 } 4183 4184 total_errors = 0; 4185 list_for_each_entry(dev, head, dev_list) { 4186 if (!dev->bdev) 4187 continue; 4188 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4189 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4190 continue; 4191 4192 ret = wait_dev_supers(dev, max_mirrors); 4193 if (ret) 4194 total_errors++; 4195 } 4196 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4197 if (total_errors > max_errors) { 4198 btrfs_handle_fs_error(fs_info, -EIO, 4199 "%d errors while writing supers", 4200 total_errors); 4201 return -EIO; 4202 } 4203 return 0; 4204 } 4205 4206 /* Drop a fs root from the radix tree and free it. */ 4207 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4208 struct btrfs_root *root) 4209 { 4210 bool drop_ref = false; 4211 4212 spin_lock(&fs_info->fs_roots_radix_lock); 4213 radix_tree_delete(&fs_info->fs_roots_radix, 4214 (unsigned long)root->root_key.objectid); 4215 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4216 drop_ref = true; 4217 spin_unlock(&fs_info->fs_roots_radix_lock); 4218 4219 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 4220 ASSERT(root->log_root == NULL); 4221 if (root->reloc_root) { 4222 btrfs_put_root(root->reloc_root); 4223 root->reloc_root = NULL; 4224 } 4225 } 4226 4227 if (drop_ref) 4228 btrfs_put_root(root); 4229 } 4230 4231 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 4232 { 4233 u64 root_objectid = 0; 4234 struct btrfs_root *gang[8]; 4235 int i = 0; 4236 int err = 0; 4237 unsigned int ret = 0; 4238 4239 while (1) { 4240 spin_lock(&fs_info->fs_roots_radix_lock); 4241 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4242 (void **)gang, root_objectid, 4243 ARRAY_SIZE(gang)); 4244 if (!ret) { 4245 spin_unlock(&fs_info->fs_roots_radix_lock); 4246 break; 4247 } 4248 root_objectid = gang[ret - 1]->root_key.objectid + 1; 4249 4250 for (i = 0; i < ret; i++) { 4251 /* Avoid to grab roots in dead_roots */ 4252 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 4253 gang[i] = NULL; 4254 continue; 4255 } 4256 /* grab all the search result for later use */ 4257 gang[i] = btrfs_grab_root(gang[i]); 4258 } 4259 spin_unlock(&fs_info->fs_roots_radix_lock); 4260 4261 for (i = 0; i < ret; i++) { 4262 if (!gang[i]) 4263 continue; 4264 root_objectid = gang[i]->root_key.objectid; 4265 err = btrfs_orphan_cleanup(gang[i]); 4266 if (err) 4267 break; 4268 btrfs_put_root(gang[i]); 4269 } 4270 root_objectid++; 4271 } 4272 4273 /* release the uncleaned roots due to error */ 4274 for (; i < ret; i++) { 4275 if (gang[i]) 4276 btrfs_put_root(gang[i]); 4277 } 4278 return err; 4279 } 4280 4281 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4282 { 4283 struct btrfs_root *root = fs_info->tree_root; 4284 struct btrfs_trans_handle *trans; 4285 4286 mutex_lock(&fs_info->cleaner_mutex); 4287 btrfs_run_delayed_iputs(fs_info); 4288 mutex_unlock(&fs_info->cleaner_mutex); 4289 wake_up_process(fs_info->cleaner_kthread); 4290 4291 /* wait until ongoing cleanup work done */ 4292 down_write(&fs_info->cleanup_work_sem); 4293 up_write(&fs_info->cleanup_work_sem); 4294 4295 trans = btrfs_join_transaction(root); 4296 if (IS_ERR(trans)) 4297 return PTR_ERR(trans); 4298 return btrfs_commit_transaction(trans); 4299 } 4300 4301 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4302 { 4303 int ret; 4304 4305 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4306 /* 4307 * We don't want the cleaner to start new transactions, add more delayed 4308 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4309 * because that frees the task_struct, and the transaction kthread might 4310 * still try to wake up the cleaner. 4311 */ 4312 kthread_park(fs_info->cleaner_kthread); 4313 4314 /* wait for the qgroup rescan worker to stop */ 4315 btrfs_qgroup_wait_for_completion(fs_info, false); 4316 4317 /* wait for the uuid_scan task to finish */ 4318 down(&fs_info->uuid_tree_rescan_sem); 4319 /* avoid complains from lockdep et al., set sem back to initial state */ 4320 up(&fs_info->uuid_tree_rescan_sem); 4321 4322 /* pause restriper - we want to resume on mount */ 4323 btrfs_pause_balance(fs_info); 4324 4325 btrfs_dev_replace_suspend_for_unmount(fs_info); 4326 4327 btrfs_scrub_cancel(fs_info); 4328 4329 /* wait for any defraggers to finish */ 4330 wait_event(fs_info->transaction_wait, 4331 (atomic_read(&fs_info->defrag_running) == 0)); 4332 4333 /* clear out the rbtree of defraggable inodes */ 4334 btrfs_cleanup_defrag_inodes(fs_info); 4335 4336 cancel_work_sync(&fs_info->async_reclaim_work); 4337 cancel_work_sync(&fs_info->async_data_reclaim_work); 4338 cancel_work_sync(&fs_info->preempt_reclaim_work); 4339 4340 cancel_work_sync(&fs_info->reclaim_bgs_work); 4341 4342 /* Cancel or finish ongoing discard work */ 4343 btrfs_discard_cleanup(fs_info); 4344 4345 if (!sb_rdonly(fs_info->sb)) { 4346 /* 4347 * The cleaner kthread is stopped, so do one final pass over 4348 * unused block groups. 4349 */ 4350 btrfs_delete_unused_bgs(fs_info); 4351 4352 /* 4353 * There might be existing delayed inode workers still running 4354 * and holding an empty delayed inode item. We must wait for 4355 * them to complete first because they can create a transaction. 4356 * This happens when someone calls btrfs_balance_delayed_items() 4357 * and then a transaction commit runs the same delayed nodes 4358 * before any delayed worker has done something with the nodes. 4359 * We must wait for any worker here and not at transaction 4360 * commit time since that could cause a deadlock. 4361 * This is a very rare case. 4362 */ 4363 btrfs_flush_workqueue(fs_info->delayed_workers); 4364 4365 ret = btrfs_commit_super(fs_info); 4366 if (ret) 4367 btrfs_err(fs_info, "commit super ret %d", ret); 4368 } 4369 4370 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 4371 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 4372 btrfs_error_commit_super(fs_info); 4373 4374 kthread_stop(fs_info->transaction_kthread); 4375 kthread_stop(fs_info->cleaner_kthread); 4376 4377 ASSERT(list_empty(&fs_info->delayed_iputs)); 4378 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4379 4380 if (btrfs_check_quota_leak(fs_info)) { 4381 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4382 btrfs_err(fs_info, "qgroup reserved space leaked"); 4383 } 4384 4385 btrfs_free_qgroup_config(fs_info); 4386 ASSERT(list_empty(&fs_info->delalloc_roots)); 4387 4388 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4389 btrfs_info(fs_info, "at unmount delalloc count %lld", 4390 percpu_counter_sum(&fs_info->delalloc_bytes)); 4391 } 4392 4393 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4394 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4395 percpu_counter_sum(&fs_info->ordered_bytes)); 4396 4397 btrfs_sysfs_remove_mounted(fs_info); 4398 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4399 4400 btrfs_put_block_group_cache(fs_info); 4401 4402 /* 4403 * we must make sure there is not any read request to 4404 * submit after we stopping all workers. 4405 */ 4406 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4407 btrfs_stop_all_workers(fs_info); 4408 4409 /* We shouldn't have any transaction open at this point */ 4410 ASSERT(list_empty(&fs_info->trans_list)); 4411 4412 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4413 free_root_pointers(fs_info, true); 4414 btrfs_free_fs_roots(fs_info); 4415 4416 /* 4417 * We must free the block groups after dropping the fs_roots as we could 4418 * have had an IO error and have left over tree log blocks that aren't 4419 * cleaned up until the fs roots are freed. This makes the block group 4420 * accounting appear to be wrong because there's pending reserved bytes, 4421 * so make sure we do the block group cleanup afterwards. 4422 */ 4423 btrfs_free_block_groups(fs_info); 4424 4425 iput(fs_info->btree_inode); 4426 4427 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4428 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4429 btrfsic_unmount(fs_info->fs_devices); 4430 #endif 4431 4432 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4433 btrfs_close_devices(fs_info->fs_devices); 4434 } 4435 4436 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4437 int atomic) 4438 { 4439 int ret; 4440 struct inode *btree_inode = buf->pages[0]->mapping->host; 4441 4442 ret = extent_buffer_uptodate(buf); 4443 if (!ret) 4444 return ret; 4445 4446 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4447 parent_transid, atomic); 4448 if (ret == -EAGAIN) 4449 return ret; 4450 return !ret; 4451 } 4452 4453 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4454 { 4455 struct btrfs_fs_info *fs_info = buf->fs_info; 4456 u64 transid = btrfs_header_generation(buf); 4457 int was_dirty; 4458 4459 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4460 /* 4461 * This is a fast path so only do this check if we have sanity tests 4462 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4463 * outside of the sanity tests. 4464 */ 4465 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4466 return; 4467 #endif 4468 btrfs_assert_tree_locked(buf); 4469 if (transid != fs_info->generation) 4470 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4471 buf->start, transid, fs_info->generation); 4472 was_dirty = set_extent_buffer_dirty(buf); 4473 if (!was_dirty) 4474 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4475 buf->len, 4476 fs_info->dirty_metadata_batch); 4477 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4478 /* 4479 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4480 * but item data not updated. 4481 * So here we should only check item pointers, not item data. 4482 */ 4483 if (btrfs_header_level(buf) == 0 && 4484 btrfs_check_leaf_relaxed(buf)) { 4485 btrfs_print_leaf(buf); 4486 ASSERT(0); 4487 } 4488 #endif 4489 } 4490 4491 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4492 int flush_delayed) 4493 { 4494 /* 4495 * looks as though older kernels can get into trouble with 4496 * this code, they end up stuck in balance_dirty_pages forever 4497 */ 4498 int ret; 4499 4500 if (current->flags & PF_MEMALLOC) 4501 return; 4502 4503 if (flush_delayed) 4504 btrfs_balance_delayed_items(fs_info); 4505 4506 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4507 BTRFS_DIRTY_METADATA_THRESH, 4508 fs_info->dirty_metadata_batch); 4509 if (ret > 0) { 4510 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4511 } 4512 } 4513 4514 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4515 { 4516 __btrfs_btree_balance_dirty(fs_info, 1); 4517 } 4518 4519 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4520 { 4521 __btrfs_btree_balance_dirty(fs_info, 0); 4522 } 4523 4524 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4525 struct btrfs_key *first_key) 4526 { 4527 return btree_read_extent_buffer_pages(buf, parent_transid, 4528 level, first_key); 4529 } 4530 4531 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4532 { 4533 /* cleanup FS via transaction */ 4534 btrfs_cleanup_transaction(fs_info); 4535 4536 mutex_lock(&fs_info->cleaner_mutex); 4537 btrfs_run_delayed_iputs(fs_info); 4538 mutex_unlock(&fs_info->cleaner_mutex); 4539 4540 down_write(&fs_info->cleanup_work_sem); 4541 up_write(&fs_info->cleanup_work_sem); 4542 } 4543 4544 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4545 { 4546 struct btrfs_root *gang[8]; 4547 u64 root_objectid = 0; 4548 int ret; 4549 4550 spin_lock(&fs_info->fs_roots_radix_lock); 4551 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4552 (void **)gang, root_objectid, 4553 ARRAY_SIZE(gang))) != 0) { 4554 int i; 4555 4556 for (i = 0; i < ret; i++) 4557 gang[i] = btrfs_grab_root(gang[i]); 4558 spin_unlock(&fs_info->fs_roots_radix_lock); 4559 4560 for (i = 0; i < ret; i++) { 4561 if (!gang[i]) 4562 continue; 4563 root_objectid = gang[i]->root_key.objectid; 4564 btrfs_free_log(NULL, gang[i]); 4565 btrfs_put_root(gang[i]); 4566 } 4567 root_objectid++; 4568 spin_lock(&fs_info->fs_roots_radix_lock); 4569 } 4570 spin_unlock(&fs_info->fs_roots_radix_lock); 4571 btrfs_free_log_root_tree(NULL, fs_info); 4572 } 4573 4574 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4575 { 4576 struct btrfs_ordered_extent *ordered; 4577 4578 spin_lock(&root->ordered_extent_lock); 4579 /* 4580 * This will just short circuit the ordered completion stuff which will 4581 * make sure the ordered extent gets properly cleaned up. 4582 */ 4583 list_for_each_entry(ordered, &root->ordered_extents, 4584 root_extent_list) 4585 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4586 spin_unlock(&root->ordered_extent_lock); 4587 } 4588 4589 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4590 { 4591 struct btrfs_root *root; 4592 struct list_head splice; 4593 4594 INIT_LIST_HEAD(&splice); 4595 4596 spin_lock(&fs_info->ordered_root_lock); 4597 list_splice_init(&fs_info->ordered_roots, &splice); 4598 while (!list_empty(&splice)) { 4599 root = list_first_entry(&splice, struct btrfs_root, 4600 ordered_root); 4601 list_move_tail(&root->ordered_root, 4602 &fs_info->ordered_roots); 4603 4604 spin_unlock(&fs_info->ordered_root_lock); 4605 btrfs_destroy_ordered_extents(root); 4606 4607 cond_resched(); 4608 spin_lock(&fs_info->ordered_root_lock); 4609 } 4610 spin_unlock(&fs_info->ordered_root_lock); 4611 4612 /* 4613 * We need this here because if we've been flipped read-only we won't 4614 * get sync() from the umount, so we need to make sure any ordered 4615 * extents that haven't had their dirty pages IO start writeout yet 4616 * actually get run and error out properly. 4617 */ 4618 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4619 } 4620 4621 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4622 struct btrfs_fs_info *fs_info) 4623 { 4624 struct rb_node *node; 4625 struct btrfs_delayed_ref_root *delayed_refs; 4626 struct btrfs_delayed_ref_node *ref; 4627 int ret = 0; 4628 4629 delayed_refs = &trans->delayed_refs; 4630 4631 spin_lock(&delayed_refs->lock); 4632 if (atomic_read(&delayed_refs->num_entries) == 0) { 4633 spin_unlock(&delayed_refs->lock); 4634 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4635 return ret; 4636 } 4637 4638 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4639 struct btrfs_delayed_ref_head *head; 4640 struct rb_node *n; 4641 bool pin_bytes = false; 4642 4643 head = rb_entry(node, struct btrfs_delayed_ref_head, 4644 href_node); 4645 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4646 continue; 4647 4648 spin_lock(&head->lock); 4649 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4650 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4651 ref_node); 4652 ref->in_tree = 0; 4653 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4654 RB_CLEAR_NODE(&ref->ref_node); 4655 if (!list_empty(&ref->add_list)) 4656 list_del(&ref->add_list); 4657 atomic_dec(&delayed_refs->num_entries); 4658 btrfs_put_delayed_ref(ref); 4659 } 4660 if (head->must_insert_reserved) 4661 pin_bytes = true; 4662 btrfs_free_delayed_extent_op(head->extent_op); 4663 btrfs_delete_ref_head(delayed_refs, head); 4664 spin_unlock(&head->lock); 4665 spin_unlock(&delayed_refs->lock); 4666 mutex_unlock(&head->mutex); 4667 4668 if (pin_bytes) { 4669 struct btrfs_block_group *cache; 4670 4671 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4672 BUG_ON(!cache); 4673 4674 spin_lock(&cache->space_info->lock); 4675 spin_lock(&cache->lock); 4676 cache->pinned += head->num_bytes; 4677 btrfs_space_info_update_bytes_pinned(fs_info, 4678 cache->space_info, head->num_bytes); 4679 cache->reserved -= head->num_bytes; 4680 cache->space_info->bytes_reserved -= head->num_bytes; 4681 spin_unlock(&cache->lock); 4682 spin_unlock(&cache->space_info->lock); 4683 4684 btrfs_put_block_group(cache); 4685 4686 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4687 head->bytenr + head->num_bytes - 1); 4688 } 4689 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4690 btrfs_put_delayed_ref_head(head); 4691 cond_resched(); 4692 spin_lock(&delayed_refs->lock); 4693 } 4694 btrfs_qgroup_destroy_extent_records(trans); 4695 4696 spin_unlock(&delayed_refs->lock); 4697 4698 return ret; 4699 } 4700 4701 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4702 { 4703 struct btrfs_inode *btrfs_inode; 4704 struct list_head splice; 4705 4706 INIT_LIST_HEAD(&splice); 4707 4708 spin_lock(&root->delalloc_lock); 4709 list_splice_init(&root->delalloc_inodes, &splice); 4710 4711 while (!list_empty(&splice)) { 4712 struct inode *inode = NULL; 4713 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4714 delalloc_inodes); 4715 __btrfs_del_delalloc_inode(root, btrfs_inode); 4716 spin_unlock(&root->delalloc_lock); 4717 4718 /* 4719 * Make sure we get a live inode and that it'll not disappear 4720 * meanwhile. 4721 */ 4722 inode = igrab(&btrfs_inode->vfs_inode); 4723 if (inode) { 4724 invalidate_inode_pages2(inode->i_mapping); 4725 iput(inode); 4726 } 4727 spin_lock(&root->delalloc_lock); 4728 } 4729 spin_unlock(&root->delalloc_lock); 4730 } 4731 4732 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4733 { 4734 struct btrfs_root *root; 4735 struct list_head splice; 4736 4737 INIT_LIST_HEAD(&splice); 4738 4739 spin_lock(&fs_info->delalloc_root_lock); 4740 list_splice_init(&fs_info->delalloc_roots, &splice); 4741 while (!list_empty(&splice)) { 4742 root = list_first_entry(&splice, struct btrfs_root, 4743 delalloc_root); 4744 root = btrfs_grab_root(root); 4745 BUG_ON(!root); 4746 spin_unlock(&fs_info->delalloc_root_lock); 4747 4748 btrfs_destroy_delalloc_inodes(root); 4749 btrfs_put_root(root); 4750 4751 spin_lock(&fs_info->delalloc_root_lock); 4752 } 4753 spin_unlock(&fs_info->delalloc_root_lock); 4754 } 4755 4756 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4757 struct extent_io_tree *dirty_pages, 4758 int mark) 4759 { 4760 int ret; 4761 struct extent_buffer *eb; 4762 u64 start = 0; 4763 u64 end; 4764 4765 while (1) { 4766 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4767 mark, NULL); 4768 if (ret) 4769 break; 4770 4771 clear_extent_bits(dirty_pages, start, end, mark); 4772 while (start <= end) { 4773 eb = find_extent_buffer(fs_info, start); 4774 start += fs_info->nodesize; 4775 if (!eb) 4776 continue; 4777 wait_on_extent_buffer_writeback(eb); 4778 4779 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4780 &eb->bflags)) 4781 clear_extent_buffer_dirty(eb); 4782 free_extent_buffer_stale(eb); 4783 } 4784 } 4785 4786 return ret; 4787 } 4788 4789 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4790 struct extent_io_tree *unpin) 4791 { 4792 u64 start; 4793 u64 end; 4794 int ret; 4795 4796 while (1) { 4797 struct extent_state *cached_state = NULL; 4798 4799 /* 4800 * The btrfs_finish_extent_commit() may get the same range as 4801 * ours between find_first_extent_bit and clear_extent_dirty. 4802 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4803 * the same extent range. 4804 */ 4805 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4806 ret = find_first_extent_bit(unpin, 0, &start, &end, 4807 EXTENT_DIRTY, &cached_state); 4808 if (ret) { 4809 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4810 break; 4811 } 4812 4813 clear_extent_dirty(unpin, start, end, &cached_state); 4814 free_extent_state(cached_state); 4815 btrfs_error_unpin_extent_range(fs_info, start, end); 4816 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4817 cond_resched(); 4818 } 4819 4820 return 0; 4821 } 4822 4823 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4824 { 4825 struct inode *inode; 4826 4827 inode = cache->io_ctl.inode; 4828 if (inode) { 4829 invalidate_inode_pages2(inode->i_mapping); 4830 BTRFS_I(inode)->generation = 0; 4831 cache->io_ctl.inode = NULL; 4832 iput(inode); 4833 } 4834 ASSERT(cache->io_ctl.pages == NULL); 4835 btrfs_put_block_group(cache); 4836 } 4837 4838 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4839 struct btrfs_fs_info *fs_info) 4840 { 4841 struct btrfs_block_group *cache; 4842 4843 spin_lock(&cur_trans->dirty_bgs_lock); 4844 while (!list_empty(&cur_trans->dirty_bgs)) { 4845 cache = list_first_entry(&cur_trans->dirty_bgs, 4846 struct btrfs_block_group, 4847 dirty_list); 4848 4849 if (!list_empty(&cache->io_list)) { 4850 spin_unlock(&cur_trans->dirty_bgs_lock); 4851 list_del_init(&cache->io_list); 4852 btrfs_cleanup_bg_io(cache); 4853 spin_lock(&cur_trans->dirty_bgs_lock); 4854 } 4855 4856 list_del_init(&cache->dirty_list); 4857 spin_lock(&cache->lock); 4858 cache->disk_cache_state = BTRFS_DC_ERROR; 4859 spin_unlock(&cache->lock); 4860 4861 spin_unlock(&cur_trans->dirty_bgs_lock); 4862 btrfs_put_block_group(cache); 4863 btrfs_delayed_refs_rsv_release(fs_info, 1); 4864 spin_lock(&cur_trans->dirty_bgs_lock); 4865 } 4866 spin_unlock(&cur_trans->dirty_bgs_lock); 4867 4868 /* 4869 * Refer to the definition of io_bgs member for details why it's safe 4870 * to use it without any locking 4871 */ 4872 while (!list_empty(&cur_trans->io_bgs)) { 4873 cache = list_first_entry(&cur_trans->io_bgs, 4874 struct btrfs_block_group, 4875 io_list); 4876 4877 list_del_init(&cache->io_list); 4878 spin_lock(&cache->lock); 4879 cache->disk_cache_state = BTRFS_DC_ERROR; 4880 spin_unlock(&cache->lock); 4881 btrfs_cleanup_bg_io(cache); 4882 } 4883 } 4884 4885 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4886 struct btrfs_fs_info *fs_info) 4887 { 4888 struct btrfs_device *dev, *tmp; 4889 4890 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4891 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4892 ASSERT(list_empty(&cur_trans->io_bgs)); 4893 4894 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4895 post_commit_list) { 4896 list_del_init(&dev->post_commit_list); 4897 } 4898 4899 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4900 4901 cur_trans->state = TRANS_STATE_COMMIT_START; 4902 wake_up(&fs_info->transaction_blocked_wait); 4903 4904 cur_trans->state = TRANS_STATE_UNBLOCKED; 4905 wake_up(&fs_info->transaction_wait); 4906 4907 btrfs_destroy_delayed_inodes(fs_info); 4908 4909 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4910 EXTENT_DIRTY); 4911 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4912 4913 btrfs_free_redirty_list(cur_trans); 4914 4915 cur_trans->state =TRANS_STATE_COMPLETED; 4916 wake_up(&cur_trans->commit_wait); 4917 } 4918 4919 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4920 { 4921 struct btrfs_transaction *t; 4922 4923 mutex_lock(&fs_info->transaction_kthread_mutex); 4924 4925 spin_lock(&fs_info->trans_lock); 4926 while (!list_empty(&fs_info->trans_list)) { 4927 t = list_first_entry(&fs_info->trans_list, 4928 struct btrfs_transaction, list); 4929 if (t->state >= TRANS_STATE_COMMIT_START) { 4930 refcount_inc(&t->use_count); 4931 spin_unlock(&fs_info->trans_lock); 4932 btrfs_wait_for_commit(fs_info, t->transid); 4933 btrfs_put_transaction(t); 4934 spin_lock(&fs_info->trans_lock); 4935 continue; 4936 } 4937 if (t == fs_info->running_transaction) { 4938 t->state = TRANS_STATE_COMMIT_DOING; 4939 spin_unlock(&fs_info->trans_lock); 4940 /* 4941 * We wait for 0 num_writers since we don't hold a trans 4942 * handle open currently for this transaction. 4943 */ 4944 wait_event(t->writer_wait, 4945 atomic_read(&t->num_writers) == 0); 4946 } else { 4947 spin_unlock(&fs_info->trans_lock); 4948 } 4949 btrfs_cleanup_one_transaction(t, fs_info); 4950 4951 spin_lock(&fs_info->trans_lock); 4952 if (t == fs_info->running_transaction) 4953 fs_info->running_transaction = NULL; 4954 list_del_init(&t->list); 4955 spin_unlock(&fs_info->trans_lock); 4956 4957 btrfs_put_transaction(t); 4958 trace_btrfs_transaction_commit(fs_info->tree_root); 4959 spin_lock(&fs_info->trans_lock); 4960 } 4961 spin_unlock(&fs_info->trans_lock); 4962 btrfs_destroy_all_ordered_extents(fs_info); 4963 btrfs_destroy_delayed_inodes(fs_info); 4964 btrfs_assert_delayed_root_empty(fs_info); 4965 btrfs_destroy_all_delalloc_inodes(fs_info); 4966 btrfs_drop_all_logs(fs_info); 4967 mutex_unlock(&fs_info->transaction_kthread_mutex); 4968 4969 return 0; 4970 } 4971 4972 int btrfs_init_root_free_objectid(struct btrfs_root *root) 4973 { 4974 struct btrfs_path *path; 4975 int ret; 4976 struct extent_buffer *l; 4977 struct btrfs_key search_key; 4978 struct btrfs_key found_key; 4979 int slot; 4980 4981 path = btrfs_alloc_path(); 4982 if (!path) 4983 return -ENOMEM; 4984 4985 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 4986 search_key.type = -1; 4987 search_key.offset = (u64)-1; 4988 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 4989 if (ret < 0) 4990 goto error; 4991 BUG_ON(ret == 0); /* Corruption */ 4992 if (path->slots[0] > 0) { 4993 slot = path->slots[0] - 1; 4994 l = path->nodes[0]; 4995 btrfs_item_key_to_cpu(l, &found_key, slot); 4996 root->free_objectid = max_t(u64, found_key.objectid + 1, 4997 BTRFS_FIRST_FREE_OBJECTID); 4998 } else { 4999 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 5000 } 5001 ret = 0; 5002 error: 5003 btrfs_free_path(path); 5004 return ret; 5005 } 5006 5007 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 5008 { 5009 int ret; 5010 mutex_lock(&root->objectid_mutex); 5011 5012 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 5013 btrfs_warn(root->fs_info, 5014 "the objectid of root %llu reaches its highest value", 5015 root->root_key.objectid); 5016 ret = -ENOSPC; 5017 goto out; 5018 } 5019 5020 *objectid = root->free_objectid++; 5021 ret = 0; 5022 out: 5023 mutex_unlock(&root->objectid_mutex); 5024 return ret; 5025 } 5026