xref: /openbmc/linux/fs/btrfs/disk-io.c (revision a89aa749ece9c6fee7932163472d2ee0efd6ddd3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
43 #include "discard.h"
44 #include "space-info.h"
45 
46 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
47 				 BTRFS_HEADER_FLAG_RELOC |\
48 				 BTRFS_SUPER_FLAG_ERROR |\
49 				 BTRFS_SUPER_FLAG_SEEDING |\
50 				 BTRFS_SUPER_FLAG_METADUMP |\
51 				 BTRFS_SUPER_FLAG_METADUMP_V2)
52 
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 				      struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60 					struct extent_io_tree *dirty_pages,
61 					int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63 				       struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66 
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73 	struct bio *bio;
74 	bio_end_io_t *end_io;
75 	void *private;
76 	struct btrfs_fs_info *info;
77 	blk_status_t status;
78 	enum btrfs_wq_endio_type metadata;
79 	struct btrfs_work work;
80 };
81 
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83 
84 int __init btrfs_end_io_wq_init(void)
85 {
86 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 					sizeof(struct btrfs_end_io_wq),
88 					0,
89 					SLAB_MEM_SPREAD,
90 					NULL);
91 	if (!btrfs_end_io_wq_cache)
92 		return -ENOMEM;
93 	return 0;
94 }
95 
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98 	kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100 
101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103 	if (fs_info->csum_shash)
104 		crypto_free_shash(fs_info->csum_shash);
105 }
106 
107 /*
108  * async submit bios are used to offload expensive checksumming
109  * onto the worker threads.  They checksum file and metadata bios
110  * just before they are sent down the IO stack.
111  */
112 struct async_submit_bio {
113 	void *private_data;
114 	struct bio *bio;
115 	extent_submit_bio_start_t *submit_bio_start;
116 	int mirror_num;
117 	/*
118 	 * bio_offset is optional, can be used if the pages in the bio
119 	 * can't tell us where in the file the bio should go
120 	 */
121 	u64 bio_offset;
122 	struct btrfs_work work;
123 	blk_status_t status;
124 };
125 
126 /*
127  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
128  * eb, the lockdep key is determined by the btrfs_root it belongs to and
129  * the level the eb occupies in the tree.
130  *
131  * Different roots are used for different purposes and may nest inside each
132  * other and they require separate keysets.  As lockdep keys should be
133  * static, assign keysets according to the purpose of the root as indicated
134  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
135  * roots have separate keysets.
136  *
137  * Lock-nesting across peer nodes is always done with the immediate parent
138  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
139  * subclass to avoid triggering lockdep warning in such cases.
140  *
141  * The key is set by the readpage_end_io_hook after the buffer has passed
142  * csum validation but before the pages are unlocked.  It is also set by
143  * btrfs_init_new_buffer on freshly allocated blocks.
144  *
145  * We also add a check to make sure the highest level of the tree is the
146  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
147  * needs update as well.
148  */
149 #ifdef CONFIG_DEBUG_LOCK_ALLOC
150 # if BTRFS_MAX_LEVEL != 8
151 #  error
152 # endif
153 
154 static struct btrfs_lockdep_keyset {
155 	u64			id;		/* root objectid */
156 	const char		*name_stem;	/* lock name stem */
157 	char			names[BTRFS_MAX_LEVEL + 1][20];
158 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
159 } btrfs_lockdep_keysets[] = {
160 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
161 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
162 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
163 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
164 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
165 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
166 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
167 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
168 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
169 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
170 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
171 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
172 	{ .id = 0,				.name_stem = "tree"	},
173 };
174 
175 void __init btrfs_init_lockdep(void)
176 {
177 	int i, j;
178 
179 	/* initialize lockdep class names */
180 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182 
183 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184 			snprintf(ks->names[j], sizeof(ks->names[j]),
185 				 "btrfs-%s-%02d", ks->name_stem, j);
186 	}
187 }
188 
189 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 				    int level)
191 {
192 	struct btrfs_lockdep_keyset *ks;
193 
194 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
195 
196 	/* find the matching keyset, id 0 is the default entry */
197 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198 		if (ks->id == objectid)
199 			break;
200 
201 	lockdep_set_class_and_name(&eb->lock,
202 				   &ks->keys[level], ks->names[level]);
203 }
204 
205 #endif
206 
207 /*
208  * extents on the btree inode are pretty simple, there's one extent
209  * that covers the entire device
210  */
211 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
212 				    struct page *page, size_t pg_offset,
213 				    u64 start, u64 len)
214 {
215 	struct extent_map_tree *em_tree = &inode->extent_tree;
216 	struct extent_map *em;
217 	int ret;
218 
219 	read_lock(&em_tree->lock);
220 	em = lookup_extent_mapping(em_tree, start, len);
221 	if (em) {
222 		read_unlock(&em_tree->lock);
223 		goto out;
224 	}
225 	read_unlock(&em_tree->lock);
226 
227 	em = alloc_extent_map();
228 	if (!em) {
229 		em = ERR_PTR(-ENOMEM);
230 		goto out;
231 	}
232 	em->start = 0;
233 	em->len = (u64)-1;
234 	em->block_len = (u64)-1;
235 	em->block_start = 0;
236 
237 	write_lock(&em_tree->lock);
238 	ret = add_extent_mapping(em_tree, em, 0);
239 	if (ret == -EEXIST) {
240 		free_extent_map(em);
241 		em = lookup_extent_mapping(em_tree, start, len);
242 		if (!em)
243 			em = ERR_PTR(-EIO);
244 	} else if (ret) {
245 		free_extent_map(em);
246 		em = ERR_PTR(ret);
247 	}
248 	write_unlock(&em_tree->lock);
249 
250 out:
251 	return em;
252 }
253 
254 /*
255  * Compute the csum of a btree block and store the result to provided buffer.
256  */
257 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
258 {
259 	struct btrfs_fs_info *fs_info = buf->fs_info;
260 	const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
261 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
262 	char *kaddr;
263 	int i;
264 
265 	shash->tfm = fs_info->csum_shash;
266 	crypto_shash_init(shash);
267 	kaddr = page_address(buf->pages[0]);
268 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
269 			    PAGE_SIZE - BTRFS_CSUM_SIZE);
270 
271 	for (i = 1; i < num_pages; i++) {
272 		kaddr = page_address(buf->pages[i]);
273 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
274 	}
275 	memset(result, 0, BTRFS_CSUM_SIZE);
276 	crypto_shash_final(shash, result);
277 }
278 
279 /*
280  * we can't consider a given block up to date unless the transid of the
281  * block matches the transid in the parent node's pointer.  This is how we
282  * detect blocks that either didn't get written at all or got written
283  * in the wrong place.
284  */
285 static int verify_parent_transid(struct extent_io_tree *io_tree,
286 				 struct extent_buffer *eb, u64 parent_transid,
287 				 int atomic)
288 {
289 	struct extent_state *cached_state = NULL;
290 	int ret;
291 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
292 
293 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
294 		return 0;
295 
296 	if (atomic)
297 		return -EAGAIN;
298 
299 	if (need_lock) {
300 		btrfs_tree_read_lock(eb);
301 		btrfs_set_lock_blocking_read(eb);
302 	}
303 
304 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
305 			 &cached_state);
306 	if (extent_buffer_uptodate(eb) &&
307 	    btrfs_header_generation(eb) == parent_transid) {
308 		ret = 0;
309 		goto out;
310 	}
311 	btrfs_err_rl(eb->fs_info,
312 		"parent transid verify failed on %llu wanted %llu found %llu",
313 			eb->start,
314 			parent_transid, btrfs_header_generation(eb));
315 	ret = 1;
316 
317 	/*
318 	 * Things reading via commit roots that don't have normal protection,
319 	 * like send, can have a really old block in cache that may point at a
320 	 * block that has been freed and re-allocated.  So don't clear uptodate
321 	 * if we find an eb that is under IO (dirty/writeback) because we could
322 	 * end up reading in the stale data and then writing it back out and
323 	 * making everybody very sad.
324 	 */
325 	if (!extent_buffer_under_io(eb))
326 		clear_extent_buffer_uptodate(eb);
327 out:
328 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
329 			     &cached_state);
330 	if (need_lock)
331 		btrfs_tree_read_unlock_blocking(eb);
332 	return ret;
333 }
334 
335 static bool btrfs_supported_super_csum(u16 csum_type)
336 {
337 	switch (csum_type) {
338 	case BTRFS_CSUM_TYPE_CRC32:
339 	case BTRFS_CSUM_TYPE_XXHASH:
340 	case BTRFS_CSUM_TYPE_SHA256:
341 	case BTRFS_CSUM_TYPE_BLAKE2:
342 		return true;
343 	default:
344 		return false;
345 	}
346 }
347 
348 /*
349  * Return 0 if the superblock checksum type matches the checksum value of that
350  * algorithm. Pass the raw disk superblock data.
351  */
352 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
353 				  char *raw_disk_sb)
354 {
355 	struct btrfs_super_block *disk_sb =
356 		(struct btrfs_super_block *)raw_disk_sb;
357 	char result[BTRFS_CSUM_SIZE];
358 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
359 
360 	shash->tfm = fs_info->csum_shash;
361 	crypto_shash_init(shash);
362 
363 	/*
364 	 * The super_block structure does not span the whole
365 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
366 	 * filled with zeros and is included in the checksum.
367 	 */
368 	crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
369 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
370 	crypto_shash_final(shash, result);
371 
372 	if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
373 		return 1;
374 
375 	return 0;
376 }
377 
378 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
379 			   struct btrfs_key *first_key, u64 parent_transid)
380 {
381 	struct btrfs_fs_info *fs_info = eb->fs_info;
382 	int found_level;
383 	struct btrfs_key found_key;
384 	int ret;
385 
386 	found_level = btrfs_header_level(eb);
387 	if (found_level != level) {
388 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
389 		     KERN_ERR "BTRFS: tree level check failed\n");
390 		btrfs_err(fs_info,
391 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
392 			  eb->start, level, found_level);
393 		return -EIO;
394 	}
395 
396 	if (!first_key)
397 		return 0;
398 
399 	/*
400 	 * For live tree block (new tree blocks in current transaction),
401 	 * we need proper lock context to avoid race, which is impossible here.
402 	 * So we only checks tree blocks which is read from disk, whose
403 	 * generation <= fs_info->last_trans_committed.
404 	 */
405 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
406 		return 0;
407 
408 	/* We have @first_key, so this @eb must have at least one item */
409 	if (btrfs_header_nritems(eb) == 0) {
410 		btrfs_err(fs_info,
411 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
412 			  eb->start);
413 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
414 		return -EUCLEAN;
415 	}
416 
417 	if (found_level)
418 		btrfs_node_key_to_cpu(eb, &found_key, 0);
419 	else
420 		btrfs_item_key_to_cpu(eb, &found_key, 0);
421 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
422 
423 	if (ret) {
424 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
425 		     KERN_ERR "BTRFS: tree first key check failed\n");
426 		btrfs_err(fs_info,
427 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
428 			  eb->start, parent_transid, first_key->objectid,
429 			  first_key->type, first_key->offset,
430 			  found_key.objectid, found_key.type,
431 			  found_key.offset);
432 	}
433 	return ret;
434 }
435 
436 /*
437  * helper to read a given tree block, doing retries as required when
438  * the checksums don't match and we have alternate mirrors to try.
439  *
440  * @parent_transid:	expected transid, skip check if 0
441  * @level:		expected level, mandatory check
442  * @first_key:		expected key of first slot, skip check if NULL
443  */
444 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
445 					  u64 parent_transid, int level,
446 					  struct btrfs_key *first_key)
447 {
448 	struct btrfs_fs_info *fs_info = eb->fs_info;
449 	struct extent_io_tree *io_tree;
450 	int failed = 0;
451 	int ret;
452 	int num_copies = 0;
453 	int mirror_num = 0;
454 	int failed_mirror = 0;
455 
456 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
457 	while (1) {
458 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
459 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
460 		if (!ret) {
461 			if (verify_parent_transid(io_tree, eb,
462 						   parent_transid, 0))
463 				ret = -EIO;
464 			else if (btrfs_verify_level_key(eb, level,
465 						first_key, parent_transid))
466 				ret = -EUCLEAN;
467 			else
468 				break;
469 		}
470 
471 		num_copies = btrfs_num_copies(fs_info,
472 					      eb->start, eb->len);
473 		if (num_copies == 1)
474 			break;
475 
476 		if (!failed_mirror) {
477 			failed = 1;
478 			failed_mirror = eb->read_mirror;
479 		}
480 
481 		mirror_num++;
482 		if (mirror_num == failed_mirror)
483 			mirror_num++;
484 
485 		if (mirror_num > num_copies)
486 			break;
487 	}
488 
489 	if (failed && !ret && failed_mirror)
490 		btrfs_repair_eb_io_failure(eb, failed_mirror);
491 
492 	return ret;
493 }
494 
495 /*
496  * checksum a dirty tree block before IO.  This has extra checks to make sure
497  * we only fill in the checksum field in the first page of a multi-page block
498  */
499 
500 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
501 {
502 	u64 start = page_offset(page);
503 	u64 found_start;
504 	u8 result[BTRFS_CSUM_SIZE];
505 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
506 	struct extent_buffer *eb;
507 	int ret;
508 
509 	eb = (struct extent_buffer *)page->private;
510 	if (page != eb->pages[0])
511 		return 0;
512 
513 	found_start = btrfs_header_bytenr(eb);
514 	/*
515 	 * Please do not consolidate these warnings into a single if.
516 	 * It is useful to know what went wrong.
517 	 */
518 	if (WARN_ON(found_start != start))
519 		return -EUCLEAN;
520 	if (WARN_ON(!PageUptodate(page)))
521 		return -EUCLEAN;
522 
523 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
524 				    offsetof(struct btrfs_header, fsid),
525 				    BTRFS_FSID_SIZE) == 0);
526 
527 	csum_tree_block(eb, result);
528 
529 	if (btrfs_header_level(eb))
530 		ret = btrfs_check_node(eb);
531 	else
532 		ret = btrfs_check_leaf_full(eb);
533 
534 	if (ret < 0) {
535 		btrfs_print_tree(eb, 0);
536 		btrfs_err(fs_info,
537 		"block=%llu write time tree block corruption detected",
538 			  eb->start);
539 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
540 		return ret;
541 	}
542 	write_extent_buffer(eb, result, 0, csum_size);
543 
544 	return 0;
545 }
546 
547 static int check_tree_block_fsid(struct extent_buffer *eb)
548 {
549 	struct btrfs_fs_info *fs_info = eb->fs_info;
550 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
551 	u8 fsid[BTRFS_FSID_SIZE];
552 	int ret = 1;
553 
554 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
555 			   BTRFS_FSID_SIZE);
556 	while (fs_devices) {
557 		u8 *metadata_uuid;
558 
559 		/*
560 		 * Checking the incompat flag is only valid for the current
561 		 * fs. For seed devices it's forbidden to have their uuid
562 		 * changed so reading ->fsid in this case is fine
563 		 */
564 		if (fs_devices == fs_info->fs_devices &&
565 		    btrfs_fs_incompat(fs_info, METADATA_UUID))
566 			metadata_uuid = fs_devices->metadata_uuid;
567 		else
568 			metadata_uuid = fs_devices->fsid;
569 
570 		if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
571 			ret = 0;
572 			break;
573 		}
574 		fs_devices = fs_devices->seed;
575 	}
576 	return ret;
577 }
578 
579 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
580 				      u64 phy_offset, struct page *page,
581 				      u64 start, u64 end, int mirror)
582 {
583 	u64 found_start;
584 	int found_level;
585 	struct extent_buffer *eb;
586 	struct btrfs_fs_info *fs_info;
587 	u16 csum_size;
588 	int ret = 0;
589 	u8 result[BTRFS_CSUM_SIZE];
590 	int reads_done;
591 
592 	if (!page->private)
593 		goto out;
594 
595 	eb = (struct extent_buffer *)page->private;
596 	fs_info = eb->fs_info;
597 	csum_size = btrfs_super_csum_size(fs_info->super_copy);
598 
599 	/* the pending IO might have been the only thing that kept this buffer
600 	 * in memory.  Make sure we have a ref for all this other checks
601 	 */
602 	atomic_inc(&eb->refs);
603 
604 	reads_done = atomic_dec_and_test(&eb->io_pages);
605 	if (!reads_done)
606 		goto err;
607 
608 	eb->read_mirror = mirror;
609 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
610 		ret = -EIO;
611 		goto err;
612 	}
613 
614 	found_start = btrfs_header_bytenr(eb);
615 	if (found_start != eb->start) {
616 		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
617 			     eb->start, found_start);
618 		ret = -EIO;
619 		goto err;
620 	}
621 	if (check_tree_block_fsid(eb)) {
622 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
623 			     eb->start);
624 		ret = -EIO;
625 		goto err;
626 	}
627 	found_level = btrfs_header_level(eb);
628 	if (found_level >= BTRFS_MAX_LEVEL) {
629 		btrfs_err(fs_info, "bad tree block level %d on %llu",
630 			  (int)btrfs_header_level(eb), eb->start);
631 		ret = -EIO;
632 		goto err;
633 	}
634 
635 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
636 				       eb, found_level);
637 
638 	csum_tree_block(eb, result);
639 
640 	if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
641 		u32 val;
642 		u32 found = 0;
643 
644 		memcpy(&found, result, csum_size);
645 
646 		read_extent_buffer(eb, &val, 0, csum_size);
647 		btrfs_warn_rl(fs_info,
648 		"%s checksum verify failed on %llu wanted %x found %x level %d",
649 			      fs_info->sb->s_id, eb->start,
650 			      val, found, btrfs_header_level(eb));
651 		ret = -EUCLEAN;
652 		goto err;
653 	}
654 
655 	/*
656 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
657 	 * that we don't try and read the other copies of this block, just
658 	 * return -EIO.
659 	 */
660 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
661 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
662 		ret = -EIO;
663 	}
664 
665 	if (found_level > 0 && btrfs_check_node(eb))
666 		ret = -EIO;
667 
668 	if (!ret)
669 		set_extent_buffer_uptodate(eb);
670 	else
671 		btrfs_err(fs_info,
672 			  "block=%llu read time tree block corruption detected",
673 			  eb->start);
674 err:
675 	if (reads_done &&
676 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
677 		btree_readahead_hook(eb, ret);
678 
679 	if (ret) {
680 		/*
681 		 * our io error hook is going to dec the io pages
682 		 * again, we have to make sure it has something
683 		 * to decrement
684 		 */
685 		atomic_inc(&eb->io_pages);
686 		clear_extent_buffer_uptodate(eb);
687 	}
688 	free_extent_buffer(eb);
689 out:
690 	return ret;
691 }
692 
693 static void end_workqueue_bio(struct bio *bio)
694 {
695 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
696 	struct btrfs_fs_info *fs_info;
697 	struct btrfs_workqueue *wq;
698 
699 	fs_info = end_io_wq->info;
700 	end_io_wq->status = bio->bi_status;
701 
702 	if (bio_op(bio) == REQ_OP_WRITE) {
703 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
704 			wq = fs_info->endio_meta_write_workers;
705 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
706 			wq = fs_info->endio_freespace_worker;
707 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
708 			wq = fs_info->endio_raid56_workers;
709 		else
710 			wq = fs_info->endio_write_workers;
711 	} else {
712 		if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
713 			wq = fs_info->endio_repair_workers;
714 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
715 			wq = fs_info->endio_raid56_workers;
716 		else if (end_io_wq->metadata)
717 			wq = fs_info->endio_meta_workers;
718 		else
719 			wq = fs_info->endio_workers;
720 	}
721 
722 	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
723 	btrfs_queue_work(wq, &end_io_wq->work);
724 }
725 
726 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
727 			enum btrfs_wq_endio_type metadata)
728 {
729 	struct btrfs_end_io_wq *end_io_wq;
730 
731 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
732 	if (!end_io_wq)
733 		return BLK_STS_RESOURCE;
734 
735 	end_io_wq->private = bio->bi_private;
736 	end_io_wq->end_io = bio->bi_end_io;
737 	end_io_wq->info = info;
738 	end_io_wq->status = 0;
739 	end_io_wq->bio = bio;
740 	end_io_wq->metadata = metadata;
741 
742 	bio->bi_private = end_io_wq;
743 	bio->bi_end_io = end_workqueue_bio;
744 	return 0;
745 }
746 
747 static void run_one_async_start(struct btrfs_work *work)
748 {
749 	struct async_submit_bio *async;
750 	blk_status_t ret;
751 
752 	async = container_of(work, struct  async_submit_bio, work);
753 	ret = async->submit_bio_start(async->private_data, async->bio,
754 				      async->bio_offset);
755 	if (ret)
756 		async->status = ret;
757 }
758 
759 /*
760  * In order to insert checksums into the metadata in large chunks, we wait
761  * until bio submission time.   All the pages in the bio are checksummed and
762  * sums are attached onto the ordered extent record.
763  *
764  * At IO completion time the csums attached on the ordered extent record are
765  * inserted into the tree.
766  */
767 static void run_one_async_done(struct btrfs_work *work)
768 {
769 	struct async_submit_bio *async;
770 	struct inode *inode;
771 	blk_status_t ret;
772 
773 	async = container_of(work, struct  async_submit_bio, work);
774 	inode = async->private_data;
775 
776 	/* If an error occurred we just want to clean up the bio and move on */
777 	if (async->status) {
778 		async->bio->bi_status = async->status;
779 		bio_endio(async->bio);
780 		return;
781 	}
782 
783 	/*
784 	 * All of the bios that pass through here are from async helpers.
785 	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
786 	 * This changes nothing when cgroups aren't in use.
787 	 */
788 	async->bio->bi_opf |= REQ_CGROUP_PUNT;
789 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
790 	if (ret) {
791 		async->bio->bi_status = ret;
792 		bio_endio(async->bio);
793 	}
794 }
795 
796 static void run_one_async_free(struct btrfs_work *work)
797 {
798 	struct async_submit_bio *async;
799 
800 	async = container_of(work, struct  async_submit_bio, work);
801 	kfree(async);
802 }
803 
804 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
805 				 int mirror_num, unsigned long bio_flags,
806 				 u64 bio_offset, void *private_data,
807 				 extent_submit_bio_start_t *submit_bio_start)
808 {
809 	struct async_submit_bio *async;
810 
811 	async = kmalloc(sizeof(*async), GFP_NOFS);
812 	if (!async)
813 		return BLK_STS_RESOURCE;
814 
815 	async->private_data = private_data;
816 	async->bio = bio;
817 	async->mirror_num = mirror_num;
818 	async->submit_bio_start = submit_bio_start;
819 
820 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
821 			run_one_async_free);
822 
823 	async->bio_offset = bio_offset;
824 
825 	async->status = 0;
826 
827 	if (op_is_sync(bio->bi_opf))
828 		btrfs_set_work_high_priority(&async->work);
829 
830 	btrfs_queue_work(fs_info->workers, &async->work);
831 	return 0;
832 }
833 
834 static blk_status_t btree_csum_one_bio(struct bio *bio)
835 {
836 	struct bio_vec *bvec;
837 	struct btrfs_root *root;
838 	int ret = 0;
839 	struct bvec_iter_all iter_all;
840 
841 	ASSERT(!bio_flagged(bio, BIO_CLONED));
842 	bio_for_each_segment_all(bvec, bio, iter_all) {
843 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
844 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
845 		if (ret)
846 			break;
847 	}
848 
849 	return errno_to_blk_status(ret);
850 }
851 
852 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
853 					     u64 bio_offset)
854 {
855 	/*
856 	 * when we're called for a write, we're already in the async
857 	 * submission context.  Just jump into btrfs_map_bio
858 	 */
859 	return btree_csum_one_bio(bio);
860 }
861 
862 static int check_async_write(struct btrfs_fs_info *fs_info,
863 			     struct btrfs_inode *bi)
864 {
865 	if (atomic_read(&bi->sync_writers))
866 		return 0;
867 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
868 		return 0;
869 	return 1;
870 }
871 
872 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
873 					  int mirror_num,
874 					  unsigned long bio_flags)
875 {
876 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
877 	int async = check_async_write(fs_info, BTRFS_I(inode));
878 	blk_status_t ret;
879 
880 	if (bio_op(bio) != REQ_OP_WRITE) {
881 		/*
882 		 * called for a read, do the setup so that checksum validation
883 		 * can happen in the async kernel threads
884 		 */
885 		ret = btrfs_bio_wq_end_io(fs_info, bio,
886 					  BTRFS_WQ_ENDIO_METADATA);
887 		if (ret)
888 			goto out_w_error;
889 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
890 	} else if (!async) {
891 		ret = btree_csum_one_bio(bio);
892 		if (ret)
893 			goto out_w_error;
894 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
895 	} else {
896 		/*
897 		 * kthread helpers are used to submit writes so that
898 		 * checksumming can happen in parallel across all CPUs
899 		 */
900 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
901 					  0, inode, btree_submit_bio_start);
902 	}
903 
904 	if (ret)
905 		goto out_w_error;
906 	return 0;
907 
908 out_w_error:
909 	bio->bi_status = ret;
910 	bio_endio(bio);
911 	return ret;
912 }
913 
914 #ifdef CONFIG_MIGRATION
915 static int btree_migratepage(struct address_space *mapping,
916 			struct page *newpage, struct page *page,
917 			enum migrate_mode mode)
918 {
919 	/*
920 	 * we can't safely write a btree page from here,
921 	 * we haven't done the locking hook
922 	 */
923 	if (PageDirty(page))
924 		return -EAGAIN;
925 	/*
926 	 * Buffers may be managed in a filesystem specific way.
927 	 * We must have no buffers or drop them.
928 	 */
929 	if (page_has_private(page) &&
930 	    !try_to_release_page(page, GFP_KERNEL))
931 		return -EAGAIN;
932 	return migrate_page(mapping, newpage, page, mode);
933 }
934 #endif
935 
936 
937 static int btree_writepages(struct address_space *mapping,
938 			    struct writeback_control *wbc)
939 {
940 	struct btrfs_fs_info *fs_info;
941 	int ret;
942 
943 	if (wbc->sync_mode == WB_SYNC_NONE) {
944 
945 		if (wbc->for_kupdate)
946 			return 0;
947 
948 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
949 		/* this is a bit racy, but that's ok */
950 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
951 					     BTRFS_DIRTY_METADATA_THRESH,
952 					     fs_info->dirty_metadata_batch);
953 		if (ret < 0)
954 			return 0;
955 	}
956 	return btree_write_cache_pages(mapping, wbc);
957 }
958 
959 static int btree_readpage(struct file *file, struct page *page)
960 {
961 	return extent_read_full_page(page, btree_get_extent, 0);
962 }
963 
964 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
965 {
966 	if (PageWriteback(page) || PageDirty(page))
967 		return 0;
968 
969 	return try_release_extent_buffer(page);
970 }
971 
972 static void btree_invalidatepage(struct page *page, unsigned int offset,
973 				 unsigned int length)
974 {
975 	struct extent_io_tree *tree;
976 	tree = &BTRFS_I(page->mapping->host)->io_tree;
977 	extent_invalidatepage(tree, page, offset);
978 	btree_releasepage(page, GFP_NOFS);
979 	if (PagePrivate(page)) {
980 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
981 			   "page private not zero on page %llu",
982 			   (unsigned long long)page_offset(page));
983 		ClearPagePrivate(page);
984 		set_page_private(page, 0);
985 		put_page(page);
986 	}
987 }
988 
989 static int btree_set_page_dirty(struct page *page)
990 {
991 #ifdef DEBUG
992 	struct extent_buffer *eb;
993 
994 	BUG_ON(!PagePrivate(page));
995 	eb = (struct extent_buffer *)page->private;
996 	BUG_ON(!eb);
997 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
998 	BUG_ON(!atomic_read(&eb->refs));
999 	btrfs_assert_tree_locked(eb);
1000 #endif
1001 	return __set_page_dirty_nobuffers(page);
1002 }
1003 
1004 static const struct address_space_operations btree_aops = {
1005 	.readpage	= btree_readpage,
1006 	.writepages	= btree_writepages,
1007 	.releasepage	= btree_releasepage,
1008 	.invalidatepage = btree_invalidatepage,
1009 #ifdef CONFIG_MIGRATION
1010 	.migratepage	= btree_migratepage,
1011 #endif
1012 	.set_page_dirty = btree_set_page_dirty,
1013 };
1014 
1015 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1016 {
1017 	struct extent_buffer *buf = NULL;
1018 	int ret;
1019 
1020 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1021 	if (IS_ERR(buf))
1022 		return;
1023 
1024 	ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1025 	if (ret < 0)
1026 		free_extent_buffer_stale(buf);
1027 	else
1028 		free_extent_buffer(buf);
1029 }
1030 
1031 struct extent_buffer *btrfs_find_create_tree_block(
1032 						struct btrfs_fs_info *fs_info,
1033 						u64 bytenr)
1034 {
1035 	if (btrfs_is_testing(fs_info))
1036 		return alloc_test_extent_buffer(fs_info, bytenr);
1037 	return alloc_extent_buffer(fs_info, bytenr);
1038 }
1039 
1040 /*
1041  * Read tree block at logical address @bytenr and do variant basic but critical
1042  * verification.
1043  *
1044  * @parent_transid:	expected transid of this tree block, skip check if 0
1045  * @level:		expected level, mandatory check
1046  * @first_key:		expected key in slot 0, skip check if NULL
1047  */
1048 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1049 				      u64 parent_transid, int level,
1050 				      struct btrfs_key *first_key)
1051 {
1052 	struct extent_buffer *buf = NULL;
1053 	int ret;
1054 
1055 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1056 	if (IS_ERR(buf))
1057 		return buf;
1058 
1059 	ret = btree_read_extent_buffer_pages(buf, parent_transid,
1060 					     level, first_key);
1061 	if (ret) {
1062 		free_extent_buffer_stale(buf);
1063 		return ERR_PTR(ret);
1064 	}
1065 	return buf;
1066 
1067 }
1068 
1069 void btrfs_clean_tree_block(struct extent_buffer *buf)
1070 {
1071 	struct btrfs_fs_info *fs_info = buf->fs_info;
1072 	if (btrfs_header_generation(buf) ==
1073 	    fs_info->running_transaction->transid) {
1074 		btrfs_assert_tree_locked(buf);
1075 
1076 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1077 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1078 						 -buf->len,
1079 						 fs_info->dirty_metadata_batch);
1080 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1081 			btrfs_set_lock_blocking_write(buf);
1082 			clear_extent_buffer_dirty(buf);
1083 		}
1084 	}
1085 }
1086 
1087 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1088 			 u64 objectid)
1089 {
1090 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1091 	root->fs_info = fs_info;
1092 	root->node = NULL;
1093 	root->commit_root = NULL;
1094 	root->state = 0;
1095 	root->orphan_cleanup_state = 0;
1096 
1097 	root->last_trans = 0;
1098 	root->highest_objectid = 0;
1099 	root->nr_delalloc_inodes = 0;
1100 	root->nr_ordered_extents = 0;
1101 	root->inode_tree = RB_ROOT;
1102 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1103 	root->block_rsv = NULL;
1104 
1105 	INIT_LIST_HEAD(&root->dirty_list);
1106 	INIT_LIST_HEAD(&root->root_list);
1107 	INIT_LIST_HEAD(&root->delalloc_inodes);
1108 	INIT_LIST_HEAD(&root->delalloc_root);
1109 	INIT_LIST_HEAD(&root->ordered_extents);
1110 	INIT_LIST_HEAD(&root->ordered_root);
1111 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1112 	INIT_LIST_HEAD(&root->logged_list[0]);
1113 	INIT_LIST_HEAD(&root->logged_list[1]);
1114 	spin_lock_init(&root->inode_lock);
1115 	spin_lock_init(&root->delalloc_lock);
1116 	spin_lock_init(&root->ordered_extent_lock);
1117 	spin_lock_init(&root->accounting_lock);
1118 	spin_lock_init(&root->log_extents_lock[0]);
1119 	spin_lock_init(&root->log_extents_lock[1]);
1120 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1121 	mutex_init(&root->objectid_mutex);
1122 	mutex_init(&root->log_mutex);
1123 	mutex_init(&root->ordered_extent_mutex);
1124 	mutex_init(&root->delalloc_mutex);
1125 	init_waitqueue_head(&root->log_writer_wait);
1126 	init_waitqueue_head(&root->log_commit_wait[0]);
1127 	init_waitqueue_head(&root->log_commit_wait[1]);
1128 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1129 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1130 	atomic_set(&root->log_commit[0], 0);
1131 	atomic_set(&root->log_commit[1], 0);
1132 	atomic_set(&root->log_writers, 0);
1133 	atomic_set(&root->log_batch, 0);
1134 	refcount_set(&root->refs, 1);
1135 	atomic_set(&root->snapshot_force_cow, 0);
1136 	atomic_set(&root->nr_swapfiles, 0);
1137 	root->log_transid = 0;
1138 	root->log_transid_committed = -1;
1139 	root->last_log_commit = 0;
1140 	if (!dummy)
1141 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1142 				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1143 
1144 	memset(&root->root_key, 0, sizeof(root->root_key));
1145 	memset(&root->root_item, 0, sizeof(root->root_item));
1146 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1147 	if (!dummy)
1148 		root->defrag_trans_start = fs_info->generation;
1149 	else
1150 		root->defrag_trans_start = 0;
1151 	root->root_key.objectid = objectid;
1152 	root->anon_dev = 0;
1153 
1154 	spin_lock_init(&root->root_item_lock);
1155 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1156 #ifdef CONFIG_BTRFS_DEBUG
1157 	INIT_LIST_HEAD(&root->leak_list);
1158 	spin_lock(&fs_info->fs_roots_radix_lock);
1159 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1160 	spin_unlock(&fs_info->fs_roots_radix_lock);
1161 #endif
1162 }
1163 
1164 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1165 					   u64 objectid, gfp_t flags)
1166 {
1167 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1168 	if (root)
1169 		__setup_root(root, fs_info, objectid);
1170 	return root;
1171 }
1172 
1173 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1174 /* Should only be used by the testing infrastructure */
1175 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1176 {
1177 	struct btrfs_root *root;
1178 
1179 	if (!fs_info)
1180 		return ERR_PTR(-EINVAL);
1181 
1182 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1183 	if (!root)
1184 		return ERR_PTR(-ENOMEM);
1185 
1186 	/* We don't use the stripesize in selftest, set it as sectorsize */
1187 	root->alloc_bytenr = 0;
1188 
1189 	return root;
1190 }
1191 #endif
1192 
1193 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1194 				     u64 objectid)
1195 {
1196 	struct btrfs_fs_info *fs_info = trans->fs_info;
1197 	struct extent_buffer *leaf;
1198 	struct btrfs_root *tree_root = fs_info->tree_root;
1199 	struct btrfs_root *root;
1200 	struct btrfs_key key;
1201 	unsigned int nofs_flag;
1202 	int ret = 0;
1203 
1204 	/*
1205 	 * We're holding a transaction handle, so use a NOFS memory allocation
1206 	 * context to avoid deadlock if reclaim happens.
1207 	 */
1208 	nofs_flag = memalloc_nofs_save();
1209 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1210 	memalloc_nofs_restore(nofs_flag);
1211 	if (!root)
1212 		return ERR_PTR(-ENOMEM);
1213 
1214 	root->root_key.objectid = objectid;
1215 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1216 	root->root_key.offset = 0;
1217 
1218 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1219 	if (IS_ERR(leaf)) {
1220 		ret = PTR_ERR(leaf);
1221 		leaf = NULL;
1222 		goto fail;
1223 	}
1224 
1225 	root->node = leaf;
1226 	btrfs_mark_buffer_dirty(leaf);
1227 
1228 	root->commit_root = btrfs_root_node(root);
1229 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1230 
1231 	root->root_item.flags = 0;
1232 	root->root_item.byte_limit = 0;
1233 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1234 	btrfs_set_root_generation(&root->root_item, trans->transid);
1235 	btrfs_set_root_level(&root->root_item, 0);
1236 	btrfs_set_root_refs(&root->root_item, 1);
1237 	btrfs_set_root_used(&root->root_item, leaf->len);
1238 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1239 	btrfs_set_root_dirid(&root->root_item, 0);
1240 	if (is_fstree(objectid))
1241 		generate_random_guid(root->root_item.uuid);
1242 	else
1243 		export_guid(root->root_item.uuid, &guid_null);
1244 	root->root_item.drop_level = 0;
1245 
1246 	key.objectid = objectid;
1247 	key.type = BTRFS_ROOT_ITEM_KEY;
1248 	key.offset = 0;
1249 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1250 	if (ret)
1251 		goto fail;
1252 
1253 	btrfs_tree_unlock(leaf);
1254 
1255 	return root;
1256 
1257 fail:
1258 	if (leaf)
1259 		btrfs_tree_unlock(leaf);
1260 	btrfs_put_root(root);
1261 
1262 	return ERR_PTR(ret);
1263 }
1264 
1265 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1266 					 struct btrfs_fs_info *fs_info)
1267 {
1268 	struct btrfs_root *root;
1269 	struct extent_buffer *leaf;
1270 
1271 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1272 	if (!root)
1273 		return ERR_PTR(-ENOMEM);
1274 
1275 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1276 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1277 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1278 
1279 	/*
1280 	 * DON'T set REF_COWS for log trees
1281 	 *
1282 	 * log trees do not get reference counted because they go away
1283 	 * before a real commit is actually done.  They do store pointers
1284 	 * to file data extents, and those reference counts still get
1285 	 * updated (along with back refs to the log tree).
1286 	 */
1287 
1288 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1289 			NULL, 0, 0, 0);
1290 	if (IS_ERR(leaf)) {
1291 		btrfs_put_root(root);
1292 		return ERR_CAST(leaf);
1293 	}
1294 
1295 	root->node = leaf;
1296 
1297 	btrfs_mark_buffer_dirty(root->node);
1298 	btrfs_tree_unlock(root->node);
1299 	return root;
1300 }
1301 
1302 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1303 			     struct btrfs_fs_info *fs_info)
1304 {
1305 	struct btrfs_root *log_root;
1306 
1307 	log_root = alloc_log_tree(trans, fs_info);
1308 	if (IS_ERR(log_root))
1309 		return PTR_ERR(log_root);
1310 	WARN_ON(fs_info->log_root_tree);
1311 	fs_info->log_root_tree = log_root;
1312 	return 0;
1313 }
1314 
1315 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1316 		       struct btrfs_root *root)
1317 {
1318 	struct btrfs_fs_info *fs_info = root->fs_info;
1319 	struct btrfs_root *log_root;
1320 	struct btrfs_inode_item *inode_item;
1321 
1322 	log_root = alloc_log_tree(trans, fs_info);
1323 	if (IS_ERR(log_root))
1324 		return PTR_ERR(log_root);
1325 
1326 	log_root->last_trans = trans->transid;
1327 	log_root->root_key.offset = root->root_key.objectid;
1328 
1329 	inode_item = &log_root->root_item.inode;
1330 	btrfs_set_stack_inode_generation(inode_item, 1);
1331 	btrfs_set_stack_inode_size(inode_item, 3);
1332 	btrfs_set_stack_inode_nlink(inode_item, 1);
1333 	btrfs_set_stack_inode_nbytes(inode_item,
1334 				     fs_info->nodesize);
1335 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1336 
1337 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1338 
1339 	WARN_ON(root->log_root);
1340 	root->log_root = log_root;
1341 	root->log_transid = 0;
1342 	root->log_transid_committed = -1;
1343 	root->last_log_commit = 0;
1344 	return 0;
1345 }
1346 
1347 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1348 					struct btrfs_key *key)
1349 {
1350 	struct btrfs_root *root;
1351 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1352 	struct btrfs_path *path;
1353 	u64 generation;
1354 	int ret;
1355 	int level;
1356 
1357 	path = btrfs_alloc_path();
1358 	if (!path)
1359 		return ERR_PTR(-ENOMEM);
1360 
1361 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1362 	if (!root) {
1363 		ret = -ENOMEM;
1364 		goto alloc_fail;
1365 	}
1366 
1367 	ret = btrfs_find_root(tree_root, key, path,
1368 			      &root->root_item, &root->root_key);
1369 	if (ret) {
1370 		if (ret > 0)
1371 			ret = -ENOENT;
1372 		goto find_fail;
1373 	}
1374 
1375 	generation = btrfs_root_generation(&root->root_item);
1376 	level = btrfs_root_level(&root->root_item);
1377 	root->node = read_tree_block(fs_info,
1378 				     btrfs_root_bytenr(&root->root_item),
1379 				     generation, level, NULL);
1380 	if (IS_ERR(root->node)) {
1381 		ret = PTR_ERR(root->node);
1382 		root->node = NULL;
1383 		goto find_fail;
1384 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1385 		ret = -EIO;
1386 		goto find_fail;
1387 	}
1388 	root->commit_root = btrfs_root_node(root);
1389 out:
1390 	btrfs_free_path(path);
1391 	return root;
1392 
1393 find_fail:
1394 	btrfs_put_root(root);
1395 alloc_fail:
1396 	root = ERR_PTR(ret);
1397 	goto out;
1398 }
1399 
1400 static int btrfs_init_fs_root(struct btrfs_root *root)
1401 {
1402 	int ret;
1403 	unsigned int nofs_flag;
1404 
1405 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1406 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1407 					GFP_NOFS);
1408 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1409 		ret = -ENOMEM;
1410 		goto fail;
1411 	}
1412 
1413 	/*
1414 	 * We might be called under a transaction (e.g. indirect backref
1415 	 * resolution) which could deadlock if it triggers memory reclaim
1416 	 */
1417 	nofs_flag = memalloc_nofs_save();
1418 	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1419 	memalloc_nofs_restore(nofs_flag);
1420 	if (ret)
1421 		goto fail;
1422 
1423 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1424 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1425 		btrfs_check_and_init_root_item(&root->root_item);
1426 	}
1427 
1428 	btrfs_init_free_ino_ctl(root);
1429 	spin_lock_init(&root->ino_cache_lock);
1430 	init_waitqueue_head(&root->ino_cache_wait);
1431 
1432 	ret = get_anon_bdev(&root->anon_dev);
1433 	if (ret)
1434 		goto fail;
1435 
1436 	mutex_lock(&root->objectid_mutex);
1437 	ret = btrfs_find_highest_objectid(root,
1438 					&root->highest_objectid);
1439 	if (ret) {
1440 		mutex_unlock(&root->objectid_mutex);
1441 		goto fail;
1442 	}
1443 
1444 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1445 
1446 	mutex_unlock(&root->objectid_mutex);
1447 
1448 	return 0;
1449 fail:
1450 	/* The caller is responsible to call btrfs_free_fs_root */
1451 	return ret;
1452 }
1453 
1454 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1455 					       u64 root_id)
1456 {
1457 	struct btrfs_root *root;
1458 
1459 	spin_lock(&fs_info->fs_roots_radix_lock);
1460 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1461 				 (unsigned long)root_id);
1462 	if (root)
1463 		root = btrfs_grab_root(root);
1464 	spin_unlock(&fs_info->fs_roots_radix_lock);
1465 	return root;
1466 }
1467 
1468 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1469 			 struct btrfs_root *root)
1470 {
1471 	int ret;
1472 
1473 	ret = radix_tree_preload(GFP_NOFS);
1474 	if (ret)
1475 		return ret;
1476 
1477 	spin_lock(&fs_info->fs_roots_radix_lock);
1478 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1479 				(unsigned long)root->root_key.objectid,
1480 				root);
1481 	if (ret == 0) {
1482 		btrfs_grab_root(root);
1483 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1484 	}
1485 	spin_unlock(&fs_info->fs_roots_radix_lock);
1486 	radix_tree_preload_end();
1487 
1488 	return ret;
1489 }
1490 
1491 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1492 {
1493 #ifdef CONFIG_BTRFS_DEBUG
1494 	struct btrfs_root *root;
1495 
1496 	while (!list_empty(&fs_info->allocated_roots)) {
1497 		root = list_first_entry(&fs_info->allocated_roots,
1498 					struct btrfs_root, leak_list);
1499 		btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1500 			  root->root_key.objectid, root->root_key.offset,
1501 			  refcount_read(&root->refs));
1502 		while (refcount_read(&root->refs) > 1)
1503 			btrfs_put_root(root);
1504 		btrfs_put_root(root);
1505 	}
1506 #endif
1507 }
1508 
1509 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1510 {
1511 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1512 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1513 	percpu_counter_destroy(&fs_info->dio_bytes);
1514 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1515 	btrfs_free_csum_hash(fs_info);
1516 	btrfs_free_stripe_hash_table(fs_info);
1517 	btrfs_free_ref_cache(fs_info);
1518 	kfree(fs_info->balance_ctl);
1519 	kfree(fs_info->delayed_root);
1520 	btrfs_put_root(fs_info->extent_root);
1521 	btrfs_put_root(fs_info->tree_root);
1522 	btrfs_put_root(fs_info->chunk_root);
1523 	btrfs_put_root(fs_info->dev_root);
1524 	btrfs_put_root(fs_info->csum_root);
1525 	btrfs_put_root(fs_info->quota_root);
1526 	btrfs_put_root(fs_info->uuid_root);
1527 	btrfs_put_root(fs_info->free_space_root);
1528 	btrfs_put_root(fs_info->fs_root);
1529 	btrfs_check_leaked_roots(fs_info);
1530 	btrfs_extent_buffer_leak_debug_check(fs_info);
1531 	kfree(fs_info->super_copy);
1532 	kfree(fs_info->super_for_commit);
1533 	kvfree(fs_info);
1534 }
1535 
1536 
1537 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1538 				     struct btrfs_key *location,
1539 				     bool check_ref)
1540 {
1541 	struct btrfs_root *root;
1542 	struct btrfs_path *path;
1543 	struct btrfs_key key;
1544 	int ret;
1545 
1546 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1547 		return btrfs_grab_root(fs_info->tree_root);
1548 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1549 		return btrfs_grab_root(fs_info->extent_root);
1550 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1551 		return btrfs_grab_root(fs_info->chunk_root);
1552 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1553 		return btrfs_grab_root(fs_info->dev_root);
1554 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1555 		return btrfs_grab_root(fs_info->csum_root);
1556 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1557 		return btrfs_grab_root(fs_info->quota_root) ?
1558 			fs_info->quota_root : ERR_PTR(-ENOENT);
1559 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1560 		return btrfs_grab_root(fs_info->uuid_root) ?
1561 			fs_info->uuid_root : ERR_PTR(-ENOENT);
1562 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1563 		return btrfs_grab_root(fs_info->free_space_root) ?
1564 			fs_info->free_space_root : ERR_PTR(-ENOENT);
1565 again:
1566 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1567 	if (root) {
1568 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1569 			btrfs_put_root(root);
1570 			return ERR_PTR(-ENOENT);
1571 		}
1572 		return root;
1573 	}
1574 
1575 	root = btrfs_read_tree_root(fs_info->tree_root, location);
1576 	if (IS_ERR(root))
1577 		return root;
1578 
1579 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1580 		ret = -ENOENT;
1581 		goto fail;
1582 	}
1583 
1584 	ret = btrfs_init_fs_root(root);
1585 	if (ret)
1586 		goto fail;
1587 
1588 	path = btrfs_alloc_path();
1589 	if (!path) {
1590 		ret = -ENOMEM;
1591 		goto fail;
1592 	}
1593 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1594 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1595 	key.offset = location->objectid;
1596 
1597 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1598 	btrfs_free_path(path);
1599 	if (ret < 0)
1600 		goto fail;
1601 	if (ret == 0)
1602 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1603 
1604 	ret = btrfs_insert_fs_root(fs_info, root);
1605 	if (ret) {
1606 		btrfs_put_root(root);
1607 		if (ret == -EEXIST)
1608 			goto again;
1609 		goto fail;
1610 	}
1611 	return root;
1612 fail:
1613 	btrfs_put_root(root);
1614 	return ERR_PTR(ret);
1615 }
1616 
1617 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1618 {
1619 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1620 	int ret = 0;
1621 	struct btrfs_device *device;
1622 	struct backing_dev_info *bdi;
1623 
1624 	rcu_read_lock();
1625 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1626 		if (!device->bdev)
1627 			continue;
1628 		bdi = device->bdev->bd_bdi;
1629 		if (bdi_congested(bdi, bdi_bits)) {
1630 			ret = 1;
1631 			break;
1632 		}
1633 	}
1634 	rcu_read_unlock();
1635 	return ret;
1636 }
1637 
1638 /*
1639  * called by the kthread helper functions to finally call the bio end_io
1640  * functions.  This is where read checksum verification actually happens
1641  */
1642 static void end_workqueue_fn(struct btrfs_work *work)
1643 {
1644 	struct bio *bio;
1645 	struct btrfs_end_io_wq *end_io_wq;
1646 
1647 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1648 	bio = end_io_wq->bio;
1649 
1650 	bio->bi_status = end_io_wq->status;
1651 	bio->bi_private = end_io_wq->private;
1652 	bio->bi_end_io = end_io_wq->end_io;
1653 	bio_endio(bio);
1654 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1655 }
1656 
1657 static int cleaner_kthread(void *arg)
1658 {
1659 	struct btrfs_root *root = arg;
1660 	struct btrfs_fs_info *fs_info = root->fs_info;
1661 	int again;
1662 
1663 	while (1) {
1664 		again = 0;
1665 
1666 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1667 
1668 		/* Make the cleaner go to sleep early. */
1669 		if (btrfs_need_cleaner_sleep(fs_info))
1670 			goto sleep;
1671 
1672 		/*
1673 		 * Do not do anything if we might cause open_ctree() to block
1674 		 * before we have finished mounting the filesystem.
1675 		 */
1676 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1677 			goto sleep;
1678 
1679 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1680 			goto sleep;
1681 
1682 		/*
1683 		 * Avoid the problem that we change the status of the fs
1684 		 * during the above check and trylock.
1685 		 */
1686 		if (btrfs_need_cleaner_sleep(fs_info)) {
1687 			mutex_unlock(&fs_info->cleaner_mutex);
1688 			goto sleep;
1689 		}
1690 
1691 		btrfs_run_delayed_iputs(fs_info);
1692 
1693 		again = btrfs_clean_one_deleted_snapshot(root);
1694 		mutex_unlock(&fs_info->cleaner_mutex);
1695 
1696 		/*
1697 		 * The defragger has dealt with the R/O remount and umount,
1698 		 * needn't do anything special here.
1699 		 */
1700 		btrfs_run_defrag_inodes(fs_info);
1701 
1702 		/*
1703 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1704 		 * with relocation (btrfs_relocate_chunk) and relocation
1705 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1706 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1707 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1708 		 * unused block groups.
1709 		 */
1710 		btrfs_delete_unused_bgs(fs_info);
1711 sleep:
1712 		clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1713 		if (kthread_should_park())
1714 			kthread_parkme();
1715 		if (kthread_should_stop())
1716 			return 0;
1717 		if (!again) {
1718 			set_current_state(TASK_INTERRUPTIBLE);
1719 			schedule();
1720 			__set_current_state(TASK_RUNNING);
1721 		}
1722 	}
1723 }
1724 
1725 static int transaction_kthread(void *arg)
1726 {
1727 	struct btrfs_root *root = arg;
1728 	struct btrfs_fs_info *fs_info = root->fs_info;
1729 	struct btrfs_trans_handle *trans;
1730 	struct btrfs_transaction *cur;
1731 	u64 transid;
1732 	time64_t now;
1733 	unsigned long delay;
1734 	bool cannot_commit;
1735 
1736 	do {
1737 		cannot_commit = false;
1738 		delay = HZ * fs_info->commit_interval;
1739 		mutex_lock(&fs_info->transaction_kthread_mutex);
1740 
1741 		spin_lock(&fs_info->trans_lock);
1742 		cur = fs_info->running_transaction;
1743 		if (!cur) {
1744 			spin_unlock(&fs_info->trans_lock);
1745 			goto sleep;
1746 		}
1747 
1748 		now = ktime_get_seconds();
1749 		if (cur->state < TRANS_STATE_COMMIT_START &&
1750 		    !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1751 		    (now < cur->start_time ||
1752 		     now - cur->start_time < fs_info->commit_interval)) {
1753 			spin_unlock(&fs_info->trans_lock);
1754 			delay = HZ * 5;
1755 			goto sleep;
1756 		}
1757 		transid = cur->transid;
1758 		spin_unlock(&fs_info->trans_lock);
1759 
1760 		/* If the file system is aborted, this will always fail. */
1761 		trans = btrfs_attach_transaction(root);
1762 		if (IS_ERR(trans)) {
1763 			if (PTR_ERR(trans) != -ENOENT)
1764 				cannot_commit = true;
1765 			goto sleep;
1766 		}
1767 		if (transid == trans->transid) {
1768 			btrfs_commit_transaction(trans);
1769 		} else {
1770 			btrfs_end_transaction(trans);
1771 		}
1772 sleep:
1773 		wake_up_process(fs_info->cleaner_kthread);
1774 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1775 
1776 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1777 				      &fs_info->fs_state)))
1778 			btrfs_cleanup_transaction(fs_info);
1779 		if (!kthread_should_stop() &&
1780 				(!btrfs_transaction_blocked(fs_info) ||
1781 				 cannot_commit))
1782 			schedule_timeout_interruptible(delay);
1783 	} while (!kthread_should_stop());
1784 	return 0;
1785 }
1786 
1787 /*
1788  * This will find the highest generation in the array of root backups.  The
1789  * index of the highest array is returned, or -EINVAL if we can't find
1790  * anything.
1791  *
1792  * We check to make sure the array is valid by comparing the
1793  * generation of the latest  root in the array with the generation
1794  * in the super block.  If they don't match we pitch it.
1795  */
1796 static int find_newest_super_backup(struct btrfs_fs_info *info)
1797 {
1798 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1799 	u64 cur;
1800 	struct btrfs_root_backup *root_backup;
1801 	int i;
1802 
1803 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1804 		root_backup = info->super_copy->super_roots + i;
1805 		cur = btrfs_backup_tree_root_gen(root_backup);
1806 		if (cur == newest_gen)
1807 			return i;
1808 	}
1809 
1810 	return -EINVAL;
1811 }
1812 
1813 /*
1814  * copy all the root pointers into the super backup array.
1815  * this will bump the backup pointer by one when it is
1816  * done
1817  */
1818 static void backup_super_roots(struct btrfs_fs_info *info)
1819 {
1820 	const int next_backup = info->backup_root_index;
1821 	struct btrfs_root_backup *root_backup;
1822 
1823 	root_backup = info->super_for_commit->super_roots + next_backup;
1824 
1825 	/*
1826 	 * make sure all of our padding and empty slots get zero filled
1827 	 * regardless of which ones we use today
1828 	 */
1829 	memset(root_backup, 0, sizeof(*root_backup));
1830 
1831 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1832 
1833 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1834 	btrfs_set_backup_tree_root_gen(root_backup,
1835 			       btrfs_header_generation(info->tree_root->node));
1836 
1837 	btrfs_set_backup_tree_root_level(root_backup,
1838 			       btrfs_header_level(info->tree_root->node));
1839 
1840 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1841 	btrfs_set_backup_chunk_root_gen(root_backup,
1842 			       btrfs_header_generation(info->chunk_root->node));
1843 	btrfs_set_backup_chunk_root_level(root_backup,
1844 			       btrfs_header_level(info->chunk_root->node));
1845 
1846 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1847 	btrfs_set_backup_extent_root_gen(root_backup,
1848 			       btrfs_header_generation(info->extent_root->node));
1849 	btrfs_set_backup_extent_root_level(root_backup,
1850 			       btrfs_header_level(info->extent_root->node));
1851 
1852 	/*
1853 	 * we might commit during log recovery, which happens before we set
1854 	 * the fs_root.  Make sure it is valid before we fill it in.
1855 	 */
1856 	if (info->fs_root && info->fs_root->node) {
1857 		btrfs_set_backup_fs_root(root_backup,
1858 					 info->fs_root->node->start);
1859 		btrfs_set_backup_fs_root_gen(root_backup,
1860 			       btrfs_header_generation(info->fs_root->node));
1861 		btrfs_set_backup_fs_root_level(root_backup,
1862 			       btrfs_header_level(info->fs_root->node));
1863 	}
1864 
1865 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1866 	btrfs_set_backup_dev_root_gen(root_backup,
1867 			       btrfs_header_generation(info->dev_root->node));
1868 	btrfs_set_backup_dev_root_level(root_backup,
1869 				       btrfs_header_level(info->dev_root->node));
1870 
1871 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1872 	btrfs_set_backup_csum_root_gen(root_backup,
1873 			       btrfs_header_generation(info->csum_root->node));
1874 	btrfs_set_backup_csum_root_level(root_backup,
1875 			       btrfs_header_level(info->csum_root->node));
1876 
1877 	btrfs_set_backup_total_bytes(root_backup,
1878 			     btrfs_super_total_bytes(info->super_copy));
1879 	btrfs_set_backup_bytes_used(root_backup,
1880 			     btrfs_super_bytes_used(info->super_copy));
1881 	btrfs_set_backup_num_devices(root_backup,
1882 			     btrfs_super_num_devices(info->super_copy));
1883 
1884 	/*
1885 	 * if we don't copy this out to the super_copy, it won't get remembered
1886 	 * for the next commit
1887 	 */
1888 	memcpy(&info->super_copy->super_roots,
1889 	       &info->super_for_commit->super_roots,
1890 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1891 }
1892 
1893 /*
1894  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1895  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1896  *
1897  * fs_info - filesystem whose backup roots need to be read
1898  * priority - priority of backup root required
1899  *
1900  * Returns backup root index on success and -EINVAL otherwise.
1901  */
1902 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1903 {
1904 	int backup_index = find_newest_super_backup(fs_info);
1905 	struct btrfs_super_block *super = fs_info->super_copy;
1906 	struct btrfs_root_backup *root_backup;
1907 
1908 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1909 		if (priority == 0)
1910 			return backup_index;
1911 
1912 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1913 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1914 	} else {
1915 		return -EINVAL;
1916 	}
1917 
1918 	root_backup = super->super_roots + backup_index;
1919 
1920 	btrfs_set_super_generation(super,
1921 				   btrfs_backup_tree_root_gen(root_backup));
1922 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1923 	btrfs_set_super_root_level(super,
1924 				   btrfs_backup_tree_root_level(root_backup));
1925 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1926 
1927 	/*
1928 	 * Fixme: the total bytes and num_devices need to match or we should
1929 	 * need a fsck
1930 	 */
1931 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1932 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1933 
1934 	return backup_index;
1935 }
1936 
1937 /* helper to cleanup workers */
1938 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1939 {
1940 	btrfs_destroy_workqueue(fs_info->fixup_workers);
1941 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1942 	btrfs_destroy_workqueue(fs_info->workers);
1943 	btrfs_destroy_workqueue(fs_info->endio_workers);
1944 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1945 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
1946 	btrfs_destroy_workqueue(fs_info->rmw_workers);
1947 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1948 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1949 	btrfs_destroy_workqueue(fs_info->delayed_workers);
1950 	btrfs_destroy_workqueue(fs_info->caching_workers);
1951 	btrfs_destroy_workqueue(fs_info->readahead_workers);
1952 	btrfs_destroy_workqueue(fs_info->flush_workers);
1953 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1954 	if (fs_info->discard_ctl.discard_workers)
1955 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1956 	/*
1957 	 * Now that all other work queues are destroyed, we can safely destroy
1958 	 * the queues used for metadata I/O, since tasks from those other work
1959 	 * queues can do metadata I/O operations.
1960 	 */
1961 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1962 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
1963 }
1964 
1965 static void free_root_extent_buffers(struct btrfs_root *root)
1966 {
1967 	if (root) {
1968 		free_extent_buffer(root->node);
1969 		free_extent_buffer(root->commit_root);
1970 		root->node = NULL;
1971 		root->commit_root = NULL;
1972 	}
1973 }
1974 
1975 /* helper to cleanup tree roots */
1976 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1977 {
1978 	free_root_extent_buffers(info->tree_root);
1979 
1980 	free_root_extent_buffers(info->dev_root);
1981 	free_root_extent_buffers(info->extent_root);
1982 	free_root_extent_buffers(info->csum_root);
1983 	free_root_extent_buffers(info->quota_root);
1984 	free_root_extent_buffers(info->uuid_root);
1985 	free_root_extent_buffers(info->fs_root);
1986 	if (free_chunk_root)
1987 		free_root_extent_buffers(info->chunk_root);
1988 	free_root_extent_buffers(info->free_space_root);
1989 }
1990 
1991 void btrfs_put_root(struct btrfs_root *root)
1992 {
1993 	if (!root)
1994 		return;
1995 
1996 	if (refcount_dec_and_test(&root->refs)) {
1997 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1998 		if (root->anon_dev)
1999 			free_anon_bdev(root->anon_dev);
2000 		btrfs_drew_lock_destroy(&root->snapshot_lock);
2001 		free_extent_buffer(root->node);
2002 		free_extent_buffer(root->commit_root);
2003 		kfree(root->free_ino_ctl);
2004 		kfree(root->free_ino_pinned);
2005 #ifdef CONFIG_BTRFS_DEBUG
2006 		spin_lock(&root->fs_info->fs_roots_radix_lock);
2007 		list_del_init(&root->leak_list);
2008 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2009 #endif
2010 		kfree(root);
2011 	}
2012 }
2013 
2014 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2015 {
2016 	int ret;
2017 	struct btrfs_root *gang[8];
2018 	int i;
2019 
2020 	while (!list_empty(&fs_info->dead_roots)) {
2021 		gang[0] = list_entry(fs_info->dead_roots.next,
2022 				     struct btrfs_root, root_list);
2023 		list_del(&gang[0]->root_list);
2024 
2025 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2026 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2027 		btrfs_put_root(gang[0]);
2028 	}
2029 
2030 	while (1) {
2031 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2032 					     (void **)gang, 0,
2033 					     ARRAY_SIZE(gang));
2034 		if (!ret)
2035 			break;
2036 		for (i = 0; i < ret; i++)
2037 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2038 	}
2039 
2040 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
2041 		btrfs_free_log_root_tree(NULL, fs_info);
2042 }
2043 
2044 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2045 {
2046 	mutex_init(&fs_info->scrub_lock);
2047 	atomic_set(&fs_info->scrubs_running, 0);
2048 	atomic_set(&fs_info->scrub_pause_req, 0);
2049 	atomic_set(&fs_info->scrubs_paused, 0);
2050 	atomic_set(&fs_info->scrub_cancel_req, 0);
2051 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2052 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2053 }
2054 
2055 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2056 {
2057 	spin_lock_init(&fs_info->balance_lock);
2058 	mutex_init(&fs_info->balance_mutex);
2059 	atomic_set(&fs_info->balance_pause_req, 0);
2060 	atomic_set(&fs_info->balance_cancel_req, 0);
2061 	fs_info->balance_ctl = NULL;
2062 	init_waitqueue_head(&fs_info->balance_wait_q);
2063 }
2064 
2065 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2066 {
2067 	struct inode *inode = fs_info->btree_inode;
2068 
2069 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2070 	set_nlink(inode, 1);
2071 	/*
2072 	 * we set the i_size on the btree inode to the max possible int.
2073 	 * the real end of the address space is determined by all of
2074 	 * the devices in the system
2075 	 */
2076 	inode->i_size = OFFSET_MAX;
2077 	inode->i_mapping->a_ops = &btree_aops;
2078 
2079 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2080 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2081 			    IO_TREE_INODE_IO, inode);
2082 	BTRFS_I(inode)->io_tree.track_uptodate = false;
2083 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2084 
2085 	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2086 
2087 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2088 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2089 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2090 	btrfs_insert_inode_hash(inode);
2091 }
2092 
2093 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2094 {
2095 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2096 	init_rwsem(&fs_info->dev_replace.rwsem);
2097 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2098 }
2099 
2100 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2101 {
2102 	spin_lock_init(&fs_info->qgroup_lock);
2103 	mutex_init(&fs_info->qgroup_ioctl_lock);
2104 	fs_info->qgroup_tree = RB_ROOT;
2105 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2106 	fs_info->qgroup_seq = 1;
2107 	fs_info->qgroup_ulist = NULL;
2108 	fs_info->qgroup_rescan_running = false;
2109 	mutex_init(&fs_info->qgroup_rescan_lock);
2110 }
2111 
2112 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2113 		struct btrfs_fs_devices *fs_devices)
2114 {
2115 	u32 max_active = fs_info->thread_pool_size;
2116 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2117 
2118 	fs_info->workers =
2119 		btrfs_alloc_workqueue(fs_info, "worker",
2120 				      flags | WQ_HIGHPRI, max_active, 16);
2121 
2122 	fs_info->delalloc_workers =
2123 		btrfs_alloc_workqueue(fs_info, "delalloc",
2124 				      flags, max_active, 2);
2125 
2126 	fs_info->flush_workers =
2127 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2128 				      flags, max_active, 0);
2129 
2130 	fs_info->caching_workers =
2131 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2132 
2133 	fs_info->fixup_workers =
2134 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2135 
2136 	/*
2137 	 * endios are largely parallel and should have a very
2138 	 * low idle thresh
2139 	 */
2140 	fs_info->endio_workers =
2141 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2142 	fs_info->endio_meta_workers =
2143 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2144 				      max_active, 4);
2145 	fs_info->endio_meta_write_workers =
2146 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2147 				      max_active, 2);
2148 	fs_info->endio_raid56_workers =
2149 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2150 				      max_active, 4);
2151 	fs_info->endio_repair_workers =
2152 		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2153 	fs_info->rmw_workers =
2154 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2155 	fs_info->endio_write_workers =
2156 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2157 				      max_active, 2);
2158 	fs_info->endio_freespace_worker =
2159 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2160 				      max_active, 0);
2161 	fs_info->delayed_workers =
2162 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2163 				      max_active, 0);
2164 	fs_info->readahead_workers =
2165 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2166 				      max_active, 2);
2167 	fs_info->qgroup_rescan_workers =
2168 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2169 	fs_info->discard_ctl.discard_workers =
2170 		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2171 
2172 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2173 	      fs_info->flush_workers &&
2174 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2175 	      fs_info->endio_meta_write_workers &&
2176 	      fs_info->endio_repair_workers &&
2177 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2178 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2179 	      fs_info->caching_workers && fs_info->readahead_workers &&
2180 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2181 	      fs_info->qgroup_rescan_workers &&
2182 	      fs_info->discard_ctl.discard_workers)) {
2183 		return -ENOMEM;
2184 	}
2185 
2186 	return 0;
2187 }
2188 
2189 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2190 {
2191 	struct crypto_shash *csum_shash;
2192 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2193 
2194 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2195 
2196 	if (IS_ERR(csum_shash)) {
2197 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2198 			  csum_driver);
2199 		return PTR_ERR(csum_shash);
2200 	}
2201 
2202 	fs_info->csum_shash = csum_shash;
2203 
2204 	return 0;
2205 }
2206 
2207 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2208 			    struct btrfs_fs_devices *fs_devices)
2209 {
2210 	int ret;
2211 	struct btrfs_root *log_tree_root;
2212 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2213 	u64 bytenr = btrfs_super_log_root(disk_super);
2214 	int level = btrfs_super_log_root_level(disk_super);
2215 
2216 	if (fs_devices->rw_devices == 0) {
2217 		btrfs_warn(fs_info, "log replay required on RO media");
2218 		return -EIO;
2219 	}
2220 
2221 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2222 					 GFP_KERNEL);
2223 	if (!log_tree_root)
2224 		return -ENOMEM;
2225 
2226 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2227 					      fs_info->generation + 1,
2228 					      level, NULL);
2229 	if (IS_ERR(log_tree_root->node)) {
2230 		btrfs_warn(fs_info, "failed to read log tree");
2231 		ret = PTR_ERR(log_tree_root->node);
2232 		log_tree_root->node = NULL;
2233 		btrfs_put_root(log_tree_root);
2234 		return ret;
2235 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2236 		btrfs_err(fs_info, "failed to read log tree");
2237 		btrfs_put_root(log_tree_root);
2238 		return -EIO;
2239 	}
2240 	/* returns with log_tree_root freed on success */
2241 	ret = btrfs_recover_log_trees(log_tree_root);
2242 	if (ret) {
2243 		btrfs_handle_fs_error(fs_info, ret,
2244 				      "Failed to recover log tree");
2245 		btrfs_put_root(log_tree_root);
2246 		return ret;
2247 	}
2248 
2249 	if (sb_rdonly(fs_info->sb)) {
2250 		ret = btrfs_commit_super(fs_info);
2251 		if (ret)
2252 			return ret;
2253 	}
2254 
2255 	return 0;
2256 }
2257 
2258 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2259 {
2260 	struct btrfs_root *tree_root = fs_info->tree_root;
2261 	struct btrfs_root *root;
2262 	struct btrfs_key location;
2263 	int ret;
2264 
2265 	BUG_ON(!fs_info->tree_root);
2266 
2267 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2268 	location.type = BTRFS_ROOT_ITEM_KEY;
2269 	location.offset = 0;
2270 
2271 	root = btrfs_read_tree_root(tree_root, &location);
2272 	if (IS_ERR(root)) {
2273 		ret = PTR_ERR(root);
2274 		goto out;
2275 	}
2276 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2277 	fs_info->extent_root = root;
2278 
2279 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2280 	root = btrfs_read_tree_root(tree_root, &location);
2281 	if (IS_ERR(root)) {
2282 		ret = PTR_ERR(root);
2283 		goto out;
2284 	}
2285 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2286 	fs_info->dev_root = root;
2287 	btrfs_init_devices_late(fs_info);
2288 
2289 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2290 	root = btrfs_read_tree_root(tree_root, &location);
2291 	if (IS_ERR(root)) {
2292 		ret = PTR_ERR(root);
2293 		goto out;
2294 	}
2295 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2296 	fs_info->csum_root = root;
2297 
2298 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2299 	root = btrfs_read_tree_root(tree_root, &location);
2300 	if (!IS_ERR(root)) {
2301 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2302 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2303 		fs_info->quota_root = root;
2304 	}
2305 
2306 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2307 	root = btrfs_read_tree_root(tree_root, &location);
2308 	if (IS_ERR(root)) {
2309 		ret = PTR_ERR(root);
2310 		if (ret != -ENOENT)
2311 			goto out;
2312 	} else {
2313 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2314 		fs_info->uuid_root = root;
2315 	}
2316 
2317 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2318 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2319 		root = btrfs_read_tree_root(tree_root, &location);
2320 		if (IS_ERR(root)) {
2321 			ret = PTR_ERR(root);
2322 			goto out;
2323 		}
2324 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2325 		fs_info->free_space_root = root;
2326 	}
2327 
2328 	return 0;
2329 out:
2330 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2331 		   location.objectid, ret);
2332 	return ret;
2333 }
2334 
2335 /*
2336  * Real super block validation
2337  * NOTE: super csum type and incompat features will not be checked here.
2338  *
2339  * @sb:		super block to check
2340  * @mirror_num:	the super block number to check its bytenr:
2341  * 		0	the primary (1st) sb
2342  * 		1, 2	2nd and 3rd backup copy
2343  * 	       -1	skip bytenr check
2344  */
2345 static int validate_super(struct btrfs_fs_info *fs_info,
2346 			    struct btrfs_super_block *sb, int mirror_num)
2347 {
2348 	u64 nodesize = btrfs_super_nodesize(sb);
2349 	u64 sectorsize = btrfs_super_sectorsize(sb);
2350 	int ret = 0;
2351 
2352 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2353 		btrfs_err(fs_info, "no valid FS found");
2354 		ret = -EINVAL;
2355 	}
2356 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2357 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2358 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2359 		ret = -EINVAL;
2360 	}
2361 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2362 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2363 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2364 		ret = -EINVAL;
2365 	}
2366 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2367 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2368 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2369 		ret = -EINVAL;
2370 	}
2371 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2372 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2373 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2374 		ret = -EINVAL;
2375 	}
2376 
2377 	/*
2378 	 * Check sectorsize and nodesize first, other check will need it.
2379 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2380 	 */
2381 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2382 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2383 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2384 		ret = -EINVAL;
2385 	}
2386 	/* Only PAGE SIZE is supported yet */
2387 	if (sectorsize != PAGE_SIZE) {
2388 		btrfs_err(fs_info,
2389 			"sectorsize %llu not supported yet, only support %lu",
2390 			sectorsize, PAGE_SIZE);
2391 		ret = -EINVAL;
2392 	}
2393 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2394 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2395 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2396 		ret = -EINVAL;
2397 	}
2398 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2399 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2400 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2401 		ret = -EINVAL;
2402 	}
2403 
2404 	/* Root alignment check */
2405 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2406 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2407 			   btrfs_super_root(sb));
2408 		ret = -EINVAL;
2409 	}
2410 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2411 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2412 			   btrfs_super_chunk_root(sb));
2413 		ret = -EINVAL;
2414 	}
2415 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2416 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2417 			   btrfs_super_log_root(sb));
2418 		ret = -EINVAL;
2419 	}
2420 
2421 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2422 		   BTRFS_FSID_SIZE) != 0) {
2423 		btrfs_err(fs_info,
2424 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2425 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2426 		ret = -EINVAL;
2427 	}
2428 
2429 	/*
2430 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2431 	 * done later
2432 	 */
2433 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2434 		btrfs_err(fs_info, "bytes_used is too small %llu",
2435 			  btrfs_super_bytes_used(sb));
2436 		ret = -EINVAL;
2437 	}
2438 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2439 		btrfs_err(fs_info, "invalid stripesize %u",
2440 			  btrfs_super_stripesize(sb));
2441 		ret = -EINVAL;
2442 	}
2443 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2444 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2445 			   btrfs_super_num_devices(sb));
2446 	if (btrfs_super_num_devices(sb) == 0) {
2447 		btrfs_err(fs_info, "number of devices is 0");
2448 		ret = -EINVAL;
2449 	}
2450 
2451 	if (mirror_num >= 0 &&
2452 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2453 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2454 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2455 		ret = -EINVAL;
2456 	}
2457 
2458 	/*
2459 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2460 	 * and one chunk
2461 	 */
2462 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2463 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2464 			  btrfs_super_sys_array_size(sb),
2465 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2466 		ret = -EINVAL;
2467 	}
2468 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2469 			+ sizeof(struct btrfs_chunk)) {
2470 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2471 			  btrfs_super_sys_array_size(sb),
2472 			  sizeof(struct btrfs_disk_key)
2473 			  + sizeof(struct btrfs_chunk));
2474 		ret = -EINVAL;
2475 	}
2476 
2477 	/*
2478 	 * The generation is a global counter, we'll trust it more than the others
2479 	 * but it's still possible that it's the one that's wrong.
2480 	 */
2481 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2482 		btrfs_warn(fs_info,
2483 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2484 			btrfs_super_generation(sb),
2485 			btrfs_super_chunk_root_generation(sb));
2486 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2487 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2488 		btrfs_warn(fs_info,
2489 			"suspicious: generation < cache_generation: %llu < %llu",
2490 			btrfs_super_generation(sb),
2491 			btrfs_super_cache_generation(sb));
2492 
2493 	return ret;
2494 }
2495 
2496 /*
2497  * Validation of super block at mount time.
2498  * Some checks already done early at mount time, like csum type and incompat
2499  * flags will be skipped.
2500  */
2501 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2502 {
2503 	return validate_super(fs_info, fs_info->super_copy, 0);
2504 }
2505 
2506 /*
2507  * Validation of super block at write time.
2508  * Some checks like bytenr check will be skipped as their values will be
2509  * overwritten soon.
2510  * Extra checks like csum type and incompat flags will be done here.
2511  */
2512 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2513 				      struct btrfs_super_block *sb)
2514 {
2515 	int ret;
2516 
2517 	ret = validate_super(fs_info, sb, -1);
2518 	if (ret < 0)
2519 		goto out;
2520 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2521 		ret = -EUCLEAN;
2522 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2523 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2524 		goto out;
2525 	}
2526 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2527 		ret = -EUCLEAN;
2528 		btrfs_err(fs_info,
2529 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2530 			  btrfs_super_incompat_flags(sb),
2531 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2532 		goto out;
2533 	}
2534 out:
2535 	if (ret < 0)
2536 		btrfs_err(fs_info,
2537 		"super block corruption detected before writing it to disk");
2538 	return ret;
2539 }
2540 
2541 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2542 {
2543 	int backup_index = find_newest_super_backup(fs_info);
2544 	struct btrfs_super_block *sb = fs_info->super_copy;
2545 	struct btrfs_root *tree_root = fs_info->tree_root;
2546 	bool handle_error = false;
2547 	int ret = 0;
2548 	int i;
2549 
2550 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2551 		u64 generation;
2552 		int level;
2553 
2554 		if (handle_error) {
2555 			if (!IS_ERR(tree_root->node))
2556 				free_extent_buffer(tree_root->node);
2557 			tree_root->node = NULL;
2558 
2559 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2560 				break;
2561 
2562 			free_root_pointers(fs_info, 0);
2563 
2564 			/*
2565 			 * Don't use the log in recovery mode, it won't be
2566 			 * valid
2567 			 */
2568 			btrfs_set_super_log_root(sb, 0);
2569 
2570 			/* We can't trust the free space cache either */
2571 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2572 
2573 			ret = read_backup_root(fs_info, i);
2574 			backup_index = ret;
2575 			if (ret < 0)
2576 				return ret;
2577 		}
2578 		generation = btrfs_super_generation(sb);
2579 		level = btrfs_super_root_level(sb);
2580 		tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2581 						  generation, level, NULL);
2582 		if (IS_ERR(tree_root->node) ||
2583 		    !extent_buffer_uptodate(tree_root->node)) {
2584 			handle_error = true;
2585 
2586 			if (IS_ERR(tree_root->node))
2587 				ret = PTR_ERR(tree_root->node);
2588 			else if (!extent_buffer_uptodate(tree_root->node))
2589 				ret = -EUCLEAN;
2590 
2591 			btrfs_warn(fs_info, "failed to read tree root");
2592 			continue;
2593 		}
2594 
2595 		btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2596 		tree_root->commit_root = btrfs_root_node(tree_root);
2597 		btrfs_set_root_refs(&tree_root->root_item, 1);
2598 
2599 		/*
2600 		 * No need to hold btrfs_root::objectid_mutex since the fs
2601 		 * hasn't been fully initialised and we are the only user
2602 		 */
2603 		ret = btrfs_find_highest_objectid(tree_root,
2604 						&tree_root->highest_objectid);
2605 		if (ret < 0) {
2606 			handle_error = true;
2607 			continue;
2608 		}
2609 
2610 		ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2611 
2612 		ret = btrfs_read_roots(fs_info);
2613 		if (ret < 0) {
2614 			handle_error = true;
2615 			continue;
2616 		}
2617 
2618 		/* All successful */
2619 		fs_info->generation = generation;
2620 		fs_info->last_trans_committed = generation;
2621 
2622 		/* Always begin writing backup roots after the one being used */
2623 		if (backup_index < 0) {
2624 			fs_info->backup_root_index = 0;
2625 		} else {
2626 			fs_info->backup_root_index = backup_index + 1;
2627 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2628 		}
2629 		break;
2630 	}
2631 
2632 	return ret;
2633 }
2634 
2635 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2636 {
2637 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2638 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2639 	INIT_LIST_HEAD(&fs_info->trans_list);
2640 	INIT_LIST_HEAD(&fs_info->dead_roots);
2641 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2642 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2643 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2644 	spin_lock_init(&fs_info->delalloc_root_lock);
2645 	spin_lock_init(&fs_info->trans_lock);
2646 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2647 	spin_lock_init(&fs_info->delayed_iput_lock);
2648 	spin_lock_init(&fs_info->defrag_inodes_lock);
2649 	spin_lock_init(&fs_info->super_lock);
2650 	spin_lock_init(&fs_info->buffer_lock);
2651 	spin_lock_init(&fs_info->unused_bgs_lock);
2652 	rwlock_init(&fs_info->tree_mod_log_lock);
2653 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2654 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2655 	mutex_init(&fs_info->reloc_mutex);
2656 	mutex_init(&fs_info->delalloc_root_mutex);
2657 	seqlock_init(&fs_info->profiles_lock);
2658 
2659 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2660 	INIT_LIST_HEAD(&fs_info->space_info);
2661 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2662 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2663 #ifdef CONFIG_BTRFS_DEBUG
2664 	INIT_LIST_HEAD(&fs_info->allocated_roots);
2665 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2666 	spin_lock_init(&fs_info->eb_leak_lock);
2667 #endif
2668 	extent_map_tree_init(&fs_info->mapping_tree);
2669 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2670 			     BTRFS_BLOCK_RSV_GLOBAL);
2671 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2672 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2673 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2674 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2675 			     BTRFS_BLOCK_RSV_DELOPS);
2676 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2677 			     BTRFS_BLOCK_RSV_DELREFS);
2678 
2679 	atomic_set(&fs_info->async_delalloc_pages, 0);
2680 	atomic_set(&fs_info->defrag_running, 0);
2681 	atomic_set(&fs_info->reada_works_cnt, 0);
2682 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2683 	atomic64_set(&fs_info->tree_mod_seq, 0);
2684 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2685 	fs_info->metadata_ratio = 0;
2686 	fs_info->defrag_inodes = RB_ROOT;
2687 	atomic64_set(&fs_info->free_chunk_space, 0);
2688 	fs_info->tree_mod_log = RB_ROOT;
2689 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2690 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2691 	/* readahead state */
2692 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2693 	spin_lock_init(&fs_info->reada_lock);
2694 	btrfs_init_ref_verify(fs_info);
2695 
2696 	fs_info->thread_pool_size = min_t(unsigned long,
2697 					  num_online_cpus() + 2, 8);
2698 
2699 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2700 	spin_lock_init(&fs_info->ordered_root_lock);
2701 
2702 	btrfs_init_scrub(fs_info);
2703 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2704 	fs_info->check_integrity_print_mask = 0;
2705 #endif
2706 	btrfs_init_balance(fs_info);
2707 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2708 
2709 	spin_lock_init(&fs_info->block_group_cache_lock);
2710 	fs_info->block_group_cache_tree = RB_ROOT;
2711 	fs_info->first_logical_byte = (u64)-1;
2712 
2713 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2714 			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2715 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2716 
2717 	mutex_init(&fs_info->ordered_operations_mutex);
2718 	mutex_init(&fs_info->tree_log_mutex);
2719 	mutex_init(&fs_info->chunk_mutex);
2720 	mutex_init(&fs_info->transaction_kthread_mutex);
2721 	mutex_init(&fs_info->cleaner_mutex);
2722 	mutex_init(&fs_info->ro_block_group_mutex);
2723 	init_rwsem(&fs_info->commit_root_sem);
2724 	init_rwsem(&fs_info->cleanup_work_sem);
2725 	init_rwsem(&fs_info->subvol_sem);
2726 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2727 
2728 	btrfs_init_dev_replace_locks(fs_info);
2729 	btrfs_init_qgroup(fs_info);
2730 	btrfs_discard_init(fs_info);
2731 
2732 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2733 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2734 
2735 	init_waitqueue_head(&fs_info->transaction_throttle);
2736 	init_waitqueue_head(&fs_info->transaction_wait);
2737 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2738 	init_waitqueue_head(&fs_info->async_submit_wait);
2739 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2740 
2741 	/* Usable values until the real ones are cached from the superblock */
2742 	fs_info->nodesize = 4096;
2743 	fs_info->sectorsize = 4096;
2744 	fs_info->stripesize = 4096;
2745 
2746 	spin_lock_init(&fs_info->swapfile_pins_lock);
2747 	fs_info->swapfile_pins = RB_ROOT;
2748 
2749 	fs_info->send_in_progress = 0;
2750 }
2751 
2752 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2753 {
2754 	int ret;
2755 
2756 	fs_info->sb = sb;
2757 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2758 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2759 
2760 	ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2761 	if (ret)
2762 		return ret;
2763 
2764 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2765 	if (ret)
2766 		return ret;
2767 
2768 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2769 					(1 + ilog2(nr_cpu_ids));
2770 
2771 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2772 	if (ret)
2773 		return ret;
2774 
2775 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2776 			GFP_KERNEL);
2777 	if (ret)
2778 		return ret;
2779 
2780 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2781 					GFP_KERNEL);
2782 	if (!fs_info->delayed_root)
2783 		return -ENOMEM;
2784 	btrfs_init_delayed_root(fs_info->delayed_root);
2785 
2786 	return btrfs_alloc_stripe_hash_table(fs_info);
2787 }
2788 
2789 static int btrfs_uuid_rescan_kthread(void *data)
2790 {
2791 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2792 	int ret;
2793 
2794 	/*
2795 	 * 1st step is to iterate through the existing UUID tree and
2796 	 * to delete all entries that contain outdated data.
2797 	 * 2nd step is to add all missing entries to the UUID tree.
2798 	 */
2799 	ret = btrfs_uuid_tree_iterate(fs_info);
2800 	if (ret < 0) {
2801 		if (ret != -EINTR)
2802 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2803 				   ret);
2804 		up(&fs_info->uuid_tree_rescan_sem);
2805 		return ret;
2806 	}
2807 	return btrfs_uuid_scan_kthread(data);
2808 }
2809 
2810 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2811 {
2812 	struct task_struct *task;
2813 
2814 	down(&fs_info->uuid_tree_rescan_sem);
2815 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2816 	if (IS_ERR(task)) {
2817 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2818 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2819 		up(&fs_info->uuid_tree_rescan_sem);
2820 		return PTR_ERR(task);
2821 	}
2822 
2823 	return 0;
2824 }
2825 
2826 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2827 		      char *options)
2828 {
2829 	u32 sectorsize;
2830 	u32 nodesize;
2831 	u32 stripesize;
2832 	u64 generation;
2833 	u64 features;
2834 	u16 csum_type;
2835 	struct btrfs_key location;
2836 	struct btrfs_super_block *disk_super;
2837 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2838 	struct btrfs_root *tree_root;
2839 	struct btrfs_root *chunk_root;
2840 	int ret;
2841 	int err = -EINVAL;
2842 	int clear_free_space_tree = 0;
2843 	int level;
2844 
2845 	ret = init_mount_fs_info(fs_info, sb);
2846 	if (ret) {
2847 		err = ret;
2848 		goto fail;
2849 	}
2850 
2851 	/* These need to be init'ed before we start creating inodes and such. */
2852 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2853 				     GFP_KERNEL);
2854 	fs_info->tree_root = tree_root;
2855 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2856 				      GFP_KERNEL);
2857 	fs_info->chunk_root = chunk_root;
2858 	if (!tree_root || !chunk_root) {
2859 		err = -ENOMEM;
2860 		goto fail;
2861 	}
2862 
2863 	fs_info->btree_inode = new_inode(sb);
2864 	if (!fs_info->btree_inode) {
2865 		err = -ENOMEM;
2866 		goto fail;
2867 	}
2868 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2869 	btrfs_init_btree_inode(fs_info);
2870 
2871 	invalidate_bdev(fs_devices->latest_bdev);
2872 
2873 	/*
2874 	 * Read super block and check the signature bytes only
2875 	 */
2876 	disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2877 	if (IS_ERR(disk_super)) {
2878 		err = PTR_ERR(disk_super);
2879 		goto fail_alloc;
2880 	}
2881 
2882 	/*
2883 	 * Verify the type first, if that or the the checksum value are
2884 	 * corrupted, we'll find out
2885 	 */
2886 	csum_type = btrfs_super_csum_type(disk_super);
2887 	if (!btrfs_supported_super_csum(csum_type)) {
2888 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2889 			  csum_type);
2890 		err = -EINVAL;
2891 		btrfs_release_disk_super(disk_super);
2892 		goto fail_alloc;
2893 	}
2894 
2895 	ret = btrfs_init_csum_hash(fs_info, csum_type);
2896 	if (ret) {
2897 		err = ret;
2898 		btrfs_release_disk_super(disk_super);
2899 		goto fail_alloc;
2900 	}
2901 
2902 	/*
2903 	 * We want to check superblock checksum, the type is stored inside.
2904 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2905 	 */
2906 	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2907 		btrfs_err(fs_info, "superblock checksum mismatch");
2908 		err = -EINVAL;
2909 		btrfs_release_disk_super(disk_super);
2910 		goto fail_alloc;
2911 	}
2912 
2913 	/*
2914 	 * super_copy is zeroed at allocation time and we never touch the
2915 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2916 	 * the whole block of INFO_SIZE
2917 	 */
2918 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2919 	btrfs_release_disk_super(disk_super);
2920 
2921 	disk_super = fs_info->super_copy;
2922 
2923 	ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2924 		       BTRFS_FSID_SIZE));
2925 
2926 	if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2927 		ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2928 				fs_info->super_copy->metadata_uuid,
2929 				BTRFS_FSID_SIZE));
2930 	}
2931 
2932 	features = btrfs_super_flags(disk_super);
2933 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2934 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2935 		btrfs_set_super_flags(disk_super, features);
2936 		btrfs_info(fs_info,
2937 			"found metadata UUID change in progress flag, clearing");
2938 	}
2939 
2940 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2941 	       sizeof(*fs_info->super_for_commit));
2942 
2943 	ret = btrfs_validate_mount_super(fs_info);
2944 	if (ret) {
2945 		btrfs_err(fs_info, "superblock contains fatal errors");
2946 		err = -EINVAL;
2947 		goto fail_alloc;
2948 	}
2949 
2950 	if (!btrfs_super_root(disk_super))
2951 		goto fail_alloc;
2952 
2953 	/* check FS state, whether FS is broken. */
2954 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2955 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2956 
2957 	/*
2958 	 * In the long term, we'll store the compression type in the super
2959 	 * block, and it'll be used for per file compression control.
2960 	 */
2961 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2962 
2963 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2964 	if (ret) {
2965 		err = ret;
2966 		goto fail_alloc;
2967 	}
2968 
2969 	features = btrfs_super_incompat_flags(disk_super) &
2970 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2971 	if (features) {
2972 		btrfs_err(fs_info,
2973 		    "cannot mount because of unsupported optional features (%llx)",
2974 		    features);
2975 		err = -EINVAL;
2976 		goto fail_alloc;
2977 	}
2978 
2979 	features = btrfs_super_incompat_flags(disk_super);
2980 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2981 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2982 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2983 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2984 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2985 
2986 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2987 		btrfs_info(fs_info, "has skinny extents");
2988 
2989 	/*
2990 	 * flag our filesystem as having big metadata blocks if
2991 	 * they are bigger than the page size
2992 	 */
2993 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2994 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2995 			btrfs_info(fs_info,
2996 				"flagging fs with big metadata feature");
2997 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2998 	}
2999 
3000 	nodesize = btrfs_super_nodesize(disk_super);
3001 	sectorsize = btrfs_super_sectorsize(disk_super);
3002 	stripesize = sectorsize;
3003 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3004 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3005 
3006 	/* Cache block sizes */
3007 	fs_info->nodesize = nodesize;
3008 	fs_info->sectorsize = sectorsize;
3009 	fs_info->stripesize = stripesize;
3010 
3011 	/*
3012 	 * mixed block groups end up with duplicate but slightly offset
3013 	 * extent buffers for the same range.  It leads to corruptions
3014 	 */
3015 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3016 	    (sectorsize != nodesize)) {
3017 		btrfs_err(fs_info,
3018 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3019 			nodesize, sectorsize);
3020 		goto fail_alloc;
3021 	}
3022 
3023 	/*
3024 	 * Needn't use the lock because there is no other task which will
3025 	 * update the flag.
3026 	 */
3027 	btrfs_set_super_incompat_flags(disk_super, features);
3028 
3029 	features = btrfs_super_compat_ro_flags(disk_super) &
3030 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3031 	if (!sb_rdonly(sb) && features) {
3032 		btrfs_err(fs_info,
3033 	"cannot mount read-write because of unsupported optional features (%llx)",
3034 		       features);
3035 		err = -EINVAL;
3036 		goto fail_alloc;
3037 	}
3038 
3039 	ret = btrfs_init_workqueues(fs_info, fs_devices);
3040 	if (ret) {
3041 		err = ret;
3042 		goto fail_sb_buffer;
3043 	}
3044 
3045 	sb->s_bdi->congested_fn = btrfs_congested_fn;
3046 	sb->s_bdi->congested_data = fs_info;
3047 	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3048 	sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3049 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3050 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3051 
3052 	sb->s_blocksize = sectorsize;
3053 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3054 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3055 
3056 	mutex_lock(&fs_info->chunk_mutex);
3057 	ret = btrfs_read_sys_array(fs_info);
3058 	mutex_unlock(&fs_info->chunk_mutex);
3059 	if (ret) {
3060 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3061 		goto fail_sb_buffer;
3062 	}
3063 
3064 	generation = btrfs_super_chunk_root_generation(disk_super);
3065 	level = btrfs_super_chunk_root_level(disk_super);
3066 
3067 	chunk_root->node = read_tree_block(fs_info,
3068 					   btrfs_super_chunk_root(disk_super),
3069 					   generation, level, NULL);
3070 	if (IS_ERR(chunk_root->node) ||
3071 	    !extent_buffer_uptodate(chunk_root->node)) {
3072 		btrfs_err(fs_info, "failed to read chunk root");
3073 		if (!IS_ERR(chunk_root->node))
3074 			free_extent_buffer(chunk_root->node);
3075 		chunk_root->node = NULL;
3076 		goto fail_tree_roots;
3077 	}
3078 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3079 	chunk_root->commit_root = btrfs_root_node(chunk_root);
3080 
3081 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3082 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3083 			   BTRFS_UUID_SIZE);
3084 
3085 	ret = btrfs_read_chunk_tree(fs_info);
3086 	if (ret) {
3087 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3088 		goto fail_tree_roots;
3089 	}
3090 
3091 	/*
3092 	 * Keep the devid that is marked to be the target device for the
3093 	 * device replace procedure
3094 	 */
3095 	btrfs_free_extra_devids(fs_devices, 0);
3096 
3097 	if (!fs_devices->latest_bdev) {
3098 		btrfs_err(fs_info, "failed to read devices");
3099 		goto fail_tree_roots;
3100 	}
3101 
3102 	ret = init_tree_roots(fs_info);
3103 	if (ret)
3104 		goto fail_tree_roots;
3105 
3106 	/*
3107 	 * If we have a uuid root and we're not being told to rescan we need to
3108 	 * check the generation here so we can set the
3109 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3110 	 * transaction during a balance or the log replay without updating the
3111 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3112 	 * even though it was perfectly fine.
3113 	 */
3114 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3115 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3116 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3117 
3118 	ret = btrfs_verify_dev_extents(fs_info);
3119 	if (ret) {
3120 		btrfs_err(fs_info,
3121 			  "failed to verify dev extents against chunks: %d",
3122 			  ret);
3123 		goto fail_block_groups;
3124 	}
3125 	ret = btrfs_recover_balance(fs_info);
3126 	if (ret) {
3127 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3128 		goto fail_block_groups;
3129 	}
3130 
3131 	ret = btrfs_init_dev_stats(fs_info);
3132 	if (ret) {
3133 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3134 		goto fail_block_groups;
3135 	}
3136 
3137 	ret = btrfs_init_dev_replace(fs_info);
3138 	if (ret) {
3139 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3140 		goto fail_block_groups;
3141 	}
3142 
3143 	btrfs_free_extra_devids(fs_devices, 1);
3144 
3145 	ret = btrfs_sysfs_add_fsid(fs_devices);
3146 	if (ret) {
3147 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3148 				ret);
3149 		goto fail_block_groups;
3150 	}
3151 
3152 	ret = btrfs_sysfs_add_mounted(fs_info);
3153 	if (ret) {
3154 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3155 		goto fail_fsdev_sysfs;
3156 	}
3157 
3158 	ret = btrfs_init_space_info(fs_info);
3159 	if (ret) {
3160 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3161 		goto fail_sysfs;
3162 	}
3163 
3164 	ret = btrfs_read_block_groups(fs_info);
3165 	if (ret) {
3166 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3167 		goto fail_sysfs;
3168 	}
3169 
3170 	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3171 		btrfs_warn(fs_info,
3172 		"writable mount is not allowed due to too many missing devices");
3173 		goto fail_sysfs;
3174 	}
3175 
3176 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3177 					       "btrfs-cleaner");
3178 	if (IS_ERR(fs_info->cleaner_kthread))
3179 		goto fail_sysfs;
3180 
3181 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3182 						   tree_root,
3183 						   "btrfs-transaction");
3184 	if (IS_ERR(fs_info->transaction_kthread))
3185 		goto fail_cleaner;
3186 
3187 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3188 	    !fs_info->fs_devices->rotating) {
3189 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3190 	}
3191 
3192 	/*
3193 	 * Mount does not set all options immediately, we can do it now and do
3194 	 * not have to wait for transaction commit
3195 	 */
3196 	btrfs_apply_pending_changes(fs_info);
3197 
3198 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3199 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3200 		ret = btrfsic_mount(fs_info, fs_devices,
3201 				    btrfs_test_opt(fs_info,
3202 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3203 				    1 : 0,
3204 				    fs_info->check_integrity_print_mask);
3205 		if (ret)
3206 			btrfs_warn(fs_info,
3207 				"failed to initialize integrity check module: %d",
3208 				ret);
3209 	}
3210 #endif
3211 	ret = btrfs_read_qgroup_config(fs_info);
3212 	if (ret)
3213 		goto fail_trans_kthread;
3214 
3215 	if (btrfs_build_ref_tree(fs_info))
3216 		btrfs_err(fs_info, "couldn't build ref tree");
3217 
3218 	/* do not make disk changes in broken FS or nologreplay is given */
3219 	if (btrfs_super_log_root(disk_super) != 0 &&
3220 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3221 		btrfs_info(fs_info, "start tree-log replay");
3222 		ret = btrfs_replay_log(fs_info, fs_devices);
3223 		if (ret) {
3224 			err = ret;
3225 			goto fail_qgroup;
3226 		}
3227 	}
3228 
3229 	ret = btrfs_find_orphan_roots(fs_info);
3230 	if (ret)
3231 		goto fail_qgroup;
3232 
3233 	if (!sb_rdonly(sb)) {
3234 		ret = btrfs_cleanup_fs_roots(fs_info);
3235 		if (ret)
3236 			goto fail_qgroup;
3237 
3238 		mutex_lock(&fs_info->cleaner_mutex);
3239 		ret = btrfs_recover_relocation(tree_root);
3240 		mutex_unlock(&fs_info->cleaner_mutex);
3241 		if (ret < 0) {
3242 			btrfs_warn(fs_info, "failed to recover relocation: %d",
3243 					ret);
3244 			err = -EINVAL;
3245 			goto fail_qgroup;
3246 		}
3247 	}
3248 
3249 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3250 	location.type = BTRFS_ROOT_ITEM_KEY;
3251 	location.offset = 0;
3252 
3253 	fs_info->fs_root = btrfs_get_fs_root(fs_info, &location, true);
3254 	if (IS_ERR(fs_info->fs_root)) {
3255 		err = PTR_ERR(fs_info->fs_root);
3256 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3257 		fs_info->fs_root = NULL;
3258 		goto fail_qgroup;
3259 	}
3260 
3261 	if (sb_rdonly(sb))
3262 		return 0;
3263 
3264 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3265 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3266 		clear_free_space_tree = 1;
3267 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3268 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3269 		btrfs_warn(fs_info, "free space tree is invalid");
3270 		clear_free_space_tree = 1;
3271 	}
3272 
3273 	if (clear_free_space_tree) {
3274 		btrfs_info(fs_info, "clearing free space tree");
3275 		ret = btrfs_clear_free_space_tree(fs_info);
3276 		if (ret) {
3277 			btrfs_warn(fs_info,
3278 				   "failed to clear free space tree: %d", ret);
3279 			close_ctree(fs_info);
3280 			return ret;
3281 		}
3282 	}
3283 
3284 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3285 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3286 		btrfs_info(fs_info, "creating free space tree");
3287 		ret = btrfs_create_free_space_tree(fs_info);
3288 		if (ret) {
3289 			btrfs_warn(fs_info,
3290 				"failed to create free space tree: %d", ret);
3291 			close_ctree(fs_info);
3292 			return ret;
3293 		}
3294 	}
3295 
3296 	down_read(&fs_info->cleanup_work_sem);
3297 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3298 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3299 		up_read(&fs_info->cleanup_work_sem);
3300 		close_ctree(fs_info);
3301 		return ret;
3302 	}
3303 	up_read(&fs_info->cleanup_work_sem);
3304 
3305 	ret = btrfs_resume_balance_async(fs_info);
3306 	if (ret) {
3307 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3308 		close_ctree(fs_info);
3309 		return ret;
3310 	}
3311 
3312 	ret = btrfs_resume_dev_replace_async(fs_info);
3313 	if (ret) {
3314 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3315 		close_ctree(fs_info);
3316 		return ret;
3317 	}
3318 
3319 	btrfs_qgroup_rescan_resume(fs_info);
3320 	btrfs_discard_resume(fs_info);
3321 
3322 	if (!fs_info->uuid_root) {
3323 		btrfs_info(fs_info, "creating UUID tree");
3324 		ret = btrfs_create_uuid_tree(fs_info);
3325 		if (ret) {
3326 			btrfs_warn(fs_info,
3327 				"failed to create the UUID tree: %d", ret);
3328 			close_ctree(fs_info);
3329 			return ret;
3330 		}
3331 	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3332 		   fs_info->generation !=
3333 				btrfs_super_uuid_tree_generation(disk_super)) {
3334 		btrfs_info(fs_info, "checking UUID tree");
3335 		ret = btrfs_check_uuid_tree(fs_info);
3336 		if (ret) {
3337 			btrfs_warn(fs_info,
3338 				"failed to check the UUID tree: %d", ret);
3339 			close_ctree(fs_info);
3340 			return ret;
3341 		}
3342 	}
3343 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3344 
3345 	/*
3346 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3347 	 * no need to keep the flag
3348 	 */
3349 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3350 
3351 	return 0;
3352 
3353 fail_qgroup:
3354 	btrfs_free_qgroup_config(fs_info);
3355 fail_trans_kthread:
3356 	kthread_stop(fs_info->transaction_kthread);
3357 	btrfs_cleanup_transaction(fs_info);
3358 	btrfs_free_fs_roots(fs_info);
3359 fail_cleaner:
3360 	kthread_stop(fs_info->cleaner_kthread);
3361 
3362 	/*
3363 	 * make sure we're done with the btree inode before we stop our
3364 	 * kthreads
3365 	 */
3366 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3367 
3368 fail_sysfs:
3369 	btrfs_sysfs_remove_mounted(fs_info);
3370 
3371 fail_fsdev_sysfs:
3372 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3373 
3374 fail_block_groups:
3375 	btrfs_put_block_group_cache(fs_info);
3376 
3377 fail_tree_roots:
3378 	free_root_pointers(fs_info, true);
3379 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3380 
3381 fail_sb_buffer:
3382 	btrfs_stop_all_workers(fs_info);
3383 	btrfs_free_block_groups(fs_info);
3384 fail_alloc:
3385 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3386 
3387 	iput(fs_info->btree_inode);
3388 fail:
3389 	btrfs_close_devices(fs_info->fs_devices);
3390 	return err;
3391 }
3392 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3393 
3394 static void btrfs_end_super_write(struct bio *bio)
3395 {
3396 	struct btrfs_device *device = bio->bi_private;
3397 	struct bio_vec *bvec;
3398 	struct bvec_iter_all iter_all;
3399 	struct page *page;
3400 
3401 	bio_for_each_segment_all(bvec, bio, iter_all) {
3402 		page = bvec->bv_page;
3403 
3404 		if (bio->bi_status) {
3405 			btrfs_warn_rl_in_rcu(device->fs_info,
3406 				"lost page write due to IO error on %s (%d)",
3407 				rcu_str_deref(device->name),
3408 				blk_status_to_errno(bio->bi_status));
3409 			ClearPageUptodate(page);
3410 			SetPageError(page);
3411 			btrfs_dev_stat_inc_and_print(device,
3412 						     BTRFS_DEV_STAT_WRITE_ERRS);
3413 		} else {
3414 			SetPageUptodate(page);
3415 		}
3416 
3417 		put_page(page);
3418 		unlock_page(page);
3419 	}
3420 
3421 	bio_put(bio);
3422 }
3423 
3424 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3425 						   int copy_num)
3426 {
3427 	struct btrfs_super_block *super;
3428 	struct page *page;
3429 	u64 bytenr;
3430 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3431 
3432 	bytenr = btrfs_sb_offset(copy_num);
3433 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3434 		return ERR_PTR(-EINVAL);
3435 
3436 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3437 	if (IS_ERR(page))
3438 		return ERR_CAST(page);
3439 
3440 	super = page_address(page);
3441 	if (btrfs_super_bytenr(super) != bytenr ||
3442 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3443 		btrfs_release_disk_super(super);
3444 		return ERR_PTR(-EINVAL);
3445 	}
3446 
3447 	return super;
3448 }
3449 
3450 
3451 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3452 {
3453 	struct btrfs_super_block *super, *latest = NULL;
3454 	int i;
3455 	u64 transid = 0;
3456 
3457 	/* we would like to check all the supers, but that would make
3458 	 * a btrfs mount succeed after a mkfs from a different FS.
3459 	 * So, we need to add a special mount option to scan for
3460 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3461 	 */
3462 	for (i = 0; i < 1; i++) {
3463 		super = btrfs_read_dev_one_super(bdev, i);
3464 		if (IS_ERR(super))
3465 			continue;
3466 
3467 		if (!latest || btrfs_super_generation(super) > transid) {
3468 			if (latest)
3469 				btrfs_release_disk_super(super);
3470 
3471 			latest = super;
3472 			transid = btrfs_super_generation(super);
3473 		}
3474 	}
3475 
3476 	return super;
3477 }
3478 
3479 /*
3480  * Write superblock @sb to the @device. Do not wait for completion, all the
3481  * pages we use for writing are locked.
3482  *
3483  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3484  * the expected device size at commit time. Note that max_mirrors must be
3485  * same for write and wait phases.
3486  *
3487  * Return number of errors when page is not found or submission fails.
3488  */
3489 static int write_dev_supers(struct btrfs_device *device,
3490 			    struct btrfs_super_block *sb, int max_mirrors)
3491 {
3492 	struct btrfs_fs_info *fs_info = device->fs_info;
3493 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3494 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3495 	int i;
3496 	int errors = 0;
3497 	u64 bytenr;
3498 
3499 	if (max_mirrors == 0)
3500 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3501 
3502 	shash->tfm = fs_info->csum_shash;
3503 
3504 	for (i = 0; i < max_mirrors; i++) {
3505 		struct page *page;
3506 		struct bio *bio;
3507 		struct btrfs_super_block *disk_super;
3508 
3509 		bytenr = btrfs_sb_offset(i);
3510 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3511 		    device->commit_total_bytes)
3512 			break;
3513 
3514 		btrfs_set_super_bytenr(sb, bytenr);
3515 
3516 		crypto_shash_init(shash);
3517 		crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3518 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3519 		crypto_shash_final(shash, sb->csum);
3520 
3521 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3522 					   GFP_NOFS);
3523 		if (!page) {
3524 			btrfs_err(device->fs_info,
3525 			    "couldn't get super block page for bytenr %llu",
3526 			    bytenr);
3527 			errors++;
3528 			continue;
3529 		}
3530 
3531 		/* Bump the refcount for wait_dev_supers() */
3532 		get_page(page);
3533 
3534 		disk_super = page_address(page);
3535 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3536 
3537 		/*
3538 		 * Directly use bios here instead of relying on the page cache
3539 		 * to do I/O, so we don't lose the ability to do integrity
3540 		 * checking.
3541 		 */
3542 		bio = bio_alloc(GFP_NOFS, 1);
3543 		bio_set_dev(bio, device->bdev);
3544 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3545 		bio->bi_private = device;
3546 		bio->bi_end_io = btrfs_end_super_write;
3547 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3548 			       offset_in_page(bytenr));
3549 
3550 		/*
3551 		 * We FUA only the first super block.  The others we allow to
3552 		 * go down lazy and there's a short window where the on-disk
3553 		 * copies might still contain the older version.
3554 		 */
3555 		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3556 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3557 			bio->bi_opf |= REQ_FUA;
3558 
3559 		btrfsic_submit_bio(bio);
3560 	}
3561 	return errors < i ? 0 : -1;
3562 }
3563 
3564 /*
3565  * Wait for write completion of superblocks done by write_dev_supers,
3566  * @max_mirrors same for write and wait phases.
3567  *
3568  * Return number of errors when page is not found or not marked up to
3569  * date.
3570  */
3571 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3572 {
3573 	int i;
3574 	int errors = 0;
3575 	bool primary_failed = false;
3576 	u64 bytenr;
3577 
3578 	if (max_mirrors == 0)
3579 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3580 
3581 	for (i = 0; i < max_mirrors; i++) {
3582 		struct page *page;
3583 
3584 		bytenr = btrfs_sb_offset(i);
3585 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3586 		    device->commit_total_bytes)
3587 			break;
3588 
3589 		page = find_get_page(device->bdev->bd_inode->i_mapping,
3590 				     bytenr >> PAGE_SHIFT);
3591 		if (!page) {
3592 			errors++;
3593 			if (i == 0)
3594 				primary_failed = true;
3595 			continue;
3596 		}
3597 		/* Page is submitted locked and unlocked once the IO completes */
3598 		wait_on_page_locked(page);
3599 		if (PageError(page)) {
3600 			errors++;
3601 			if (i == 0)
3602 				primary_failed = true;
3603 		}
3604 
3605 		/* Drop our reference */
3606 		put_page(page);
3607 
3608 		/* Drop the reference from the writing run */
3609 		put_page(page);
3610 	}
3611 
3612 	/* log error, force error return */
3613 	if (primary_failed) {
3614 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3615 			  device->devid);
3616 		return -1;
3617 	}
3618 
3619 	return errors < i ? 0 : -1;
3620 }
3621 
3622 /*
3623  * endio for the write_dev_flush, this will wake anyone waiting
3624  * for the barrier when it is done
3625  */
3626 static void btrfs_end_empty_barrier(struct bio *bio)
3627 {
3628 	complete(bio->bi_private);
3629 }
3630 
3631 /*
3632  * Submit a flush request to the device if it supports it. Error handling is
3633  * done in the waiting counterpart.
3634  */
3635 static void write_dev_flush(struct btrfs_device *device)
3636 {
3637 	struct request_queue *q = bdev_get_queue(device->bdev);
3638 	struct bio *bio = device->flush_bio;
3639 
3640 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3641 		return;
3642 
3643 	bio_reset(bio);
3644 	bio->bi_end_io = btrfs_end_empty_barrier;
3645 	bio_set_dev(bio, device->bdev);
3646 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3647 	init_completion(&device->flush_wait);
3648 	bio->bi_private = &device->flush_wait;
3649 
3650 	btrfsic_submit_bio(bio);
3651 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3652 }
3653 
3654 /*
3655  * If the flush bio has been submitted by write_dev_flush, wait for it.
3656  */
3657 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3658 {
3659 	struct bio *bio = device->flush_bio;
3660 
3661 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3662 		return BLK_STS_OK;
3663 
3664 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3665 	wait_for_completion_io(&device->flush_wait);
3666 
3667 	return bio->bi_status;
3668 }
3669 
3670 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3671 {
3672 	if (!btrfs_check_rw_degradable(fs_info, NULL))
3673 		return -EIO;
3674 	return 0;
3675 }
3676 
3677 /*
3678  * send an empty flush down to each device in parallel,
3679  * then wait for them
3680  */
3681 static int barrier_all_devices(struct btrfs_fs_info *info)
3682 {
3683 	struct list_head *head;
3684 	struct btrfs_device *dev;
3685 	int errors_wait = 0;
3686 	blk_status_t ret;
3687 
3688 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3689 	/* send down all the barriers */
3690 	head = &info->fs_devices->devices;
3691 	list_for_each_entry(dev, head, dev_list) {
3692 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3693 			continue;
3694 		if (!dev->bdev)
3695 			continue;
3696 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3697 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3698 			continue;
3699 
3700 		write_dev_flush(dev);
3701 		dev->last_flush_error = BLK_STS_OK;
3702 	}
3703 
3704 	/* wait for all the barriers */
3705 	list_for_each_entry(dev, head, dev_list) {
3706 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3707 			continue;
3708 		if (!dev->bdev) {
3709 			errors_wait++;
3710 			continue;
3711 		}
3712 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3713 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3714 			continue;
3715 
3716 		ret = wait_dev_flush(dev);
3717 		if (ret) {
3718 			dev->last_flush_error = ret;
3719 			btrfs_dev_stat_inc_and_print(dev,
3720 					BTRFS_DEV_STAT_FLUSH_ERRS);
3721 			errors_wait++;
3722 		}
3723 	}
3724 
3725 	if (errors_wait) {
3726 		/*
3727 		 * At some point we need the status of all disks
3728 		 * to arrive at the volume status. So error checking
3729 		 * is being pushed to a separate loop.
3730 		 */
3731 		return check_barrier_error(info);
3732 	}
3733 	return 0;
3734 }
3735 
3736 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3737 {
3738 	int raid_type;
3739 	int min_tolerated = INT_MAX;
3740 
3741 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3742 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3743 		min_tolerated = min_t(int, min_tolerated,
3744 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3745 				    tolerated_failures);
3746 
3747 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3748 		if (raid_type == BTRFS_RAID_SINGLE)
3749 			continue;
3750 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3751 			continue;
3752 		min_tolerated = min_t(int, min_tolerated,
3753 				    btrfs_raid_array[raid_type].
3754 				    tolerated_failures);
3755 	}
3756 
3757 	if (min_tolerated == INT_MAX) {
3758 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3759 		min_tolerated = 0;
3760 	}
3761 
3762 	return min_tolerated;
3763 }
3764 
3765 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3766 {
3767 	struct list_head *head;
3768 	struct btrfs_device *dev;
3769 	struct btrfs_super_block *sb;
3770 	struct btrfs_dev_item *dev_item;
3771 	int ret;
3772 	int do_barriers;
3773 	int max_errors;
3774 	int total_errors = 0;
3775 	u64 flags;
3776 
3777 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3778 
3779 	/*
3780 	 * max_mirrors == 0 indicates we're from commit_transaction,
3781 	 * not from fsync where the tree roots in fs_info have not
3782 	 * been consistent on disk.
3783 	 */
3784 	if (max_mirrors == 0)
3785 		backup_super_roots(fs_info);
3786 
3787 	sb = fs_info->super_for_commit;
3788 	dev_item = &sb->dev_item;
3789 
3790 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3791 	head = &fs_info->fs_devices->devices;
3792 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3793 
3794 	if (do_barriers) {
3795 		ret = barrier_all_devices(fs_info);
3796 		if (ret) {
3797 			mutex_unlock(
3798 				&fs_info->fs_devices->device_list_mutex);
3799 			btrfs_handle_fs_error(fs_info, ret,
3800 					      "errors while submitting device barriers.");
3801 			return ret;
3802 		}
3803 	}
3804 
3805 	list_for_each_entry(dev, head, dev_list) {
3806 		if (!dev->bdev) {
3807 			total_errors++;
3808 			continue;
3809 		}
3810 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3811 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3812 			continue;
3813 
3814 		btrfs_set_stack_device_generation(dev_item, 0);
3815 		btrfs_set_stack_device_type(dev_item, dev->type);
3816 		btrfs_set_stack_device_id(dev_item, dev->devid);
3817 		btrfs_set_stack_device_total_bytes(dev_item,
3818 						   dev->commit_total_bytes);
3819 		btrfs_set_stack_device_bytes_used(dev_item,
3820 						  dev->commit_bytes_used);
3821 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3822 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3823 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3824 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3825 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3826 		       BTRFS_FSID_SIZE);
3827 
3828 		flags = btrfs_super_flags(sb);
3829 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3830 
3831 		ret = btrfs_validate_write_super(fs_info, sb);
3832 		if (ret < 0) {
3833 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3834 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
3835 				"unexpected superblock corruption detected");
3836 			return -EUCLEAN;
3837 		}
3838 
3839 		ret = write_dev_supers(dev, sb, max_mirrors);
3840 		if (ret)
3841 			total_errors++;
3842 	}
3843 	if (total_errors > max_errors) {
3844 		btrfs_err(fs_info, "%d errors while writing supers",
3845 			  total_errors);
3846 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3847 
3848 		/* FUA is masked off if unsupported and can't be the reason */
3849 		btrfs_handle_fs_error(fs_info, -EIO,
3850 				      "%d errors while writing supers",
3851 				      total_errors);
3852 		return -EIO;
3853 	}
3854 
3855 	total_errors = 0;
3856 	list_for_each_entry(dev, head, dev_list) {
3857 		if (!dev->bdev)
3858 			continue;
3859 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3860 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3861 			continue;
3862 
3863 		ret = wait_dev_supers(dev, max_mirrors);
3864 		if (ret)
3865 			total_errors++;
3866 	}
3867 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3868 	if (total_errors > max_errors) {
3869 		btrfs_handle_fs_error(fs_info, -EIO,
3870 				      "%d errors while writing supers",
3871 				      total_errors);
3872 		return -EIO;
3873 	}
3874 	return 0;
3875 }
3876 
3877 /* Drop a fs root from the radix tree and free it. */
3878 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3879 				  struct btrfs_root *root)
3880 {
3881 	bool drop_ref = false;
3882 
3883 	spin_lock(&fs_info->fs_roots_radix_lock);
3884 	radix_tree_delete(&fs_info->fs_roots_radix,
3885 			  (unsigned long)root->root_key.objectid);
3886 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3887 		drop_ref = true;
3888 	spin_unlock(&fs_info->fs_roots_radix_lock);
3889 
3890 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3891 		btrfs_free_log(NULL, root);
3892 		if (root->reloc_root) {
3893 			btrfs_put_root(root->reloc_root);
3894 			root->reloc_root = NULL;
3895 		}
3896 	}
3897 
3898 	if (root->free_ino_pinned)
3899 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3900 	if (root->free_ino_ctl)
3901 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3902 	if (root->ino_cache_inode) {
3903 		iput(root->ino_cache_inode);
3904 		root->ino_cache_inode = NULL;
3905 	}
3906 	if (drop_ref)
3907 		btrfs_put_root(root);
3908 }
3909 
3910 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3911 {
3912 	u64 root_objectid = 0;
3913 	struct btrfs_root *gang[8];
3914 	int i = 0;
3915 	int err = 0;
3916 	unsigned int ret = 0;
3917 
3918 	while (1) {
3919 		spin_lock(&fs_info->fs_roots_radix_lock);
3920 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3921 					     (void **)gang, root_objectid,
3922 					     ARRAY_SIZE(gang));
3923 		if (!ret) {
3924 			spin_unlock(&fs_info->fs_roots_radix_lock);
3925 			break;
3926 		}
3927 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3928 
3929 		for (i = 0; i < ret; i++) {
3930 			/* Avoid to grab roots in dead_roots */
3931 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3932 				gang[i] = NULL;
3933 				continue;
3934 			}
3935 			/* grab all the search result for later use */
3936 			gang[i] = btrfs_grab_root(gang[i]);
3937 		}
3938 		spin_unlock(&fs_info->fs_roots_radix_lock);
3939 
3940 		for (i = 0; i < ret; i++) {
3941 			if (!gang[i])
3942 				continue;
3943 			root_objectid = gang[i]->root_key.objectid;
3944 			err = btrfs_orphan_cleanup(gang[i]);
3945 			if (err)
3946 				break;
3947 			btrfs_put_root(gang[i]);
3948 		}
3949 		root_objectid++;
3950 	}
3951 
3952 	/* release the uncleaned roots due to error */
3953 	for (; i < ret; i++) {
3954 		if (gang[i])
3955 			btrfs_put_root(gang[i]);
3956 	}
3957 	return err;
3958 }
3959 
3960 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3961 {
3962 	struct btrfs_root *root = fs_info->tree_root;
3963 	struct btrfs_trans_handle *trans;
3964 
3965 	mutex_lock(&fs_info->cleaner_mutex);
3966 	btrfs_run_delayed_iputs(fs_info);
3967 	mutex_unlock(&fs_info->cleaner_mutex);
3968 	wake_up_process(fs_info->cleaner_kthread);
3969 
3970 	/* wait until ongoing cleanup work done */
3971 	down_write(&fs_info->cleanup_work_sem);
3972 	up_write(&fs_info->cleanup_work_sem);
3973 
3974 	trans = btrfs_join_transaction(root);
3975 	if (IS_ERR(trans))
3976 		return PTR_ERR(trans);
3977 	return btrfs_commit_transaction(trans);
3978 }
3979 
3980 void __cold close_ctree(struct btrfs_fs_info *fs_info)
3981 {
3982 	int ret;
3983 
3984 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3985 	/*
3986 	 * We don't want the cleaner to start new transactions, add more delayed
3987 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3988 	 * because that frees the task_struct, and the transaction kthread might
3989 	 * still try to wake up the cleaner.
3990 	 */
3991 	kthread_park(fs_info->cleaner_kthread);
3992 
3993 	/* wait for the qgroup rescan worker to stop */
3994 	btrfs_qgroup_wait_for_completion(fs_info, false);
3995 
3996 	/* wait for the uuid_scan task to finish */
3997 	down(&fs_info->uuid_tree_rescan_sem);
3998 	/* avoid complains from lockdep et al., set sem back to initial state */
3999 	up(&fs_info->uuid_tree_rescan_sem);
4000 
4001 	/* pause restriper - we want to resume on mount */
4002 	btrfs_pause_balance(fs_info);
4003 
4004 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4005 
4006 	btrfs_scrub_cancel(fs_info);
4007 
4008 	/* wait for any defraggers to finish */
4009 	wait_event(fs_info->transaction_wait,
4010 		   (atomic_read(&fs_info->defrag_running) == 0));
4011 
4012 	/* clear out the rbtree of defraggable inodes */
4013 	btrfs_cleanup_defrag_inodes(fs_info);
4014 
4015 	cancel_work_sync(&fs_info->async_reclaim_work);
4016 
4017 	/* Cancel or finish ongoing discard work */
4018 	btrfs_discard_cleanup(fs_info);
4019 
4020 	if (!sb_rdonly(fs_info->sb)) {
4021 		/*
4022 		 * The cleaner kthread is stopped, so do one final pass over
4023 		 * unused block groups.
4024 		 */
4025 		btrfs_delete_unused_bgs(fs_info);
4026 
4027 		/*
4028 		 * There might be existing delayed inode workers still running
4029 		 * and holding an empty delayed inode item. We must wait for
4030 		 * them to complete first because they can create a transaction.
4031 		 * This happens when someone calls btrfs_balance_delayed_items()
4032 		 * and then a transaction commit runs the same delayed nodes
4033 		 * before any delayed worker has done something with the nodes.
4034 		 * We must wait for any worker here and not at transaction
4035 		 * commit time since that could cause a deadlock.
4036 		 * This is a very rare case.
4037 		 */
4038 		btrfs_flush_workqueue(fs_info->delayed_workers);
4039 
4040 		ret = btrfs_commit_super(fs_info);
4041 		if (ret)
4042 			btrfs_err(fs_info, "commit super ret %d", ret);
4043 	}
4044 
4045 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4046 	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4047 		btrfs_error_commit_super(fs_info);
4048 
4049 	kthread_stop(fs_info->transaction_kthread);
4050 	kthread_stop(fs_info->cleaner_kthread);
4051 
4052 	ASSERT(list_empty(&fs_info->delayed_iputs));
4053 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4054 
4055 	btrfs_free_qgroup_config(fs_info);
4056 	ASSERT(list_empty(&fs_info->delalloc_roots));
4057 
4058 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4059 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4060 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4061 	}
4062 
4063 	if (percpu_counter_sum(&fs_info->dio_bytes))
4064 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4065 			   percpu_counter_sum(&fs_info->dio_bytes));
4066 
4067 	btrfs_sysfs_remove_mounted(fs_info);
4068 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4069 
4070 	btrfs_put_block_group_cache(fs_info);
4071 
4072 	/*
4073 	 * we must make sure there is not any read request to
4074 	 * submit after we stopping all workers.
4075 	 */
4076 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4077 	btrfs_stop_all_workers(fs_info);
4078 
4079 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4080 	free_root_pointers(fs_info, true);
4081 	btrfs_free_fs_roots(fs_info);
4082 
4083 	/*
4084 	 * We must free the block groups after dropping the fs_roots as we could
4085 	 * have had an IO error and have left over tree log blocks that aren't
4086 	 * cleaned up until the fs roots are freed.  This makes the block group
4087 	 * accounting appear to be wrong because there's pending reserved bytes,
4088 	 * so make sure we do the block group cleanup afterwards.
4089 	 */
4090 	btrfs_free_block_groups(fs_info);
4091 
4092 	iput(fs_info->btree_inode);
4093 
4094 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4095 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4096 		btrfsic_unmount(fs_info->fs_devices);
4097 #endif
4098 
4099 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4100 	btrfs_close_devices(fs_info->fs_devices);
4101 }
4102 
4103 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4104 			  int atomic)
4105 {
4106 	int ret;
4107 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4108 
4109 	ret = extent_buffer_uptodate(buf);
4110 	if (!ret)
4111 		return ret;
4112 
4113 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4114 				    parent_transid, atomic);
4115 	if (ret == -EAGAIN)
4116 		return ret;
4117 	return !ret;
4118 }
4119 
4120 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4121 {
4122 	struct btrfs_fs_info *fs_info;
4123 	struct btrfs_root *root;
4124 	u64 transid = btrfs_header_generation(buf);
4125 	int was_dirty;
4126 
4127 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4128 	/*
4129 	 * This is a fast path so only do this check if we have sanity tests
4130 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4131 	 * outside of the sanity tests.
4132 	 */
4133 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4134 		return;
4135 #endif
4136 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4137 	fs_info = root->fs_info;
4138 	btrfs_assert_tree_locked(buf);
4139 	if (transid != fs_info->generation)
4140 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4141 			buf->start, transid, fs_info->generation);
4142 	was_dirty = set_extent_buffer_dirty(buf);
4143 	if (!was_dirty)
4144 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4145 					 buf->len,
4146 					 fs_info->dirty_metadata_batch);
4147 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4148 	/*
4149 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4150 	 * but item data not updated.
4151 	 * So here we should only check item pointers, not item data.
4152 	 */
4153 	if (btrfs_header_level(buf) == 0 &&
4154 	    btrfs_check_leaf_relaxed(buf)) {
4155 		btrfs_print_leaf(buf);
4156 		ASSERT(0);
4157 	}
4158 #endif
4159 }
4160 
4161 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4162 					int flush_delayed)
4163 {
4164 	/*
4165 	 * looks as though older kernels can get into trouble with
4166 	 * this code, they end up stuck in balance_dirty_pages forever
4167 	 */
4168 	int ret;
4169 
4170 	if (current->flags & PF_MEMALLOC)
4171 		return;
4172 
4173 	if (flush_delayed)
4174 		btrfs_balance_delayed_items(fs_info);
4175 
4176 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4177 				     BTRFS_DIRTY_METADATA_THRESH,
4178 				     fs_info->dirty_metadata_batch);
4179 	if (ret > 0) {
4180 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4181 	}
4182 }
4183 
4184 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4185 {
4186 	__btrfs_btree_balance_dirty(fs_info, 1);
4187 }
4188 
4189 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4190 {
4191 	__btrfs_btree_balance_dirty(fs_info, 0);
4192 }
4193 
4194 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4195 		      struct btrfs_key *first_key)
4196 {
4197 	return btree_read_extent_buffer_pages(buf, parent_transid,
4198 					      level, first_key);
4199 }
4200 
4201 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4202 {
4203 	/* cleanup FS via transaction */
4204 	btrfs_cleanup_transaction(fs_info);
4205 
4206 	mutex_lock(&fs_info->cleaner_mutex);
4207 	btrfs_run_delayed_iputs(fs_info);
4208 	mutex_unlock(&fs_info->cleaner_mutex);
4209 
4210 	down_write(&fs_info->cleanup_work_sem);
4211 	up_write(&fs_info->cleanup_work_sem);
4212 }
4213 
4214 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4215 {
4216 	struct btrfs_ordered_extent *ordered;
4217 
4218 	spin_lock(&root->ordered_extent_lock);
4219 	/*
4220 	 * This will just short circuit the ordered completion stuff which will
4221 	 * make sure the ordered extent gets properly cleaned up.
4222 	 */
4223 	list_for_each_entry(ordered, &root->ordered_extents,
4224 			    root_extent_list)
4225 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4226 	spin_unlock(&root->ordered_extent_lock);
4227 }
4228 
4229 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4230 {
4231 	struct btrfs_root *root;
4232 	struct list_head splice;
4233 
4234 	INIT_LIST_HEAD(&splice);
4235 
4236 	spin_lock(&fs_info->ordered_root_lock);
4237 	list_splice_init(&fs_info->ordered_roots, &splice);
4238 	while (!list_empty(&splice)) {
4239 		root = list_first_entry(&splice, struct btrfs_root,
4240 					ordered_root);
4241 		list_move_tail(&root->ordered_root,
4242 			       &fs_info->ordered_roots);
4243 
4244 		spin_unlock(&fs_info->ordered_root_lock);
4245 		btrfs_destroy_ordered_extents(root);
4246 
4247 		cond_resched();
4248 		spin_lock(&fs_info->ordered_root_lock);
4249 	}
4250 	spin_unlock(&fs_info->ordered_root_lock);
4251 
4252 	/*
4253 	 * We need this here because if we've been flipped read-only we won't
4254 	 * get sync() from the umount, so we need to make sure any ordered
4255 	 * extents that haven't had their dirty pages IO start writeout yet
4256 	 * actually get run and error out properly.
4257 	 */
4258 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4259 }
4260 
4261 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4262 				      struct btrfs_fs_info *fs_info)
4263 {
4264 	struct rb_node *node;
4265 	struct btrfs_delayed_ref_root *delayed_refs;
4266 	struct btrfs_delayed_ref_node *ref;
4267 	int ret = 0;
4268 
4269 	delayed_refs = &trans->delayed_refs;
4270 
4271 	spin_lock(&delayed_refs->lock);
4272 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4273 		spin_unlock(&delayed_refs->lock);
4274 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4275 		return ret;
4276 	}
4277 
4278 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4279 		struct btrfs_delayed_ref_head *head;
4280 		struct rb_node *n;
4281 		bool pin_bytes = false;
4282 
4283 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4284 				href_node);
4285 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4286 			continue;
4287 
4288 		spin_lock(&head->lock);
4289 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4290 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4291 				       ref_node);
4292 			ref->in_tree = 0;
4293 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4294 			RB_CLEAR_NODE(&ref->ref_node);
4295 			if (!list_empty(&ref->add_list))
4296 				list_del(&ref->add_list);
4297 			atomic_dec(&delayed_refs->num_entries);
4298 			btrfs_put_delayed_ref(ref);
4299 		}
4300 		if (head->must_insert_reserved)
4301 			pin_bytes = true;
4302 		btrfs_free_delayed_extent_op(head->extent_op);
4303 		btrfs_delete_ref_head(delayed_refs, head);
4304 		spin_unlock(&head->lock);
4305 		spin_unlock(&delayed_refs->lock);
4306 		mutex_unlock(&head->mutex);
4307 
4308 		if (pin_bytes) {
4309 			struct btrfs_block_group *cache;
4310 
4311 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4312 			BUG_ON(!cache);
4313 
4314 			spin_lock(&cache->space_info->lock);
4315 			spin_lock(&cache->lock);
4316 			cache->pinned += head->num_bytes;
4317 			btrfs_space_info_update_bytes_pinned(fs_info,
4318 				cache->space_info, head->num_bytes);
4319 			cache->reserved -= head->num_bytes;
4320 			cache->space_info->bytes_reserved -= head->num_bytes;
4321 			spin_unlock(&cache->lock);
4322 			spin_unlock(&cache->space_info->lock);
4323 			percpu_counter_add_batch(
4324 				&cache->space_info->total_bytes_pinned,
4325 				head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4326 
4327 			btrfs_put_block_group(cache);
4328 
4329 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4330 				head->bytenr + head->num_bytes - 1);
4331 		}
4332 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4333 		btrfs_put_delayed_ref_head(head);
4334 		cond_resched();
4335 		spin_lock(&delayed_refs->lock);
4336 	}
4337 	btrfs_qgroup_destroy_extent_records(trans);
4338 
4339 	spin_unlock(&delayed_refs->lock);
4340 
4341 	return ret;
4342 }
4343 
4344 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4345 {
4346 	struct btrfs_inode *btrfs_inode;
4347 	struct list_head splice;
4348 
4349 	INIT_LIST_HEAD(&splice);
4350 
4351 	spin_lock(&root->delalloc_lock);
4352 	list_splice_init(&root->delalloc_inodes, &splice);
4353 
4354 	while (!list_empty(&splice)) {
4355 		struct inode *inode = NULL;
4356 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4357 					       delalloc_inodes);
4358 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4359 		spin_unlock(&root->delalloc_lock);
4360 
4361 		/*
4362 		 * Make sure we get a live inode and that it'll not disappear
4363 		 * meanwhile.
4364 		 */
4365 		inode = igrab(&btrfs_inode->vfs_inode);
4366 		if (inode) {
4367 			invalidate_inode_pages2(inode->i_mapping);
4368 			iput(inode);
4369 		}
4370 		spin_lock(&root->delalloc_lock);
4371 	}
4372 	spin_unlock(&root->delalloc_lock);
4373 }
4374 
4375 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4376 {
4377 	struct btrfs_root *root;
4378 	struct list_head splice;
4379 
4380 	INIT_LIST_HEAD(&splice);
4381 
4382 	spin_lock(&fs_info->delalloc_root_lock);
4383 	list_splice_init(&fs_info->delalloc_roots, &splice);
4384 	while (!list_empty(&splice)) {
4385 		root = list_first_entry(&splice, struct btrfs_root,
4386 					 delalloc_root);
4387 		root = btrfs_grab_root(root);
4388 		BUG_ON(!root);
4389 		spin_unlock(&fs_info->delalloc_root_lock);
4390 
4391 		btrfs_destroy_delalloc_inodes(root);
4392 		btrfs_put_root(root);
4393 
4394 		spin_lock(&fs_info->delalloc_root_lock);
4395 	}
4396 	spin_unlock(&fs_info->delalloc_root_lock);
4397 }
4398 
4399 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4400 					struct extent_io_tree *dirty_pages,
4401 					int mark)
4402 {
4403 	int ret;
4404 	struct extent_buffer *eb;
4405 	u64 start = 0;
4406 	u64 end;
4407 
4408 	while (1) {
4409 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4410 					    mark, NULL);
4411 		if (ret)
4412 			break;
4413 
4414 		clear_extent_bits(dirty_pages, start, end, mark);
4415 		while (start <= end) {
4416 			eb = find_extent_buffer(fs_info, start);
4417 			start += fs_info->nodesize;
4418 			if (!eb)
4419 				continue;
4420 			wait_on_extent_buffer_writeback(eb);
4421 
4422 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4423 					       &eb->bflags))
4424 				clear_extent_buffer_dirty(eb);
4425 			free_extent_buffer_stale(eb);
4426 		}
4427 	}
4428 
4429 	return ret;
4430 }
4431 
4432 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4433 				       struct extent_io_tree *unpin)
4434 {
4435 	u64 start;
4436 	u64 end;
4437 	int ret;
4438 
4439 	while (1) {
4440 		struct extent_state *cached_state = NULL;
4441 
4442 		/*
4443 		 * The btrfs_finish_extent_commit() may get the same range as
4444 		 * ours between find_first_extent_bit and clear_extent_dirty.
4445 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4446 		 * the same extent range.
4447 		 */
4448 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4449 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4450 					    EXTENT_DIRTY, &cached_state);
4451 		if (ret) {
4452 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4453 			break;
4454 		}
4455 
4456 		clear_extent_dirty(unpin, start, end, &cached_state);
4457 		free_extent_state(cached_state);
4458 		btrfs_error_unpin_extent_range(fs_info, start, end);
4459 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4460 		cond_resched();
4461 	}
4462 
4463 	return 0;
4464 }
4465 
4466 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4467 {
4468 	struct inode *inode;
4469 
4470 	inode = cache->io_ctl.inode;
4471 	if (inode) {
4472 		invalidate_inode_pages2(inode->i_mapping);
4473 		BTRFS_I(inode)->generation = 0;
4474 		cache->io_ctl.inode = NULL;
4475 		iput(inode);
4476 	}
4477 	btrfs_put_block_group(cache);
4478 }
4479 
4480 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4481 			     struct btrfs_fs_info *fs_info)
4482 {
4483 	struct btrfs_block_group *cache;
4484 
4485 	spin_lock(&cur_trans->dirty_bgs_lock);
4486 	while (!list_empty(&cur_trans->dirty_bgs)) {
4487 		cache = list_first_entry(&cur_trans->dirty_bgs,
4488 					 struct btrfs_block_group,
4489 					 dirty_list);
4490 
4491 		if (!list_empty(&cache->io_list)) {
4492 			spin_unlock(&cur_trans->dirty_bgs_lock);
4493 			list_del_init(&cache->io_list);
4494 			btrfs_cleanup_bg_io(cache);
4495 			spin_lock(&cur_trans->dirty_bgs_lock);
4496 		}
4497 
4498 		list_del_init(&cache->dirty_list);
4499 		spin_lock(&cache->lock);
4500 		cache->disk_cache_state = BTRFS_DC_ERROR;
4501 		spin_unlock(&cache->lock);
4502 
4503 		spin_unlock(&cur_trans->dirty_bgs_lock);
4504 		btrfs_put_block_group(cache);
4505 		btrfs_delayed_refs_rsv_release(fs_info, 1);
4506 		spin_lock(&cur_trans->dirty_bgs_lock);
4507 	}
4508 	spin_unlock(&cur_trans->dirty_bgs_lock);
4509 
4510 	/*
4511 	 * Refer to the definition of io_bgs member for details why it's safe
4512 	 * to use it without any locking
4513 	 */
4514 	while (!list_empty(&cur_trans->io_bgs)) {
4515 		cache = list_first_entry(&cur_trans->io_bgs,
4516 					 struct btrfs_block_group,
4517 					 io_list);
4518 
4519 		list_del_init(&cache->io_list);
4520 		spin_lock(&cache->lock);
4521 		cache->disk_cache_state = BTRFS_DC_ERROR;
4522 		spin_unlock(&cache->lock);
4523 		btrfs_cleanup_bg_io(cache);
4524 	}
4525 }
4526 
4527 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4528 				   struct btrfs_fs_info *fs_info)
4529 {
4530 	struct btrfs_device *dev, *tmp;
4531 
4532 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4533 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4534 	ASSERT(list_empty(&cur_trans->io_bgs));
4535 
4536 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4537 				 post_commit_list) {
4538 		list_del_init(&dev->post_commit_list);
4539 	}
4540 
4541 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4542 
4543 	cur_trans->state = TRANS_STATE_COMMIT_START;
4544 	wake_up(&fs_info->transaction_blocked_wait);
4545 
4546 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4547 	wake_up(&fs_info->transaction_wait);
4548 
4549 	btrfs_destroy_delayed_inodes(fs_info);
4550 
4551 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4552 				     EXTENT_DIRTY);
4553 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4554 
4555 	cur_trans->state =TRANS_STATE_COMPLETED;
4556 	wake_up(&cur_trans->commit_wait);
4557 }
4558 
4559 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4560 {
4561 	struct btrfs_transaction *t;
4562 
4563 	mutex_lock(&fs_info->transaction_kthread_mutex);
4564 
4565 	spin_lock(&fs_info->trans_lock);
4566 	while (!list_empty(&fs_info->trans_list)) {
4567 		t = list_first_entry(&fs_info->trans_list,
4568 				     struct btrfs_transaction, list);
4569 		if (t->state >= TRANS_STATE_COMMIT_START) {
4570 			refcount_inc(&t->use_count);
4571 			spin_unlock(&fs_info->trans_lock);
4572 			btrfs_wait_for_commit(fs_info, t->transid);
4573 			btrfs_put_transaction(t);
4574 			spin_lock(&fs_info->trans_lock);
4575 			continue;
4576 		}
4577 		if (t == fs_info->running_transaction) {
4578 			t->state = TRANS_STATE_COMMIT_DOING;
4579 			spin_unlock(&fs_info->trans_lock);
4580 			/*
4581 			 * We wait for 0 num_writers since we don't hold a trans
4582 			 * handle open currently for this transaction.
4583 			 */
4584 			wait_event(t->writer_wait,
4585 				   atomic_read(&t->num_writers) == 0);
4586 		} else {
4587 			spin_unlock(&fs_info->trans_lock);
4588 		}
4589 		btrfs_cleanup_one_transaction(t, fs_info);
4590 
4591 		spin_lock(&fs_info->trans_lock);
4592 		if (t == fs_info->running_transaction)
4593 			fs_info->running_transaction = NULL;
4594 		list_del_init(&t->list);
4595 		spin_unlock(&fs_info->trans_lock);
4596 
4597 		btrfs_put_transaction(t);
4598 		trace_btrfs_transaction_commit(fs_info->tree_root);
4599 		spin_lock(&fs_info->trans_lock);
4600 	}
4601 	spin_unlock(&fs_info->trans_lock);
4602 	btrfs_destroy_all_ordered_extents(fs_info);
4603 	btrfs_destroy_delayed_inodes(fs_info);
4604 	btrfs_assert_delayed_root_empty(fs_info);
4605 	btrfs_destroy_all_delalloc_inodes(fs_info);
4606 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4607 
4608 	return 0;
4609 }
4610 
4611 static const struct extent_io_ops btree_extent_io_ops = {
4612 	/* mandatory callbacks */
4613 	.submit_bio_hook = btree_submit_bio_hook,
4614 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4615 };
4616