xref: /openbmc/linux/fs/btrfs/disk-io.c (revision a790cc3a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46 
47 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
48 				 BTRFS_HEADER_FLAG_RELOC |\
49 				 BTRFS_SUPER_FLAG_ERROR |\
50 				 BTRFS_SUPER_FLAG_SEEDING |\
51 				 BTRFS_SUPER_FLAG_METADUMP |\
52 				 BTRFS_SUPER_FLAG_METADUMP_V2)
53 
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 				      struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59 					struct extent_io_tree *dirty_pages,
60 					int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62 				       struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65 
66 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
67 {
68 	if (fs_info->csum_shash)
69 		crypto_free_shash(fs_info->csum_shash);
70 }
71 
72 /*
73  * async submit bios are used to offload expensive checksumming
74  * onto the worker threads.  They checksum file and metadata bios
75  * just before they are sent down the IO stack.
76  */
77 struct async_submit_bio {
78 	struct inode *inode;
79 	struct bio *bio;
80 	extent_submit_bio_start_t *submit_bio_start;
81 	int mirror_num;
82 
83 	/* Optional parameter for submit_bio_start used by direct io */
84 	u64 dio_file_offset;
85 	struct btrfs_work work;
86 	blk_status_t status;
87 };
88 
89 /*
90  * Compute the csum of a btree block and store the result to provided buffer.
91  */
92 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
93 {
94 	struct btrfs_fs_info *fs_info = buf->fs_info;
95 	const int num_pages = num_extent_pages(buf);
96 	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
97 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
98 	char *kaddr;
99 	int i;
100 
101 	shash->tfm = fs_info->csum_shash;
102 	crypto_shash_init(shash);
103 	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
104 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
105 			    first_page_part - BTRFS_CSUM_SIZE);
106 
107 	for (i = 1; i < num_pages; i++) {
108 		kaddr = page_address(buf->pages[i]);
109 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
110 	}
111 	memset(result, 0, BTRFS_CSUM_SIZE);
112 	crypto_shash_final(shash, result);
113 }
114 
115 /*
116  * we can't consider a given block up to date unless the transid of the
117  * block matches the transid in the parent node's pointer.  This is how we
118  * detect blocks that either didn't get written at all or got written
119  * in the wrong place.
120  */
121 static int verify_parent_transid(struct extent_io_tree *io_tree,
122 				 struct extent_buffer *eb, u64 parent_transid,
123 				 int atomic)
124 {
125 	struct extent_state *cached_state = NULL;
126 	int ret;
127 
128 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
129 		return 0;
130 
131 	if (atomic)
132 		return -EAGAIN;
133 
134 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
135 			 &cached_state);
136 	if (extent_buffer_uptodate(eb) &&
137 	    btrfs_header_generation(eb) == parent_transid) {
138 		ret = 0;
139 		goto out;
140 	}
141 	btrfs_err_rl(eb->fs_info,
142 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
143 			eb->start, eb->read_mirror,
144 			parent_transid, btrfs_header_generation(eb));
145 	ret = 1;
146 	clear_extent_buffer_uptodate(eb);
147 out:
148 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
149 			     &cached_state);
150 	return ret;
151 }
152 
153 static bool btrfs_supported_super_csum(u16 csum_type)
154 {
155 	switch (csum_type) {
156 	case BTRFS_CSUM_TYPE_CRC32:
157 	case BTRFS_CSUM_TYPE_XXHASH:
158 	case BTRFS_CSUM_TYPE_SHA256:
159 	case BTRFS_CSUM_TYPE_BLAKE2:
160 		return true;
161 	default:
162 		return false;
163 	}
164 }
165 
166 /*
167  * Return 0 if the superblock checksum type matches the checksum value of that
168  * algorithm. Pass the raw disk superblock data.
169  */
170 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
171 				  char *raw_disk_sb)
172 {
173 	struct btrfs_super_block *disk_sb =
174 		(struct btrfs_super_block *)raw_disk_sb;
175 	char result[BTRFS_CSUM_SIZE];
176 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
177 
178 	shash->tfm = fs_info->csum_shash;
179 
180 	/*
181 	 * The super_block structure does not span the whole
182 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
183 	 * filled with zeros and is included in the checksum.
184 	 */
185 	crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
186 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
187 
188 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
189 		return 1;
190 
191 	return 0;
192 }
193 
194 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
195 			   struct btrfs_key *first_key, u64 parent_transid)
196 {
197 	struct btrfs_fs_info *fs_info = eb->fs_info;
198 	int found_level;
199 	struct btrfs_key found_key;
200 	int ret;
201 
202 	found_level = btrfs_header_level(eb);
203 	if (found_level != level) {
204 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
205 		     KERN_ERR "BTRFS: tree level check failed\n");
206 		btrfs_err(fs_info,
207 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
208 			  eb->start, level, found_level);
209 		return -EIO;
210 	}
211 
212 	if (!first_key)
213 		return 0;
214 
215 	/*
216 	 * For live tree block (new tree blocks in current transaction),
217 	 * we need proper lock context to avoid race, which is impossible here.
218 	 * So we only checks tree blocks which is read from disk, whose
219 	 * generation <= fs_info->last_trans_committed.
220 	 */
221 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
222 		return 0;
223 
224 	/* We have @first_key, so this @eb must have at least one item */
225 	if (btrfs_header_nritems(eb) == 0) {
226 		btrfs_err(fs_info,
227 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
228 			  eb->start);
229 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
230 		return -EUCLEAN;
231 	}
232 
233 	if (found_level)
234 		btrfs_node_key_to_cpu(eb, &found_key, 0);
235 	else
236 		btrfs_item_key_to_cpu(eb, &found_key, 0);
237 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
238 
239 	if (ret) {
240 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
241 		     KERN_ERR "BTRFS: tree first key check failed\n");
242 		btrfs_err(fs_info,
243 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
244 			  eb->start, parent_transid, first_key->objectid,
245 			  first_key->type, first_key->offset,
246 			  found_key.objectid, found_key.type,
247 			  found_key.offset);
248 	}
249 	return ret;
250 }
251 
252 /*
253  * helper to read a given tree block, doing retries as required when
254  * the checksums don't match and we have alternate mirrors to try.
255  *
256  * @parent_transid:	expected transid, skip check if 0
257  * @level:		expected level, mandatory check
258  * @first_key:		expected key of first slot, skip check if NULL
259  */
260 int btrfs_read_extent_buffer(struct extent_buffer *eb,
261 			     u64 parent_transid, int level,
262 			     struct btrfs_key *first_key)
263 {
264 	struct btrfs_fs_info *fs_info = eb->fs_info;
265 	struct extent_io_tree *io_tree;
266 	int failed = 0;
267 	int ret;
268 	int num_copies = 0;
269 	int mirror_num = 0;
270 	int failed_mirror = 0;
271 
272 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
273 	while (1) {
274 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
275 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
276 		if (!ret) {
277 			if (verify_parent_transid(io_tree, eb,
278 						   parent_transid, 0))
279 				ret = -EIO;
280 			else if (btrfs_verify_level_key(eb, level,
281 						first_key, parent_transid))
282 				ret = -EUCLEAN;
283 			else
284 				break;
285 		}
286 
287 		num_copies = btrfs_num_copies(fs_info,
288 					      eb->start, eb->len);
289 		if (num_copies == 1)
290 			break;
291 
292 		if (!failed_mirror) {
293 			failed = 1;
294 			failed_mirror = eb->read_mirror;
295 		}
296 
297 		mirror_num++;
298 		if (mirror_num == failed_mirror)
299 			mirror_num++;
300 
301 		if (mirror_num > num_copies)
302 			break;
303 	}
304 
305 	if (failed && !ret && failed_mirror)
306 		btrfs_repair_eb_io_failure(eb, failed_mirror);
307 
308 	return ret;
309 }
310 
311 static int csum_one_extent_buffer(struct extent_buffer *eb)
312 {
313 	struct btrfs_fs_info *fs_info = eb->fs_info;
314 	u8 result[BTRFS_CSUM_SIZE];
315 	int ret;
316 
317 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
318 				    offsetof(struct btrfs_header, fsid),
319 				    BTRFS_FSID_SIZE) == 0);
320 	csum_tree_block(eb, result);
321 
322 	if (btrfs_header_level(eb))
323 		ret = btrfs_check_node(eb);
324 	else
325 		ret = btrfs_check_leaf_full(eb);
326 
327 	if (ret < 0)
328 		goto error;
329 
330 	/*
331 	 * Also check the generation, the eb reached here must be newer than
332 	 * last committed. Or something seriously wrong happened.
333 	 */
334 	if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
335 		ret = -EUCLEAN;
336 		btrfs_err(fs_info,
337 			"block=%llu bad generation, have %llu expect > %llu",
338 			  eb->start, btrfs_header_generation(eb),
339 			  fs_info->last_trans_committed);
340 		goto error;
341 	}
342 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
343 
344 	return 0;
345 
346 error:
347 	btrfs_print_tree(eb, 0);
348 	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
349 		  eb->start);
350 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
351 	return ret;
352 }
353 
354 /* Checksum all dirty extent buffers in one bio_vec */
355 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
356 				      struct bio_vec *bvec)
357 {
358 	struct page *page = bvec->bv_page;
359 	u64 bvec_start = page_offset(page) + bvec->bv_offset;
360 	u64 cur;
361 	int ret = 0;
362 
363 	for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
364 	     cur += fs_info->nodesize) {
365 		struct extent_buffer *eb;
366 		bool uptodate;
367 
368 		eb = find_extent_buffer(fs_info, cur);
369 		uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
370 						       fs_info->nodesize);
371 
372 		/* A dirty eb shouldn't disappear from buffer_radix */
373 		if (WARN_ON(!eb))
374 			return -EUCLEAN;
375 
376 		if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
377 			free_extent_buffer(eb);
378 			return -EUCLEAN;
379 		}
380 		if (WARN_ON(!uptodate)) {
381 			free_extent_buffer(eb);
382 			return -EUCLEAN;
383 		}
384 
385 		ret = csum_one_extent_buffer(eb);
386 		free_extent_buffer(eb);
387 		if (ret < 0)
388 			return ret;
389 	}
390 	return ret;
391 }
392 
393 /*
394  * Checksum a dirty tree block before IO.  This has extra checks to make sure
395  * we only fill in the checksum field in the first page of a multi-page block.
396  * For subpage extent buffers we need bvec to also read the offset in the page.
397  */
398 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
399 {
400 	struct page *page = bvec->bv_page;
401 	u64 start = page_offset(page);
402 	u64 found_start;
403 	struct extent_buffer *eb;
404 
405 	if (fs_info->nodesize < PAGE_SIZE)
406 		return csum_dirty_subpage_buffers(fs_info, bvec);
407 
408 	eb = (struct extent_buffer *)page->private;
409 	if (page != eb->pages[0])
410 		return 0;
411 
412 	found_start = btrfs_header_bytenr(eb);
413 
414 	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
415 		WARN_ON(found_start != 0);
416 		return 0;
417 	}
418 
419 	/*
420 	 * Please do not consolidate these warnings into a single if.
421 	 * It is useful to know what went wrong.
422 	 */
423 	if (WARN_ON(found_start != start))
424 		return -EUCLEAN;
425 	if (WARN_ON(!PageUptodate(page)))
426 		return -EUCLEAN;
427 
428 	return csum_one_extent_buffer(eb);
429 }
430 
431 static int check_tree_block_fsid(struct extent_buffer *eb)
432 {
433 	struct btrfs_fs_info *fs_info = eb->fs_info;
434 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
435 	u8 fsid[BTRFS_FSID_SIZE];
436 	u8 *metadata_uuid;
437 
438 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
439 			   BTRFS_FSID_SIZE);
440 	/*
441 	 * Checking the incompat flag is only valid for the current fs. For
442 	 * seed devices it's forbidden to have their uuid changed so reading
443 	 * ->fsid in this case is fine
444 	 */
445 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
446 		metadata_uuid = fs_devices->metadata_uuid;
447 	else
448 		metadata_uuid = fs_devices->fsid;
449 
450 	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
451 		return 0;
452 
453 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
454 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
455 			return 0;
456 
457 	return 1;
458 }
459 
460 /* Do basic extent buffer checks at read time */
461 static int validate_extent_buffer(struct extent_buffer *eb)
462 {
463 	struct btrfs_fs_info *fs_info = eb->fs_info;
464 	u64 found_start;
465 	const u32 csum_size = fs_info->csum_size;
466 	u8 found_level;
467 	u8 result[BTRFS_CSUM_SIZE];
468 	const u8 *header_csum;
469 	int ret = 0;
470 
471 	found_start = btrfs_header_bytenr(eb);
472 	if (found_start != eb->start) {
473 		btrfs_err_rl(fs_info,
474 			"bad tree block start, mirror %u want %llu have %llu",
475 			     eb->read_mirror, eb->start, found_start);
476 		ret = -EIO;
477 		goto out;
478 	}
479 	if (check_tree_block_fsid(eb)) {
480 		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
481 			     eb->start, eb->read_mirror);
482 		ret = -EIO;
483 		goto out;
484 	}
485 	found_level = btrfs_header_level(eb);
486 	if (found_level >= BTRFS_MAX_LEVEL) {
487 		btrfs_err(fs_info,
488 			"bad tree block level, mirror %u level %d on logical %llu",
489 			eb->read_mirror, btrfs_header_level(eb), eb->start);
490 		ret = -EIO;
491 		goto out;
492 	}
493 
494 	csum_tree_block(eb, result);
495 	header_csum = page_address(eb->pages[0]) +
496 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
497 
498 	if (memcmp(result, header_csum, csum_size) != 0) {
499 		btrfs_warn_rl(fs_info,
500 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
501 			      eb->start, eb->read_mirror,
502 			      CSUM_FMT_VALUE(csum_size, header_csum),
503 			      CSUM_FMT_VALUE(csum_size, result),
504 			      btrfs_header_level(eb));
505 		ret = -EUCLEAN;
506 		goto out;
507 	}
508 
509 	/*
510 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
511 	 * that we don't try and read the other copies of this block, just
512 	 * return -EIO.
513 	 */
514 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
515 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
516 		ret = -EIO;
517 	}
518 
519 	if (found_level > 0 && btrfs_check_node(eb))
520 		ret = -EIO;
521 
522 	if (!ret)
523 		set_extent_buffer_uptodate(eb);
524 	else
525 		btrfs_err(fs_info,
526 		"read time tree block corruption detected on logical %llu mirror %u",
527 			  eb->start, eb->read_mirror);
528 out:
529 	return ret;
530 }
531 
532 static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
533 				   int mirror)
534 {
535 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
536 	struct extent_buffer *eb;
537 	bool reads_done;
538 	int ret = 0;
539 
540 	/*
541 	 * We don't allow bio merge for subpage metadata read, so we should
542 	 * only get one eb for each endio hook.
543 	 */
544 	ASSERT(end == start + fs_info->nodesize - 1);
545 	ASSERT(PagePrivate(page));
546 
547 	eb = find_extent_buffer(fs_info, start);
548 	/*
549 	 * When we are reading one tree block, eb must have been inserted into
550 	 * the radix tree. If not, something is wrong.
551 	 */
552 	ASSERT(eb);
553 
554 	reads_done = atomic_dec_and_test(&eb->io_pages);
555 	/* Subpage read must finish in page read */
556 	ASSERT(reads_done);
557 
558 	eb->read_mirror = mirror;
559 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
560 		ret = -EIO;
561 		goto err;
562 	}
563 	ret = validate_extent_buffer(eb);
564 	if (ret < 0)
565 		goto err;
566 
567 	set_extent_buffer_uptodate(eb);
568 
569 	free_extent_buffer(eb);
570 	return ret;
571 err:
572 	/*
573 	 * end_bio_extent_readpage decrements io_pages in case of error,
574 	 * make sure it has something to decrement.
575 	 */
576 	atomic_inc(&eb->io_pages);
577 	clear_extent_buffer_uptodate(eb);
578 	free_extent_buffer(eb);
579 	return ret;
580 }
581 
582 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
583 				   struct page *page, u64 start, u64 end,
584 				   int mirror)
585 {
586 	struct extent_buffer *eb;
587 	int ret = 0;
588 	int reads_done;
589 
590 	ASSERT(page->private);
591 
592 	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
593 		return validate_subpage_buffer(page, start, end, mirror);
594 
595 	eb = (struct extent_buffer *)page->private;
596 
597 	/*
598 	 * The pending IO might have been the only thing that kept this buffer
599 	 * in memory.  Make sure we have a ref for all this other checks
600 	 */
601 	atomic_inc(&eb->refs);
602 
603 	reads_done = atomic_dec_and_test(&eb->io_pages);
604 	if (!reads_done)
605 		goto err;
606 
607 	eb->read_mirror = mirror;
608 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
609 		ret = -EIO;
610 		goto err;
611 	}
612 	ret = validate_extent_buffer(eb);
613 err:
614 	if (ret) {
615 		/*
616 		 * our io error hook is going to dec the io pages
617 		 * again, we have to make sure it has something
618 		 * to decrement
619 		 */
620 		atomic_inc(&eb->io_pages);
621 		clear_extent_buffer_uptodate(eb);
622 	}
623 	free_extent_buffer(eb);
624 
625 	return ret;
626 }
627 
628 static void run_one_async_start(struct btrfs_work *work)
629 {
630 	struct async_submit_bio *async;
631 	blk_status_t ret;
632 
633 	async = container_of(work, struct  async_submit_bio, work);
634 	ret = async->submit_bio_start(async->inode, async->bio,
635 				      async->dio_file_offset);
636 	if (ret)
637 		async->status = ret;
638 }
639 
640 /*
641  * In order to insert checksums into the metadata in large chunks, we wait
642  * until bio submission time.   All the pages in the bio are checksummed and
643  * sums are attached onto the ordered extent record.
644  *
645  * At IO completion time the csums attached on the ordered extent record are
646  * inserted into the tree.
647  */
648 static void run_one_async_done(struct btrfs_work *work)
649 {
650 	struct async_submit_bio *async;
651 	struct inode *inode;
652 
653 	async = container_of(work, struct  async_submit_bio, work);
654 	inode = async->inode;
655 
656 	/* If an error occurred we just want to clean up the bio and move on */
657 	if (async->status) {
658 		async->bio->bi_status = async->status;
659 		bio_endio(async->bio);
660 		return;
661 	}
662 
663 	/*
664 	 * All of the bios that pass through here are from async helpers.
665 	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
666 	 * This changes nothing when cgroups aren't in use.
667 	 */
668 	async->bio->bi_opf |= REQ_CGROUP_PUNT;
669 	btrfs_submit_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
670 }
671 
672 static void run_one_async_free(struct btrfs_work *work)
673 {
674 	struct async_submit_bio *async;
675 
676 	async = container_of(work, struct  async_submit_bio, work);
677 	kfree(async);
678 }
679 
680 /*
681  * Submit bio to an async queue.
682  *
683  * Retrun:
684  * - true if the work has been succesfuly submitted
685  * - false in case of error
686  */
687 bool btrfs_wq_submit_bio(struct inode *inode, struct bio *bio, int mirror_num,
688 			 u64 dio_file_offset,
689 			 extent_submit_bio_start_t *submit_bio_start)
690 {
691 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
692 	struct async_submit_bio *async;
693 
694 	async = kmalloc(sizeof(*async), GFP_NOFS);
695 	if (!async)
696 		return false;
697 
698 	async->inode = inode;
699 	async->bio = bio;
700 	async->mirror_num = mirror_num;
701 	async->submit_bio_start = submit_bio_start;
702 
703 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
704 			run_one_async_free);
705 
706 	async->dio_file_offset = dio_file_offset;
707 
708 	async->status = 0;
709 
710 	if (op_is_sync(bio->bi_opf))
711 		btrfs_queue_work(fs_info->hipri_workers, &async->work);
712 	else
713 		btrfs_queue_work(fs_info->workers, &async->work);
714 	return true;
715 }
716 
717 static blk_status_t btree_csum_one_bio(struct bio *bio)
718 {
719 	struct bio_vec *bvec;
720 	struct btrfs_root *root;
721 	int ret = 0;
722 	struct bvec_iter_all iter_all;
723 
724 	ASSERT(!bio_flagged(bio, BIO_CLONED));
725 	bio_for_each_segment_all(bvec, bio, iter_all) {
726 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
727 		ret = csum_dirty_buffer(root->fs_info, bvec);
728 		if (ret)
729 			break;
730 	}
731 
732 	return errno_to_blk_status(ret);
733 }
734 
735 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
736 					   u64 dio_file_offset)
737 {
738 	/*
739 	 * when we're called for a write, we're already in the async
740 	 * submission context.  Just jump into btrfs_submit_bio.
741 	 */
742 	return btree_csum_one_bio(bio);
743 }
744 
745 static bool should_async_write(struct btrfs_fs_info *fs_info,
746 			     struct btrfs_inode *bi)
747 {
748 	if (btrfs_is_zoned(fs_info))
749 		return false;
750 	if (atomic_read(&bi->sync_writers))
751 		return false;
752 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
753 		return false;
754 	return true;
755 }
756 
757 void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num)
758 {
759 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
760 	blk_status_t ret;
761 
762 	bio->bi_opf |= REQ_META;
763 
764 	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
765 		btrfs_submit_bio(fs_info, bio, mirror_num);
766 		return;
767 	}
768 
769 	/*
770 	 * Kthread helpers are used to submit writes so that checksumming can
771 	 * happen in parallel across all CPUs.
772 	 */
773 	if (should_async_write(fs_info, BTRFS_I(inode)) &&
774 	    btrfs_wq_submit_bio(inode, bio, mirror_num, 0, btree_submit_bio_start))
775 		return;
776 
777 	ret = btree_csum_one_bio(bio);
778 	if (ret) {
779 		bio->bi_status = ret;
780 		bio_endio(bio);
781 		return;
782 	}
783 
784 	btrfs_submit_bio(fs_info, bio, mirror_num);
785 }
786 
787 #ifdef CONFIG_MIGRATION
788 static int btree_migrate_folio(struct address_space *mapping,
789 		struct folio *dst, struct folio *src, enum migrate_mode mode)
790 {
791 	/*
792 	 * we can't safely write a btree page from here,
793 	 * we haven't done the locking hook
794 	 */
795 	if (folio_test_dirty(src))
796 		return -EAGAIN;
797 	/*
798 	 * Buffers may be managed in a filesystem specific way.
799 	 * We must have no buffers or drop them.
800 	 */
801 	if (folio_get_private(src) &&
802 	    !filemap_release_folio(src, GFP_KERNEL))
803 		return -EAGAIN;
804 	return migrate_folio(mapping, dst, src, mode);
805 }
806 #else
807 #define btree_migrate_folio NULL
808 #endif
809 
810 static int btree_writepages(struct address_space *mapping,
811 			    struct writeback_control *wbc)
812 {
813 	struct btrfs_fs_info *fs_info;
814 	int ret;
815 
816 	if (wbc->sync_mode == WB_SYNC_NONE) {
817 
818 		if (wbc->for_kupdate)
819 			return 0;
820 
821 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
822 		/* this is a bit racy, but that's ok */
823 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
824 					     BTRFS_DIRTY_METADATA_THRESH,
825 					     fs_info->dirty_metadata_batch);
826 		if (ret < 0)
827 			return 0;
828 	}
829 	return btree_write_cache_pages(mapping, wbc);
830 }
831 
832 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
833 {
834 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
835 		return false;
836 
837 	return try_release_extent_buffer(&folio->page);
838 }
839 
840 static void btree_invalidate_folio(struct folio *folio, size_t offset,
841 				 size_t length)
842 {
843 	struct extent_io_tree *tree;
844 	tree = &BTRFS_I(folio->mapping->host)->io_tree;
845 	extent_invalidate_folio(tree, folio, offset);
846 	btree_release_folio(folio, GFP_NOFS);
847 	if (folio_get_private(folio)) {
848 		btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
849 			   "folio private not zero on folio %llu",
850 			   (unsigned long long)folio_pos(folio));
851 		folio_detach_private(folio);
852 	}
853 }
854 
855 #ifdef DEBUG
856 static bool btree_dirty_folio(struct address_space *mapping,
857 		struct folio *folio)
858 {
859 	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
860 	struct btrfs_subpage *subpage;
861 	struct extent_buffer *eb;
862 	int cur_bit = 0;
863 	u64 page_start = folio_pos(folio);
864 
865 	if (fs_info->sectorsize == PAGE_SIZE) {
866 		eb = folio_get_private(folio);
867 		BUG_ON(!eb);
868 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
869 		BUG_ON(!atomic_read(&eb->refs));
870 		btrfs_assert_tree_write_locked(eb);
871 		return filemap_dirty_folio(mapping, folio);
872 	}
873 	subpage = folio_get_private(folio);
874 
875 	ASSERT(subpage->dirty_bitmap);
876 	while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
877 		unsigned long flags;
878 		u64 cur;
879 		u16 tmp = (1 << cur_bit);
880 
881 		spin_lock_irqsave(&subpage->lock, flags);
882 		if (!(tmp & subpage->dirty_bitmap)) {
883 			spin_unlock_irqrestore(&subpage->lock, flags);
884 			cur_bit++;
885 			continue;
886 		}
887 		spin_unlock_irqrestore(&subpage->lock, flags);
888 		cur = page_start + cur_bit * fs_info->sectorsize;
889 
890 		eb = find_extent_buffer(fs_info, cur);
891 		ASSERT(eb);
892 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
893 		ASSERT(atomic_read(&eb->refs));
894 		btrfs_assert_tree_write_locked(eb);
895 		free_extent_buffer(eb);
896 
897 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
898 	}
899 	return filemap_dirty_folio(mapping, folio);
900 }
901 #else
902 #define btree_dirty_folio filemap_dirty_folio
903 #endif
904 
905 static const struct address_space_operations btree_aops = {
906 	.writepages	= btree_writepages,
907 	.release_folio	= btree_release_folio,
908 	.invalidate_folio = btree_invalidate_folio,
909 	.migrate_folio	= btree_migrate_folio,
910 	.dirty_folio	= btree_dirty_folio,
911 };
912 
913 struct extent_buffer *btrfs_find_create_tree_block(
914 						struct btrfs_fs_info *fs_info,
915 						u64 bytenr, u64 owner_root,
916 						int level)
917 {
918 	if (btrfs_is_testing(fs_info))
919 		return alloc_test_extent_buffer(fs_info, bytenr);
920 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
921 }
922 
923 /*
924  * Read tree block at logical address @bytenr and do variant basic but critical
925  * verification.
926  *
927  * @owner_root:		the objectid of the root owner for this block.
928  * @parent_transid:	expected transid of this tree block, skip check if 0
929  * @level:		expected level, mandatory check
930  * @first_key:		expected key in slot 0, skip check if NULL
931  */
932 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
933 				      u64 owner_root, u64 parent_transid,
934 				      int level, struct btrfs_key *first_key)
935 {
936 	struct extent_buffer *buf = NULL;
937 	int ret;
938 
939 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
940 	if (IS_ERR(buf))
941 		return buf;
942 
943 	ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key);
944 	if (ret) {
945 		free_extent_buffer_stale(buf);
946 		return ERR_PTR(ret);
947 	}
948 	if (btrfs_check_eb_owner(buf, owner_root)) {
949 		free_extent_buffer_stale(buf);
950 		return ERR_PTR(-EUCLEAN);
951 	}
952 	return buf;
953 
954 }
955 
956 void btrfs_clean_tree_block(struct extent_buffer *buf)
957 {
958 	struct btrfs_fs_info *fs_info = buf->fs_info;
959 	if (btrfs_header_generation(buf) ==
960 	    fs_info->running_transaction->transid) {
961 		btrfs_assert_tree_write_locked(buf);
962 
963 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
964 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
965 						 -buf->len,
966 						 fs_info->dirty_metadata_batch);
967 			clear_extent_buffer_dirty(buf);
968 		}
969 	}
970 }
971 
972 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
973 			 u64 objectid)
974 {
975 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
976 
977 	memset(&root->root_key, 0, sizeof(root->root_key));
978 	memset(&root->root_item, 0, sizeof(root->root_item));
979 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
980 	root->fs_info = fs_info;
981 	root->root_key.objectid = objectid;
982 	root->node = NULL;
983 	root->commit_root = NULL;
984 	root->state = 0;
985 	RB_CLEAR_NODE(&root->rb_node);
986 
987 	root->last_trans = 0;
988 	root->free_objectid = 0;
989 	root->nr_delalloc_inodes = 0;
990 	root->nr_ordered_extents = 0;
991 	root->inode_tree = RB_ROOT;
992 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
993 
994 	btrfs_init_root_block_rsv(root);
995 
996 	INIT_LIST_HEAD(&root->dirty_list);
997 	INIT_LIST_HEAD(&root->root_list);
998 	INIT_LIST_HEAD(&root->delalloc_inodes);
999 	INIT_LIST_HEAD(&root->delalloc_root);
1000 	INIT_LIST_HEAD(&root->ordered_extents);
1001 	INIT_LIST_HEAD(&root->ordered_root);
1002 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1003 	INIT_LIST_HEAD(&root->logged_list[0]);
1004 	INIT_LIST_HEAD(&root->logged_list[1]);
1005 	spin_lock_init(&root->inode_lock);
1006 	spin_lock_init(&root->delalloc_lock);
1007 	spin_lock_init(&root->ordered_extent_lock);
1008 	spin_lock_init(&root->accounting_lock);
1009 	spin_lock_init(&root->log_extents_lock[0]);
1010 	spin_lock_init(&root->log_extents_lock[1]);
1011 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1012 	mutex_init(&root->objectid_mutex);
1013 	mutex_init(&root->log_mutex);
1014 	mutex_init(&root->ordered_extent_mutex);
1015 	mutex_init(&root->delalloc_mutex);
1016 	init_waitqueue_head(&root->qgroup_flush_wait);
1017 	init_waitqueue_head(&root->log_writer_wait);
1018 	init_waitqueue_head(&root->log_commit_wait[0]);
1019 	init_waitqueue_head(&root->log_commit_wait[1]);
1020 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1021 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1022 	atomic_set(&root->log_commit[0], 0);
1023 	atomic_set(&root->log_commit[1], 0);
1024 	atomic_set(&root->log_writers, 0);
1025 	atomic_set(&root->log_batch, 0);
1026 	refcount_set(&root->refs, 1);
1027 	atomic_set(&root->snapshot_force_cow, 0);
1028 	atomic_set(&root->nr_swapfiles, 0);
1029 	root->log_transid = 0;
1030 	root->log_transid_committed = -1;
1031 	root->last_log_commit = 0;
1032 	root->anon_dev = 0;
1033 	if (!dummy) {
1034 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1035 				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1036 		extent_io_tree_init(fs_info, &root->log_csum_range,
1037 				    IO_TREE_LOG_CSUM_RANGE, NULL);
1038 	}
1039 
1040 	spin_lock_init(&root->root_item_lock);
1041 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1042 #ifdef CONFIG_BTRFS_DEBUG
1043 	INIT_LIST_HEAD(&root->leak_list);
1044 	spin_lock(&fs_info->fs_roots_radix_lock);
1045 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1046 	spin_unlock(&fs_info->fs_roots_radix_lock);
1047 #endif
1048 }
1049 
1050 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1051 					   u64 objectid, gfp_t flags)
1052 {
1053 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1054 	if (root)
1055 		__setup_root(root, fs_info, objectid);
1056 	return root;
1057 }
1058 
1059 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1060 /* Should only be used by the testing infrastructure */
1061 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1062 {
1063 	struct btrfs_root *root;
1064 
1065 	if (!fs_info)
1066 		return ERR_PTR(-EINVAL);
1067 
1068 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1069 	if (!root)
1070 		return ERR_PTR(-ENOMEM);
1071 
1072 	/* We don't use the stripesize in selftest, set it as sectorsize */
1073 	root->alloc_bytenr = 0;
1074 
1075 	return root;
1076 }
1077 #endif
1078 
1079 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1080 {
1081 	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1082 	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1083 
1084 	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1085 }
1086 
1087 static int global_root_key_cmp(const void *k, const struct rb_node *node)
1088 {
1089 	const struct btrfs_key *key = k;
1090 	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1091 
1092 	return btrfs_comp_cpu_keys(key, &root->root_key);
1093 }
1094 
1095 int btrfs_global_root_insert(struct btrfs_root *root)
1096 {
1097 	struct btrfs_fs_info *fs_info = root->fs_info;
1098 	struct rb_node *tmp;
1099 
1100 	write_lock(&fs_info->global_root_lock);
1101 	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1102 	write_unlock(&fs_info->global_root_lock);
1103 	ASSERT(!tmp);
1104 
1105 	return tmp ? -EEXIST : 0;
1106 }
1107 
1108 void btrfs_global_root_delete(struct btrfs_root *root)
1109 {
1110 	struct btrfs_fs_info *fs_info = root->fs_info;
1111 
1112 	write_lock(&fs_info->global_root_lock);
1113 	rb_erase(&root->rb_node, &fs_info->global_root_tree);
1114 	write_unlock(&fs_info->global_root_lock);
1115 }
1116 
1117 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1118 				     struct btrfs_key *key)
1119 {
1120 	struct rb_node *node;
1121 	struct btrfs_root *root = NULL;
1122 
1123 	read_lock(&fs_info->global_root_lock);
1124 	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1125 	if (node)
1126 		root = container_of(node, struct btrfs_root, rb_node);
1127 	read_unlock(&fs_info->global_root_lock);
1128 
1129 	return root;
1130 }
1131 
1132 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1133 {
1134 	struct btrfs_block_group *block_group;
1135 	u64 ret;
1136 
1137 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1138 		return 0;
1139 
1140 	if (bytenr)
1141 		block_group = btrfs_lookup_block_group(fs_info, bytenr);
1142 	else
1143 		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1144 	ASSERT(block_group);
1145 	if (!block_group)
1146 		return 0;
1147 	ret = block_group->global_root_id;
1148 	btrfs_put_block_group(block_group);
1149 
1150 	return ret;
1151 }
1152 
1153 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1154 {
1155 	struct btrfs_key key = {
1156 		.objectid = BTRFS_CSUM_TREE_OBJECTID,
1157 		.type = BTRFS_ROOT_ITEM_KEY,
1158 		.offset = btrfs_global_root_id(fs_info, bytenr),
1159 	};
1160 
1161 	return btrfs_global_root(fs_info, &key);
1162 }
1163 
1164 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1165 {
1166 	struct btrfs_key key = {
1167 		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
1168 		.type = BTRFS_ROOT_ITEM_KEY,
1169 		.offset = btrfs_global_root_id(fs_info, bytenr),
1170 	};
1171 
1172 	return btrfs_global_root(fs_info, &key);
1173 }
1174 
1175 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1176 				     u64 objectid)
1177 {
1178 	struct btrfs_fs_info *fs_info = trans->fs_info;
1179 	struct extent_buffer *leaf;
1180 	struct btrfs_root *tree_root = fs_info->tree_root;
1181 	struct btrfs_root *root;
1182 	struct btrfs_key key;
1183 	unsigned int nofs_flag;
1184 	int ret = 0;
1185 
1186 	/*
1187 	 * We're holding a transaction handle, so use a NOFS memory allocation
1188 	 * context to avoid deadlock if reclaim happens.
1189 	 */
1190 	nofs_flag = memalloc_nofs_save();
1191 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1192 	memalloc_nofs_restore(nofs_flag);
1193 	if (!root)
1194 		return ERR_PTR(-ENOMEM);
1195 
1196 	root->root_key.objectid = objectid;
1197 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1198 	root->root_key.offset = 0;
1199 
1200 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1201 				      BTRFS_NESTING_NORMAL);
1202 	if (IS_ERR(leaf)) {
1203 		ret = PTR_ERR(leaf);
1204 		leaf = NULL;
1205 		goto fail_unlock;
1206 	}
1207 
1208 	root->node = leaf;
1209 	btrfs_mark_buffer_dirty(leaf);
1210 
1211 	root->commit_root = btrfs_root_node(root);
1212 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1213 
1214 	btrfs_set_root_flags(&root->root_item, 0);
1215 	btrfs_set_root_limit(&root->root_item, 0);
1216 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1217 	btrfs_set_root_generation(&root->root_item, trans->transid);
1218 	btrfs_set_root_level(&root->root_item, 0);
1219 	btrfs_set_root_refs(&root->root_item, 1);
1220 	btrfs_set_root_used(&root->root_item, leaf->len);
1221 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1222 	btrfs_set_root_dirid(&root->root_item, 0);
1223 	if (is_fstree(objectid))
1224 		generate_random_guid(root->root_item.uuid);
1225 	else
1226 		export_guid(root->root_item.uuid, &guid_null);
1227 	btrfs_set_root_drop_level(&root->root_item, 0);
1228 
1229 	btrfs_tree_unlock(leaf);
1230 
1231 	key.objectid = objectid;
1232 	key.type = BTRFS_ROOT_ITEM_KEY;
1233 	key.offset = 0;
1234 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1235 	if (ret)
1236 		goto fail;
1237 
1238 	return root;
1239 
1240 fail_unlock:
1241 	if (leaf)
1242 		btrfs_tree_unlock(leaf);
1243 fail:
1244 	btrfs_put_root(root);
1245 
1246 	return ERR_PTR(ret);
1247 }
1248 
1249 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1250 					 struct btrfs_fs_info *fs_info)
1251 {
1252 	struct btrfs_root *root;
1253 
1254 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1255 	if (!root)
1256 		return ERR_PTR(-ENOMEM);
1257 
1258 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1259 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1260 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1261 
1262 	return root;
1263 }
1264 
1265 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1266 			      struct btrfs_root *root)
1267 {
1268 	struct extent_buffer *leaf;
1269 
1270 	/*
1271 	 * DON'T set SHAREABLE bit for log trees.
1272 	 *
1273 	 * Log trees are not exposed to user space thus can't be snapshotted,
1274 	 * and they go away before a real commit is actually done.
1275 	 *
1276 	 * They do store pointers to file data extents, and those reference
1277 	 * counts still get updated (along with back refs to the log tree).
1278 	 */
1279 
1280 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1281 			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1282 	if (IS_ERR(leaf))
1283 		return PTR_ERR(leaf);
1284 
1285 	root->node = leaf;
1286 
1287 	btrfs_mark_buffer_dirty(root->node);
1288 	btrfs_tree_unlock(root->node);
1289 
1290 	return 0;
1291 }
1292 
1293 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1294 			     struct btrfs_fs_info *fs_info)
1295 {
1296 	struct btrfs_root *log_root;
1297 
1298 	log_root = alloc_log_tree(trans, fs_info);
1299 	if (IS_ERR(log_root))
1300 		return PTR_ERR(log_root);
1301 
1302 	if (!btrfs_is_zoned(fs_info)) {
1303 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
1304 
1305 		if (ret) {
1306 			btrfs_put_root(log_root);
1307 			return ret;
1308 		}
1309 	}
1310 
1311 	WARN_ON(fs_info->log_root_tree);
1312 	fs_info->log_root_tree = log_root;
1313 	return 0;
1314 }
1315 
1316 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1317 		       struct btrfs_root *root)
1318 {
1319 	struct btrfs_fs_info *fs_info = root->fs_info;
1320 	struct btrfs_root *log_root;
1321 	struct btrfs_inode_item *inode_item;
1322 	int ret;
1323 
1324 	log_root = alloc_log_tree(trans, fs_info);
1325 	if (IS_ERR(log_root))
1326 		return PTR_ERR(log_root);
1327 
1328 	ret = btrfs_alloc_log_tree_node(trans, log_root);
1329 	if (ret) {
1330 		btrfs_put_root(log_root);
1331 		return ret;
1332 	}
1333 
1334 	log_root->last_trans = trans->transid;
1335 	log_root->root_key.offset = root->root_key.objectid;
1336 
1337 	inode_item = &log_root->root_item.inode;
1338 	btrfs_set_stack_inode_generation(inode_item, 1);
1339 	btrfs_set_stack_inode_size(inode_item, 3);
1340 	btrfs_set_stack_inode_nlink(inode_item, 1);
1341 	btrfs_set_stack_inode_nbytes(inode_item,
1342 				     fs_info->nodesize);
1343 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1344 
1345 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1346 
1347 	WARN_ON(root->log_root);
1348 	root->log_root = log_root;
1349 	root->log_transid = 0;
1350 	root->log_transid_committed = -1;
1351 	root->last_log_commit = 0;
1352 	return 0;
1353 }
1354 
1355 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1356 					      struct btrfs_path *path,
1357 					      struct btrfs_key *key)
1358 {
1359 	struct btrfs_root *root;
1360 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1361 	u64 generation;
1362 	int ret;
1363 	int level;
1364 
1365 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1366 	if (!root)
1367 		return ERR_PTR(-ENOMEM);
1368 
1369 	ret = btrfs_find_root(tree_root, key, path,
1370 			      &root->root_item, &root->root_key);
1371 	if (ret) {
1372 		if (ret > 0)
1373 			ret = -ENOENT;
1374 		goto fail;
1375 	}
1376 
1377 	generation = btrfs_root_generation(&root->root_item);
1378 	level = btrfs_root_level(&root->root_item);
1379 	root->node = read_tree_block(fs_info,
1380 				     btrfs_root_bytenr(&root->root_item),
1381 				     key->objectid, generation, level, NULL);
1382 	if (IS_ERR(root->node)) {
1383 		ret = PTR_ERR(root->node);
1384 		root->node = NULL;
1385 		goto fail;
1386 	}
1387 	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1388 		ret = -EIO;
1389 		goto fail;
1390 	}
1391 
1392 	/*
1393 	 * For real fs, and not log/reloc trees, root owner must
1394 	 * match its root node owner
1395 	 */
1396 	if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1397 	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1398 	    root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1399 	    root->root_key.objectid != btrfs_header_owner(root->node)) {
1400 		btrfs_crit(fs_info,
1401 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1402 			   root->root_key.objectid, root->node->start,
1403 			   btrfs_header_owner(root->node),
1404 			   root->root_key.objectid);
1405 		ret = -EUCLEAN;
1406 		goto fail;
1407 	}
1408 	root->commit_root = btrfs_root_node(root);
1409 	return root;
1410 fail:
1411 	btrfs_put_root(root);
1412 	return ERR_PTR(ret);
1413 }
1414 
1415 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1416 					struct btrfs_key *key)
1417 {
1418 	struct btrfs_root *root;
1419 	struct btrfs_path *path;
1420 
1421 	path = btrfs_alloc_path();
1422 	if (!path)
1423 		return ERR_PTR(-ENOMEM);
1424 	root = read_tree_root_path(tree_root, path, key);
1425 	btrfs_free_path(path);
1426 
1427 	return root;
1428 }
1429 
1430 /*
1431  * Initialize subvolume root in-memory structure
1432  *
1433  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1434  */
1435 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1436 {
1437 	int ret;
1438 	unsigned int nofs_flag;
1439 
1440 	/*
1441 	 * We might be called under a transaction (e.g. indirect backref
1442 	 * resolution) which could deadlock if it triggers memory reclaim
1443 	 */
1444 	nofs_flag = memalloc_nofs_save();
1445 	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1446 	memalloc_nofs_restore(nofs_flag);
1447 	if (ret)
1448 		goto fail;
1449 
1450 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1451 	    !btrfs_is_data_reloc_root(root)) {
1452 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1453 		btrfs_check_and_init_root_item(&root->root_item);
1454 	}
1455 
1456 	/*
1457 	 * Don't assign anonymous block device to roots that are not exposed to
1458 	 * userspace, the id pool is limited to 1M
1459 	 */
1460 	if (is_fstree(root->root_key.objectid) &&
1461 	    btrfs_root_refs(&root->root_item) > 0) {
1462 		if (!anon_dev) {
1463 			ret = get_anon_bdev(&root->anon_dev);
1464 			if (ret)
1465 				goto fail;
1466 		} else {
1467 			root->anon_dev = anon_dev;
1468 		}
1469 	}
1470 
1471 	mutex_lock(&root->objectid_mutex);
1472 	ret = btrfs_init_root_free_objectid(root);
1473 	if (ret) {
1474 		mutex_unlock(&root->objectid_mutex);
1475 		goto fail;
1476 	}
1477 
1478 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1479 
1480 	mutex_unlock(&root->objectid_mutex);
1481 
1482 	return 0;
1483 fail:
1484 	/* The caller is responsible to call btrfs_free_fs_root */
1485 	return ret;
1486 }
1487 
1488 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1489 					       u64 root_id)
1490 {
1491 	struct btrfs_root *root;
1492 
1493 	spin_lock(&fs_info->fs_roots_radix_lock);
1494 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1495 				 (unsigned long)root_id);
1496 	if (root)
1497 		root = btrfs_grab_root(root);
1498 	spin_unlock(&fs_info->fs_roots_radix_lock);
1499 	return root;
1500 }
1501 
1502 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1503 						u64 objectid)
1504 {
1505 	struct btrfs_key key = {
1506 		.objectid = objectid,
1507 		.type = BTRFS_ROOT_ITEM_KEY,
1508 		.offset = 0,
1509 	};
1510 
1511 	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1512 		return btrfs_grab_root(fs_info->tree_root);
1513 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1514 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1515 	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1516 		return btrfs_grab_root(fs_info->chunk_root);
1517 	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1518 		return btrfs_grab_root(fs_info->dev_root);
1519 	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1520 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1521 	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1522 		return btrfs_grab_root(fs_info->quota_root) ?
1523 			fs_info->quota_root : ERR_PTR(-ENOENT);
1524 	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1525 		return btrfs_grab_root(fs_info->uuid_root) ?
1526 			fs_info->uuid_root : ERR_PTR(-ENOENT);
1527 	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1528 		struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1529 
1530 		return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1531 	}
1532 	return NULL;
1533 }
1534 
1535 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1536 			 struct btrfs_root *root)
1537 {
1538 	int ret;
1539 
1540 	ret = radix_tree_preload(GFP_NOFS);
1541 	if (ret)
1542 		return ret;
1543 
1544 	spin_lock(&fs_info->fs_roots_radix_lock);
1545 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1546 				(unsigned long)root->root_key.objectid,
1547 				root);
1548 	if (ret == 0) {
1549 		btrfs_grab_root(root);
1550 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1551 	}
1552 	spin_unlock(&fs_info->fs_roots_radix_lock);
1553 	radix_tree_preload_end();
1554 
1555 	return ret;
1556 }
1557 
1558 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1559 {
1560 #ifdef CONFIG_BTRFS_DEBUG
1561 	struct btrfs_root *root;
1562 
1563 	while (!list_empty(&fs_info->allocated_roots)) {
1564 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1565 
1566 		root = list_first_entry(&fs_info->allocated_roots,
1567 					struct btrfs_root, leak_list);
1568 		btrfs_err(fs_info, "leaked root %s refcount %d",
1569 			  btrfs_root_name(&root->root_key, buf),
1570 			  refcount_read(&root->refs));
1571 		while (refcount_read(&root->refs) > 1)
1572 			btrfs_put_root(root);
1573 		btrfs_put_root(root);
1574 	}
1575 #endif
1576 }
1577 
1578 static void free_global_roots(struct btrfs_fs_info *fs_info)
1579 {
1580 	struct btrfs_root *root;
1581 	struct rb_node *node;
1582 
1583 	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1584 		root = rb_entry(node, struct btrfs_root, rb_node);
1585 		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1586 		btrfs_put_root(root);
1587 	}
1588 }
1589 
1590 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1591 {
1592 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1593 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1594 	percpu_counter_destroy(&fs_info->ordered_bytes);
1595 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1596 	btrfs_free_csum_hash(fs_info);
1597 	btrfs_free_stripe_hash_table(fs_info);
1598 	btrfs_free_ref_cache(fs_info);
1599 	kfree(fs_info->balance_ctl);
1600 	kfree(fs_info->delayed_root);
1601 	free_global_roots(fs_info);
1602 	btrfs_put_root(fs_info->tree_root);
1603 	btrfs_put_root(fs_info->chunk_root);
1604 	btrfs_put_root(fs_info->dev_root);
1605 	btrfs_put_root(fs_info->quota_root);
1606 	btrfs_put_root(fs_info->uuid_root);
1607 	btrfs_put_root(fs_info->fs_root);
1608 	btrfs_put_root(fs_info->data_reloc_root);
1609 	btrfs_put_root(fs_info->block_group_root);
1610 	btrfs_check_leaked_roots(fs_info);
1611 	btrfs_extent_buffer_leak_debug_check(fs_info);
1612 	kfree(fs_info->super_copy);
1613 	kfree(fs_info->super_for_commit);
1614 	kfree(fs_info->subpage_info);
1615 	kvfree(fs_info);
1616 }
1617 
1618 
1619 /*
1620  * Get an in-memory reference of a root structure.
1621  *
1622  * For essential trees like root/extent tree, we grab it from fs_info directly.
1623  * For subvolume trees, we check the cached filesystem roots first. If not
1624  * found, then read it from disk and add it to cached fs roots.
1625  *
1626  * Caller should release the root by calling btrfs_put_root() after the usage.
1627  *
1628  * NOTE: Reloc and log trees can't be read by this function as they share the
1629  *	 same root objectid.
1630  *
1631  * @objectid:	root id
1632  * @anon_dev:	preallocated anonymous block device number for new roots,
1633  * 		pass 0 for new allocation.
1634  * @check_ref:	whether to check root item references, If true, return -ENOENT
1635  *		for orphan roots
1636  */
1637 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1638 					     u64 objectid, dev_t anon_dev,
1639 					     bool check_ref)
1640 {
1641 	struct btrfs_root *root;
1642 	struct btrfs_path *path;
1643 	struct btrfs_key key;
1644 	int ret;
1645 
1646 	root = btrfs_get_global_root(fs_info, objectid);
1647 	if (root)
1648 		return root;
1649 again:
1650 	root = btrfs_lookup_fs_root(fs_info, objectid);
1651 	if (root) {
1652 		/* Shouldn't get preallocated anon_dev for cached roots */
1653 		ASSERT(!anon_dev);
1654 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1655 			btrfs_put_root(root);
1656 			return ERR_PTR(-ENOENT);
1657 		}
1658 		return root;
1659 	}
1660 
1661 	key.objectid = objectid;
1662 	key.type = BTRFS_ROOT_ITEM_KEY;
1663 	key.offset = (u64)-1;
1664 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1665 	if (IS_ERR(root))
1666 		return root;
1667 
1668 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1669 		ret = -ENOENT;
1670 		goto fail;
1671 	}
1672 
1673 	ret = btrfs_init_fs_root(root, anon_dev);
1674 	if (ret)
1675 		goto fail;
1676 
1677 	path = btrfs_alloc_path();
1678 	if (!path) {
1679 		ret = -ENOMEM;
1680 		goto fail;
1681 	}
1682 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1683 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1684 	key.offset = objectid;
1685 
1686 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1687 	btrfs_free_path(path);
1688 	if (ret < 0)
1689 		goto fail;
1690 	if (ret == 0)
1691 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1692 
1693 	ret = btrfs_insert_fs_root(fs_info, root);
1694 	if (ret) {
1695 		if (ret == -EEXIST) {
1696 			btrfs_put_root(root);
1697 			goto again;
1698 		}
1699 		goto fail;
1700 	}
1701 	return root;
1702 fail:
1703 	/*
1704 	 * If our caller provided us an anonymous device, then it's his
1705 	 * responsibility to free it in case we fail. So we have to set our
1706 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1707 	 * and once again by our caller.
1708 	 */
1709 	if (anon_dev)
1710 		root->anon_dev = 0;
1711 	btrfs_put_root(root);
1712 	return ERR_PTR(ret);
1713 }
1714 
1715 /*
1716  * Get in-memory reference of a root structure
1717  *
1718  * @objectid:	tree objectid
1719  * @check_ref:	if set, verify that the tree exists and the item has at least
1720  *		one reference
1721  */
1722 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1723 				     u64 objectid, bool check_ref)
1724 {
1725 	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1726 }
1727 
1728 /*
1729  * Get in-memory reference of a root structure, created as new, optionally pass
1730  * the anonymous block device id
1731  *
1732  * @objectid:	tree objectid
1733  * @anon_dev:	if zero, allocate a new anonymous block device or use the
1734  *		parameter value
1735  */
1736 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1737 					 u64 objectid, dev_t anon_dev)
1738 {
1739 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1740 }
1741 
1742 /*
1743  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1744  * @fs_info:	the fs_info
1745  * @objectid:	the objectid we need to lookup
1746  *
1747  * This is exclusively used for backref walking, and exists specifically because
1748  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1749  * creation time, which means we may have to read the tree_root in order to look
1750  * up a fs root that is not in memory.  If the root is not in memory we will
1751  * read the tree root commit root and look up the fs root from there.  This is a
1752  * temporary root, it will not be inserted into the radix tree as it doesn't
1753  * have the most uptodate information, it'll simply be discarded once the
1754  * backref code is finished using the root.
1755  */
1756 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1757 						 struct btrfs_path *path,
1758 						 u64 objectid)
1759 {
1760 	struct btrfs_root *root;
1761 	struct btrfs_key key;
1762 
1763 	ASSERT(path->search_commit_root && path->skip_locking);
1764 
1765 	/*
1766 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1767 	 * since this is called via the backref walking code we won't be looking
1768 	 * up a root that doesn't exist, unless there's corruption.  So if root
1769 	 * != NULL just return it.
1770 	 */
1771 	root = btrfs_get_global_root(fs_info, objectid);
1772 	if (root)
1773 		return root;
1774 
1775 	root = btrfs_lookup_fs_root(fs_info, objectid);
1776 	if (root)
1777 		return root;
1778 
1779 	key.objectid = objectid;
1780 	key.type = BTRFS_ROOT_ITEM_KEY;
1781 	key.offset = (u64)-1;
1782 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1783 	btrfs_release_path(path);
1784 
1785 	return root;
1786 }
1787 
1788 static int cleaner_kthread(void *arg)
1789 {
1790 	struct btrfs_fs_info *fs_info = arg;
1791 	int again;
1792 
1793 	while (1) {
1794 		again = 0;
1795 
1796 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1797 
1798 		/* Make the cleaner go to sleep early. */
1799 		if (btrfs_need_cleaner_sleep(fs_info))
1800 			goto sleep;
1801 
1802 		/*
1803 		 * Do not do anything if we might cause open_ctree() to block
1804 		 * before we have finished mounting the filesystem.
1805 		 */
1806 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1807 			goto sleep;
1808 
1809 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1810 			goto sleep;
1811 
1812 		/*
1813 		 * Avoid the problem that we change the status of the fs
1814 		 * during the above check and trylock.
1815 		 */
1816 		if (btrfs_need_cleaner_sleep(fs_info)) {
1817 			mutex_unlock(&fs_info->cleaner_mutex);
1818 			goto sleep;
1819 		}
1820 
1821 		btrfs_run_delayed_iputs(fs_info);
1822 
1823 		again = btrfs_clean_one_deleted_snapshot(fs_info);
1824 		mutex_unlock(&fs_info->cleaner_mutex);
1825 
1826 		/*
1827 		 * The defragger has dealt with the R/O remount and umount,
1828 		 * needn't do anything special here.
1829 		 */
1830 		btrfs_run_defrag_inodes(fs_info);
1831 
1832 		/*
1833 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1834 		 * with relocation (btrfs_relocate_chunk) and relocation
1835 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1836 		 * after acquiring fs_info->reclaim_bgs_lock. So we
1837 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1838 		 * unused block groups.
1839 		 */
1840 		btrfs_delete_unused_bgs(fs_info);
1841 
1842 		/*
1843 		 * Reclaim block groups in the reclaim_bgs list after we deleted
1844 		 * all unused block_groups. This possibly gives us some more free
1845 		 * space.
1846 		 */
1847 		btrfs_reclaim_bgs(fs_info);
1848 sleep:
1849 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1850 		if (kthread_should_park())
1851 			kthread_parkme();
1852 		if (kthread_should_stop())
1853 			return 0;
1854 		if (!again) {
1855 			set_current_state(TASK_INTERRUPTIBLE);
1856 			schedule();
1857 			__set_current_state(TASK_RUNNING);
1858 		}
1859 	}
1860 }
1861 
1862 static int transaction_kthread(void *arg)
1863 {
1864 	struct btrfs_root *root = arg;
1865 	struct btrfs_fs_info *fs_info = root->fs_info;
1866 	struct btrfs_trans_handle *trans;
1867 	struct btrfs_transaction *cur;
1868 	u64 transid;
1869 	time64_t delta;
1870 	unsigned long delay;
1871 	bool cannot_commit;
1872 
1873 	do {
1874 		cannot_commit = false;
1875 		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1876 		mutex_lock(&fs_info->transaction_kthread_mutex);
1877 
1878 		spin_lock(&fs_info->trans_lock);
1879 		cur = fs_info->running_transaction;
1880 		if (!cur) {
1881 			spin_unlock(&fs_info->trans_lock);
1882 			goto sleep;
1883 		}
1884 
1885 		delta = ktime_get_seconds() - cur->start_time;
1886 		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1887 		    cur->state < TRANS_STATE_COMMIT_START &&
1888 		    delta < fs_info->commit_interval) {
1889 			spin_unlock(&fs_info->trans_lock);
1890 			delay -= msecs_to_jiffies((delta - 1) * 1000);
1891 			delay = min(delay,
1892 				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1893 			goto sleep;
1894 		}
1895 		transid = cur->transid;
1896 		spin_unlock(&fs_info->trans_lock);
1897 
1898 		/* If the file system is aborted, this will always fail. */
1899 		trans = btrfs_attach_transaction(root);
1900 		if (IS_ERR(trans)) {
1901 			if (PTR_ERR(trans) != -ENOENT)
1902 				cannot_commit = true;
1903 			goto sleep;
1904 		}
1905 		if (transid == trans->transid) {
1906 			btrfs_commit_transaction(trans);
1907 		} else {
1908 			btrfs_end_transaction(trans);
1909 		}
1910 sleep:
1911 		wake_up_process(fs_info->cleaner_kthread);
1912 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1913 
1914 		if (BTRFS_FS_ERROR(fs_info))
1915 			btrfs_cleanup_transaction(fs_info);
1916 		if (!kthread_should_stop() &&
1917 				(!btrfs_transaction_blocked(fs_info) ||
1918 				 cannot_commit))
1919 			schedule_timeout_interruptible(delay);
1920 	} while (!kthread_should_stop());
1921 	return 0;
1922 }
1923 
1924 /*
1925  * This will find the highest generation in the array of root backups.  The
1926  * index of the highest array is returned, or -EINVAL if we can't find
1927  * anything.
1928  *
1929  * We check to make sure the array is valid by comparing the
1930  * generation of the latest  root in the array with the generation
1931  * in the super block.  If they don't match we pitch it.
1932  */
1933 static int find_newest_super_backup(struct btrfs_fs_info *info)
1934 {
1935 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1936 	u64 cur;
1937 	struct btrfs_root_backup *root_backup;
1938 	int i;
1939 
1940 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1941 		root_backup = info->super_copy->super_roots + i;
1942 		cur = btrfs_backup_tree_root_gen(root_backup);
1943 		if (cur == newest_gen)
1944 			return i;
1945 	}
1946 
1947 	return -EINVAL;
1948 }
1949 
1950 /*
1951  * copy all the root pointers into the super backup array.
1952  * this will bump the backup pointer by one when it is
1953  * done
1954  */
1955 static void backup_super_roots(struct btrfs_fs_info *info)
1956 {
1957 	const int next_backup = info->backup_root_index;
1958 	struct btrfs_root_backup *root_backup;
1959 
1960 	root_backup = info->super_for_commit->super_roots + next_backup;
1961 
1962 	/*
1963 	 * make sure all of our padding and empty slots get zero filled
1964 	 * regardless of which ones we use today
1965 	 */
1966 	memset(root_backup, 0, sizeof(*root_backup));
1967 
1968 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1969 
1970 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1971 	btrfs_set_backup_tree_root_gen(root_backup,
1972 			       btrfs_header_generation(info->tree_root->node));
1973 
1974 	btrfs_set_backup_tree_root_level(root_backup,
1975 			       btrfs_header_level(info->tree_root->node));
1976 
1977 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1978 	btrfs_set_backup_chunk_root_gen(root_backup,
1979 			       btrfs_header_generation(info->chunk_root->node));
1980 	btrfs_set_backup_chunk_root_level(root_backup,
1981 			       btrfs_header_level(info->chunk_root->node));
1982 
1983 	if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) {
1984 		btrfs_set_backup_block_group_root(root_backup,
1985 					info->block_group_root->node->start);
1986 		btrfs_set_backup_block_group_root_gen(root_backup,
1987 			btrfs_header_generation(info->block_group_root->node));
1988 		btrfs_set_backup_block_group_root_level(root_backup,
1989 			btrfs_header_level(info->block_group_root->node));
1990 	} else {
1991 		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1992 		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1993 
1994 		btrfs_set_backup_extent_root(root_backup,
1995 					     extent_root->node->start);
1996 		btrfs_set_backup_extent_root_gen(root_backup,
1997 				btrfs_header_generation(extent_root->node));
1998 		btrfs_set_backup_extent_root_level(root_backup,
1999 					btrfs_header_level(extent_root->node));
2000 
2001 		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
2002 		btrfs_set_backup_csum_root_gen(root_backup,
2003 					       btrfs_header_generation(csum_root->node));
2004 		btrfs_set_backup_csum_root_level(root_backup,
2005 						 btrfs_header_level(csum_root->node));
2006 	}
2007 
2008 	/*
2009 	 * we might commit during log recovery, which happens before we set
2010 	 * the fs_root.  Make sure it is valid before we fill it in.
2011 	 */
2012 	if (info->fs_root && info->fs_root->node) {
2013 		btrfs_set_backup_fs_root(root_backup,
2014 					 info->fs_root->node->start);
2015 		btrfs_set_backup_fs_root_gen(root_backup,
2016 			       btrfs_header_generation(info->fs_root->node));
2017 		btrfs_set_backup_fs_root_level(root_backup,
2018 			       btrfs_header_level(info->fs_root->node));
2019 	}
2020 
2021 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2022 	btrfs_set_backup_dev_root_gen(root_backup,
2023 			       btrfs_header_generation(info->dev_root->node));
2024 	btrfs_set_backup_dev_root_level(root_backup,
2025 				       btrfs_header_level(info->dev_root->node));
2026 
2027 	btrfs_set_backup_total_bytes(root_backup,
2028 			     btrfs_super_total_bytes(info->super_copy));
2029 	btrfs_set_backup_bytes_used(root_backup,
2030 			     btrfs_super_bytes_used(info->super_copy));
2031 	btrfs_set_backup_num_devices(root_backup,
2032 			     btrfs_super_num_devices(info->super_copy));
2033 
2034 	/*
2035 	 * if we don't copy this out to the super_copy, it won't get remembered
2036 	 * for the next commit
2037 	 */
2038 	memcpy(&info->super_copy->super_roots,
2039 	       &info->super_for_commit->super_roots,
2040 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2041 }
2042 
2043 /*
2044  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2045  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2046  *
2047  * fs_info - filesystem whose backup roots need to be read
2048  * priority - priority of backup root required
2049  *
2050  * Returns backup root index on success and -EINVAL otherwise.
2051  */
2052 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2053 {
2054 	int backup_index = find_newest_super_backup(fs_info);
2055 	struct btrfs_super_block *super = fs_info->super_copy;
2056 	struct btrfs_root_backup *root_backup;
2057 
2058 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2059 		if (priority == 0)
2060 			return backup_index;
2061 
2062 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2063 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2064 	} else {
2065 		return -EINVAL;
2066 	}
2067 
2068 	root_backup = super->super_roots + backup_index;
2069 
2070 	btrfs_set_super_generation(super,
2071 				   btrfs_backup_tree_root_gen(root_backup));
2072 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2073 	btrfs_set_super_root_level(super,
2074 				   btrfs_backup_tree_root_level(root_backup));
2075 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2076 
2077 	/*
2078 	 * Fixme: the total bytes and num_devices need to match or we should
2079 	 * need a fsck
2080 	 */
2081 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2082 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2083 
2084 	return backup_index;
2085 }
2086 
2087 /* helper to cleanup workers */
2088 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2089 {
2090 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2091 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2092 	btrfs_destroy_workqueue(fs_info->hipri_workers);
2093 	btrfs_destroy_workqueue(fs_info->workers);
2094 	if (fs_info->endio_workers)
2095 		destroy_workqueue(fs_info->endio_workers);
2096 	if (fs_info->endio_raid56_workers)
2097 		destroy_workqueue(fs_info->endio_raid56_workers);
2098 	if (fs_info->rmw_workers)
2099 		destroy_workqueue(fs_info->rmw_workers);
2100 	if (fs_info->compressed_write_workers)
2101 		destroy_workqueue(fs_info->compressed_write_workers);
2102 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2103 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2104 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2105 	btrfs_destroy_workqueue(fs_info->caching_workers);
2106 	btrfs_destroy_workqueue(fs_info->flush_workers);
2107 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2108 	if (fs_info->discard_ctl.discard_workers)
2109 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
2110 	/*
2111 	 * Now that all other work queues are destroyed, we can safely destroy
2112 	 * the queues used for metadata I/O, since tasks from those other work
2113 	 * queues can do metadata I/O operations.
2114 	 */
2115 	if (fs_info->endio_meta_workers)
2116 		destroy_workqueue(fs_info->endio_meta_workers);
2117 }
2118 
2119 static void free_root_extent_buffers(struct btrfs_root *root)
2120 {
2121 	if (root) {
2122 		free_extent_buffer(root->node);
2123 		free_extent_buffer(root->commit_root);
2124 		root->node = NULL;
2125 		root->commit_root = NULL;
2126 	}
2127 }
2128 
2129 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2130 {
2131 	struct btrfs_root *root, *tmp;
2132 
2133 	rbtree_postorder_for_each_entry_safe(root, tmp,
2134 					     &fs_info->global_root_tree,
2135 					     rb_node)
2136 		free_root_extent_buffers(root);
2137 }
2138 
2139 /* helper to cleanup tree roots */
2140 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2141 {
2142 	free_root_extent_buffers(info->tree_root);
2143 
2144 	free_global_root_pointers(info);
2145 	free_root_extent_buffers(info->dev_root);
2146 	free_root_extent_buffers(info->quota_root);
2147 	free_root_extent_buffers(info->uuid_root);
2148 	free_root_extent_buffers(info->fs_root);
2149 	free_root_extent_buffers(info->data_reloc_root);
2150 	free_root_extent_buffers(info->block_group_root);
2151 	if (free_chunk_root)
2152 		free_root_extent_buffers(info->chunk_root);
2153 }
2154 
2155 void btrfs_put_root(struct btrfs_root *root)
2156 {
2157 	if (!root)
2158 		return;
2159 
2160 	if (refcount_dec_and_test(&root->refs)) {
2161 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2162 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2163 		if (root->anon_dev)
2164 			free_anon_bdev(root->anon_dev);
2165 		btrfs_drew_lock_destroy(&root->snapshot_lock);
2166 		free_root_extent_buffers(root);
2167 #ifdef CONFIG_BTRFS_DEBUG
2168 		spin_lock(&root->fs_info->fs_roots_radix_lock);
2169 		list_del_init(&root->leak_list);
2170 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2171 #endif
2172 		kfree(root);
2173 	}
2174 }
2175 
2176 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2177 {
2178 	int ret;
2179 	struct btrfs_root *gang[8];
2180 	int i;
2181 
2182 	while (!list_empty(&fs_info->dead_roots)) {
2183 		gang[0] = list_entry(fs_info->dead_roots.next,
2184 				     struct btrfs_root, root_list);
2185 		list_del(&gang[0]->root_list);
2186 
2187 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2188 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2189 		btrfs_put_root(gang[0]);
2190 	}
2191 
2192 	while (1) {
2193 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2194 					     (void **)gang, 0,
2195 					     ARRAY_SIZE(gang));
2196 		if (!ret)
2197 			break;
2198 		for (i = 0; i < ret; i++)
2199 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2200 	}
2201 }
2202 
2203 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2204 {
2205 	mutex_init(&fs_info->scrub_lock);
2206 	atomic_set(&fs_info->scrubs_running, 0);
2207 	atomic_set(&fs_info->scrub_pause_req, 0);
2208 	atomic_set(&fs_info->scrubs_paused, 0);
2209 	atomic_set(&fs_info->scrub_cancel_req, 0);
2210 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2211 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2212 }
2213 
2214 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2215 {
2216 	spin_lock_init(&fs_info->balance_lock);
2217 	mutex_init(&fs_info->balance_mutex);
2218 	atomic_set(&fs_info->balance_pause_req, 0);
2219 	atomic_set(&fs_info->balance_cancel_req, 0);
2220 	fs_info->balance_ctl = NULL;
2221 	init_waitqueue_head(&fs_info->balance_wait_q);
2222 	atomic_set(&fs_info->reloc_cancel_req, 0);
2223 }
2224 
2225 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2226 {
2227 	struct inode *inode = fs_info->btree_inode;
2228 
2229 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2230 	set_nlink(inode, 1);
2231 	/*
2232 	 * we set the i_size on the btree inode to the max possible int.
2233 	 * the real end of the address space is determined by all of
2234 	 * the devices in the system
2235 	 */
2236 	inode->i_size = OFFSET_MAX;
2237 	inode->i_mapping->a_ops = &btree_aops;
2238 
2239 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2240 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2241 			    IO_TREE_BTREE_INODE_IO, inode);
2242 	BTRFS_I(inode)->io_tree.track_uptodate = false;
2243 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2244 
2245 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2246 	BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
2247 	BTRFS_I(inode)->location.type = 0;
2248 	BTRFS_I(inode)->location.offset = 0;
2249 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2250 	btrfs_insert_inode_hash(inode);
2251 }
2252 
2253 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2254 {
2255 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2256 	init_rwsem(&fs_info->dev_replace.rwsem);
2257 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2258 }
2259 
2260 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2261 {
2262 	spin_lock_init(&fs_info->qgroup_lock);
2263 	mutex_init(&fs_info->qgroup_ioctl_lock);
2264 	fs_info->qgroup_tree = RB_ROOT;
2265 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2266 	fs_info->qgroup_seq = 1;
2267 	fs_info->qgroup_ulist = NULL;
2268 	fs_info->qgroup_rescan_running = false;
2269 	mutex_init(&fs_info->qgroup_rescan_lock);
2270 }
2271 
2272 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2273 {
2274 	u32 max_active = fs_info->thread_pool_size;
2275 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2276 
2277 	fs_info->workers =
2278 		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2279 	fs_info->hipri_workers =
2280 		btrfs_alloc_workqueue(fs_info, "worker-high",
2281 				      flags | WQ_HIGHPRI, max_active, 16);
2282 
2283 	fs_info->delalloc_workers =
2284 		btrfs_alloc_workqueue(fs_info, "delalloc",
2285 				      flags, max_active, 2);
2286 
2287 	fs_info->flush_workers =
2288 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2289 				      flags, max_active, 0);
2290 
2291 	fs_info->caching_workers =
2292 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2293 
2294 	fs_info->fixup_workers =
2295 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2296 
2297 	fs_info->endio_workers =
2298 		alloc_workqueue("btrfs-endio", flags, max_active);
2299 	fs_info->endio_meta_workers =
2300 		alloc_workqueue("btrfs-endio-meta", flags, max_active);
2301 	fs_info->endio_raid56_workers =
2302 		alloc_workqueue("btrfs-endio-raid56", flags, max_active);
2303 	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2304 	fs_info->endio_write_workers =
2305 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2306 				      max_active, 2);
2307 	fs_info->compressed_write_workers =
2308 		alloc_workqueue("btrfs-compressed-write", flags, max_active);
2309 	fs_info->endio_freespace_worker =
2310 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2311 				      max_active, 0);
2312 	fs_info->delayed_workers =
2313 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2314 				      max_active, 0);
2315 	fs_info->qgroup_rescan_workers =
2316 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2317 	fs_info->discard_ctl.discard_workers =
2318 		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2319 
2320 	if (!(fs_info->workers && fs_info->hipri_workers &&
2321 	      fs_info->delalloc_workers && fs_info->flush_workers &&
2322 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2323 	      fs_info->compressed_write_workers &&
2324 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2325 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2326 	      fs_info->caching_workers && fs_info->fixup_workers &&
2327 	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2328 	      fs_info->discard_ctl.discard_workers)) {
2329 		return -ENOMEM;
2330 	}
2331 
2332 	return 0;
2333 }
2334 
2335 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2336 {
2337 	struct crypto_shash *csum_shash;
2338 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2339 
2340 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2341 
2342 	if (IS_ERR(csum_shash)) {
2343 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2344 			  csum_driver);
2345 		return PTR_ERR(csum_shash);
2346 	}
2347 
2348 	fs_info->csum_shash = csum_shash;
2349 
2350 	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2351 			btrfs_super_csum_name(csum_type),
2352 			crypto_shash_driver_name(csum_shash));
2353 	return 0;
2354 }
2355 
2356 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2357 			    struct btrfs_fs_devices *fs_devices)
2358 {
2359 	int ret;
2360 	struct btrfs_root *log_tree_root;
2361 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2362 	u64 bytenr = btrfs_super_log_root(disk_super);
2363 	int level = btrfs_super_log_root_level(disk_super);
2364 
2365 	if (fs_devices->rw_devices == 0) {
2366 		btrfs_warn(fs_info, "log replay required on RO media");
2367 		return -EIO;
2368 	}
2369 
2370 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2371 					 GFP_KERNEL);
2372 	if (!log_tree_root)
2373 		return -ENOMEM;
2374 
2375 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2376 					      BTRFS_TREE_LOG_OBJECTID,
2377 					      fs_info->generation + 1, level,
2378 					      NULL);
2379 	if (IS_ERR(log_tree_root->node)) {
2380 		btrfs_warn(fs_info, "failed to read log tree");
2381 		ret = PTR_ERR(log_tree_root->node);
2382 		log_tree_root->node = NULL;
2383 		btrfs_put_root(log_tree_root);
2384 		return ret;
2385 	}
2386 	if (!extent_buffer_uptodate(log_tree_root->node)) {
2387 		btrfs_err(fs_info, "failed to read log tree");
2388 		btrfs_put_root(log_tree_root);
2389 		return -EIO;
2390 	}
2391 
2392 	/* returns with log_tree_root freed on success */
2393 	ret = btrfs_recover_log_trees(log_tree_root);
2394 	if (ret) {
2395 		btrfs_handle_fs_error(fs_info, ret,
2396 				      "Failed to recover log tree");
2397 		btrfs_put_root(log_tree_root);
2398 		return ret;
2399 	}
2400 
2401 	if (sb_rdonly(fs_info->sb)) {
2402 		ret = btrfs_commit_super(fs_info);
2403 		if (ret)
2404 			return ret;
2405 	}
2406 
2407 	return 0;
2408 }
2409 
2410 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2411 				      struct btrfs_path *path, u64 objectid,
2412 				      const char *name)
2413 {
2414 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2415 	struct btrfs_root *root;
2416 	u64 max_global_id = 0;
2417 	int ret;
2418 	struct btrfs_key key = {
2419 		.objectid = objectid,
2420 		.type = BTRFS_ROOT_ITEM_KEY,
2421 		.offset = 0,
2422 	};
2423 	bool found = false;
2424 
2425 	/* If we have IGNOREDATACSUMS skip loading these roots. */
2426 	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2427 	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2428 		set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2429 		return 0;
2430 	}
2431 
2432 	while (1) {
2433 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2434 		if (ret < 0)
2435 			break;
2436 
2437 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2438 			ret = btrfs_next_leaf(tree_root, path);
2439 			if (ret) {
2440 				if (ret > 0)
2441 					ret = 0;
2442 				break;
2443 			}
2444 		}
2445 		ret = 0;
2446 
2447 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2448 		if (key.objectid != objectid)
2449 			break;
2450 		btrfs_release_path(path);
2451 
2452 		/*
2453 		 * Just worry about this for extent tree, it'll be the same for
2454 		 * everybody.
2455 		 */
2456 		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2457 			max_global_id = max(max_global_id, key.offset);
2458 
2459 		found = true;
2460 		root = read_tree_root_path(tree_root, path, &key);
2461 		if (IS_ERR(root)) {
2462 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2463 				ret = PTR_ERR(root);
2464 			break;
2465 		}
2466 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2467 		ret = btrfs_global_root_insert(root);
2468 		if (ret) {
2469 			btrfs_put_root(root);
2470 			break;
2471 		}
2472 		key.offset++;
2473 	}
2474 	btrfs_release_path(path);
2475 
2476 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2477 		fs_info->nr_global_roots = max_global_id + 1;
2478 
2479 	if (!found || ret) {
2480 		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2481 			set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2482 
2483 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2484 			ret = ret ? ret : -ENOENT;
2485 		else
2486 			ret = 0;
2487 		btrfs_err(fs_info, "failed to load root %s", name);
2488 	}
2489 	return ret;
2490 }
2491 
2492 static int load_global_roots(struct btrfs_root *tree_root)
2493 {
2494 	struct btrfs_path *path;
2495 	int ret = 0;
2496 
2497 	path = btrfs_alloc_path();
2498 	if (!path)
2499 		return -ENOMEM;
2500 
2501 	ret = load_global_roots_objectid(tree_root, path,
2502 					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2503 	if (ret)
2504 		goto out;
2505 	ret = load_global_roots_objectid(tree_root, path,
2506 					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2507 	if (ret)
2508 		goto out;
2509 	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2510 		goto out;
2511 	ret = load_global_roots_objectid(tree_root, path,
2512 					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2513 					 "free space");
2514 out:
2515 	btrfs_free_path(path);
2516 	return ret;
2517 }
2518 
2519 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2520 {
2521 	struct btrfs_root *tree_root = fs_info->tree_root;
2522 	struct btrfs_root *root;
2523 	struct btrfs_key location;
2524 	int ret;
2525 
2526 	BUG_ON(!fs_info->tree_root);
2527 
2528 	ret = load_global_roots(tree_root);
2529 	if (ret)
2530 		return ret;
2531 
2532 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2533 	location.type = BTRFS_ROOT_ITEM_KEY;
2534 	location.offset = 0;
2535 
2536 	root = btrfs_read_tree_root(tree_root, &location);
2537 	if (IS_ERR(root)) {
2538 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2539 			ret = PTR_ERR(root);
2540 			goto out;
2541 		}
2542 	} else {
2543 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2544 		fs_info->dev_root = root;
2545 	}
2546 	/* Initialize fs_info for all devices in any case */
2547 	btrfs_init_devices_late(fs_info);
2548 
2549 	/*
2550 	 * This tree can share blocks with some other fs tree during relocation
2551 	 * and we need a proper setup by btrfs_get_fs_root
2552 	 */
2553 	root = btrfs_get_fs_root(tree_root->fs_info,
2554 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2555 	if (IS_ERR(root)) {
2556 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2557 			ret = PTR_ERR(root);
2558 			goto out;
2559 		}
2560 	} else {
2561 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2562 		fs_info->data_reloc_root = root;
2563 	}
2564 
2565 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2566 	root = btrfs_read_tree_root(tree_root, &location);
2567 	if (!IS_ERR(root)) {
2568 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2569 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2570 		fs_info->quota_root = root;
2571 	}
2572 
2573 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2574 	root = btrfs_read_tree_root(tree_root, &location);
2575 	if (IS_ERR(root)) {
2576 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2577 			ret = PTR_ERR(root);
2578 			if (ret != -ENOENT)
2579 				goto out;
2580 		}
2581 	} else {
2582 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2583 		fs_info->uuid_root = root;
2584 	}
2585 
2586 	return 0;
2587 out:
2588 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2589 		   location.objectid, ret);
2590 	return ret;
2591 }
2592 
2593 /*
2594  * Real super block validation
2595  * NOTE: super csum type and incompat features will not be checked here.
2596  *
2597  * @sb:		super block to check
2598  * @mirror_num:	the super block number to check its bytenr:
2599  * 		0	the primary (1st) sb
2600  * 		1, 2	2nd and 3rd backup copy
2601  * 	       -1	skip bytenr check
2602  */
2603 static int validate_super(struct btrfs_fs_info *fs_info,
2604 			    struct btrfs_super_block *sb, int mirror_num)
2605 {
2606 	u64 nodesize = btrfs_super_nodesize(sb);
2607 	u64 sectorsize = btrfs_super_sectorsize(sb);
2608 	int ret = 0;
2609 
2610 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2611 		btrfs_err(fs_info, "no valid FS found");
2612 		ret = -EINVAL;
2613 	}
2614 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2615 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2616 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2617 		ret = -EINVAL;
2618 	}
2619 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2620 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2621 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2622 		ret = -EINVAL;
2623 	}
2624 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2625 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2626 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2627 		ret = -EINVAL;
2628 	}
2629 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2630 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2631 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2632 		ret = -EINVAL;
2633 	}
2634 
2635 	/*
2636 	 * Check sectorsize and nodesize first, other check will need it.
2637 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2638 	 */
2639 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2640 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2641 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2642 		ret = -EINVAL;
2643 	}
2644 
2645 	/*
2646 	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2647 	 *
2648 	 * We can support 16K sectorsize with 64K page size without problem,
2649 	 * but such sectorsize/pagesize combination doesn't make much sense.
2650 	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2651 	 * beginning.
2652 	 */
2653 	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2654 		btrfs_err(fs_info,
2655 			"sectorsize %llu not yet supported for page size %lu",
2656 			sectorsize, PAGE_SIZE);
2657 		ret = -EINVAL;
2658 	}
2659 
2660 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2661 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2662 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2663 		ret = -EINVAL;
2664 	}
2665 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2666 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2667 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2668 		ret = -EINVAL;
2669 	}
2670 
2671 	/* Root alignment check */
2672 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2673 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2674 			   btrfs_super_root(sb));
2675 		ret = -EINVAL;
2676 	}
2677 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2678 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2679 			   btrfs_super_chunk_root(sb));
2680 		ret = -EINVAL;
2681 	}
2682 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2683 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2684 			   btrfs_super_log_root(sb));
2685 		ret = -EINVAL;
2686 	}
2687 
2688 	if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2689 		   BTRFS_FSID_SIZE)) {
2690 		btrfs_err(fs_info,
2691 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2692 			fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2693 		ret = -EINVAL;
2694 	}
2695 
2696 	if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2697 	    memcmp(fs_info->fs_devices->metadata_uuid,
2698 		   fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2699 		btrfs_err(fs_info,
2700 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2701 			fs_info->super_copy->metadata_uuid,
2702 			fs_info->fs_devices->metadata_uuid);
2703 		ret = -EINVAL;
2704 	}
2705 
2706 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2707 		   BTRFS_FSID_SIZE) != 0) {
2708 		btrfs_err(fs_info,
2709 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2710 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2711 		ret = -EINVAL;
2712 	}
2713 
2714 	/*
2715 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2716 	 * done later
2717 	 */
2718 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2719 		btrfs_err(fs_info, "bytes_used is too small %llu",
2720 			  btrfs_super_bytes_used(sb));
2721 		ret = -EINVAL;
2722 	}
2723 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2724 		btrfs_err(fs_info, "invalid stripesize %u",
2725 			  btrfs_super_stripesize(sb));
2726 		ret = -EINVAL;
2727 	}
2728 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2729 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2730 			   btrfs_super_num_devices(sb));
2731 	if (btrfs_super_num_devices(sb) == 0) {
2732 		btrfs_err(fs_info, "number of devices is 0");
2733 		ret = -EINVAL;
2734 	}
2735 
2736 	if (mirror_num >= 0 &&
2737 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2738 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2739 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2740 		ret = -EINVAL;
2741 	}
2742 
2743 	/*
2744 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2745 	 * and one chunk
2746 	 */
2747 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2748 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2749 			  btrfs_super_sys_array_size(sb),
2750 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2751 		ret = -EINVAL;
2752 	}
2753 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2754 			+ sizeof(struct btrfs_chunk)) {
2755 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2756 			  btrfs_super_sys_array_size(sb),
2757 			  sizeof(struct btrfs_disk_key)
2758 			  + sizeof(struct btrfs_chunk));
2759 		ret = -EINVAL;
2760 	}
2761 
2762 	/*
2763 	 * The generation is a global counter, we'll trust it more than the others
2764 	 * but it's still possible that it's the one that's wrong.
2765 	 */
2766 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2767 		btrfs_warn(fs_info,
2768 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2769 			btrfs_super_generation(sb),
2770 			btrfs_super_chunk_root_generation(sb));
2771 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2772 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2773 		btrfs_warn(fs_info,
2774 			"suspicious: generation < cache_generation: %llu < %llu",
2775 			btrfs_super_generation(sb),
2776 			btrfs_super_cache_generation(sb));
2777 
2778 	return ret;
2779 }
2780 
2781 /*
2782  * Validation of super block at mount time.
2783  * Some checks already done early at mount time, like csum type and incompat
2784  * flags will be skipped.
2785  */
2786 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2787 {
2788 	return validate_super(fs_info, fs_info->super_copy, 0);
2789 }
2790 
2791 /*
2792  * Validation of super block at write time.
2793  * Some checks like bytenr check will be skipped as their values will be
2794  * overwritten soon.
2795  * Extra checks like csum type and incompat flags will be done here.
2796  */
2797 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2798 				      struct btrfs_super_block *sb)
2799 {
2800 	int ret;
2801 
2802 	ret = validate_super(fs_info, sb, -1);
2803 	if (ret < 0)
2804 		goto out;
2805 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2806 		ret = -EUCLEAN;
2807 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2808 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2809 		goto out;
2810 	}
2811 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2812 		ret = -EUCLEAN;
2813 		btrfs_err(fs_info,
2814 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2815 			  btrfs_super_incompat_flags(sb),
2816 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2817 		goto out;
2818 	}
2819 out:
2820 	if (ret < 0)
2821 		btrfs_err(fs_info,
2822 		"super block corruption detected before writing it to disk");
2823 	return ret;
2824 }
2825 
2826 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2827 {
2828 	int ret = 0;
2829 
2830 	root->node = read_tree_block(root->fs_info, bytenr,
2831 				     root->root_key.objectid, gen, level, NULL);
2832 	if (IS_ERR(root->node)) {
2833 		ret = PTR_ERR(root->node);
2834 		root->node = NULL;
2835 		return ret;
2836 	}
2837 	if (!extent_buffer_uptodate(root->node)) {
2838 		free_extent_buffer(root->node);
2839 		root->node = NULL;
2840 		return -EIO;
2841 	}
2842 
2843 	btrfs_set_root_node(&root->root_item, root->node);
2844 	root->commit_root = btrfs_root_node(root);
2845 	btrfs_set_root_refs(&root->root_item, 1);
2846 	return ret;
2847 }
2848 
2849 static int load_important_roots(struct btrfs_fs_info *fs_info)
2850 {
2851 	struct btrfs_super_block *sb = fs_info->super_copy;
2852 	u64 gen, bytenr;
2853 	int level, ret;
2854 
2855 	bytenr = btrfs_super_root(sb);
2856 	gen = btrfs_super_generation(sb);
2857 	level = btrfs_super_root_level(sb);
2858 	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2859 	if (ret) {
2860 		btrfs_warn(fs_info, "couldn't read tree root");
2861 		return ret;
2862 	}
2863 
2864 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2865 		return 0;
2866 
2867 	bytenr = btrfs_super_block_group_root(sb);
2868 	gen = btrfs_super_block_group_root_generation(sb);
2869 	level = btrfs_super_block_group_root_level(sb);
2870 	ret = load_super_root(fs_info->block_group_root, bytenr, gen, level);
2871 	if (ret)
2872 		btrfs_warn(fs_info, "couldn't read block group root");
2873 	return ret;
2874 }
2875 
2876 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2877 {
2878 	int backup_index = find_newest_super_backup(fs_info);
2879 	struct btrfs_super_block *sb = fs_info->super_copy;
2880 	struct btrfs_root *tree_root = fs_info->tree_root;
2881 	bool handle_error = false;
2882 	int ret = 0;
2883 	int i;
2884 
2885 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2886 		struct btrfs_root *root;
2887 
2888 		root = btrfs_alloc_root(fs_info, BTRFS_BLOCK_GROUP_TREE_OBJECTID,
2889 					GFP_KERNEL);
2890 		if (!root)
2891 			return -ENOMEM;
2892 		fs_info->block_group_root = root;
2893 	}
2894 
2895 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2896 		if (handle_error) {
2897 			if (!IS_ERR(tree_root->node))
2898 				free_extent_buffer(tree_root->node);
2899 			tree_root->node = NULL;
2900 
2901 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2902 				break;
2903 
2904 			free_root_pointers(fs_info, 0);
2905 
2906 			/*
2907 			 * Don't use the log in recovery mode, it won't be
2908 			 * valid
2909 			 */
2910 			btrfs_set_super_log_root(sb, 0);
2911 
2912 			/* We can't trust the free space cache either */
2913 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2914 
2915 			ret = read_backup_root(fs_info, i);
2916 			backup_index = ret;
2917 			if (ret < 0)
2918 				return ret;
2919 		}
2920 
2921 		ret = load_important_roots(fs_info);
2922 		if (ret) {
2923 			handle_error = true;
2924 			continue;
2925 		}
2926 
2927 		/*
2928 		 * No need to hold btrfs_root::objectid_mutex since the fs
2929 		 * hasn't been fully initialised and we are the only user
2930 		 */
2931 		ret = btrfs_init_root_free_objectid(tree_root);
2932 		if (ret < 0) {
2933 			handle_error = true;
2934 			continue;
2935 		}
2936 
2937 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2938 
2939 		ret = btrfs_read_roots(fs_info);
2940 		if (ret < 0) {
2941 			handle_error = true;
2942 			continue;
2943 		}
2944 
2945 		/* All successful */
2946 		fs_info->generation = btrfs_header_generation(tree_root->node);
2947 		fs_info->last_trans_committed = fs_info->generation;
2948 		fs_info->last_reloc_trans = 0;
2949 
2950 		/* Always begin writing backup roots after the one being used */
2951 		if (backup_index < 0) {
2952 			fs_info->backup_root_index = 0;
2953 		} else {
2954 			fs_info->backup_root_index = backup_index + 1;
2955 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2956 		}
2957 		break;
2958 	}
2959 
2960 	return ret;
2961 }
2962 
2963 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2964 {
2965 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2966 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2967 	INIT_LIST_HEAD(&fs_info->trans_list);
2968 	INIT_LIST_HEAD(&fs_info->dead_roots);
2969 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2970 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2971 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2972 	spin_lock_init(&fs_info->delalloc_root_lock);
2973 	spin_lock_init(&fs_info->trans_lock);
2974 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2975 	spin_lock_init(&fs_info->delayed_iput_lock);
2976 	spin_lock_init(&fs_info->defrag_inodes_lock);
2977 	spin_lock_init(&fs_info->super_lock);
2978 	spin_lock_init(&fs_info->buffer_lock);
2979 	spin_lock_init(&fs_info->unused_bgs_lock);
2980 	spin_lock_init(&fs_info->treelog_bg_lock);
2981 	spin_lock_init(&fs_info->zone_active_bgs_lock);
2982 	spin_lock_init(&fs_info->relocation_bg_lock);
2983 	rwlock_init(&fs_info->tree_mod_log_lock);
2984 	rwlock_init(&fs_info->global_root_lock);
2985 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2986 	mutex_init(&fs_info->reclaim_bgs_lock);
2987 	mutex_init(&fs_info->reloc_mutex);
2988 	mutex_init(&fs_info->delalloc_root_mutex);
2989 	mutex_init(&fs_info->zoned_meta_io_lock);
2990 	mutex_init(&fs_info->zoned_data_reloc_io_lock);
2991 	seqlock_init(&fs_info->profiles_lock);
2992 
2993 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2994 	INIT_LIST_HEAD(&fs_info->space_info);
2995 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2996 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2997 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2998 	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2999 #ifdef CONFIG_BTRFS_DEBUG
3000 	INIT_LIST_HEAD(&fs_info->allocated_roots);
3001 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
3002 	spin_lock_init(&fs_info->eb_leak_lock);
3003 #endif
3004 	extent_map_tree_init(&fs_info->mapping_tree);
3005 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
3006 			     BTRFS_BLOCK_RSV_GLOBAL);
3007 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3008 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3009 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3010 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3011 			     BTRFS_BLOCK_RSV_DELOPS);
3012 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3013 			     BTRFS_BLOCK_RSV_DELREFS);
3014 
3015 	atomic_set(&fs_info->async_delalloc_pages, 0);
3016 	atomic_set(&fs_info->defrag_running, 0);
3017 	atomic_set(&fs_info->nr_delayed_iputs, 0);
3018 	atomic64_set(&fs_info->tree_mod_seq, 0);
3019 	fs_info->global_root_tree = RB_ROOT;
3020 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
3021 	fs_info->metadata_ratio = 0;
3022 	fs_info->defrag_inodes = RB_ROOT;
3023 	atomic64_set(&fs_info->free_chunk_space, 0);
3024 	fs_info->tree_mod_log = RB_ROOT;
3025 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
3026 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
3027 	btrfs_init_ref_verify(fs_info);
3028 
3029 	fs_info->thread_pool_size = min_t(unsigned long,
3030 					  num_online_cpus() + 2, 8);
3031 
3032 	INIT_LIST_HEAD(&fs_info->ordered_roots);
3033 	spin_lock_init(&fs_info->ordered_root_lock);
3034 
3035 	btrfs_init_scrub(fs_info);
3036 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3037 	fs_info->check_integrity_print_mask = 0;
3038 #endif
3039 	btrfs_init_balance(fs_info);
3040 	btrfs_init_async_reclaim_work(fs_info);
3041 
3042 	rwlock_init(&fs_info->block_group_cache_lock);
3043 	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
3044 
3045 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3046 			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
3047 
3048 	mutex_init(&fs_info->ordered_operations_mutex);
3049 	mutex_init(&fs_info->tree_log_mutex);
3050 	mutex_init(&fs_info->chunk_mutex);
3051 	mutex_init(&fs_info->transaction_kthread_mutex);
3052 	mutex_init(&fs_info->cleaner_mutex);
3053 	mutex_init(&fs_info->ro_block_group_mutex);
3054 	init_rwsem(&fs_info->commit_root_sem);
3055 	init_rwsem(&fs_info->cleanup_work_sem);
3056 	init_rwsem(&fs_info->subvol_sem);
3057 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
3058 
3059 	btrfs_init_dev_replace_locks(fs_info);
3060 	btrfs_init_qgroup(fs_info);
3061 	btrfs_discard_init(fs_info);
3062 
3063 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3064 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3065 
3066 	init_waitqueue_head(&fs_info->transaction_throttle);
3067 	init_waitqueue_head(&fs_info->transaction_wait);
3068 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
3069 	init_waitqueue_head(&fs_info->async_submit_wait);
3070 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
3071 
3072 	/* Usable values until the real ones are cached from the superblock */
3073 	fs_info->nodesize = 4096;
3074 	fs_info->sectorsize = 4096;
3075 	fs_info->sectorsize_bits = ilog2(4096);
3076 	fs_info->stripesize = 4096;
3077 
3078 	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
3079 
3080 	spin_lock_init(&fs_info->swapfile_pins_lock);
3081 	fs_info->swapfile_pins = RB_ROOT;
3082 
3083 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3084 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
3085 }
3086 
3087 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3088 {
3089 	int ret;
3090 
3091 	fs_info->sb = sb;
3092 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3093 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3094 
3095 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3096 	if (ret)
3097 		return ret;
3098 
3099 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3100 	if (ret)
3101 		return ret;
3102 
3103 	fs_info->dirty_metadata_batch = PAGE_SIZE *
3104 					(1 + ilog2(nr_cpu_ids));
3105 
3106 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3107 	if (ret)
3108 		return ret;
3109 
3110 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3111 			GFP_KERNEL);
3112 	if (ret)
3113 		return ret;
3114 
3115 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3116 					GFP_KERNEL);
3117 	if (!fs_info->delayed_root)
3118 		return -ENOMEM;
3119 	btrfs_init_delayed_root(fs_info->delayed_root);
3120 
3121 	if (sb_rdonly(sb))
3122 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3123 
3124 	return btrfs_alloc_stripe_hash_table(fs_info);
3125 }
3126 
3127 static int btrfs_uuid_rescan_kthread(void *data)
3128 {
3129 	struct btrfs_fs_info *fs_info = data;
3130 	int ret;
3131 
3132 	/*
3133 	 * 1st step is to iterate through the existing UUID tree and
3134 	 * to delete all entries that contain outdated data.
3135 	 * 2nd step is to add all missing entries to the UUID tree.
3136 	 */
3137 	ret = btrfs_uuid_tree_iterate(fs_info);
3138 	if (ret < 0) {
3139 		if (ret != -EINTR)
3140 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3141 				   ret);
3142 		up(&fs_info->uuid_tree_rescan_sem);
3143 		return ret;
3144 	}
3145 	return btrfs_uuid_scan_kthread(data);
3146 }
3147 
3148 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3149 {
3150 	struct task_struct *task;
3151 
3152 	down(&fs_info->uuid_tree_rescan_sem);
3153 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3154 	if (IS_ERR(task)) {
3155 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3156 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
3157 		up(&fs_info->uuid_tree_rescan_sem);
3158 		return PTR_ERR(task);
3159 	}
3160 
3161 	return 0;
3162 }
3163 
3164 /*
3165  * Some options only have meaning at mount time and shouldn't persist across
3166  * remounts, or be displayed. Clear these at the end of mount and remount
3167  * code paths.
3168  */
3169 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3170 {
3171 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3172 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3173 }
3174 
3175 /*
3176  * Mounting logic specific to read-write file systems. Shared by open_ctree
3177  * and btrfs_remount when remounting from read-only to read-write.
3178  */
3179 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3180 {
3181 	int ret;
3182 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3183 	bool clear_free_space_tree = false;
3184 
3185 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3186 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3187 		clear_free_space_tree = true;
3188 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3189 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3190 		btrfs_warn(fs_info, "free space tree is invalid");
3191 		clear_free_space_tree = true;
3192 	}
3193 
3194 	if (clear_free_space_tree) {
3195 		btrfs_info(fs_info, "clearing free space tree");
3196 		ret = btrfs_clear_free_space_tree(fs_info);
3197 		if (ret) {
3198 			btrfs_warn(fs_info,
3199 				   "failed to clear free space tree: %d", ret);
3200 			goto out;
3201 		}
3202 	}
3203 
3204 	/*
3205 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3206 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3207 	 * them into the fs_info->fs_roots_radix tree. This must be done before
3208 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3209 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3210 	 * item before the root's tree is deleted - this means that if we unmount
3211 	 * or crash before the deletion completes, on the next mount we will not
3212 	 * delete what remains of the tree because the orphan item does not
3213 	 * exists anymore, which is what tells us we have a pending deletion.
3214 	 */
3215 	ret = btrfs_find_orphan_roots(fs_info);
3216 	if (ret)
3217 		goto out;
3218 
3219 	ret = btrfs_cleanup_fs_roots(fs_info);
3220 	if (ret)
3221 		goto out;
3222 
3223 	down_read(&fs_info->cleanup_work_sem);
3224 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3225 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3226 		up_read(&fs_info->cleanup_work_sem);
3227 		goto out;
3228 	}
3229 	up_read(&fs_info->cleanup_work_sem);
3230 
3231 	mutex_lock(&fs_info->cleaner_mutex);
3232 	ret = btrfs_recover_relocation(fs_info);
3233 	mutex_unlock(&fs_info->cleaner_mutex);
3234 	if (ret < 0) {
3235 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3236 		goto out;
3237 	}
3238 
3239 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3240 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3241 		btrfs_info(fs_info, "creating free space tree");
3242 		ret = btrfs_create_free_space_tree(fs_info);
3243 		if (ret) {
3244 			btrfs_warn(fs_info,
3245 				"failed to create free space tree: %d", ret);
3246 			goto out;
3247 		}
3248 	}
3249 
3250 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3251 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3252 		if (ret)
3253 			goto out;
3254 	}
3255 
3256 	ret = btrfs_resume_balance_async(fs_info);
3257 	if (ret)
3258 		goto out;
3259 
3260 	ret = btrfs_resume_dev_replace_async(fs_info);
3261 	if (ret) {
3262 		btrfs_warn(fs_info, "failed to resume dev_replace");
3263 		goto out;
3264 	}
3265 
3266 	btrfs_qgroup_rescan_resume(fs_info);
3267 
3268 	if (!fs_info->uuid_root) {
3269 		btrfs_info(fs_info, "creating UUID tree");
3270 		ret = btrfs_create_uuid_tree(fs_info);
3271 		if (ret) {
3272 			btrfs_warn(fs_info,
3273 				   "failed to create the UUID tree %d", ret);
3274 			goto out;
3275 		}
3276 	}
3277 
3278 out:
3279 	return ret;
3280 }
3281 
3282 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3283 		      char *options)
3284 {
3285 	u32 sectorsize;
3286 	u32 nodesize;
3287 	u32 stripesize;
3288 	u64 generation;
3289 	u64 features;
3290 	u16 csum_type;
3291 	struct btrfs_super_block *disk_super;
3292 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3293 	struct btrfs_root *tree_root;
3294 	struct btrfs_root *chunk_root;
3295 	int ret;
3296 	int err = -EINVAL;
3297 	int level;
3298 
3299 	ret = init_mount_fs_info(fs_info, sb);
3300 	if (ret) {
3301 		err = ret;
3302 		goto fail;
3303 	}
3304 
3305 	/* These need to be init'ed before we start creating inodes and such. */
3306 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3307 				     GFP_KERNEL);
3308 	fs_info->tree_root = tree_root;
3309 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3310 				      GFP_KERNEL);
3311 	fs_info->chunk_root = chunk_root;
3312 	if (!tree_root || !chunk_root) {
3313 		err = -ENOMEM;
3314 		goto fail;
3315 	}
3316 
3317 	fs_info->btree_inode = new_inode(sb);
3318 	if (!fs_info->btree_inode) {
3319 		err = -ENOMEM;
3320 		goto fail;
3321 	}
3322 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3323 	btrfs_init_btree_inode(fs_info);
3324 
3325 	invalidate_bdev(fs_devices->latest_dev->bdev);
3326 
3327 	/*
3328 	 * Read super block and check the signature bytes only
3329 	 */
3330 	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3331 	if (IS_ERR(disk_super)) {
3332 		err = PTR_ERR(disk_super);
3333 		goto fail_alloc;
3334 	}
3335 
3336 	/*
3337 	 * Verify the type first, if that or the checksum value are
3338 	 * corrupted, we'll find out
3339 	 */
3340 	csum_type = btrfs_super_csum_type(disk_super);
3341 	if (!btrfs_supported_super_csum(csum_type)) {
3342 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3343 			  csum_type);
3344 		err = -EINVAL;
3345 		btrfs_release_disk_super(disk_super);
3346 		goto fail_alloc;
3347 	}
3348 
3349 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3350 
3351 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3352 	if (ret) {
3353 		err = ret;
3354 		btrfs_release_disk_super(disk_super);
3355 		goto fail_alloc;
3356 	}
3357 
3358 	/*
3359 	 * We want to check superblock checksum, the type is stored inside.
3360 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3361 	 */
3362 	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3363 		btrfs_err(fs_info, "superblock checksum mismatch");
3364 		err = -EINVAL;
3365 		btrfs_release_disk_super(disk_super);
3366 		goto fail_alloc;
3367 	}
3368 
3369 	/*
3370 	 * super_copy is zeroed at allocation time and we never touch the
3371 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3372 	 * the whole block of INFO_SIZE
3373 	 */
3374 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3375 	btrfs_release_disk_super(disk_super);
3376 
3377 	disk_super = fs_info->super_copy;
3378 
3379 
3380 	features = btrfs_super_flags(disk_super);
3381 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3382 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3383 		btrfs_set_super_flags(disk_super, features);
3384 		btrfs_info(fs_info,
3385 			"found metadata UUID change in progress flag, clearing");
3386 	}
3387 
3388 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3389 	       sizeof(*fs_info->super_for_commit));
3390 
3391 	ret = btrfs_validate_mount_super(fs_info);
3392 	if (ret) {
3393 		btrfs_err(fs_info, "superblock contains fatal errors");
3394 		err = -EINVAL;
3395 		goto fail_alloc;
3396 	}
3397 
3398 	if (!btrfs_super_root(disk_super))
3399 		goto fail_alloc;
3400 
3401 	/* check FS state, whether FS is broken. */
3402 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3403 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3404 
3405 	/*
3406 	 * In the long term, we'll store the compression type in the super
3407 	 * block, and it'll be used for per file compression control.
3408 	 */
3409 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3410 
3411 
3412 	/* Set up fs_info before parsing mount options */
3413 	nodesize = btrfs_super_nodesize(disk_super);
3414 	sectorsize = btrfs_super_sectorsize(disk_super);
3415 	stripesize = sectorsize;
3416 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3417 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3418 
3419 	fs_info->nodesize = nodesize;
3420 	fs_info->sectorsize = sectorsize;
3421 	fs_info->sectorsize_bits = ilog2(sectorsize);
3422 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3423 	fs_info->stripesize = stripesize;
3424 
3425 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3426 	if (ret) {
3427 		err = ret;
3428 		goto fail_alloc;
3429 	}
3430 
3431 	features = btrfs_super_incompat_flags(disk_super) &
3432 		~BTRFS_FEATURE_INCOMPAT_SUPP;
3433 	if (features) {
3434 		btrfs_err(fs_info,
3435 		    "cannot mount because of unsupported optional features (0x%llx)",
3436 		    features);
3437 		err = -EINVAL;
3438 		goto fail_alloc;
3439 	}
3440 
3441 	features = btrfs_super_incompat_flags(disk_super);
3442 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3443 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3444 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3445 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3446 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3447 
3448 	/*
3449 	 * Flag our filesystem as having big metadata blocks if they are bigger
3450 	 * than the page size.
3451 	 */
3452 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3453 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3454 
3455 	/*
3456 	 * mixed block groups end up with duplicate but slightly offset
3457 	 * extent buffers for the same range.  It leads to corruptions
3458 	 */
3459 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3460 	    (sectorsize != nodesize)) {
3461 		btrfs_err(fs_info,
3462 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3463 			nodesize, sectorsize);
3464 		goto fail_alloc;
3465 	}
3466 
3467 	/*
3468 	 * Needn't use the lock because there is no other task which will
3469 	 * update the flag.
3470 	 */
3471 	btrfs_set_super_incompat_flags(disk_super, features);
3472 
3473 	features = btrfs_super_compat_ro_flags(disk_super) &
3474 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3475 	if (!sb_rdonly(sb) && features) {
3476 		btrfs_err(fs_info,
3477 	"cannot mount read-write because of unsupported optional features (0x%llx)",
3478 		       features);
3479 		err = -EINVAL;
3480 		goto fail_alloc;
3481 	}
3482 	/*
3483 	 * We have unsupported RO compat features, although RO mounted, we
3484 	 * should not cause any metadata write, including log replay.
3485 	 * Or we could screw up whatever the new feature requires.
3486 	 */
3487 	if (unlikely(features && btrfs_super_log_root(disk_super) &&
3488 		     !btrfs_test_opt(fs_info, NOLOGREPLAY))) {
3489 		btrfs_err(fs_info,
3490 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3491 			  features);
3492 		err = -EINVAL;
3493 		goto fail_alloc;
3494 	}
3495 
3496 
3497 	if (sectorsize < PAGE_SIZE) {
3498 		struct btrfs_subpage_info *subpage_info;
3499 
3500 		/*
3501 		 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3502 		 * going to be deprecated.
3503 		 *
3504 		 * Force to use v2 cache for subpage case.
3505 		 */
3506 		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3507 		btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3508 			"forcing free space tree for sector size %u with page size %lu",
3509 			sectorsize, PAGE_SIZE);
3510 
3511 		btrfs_warn(fs_info,
3512 		"read-write for sector size %u with page size %lu is experimental",
3513 			   sectorsize, PAGE_SIZE);
3514 		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3515 		if (!subpage_info)
3516 			goto fail_alloc;
3517 		btrfs_init_subpage_info(subpage_info, sectorsize);
3518 		fs_info->subpage_info = subpage_info;
3519 	}
3520 
3521 	ret = btrfs_init_workqueues(fs_info);
3522 	if (ret) {
3523 		err = ret;
3524 		goto fail_sb_buffer;
3525 	}
3526 
3527 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3528 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3529 
3530 	sb->s_blocksize = sectorsize;
3531 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3532 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3533 
3534 	mutex_lock(&fs_info->chunk_mutex);
3535 	ret = btrfs_read_sys_array(fs_info);
3536 	mutex_unlock(&fs_info->chunk_mutex);
3537 	if (ret) {
3538 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3539 		goto fail_sb_buffer;
3540 	}
3541 
3542 	generation = btrfs_super_chunk_root_generation(disk_super);
3543 	level = btrfs_super_chunk_root_level(disk_super);
3544 	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3545 			      generation, level);
3546 	if (ret) {
3547 		btrfs_err(fs_info, "failed to read chunk root");
3548 		goto fail_tree_roots;
3549 	}
3550 
3551 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3552 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3553 			   BTRFS_UUID_SIZE);
3554 
3555 	ret = btrfs_read_chunk_tree(fs_info);
3556 	if (ret) {
3557 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3558 		goto fail_tree_roots;
3559 	}
3560 
3561 	/*
3562 	 * At this point we know all the devices that make this filesystem,
3563 	 * including the seed devices but we don't know yet if the replace
3564 	 * target is required. So free devices that are not part of this
3565 	 * filesystem but skip the replace target device which is checked
3566 	 * below in btrfs_init_dev_replace().
3567 	 */
3568 	btrfs_free_extra_devids(fs_devices);
3569 	if (!fs_devices->latest_dev->bdev) {
3570 		btrfs_err(fs_info, "failed to read devices");
3571 		goto fail_tree_roots;
3572 	}
3573 
3574 	ret = init_tree_roots(fs_info);
3575 	if (ret)
3576 		goto fail_tree_roots;
3577 
3578 	/*
3579 	 * Get zone type information of zoned block devices. This will also
3580 	 * handle emulation of a zoned filesystem if a regular device has the
3581 	 * zoned incompat feature flag set.
3582 	 */
3583 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3584 	if (ret) {
3585 		btrfs_err(fs_info,
3586 			  "zoned: failed to read device zone info: %d",
3587 			  ret);
3588 		goto fail_block_groups;
3589 	}
3590 
3591 	/*
3592 	 * If we have a uuid root and we're not being told to rescan we need to
3593 	 * check the generation here so we can set the
3594 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3595 	 * transaction during a balance or the log replay without updating the
3596 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3597 	 * even though it was perfectly fine.
3598 	 */
3599 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3600 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3601 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3602 
3603 	ret = btrfs_verify_dev_extents(fs_info);
3604 	if (ret) {
3605 		btrfs_err(fs_info,
3606 			  "failed to verify dev extents against chunks: %d",
3607 			  ret);
3608 		goto fail_block_groups;
3609 	}
3610 	ret = btrfs_recover_balance(fs_info);
3611 	if (ret) {
3612 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3613 		goto fail_block_groups;
3614 	}
3615 
3616 	ret = btrfs_init_dev_stats(fs_info);
3617 	if (ret) {
3618 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3619 		goto fail_block_groups;
3620 	}
3621 
3622 	ret = btrfs_init_dev_replace(fs_info);
3623 	if (ret) {
3624 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3625 		goto fail_block_groups;
3626 	}
3627 
3628 	ret = btrfs_check_zoned_mode(fs_info);
3629 	if (ret) {
3630 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3631 			  ret);
3632 		goto fail_block_groups;
3633 	}
3634 
3635 	ret = btrfs_sysfs_add_fsid(fs_devices);
3636 	if (ret) {
3637 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3638 				ret);
3639 		goto fail_block_groups;
3640 	}
3641 
3642 	ret = btrfs_sysfs_add_mounted(fs_info);
3643 	if (ret) {
3644 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3645 		goto fail_fsdev_sysfs;
3646 	}
3647 
3648 	ret = btrfs_init_space_info(fs_info);
3649 	if (ret) {
3650 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3651 		goto fail_sysfs;
3652 	}
3653 
3654 	ret = btrfs_read_block_groups(fs_info);
3655 	if (ret) {
3656 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3657 		goto fail_sysfs;
3658 	}
3659 
3660 	btrfs_free_zone_cache(fs_info);
3661 
3662 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3663 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3664 		btrfs_warn(fs_info,
3665 		"writable mount is not allowed due to too many missing devices");
3666 		goto fail_sysfs;
3667 	}
3668 
3669 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3670 					       "btrfs-cleaner");
3671 	if (IS_ERR(fs_info->cleaner_kthread))
3672 		goto fail_sysfs;
3673 
3674 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3675 						   tree_root,
3676 						   "btrfs-transaction");
3677 	if (IS_ERR(fs_info->transaction_kthread))
3678 		goto fail_cleaner;
3679 
3680 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3681 	    !fs_info->fs_devices->rotating) {
3682 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3683 	}
3684 
3685 	/*
3686 	 * Mount does not set all options immediately, we can do it now and do
3687 	 * not have to wait for transaction commit
3688 	 */
3689 	btrfs_apply_pending_changes(fs_info);
3690 
3691 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3692 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3693 		ret = btrfsic_mount(fs_info, fs_devices,
3694 				    btrfs_test_opt(fs_info,
3695 					CHECK_INTEGRITY_DATA) ? 1 : 0,
3696 				    fs_info->check_integrity_print_mask);
3697 		if (ret)
3698 			btrfs_warn(fs_info,
3699 				"failed to initialize integrity check module: %d",
3700 				ret);
3701 	}
3702 #endif
3703 	ret = btrfs_read_qgroup_config(fs_info);
3704 	if (ret)
3705 		goto fail_trans_kthread;
3706 
3707 	if (btrfs_build_ref_tree(fs_info))
3708 		btrfs_err(fs_info, "couldn't build ref tree");
3709 
3710 	/* do not make disk changes in broken FS or nologreplay is given */
3711 	if (btrfs_super_log_root(disk_super) != 0 &&
3712 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3713 		btrfs_info(fs_info, "start tree-log replay");
3714 		ret = btrfs_replay_log(fs_info, fs_devices);
3715 		if (ret) {
3716 			err = ret;
3717 			goto fail_qgroup;
3718 		}
3719 	}
3720 
3721 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3722 	if (IS_ERR(fs_info->fs_root)) {
3723 		err = PTR_ERR(fs_info->fs_root);
3724 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3725 		fs_info->fs_root = NULL;
3726 		goto fail_qgroup;
3727 	}
3728 
3729 	if (sb_rdonly(sb))
3730 		goto clear_oneshot;
3731 
3732 	ret = btrfs_start_pre_rw_mount(fs_info);
3733 	if (ret) {
3734 		close_ctree(fs_info);
3735 		return ret;
3736 	}
3737 	btrfs_discard_resume(fs_info);
3738 
3739 	if (fs_info->uuid_root &&
3740 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3741 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3742 		btrfs_info(fs_info, "checking UUID tree");
3743 		ret = btrfs_check_uuid_tree(fs_info);
3744 		if (ret) {
3745 			btrfs_warn(fs_info,
3746 				"failed to check the UUID tree: %d", ret);
3747 			close_ctree(fs_info);
3748 			return ret;
3749 		}
3750 	}
3751 
3752 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3753 
3754 	/* Kick the cleaner thread so it'll start deleting snapshots. */
3755 	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3756 		wake_up_process(fs_info->cleaner_kthread);
3757 
3758 clear_oneshot:
3759 	btrfs_clear_oneshot_options(fs_info);
3760 	return 0;
3761 
3762 fail_qgroup:
3763 	btrfs_free_qgroup_config(fs_info);
3764 fail_trans_kthread:
3765 	kthread_stop(fs_info->transaction_kthread);
3766 	btrfs_cleanup_transaction(fs_info);
3767 	btrfs_free_fs_roots(fs_info);
3768 fail_cleaner:
3769 	kthread_stop(fs_info->cleaner_kthread);
3770 
3771 	/*
3772 	 * make sure we're done with the btree inode before we stop our
3773 	 * kthreads
3774 	 */
3775 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3776 
3777 fail_sysfs:
3778 	btrfs_sysfs_remove_mounted(fs_info);
3779 
3780 fail_fsdev_sysfs:
3781 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3782 
3783 fail_block_groups:
3784 	btrfs_put_block_group_cache(fs_info);
3785 
3786 fail_tree_roots:
3787 	if (fs_info->data_reloc_root)
3788 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3789 	free_root_pointers(fs_info, true);
3790 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3791 
3792 fail_sb_buffer:
3793 	btrfs_stop_all_workers(fs_info);
3794 	btrfs_free_block_groups(fs_info);
3795 fail_alloc:
3796 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3797 
3798 	iput(fs_info->btree_inode);
3799 fail:
3800 	btrfs_close_devices(fs_info->fs_devices);
3801 	return err;
3802 }
3803 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3804 
3805 static void btrfs_end_super_write(struct bio *bio)
3806 {
3807 	struct btrfs_device *device = bio->bi_private;
3808 	struct bio_vec *bvec;
3809 	struct bvec_iter_all iter_all;
3810 	struct page *page;
3811 
3812 	bio_for_each_segment_all(bvec, bio, iter_all) {
3813 		page = bvec->bv_page;
3814 
3815 		if (bio->bi_status) {
3816 			btrfs_warn_rl_in_rcu(device->fs_info,
3817 				"lost page write due to IO error on %s (%d)",
3818 				rcu_str_deref(device->name),
3819 				blk_status_to_errno(bio->bi_status));
3820 			ClearPageUptodate(page);
3821 			SetPageError(page);
3822 			btrfs_dev_stat_inc_and_print(device,
3823 						     BTRFS_DEV_STAT_WRITE_ERRS);
3824 		} else {
3825 			SetPageUptodate(page);
3826 		}
3827 
3828 		put_page(page);
3829 		unlock_page(page);
3830 	}
3831 
3832 	bio_put(bio);
3833 }
3834 
3835 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3836 						   int copy_num)
3837 {
3838 	struct btrfs_super_block *super;
3839 	struct page *page;
3840 	u64 bytenr, bytenr_orig;
3841 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3842 	int ret;
3843 
3844 	bytenr_orig = btrfs_sb_offset(copy_num);
3845 	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3846 	if (ret == -ENOENT)
3847 		return ERR_PTR(-EINVAL);
3848 	else if (ret)
3849 		return ERR_PTR(ret);
3850 
3851 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3852 		return ERR_PTR(-EINVAL);
3853 
3854 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3855 	if (IS_ERR(page))
3856 		return ERR_CAST(page);
3857 
3858 	super = page_address(page);
3859 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3860 		btrfs_release_disk_super(super);
3861 		return ERR_PTR(-ENODATA);
3862 	}
3863 
3864 	if (btrfs_super_bytenr(super) != bytenr_orig) {
3865 		btrfs_release_disk_super(super);
3866 		return ERR_PTR(-EINVAL);
3867 	}
3868 
3869 	return super;
3870 }
3871 
3872 
3873 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3874 {
3875 	struct btrfs_super_block *super, *latest = NULL;
3876 	int i;
3877 	u64 transid = 0;
3878 
3879 	/* we would like to check all the supers, but that would make
3880 	 * a btrfs mount succeed after a mkfs from a different FS.
3881 	 * So, we need to add a special mount option to scan for
3882 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3883 	 */
3884 	for (i = 0; i < 1; i++) {
3885 		super = btrfs_read_dev_one_super(bdev, i);
3886 		if (IS_ERR(super))
3887 			continue;
3888 
3889 		if (!latest || btrfs_super_generation(super) > transid) {
3890 			if (latest)
3891 				btrfs_release_disk_super(super);
3892 
3893 			latest = super;
3894 			transid = btrfs_super_generation(super);
3895 		}
3896 	}
3897 
3898 	return super;
3899 }
3900 
3901 /*
3902  * Write superblock @sb to the @device. Do not wait for completion, all the
3903  * pages we use for writing are locked.
3904  *
3905  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3906  * the expected device size at commit time. Note that max_mirrors must be
3907  * same for write and wait phases.
3908  *
3909  * Return number of errors when page is not found or submission fails.
3910  */
3911 static int write_dev_supers(struct btrfs_device *device,
3912 			    struct btrfs_super_block *sb, int max_mirrors)
3913 {
3914 	struct btrfs_fs_info *fs_info = device->fs_info;
3915 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3916 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3917 	int i;
3918 	int errors = 0;
3919 	int ret;
3920 	u64 bytenr, bytenr_orig;
3921 
3922 	if (max_mirrors == 0)
3923 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3924 
3925 	shash->tfm = fs_info->csum_shash;
3926 
3927 	for (i = 0; i < max_mirrors; i++) {
3928 		struct page *page;
3929 		struct bio *bio;
3930 		struct btrfs_super_block *disk_super;
3931 
3932 		bytenr_orig = btrfs_sb_offset(i);
3933 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3934 		if (ret == -ENOENT) {
3935 			continue;
3936 		} else if (ret < 0) {
3937 			btrfs_err(device->fs_info,
3938 				"couldn't get super block location for mirror %d",
3939 				i);
3940 			errors++;
3941 			continue;
3942 		}
3943 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3944 		    device->commit_total_bytes)
3945 			break;
3946 
3947 		btrfs_set_super_bytenr(sb, bytenr_orig);
3948 
3949 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3950 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3951 				    sb->csum);
3952 
3953 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3954 					   GFP_NOFS);
3955 		if (!page) {
3956 			btrfs_err(device->fs_info,
3957 			    "couldn't get super block page for bytenr %llu",
3958 			    bytenr);
3959 			errors++;
3960 			continue;
3961 		}
3962 
3963 		/* Bump the refcount for wait_dev_supers() */
3964 		get_page(page);
3965 
3966 		disk_super = page_address(page);
3967 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3968 
3969 		/*
3970 		 * Directly use bios here instead of relying on the page cache
3971 		 * to do I/O, so we don't lose the ability to do integrity
3972 		 * checking.
3973 		 */
3974 		bio = bio_alloc(device->bdev, 1,
3975 				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3976 				GFP_NOFS);
3977 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3978 		bio->bi_private = device;
3979 		bio->bi_end_io = btrfs_end_super_write;
3980 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3981 			       offset_in_page(bytenr));
3982 
3983 		/*
3984 		 * We FUA only the first super block.  The others we allow to
3985 		 * go down lazy and there's a short window where the on-disk
3986 		 * copies might still contain the older version.
3987 		 */
3988 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3989 			bio->bi_opf |= REQ_FUA;
3990 
3991 		btrfsic_check_bio(bio);
3992 		submit_bio(bio);
3993 
3994 		if (btrfs_advance_sb_log(device, i))
3995 			errors++;
3996 	}
3997 	return errors < i ? 0 : -1;
3998 }
3999 
4000 /*
4001  * Wait for write completion of superblocks done by write_dev_supers,
4002  * @max_mirrors same for write and wait phases.
4003  *
4004  * Return number of errors when page is not found or not marked up to
4005  * date.
4006  */
4007 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4008 {
4009 	int i;
4010 	int errors = 0;
4011 	bool primary_failed = false;
4012 	int ret;
4013 	u64 bytenr;
4014 
4015 	if (max_mirrors == 0)
4016 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4017 
4018 	for (i = 0; i < max_mirrors; i++) {
4019 		struct page *page;
4020 
4021 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4022 		if (ret == -ENOENT) {
4023 			break;
4024 		} else if (ret < 0) {
4025 			errors++;
4026 			if (i == 0)
4027 				primary_failed = true;
4028 			continue;
4029 		}
4030 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4031 		    device->commit_total_bytes)
4032 			break;
4033 
4034 		page = find_get_page(device->bdev->bd_inode->i_mapping,
4035 				     bytenr >> PAGE_SHIFT);
4036 		if (!page) {
4037 			errors++;
4038 			if (i == 0)
4039 				primary_failed = true;
4040 			continue;
4041 		}
4042 		/* Page is submitted locked and unlocked once the IO completes */
4043 		wait_on_page_locked(page);
4044 		if (PageError(page)) {
4045 			errors++;
4046 			if (i == 0)
4047 				primary_failed = true;
4048 		}
4049 
4050 		/* Drop our reference */
4051 		put_page(page);
4052 
4053 		/* Drop the reference from the writing run */
4054 		put_page(page);
4055 	}
4056 
4057 	/* log error, force error return */
4058 	if (primary_failed) {
4059 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4060 			  device->devid);
4061 		return -1;
4062 	}
4063 
4064 	return errors < i ? 0 : -1;
4065 }
4066 
4067 /*
4068  * endio for the write_dev_flush, this will wake anyone waiting
4069  * for the barrier when it is done
4070  */
4071 static void btrfs_end_empty_barrier(struct bio *bio)
4072 {
4073 	bio_uninit(bio);
4074 	complete(bio->bi_private);
4075 }
4076 
4077 /*
4078  * Submit a flush request to the device if it supports it. Error handling is
4079  * done in the waiting counterpart.
4080  */
4081 static void write_dev_flush(struct btrfs_device *device)
4082 {
4083 	struct bio *bio = &device->flush_bio;
4084 
4085 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4086 	/*
4087 	 * When a disk has write caching disabled, we skip submission of a bio
4088 	 * with flush and sync requests before writing the superblock, since
4089 	 * it's not needed. However when the integrity checker is enabled, this
4090 	 * results in reports that there are metadata blocks referred by a
4091 	 * superblock that were not properly flushed. So don't skip the bio
4092 	 * submission only when the integrity checker is enabled for the sake
4093 	 * of simplicity, since this is a debug tool and not meant for use in
4094 	 * non-debug builds.
4095 	 */
4096 	if (!bdev_write_cache(device->bdev))
4097 		return;
4098 #endif
4099 
4100 	bio_init(bio, device->bdev, NULL, 0,
4101 		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
4102 	bio->bi_end_io = btrfs_end_empty_barrier;
4103 	init_completion(&device->flush_wait);
4104 	bio->bi_private = &device->flush_wait;
4105 
4106 	btrfsic_check_bio(bio);
4107 	submit_bio(bio);
4108 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4109 }
4110 
4111 /*
4112  * If the flush bio has been submitted by write_dev_flush, wait for it.
4113  */
4114 static blk_status_t wait_dev_flush(struct btrfs_device *device)
4115 {
4116 	struct bio *bio = &device->flush_bio;
4117 
4118 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4119 		return BLK_STS_OK;
4120 
4121 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4122 	wait_for_completion_io(&device->flush_wait);
4123 
4124 	return bio->bi_status;
4125 }
4126 
4127 static int check_barrier_error(struct btrfs_fs_info *fs_info)
4128 {
4129 	if (!btrfs_check_rw_degradable(fs_info, NULL))
4130 		return -EIO;
4131 	return 0;
4132 }
4133 
4134 /*
4135  * send an empty flush down to each device in parallel,
4136  * then wait for them
4137  */
4138 static int barrier_all_devices(struct btrfs_fs_info *info)
4139 {
4140 	struct list_head *head;
4141 	struct btrfs_device *dev;
4142 	int errors_wait = 0;
4143 	blk_status_t ret;
4144 
4145 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
4146 	/* send down all the barriers */
4147 	head = &info->fs_devices->devices;
4148 	list_for_each_entry(dev, head, dev_list) {
4149 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4150 			continue;
4151 		if (!dev->bdev)
4152 			continue;
4153 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4154 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4155 			continue;
4156 
4157 		write_dev_flush(dev);
4158 		dev->last_flush_error = BLK_STS_OK;
4159 	}
4160 
4161 	/* wait for all the barriers */
4162 	list_for_each_entry(dev, head, dev_list) {
4163 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4164 			continue;
4165 		if (!dev->bdev) {
4166 			errors_wait++;
4167 			continue;
4168 		}
4169 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4170 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4171 			continue;
4172 
4173 		ret = wait_dev_flush(dev);
4174 		if (ret) {
4175 			dev->last_flush_error = ret;
4176 			btrfs_dev_stat_inc_and_print(dev,
4177 					BTRFS_DEV_STAT_FLUSH_ERRS);
4178 			errors_wait++;
4179 		}
4180 	}
4181 
4182 	if (errors_wait) {
4183 		/*
4184 		 * At some point we need the status of all disks
4185 		 * to arrive at the volume status. So error checking
4186 		 * is being pushed to a separate loop.
4187 		 */
4188 		return check_barrier_error(info);
4189 	}
4190 	return 0;
4191 }
4192 
4193 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4194 {
4195 	int raid_type;
4196 	int min_tolerated = INT_MAX;
4197 
4198 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4199 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4200 		min_tolerated = min_t(int, min_tolerated,
4201 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4202 				    tolerated_failures);
4203 
4204 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4205 		if (raid_type == BTRFS_RAID_SINGLE)
4206 			continue;
4207 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4208 			continue;
4209 		min_tolerated = min_t(int, min_tolerated,
4210 				    btrfs_raid_array[raid_type].
4211 				    tolerated_failures);
4212 	}
4213 
4214 	if (min_tolerated == INT_MAX) {
4215 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4216 		min_tolerated = 0;
4217 	}
4218 
4219 	return min_tolerated;
4220 }
4221 
4222 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4223 {
4224 	struct list_head *head;
4225 	struct btrfs_device *dev;
4226 	struct btrfs_super_block *sb;
4227 	struct btrfs_dev_item *dev_item;
4228 	int ret;
4229 	int do_barriers;
4230 	int max_errors;
4231 	int total_errors = 0;
4232 	u64 flags;
4233 
4234 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4235 
4236 	/*
4237 	 * max_mirrors == 0 indicates we're from commit_transaction,
4238 	 * not from fsync where the tree roots in fs_info have not
4239 	 * been consistent on disk.
4240 	 */
4241 	if (max_mirrors == 0)
4242 		backup_super_roots(fs_info);
4243 
4244 	sb = fs_info->super_for_commit;
4245 	dev_item = &sb->dev_item;
4246 
4247 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4248 	head = &fs_info->fs_devices->devices;
4249 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4250 
4251 	if (do_barriers) {
4252 		ret = barrier_all_devices(fs_info);
4253 		if (ret) {
4254 			mutex_unlock(
4255 				&fs_info->fs_devices->device_list_mutex);
4256 			btrfs_handle_fs_error(fs_info, ret,
4257 					      "errors while submitting device barriers.");
4258 			return ret;
4259 		}
4260 	}
4261 
4262 	list_for_each_entry(dev, head, dev_list) {
4263 		if (!dev->bdev) {
4264 			total_errors++;
4265 			continue;
4266 		}
4267 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4268 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4269 			continue;
4270 
4271 		btrfs_set_stack_device_generation(dev_item, 0);
4272 		btrfs_set_stack_device_type(dev_item, dev->type);
4273 		btrfs_set_stack_device_id(dev_item, dev->devid);
4274 		btrfs_set_stack_device_total_bytes(dev_item,
4275 						   dev->commit_total_bytes);
4276 		btrfs_set_stack_device_bytes_used(dev_item,
4277 						  dev->commit_bytes_used);
4278 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4279 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4280 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4281 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4282 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4283 		       BTRFS_FSID_SIZE);
4284 
4285 		flags = btrfs_super_flags(sb);
4286 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4287 
4288 		ret = btrfs_validate_write_super(fs_info, sb);
4289 		if (ret < 0) {
4290 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4291 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4292 				"unexpected superblock corruption detected");
4293 			return -EUCLEAN;
4294 		}
4295 
4296 		ret = write_dev_supers(dev, sb, max_mirrors);
4297 		if (ret)
4298 			total_errors++;
4299 	}
4300 	if (total_errors > max_errors) {
4301 		btrfs_err(fs_info, "%d errors while writing supers",
4302 			  total_errors);
4303 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4304 
4305 		/* FUA is masked off if unsupported and can't be the reason */
4306 		btrfs_handle_fs_error(fs_info, -EIO,
4307 				      "%d errors while writing supers",
4308 				      total_errors);
4309 		return -EIO;
4310 	}
4311 
4312 	total_errors = 0;
4313 	list_for_each_entry(dev, head, dev_list) {
4314 		if (!dev->bdev)
4315 			continue;
4316 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4317 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4318 			continue;
4319 
4320 		ret = wait_dev_supers(dev, max_mirrors);
4321 		if (ret)
4322 			total_errors++;
4323 	}
4324 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4325 	if (total_errors > max_errors) {
4326 		btrfs_handle_fs_error(fs_info, -EIO,
4327 				      "%d errors while writing supers",
4328 				      total_errors);
4329 		return -EIO;
4330 	}
4331 	return 0;
4332 }
4333 
4334 /* Drop a fs root from the radix tree and free it. */
4335 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4336 				  struct btrfs_root *root)
4337 {
4338 	bool drop_ref = false;
4339 
4340 	spin_lock(&fs_info->fs_roots_radix_lock);
4341 	radix_tree_delete(&fs_info->fs_roots_radix,
4342 			  (unsigned long)root->root_key.objectid);
4343 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4344 		drop_ref = true;
4345 	spin_unlock(&fs_info->fs_roots_radix_lock);
4346 
4347 	if (BTRFS_FS_ERROR(fs_info)) {
4348 		ASSERT(root->log_root == NULL);
4349 		if (root->reloc_root) {
4350 			btrfs_put_root(root->reloc_root);
4351 			root->reloc_root = NULL;
4352 		}
4353 	}
4354 
4355 	if (drop_ref)
4356 		btrfs_put_root(root);
4357 }
4358 
4359 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4360 {
4361 	u64 root_objectid = 0;
4362 	struct btrfs_root *gang[8];
4363 	int i = 0;
4364 	int err = 0;
4365 	unsigned int ret = 0;
4366 
4367 	while (1) {
4368 		spin_lock(&fs_info->fs_roots_radix_lock);
4369 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4370 					     (void **)gang, root_objectid,
4371 					     ARRAY_SIZE(gang));
4372 		if (!ret) {
4373 			spin_unlock(&fs_info->fs_roots_radix_lock);
4374 			break;
4375 		}
4376 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4377 
4378 		for (i = 0; i < ret; i++) {
4379 			/* Avoid to grab roots in dead_roots */
4380 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4381 				gang[i] = NULL;
4382 				continue;
4383 			}
4384 			/* grab all the search result for later use */
4385 			gang[i] = btrfs_grab_root(gang[i]);
4386 		}
4387 		spin_unlock(&fs_info->fs_roots_radix_lock);
4388 
4389 		for (i = 0; i < ret; i++) {
4390 			if (!gang[i])
4391 				continue;
4392 			root_objectid = gang[i]->root_key.objectid;
4393 			err = btrfs_orphan_cleanup(gang[i]);
4394 			if (err)
4395 				break;
4396 			btrfs_put_root(gang[i]);
4397 		}
4398 		root_objectid++;
4399 	}
4400 
4401 	/* release the uncleaned roots due to error */
4402 	for (; i < ret; i++) {
4403 		if (gang[i])
4404 			btrfs_put_root(gang[i]);
4405 	}
4406 	return err;
4407 }
4408 
4409 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4410 {
4411 	struct btrfs_root *root = fs_info->tree_root;
4412 	struct btrfs_trans_handle *trans;
4413 
4414 	mutex_lock(&fs_info->cleaner_mutex);
4415 	btrfs_run_delayed_iputs(fs_info);
4416 	mutex_unlock(&fs_info->cleaner_mutex);
4417 	wake_up_process(fs_info->cleaner_kthread);
4418 
4419 	/* wait until ongoing cleanup work done */
4420 	down_write(&fs_info->cleanup_work_sem);
4421 	up_write(&fs_info->cleanup_work_sem);
4422 
4423 	trans = btrfs_join_transaction(root);
4424 	if (IS_ERR(trans))
4425 		return PTR_ERR(trans);
4426 	return btrfs_commit_transaction(trans);
4427 }
4428 
4429 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4430 {
4431 	struct btrfs_transaction *trans;
4432 	struct btrfs_transaction *tmp;
4433 	bool found = false;
4434 
4435 	if (list_empty(&fs_info->trans_list))
4436 		return;
4437 
4438 	/*
4439 	 * This function is only called at the very end of close_ctree(),
4440 	 * thus no other running transaction, no need to take trans_lock.
4441 	 */
4442 	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4443 	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4444 		struct extent_state *cached = NULL;
4445 		u64 dirty_bytes = 0;
4446 		u64 cur = 0;
4447 		u64 found_start;
4448 		u64 found_end;
4449 
4450 		found = true;
4451 		while (!find_first_extent_bit(&trans->dirty_pages, cur,
4452 			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4453 			dirty_bytes += found_end + 1 - found_start;
4454 			cur = found_end + 1;
4455 		}
4456 		btrfs_warn(fs_info,
4457 	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4458 			   trans->transid, dirty_bytes);
4459 		btrfs_cleanup_one_transaction(trans, fs_info);
4460 
4461 		if (trans == fs_info->running_transaction)
4462 			fs_info->running_transaction = NULL;
4463 		list_del_init(&trans->list);
4464 
4465 		btrfs_put_transaction(trans);
4466 		trace_btrfs_transaction_commit(fs_info);
4467 	}
4468 	ASSERT(!found);
4469 }
4470 
4471 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4472 {
4473 	int ret;
4474 
4475 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4476 
4477 	/*
4478 	 * If we had UNFINISHED_DROPS we could still be processing them, so
4479 	 * clear that bit and wake up relocation so it can stop.
4480 	 * We must do this before stopping the block group reclaim task, because
4481 	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4482 	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4483 	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4484 	 * return 1.
4485 	 */
4486 	btrfs_wake_unfinished_drop(fs_info);
4487 
4488 	/*
4489 	 * We may have the reclaim task running and relocating a data block group,
4490 	 * in which case it may create delayed iputs. So stop it before we park
4491 	 * the cleaner kthread otherwise we can get new delayed iputs after
4492 	 * parking the cleaner, and that can make the async reclaim task to hang
4493 	 * if it's waiting for delayed iputs to complete, since the cleaner is
4494 	 * parked and can not run delayed iputs - this will make us hang when
4495 	 * trying to stop the async reclaim task.
4496 	 */
4497 	cancel_work_sync(&fs_info->reclaim_bgs_work);
4498 	/*
4499 	 * We don't want the cleaner to start new transactions, add more delayed
4500 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4501 	 * because that frees the task_struct, and the transaction kthread might
4502 	 * still try to wake up the cleaner.
4503 	 */
4504 	kthread_park(fs_info->cleaner_kthread);
4505 
4506 	/* wait for the qgroup rescan worker to stop */
4507 	btrfs_qgroup_wait_for_completion(fs_info, false);
4508 
4509 	/* wait for the uuid_scan task to finish */
4510 	down(&fs_info->uuid_tree_rescan_sem);
4511 	/* avoid complains from lockdep et al., set sem back to initial state */
4512 	up(&fs_info->uuid_tree_rescan_sem);
4513 
4514 	/* pause restriper - we want to resume on mount */
4515 	btrfs_pause_balance(fs_info);
4516 
4517 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4518 
4519 	btrfs_scrub_cancel(fs_info);
4520 
4521 	/* wait for any defraggers to finish */
4522 	wait_event(fs_info->transaction_wait,
4523 		   (atomic_read(&fs_info->defrag_running) == 0));
4524 
4525 	/* clear out the rbtree of defraggable inodes */
4526 	btrfs_cleanup_defrag_inodes(fs_info);
4527 
4528 	/*
4529 	 * After we parked the cleaner kthread, ordered extents may have
4530 	 * completed and created new delayed iputs. If one of the async reclaim
4531 	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4532 	 * can hang forever trying to stop it, because if a delayed iput is
4533 	 * added after it ran btrfs_run_delayed_iputs() and before it called
4534 	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4535 	 * no one else to run iputs.
4536 	 *
4537 	 * So wait for all ongoing ordered extents to complete and then run
4538 	 * delayed iputs. This works because once we reach this point no one
4539 	 * can either create new ordered extents nor create delayed iputs
4540 	 * through some other means.
4541 	 *
4542 	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4543 	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4544 	 * but the delayed iput for the respective inode is made only when doing
4545 	 * the final btrfs_put_ordered_extent() (which must happen at
4546 	 * btrfs_finish_ordered_io() when we are unmounting).
4547 	 */
4548 	btrfs_flush_workqueue(fs_info->endio_write_workers);
4549 	/* Ordered extents for free space inodes. */
4550 	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4551 	btrfs_run_delayed_iputs(fs_info);
4552 
4553 	cancel_work_sync(&fs_info->async_reclaim_work);
4554 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4555 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4556 
4557 	/* Cancel or finish ongoing discard work */
4558 	btrfs_discard_cleanup(fs_info);
4559 
4560 	if (!sb_rdonly(fs_info->sb)) {
4561 		/*
4562 		 * The cleaner kthread is stopped, so do one final pass over
4563 		 * unused block groups.
4564 		 */
4565 		btrfs_delete_unused_bgs(fs_info);
4566 
4567 		/*
4568 		 * There might be existing delayed inode workers still running
4569 		 * and holding an empty delayed inode item. We must wait for
4570 		 * them to complete first because they can create a transaction.
4571 		 * This happens when someone calls btrfs_balance_delayed_items()
4572 		 * and then a transaction commit runs the same delayed nodes
4573 		 * before any delayed worker has done something with the nodes.
4574 		 * We must wait for any worker here and not at transaction
4575 		 * commit time since that could cause a deadlock.
4576 		 * This is a very rare case.
4577 		 */
4578 		btrfs_flush_workqueue(fs_info->delayed_workers);
4579 
4580 		ret = btrfs_commit_super(fs_info);
4581 		if (ret)
4582 			btrfs_err(fs_info, "commit super ret %d", ret);
4583 	}
4584 
4585 	if (BTRFS_FS_ERROR(fs_info))
4586 		btrfs_error_commit_super(fs_info);
4587 
4588 	kthread_stop(fs_info->transaction_kthread);
4589 	kthread_stop(fs_info->cleaner_kthread);
4590 
4591 	ASSERT(list_empty(&fs_info->delayed_iputs));
4592 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4593 
4594 	if (btrfs_check_quota_leak(fs_info)) {
4595 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4596 		btrfs_err(fs_info, "qgroup reserved space leaked");
4597 	}
4598 
4599 	btrfs_free_qgroup_config(fs_info);
4600 	ASSERT(list_empty(&fs_info->delalloc_roots));
4601 
4602 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4603 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4604 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4605 	}
4606 
4607 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4608 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4609 			   percpu_counter_sum(&fs_info->ordered_bytes));
4610 
4611 	btrfs_sysfs_remove_mounted(fs_info);
4612 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4613 
4614 	btrfs_put_block_group_cache(fs_info);
4615 
4616 	/*
4617 	 * we must make sure there is not any read request to
4618 	 * submit after we stopping all workers.
4619 	 */
4620 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4621 	btrfs_stop_all_workers(fs_info);
4622 
4623 	/* We shouldn't have any transaction open at this point */
4624 	warn_about_uncommitted_trans(fs_info);
4625 
4626 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4627 	free_root_pointers(fs_info, true);
4628 	btrfs_free_fs_roots(fs_info);
4629 
4630 	/*
4631 	 * We must free the block groups after dropping the fs_roots as we could
4632 	 * have had an IO error and have left over tree log blocks that aren't
4633 	 * cleaned up until the fs roots are freed.  This makes the block group
4634 	 * accounting appear to be wrong because there's pending reserved bytes,
4635 	 * so make sure we do the block group cleanup afterwards.
4636 	 */
4637 	btrfs_free_block_groups(fs_info);
4638 
4639 	iput(fs_info->btree_inode);
4640 
4641 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4642 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4643 		btrfsic_unmount(fs_info->fs_devices);
4644 #endif
4645 
4646 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4647 	btrfs_close_devices(fs_info->fs_devices);
4648 }
4649 
4650 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4651 			  int atomic)
4652 {
4653 	int ret;
4654 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4655 
4656 	ret = extent_buffer_uptodate(buf);
4657 	if (!ret)
4658 		return ret;
4659 
4660 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4661 				    parent_transid, atomic);
4662 	if (ret == -EAGAIN)
4663 		return ret;
4664 	return !ret;
4665 }
4666 
4667 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4668 {
4669 	struct btrfs_fs_info *fs_info = buf->fs_info;
4670 	u64 transid = btrfs_header_generation(buf);
4671 	int was_dirty;
4672 
4673 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4674 	/*
4675 	 * This is a fast path so only do this check if we have sanity tests
4676 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4677 	 * outside of the sanity tests.
4678 	 */
4679 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4680 		return;
4681 #endif
4682 	btrfs_assert_tree_write_locked(buf);
4683 	if (transid != fs_info->generation)
4684 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4685 			buf->start, transid, fs_info->generation);
4686 	was_dirty = set_extent_buffer_dirty(buf);
4687 	if (!was_dirty)
4688 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4689 					 buf->len,
4690 					 fs_info->dirty_metadata_batch);
4691 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4692 	/*
4693 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4694 	 * but item data not updated.
4695 	 * So here we should only check item pointers, not item data.
4696 	 */
4697 	if (btrfs_header_level(buf) == 0 &&
4698 	    btrfs_check_leaf_relaxed(buf)) {
4699 		btrfs_print_leaf(buf);
4700 		ASSERT(0);
4701 	}
4702 #endif
4703 }
4704 
4705 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4706 					int flush_delayed)
4707 {
4708 	/*
4709 	 * looks as though older kernels can get into trouble with
4710 	 * this code, they end up stuck in balance_dirty_pages forever
4711 	 */
4712 	int ret;
4713 
4714 	if (current->flags & PF_MEMALLOC)
4715 		return;
4716 
4717 	if (flush_delayed)
4718 		btrfs_balance_delayed_items(fs_info);
4719 
4720 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4721 				     BTRFS_DIRTY_METADATA_THRESH,
4722 				     fs_info->dirty_metadata_batch);
4723 	if (ret > 0) {
4724 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4725 	}
4726 }
4727 
4728 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4729 {
4730 	__btrfs_btree_balance_dirty(fs_info, 1);
4731 }
4732 
4733 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4734 {
4735 	__btrfs_btree_balance_dirty(fs_info, 0);
4736 }
4737 
4738 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4739 {
4740 	/* cleanup FS via transaction */
4741 	btrfs_cleanup_transaction(fs_info);
4742 
4743 	mutex_lock(&fs_info->cleaner_mutex);
4744 	btrfs_run_delayed_iputs(fs_info);
4745 	mutex_unlock(&fs_info->cleaner_mutex);
4746 
4747 	down_write(&fs_info->cleanup_work_sem);
4748 	up_write(&fs_info->cleanup_work_sem);
4749 }
4750 
4751 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4752 {
4753 	struct btrfs_root *gang[8];
4754 	u64 root_objectid = 0;
4755 	int ret;
4756 
4757 	spin_lock(&fs_info->fs_roots_radix_lock);
4758 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4759 					     (void **)gang, root_objectid,
4760 					     ARRAY_SIZE(gang))) != 0) {
4761 		int i;
4762 
4763 		for (i = 0; i < ret; i++)
4764 			gang[i] = btrfs_grab_root(gang[i]);
4765 		spin_unlock(&fs_info->fs_roots_radix_lock);
4766 
4767 		for (i = 0; i < ret; i++) {
4768 			if (!gang[i])
4769 				continue;
4770 			root_objectid = gang[i]->root_key.objectid;
4771 			btrfs_free_log(NULL, gang[i]);
4772 			btrfs_put_root(gang[i]);
4773 		}
4774 		root_objectid++;
4775 		spin_lock(&fs_info->fs_roots_radix_lock);
4776 	}
4777 	spin_unlock(&fs_info->fs_roots_radix_lock);
4778 	btrfs_free_log_root_tree(NULL, fs_info);
4779 }
4780 
4781 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4782 {
4783 	struct btrfs_ordered_extent *ordered;
4784 
4785 	spin_lock(&root->ordered_extent_lock);
4786 	/*
4787 	 * This will just short circuit the ordered completion stuff which will
4788 	 * make sure the ordered extent gets properly cleaned up.
4789 	 */
4790 	list_for_each_entry(ordered, &root->ordered_extents,
4791 			    root_extent_list)
4792 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4793 	spin_unlock(&root->ordered_extent_lock);
4794 }
4795 
4796 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4797 {
4798 	struct btrfs_root *root;
4799 	struct list_head splice;
4800 
4801 	INIT_LIST_HEAD(&splice);
4802 
4803 	spin_lock(&fs_info->ordered_root_lock);
4804 	list_splice_init(&fs_info->ordered_roots, &splice);
4805 	while (!list_empty(&splice)) {
4806 		root = list_first_entry(&splice, struct btrfs_root,
4807 					ordered_root);
4808 		list_move_tail(&root->ordered_root,
4809 			       &fs_info->ordered_roots);
4810 
4811 		spin_unlock(&fs_info->ordered_root_lock);
4812 		btrfs_destroy_ordered_extents(root);
4813 
4814 		cond_resched();
4815 		spin_lock(&fs_info->ordered_root_lock);
4816 	}
4817 	spin_unlock(&fs_info->ordered_root_lock);
4818 
4819 	/*
4820 	 * We need this here because if we've been flipped read-only we won't
4821 	 * get sync() from the umount, so we need to make sure any ordered
4822 	 * extents that haven't had their dirty pages IO start writeout yet
4823 	 * actually get run and error out properly.
4824 	 */
4825 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4826 }
4827 
4828 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4829 				      struct btrfs_fs_info *fs_info)
4830 {
4831 	struct rb_node *node;
4832 	struct btrfs_delayed_ref_root *delayed_refs;
4833 	struct btrfs_delayed_ref_node *ref;
4834 	int ret = 0;
4835 
4836 	delayed_refs = &trans->delayed_refs;
4837 
4838 	spin_lock(&delayed_refs->lock);
4839 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4840 		spin_unlock(&delayed_refs->lock);
4841 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4842 		return ret;
4843 	}
4844 
4845 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4846 		struct btrfs_delayed_ref_head *head;
4847 		struct rb_node *n;
4848 		bool pin_bytes = false;
4849 
4850 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4851 				href_node);
4852 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4853 			continue;
4854 
4855 		spin_lock(&head->lock);
4856 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4857 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4858 				       ref_node);
4859 			ref->in_tree = 0;
4860 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4861 			RB_CLEAR_NODE(&ref->ref_node);
4862 			if (!list_empty(&ref->add_list))
4863 				list_del(&ref->add_list);
4864 			atomic_dec(&delayed_refs->num_entries);
4865 			btrfs_put_delayed_ref(ref);
4866 		}
4867 		if (head->must_insert_reserved)
4868 			pin_bytes = true;
4869 		btrfs_free_delayed_extent_op(head->extent_op);
4870 		btrfs_delete_ref_head(delayed_refs, head);
4871 		spin_unlock(&head->lock);
4872 		spin_unlock(&delayed_refs->lock);
4873 		mutex_unlock(&head->mutex);
4874 
4875 		if (pin_bytes) {
4876 			struct btrfs_block_group *cache;
4877 
4878 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4879 			BUG_ON(!cache);
4880 
4881 			spin_lock(&cache->space_info->lock);
4882 			spin_lock(&cache->lock);
4883 			cache->pinned += head->num_bytes;
4884 			btrfs_space_info_update_bytes_pinned(fs_info,
4885 				cache->space_info, head->num_bytes);
4886 			cache->reserved -= head->num_bytes;
4887 			cache->space_info->bytes_reserved -= head->num_bytes;
4888 			spin_unlock(&cache->lock);
4889 			spin_unlock(&cache->space_info->lock);
4890 
4891 			btrfs_put_block_group(cache);
4892 
4893 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4894 				head->bytenr + head->num_bytes - 1);
4895 		}
4896 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4897 		btrfs_put_delayed_ref_head(head);
4898 		cond_resched();
4899 		spin_lock(&delayed_refs->lock);
4900 	}
4901 	btrfs_qgroup_destroy_extent_records(trans);
4902 
4903 	spin_unlock(&delayed_refs->lock);
4904 
4905 	return ret;
4906 }
4907 
4908 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4909 {
4910 	struct btrfs_inode *btrfs_inode;
4911 	struct list_head splice;
4912 
4913 	INIT_LIST_HEAD(&splice);
4914 
4915 	spin_lock(&root->delalloc_lock);
4916 	list_splice_init(&root->delalloc_inodes, &splice);
4917 
4918 	while (!list_empty(&splice)) {
4919 		struct inode *inode = NULL;
4920 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4921 					       delalloc_inodes);
4922 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4923 		spin_unlock(&root->delalloc_lock);
4924 
4925 		/*
4926 		 * Make sure we get a live inode and that it'll not disappear
4927 		 * meanwhile.
4928 		 */
4929 		inode = igrab(&btrfs_inode->vfs_inode);
4930 		if (inode) {
4931 			invalidate_inode_pages2(inode->i_mapping);
4932 			iput(inode);
4933 		}
4934 		spin_lock(&root->delalloc_lock);
4935 	}
4936 	spin_unlock(&root->delalloc_lock);
4937 }
4938 
4939 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4940 {
4941 	struct btrfs_root *root;
4942 	struct list_head splice;
4943 
4944 	INIT_LIST_HEAD(&splice);
4945 
4946 	spin_lock(&fs_info->delalloc_root_lock);
4947 	list_splice_init(&fs_info->delalloc_roots, &splice);
4948 	while (!list_empty(&splice)) {
4949 		root = list_first_entry(&splice, struct btrfs_root,
4950 					 delalloc_root);
4951 		root = btrfs_grab_root(root);
4952 		BUG_ON(!root);
4953 		spin_unlock(&fs_info->delalloc_root_lock);
4954 
4955 		btrfs_destroy_delalloc_inodes(root);
4956 		btrfs_put_root(root);
4957 
4958 		spin_lock(&fs_info->delalloc_root_lock);
4959 	}
4960 	spin_unlock(&fs_info->delalloc_root_lock);
4961 }
4962 
4963 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4964 					struct extent_io_tree *dirty_pages,
4965 					int mark)
4966 {
4967 	int ret;
4968 	struct extent_buffer *eb;
4969 	u64 start = 0;
4970 	u64 end;
4971 
4972 	while (1) {
4973 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4974 					    mark, NULL);
4975 		if (ret)
4976 			break;
4977 
4978 		clear_extent_bits(dirty_pages, start, end, mark);
4979 		while (start <= end) {
4980 			eb = find_extent_buffer(fs_info, start);
4981 			start += fs_info->nodesize;
4982 			if (!eb)
4983 				continue;
4984 			wait_on_extent_buffer_writeback(eb);
4985 
4986 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4987 					       &eb->bflags))
4988 				clear_extent_buffer_dirty(eb);
4989 			free_extent_buffer_stale(eb);
4990 		}
4991 	}
4992 
4993 	return ret;
4994 }
4995 
4996 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4997 				       struct extent_io_tree *unpin)
4998 {
4999 	u64 start;
5000 	u64 end;
5001 	int ret;
5002 
5003 	while (1) {
5004 		struct extent_state *cached_state = NULL;
5005 
5006 		/*
5007 		 * The btrfs_finish_extent_commit() may get the same range as
5008 		 * ours between find_first_extent_bit and clear_extent_dirty.
5009 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5010 		 * the same extent range.
5011 		 */
5012 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
5013 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5014 					    EXTENT_DIRTY, &cached_state);
5015 		if (ret) {
5016 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5017 			break;
5018 		}
5019 
5020 		clear_extent_dirty(unpin, start, end, &cached_state);
5021 		free_extent_state(cached_state);
5022 		btrfs_error_unpin_extent_range(fs_info, start, end);
5023 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5024 		cond_resched();
5025 	}
5026 
5027 	return 0;
5028 }
5029 
5030 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
5031 {
5032 	struct inode *inode;
5033 
5034 	inode = cache->io_ctl.inode;
5035 	if (inode) {
5036 		invalidate_inode_pages2(inode->i_mapping);
5037 		BTRFS_I(inode)->generation = 0;
5038 		cache->io_ctl.inode = NULL;
5039 		iput(inode);
5040 	}
5041 	ASSERT(cache->io_ctl.pages == NULL);
5042 	btrfs_put_block_group(cache);
5043 }
5044 
5045 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
5046 			     struct btrfs_fs_info *fs_info)
5047 {
5048 	struct btrfs_block_group *cache;
5049 
5050 	spin_lock(&cur_trans->dirty_bgs_lock);
5051 	while (!list_empty(&cur_trans->dirty_bgs)) {
5052 		cache = list_first_entry(&cur_trans->dirty_bgs,
5053 					 struct btrfs_block_group,
5054 					 dirty_list);
5055 
5056 		if (!list_empty(&cache->io_list)) {
5057 			spin_unlock(&cur_trans->dirty_bgs_lock);
5058 			list_del_init(&cache->io_list);
5059 			btrfs_cleanup_bg_io(cache);
5060 			spin_lock(&cur_trans->dirty_bgs_lock);
5061 		}
5062 
5063 		list_del_init(&cache->dirty_list);
5064 		spin_lock(&cache->lock);
5065 		cache->disk_cache_state = BTRFS_DC_ERROR;
5066 		spin_unlock(&cache->lock);
5067 
5068 		spin_unlock(&cur_trans->dirty_bgs_lock);
5069 		btrfs_put_block_group(cache);
5070 		btrfs_delayed_refs_rsv_release(fs_info, 1);
5071 		spin_lock(&cur_trans->dirty_bgs_lock);
5072 	}
5073 	spin_unlock(&cur_trans->dirty_bgs_lock);
5074 
5075 	/*
5076 	 * Refer to the definition of io_bgs member for details why it's safe
5077 	 * to use it without any locking
5078 	 */
5079 	while (!list_empty(&cur_trans->io_bgs)) {
5080 		cache = list_first_entry(&cur_trans->io_bgs,
5081 					 struct btrfs_block_group,
5082 					 io_list);
5083 
5084 		list_del_init(&cache->io_list);
5085 		spin_lock(&cache->lock);
5086 		cache->disk_cache_state = BTRFS_DC_ERROR;
5087 		spin_unlock(&cache->lock);
5088 		btrfs_cleanup_bg_io(cache);
5089 	}
5090 }
5091 
5092 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
5093 				   struct btrfs_fs_info *fs_info)
5094 {
5095 	struct btrfs_device *dev, *tmp;
5096 
5097 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
5098 	ASSERT(list_empty(&cur_trans->dirty_bgs));
5099 	ASSERT(list_empty(&cur_trans->io_bgs));
5100 
5101 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5102 				 post_commit_list) {
5103 		list_del_init(&dev->post_commit_list);
5104 	}
5105 
5106 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
5107 
5108 	cur_trans->state = TRANS_STATE_COMMIT_START;
5109 	wake_up(&fs_info->transaction_blocked_wait);
5110 
5111 	cur_trans->state = TRANS_STATE_UNBLOCKED;
5112 	wake_up(&fs_info->transaction_wait);
5113 
5114 	btrfs_destroy_delayed_inodes(fs_info);
5115 
5116 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
5117 				     EXTENT_DIRTY);
5118 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
5119 
5120 	btrfs_free_redirty_list(cur_trans);
5121 
5122 	cur_trans->state =TRANS_STATE_COMPLETED;
5123 	wake_up(&cur_trans->commit_wait);
5124 }
5125 
5126 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
5127 {
5128 	struct btrfs_transaction *t;
5129 
5130 	mutex_lock(&fs_info->transaction_kthread_mutex);
5131 
5132 	spin_lock(&fs_info->trans_lock);
5133 	while (!list_empty(&fs_info->trans_list)) {
5134 		t = list_first_entry(&fs_info->trans_list,
5135 				     struct btrfs_transaction, list);
5136 		if (t->state >= TRANS_STATE_COMMIT_START) {
5137 			refcount_inc(&t->use_count);
5138 			spin_unlock(&fs_info->trans_lock);
5139 			btrfs_wait_for_commit(fs_info, t->transid);
5140 			btrfs_put_transaction(t);
5141 			spin_lock(&fs_info->trans_lock);
5142 			continue;
5143 		}
5144 		if (t == fs_info->running_transaction) {
5145 			t->state = TRANS_STATE_COMMIT_DOING;
5146 			spin_unlock(&fs_info->trans_lock);
5147 			/*
5148 			 * We wait for 0 num_writers since we don't hold a trans
5149 			 * handle open currently for this transaction.
5150 			 */
5151 			wait_event(t->writer_wait,
5152 				   atomic_read(&t->num_writers) == 0);
5153 		} else {
5154 			spin_unlock(&fs_info->trans_lock);
5155 		}
5156 		btrfs_cleanup_one_transaction(t, fs_info);
5157 
5158 		spin_lock(&fs_info->trans_lock);
5159 		if (t == fs_info->running_transaction)
5160 			fs_info->running_transaction = NULL;
5161 		list_del_init(&t->list);
5162 		spin_unlock(&fs_info->trans_lock);
5163 
5164 		btrfs_put_transaction(t);
5165 		trace_btrfs_transaction_commit(fs_info);
5166 		spin_lock(&fs_info->trans_lock);
5167 	}
5168 	spin_unlock(&fs_info->trans_lock);
5169 	btrfs_destroy_all_ordered_extents(fs_info);
5170 	btrfs_destroy_delayed_inodes(fs_info);
5171 	btrfs_assert_delayed_root_empty(fs_info);
5172 	btrfs_destroy_all_delalloc_inodes(fs_info);
5173 	btrfs_drop_all_logs(fs_info);
5174 	mutex_unlock(&fs_info->transaction_kthread_mutex);
5175 
5176 	return 0;
5177 }
5178 
5179 int btrfs_init_root_free_objectid(struct btrfs_root *root)
5180 {
5181 	struct btrfs_path *path;
5182 	int ret;
5183 	struct extent_buffer *l;
5184 	struct btrfs_key search_key;
5185 	struct btrfs_key found_key;
5186 	int slot;
5187 
5188 	path = btrfs_alloc_path();
5189 	if (!path)
5190 		return -ENOMEM;
5191 
5192 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5193 	search_key.type = -1;
5194 	search_key.offset = (u64)-1;
5195 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5196 	if (ret < 0)
5197 		goto error;
5198 	BUG_ON(ret == 0); /* Corruption */
5199 	if (path->slots[0] > 0) {
5200 		slot = path->slots[0] - 1;
5201 		l = path->nodes[0];
5202 		btrfs_item_key_to_cpu(l, &found_key, slot);
5203 		root->free_objectid = max_t(u64, found_key.objectid + 1,
5204 					    BTRFS_FIRST_FREE_OBJECTID);
5205 	} else {
5206 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5207 	}
5208 	ret = 0;
5209 error:
5210 	btrfs_free_path(path);
5211 	return ret;
5212 }
5213 
5214 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5215 {
5216 	int ret;
5217 	mutex_lock(&root->objectid_mutex);
5218 
5219 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5220 		btrfs_warn(root->fs_info,
5221 			   "the objectid of root %llu reaches its highest value",
5222 			   root->root_key.objectid);
5223 		ret = -ENOSPC;
5224 		goto out;
5225 	}
5226 
5227 	*objectid = root->free_objectid++;
5228 	ret = 0;
5229 out:
5230 	mutex_unlock(&root->objectid_mutex);
5231 	return ret;
5232 }
5233