xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 9dae47aba0a055f761176d9297371d5bb24289ec)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <linux/bpf.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "free-space-tree.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52 #include "qgroup.h"
53 #include "compression.h"
54 #include "tree-checker.h"
55 #include "ref-verify.h"
56 
57 #ifdef CONFIG_X86
58 #include <asm/cpufeature.h>
59 #endif
60 
61 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
62 				 BTRFS_HEADER_FLAG_RELOC |\
63 				 BTRFS_SUPER_FLAG_ERROR |\
64 				 BTRFS_SUPER_FLAG_SEEDING |\
65 				 BTRFS_SUPER_FLAG_METADUMP)
66 
67 static const struct extent_io_ops btree_extent_io_ops;
68 static void end_workqueue_fn(struct btrfs_work *work);
69 static void free_fs_root(struct btrfs_root *root);
70 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
71 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
72 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
73 				      struct btrfs_fs_info *fs_info);
74 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
75 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
76 					struct extent_io_tree *dirty_pages,
77 					int mark);
78 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
79 				       struct extent_io_tree *pinned_extents);
80 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
81 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
82 
83 /*
84  * btrfs_end_io_wq structs are used to do processing in task context when an IO
85  * is complete.  This is used during reads to verify checksums, and it is used
86  * by writes to insert metadata for new file extents after IO is complete.
87  */
88 struct btrfs_end_io_wq {
89 	struct bio *bio;
90 	bio_end_io_t *end_io;
91 	void *private;
92 	struct btrfs_fs_info *info;
93 	blk_status_t status;
94 	enum btrfs_wq_endio_type metadata;
95 	struct btrfs_work work;
96 };
97 
98 static struct kmem_cache *btrfs_end_io_wq_cache;
99 
100 int __init btrfs_end_io_wq_init(void)
101 {
102 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
103 					sizeof(struct btrfs_end_io_wq),
104 					0,
105 					SLAB_MEM_SPREAD,
106 					NULL);
107 	if (!btrfs_end_io_wq_cache)
108 		return -ENOMEM;
109 	return 0;
110 }
111 
112 void btrfs_end_io_wq_exit(void)
113 {
114 	kmem_cache_destroy(btrfs_end_io_wq_cache);
115 }
116 
117 /*
118  * async submit bios are used to offload expensive checksumming
119  * onto the worker threads.  They checksum file and metadata bios
120  * just before they are sent down the IO stack.
121  */
122 struct async_submit_bio {
123 	void *private_data;
124 	struct btrfs_fs_info *fs_info;
125 	struct bio *bio;
126 	extent_submit_bio_hook_t *submit_bio_start;
127 	extent_submit_bio_hook_t *submit_bio_done;
128 	int mirror_num;
129 	unsigned long bio_flags;
130 	/*
131 	 * bio_offset is optional, can be used if the pages in the bio
132 	 * can't tell us where in the file the bio should go
133 	 */
134 	u64 bio_offset;
135 	struct btrfs_work work;
136 	blk_status_t status;
137 };
138 
139 /*
140  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
141  * eb, the lockdep key is determined by the btrfs_root it belongs to and
142  * the level the eb occupies in the tree.
143  *
144  * Different roots are used for different purposes and may nest inside each
145  * other and they require separate keysets.  As lockdep keys should be
146  * static, assign keysets according to the purpose of the root as indicated
147  * by btrfs_root->objectid.  This ensures that all special purpose roots
148  * have separate keysets.
149  *
150  * Lock-nesting across peer nodes is always done with the immediate parent
151  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
152  * subclass to avoid triggering lockdep warning in such cases.
153  *
154  * The key is set by the readpage_end_io_hook after the buffer has passed
155  * csum validation but before the pages are unlocked.  It is also set by
156  * btrfs_init_new_buffer on freshly allocated blocks.
157  *
158  * We also add a check to make sure the highest level of the tree is the
159  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
160  * needs update as well.
161  */
162 #ifdef CONFIG_DEBUG_LOCK_ALLOC
163 # if BTRFS_MAX_LEVEL != 8
164 #  error
165 # endif
166 
167 static struct btrfs_lockdep_keyset {
168 	u64			id;		/* root objectid */
169 	const char		*name_stem;	/* lock name stem */
170 	char			names[BTRFS_MAX_LEVEL + 1][20];
171 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
172 } btrfs_lockdep_keysets[] = {
173 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
174 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
175 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
176 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
177 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
178 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
179 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
180 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
181 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
182 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
183 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
184 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
185 	{ .id = 0,				.name_stem = "tree"	},
186 };
187 
188 void __init btrfs_init_lockdep(void)
189 {
190 	int i, j;
191 
192 	/* initialize lockdep class names */
193 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
194 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
195 
196 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
197 			snprintf(ks->names[j], sizeof(ks->names[j]),
198 				 "btrfs-%s-%02d", ks->name_stem, j);
199 	}
200 }
201 
202 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
203 				    int level)
204 {
205 	struct btrfs_lockdep_keyset *ks;
206 
207 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
208 
209 	/* find the matching keyset, id 0 is the default entry */
210 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
211 		if (ks->id == objectid)
212 			break;
213 
214 	lockdep_set_class_and_name(&eb->lock,
215 				   &ks->keys[level], ks->names[level]);
216 }
217 
218 #endif
219 
220 /*
221  * extents on the btree inode are pretty simple, there's one extent
222  * that covers the entire device
223  */
224 static struct extent_map *btree_get_extent(struct btrfs_inode *inode,
225 		struct page *page, size_t pg_offset, u64 start, u64 len,
226 		int create)
227 {
228 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
229 	struct extent_map_tree *em_tree = &inode->extent_tree;
230 	struct extent_map *em;
231 	int ret;
232 
233 	read_lock(&em_tree->lock);
234 	em = lookup_extent_mapping(em_tree, start, len);
235 	if (em) {
236 		em->bdev = fs_info->fs_devices->latest_bdev;
237 		read_unlock(&em_tree->lock);
238 		goto out;
239 	}
240 	read_unlock(&em_tree->lock);
241 
242 	em = alloc_extent_map();
243 	if (!em) {
244 		em = ERR_PTR(-ENOMEM);
245 		goto out;
246 	}
247 	em->start = 0;
248 	em->len = (u64)-1;
249 	em->block_len = (u64)-1;
250 	em->block_start = 0;
251 	em->bdev = fs_info->fs_devices->latest_bdev;
252 
253 	write_lock(&em_tree->lock);
254 	ret = add_extent_mapping(em_tree, em, 0);
255 	if (ret == -EEXIST) {
256 		free_extent_map(em);
257 		em = lookup_extent_mapping(em_tree, start, len);
258 		if (!em)
259 			em = ERR_PTR(-EIO);
260 	} else if (ret) {
261 		free_extent_map(em);
262 		em = ERR_PTR(ret);
263 	}
264 	write_unlock(&em_tree->lock);
265 
266 out:
267 	return em;
268 }
269 
270 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
271 {
272 	return btrfs_crc32c(seed, data, len);
273 }
274 
275 void btrfs_csum_final(u32 crc, u8 *result)
276 {
277 	put_unaligned_le32(~crc, result);
278 }
279 
280 /*
281  * compute the csum for a btree block, and either verify it or write it
282  * into the csum field of the block.
283  */
284 static int csum_tree_block(struct btrfs_fs_info *fs_info,
285 			   struct extent_buffer *buf,
286 			   int verify)
287 {
288 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
289 	char *result = NULL;
290 	unsigned long len;
291 	unsigned long cur_len;
292 	unsigned long offset = BTRFS_CSUM_SIZE;
293 	char *kaddr;
294 	unsigned long map_start;
295 	unsigned long map_len;
296 	int err;
297 	u32 crc = ~(u32)0;
298 	unsigned long inline_result;
299 
300 	len = buf->len - offset;
301 	while (len > 0) {
302 		err = map_private_extent_buffer(buf, offset, 32,
303 					&kaddr, &map_start, &map_len);
304 		if (err)
305 			return err;
306 		cur_len = min(len, map_len - (offset - map_start));
307 		crc = btrfs_csum_data(kaddr + offset - map_start,
308 				      crc, cur_len);
309 		len -= cur_len;
310 		offset += cur_len;
311 	}
312 	if (csum_size > sizeof(inline_result)) {
313 		result = kzalloc(csum_size, GFP_NOFS);
314 		if (!result)
315 			return -ENOMEM;
316 	} else {
317 		result = (char *)&inline_result;
318 	}
319 
320 	btrfs_csum_final(crc, result);
321 
322 	if (verify) {
323 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
324 			u32 val;
325 			u32 found = 0;
326 			memcpy(&found, result, csum_size);
327 
328 			read_extent_buffer(buf, &val, 0, csum_size);
329 			btrfs_warn_rl(fs_info,
330 				"%s checksum verify failed on %llu wanted %X found %X level %d",
331 				fs_info->sb->s_id, buf->start,
332 				val, found, btrfs_header_level(buf));
333 			if (result != (char *)&inline_result)
334 				kfree(result);
335 			return -EUCLEAN;
336 		}
337 	} else {
338 		write_extent_buffer(buf, result, 0, csum_size);
339 	}
340 	if (result != (char *)&inline_result)
341 		kfree(result);
342 	return 0;
343 }
344 
345 /*
346  * we can't consider a given block up to date unless the transid of the
347  * block matches the transid in the parent node's pointer.  This is how we
348  * detect blocks that either didn't get written at all or got written
349  * in the wrong place.
350  */
351 static int verify_parent_transid(struct extent_io_tree *io_tree,
352 				 struct extent_buffer *eb, u64 parent_transid,
353 				 int atomic)
354 {
355 	struct extent_state *cached_state = NULL;
356 	int ret;
357 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
358 
359 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
360 		return 0;
361 
362 	if (atomic)
363 		return -EAGAIN;
364 
365 	if (need_lock) {
366 		btrfs_tree_read_lock(eb);
367 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
368 	}
369 
370 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
371 			 &cached_state);
372 	if (extent_buffer_uptodate(eb) &&
373 	    btrfs_header_generation(eb) == parent_transid) {
374 		ret = 0;
375 		goto out;
376 	}
377 	btrfs_err_rl(eb->fs_info,
378 		"parent transid verify failed on %llu wanted %llu found %llu",
379 			eb->start,
380 			parent_transid, btrfs_header_generation(eb));
381 	ret = 1;
382 
383 	/*
384 	 * Things reading via commit roots that don't have normal protection,
385 	 * like send, can have a really old block in cache that may point at a
386 	 * block that has been freed and re-allocated.  So don't clear uptodate
387 	 * if we find an eb that is under IO (dirty/writeback) because we could
388 	 * end up reading in the stale data and then writing it back out and
389 	 * making everybody very sad.
390 	 */
391 	if (!extent_buffer_under_io(eb))
392 		clear_extent_buffer_uptodate(eb);
393 out:
394 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
395 			     &cached_state, GFP_NOFS);
396 	if (need_lock)
397 		btrfs_tree_read_unlock_blocking(eb);
398 	return ret;
399 }
400 
401 /*
402  * Return 0 if the superblock checksum type matches the checksum value of that
403  * algorithm. Pass the raw disk superblock data.
404  */
405 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
406 				  char *raw_disk_sb)
407 {
408 	struct btrfs_super_block *disk_sb =
409 		(struct btrfs_super_block *)raw_disk_sb;
410 	u16 csum_type = btrfs_super_csum_type(disk_sb);
411 	int ret = 0;
412 
413 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
414 		u32 crc = ~(u32)0;
415 		const int csum_size = sizeof(crc);
416 		char result[csum_size];
417 
418 		/*
419 		 * The super_block structure does not span the whole
420 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
421 		 * is filled with zeros and is included in the checksum.
422 		 */
423 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
424 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
425 		btrfs_csum_final(crc, result);
426 
427 		if (memcmp(raw_disk_sb, result, csum_size))
428 			ret = 1;
429 	}
430 
431 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
432 		btrfs_err(fs_info, "unsupported checksum algorithm %u",
433 				csum_type);
434 		ret = 1;
435 	}
436 
437 	return ret;
438 }
439 
440 /*
441  * helper to read a given tree block, doing retries as required when
442  * the checksums don't match and we have alternate mirrors to try.
443  */
444 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
445 					  struct extent_buffer *eb,
446 					  u64 parent_transid)
447 {
448 	struct extent_io_tree *io_tree;
449 	int failed = 0;
450 	int ret;
451 	int num_copies = 0;
452 	int mirror_num = 0;
453 	int failed_mirror = 0;
454 
455 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
456 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
457 	while (1) {
458 		ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
459 					       btree_get_extent, mirror_num);
460 		if (!ret) {
461 			if (!verify_parent_transid(io_tree, eb,
462 						   parent_transid, 0))
463 				break;
464 			else
465 				ret = -EIO;
466 		}
467 
468 		/*
469 		 * This buffer's crc is fine, but its contents are corrupted, so
470 		 * there is no reason to read the other copies, they won't be
471 		 * any less wrong.
472 		 */
473 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
474 			break;
475 
476 		num_copies = btrfs_num_copies(fs_info,
477 					      eb->start, eb->len);
478 		if (num_copies == 1)
479 			break;
480 
481 		if (!failed_mirror) {
482 			failed = 1;
483 			failed_mirror = eb->read_mirror;
484 		}
485 
486 		mirror_num++;
487 		if (mirror_num == failed_mirror)
488 			mirror_num++;
489 
490 		if (mirror_num > num_copies)
491 			break;
492 	}
493 
494 	if (failed && !ret && failed_mirror)
495 		repair_eb_io_failure(fs_info, eb, failed_mirror);
496 
497 	return ret;
498 }
499 
500 /*
501  * checksum a dirty tree block before IO.  This has extra checks to make sure
502  * we only fill in the checksum field in the first page of a multi-page block
503  */
504 
505 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
506 {
507 	u64 start = page_offset(page);
508 	u64 found_start;
509 	struct extent_buffer *eb;
510 
511 	eb = (struct extent_buffer *)page->private;
512 	if (page != eb->pages[0])
513 		return 0;
514 
515 	found_start = btrfs_header_bytenr(eb);
516 	/*
517 	 * Please do not consolidate these warnings into a single if.
518 	 * It is useful to know what went wrong.
519 	 */
520 	if (WARN_ON(found_start != start))
521 		return -EUCLEAN;
522 	if (WARN_ON(!PageUptodate(page)))
523 		return -EUCLEAN;
524 
525 	ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
526 			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
527 
528 	return csum_tree_block(fs_info, eb, 0);
529 }
530 
531 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
532 				 struct extent_buffer *eb)
533 {
534 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
535 	u8 fsid[BTRFS_FSID_SIZE];
536 	int ret = 1;
537 
538 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
539 	while (fs_devices) {
540 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
541 			ret = 0;
542 			break;
543 		}
544 		fs_devices = fs_devices->seed;
545 	}
546 	return ret;
547 }
548 
549 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
550 				      u64 phy_offset, struct page *page,
551 				      u64 start, u64 end, int mirror)
552 {
553 	u64 found_start;
554 	int found_level;
555 	struct extent_buffer *eb;
556 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
557 	struct btrfs_fs_info *fs_info = root->fs_info;
558 	int ret = 0;
559 	int reads_done;
560 
561 	if (!page->private)
562 		goto out;
563 
564 	eb = (struct extent_buffer *)page->private;
565 
566 	/* the pending IO might have been the only thing that kept this buffer
567 	 * in memory.  Make sure we have a ref for all this other checks
568 	 */
569 	extent_buffer_get(eb);
570 
571 	reads_done = atomic_dec_and_test(&eb->io_pages);
572 	if (!reads_done)
573 		goto err;
574 
575 	eb->read_mirror = mirror;
576 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
577 		ret = -EIO;
578 		goto err;
579 	}
580 
581 	found_start = btrfs_header_bytenr(eb);
582 	if (found_start != eb->start) {
583 		btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
584 			     found_start, eb->start);
585 		ret = -EIO;
586 		goto err;
587 	}
588 	if (check_tree_block_fsid(fs_info, eb)) {
589 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
590 			     eb->start);
591 		ret = -EIO;
592 		goto err;
593 	}
594 	found_level = btrfs_header_level(eb);
595 	if (found_level >= BTRFS_MAX_LEVEL) {
596 		btrfs_err(fs_info, "bad tree block level %d",
597 			  (int)btrfs_header_level(eb));
598 		ret = -EIO;
599 		goto err;
600 	}
601 
602 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
603 				       eb, found_level);
604 
605 	ret = csum_tree_block(fs_info, eb, 1);
606 	if (ret)
607 		goto err;
608 
609 	/*
610 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
611 	 * that we don't try and read the other copies of this block, just
612 	 * return -EIO.
613 	 */
614 	if (found_level == 0 && btrfs_check_leaf_full(root, eb)) {
615 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
616 		ret = -EIO;
617 	}
618 
619 	if (found_level > 0 && btrfs_check_node(root, eb))
620 		ret = -EIO;
621 
622 	if (!ret)
623 		set_extent_buffer_uptodate(eb);
624 err:
625 	if (reads_done &&
626 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
627 		btree_readahead_hook(eb, ret);
628 
629 	if (ret) {
630 		/*
631 		 * our io error hook is going to dec the io pages
632 		 * again, we have to make sure it has something
633 		 * to decrement
634 		 */
635 		atomic_inc(&eb->io_pages);
636 		clear_extent_buffer_uptodate(eb);
637 	}
638 	free_extent_buffer(eb);
639 out:
640 	return ret;
641 }
642 
643 static int btree_io_failed_hook(struct page *page, int failed_mirror)
644 {
645 	struct extent_buffer *eb;
646 
647 	eb = (struct extent_buffer *)page->private;
648 	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
649 	eb->read_mirror = failed_mirror;
650 	atomic_dec(&eb->io_pages);
651 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
652 		btree_readahead_hook(eb, -EIO);
653 	return -EIO;	/* we fixed nothing */
654 }
655 
656 static void end_workqueue_bio(struct bio *bio)
657 {
658 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
659 	struct btrfs_fs_info *fs_info;
660 	struct btrfs_workqueue *wq;
661 	btrfs_work_func_t func;
662 
663 	fs_info = end_io_wq->info;
664 	end_io_wq->status = bio->bi_status;
665 
666 	if (bio_op(bio) == REQ_OP_WRITE) {
667 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
668 			wq = fs_info->endio_meta_write_workers;
669 			func = btrfs_endio_meta_write_helper;
670 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
671 			wq = fs_info->endio_freespace_worker;
672 			func = btrfs_freespace_write_helper;
673 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
674 			wq = fs_info->endio_raid56_workers;
675 			func = btrfs_endio_raid56_helper;
676 		} else {
677 			wq = fs_info->endio_write_workers;
678 			func = btrfs_endio_write_helper;
679 		}
680 	} else {
681 		if (unlikely(end_io_wq->metadata ==
682 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
683 			wq = fs_info->endio_repair_workers;
684 			func = btrfs_endio_repair_helper;
685 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
686 			wq = fs_info->endio_raid56_workers;
687 			func = btrfs_endio_raid56_helper;
688 		} else if (end_io_wq->metadata) {
689 			wq = fs_info->endio_meta_workers;
690 			func = btrfs_endio_meta_helper;
691 		} else {
692 			wq = fs_info->endio_workers;
693 			func = btrfs_endio_helper;
694 		}
695 	}
696 
697 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
698 	btrfs_queue_work(wq, &end_io_wq->work);
699 }
700 
701 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
702 			enum btrfs_wq_endio_type metadata)
703 {
704 	struct btrfs_end_io_wq *end_io_wq;
705 
706 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
707 	if (!end_io_wq)
708 		return BLK_STS_RESOURCE;
709 
710 	end_io_wq->private = bio->bi_private;
711 	end_io_wq->end_io = bio->bi_end_io;
712 	end_io_wq->info = info;
713 	end_io_wq->status = 0;
714 	end_io_wq->bio = bio;
715 	end_io_wq->metadata = metadata;
716 
717 	bio->bi_private = end_io_wq;
718 	bio->bi_end_io = end_workqueue_bio;
719 	return 0;
720 }
721 
722 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
723 {
724 	unsigned long limit = min_t(unsigned long,
725 				    info->thread_pool_size,
726 				    info->fs_devices->open_devices);
727 	return 256 * limit;
728 }
729 
730 static void run_one_async_start(struct btrfs_work *work)
731 {
732 	struct async_submit_bio *async;
733 	blk_status_t ret;
734 
735 	async = container_of(work, struct  async_submit_bio, work);
736 	ret = async->submit_bio_start(async->private_data, async->bio,
737 				      async->mirror_num, async->bio_flags,
738 				      async->bio_offset);
739 	if (ret)
740 		async->status = ret;
741 }
742 
743 static void run_one_async_done(struct btrfs_work *work)
744 {
745 	struct async_submit_bio *async;
746 
747 	async = container_of(work, struct  async_submit_bio, work);
748 
749 	/* If an error occurred we just want to clean up the bio and move on */
750 	if (async->status) {
751 		async->bio->bi_status = async->status;
752 		bio_endio(async->bio);
753 		return;
754 	}
755 
756 	async->submit_bio_done(async->private_data, async->bio, async->mirror_num,
757 			       async->bio_flags, async->bio_offset);
758 }
759 
760 static void run_one_async_free(struct btrfs_work *work)
761 {
762 	struct async_submit_bio *async;
763 
764 	async = container_of(work, struct  async_submit_bio, work);
765 	kfree(async);
766 }
767 
768 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
769 				 int mirror_num, unsigned long bio_flags,
770 				 u64 bio_offset, void *private_data,
771 				 extent_submit_bio_hook_t *submit_bio_start,
772 				 extent_submit_bio_hook_t *submit_bio_done)
773 {
774 	struct async_submit_bio *async;
775 
776 	async = kmalloc(sizeof(*async), GFP_NOFS);
777 	if (!async)
778 		return BLK_STS_RESOURCE;
779 
780 	async->private_data = private_data;
781 	async->fs_info = fs_info;
782 	async->bio = bio;
783 	async->mirror_num = mirror_num;
784 	async->submit_bio_start = submit_bio_start;
785 	async->submit_bio_done = submit_bio_done;
786 
787 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
788 			run_one_async_done, run_one_async_free);
789 
790 	async->bio_flags = bio_flags;
791 	async->bio_offset = bio_offset;
792 
793 	async->status = 0;
794 
795 	if (op_is_sync(bio->bi_opf))
796 		btrfs_set_work_high_priority(&async->work);
797 
798 	btrfs_queue_work(fs_info->workers, &async->work);
799 	return 0;
800 }
801 
802 static blk_status_t btree_csum_one_bio(struct bio *bio)
803 {
804 	struct bio_vec *bvec;
805 	struct btrfs_root *root;
806 	int i, ret = 0;
807 
808 	ASSERT(!bio_flagged(bio, BIO_CLONED));
809 	bio_for_each_segment_all(bvec, bio, i) {
810 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
811 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
812 		if (ret)
813 			break;
814 	}
815 
816 	return errno_to_blk_status(ret);
817 }
818 
819 static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio,
820 					     int mirror_num, unsigned long bio_flags,
821 					     u64 bio_offset)
822 {
823 	/*
824 	 * when we're called for a write, we're already in the async
825 	 * submission context.  Just jump into btrfs_map_bio
826 	 */
827 	return btree_csum_one_bio(bio);
828 }
829 
830 static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio,
831 					    int mirror_num, unsigned long bio_flags,
832 					    u64 bio_offset)
833 {
834 	struct inode *inode = private_data;
835 	blk_status_t ret;
836 
837 	/*
838 	 * when we're called for a write, we're already in the async
839 	 * submission context.  Just jump into btrfs_map_bio
840 	 */
841 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
842 	if (ret) {
843 		bio->bi_status = ret;
844 		bio_endio(bio);
845 	}
846 	return ret;
847 }
848 
849 static int check_async_write(struct btrfs_inode *bi)
850 {
851 	if (atomic_read(&bi->sync_writers))
852 		return 0;
853 #ifdef CONFIG_X86
854 	if (static_cpu_has(X86_FEATURE_XMM4_2))
855 		return 0;
856 #endif
857 	return 1;
858 }
859 
860 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
861 					  int mirror_num, unsigned long bio_flags,
862 					  u64 bio_offset)
863 {
864 	struct inode *inode = private_data;
865 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
866 	int async = check_async_write(BTRFS_I(inode));
867 	blk_status_t ret;
868 
869 	if (bio_op(bio) != REQ_OP_WRITE) {
870 		/*
871 		 * called for a read, do the setup so that checksum validation
872 		 * can happen in the async kernel threads
873 		 */
874 		ret = btrfs_bio_wq_end_io(fs_info, bio,
875 					  BTRFS_WQ_ENDIO_METADATA);
876 		if (ret)
877 			goto out_w_error;
878 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
879 	} else if (!async) {
880 		ret = btree_csum_one_bio(bio);
881 		if (ret)
882 			goto out_w_error;
883 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
884 	} else {
885 		/*
886 		 * kthread helpers are used to submit writes so that
887 		 * checksumming can happen in parallel across all CPUs
888 		 */
889 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
890 					  bio_offset, private_data,
891 					  __btree_submit_bio_start,
892 					  __btree_submit_bio_done);
893 	}
894 
895 	if (ret)
896 		goto out_w_error;
897 	return 0;
898 
899 out_w_error:
900 	bio->bi_status = ret;
901 	bio_endio(bio);
902 	return ret;
903 }
904 
905 #ifdef CONFIG_MIGRATION
906 static int btree_migratepage(struct address_space *mapping,
907 			struct page *newpage, struct page *page,
908 			enum migrate_mode mode)
909 {
910 	/*
911 	 * we can't safely write a btree page from here,
912 	 * we haven't done the locking hook
913 	 */
914 	if (PageDirty(page))
915 		return -EAGAIN;
916 	/*
917 	 * Buffers may be managed in a filesystem specific way.
918 	 * We must have no buffers or drop them.
919 	 */
920 	if (page_has_private(page) &&
921 	    !try_to_release_page(page, GFP_KERNEL))
922 		return -EAGAIN;
923 	return migrate_page(mapping, newpage, page, mode);
924 }
925 #endif
926 
927 
928 static int btree_writepages(struct address_space *mapping,
929 			    struct writeback_control *wbc)
930 {
931 	struct btrfs_fs_info *fs_info;
932 	int ret;
933 
934 	if (wbc->sync_mode == WB_SYNC_NONE) {
935 
936 		if (wbc->for_kupdate)
937 			return 0;
938 
939 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
940 		/* this is a bit racy, but that's ok */
941 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
942 					     BTRFS_DIRTY_METADATA_THRESH);
943 		if (ret < 0)
944 			return 0;
945 	}
946 	return btree_write_cache_pages(mapping, wbc);
947 }
948 
949 static int btree_readpage(struct file *file, struct page *page)
950 {
951 	struct extent_io_tree *tree;
952 	tree = &BTRFS_I(page->mapping->host)->io_tree;
953 	return extent_read_full_page(tree, page, btree_get_extent, 0);
954 }
955 
956 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
957 {
958 	if (PageWriteback(page) || PageDirty(page))
959 		return 0;
960 
961 	return try_release_extent_buffer(page);
962 }
963 
964 static void btree_invalidatepage(struct page *page, unsigned int offset,
965 				 unsigned int length)
966 {
967 	struct extent_io_tree *tree;
968 	tree = &BTRFS_I(page->mapping->host)->io_tree;
969 	extent_invalidatepage(tree, page, offset);
970 	btree_releasepage(page, GFP_NOFS);
971 	if (PagePrivate(page)) {
972 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
973 			   "page private not zero on page %llu",
974 			   (unsigned long long)page_offset(page));
975 		ClearPagePrivate(page);
976 		set_page_private(page, 0);
977 		put_page(page);
978 	}
979 }
980 
981 static int btree_set_page_dirty(struct page *page)
982 {
983 #ifdef DEBUG
984 	struct extent_buffer *eb;
985 
986 	BUG_ON(!PagePrivate(page));
987 	eb = (struct extent_buffer *)page->private;
988 	BUG_ON(!eb);
989 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
990 	BUG_ON(!atomic_read(&eb->refs));
991 	btrfs_assert_tree_locked(eb);
992 #endif
993 	return __set_page_dirty_nobuffers(page);
994 }
995 
996 static const struct address_space_operations btree_aops = {
997 	.readpage	= btree_readpage,
998 	.writepages	= btree_writepages,
999 	.releasepage	= btree_releasepage,
1000 	.invalidatepage = btree_invalidatepage,
1001 #ifdef CONFIG_MIGRATION
1002 	.migratepage	= btree_migratepage,
1003 #endif
1004 	.set_page_dirty = btree_set_page_dirty,
1005 };
1006 
1007 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1008 {
1009 	struct extent_buffer *buf = NULL;
1010 	struct inode *btree_inode = fs_info->btree_inode;
1011 
1012 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1013 	if (IS_ERR(buf))
1014 		return;
1015 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1016 				 buf, WAIT_NONE, btree_get_extent, 0);
1017 	free_extent_buffer(buf);
1018 }
1019 
1020 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1021 			 int mirror_num, struct extent_buffer **eb)
1022 {
1023 	struct extent_buffer *buf = NULL;
1024 	struct inode *btree_inode = fs_info->btree_inode;
1025 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1026 	int ret;
1027 
1028 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1029 	if (IS_ERR(buf))
1030 		return 0;
1031 
1032 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1033 
1034 	ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1035 				       btree_get_extent, mirror_num);
1036 	if (ret) {
1037 		free_extent_buffer(buf);
1038 		return ret;
1039 	}
1040 
1041 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1042 		free_extent_buffer(buf);
1043 		return -EIO;
1044 	} else if (extent_buffer_uptodate(buf)) {
1045 		*eb = buf;
1046 	} else {
1047 		free_extent_buffer(buf);
1048 	}
1049 	return 0;
1050 }
1051 
1052 struct extent_buffer *btrfs_find_create_tree_block(
1053 						struct btrfs_fs_info *fs_info,
1054 						u64 bytenr)
1055 {
1056 	if (btrfs_is_testing(fs_info))
1057 		return alloc_test_extent_buffer(fs_info, bytenr);
1058 	return alloc_extent_buffer(fs_info, bytenr);
1059 }
1060 
1061 
1062 int btrfs_write_tree_block(struct extent_buffer *buf)
1063 {
1064 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1065 					buf->start + buf->len - 1);
1066 }
1067 
1068 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1069 {
1070 	filemap_fdatawait_range(buf->pages[0]->mapping,
1071 			        buf->start, buf->start + buf->len - 1);
1072 }
1073 
1074 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1075 				      u64 parent_transid)
1076 {
1077 	struct extent_buffer *buf = NULL;
1078 	int ret;
1079 
1080 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1081 	if (IS_ERR(buf))
1082 		return buf;
1083 
1084 	ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
1085 	if (ret) {
1086 		free_extent_buffer(buf);
1087 		return ERR_PTR(ret);
1088 	}
1089 	return buf;
1090 
1091 }
1092 
1093 void clean_tree_block(struct btrfs_fs_info *fs_info,
1094 		      struct extent_buffer *buf)
1095 {
1096 	if (btrfs_header_generation(buf) ==
1097 	    fs_info->running_transaction->transid) {
1098 		btrfs_assert_tree_locked(buf);
1099 
1100 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1101 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1102 						 -buf->len,
1103 						 fs_info->dirty_metadata_batch);
1104 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1105 			btrfs_set_lock_blocking(buf);
1106 			clear_extent_buffer_dirty(buf);
1107 		}
1108 	}
1109 }
1110 
1111 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1112 {
1113 	struct btrfs_subvolume_writers *writers;
1114 	int ret;
1115 
1116 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1117 	if (!writers)
1118 		return ERR_PTR(-ENOMEM);
1119 
1120 	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1121 	if (ret < 0) {
1122 		kfree(writers);
1123 		return ERR_PTR(ret);
1124 	}
1125 
1126 	init_waitqueue_head(&writers->wait);
1127 	return writers;
1128 }
1129 
1130 static void
1131 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1132 {
1133 	percpu_counter_destroy(&writers->counter);
1134 	kfree(writers);
1135 }
1136 
1137 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1138 			 u64 objectid)
1139 {
1140 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1141 	root->node = NULL;
1142 	root->commit_root = NULL;
1143 	root->state = 0;
1144 	root->orphan_cleanup_state = 0;
1145 
1146 	root->objectid = objectid;
1147 	root->last_trans = 0;
1148 	root->highest_objectid = 0;
1149 	root->nr_delalloc_inodes = 0;
1150 	root->nr_ordered_extents = 0;
1151 	root->name = NULL;
1152 	root->inode_tree = RB_ROOT;
1153 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1154 	root->block_rsv = NULL;
1155 	root->orphan_block_rsv = NULL;
1156 
1157 	INIT_LIST_HEAD(&root->dirty_list);
1158 	INIT_LIST_HEAD(&root->root_list);
1159 	INIT_LIST_HEAD(&root->delalloc_inodes);
1160 	INIT_LIST_HEAD(&root->delalloc_root);
1161 	INIT_LIST_HEAD(&root->ordered_extents);
1162 	INIT_LIST_HEAD(&root->ordered_root);
1163 	INIT_LIST_HEAD(&root->logged_list[0]);
1164 	INIT_LIST_HEAD(&root->logged_list[1]);
1165 	spin_lock_init(&root->orphan_lock);
1166 	spin_lock_init(&root->inode_lock);
1167 	spin_lock_init(&root->delalloc_lock);
1168 	spin_lock_init(&root->ordered_extent_lock);
1169 	spin_lock_init(&root->accounting_lock);
1170 	spin_lock_init(&root->log_extents_lock[0]);
1171 	spin_lock_init(&root->log_extents_lock[1]);
1172 	mutex_init(&root->objectid_mutex);
1173 	mutex_init(&root->log_mutex);
1174 	mutex_init(&root->ordered_extent_mutex);
1175 	mutex_init(&root->delalloc_mutex);
1176 	init_waitqueue_head(&root->log_writer_wait);
1177 	init_waitqueue_head(&root->log_commit_wait[0]);
1178 	init_waitqueue_head(&root->log_commit_wait[1]);
1179 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1180 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1181 	atomic_set(&root->log_commit[0], 0);
1182 	atomic_set(&root->log_commit[1], 0);
1183 	atomic_set(&root->log_writers, 0);
1184 	atomic_set(&root->log_batch, 0);
1185 	atomic_set(&root->orphan_inodes, 0);
1186 	refcount_set(&root->refs, 1);
1187 	atomic_set(&root->will_be_snapshotted, 0);
1188 	atomic64_set(&root->qgroup_meta_rsv, 0);
1189 	root->log_transid = 0;
1190 	root->log_transid_committed = -1;
1191 	root->last_log_commit = 0;
1192 	if (!dummy)
1193 		extent_io_tree_init(&root->dirty_log_pages, NULL);
1194 
1195 	memset(&root->root_key, 0, sizeof(root->root_key));
1196 	memset(&root->root_item, 0, sizeof(root->root_item));
1197 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1198 	if (!dummy)
1199 		root->defrag_trans_start = fs_info->generation;
1200 	else
1201 		root->defrag_trans_start = 0;
1202 	root->root_key.objectid = objectid;
1203 	root->anon_dev = 0;
1204 
1205 	spin_lock_init(&root->root_item_lock);
1206 }
1207 
1208 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1209 		gfp_t flags)
1210 {
1211 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1212 	if (root)
1213 		root->fs_info = fs_info;
1214 	return root;
1215 }
1216 
1217 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1218 /* Should only be used by the testing infrastructure */
1219 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1220 {
1221 	struct btrfs_root *root;
1222 
1223 	if (!fs_info)
1224 		return ERR_PTR(-EINVAL);
1225 
1226 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1227 	if (!root)
1228 		return ERR_PTR(-ENOMEM);
1229 
1230 	/* We don't use the stripesize in selftest, set it as sectorsize */
1231 	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1232 	root->alloc_bytenr = 0;
1233 
1234 	return root;
1235 }
1236 #endif
1237 
1238 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1239 				     struct btrfs_fs_info *fs_info,
1240 				     u64 objectid)
1241 {
1242 	struct extent_buffer *leaf;
1243 	struct btrfs_root *tree_root = fs_info->tree_root;
1244 	struct btrfs_root *root;
1245 	struct btrfs_key key;
1246 	int ret = 0;
1247 	uuid_le uuid;
1248 
1249 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1250 	if (!root)
1251 		return ERR_PTR(-ENOMEM);
1252 
1253 	__setup_root(root, fs_info, objectid);
1254 	root->root_key.objectid = objectid;
1255 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1256 	root->root_key.offset = 0;
1257 
1258 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1259 	if (IS_ERR(leaf)) {
1260 		ret = PTR_ERR(leaf);
1261 		leaf = NULL;
1262 		goto fail;
1263 	}
1264 
1265 	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1266 	btrfs_set_header_bytenr(leaf, leaf->start);
1267 	btrfs_set_header_generation(leaf, trans->transid);
1268 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1269 	btrfs_set_header_owner(leaf, objectid);
1270 	root->node = leaf;
1271 
1272 	write_extent_buffer_fsid(leaf, fs_info->fsid);
1273 	write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1274 	btrfs_mark_buffer_dirty(leaf);
1275 
1276 	root->commit_root = btrfs_root_node(root);
1277 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1278 
1279 	root->root_item.flags = 0;
1280 	root->root_item.byte_limit = 0;
1281 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1282 	btrfs_set_root_generation(&root->root_item, trans->transid);
1283 	btrfs_set_root_level(&root->root_item, 0);
1284 	btrfs_set_root_refs(&root->root_item, 1);
1285 	btrfs_set_root_used(&root->root_item, leaf->len);
1286 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1287 	btrfs_set_root_dirid(&root->root_item, 0);
1288 	uuid_le_gen(&uuid);
1289 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1290 	root->root_item.drop_level = 0;
1291 
1292 	key.objectid = objectid;
1293 	key.type = BTRFS_ROOT_ITEM_KEY;
1294 	key.offset = 0;
1295 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1296 	if (ret)
1297 		goto fail;
1298 
1299 	btrfs_tree_unlock(leaf);
1300 
1301 	return root;
1302 
1303 fail:
1304 	if (leaf) {
1305 		btrfs_tree_unlock(leaf);
1306 		free_extent_buffer(root->commit_root);
1307 		free_extent_buffer(leaf);
1308 	}
1309 	kfree(root);
1310 
1311 	return ERR_PTR(ret);
1312 }
1313 
1314 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1315 					 struct btrfs_fs_info *fs_info)
1316 {
1317 	struct btrfs_root *root;
1318 	struct extent_buffer *leaf;
1319 
1320 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1321 	if (!root)
1322 		return ERR_PTR(-ENOMEM);
1323 
1324 	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1325 
1326 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1327 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1328 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1329 
1330 	/*
1331 	 * DON'T set REF_COWS for log trees
1332 	 *
1333 	 * log trees do not get reference counted because they go away
1334 	 * before a real commit is actually done.  They do store pointers
1335 	 * to file data extents, and those reference counts still get
1336 	 * updated (along with back refs to the log tree).
1337 	 */
1338 
1339 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1340 			NULL, 0, 0, 0);
1341 	if (IS_ERR(leaf)) {
1342 		kfree(root);
1343 		return ERR_CAST(leaf);
1344 	}
1345 
1346 	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1347 	btrfs_set_header_bytenr(leaf, leaf->start);
1348 	btrfs_set_header_generation(leaf, trans->transid);
1349 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1350 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1351 	root->node = leaf;
1352 
1353 	write_extent_buffer_fsid(root->node, fs_info->fsid);
1354 	btrfs_mark_buffer_dirty(root->node);
1355 	btrfs_tree_unlock(root->node);
1356 	return root;
1357 }
1358 
1359 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1360 			     struct btrfs_fs_info *fs_info)
1361 {
1362 	struct btrfs_root *log_root;
1363 
1364 	log_root = alloc_log_tree(trans, fs_info);
1365 	if (IS_ERR(log_root))
1366 		return PTR_ERR(log_root);
1367 	WARN_ON(fs_info->log_root_tree);
1368 	fs_info->log_root_tree = log_root;
1369 	return 0;
1370 }
1371 
1372 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1373 		       struct btrfs_root *root)
1374 {
1375 	struct btrfs_fs_info *fs_info = root->fs_info;
1376 	struct btrfs_root *log_root;
1377 	struct btrfs_inode_item *inode_item;
1378 
1379 	log_root = alloc_log_tree(trans, fs_info);
1380 	if (IS_ERR(log_root))
1381 		return PTR_ERR(log_root);
1382 
1383 	log_root->last_trans = trans->transid;
1384 	log_root->root_key.offset = root->root_key.objectid;
1385 
1386 	inode_item = &log_root->root_item.inode;
1387 	btrfs_set_stack_inode_generation(inode_item, 1);
1388 	btrfs_set_stack_inode_size(inode_item, 3);
1389 	btrfs_set_stack_inode_nlink(inode_item, 1);
1390 	btrfs_set_stack_inode_nbytes(inode_item,
1391 				     fs_info->nodesize);
1392 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1393 
1394 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1395 
1396 	WARN_ON(root->log_root);
1397 	root->log_root = log_root;
1398 	root->log_transid = 0;
1399 	root->log_transid_committed = -1;
1400 	root->last_log_commit = 0;
1401 	return 0;
1402 }
1403 
1404 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1405 					       struct btrfs_key *key)
1406 {
1407 	struct btrfs_root *root;
1408 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1409 	struct btrfs_path *path;
1410 	u64 generation;
1411 	int ret;
1412 
1413 	path = btrfs_alloc_path();
1414 	if (!path)
1415 		return ERR_PTR(-ENOMEM);
1416 
1417 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1418 	if (!root) {
1419 		ret = -ENOMEM;
1420 		goto alloc_fail;
1421 	}
1422 
1423 	__setup_root(root, fs_info, key->objectid);
1424 
1425 	ret = btrfs_find_root(tree_root, key, path,
1426 			      &root->root_item, &root->root_key);
1427 	if (ret) {
1428 		if (ret > 0)
1429 			ret = -ENOENT;
1430 		goto find_fail;
1431 	}
1432 
1433 	generation = btrfs_root_generation(&root->root_item);
1434 	root->node = read_tree_block(fs_info,
1435 				     btrfs_root_bytenr(&root->root_item),
1436 				     generation);
1437 	if (IS_ERR(root->node)) {
1438 		ret = PTR_ERR(root->node);
1439 		goto find_fail;
1440 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1441 		ret = -EIO;
1442 		free_extent_buffer(root->node);
1443 		goto find_fail;
1444 	}
1445 	root->commit_root = btrfs_root_node(root);
1446 out:
1447 	btrfs_free_path(path);
1448 	return root;
1449 
1450 find_fail:
1451 	kfree(root);
1452 alloc_fail:
1453 	root = ERR_PTR(ret);
1454 	goto out;
1455 }
1456 
1457 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1458 				      struct btrfs_key *location)
1459 {
1460 	struct btrfs_root *root;
1461 
1462 	root = btrfs_read_tree_root(tree_root, location);
1463 	if (IS_ERR(root))
1464 		return root;
1465 
1466 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1467 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1468 		btrfs_check_and_init_root_item(&root->root_item);
1469 	}
1470 
1471 	return root;
1472 }
1473 
1474 int btrfs_init_fs_root(struct btrfs_root *root)
1475 {
1476 	int ret;
1477 	struct btrfs_subvolume_writers *writers;
1478 
1479 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1480 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1481 					GFP_NOFS);
1482 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1483 		ret = -ENOMEM;
1484 		goto fail;
1485 	}
1486 
1487 	writers = btrfs_alloc_subvolume_writers();
1488 	if (IS_ERR(writers)) {
1489 		ret = PTR_ERR(writers);
1490 		goto fail;
1491 	}
1492 	root->subv_writers = writers;
1493 
1494 	btrfs_init_free_ino_ctl(root);
1495 	spin_lock_init(&root->ino_cache_lock);
1496 	init_waitqueue_head(&root->ino_cache_wait);
1497 
1498 	ret = get_anon_bdev(&root->anon_dev);
1499 	if (ret)
1500 		goto fail;
1501 
1502 	mutex_lock(&root->objectid_mutex);
1503 	ret = btrfs_find_highest_objectid(root,
1504 					&root->highest_objectid);
1505 	if (ret) {
1506 		mutex_unlock(&root->objectid_mutex);
1507 		goto fail;
1508 	}
1509 
1510 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1511 
1512 	mutex_unlock(&root->objectid_mutex);
1513 
1514 	return 0;
1515 fail:
1516 	/* the caller is responsible to call free_fs_root */
1517 	return ret;
1518 }
1519 
1520 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1521 					u64 root_id)
1522 {
1523 	struct btrfs_root *root;
1524 
1525 	spin_lock(&fs_info->fs_roots_radix_lock);
1526 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1527 				 (unsigned long)root_id);
1528 	spin_unlock(&fs_info->fs_roots_radix_lock);
1529 	return root;
1530 }
1531 
1532 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1533 			 struct btrfs_root *root)
1534 {
1535 	int ret;
1536 
1537 	ret = radix_tree_preload(GFP_NOFS);
1538 	if (ret)
1539 		return ret;
1540 
1541 	spin_lock(&fs_info->fs_roots_radix_lock);
1542 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1543 				(unsigned long)root->root_key.objectid,
1544 				root);
1545 	if (ret == 0)
1546 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1547 	spin_unlock(&fs_info->fs_roots_radix_lock);
1548 	radix_tree_preload_end();
1549 
1550 	return ret;
1551 }
1552 
1553 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1554 				     struct btrfs_key *location,
1555 				     bool check_ref)
1556 {
1557 	struct btrfs_root *root;
1558 	struct btrfs_path *path;
1559 	struct btrfs_key key;
1560 	int ret;
1561 
1562 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1563 		return fs_info->tree_root;
1564 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1565 		return fs_info->extent_root;
1566 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1567 		return fs_info->chunk_root;
1568 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1569 		return fs_info->dev_root;
1570 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1571 		return fs_info->csum_root;
1572 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1573 		return fs_info->quota_root ? fs_info->quota_root :
1574 					     ERR_PTR(-ENOENT);
1575 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1576 		return fs_info->uuid_root ? fs_info->uuid_root :
1577 					    ERR_PTR(-ENOENT);
1578 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1579 		return fs_info->free_space_root ? fs_info->free_space_root :
1580 						  ERR_PTR(-ENOENT);
1581 again:
1582 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1583 	if (root) {
1584 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1585 			return ERR_PTR(-ENOENT);
1586 		return root;
1587 	}
1588 
1589 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1590 	if (IS_ERR(root))
1591 		return root;
1592 
1593 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1594 		ret = -ENOENT;
1595 		goto fail;
1596 	}
1597 
1598 	ret = btrfs_init_fs_root(root);
1599 	if (ret)
1600 		goto fail;
1601 
1602 	path = btrfs_alloc_path();
1603 	if (!path) {
1604 		ret = -ENOMEM;
1605 		goto fail;
1606 	}
1607 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1608 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1609 	key.offset = location->objectid;
1610 
1611 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1612 	btrfs_free_path(path);
1613 	if (ret < 0)
1614 		goto fail;
1615 	if (ret == 0)
1616 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1617 
1618 	ret = btrfs_insert_fs_root(fs_info, root);
1619 	if (ret) {
1620 		if (ret == -EEXIST) {
1621 			free_fs_root(root);
1622 			goto again;
1623 		}
1624 		goto fail;
1625 	}
1626 	return root;
1627 fail:
1628 	free_fs_root(root);
1629 	return ERR_PTR(ret);
1630 }
1631 
1632 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1633 {
1634 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1635 	int ret = 0;
1636 	struct btrfs_device *device;
1637 	struct backing_dev_info *bdi;
1638 
1639 	rcu_read_lock();
1640 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1641 		if (!device->bdev)
1642 			continue;
1643 		bdi = device->bdev->bd_bdi;
1644 		if (bdi_congested(bdi, bdi_bits)) {
1645 			ret = 1;
1646 			break;
1647 		}
1648 	}
1649 	rcu_read_unlock();
1650 	return ret;
1651 }
1652 
1653 /*
1654  * called by the kthread helper functions to finally call the bio end_io
1655  * functions.  This is where read checksum verification actually happens
1656  */
1657 static void end_workqueue_fn(struct btrfs_work *work)
1658 {
1659 	struct bio *bio;
1660 	struct btrfs_end_io_wq *end_io_wq;
1661 
1662 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1663 	bio = end_io_wq->bio;
1664 
1665 	bio->bi_status = end_io_wq->status;
1666 	bio->bi_private = end_io_wq->private;
1667 	bio->bi_end_io = end_io_wq->end_io;
1668 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1669 	bio_endio(bio);
1670 }
1671 
1672 static int cleaner_kthread(void *arg)
1673 {
1674 	struct btrfs_root *root = arg;
1675 	struct btrfs_fs_info *fs_info = root->fs_info;
1676 	int again;
1677 	struct btrfs_trans_handle *trans;
1678 
1679 	do {
1680 		again = 0;
1681 
1682 		/* Make the cleaner go to sleep early. */
1683 		if (btrfs_need_cleaner_sleep(fs_info))
1684 			goto sleep;
1685 
1686 		/*
1687 		 * Do not do anything if we might cause open_ctree() to block
1688 		 * before we have finished mounting the filesystem.
1689 		 */
1690 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1691 			goto sleep;
1692 
1693 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1694 			goto sleep;
1695 
1696 		/*
1697 		 * Avoid the problem that we change the status of the fs
1698 		 * during the above check and trylock.
1699 		 */
1700 		if (btrfs_need_cleaner_sleep(fs_info)) {
1701 			mutex_unlock(&fs_info->cleaner_mutex);
1702 			goto sleep;
1703 		}
1704 
1705 		mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1706 		btrfs_run_delayed_iputs(fs_info);
1707 		mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1708 
1709 		again = btrfs_clean_one_deleted_snapshot(root);
1710 		mutex_unlock(&fs_info->cleaner_mutex);
1711 
1712 		/*
1713 		 * The defragger has dealt with the R/O remount and umount,
1714 		 * needn't do anything special here.
1715 		 */
1716 		btrfs_run_defrag_inodes(fs_info);
1717 
1718 		/*
1719 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1720 		 * with relocation (btrfs_relocate_chunk) and relocation
1721 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1722 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1723 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1724 		 * unused block groups.
1725 		 */
1726 		btrfs_delete_unused_bgs(fs_info);
1727 sleep:
1728 		if (!again) {
1729 			set_current_state(TASK_INTERRUPTIBLE);
1730 			if (!kthread_should_stop())
1731 				schedule();
1732 			__set_current_state(TASK_RUNNING);
1733 		}
1734 	} while (!kthread_should_stop());
1735 
1736 	/*
1737 	 * Transaction kthread is stopped before us and wakes us up.
1738 	 * However we might have started a new transaction and COWed some
1739 	 * tree blocks when deleting unused block groups for example. So
1740 	 * make sure we commit the transaction we started to have a clean
1741 	 * shutdown when evicting the btree inode - if it has dirty pages
1742 	 * when we do the final iput() on it, eviction will trigger a
1743 	 * writeback for it which will fail with null pointer dereferences
1744 	 * since work queues and other resources were already released and
1745 	 * destroyed by the time the iput/eviction/writeback is made.
1746 	 */
1747 	trans = btrfs_attach_transaction(root);
1748 	if (IS_ERR(trans)) {
1749 		if (PTR_ERR(trans) != -ENOENT)
1750 			btrfs_err(fs_info,
1751 				  "cleaner transaction attach returned %ld",
1752 				  PTR_ERR(trans));
1753 	} else {
1754 		int ret;
1755 
1756 		ret = btrfs_commit_transaction(trans);
1757 		if (ret)
1758 			btrfs_err(fs_info,
1759 				  "cleaner open transaction commit returned %d",
1760 				  ret);
1761 	}
1762 
1763 	return 0;
1764 }
1765 
1766 static int transaction_kthread(void *arg)
1767 {
1768 	struct btrfs_root *root = arg;
1769 	struct btrfs_fs_info *fs_info = root->fs_info;
1770 	struct btrfs_trans_handle *trans;
1771 	struct btrfs_transaction *cur;
1772 	u64 transid;
1773 	unsigned long now;
1774 	unsigned long delay;
1775 	bool cannot_commit;
1776 
1777 	do {
1778 		cannot_commit = false;
1779 		delay = HZ * fs_info->commit_interval;
1780 		mutex_lock(&fs_info->transaction_kthread_mutex);
1781 
1782 		spin_lock(&fs_info->trans_lock);
1783 		cur = fs_info->running_transaction;
1784 		if (!cur) {
1785 			spin_unlock(&fs_info->trans_lock);
1786 			goto sleep;
1787 		}
1788 
1789 		now = get_seconds();
1790 		if (cur->state < TRANS_STATE_BLOCKED &&
1791 		    (now < cur->start_time ||
1792 		     now - cur->start_time < fs_info->commit_interval)) {
1793 			spin_unlock(&fs_info->trans_lock);
1794 			delay = HZ * 5;
1795 			goto sleep;
1796 		}
1797 		transid = cur->transid;
1798 		spin_unlock(&fs_info->trans_lock);
1799 
1800 		/* If the file system is aborted, this will always fail. */
1801 		trans = btrfs_attach_transaction(root);
1802 		if (IS_ERR(trans)) {
1803 			if (PTR_ERR(trans) != -ENOENT)
1804 				cannot_commit = true;
1805 			goto sleep;
1806 		}
1807 		if (transid == trans->transid) {
1808 			btrfs_commit_transaction(trans);
1809 		} else {
1810 			btrfs_end_transaction(trans);
1811 		}
1812 sleep:
1813 		wake_up_process(fs_info->cleaner_kthread);
1814 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1815 
1816 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1817 				      &fs_info->fs_state)))
1818 			btrfs_cleanup_transaction(fs_info);
1819 		set_current_state(TASK_INTERRUPTIBLE);
1820 		if (!kthread_should_stop() &&
1821 				(!btrfs_transaction_blocked(fs_info) ||
1822 				 cannot_commit))
1823 			schedule_timeout(delay);
1824 		__set_current_state(TASK_RUNNING);
1825 	} while (!kthread_should_stop());
1826 	return 0;
1827 }
1828 
1829 /*
1830  * this will find the highest generation in the array of
1831  * root backups.  The index of the highest array is returned,
1832  * or -1 if we can't find anything.
1833  *
1834  * We check to make sure the array is valid by comparing the
1835  * generation of the latest  root in the array with the generation
1836  * in the super block.  If they don't match we pitch it.
1837  */
1838 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1839 {
1840 	u64 cur;
1841 	int newest_index = -1;
1842 	struct btrfs_root_backup *root_backup;
1843 	int i;
1844 
1845 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1846 		root_backup = info->super_copy->super_roots + i;
1847 		cur = btrfs_backup_tree_root_gen(root_backup);
1848 		if (cur == newest_gen)
1849 			newest_index = i;
1850 	}
1851 
1852 	/* check to see if we actually wrapped around */
1853 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1854 		root_backup = info->super_copy->super_roots;
1855 		cur = btrfs_backup_tree_root_gen(root_backup);
1856 		if (cur == newest_gen)
1857 			newest_index = 0;
1858 	}
1859 	return newest_index;
1860 }
1861 
1862 
1863 /*
1864  * find the oldest backup so we know where to store new entries
1865  * in the backup array.  This will set the backup_root_index
1866  * field in the fs_info struct
1867  */
1868 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1869 				     u64 newest_gen)
1870 {
1871 	int newest_index = -1;
1872 
1873 	newest_index = find_newest_super_backup(info, newest_gen);
1874 	/* if there was garbage in there, just move along */
1875 	if (newest_index == -1) {
1876 		info->backup_root_index = 0;
1877 	} else {
1878 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1879 	}
1880 }
1881 
1882 /*
1883  * copy all the root pointers into the super backup array.
1884  * this will bump the backup pointer by one when it is
1885  * done
1886  */
1887 static void backup_super_roots(struct btrfs_fs_info *info)
1888 {
1889 	int next_backup;
1890 	struct btrfs_root_backup *root_backup;
1891 	int last_backup;
1892 
1893 	next_backup = info->backup_root_index;
1894 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1895 		BTRFS_NUM_BACKUP_ROOTS;
1896 
1897 	/*
1898 	 * just overwrite the last backup if we're at the same generation
1899 	 * this happens only at umount
1900 	 */
1901 	root_backup = info->super_for_commit->super_roots + last_backup;
1902 	if (btrfs_backup_tree_root_gen(root_backup) ==
1903 	    btrfs_header_generation(info->tree_root->node))
1904 		next_backup = last_backup;
1905 
1906 	root_backup = info->super_for_commit->super_roots + next_backup;
1907 
1908 	/*
1909 	 * make sure all of our padding and empty slots get zero filled
1910 	 * regardless of which ones we use today
1911 	 */
1912 	memset(root_backup, 0, sizeof(*root_backup));
1913 
1914 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1915 
1916 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1917 	btrfs_set_backup_tree_root_gen(root_backup,
1918 			       btrfs_header_generation(info->tree_root->node));
1919 
1920 	btrfs_set_backup_tree_root_level(root_backup,
1921 			       btrfs_header_level(info->tree_root->node));
1922 
1923 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1924 	btrfs_set_backup_chunk_root_gen(root_backup,
1925 			       btrfs_header_generation(info->chunk_root->node));
1926 	btrfs_set_backup_chunk_root_level(root_backup,
1927 			       btrfs_header_level(info->chunk_root->node));
1928 
1929 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1930 	btrfs_set_backup_extent_root_gen(root_backup,
1931 			       btrfs_header_generation(info->extent_root->node));
1932 	btrfs_set_backup_extent_root_level(root_backup,
1933 			       btrfs_header_level(info->extent_root->node));
1934 
1935 	/*
1936 	 * we might commit during log recovery, which happens before we set
1937 	 * the fs_root.  Make sure it is valid before we fill it in.
1938 	 */
1939 	if (info->fs_root && info->fs_root->node) {
1940 		btrfs_set_backup_fs_root(root_backup,
1941 					 info->fs_root->node->start);
1942 		btrfs_set_backup_fs_root_gen(root_backup,
1943 			       btrfs_header_generation(info->fs_root->node));
1944 		btrfs_set_backup_fs_root_level(root_backup,
1945 			       btrfs_header_level(info->fs_root->node));
1946 	}
1947 
1948 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1949 	btrfs_set_backup_dev_root_gen(root_backup,
1950 			       btrfs_header_generation(info->dev_root->node));
1951 	btrfs_set_backup_dev_root_level(root_backup,
1952 				       btrfs_header_level(info->dev_root->node));
1953 
1954 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1955 	btrfs_set_backup_csum_root_gen(root_backup,
1956 			       btrfs_header_generation(info->csum_root->node));
1957 	btrfs_set_backup_csum_root_level(root_backup,
1958 			       btrfs_header_level(info->csum_root->node));
1959 
1960 	btrfs_set_backup_total_bytes(root_backup,
1961 			     btrfs_super_total_bytes(info->super_copy));
1962 	btrfs_set_backup_bytes_used(root_backup,
1963 			     btrfs_super_bytes_used(info->super_copy));
1964 	btrfs_set_backup_num_devices(root_backup,
1965 			     btrfs_super_num_devices(info->super_copy));
1966 
1967 	/*
1968 	 * if we don't copy this out to the super_copy, it won't get remembered
1969 	 * for the next commit
1970 	 */
1971 	memcpy(&info->super_copy->super_roots,
1972 	       &info->super_for_commit->super_roots,
1973 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1974 }
1975 
1976 /*
1977  * this copies info out of the root backup array and back into
1978  * the in-memory super block.  It is meant to help iterate through
1979  * the array, so you send it the number of backups you've already
1980  * tried and the last backup index you used.
1981  *
1982  * this returns -1 when it has tried all the backups
1983  */
1984 static noinline int next_root_backup(struct btrfs_fs_info *info,
1985 				     struct btrfs_super_block *super,
1986 				     int *num_backups_tried, int *backup_index)
1987 {
1988 	struct btrfs_root_backup *root_backup;
1989 	int newest = *backup_index;
1990 
1991 	if (*num_backups_tried == 0) {
1992 		u64 gen = btrfs_super_generation(super);
1993 
1994 		newest = find_newest_super_backup(info, gen);
1995 		if (newest == -1)
1996 			return -1;
1997 
1998 		*backup_index = newest;
1999 		*num_backups_tried = 1;
2000 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2001 		/* we've tried all the backups, all done */
2002 		return -1;
2003 	} else {
2004 		/* jump to the next oldest backup */
2005 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2006 			BTRFS_NUM_BACKUP_ROOTS;
2007 		*backup_index = newest;
2008 		*num_backups_tried += 1;
2009 	}
2010 	root_backup = super->super_roots + newest;
2011 
2012 	btrfs_set_super_generation(super,
2013 				   btrfs_backup_tree_root_gen(root_backup));
2014 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2015 	btrfs_set_super_root_level(super,
2016 				   btrfs_backup_tree_root_level(root_backup));
2017 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2018 
2019 	/*
2020 	 * fixme: the total bytes and num_devices need to match or we should
2021 	 * need a fsck
2022 	 */
2023 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2024 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2025 	return 0;
2026 }
2027 
2028 /* helper to cleanup workers */
2029 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2030 {
2031 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2032 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2033 	btrfs_destroy_workqueue(fs_info->workers);
2034 	btrfs_destroy_workqueue(fs_info->endio_workers);
2035 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2036 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2037 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2038 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2039 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2040 	btrfs_destroy_workqueue(fs_info->submit_workers);
2041 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2042 	btrfs_destroy_workqueue(fs_info->caching_workers);
2043 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2044 	btrfs_destroy_workqueue(fs_info->flush_workers);
2045 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2046 	btrfs_destroy_workqueue(fs_info->extent_workers);
2047 	/*
2048 	 * Now that all other work queues are destroyed, we can safely destroy
2049 	 * the queues used for metadata I/O, since tasks from those other work
2050 	 * queues can do metadata I/O operations.
2051 	 */
2052 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2053 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2054 }
2055 
2056 static void free_root_extent_buffers(struct btrfs_root *root)
2057 {
2058 	if (root) {
2059 		free_extent_buffer(root->node);
2060 		free_extent_buffer(root->commit_root);
2061 		root->node = NULL;
2062 		root->commit_root = NULL;
2063 	}
2064 }
2065 
2066 /* helper to cleanup tree roots */
2067 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2068 {
2069 	free_root_extent_buffers(info->tree_root);
2070 
2071 	free_root_extent_buffers(info->dev_root);
2072 	free_root_extent_buffers(info->extent_root);
2073 	free_root_extent_buffers(info->csum_root);
2074 	free_root_extent_buffers(info->quota_root);
2075 	free_root_extent_buffers(info->uuid_root);
2076 	if (chunk_root)
2077 		free_root_extent_buffers(info->chunk_root);
2078 	free_root_extent_buffers(info->free_space_root);
2079 }
2080 
2081 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2082 {
2083 	int ret;
2084 	struct btrfs_root *gang[8];
2085 	int i;
2086 
2087 	while (!list_empty(&fs_info->dead_roots)) {
2088 		gang[0] = list_entry(fs_info->dead_roots.next,
2089 				     struct btrfs_root, root_list);
2090 		list_del(&gang[0]->root_list);
2091 
2092 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2093 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2094 		} else {
2095 			free_extent_buffer(gang[0]->node);
2096 			free_extent_buffer(gang[0]->commit_root);
2097 			btrfs_put_fs_root(gang[0]);
2098 		}
2099 	}
2100 
2101 	while (1) {
2102 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2103 					     (void **)gang, 0,
2104 					     ARRAY_SIZE(gang));
2105 		if (!ret)
2106 			break;
2107 		for (i = 0; i < ret; i++)
2108 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2109 	}
2110 
2111 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2112 		btrfs_free_log_root_tree(NULL, fs_info);
2113 		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2114 	}
2115 }
2116 
2117 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2118 {
2119 	mutex_init(&fs_info->scrub_lock);
2120 	atomic_set(&fs_info->scrubs_running, 0);
2121 	atomic_set(&fs_info->scrub_pause_req, 0);
2122 	atomic_set(&fs_info->scrubs_paused, 0);
2123 	atomic_set(&fs_info->scrub_cancel_req, 0);
2124 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2125 	fs_info->scrub_workers_refcnt = 0;
2126 }
2127 
2128 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2129 {
2130 	spin_lock_init(&fs_info->balance_lock);
2131 	mutex_init(&fs_info->balance_mutex);
2132 	atomic_set(&fs_info->balance_running, 0);
2133 	atomic_set(&fs_info->balance_pause_req, 0);
2134 	atomic_set(&fs_info->balance_cancel_req, 0);
2135 	fs_info->balance_ctl = NULL;
2136 	init_waitqueue_head(&fs_info->balance_wait_q);
2137 }
2138 
2139 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2140 {
2141 	struct inode *inode = fs_info->btree_inode;
2142 
2143 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2144 	set_nlink(inode, 1);
2145 	/*
2146 	 * we set the i_size on the btree inode to the max possible int.
2147 	 * the real end of the address space is determined by all of
2148 	 * the devices in the system
2149 	 */
2150 	inode->i_size = OFFSET_MAX;
2151 	inode->i_mapping->a_ops = &btree_aops;
2152 
2153 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2154 	extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2155 	BTRFS_I(inode)->io_tree.track_uptodate = 0;
2156 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2157 
2158 	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2159 
2160 	BTRFS_I(inode)->root = fs_info->tree_root;
2161 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2162 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2163 	btrfs_insert_inode_hash(inode);
2164 }
2165 
2166 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2167 {
2168 	fs_info->dev_replace.lock_owner = 0;
2169 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2170 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2171 	rwlock_init(&fs_info->dev_replace.lock);
2172 	atomic_set(&fs_info->dev_replace.read_locks, 0);
2173 	atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2174 	init_waitqueue_head(&fs_info->replace_wait);
2175 	init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2176 }
2177 
2178 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2179 {
2180 	spin_lock_init(&fs_info->qgroup_lock);
2181 	mutex_init(&fs_info->qgroup_ioctl_lock);
2182 	fs_info->qgroup_tree = RB_ROOT;
2183 	fs_info->qgroup_op_tree = RB_ROOT;
2184 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2185 	fs_info->qgroup_seq = 1;
2186 	fs_info->qgroup_ulist = NULL;
2187 	fs_info->qgroup_rescan_running = false;
2188 	mutex_init(&fs_info->qgroup_rescan_lock);
2189 }
2190 
2191 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2192 		struct btrfs_fs_devices *fs_devices)
2193 {
2194 	int max_active = fs_info->thread_pool_size;
2195 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2196 
2197 	fs_info->workers =
2198 		btrfs_alloc_workqueue(fs_info, "worker",
2199 				      flags | WQ_HIGHPRI, max_active, 16);
2200 
2201 	fs_info->delalloc_workers =
2202 		btrfs_alloc_workqueue(fs_info, "delalloc",
2203 				      flags, max_active, 2);
2204 
2205 	fs_info->flush_workers =
2206 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2207 				      flags, max_active, 0);
2208 
2209 	fs_info->caching_workers =
2210 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2211 
2212 	/*
2213 	 * a higher idle thresh on the submit workers makes it much more
2214 	 * likely that bios will be send down in a sane order to the
2215 	 * devices
2216 	 */
2217 	fs_info->submit_workers =
2218 		btrfs_alloc_workqueue(fs_info, "submit", flags,
2219 				      min_t(u64, fs_devices->num_devices,
2220 					    max_active), 64);
2221 
2222 	fs_info->fixup_workers =
2223 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2224 
2225 	/*
2226 	 * endios are largely parallel and should have a very
2227 	 * low idle thresh
2228 	 */
2229 	fs_info->endio_workers =
2230 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2231 	fs_info->endio_meta_workers =
2232 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2233 				      max_active, 4);
2234 	fs_info->endio_meta_write_workers =
2235 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2236 				      max_active, 2);
2237 	fs_info->endio_raid56_workers =
2238 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2239 				      max_active, 4);
2240 	fs_info->endio_repair_workers =
2241 		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2242 	fs_info->rmw_workers =
2243 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2244 	fs_info->endio_write_workers =
2245 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2246 				      max_active, 2);
2247 	fs_info->endio_freespace_worker =
2248 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2249 				      max_active, 0);
2250 	fs_info->delayed_workers =
2251 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2252 				      max_active, 0);
2253 	fs_info->readahead_workers =
2254 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2255 				      max_active, 2);
2256 	fs_info->qgroup_rescan_workers =
2257 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2258 	fs_info->extent_workers =
2259 		btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2260 				      min_t(u64, fs_devices->num_devices,
2261 					    max_active), 8);
2262 
2263 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2264 	      fs_info->submit_workers && fs_info->flush_workers &&
2265 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2266 	      fs_info->endio_meta_write_workers &&
2267 	      fs_info->endio_repair_workers &&
2268 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2269 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2270 	      fs_info->caching_workers && fs_info->readahead_workers &&
2271 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2272 	      fs_info->extent_workers &&
2273 	      fs_info->qgroup_rescan_workers)) {
2274 		return -ENOMEM;
2275 	}
2276 
2277 	return 0;
2278 }
2279 
2280 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2281 			    struct btrfs_fs_devices *fs_devices)
2282 {
2283 	int ret;
2284 	struct btrfs_root *log_tree_root;
2285 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2286 	u64 bytenr = btrfs_super_log_root(disk_super);
2287 
2288 	if (fs_devices->rw_devices == 0) {
2289 		btrfs_warn(fs_info, "log replay required on RO media");
2290 		return -EIO;
2291 	}
2292 
2293 	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2294 	if (!log_tree_root)
2295 		return -ENOMEM;
2296 
2297 	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2298 
2299 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2300 					      fs_info->generation + 1);
2301 	if (IS_ERR(log_tree_root->node)) {
2302 		btrfs_warn(fs_info, "failed to read log tree");
2303 		ret = PTR_ERR(log_tree_root->node);
2304 		kfree(log_tree_root);
2305 		return ret;
2306 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2307 		btrfs_err(fs_info, "failed to read log tree");
2308 		free_extent_buffer(log_tree_root->node);
2309 		kfree(log_tree_root);
2310 		return -EIO;
2311 	}
2312 	/* returns with log_tree_root freed on success */
2313 	ret = btrfs_recover_log_trees(log_tree_root);
2314 	if (ret) {
2315 		btrfs_handle_fs_error(fs_info, ret,
2316 				      "Failed to recover log tree");
2317 		free_extent_buffer(log_tree_root->node);
2318 		kfree(log_tree_root);
2319 		return ret;
2320 	}
2321 
2322 	if (sb_rdonly(fs_info->sb)) {
2323 		ret = btrfs_commit_super(fs_info);
2324 		if (ret)
2325 			return ret;
2326 	}
2327 
2328 	return 0;
2329 }
2330 
2331 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2332 {
2333 	struct btrfs_root *tree_root = fs_info->tree_root;
2334 	struct btrfs_root *root;
2335 	struct btrfs_key location;
2336 	int ret;
2337 
2338 	BUG_ON(!fs_info->tree_root);
2339 
2340 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2341 	location.type = BTRFS_ROOT_ITEM_KEY;
2342 	location.offset = 0;
2343 
2344 	root = btrfs_read_tree_root(tree_root, &location);
2345 	if (IS_ERR(root))
2346 		return PTR_ERR(root);
2347 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2348 	fs_info->extent_root = root;
2349 
2350 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2351 	root = btrfs_read_tree_root(tree_root, &location);
2352 	if (IS_ERR(root))
2353 		return PTR_ERR(root);
2354 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2355 	fs_info->dev_root = root;
2356 	btrfs_init_devices_late(fs_info);
2357 
2358 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2359 	root = btrfs_read_tree_root(tree_root, &location);
2360 	if (IS_ERR(root))
2361 		return PTR_ERR(root);
2362 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2363 	fs_info->csum_root = root;
2364 
2365 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2366 	root = btrfs_read_tree_root(tree_root, &location);
2367 	if (!IS_ERR(root)) {
2368 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2369 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2370 		fs_info->quota_root = root;
2371 	}
2372 
2373 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2374 	root = btrfs_read_tree_root(tree_root, &location);
2375 	if (IS_ERR(root)) {
2376 		ret = PTR_ERR(root);
2377 		if (ret != -ENOENT)
2378 			return ret;
2379 	} else {
2380 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2381 		fs_info->uuid_root = root;
2382 	}
2383 
2384 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2385 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2386 		root = btrfs_read_tree_root(tree_root, &location);
2387 		if (IS_ERR(root))
2388 			return PTR_ERR(root);
2389 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2390 		fs_info->free_space_root = root;
2391 	}
2392 
2393 	return 0;
2394 }
2395 
2396 int open_ctree(struct super_block *sb,
2397 	       struct btrfs_fs_devices *fs_devices,
2398 	       char *options)
2399 {
2400 	u32 sectorsize;
2401 	u32 nodesize;
2402 	u32 stripesize;
2403 	u64 generation;
2404 	u64 features;
2405 	struct btrfs_key location;
2406 	struct buffer_head *bh;
2407 	struct btrfs_super_block *disk_super;
2408 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2409 	struct btrfs_root *tree_root;
2410 	struct btrfs_root *chunk_root;
2411 	int ret;
2412 	int err = -EINVAL;
2413 	int num_backups_tried = 0;
2414 	int backup_index = 0;
2415 	int max_active;
2416 	int clear_free_space_tree = 0;
2417 
2418 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2419 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2420 	if (!tree_root || !chunk_root) {
2421 		err = -ENOMEM;
2422 		goto fail;
2423 	}
2424 
2425 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2426 	if (ret) {
2427 		err = ret;
2428 		goto fail;
2429 	}
2430 
2431 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2432 	if (ret) {
2433 		err = ret;
2434 		goto fail_srcu;
2435 	}
2436 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2437 					(1 + ilog2(nr_cpu_ids));
2438 
2439 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2440 	if (ret) {
2441 		err = ret;
2442 		goto fail_dirty_metadata_bytes;
2443 	}
2444 
2445 	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2446 	if (ret) {
2447 		err = ret;
2448 		goto fail_delalloc_bytes;
2449 	}
2450 
2451 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2452 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2453 	INIT_LIST_HEAD(&fs_info->trans_list);
2454 	INIT_LIST_HEAD(&fs_info->dead_roots);
2455 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2456 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2457 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2458 	spin_lock_init(&fs_info->delalloc_root_lock);
2459 	spin_lock_init(&fs_info->trans_lock);
2460 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2461 	spin_lock_init(&fs_info->delayed_iput_lock);
2462 	spin_lock_init(&fs_info->defrag_inodes_lock);
2463 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2464 	spin_lock_init(&fs_info->super_lock);
2465 	spin_lock_init(&fs_info->qgroup_op_lock);
2466 	spin_lock_init(&fs_info->buffer_lock);
2467 	spin_lock_init(&fs_info->unused_bgs_lock);
2468 	rwlock_init(&fs_info->tree_mod_log_lock);
2469 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2470 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2471 	mutex_init(&fs_info->reloc_mutex);
2472 	mutex_init(&fs_info->delalloc_root_mutex);
2473 	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2474 	seqlock_init(&fs_info->profiles_lock);
2475 
2476 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2477 	INIT_LIST_HEAD(&fs_info->space_info);
2478 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2479 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2480 	btrfs_mapping_init(&fs_info->mapping_tree);
2481 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2482 			     BTRFS_BLOCK_RSV_GLOBAL);
2483 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2484 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2485 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2486 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2487 			     BTRFS_BLOCK_RSV_DELOPS);
2488 	atomic_set(&fs_info->async_delalloc_pages, 0);
2489 	atomic_set(&fs_info->defrag_running, 0);
2490 	atomic_set(&fs_info->qgroup_op_seq, 0);
2491 	atomic_set(&fs_info->reada_works_cnt, 0);
2492 	atomic64_set(&fs_info->tree_mod_seq, 0);
2493 	fs_info->sb = sb;
2494 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2495 	fs_info->metadata_ratio = 0;
2496 	fs_info->defrag_inodes = RB_ROOT;
2497 	atomic64_set(&fs_info->free_chunk_space, 0);
2498 	fs_info->tree_mod_log = RB_ROOT;
2499 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2500 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2501 	/* readahead state */
2502 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2503 	spin_lock_init(&fs_info->reada_lock);
2504 	btrfs_init_ref_verify(fs_info);
2505 
2506 	fs_info->thread_pool_size = min_t(unsigned long,
2507 					  num_online_cpus() + 2, 8);
2508 
2509 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2510 	spin_lock_init(&fs_info->ordered_root_lock);
2511 
2512 	fs_info->btree_inode = new_inode(sb);
2513 	if (!fs_info->btree_inode) {
2514 		err = -ENOMEM;
2515 		goto fail_bio_counter;
2516 	}
2517 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2518 
2519 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2520 					GFP_KERNEL);
2521 	if (!fs_info->delayed_root) {
2522 		err = -ENOMEM;
2523 		goto fail_iput;
2524 	}
2525 	btrfs_init_delayed_root(fs_info->delayed_root);
2526 
2527 	btrfs_init_scrub(fs_info);
2528 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2529 	fs_info->check_integrity_print_mask = 0;
2530 #endif
2531 	btrfs_init_balance(fs_info);
2532 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2533 
2534 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2535 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2536 
2537 	btrfs_init_btree_inode(fs_info);
2538 
2539 	spin_lock_init(&fs_info->block_group_cache_lock);
2540 	fs_info->block_group_cache_tree = RB_ROOT;
2541 	fs_info->first_logical_byte = (u64)-1;
2542 
2543 	extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2544 	extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2545 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2546 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2547 
2548 	mutex_init(&fs_info->ordered_operations_mutex);
2549 	mutex_init(&fs_info->tree_log_mutex);
2550 	mutex_init(&fs_info->chunk_mutex);
2551 	mutex_init(&fs_info->transaction_kthread_mutex);
2552 	mutex_init(&fs_info->cleaner_mutex);
2553 	mutex_init(&fs_info->volume_mutex);
2554 	mutex_init(&fs_info->ro_block_group_mutex);
2555 	init_rwsem(&fs_info->commit_root_sem);
2556 	init_rwsem(&fs_info->cleanup_work_sem);
2557 	init_rwsem(&fs_info->subvol_sem);
2558 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2559 
2560 	btrfs_init_dev_replace_locks(fs_info);
2561 	btrfs_init_qgroup(fs_info);
2562 
2563 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2564 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2565 
2566 	init_waitqueue_head(&fs_info->transaction_throttle);
2567 	init_waitqueue_head(&fs_info->transaction_wait);
2568 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2569 	init_waitqueue_head(&fs_info->async_submit_wait);
2570 
2571 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2572 
2573 	/* Usable values until the real ones are cached from the superblock */
2574 	fs_info->nodesize = 4096;
2575 	fs_info->sectorsize = 4096;
2576 	fs_info->stripesize = 4096;
2577 
2578 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2579 	if (ret) {
2580 		err = ret;
2581 		goto fail_alloc;
2582 	}
2583 
2584 	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2585 
2586 	invalidate_bdev(fs_devices->latest_bdev);
2587 
2588 	/*
2589 	 * Read super block and check the signature bytes only
2590 	 */
2591 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2592 	if (IS_ERR(bh)) {
2593 		err = PTR_ERR(bh);
2594 		goto fail_alloc;
2595 	}
2596 
2597 	/*
2598 	 * We want to check superblock checksum, the type is stored inside.
2599 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2600 	 */
2601 	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2602 		btrfs_err(fs_info, "superblock checksum mismatch");
2603 		err = -EINVAL;
2604 		brelse(bh);
2605 		goto fail_alloc;
2606 	}
2607 
2608 	/*
2609 	 * super_copy is zeroed at allocation time and we never touch the
2610 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2611 	 * the whole block of INFO_SIZE
2612 	 */
2613 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2614 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2615 	       sizeof(*fs_info->super_for_commit));
2616 	brelse(bh);
2617 
2618 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2619 
2620 	ret = btrfs_check_super_valid(fs_info);
2621 	if (ret) {
2622 		btrfs_err(fs_info, "superblock contains fatal errors");
2623 		err = -EINVAL;
2624 		goto fail_alloc;
2625 	}
2626 
2627 	disk_super = fs_info->super_copy;
2628 	if (!btrfs_super_root(disk_super))
2629 		goto fail_alloc;
2630 
2631 	/* check FS state, whether FS is broken. */
2632 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2633 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2634 
2635 	/*
2636 	 * run through our array of backup supers and setup
2637 	 * our ring pointer to the oldest one
2638 	 */
2639 	generation = btrfs_super_generation(disk_super);
2640 	find_oldest_super_backup(fs_info, generation);
2641 
2642 	/*
2643 	 * In the long term, we'll store the compression type in the super
2644 	 * block, and it'll be used for per file compression control.
2645 	 */
2646 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2647 
2648 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2649 	if (ret) {
2650 		err = ret;
2651 		goto fail_alloc;
2652 	}
2653 
2654 	features = btrfs_super_incompat_flags(disk_super) &
2655 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2656 	if (features) {
2657 		btrfs_err(fs_info,
2658 		    "cannot mount because of unsupported optional features (%llx)",
2659 		    features);
2660 		err = -EINVAL;
2661 		goto fail_alloc;
2662 	}
2663 
2664 	features = btrfs_super_incompat_flags(disk_super);
2665 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2666 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2667 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2668 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2669 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2670 
2671 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2672 		btrfs_info(fs_info, "has skinny extents");
2673 
2674 	/*
2675 	 * flag our filesystem as having big metadata blocks if
2676 	 * they are bigger than the page size
2677 	 */
2678 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2679 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2680 			btrfs_info(fs_info,
2681 				"flagging fs with big metadata feature");
2682 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2683 	}
2684 
2685 	nodesize = btrfs_super_nodesize(disk_super);
2686 	sectorsize = btrfs_super_sectorsize(disk_super);
2687 	stripesize = sectorsize;
2688 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2689 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2690 
2691 	/* Cache block sizes */
2692 	fs_info->nodesize = nodesize;
2693 	fs_info->sectorsize = sectorsize;
2694 	fs_info->stripesize = stripesize;
2695 
2696 	/*
2697 	 * mixed block groups end up with duplicate but slightly offset
2698 	 * extent buffers for the same range.  It leads to corruptions
2699 	 */
2700 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2701 	    (sectorsize != nodesize)) {
2702 		btrfs_err(fs_info,
2703 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2704 			nodesize, sectorsize);
2705 		goto fail_alloc;
2706 	}
2707 
2708 	/*
2709 	 * Needn't use the lock because there is no other task which will
2710 	 * update the flag.
2711 	 */
2712 	btrfs_set_super_incompat_flags(disk_super, features);
2713 
2714 	features = btrfs_super_compat_ro_flags(disk_super) &
2715 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2716 	if (!sb_rdonly(sb) && features) {
2717 		btrfs_err(fs_info,
2718 	"cannot mount read-write because of unsupported optional features (%llx)",
2719 		       features);
2720 		err = -EINVAL;
2721 		goto fail_alloc;
2722 	}
2723 
2724 	max_active = fs_info->thread_pool_size;
2725 
2726 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2727 	if (ret) {
2728 		err = ret;
2729 		goto fail_sb_buffer;
2730 	}
2731 
2732 	sb->s_bdi->congested_fn = btrfs_congested_fn;
2733 	sb->s_bdi->congested_data = fs_info;
2734 	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2735 	sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2736 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2737 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2738 
2739 	sb->s_blocksize = sectorsize;
2740 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2741 	memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2742 
2743 	mutex_lock(&fs_info->chunk_mutex);
2744 	ret = btrfs_read_sys_array(fs_info);
2745 	mutex_unlock(&fs_info->chunk_mutex);
2746 	if (ret) {
2747 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2748 		goto fail_sb_buffer;
2749 	}
2750 
2751 	generation = btrfs_super_chunk_root_generation(disk_super);
2752 
2753 	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2754 
2755 	chunk_root->node = read_tree_block(fs_info,
2756 					   btrfs_super_chunk_root(disk_super),
2757 					   generation);
2758 	if (IS_ERR(chunk_root->node) ||
2759 	    !extent_buffer_uptodate(chunk_root->node)) {
2760 		btrfs_err(fs_info, "failed to read chunk root");
2761 		if (!IS_ERR(chunk_root->node))
2762 			free_extent_buffer(chunk_root->node);
2763 		chunk_root->node = NULL;
2764 		goto fail_tree_roots;
2765 	}
2766 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2767 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2768 
2769 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2770 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2771 
2772 	ret = btrfs_read_chunk_tree(fs_info);
2773 	if (ret) {
2774 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2775 		goto fail_tree_roots;
2776 	}
2777 
2778 	/*
2779 	 * keep the device that is marked to be the target device for the
2780 	 * dev_replace procedure
2781 	 */
2782 	btrfs_close_extra_devices(fs_devices, 0);
2783 
2784 	if (!fs_devices->latest_bdev) {
2785 		btrfs_err(fs_info, "failed to read devices");
2786 		goto fail_tree_roots;
2787 	}
2788 
2789 retry_root_backup:
2790 	generation = btrfs_super_generation(disk_super);
2791 
2792 	tree_root->node = read_tree_block(fs_info,
2793 					  btrfs_super_root(disk_super),
2794 					  generation);
2795 	if (IS_ERR(tree_root->node) ||
2796 	    !extent_buffer_uptodate(tree_root->node)) {
2797 		btrfs_warn(fs_info, "failed to read tree root");
2798 		if (!IS_ERR(tree_root->node))
2799 			free_extent_buffer(tree_root->node);
2800 		tree_root->node = NULL;
2801 		goto recovery_tree_root;
2802 	}
2803 
2804 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2805 	tree_root->commit_root = btrfs_root_node(tree_root);
2806 	btrfs_set_root_refs(&tree_root->root_item, 1);
2807 
2808 	mutex_lock(&tree_root->objectid_mutex);
2809 	ret = btrfs_find_highest_objectid(tree_root,
2810 					&tree_root->highest_objectid);
2811 	if (ret) {
2812 		mutex_unlock(&tree_root->objectid_mutex);
2813 		goto recovery_tree_root;
2814 	}
2815 
2816 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2817 
2818 	mutex_unlock(&tree_root->objectid_mutex);
2819 
2820 	ret = btrfs_read_roots(fs_info);
2821 	if (ret)
2822 		goto recovery_tree_root;
2823 
2824 	fs_info->generation = generation;
2825 	fs_info->last_trans_committed = generation;
2826 
2827 	ret = btrfs_recover_balance(fs_info);
2828 	if (ret) {
2829 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
2830 		goto fail_block_groups;
2831 	}
2832 
2833 	ret = btrfs_init_dev_stats(fs_info);
2834 	if (ret) {
2835 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2836 		goto fail_block_groups;
2837 	}
2838 
2839 	ret = btrfs_init_dev_replace(fs_info);
2840 	if (ret) {
2841 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2842 		goto fail_block_groups;
2843 	}
2844 
2845 	btrfs_close_extra_devices(fs_devices, 1);
2846 
2847 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2848 	if (ret) {
2849 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2850 				ret);
2851 		goto fail_block_groups;
2852 	}
2853 
2854 	ret = btrfs_sysfs_add_device(fs_devices);
2855 	if (ret) {
2856 		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2857 				ret);
2858 		goto fail_fsdev_sysfs;
2859 	}
2860 
2861 	ret = btrfs_sysfs_add_mounted(fs_info);
2862 	if (ret) {
2863 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2864 		goto fail_fsdev_sysfs;
2865 	}
2866 
2867 	ret = btrfs_init_space_info(fs_info);
2868 	if (ret) {
2869 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2870 		goto fail_sysfs;
2871 	}
2872 
2873 	ret = btrfs_read_block_groups(fs_info);
2874 	if (ret) {
2875 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
2876 		goto fail_sysfs;
2877 	}
2878 
2879 	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info)) {
2880 		btrfs_warn(fs_info,
2881 		"writeable mount is not allowed due to too many missing devices");
2882 		goto fail_sysfs;
2883 	}
2884 
2885 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2886 					       "btrfs-cleaner");
2887 	if (IS_ERR(fs_info->cleaner_kthread))
2888 		goto fail_sysfs;
2889 
2890 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2891 						   tree_root,
2892 						   "btrfs-transaction");
2893 	if (IS_ERR(fs_info->transaction_kthread))
2894 		goto fail_cleaner;
2895 
2896 	if (!btrfs_test_opt(fs_info, NOSSD) &&
2897 	    !fs_info->fs_devices->rotating) {
2898 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
2899 	}
2900 
2901 	/*
2902 	 * Mount does not set all options immediately, we can do it now and do
2903 	 * not have to wait for transaction commit
2904 	 */
2905 	btrfs_apply_pending_changes(fs_info);
2906 
2907 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2908 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2909 		ret = btrfsic_mount(fs_info, fs_devices,
2910 				    btrfs_test_opt(fs_info,
2911 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2912 				    1 : 0,
2913 				    fs_info->check_integrity_print_mask);
2914 		if (ret)
2915 			btrfs_warn(fs_info,
2916 				"failed to initialize integrity check module: %d",
2917 				ret);
2918 	}
2919 #endif
2920 	ret = btrfs_read_qgroup_config(fs_info);
2921 	if (ret)
2922 		goto fail_trans_kthread;
2923 
2924 	if (btrfs_build_ref_tree(fs_info))
2925 		btrfs_err(fs_info, "couldn't build ref tree");
2926 
2927 	/* do not make disk changes in broken FS or nologreplay is given */
2928 	if (btrfs_super_log_root(disk_super) != 0 &&
2929 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
2930 		ret = btrfs_replay_log(fs_info, fs_devices);
2931 		if (ret) {
2932 			err = ret;
2933 			goto fail_qgroup;
2934 		}
2935 	}
2936 
2937 	ret = btrfs_find_orphan_roots(fs_info);
2938 	if (ret)
2939 		goto fail_qgroup;
2940 
2941 	if (!sb_rdonly(sb)) {
2942 		ret = btrfs_cleanup_fs_roots(fs_info);
2943 		if (ret)
2944 			goto fail_qgroup;
2945 
2946 		mutex_lock(&fs_info->cleaner_mutex);
2947 		ret = btrfs_recover_relocation(tree_root);
2948 		mutex_unlock(&fs_info->cleaner_mutex);
2949 		if (ret < 0) {
2950 			btrfs_warn(fs_info, "failed to recover relocation: %d",
2951 					ret);
2952 			err = -EINVAL;
2953 			goto fail_qgroup;
2954 		}
2955 	}
2956 
2957 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2958 	location.type = BTRFS_ROOT_ITEM_KEY;
2959 	location.offset = 0;
2960 
2961 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2962 	if (IS_ERR(fs_info->fs_root)) {
2963 		err = PTR_ERR(fs_info->fs_root);
2964 		goto fail_qgroup;
2965 	}
2966 
2967 	if (sb_rdonly(sb))
2968 		return 0;
2969 
2970 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2971 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2972 		clear_free_space_tree = 1;
2973 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2974 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2975 		btrfs_warn(fs_info, "free space tree is invalid");
2976 		clear_free_space_tree = 1;
2977 	}
2978 
2979 	if (clear_free_space_tree) {
2980 		btrfs_info(fs_info, "clearing free space tree");
2981 		ret = btrfs_clear_free_space_tree(fs_info);
2982 		if (ret) {
2983 			btrfs_warn(fs_info,
2984 				   "failed to clear free space tree: %d", ret);
2985 			close_ctree(fs_info);
2986 			return ret;
2987 		}
2988 	}
2989 
2990 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
2991 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2992 		btrfs_info(fs_info, "creating free space tree");
2993 		ret = btrfs_create_free_space_tree(fs_info);
2994 		if (ret) {
2995 			btrfs_warn(fs_info,
2996 				"failed to create free space tree: %d", ret);
2997 			close_ctree(fs_info);
2998 			return ret;
2999 		}
3000 	}
3001 
3002 	down_read(&fs_info->cleanup_work_sem);
3003 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3004 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3005 		up_read(&fs_info->cleanup_work_sem);
3006 		close_ctree(fs_info);
3007 		return ret;
3008 	}
3009 	up_read(&fs_info->cleanup_work_sem);
3010 
3011 	ret = btrfs_resume_balance_async(fs_info);
3012 	if (ret) {
3013 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3014 		close_ctree(fs_info);
3015 		return ret;
3016 	}
3017 
3018 	ret = btrfs_resume_dev_replace_async(fs_info);
3019 	if (ret) {
3020 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3021 		close_ctree(fs_info);
3022 		return ret;
3023 	}
3024 
3025 	btrfs_qgroup_rescan_resume(fs_info);
3026 
3027 	if (!fs_info->uuid_root) {
3028 		btrfs_info(fs_info, "creating UUID tree");
3029 		ret = btrfs_create_uuid_tree(fs_info);
3030 		if (ret) {
3031 			btrfs_warn(fs_info,
3032 				"failed to create the UUID tree: %d", ret);
3033 			close_ctree(fs_info);
3034 			return ret;
3035 		}
3036 	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3037 		   fs_info->generation !=
3038 				btrfs_super_uuid_tree_generation(disk_super)) {
3039 		btrfs_info(fs_info, "checking UUID tree");
3040 		ret = btrfs_check_uuid_tree(fs_info);
3041 		if (ret) {
3042 			btrfs_warn(fs_info,
3043 				"failed to check the UUID tree: %d", ret);
3044 			close_ctree(fs_info);
3045 			return ret;
3046 		}
3047 	} else {
3048 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3049 	}
3050 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3051 
3052 	/*
3053 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3054 	 * no need to keep the flag
3055 	 */
3056 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3057 
3058 	return 0;
3059 
3060 fail_qgroup:
3061 	btrfs_free_qgroup_config(fs_info);
3062 fail_trans_kthread:
3063 	kthread_stop(fs_info->transaction_kthread);
3064 	btrfs_cleanup_transaction(fs_info);
3065 	btrfs_free_fs_roots(fs_info);
3066 fail_cleaner:
3067 	kthread_stop(fs_info->cleaner_kthread);
3068 
3069 	/*
3070 	 * make sure we're done with the btree inode before we stop our
3071 	 * kthreads
3072 	 */
3073 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3074 
3075 fail_sysfs:
3076 	btrfs_sysfs_remove_mounted(fs_info);
3077 
3078 fail_fsdev_sysfs:
3079 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3080 
3081 fail_block_groups:
3082 	btrfs_put_block_group_cache(fs_info);
3083 
3084 fail_tree_roots:
3085 	free_root_pointers(fs_info, 1);
3086 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3087 
3088 fail_sb_buffer:
3089 	btrfs_stop_all_workers(fs_info);
3090 	btrfs_free_block_groups(fs_info);
3091 fail_alloc:
3092 fail_iput:
3093 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3094 
3095 	iput(fs_info->btree_inode);
3096 fail_bio_counter:
3097 	percpu_counter_destroy(&fs_info->bio_counter);
3098 fail_delalloc_bytes:
3099 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3100 fail_dirty_metadata_bytes:
3101 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3102 fail_srcu:
3103 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3104 fail:
3105 	btrfs_free_stripe_hash_table(fs_info);
3106 	btrfs_close_devices(fs_info->fs_devices);
3107 	return err;
3108 
3109 recovery_tree_root:
3110 	if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3111 		goto fail_tree_roots;
3112 
3113 	free_root_pointers(fs_info, 0);
3114 
3115 	/* don't use the log in recovery mode, it won't be valid */
3116 	btrfs_set_super_log_root(disk_super, 0);
3117 
3118 	/* we can't trust the free space cache either */
3119 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3120 
3121 	ret = next_root_backup(fs_info, fs_info->super_copy,
3122 			       &num_backups_tried, &backup_index);
3123 	if (ret == -1)
3124 		goto fail_block_groups;
3125 	goto retry_root_backup;
3126 }
3127 BPF_ALLOW_ERROR_INJECTION(open_ctree);
3128 
3129 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3130 {
3131 	if (uptodate) {
3132 		set_buffer_uptodate(bh);
3133 	} else {
3134 		struct btrfs_device *device = (struct btrfs_device *)
3135 			bh->b_private;
3136 
3137 		btrfs_warn_rl_in_rcu(device->fs_info,
3138 				"lost page write due to IO error on %s",
3139 					  rcu_str_deref(device->name));
3140 		/* note, we don't set_buffer_write_io_error because we have
3141 		 * our own ways of dealing with the IO errors
3142 		 */
3143 		clear_buffer_uptodate(bh);
3144 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3145 	}
3146 	unlock_buffer(bh);
3147 	put_bh(bh);
3148 }
3149 
3150 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3151 			struct buffer_head **bh_ret)
3152 {
3153 	struct buffer_head *bh;
3154 	struct btrfs_super_block *super;
3155 	u64 bytenr;
3156 
3157 	bytenr = btrfs_sb_offset(copy_num);
3158 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3159 		return -EINVAL;
3160 
3161 	bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3162 	/*
3163 	 * If we fail to read from the underlying devices, as of now
3164 	 * the best option we have is to mark it EIO.
3165 	 */
3166 	if (!bh)
3167 		return -EIO;
3168 
3169 	super = (struct btrfs_super_block *)bh->b_data;
3170 	if (btrfs_super_bytenr(super) != bytenr ||
3171 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3172 		brelse(bh);
3173 		return -EINVAL;
3174 	}
3175 
3176 	*bh_ret = bh;
3177 	return 0;
3178 }
3179 
3180 
3181 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3182 {
3183 	struct buffer_head *bh;
3184 	struct buffer_head *latest = NULL;
3185 	struct btrfs_super_block *super;
3186 	int i;
3187 	u64 transid = 0;
3188 	int ret = -EINVAL;
3189 
3190 	/* we would like to check all the supers, but that would make
3191 	 * a btrfs mount succeed after a mkfs from a different FS.
3192 	 * So, we need to add a special mount option to scan for
3193 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3194 	 */
3195 	for (i = 0; i < 1; i++) {
3196 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3197 		if (ret)
3198 			continue;
3199 
3200 		super = (struct btrfs_super_block *)bh->b_data;
3201 
3202 		if (!latest || btrfs_super_generation(super) > transid) {
3203 			brelse(latest);
3204 			latest = bh;
3205 			transid = btrfs_super_generation(super);
3206 		} else {
3207 			brelse(bh);
3208 		}
3209 	}
3210 
3211 	if (!latest)
3212 		return ERR_PTR(ret);
3213 
3214 	return latest;
3215 }
3216 
3217 /*
3218  * Write superblock @sb to the @device. Do not wait for completion, all the
3219  * buffer heads we write are pinned.
3220  *
3221  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3222  * the expected device size at commit time. Note that max_mirrors must be
3223  * same for write and wait phases.
3224  *
3225  * Return number of errors when buffer head is not found or submission fails.
3226  */
3227 static int write_dev_supers(struct btrfs_device *device,
3228 			    struct btrfs_super_block *sb, int max_mirrors)
3229 {
3230 	struct buffer_head *bh;
3231 	int i;
3232 	int ret;
3233 	int errors = 0;
3234 	u32 crc;
3235 	u64 bytenr;
3236 	int op_flags;
3237 
3238 	if (max_mirrors == 0)
3239 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3240 
3241 	for (i = 0; i < max_mirrors; i++) {
3242 		bytenr = btrfs_sb_offset(i);
3243 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3244 		    device->commit_total_bytes)
3245 			break;
3246 
3247 		btrfs_set_super_bytenr(sb, bytenr);
3248 
3249 		crc = ~(u32)0;
3250 		crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3251 				      BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3252 		btrfs_csum_final(crc, sb->csum);
3253 
3254 		/* One reference for us, and we leave it for the caller */
3255 		bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3256 			      BTRFS_SUPER_INFO_SIZE);
3257 		if (!bh) {
3258 			btrfs_err(device->fs_info,
3259 			    "couldn't get super buffer head for bytenr %llu",
3260 			    bytenr);
3261 			errors++;
3262 			continue;
3263 		}
3264 
3265 		memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3266 
3267 		/* one reference for submit_bh */
3268 		get_bh(bh);
3269 
3270 		set_buffer_uptodate(bh);
3271 		lock_buffer(bh);
3272 		bh->b_end_io = btrfs_end_buffer_write_sync;
3273 		bh->b_private = device;
3274 
3275 		/*
3276 		 * we fua the first super.  The others we allow
3277 		 * to go down lazy.
3278 		 */
3279 		op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3280 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3281 			op_flags |= REQ_FUA;
3282 		ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3283 		if (ret)
3284 			errors++;
3285 	}
3286 	return errors < i ? 0 : -1;
3287 }
3288 
3289 /*
3290  * Wait for write completion of superblocks done by write_dev_supers,
3291  * @max_mirrors same for write and wait phases.
3292  *
3293  * Return number of errors when buffer head is not found or not marked up to
3294  * date.
3295  */
3296 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3297 {
3298 	struct buffer_head *bh;
3299 	int i;
3300 	int errors = 0;
3301 	u64 bytenr;
3302 
3303 	if (max_mirrors == 0)
3304 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3305 
3306 	for (i = 0; i < max_mirrors; i++) {
3307 		bytenr = btrfs_sb_offset(i);
3308 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3309 		    device->commit_total_bytes)
3310 			break;
3311 
3312 		bh = __find_get_block(device->bdev,
3313 				      bytenr / BTRFS_BDEV_BLOCKSIZE,
3314 				      BTRFS_SUPER_INFO_SIZE);
3315 		if (!bh) {
3316 			errors++;
3317 			continue;
3318 		}
3319 		wait_on_buffer(bh);
3320 		if (!buffer_uptodate(bh))
3321 			errors++;
3322 
3323 		/* drop our reference */
3324 		brelse(bh);
3325 
3326 		/* drop the reference from the writing run */
3327 		brelse(bh);
3328 	}
3329 
3330 	return errors < i ? 0 : -1;
3331 }
3332 
3333 /*
3334  * endio for the write_dev_flush, this will wake anyone waiting
3335  * for the barrier when it is done
3336  */
3337 static void btrfs_end_empty_barrier(struct bio *bio)
3338 {
3339 	complete(bio->bi_private);
3340 }
3341 
3342 /*
3343  * Submit a flush request to the device if it supports it. Error handling is
3344  * done in the waiting counterpart.
3345  */
3346 static void write_dev_flush(struct btrfs_device *device)
3347 {
3348 	struct request_queue *q = bdev_get_queue(device->bdev);
3349 	struct bio *bio = device->flush_bio;
3350 
3351 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3352 		return;
3353 
3354 	bio_reset(bio);
3355 	bio->bi_end_io = btrfs_end_empty_barrier;
3356 	bio_set_dev(bio, device->bdev);
3357 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3358 	init_completion(&device->flush_wait);
3359 	bio->bi_private = &device->flush_wait;
3360 
3361 	btrfsic_submit_bio(bio);
3362 	device->flush_bio_sent = 1;
3363 }
3364 
3365 /*
3366  * If the flush bio has been submitted by write_dev_flush, wait for it.
3367  */
3368 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3369 {
3370 	struct bio *bio = device->flush_bio;
3371 
3372 	if (!device->flush_bio_sent)
3373 		return BLK_STS_OK;
3374 
3375 	device->flush_bio_sent = 0;
3376 	wait_for_completion_io(&device->flush_wait);
3377 
3378 	return bio->bi_status;
3379 }
3380 
3381 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3382 {
3383 	if (!btrfs_check_rw_degradable(fs_info))
3384 		return -EIO;
3385 	return 0;
3386 }
3387 
3388 /*
3389  * send an empty flush down to each device in parallel,
3390  * then wait for them
3391  */
3392 static int barrier_all_devices(struct btrfs_fs_info *info)
3393 {
3394 	struct list_head *head;
3395 	struct btrfs_device *dev;
3396 	int errors_wait = 0;
3397 	blk_status_t ret;
3398 
3399 	/* send down all the barriers */
3400 	head = &info->fs_devices->devices;
3401 	list_for_each_entry_rcu(dev, head, dev_list) {
3402 		if (dev->missing)
3403 			continue;
3404 		if (!dev->bdev)
3405 			continue;
3406 		if (!dev->in_fs_metadata || !dev->writeable)
3407 			continue;
3408 
3409 		write_dev_flush(dev);
3410 		dev->last_flush_error = BLK_STS_OK;
3411 	}
3412 
3413 	/* wait for all the barriers */
3414 	list_for_each_entry_rcu(dev, head, dev_list) {
3415 		if (dev->missing)
3416 			continue;
3417 		if (!dev->bdev) {
3418 			errors_wait++;
3419 			continue;
3420 		}
3421 		if (!dev->in_fs_metadata || !dev->writeable)
3422 			continue;
3423 
3424 		ret = wait_dev_flush(dev);
3425 		if (ret) {
3426 			dev->last_flush_error = ret;
3427 			btrfs_dev_stat_inc_and_print(dev,
3428 					BTRFS_DEV_STAT_FLUSH_ERRS);
3429 			errors_wait++;
3430 		}
3431 	}
3432 
3433 	if (errors_wait) {
3434 		/*
3435 		 * At some point we need the status of all disks
3436 		 * to arrive at the volume status. So error checking
3437 		 * is being pushed to a separate loop.
3438 		 */
3439 		return check_barrier_error(info);
3440 	}
3441 	return 0;
3442 }
3443 
3444 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3445 {
3446 	int raid_type;
3447 	int min_tolerated = INT_MAX;
3448 
3449 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3450 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3451 		min_tolerated = min(min_tolerated,
3452 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3453 				    tolerated_failures);
3454 
3455 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3456 		if (raid_type == BTRFS_RAID_SINGLE)
3457 			continue;
3458 		if (!(flags & btrfs_raid_group[raid_type]))
3459 			continue;
3460 		min_tolerated = min(min_tolerated,
3461 				    btrfs_raid_array[raid_type].
3462 				    tolerated_failures);
3463 	}
3464 
3465 	if (min_tolerated == INT_MAX) {
3466 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3467 		min_tolerated = 0;
3468 	}
3469 
3470 	return min_tolerated;
3471 }
3472 
3473 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3474 {
3475 	struct list_head *head;
3476 	struct btrfs_device *dev;
3477 	struct btrfs_super_block *sb;
3478 	struct btrfs_dev_item *dev_item;
3479 	int ret;
3480 	int do_barriers;
3481 	int max_errors;
3482 	int total_errors = 0;
3483 	u64 flags;
3484 
3485 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3486 
3487 	/*
3488 	 * max_mirrors == 0 indicates we're from commit_transaction,
3489 	 * not from fsync where the tree roots in fs_info have not
3490 	 * been consistent on disk.
3491 	 */
3492 	if (max_mirrors == 0)
3493 		backup_super_roots(fs_info);
3494 
3495 	sb = fs_info->super_for_commit;
3496 	dev_item = &sb->dev_item;
3497 
3498 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3499 	head = &fs_info->fs_devices->devices;
3500 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3501 
3502 	if (do_barriers) {
3503 		ret = barrier_all_devices(fs_info);
3504 		if (ret) {
3505 			mutex_unlock(
3506 				&fs_info->fs_devices->device_list_mutex);
3507 			btrfs_handle_fs_error(fs_info, ret,
3508 					      "errors while submitting device barriers.");
3509 			return ret;
3510 		}
3511 	}
3512 
3513 	list_for_each_entry_rcu(dev, head, dev_list) {
3514 		if (!dev->bdev) {
3515 			total_errors++;
3516 			continue;
3517 		}
3518 		if (!dev->in_fs_metadata || !dev->writeable)
3519 			continue;
3520 
3521 		btrfs_set_stack_device_generation(dev_item, 0);
3522 		btrfs_set_stack_device_type(dev_item, dev->type);
3523 		btrfs_set_stack_device_id(dev_item, dev->devid);
3524 		btrfs_set_stack_device_total_bytes(dev_item,
3525 						   dev->commit_total_bytes);
3526 		btrfs_set_stack_device_bytes_used(dev_item,
3527 						  dev->commit_bytes_used);
3528 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3529 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3530 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3531 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3532 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3533 
3534 		flags = btrfs_super_flags(sb);
3535 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3536 
3537 		ret = write_dev_supers(dev, sb, max_mirrors);
3538 		if (ret)
3539 			total_errors++;
3540 	}
3541 	if (total_errors > max_errors) {
3542 		btrfs_err(fs_info, "%d errors while writing supers",
3543 			  total_errors);
3544 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3545 
3546 		/* FUA is masked off if unsupported and can't be the reason */
3547 		btrfs_handle_fs_error(fs_info, -EIO,
3548 				      "%d errors while writing supers",
3549 				      total_errors);
3550 		return -EIO;
3551 	}
3552 
3553 	total_errors = 0;
3554 	list_for_each_entry_rcu(dev, head, dev_list) {
3555 		if (!dev->bdev)
3556 			continue;
3557 		if (!dev->in_fs_metadata || !dev->writeable)
3558 			continue;
3559 
3560 		ret = wait_dev_supers(dev, max_mirrors);
3561 		if (ret)
3562 			total_errors++;
3563 	}
3564 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3565 	if (total_errors > max_errors) {
3566 		btrfs_handle_fs_error(fs_info, -EIO,
3567 				      "%d errors while writing supers",
3568 				      total_errors);
3569 		return -EIO;
3570 	}
3571 	return 0;
3572 }
3573 
3574 /* Drop a fs root from the radix tree and free it. */
3575 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3576 				  struct btrfs_root *root)
3577 {
3578 	spin_lock(&fs_info->fs_roots_radix_lock);
3579 	radix_tree_delete(&fs_info->fs_roots_radix,
3580 			  (unsigned long)root->root_key.objectid);
3581 	spin_unlock(&fs_info->fs_roots_radix_lock);
3582 
3583 	if (btrfs_root_refs(&root->root_item) == 0)
3584 		synchronize_srcu(&fs_info->subvol_srcu);
3585 
3586 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3587 		btrfs_free_log(NULL, root);
3588 		if (root->reloc_root) {
3589 			free_extent_buffer(root->reloc_root->node);
3590 			free_extent_buffer(root->reloc_root->commit_root);
3591 			btrfs_put_fs_root(root->reloc_root);
3592 			root->reloc_root = NULL;
3593 		}
3594 	}
3595 
3596 	if (root->free_ino_pinned)
3597 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3598 	if (root->free_ino_ctl)
3599 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3600 	free_fs_root(root);
3601 }
3602 
3603 static void free_fs_root(struct btrfs_root *root)
3604 {
3605 	iput(root->ino_cache_inode);
3606 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3607 	btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3608 	root->orphan_block_rsv = NULL;
3609 	if (root->anon_dev)
3610 		free_anon_bdev(root->anon_dev);
3611 	if (root->subv_writers)
3612 		btrfs_free_subvolume_writers(root->subv_writers);
3613 	free_extent_buffer(root->node);
3614 	free_extent_buffer(root->commit_root);
3615 	kfree(root->free_ino_ctl);
3616 	kfree(root->free_ino_pinned);
3617 	kfree(root->name);
3618 	btrfs_put_fs_root(root);
3619 }
3620 
3621 void btrfs_free_fs_root(struct btrfs_root *root)
3622 {
3623 	free_fs_root(root);
3624 }
3625 
3626 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3627 {
3628 	u64 root_objectid = 0;
3629 	struct btrfs_root *gang[8];
3630 	int i = 0;
3631 	int err = 0;
3632 	unsigned int ret = 0;
3633 	int index;
3634 
3635 	while (1) {
3636 		index = srcu_read_lock(&fs_info->subvol_srcu);
3637 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3638 					     (void **)gang, root_objectid,
3639 					     ARRAY_SIZE(gang));
3640 		if (!ret) {
3641 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3642 			break;
3643 		}
3644 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3645 
3646 		for (i = 0; i < ret; i++) {
3647 			/* Avoid to grab roots in dead_roots */
3648 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3649 				gang[i] = NULL;
3650 				continue;
3651 			}
3652 			/* grab all the search result for later use */
3653 			gang[i] = btrfs_grab_fs_root(gang[i]);
3654 		}
3655 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3656 
3657 		for (i = 0; i < ret; i++) {
3658 			if (!gang[i])
3659 				continue;
3660 			root_objectid = gang[i]->root_key.objectid;
3661 			err = btrfs_orphan_cleanup(gang[i]);
3662 			if (err)
3663 				break;
3664 			btrfs_put_fs_root(gang[i]);
3665 		}
3666 		root_objectid++;
3667 	}
3668 
3669 	/* release the uncleaned roots due to error */
3670 	for (; i < ret; i++) {
3671 		if (gang[i])
3672 			btrfs_put_fs_root(gang[i]);
3673 	}
3674 	return err;
3675 }
3676 
3677 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3678 {
3679 	struct btrfs_root *root = fs_info->tree_root;
3680 	struct btrfs_trans_handle *trans;
3681 
3682 	mutex_lock(&fs_info->cleaner_mutex);
3683 	btrfs_run_delayed_iputs(fs_info);
3684 	mutex_unlock(&fs_info->cleaner_mutex);
3685 	wake_up_process(fs_info->cleaner_kthread);
3686 
3687 	/* wait until ongoing cleanup work done */
3688 	down_write(&fs_info->cleanup_work_sem);
3689 	up_write(&fs_info->cleanup_work_sem);
3690 
3691 	trans = btrfs_join_transaction(root);
3692 	if (IS_ERR(trans))
3693 		return PTR_ERR(trans);
3694 	return btrfs_commit_transaction(trans);
3695 }
3696 
3697 void close_ctree(struct btrfs_fs_info *fs_info)
3698 {
3699 	struct btrfs_root *root = fs_info->tree_root;
3700 	int ret;
3701 
3702 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3703 
3704 	/* wait for the qgroup rescan worker to stop */
3705 	btrfs_qgroup_wait_for_completion(fs_info, false);
3706 
3707 	/* wait for the uuid_scan task to finish */
3708 	down(&fs_info->uuid_tree_rescan_sem);
3709 	/* avoid complains from lockdep et al., set sem back to initial state */
3710 	up(&fs_info->uuid_tree_rescan_sem);
3711 
3712 	/* pause restriper - we want to resume on mount */
3713 	btrfs_pause_balance(fs_info);
3714 
3715 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3716 
3717 	btrfs_scrub_cancel(fs_info);
3718 
3719 	/* wait for any defraggers to finish */
3720 	wait_event(fs_info->transaction_wait,
3721 		   (atomic_read(&fs_info->defrag_running) == 0));
3722 
3723 	/* clear out the rbtree of defraggable inodes */
3724 	btrfs_cleanup_defrag_inodes(fs_info);
3725 
3726 	cancel_work_sync(&fs_info->async_reclaim_work);
3727 
3728 	if (!sb_rdonly(fs_info->sb)) {
3729 		/*
3730 		 * If the cleaner thread is stopped and there are
3731 		 * block groups queued for removal, the deletion will be
3732 		 * skipped when we quit the cleaner thread.
3733 		 */
3734 		btrfs_delete_unused_bgs(fs_info);
3735 
3736 		ret = btrfs_commit_super(fs_info);
3737 		if (ret)
3738 			btrfs_err(fs_info, "commit super ret %d", ret);
3739 	}
3740 
3741 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3742 		btrfs_error_commit_super(fs_info);
3743 
3744 	kthread_stop(fs_info->transaction_kthread);
3745 	kthread_stop(fs_info->cleaner_kthread);
3746 
3747 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3748 
3749 	btrfs_free_qgroup_config(fs_info);
3750 
3751 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3752 		btrfs_info(fs_info, "at unmount delalloc count %lld",
3753 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3754 	}
3755 
3756 	btrfs_sysfs_remove_mounted(fs_info);
3757 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3758 
3759 	btrfs_free_fs_roots(fs_info);
3760 
3761 	btrfs_put_block_group_cache(fs_info);
3762 
3763 	/*
3764 	 * we must make sure there is not any read request to
3765 	 * submit after we stopping all workers.
3766 	 */
3767 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3768 	btrfs_stop_all_workers(fs_info);
3769 
3770 	btrfs_free_block_groups(fs_info);
3771 
3772 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3773 	free_root_pointers(fs_info, 1);
3774 
3775 	iput(fs_info->btree_inode);
3776 
3777 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3778 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
3779 		btrfsic_unmount(fs_info->fs_devices);
3780 #endif
3781 
3782 	btrfs_close_devices(fs_info->fs_devices);
3783 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3784 
3785 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3786 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3787 	percpu_counter_destroy(&fs_info->bio_counter);
3788 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3789 
3790 	btrfs_free_stripe_hash_table(fs_info);
3791 	btrfs_free_ref_cache(fs_info);
3792 
3793 	__btrfs_free_block_rsv(root->orphan_block_rsv);
3794 	root->orphan_block_rsv = NULL;
3795 
3796 	while (!list_empty(&fs_info->pinned_chunks)) {
3797 		struct extent_map *em;
3798 
3799 		em = list_first_entry(&fs_info->pinned_chunks,
3800 				      struct extent_map, list);
3801 		list_del_init(&em->list);
3802 		free_extent_map(em);
3803 	}
3804 }
3805 
3806 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3807 			  int atomic)
3808 {
3809 	int ret;
3810 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3811 
3812 	ret = extent_buffer_uptodate(buf);
3813 	if (!ret)
3814 		return ret;
3815 
3816 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3817 				    parent_transid, atomic);
3818 	if (ret == -EAGAIN)
3819 		return ret;
3820 	return !ret;
3821 }
3822 
3823 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3824 {
3825 	struct btrfs_fs_info *fs_info;
3826 	struct btrfs_root *root;
3827 	u64 transid = btrfs_header_generation(buf);
3828 	int was_dirty;
3829 
3830 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3831 	/*
3832 	 * This is a fast path so only do this check if we have sanity tests
3833 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3834 	 * outside of the sanity tests.
3835 	 */
3836 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3837 		return;
3838 #endif
3839 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3840 	fs_info = root->fs_info;
3841 	btrfs_assert_tree_locked(buf);
3842 	if (transid != fs_info->generation)
3843 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
3844 			buf->start, transid, fs_info->generation);
3845 	was_dirty = set_extent_buffer_dirty(buf);
3846 	if (!was_dirty)
3847 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3848 					 buf->len,
3849 					 fs_info->dirty_metadata_batch);
3850 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3851 	/*
3852 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
3853 	 * but item data not updated.
3854 	 * So here we should only check item pointers, not item data.
3855 	 */
3856 	if (btrfs_header_level(buf) == 0 &&
3857 	    btrfs_check_leaf_relaxed(root, buf)) {
3858 		btrfs_print_leaf(buf);
3859 		ASSERT(0);
3860 	}
3861 #endif
3862 }
3863 
3864 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
3865 					int flush_delayed)
3866 {
3867 	/*
3868 	 * looks as though older kernels can get into trouble with
3869 	 * this code, they end up stuck in balance_dirty_pages forever
3870 	 */
3871 	int ret;
3872 
3873 	if (current->flags & PF_MEMALLOC)
3874 		return;
3875 
3876 	if (flush_delayed)
3877 		btrfs_balance_delayed_items(fs_info);
3878 
3879 	ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
3880 				     BTRFS_DIRTY_METADATA_THRESH);
3881 	if (ret > 0) {
3882 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
3883 	}
3884 }
3885 
3886 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
3887 {
3888 	__btrfs_btree_balance_dirty(fs_info, 1);
3889 }
3890 
3891 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
3892 {
3893 	__btrfs_btree_balance_dirty(fs_info, 0);
3894 }
3895 
3896 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3897 {
3898 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3899 	struct btrfs_fs_info *fs_info = root->fs_info;
3900 
3901 	return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
3902 }
3903 
3904 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
3905 {
3906 	struct btrfs_super_block *sb = fs_info->super_copy;
3907 	u64 nodesize = btrfs_super_nodesize(sb);
3908 	u64 sectorsize = btrfs_super_sectorsize(sb);
3909 	int ret = 0;
3910 
3911 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
3912 		btrfs_err(fs_info, "no valid FS found");
3913 		ret = -EINVAL;
3914 	}
3915 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
3916 		btrfs_warn(fs_info, "unrecognized super flag: %llu",
3917 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
3918 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3919 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
3920 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3921 		ret = -EINVAL;
3922 	}
3923 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3924 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
3925 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3926 		ret = -EINVAL;
3927 	}
3928 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3929 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
3930 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3931 		ret = -EINVAL;
3932 	}
3933 
3934 	/*
3935 	 * Check sectorsize and nodesize first, other check will need it.
3936 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
3937 	 */
3938 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
3939 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
3940 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
3941 		ret = -EINVAL;
3942 	}
3943 	/* Only PAGE SIZE is supported yet */
3944 	if (sectorsize != PAGE_SIZE) {
3945 		btrfs_err(fs_info,
3946 			"sectorsize %llu not supported yet, only support %lu",
3947 			sectorsize, PAGE_SIZE);
3948 		ret = -EINVAL;
3949 	}
3950 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
3951 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
3952 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
3953 		ret = -EINVAL;
3954 	}
3955 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
3956 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
3957 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
3958 		ret = -EINVAL;
3959 	}
3960 
3961 	/* Root alignment check */
3962 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
3963 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
3964 			   btrfs_super_root(sb));
3965 		ret = -EINVAL;
3966 	}
3967 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
3968 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
3969 			   btrfs_super_chunk_root(sb));
3970 		ret = -EINVAL;
3971 	}
3972 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
3973 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
3974 			   btrfs_super_log_root(sb));
3975 		ret = -EINVAL;
3976 	}
3977 
3978 	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
3979 		btrfs_err(fs_info,
3980 			   "dev_item UUID does not match fsid: %pU != %pU",
3981 			   fs_info->fsid, sb->dev_item.fsid);
3982 		ret = -EINVAL;
3983 	}
3984 
3985 	/*
3986 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3987 	 * done later
3988 	 */
3989 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
3990 		btrfs_err(fs_info, "bytes_used is too small %llu",
3991 			  btrfs_super_bytes_used(sb));
3992 		ret = -EINVAL;
3993 	}
3994 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
3995 		btrfs_err(fs_info, "invalid stripesize %u",
3996 			  btrfs_super_stripesize(sb));
3997 		ret = -EINVAL;
3998 	}
3999 	if (btrfs_super_num_devices(sb) > (1UL << 31))
4000 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
4001 			   btrfs_super_num_devices(sb));
4002 	if (btrfs_super_num_devices(sb) == 0) {
4003 		btrfs_err(fs_info, "number of devices is 0");
4004 		ret = -EINVAL;
4005 	}
4006 
4007 	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4008 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
4009 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4010 		ret = -EINVAL;
4011 	}
4012 
4013 	/*
4014 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4015 	 * and one chunk
4016 	 */
4017 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4018 		btrfs_err(fs_info, "system chunk array too big %u > %u",
4019 			  btrfs_super_sys_array_size(sb),
4020 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4021 		ret = -EINVAL;
4022 	}
4023 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4024 			+ sizeof(struct btrfs_chunk)) {
4025 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
4026 			  btrfs_super_sys_array_size(sb),
4027 			  sizeof(struct btrfs_disk_key)
4028 			  + sizeof(struct btrfs_chunk));
4029 		ret = -EINVAL;
4030 	}
4031 
4032 	/*
4033 	 * The generation is a global counter, we'll trust it more than the others
4034 	 * but it's still possible that it's the one that's wrong.
4035 	 */
4036 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4037 		btrfs_warn(fs_info,
4038 			"suspicious: generation < chunk_root_generation: %llu < %llu",
4039 			btrfs_super_generation(sb),
4040 			btrfs_super_chunk_root_generation(sb));
4041 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4042 	    && btrfs_super_cache_generation(sb) != (u64)-1)
4043 		btrfs_warn(fs_info,
4044 			"suspicious: generation < cache_generation: %llu < %llu",
4045 			btrfs_super_generation(sb),
4046 			btrfs_super_cache_generation(sb));
4047 
4048 	return ret;
4049 }
4050 
4051 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4052 {
4053 	mutex_lock(&fs_info->cleaner_mutex);
4054 	btrfs_run_delayed_iputs(fs_info);
4055 	mutex_unlock(&fs_info->cleaner_mutex);
4056 
4057 	down_write(&fs_info->cleanup_work_sem);
4058 	up_write(&fs_info->cleanup_work_sem);
4059 
4060 	/* cleanup FS via transaction */
4061 	btrfs_cleanup_transaction(fs_info);
4062 }
4063 
4064 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4065 {
4066 	struct btrfs_ordered_extent *ordered;
4067 
4068 	spin_lock(&root->ordered_extent_lock);
4069 	/*
4070 	 * This will just short circuit the ordered completion stuff which will
4071 	 * make sure the ordered extent gets properly cleaned up.
4072 	 */
4073 	list_for_each_entry(ordered, &root->ordered_extents,
4074 			    root_extent_list)
4075 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4076 	spin_unlock(&root->ordered_extent_lock);
4077 }
4078 
4079 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4080 {
4081 	struct btrfs_root *root;
4082 	struct list_head splice;
4083 
4084 	INIT_LIST_HEAD(&splice);
4085 
4086 	spin_lock(&fs_info->ordered_root_lock);
4087 	list_splice_init(&fs_info->ordered_roots, &splice);
4088 	while (!list_empty(&splice)) {
4089 		root = list_first_entry(&splice, struct btrfs_root,
4090 					ordered_root);
4091 		list_move_tail(&root->ordered_root,
4092 			       &fs_info->ordered_roots);
4093 
4094 		spin_unlock(&fs_info->ordered_root_lock);
4095 		btrfs_destroy_ordered_extents(root);
4096 
4097 		cond_resched();
4098 		spin_lock(&fs_info->ordered_root_lock);
4099 	}
4100 	spin_unlock(&fs_info->ordered_root_lock);
4101 }
4102 
4103 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4104 				      struct btrfs_fs_info *fs_info)
4105 {
4106 	struct rb_node *node;
4107 	struct btrfs_delayed_ref_root *delayed_refs;
4108 	struct btrfs_delayed_ref_node *ref;
4109 	int ret = 0;
4110 
4111 	delayed_refs = &trans->delayed_refs;
4112 
4113 	spin_lock(&delayed_refs->lock);
4114 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4115 		spin_unlock(&delayed_refs->lock);
4116 		btrfs_info(fs_info, "delayed_refs has NO entry");
4117 		return ret;
4118 	}
4119 
4120 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4121 		struct btrfs_delayed_ref_head *head;
4122 		struct rb_node *n;
4123 		bool pin_bytes = false;
4124 
4125 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4126 				href_node);
4127 		if (!mutex_trylock(&head->mutex)) {
4128 			refcount_inc(&head->refs);
4129 			spin_unlock(&delayed_refs->lock);
4130 
4131 			mutex_lock(&head->mutex);
4132 			mutex_unlock(&head->mutex);
4133 			btrfs_put_delayed_ref_head(head);
4134 			spin_lock(&delayed_refs->lock);
4135 			continue;
4136 		}
4137 		spin_lock(&head->lock);
4138 		while ((n = rb_first(&head->ref_tree)) != NULL) {
4139 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4140 				       ref_node);
4141 			ref->in_tree = 0;
4142 			rb_erase(&ref->ref_node, &head->ref_tree);
4143 			RB_CLEAR_NODE(&ref->ref_node);
4144 			if (!list_empty(&ref->add_list))
4145 				list_del(&ref->add_list);
4146 			atomic_dec(&delayed_refs->num_entries);
4147 			btrfs_put_delayed_ref(ref);
4148 		}
4149 		if (head->must_insert_reserved)
4150 			pin_bytes = true;
4151 		btrfs_free_delayed_extent_op(head->extent_op);
4152 		delayed_refs->num_heads--;
4153 		if (head->processing == 0)
4154 			delayed_refs->num_heads_ready--;
4155 		atomic_dec(&delayed_refs->num_entries);
4156 		rb_erase(&head->href_node, &delayed_refs->href_root);
4157 		RB_CLEAR_NODE(&head->href_node);
4158 		spin_unlock(&head->lock);
4159 		spin_unlock(&delayed_refs->lock);
4160 		mutex_unlock(&head->mutex);
4161 
4162 		if (pin_bytes)
4163 			btrfs_pin_extent(fs_info, head->bytenr,
4164 					 head->num_bytes, 1);
4165 		btrfs_put_delayed_ref_head(head);
4166 		cond_resched();
4167 		spin_lock(&delayed_refs->lock);
4168 	}
4169 
4170 	spin_unlock(&delayed_refs->lock);
4171 
4172 	return ret;
4173 }
4174 
4175 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4176 {
4177 	struct btrfs_inode *btrfs_inode;
4178 	struct list_head splice;
4179 
4180 	INIT_LIST_HEAD(&splice);
4181 
4182 	spin_lock(&root->delalloc_lock);
4183 	list_splice_init(&root->delalloc_inodes, &splice);
4184 
4185 	while (!list_empty(&splice)) {
4186 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4187 					       delalloc_inodes);
4188 
4189 		list_del_init(&btrfs_inode->delalloc_inodes);
4190 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4191 			  &btrfs_inode->runtime_flags);
4192 		spin_unlock(&root->delalloc_lock);
4193 
4194 		btrfs_invalidate_inodes(btrfs_inode->root);
4195 
4196 		spin_lock(&root->delalloc_lock);
4197 	}
4198 
4199 	spin_unlock(&root->delalloc_lock);
4200 }
4201 
4202 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4203 {
4204 	struct btrfs_root *root;
4205 	struct list_head splice;
4206 
4207 	INIT_LIST_HEAD(&splice);
4208 
4209 	spin_lock(&fs_info->delalloc_root_lock);
4210 	list_splice_init(&fs_info->delalloc_roots, &splice);
4211 	while (!list_empty(&splice)) {
4212 		root = list_first_entry(&splice, struct btrfs_root,
4213 					 delalloc_root);
4214 		list_del_init(&root->delalloc_root);
4215 		root = btrfs_grab_fs_root(root);
4216 		BUG_ON(!root);
4217 		spin_unlock(&fs_info->delalloc_root_lock);
4218 
4219 		btrfs_destroy_delalloc_inodes(root);
4220 		btrfs_put_fs_root(root);
4221 
4222 		spin_lock(&fs_info->delalloc_root_lock);
4223 	}
4224 	spin_unlock(&fs_info->delalloc_root_lock);
4225 }
4226 
4227 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4228 					struct extent_io_tree *dirty_pages,
4229 					int mark)
4230 {
4231 	int ret;
4232 	struct extent_buffer *eb;
4233 	u64 start = 0;
4234 	u64 end;
4235 
4236 	while (1) {
4237 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4238 					    mark, NULL);
4239 		if (ret)
4240 			break;
4241 
4242 		clear_extent_bits(dirty_pages, start, end, mark);
4243 		while (start <= end) {
4244 			eb = find_extent_buffer(fs_info, start);
4245 			start += fs_info->nodesize;
4246 			if (!eb)
4247 				continue;
4248 			wait_on_extent_buffer_writeback(eb);
4249 
4250 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4251 					       &eb->bflags))
4252 				clear_extent_buffer_dirty(eb);
4253 			free_extent_buffer_stale(eb);
4254 		}
4255 	}
4256 
4257 	return ret;
4258 }
4259 
4260 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4261 				       struct extent_io_tree *pinned_extents)
4262 {
4263 	struct extent_io_tree *unpin;
4264 	u64 start;
4265 	u64 end;
4266 	int ret;
4267 	bool loop = true;
4268 
4269 	unpin = pinned_extents;
4270 again:
4271 	while (1) {
4272 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4273 					    EXTENT_DIRTY, NULL);
4274 		if (ret)
4275 			break;
4276 
4277 		clear_extent_dirty(unpin, start, end);
4278 		btrfs_error_unpin_extent_range(fs_info, start, end);
4279 		cond_resched();
4280 	}
4281 
4282 	if (loop) {
4283 		if (unpin == &fs_info->freed_extents[0])
4284 			unpin = &fs_info->freed_extents[1];
4285 		else
4286 			unpin = &fs_info->freed_extents[0];
4287 		loop = false;
4288 		goto again;
4289 	}
4290 
4291 	return 0;
4292 }
4293 
4294 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4295 {
4296 	struct inode *inode;
4297 
4298 	inode = cache->io_ctl.inode;
4299 	if (inode) {
4300 		invalidate_inode_pages2(inode->i_mapping);
4301 		BTRFS_I(inode)->generation = 0;
4302 		cache->io_ctl.inode = NULL;
4303 		iput(inode);
4304 	}
4305 	btrfs_put_block_group(cache);
4306 }
4307 
4308 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4309 			     struct btrfs_fs_info *fs_info)
4310 {
4311 	struct btrfs_block_group_cache *cache;
4312 
4313 	spin_lock(&cur_trans->dirty_bgs_lock);
4314 	while (!list_empty(&cur_trans->dirty_bgs)) {
4315 		cache = list_first_entry(&cur_trans->dirty_bgs,
4316 					 struct btrfs_block_group_cache,
4317 					 dirty_list);
4318 		if (!cache) {
4319 			btrfs_err(fs_info, "orphan block group dirty_bgs list");
4320 			spin_unlock(&cur_trans->dirty_bgs_lock);
4321 			return;
4322 		}
4323 
4324 		if (!list_empty(&cache->io_list)) {
4325 			spin_unlock(&cur_trans->dirty_bgs_lock);
4326 			list_del_init(&cache->io_list);
4327 			btrfs_cleanup_bg_io(cache);
4328 			spin_lock(&cur_trans->dirty_bgs_lock);
4329 		}
4330 
4331 		list_del_init(&cache->dirty_list);
4332 		spin_lock(&cache->lock);
4333 		cache->disk_cache_state = BTRFS_DC_ERROR;
4334 		spin_unlock(&cache->lock);
4335 
4336 		spin_unlock(&cur_trans->dirty_bgs_lock);
4337 		btrfs_put_block_group(cache);
4338 		spin_lock(&cur_trans->dirty_bgs_lock);
4339 	}
4340 	spin_unlock(&cur_trans->dirty_bgs_lock);
4341 
4342 	while (!list_empty(&cur_trans->io_bgs)) {
4343 		cache = list_first_entry(&cur_trans->io_bgs,
4344 					 struct btrfs_block_group_cache,
4345 					 io_list);
4346 		if (!cache) {
4347 			btrfs_err(fs_info, "orphan block group on io_bgs list");
4348 			return;
4349 		}
4350 
4351 		list_del_init(&cache->io_list);
4352 		spin_lock(&cache->lock);
4353 		cache->disk_cache_state = BTRFS_DC_ERROR;
4354 		spin_unlock(&cache->lock);
4355 		btrfs_cleanup_bg_io(cache);
4356 	}
4357 }
4358 
4359 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4360 				   struct btrfs_fs_info *fs_info)
4361 {
4362 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4363 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4364 	ASSERT(list_empty(&cur_trans->io_bgs));
4365 
4366 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4367 
4368 	cur_trans->state = TRANS_STATE_COMMIT_START;
4369 	wake_up(&fs_info->transaction_blocked_wait);
4370 
4371 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4372 	wake_up(&fs_info->transaction_wait);
4373 
4374 	btrfs_destroy_delayed_inodes(fs_info);
4375 	btrfs_assert_delayed_root_empty(fs_info);
4376 
4377 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4378 				     EXTENT_DIRTY);
4379 	btrfs_destroy_pinned_extent(fs_info,
4380 				    fs_info->pinned_extents);
4381 
4382 	cur_trans->state =TRANS_STATE_COMPLETED;
4383 	wake_up(&cur_trans->commit_wait);
4384 }
4385 
4386 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4387 {
4388 	struct btrfs_transaction *t;
4389 
4390 	mutex_lock(&fs_info->transaction_kthread_mutex);
4391 
4392 	spin_lock(&fs_info->trans_lock);
4393 	while (!list_empty(&fs_info->trans_list)) {
4394 		t = list_first_entry(&fs_info->trans_list,
4395 				     struct btrfs_transaction, list);
4396 		if (t->state >= TRANS_STATE_COMMIT_START) {
4397 			refcount_inc(&t->use_count);
4398 			spin_unlock(&fs_info->trans_lock);
4399 			btrfs_wait_for_commit(fs_info, t->transid);
4400 			btrfs_put_transaction(t);
4401 			spin_lock(&fs_info->trans_lock);
4402 			continue;
4403 		}
4404 		if (t == fs_info->running_transaction) {
4405 			t->state = TRANS_STATE_COMMIT_DOING;
4406 			spin_unlock(&fs_info->trans_lock);
4407 			/*
4408 			 * We wait for 0 num_writers since we don't hold a trans
4409 			 * handle open currently for this transaction.
4410 			 */
4411 			wait_event(t->writer_wait,
4412 				   atomic_read(&t->num_writers) == 0);
4413 		} else {
4414 			spin_unlock(&fs_info->trans_lock);
4415 		}
4416 		btrfs_cleanup_one_transaction(t, fs_info);
4417 
4418 		spin_lock(&fs_info->trans_lock);
4419 		if (t == fs_info->running_transaction)
4420 			fs_info->running_transaction = NULL;
4421 		list_del_init(&t->list);
4422 		spin_unlock(&fs_info->trans_lock);
4423 
4424 		btrfs_put_transaction(t);
4425 		trace_btrfs_transaction_commit(fs_info->tree_root);
4426 		spin_lock(&fs_info->trans_lock);
4427 	}
4428 	spin_unlock(&fs_info->trans_lock);
4429 	btrfs_destroy_all_ordered_extents(fs_info);
4430 	btrfs_destroy_delayed_inodes(fs_info);
4431 	btrfs_assert_delayed_root_empty(fs_info);
4432 	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4433 	btrfs_destroy_all_delalloc_inodes(fs_info);
4434 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4435 
4436 	return 0;
4437 }
4438 
4439 static struct btrfs_fs_info *btree_fs_info(void *private_data)
4440 {
4441 	struct inode *inode = private_data;
4442 	return btrfs_sb(inode->i_sb);
4443 }
4444 
4445 static const struct extent_io_ops btree_extent_io_ops = {
4446 	/* mandatory callbacks */
4447 	.submit_bio_hook = btree_submit_bio_hook,
4448 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4449 	/* note we're sharing with inode.c for the merge bio hook */
4450 	.merge_bio_hook = btrfs_merge_bio_hook,
4451 	.readpage_io_failed_hook = btree_io_failed_hook,
4452 	.set_range_writeback = btrfs_set_range_writeback,
4453 	.tree_fs_info = btree_fs_info,
4454 
4455 	/* optional callbacks */
4456 };
4457