1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include <linux/slab.h> 31 #include <linux/migrate.h> 32 #include <linux/ratelimit.h> 33 #include <asm/unaligned.h> 34 #include "compat.h" 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "async-thread.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 #include "dev-replace.h" 49 50 #ifdef CONFIG_X86 51 #include <asm/cpufeature.h> 52 #endif 53 54 static struct extent_io_ops btree_extent_io_ops; 55 static void end_workqueue_fn(struct btrfs_work *work); 56 static void free_fs_root(struct btrfs_root *root); 57 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 58 int read_only); 59 static void btrfs_destroy_ordered_operations(struct btrfs_root *root); 60 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 61 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 62 struct btrfs_root *root); 63 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t); 64 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 65 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 66 struct extent_io_tree *dirty_pages, 67 int mark); 68 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 69 struct extent_io_tree *pinned_extents); 70 71 /* 72 * end_io_wq structs are used to do processing in task context when an IO is 73 * complete. This is used during reads to verify checksums, and it is used 74 * by writes to insert metadata for new file extents after IO is complete. 75 */ 76 struct end_io_wq { 77 struct bio *bio; 78 bio_end_io_t *end_io; 79 void *private; 80 struct btrfs_fs_info *info; 81 int error; 82 int metadata; 83 struct list_head list; 84 struct btrfs_work work; 85 }; 86 87 /* 88 * async submit bios are used to offload expensive checksumming 89 * onto the worker threads. They checksum file and metadata bios 90 * just before they are sent down the IO stack. 91 */ 92 struct async_submit_bio { 93 struct inode *inode; 94 struct bio *bio; 95 struct list_head list; 96 extent_submit_bio_hook_t *submit_bio_start; 97 extent_submit_bio_hook_t *submit_bio_done; 98 int rw; 99 int mirror_num; 100 unsigned long bio_flags; 101 /* 102 * bio_offset is optional, can be used if the pages in the bio 103 * can't tell us where in the file the bio should go 104 */ 105 u64 bio_offset; 106 struct btrfs_work work; 107 int error; 108 }; 109 110 /* 111 * Lockdep class keys for extent_buffer->lock's in this root. For a given 112 * eb, the lockdep key is determined by the btrfs_root it belongs to and 113 * the level the eb occupies in the tree. 114 * 115 * Different roots are used for different purposes and may nest inside each 116 * other and they require separate keysets. As lockdep keys should be 117 * static, assign keysets according to the purpose of the root as indicated 118 * by btrfs_root->objectid. This ensures that all special purpose roots 119 * have separate keysets. 120 * 121 * Lock-nesting across peer nodes is always done with the immediate parent 122 * node locked thus preventing deadlock. As lockdep doesn't know this, use 123 * subclass to avoid triggering lockdep warning in such cases. 124 * 125 * The key is set by the readpage_end_io_hook after the buffer has passed 126 * csum validation but before the pages are unlocked. It is also set by 127 * btrfs_init_new_buffer on freshly allocated blocks. 128 * 129 * We also add a check to make sure the highest level of the tree is the 130 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 131 * needs update as well. 132 */ 133 #ifdef CONFIG_DEBUG_LOCK_ALLOC 134 # if BTRFS_MAX_LEVEL != 8 135 # error 136 # endif 137 138 static struct btrfs_lockdep_keyset { 139 u64 id; /* root objectid */ 140 const char *name_stem; /* lock name stem */ 141 char names[BTRFS_MAX_LEVEL + 1][20]; 142 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 143 } btrfs_lockdep_keysets[] = { 144 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 145 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 146 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 147 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 148 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 149 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 150 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" }, 151 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 152 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 153 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 154 { .id = 0, .name_stem = "tree" }, 155 }; 156 157 void __init btrfs_init_lockdep(void) 158 { 159 int i, j; 160 161 /* initialize lockdep class names */ 162 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 163 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 164 165 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 166 snprintf(ks->names[j], sizeof(ks->names[j]), 167 "btrfs-%s-%02d", ks->name_stem, j); 168 } 169 } 170 171 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 172 int level) 173 { 174 struct btrfs_lockdep_keyset *ks; 175 176 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 177 178 /* find the matching keyset, id 0 is the default entry */ 179 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 180 if (ks->id == objectid) 181 break; 182 183 lockdep_set_class_and_name(&eb->lock, 184 &ks->keys[level], ks->names[level]); 185 } 186 187 #endif 188 189 /* 190 * extents on the btree inode are pretty simple, there's one extent 191 * that covers the entire device 192 */ 193 static struct extent_map *btree_get_extent(struct inode *inode, 194 struct page *page, size_t pg_offset, u64 start, u64 len, 195 int create) 196 { 197 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 198 struct extent_map *em; 199 int ret; 200 201 read_lock(&em_tree->lock); 202 em = lookup_extent_mapping(em_tree, start, len); 203 if (em) { 204 em->bdev = 205 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 206 read_unlock(&em_tree->lock); 207 goto out; 208 } 209 read_unlock(&em_tree->lock); 210 211 em = alloc_extent_map(); 212 if (!em) { 213 em = ERR_PTR(-ENOMEM); 214 goto out; 215 } 216 em->start = 0; 217 em->len = (u64)-1; 218 em->block_len = (u64)-1; 219 em->block_start = 0; 220 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 221 222 write_lock(&em_tree->lock); 223 ret = add_extent_mapping(em_tree, em); 224 if (ret == -EEXIST) { 225 free_extent_map(em); 226 em = lookup_extent_mapping(em_tree, start, len); 227 if (!em) 228 em = ERR_PTR(-EIO); 229 } else if (ret) { 230 free_extent_map(em); 231 em = ERR_PTR(ret); 232 } 233 write_unlock(&em_tree->lock); 234 235 out: 236 return em; 237 } 238 239 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 240 { 241 return crc32c(seed, data, len); 242 } 243 244 void btrfs_csum_final(u32 crc, char *result) 245 { 246 put_unaligned_le32(~crc, result); 247 } 248 249 /* 250 * compute the csum for a btree block, and either verify it or write it 251 * into the csum field of the block. 252 */ 253 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 254 int verify) 255 { 256 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 257 char *result = NULL; 258 unsigned long len; 259 unsigned long cur_len; 260 unsigned long offset = BTRFS_CSUM_SIZE; 261 char *kaddr; 262 unsigned long map_start; 263 unsigned long map_len; 264 int err; 265 u32 crc = ~(u32)0; 266 unsigned long inline_result; 267 268 len = buf->len - offset; 269 while (len > 0) { 270 err = map_private_extent_buffer(buf, offset, 32, 271 &kaddr, &map_start, &map_len); 272 if (err) 273 return 1; 274 cur_len = min(len, map_len - (offset - map_start)); 275 crc = btrfs_csum_data(root, kaddr + offset - map_start, 276 crc, cur_len); 277 len -= cur_len; 278 offset += cur_len; 279 } 280 if (csum_size > sizeof(inline_result)) { 281 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 282 if (!result) 283 return 1; 284 } else { 285 result = (char *)&inline_result; 286 } 287 288 btrfs_csum_final(crc, result); 289 290 if (verify) { 291 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 292 u32 val; 293 u32 found = 0; 294 memcpy(&found, result, csum_size); 295 296 read_extent_buffer(buf, &val, 0, csum_size); 297 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify " 298 "failed on %llu wanted %X found %X " 299 "level %d\n", 300 root->fs_info->sb->s_id, 301 (unsigned long long)buf->start, val, found, 302 btrfs_header_level(buf)); 303 if (result != (char *)&inline_result) 304 kfree(result); 305 return 1; 306 } 307 } else { 308 write_extent_buffer(buf, result, 0, csum_size); 309 } 310 if (result != (char *)&inline_result) 311 kfree(result); 312 return 0; 313 } 314 315 /* 316 * we can't consider a given block up to date unless the transid of the 317 * block matches the transid in the parent node's pointer. This is how we 318 * detect blocks that either didn't get written at all or got written 319 * in the wrong place. 320 */ 321 static int verify_parent_transid(struct extent_io_tree *io_tree, 322 struct extent_buffer *eb, u64 parent_transid, 323 int atomic) 324 { 325 struct extent_state *cached_state = NULL; 326 int ret; 327 328 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 329 return 0; 330 331 if (atomic) 332 return -EAGAIN; 333 334 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 335 0, &cached_state); 336 if (extent_buffer_uptodate(eb) && 337 btrfs_header_generation(eb) == parent_transid) { 338 ret = 0; 339 goto out; 340 } 341 printk_ratelimited("parent transid verify failed on %llu wanted %llu " 342 "found %llu\n", 343 (unsigned long long)eb->start, 344 (unsigned long long)parent_transid, 345 (unsigned long long)btrfs_header_generation(eb)); 346 ret = 1; 347 clear_extent_buffer_uptodate(eb); 348 out: 349 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 350 &cached_state, GFP_NOFS); 351 return ret; 352 } 353 354 /* 355 * helper to read a given tree block, doing retries as required when 356 * the checksums don't match and we have alternate mirrors to try. 357 */ 358 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 359 struct extent_buffer *eb, 360 u64 start, u64 parent_transid) 361 { 362 struct extent_io_tree *io_tree; 363 int failed = 0; 364 int ret; 365 int num_copies = 0; 366 int mirror_num = 0; 367 int failed_mirror = 0; 368 369 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 370 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 371 while (1) { 372 ret = read_extent_buffer_pages(io_tree, eb, start, 373 WAIT_COMPLETE, 374 btree_get_extent, mirror_num); 375 if (!ret) { 376 if (!verify_parent_transid(io_tree, eb, 377 parent_transid, 0)) 378 break; 379 else 380 ret = -EIO; 381 } 382 383 /* 384 * This buffer's crc is fine, but its contents are corrupted, so 385 * there is no reason to read the other copies, they won't be 386 * any less wrong. 387 */ 388 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 389 break; 390 391 num_copies = btrfs_num_copies(root->fs_info, 392 eb->start, eb->len); 393 if (num_copies == 1) 394 break; 395 396 if (!failed_mirror) { 397 failed = 1; 398 failed_mirror = eb->read_mirror; 399 } 400 401 mirror_num++; 402 if (mirror_num == failed_mirror) 403 mirror_num++; 404 405 if (mirror_num > num_copies) 406 break; 407 } 408 409 if (failed && !ret && failed_mirror) 410 repair_eb_io_failure(root, eb, failed_mirror); 411 412 return ret; 413 } 414 415 /* 416 * checksum a dirty tree block before IO. This has extra checks to make sure 417 * we only fill in the checksum field in the first page of a multi-page block 418 */ 419 420 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 421 { 422 struct extent_io_tree *tree; 423 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 424 u64 found_start; 425 struct extent_buffer *eb; 426 427 tree = &BTRFS_I(page->mapping->host)->io_tree; 428 429 eb = (struct extent_buffer *)page->private; 430 if (page != eb->pages[0]) 431 return 0; 432 found_start = btrfs_header_bytenr(eb); 433 if (found_start != start) { 434 WARN_ON(1); 435 return 0; 436 } 437 if (!PageUptodate(page)) { 438 WARN_ON(1); 439 return 0; 440 } 441 csum_tree_block(root, eb, 0); 442 return 0; 443 } 444 445 static int check_tree_block_fsid(struct btrfs_root *root, 446 struct extent_buffer *eb) 447 { 448 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 449 u8 fsid[BTRFS_UUID_SIZE]; 450 int ret = 1; 451 452 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 453 BTRFS_FSID_SIZE); 454 while (fs_devices) { 455 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 456 ret = 0; 457 break; 458 } 459 fs_devices = fs_devices->seed; 460 } 461 return ret; 462 } 463 464 #define CORRUPT(reason, eb, root, slot) \ 465 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \ 466 "root=%llu, slot=%d\n", reason, \ 467 (unsigned long long)btrfs_header_bytenr(eb), \ 468 (unsigned long long)root->objectid, slot) 469 470 static noinline int check_leaf(struct btrfs_root *root, 471 struct extent_buffer *leaf) 472 { 473 struct btrfs_key key; 474 struct btrfs_key leaf_key; 475 u32 nritems = btrfs_header_nritems(leaf); 476 int slot; 477 478 if (nritems == 0) 479 return 0; 480 481 /* Check the 0 item */ 482 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 483 BTRFS_LEAF_DATA_SIZE(root)) { 484 CORRUPT("invalid item offset size pair", leaf, root, 0); 485 return -EIO; 486 } 487 488 /* 489 * Check to make sure each items keys are in the correct order and their 490 * offsets make sense. We only have to loop through nritems-1 because 491 * we check the current slot against the next slot, which verifies the 492 * next slot's offset+size makes sense and that the current's slot 493 * offset is correct. 494 */ 495 for (slot = 0; slot < nritems - 1; slot++) { 496 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 497 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 498 499 /* Make sure the keys are in the right order */ 500 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 501 CORRUPT("bad key order", leaf, root, slot); 502 return -EIO; 503 } 504 505 /* 506 * Make sure the offset and ends are right, remember that the 507 * item data starts at the end of the leaf and grows towards the 508 * front. 509 */ 510 if (btrfs_item_offset_nr(leaf, slot) != 511 btrfs_item_end_nr(leaf, slot + 1)) { 512 CORRUPT("slot offset bad", leaf, root, slot); 513 return -EIO; 514 } 515 516 /* 517 * Check to make sure that we don't point outside of the leaf, 518 * just incase all the items are consistent to eachother, but 519 * all point outside of the leaf. 520 */ 521 if (btrfs_item_end_nr(leaf, slot) > 522 BTRFS_LEAF_DATA_SIZE(root)) { 523 CORRUPT("slot end outside of leaf", leaf, root, slot); 524 return -EIO; 525 } 526 } 527 528 return 0; 529 } 530 531 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree, 532 struct page *page, int max_walk) 533 { 534 struct extent_buffer *eb; 535 u64 start = page_offset(page); 536 u64 target = start; 537 u64 min_start; 538 539 if (start < max_walk) 540 min_start = 0; 541 else 542 min_start = start - max_walk; 543 544 while (start >= min_start) { 545 eb = find_extent_buffer(tree, start, 0); 546 if (eb) { 547 /* 548 * we found an extent buffer and it contains our page 549 * horray! 550 */ 551 if (eb->start <= target && 552 eb->start + eb->len > target) 553 return eb; 554 555 /* we found an extent buffer that wasn't for us */ 556 free_extent_buffer(eb); 557 return NULL; 558 } 559 if (start == 0) 560 break; 561 start -= PAGE_CACHE_SIZE; 562 } 563 return NULL; 564 } 565 566 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 567 struct extent_state *state, int mirror) 568 { 569 struct extent_io_tree *tree; 570 u64 found_start; 571 int found_level; 572 struct extent_buffer *eb; 573 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 574 int ret = 0; 575 int reads_done; 576 577 if (!page->private) 578 goto out; 579 580 tree = &BTRFS_I(page->mapping->host)->io_tree; 581 eb = (struct extent_buffer *)page->private; 582 583 /* the pending IO might have been the only thing that kept this buffer 584 * in memory. Make sure we have a ref for all this other checks 585 */ 586 extent_buffer_get(eb); 587 588 reads_done = atomic_dec_and_test(&eb->io_pages); 589 if (!reads_done) 590 goto err; 591 592 eb->read_mirror = mirror; 593 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 594 ret = -EIO; 595 goto err; 596 } 597 598 found_start = btrfs_header_bytenr(eb); 599 if (found_start != eb->start) { 600 printk_ratelimited(KERN_INFO "btrfs bad tree block start " 601 "%llu %llu\n", 602 (unsigned long long)found_start, 603 (unsigned long long)eb->start); 604 ret = -EIO; 605 goto err; 606 } 607 if (check_tree_block_fsid(root, eb)) { 608 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n", 609 (unsigned long long)eb->start); 610 ret = -EIO; 611 goto err; 612 } 613 found_level = btrfs_header_level(eb); 614 615 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 616 eb, found_level); 617 618 ret = csum_tree_block(root, eb, 1); 619 if (ret) { 620 ret = -EIO; 621 goto err; 622 } 623 624 /* 625 * If this is a leaf block and it is corrupt, set the corrupt bit so 626 * that we don't try and read the other copies of this block, just 627 * return -EIO. 628 */ 629 if (found_level == 0 && check_leaf(root, eb)) { 630 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 631 ret = -EIO; 632 } 633 634 if (!ret) 635 set_extent_buffer_uptodate(eb); 636 err: 637 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) { 638 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags); 639 btree_readahead_hook(root, eb, eb->start, ret); 640 } 641 642 if (ret) 643 clear_extent_buffer_uptodate(eb); 644 free_extent_buffer(eb); 645 out: 646 return ret; 647 } 648 649 static int btree_io_failed_hook(struct page *page, int failed_mirror) 650 { 651 struct extent_buffer *eb; 652 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 653 654 eb = (struct extent_buffer *)page->private; 655 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 656 eb->read_mirror = failed_mirror; 657 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 658 btree_readahead_hook(root, eb, eb->start, -EIO); 659 return -EIO; /* we fixed nothing */ 660 } 661 662 static void end_workqueue_bio(struct bio *bio, int err) 663 { 664 struct end_io_wq *end_io_wq = bio->bi_private; 665 struct btrfs_fs_info *fs_info; 666 667 fs_info = end_io_wq->info; 668 end_io_wq->error = err; 669 end_io_wq->work.func = end_workqueue_fn; 670 end_io_wq->work.flags = 0; 671 672 if (bio->bi_rw & REQ_WRITE) { 673 if (end_io_wq->metadata == 1) 674 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 675 &end_io_wq->work); 676 else if (end_io_wq->metadata == 2) 677 btrfs_queue_worker(&fs_info->endio_freespace_worker, 678 &end_io_wq->work); 679 else 680 btrfs_queue_worker(&fs_info->endio_write_workers, 681 &end_io_wq->work); 682 } else { 683 if (end_io_wq->metadata) 684 btrfs_queue_worker(&fs_info->endio_meta_workers, 685 &end_io_wq->work); 686 else 687 btrfs_queue_worker(&fs_info->endio_workers, 688 &end_io_wq->work); 689 } 690 } 691 692 /* 693 * For the metadata arg you want 694 * 695 * 0 - if data 696 * 1 - if normal metadta 697 * 2 - if writing to the free space cache area 698 */ 699 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 700 int metadata) 701 { 702 struct end_io_wq *end_io_wq; 703 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 704 if (!end_io_wq) 705 return -ENOMEM; 706 707 end_io_wq->private = bio->bi_private; 708 end_io_wq->end_io = bio->bi_end_io; 709 end_io_wq->info = info; 710 end_io_wq->error = 0; 711 end_io_wq->bio = bio; 712 end_io_wq->metadata = metadata; 713 714 bio->bi_private = end_io_wq; 715 bio->bi_end_io = end_workqueue_bio; 716 return 0; 717 } 718 719 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 720 { 721 unsigned long limit = min_t(unsigned long, 722 info->workers.max_workers, 723 info->fs_devices->open_devices); 724 return 256 * limit; 725 } 726 727 static void run_one_async_start(struct btrfs_work *work) 728 { 729 struct async_submit_bio *async; 730 int ret; 731 732 async = container_of(work, struct async_submit_bio, work); 733 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 734 async->mirror_num, async->bio_flags, 735 async->bio_offset); 736 if (ret) 737 async->error = ret; 738 } 739 740 static void run_one_async_done(struct btrfs_work *work) 741 { 742 struct btrfs_fs_info *fs_info; 743 struct async_submit_bio *async; 744 int limit; 745 746 async = container_of(work, struct async_submit_bio, work); 747 fs_info = BTRFS_I(async->inode)->root->fs_info; 748 749 limit = btrfs_async_submit_limit(fs_info); 750 limit = limit * 2 / 3; 751 752 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 753 waitqueue_active(&fs_info->async_submit_wait)) 754 wake_up(&fs_info->async_submit_wait); 755 756 /* If an error occured we just want to clean up the bio and move on */ 757 if (async->error) { 758 bio_endio(async->bio, async->error); 759 return; 760 } 761 762 async->submit_bio_done(async->inode, async->rw, async->bio, 763 async->mirror_num, async->bio_flags, 764 async->bio_offset); 765 } 766 767 static void run_one_async_free(struct btrfs_work *work) 768 { 769 struct async_submit_bio *async; 770 771 async = container_of(work, struct async_submit_bio, work); 772 kfree(async); 773 } 774 775 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 776 int rw, struct bio *bio, int mirror_num, 777 unsigned long bio_flags, 778 u64 bio_offset, 779 extent_submit_bio_hook_t *submit_bio_start, 780 extent_submit_bio_hook_t *submit_bio_done) 781 { 782 struct async_submit_bio *async; 783 784 async = kmalloc(sizeof(*async), GFP_NOFS); 785 if (!async) 786 return -ENOMEM; 787 788 async->inode = inode; 789 async->rw = rw; 790 async->bio = bio; 791 async->mirror_num = mirror_num; 792 async->submit_bio_start = submit_bio_start; 793 async->submit_bio_done = submit_bio_done; 794 795 async->work.func = run_one_async_start; 796 async->work.ordered_func = run_one_async_done; 797 async->work.ordered_free = run_one_async_free; 798 799 async->work.flags = 0; 800 async->bio_flags = bio_flags; 801 async->bio_offset = bio_offset; 802 803 async->error = 0; 804 805 atomic_inc(&fs_info->nr_async_submits); 806 807 if (rw & REQ_SYNC) 808 btrfs_set_work_high_prio(&async->work); 809 810 btrfs_queue_worker(&fs_info->workers, &async->work); 811 812 while (atomic_read(&fs_info->async_submit_draining) && 813 atomic_read(&fs_info->nr_async_submits)) { 814 wait_event(fs_info->async_submit_wait, 815 (atomic_read(&fs_info->nr_async_submits) == 0)); 816 } 817 818 return 0; 819 } 820 821 static int btree_csum_one_bio(struct bio *bio) 822 { 823 struct bio_vec *bvec = bio->bi_io_vec; 824 int bio_index = 0; 825 struct btrfs_root *root; 826 int ret = 0; 827 828 WARN_ON(bio->bi_vcnt <= 0); 829 while (bio_index < bio->bi_vcnt) { 830 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 831 ret = csum_dirty_buffer(root, bvec->bv_page); 832 if (ret) 833 break; 834 bio_index++; 835 bvec++; 836 } 837 return ret; 838 } 839 840 static int __btree_submit_bio_start(struct inode *inode, int rw, 841 struct bio *bio, int mirror_num, 842 unsigned long bio_flags, 843 u64 bio_offset) 844 { 845 /* 846 * when we're called for a write, we're already in the async 847 * submission context. Just jump into btrfs_map_bio 848 */ 849 return btree_csum_one_bio(bio); 850 } 851 852 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 853 int mirror_num, unsigned long bio_flags, 854 u64 bio_offset) 855 { 856 int ret; 857 858 /* 859 * when we're called for a write, we're already in the async 860 * submission context. Just jump into btrfs_map_bio 861 */ 862 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 863 if (ret) 864 bio_endio(bio, ret); 865 return ret; 866 } 867 868 static int check_async_write(struct inode *inode, unsigned long bio_flags) 869 { 870 if (bio_flags & EXTENT_BIO_TREE_LOG) 871 return 0; 872 #ifdef CONFIG_X86 873 if (cpu_has_xmm4_2) 874 return 0; 875 #endif 876 return 1; 877 } 878 879 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 880 int mirror_num, unsigned long bio_flags, 881 u64 bio_offset) 882 { 883 int async = check_async_write(inode, bio_flags); 884 int ret; 885 886 if (!(rw & REQ_WRITE)) { 887 /* 888 * called for a read, do the setup so that checksum validation 889 * can happen in the async kernel threads 890 */ 891 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 892 bio, 1); 893 if (ret) 894 goto out_w_error; 895 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 896 mirror_num, 0); 897 } else if (!async) { 898 ret = btree_csum_one_bio(bio); 899 if (ret) 900 goto out_w_error; 901 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 902 mirror_num, 0); 903 } else { 904 /* 905 * kthread helpers are used to submit writes so that 906 * checksumming can happen in parallel across all CPUs 907 */ 908 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 909 inode, rw, bio, mirror_num, 0, 910 bio_offset, 911 __btree_submit_bio_start, 912 __btree_submit_bio_done); 913 } 914 915 if (ret) { 916 out_w_error: 917 bio_endio(bio, ret); 918 } 919 return ret; 920 } 921 922 #ifdef CONFIG_MIGRATION 923 static int btree_migratepage(struct address_space *mapping, 924 struct page *newpage, struct page *page, 925 enum migrate_mode mode) 926 { 927 /* 928 * we can't safely write a btree page from here, 929 * we haven't done the locking hook 930 */ 931 if (PageDirty(page)) 932 return -EAGAIN; 933 /* 934 * Buffers may be managed in a filesystem specific way. 935 * We must have no buffers or drop them. 936 */ 937 if (page_has_private(page) && 938 !try_to_release_page(page, GFP_KERNEL)) 939 return -EAGAIN; 940 return migrate_page(mapping, newpage, page, mode); 941 } 942 #endif 943 944 945 static int btree_writepages(struct address_space *mapping, 946 struct writeback_control *wbc) 947 { 948 struct extent_io_tree *tree; 949 tree = &BTRFS_I(mapping->host)->io_tree; 950 if (wbc->sync_mode == WB_SYNC_NONE) { 951 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 952 u64 num_dirty; 953 unsigned long thresh = 32 * 1024 * 1024; 954 955 if (wbc->for_kupdate) 956 return 0; 957 958 /* this is a bit racy, but that's ok */ 959 num_dirty = root->fs_info->dirty_metadata_bytes; 960 if (num_dirty < thresh) 961 return 0; 962 } 963 return btree_write_cache_pages(mapping, wbc); 964 } 965 966 static int btree_readpage(struct file *file, struct page *page) 967 { 968 struct extent_io_tree *tree; 969 tree = &BTRFS_I(page->mapping->host)->io_tree; 970 return extent_read_full_page(tree, page, btree_get_extent, 0); 971 } 972 973 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 974 { 975 if (PageWriteback(page) || PageDirty(page)) 976 return 0; 977 /* 978 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing 979 * slab allocation from alloc_extent_state down the callchain where 980 * it'd hit a BUG_ON as those flags are not allowed. 981 */ 982 gfp_flags &= ~GFP_SLAB_BUG_MASK; 983 984 return try_release_extent_buffer(page, gfp_flags); 985 } 986 987 static void btree_invalidatepage(struct page *page, unsigned long offset) 988 { 989 struct extent_io_tree *tree; 990 tree = &BTRFS_I(page->mapping->host)->io_tree; 991 extent_invalidatepage(tree, page, offset); 992 btree_releasepage(page, GFP_NOFS); 993 if (PagePrivate(page)) { 994 printk(KERN_WARNING "btrfs warning page private not zero " 995 "on page %llu\n", (unsigned long long)page_offset(page)); 996 ClearPagePrivate(page); 997 set_page_private(page, 0); 998 page_cache_release(page); 999 } 1000 } 1001 1002 static int btree_set_page_dirty(struct page *page) 1003 { 1004 #ifdef DEBUG 1005 struct extent_buffer *eb; 1006 1007 BUG_ON(!PagePrivate(page)); 1008 eb = (struct extent_buffer *)page->private; 1009 BUG_ON(!eb); 1010 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1011 BUG_ON(!atomic_read(&eb->refs)); 1012 btrfs_assert_tree_locked(eb); 1013 #endif 1014 return __set_page_dirty_nobuffers(page); 1015 } 1016 1017 static const struct address_space_operations btree_aops = { 1018 .readpage = btree_readpage, 1019 .writepages = btree_writepages, 1020 .releasepage = btree_releasepage, 1021 .invalidatepage = btree_invalidatepage, 1022 #ifdef CONFIG_MIGRATION 1023 .migratepage = btree_migratepage, 1024 #endif 1025 .set_page_dirty = btree_set_page_dirty, 1026 }; 1027 1028 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1029 u64 parent_transid) 1030 { 1031 struct extent_buffer *buf = NULL; 1032 struct inode *btree_inode = root->fs_info->btree_inode; 1033 int ret = 0; 1034 1035 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1036 if (!buf) 1037 return 0; 1038 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1039 buf, 0, WAIT_NONE, btree_get_extent, 0); 1040 free_extent_buffer(buf); 1041 return ret; 1042 } 1043 1044 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1045 int mirror_num, struct extent_buffer **eb) 1046 { 1047 struct extent_buffer *buf = NULL; 1048 struct inode *btree_inode = root->fs_info->btree_inode; 1049 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1050 int ret; 1051 1052 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1053 if (!buf) 1054 return 0; 1055 1056 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1057 1058 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1059 btree_get_extent, mirror_num); 1060 if (ret) { 1061 free_extent_buffer(buf); 1062 return ret; 1063 } 1064 1065 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1066 free_extent_buffer(buf); 1067 return -EIO; 1068 } else if (extent_buffer_uptodate(buf)) { 1069 *eb = buf; 1070 } else { 1071 free_extent_buffer(buf); 1072 } 1073 return 0; 1074 } 1075 1076 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 1077 u64 bytenr, u32 blocksize) 1078 { 1079 struct inode *btree_inode = root->fs_info->btree_inode; 1080 struct extent_buffer *eb; 1081 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1082 bytenr, blocksize); 1083 return eb; 1084 } 1085 1086 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1087 u64 bytenr, u32 blocksize) 1088 { 1089 struct inode *btree_inode = root->fs_info->btree_inode; 1090 struct extent_buffer *eb; 1091 1092 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1093 bytenr, blocksize); 1094 return eb; 1095 } 1096 1097 1098 int btrfs_write_tree_block(struct extent_buffer *buf) 1099 { 1100 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1101 buf->start + buf->len - 1); 1102 } 1103 1104 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1105 { 1106 return filemap_fdatawait_range(buf->pages[0]->mapping, 1107 buf->start, buf->start + buf->len - 1); 1108 } 1109 1110 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1111 u32 blocksize, u64 parent_transid) 1112 { 1113 struct extent_buffer *buf = NULL; 1114 int ret; 1115 1116 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1117 if (!buf) 1118 return NULL; 1119 1120 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1121 return buf; 1122 1123 } 1124 1125 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1126 struct extent_buffer *buf) 1127 { 1128 if (btrfs_header_generation(buf) == 1129 root->fs_info->running_transaction->transid) { 1130 btrfs_assert_tree_locked(buf); 1131 1132 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1133 spin_lock(&root->fs_info->delalloc_lock); 1134 if (root->fs_info->dirty_metadata_bytes >= buf->len) 1135 root->fs_info->dirty_metadata_bytes -= buf->len; 1136 else { 1137 spin_unlock(&root->fs_info->delalloc_lock); 1138 btrfs_panic(root->fs_info, -EOVERFLOW, 1139 "Can't clear %lu bytes from " 1140 " dirty_mdatadata_bytes (%llu)", 1141 buf->len, 1142 root->fs_info->dirty_metadata_bytes); 1143 } 1144 spin_unlock(&root->fs_info->delalloc_lock); 1145 1146 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1147 btrfs_set_lock_blocking(buf); 1148 clear_extent_buffer_dirty(buf); 1149 } 1150 } 1151 } 1152 1153 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 1154 u32 stripesize, struct btrfs_root *root, 1155 struct btrfs_fs_info *fs_info, 1156 u64 objectid) 1157 { 1158 root->node = NULL; 1159 root->commit_root = NULL; 1160 root->sectorsize = sectorsize; 1161 root->nodesize = nodesize; 1162 root->leafsize = leafsize; 1163 root->stripesize = stripesize; 1164 root->ref_cows = 0; 1165 root->track_dirty = 0; 1166 root->in_radix = 0; 1167 root->orphan_item_inserted = 0; 1168 root->orphan_cleanup_state = 0; 1169 1170 root->objectid = objectid; 1171 root->last_trans = 0; 1172 root->highest_objectid = 0; 1173 root->name = NULL; 1174 root->inode_tree = RB_ROOT; 1175 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1176 root->block_rsv = NULL; 1177 root->orphan_block_rsv = NULL; 1178 1179 INIT_LIST_HEAD(&root->dirty_list); 1180 INIT_LIST_HEAD(&root->root_list); 1181 spin_lock_init(&root->orphan_lock); 1182 spin_lock_init(&root->inode_lock); 1183 spin_lock_init(&root->accounting_lock); 1184 mutex_init(&root->objectid_mutex); 1185 mutex_init(&root->log_mutex); 1186 init_waitqueue_head(&root->log_writer_wait); 1187 init_waitqueue_head(&root->log_commit_wait[0]); 1188 init_waitqueue_head(&root->log_commit_wait[1]); 1189 atomic_set(&root->log_commit[0], 0); 1190 atomic_set(&root->log_commit[1], 0); 1191 atomic_set(&root->log_writers, 0); 1192 atomic_set(&root->log_batch, 0); 1193 atomic_set(&root->orphan_inodes, 0); 1194 root->log_transid = 0; 1195 root->last_log_commit = 0; 1196 extent_io_tree_init(&root->dirty_log_pages, 1197 fs_info->btree_inode->i_mapping); 1198 1199 memset(&root->root_key, 0, sizeof(root->root_key)); 1200 memset(&root->root_item, 0, sizeof(root->root_item)); 1201 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1202 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1203 root->defrag_trans_start = fs_info->generation; 1204 init_completion(&root->kobj_unregister); 1205 root->defrag_running = 0; 1206 root->root_key.objectid = objectid; 1207 root->anon_dev = 0; 1208 1209 spin_lock_init(&root->root_item_lock); 1210 } 1211 1212 static int __must_check find_and_setup_root(struct btrfs_root *tree_root, 1213 struct btrfs_fs_info *fs_info, 1214 u64 objectid, 1215 struct btrfs_root *root) 1216 { 1217 int ret; 1218 u32 blocksize; 1219 u64 generation; 1220 1221 __setup_root(tree_root->nodesize, tree_root->leafsize, 1222 tree_root->sectorsize, tree_root->stripesize, 1223 root, fs_info, objectid); 1224 ret = btrfs_find_last_root(tree_root, objectid, 1225 &root->root_item, &root->root_key); 1226 if (ret > 0) 1227 return -ENOENT; 1228 else if (ret < 0) 1229 return ret; 1230 1231 generation = btrfs_root_generation(&root->root_item); 1232 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1233 root->commit_root = NULL; 1234 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1235 blocksize, generation); 1236 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) { 1237 free_extent_buffer(root->node); 1238 root->node = NULL; 1239 return -EIO; 1240 } 1241 root->commit_root = btrfs_root_node(root); 1242 return 0; 1243 } 1244 1245 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1246 { 1247 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1248 if (root) 1249 root->fs_info = fs_info; 1250 return root; 1251 } 1252 1253 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1254 struct btrfs_fs_info *fs_info, 1255 u64 objectid) 1256 { 1257 struct extent_buffer *leaf; 1258 struct btrfs_root *tree_root = fs_info->tree_root; 1259 struct btrfs_root *root; 1260 struct btrfs_key key; 1261 int ret = 0; 1262 u64 bytenr; 1263 1264 root = btrfs_alloc_root(fs_info); 1265 if (!root) 1266 return ERR_PTR(-ENOMEM); 1267 1268 __setup_root(tree_root->nodesize, tree_root->leafsize, 1269 tree_root->sectorsize, tree_root->stripesize, 1270 root, fs_info, objectid); 1271 root->root_key.objectid = objectid; 1272 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1273 root->root_key.offset = 0; 1274 1275 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 1276 0, objectid, NULL, 0, 0, 0); 1277 if (IS_ERR(leaf)) { 1278 ret = PTR_ERR(leaf); 1279 goto fail; 1280 } 1281 1282 bytenr = leaf->start; 1283 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1284 btrfs_set_header_bytenr(leaf, leaf->start); 1285 btrfs_set_header_generation(leaf, trans->transid); 1286 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1287 btrfs_set_header_owner(leaf, objectid); 1288 root->node = leaf; 1289 1290 write_extent_buffer(leaf, fs_info->fsid, 1291 (unsigned long)btrfs_header_fsid(leaf), 1292 BTRFS_FSID_SIZE); 1293 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1294 (unsigned long)btrfs_header_chunk_tree_uuid(leaf), 1295 BTRFS_UUID_SIZE); 1296 btrfs_mark_buffer_dirty(leaf); 1297 1298 root->commit_root = btrfs_root_node(root); 1299 root->track_dirty = 1; 1300 1301 1302 root->root_item.flags = 0; 1303 root->root_item.byte_limit = 0; 1304 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1305 btrfs_set_root_generation(&root->root_item, trans->transid); 1306 btrfs_set_root_level(&root->root_item, 0); 1307 btrfs_set_root_refs(&root->root_item, 1); 1308 btrfs_set_root_used(&root->root_item, leaf->len); 1309 btrfs_set_root_last_snapshot(&root->root_item, 0); 1310 btrfs_set_root_dirid(&root->root_item, 0); 1311 root->root_item.drop_level = 0; 1312 1313 key.objectid = objectid; 1314 key.type = BTRFS_ROOT_ITEM_KEY; 1315 key.offset = 0; 1316 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1317 if (ret) 1318 goto fail; 1319 1320 btrfs_tree_unlock(leaf); 1321 1322 fail: 1323 if (ret) 1324 return ERR_PTR(ret); 1325 1326 return root; 1327 } 1328 1329 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1330 struct btrfs_fs_info *fs_info) 1331 { 1332 struct btrfs_root *root; 1333 struct btrfs_root *tree_root = fs_info->tree_root; 1334 struct extent_buffer *leaf; 1335 1336 root = btrfs_alloc_root(fs_info); 1337 if (!root) 1338 return ERR_PTR(-ENOMEM); 1339 1340 __setup_root(tree_root->nodesize, tree_root->leafsize, 1341 tree_root->sectorsize, tree_root->stripesize, 1342 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1343 1344 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1345 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1346 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1347 /* 1348 * log trees do not get reference counted because they go away 1349 * before a real commit is actually done. They do store pointers 1350 * to file data extents, and those reference counts still get 1351 * updated (along with back refs to the log tree). 1352 */ 1353 root->ref_cows = 0; 1354 1355 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1356 BTRFS_TREE_LOG_OBJECTID, NULL, 1357 0, 0, 0); 1358 if (IS_ERR(leaf)) { 1359 kfree(root); 1360 return ERR_CAST(leaf); 1361 } 1362 1363 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1364 btrfs_set_header_bytenr(leaf, leaf->start); 1365 btrfs_set_header_generation(leaf, trans->transid); 1366 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1367 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1368 root->node = leaf; 1369 1370 write_extent_buffer(root->node, root->fs_info->fsid, 1371 (unsigned long)btrfs_header_fsid(root->node), 1372 BTRFS_FSID_SIZE); 1373 btrfs_mark_buffer_dirty(root->node); 1374 btrfs_tree_unlock(root->node); 1375 return root; 1376 } 1377 1378 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1379 struct btrfs_fs_info *fs_info) 1380 { 1381 struct btrfs_root *log_root; 1382 1383 log_root = alloc_log_tree(trans, fs_info); 1384 if (IS_ERR(log_root)) 1385 return PTR_ERR(log_root); 1386 WARN_ON(fs_info->log_root_tree); 1387 fs_info->log_root_tree = log_root; 1388 return 0; 1389 } 1390 1391 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1392 struct btrfs_root *root) 1393 { 1394 struct btrfs_root *log_root; 1395 struct btrfs_inode_item *inode_item; 1396 1397 log_root = alloc_log_tree(trans, root->fs_info); 1398 if (IS_ERR(log_root)) 1399 return PTR_ERR(log_root); 1400 1401 log_root->last_trans = trans->transid; 1402 log_root->root_key.offset = root->root_key.objectid; 1403 1404 inode_item = &log_root->root_item.inode; 1405 inode_item->generation = cpu_to_le64(1); 1406 inode_item->size = cpu_to_le64(3); 1407 inode_item->nlink = cpu_to_le32(1); 1408 inode_item->nbytes = cpu_to_le64(root->leafsize); 1409 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1410 1411 btrfs_set_root_node(&log_root->root_item, log_root->node); 1412 1413 WARN_ON(root->log_root); 1414 root->log_root = log_root; 1415 root->log_transid = 0; 1416 root->last_log_commit = 0; 1417 return 0; 1418 } 1419 1420 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1421 struct btrfs_key *location) 1422 { 1423 struct btrfs_root *root; 1424 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1425 struct btrfs_path *path; 1426 struct extent_buffer *l; 1427 u64 generation; 1428 u32 blocksize; 1429 int ret = 0; 1430 int slot; 1431 1432 root = btrfs_alloc_root(fs_info); 1433 if (!root) 1434 return ERR_PTR(-ENOMEM); 1435 if (location->offset == (u64)-1) { 1436 ret = find_and_setup_root(tree_root, fs_info, 1437 location->objectid, root); 1438 if (ret) { 1439 kfree(root); 1440 return ERR_PTR(ret); 1441 } 1442 goto out; 1443 } 1444 1445 __setup_root(tree_root->nodesize, tree_root->leafsize, 1446 tree_root->sectorsize, tree_root->stripesize, 1447 root, fs_info, location->objectid); 1448 1449 path = btrfs_alloc_path(); 1450 if (!path) { 1451 kfree(root); 1452 return ERR_PTR(-ENOMEM); 1453 } 1454 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1455 if (ret == 0) { 1456 l = path->nodes[0]; 1457 slot = path->slots[0]; 1458 btrfs_read_root_item(tree_root, l, slot, &root->root_item); 1459 memcpy(&root->root_key, location, sizeof(*location)); 1460 } 1461 btrfs_free_path(path); 1462 if (ret) { 1463 kfree(root); 1464 if (ret > 0) 1465 ret = -ENOENT; 1466 return ERR_PTR(ret); 1467 } 1468 1469 generation = btrfs_root_generation(&root->root_item); 1470 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1471 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1472 blocksize, generation); 1473 root->commit_root = btrfs_root_node(root); 1474 BUG_ON(!root->node); /* -ENOMEM */ 1475 out: 1476 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { 1477 root->ref_cows = 1; 1478 btrfs_check_and_init_root_item(&root->root_item); 1479 } 1480 1481 return root; 1482 } 1483 1484 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1485 struct btrfs_key *location) 1486 { 1487 struct btrfs_root *root; 1488 int ret; 1489 1490 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1491 return fs_info->tree_root; 1492 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1493 return fs_info->extent_root; 1494 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1495 return fs_info->chunk_root; 1496 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1497 return fs_info->dev_root; 1498 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1499 return fs_info->csum_root; 1500 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1501 return fs_info->quota_root ? fs_info->quota_root : 1502 ERR_PTR(-ENOENT); 1503 again: 1504 spin_lock(&fs_info->fs_roots_radix_lock); 1505 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1506 (unsigned long)location->objectid); 1507 spin_unlock(&fs_info->fs_roots_radix_lock); 1508 if (root) 1509 return root; 1510 1511 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1512 if (IS_ERR(root)) 1513 return root; 1514 1515 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1516 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1517 GFP_NOFS); 1518 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1519 ret = -ENOMEM; 1520 goto fail; 1521 } 1522 1523 btrfs_init_free_ino_ctl(root); 1524 mutex_init(&root->fs_commit_mutex); 1525 spin_lock_init(&root->cache_lock); 1526 init_waitqueue_head(&root->cache_wait); 1527 1528 ret = get_anon_bdev(&root->anon_dev); 1529 if (ret) 1530 goto fail; 1531 1532 if (btrfs_root_refs(&root->root_item) == 0) { 1533 ret = -ENOENT; 1534 goto fail; 1535 } 1536 1537 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1538 if (ret < 0) 1539 goto fail; 1540 if (ret == 0) 1541 root->orphan_item_inserted = 1; 1542 1543 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1544 if (ret) 1545 goto fail; 1546 1547 spin_lock(&fs_info->fs_roots_radix_lock); 1548 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1549 (unsigned long)root->root_key.objectid, 1550 root); 1551 if (ret == 0) 1552 root->in_radix = 1; 1553 1554 spin_unlock(&fs_info->fs_roots_radix_lock); 1555 radix_tree_preload_end(); 1556 if (ret) { 1557 if (ret == -EEXIST) { 1558 free_fs_root(root); 1559 goto again; 1560 } 1561 goto fail; 1562 } 1563 1564 ret = btrfs_find_dead_roots(fs_info->tree_root, 1565 root->root_key.objectid); 1566 WARN_ON(ret); 1567 return root; 1568 fail: 1569 free_fs_root(root); 1570 return ERR_PTR(ret); 1571 } 1572 1573 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1574 { 1575 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1576 int ret = 0; 1577 struct btrfs_device *device; 1578 struct backing_dev_info *bdi; 1579 1580 rcu_read_lock(); 1581 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1582 if (!device->bdev) 1583 continue; 1584 bdi = blk_get_backing_dev_info(device->bdev); 1585 if (bdi && bdi_congested(bdi, bdi_bits)) { 1586 ret = 1; 1587 break; 1588 } 1589 } 1590 rcu_read_unlock(); 1591 return ret; 1592 } 1593 1594 /* 1595 * If this fails, caller must call bdi_destroy() to get rid of the 1596 * bdi again. 1597 */ 1598 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1599 { 1600 int err; 1601 1602 bdi->capabilities = BDI_CAP_MAP_COPY; 1603 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1604 if (err) 1605 return err; 1606 1607 bdi->ra_pages = default_backing_dev_info.ra_pages; 1608 bdi->congested_fn = btrfs_congested_fn; 1609 bdi->congested_data = info; 1610 return 0; 1611 } 1612 1613 /* 1614 * called by the kthread helper functions to finally call the bio end_io 1615 * functions. This is where read checksum verification actually happens 1616 */ 1617 static void end_workqueue_fn(struct btrfs_work *work) 1618 { 1619 struct bio *bio; 1620 struct end_io_wq *end_io_wq; 1621 struct btrfs_fs_info *fs_info; 1622 int error; 1623 1624 end_io_wq = container_of(work, struct end_io_wq, work); 1625 bio = end_io_wq->bio; 1626 fs_info = end_io_wq->info; 1627 1628 error = end_io_wq->error; 1629 bio->bi_private = end_io_wq->private; 1630 bio->bi_end_io = end_io_wq->end_io; 1631 kfree(end_io_wq); 1632 bio_endio(bio, error); 1633 } 1634 1635 static int cleaner_kthread(void *arg) 1636 { 1637 struct btrfs_root *root = arg; 1638 1639 do { 1640 if (!(root->fs_info->sb->s_flags & MS_RDONLY) && 1641 mutex_trylock(&root->fs_info->cleaner_mutex)) { 1642 btrfs_run_delayed_iputs(root); 1643 btrfs_clean_old_snapshots(root); 1644 mutex_unlock(&root->fs_info->cleaner_mutex); 1645 btrfs_run_defrag_inodes(root->fs_info); 1646 } 1647 1648 if (!try_to_freeze()) { 1649 set_current_state(TASK_INTERRUPTIBLE); 1650 if (!kthread_should_stop()) 1651 schedule(); 1652 __set_current_state(TASK_RUNNING); 1653 } 1654 } while (!kthread_should_stop()); 1655 return 0; 1656 } 1657 1658 static int transaction_kthread(void *arg) 1659 { 1660 struct btrfs_root *root = arg; 1661 struct btrfs_trans_handle *trans; 1662 struct btrfs_transaction *cur; 1663 u64 transid; 1664 unsigned long now; 1665 unsigned long delay; 1666 bool cannot_commit; 1667 1668 do { 1669 cannot_commit = false; 1670 delay = HZ * 30; 1671 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1672 1673 spin_lock(&root->fs_info->trans_lock); 1674 cur = root->fs_info->running_transaction; 1675 if (!cur) { 1676 spin_unlock(&root->fs_info->trans_lock); 1677 goto sleep; 1678 } 1679 1680 now = get_seconds(); 1681 if (!cur->blocked && 1682 (now < cur->start_time || now - cur->start_time < 30)) { 1683 spin_unlock(&root->fs_info->trans_lock); 1684 delay = HZ * 5; 1685 goto sleep; 1686 } 1687 transid = cur->transid; 1688 spin_unlock(&root->fs_info->trans_lock); 1689 1690 /* If the file system is aborted, this will always fail. */ 1691 trans = btrfs_attach_transaction(root); 1692 if (IS_ERR(trans)) { 1693 if (PTR_ERR(trans) != -ENOENT) 1694 cannot_commit = true; 1695 goto sleep; 1696 } 1697 if (transid == trans->transid) { 1698 btrfs_commit_transaction(trans, root); 1699 } else { 1700 btrfs_end_transaction(trans, root); 1701 } 1702 sleep: 1703 wake_up_process(root->fs_info->cleaner_kthread); 1704 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1705 1706 if (!try_to_freeze()) { 1707 set_current_state(TASK_INTERRUPTIBLE); 1708 if (!kthread_should_stop() && 1709 (!btrfs_transaction_blocked(root->fs_info) || 1710 cannot_commit)) 1711 schedule_timeout(delay); 1712 __set_current_state(TASK_RUNNING); 1713 } 1714 } while (!kthread_should_stop()); 1715 return 0; 1716 } 1717 1718 /* 1719 * this will find the highest generation in the array of 1720 * root backups. The index of the highest array is returned, 1721 * or -1 if we can't find anything. 1722 * 1723 * We check to make sure the array is valid by comparing the 1724 * generation of the latest root in the array with the generation 1725 * in the super block. If they don't match we pitch it. 1726 */ 1727 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1728 { 1729 u64 cur; 1730 int newest_index = -1; 1731 struct btrfs_root_backup *root_backup; 1732 int i; 1733 1734 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1735 root_backup = info->super_copy->super_roots + i; 1736 cur = btrfs_backup_tree_root_gen(root_backup); 1737 if (cur == newest_gen) 1738 newest_index = i; 1739 } 1740 1741 /* check to see if we actually wrapped around */ 1742 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1743 root_backup = info->super_copy->super_roots; 1744 cur = btrfs_backup_tree_root_gen(root_backup); 1745 if (cur == newest_gen) 1746 newest_index = 0; 1747 } 1748 return newest_index; 1749 } 1750 1751 1752 /* 1753 * find the oldest backup so we know where to store new entries 1754 * in the backup array. This will set the backup_root_index 1755 * field in the fs_info struct 1756 */ 1757 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1758 u64 newest_gen) 1759 { 1760 int newest_index = -1; 1761 1762 newest_index = find_newest_super_backup(info, newest_gen); 1763 /* if there was garbage in there, just move along */ 1764 if (newest_index == -1) { 1765 info->backup_root_index = 0; 1766 } else { 1767 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1768 } 1769 } 1770 1771 /* 1772 * copy all the root pointers into the super backup array. 1773 * this will bump the backup pointer by one when it is 1774 * done 1775 */ 1776 static void backup_super_roots(struct btrfs_fs_info *info) 1777 { 1778 int next_backup; 1779 struct btrfs_root_backup *root_backup; 1780 int last_backup; 1781 1782 next_backup = info->backup_root_index; 1783 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1784 BTRFS_NUM_BACKUP_ROOTS; 1785 1786 /* 1787 * just overwrite the last backup if we're at the same generation 1788 * this happens only at umount 1789 */ 1790 root_backup = info->super_for_commit->super_roots + last_backup; 1791 if (btrfs_backup_tree_root_gen(root_backup) == 1792 btrfs_header_generation(info->tree_root->node)) 1793 next_backup = last_backup; 1794 1795 root_backup = info->super_for_commit->super_roots + next_backup; 1796 1797 /* 1798 * make sure all of our padding and empty slots get zero filled 1799 * regardless of which ones we use today 1800 */ 1801 memset(root_backup, 0, sizeof(*root_backup)); 1802 1803 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1804 1805 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1806 btrfs_set_backup_tree_root_gen(root_backup, 1807 btrfs_header_generation(info->tree_root->node)); 1808 1809 btrfs_set_backup_tree_root_level(root_backup, 1810 btrfs_header_level(info->tree_root->node)); 1811 1812 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1813 btrfs_set_backup_chunk_root_gen(root_backup, 1814 btrfs_header_generation(info->chunk_root->node)); 1815 btrfs_set_backup_chunk_root_level(root_backup, 1816 btrfs_header_level(info->chunk_root->node)); 1817 1818 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1819 btrfs_set_backup_extent_root_gen(root_backup, 1820 btrfs_header_generation(info->extent_root->node)); 1821 btrfs_set_backup_extent_root_level(root_backup, 1822 btrfs_header_level(info->extent_root->node)); 1823 1824 /* 1825 * we might commit during log recovery, which happens before we set 1826 * the fs_root. Make sure it is valid before we fill it in. 1827 */ 1828 if (info->fs_root && info->fs_root->node) { 1829 btrfs_set_backup_fs_root(root_backup, 1830 info->fs_root->node->start); 1831 btrfs_set_backup_fs_root_gen(root_backup, 1832 btrfs_header_generation(info->fs_root->node)); 1833 btrfs_set_backup_fs_root_level(root_backup, 1834 btrfs_header_level(info->fs_root->node)); 1835 } 1836 1837 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1838 btrfs_set_backup_dev_root_gen(root_backup, 1839 btrfs_header_generation(info->dev_root->node)); 1840 btrfs_set_backup_dev_root_level(root_backup, 1841 btrfs_header_level(info->dev_root->node)); 1842 1843 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1844 btrfs_set_backup_csum_root_gen(root_backup, 1845 btrfs_header_generation(info->csum_root->node)); 1846 btrfs_set_backup_csum_root_level(root_backup, 1847 btrfs_header_level(info->csum_root->node)); 1848 1849 btrfs_set_backup_total_bytes(root_backup, 1850 btrfs_super_total_bytes(info->super_copy)); 1851 btrfs_set_backup_bytes_used(root_backup, 1852 btrfs_super_bytes_used(info->super_copy)); 1853 btrfs_set_backup_num_devices(root_backup, 1854 btrfs_super_num_devices(info->super_copy)); 1855 1856 /* 1857 * if we don't copy this out to the super_copy, it won't get remembered 1858 * for the next commit 1859 */ 1860 memcpy(&info->super_copy->super_roots, 1861 &info->super_for_commit->super_roots, 1862 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1863 } 1864 1865 /* 1866 * this copies info out of the root backup array and back into 1867 * the in-memory super block. It is meant to help iterate through 1868 * the array, so you send it the number of backups you've already 1869 * tried and the last backup index you used. 1870 * 1871 * this returns -1 when it has tried all the backups 1872 */ 1873 static noinline int next_root_backup(struct btrfs_fs_info *info, 1874 struct btrfs_super_block *super, 1875 int *num_backups_tried, int *backup_index) 1876 { 1877 struct btrfs_root_backup *root_backup; 1878 int newest = *backup_index; 1879 1880 if (*num_backups_tried == 0) { 1881 u64 gen = btrfs_super_generation(super); 1882 1883 newest = find_newest_super_backup(info, gen); 1884 if (newest == -1) 1885 return -1; 1886 1887 *backup_index = newest; 1888 *num_backups_tried = 1; 1889 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1890 /* we've tried all the backups, all done */ 1891 return -1; 1892 } else { 1893 /* jump to the next oldest backup */ 1894 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1895 BTRFS_NUM_BACKUP_ROOTS; 1896 *backup_index = newest; 1897 *num_backups_tried += 1; 1898 } 1899 root_backup = super->super_roots + newest; 1900 1901 btrfs_set_super_generation(super, 1902 btrfs_backup_tree_root_gen(root_backup)); 1903 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1904 btrfs_set_super_root_level(super, 1905 btrfs_backup_tree_root_level(root_backup)); 1906 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1907 1908 /* 1909 * fixme: the total bytes and num_devices need to match or we should 1910 * need a fsck 1911 */ 1912 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1913 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1914 return 0; 1915 } 1916 1917 /* helper to cleanup tree roots */ 1918 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 1919 { 1920 free_extent_buffer(info->tree_root->node); 1921 free_extent_buffer(info->tree_root->commit_root); 1922 free_extent_buffer(info->dev_root->node); 1923 free_extent_buffer(info->dev_root->commit_root); 1924 free_extent_buffer(info->extent_root->node); 1925 free_extent_buffer(info->extent_root->commit_root); 1926 free_extent_buffer(info->csum_root->node); 1927 free_extent_buffer(info->csum_root->commit_root); 1928 if (info->quota_root) { 1929 free_extent_buffer(info->quota_root->node); 1930 free_extent_buffer(info->quota_root->commit_root); 1931 } 1932 1933 info->tree_root->node = NULL; 1934 info->tree_root->commit_root = NULL; 1935 info->dev_root->node = NULL; 1936 info->dev_root->commit_root = NULL; 1937 info->extent_root->node = NULL; 1938 info->extent_root->commit_root = NULL; 1939 info->csum_root->node = NULL; 1940 info->csum_root->commit_root = NULL; 1941 if (info->quota_root) { 1942 info->quota_root->node = NULL; 1943 info->quota_root->commit_root = NULL; 1944 } 1945 1946 if (chunk_root) { 1947 free_extent_buffer(info->chunk_root->node); 1948 free_extent_buffer(info->chunk_root->commit_root); 1949 info->chunk_root->node = NULL; 1950 info->chunk_root->commit_root = NULL; 1951 } 1952 } 1953 1954 1955 int open_ctree(struct super_block *sb, 1956 struct btrfs_fs_devices *fs_devices, 1957 char *options) 1958 { 1959 u32 sectorsize; 1960 u32 nodesize; 1961 u32 leafsize; 1962 u32 blocksize; 1963 u32 stripesize; 1964 u64 generation; 1965 u64 features; 1966 struct btrfs_key location; 1967 struct buffer_head *bh; 1968 struct btrfs_super_block *disk_super; 1969 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1970 struct btrfs_root *tree_root; 1971 struct btrfs_root *extent_root; 1972 struct btrfs_root *csum_root; 1973 struct btrfs_root *chunk_root; 1974 struct btrfs_root *dev_root; 1975 struct btrfs_root *quota_root; 1976 struct btrfs_root *log_tree_root; 1977 int ret; 1978 int err = -EINVAL; 1979 int num_backups_tried = 0; 1980 int backup_index = 0; 1981 1982 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 1983 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info); 1984 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info); 1985 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 1986 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info); 1987 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info); 1988 1989 if (!tree_root || !extent_root || !csum_root || 1990 !chunk_root || !dev_root || !quota_root) { 1991 err = -ENOMEM; 1992 goto fail; 1993 } 1994 1995 ret = init_srcu_struct(&fs_info->subvol_srcu); 1996 if (ret) { 1997 err = ret; 1998 goto fail; 1999 } 2000 2001 ret = setup_bdi(fs_info, &fs_info->bdi); 2002 if (ret) { 2003 err = ret; 2004 goto fail_srcu; 2005 } 2006 2007 fs_info->btree_inode = new_inode(sb); 2008 if (!fs_info->btree_inode) { 2009 err = -ENOMEM; 2010 goto fail_bdi; 2011 } 2012 2013 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2014 2015 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2016 INIT_LIST_HEAD(&fs_info->trans_list); 2017 INIT_LIST_HEAD(&fs_info->dead_roots); 2018 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2019 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 2020 INIT_LIST_HEAD(&fs_info->ordered_operations); 2021 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2022 spin_lock_init(&fs_info->delalloc_lock); 2023 spin_lock_init(&fs_info->trans_lock); 2024 spin_lock_init(&fs_info->fs_roots_radix_lock); 2025 spin_lock_init(&fs_info->delayed_iput_lock); 2026 spin_lock_init(&fs_info->defrag_inodes_lock); 2027 spin_lock_init(&fs_info->free_chunk_lock); 2028 spin_lock_init(&fs_info->tree_mod_seq_lock); 2029 rwlock_init(&fs_info->tree_mod_log_lock); 2030 mutex_init(&fs_info->reloc_mutex); 2031 2032 init_completion(&fs_info->kobj_unregister); 2033 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2034 INIT_LIST_HEAD(&fs_info->space_info); 2035 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2036 btrfs_mapping_init(&fs_info->mapping_tree); 2037 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2038 BTRFS_BLOCK_RSV_GLOBAL); 2039 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2040 BTRFS_BLOCK_RSV_DELALLOC); 2041 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2042 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2043 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2044 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2045 BTRFS_BLOCK_RSV_DELOPS); 2046 atomic_set(&fs_info->nr_async_submits, 0); 2047 atomic_set(&fs_info->async_delalloc_pages, 0); 2048 atomic_set(&fs_info->async_submit_draining, 0); 2049 atomic_set(&fs_info->nr_async_bios, 0); 2050 atomic_set(&fs_info->defrag_running, 0); 2051 atomic_set(&fs_info->tree_mod_seq, 0); 2052 fs_info->sb = sb; 2053 fs_info->max_inline = 8192 * 1024; 2054 fs_info->metadata_ratio = 0; 2055 fs_info->defrag_inodes = RB_ROOT; 2056 fs_info->trans_no_join = 0; 2057 fs_info->free_chunk_space = 0; 2058 fs_info->tree_mod_log = RB_ROOT; 2059 2060 /* readahead state */ 2061 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 2062 spin_lock_init(&fs_info->reada_lock); 2063 2064 fs_info->thread_pool_size = min_t(unsigned long, 2065 num_online_cpus() + 2, 8); 2066 2067 INIT_LIST_HEAD(&fs_info->ordered_extents); 2068 spin_lock_init(&fs_info->ordered_extent_lock); 2069 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2070 GFP_NOFS); 2071 if (!fs_info->delayed_root) { 2072 err = -ENOMEM; 2073 goto fail_iput; 2074 } 2075 btrfs_init_delayed_root(fs_info->delayed_root); 2076 2077 mutex_init(&fs_info->scrub_lock); 2078 atomic_set(&fs_info->scrubs_running, 0); 2079 atomic_set(&fs_info->scrub_pause_req, 0); 2080 atomic_set(&fs_info->scrubs_paused, 0); 2081 atomic_set(&fs_info->scrub_cancel_req, 0); 2082 init_waitqueue_head(&fs_info->scrub_pause_wait); 2083 init_rwsem(&fs_info->scrub_super_lock); 2084 fs_info->scrub_workers_refcnt = 0; 2085 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2086 fs_info->check_integrity_print_mask = 0; 2087 #endif 2088 2089 spin_lock_init(&fs_info->balance_lock); 2090 mutex_init(&fs_info->balance_mutex); 2091 atomic_set(&fs_info->balance_running, 0); 2092 atomic_set(&fs_info->balance_pause_req, 0); 2093 atomic_set(&fs_info->balance_cancel_req, 0); 2094 fs_info->balance_ctl = NULL; 2095 init_waitqueue_head(&fs_info->balance_wait_q); 2096 2097 sb->s_blocksize = 4096; 2098 sb->s_blocksize_bits = blksize_bits(4096); 2099 sb->s_bdi = &fs_info->bdi; 2100 2101 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2102 set_nlink(fs_info->btree_inode, 1); 2103 /* 2104 * we set the i_size on the btree inode to the max possible int. 2105 * the real end of the address space is determined by all of 2106 * the devices in the system 2107 */ 2108 fs_info->btree_inode->i_size = OFFSET_MAX; 2109 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2110 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 2111 2112 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2113 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2114 fs_info->btree_inode->i_mapping); 2115 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2116 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2117 2118 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2119 2120 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2121 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2122 sizeof(struct btrfs_key)); 2123 set_bit(BTRFS_INODE_DUMMY, 2124 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2125 insert_inode_hash(fs_info->btree_inode); 2126 2127 spin_lock_init(&fs_info->block_group_cache_lock); 2128 fs_info->block_group_cache_tree = RB_ROOT; 2129 2130 extent_io_tree_init(&fs_info->freed_extents[0], 2131 fs_info->btree_inode->i_mapping); 2132 extent_io_tree_init(&fs_info->freed_extents[1], 2133 fs_info->btree_inode->i_mapping); 2134 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2135 fs_info->do_barriers = 1; 2136 2137 2138 mutex_init(&fs_info->ordered_operations_mutex); 2139 mutex_init(&fs_info->tree_log_mutex); 2140 mutex_init(&fs_info->chunk_mutex); 2141 mutex_init(&fs_info->transaction_kthread_mutex); 2142 mutex_init(&fs_info->cleaner_mutex); 2143 mutex_init(&fs_info->volume_mutex); 2144 init_rwsem(&fs_info->extent_commit_sem); 2145 init_rwsem(&fs_info->cleanup_work_sem); 2146 init_rwsem(&fs_info->subvol_sem); 2147 fs_info->dev_replace.lock_owner = 0; 2148 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2149 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2150 mutex_init(&fs_info->dev_replace.lock_management_lock); 2151 mutex_init(&fs_info->dev_replace.lock); 2152 2153 spin_lock_init(&fs_info->qgroup_lock); 2154 fs_info->qgroup_tree = RB_ROOT; 2155 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2156 fs_info->qgroup_seq = 1; 2157 fs_info->quota_enabled = 0; 2158 fs_info->pending_quota_state = 0; 2159 2160 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2161 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2162 2163 init_waitqueue_head(&fs_info->transaction_throttle); 2164 init_waitqueue_head(&fs_info->transaction_wait); 2165 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2166 init_waitqueue_head(&fs_info->async_submit_wait); 2167 2168 __setup_root(4096, 4096, 4096, 4096, tree_root, 2169 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2170 2171 invalidate_bdev(fs_devices->latest_bdev); 2172 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2173 if (!bh) { 2174 err = -EINVAL; 2175 goto fail_alloc; 2176 } 2177 2178 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2179 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2180 sizeof(*fs_info->super_for_commit)); 2181 brelse(bh); 2182 2183 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2184 2185 disk_super = fs_info->super_copy; 2186 if (!btrfs_super_root(disk_super)) 2187 goto fail_alloc; 2188 2189 /* check FS state, whether FS is broken. */ 2190 fs_info->fs_state |= btrfs_super_flags(disk_super); 2191 2192 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2193 if (ret) { 2194 printk(KERN_ERR "btrfs: superblock contains fatal errors\n"); 2195 err = ret; 2196 goto fail_alloc; 2197 } 2198 2199 /* 2200 * run through our array of backup supers and setup 2201 * our ring pointer to the oldest one 2202 */ 2203 generation = btrfs_super_generation(disk_super); 2204 find_oldest_super_backup(fs_info, generation); 2205 2206 /* 2207 * In the long term, we'll store the compression type in the super 2208 * block, and it'll be used for per file compression control. 2209 */ 2210 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2211 2212 ret = btrfs_parse_options(tree_root, options); 2213 if (ret) { 2214 err = ret; 2215 goto fail_alloc; 2216 } 2217 2218 features = btrfs_super_incompat_flags(disk_super) & 2219 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2220 if (features) { 2221 printk(KERN_ERR "BTRFS: couldn't mount because of " 2222 "unsupported optional features (%Lx).\n", 2223 (unsigned long long)features); 2224 err = -EINVAL; 2225 goto fail_alloc; 2226 } 2227 2228 if (btrfs_super_leafsize(disk_super) != 2229 btrfs_super_nodesize(disk_super)) { 2230 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2231 "blocksizes don't match. node %d leaf %d\n", 2232 btrfs_super_nodesize(disk_super), 2233 btrfs_super_leafsize(disk_super)); 2234 err = -EINVAL; 2235 goto fail_alloc; 2236 } 2237 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2238 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2239 "blocksize (%d) was too large\n", 2240 btrfs_super_leafsize(disk_super)); 2241 err = -EINVAL; 2242 goto fail_alloc; 2243 } 2244 2245 features = btrfs_super_incompat_flags(disk_super); 2246 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2247 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2248 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2249 2250 /* 2251 * flag our filesystem as having big metadata blocks if 2252 * they are bigger than the page size 2253 */ 2254 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) { 2255 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2256 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n"); 2257 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2258 } 2259 2260 nodesize = btrfs_super_nodesize(disk_super); 2261 leafsize = btrfs_super_leafsize(disk_super); 2262 sectorsize = btrfs_super_sectorsize(disk_super); 2263 stripesize = btrfs_super_stripesize(disk_super); 2264 2265 /* 2266 * mixed block groups end up with duplicate but slightly offset 2267 * extent buffers for the same range. It leads to corruptions 2268 */ 2269 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2270 (sectorsize != leafsize)) { 2271 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes " 2272 "are not allowed for mixed block groups on %s\n", 2273 sb->s_id); 2274 goto fail_alloc; 2275 } 2276 2277 btrfs_set_super_incompat_flags(disk_super, features); 2278 2279 features = btrfs_super_compat_ro_flags(disk_super) & 2280 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2281 if (!(sb->s_flags & MS_RDONLY) && features) { 2282 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2283 "unsupported option features (%Lx).\n", 2284 (unsigned long long)features); 2285 err = -EINVAL; 2286 goto fail_alloc; 2287 } 2288 2289 btrfs_init_workers(&fs_info->generic_worker, 2290 "genwork", 1, NULL); 2291 2292 btrfs_init_workers(&fs_info->workers, "worker", 2293 fs_info->thread_pool_size, 2294 &fs_info->generic_worker); 2295 2296 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 2297 fs_info->thread_pool_size, 2298 &fs_info->generic_worker); 2299 2300 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc", 2301 fs_info->thread_pool_size, 2302 &fs_info->generic_worker); 2303 2304 btrfs_init_workers(&fs_info->submit_workers, "submit", 2305 min_t(u64, fs_devices->num_devices, 2306 fs_info->thread_pool_size), 2307 &fs_info->generic_worker); 2308 2309 btrfs_init_workers(&fs_info->caching_workers, "cache", 2310 2, &fs_info->generic_worker); 2311 2312 /* a higher idle thresh on the submit workers makes it much more 2313 * likely that bios will be send down in a sane order to the 2314 * devices 2315 */ 2316 fs_info->submit_workers.idle_thresh = 64; 2317 2318 fs_info->workers.idle_thresh = 16; 2319 fs_info->workers.ordered = 1; 2320 2321 fs_info->delalloc_workers.idle_thresh = 2; 2322 fs_info->delalloc_workers.ordered = 1; 2323 2324 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 2325 &fs_info->generic_worker); 2326 btrfs_init_workers(&fs_info->endio_workers, "endio", 2327 fs_info->thread_pool_size, 2328 &fs_info->generic_worker); 2329 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 2330 fs_info->thread_pool_size, 2331 &fs_info->generic_worker); 2332 btrfs_init_workers(&fs_info->endio_meta_write_workers, 2333 "endio-meta-write", fs_info->thread_pool_size, 2334 &fs_info->generic_worker); 2335 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 2336 fs_info->thread_pool_size, 2337 &fs_info->generic_worker); 2338 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", 2339 1, &fs_info->generic_worker); 2340 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta", 2341 fs_info->thread_pool_size, 2342 &fs_info->generic_worker); 2343 btrfs_init_workers(&fs_info->readahead_workers, "readahead", 2344 fs_info->thread_pool_size, 2345 &fs_info->generic_worker); 2346 2347 /* 2348 * endios are largely parallel and should have a very 2349 * low idle thresh 2350 */ 2351 fs_info->endio_workers.idle_thresh = 4; 2352 fs_info->endio_meta_workers.idle_thresh = 4; 2353 2354 fs_info->endio_write_workers.idle_thresh = 2; 2355 fs_info->endio_meta_write_workers.idle_thresh = 2; 2356 fs_info->readahead_workers.idle_thresh = 2; 2357 2358 /* 2359 * btrfs_start_workers can really only fail because of ENOMEM so just 2360 * return -ENOMEM if any of these fail. 2361 */ 2362 ret = btrfs_start_workers(&fs_info->workers); 2363 ret |= btrfs_start_workers(&fs_info->generic_worker); 2364 ret |= btrfs_start_workers(&fs_info->submit_workers); 2365 ret |= btrfs_start_workers(&fs_info->delalloc_workers); 2366 ret |= btrfs_start_workers(&fs_info->fixup_workers); 2367 ret |= btrfs_start_workers(&fs_info->endio_workers); 2368 ret |= btrfs_start_workers(&fs_info->endio_meta_workers); 2369 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers); 2370 ret |= btrfs_start_workers(&fs_info->endio_write_workers); 2371 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker); 2372 ret |= btrfs_start_workers(&fs_info->delayed_workers); 2373 ret |= btrfs_start_workers(&fs_info->caching_workers); 2374 ret |= btrfs_start_workers(&fs_info->readahead_workers); 2375 ret |= btrfs_start_workers(&fs_info->flush_workers); 2376 if (ret) { 2377 err = -ENOMEM; 2378 goto fail_sb_buffer; 2379 } 2380 2381 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2382 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2383 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2384 2385 tree_root->nodesize = nodesize; 2386 tree_root->leafsize = leafsize; 2387 tree_root->sectorsize = sectorsize; 2388 tree_root->stripesize = stripesize; 2389 2390 sb->s_blocksize = sectorsize; 2391 sb->s_blocksize_bits = blksize_bits(sectorsize); 2392 2393 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 2394 sizeof(disk_super->magic))) { 2395 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 2396 goto fail_sb_buffer; 2397 } 2398 2399 if (sectorsize != PAGE_SIZE) { 2400 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) " 2401 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2402 goto fail_sb_buffer; 2403 } 2404 2405 mutex_lock(&fs_info->chunk_mutex); 2406 ret = btrfs_read_sys_array(tree_root); 2407 mutex_unlock(&fs_info->chunk_mutex); 2408 if (ret) { 2409 printk(KERN_WARNING "btrfs: failed to read the system " 2410 "array on %s\n", sb->s_id); 2411 goto fail_sb_buffer; 2412 } 2413 2414 blocksize = btrfs_level_size(tree_root, 2415 btrfs_super_chunk_root_level(disk_super)); 2416 generation = btrfs_super_chunk_root_generation(disk_super); 2417 2418 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2419 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2420 2421 chunk_root->node = read_tree_block(chunk_root, 2422 btrfs_super_chunk_root(disk_super), 2423 blocksize, generation); 2424 BUG_ON(!chunk_root->node); /* -ENOMEM */ 2425 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2426 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 2427 sb->s_id); 2428 goto fail_tree_roots; 2429 } 2430 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2431 chunk_root->commit_root = btrfs_root_node(chunk_root); 2432 2433 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2434 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 2435 BTRFS_UUID_SIZE); 2436 2437 ret = btrfs_read_chunk_tree(chunk_root); 2438 if (ret) { 2439 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 2440 sb->s_id); 2441 goto fail_tree_roots; 2442 } 2443 2444 /* 2445 * keep the device that is marked to be the target device for the 2446 * dev_replace procedure 2447 */ 2448 btrfs_close_extra_devices(fs_info, fs_devices, 0); 2449 2450 if (!fs_devices->latest_bdev) { 2451 printk(KERN_CRIT "btrfs: failed to read devices on %s\n", 2452 sb->s_id); 2453 goto fail_tree_roots; 2454 } 2455 2456 retry_root_backup: 2457 blocksize = btrfs_level_size(tree_root, 2458 btrfs_super_root_level(disk_super)); 2459 generation = btrfs_super_generation(disk_super); 2460 2461 tree_root->node = read_tree_block(tree_root, 2462 btrfs_super_root(disk_super), 2463 blocksize, generation); 2464 if (!tree_root->node || 2465 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2466 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 2467 sb->s_id); 2468 2469 goto recovery_tree_root; 2470 } 2471 2472 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2473 tree_root->commit_root = btrfs_root_node(tree_root); 2474 2475 ret = find_and_setup_root(tree_root, fs_info, 2476 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 2477 if (ret) 2478 goto recovery_tree_root; 2479 extent_root->track_dirty = 1; 2480 2481 ret = find_and_setup_root(tree_root, fs_info, 2482 BTRFS_DEV_TREE_OBJECTID, dev_root); 2483 if (ret) 2484 goto recovery_tree_root; 2485 dev_root->track_dirty = 1; 2486 2487 ret = find_and_setup_root(tree_root, fs_info, 2488 BTRFS_CSUM_TREE_OBJECTID, csum_root); 2489 if (ret) 2490 goto recovery_tree_root; 2491 csum_root->track_dirty = 1; 2492 2493 ret = find_and_setup_root(tree_root, fs_info, 2494 BTRFS_QUOTA_TREE_OBJECTID, quota_root); 2495 if (ret) { 2496 kfree(quota_root); 2497 quota_root = fs_info->quota_root = NULL; 2498 } else { 2499 quota_root->track_dirty = 1; 2500 fs_info->quota_enabled = 1; 2501 fs_info->pending_quota_state = 1; 2502 } 2503 2504 fs_info->generation = generation; 2505 fs_info->last_trans_committed = generation; 2506 2507 ret = btrfs_recover_balance(fs_info); 2508 if (ret) { 2509 printk(KERN_WARNING "btrfs: failed to recover balance\n"); 2510 goto fail_block_groups; 2511 } 2512 2513 ret = btrfs_init_dev_stats(fs_info); 2514 if (ret) { 2515 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n", 2516 ret); 2517 goto fail_block_groups; 2518 } 2519 2520 ret = btrfs_init_dev_replace(fs_info); 2521 if (ret) { 2522 pr_err("btrfs: failed to init dev_replace: %d\n", ret); 2523 goto fail_block_groups; 2524 } 2525 2526 btrfs_close_extra_devices(fs_info, fs_devices, 1); 2527 2528 ret = btrfs_init_space_info(fs_info); 2529 if (ret) { 2530 printk(KERN_ERR "Failed to initial space info: %d\n", ret); 2531 goto fail_block_groups; 2532 } 2533 2534 ret = btrfs_read_block_groups(extent_root); 2535 if (ret) { 2536 printk(KERN_ERR "Failed to read block groups: %d\n", ret); 2537 goto fail_block_groups; 2538 } 2539 fs_info->num_tolerated_disk_barrier_failures = 2540 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2541 if (fs_info->fs_devices->missing_devices > 2542 fs_info->num_tolerated_disk_barrier_failures && 2543 !(sb->s_flags & MS_RDONLY)) { 2544 printk(KERN_WARNING 2545 "Btrfs: too many missing devices, writeable mount is not allowed\n"); 2546 goto fail_block_groups; 2547 } 2548 2549 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2550 "btrfs-cleaner"); 2551 if (IS_ERR(fs_info->cleaner_kthread)) 2552 goto fail_block_groups; 2553 2554 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2555 tree_root, 2556 "btrfs-transaction"); 2557 if (IS_ERR(fs_info->transaction_kthread)) 2558 goto fail_cleaner; 2559 2560 if (!btrfs_test_opt(tree_root, SSD) && 2561 !btrfs_test_opt(tree_root, NOSSD) && 2562 !fs_info->fs_devices->rotating) { 2563 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 2564 "mode\n"); 2565 btrfs_set_opt(fs_info->mount_opt, SSD); 2566 } 2567 2568 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2569 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2570 ret = btrfsic_mount(tree_root, fs_devices, 2571 btrfs_test_opt(tree_root, 2572 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2573 1 : 0, 2574 fs_info->check_integrity_print_mask); 2575 if (ret) 2576 printk(KERN_WARNING "btrfs: failed to initialize" 2577 " integrity check module %s\n", sb->s_id); 2578 } 2579 #endif 2580 ret = btrfs_read_qgroup_config(fs_info); 2581 if (ret) 2582 goto fail_trans_kthread; 2583 2584 /* do not make disk changes in broken FS */ 2585 if (btrfs_super_log_root(disk_super) != 0) { 2586 u64 bytenr = btrfs_super_log_root(disk_super); 2587 2588 if (fs_devices->rw_devices == 0) { 2589 printk(KERN_WARNING "Btrfs log replay required " 2590 "on RO media\n"); 2591 err = -EIO; 2592 goto fail_qgroup; 2593 } 2594 blocksize = 2595 btrfs_level_size(tree_root, 2596 btrfs_super_log_root_level(disk_super)); 2597 2598 log_tree_root = btrfs_alloc_root(fs_info); 2599 if (!log_tree_root) { 2600 err = -ENOMEM; 2601 goto fail_qgroup; 2602 } 2603 2604 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2605 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2606 2607 log_tree_root->node = read_tree_block(tree_root, bytenr, 2608 blocksize, 2609 generation + 1); 2610 /* returns with log_tree_root freed on success */ 2611 ret = btrfs_recover_log_trees(log_tree_root); 2612 if (ret) { 2613 btrfs_error(tree_root->fs_info, ret, 2614 "Failed to recover log tree"); 2615 free_extent_buffer(log_tree_root->node); 2616 kfree(log_tree_root); 2617 goto fail_trans_kthread; 2618 } 2619 2620 if (sb->s_flags & MS_RDONLY) { 2621 ret = btrfs_commit_super(tree_root); 2622 if (ret) 2623 goto fail_trans_kthread; 2624 } 2625 } 2626 2627 ret = btrfs_find_orphan_roots(tree_root); 2628 if (ret) 2629 goto fail_trans_kthread; 2630 2631 if (!(sb->s_flags & MS_RDONLY)) { 2632 ret = btrfs_cleanup_fs_roots(fs_info); 2633 if (ret) 2634 goto fail_trans_kthread; 2635 2636 ret = btrfs_recover_relocation(tree_root); 2637 if (ret < 0) { 2638 printk(KERN_WARNING 2639 "btrfs: failed to recover relocation\n"); 2640 err = -EINVAL; 2641 goto fail_qgroup; 2642 } 2643 } 2644 2645 location.objectid = BTRFS_FS_TREE_OBJECTID; 2646 location.type = BTRFS_ROOT_ITEM_KEY; 2647 location.offset = (u64)-1; 2648 2649 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2650 if (!fs_info->fs_root) 2651 goto fail_qgroup; 2652 if (IS_ERR(fs_info->fs_root)) { 2653 err = PTR_ERR(fs_info->fs_root); 2654 goto fail_qgroup; 2655 } 2656 2657 if (sb->s_flags & MS_RDONLY) 2658 return 0; 2659 2660 down_read(&fs_info->cleanup_work_sem); 2661 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2662 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2663 up_read(&fs_info->cleanup_work_sem); 2664 close_ctree(tree_root); 2665 return ret; 2666 } 2667 up_read(&fs_info->cleanup_work_sem); 2668 2669 ret = btrfs_resume_balance_async(fs_info); 2670 if (ret) { 2671 printk(KERN_WARNING "btrfs: failed to resume balance\n"); 2672 close_ctree(tree_root); 2673 return ret; 2674 } 2675 2676 ret = btrfs_resume_dev_replace_async(fs_info); 2677 if (ret) { 2678 pr_warn("btrfs: failed to resume dev_replace\n"); 2679 close_ctree(tree_root); 2680 return ret; 2681 } 2682 2683 return 0; 2684 2685 fail_qgroup: 2686 btrfs_free_qgroup_config(fs_info); 2687 fail_trans_kthread: 2688 kthread_stop(fs_info->transaction_kthread); 2689 fail_cleaner: 2690 kthread_stop(fs_info->cleaner_kthread); 2691 2692 /* 2693 * make sure we're done with the btree inode before we stop our 2694 * kthreads 2695 */ 2696 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2697 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2698 2699 fail_block_groups: 2700 btrfs_free_block_groups(fs_info); 2701 2702 fail_tree_roots: 2703 free_root_pointers(fs_info, 1); 2704 2705 fail_sb_buffer: 2706 btrfs_stop_workers(&fs_info->generic_worker); 2707 btrfs_stop_workers(&fs_info->readahead_workers); 2708 btrfs_stop_workers(&fs_info->fixup_workers); 2709 btrfs_stop_workers(&fs_info->delalloc_workers); 2710 btrfs_stop_workers(&fs_info->workers); 2711 btrfs_stop_workers(&fs_info->endio_workers); 2712 btrfs_stop_workers(&fs_info->endio_meta_workers); 2713 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2714 btrfs_stop_workers(&fs_info->endio_write_workers); 2715 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2716 btrfs_stop_workers(&fs_info->submit_workers); 2717 btrfs_stop_workers(&fs_info->delayed_workers); 2718 btrfs_stop_workers(&fs_info->caching_workers); 2719 btrfs_stop_workers(&fs_info->flush_workers); 2720 fail_alloc: 2721 fail_iput: 2722 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2723 2724 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2725 iput(fs_info->btree_inode); 2726 fail_bdi: 2727 bdi_destroy(&fs_info->bdi); 2728 fail_srcu: 2729 cleanup_srcu_struct(&fs_info->subvol_srcu); 2730 fail: 2731 btrfs_close_devices(fs_info->fs_devices); 2732 return err; 2733 2734 recovery_tree_root: 2735 if (!btrfs_test_opt(tree_root, RECOVERY)) 2736 goto fail_tree_roots; 2737 2738 free_root_pointers(fs_info, 0); 2739 2740 /* don't use the log in recovery mode, it won't be valid */ 2741 btrfs_set_super_log_root(disk_super, 0); 2742 2743 /* we can't trust the free space cache either */ 2744 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2745 2746 ret = next_root_backup(fs_info, fs_info->super_copy, 2747 &num_backups_tried, &backup_index); 2748 if (ret == -1) 2749 goto fail_block_groups; 2750 goto retry_root_backup; 2751 } 2752 2753 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 2754 { 2755 if (uptodate) { 2756 set_buffer_uptodate(bh); 2757 } else { 2758 struct btrfs_device *device = (struct btrfs_device *) 2759 bh->b_private; 2760 2761 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to " 2762 "I/O error on %s\n", 2763 rcu_str_deref(device->name)); 2764 /* note, we dont' set_buffer_write_io_error because we have 2765 * our own ways of dealing with the IO errors 2766 */ 2767 clear_buffer_uptodate(bh); 2768 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 2769 } 2770 unlock_buffer(bh); 2771 put_bh(bh); 2772 } 2773 2774 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 2775 { 2776 struct buffer_head *bh; 2777 struct buffer_head *latest = NULL; 2778 struct btrfs_super_block *super; 2779 int i; 2780 u64 transid = 0; 2781 u64 bytenr; 2782 2783 /* we would like to check all the supers, but that would make 2784 * a btrfs mount succeed after a mkfs from a different FS. 2785 * So, we need to add a special mount option to scan for 2786 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2787 */ 2788 for (i = 0; i < 1; i++) { 2789 bytenr = btrfs_sb_offset(i); 2790 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2791 break; 2792 bh = __bread(bdev, bytenr / 4096, 4096); 2793 if (!bh) 2794 continue; 2795 2796 super = (struct btrfs_super_block *)bh->b_data; 2797 if (btrfs_super_bytenr(super) != bytenr || 2798 strncmp((char *)(&super->magic), BTRFS_MAGIC, 2799 sizeof(super->magic))) { 2800 brelse(bh); 2801 continue; 2802 } 2803 2804 if (!latest || btrfs_super_generation(super) > transid) { 2805 brelse(latest); 2806 latest = bh; 2807 transid = btrfs_super_generation(super); 2808 } else { 2809 brelse(bh); 2810 } 2811 } 2812 return latest; 2813 } 2814 2815 /* 2816 * this should be called twice, once with wait == 0 and 2817 * once with wait == 1. When wait == 0 is done, all the buffer heads 2818 * we write are pinned. 2819 * 2820 * They are released when wait == 1 is done. 2821 * max_mirrors must be the same for both runs, and it indicates how 2822 * many supers on this one device should be written. 2823 * 2824 * max_mirrors == 0 means to write them all. 2825 */ 2826 static int write_dev_supers(struct btrfs_device *device, 2827 struct btrfs_super_block *sb, 2828 int do_barriers, int wait, int max_mirrors) 2829 { 2830 struct buffer_head *bh; 2831 int i; 2832 int ret; 2833 int errors = 0; 2834 u32 crc; 2835 u64 bytenr; 2836 2837 if (max_mirrors == 0) 2838 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2839 2840 for (i = 0; i < max_mirrors; i++) { 2841 bytenr = btrfs_sb_offset(i); 2842 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2843 break; 2844 2845 if (wait) { 2846 bh = __find_get_block(device->bdev, bytenr / 4096, 2847 BTRFS_SUPER_INFO_SIZE); 2848 BUG_ON(!bh); 2849 wait_on_buffer(bh); 2850 if (!buffer_uptodate(bh)) 2851 errors++; 2852 2853 /* drop our reference */ 2854 brelse(bh); 2855 2856 /* drop the reference from the wait == 0 run */ 2857 brelse(bh); 2858 continue; 2859 } else { 2860 btrfs_set_super_bytenr(sb, bytenr); 2861 2862 crc = ~(u32)0; 2863 crc = btrfs_csum_data(NULL, (char *)sb + 2864 BTRFS_CSUM_SIZE, crc, 2865 BTRFS_SUPER_INFO_SIZE - 2866 BTRFS_CSUM_SIZE); 2867 btrfs_csum_final(crc, sb->csum); 2868 2869 /* 2870 * one reference for us, and we leave it for the 2871 * caller 2872 */ 2873 bh = __getblk(device->bdev, bytenr / 4096, 2874 BTRFS_SUPER_INFO_SIZE); 2875 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2876 2877 /* one reference for submit_bh */ 2878 get_bh(bh); 2879 2880 set_buffer_uptodate(bh); 2881 lock_buffer(bh); 2882 bh->b_end_io = btrfs_end_buffer_write_sync; 2883 bh->b_private = device; 2884 } 2885 2886 /* 2887 * we fua the first super. The others we allow 2888 * to go down lazy. 2889 */ 2890 ret = btrfsic_submit_bh(WRITE_FUA, bh); 2891 if (ret) 2892 errors++; 2893 } 2894 return errors < i ? 0 : -1; 2895 } 2896 2897 /* 2898 * endio for the write_dev_flush, this will wake anyone waiting 2899 * for the barrier when it is done 2900 */ 2901 static void btrfs_end_empty_barrier(struct bio *bio, int err) 2902 { 2903 if (err) { 2904 if (err == -EOPNOTSUPP) 2905 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2906 clear_bit(BIO_UPTODATE, &bio->bi_flags); 2907 } 2908 if (bio->bi_private) 2909 complete(bio->bi_private); 2910 bio_put(bio); 2911 } 2912 2913 /* 2914 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 2915 * sent down. With wait == 1, it waits for the previous flush. 2916 * 2917 * any device where the flush fails with eopnotsupp are flagged as not-barrier 2918 * capable 2919 */ 2920 static int write_dev_flush(struct btrfs_device *device, int wait) 2921 { 2922 struct bio *bio; 2923 int ret = 0; 2924 2925 if (device->nobarriers) 2926 return 0; 2927 2928 if (wait) { 2929 bio = device->flush_bio; 2930 if (!bio) 2931 return 0; 2932 2933 wait_for_completion(&device->flush_wait); 2934 2935 if (bio_flagged(bio, BIO_EOPNOTSUPP)) { 2936 printk_in_rcu("btrfs: disabling barriers on dev %s\n", 2937 rcu_str_deref(device->name)); 2938 device->nobarriers = 1; 2939 } else if (!bio_flagged(bio, BIO_UPTODATE)) { 2940 ret = -EIO; 2941 btrfs_dev_stat_inc_and_print(device, 2942 BTRFS_DEV_STAT_FLUSH_ERRS); 2943 } 2944 2945 /* drop the reference from the wait == 0 run */ 2946 bio_put(bio); 2947 device->flush_bio = NULL; 2948 2949 return ret; 2950 } 2951 2952 /* 2953 * one reference for us, and we leave it for the 2954 * caller 2955 */ 2956 device->flush_bio = NULL; 2957 bio = bio_alloc(GFP_NOFS, 0); 2958 if (!bio) 2959 return -ENOMEM; 2960 2961 bio->bi_end_io = btrfs_end_empty_barrier; 2962 bio->bi_bdev = device->bdev; 2963 init_completion(&device->flush_wait); 2964 bio->bi_private = &device->flush_wait; 2965 device->flush_bio = bio; 2966 2967 bio_get(bio); 2968 btrfsic_submit_bio(WRITE_FLUSH, bio); 2969 2970 return 0; 2971 } 2972 2973 /* 2974 * send an empty flush down to each device in parallel, 2975 * then wait for them 2976 */ 2977 static int barrier_all_devices(struct btrfs_fs_info *info) 2978 { 2979 struct list_head *head; 2980 struct btrfs_device *dev; 2981 int errors_send = 0; 2982 int errors_wait = 0; 2983 int ret; 2984 2985 /* send down all the barriers */ 2986 head = &info->fs_devices->devices; 2987 list_for_each_entry_rcu(dev, head, dev_list) { 2988 if (!dev->bdev) { 2989 errors_send++; 2990 continue; 2991 } 2992 if (!dev->in_fs_metadata || !dev->writeable) 2993 continue; 2994 2995 ret = write_dev_flush(dev, 0); 2996 if (ret) 2997 errors_send++; 2998 } 2999 3000 /* wait for all the barriers */ 3001 list_for_each_entry_rcu(dev, head, dev_list) { 3002 if (!dev->bdev) { 3003 errors_wait++; 3004 continue; 3005 } 3006 if (!dev->in_fs_metadata || !dev->writeable) 3007 continue; 3008 3009 ret = write_dev_flush(dev, 1); 3010 if (ret) 3011 errors_wait++; 3012 } 3013 if (errors_send > info->num_tolerated_disk_barrier_failures || 3014 errors_wait > info->num_tolerated_disk_barrier_failures) 3015 return -EIO; 3016 return 0; 3017 } 3018 3019 int btrfs_calc_num_tolerated_disk_barrier_failures( 3020 struct btrfs_fs_info *fs_info) 3021 { 3022 struct btrfs_ioctl_space_info space; 3023 struct btrfs_space_info *sinfo; 3024 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3025 BTRFS_BLOCK_GROUP_SYSTEM, 3026 BTRFS_BLOCK_GROUP_METADATA, 3027 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3028 int num_types = 4; 3029 int i; 3030 int c; 3031 int num_tolerated_disk_barrier_failures = 3032 (int)fs_info->fs_devices->num_devices; 3033 3034 for (i = 0; i < num_types; i++) { 3035 struct btrfs_space_info *tmp; 3036 3037 sinfo = NULL; 3038 rcu_read_lock(); 3039 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3040 if (tmp->flags == types[i]) { 3041 sinfo = tmp; 3042 break; 3043 } 3044 } 3045 rcu_read_unlock(); 3046 3047 if (!sinfo) 3048 continue; 3049 3050 down_read(&sinfo->groups_sem); 3051 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3052 if (!list_empty(&sinfo->block_groups[c])) { 3053 u64 flags; 3054 3055 btrfs_get_block_group_info( 3056 &sinfo->block_groups[c], &space); 3057 if (space.total_bytes == 0 || 3058 space.used_bytes == 0) 3059 continue; 3060 flags = space.flags; 3061 /* 3062 * return 3063 * 0: if dup, single or RAID0 is configured for 3064 * any of metadata, system or data, else 3065 * 1: if RAID5 is configured, or if RAID1 or 3066 * RAID10 is configured and only two mirrors 3067 * are used, else 3068 * 2: if RAID6 is configured, else 3069 * num_mirrors - 1: if RAID1 or RAID10 is 3070 * configured and more than 3071 * 2 mirrors are used. 3072 */ 3073 if (num_tolerated_disk_barrier_failures > 0 && 3074 ((flags & (BTRFS_BLOCK_GROUP_DUP | 3075 BTRFS_BLOCK_GROUP_RAID0)) || 3076 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) 3077 == 0))) 3078 num_tolerated_disk_barrier_failures = 0; 3079 else if (num_tolerated_disk_barrier_failures > 1 3080 && 3081 (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3082 BTRFS_BLOCK_GROUP_RAID10))) 3083 num_tolerated_disk_barrier_failures = 1; 3084 } 3085 } 3086 up_read(&sinfo->groups_sem); 3087 } 3088 3089 return num_tolerated_disk_barrier_failures; 3090 } 3091 3092 int write_all_supers(struct btrfs_root *root, int max_mirrors) 3093 { 3094 struct list_head *head; 3095 struct btrfs_device *dev; 3096 struct btrfs_super_block *sb; 3097 struct btrfs_dev_item *dev_item; 3098 int ret; 3099 int do_barriers; 3100 int max_errors; 3101 int total_errors = 0; 3102 u64 flags; 3103 3104 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3105 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3106 backup_super_roots(root->fs_info); 3107 3108 sb = root->fs_info->super_for_commit; 3109 dev_item = &sb->dev_item; 3110 3111 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3112 head = &root->fs_info->fs_devices->devices; 3113 3114 if (do_barriers) { 3115 ret = barrier_all_devices(root->fs_info); 3116 if (ret) { 3117 mutex_unlock( 3118 &root->fs_info->fs_devices->device_list_mutex); 3119 btrfs_error(root->fs_info, ret, 3120 "errors while submitting device barriers."); 3121 return ret; 3122 } 3123 } 3124 3125 list_for_each_entry_rcu(dev, head, dev_list) { 3126 if (!dev->bdev) { 3127 total_errors++; 3128 continue; 3129 } 3130 if (!dev->in_fs_metadata || !dev->writeable) 3131 continue; 3132 3133 btrfs_set_stack_device_generation(dev_item, 0); 3134 btrfs_set_stack_device_type(dev_item, dev->type); 3135 btrfs_set_stack_device_id(dev_item, dev->devid); 3136 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 3137 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 3138 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3139 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3140 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3141 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3142 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3143 3144 flags = btrfs_super_flags(sb); 3145 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3146 3147 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3148 if (ret) 3149 total_errors++; 3150 } 3151 if (total_errors > max_errors) { 3152 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 3153 total_errors); 3154 3155 /* This shouldn't happen. FUA is masked off if unsupported */ 3156 BUG(); 3157 } 3158 3159 total_errors = 0; 3160 list_for_each_entry_rcu(dev, head, dev_list) { 3161 if (!dev->bdev) 3162 continue; 3163 if (!dev->in_fs_metadata || !dev->writeable) 3164 continue; 3165 3166 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3167 if (ret) 3168 total_errors++; 3169 } 3170 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3171 if (total_errors > max_errors) { 3172 btrfs_error(root->fs_info, -EIO, 3173 "%d errors while writing supers", total_errors); 3174 return -EIO; 3175 } 3176 return 0; 3177 } 3178 3179 int write_ctree_super(struct btrfs_trans_handle *trans, 3180 struct btrfs_root *root, int max_mirrors) 3181 { 3182 int ret; 3183 3184 ret = write_all_supers(root, max_mirrors); 3185 return ret; 3186 } 3187 3188 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 3189 { 3190 spin_lock(&fs_info->fs_roots_radix_lock); 3191 radix_tree_delete(&fs_info->fs_roots_radix, 3192 (unsigned long)root->root_key.objectid); 3193 spin_unlock(&fs_info->fs_roots_radix_lock); 3194 3195 if (btrfs_root_refs(&root->root_item) == 0) 3196 synchronize_srcu(&fs_info->subvol_srcu); 3197 3198 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3199 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3200 free_fs_root(root); 3201 } 3202 3203 static void free_fs_root(struct btrfs_root *root) 3204 { 3205 iput(root->cache_inode); 3206 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3207 if (root->anon_dev) 3208 free_anon_bdev(root->anon_dev); 3209 free_extent_buffer(root->node); 3210 free_extent_buffer(root->commit_root); 3211 kfree(root->free_ino_ctl); 3212 kfree(root->free_ino_pinned); 3213 kfree(root->name); 3214 kfree(root); 3215 } 3216 3217 static void del_fs_roots(struct btrfs_fs_info *fs_info) 3218 { 3219 int ret; 3220 struct btrfs_root *gang[8]; 3221 int i; 3222 3223 while (!list_empty(&fs_info->dead_roots)) { 3224 gang[0] = list_entry(fs_info->dead_roots.next, 3225 struct btrfs_root, root_list); 3226 list_del(&gang[0]->root_list); 3227 3228 if (gang[0]->in_radix) { 3229 btrfs_free_fs_root(fs_info, gang[0]); 3230 } else { 3231 free_extent_buffer(gang[0]->node); 3232 free_extent_buffer(gang[0]->commit_root); 3233 kfree(gang[0]); 3234 } 3235 } 3236 3237 while (1) { 3238 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3239 (void **)gang, 0, 3240 ARRAY_SIZE(gang)); 3241 if (!ret) 3242 break; 3243 for (i = 0; i < ret; i++) 3244 btrfs_free_fs_root(fs_info, gang[i]); 3245 } 3246 } 3247 3248 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3249 { 3250 u64 root_objectid = 0; 3251 struct btrfs_root *gang[8]; 3252 int i; 3253 int ret; 3254 3255 while (1) { 3256 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3257 (void **)gang, root_objectid, 3258 ARRAY_SIZE(gang)); 3259 if (!ret) 3260 break; 3261 3262 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3263 for (i = 0; i < ret; i++) { 3264 int err; 3265 3266 root_objectid = gang[i]->root_key.objectid; 3267 err = btrfs_orphan_cleanup(gang[i]); 3268 if (err) 3269 return err; 3270 } 3271 root_objectid++; 3272 } 3273 return 0; 3274 } 3275 3276 int btrfs_commit_super(struct btrfs_root *root) 3277 { 3278 struct btrfs_trans_handle *trans; 3279 int ret; 3280 3281 mutex_lock(&root->fs_info->cleaner_mutex); 3282 btrfs_run_delayed_iputs(root); 3283 btrfs_clean_old_snapshots(root); 3284 mutex_unlock(&root->fs_info->cleaner_mutex); 3285 3286 /* wait until ongoing cleanup work done */ 3287 down_write(&root->fs_info->cleanup_work_sem); 3288 up_write(&root->fs_info->cleanup_work_sem); 3289 3290 trans = btrfs_join_transaction(root); 3291 if (IS_ERR(trans)) 3292 return PTR_ERR(trans); 3293 ret = btrfs_commit_transaction(trans, root); 3294 if (ret) 3295 return ret; 3296 /* run commit again to drop the original snapshot */ 3297 trans = btrfs_join_transaction(root); 3298 if (IS_ERR(trans)) 3299 return PTR_ERR(trans); 3300 ret = btrfs_commit_transaction(trans, root); 3301 if (ret) 3302 return ret; 3303 ret = btrfs_write_and_wait_transaction(NULL, root); 3304 if (ret) { 3305 btrfs_error(root->fs_info, ret, 3306 "Failed to sync btree inode to disk."); 3307 return ret; 3308 } 3309 3310 ret = write_ctree_super(NULL, root, 0); 3311 return ret; 3312 } 3313 3314 int close_ctree(struct btrfs_root *root) 3315 { 3316 struct btrfs_fs_info *fs_info = root->fs_info; 3317 int ret; 3318 3319 fs_info->closing = 1; 3320 smp_mb(); 3321 3322 /* pause restriper - we want to resume on mount */ 3323 btrfs_pause_balance(fs_info); 3324 3325 btrfs_dev_replace_suspend_for_unmount(fs_info); 3326 3327 btrfs_scrub_cancel(fs_info); 3328 3329 /* wait for any defraggers to finish */ 3330 wait_event(fs_info->transaction_wait, 3331 (atomic_read(&fs_info->defrag_running) == 0)); 3332 3333 /* clear out the rbtree of defraggable inodes */ 3334 btrfs_cleanup_defrag_inodes(fs_info); 3335 3336 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3337 ret = btrfs_commit_super(root); 3338 if (ret) 3339 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 3340 } 3341 3342 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) 3343 btrfs_error_commit_super(root); 3344 3345 btrfs_put_block_group_cache(fs_info); 3346 3347 kthread_stop(fs_info->transaction_kthread); 3348 kthread_stop(fs_info->cleaner_kthread); 3349 3350 fs_info->closing = 2; 3351 smp_mb(); 3352 3353 btrfs_free_qgroup_config(root->fs_info); 3354 3355 if (fs_info->delalloc_bytes) { 3356 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 3357 (unsigned long long)fs_info->delalloc_bytes); 3358 } 3359 3360 free_extent_buffer(fs_info->extent_root->node); 3361 free_extent_buffer(fs_info->extent_root->commit_root); 3362 free_extent_buffer(fs_info->tree_root->node); 3363 free_extent_buffer(fs_info->tree_root->commit_root); 3364 free_extent_buffer(fs_info->chunk_root->node); 3365 free_extent_buffer(fs_info->chunk_root->commit_root); 3366 free_extent_buffer(fs_info->dev_root->node); 3367 free_extent_buffer(fs_info->dev_root->commit_root); 3368 free_extent_buffer(fs_info->csum_root->node); 3369 free_extent_buffer(fs_info->csum_root->commit_root); 3370 if (fs_info->quota_root) { 3371 free_extent_buffer(fs_info->quota_root->node); 3372 free_extent_buffer(fs_info->quota_root->commit_root); 3373 } 3374 3375 btrfs_free_block_groups(fs_info); 3376 3377 del_fs_roots(fs_info); 3378 3379 iput(fs_info->btree_inode); 3380 3381 btrfs_stop_workers(&fs_info->generic_worker); 3382 btrfs_stop_workers(&fs_info->fixup_workers); 3383 btrfs_stop_workers(&fs_info->delalloc_workers); 3384 btrfs_stop_workers(&fs_info->workers); 3385 btrfs_stop_workers(&fs_info->endio_workers); 3386 btrfs_stop_workers(&fs_info->endio_meta_workers); 3387 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 3388 btrfs_stop_workers(&fs_info->endio_write_workers); 3389 btrfs_stop_workers(&fs_info->endio_freespace_worker); 3390 btrfs_stop_workers(&fs_info->submit_workers); 3391 btrfs_stop_workers(&fs_info->delayed_workers); 3392 btrfs_stop_workers(&fs_info->caching_workers); 3393 btrfs_stop_workers(&fs_info->readahead_workers); 3394 btrfs_stop_workers(&fs_info->flush_workers); 3395 3396 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3397 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3398 btrfsic_unmount(root, fs_info->fs_devices); 3399 #endif 3400 3401 btrfs_close_devices(fs_info->fs_devices); 3402 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3403 3404 bdi_destroy(&fs_info->bdi); 3405 cleanup_srcu_struct(&fs_info->subvol_srcu); 3406 3407 return 0; 3408 } 3409 3410 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3411 int atomic) 3412 { 3413 int ret; 3414 struct inode *btree_inode = buf->pages[0]->mapping->host; 3415 3416 ret = extent_buffer_uptodate(buf); 3417 if (!ret) 3418 return ret; 3419 3420 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3421 parent_transid, atomic); 3422 if (ret == -EAGAIN) 3423 return ret; 3424 return !ret; 3425 } 3426 3427 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3428 { 3429 return set_extent_buffer_uptodate(buf); 3430 } 3431 3432 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3433 { 3434 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3435 u64 transid = btrfs_header_generation(buf); 3436 int was_dirty; 3437 3438 btrfs_assert_tree_locked(buf); 3439 if (transid != root->fs_info->generation) 3440 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 3441 "found %llu running %llu\n", 3442 (unsigned long long)buf->start, 3443 (unsigned long long)transid, 3444 (unsigned long long)root->fs_info->generation); 3445 was_dirty = set_extent_buffer_dirty(buf); 3446 if (!was_dirty) { 3447 spin_lock(&root->fs_info->delalloc_lock); 3448 root->fs_info->dirty_metadata_bytes += buf->len; 3449 spin_unlock(&root->fs_info->delalloc_lock); 3450 } 3451 } 3452 3453 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 3454 int flush_delayed) 3455 { 3456 /* 3457 * looks as though older kernels can get into trouble with 3458 * this code, they end up stuck in balance_dirty_pages forever 3459 */ 3460 u64 num_dirty; 3461 unsigned long thresh = 32 * 1024 * 1024; 3462 3463 if (current->flags & PF_MEMALLOC) 3464 return; 3465 3466 if (flush_delayed) 3467 btrfs_balance_delayed_items(root); 3468 3469 num_dirty = root->fs_info->dirty_metadata_bytes; 3470 3471 if (num_dirty > thresh) { 3472 balance_dirty_pages_ratelimited( 3473 root->fs_info->btree_inode->i_mapping); 3474 } 3475 return; 3476 } 3477 3478 void btrfs_btree_balance_dirty(struct btrfs_root *root) 3479 { 3480 __btrfs_btree_balance_dirty(root, 1); 3481 } 3482 3483 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 3484 { 3485 __btrfs_btree_balance_dirty(root, 0); 3486 } 3487 3488 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3489 { 3490 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3491 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3492 } 3493 3494 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3495 int read_only) 3496 { 3497 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) { 3498 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n"); 3499 return -EINVAL; 3500 } 3501 3502 if (read_only) 3503 return 0; 3504 3505 return 0; 3506 } 3507 3508 void btrfs_error_commit_super(struct btrfs_root *root) 3509 { 3510 mutex_lock(&root->fs_info->cleaner_mutex); 3511 btrfs_run_delayed_iputs(root); 3512 mutex_unlock(&root->fs_info->cleaner_mutex); 3513 3514 down_write(&root->fs_info->cleanup_work_sem); 3515 up_write(&root->fs_info->cleanup_work_sem); 3516 3517 /* cleanup FS via transaction */ 3518 btrfs_cleanup_transaction(root); 3519 } 3520 3521 static void btrfs_destroy_ordered_operations(struct btrfs_root *root) 3522 { 3523 struct btrfs_inode *btrfs_inode; 3524 struct list_head splice; 3525 3526 INIT_LIST_HEAD(&splice); 3527 3528 mutex_lock(&root->fs_info->ordered_operations_mutex); 3529 spin_lock(&root->fs_info->ordered_extent_lock); 3530 3531 list_splice_init(&root->fs_info->ordered_operations, &splice); 3532 while (!list_empty(&splice)) { 3533 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3534 ordered_operations); 3535 3536 list_del_init(&btrfs_inode->ordered_operations); 3537 3538 btrfs_invalidate_inodes(btrfs_inode->root); 3539 } 3540 3541 spin_unlock(&root->fs_info->ordered_extent_lock); 3542 mutex_unlock(&root->fs_info->ordered_operations_mutex); 3543 } 3544 3545 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 3546 { 3547 struct list_head splice; 3548 struct btrfs_ordered_extent *ordered; 3549 struct inode *inode; 3550 3551 INIT_LIST_HEAD(&splice); 3552 3553 spin_lock(&root->fs_info->ordered_extent_lock); 3554 3555 list_splice_init(&root->fs_info->ordered_extents, &splice); 3556 while (!list_empty(&splice)) { 3557 ordered = list_entry(splice.next, struct btrfs_ordered_extent, 3558 root_extent_list); 3559 3560 list_del_init(&ordered->root_extent_list); 3561 atomic_inc(&ordered->refs); 3562 3563 /* the inode may be getting freed (in sys_unlink path). */ 3564 inode = igrab(ordered->inode); 3565 3566 spin_unlock(&root->fs_info->ordered_extent_lock); 3567 if (inode) 3568 iput(inode); 3569 3570 atomic_set(&ordered->refs, 1); 3571 btrfs_put_ordered_extent(ordered); 3572 3573 spin_lock(&root->fs_info->ordered_extent_lock); 3574 } 3575 3576 spin_unlock(&root->fs_info->ordered_extent_lock); 3577 } 3578 3579 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 3580 struct btrfs_root *root) 3581 { 3582 struct rb_node *node; 3583 struct btrfs_delayed_ref_root *delayed_refs; 3584 struct btrfs_delayed_ref_node *ref; 3585 int ret = 0; 3586 3587 delayed_refs = &trans->delayed_refs; 3588 3589 spin_lock(&delayed_refs->lock); 3590 if (delayed_refs->num_entries == 0) { 3591 spin_unlock(&delayed_refs->lock); 3592 printk(KERN_INFO "delayed_refs has NO entry\n"); 3593 return ret; 3594 } 3595 3596 while ((node = rb_first(&delayed_refs->root)) != NULL) { 3597 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 3598 3599 atomic_set(&ref->refs, 1); 3600 if (btrfs_delayed_ref_is_head(ref)) { 3601 struct btrfs_delayed_ref_head *head; 3602 3603 head = btrfs_delayed_node_to_head(ref); 3604 if (!mutex_trylock(&head->mutex)) { 3605 atomic_inc(&ref->refs); 3606 spin_unlock(&delayed_refs->lock); 3607 3608 /* Need to wait for the delayed ref to run */ 3609 mutex_lock(&head->mutex); 3610 mutex_unlock(&head->mutex); 3611 btrfs_put_delayed_ref(ref); 3612 3613 spin_lock(&delayed_refs->lock); 3614 continue; 3615 } 3616 3617 kfree(head->extent_op); 3618 delayed_refs->num_heads--; 3619 if (list_empty(&head->cluster)) 3620 delayed_refs->num_heads_ready--; 3621 list_del_init(&head->cluster); 3622 } 3623 ref->in_tree = 0; 3624 rb_erase(&ref->rb_node, &delayed_refs->root); 3625 delayed_refs->num_entries--; 3626 3627 spin_unlock(&delayed_refs->lock); 3628 btrfs_put_delayed_ref(ref); 3629 3630 cond_resched(); 3631 spin_lock(&delayed_refs->lock); 3632 } 3633 3634 spin_unlock(&delayed_refs->lock); 3635 3636 return ret; 3637 } 3638 3639 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t) 3640 { 3641 struct btrfs_pending_snapshot *snapshot; 3642 struct list_head splice; 3643 3644 INIT_LIST_HEAD(&splice); 3645 3646 list_splice_init(&t->pending_snapshots, &splice); 3647 3648 while (!list_empty(&splice)) { 3649 snapshot = list_entry(splice.next, 3650 struct btrfs_pending_snapshot, 3651 list); 3652 3653 list_del_init(&snapshot->list); 3654 3655 kfree(snapshot); 3656 } 3657 } 3658 3659 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 3660 { 3661 struct btrfs_inode *btrfs_inode; 3662 struct list_head splice; 3663 3664 INIT_LIST_HEAD(&splice); 3665 3666 spin_lock(&root->fs_info->delalloc_lock); 3667 list_splice_init(&root->fs_info->delalloc_inodes, &splice); 3668 3669 while (!list_empty(&splice)) { 3670 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3671 delalloc_inodes); 3672 3673 list_del_init(&btrfs_inode->delalloc_inodes); 3674 3675 btrfs_invalidate_inodes(btrfs_inode->root); 3676 } 3677 3678 spin_unlock(&root->fs_info->delalloc_lock); 3679 } 3680 3681 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 3682 struct extent_io_tree *dirty_pages, 3683 int mark) 3684 { 3685 int ret; 3686 struct page *page; 3687 struct inode *btree_inode = root->fs_info->btree_inode; 3688 struct extent_buffer *eb; 3689 u64 start = 0; 3690 u64 end; 3691 u64 offset; 3692 unsigned long index; 3693 3694 while (1) { 3695 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 3696 mark, NULL); 3697 if (ret) 3698 break; 3699 3700 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 3701 while (start <= end) { 3702 index = start >> PAGE_CACHE_SHIFT; 3703 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 3704 page = find_get_page(btree_inode->i_mapping, index); 3705 if (!page) 3706 continue; 3707 offset = page_offset(page); 3708 3709 spin_lock(&dirty_pages->buffer_lock); 3710 eb = radix_tree_lookup( 3711 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer, 3712 offset >> PAGE_CACHE_SHIFT); 3713 spin_unlock(&dirty_pages->buffer_lock); 3714 if (eb) 3715 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY, 3716 &eb->bflags); 3717 if (PageWriteback(page)) 3718 end_page_writeback(page); 3719 3720 lock_page(page); 3721 if (PageDirty(page)) { 3722 clear_page_dirty_for_io(page); 3723 spin_lock_irq(&page->mapping->tree_lock); 3724 radix_tree_tag_clear(&page->mapping->page_tree, 3725 page_index(page), 3726 PAGECACHE_TAG_DIRTY); 3727 spin_unlock_irq(&page->mapping->tree_lock); 3728 } 3729 3730 unlock_page(page); 3731 page_cache_release(page); 3732 } 3733 } 3734 3735 return ret; 3736 } 3737 3738 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 3739 struct extent_io_tree *pinned_extents) 3740 { 3741 struct extent_io_tree *unpin; 3742 u64 start; 3743 u64 end; 3744 int ret; 3745 bool loop = true; 3746 3747 unpin = pinned_extents; 3748 again: 3749 while (1) { 3750 ret = find_first_extent_bit(unpin, 0, &start, &end, 3751 EXTENT_DIRTY, NULL); 3752 if (ret) 3753 break; 3754 3755 /* opt_discard */ 3756 if (btrfs_test_opt(root, DISCARD)) 3757 ret = btrfs_error_discard_extent(root, start, 3758 end + 1 - start, 3759 NULL); 3760 3761 clear_extent_dirty(unpin, start, end, GFP_NOFS); 3762 btrfs_error_unpin_extent_range(root, start, end); 3763 cond_resched(); 3764 } 3765 3766 if (loop) { 3767 if (unpin == &root->fs_info->freed_extents[0]) 3768 unpin = &root->fs_info->freed_extents[1]; 3769 else 3770 unpin = &root->fs_info->freed_extents[0]; 3771 loop = false; 3772 goto again; 3773 } 3774 3775 return 0; 3776 } 3777 3778 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 3779 struct btrfs_root *root) 3780 { 3781 btrfs_destroy_delayed_refs(cur_trans, root); 3782 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 3783 cur_trans->dirty_pages.dirty_bytes); 3784 3785 /* FIXME: cleanup wait for commit */ 3786 cur_trans->in_commit = 1; 3787 cur_trans->blocked = 1; 3788 wake_up(&root->fs_info->transaction_blocked_wait); 3789 3790 cur_trans->blocked = 0; 3791 wake_up(&root->fs_info->transaction_wait); 3792 3793 cur_trans->commit_done = 1; 3794 wake_up(&cur_trans->commit_wait); 3795 3796 btrfs_destroy_delayed_inodes(root); 3797 btrfs_assert_delayed_root_empty(root); 3798 3799 btrfs_destroy_pending_snapshots(cur_trans); 3800 3801 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 3802 EXTENT_DIRTY); 3803 btrfs_destroy_pinned_extent(root, 3804 root->fs_info->pinned_extents); 3805 3806 /* 3807 memset(cur_trans, 0, sizeof(*cur_trans)); 3808 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 3809 */ 3810 } 3811 3812 int btrfs_cleanup_transaction(struct btrfs_root *root) 3813 { 3814 struct btrfs_transaction *t; 3815 LIST_HEAD(list); 3816 3817 mutex_lock(&root->fs_info->transaction_kthread_mutex); 3818 3819 spin_lock(&root->fs_info->trans_lock); 3820 list_splice_init(&root->fs_info->trans_list, &list); 3821 root->fs_info->trans_no_join = 1; 3822 spin_unlock(&root->fs_info->trans_lock); 3823 3824 while (!list_empty(&list)) { 3825 t = list_entry(list.next, struct btrfs_transaction, list); 3826 if (!t) 3827 break; 3828 3829 btrfs_destroy_ordered_operations(root); 3830 3831 btrfs_destroy_ordered_extents(root); 3832 3833 btrfs_destroy_delayed_refs(t, root); 3834 3835 btrfs_block_rsv_release(root, 3836 &root->fs_info->trans_block_rsv, 3837 t->dirty_pages.dirty_bytes); 3838 3839 /* FIXME: cleanup wait for commit */ 3840 t->in_commit = 1; 3841 t->blocked = 1; 3842 smp_mb(); 3843 if (waitqueue_active(&root->fs_info->transaction_blocked_wait)) 3844 wake_up(&root->fs_info->transaction_blocked_wait); 3845 3846 t->blocked = 0; 3847 smp_mb(); 3848 if (waitqueue_active(&root->fs_info->transaction_wait)) 3849 wake_up(&root->fs_info->transaction_wait); 3850 3851 t->commit_done = 1; 3852 smp_mb(); 3853 if (waitqueue_active(&t->commit_wait)) 3854 wake_up(&t->commit_wait); 3855 3856 btrfs_destroy_delayed_inodes(root); 3857 btrfs_assert_delayed_root_empty(root); 3858 3859 btrfs_destroy_pending_snapshots(t); 3860 3861 btrfs_destroy_delalloc_inodes(root); 3862 3863 spin_lock(&root->fs_info->trans_lock); 3864 root->fs_info->running_transaction = NULL; 3865 spin_unlock(&root->fs_info->trans_lock); 3866 3867 btrfs_destroy_marked_extents(root, &t->dirty_pages, 3868 EXTENT_DIRTY); 3869 3870 btrfs_destroy_pinned_extent(root, 3871 root->fs_info->pinned_extents); 3872 3873 atomic_set(&t->use_count, 0); 3874 list_del_init(&t->list); 3875 memset(t, 0, sizeof(*t)); 3876 kmem_cache_free(btrfs_transaction_cachep, t); 3877 } 3878 3879 spin_lock(&root->fs_info->trans_lock); 3880 root->fs_info->trans_no_join = 0; 3881 spin_unlock(&root->fs_info->trans_lock); 3882 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 3883 3884 return 0; 3885 } 3886 3887 static struct extent_io_ops btree_extent_io_ops = { 3888 .readpage_end_io_hook = btree_readpage_end_io_hook, 3889 .readpage_io_failed_hook = btree_io_failed_hook, 3890 .submit_bio_hook = btree_submit_bio_hook, 3891 /* note we're sharing with inode.c for the merge bio hook */ 3892 .merge_bio_hook = btrfs_merge_bio_hook, 3893 }; 3894