xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 9c6d26df1fae6ad4718d51c48e6517913304ed27)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/scatterlist.h>
9 #include <linux/swap.h>
10 #include <linux/radix-tree.h>
11 #include <linux/writeback.h>
12 #include <linux/buffer_head.h>
13 #include <linux/workqueue.h>
14 #include <linux/kthread.h>
15 #include <linux/slab.h>
16 #include <linux/migrate.h>
17 #include <linux/ratelimit.h>
18 #include <linux/uuid.h>
19 #include <linux/semaphore.h>
20 #include <linux/error-injection.h>
21 #include <linux/crc32c.h>
22 #include <asm/unaligned.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "print-tree.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "free-space-cache.h"
32 #include "free-space-tree.h"
33 #include "inode-map.h"
34 #include "check-integrity.h"
35 #include "rcu-string.h"
36 #include "dev-replace.h"
37 #include "raid56.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 #include "compression.h"
41 #include "tree-checker.h"
42 #include "ref-verify.h"
43 
44 #ifdef CONFIG_X86
45 #include <asm/cpufeature.h>
46 #endif
47 
48 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
49 				 BTRFS_HEADER_FLAG_RELOC |\
50 				 BTRFS_SUPER_FLAG_ERROR |\
51 				 BTRFS_SUPER_FLAG_SEEDING |\
52 				 BTRFS_SUPER_FLAG_METADUMP |\
53 				 BTRFS_SUPER_FLAG_METADUMP_V2)
54 
55 static const struct extent_io_ops btree_extent_io_ops;
56 static void end_workqueue_fn(struct btrfs_work *work);
57 static void free_fs_root(struct btrfs_root *root);
58 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
59 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
60 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
61 				      struct btrfs_fs_info *fs_info);
62 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
63 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
64 					struct extent_io_tree *dirty_pages,
65 					int mark);
66 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
67 				       struct extent_io_tree *pinned_extents);
68 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
69 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
70 
71 /*
72  * btrfs_end_io_wq structs are used to do processing in task context when an IO
73  * is complete.  This is used during reads to verify checksums, and it is used
74  * by writes to insert metadata for new file extents after IO is complete.
75  */
76 struct btrfs_end_io_wq {
77 	struct bio *bio;
78 	bio_end_io_t *end_io;
79 	void *private;
80 	struct btrfs_fs_info *info;
81 	blk_status_t status;
82 	enum btrfs_wq_endio_type metadata;
83 	struct btrfs_work work;
84 };
85 
86 static struct kmem_cache *btrfs_end_io_wq_cache;
87 
88 int __init btrfs_end_io_wq_init(void)
89 {
90 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
91 					sizeof(struct btrfs_end_io_wq),
92 					0,
93 					SLAB_MEM_SPREAD,
94 					NULL);
95 	if (!btrfs_end_io_wq_cache)
96 		return -ENOMEM;
97 	return 0;
98 }
99 
100 void __cold btrfs_end_io_wq_exit(void)
101 {
102 	kmem_cache_destroy(btrfs_end_io_wq_cache);
103 }
104 
105 /*
106  * async submit bios are used to offload expensive checksumming
107  * onto the worker threads.  They checksum file and metadata bios
108  * just before they are sent down the IO stack.
109  */
110 struct async_submit_bio {
111 	void *private_data;
112 	struct btrfs_fs_info *fs_info;
113 	struct bio *bio;
114 	extent_submit_bio_start_t *submit_bio_start;
115 	extent_submit_bio_done_t *submit_bio_done;
116 	int mirror_num;
117 	unsigned long bio_flags;
118 	/*
119 	 * bio_offset is optional, can be used if the pages in the bio
120 	 * can't tell us where in the file the bio should go
121 	 */
122 	u64 bio_offset;
123 	struct btrfs_work work;
124 	blk_status_t status;
125 };
126 
127 /*
128  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
129  * eb, the lockdep key is determined by the btrfs_root it belongs to and
130  * the level the eb occupies in the tree.
131  *
132  * Different roots are used for different purposes and may nest inside each
133  * other and they require separate keysets.  As lockdep keys should be
134  * static, assign keysets according to the purpose of the root as indicated
135  * by btrfs_root->objectid.  This ensures that all special purpose roots
136  * have separate keysets.
137  *
138  * Lock-nesting across peer nodes is always done with the immediate parent
139  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
140  * subclass to avoid triggering lockdep warning in such cases.
141  *
142  * The key is set by the readpage_end_io_hook after the buffer has passed
143  * csum validation but before the pages are unlocked.  It is also set by
144  * btrfs_init_new_buffer on freshly allocated blocks.
145  *
146  * We also add a check to make sure the highest level of the tree is the
147  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
148  * needs update as well.
149  */
150 #ifdef CONFIG_DEBUG_LOCK_ALLOC
151 # if BTRFS_MAX_LEVEL != 8
152 #  error
153 # endif
154 
155 static struct btrfs_lockdep_keyset {
156 	u64			id;		/* root objectid */
157 	const char		*name_stem;	/* lock name stem */
158 	char			names[BTRFS_MAX_LEVEL + 1][20];
159 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
160 } btrfs_lockdep_keysets[] = {
161 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
162 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
163 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
164 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
165 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
166 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
167 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
168 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
169 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
170 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
171 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
172 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
173 	{ .id = 0,				.name_stem = "tree"	},
174 };
175 
176 void __init btrfs_init_lockdep(void)
177 {
178 	int i, j;
179 
180 	/* initialize lockdep class names */
181 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
182 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
183 
184 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
185 			snprintf(ks->names[j], sizeof(ks->names[j]),
186 				 "btrfs-%s-%02d", ks->name_stem, j);
187 	}
188 }
189 
190 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
191 				    int level)
192 {
193 	struct btrfs_lockdep_keyset *ks;
194 
195 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
196 
197 	/* find the matching keyset, id 0 is the default entry */
198 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
199 		if (ks->id == objectid)
200 			break;
201 
202 	lockdep_set_class_and_name(&eb->lock,
203 				   &ks->keys[level], ks->names[level]);
204 }
205 
206 #endif
207 
208 /*
209  * extents on the btree inode are pretty simple, there's one extent
210  * that covers the entire device
211  */
212 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
213 		struct page *page, size_t pg_offset, u64 start, u64 len,
214 		int create)
215 {
216 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
217 	struct extent_map_tree *em_tree = &inode->extent_tree;
218 	struct extent_map *em;
219 	int ret;
220 
221 	read_lock(&em_tree->lock);
222 	em = lookup_extent_mapping(em_tree, start, len);
223 	if (em) {
224 		em->bdev = fs_info->fs_devices->latest_bdev;
225 		read_unlock(&em_tree->lock);
226 		goto out;
227 	}
228 	read_unlock(&em_tree->lock);
229 
230 	em = alloc_extent_map();
231 	if (!em) {
232 		em = ERR_PTR(-ENOMEM);
233 		goto out;
234 	}
235 	em->start = 0;
236 	em->len = (u64)-1;
237 	em->block_len = (u64)-1;
238 	em->block_start = 0;
239 	em->bdev = fs_info->fs_devices->latest_bdev;
240 
241 	write_lock(&em_tree->lock);
242 	ret = add_extent_mapping(em_tree, em, 0);
243 	if (ret == -EEXIST) {
244 		free_extent_map(em);
245 		em = lookup_extent_mapping(em_tree, start, len);
246 		if (!em)
247 			em = ERR_PTR(-EIO);
248 	} else if (ret) {
249 		free_extent_map(em);
250 		em = ERR_PTR(ret);
251 	}
252 	write_unlock(&em_tree->lock);
253 
254 out:
255 	return em;
256 }
257 
258 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
259 {
260 	return crc32c(seed, data, len);
261 }
262 
263 void btrfs_csum_final(u32 crc, u8 *result)
264 {
265 	put_unaligned_le32(~crc, result);
266 }
267 
268 /*
269  * compute the csum for a btree block, and either verify it or write it
270  * into the csum field of the block.
271  */
272 static int csum_tree_block(struct btrfs_fs_info *fs_info,
273 			   struct extent_buffer *buf,
274 			   int verify)
275 {
276 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
277 	char result[BTRFS_CSUM_SIZE];
278 	unsigned long len;
279 	unsigned long cur_len;
280 	unsigned long offset = BTRFS_CSUM_SIZE;
281 	char *kaddr;
282 	unsigned long map_start;
283 	unsigned long map_len;
284 	int err;
285 	u32 crc = ~(u32)0;
286 
287 	len = buf->len - offset;
288 	while (len > 0) {
289 		err = map_private_extent_buffer(buf, offset, 32,
290 					&kaddr, &map_start, &map_len);
291 		if (err)
292 			return err;
293 		cur_len = min(len, map_len - (offset - map_start));
294 		crc = btrfs_csum_data(kaddr + offset - map_start,
295 				      crc, cur_len);
296 		len -= cur_len;
297 		offset += cur_len;
298 	}
299 	memset(result, 0, BTRFS_CSUM_SIZE);
300 
301 	btrfs_csum_final(crc, result);
302 
303 	if (verify) {
304 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
305 			u32 val;
306 			u32 found = 0;
307 			memcpy(&found, result, csum_size);
308 
309 			read_extent_buffer(buf, &val, 0, csum_size);
310 			btrfs_warn_rl(fs_info,
311 				"%s checksum verify failed on %llu wanted %X found %X level %d",
312 				fs_info->sb->s_id, buf->start,
313 				val, found, btrfs_header_level(buf));
314 			return -EUCLEAN;
315 		}
316 	} else {
317 		write_extent_buffer(buf, result, 0, csum_size);
318 	}
319 
320 	return 0;
321 }
322 
323 /*
324  * we can't consider a given block up to date unless the transid of the
325  * block matches the transid in the parent node's pointer.  This is how we
326  * detect blocks that either didn't get written at all or got written
327  * in the wrong place.
328  */
329 static int verify_parent_transid(struct extent_io_tree *io_tree,
330 				 struct extent_buffer *eb, u64 parent_transid,
331 				 int atomic)
332 {
333 	struct extent_state *cached_state = NULL;
334 	int ret;
335 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
336 
337 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
338 		return 0;
339 
340 	if (atomic)
341 		return -EAGAIN;
342 
343 	if (need_lock) {
344 		btrfs_tree_read_lock(eb);
345 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
346 	}
347 
348 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
349 			 &cached_state);
350 	if (extent_buffer_uptodate(eb) &&
351 	    btrfs_header_generation(eb) == parent_transid) {
352 		ret = 0;
353 		goto out;
354 	}
355 	btrfs_err_rl(eb->fs_info,
356 		"parent transid verify failed on %llu wanted %llu found %llu",
357 			eb->start,
358 			parent_transid, btrfs_header_generation(eb));
359 	ret = 1;
360 
361 	/*
362 	 * Things reading via commit roots that don't have normal protection,
363 	 * like send, can have a really old block in cache that may point at a
364 	 * block that has been freed and re-allocated.  So don't clear uptodate
365 	 * if we find an eb that is under IO (dirty/writeback) because we could
366 	 * end up reading in the stale data and then writing it back out and
367 	 * making everybody very sad.
368 	 */
369 	if (!extent_buffer_under_io(eb))
370 		clear_extent_buffer_uptodate(eb);
371 out:
372 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
373 			     &cached_state);
374 	if (need_lock)
375 		btrfs_tree_read_unlock_blocking(eb);
376 	return ret;
377 }
378 
379 /*
380  * Return 0 if the superblock checksum type matches the checksum value of that
381  * algorithm. Pass the raw disk superblock data.
382  */
383 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
384 				  char *raw_disk_sb)
385 {
386 	struct btrfs_super_block *disk_sb =
387 		(struct btrfs_super_block *)raw_disk_sb;
388 	u16 csum_type = btrfs_super_csum_type(disk_sb);
389 	int ret = 0;
390 
391 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
392 		u32 crc = ~(u32)0;
393 		char result[sizeof(crc)];
394 
395 		/*
396 		 * The super_block structure does not span the whole
397 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
398 		 * is filled with zeros and is included in the checksum.
399 		 */
400 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
401 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
402 		btrfs_csum_final(crc, result);
403 
404 		if (memcmp(raw_disk_sb, result, sizeof(result)))
405 			ret = 1;
406 	}
407 
408 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
409 		btrfs_err(fs_info, "unsupported checksum algorithm %u",
410 				csum_type);
411 		ret = 1;
412 	}
413 
414 	return ret;
415 }
416 
417 static int verify_level_key(struct btrfs_fs_info *fs_info,
418 			    struct extent_buffer *eb, int level,
419 			    struct btrfs_key *first_key)
420 {
421 	int found_level;
422 	struct btrfs_key found_key;
423 	int ret;
424 
425 	found_level = btrfs_header_level(eb);
426 	if (found_level != level) {
427 #ifdef CONFIG_BTRFS_DEBUG
428 		WARN_ON(1);
429 		btrfs_err(fs_info,
430 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
431 			  eb->start, level, found_level);
432 #endif
433 		return -EIO;
434 	}
435 
436 	if (!first_key)
437 		return 0;
438 
439 	/*
440 	 * For live tree block (new tree blocks in current transaction),
441 	 * we need proper lock context to avoid race, which is impossible here.
442 	 * So we only checks tree blocks which is read from disk, whose
443 	 * generation <= fs_info->last_trans_committed.
444 	 */
445 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
446 		return 0;
447 	if (found_level)
448 		btrfs_node_key_to_cpu(eb, &found_key, 0);
449 	else
450 		btrfs_item_key_to_cpu(eb, &found_key, 0);
451 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
452 
453 #ifdef CONFIG_BTRFS_DEBUG
454 	if (ret) {
455 		WARN_ON(1);
456 		btrfs_err(fs_info,
457 "tree first key mismatch detected, bytenr=%llu key expected=(%llu, %u, %llu) has=(%llu, %u, %llu)",
458 			  eb->start, first_key->objectid, first_key->type,
459 			  first_key->offset, found_key.objectid,
460 			  found_key.type, found_key.offset);
461 	}
462 #endif
463 	return ret;
464 }
465 
466 /*
467  * helper to read a given tree block, doing retries as required when
468  * the checksums don't match and we have alternate mirrors to try.
469  *
470  * @parent_transid:	expected transid, skip check if 0
471  * @level:		expected level, mandatory check
472  * @first_key:		expected key of first slot, skip check if NULL
473  */
474 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
475 					  struct extent_buffer *eb,
476 					  u64 parent_transid, int level,
477 					  struct btrfs_key *first_key)
478 {
479 	struct extent_io_tree *io_tree;
480 	int failed = 0;
481 	int ret;
482 	int num_copies = 0;
483 	int mirror_num = 0;
484 	int failed_mirror = 0;
485 
486 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
487 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
488 	while (1) {
489 		ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
490 					       mirror_num);
491 		if (!ret) {
492 			if (verify_parent_transid(io_tree, eb,
493 						   parent_transid, 0))
494 				ret = -EIO;
495 			else if (verify_level_key(fs_info, eb, level,
496 						  first_key))
497 				ret = -EUCLEAN;
498 			else
499 				break;
500 		}
501 
502 		/*
503 		 * This buffer's crc is fine, but its contents are corrupted, so
504 		 * there is no reason to read the other copies, they won't be
505 		 * any less wrong.
506 		 */
507 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags) ||
508 		    ret == -EUCLEAN)
509 			break;
510 
511 		num_copies = btrfs_num_copies(fs_info,
512 					      eb->start, eb->len);
513 		if (num_copies == 1)
514 			break;
515 
516 		if (!failed_mirror) {
517 			failed = 1;
518 			failed_mirror = eb->read_mirror;
519 		}
520 
521 		mirror_num++;
522 		if (mirror_num == failed_mirror)
523 			mirror_num++;
524 
525 		if (mirror_num > num_copies)
526 			break;
527 	}
528 
529 	if (failed && !ret && failed_mirror)
530 		repair_eb_io_failure(fs_info, eb, failed_mirror);
531 
532 	return ret;
533 }
534 
535 /*
536  * checksum a dirty tree block before IO.  This has extra checks to make sure
537  * we only fill in the checksum field in the first page of a multi-page block
538  */
539 
540 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
541 {
542 	u64 start = page_offset(page);
543 	u64 found_start;
544 	struct extent_buffer *eb;
545 
546 	eb = (struct extent_buffer *)page->private;
547 	if (page != eb->pages[0])
548 		return 0;
549 
550 	found_start = btrfs_header_bytenr(eb);
551 	/*
552 	 * Please do not consolidate these warnings into a single if.
553 	 * It is useful to know what went wrong.
554 	 */
555 	if (WARN_ON(found_start != start))
556 		return -EUCLEAN;
557 	if (WARN_ON(!PageUptodate(page)))
558 		return -EUCLEAN;
559 
560 	ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
561 			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
562 
563 	return csum_tree_block(fs_info, eb, 0);
564 }
565 
566 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
567 				 struct extent_buffer *eb)
568 {
569 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
570 	u8 fsid[BTRFS_FSID_SIZE];
571 	int ret = 1;
572 
573 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
574 	while (fs_devices) {
575 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
576 			ret = 0;
577 			break;
578 		}
579 		fs_devices = fs_devices->seed;
580 	}
581 	return ret;
582 }
583 
584 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
585 				      u64 phy_offset, struct page *page,
586 				      u64 start, u64 end, int mirror)
587 {
588 	u64 found_start;
589 	int found_level;
590 	struct extent_buffer *eb;
591 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
592 	struct btrfs_fs_info *fs_info = root->fs_info;
593 	int ret = 0;
594 	int reads_done;
595 
596 	if (!page->private)
597 		goto out;
598 
599 	eb = (struct extent_buffer *)page->private;
600 
601 	/* the pending IO might have been the only thing that kept this buffer
602 	 * in memory.  Make sure we have a ref for all this other checks
603 	 */
604 	extent_buffer_get(eb);
605 
606 	reads_done = atomic_dec_and_test(&eb->io_pages);
607 	if (!reads_done)
608 		goto err;
609 
610 	eb->read_mirror = mirror;
611 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
612 		ret = -EIO;
613 		goto err;
614 	}
615 
616 	found_start = btrfs_header_bytenr(eb);
617 	if (found_start != eb->start) {
618 		btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
619 			     found_start, eb->start);
620 		ret = -EIO;
621 		goto err;
622 	}
623 	if (check_tree_block_fsid(fs_info, eb)) {
624 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
625 			     eb->start);
626 		ret = -EIO;
627 		goto err;
628 	}
629 	found_level = btrfs_header_level(eb);
630 	if (found_level >= BTRFS_MAX_LEVEL) {
631 		btrfs_err(fs_info, "bad tree block level %d",
632 			  (int)btrfs_header_level(eb));
633 		ret = -EIO;
634 		goto err;
635 	}
636 
637 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
638 				       eb, found_level);
639 
640 	ret = csum_tree_block(fs_info, eb, 1);
641 	if (ret)
642 		goto err;
643 
644 	/*
645 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
646 	 * that we don't try and read the other copies of this block, just
647 	 * return -EIO.
648 	 */
649 	if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
650 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
651 		ret = -EIO;
652 	}
653 
654 	if (found_level > 0 && btrfs_check_node(fs_info, eb))
655 		ret = -EIO;
656 
657 	if (!ret)
658 		set_extent_buffer_uptodate(eb);
659 err:
660 	if (reads_done &&
661 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
662 		btree_readahead_hook(eb, ret);
663 
664 	if (ret) {
665 		/*
666 		 * our io error hook is going to dec the io pages
667 		 * again, we have to make sure it has something
668 		 * to decrement
669 		 */
670 		atomic_inc(&eb->io_pages);
671 		clear_extent_buffer_uptodate(eb);
672 	}
673 	free_extent_buffer(eb);
674 out:
675 	return ret;
676 }
677 
678 static int btree_io_failed_hook(struct page *page, int failed_mirror)
679 {
680 	struct extent_buffer *eb;
681 
682 	eb = (struct extent_buffer *)page->private;
683 	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
684 	eb->read_mirror = failed_mirror;
685 	atomic_dec(&eb->io_pages);
686 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
687 		btree_readahead_hook(eb, -EIO);
688 	return -EIO;	/* we fixed nothing */
689 }
690 
691 static void end_workqueue_bio(struct bio *bio)
692 {
693 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
694 	struct btrfs_fs_info *fs_info;
695 	struct btrfs_workqueue *wq;
696 	btrfs_work_func_t func;
697 
698 	fs_info = end_io_wq->info;
699 	end_io_wq->status = bio->bi_status;
700 
701 	if (bio_op(bio) == REQ_OP_WRITE) {
702 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
703 			wq = fs_info->endio_meta_write_workers;
704 			func = btrfs_endio_meta_write_helper;
705 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
706 			wq = fs_info->endio_freespace_worker;
707 			func = btrfs_freespace_write_helper;
708 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
709 			wq = fs_info->endio_raid56_workers;
710 			func = btrfs_endio_raid56_helper;
711 		} else {
712 			wq = fs_info->endio_write_workers;
713 			func = btrfs_endio_write_helper;
714 		}
715 	} else {
716 		if (unlikely(end_io_wq->metadata ==
717 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
718 			wq = fs_info->endio_repair_workers;
719 			func = btrfs_endio_repair_helper;
720 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
721 			wq = fs_info->endio_raid56_workers;
722 			func = btrfs_endio_raid56_helper;
723 		} else if (end_io_wq->metadata) {
724 			wq = fs_info->endio_meta_workers;
725 			func = btrfs_endio_meta_helper;
726 		} else {
727 			wq = fs_info->endio_workers;
728 			func = btrfs_endio_helper;
729 		}
730 	}
731 
732 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
733 	btrfs_queue_work(wq, &end_io_wq->work);
734 }
735 
736 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
737 			enum btrfs_wq_endio_type metadata)
738 {
739 	struct btrfs_end_io_wq *end_io_wq;
740 
741 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
742 	if (!end_io_wq)
743 		return BLK_STS_RESOURCE;
744 
745 	end_io_wq->private = bio->bi_private;
746 	end_io_wq->end_io = bio->bi_end_io;
747 	end_io_wq->info = info;
748 	end_io_wq->status = 0;
749 	end_io_wq->bio = bio;
750 	end_io_wq->metadata = metadata;
751 
752 	bio->bi_private = end_io_wq;
753 	bio->bi_end_io = end_workqueue_bio;
754 	return 0;
755 }
756 
757 static void run_one_async_start(struct btrfs_work *work)
758 {
759 	struct async_submit_bio *async;
760 	blk_status_t ret;
761 
762 	async = container_of(work, struct  async_submit_bio, work);
763 	ret = async->submit_bio_start(async->private_data, async->bio,
764 				      async->bio_offset);
765 	if (ret)
766 		async->status = ret;
767 }
768 
769 static void run_one_async_done(struct btrfs_work *work)
770 {
771 	struct async_submit_bio *async;
772 
773 	async = container_of(work, struct  async_submit_bio, work);
774 
775 	/* If an error occurred we just want to clean up the bio and move on */
776 	if (async->status) {
777 		async->bio->bi_status = async->status;
778 		bio_endio(async->bio);
779 		return;
780 	}
781 
782 	async->submit_bio_done(async->private_data, async->bio, async->mirror_num);
783 }
784 
785 static void run_one_async_free(struct btrfs_work *work)
786 {
787 	struct async_submit_bio *async;
788 
789 	async = container_of(work, struct  async_submit_bio, work);
790 	kfree(async);
791 }
792 
793 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
794 				 int mirror_num, unsigned long bio_flags,
795 				 u64 bio_offset, void *private_data,
796 				 extent_submit_bio_start_t *submit_bio_start,
797 				 extent_submit_bio_done_t *submit_bio_done)
798 {
799 	struct async_submit_bio *async;
800 
801 	async = kmalloc(sizeof(*async), GFP_NOFS);
802 	if (!async)
803 		return BLK_STS_RESOURCE;
804 
805 	async->private_data = private_data;
806 	async->fs_info = fs_info;
807 	async->bio = bio;
808 	async->mirror_num = mirror_num;
809 	async->submit_bio_start = submit_bio_start;
810 	async->submit_bio_done = submit_bio_done;
811 
812 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
813 			run_one_async_done, run_one_async_free);
814 
815 	async->bio_flags = bio_flags;
816 	async->bio_offset = bio_offset;
817 
818 	async->status = 0;
819 
820 	if (op_is_sync(bio->bi_opf))
821 		btrfs_set_work_high_priority(&async->work);
822 
823 	btrfs_queue_work(fs_info->workers, &async->work);
824 	return 0;
825 }
826 
827 static blk_status_t btree_csum_one_bio(struct bio *bio)
828 {
829 	struct bio_vec *bvec;
830 	struct btrfs_root *root;
831 	int i, ret = 0;
832 
833 	ASSERT(!bio_flagged(bio, BIO_CLONED));
834 	bio_for_each_segment_all(bvec, bio, i) {
835 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
836 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
837 		if (ret)
838 			break;
839 	}
840 
841 	return errno_to_blk_status(ret);
842 }
843 
844 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
845 					     u64 bio_offset)
846 {
847 	/*
848 	 * when we're called for a write, we're already in the async
849 	 * submission context.  Just jump into btrfs_map_bio
850 	 */
851 	return btree_csum_one_bio(bio);
852 }
853 
854 static blk_status_t btree_submit_bio_done(void *private_data, struct bio *bio,
855 					    int mirror_num)
856 {
857 	struct inode *inode = private_data;
858 	blk_status_t ret;
859 
860 	/*
861 	 * when we're called for a write, we're already in the async
862 	 * submission context.  Just jump into btrfs_map_bio
863 	 */
864 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
865 	if (ret) {
866 		bio->bi_status = ret;
867 		bio_endio(bio);
868 	}
869 	return ret;
870 }
871 
872 static int check_async_write(struct btrfs_inode *bi)
873 {
874 	if (atomic_read(&bi->sync_writers))
875 		return 0;
876 #ifdef CONFIG_X86
877 	if (static_cpu_has(X86_FEATURE_XMM4_2))
878 		return 0;
879 #endif
880 	return 1;
881 }
882 
883 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
884 					  int mirror_num, unsigned long bio_flags,
885 					  u64 bio_offset)
886 {
887 	struct inode *inode = private_data;
888 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
889 	int async = check_async_write(BTRFS_I(inode));
890 	blk_status_t ret;
891 
892 	if (bio_op(bio) != REQ_OP_WRITE) {
893 		/*
894 		 * called for a read, do the setup so that checksum validation
895 		 * can happen in the async kernel threads
896 		 */
897 		ret = btrfs_bio_wq_end_io(fs_info, bio,
898 					  BTRFS_WQ_ENDIO_METADATA);
899 		if (ret)
900 			goto out_w_error;
901 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
902 	} else if (!async) {
903 		ret = btree_csum_one_bio(bio);
904 		if (ret)
905 			goto out_w_error;
906 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
907 	} else {
908 		/*
909 		 * kthread helpers are used to submit writes so that
910 		 * checksumming can happen in parallel across all CPUs
911 		 */
912 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
913 					  bio_offset, private_data,
914 					  btree_submit_bio_start,
915 					  btree_submit_bio_done);
916 	}
917 
918 	if (ret)
919 		goto out_w_error;
920 	return 0;
921 
922 out_w_error:
923 	bio->bi_status = ret;
924 	bio_endio(bio);
925 	return ret;
926 }
927 
928 #ifdef CONFIG_MIGRATION
929 static int btree_migratepage(struct address_space *mapping,
930 			struct page *newpage, struct page *page,
931 			enum migrate_mode mode)
932 {
933 	/*
934 	 * we can't safely write a btree page from here,
935 	 * we haven't done the locking hook
936 	 */
937 	if (PageDirty(page))
938 		return -EAGAIN;
939 	/*
940 	 * Buffers may be managed in a filesystem specific way.
941 	 * We must have no buffers or drop them.
942 	 */
943 	if (page_has_private(page) &&
944 	    !try_to_release_page(page, GFP_KERNEL))
945 		return -EAGAIN;
946 	return migrate_page(mapping, newpage, page, mode);
947 }
948 #endif
949 
950 
951 static int btree_writepages(struct address_space *mapping,
952 			    struct writeback_control *wbc)
953 {
954 	struct btrfs_fs_info *fs_info;
955 	int ret;
956 
957 	if (wbc->sync_mode == WB_SYNC_NONE) {
958 
959 		if (wbc->for_kupdate)
960 			return 0;
961 
962 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
963 		/* this is a bit racy, but that's ok */
964 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
965 					     BTRFS_DIRTY_METADATA_THRESH);
966 		if (ret < 0)
967 			return 0;
968 	}
969 	return btree_write_cache_pages(mapping, wbc);
970 }
971 
972 static int btree_readpage(struct file *file, struct page *page)
973 {
974 	struct extent_io_tree *tree;
975 	tree = &BTRFS_I(page->mapping->host)->io_tree;
976 	return extent_read_full_page(tree, page, btree_get_extent, 0);
977 }
978 
979 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
980 {
981 	if (PageWriteback(page) || PageDirty(page))
982 		return 0;
983 
984 	return try_release_extent_buffer(page);
985 }
986 
987 static void btree_invalidatepage(struct page *page, unsigned int offset,
988 				 unsigned int length)
989 {
990 	struct extent_io_tree *tree;
991 	tree = &BTRFS_I(page->mapping->host)->io_tree;
992 	extent_invalidatepage(tree, page, offset);
993 	btree_releasepage(page, GFP_NOFS);
994 	if (PagePrivate(page)) {
995 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
996 			   "page private not zero on page %llu",
997 			   (unsigned long long)page_offset(page));
998 		ClearPagePrivate(page);
999 		set_page_private(page, 0);
1000 		put_page(page);
1001 	}
1002 }
1003 
1004 static int btree_set_page_dirty(struct page *page)
1005 {
1006 #ifdef DEBUG
1007 	struct extent_buffer *eb;
1008 
1009 	BUG_ON(!PagePrivate(page));
1010 	eb = (struct extent_buffer *)page->private;
1011 	BUG_ON(!eb);
1012 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1013 	BUG_ON(!atomic_read(&eb->refs));
1014 	btrfs_assert_tree_locked(eb);
1015 #endif
1016 	return __set_page_dirty_nobuffers(page);
1017 }
1018 
1019 static const struct address_space_operations btree_aops = {
1020 	.readpage	= btree_readpage,
1021 	.writepages	= btree_writepages,
1022 	.releasepage	= btree_releasepage,
1023 	.invalidatepage = btree_invalidatepage,
1024 #ifdef CONFIG_MIGRATION
1025 	.migratepage	= btree_migratepage,
1026 #endif
1027 	.set_page_dirty = btree_set_page_dirty,
1028 };
1029 
1030 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1031 {
1032 	struct extent_buffer *buf = NULL;
1033 	struct inode *btree_inode = fs_info->btree_inode;
1034 
1035 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1036 	if (IS_ERR(buf))
1037 		return;
1038 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1039 				 buf, WAIT_NONE, 0);
1040 	free_extent_buffer(buf);
1041 }
1042 
1043 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1044 			 int mirror_num, struct extent_buffer **eb)
1045 {
1046 	struct extent_buffer *buf = NULL;
1047 	struct inode *btree_inode = fs_info->btree_inode;
1048 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1049 	int ret;
1050 
1051 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1052 	if (IS_ERR(buf))
1053 		return 0;
1054 
1055 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1056 
1057 	ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1058 				       mirror_num);
1059 	if (ret) {
1060 		free_extent_buffer(buf);
1061 		return ret;
1062 	}
1063 
1064 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1065 		free_extent_buffer(buf);
1066 		return -EIO;
1067 	} else if (extent_buffer_uptodate(buf)) {
1068 		*eb = buf;
1069 	} else {
1070 		free_extent_buffer(buf);
1071 	}
1072 	return 0;
1073 }
1074 
1075 struct extent_buffer *btrfs_find_create_tree_block(
1076 						struct btrfs_fs_info *fs_info,
1077 						u64 bytenr)
1078 {
1079 	if (btrfs_is_testing(fs_info))
1080 		return alloc_test_extent_buffer(fs_info, bytenr);
1081 	return alloc_extent_buffer(fs_info, bytenr);
1082 }
1083 
1084 
1085 int btrfs_write_tree_block(struct extent_buffer *buf)
1086 {
1087 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1088 					buf->start + buf->len - 1);
1089 }
1090 
1091 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1092 {
1093 	filemap_fdatawait_range(buf->pages[0]->mapping,
1094 			        buf->start, buf->start + buf->len - 1);
1095 }
1096 
1097 /*
1098  * Read tree block at logical address @bytenr and do variant basic but critical
1099  * verification.
1100  *
1101  * @parent_transid:	expected transid of this tree block, skip check if 0
1102  * @level:		expected level, mandatory check
1103  * @first_key:		expected key in slot 0, skip check if NULL
1104  */
1105 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1106 				      u64 parent_transid, int level,
1107 				      struct btrfs_key *first_key)
1108 {
1109 	struct extent_buffer *buf = NULL;
1110 	int ret;
1111 
1112 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1113 	if (IS_ERR(buf))
1114 		return buf;
1115 
1116 	ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1117 					     level, first_key);
1118 	if (ret) {
1119 		free_extent_buffer(buf);
1120 		return ERR_PTR(ret);
1121 	}
1122 	return buf;
1123 
1124 }
1125 
1126 void clean_tree_block(struct btrfs_fs_info *fs_info,
1127 		      struct extent_buffer *buf)
1128 {
1129 	if (btrfs_header_generation(buf) ==
1130 	    fs_info->running_transaction->transid) {
1131 		btrfs_assert_tree_locked(buf);
1132 
1133 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1134 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1135 						 -buf->len,
1136 						 fs_info->dirty_metadata_batch);
1137 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1138 			btrfs_set_lock_blocking(buf);
1139 			clear_extent_buffer_dirty(buf);
1140 		}
1141 	}
1142 }
1143 
1144 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1145 {
1146 	struct btrfs_subvolume_writers *writers;
1147 	int ret;
1148 
1149 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1150 	if (!writers)
1151 		return ERR_PTR(-ENOMEM);
1152 
1153 	ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1154 	if (ret < 0) {
1155 		kfree(writers);
1156 		return ERR_PTR(ret);
1157 	}
1158 
1159 	init_waitqueue_head(&writers->wait);
1160 	return writers;
1161 }
1162 
1163 static void
1164 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1165 {
1166 	percpu_counter_destroy(&writers->counter);
1167 	kfree(writers);
1168 }
1169 
1170 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1171 			 u64 objectid)
1172 {
1173 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1174 	root->node = NULL;
1175 	root->commit_root = NULL;
1176 	root->state = 0;
1177 	root->orphan_cleanup_state = 0;
1178 
1179 	root->objectid = objectid;
1180 	root->last_trans = 0;
1181 	root->highest_objectid = 0;
1182 	root->nr_delalloc_inodes = 0;
1183 	root->nr_ordered_extents = 0;
1184 	root->name = NULL;
1185 	root->inode_tree = RB_ROOT;
1186 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1187 	root->block_rsv = NULL;
1188 	root->orphan_block_rsv = NULL;
1189 
1190 	INIT_LIST_HEAD(&root->dirty_list);
1191 	INIT_LIST_HEAD(&root->root_list);
1192 	INIT_LIST_HEAD(&root->delalloc_inodes);
1193 	INIT_LIST_HEAD(&root->delalloc_root);
1194 	INIT_LIST_HEAD(&root->ordered_extents);
1195 	INIT_LIST_HEAD(&root->ordered_root);
1196 	INIT_LIST_HEAD(&root->logged_list[0]);
1197 	INIT_LIST_HEAD(&root->logged_list[1]);
1198 	spin_lock_init(&root->orphan_lock);
1199 	spin_lock_init(&root->inode_lock);
1200 	spin_lock_init(&root->delalloc_lock);
1201 	spin_lock_init(&root->ordered_extent_lock);
1202 	spin_lock_init(&root->accounting_lock);
1203 	spin_lock_init(&root->log_extents_lock[0]);
1204 	spin_lock_init(&root->log_extents_lock[1]);
1205 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1206 	mutex_init(&root->objectid_mutex);
1207 	mutex_init(&root->log_mutex);
1208 	mutex_init(&root->ordered_extent_mutex);
1209 	mutex_init(&root->delalloc_mutex);
1210 	init_waitqueue_head(&root->log_writer_wait);
1211 	init_waitqueue_head(&root->log_commit_wait[0]);
1212 	init_waitqueue_head(&root->log_commit_wait[1]);
1213 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1214 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1215 	atomic_set(&root->log_commit[0], 0);
1216 	atomic_set(&root->log_commit[1], 0);
1217 	atomic_set(&root->log_writers, 0);
1218 	atomic_set(&root->log_batch, 0);
1219 	atomic_set(&root->orphan_inodes, 0);
1220 	refcount_set(&root->refs, 1);
1221 	atomic_set(&root->will_be_snapshotted, 0);
1222 	root->log_transid = 0;
1223 	root->log_transid_committed = -1;
1224 	root->last_log_commit = 0;
1225 	if (!dummy)
1226 		extent_io_tree_init(&root->dirty_log_pages, NULL);
1227 
1228 	memset(&root->root_key, 0, sizeof(root->root_key));
1229 	memset(&root->root_item, 0, sizeof(root->root_item));
1230 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1231 	if (!dummy)
1232 		root->defrag_trans_start = fs_info->generation;
1233 	else
1234 		root->defrag_trans_start = 0;
1235 	root->root_key.objectid = objectid;
1236 	root->anon_dev = 0;
1237 
1238 	spin_lock_init(&root->root_item_lock);
1239 }
1240 
1241 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1242 		gfp_t flags)
1243 {
1244 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1245 	if (root)
1246 		root->fs_info = fs_info;
1247 	return root;
1248 }
1249 
1250 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1251 /* Should only be used by the testing infrastructure */
1252 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1253 {
1254 	struct btrfs_root *root;
1255 
1256 	if (!fs_info)
1257 		return ERR_PTR(-EINVAL);
1258 
1259 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1260 	if (!root)
1261 		return ERR_PTR(-ENOMEM);
1262 
1263 	/* We don't use the stripesize in selftest, set it as sectorsize */
1264 	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1265 	root->alloc_bytenr = 0;
1266 
1267 	return root;
1268 }
1269 #endif
1270 
1271 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1272 				     struct btrfs_fs_info *fs_info,
1273 				     u64 objectid)
1274 {
1275 	struct extent_buffer *leaf;
1276 	struct btrfs_root *tree_root = fs_info->tree_root;
1277 	struct btrfs_root *root;
1278 	struct btrfs_key key;
1279 	int ret = 0;
1280 	uuid_le uuid = NULL_UUID_LE;
1281 
1282 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1283 	if (!root)
1284 		return ERR_PTR(-ENOMEM);
1285 
1286 	__setup_root(root, fs_info, objectid);
1287 	root->root_key.objectid = objectid;
1288 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1289 	root->root_key.offset = 0;
1290 
1291 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1292 	if (IS_ERR(leaf)) {
1293 		ret = PTR_ERR(leaf);
1294 		leaf = NULL;
1295 		goto fail;
1296 	}
1297 
1298 	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1299 	btrfs_set_header_bytenr(leaf, leaf->start);
1300 	btrfs_set_header_generation(leaf, trans->transid);
1301 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1302 	btrfs_set_header_owner(leaf, objectid);
1303 	root->node = leaf;
1304 
1305 	write_extent_buffer_fsid(leaf, fs_info->fsid);
1306 	write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1307 	btrfs_mark_buffer_dirty(leaf);
1308 
1309 	root->commit_root = btrfs_root_node(root);
1310 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1311 
1312 	root->root_item.flags = 0;
1313 	root->root_item.byte_limit = 0;
1314 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1315 	btrfs_set_root_generation(&root->root_item, trans->transid);
1316 	btrfs_set_root_level(&root->root_item, 0);
1317 	btrfs_set_root_refs(&root->root_item, 1);
1318 	btrfs_set_root_used(&root->root_item, leaf->len);
1319 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1320 	btrfs_set_root_dirid(&root->root_item, 0);
1321 	if (is_fstree(objectid))
1322 		uuid_le_gen(&uuid);
1323 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1324 	root->root_item.drop_level = 0;
1325 
1326 	key.objectid = objectid;
1327 	key.type = BTRFS_ROOT_ITEM_KEY;
1328 	key.offset = 0;
1329 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1330 	if (ret)
1331 		goto fail;
1332 
1333 	btrfs_tree_unlock(leaf);
1334 
1335 	return root;
1336 
1337 fail:
1338 	if (leaf) {
1339 		btrfs_tree_unlock(leaf);
1340 		free_extent_buffer(root->commit_root);
1341 		free_extent_buffer(leaf);
1342 	}
1343 	kfree(root);
1344 
1345 	return ERR_PTR(ret);
1346 }
1347 
1348 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1349 					 struct btrfs_fs_info *fs_info)
1350 {
1351 	struct btrfs_root *root;
1352 	struct extent_buffer *leaf;
1353 
1354 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1355 	if (!root)
1356 		return ERR_PTR(-ENOMEM);
1357 
1358 	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1359 
1360 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1361 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1362 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1363 
1364 	/*
1365 	 * DON'T set REF_COWS for log trees
1366 	 *
1367 	 * log trees do not get reference counted because they go away
1368 	 * before a real commit is actually done.  They do store pointers
1369 	 * to file data extents, and those reference counts still get
1370 	 * updated (along with back refs to the log tree).
1371 	 */
1372 
1373 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1374 			NULL, 0, 0, 0);
1375 	if (IS_ERR(leaf)) {
1376 		kfree(root);
1377 		return ERR_CAST(leaf);
1378 	}
1379 
1380 	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1381 	btrfs_set_header_bytenr(leaf, leaf->start);
1382 	btrfs_set_header_generation(leaf, trans->transid);
1383 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1384 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1385 	root->node = leaf;
1386 
1387 	write_extent_buffer_fsid(root->node, fs_info->fsid);
1388 	btrfs_mark_buffer_dirty(root->node);
1389 	btrfs_tree_unlock(root->node);
1390 	return root;
1391 }
1392 
1393 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1394 			     struct btrfs_fs_info *fs_info)
1395 {
1396 	struct btrfs_root *log_root;
1397 
1398 	log_root = alloc_log_tree(trans, fs_info);
1399 	if (IS_ERR(log_root))
1400 		return PTR_ERR(log_root);
1401 	WARN_ON(fs_info->log_root_tree);
1402 	fs_info->log_root_tree = log_root;
1403 	return 0;
1404 }
1405 
1406 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1407 		       struct btrfs_root *root)
1408 {
1409 	struct btrfs_fs_info *fs_info = root->fs_info;
1410 	struct btrfs_root *log_root;
1411 	struct btrfs_inode_item *inode_item;
1412 
1413 	log_root = alloc_log_tree(trans, fs_info);
1414 	if (IS_ERR(log_root))
1415 		return PTR_ERR(log_root);
1416 
1417 	log_root->last_trans = trans->transid;
1418 	log_root->root_key.offset = root->root_key.objectid;
1419 
1420 	inode_item = &log_root->root_item.inode;
1421 	btrfs_set_stack_inode_generation(inode_item, 1);
1422 	btrfs_set_stack_inode_size(inode_item, 3);
1423 	btrfs_set_stack_inode_nlink(inode_item, 1);
1424 	btrfs_set_stack_inode_nbytes(inode_item,
1425 				     fs_info->nodesize);
1426 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1427 
1428 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1429 
1430 	WARN_ON(root->log_root);
1431 	root->log_root = log_root;
1432 	root->log_transid = 0;
1433 	root->log_transid_committed = -1;
1434 	root->last_log_commit = 0;
1435 	return 0;
1436 }
1437 
1438 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1439 					       struct btrfs_key *key)
1440 {
1441 	struct btrfs_root *root;
1442 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1443 	struct btrfs_path *path;
1444 	u64 generation;
1445 	int ret;
1446 	int level;
1447 
1448 	path = btrfs_alloc_path();
1449 	if (!path)
1450 		return ERR_PTR(-ENOMEM);
1451 
1452 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1453 	if (!root) {
1454 		ret = -ENOMEM;
1455 		goto alloc_fail;
1456 	}
1457 
1458 	__setup_root(root, fs_info, key->objectid);
1459 
1460 	ret = btrfs_find_root(tree_root, key, path,
1461 			      &root->root_item, &root->root_key);
1462 	if (ret) {
1463 		if (ret > 0)
1464 			ret = -ENOENT;
1465 		goto find_fail;
1466 	}
1467 
1468 	generation = btrfs_root_generation(&root->root_item);
1469 	level = btrfs_root_level(&root->root_item);
1470 	root->node = read_tree_block(fs_info,
1471 				     btrfs_root_bytenr(&root->root_item),
1472 				     generation, level, NULL);
1473 	if (IS_ERR(root->node)) {
1474 		ret = PTR_ERR(root->node);
1475 		goto find_fail;
1476 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1477 		ret = -EIO;
1478 		free_extent_buffer(root->node);
1479 		goto find_fail;
1480 	}
1481 	root->commit_root = btrfs_root_node(root);
1482 out:
1483 	btrfs_free_path(path);
1484 	return root;
1485 
1486 find_fail:
1487 	kfree(root);
1488 alloc_fail:
1489 	root = ERR_PTR(ret);
1490 	goto out;
1491 }
1492 
1493 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1494 				      struct btrfs_key *location)
1495 {
1496 	struct btrfs_root *root;
1497 
1498 	root = btrfs_read_tree_root(tree_root, location);
1499 	if (IS_ERR(root))
1500 		return root;
1501 
1502 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1503 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1504 		btrfs_check_and_init_root_item(&root->root_item);
1505 	}
1506 
1507 	return root;
1508 }
1509 
1510 int btrfs_init_fs_root(struct btrfs_root *root)
1511 {
1512 	int ret;
1513 	struct btrfs_subvolume_writers *writers;
1514 
1515 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1516 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1517 					GFP_NOFS);
1518 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1519 		ret = -ENOMEM;
1520 		goto fail;
1521 	}
1522 
1523 	writers = btrfs_alloc_subvolume_writers();
1524 	if (IS_ERR(writers)) {
1525 		ret = PTR_ERR(writers);
1526 		goto fail;
1527 	}
1528 	root->subv_writers = writers;
1529 
1530 	btrfs_init_free_ino_ctl(root);
1531 	spin_lock_init(&root->ino_cache_lock);
1532 	init_waitqueue_head(&root->ino_cache_wait);
1533 
1534 	ret = get_anon_bdev(&root->anon_dev);
1535 	if (ret)
1536 		goto fail;
1537 
1538 	mutex_lock(&root->objectid_mutex);
1539 	ret = btrfs_find_highest_objectid(root,
1540 					&root->highest_objectid);
1541 	if (ret) {
1542 		mutex_unlock(&root->objectid_mutex);
1543 		goto fail;
1544 	}
1545 
1546 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1547 
1548 	mutex_unlock(&root->objectid_mutex);
1549 
1550 	return 0;
1551 fail:
1552 	/* the caller is responsible to call free_fs_root */
1553 	return ret;
1554 }
1555 
1556 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1557 					u64 root_id)
1558 {
1559 	struct btrfs_root *root;
1560 
1561 	spin_lock(&fs_info->fs_roots_radix_lock);
1562 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1563 				 (unsigned long)root_id);
1564 	spin_unlock(&fs_info->fs_roots_radix_lock);
1565 	return root;
1566 }
1567 
1568 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1569 			 struct btrfs_root *root)
1570 {
1571 	int ret;
1572 
1573 	ret = radix_tree_preload(GFP_NOFS);
1574 	if (ret)
1575 		return ret;
1576 
1577 	spin_lock(&fs_info->fs_roots_radix_lock);
1578 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1579 				(unsigned long)root->root_key.objectid,
1580 				root);
1581 	if (ret == 0)
1582 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1583 	spin_unlock(&fs_info->fs_roots_radix_lock);
1584 	radix_tree_preload_end();
1585 
1586 	return ret;
1587 }
1588 
1589 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1590 				     struct btrfs_key *location,
1591 				     bool check_ref)
1592 {
1593 	struct btrfs_root *root;
1594 	struct btrfs_path *path;
1595 	struct btrfs_key key;
1596 	int ret;
1597 
1598 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1599 		return fs_info->tree_root;
1600 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1601 		return fs_info->extent_root;
1602 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1603 		return fs_info->chunk_root;
1604 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1605 		return fs_info->dev_root;
1606 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1607 		return fs_info->csum_root;
1608 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1609 		return fs_info->quota_root ? fs_info->quota_root :
1610 					     ERR_PTR(-ENOENT);
1611 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1612 		return fs_info->uuid_root ? fs_info->uuid_root :
1613 					    ERR_PTR(-ENOENT);
1614 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1615 		return fs_info->free_space_root ? fs_info->free_space_root :
1616 						  ERR_PTR(-ENOENT);
1617 again:
1618 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1619 	if (root) {
1620 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1621 			return ERR_PTR(-ENOENT);
1622 		return root;
1623 	}
1624 
1625 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1626 	if (IS_ERR(root))
1627 		return root;
1628 
1629 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1630 		ret = -ENOENT;
1631 		goto fail;
1632 	}
1633 
1634 	ret = btrfs_init_fs_root(root);
1635 	if (ret)
1636 		goto fail;
1637 
1638 	path = btrfs_alloc_path();
1639 	if (!path) {
1640 		ret = -ENOMEM;
1641 		goto fail;
1642 	}
1643 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1644 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1645 	key.offset = location->objectid;
1646 
1647 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1648 	btrfs_free_path(path);
1649 	if (ret < 0)
1650 		goto fail;
1651 	if (ret == 0)
1652 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1653 
1654 	ret = btrfs_insert_fs_root(fs_info, root);
1655 	if (ret) {
1656 		if (ret == -EEXIST) {
1657 			free_fs_root(root);
1658 			goto again;
1659 		}
1660 		goto fail;
1661 	}
1662 	return root;
1663 fail:
1664 	free_fs_root(root);
1665 	return ERR_PTR(ret);
1666 }
1667 
1668 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1669 {
1670 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1671 	int ret = 0;
1672 	struct btrfs_device *device;
1673 	struct backing_dev_info *bdi;
1674 
1675 	rcu_read_lock();
1676 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1677 		if (!device->bdev)
1678 			continue;
1679 		bdi = device->bdev->bd_bdi;
1680 		if (bdi_congested(bdi, bdi_bits)) {
1681 			ret = 1;
1682 			break;
1683 		}
1684 	}
1685 	rcu_read_unlock();
1686 	return ret;
1687 }
1688 
1689 /*
1690  * called by the kthread helper functions to finally call the bio end_io
1691  * functions.  This is where read checksum verification actually happens
1692  */
1693 static void end_workqueue_fn(struct btrfs_work *work)
1694 {
1695 	struct bio *bio;
1696 	struct btrfs_end_io_wq *end_io_wq;
1697 
1698 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1699 	bio = end_io_wq->bio;
1700 
1701 	bio->bi_status = end_io_wq->status;
1702 	bio->bi_private = end_io_wq->private;
1703 	bio->bi_end_io = end_io_wq->end_io;
1704 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1705 	bio_endio(bio);
1706 }
1707 
1708 static int cleaner_kthread(void *arg)
1709 {
1710 	struct btrfs_root *root = arg;
1711 	struct btrfs_fs_info *fs_info = root->fs_info;
1712 	int again;
1713 	struct btrfs_trans_handle *trans;
1714 
1715 	do {
1716 		again = 0;
1717 
1718 		/* Make the cleaner go to sleep early. */
1719 		if (btrfs_need_cleaner_sleep(fs_info))
1720 			goto sleep;
1721 
1722 		/*
1723 		 * Do not do anything if we might cause open_ctree() to block
1724 		 * before we have finished mounting the filesystem.
1725 		 */
1726 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1727 			goto sleep;
1728 
1729 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1730 			goto sleep;
1731 
1732 		/*
1733 		 * Avoid the problem that we change the status of the fs
1734 		 * during the above check and trylock.
1735 		 */
1736 		if (btrfs_need_cleaner_sleep(fs_info)) {
1737 			mutex_unlock(&fs_info->cleaner_mutex);
1738 			goto sleep;
1739 		}
1740 
1741 		mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1742 		btrfs_run_delayed_iputs(fs_info);
1743 		mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1744 
1745 		again = btrfs_clean_one_deleted_snapshot(root);
1746 		mutex_unlock(&fs_info->cleaner_mutex);
1747 
1748 		/*
1749 		 * The defragger has dealt with the R/O remount and umount,
1750 		 * needn't do anything special here.
1751 		 */
1752 		btrfs_run_defrag_inodes(fs_info);
1753 
1754 		/*
1755 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1756 		 * with relocation (btrfs_relocate_chunk) and relocation
1757 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1758 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1759 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1760 		 * unused block groups.
1761 		 */
1762 		btrfs_delete_unused_bgs(fs_info);
1763 sleep:
1764 		if (!again) {
1765 			set_current_state(TASK_INTERRUPTIBLE);
1766 			if (!kthread_should_stop())
1767 				schedule();
1768 			__set_current_state(TASK_RUNNING);
1769 		}
1770 	} while (!kthread_should_stop());
1771 
1772 	/*
1773 	 * Transaction kthread is stopped before us and wakes us up.
1774 	 * However we might have started a new transaction and COWed some
1775 	 * tree blocks when deleting unused block groups for example. So
1776 	 * make sure we commit the transaction we started to have a clean
1777 	 * shutdown when evicting the btree inode - if it has dirty pages
1778 	 * when we do the final iput() on it, eviction will trigger a
1779 	 * writeback for it which will fail with null pointer dereferences
1780 	 * since work queues and other resources were already released and
1781 	 * destroyed by the time the iput/eviction/writeback is made.
1782 	 */
1783 	trans = btrfs_attach_transaction(root);
1784 	if (IS_ERR(trans)) {
1785 		if (PTR_ERR(trans) != -ENOENT)
1786 			btrfs_err(fs_info,
1787 				  "cleaner transaction attach returned %ld",
1788 				  PTR_ERR(trans));
1789 	} else {
1790 		int ret;
1791 
1792 		ret = btrfs_commit_transaction(trans);
1793 		if (ret)
1794 			btrfs_err(fs_info,
1795 				  "cleaner open transaction commit returned %d",
1796 				  ret);
1797 	}
1798 
1799 	return 0;
1800 }
1801 
1802 static int transaction_kthread(void *arg)
1803 {
1804 	struct btrfs_root *root = arg;
1805 	struct btrfs_fs_info *fs_info = root->fs_info;
1806 	struct btrfs_trans_handle *trans;
1807 	struct btrfs_transaction *cur;
1808 	u64 transid;
1809 	unsigned long now;
1810 	unsigned long delay;
1811 	bool cannot_commit;
1812 
1813 	do {
1814 		cannot_commit = false;
1815 		delay = HZ * fs_info->commit_interval;
1816 		mutex_lock(&fs_info->transaction_kthread_mutex);
1817 
1818 		spin_lock(&fs_info->trans_lock);
1819 		cur = fs_info->running_transaction;
1820 		if (!cur) {
1821 			spin_unlock(&fs_info->trans_lock);
1822 			goto sleep;
1823 		}
1824 
1825 		now = get_seconds();
1826 		if (cur->state < TRANS_STATE_BLOCKED &&
1827 		    (now < cur->start_time ||
1828 		     now - cur->start_time < fs_info->commit_interval)) {
1829 			spin_unlock(&fs_info->trans_lock);
1830 			delay = HZ * 5;
1831 			goto sleep;
1832 		}
1833 		transid = cur->transid;
1834 		spin_unlock(&fs_info->trans_lock);
1835 
1836 		/* If the file system is aborted, this will always fail. */
1837 		trans = btrfs_attach_transaction(root);
1838 		if (IS_ERR(trans)) {
1839 			if (PTR_ERR(trans) != -ENOENT)
1840 				cannot_commit = true;
1841 			goto sleep;
1842 		}
1843 		if (transid == trans->transid) {
1844 			btrfs_commit_transaction(trans);
1845 		} else {
1846 			btrfs_end_transaction(trans);
1847 		}
1848 sleep:
1849 		wake_up_process(fs_info->cleaner_kthread);
1850 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1851 
1852 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1853 				      &fs_info->fs_state)))
1854 			btrfs_cleanup_transaction(fs_info);
1855 		if (!kthread_should_stop() &&
1856 				(!btrfs_transaction_blocked(fs_info) ||
1857 				 cannot_commit))
1858 			schedule_timeout_interruptible(delay);
1859 	} while (!kthread_should_stop());
1860 	return 0;
1861 }
1862 
1863 /*
1864  * this will find the highest generation in the array of
1865  * root backups.  The index of the highest array is returned,
1866  * or -1 if we can't find anything.
1867  *
1868  * We check to make sure the array is valid by comparing the
1869  * generation of the latest  root in the array with the generation
1870  * in the super block.  If they don't match we pitch it.
1871  */
1872 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1873 {
1874 	u64 cur;
1875 	int newest_index = -1;
1876 	struct btrfs_root_backup *root_backup;
1877 	int i;
1878 
1879 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1880 		root_backup = info->super_copy->super_roots + i;
1881 		cur = btrfs_backup_tree_root_gen(root_backup);
1882 		if (cur == newest_gen)
1883 			newest_index = i;
1884 	}
1885 
1886 	/* check to see if we actually wrapped around */
1887 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1888 		root_backup = info->super_copy->super_roots;
1889 		cur = btrfs_backup_tree_root_gen(root_backup);
1890 		if (cur == newest_gen)
1891 			newest_index = 0;
1892 	}
1893 	return newest_index;
1894 }
1895 
1896 
1897 /*
1898  * find the oldest backup so we know where to store new entries
1899  * in the backup array.  This will set the backup_root_index
1900  * field in the fs_info struct
1901  */
1902 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1903 				     u64 newest_gen)
1904 {
1905 	int newest_index = -1;
1906 
1907 	newest_index = find_newest_super_backup(info, newest_gen);
1908 	/* if there was garbage in there, just move along */
1909 	if (newest_index == -1) {
1910 		info->backup_root_index = 0;
1911 	} else {
1912 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1913 	}
1914 }
1915 
1916 /*
1917  * copy all the root pointers into the super backup array.
1918  * this will bump the backup pointer by one when it is
1919  * done
1920  */
1921 static void backup_super_roots(struct btrfs_fs_info *info)
1922 {
1923 	int next_backup;
1924 	struct btrfs_root_backup *root_backup;
1925 	int last_backup;
1926 
1927 	next_backup = info->backup_root_index;
1928 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1929 		BTRFS_NUM_BACKUP_ROOTS;
1930 
1931 	/*
1932 	 * just overwrite the last backup if we're at the same generation
1933 	 * this happens only at umount
1934 	 */
1935 	root_backup = info->super_for_commit->super_roots + last_backup;
1936 	if (btrfs_backup_tree_root_gen(root_backup) ==
1937 	    btrfs_header_generation(info->tree_root->node))
1938 		next_backup = last_backup;
1939 
1940 	root_backup = info->super_for_commit->super_roots + next_backup;
1941 
1942 	/*
1943 	 * make sure all of our padding and empty slots get zero filled
1944 	 * regardless of which ones we use today
1945 	 */
1946 	memset(root_backup, 0, sizeof(*root_backup));
1947 
1948 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1949 
1950 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1951 	btrfs_set_backup_tree_root_gen(root_backup,
1952 			       btrfs_header_generation(info->tree_root->node));
1953 
1954 	btrfs_set_backup_tree_root_level(root_backup,
1955 			       btrfs_header_level(info->tree_root->node));
1956 
1957 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1958 	btrfs_set_backup_chunk_root_gen(root_backup,
1959 			       btrfs_header_generation(info->chunk_root->node));
1960 	btrfs_set_backup_chunk_root_level(root_backup,
1961 			       btrfs_header_level(info->chunk_root->node));
1962 
1963 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1964 	btrfs_set_backup_extent_root_gen(root_backup,
1965 			       btrfs_header_generation(info->extent_root->node));
1966 	btrfs_set_backup_extent_root_level(root_backup,
1967 			       btrfs_header_level(info->extent_root->node));
1968 
1969 	/*
1970 	 * we might commit during log recovery, which happens before we set
1971 	 * the fs_root.  Make sure it is valid before we fill it in.
1972 	 */
1973 	if (info->fs_root && info->fs_root->node) {
1974 		btrfs_set_backup_fs_root(root_backup,
1975 					 info->fs_root->node->start);
1976 		btrfs_set_backup_fs_root_gen(root_backup,
1977 			       btrfs_header_generation(info->fs_root->node));
1978 		btrfs_set_backup_fs_root_level(root_backup,
1979 			       btrfs_header_level(info->fs_root->node));
1980 	}
1981 
1982 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1983 	btrfs_set_backup_dev_root_gen(root_backup,
1984 			       btrfs_header_generation(info->dev_root->node));
1985 	btrfs_set_backup_dev_root_level(root_backup,
1986 				       btrfs_header_level(info->dev_root->node));
1987 
1988 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1989 	btrfs_set_backup_csum_root_gen(root_backup,
1990 			       btrfs_header_generation(info->csum_root->node));
1991 	btrfs_set_backup_csum_root_level(root_backup,
1992 			       btrfs_header_level(info->csum_root->node));
1993 
1994 	btrfs_set_backup_total_bytes(root_backup,
1995 			     btrfs_super_total_bytes(info->super_copy));
1996 	btrfs_set_backup_bytes_used(root_backup,
1997 			     btrfs_super_bytes_used(info->super_copy));
1998 	btrfs_set_backup_num_devices(root_backup,
1999 			     btrfs_super_num_devices(info->super_copy));
2000 
2001 	/*
2002 	 * if we don't copy this out to the super_copy, it won't get remembered
2003 	 * for the next commit
2004 	 */
2005 	memcpy(&info->super_copy->super_roots,
2006 	       &info->super_for_commit->super_roots,
2007 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2008 }
2009 
2010 /*
2011  * this copies info out of the root backup array and back into
2012  * the in-memory super block.  It is meant to help iterate through
2013  * the array, so you send it the number of backups you've already
2014  * tried and the last backup index you used.
2015  *
2016  * this returns -1 when it has tried all the backups
2017  */
2018 static noinline int next_root_backup(struct btrfs_fs_info *info,
2019 				     struct btrfs_super_block *super,
2020 				     int *num_backups_tried, int *backup_index)
2021 {
2022 	struct btrfs_root_backup *root_backup;
2023 	int newest = *backup_index;
2024 
2025 	if (*num_backups_tried == 0) {
2026 		u64 gen = btrfs_super_generation(super);
2027 
2028 		newest = find_newest_super_backup(info, gen);
2029 		if (newest == -1)
2030 			return -1;
2031 
2032 		*backup_index = newest;
2033 		*num_backups_tried = 1;
2034 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2035 		/* we've tried all the backups, all done */
2036 		return -1;
2037 	} else {
2038 		/* jump to the next oldest backup */
2039 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2040 			BTRFS_NUM_BACKUP_ROOTS;
2041 		*backup_index = newest;
2042 		*num_backups_tried += 1;
2043 	}
2044 	root_backup = super->super_roots + newest;
2045 
2046 	btrfs_set_super_generation(super,
2047 				   btrfs_backup_tree_root_gen(root_backup));
2048 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2049 	btrfs_set_super_root_level(super,
2050 				   btrfs_backup_tree_root_level(root_backup));
2051 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2052 
2053 	/*
2054 	 * fixme: the total bytes and num_devices need to match or we should
2055 	 * need a fsck
2056 	 */
2057 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2058 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2059 	return 0;
2060 }
2061 
2062 /* helper to cleanup workers */
2063 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2064 {
2065 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2066 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2067 	btrfs_destroy_workqueue(fs_info->workers);
2068 	btrfs_destroy_workqueue(fs_info->endio_workers);
2069 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2070 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2071 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2072 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2073 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2074 	btrfs_destroy_workqueue(fs_info->submit_workers);
2075 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2076 	btrfs_destroy_workqueue(fs_info->caching_workers);
2077 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2078 	btrfs_destroy_workqueue(fs_info->flush_workers);
2079 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2080 	btrfs_destroy_workqueue(fs_info->extent_workers);
2081 	/*
2082 	 * Now that all other work queues are destroyed, we can safely destroy
2083 	 * the queues used for metadata I/O, since tasks from those other work
2084 	 * queues can do metadata I/O operations.
2085 	 */
2086 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2087 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2088 }
2089 
2090 static void free_root_extent_buffers(struct btrfs_root *root)
2091 {
2092 	if (root) {
2093 		free_extent_buffer(root->node);
2094 		free_extent_buffer(root->commit_root);
2095 		root->node = NULL;
2096 		root->commit_root = NULL;
2097 	}
2098 }
2099 
2100 /* helper to cleanup tree roots */
2101 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2102 {
2103 	free_root_extent_buffers(info->tree_root);
2104 
2105 	free_root_extent_buffers(info->dev_root);
2106 	free_root_extent_buffers(info->extent_root);
2107 	free_root_extent_buffers(info->csum_root);
2108 	free_root_extent_buffers(info->quota_root);
2109 	free_root_extent_buffers(info->uuid_root);
2110 	if (chunk_root)
2111 		free_root_extent_buffers(info->chunk_root);
2112 	free_root_extent_buffers(info->free_space_root);
2113 }
2114 
2115 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2116 {
2117 	int ret;
2118 	struct btrfs_root *gang[8];
2119 	int i;
2120 
2121 	while (!list_empty(&fs_info->dead_roots)) {
2122 		gang[0] = list_entry(fs_info->dead_roots.next,
2123 				     struct btrfs_root, root_list);
2124 		list_del(&gang[0]->root_list);
2125 
2126 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2127 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2128 		} else {
2129 			free_extent_buffer(gang[0]->node);
2130 			free_extent_buffer(gang[0]->commit_root);
2131 			btrfs_put_fs_root(gang[0]);
2132 		}
2133 	}
2134 
2135 	while (1) {
2136 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2137 					     (void **)gang, 0,
2138 					     ARRAY_SIZE(gang));
2139 		if (!ret)
2140 			break;
2141 		for (i = 0; i < ret; i++)
2142 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2143 	}
2144 
2145 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2146 		btrfs_free_log_root_tree(NULL, fs_info);
2147 		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2148 	}
2149 }
2150 
2151 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2152 {
2153 	mutex_init(&fs_info->scrub_lock);
2154 	atomic_set(&fs_info->scrubs_running, 0);
2155 	atomic_set(&fs_info->scrub_pause_req, 0);
2156 	atomic_set(&fs_info->scrubs_paused, 0);
2157 	atomic_set(&fs_info->scrub_cancel_req, 0);
2158 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2159 	fs_info->scrub_workers_refcnt = 0;
2160 }
2161 
2162 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2163 {
2164 	spin_lock_init(&fs_info->balance_lock);
2165 	mutex_init(&fs_info->balance_mutex);
2166 	atomic_set(&fs_info->balance_running, 0);
2167 	atomic_set(&fs_info->balance_pause_req, 0);
2168 	atomic_set(&fs_info->balance_cancel_req, 0);
2169 	fs_info->balance_ctl = NULL;
2170 	init_waitqueue_head(&fs_info->balance_wait_q);
2171 }
2172 
2173 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2174 {
2175 	struct inode *inode = fs_info->btree_inode;
2176 
2177 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2178 	set_nlink(inode, 1);
2179 	/*
2180 	 * we set the i_size on the btree inode to the max possible int.
2181 	 * the real end of the address space is determined by all of
2182 	 * the devices in the system
2183 	 */
2184 	inode->i_size = OFFSET_MAX;
2185 	inode->i_mapping->a_ops = &btree_aops;
2186 
2187 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2188 	extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2189 	BTRFS_I(inode)->io_tree.track_uptodate = 0;
2190 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2191 
2192 	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2193 
2194 	BTRFS_I(inode)->root = fs_info->tree_root;
2195 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2196 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2197 	btrfs_insert_inode_hash(inode);
2198 }
2199 
2200 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2201 {
2202 	fs_info->dev_replace.lock_owner = 0;
2203 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2204 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2205 	rwlock_init(&fs_info->dev_replace.lock);
2206 	atomic_set(&fs_info->dev_replace.read_locks, 0);
2207 	atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2208 	init_waitqueue_head(&fs_info->replace_wait);
2209 	init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2210 }
2211 
2212 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2213 {
2214 	spin_lock_init(&fs_info->qgroup_lock);
2215 	mutex_init(&fs_info->qgroup_ioctl_lock);
2216 	fs_info->qgroup_tree = RB_ROOT;
2217 	fs_info->qgroup_op_tree = RB_ROOT;
2218 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2219 	fs_info->qgroup_seq = 1;
2220 	fs_info->qgroup_ulist = NULL;
2221 	fs_info->qgroup_rescan_running = false;
2222 	mutex_init(&fs_info->qgroup_rescan_lock);
2223 }
2224 
2225 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2226 		struct btrfs_fs_devices *fs_devices)
2227 {
2228 	u32 max_active = fs_info->thread_pool_size;
2229 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2230 
2231 	fs_info->workers =
2232 		btrfs_alloc_workqueue(fs_info, "worker",
2233 				      flags | WQ_HIGHPRI, max_active, 16);
2234 
2235 	fs_info->delalloc_workers =
2236 		btrfs_alloc_workqueue(fs_info, "delalloc",
2237 				      flags, max_active, 2);
2238 
2239 	fs_info->flush_workers =
2240 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2241 				      flags, max_active, 0);
2242 
2243 	fs_info->caching_workers =
2244 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2245 
2246 	/*
2247 	 * a higher idle thresh on the submit workers makes it much more
2248 	 * likely that bios will be send down in a sane order to the
2249 	 * devices
2250 	 */
2251 	fs_info->submit_workers =
2252 		btrfs_alloc_workqueue(fs_info, "submit", flags,
2253 				      min_t(u64, fs_devices->num_devices,
2254 					    max_active), 64);
2255 
2256 	fs_info->fixup_workers =
2257 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2258 
2259 	/*
2260 	 * endios are largely parallel and should have a very
2261 	 * low idle thresh
2262 	 */
2263 	fs_info->endio_workers =
2264 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2265 	fs_info->endio_meta_workers =
2266 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2267 				      max_active, 4);
2268 	fs_info->endio_meta_write_workers =
2269 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2270 				      max_active, 2);
2271 	fs_info->endio_raid56_workers =
2272 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2273 				      max_active, 4);
2274 	fs_info->endio_repair_workers =
2275 		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2276 	fs_info->rmw_workers =
2277 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2278 	fs_info->endio_write_workers =
2279 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2280 				      max_active, 2);
2281 	fs_info->endio_freespace_worker =
2282 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2283 				      max_active, 0);
2284 	fs_info->delayed_workers =
2285 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2286 				      max_active, 0);
2287 	fs_info->readahead_workers =
2288 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2289 				      max_active, 2);
2290 	fs_info->qgroup_rescan_workers =
2291 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2292 	fs_info->extent_workers =
2293 		btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2294 				      min_t(u64, fs_devices->num_devices,
2295 					    max_active), 8);
2296 
2297 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2298 	      fs_info->submit_workers && fs_info->flush_workers &&
2299 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2300 	      fs_info->endio_meta_write_workers &&
2301 	      fs_info->endio_repair_workers &&
2302 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2303 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2304 	      fs_info->caching_workers && fs_info->readahead_workers &&
2305 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2306 	      fs_info->extent_workers &&
2307 	      fs_info->qgroup_rescan_workers)) {
2308 		return -ENOMEM;
2309 	}
2310 
2311 	return 0;
2312 }
2313 
2314 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2315 			    struct btrfs_fs_devices *fs_devices)
2316 {
2317 	int ret;
2318 	struct btrfs_root *log_tree_root;
2319 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2320 	u64 bytenr = btrfs_super_log_root(disk_super);
2321 	int level = btrfs_super_log_root_level(disk_super);
2322 
2323 	if (fs_devices->rw_devices == 0) {
2324 		btrfs_warn(fs_info, "log replay required on RO media");
2325 		return -EIO;
2326 	}
2327 
2328 	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2329 	if (!log_tree_root)
2330 		return -ENOMEM;
2331 
2332 	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2333 
2334 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2335 					      fs_info->generation + 1,
2336 					      level, NULL);
2337 	if (IS_ERR(log_tree_root->node)) {
2338 		btrfs_warn(fs_info, "failed to read log tree");
2339 		ret = PTR_ERR(log_tree_root->node);
2340 		kfree(log_tree_root);
2341 		return ret;
2342 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2343 		btrfs_err(fs_info, "failed to read log tree");
2344 		free_extent_buffer(log_tree_root->node);
2345 		kfree(log_tree_root);
2346 		return -EIO;
2347 	}
2348 	/* returns with log_tree_root freed on success */
2349 	ret = btrfs_recover_log_trees(log_tree_root);
2350 	if (ret) {
2351 		btrfs_handle_fs_error(fs_info, ret,
2352 				      "Failed to recover log tree");
2353 		free_extent_buffer(log_tree_root->node);
2354 		kfree(log_tree_root);
2355 		return ret;
2356 	}
2357 
2358 	if (sb_rdonly(fs_info->sb)) {
2359 		ret = btrfs_commit_super(fs_info);
2360 		if (ret)
2361 			return ret;
2362 	}
2363 
2364 	return 0;
2365 }
2366 
2367 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2368 {
2369 	struct btrfs_root *tree_root = fs_info->tree_root;
2370 	struct btrfs_root *root;
2371 	struct btrfs_key location;
2372 	int ret;
2373 
2374 	BUG_ON(!fs_info->tree_root);
2375 
2376 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2377 	location.type = BTRFS_ROOT_ITEM_KEY;
2378 	location.offset = 0;
2379 
2380 	root = btrfs_read_tree_root(tree_root, &location);
2381 	if (IS_ERR(root)) {
2382 		ret = PTR_ERR(root);
2383 		goto out;
2384 	}
2385 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2386 	fs_info->extent_root = root;
2387 
2388 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2389 	root = btrfs_read_tree_root(tree_root, &location);
2390 	if (IS_ERR(root)) {
2391 		ret = PTR_ERR(root);
2392 		goto out;
2393 	}
2394 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2395 	fs_info->dev_root = root;
2396 	btrfs_init_devices_late(fs_info);
2397 
2398 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2399 	root = btrfs_read_tree_root(tree_root, &location);
2400 	if (IS_ERR(root)) {
2401 		ret = PTR_ERR(root);
2402 		goto out;
2403 	}
2404 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2405 	fs_info->csum_root = root;
2406 
2407 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2408 	root = btrfs_read_tree_root(tree_root, &location);
2409 	if (!IS_ERR(root)) {
2410 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2411 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2412 		fs_info->quota_root = root;
2413 	}
2414 
2415 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2416 	root = btrfs_read_tree_root(tree_root, &location);
2417 	if (IS_ERR(root)) {
2418 		ret = PTR_ERR(root);
2419 		if (ret != -ENOENT)
2420 			goto out;
2421 	} else {
2422 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2423 		fs_info->uuid_root = root;
2424 	}
2425 
2426 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2427 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2428 		root = btrfs_read_tree_root(tree_root, &location);
2429 		if (IS_ERR(root)) {
2430 			ret = PTR_ERR(root);
2431 			goto out;
2432 		}
2433 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2434 		fs_info->free_space_root = root;
2435 	}
2436 
2437 	return 0;
2438 out:
2439 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2440 		   location.objectid, ret);
2441 	return ret;
2442 }
2443 
2444 int open_ctree(struct super_block *sb,
2445 	       struct btrfs_fs_devices *fs_devices,
2446 	       char *options)
2447 {
2448 	u32 sectorsize;
2449 	u32 nodesize;
2450 	u32 stripesize;
2451 	u64 generation;
2452 	u64 features;
2453 	struct btrfs_key location;
2454 	struct buffer_head *bh;
2455 	struct btrfs_super_block *disk_super;
2456 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2457 	struct btrfs_root *tree_root;
2458 	struct btrfs_root *chunk_root;
2459 	int ret;
2460 	int err = -EINVAL;
2461 	int num_backups_tried = 0;
2462 	int backup_index = 0;
2463 	int clear_free_space_tree = 0;
2464 	int level;
2465 
2466 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2467 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2468 	if (!tree_root || !chunk_root) {
2469 		err = -ENOMEM;
2470 		goto fail;
2471 	}
2472 
2473 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2474 	if (ret) {
2475 		err = ret;
2476 		goto fail;
2477 	}
2478 
2479 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2480 	if (ret) {
2481 		err = ret;
2482 		goto fail_srcu;
2483 	}
2484 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2485 					(1 + ilog2(nr_cpu_ids));
2486 
2487 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2488 	if (ret) {
2489 		err = ret;
2490 		goto fail_dirty_metadata_bytes;
2491 	}
2492 
2493 	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2494 	if (ret) {
2495 		err = ret;
2496 		goto fail_delalloc_bytes;
2497 	}
2498 
2499 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2500 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2501 	INIT_LIST_HEAD(&fs_info->trans_list);
2502 	INIT_LIST_HEAD(&fs_info->dead_roots);
2503 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2504 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2505 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2506 	INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2507 	spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2508 	spin_lock_init(&fs_info->delalloc_root_lock);
2509 	spin_lock_init(&fs_info->trans_lock);
2510 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2511 	spin_lock_init(&fs_info->delayed_iput_lock);
2512 	spin_lock_init(&fs_info->defrag_inodes_lock);
2513 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2514 	spin_lock_init(&fs_info->super_lock);
2515 	spin_lock_init(&fs_info->qgroup_op_lock);
2516 	spin_lock_init(&fs_info->buffer_lock);
2517 	spin_lock_init(&fs_info->unused_bgs_lock);
2518 	rwlock_init(&fs_info->tree_mod_log_lock);
2519 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2520 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2521 	mutex_init(&fs_info->reloc_mutex);
2522 	mutex_init(&fs_info->delalloc_root_mutex);
2523 	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2524 	seqlock_init(&fs_info->profiles_lock);
2525 
2526 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2527 	INIT_LIST_HEAD(&fs_info->space_info);
2528 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2529 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2530 	btrfs_mapping_init(&fs_info->mapping_tree);
2531 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2532 			     BTRFS_BLOCK_RSV_GLOBAL);
2533 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2534 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2535 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2536 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2537 			     BTRFS_BLOCK_RSV_DELOPS);
2538 	atomic_set(&fs_info->async_delalloc_pages, 0);
2539 	atomic_set(&fs_info->defrag_running, 0);
2540 	atomic_set(&fs_info->qgroup_op_seq, 0);
2541 	atomic_set(&fs_info->reada_works_cnt, 0);
2542 	atomic64_set(&fs_info->tree_mod_seq, 0);
2543 	fs_info->sb = sb;
2544 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2545 	fs_info->metadata_ratio = 0;
2546 	fs_info->defrag_inodes = RB_ROOT;
2547 	atomic64_set(&fs_info->free_chunk_space, 0);
2548 	fs_info->tree_mod_log = RB_ROOT;
2549 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2550 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2551 	/* readahead state */
2552 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2553 	spin_lock_init(&fs_info->reada_lock);
2554 	btrfs_init_ref_verify(fs_info);
2555 
2556 	fs_info->thread_pool_size = min_t(unsigned long,
2557 					  num_online_cpus() + 2, 8);
2558 
2559 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2560 	spin_lock_init(&fs_info->ordered_root_lock);
2561 
2562 	fs_info->btree_inode = new_inode(sb);
2563 	if (!fs_info->btree_inode) {
2564 		err = -ENOMEM;
2565 		goto fail_bio_counter;
2566 	}
2567 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2568 
2569 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2570 					GFP_KERNEL);
2571 	if (!fs_info->delayed_root) {
2572 		err = -ENOMEM;
2573 		goto fail_iput;
2574 	}
2575 	btrfs_init_delayed_root(fs_info->delayed_root);
2576 
2577 	btrfs_init_scrub(fs_info);
2578 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2579 	fs_info->check_integrity_print_mask = 0;
2580 #endif
2581 	btrfs_init_balance(fs_info);
2582 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2583 
2584 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2585 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2586 
2587 	btrfs_init_btree_inode(fs_info);
2588 
2589 	spin_lock_init(&fs_info->block_group_cache_lock);
2590 	fs_info->block_group_cache_tree = RB_ROOT;
2591 	fs_info->first_logical_byte = (u64)-1;
2592 
2593 	extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2594 	extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2595 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2596 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2597 
2598 	mutex_init(&fs_info->ordered_operations_mutex);
2599 	mutex_init(&fs_info->tree_log_mutex);
2600 	mutex_init(&fs_info->chunk_mutex);
2601 	mutex_init(&fs_info->transaction_kthread_mutex);
2602 	mutex_init(&fs_info->cleaner_mutex);
2603 	mutex_init(&fs_info->volume_mutex);
2604 	mutex_init(&fs_info->ro_block_group_mutex);
2605 	init_rwsem(&fs_info->commit_root_sem);
2606 	init_rwsem(&fs_info->cleanup_work_sem);
2607 	init_rwsem(&fs_info->subvol_sem);
2608 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2609 
2610 	btrfs_init_dev_replace_locks(fs_info);
2611 	btrfs_init_qgroup(fs_info);
2612 
2613 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2614 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2615 
2616 	init_waitqueue_head(&fs_info->transaction_throttle);
2617 	init_waitqueue_head(&fs_info->transaction_wait);
2618 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2619 	init_waitqueue_head(&fs_info->async_submit_wait);
2620 
2621 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2622 
2623 	/* Usable values until the real ones are cached from the superblock */
2624 	fs_info->nodesize = 4096;
2625 	fs_info->sectorsize = 4096;
2626 	fs_info->stripesize = 4096;
2627 
2628 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2629 	if (ret) {
2630 		err = ret;
2631 		goto fail_alloc;
2632 	}
2633 
2634 	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2635 
2636 	invalidate_bdev(fs_devices->latest_bdev);
2637 
2638 	/*
2639 	 * Read super block and check the signature bytes only
2640 	 */
2641 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2642 	if (IS_ERR(bh)) {
2643 		err = PTR_ERR(bh);
2644 		goto fail_alloc;
2645 	}
2646 
2647 	/*
2648 	 * We want to check superblock checksum, the type is stored inside.
2649 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2650 	 */
2651 	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2652 		btrfs_err(fs_info, "superblock checksum mismatch");
2653 		err = -EINVAL;
2654 		brelse(bh);
2655 		goto fail_alloc;
2656 	}
2657 
2658 	/*
2659 	 * super_copy is zeroed at allocation time and we never touch the
2660 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2661 	 * the whole block of INFO_SIZE
2662 	 */
2663 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2664 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2665 	       sizeof(*fs_info->super_for_commit));
2666 	brelse(bh);
2667 
2668 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2669 
2670 	ret = btrfs_check_super_valid(fs_info);
2671 	if (ret) {
2672 		btrfs_err(fs_info, "superblock contains fatal errors");
2673 		err = -EINVAL;
2674 		goto fail_alloc;
2675 	}
2676 
2677 	disk_super = fs_info->super_copy;
2678 	if (!btrfs_super_root(disk_super))
2679 		goto fail_alloc;
2680 
2681 	/* check FS state, whether FS is broken. */
2682 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2683 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2684 
2685 	/*
2686 	 * run through our array of backup supers and setup
2687 	 * our ring pointer to the oldest one
2688 	 */
2689 	generation = btrfs_super_generation(disk_super);
2690 	find_oldest_super_backup(fs_info, generation);
2691 
2692 	/*
2693 	 * In the long term, we'll store the compression type in the super
2694 	 * block, and it'll be used for per file compression control.
2695 	 */
2696 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2697 
2698 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2699 	if (ret) {
2700 		err = ret;
2701 		goto fail_alloc;
2702 	}
2703 
2704 	features = btrfs_super_incompat_flags(disk_super) &
2705 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2706 	if (features) {
2707 		btrfs_err(fs_info,
2708 		    "cannot mount because of unsupported optional features (%llx)",
2709 		    features);
2710 		err = -EINVAL;
2711 		goto fail_alloc;
2712 	}
2713 
2714 	features = btrfs_super_incompat_flags(disk_super);
2715 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2716 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2717 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2718 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2719 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2720 
2721 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2722 		btrfs_info(fs_info, "has skinny extents");
2723 
2724 	/*
2725 	 * flag our filesystem as having big metadata blocks if
2726 	 * they are bigger than the page size
2727 	 */
2728 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2729 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2730 			btrfs_info(fs_info,
2731 				"flagging fs with big metadata feature");
2732 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2733 	}
2734 
2735 	nodesize = btrfs_super_nodesize(disk_super);
2736 	sectorsize = btrfs_super_sectorsize(disk_super);
2737 	stripesize = sectorsize;
2738 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2739 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2740 
2741 	/* Cache block sizes */
2742 	fs_info->nodesize = nodesize;
2743 	fs_info->sectorsize = sectorsize;
2744 	fs_info->stripesize = stripesize;
2745 
2746 	/*
2747 	 * mixed block groups end up with duplicate but slightly offset
2748 	 * extent buffers for the same range.  It leads to corruptions
2749 	 */
2750 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2751 	    (sectorsize != nodesize)) {
2752 		btrfs_err(fs_info,
2753 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2754 			nodesize, sectorsize);
2755 		goto fail_alloc;
2756 	}
2757 
2758 	/*
2759 	 * Needn't use the lock because there is no other task which will
2760 	 * update the flag.
2761 	 */
2762 	btrfs_set_super_incompat_flags(disk_super, features);
2763 
2764 	features = btrfs_super_compat_ro_flags(disk_super) &
2765 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2766 	if (!sb_rdonly(sb) && features) {
2767 		btrfs_err(fs_info,
2768 	"cannot mount read-write because of unsupported optional features (%llx)",
2769 		       features);
2770 		err = -EINVAL;
2771 		goto fail_alloc;
2772 	}
2773 
2774 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2775 	if (ret) {
2776 		err = ret;
2777 		goto fail_sb_buffer;
2778 	}
2779 
2780 	sb->s_bdi->congested_fn = btrfs_congested_fn;
2781 	sb->s_bdi->congested_data = fs_info;
2782 	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2783 	sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2784 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2785 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2786 
2787 	sb->s_blocksize = sectorsize;
2788 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2789 	memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2790 
2791 	mutex_lock(&fs_info->chunk_mutex);
2792 	ret = btrfs_read_sys_array(fs_info);
2793 	mutex_unlock(&fs_info->chunk_mutex);
2794 	if (ret) {
2795 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2796 		goto fail_sb_buffer;
2797 	}
2798 
2799 	generation = btrfs_super_chunk_root_generation(disk_super);
2800 	level = btrfs_super_chunk_root_level(disk_super);
2801 
2802 	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2803 
2804 	chunk_root->node = read_tree_block(fs_info,
2805 					   btrfs_super_chunk_root(disk_super),
2806 					   generation, level, NULL);
2807 	if (IS_ERR(chunk_root->node) ||
2808 	    !extent_buffer_uptodate(chunk_root->node)) {
2809 		btrfs_err(fs_info, "failed to read chunk root");
2810 		if (!IS_ERR(chunk_root->node))
2811 			free_extent_buffer(chunk_root->node);
2812 		chunk_root->node = NULL;
2813 		goto fail_tree_roots;
2814 	}
2815 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2816 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2817 
2818 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2819 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2820 
2821 	ret = btrfs_read_chunk_tree(fs_info);
2822 	if (ret) {
2823 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2824 		goto fail_tree_roots;
2825 	}
2826 
2827 	/*
2828 	 * Keep the devid that is marked to be the target device for the
2829 	 * device replace procedure
2830 	 */
2831 	btrfs_free_extra_devids(fs_devices, 0);
2832 
2833 	if (!fs_devices->latest_bdev) {
2834 		btrfs_err(fs_info, "failed to read devices");
2835 		goto fail_tree_roots;
2836 	}
2837 
2838 retry_root_backup:
2839 	generation = btrfs_super_generation(disk_super);
2840 	level = btrfs_super_root_level(disk_super);
2841 
2842 	tree_root->node = read_tree_block(fs_info,
2843 					  btrfs_super_root(disk_super),
2844 					  generation, level, NULL);
2845 	if (IS_ERR(tree_root->node) ||
2846 	    !extent_buffer_uptodate(tree_root->node)) {
2847 		btrfs_warn(fs_info, "failed to read tree root");
2848 		if (!IS_ERR(tree_root->node))
2849 			free_extent_buffer(tree_root->node);
2850 		tree_root->node = NULL;
2851 		goto recovery_tree_root;
2852 	}
2853 
2854 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2855 	tree_root->commit_root = btrfs_root_node(tree_root);
2856 	btrfs_set_root_refs(&tree_root->root_item, 1);
2857 
2858 	mutex_lock(&tree_root->objectid_mutex);
2859 	ret = btrfs_find_highest_objectid(tree_root,
2860 					&tree_root->highest_objectid);
2861 	if (ret) {
2862 		mutex_unlock(&tree_root->objectid_mutex);
2863 		goto recovery_tree_root;
2864 	}
2865 
2866 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2867 
2868 	mutex_unlock(&tree_root->objectid_mutex);
2869 
2870 	ret = btrfs_read_roots(fs_info);
2871 	if (ret)
2872 		goto recovery_tree_root;
2873 
2874 	fs_info->generation = generation;
2875 	fs_info->last_trans_committed = generation;
2876 
2877 	ret = btrfs_recover_balance(fs_info);
2878 	if (ret) {
2879 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
2880 		goto fail_block_groups;
2881 	}
2882 
2883 	ret = btrfs_init_dev_stats(fs_info);
2884 	if (ret) {
2885 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2886 		goto fail_block_groups;
2887 	}
2888 
2889 	ret = btrfs_init_dev_replace(fs_info);
2890 	if (ret) {
2891 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2892 		goto fail_block_groups;
2893 	}
2894 
2895 	btrfs_free_extra_devids(fs_devices, 1);
2896 
2897 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2898 	if (ret) {
2899 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2900 				ret);
2901 		goto fail_block_groups;
2902 	}
2903 
2904 	ret = btrfs_sysfs_add_device(fs_devices);
2905 	if (ret) {
2906 		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2907 				ret);
2908 		goto fail_fsdev_sysfs;
2909 	}
2910 
2911 	ret = btrfs_sysfs_add_mounted(fs_info);
2912 	if (ret) {
2913 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2914 		goto fail_fsdev_sysfs;
2915 	}
2916 
2917 	ret = btrfs_init_space_info(fs_info);
2918 	if (ret) {
2919 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2920 		goto fail_sysfs;
2921 	}
2922 
2923 	ret = btrfs_read_block_groups(fs_info);
2924 	if (ret) {
2925 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
2926 		goto fail_sysfs;
2927 	}
2928 
2929 	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
2930 		btrfs_warn(fs_info,
2931 		"writeable mount is not allowed due to too many missing devices");
2932 		goto fail_sysfs;
2933 	}
2934 
2935 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2936 					       "btrfs-cleaner");
2937 	if (IS_ERR(fs_info->cleaner_kthread))
2938 		goto fail_sysfs;
2939 
2940 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2941 						   tree_root,
2942 						   "btrfs-transaction");
2943 	if (IS_ERR(fs_info->transaction_kthread))
2944 		goto fail_cleaner;
2945 
2946 	if (!btrfs_test_opt(fs_info, NOSSD) &&
2947 	    !fs_info->fs_devices->rotating) {
2948 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
2949 	}
2950 
2951 	/*
2952 	 * Mount does not set all options immediately, we can do it now and do
2953 	 * not have to wait for transaction commit
2954 	 */
2955 	btrfs_apply_pending_changes(fs_info);
2956 
2957 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2958 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2959 		ret = btrfsic_mount(fs_info, fs_devices,
2960 				    btrfs_test_opt(fs_info,
2961 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2962 				    1 : 0,
2963 				    fs_info->check_integrity_print_mask);
2964 		if (ret)
2965 			btrfs_warn(fs_info,
2966 				"failed to initialize integrity check module: %d",
2967 				ret);
2968 	}
2969 #endif
2970 	ret = btrfs_read_qgroup_config(fs_info);
2971 	if (ret)
2972 		goto fail_trans_kthread;
2973 
2974 	if (btrfs_build_ref_tree(fs_info))
2975 		btrfs_err(fs_info, "couldn't build ref tree");
2976 
2977 	/* do not make disk changes in broken FS or nologreplay is given */
2978 	if (btrfs_super_log_root(disk_super) != 0 &&
2979 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
2980 		ret = btrfs_replay_log(fs_info, fs_devices);
2981 		if (ret) {
2982 			err = ret;
2983 			goto fail_qgroup;
2984 		}
2985 	}
2986 
2987 	ret = btrfs_find_orphan_roots(fs_info);
2988 	if (ret)
2989 		goto fail_qgroup;
2990 
2991 	if (!sb_rdonly(sb)) {
2992 		ret = btrfs_cleanup_fs_roots(fs_info);
2993 		if (ret)
2994 			goto fail_qgroup;
2995 
2996 		mutex_lock(&fs_info->cleaner_mutex);
2997 		ret = btrfs_recover_relocation(tree_root);
2998 		mutex_unlock(&fs_info->cleaner_mutex);
2999 		if (ret < 0) {
3000 			btrfs_warn(fs_info, "failed to recover relocation: %d",
3001 					ret);
3002 			err = -EINVAL;
3003 			goto fail_qgroup;
3004 		}
3005 	}
3006 
3007 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3008 	location.type = BTRFS_ROOT_ITEM_KEY;
3009 	location.offset = 0;
3010 
3011 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3012 	if (IS_ERR(fs_info->fs_root)) {
3013 		err = PTR_ERR(fs_info->fs_root);
3014 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3015 		goto fail_qgroup;
3016 	}
3017 
3018 	if (sb_rdonly(sb))
3019 		return 0;
3020 
3021 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3022 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3023 		clear_free_space_tree = 1;
3024 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3025 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3026 		btrfs_warn(fs_info, "free space tree is invalid");
3027 		clear_free_space_tree = 1;
3028 	}
3029 
3030 	if (clear_free_space_tree) {
3031 		btrfs_info(fs_info, "clearing free space tree");
3032 		ret = btrfs_clear_free_space_tree(fs_info);
3033 		if (ret) {
3034 			btrfs_warn(fs_info,
3035 				   "failed to clear free space tree: %d", ret);
3036 			close_ctree(fs_info);
3037 			return ret;
3038 		}
3039 	}
3040 
3041 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3042 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3043 		btrfs_info(fs_info, "creating free space tree");
3044 		ret = btrfs_create_free_space_tree(fs_info);
3045 		if (ret) {
3046 			btrfs_warn(fs_info,
3047 				"failed to create free space tree: %d", ret);
3048 			close_ctree(fs_info);
3049 			return ret;
3050 		}
3051 	}
3052 
3053 	down_read(&fs_info->cleanup_work_sem);
3054 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3055 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3056 		up_read(&fs_info->cleanup_work_sem);
3057 		close_ctree(fs_info);
3058 		return ret;
3059 	}
3060 	up_read(&fs_info->cleanup_work_sem);
3061 
3062 	ret = btrfs_resume_balance_async(fs_info);
3063 	if (ret) {
3064 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3065 		close_ctree(fs_info);
3066 		return ret;
3067 	}
3068 
3069 	ret = btrfs_resume_dev_replace_async(fs_info);
3070 	if (ret) {
3071 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3072 		close_ctree(fs_info);
3073 		return ret;
3074 	}
3075 
3076 	btrfs_qgroup_rescan_resume(fs_info);
3077 
3078 	if (!fs_info->uuid_root) {
3079 		btrfs_info(fs_info, "creating UUID tree");
3080 		ret = btrfs_create_uuid_tree(fs_info);
3081 		if (ret) {
3082 			btrfs_warn(fs_info,
3083 				"failed to create the UUID tree: %d", ret);
3084 			close_ctree(fs_info);
3085 			return ret;
3086 		}
3087 	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3088 		   fs_info->generation !=
3089 				btrfs_super_uuid_tree_generation(disk_super)) {
3090 		btrfs_info(fs_info, "checking UUID tree");
3091 		ret = btrfs_check_uuid_tree(fs_info);
3092 		if (ret) {
3093 			btrfs_warn(fs_info,
3094 				"failed to check the UUID tree: %d", ret);
3095 			close_ctree(fs_info);
3096 			return ret;
3097 		}
3098 	} else {
3099 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3100 	}
3101 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3102 
3103 	/*
3104 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3105 	 * no need to keep the flag
3106 	 */
3107 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3108 
3109 	return 0;
3110 
3111 fail_qgroup:
3112 	btrfs_free_qgroup_config(fs_info);
3113 fail_trans_kthread:
3114 	kthread_stop(fs_info->transaction_kthread);
3115 	btrfs_cleanup_transaction(fs_info);
3116 	btrfs_free_fs_roots(fs_info);
3117 fail_cleaner:
3118 	kthread_stop(fs_info->cleaner_kthread);
3119 
3120 	/*
3121 	 * make sure we're done with the btree inode before we stop our
3122 	 * kthreads
3123 	 */
3124 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3125 
3126 fail_sysfs:
3127 	btrfs_sysfs_remove_mounted(fs_info);
3128 
3129 fail_fsdev_sysfs:
3130 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3131 
3132 fail_block_groups:
3133 	btrfs_put_block_group_cache(fs_info);
3134 
3135 fail_tree_roots:
3136 	free_root_pointers(fs_info, 1);
3137 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3138 
3139 fail_sb_buffer:
3140 	btrfs_stop_all_workers(fs_info);
3141 	btrfs_free_block_groups(fs_info);
3142 fail_alloc:
3143 fail_iput:
3144 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3145 
3146 	iput(fs_info->btree_inode);
3147 fail_bio_counter:
3148 	percpu_counter_destroy(&fs_info->bio_counter);
3149 fail_delalloc_bytes:
3150 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3151 fail_dirty_metadata_bytes:
3152 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3153 fail_srcu:
3154 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3155 fail:
3156 	btrfs_free_stripe_hash_table(fs_info);
3157 	btrfs_close_devices(fs_info->fs_devices);
3158 	return err;
3159 
3160 recovery_tree_root:
3161 	if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3162 		goto fail_tree_roots;
3163 
3164 	free_root_pointers(fs_info, 0);
3165 
3166 	/* don't use the log in recovery mode, it won't be valid */
3167 	btrfs_set_super_log_root(disk_super, 0);
3168 
3169 	/* we can't trust the free space cache either */
3170 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3171 
3172 	ret = next_root_backup(fs_info, fs_info->super_copy,
3173 			       &num_backups_tried, &backup_index);
3174 	if (ret == -1)
3175 		goto fail_block_groups;
3176 	goto retry_root_backup;
3177 }
3178 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3179 
3180 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3181 {
3182 	if (uptodate) {
3183 		set_buffer_uptodate(bh);
3184 	} else {
3185 		struct btrfs_device *device = (struct btrfs_device *)
3186 			bh->b_private;
3187 
3188 		btrfs_warn_rl_in_rcu(device->fs_info,
3189 				"lost page write due to IO error on %s",
3190 					  rcu_str_deref(device->name));
3191 		/* note, we don't set_buffer_write_io_error because we have
3192 		 * our own ways of dealing with the IO errors
3193 		 */
3194 		clear_buffer_uptodate(bh);
3195 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3196 	}
3197 	unlock_buffer(bh);
3198 	put_bh(bh);
3199 }
3200 
3201 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3202 			struct buffer_head **bh_ret)
3203 {
3204 	struct buffer_head *bh;
3205 	struct btrfs_super_block *super;
3206 	u64 bytenr;
3207 
3208 	bytenr = btrfs_sb_offset(copy_num);
3209 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3210 		return -EINVAL;
3211 
3212 	bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3213 	/*
3214 	 * If we fail to read from the underlying devices, as of now
3215 	 * the best option we have is to mark it EIO.
3216 	 */
3217 	if (!bh)
3218 		return -EIO;
3219 
3220 	super = (struct btrfs_super_block *)bh->b_data;
3221 	if (btrfs_super_bytenr(super) != bytenr ||
3222 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3223 		brelse(bh);
3224 		return -EINVAL;
3225 	}
3226 
3227 	*bh_ret = bh;
3228 	return 0;
3229 }
3230 
3231 
3232 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3233 {
3234 	struct buffer_head *bh;
3235 	struct buffer_head *latest = NULL;
3236 	struct btrfs_super_block *super;
3237 	int i;
3238 	u64 transid = 0;
3239 	int ret = -EINVAL;
3240 
3241 	/* we would like to check all the supers, but that would make
3242 	 * a btrfs mount succeed after a mkfs from a different FS.
3243 	 * So, we need to add a special mount option to scan for
3244 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3245 	 */
3246 	for (i = 0; i < 1; i++) {
3247 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3248 		if (ret)
3249 			continue;
3250 
3251 		super = (struct btrfs_super_block *)bh->b_data;
3252 
3253 		if (!latest || btrfs_super_generation(super) > transid) {
3254 			brelse(latest);
3255 			latest = bh;
3256 			transid = btrfs_super_generation(super);
3257 		} else {
3258 			brelse(bh);
3259 		}
3260 	}
3261 
3262 	if (!latest)
3263 		return ERR_PTR(ret);
3264 
3265 	return latest;
3266 }
3267 
3268 /*
3269  * Write superblock @sb to the @device. Do not wait for completion, all the
3270  * buffer heads we write are pinned.
3271  *
3272  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3273  * the expected device size at commit time. Note that max_mirrors must be
3274  * same for write and wait phases.
3275  *
3276  * Return number of errors when buffer head is not found or submission fails.
3277  */
3278 static int write_dev_supers(struct btrfs_device *device,
3279 			    struct btrfs_super_block *sb, int max_mirrors)
3280 {
3281 	struct buffer_head *bh;
3282 	int i;
3283 	int ret;
3284 	int errors = 0;
3285 	u32 crc;
3286 	u64 bytenr;
3287 	int op_flags;
3288 
3289 	if (max_mirrors == 0)
3290 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3291 
3292 	for (i = 0; i < max_mirrors; i++) {
3293 		bytenr = btrfs_sb_offset(i);
3294 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3295 		    device->commit_total_bytes)
3296 			break;
3297 
3298 		btrfs_set_super_bytenr(sb, bytenr);
3299 
3300 		crc = ~(u32)0;
3301 		crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3302 				      BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3303 		btrfs_csum_final(crc, sb->csum);
3304 
3305 		/* One reference for us, and we leave it for the caller */
3306 		bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3307 			      BTRFS_SUPER_INFO_SIZE);
3308 		if (!bh) {
3309 			btrfs_err(device->fs_info,
3310 			    "couldn't get super buffer head for bytenr %llu",
3311 			    bytenr);
3312 			errors++;
3313 			continue;
3314 		}
3315 
3316 		memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3317 
3318 		/* one reference for submit_bh */
3319 		get_bh(bh);
3320 
3321 		set_buffer_uptodate(bh);
3322 		lock_buffer(bh);
3323 		bh->b_end_io = btrfs_end_buffer_write_sync;
3324 		bh->b_private = device;
3325 
3326 		/*
3327 		 * we fua the first super.  The others we allow
3328 		 * to go down lazy.
3329 		 */
3330 		op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3331 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3332 			op_flags |= REQ_FUA;
3333 		ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3334 		if (ret)
3335 			errors++;
3336 	}
3337 	return errors < i ? 0 : -1;
3338 }
3339 
3340 /*
3341  * Wait for write completion of superblocks done by write_dev_supers,
3342  * @max_mirrors same for write and wait phases.
3343  *
3344  * Return number of errors when buffer head is not found or not marked up to
3345  * date.
3346  */
3347 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3348 {
3349 	struct buffer_head *bh;
3350 	int i;
3351 	int errors = 0;
3352 	bool primary_failed = false;
3353 	u64 bytenr;
3354 
3355 	if (max_mirrors == 0)
3356 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3357 
3358 	for (i = 0; i < max_mirrors; i++) {
3359 		bytenr = btrfs_sb_offset(i);
3360 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3361 		    device->commit_total_bytes)
3362 			break;
3363 
3364 		bh = __find_get_block(device->bdev,
3365 				      bytenr / BTRFS_BDEV_BLOCKSIZE,
3366 				      BTRFS_SUPER_INFO_SIZE);
3367 		if (!bh) {
3368 			errors++;
3369 			if (i == 0)
3370 				primary_failed = true;
3371 			continue;
3372 		}
3373 		wait_on_buffer(bh);
3374 		if (!buffer_uptodate(bh)) {
3375 			errors++;
3376 			if (i == 0)
3377 				primary_failed = true;
3378 		}
3379 
3380 		/* drop our reference */
3381 		brelse(bh);
3382 
3383 		/* drop the reference from the writing run */
3384 		brelse(bh);
3385 	}
3386 
3387 	/* log error, force error return */
3388 	if (primary_failed) {
3389 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3390 			  device->devid);
3391 		return -1;
3392 	}
3393 
3394 	return errors < i ? 0 : -1;
3395 }
3396 
3397 /*
3398  * endio for the write_dev_flush, this will wake anyone waiting
3399  * for the barrier when it is done
3400  */
3401 static void btrfs_end_empty_barrier(struct bio *bio)
3402 {
3403 	complete(bio->bi_private);
3404 }
3405 
3406 /*
3407  * Submit a flush request to the device if it supports it. Error handling is
3408  * done in the waiting counterpart.
3409  */
3410 static void write_dev_flush(struct btrfs_device *device)
3411 {
3412 	struct request_queue *q = bdev_get_queue(device->bdev);
3413 	struct bio *bio = device->flush_bio;
3414 
3415 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3416 		return;
3417 
3418 	bio_reset(bio);
3419 	bio->bi_end_io = btrfs_end_empty_barrier;
3420 	bio_set_dev(bio, device->bdev);
3421 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3422 	init_completion(&device->flush_wait);
3423 	bio->bi_private = &device->flush_wait;
3424 
3425 	btrfsic_submit_bio(bio);
3426 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3427 }
3428 
3429 /*
3430  * If the flush bio has been submitted by write_dev_flush, wait for it.
3431  */
3432 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3433 {
3434 	struct bio *bio = device->flush_bio;
3435 
3436 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3437 		return BLK_STS_OK;
3438 
3439 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3440 	wait_for_completion_io(&device->flush_wait);
3441 
3442 	return bio->bi_status;
3443 }
3444 
3445 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3446 {
3447 	if (!btrfs_check_rw_degradable(fs_info, NULL))
3448 		return -EIO;
3449 	return 0;
3450 }
3451 
3452 /*
3453  * send an empty flush down to each device in parallel,
3454  * then wait for them
3455  */
3456 static int barrier_all_devices(struct btrfs_fs_info *info)
3457 {
3458 	struct list_head *head;
3459 	struct btrfs_device *dev;
3460 	int errors_wait = 0;
3461 	blk_status_t ret;
3462 
3463 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3464 	/* send down all the barriers */
3465 	head = &info->fs_devices->devices;
3466 	list_for_each_entry(dev, head, dev_list) {
3467 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3468 			continue;
3469 		if (!dev->bdev)
3470 			continue;
3471 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3472 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3473 			continue;
3474 
3475 		write_dev_flush(dev);
3476 		dev->last_flush_error = BLK_STS_OK;
3477 	}
3478 
3479 	/* wait for all the barriers */
3480 	list_for_each_entry(dev, head, dev_list) {
3481 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3482 			continue;
3483 		if (!dev->bdev) {
3484 			errors_wait++;
3485 			continue;
3486 		}
3487 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3488 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3489 			continue;
3490 
3491 		ret = wait_dev_flush(dev);
3492 		if (ret) {
3493 			dev->last_flush_error = ret;
3494 			btrfs_dev_stat_inc_and_print(dev,
3495 					BTRFS_DEV_STAT_FLUSH_ERRS);
3496 			errors_wait++;
3497 		}
3498 	}
3499 
3500 	if (errors_wait) {
3501 		/*
3502 		 * At some point we need the status of all disks
3503 		 * to arrive at the volume status. So error checking
3504 		 * is being pushed to a separate loop.
3505 		 */
3506 		return check_barrier_error(info);
3507 	}
3508 	return 0;
3509 }
3510 
3511 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3512 {
3513 	int raid_type;
3514 	int min_tolerated = INT_MAX;
3515 
3516 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3517 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3518 		min_tolerated = min(min_tolerated,
3519 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3520 				    tolerated_failures);
3521 
3522 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3523 		if (raid_type == BTRFS_RAID_SINGLE)
3524 			continue;
3525 		if (!(flags & btrfs_raid_group[raid_type]))
3526 			continue;
3527 		min_tolerated = min(min_tolerated,
3528 				    btrfs_raid_array[raid_type].
3529 				    tolerated_failures);
3530 	}
3531 
3532 	if (min_tolerated == INT_MAX) {
3533 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3534 		min_tolerated = 0;
3535 	}
3536 
3537 	return min_tolerated;
3538 }
3539 
3540 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3541 {
3542 	struct list_head *head;
3543 	struct btrfs_device *dev;
3544 	struct btrfs_super_block *sb;
3545 	struct btrfs_dev_item *dev_item;
3546 	int ret;
3547 	int do_barriers;
3548 	int max_errors;
3549 	int total_errors = 0;
3550 	u64 flags;
3551 
3552 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3553 
3554 	/*
3555 	 * max_mirrors == 0 indicates we're from commit_transaction,
3556 	 * not from fsync where the tree roots in fs_info have not
3557 	 * been consistent on disk.
3558 	 */
3559 	if (max_mirrors == 0)
3560 		backup_super_roots(fs_info);
3561 
3562 	sb = fs_info->super_for_commit;
3563 	dev_item = &sb->dev_item;
3564 
3565 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3566 	head = &fs_info->fs_devices->devices;
3567 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3568 
3569 	if (do_barriers) {
3570 		ret = barrier_all_devices(fs_info);
3571 		if (ret) {
3572 			mutex_unlock(
3573 				&fs_info->fs_devices->device_list_mutex);
3574 			btrfs_handle_fs_error(fs_info, ret,
3575 					      "errors while submitting device barriers.");
3576 			return ret;
3577 		}
3578 	}
3579 
3580 	list_for_each_entry(dev, head, dev_list) {
3581 		if (!dev->bdev) {
3582 			total_errors++;
3583 			continue;
3584 		}
3585 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3586 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3587 			continue;
3588 
3589 		btrfs_set_stack_device_generation(dev_item, 0);
3590 		btrfs_set_stack_device_type(dev_item, dev->type);
3591 		btrfs_set_stack_device_id(dev_item, dev->devid);
3592 		btrfs_set_stack_device_total_bytes(dev_item,
3593 						   dev->commit_total_bytes);
3594 		btrfs_set_stack_device_bytes_used(dev_item,
3595 						  dev->commit_bytes_used);
3596 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3597 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3598 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3599 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3600 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3601 
3602 		flags = btrfs_super_flags(sb);
3603 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3604 
3605 		ret = write_dev_supers(dev, sb, max_mirrors);
3606 		if (ret)
3607 			total_errors++;
3608 	}
3609 	if (total_errors > max_errors) {
3610 		btrfs_err(fs_info, "%d errors while writing supers",
3611 			  total_errors);
3612 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3613 
3614 		/* FUA is masked off if unsupported and can't be the reason */
3615 		btrfs_handle_fs_error(fs_info, -EIO,
3616 				      "%d errors while writing supers",
3617 				      total_errors);
3618 		return -EIO;
3619 	}
3620 
3621 	total_errors = 0;
3622 	list_for_each_entry(dev, head, dev_list) {
3623 		if (!dev->bdev)
3624 			continue;
3625 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3626 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3627 			continue;
3628 
3629 		ret = wait_dev_supers(dev, max_mirrors);
3630 		if (ret)
3631 			total_errors++;
3632 	}
3633 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3634 	if (total_errors > max_errors) {
3635 		btrfs_handle_fs_error(fs_info, -EIO,
3636 				      "%d errors while writing supers",
3637 				      total_errors);
3638 		return -EIO;
3639 	}
3640 	return 0;
3641 }
3642 
3643 /* Drop a fs root from the radix tree and free it. */
3644 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3645 				  struct btrfs_root *root)
3646 {
3647 	spin_lock(&fs_info->fs_roots_radix_lock);
3648 	radix_tree_delete(&fs_info->fs_roots_radix,
3649 			  (unsigned long)root->root_key.objectid);
3650 	spin_unlock(&fs_info->fs_roots_radix_lock);
3651 
3652 	if (btrfs_root_refs(&root->root_item) == 0)
3653 		synchronize_srcu(&fs_info->subvol_srcu);
3654 
3655 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3656 		btrfs_free_log(NULL, root);
3657 		if (root->reloc_root) {
3658 			free_extent_buffer(root->reloc_root->node);
3659 			free_extent_buffer(root->reloc_root->commit_root);
3660 			btrfs_put_fs_root(root->reloc_root);
3661 			root->reloc_root = NULL;
3662 		}
3663 	}
3664 
3665 	if (root->free_ino_pinned)
3666 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3667 	if (root->free_ino_ctl)
3668 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3669 	free_fs_root(root);
3670 }
3671 
3672 static void free_fs_root(struct btrfs_root *root)
3673 {
3674 	iput(root->ino_cache_inode);
3675 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3676 	btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3677 	root->orphan_block_rsv = NULL;
3678 	if (root->anon_dev)
3679 		free_anon_bdev(root->anon_dev);
3680 	if (root->subv_writers)
3681 		btrfs_free_subvolume_writers(root->subv_writers);
3682 	free_extent_buffer(root->node);
3683 	free_extent_buffer(root->commit_root);
3684 	kfree(root->free_ino_ctl);
3685 	kfree(root->free_ino_pinned);
3686 	kfree(root->name);
3687 	btrfs_put_fs_root(root);
3688 }
3689 
3690 void btrfs_free_fs_root(struct btrfs_root *root)
3691 {
3692 	free_fs_root(root);
3693 }
3694 
3695 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3696 {
3697 	u64 root_objectid = 0;
3698 	struct btrfs_root *gang[8];
3699 	int i = 0;
3700 	int err = 0;
3701 	unsigned int ret = 0;
3702 	int index;
3703 
3704 	while (1) {
3705 		index = srcu_read_lock(&fs_info->subvol_srcu);
3706 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3707 					     (void **)gang, root_objectid,
3708 					     ARRAY_SIZE(gang));
3709 		if (!ret) {
3710 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3711 			break;
3712 		}
3713 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3714 
3715 		for (i = 0; i < ret; i++) {
3716 			/* Avoid to grab roots in dead_roots */
3717 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3718 				gang[i] = NULL;
3719 				continue;
3720 			}
3721 			/* grab all the search result for later use */
3722 			gang[i] = btrfs_grab_fs_root(gang[i]);
3723 		}
3724 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3725 
3726 		for (i = 0; i < ret; i++) {
3727 			if (!gang[i])
3728 				continue;
3729 			root_objectid = gang[i]->root_key.objectid;
3730 			err = btrfs_orphan_cleanup(gang[i]);
3731 			if (err)
3732 				break;
3733 			btrfs_put_fs_root(gang[i]);
3734 		}
3735 		root_objectid++;
3736 	}
3737 
3738 	/* release the uncleaned roots due to error */
3739 	for (; i < ret; i++) {
3740 		if (gang[i])
3741 			btrfs_put_fs_root(gang[i]);
3742 	}
3743 	return err;
3744 }
3745 
3746 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3747 {
3748 	struct btrfs_root *root = fs_info->tree_root;
3749 	struct btrfs_trans_handle *trans;
3750 
3751 	mutex_lock(&fs_info->cleaner_mutex);
3752 	btrfs_run_delayed_iputs(fs_info);
3753 	mutex_unlock(&fs_info->cleaner_mutex);
3754 	wake_up_process(fs_info->cleaner_kthread);
3755 
3756 	/* wait until ongoing cleanup work done */
3757 	down_write(&fs_info->cleanup_work_sem);
3758 	up_write(&fs_info->cleanup_work_sem);
3759 
3760 	trans = btrfs_join_transaction(root);
3761 	if (IS_ERR(trans))
3762 		return PTR_ERR(trans);
3763 	return btrfs_commit_transaction(trans);
3764 }
3765 
3766 void close_ctree(struct btrfs_fs_info *fs_info)
3767 {
3768 	struct btrfs_root *root = fs_info->tree_root;
3769 	int ret;
3770 
3771 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3772 
3773 	/* wait for the qgroup rescan worker to stop */
3774 	btrfs_qgroup_wait_for_completion(fs_info, false);
3775 
3776 	/* wait for the uuid_scan task to finish */
3777 	down(&fs_info->uuid_tree_rescan_sem);
3778 	/* avoid complains from lockdep et al., set sem back to initial state */
3779 	up(&fs_info->uuid_tree_rescan_sem);
3780 
3781 	/* pause restriper - we want to resume on mount */
3782 	btrfs_pause_balance(fs_info);
3783 
3784 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3785 
3786 	btrfs_scrub_cancel(fs_info);
3787 
3788 	/* wait for any defraggers to finish */
3789 	wait_event(fs_info->transaction_wait,
3790 		   (atomic_read(&fs_info->defrag_running) == 0));
3791 
3792 	/* clear out the rbtree of defraggable inodes */
3793 	btrfs_cleanup_defrag_inodes(fs_info);
3794 
3795 	cancel_work_sync(&fs_info->async_reclaim_work);
3796 
3797 	if (!sb_rdonly(fs_info->sb)) {
3798 		/*
3799 		 * If the cleaner thread is stopped and there are
3800 		 * block groups queued for removal, the deletion will be
3801 		 * skipped when we quit the cleaner thread.
3802 		 */
3803 		btrfs_delete_unused_bgs(fs_info);
3804 
3805 		ret = btrfs_commit_super(fs_info);
3806 		if (ret)
3807 			btrfs_err(fs_info, "commit super ret %d", ret);
3808 	}
3809 
3810 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3811 	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3812 		btrfs_error_commit_super(fs_info);
3813 
3814 	kthread_stop(fs_info->transaction_kthread);
3815 	kthread_stop(fs_info->cleaner_kthread);
3816 
3817 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3818 
3819 	btrfs_free_qgroup_config(fs_info);
3820 
3821 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3822 		btrfs_info(fs_info, "at unmount delalloc count %lld",
3823 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3824 	}
3825 
3826 	btrfs_sysfs_remove_mounted(fs_info);
3827 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3828 
3829 	btrfs_free_fs_roots(fs_info);
3830 
3831 	btrfs_put_block_group_cache(fs_info);
3832 
3833 	/*
3834 	 * we must make sure there is not any read request to
3835 	 * submit after we stopping all workers.
3836 	 */
3837 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3838 	btrfs_stop_all_workers(fs_info);
3839 
3840 	btrfs_free_block_groups(fs_info);
3841 
3842 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3843 	free_root_pointers(fs_info, 1);
3844 
3845 	iput(fs_info->btree_inode);
3846 
3847 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3848 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
3849 		btrfsic_unmount(fs_info->fs_devices);
3850 #endif
3851 
3852 	btrfs_close_devices(fs_info->fs_devices);
3853 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3854 
3855 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3856 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3857 	percpu_counter_destroy(&fs_info->bio_counter);
3858 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3859 
3860 	btrfs_free_stripe_hash_table(fs_info);
3861 	btrfs_free_ref_cache(fs_info);
3862 
3863 	__btrfs_free_block_rsv(root->orphan_block_rsv);
3864 	root->orphan_block_rsv = NULL;
3865 
3866 	while (!list_empty(&fs_info->pinned_chunks)) {
3867 		struct extent_map *em;
3868 
3869 		em = list_first_entry(&fs_info->pinned_chunks,
3870 				      struct extent_map, list);
3871 		list_del_init(&em->list);
3872 		free_extent_map(em);
3873 	}
3874 }
3875 
3876 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3877 			  int atomic)
3878 {
3879 	int ret;
3880 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3881 
3882 	ret = extent_buffer_uptodate(buf);
3883 	if (!ret)
3884 		return ret;
3885 
3886 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3887 				    parent_transid, atomic);
3888 	if (ret == -EAGAIN)
3889 		return ret;
3890 	return !ret;
3891 }
3892 
3893 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3894 {
3895 	struct btrfs_fs_info *fs_info;
3896 	struct btrfs_root *root;
3897 	u64 transid = btrfs_header_generation(buf);
3898 	int was_dirty;
3899 
3900 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3901 	/*
3902 	 * This is a fast path so only do this check if we have sanity tests
3903 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3904 	 * outside of the sanity tests.
3905 	 */
3906 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3907 		return;
3908 #endif
3909 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3910 	fs_info = root->fs_info;
3911 	btrfs_assert_tree_locked(buf);
3912 	if (transid != fs_info->generation)
3913 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
3914 			buf->start, transid, fs_info->generation);
3915 	was_dirty = set_extent_buffer_dirty(buf);
3916 	if (!was_dirty)
3917 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3918 					 buf->len,
3919 					 fs_info->dirty_metadata_batch);
3920 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3921 	/*
3922 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
3923 	 * but item data not updated.
3924 	 * So here we should only check item pointers, not item data.
3925 	 */
3926 	if (btrfs_header_level(buf) == 0 &&
3927 	    btrfs_check_leaf_relaxed(fs_info, buf)) {
3928 		btrfs_print_leaf(buf);
3929 		ASSERT(0);
3930 	}
3931 #endif
3932 }
3933 
3934 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
3935 					int flush_delayed)
3936 {
3937 	/*
3938 	 * looks as though older kernels can get into trouble with
3939 	 * this code, they end up stuck in balance_dirty_pages forever
3940 	 */
3941 	int ret;
3942 
3943 	if (current->flags & PF_MEMALLOC)
3944 		return;
3945 
3946 	if (flush_delayed)
3947 		btrfs_balance_delayed_items(fs_info);
3948 
3949 	ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
3950 				     BTRFS_DIRTY_METADATA_THRESH);
3951 	if (ret > 0) {
3952 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
3953 	}
3954 }
3955 
3956 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
3957 {
3958 	__btrfs_btree_balance_dirty(fs_info, 1);
3959 }
3960 
3961 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
3962 {
3963 	__btrfs_btree_balance_dirty(fs_info, 0);
3964 }
3965 
3966 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
3967 		      struct btrfs_key *first_key)
3968 {
3969 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3970 	struct btrfs_fs_info *fs_info = root->fs_info;
3971 
3972 	return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
3973 					      level, first_key);
3974 }
3975 
3976 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
3977 {
3978 	struct btrfs_super_block *sb = fs_info->super_copy;
3979 	u64 nodesize = btrfs_super_nodesize(sb);
3980 	u64 sectorsize = btrfs_super_sectorsize(sb);
3981 	int ret = 0;
3982 
3983 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
3984 		btrfs_err(fs_info, "no valid FS found");
3985 		ret = -EINVAL;
3986 	}
3987 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
3988 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
3989 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
3990 		ret = -EINVAL;
3991 	}
3992 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3993 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
3994 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3995 		ret = -EINVAL;
3996 	}
3997 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3998 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
3999 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4000 		ret = -EINVAL;
4001 	}
4002 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4003 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
4004 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4005 		ret = -EINVAL;
4006 	}
4007 
4008 	/*
4009 	 * Check sectorsize and nodesize first, other check will need it.
4010 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4011 	 */
4012 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4013 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4014 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
4015 		ret = -EINVAL;
4016 	}
4017 	/* Only PAGE SIZE is supported yet */
4018 	if (sectorsize != PAGE_SIZE) {
4019 		btrfs_err(fs_info,
4020 			"sectorsize %llu not supported yet, only support %lu",
4021 			sectorsize, PAGE_SIZE);
4022 		ret = -EINVAL;
4023 	}
4024 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4025 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4026 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
4027 		ret = -EINVAL;
4028 	}
4029 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4030 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4031 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
4032 		ret = -EINVAL;
4033 	}
4034 
4035 	/* Root alignment check */
4036 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4037 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4038 			   btrfs_super_root(sb));
4039 		ret = -EINVAL;
4040 	}
4041 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4042 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4043 			   btrfs_super_chunk_root(sb));
4044 		ret = -EINVAL;
4045 	}
4046 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4047 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
4048 			   btrfs_super_log_root(sb));
4049 		ret = -EINVAL;
4050 	}
4051 
4052 	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
4053 		btrfs_err(fs_info,
4054 			   "dev_item UUID does not match fsid: %pU != %pU",
4055 			   fs_info->fsid, sb->dev_item.fsid);
4056 		ret = -EINVAL;
4057 	}
4058 
4059 	/*
4060 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4061 	 * done later
4062 	 */
4063 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4064 		btrfs_err(fs_info, "bytes_used is too small %llu",
4065 			  btrfs_super_bytes_used(sb));
4066 		ret = -EINVAL;
4067 	}
4068 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4069 		btrfs_err(fs_info, "invalid stripesize %u",
4070 			  btrfs_super_stripesize(sb));
4071 		ret = -EINVAL;
4072 	}
4073 	if (btrfs_super_num_devices(sb) > (1UL << 31))
4074 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
4075 			   btrfs_super_num_devices(sb));
4076 	if (btrfs_super_num_devices(sb) == 0) {
4077 		btrfs_err(fs_info, "number of devices is 0");
4078 		ret = -EINVAL;
4079 	}
4080 
4081 	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4082 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
4083 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4084 		ret = -EINVAL;
4085 	}
4086 
4087 	/*
4088 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4089 	 * and one chunk
4090 	 */
4091 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4092 		btrfs_err(fs_info, "system chunk array too big %u > %u",
4093 			  btrfs_super_sys_array_size(sb),
4094 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4095 		ret = -EINVAL;
4096 	}
4097 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4098 			+ sizeof(struct btrfs_chunk)) {
4099 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
4100 			  btrfs_super_sys_array_size(sb),
4101 			  sizeof(struct btrfs_disk_key)
4102 			  + sizeof(struct btrfs_chunk));
4103 		ret = -EINVAL;
4104 	}
4105 
4106 	/*
4107 	 * The generation is a global counter, we'll trust it more than the others
4108 	 * but it's still possible that it's the one that's wrong.
4109 	 */
4110 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4111 		btrfs_warn(fs_info,
4112 			"suspicious: generation < chunk_root_generation: %llu < %llu",
4113 			btrfs_super_generation(sb),
4114 			btrfs_super_chunk_root_generation(sb));
4115 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4116 	    && btrfs_super_cache_generation(sb) != (u64)-1)
4117 		btrfs_warn(fs_info,
4118 			"suspicious: generation < cache_generation: %llu < %llu",
4119 			btrfs_super_generation(sb),
4120 			btrfs_super_cache_generation(sb));
4121 
4122 	return ret;
4123 }
4124 
4125 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4126 {
4127 	mutex_lock(&fs_info->cleaner_mutex);
4128 	btrfs_run_delayed_iputs(fs_info);
4129 	mutex_unlock(&fs_info->cleaner_mutex);
4130 
4131 	down_write(&fs_info->cleanup_work_sem);
4132 	up_write(&fs_info->cleanup_work_sem);
4133 
4134 	/* cleanup FS via transaction */
4135 	btrfs_cleanup_transaction(fs_info);
4136 }
4137 
4138 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4139 {
4140 	struct btrfs_ordered_extent *ordered;
4141 
4142 	spin_lock(&root->ordered_extent_lock);
4143 	/*
4144 	 * This will just short circuit the ordered completion stuff which will
4145 	 * make sure the ordered extent gets properly cleaned up.
4146 	 */
4147 	list_for_each_entry(ordered, &root->ordered_extents,
4148 			    root_extent_list)
4149 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4150 	spin_unlock(&root->ordered_extent_lock);
4151 }
4152 
4153 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4154 {
4155 	struct btrfs_root *root;
4156 	struct list_head splice;
4157 
4158 	INIT_LIST_HEAD(&splice);
4159 
4160 	spin_lock(&fs_info->ordered_root_lock);
4161 	list_splice_init(&fs_info->ordered_roots, &splice);
4162 	while (!list_empty(&splice)) {
4163 		root = list_first_entry(&splice, struct btrfs_root,
4164 					ordered_root);
4165 		list_move_tail(&root->ordered_root,
4166 			       &fs_info->ordered_roots);
4167 
4168 		spin_unlock(&fs_info->ordered_root_lock);
4169 		btrfs_destroy_ordered_extents(root);
4170 
4171 		cond_resched();
4172 		spin_lock(&fs_info->ordered_root_lock);
4173 	}
4174 	spin_unlock(&fs_info->ordered_root_lock);
4175 }
4176 
4177 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4178 				      struct btrfs_fs_info *fs_info)
4179 {
4180 	struct rb_node *node;
4181 	struct btrfs_delayed_ref_root *delayed_refs;
4182 	struct btrfs_delayed_ref_node *ref;
4183 	int ret = 0;
4184 
4185 	delayed_refs = &trans->delayed_refs;
4186 
4187 	spin_lock(&delayed_refs->lock);
4188 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4189 		spin_unlock(&delayed_refs->lock);
4190 		btrfs_info(fs_info, "delayed_refs has NO entry");
4191 		return ret;
4192 	}
4193 
4194 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4195 		struct btrfs_delayed_ref_head *head;
4196 		struct rb_node *n;
4197 		bool pin_bytes = false;
4198 
4199 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4200 				href_node);
4201 		if (!mutex_trylock(&head->mutex)) {
4202 			refcount_inc(&head->refs);
4203 			spin_unlock(&delayed_refs->lock);
4204 
4205 			mutex_lock(&head->mutex);
4206 			mutex_unlock(&head->mutex);
4207 			btrfs_put_delayed_ref_head(head);
4208 			spin_lock(&delayed_refs->lock);
4209 			continue;
4210 		}
4211 		spin_lock(&head->lock);
4212 		while ((n = rb_first(&head->ref_tree)) != NULL) {
4213 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4214 				       ref_node);
4215 			ref->in_tree = 0;
4216 			rb_erase(&ref->ref_node, &head->ref_tree);
4217 			RB_CLEAR_NODE(&ref->ref_node);
4218 			if (!list_empty(&ref->add_list))
4219 				list_del(&ref->add_list);
4220 			atomic_dec(&delayed_refs->num_entries);
4221 			btrfs_put_delayed_ref(ref);
4222 		}
4223 		if (head->must_insert_reserved)
4224 			pin_bytes = true;
4225 		btrfs_free_delayed_extent_op(head->extent_op);
4226 		delayed_refs->num_heads--;
4227 		if (head->processing == 0)
4228 			delayed_refs->num_heads_ready--;
4229 		atomic_dec(&delayed_refs->num_entries);
4230 		rb_erase(&head->href_node, &delayed_refs->href_root);
4231 		RB_CLEAR_NODE(&head->href_node);
4232 		spin_unlock(&head->lock);
4233 		spin_unlock(&delayed_refs->lock);
4234 		mutex_unlock(&head->mutex);
4235 
4236 		if (pin_bytes)
4237 			btrfs_pin_extent(fs_info, head->bytenr,
4238 					 head->num_bytes, 1);
4239 		btrfs_put_delayed_ref_head(head);
4240 		cond_resched();
4241 		spin_lock(&delayed_refs->lock);
4242 	}
4243 
4244 	spin_unlock(&delayed_refs->lock);
4245 
4246 	return ret;
4247 }
4248 
4249 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4250 {
4251 	struct btrfs_inode *btrfs_inode;
4252 	struct list_head splice;
4253 
4254 	INIT_LIST_HEAD(&splice);
4255 
4256 	spin_lock(&root->delalloc_lock);
4257 	list_splice_init(&root->delalloc_inodes, &splice);
4258 
4259 	while (!list_empty(&splice)) {
4260 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4261 					       delalloc_inodes);
4262 
4263 		list_del_init(&btrfs_inode->delalloc_inodes);
4264 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4265 			  &btrfs_inode->runtime_flags);
4266 		spin_unlock(&root->delalloc_lock);
4267 
4268 		btrfs_invalidate_inodes(btrfs_inode->root);
4269 
4270 		spin_lock(&root->delalloc_lock);
4271 	}
4272 
4273 	spin_unlock(&root->delalloc_lock);
4274 }
4275 
4276 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4277 {
4278 	struct btrfs_root *root;
4279 	struct list_head splice;
4280 
4281 	INIT_LIST_HEAD(&splice);
4282 
4283 	spin_lock(&fs_info->delalloc_root_lock);
4284 	list_splice_init(&fs_info->delalloc_roots, &splice);
4285 	while (!list_empty(&splice)) {
4286 		root = list_first_entry(&splice, struct btrfs_root,
4287 					 delalloc_root);
4288 		list_del_init(&root->delalloc_root);
4289 		root = btrfs_grab_fs_root(root);
4290 		BUG_ON(!root);
4291 		spin_unlock(&fs_info->delalloc_root_lock);
4292 
4293 		btrfs_destroy_delalloc_inodes(root);
4294 		btrfs_put_fs_root(root);
4295 
4296 		spin_lock(&fs_info->delalloc_root_lock);
4297 	}
4298 	spin_unlock(&fs_info->delalloc_root_lock);
4299 }
4300 
4301 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4302 					struct extent_io_tree *dirty_pages,
4303 					int mark)
4304 {
4305 	int ret;
4306 	struct extent_buffer *eb;
4307 	u64 start = 0;
4308 	u64 end;
4309 
4310 	while (1) {
4311 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4312 					    mark, NULL);
4313 		if (ret)
4314 			break;
4315 
4316 		clear_extent_bits(dirty_pages, start, end, mark);
4317 		while (start <= end) {
4318 			eb = find_extent_buffer(fs_info, start);
4319 			start += fs_info->nodesize;
4320 			if (!eb)
4321 				continue;
4322 			wait_on_extent_buffer_writeback(eb);
4323 
4324 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4325 					       &eb->bflags))
4326 				clear_extent_buffer_dirty(eb);
4327 			free_extent_buffer_stale(eb);
4328 		}
4329 	}
4330 
4331 	return ret;
4332 }
4333 
4334 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4335 				       struct extent_io_tree *pinned_extents)
4336 {
4337 	struct extent_io_tree *unpin;
4338 	u64 start;
4339 	u64 end;
4340 	int ret;
4341 	bool loop = true;
4342 
4343 	unpin = pinned_extents;
4344 again:
4345 	while (1) {
4346 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4347 					    EXTENT_DIRTY, NULL);
4348 		if (ret)
4349 			break;
4350 
4351 		clear_extent_dirty(unpin, start, end);
4352 		btrfs_error_unpin_extent_range(fs_info, start, end);
4353 		cond_resched();
4354 	}
4355 
4356 	if (loop) {
4357 		if (unpin == &fs_info->freed_extents[0])
4358 			unpin = &fs_info->freed_extents[1];
4359 		else
4360 			unpin = &fs_info->freed_extents[0];
4361 		loop = false;
4362 		goto again;
4363 	}
4364 
4365 	return 0;
4366 }
4367 
4368 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4369 {
4370 	struct inode *inode;
4371 
4372 	inode = cache->io_ctl.inode;
4373 	if (inode) {
4374 		invalidate_inode_pages2(inode->i_mapping);
4375 		BTRFS_I(inode)->generation = 0;
4376 		cache->io_ctl.inode = NULL;
4377 		iput(inode);
4378 	}
4379 	btrfs_put_block_group(cache);
4380 }
4381 
4382 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4383 			     struct btrfs_fs_info *fs_info)
4384 {
4385 	struct btrfs_block_group_cache *cache;
4386 
4387 	spin_lock(&cur_trans->dirty_bgs_lock);
4388 	while (!list_empty(&cur_trans->dirty_bgs)) {
4389 		cache = list_first_entry(&cur_trans->dirty_bgs,
4390 					 struct btrfs_block_group_cache,
4391 					 dirty_list);
4392 
4393 		if (!list_empty(&cache->io_list)) {
4394 			spin_unlock(&cur_trans->dirty_bgs_lock);
4395 			list_del_init(&cache->io_list);
4396 			btrfs_cleanup_bg_io(cache);
4397 			spin_lock(&cur_trans->dirty_bgs_lock);
4398 		}
4399 
4400 		list_del_init(&cache->dirty_list);
4401 		spin_lock(&cache->lock);
4402 		cache->disk_cache_state = BTRFS_DC_ERROR;
4403 		spin_unlock(&cache->lock);
4404 
4405 		spin_unlock(&cur_trans->dirty_bgs_lock);
4406 		btrfs_put_block_group(cache);
4407 		spin_lock(&cur_trans->dirty_bgs_lock);
4408 	}
4409 	spin_unlock(&cur_trans->dirty_bgs_lock);
4410 
4411 	/*
4412 	 * Refer to the definition of io_bgs member for details why it's safe
4413 	 * to use it without any locking
4414 	 */
4415 	while (!list_empty(&cur_trans->io_bgs)) {
4416 		cache = list_first_entry(&cur_trans->io_bgs,
4417 					 struct btrfs_block_group_cache,
4418 					 io_list);
4419 
4420 		list_del_init(&cache->io_list);
4421 		spin_lock(&cache->lock);
4422 		cache->disk_cache_state = BTRFS_DC_ERROR;
4423 		spin_unlock(&cache->lock);
4424 		btrfs_cleanup_bg_io(cache);
4425 	}
4426 }
4427 
4428 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4429 				   struct btrfs_fs_info *fs_info)
4430 {
4431 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4432 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4433 	ASSERT(list_empty(&cur_trans->io_bgs));
4434 
4435 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4436 
4437 	cur_trans->state = TRANS_STATE_COMMIT_START;
4438 	wake_up(&fs_info->transaction_blocked_wait);
4439 
4440 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4441 	wake_up(&fs_info->transaction_wait);
4442 
4443 	btrfs_destroy_delayed_inodes(fs_info);
4444 	btrfs_assert_delayed_root_empty(fs_info);
4445 
4446 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4447 				     EXTENT_DIRTY);
4448 	btrfs_destroy_pinned_extent(fs_info,
4449 				    fs_info->pinned_extents);
4450 
4451 	cur_trans->state =TRANS_STATE_COMPLETED;
4452 	wake_up(&cur_trans->commit_wait);
4453 }
4454 
4455 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4456 {
4457 	struct btrfs_transaction *t;
4458 
4459 	mutex_lock(&fs_info->transaction_kthread_mutex);
4460 
4461 	spin_lock(&fs_info->trans_lock);
4462 	while (!list_empty(&fs_info->trans_list)) {
4463 		t = list_first_entry(&fs_info->trans_list,
4464 				     struct btrfs_transaction, list);
4465 		if (t->state >= TRANS_STATE_COMMIT_START) {
4466 			refcount_inc(&t->use_count);
4467 			spin_unlock(&fs_info->trans_lock);
4468 			btrfs_wait_for_commit(fs_info, t->transid);
4469 			btrfs_put_transaction(t);
4470 			spin_lock(&fs_info->trans_lock);
4471 			continue;
4472 		}
4473 		if (t == fs_info->running_transaction) {
4474 			t->state = TRANS_STATE_COMMIT_DOING;
4475 			spin_unlock(&fs_info->trans_lock);
4476 			/*
4477 			 * We wait for 0 num_writers since we don't hold a trans
4478 			 * handle open currently for this transaction.
4479 			 */
4480 			wait_event(t->writer_wait,
4481 				   atomic_read(&t->num_writers) == 0);
4482 		} else {
4483 			spin_unlock(&fs_info->trans_lock);
4484 		}
4485 		btrfs_cleanup_one_transaction(t, fs_info);
4486 
4487 		spin_lock(&fs_info->trans_lock);
4488 		if (t == fs_info->running_transaction)
4489 			fs_info->running_transaction = NULL;
4490 		list_del_init(&t->list);
4491 		spin_unlock(&fs_info->trans_lock);
4492 
4493 		btrfs_put_transaction(t);
4494 		trace_btrfs_transaction_commit(fs_info->tree_root);
4495 		spin_lock(&fs_info->trans_lock);
4496 	}
4497 	spin_unlock(&fs_info->trans_lock);
4498 	btrfs_destroy_all_ordered_extents(fs_info);
4499 	btrfs_destroy_delayed_inodes(fs_info);
4500 	btrfs_assert_delayed_root_empty(fs_info);
4501 	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4502 	btrfs_destroy_all_delalloc_inodes(fs_info);
4503 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4504 
4505 	return 0;
4506 }
4507 
4508 static struct btrfs_fs_info *btree_fs_info(void *private_data)
4509 {
4510 	struct inode *inode = private_data;
4511 	return btrfs_sb(inode->i_sb);
4512 }
4513 
4514 static const struct extent_io_ops btree_extent_io_ops = {
4515 	/* mandatory callbacks */
4516 	.submit_bio_hook = btree_submit_bio_hook,
4517 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4518 	/* note we're sharing with inode.c for the merge bio hook */
4519 	.merge_bio_hook = btrfs_merge_bio_hook,
4520 	.readpage_io_failed_hook = btree_io_failed_hook,
4521 	.set_range_writeback = btrfs_set_range_writeback,
4522 	.tree_fs_info = btree_fs_info,
4523 
4524 	/* optional callbacks */
4525 };
4526