1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 #include "block-group.h" 42 #include "discard.h" 43 #include "space-info.h" 44 #include "zoned.h" 45 #include "subpage.h" 46 47 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 48 BTRFS_HEADER_FLAG_RELOC |\ 49 BTRFS_SUPER_FLAG_ERROR |\ 50 BTRFS_SUPER_FLAG_SEEDING |\ 51 BTRFS_SUPER_FLAG_METADUMP |\ 52 BTRFS_SUPER_FLAG_METADUMP_V2) 53 54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 56 struct btrfs_fs_info *fs_info); 57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 59 struct extent_io_tree *dirty_pages, 60 int mark); 61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 62 struct extent_io_tree *pinned_extents); 63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 65 66 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 67 { 68 if (fs_info->csum_shash) 69 crypto_free_shash(fs_info->csum_shash); 70 } 71 72 /* 73 * async submit bios are used to offload expensive checksumming 74 * onto the worker threads. They checksum file and metadata bios 75 * just before they are sent down the IO stack. 76 */ 77 struct async_submit_bio { 78 struct inode *inode; 79 struct bio *bio; 80 extent_submit_bio_start_t *submit_bio_start; 81 int mirror_num; 82 83 /* Optional parameter for submit_bio_start used by direct io */ 84 u64 dio_file_offset; 85 struct btrfs_work work; 86 blk_status_t status; 87 }; 88 89 /* 90 * Compute the csum of a btree block and store the result to provided buffer. 91 */ 92 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 93 { 94 struct btrfs_fs_info *fs_info = buf->fs_info; 95 const int num_pages = num_extent_pages(buf); 96 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 97 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 98 char *kaddr; 99 int i; 100 101 shash->tfm = fs_info->csum_shash; 102 crypto_shash_init(shash); 103 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start); 104 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 105 first_page_part - BTRFS_CSUM_SIZE); 106 107 for (i = 1; i < num_pages; i++) { 108 kaddr = page_address(buf->pages[i]); 109 crypto_shash_update(shash, kaddr, PAGE_SIZE); 110 } 111 memset(result, 0, BTRFS_CSUM_SIZE); 112 crypto_shash_final(shash, result); 113 } 114 115 /* 116 * we can't consider a given block up to date unless the transid of the 117 * block matches the transid in the parent node's pointer. This is how we 118 * detect blocks that either didn't get written at all or got written 119 * in the wrong place. 120 */ 121 static int verify_parent_transid(struct extent_io_tree *io_tree, 122 struct extent_buffer *eb, u64 parent_transid, 123 int atomic) 124 { 125 struct extent_state *cached_state = NULL; 126 int ret; 127 128 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 129 return 0; 130 131 if (atomic) 132 return -EAGAIN; 133 134 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state); 135 if (extent_buffer_uptodate(eb) && 136 btrfs_header_generation(eb) == parent_transid) { 137 ret = 0; 138 goto out; 139 } 140 btrfs_err_rl(eb->fs_info, 141 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 142 eb->start, eb->read_mirror, 143 parent_transid, btrfs_header_generation(eb)); 144 ret = 1; 145 clear_extent_buffer_uptodate(eb); 146 out: 147 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 148 &cached_state); 149 return ret; 150 } 151 152 static bool btrfs_supported_super_csum(u16 csum_type) 153 { 154 switch (csum_type) { 155 case BTRFS_CSUM_TYPE_CRC32: 156 case BTRFS_CSUM_TYPE_XXHASH: 157 case BTRFS_CSUM_TYPE_SHA256: 158 case BTRFS_CSUM_TYPE_BLAKE2: 159 return true; 160 default: 161 return false; 162 } 163 } 164 165 /* 166 * Return 0 if the superblock checksum type matches the checksum value of that 167 * algorithm. Pass the raw disk superblock data. 168 */ 169 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 170 const struct btrfs_super_block *disk_sb) 171 { 172 char result[BTRFS_CSUM_SIZE]; 173 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 174 175 shash->tfm = fs_info->csum_shash; 176 177 /* 178 * The super_block structure does not span the whole 179 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 180 * filled with zeros and is included in the checksum. 181 */ 182 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 183 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 184 185 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 186 return 1; 187 188 return 0; 189 } 190 191 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 192 struct btrfs_key *first_key, u64 parent_transid) 193 { 194 struct btrfs_fs_info *fs_info = eb->fs_info; 195 int found_level; 196 struct btrfs_key found_key; 197 int ret; 198 199 found_level = btrfs_header_level(eb); 200 if (found_level != level) { 201 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 202 KERN_ERR "BTRFS: tree level check failed\n"); 203 btrfs_err(fs_info, 204 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 205 eb->start, level, found_level); 206 return -EIO; 207 } 208 209 if (!first_key) 210 return 0; 211 212 /* 213 * For live tree block (new tree blocks in current transaction), 214 * we need proper lock context to avoid race, which is impossible here. 215 * So we only checks tree blocks which is read from disk, whose 216 * generation <= fs_info->last_trans_committed. 217 */ 218 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 219 return 0; 220 221 /* We have @first_key, so this @eb must have at least one item */ 222 if (btrfs_header_nritems(eb) == 0) { 223 btrfs_err(fs_info, 224 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 225 eb->start); 226 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 227 return -EUCLEAN; 228 } 229 230 if (found_level) 231 btrfs_node_key_to_cpu(eb, &found_key, 0); 232 else 233 btrfs_item_key_to_cpu(eb, &found_key, 0); 234 ret = btrfs_comp_cpu_keys(first_key, &found_key); 235 236 if (ret) { 237 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 238 KERN_ERR "BTRFS: tree first key check failed\n"); 239 btrfs_err(fs_info, 240 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 241 eb->start, parent_transid, first_key->objectid, 242 first_key->type, first_key->offset, 243 found_key.objectid, found_key.type, 244 found_key.offset); 245 } 246 return ret; 247 } 248 249 /* 250 * helper to read a given tree block, doing retries as required when 251 * the checksums don't match and we have alternate mirrors to try. 252 * 253 * @parent_transid: expected transid, skip check if 0 254 * @level: expected level, mandatory check 255 * @first_key: expected key of first slot, skip check if NULL 256 */ 257 int btrfs_read_extent_buffer(struct extent_buffer *eb, 258 u64 parent_transid, int level, 259 struct btrfs_key *first_key) 260 { 261 struct btrfs_fs_info *fs_info = eb->fs_info; 262 struct extent_io_tree *io_tree; 263 int failed = 0; 264 int ret; 265 int num_copies = 0; 266 int mirror_num = 0; 267 int failed_mirror = 0; 268 269 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 270 while (1) { 271 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 272 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num); 273 if (!ret) { 274 if (verify_parent_transid(io_tree, eb, 275 parent_transid, 0)) 276 ret = -EIO; 277 else if (btrfs_verify_level_key(eb, level, 278 first_key, parent_transid)) 279 ret = -EUCLEAN; 280 else 281 break; 282 } 283 284 num_copies = btrfs_num_copies(fs_info, 285 eb->start, eb->len); 286 if (num_copies == 1) 287 break; 288 289 if (!failed_mirror) { 290 failed = 1; 291 failed_mirror = eb->read_mirror; 292 } 293 294 mirror_num++; 295 if (mirror_num == failed_mirror) 296 mirror_num++; 297 298 if (mirror_num > num_copies) 299 break; 300 } 301 302 if (failed && !ret && failed_mirror) 303 btrfs_repair_eb_io_failure(eb, failed_mirror); 304 305 return ret; 306 } 307 308 static int csum_one_extent_buffer(struct extent_buffer *eb) 309 { 310 struct btrfs_fs_info *fs_info = eb->fs_info; 311 u8 result[BTRFS_CSUM_SIZE]; 312 int ret; 313 314 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 315 offsetof(struct btrfs_header, fsid), 316 BTRFS_FSID_SIZE) == 0); 317 csum_tree_block(eb, result); 318 319 if (btrfs_header_level(eb)) 320 ret = btrfs_check_node(eb); 321 else 322 ret = btrfs_check_leaf_full(eb); 323 324 if (ret < 0) 325 goto error; 326 327 /* 328 * Also check the generation, the eb reached here must be newer than 329 * last committed. Or something seriously wrong happened. 330 */ 331 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) { 332 ret = -EUCLEAN; 333 btrfs_err(fs_info, 334 "block=%llu bad generation, have %llu expect > %llu", 335 eb->start, btrfs_header_generation(eb), 336 fs_info->last_trans_committed); 337 goto error; 338 } 339 write_extent_buffer(eb, result, 0, fs_info->csum_size); 340 341 return 0; 342 343 error: 344 btrfs_print_tree(eb, 0); 345 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 346 eb->start); 347 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 348 return ret; 349 } 350 351 /* Checksum all dirty extent buffers in one bio_vec */ 352 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info, 353 struct bio_vec *bvec) 354 { 355 struct page *page = bvec->bv_page; 356 u64 bvec_start = page_offset(page) + bvec->bv_offset; 357 u64 cur; 358 int ret = 0; 359 360 for (cur = bvec_start; cur < bvec_start + bvec->bv_len; 361 cur += fs_info->nodesize) { 362 struct extent_buffer *eb; 363 bool uptodate; 364 365 eb = find_extent_buffer(fs_info, cur); 366 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur, 367 fs_info->nodesize); 368 369 /* A dirty eb shouldn't disappear from buffer_radix */ 370 if (WARN_ON(!eb)) 371 return -EUCLEAN; 372 373 if (WARN_ON(cur != btrfs_header_bytenr(eb))) { 374 free_extent_buffer(eb); 375 return -EUCLEAN; 376 } 377 if (WARN_ON(!uptodate)) { 378 free_extent_buffer(eb); 379 return -EUCLEAN; 380 } 381 382 ret = csum_one_extent_buffer(eb); 383 free_extent_buffer(eb); 384 if (ret < 0) 385 return ret; 386 } 387 return ret; 388 } 389 390 /* 391 * Checksum a dirty tree block before IO. This has extra checks to make sure 392 * we only fill in the checksum field in the first page of a multi-page block. 393 * For subpage extent buffers we need bvec to also read the offset in the page. 394 */ 395 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec) 396 { 397 struct page *page = bvec->bv_page; 398 u64 start = page_offset(page); 399 u64 found_start; 400 struct extent_buffer *eb; 401 402 if (fs_info->nodesize < PAGE_SIZE) 403 return csum_dirty_subpage_buffers(fs_info, bvec); 404 405 eb = (struct extent_buffer *)page->private; 406 if (page != eb->pages[0]) 407 return 0; 408 409 found_start = btrfs_header_bytenr(eb); 410 411 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) { 412 WARN_ON(found_start != 0); 413 return 0; 414 } 415 416 /* 417 * Please do not consolidate these warnings into a single if. 418 * It is useful to know what went wrong. 419 */ 420 if (WARN_ON(found_start != start)) 421 return -EUCLEAN; 422 if (WARN_ON(!PageUptodate(page))) 423 return -EUCLEAN; 424 425 return csum_one_extent_buffer(eb); 426 } 427 428 static int check_tree_block_fsid(struct extent_buffer *eb) 429 { 430 struct btrfs_fs_info *fs_info = eb->fs_info; 431 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 432 u8 fsid[BTRFS_FSID_SIZE]; 433 u8 *metadata_uuid; 434 435 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 436 BTRFS_FSID_SIZE); 437 /* 438 * Checking the incompat flag is only valid for the current fs. For 439 * seed devices it's forbidden to have their uuid changed so reading 440 * ->fsid in this case is fine 441 */ 442 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 443 metadata_uuid = fs_devices->metadata_uuid; 444 else 445 metadata_uuid = fs_devices->fsid; 446 447 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) 448 return 0; 449 450 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 451 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 452 return 0; 453 454 return 1; 455 } 456 457 /* Do basic extent buffer checks at read time */ 458 static int validate_extent_buffer(struct extent_buffer *eb) 459 { 460 struct btrfs_fs_info *fs_info = eb->fs_info; 461 u64 found_start; 462 const u32 csum_size = fs_info->csum_size; 463 u8 found_level; 464 u8 result[BTRFS_CSUM_SIZE]; 465 const u8 *header_csum; 466 int ret = 0; 467 468 found_start = btrfs_header_bytenr(eb); 469 if (found_start != eb->start) { 470 btrfs_err_rl(fs_info, 471 "bad tree block start, mirror %u want %llu have %llu", 472 eb->read_mirror, eb->start, found_start); 473 ret = -EIO; 474 goto out; 475 } 476 if (check_tree_block_fsid(eb)) { 477 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 478 eb->start, eb->read_mirror); 479 ret = -EIO; 480 goto out; 481 } 482 found_level = btrfs_header_level(eb); 483 if (found_level >= BTRFS_MAX_LEVEL) { 484 btrfs_err(fs_info, 485 "bad tree block level, mirror %u level %d on logical %llu", 486 eb->read_mirror, btrfs_header_level(eb), eb->start); 487 ret = -EIO; 488 goto out; 489 } 490 491 csum_tree_block(eb, result); 492 header_csum = page_address(eb->pages[0]) + 493 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum)); 494 495 if (memcmp(result, header_csum, csum_size) != 0) { 496 btrfs_warn_rl(fs_info, 497 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d", 498 eb->start, eb->read_mirror, 499 CSUM_FMT_VALUE(csum_size, header_csum), 500 CSUM_FMT_VALUE(csum_size, result), 501 btrfs_header_level(eb)); 502 ret = -EUCLEAN; 503 goto out; 504 } 505 506 /* 507 * If this is a leaf block and it is corrupt, set the corrupt bit so 508 * that we don't try and read the other copies of this block, just 509 * return -EIO. 510 */ 511 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 512 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 513 ret = -EIO; 514 } 515 516 if (found_level > 0 && btrfs_check_node(eb)) 517 ret = -EIO; 518 519 if (!ret) 520 set_extent_buffer_uptodate(eb); 521 else 522 btrfs_err(fs_info, 523 "read time tree block corruption detected on logical %llu mirror %u", 524 eb->start, eb->read_mirror); 525 out: 526 return ret; 527 } 528 529 static int validate_subpage_buffer(struct page *page, u64 start, u64 end, 530 int mirror) 531 { 532 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 533 struct extent_buffer *eb; 534 bool reads_done; 535 int ret = 0; 536 537 /* 538 * We don't allow bio merge for subpage metadata read, so we should 539 * only get one eb for each endio hook. 540 */ 541 ASSERT(end == start + fs_info->nodesize - 1); 542 ASSERT(PagePrivate(page)); 543 544 eb = find_extent_buffer(fs_info, start); 545 /* 546 * When we are reading one tree block, eb must have been inserted into 547 * the radix tree. If not, something is wrong. 548 */ 549 ASSERT(eb); 550 551 reads_done = atomic_dec_and_test(&eb->io_pages); 552 /* Subpage read must finish in page read */ 553 ASSERT(reads_done); 554 555 eb->read_mirror = mirror; 556 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 557 ret = -EIO; 558 goto err; 559 } 560 ret = validate_extent_buffer(eb); 561 if (ret < 0) 562 goto err; 563 564 set_extent_buffer_uptodate(eb); 565 566 free_extent_buffer(eb); 567 return ret; 568 err: 569 /* 570 * end_bio_extent_readpage decrements io_pages in case of error, 571 * make sure it has something to decrement. 572 */ 573 atomic_inc(&eb->io_pages); 574 clear_extent_buffer_uptodate(eb); 575 free_extent_buffer(eb); 576 return ret; 577 } 578 579 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio, 580 struct page *page, u64 start, u64 end, 581 int mirror) 582 { 583 struct extent_buffer *eb; 584 int ret = 0; 585 int reads_done; 586 587 ASSERT(page->private); 588 589 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 590 return validate_subpage_buffer(page, start, end, mirror); 591 592 eb = (struct extent_buffer *)page->private; 593 594 /* 595 * The pending IO might have been the only thing that kept this buffer 596 * in memory. Make sure we have a ref for all this other checks 597 */ 598 atomic_inc(&eb->refs); 599 600 reads_done = atomic_dec_and_test(&eb->io_pages); 601 if (!reads_done) 602 goto err; 603 604 eb->read_mirror = mirror; 605 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 606 ret = -EIO; 607 goto err; 608 } 609 ret = validate_extent_buffer(eb); 610 err: 611 if (ret) { 612 /* 613 * our io error hook is going to dec the io pages 614 * again, we have to make sure it has something 615 * to decrement 616 */ 617 atomic_inc(&eb->io_pages); 618 clear_extent_buffer_uptodate(eb); 619 } 620 free_extent_buffer(eb); 621 622 return ret; 623 } 624 625 static void run_one_async_start(struct btrfs_work *work) 626 { 627 struct async_submit_bio *async; 628 blk_status_t ret; 629 630 async = container_of(work, struct async_submit_bio, work); 631 ret = async->submit_bio_start(async->inode, async->bio, 632 async->dio_file_offset); 633 if (ret) 634 async->status = ret; 635 } 636 637 /* 638 * In order to insert checksums into the metadata in large chunks, we wait 639 * until bio submission time. All the pages in the bio are checksummed and 640 * sums are attached onto the ordered extent record. 641 * 642 * At IO completion time the csums attached on the ordered extent record are 643 * inserted into the tree. 644 */ 645 static void run_one_async_done(struct btrfs_work *work) 646 { 647 struct async_submit_bio *async = 648 container_of(work, struct async_submit_bio, work); 649 struct inode *inode = async->inode; 650 struct btrfs_bio *bbio = btrfs_bio(async->bio); 651 652 /* If an error occurred we just want to clean up the bio and move on */ 653 if (async->status) { 654 btrfs_bio_end_io(bbio, async->status); 655 return; 656 } 657 658 /* 659 * All of the bios that pass through here are from async helpers. 660 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context. 661 * This changes nothing when cgroups aren't in use. 662 */ 663 async->bio->bi_opf |= REQ_CGROUP_PUNT; 664 btrfs_submit_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num); 665 } 666 667 static void run_one_async_free(struct btrfs_work *work) 668 { 669 struct async_submit_bio *async; 670 671 async = container_of(work, struct async_submit_bio, work); 672 kfree(async); 673 } 674 675 /* 676 * Submit bio to an async queue. 677 * 678 * Retrun: 679 * - true if the work has been succesfuly submitted 680 * - false in case of error 681 */ 682 bool btrfs_wq_submit_bio(struct inode *inode, struct bio *bio, int mirror_num, 683 u64 dio_file_offset, 684 extent_submit_bio_start_t *submit_bio_start) 685 { 686 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 687 struct async_submit_bio *async; 688 689 async = kmalloc(sizeof(*async), GFP_NOFS); 690 if (!async) 691 return false; 692 693 async->inode = inode; 694 async->bio = bio; 695 async->mirror_num = mirror_num; 696 async->submit_bio_start = submit_bio_start; 697 698 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, 699 run_one_async_free); 700 701 async->dio_file_offset = dio_file_offset; 702 703 async->status = 0; 704 705 if (op_is_sync(bio->bi_opf)) 706 btrfs_queue_work(fs_info->hipri_workers, &async->work); 707 else 708 btrfs_queue_work(fs_info->workers, &async->work); 709 return true; 710 } 711 712 static blk_status_t btree_csum_one_bio(struct bio *bio) 713 { 714 struct bio_vec *bvec; 715 struct btrfs_root *root; 716 int ret = 0; 717 struct bvec_iter_all iter_all; 718 719 ASSERT(!bio_flagged(bio, BIO_CLONED)); 720 bio_for_each_segment_all(bvec, bio, iter_all) { 721 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 722 ret = csum_dirty_buffer(root->fs_info, bvec); 723 if (ret) 724 break; 725 } 726 727 return errno_to_blk_status(ret); 728 } 729 730 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio, 731 u64 dio_file_offset) 732 { 733 /* 734 * when we're called for a write, we're already in the async 735 * submission context. Just jump into btrfs_submit_bio. 736 */ 737 return btree_csum_one_bio(bio); 738 } 739 740 static bool should_async_write(struct btrfs_fs_info *fs_info, 741 struct btrfs_inode *bi) 742 { 743 if (btrfs_is_zoned(fs_info)) 744 return false; 745 if (atomic_read(&bi->sync_writers)) 746 return false; 747 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 748 return false; 749 return true; 750 } 751 752 void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num) 753 { 754 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 755 struct btrfs_bio *bbio = btrfs_bio(bio); 756 blk_status_t ret; 757 758 bio->bi_opf |= REQ_META; 759 760 if (btrfs_op(bio) != BTRFS_MAP_WRITE) { 761 btrfs_submit_bio(fs_info, bio, mirror_num); 762 return; 763 } 764 765 /* 766 * Kthread helpers are used to submit writes so that checksumming can 767 * happen in parallel across all CPUs. 768 */ 769 if (should_async_write(fs_info, BTRFS_I(inode)) && 770 btrfs_wq_submit_bio(inode, bio, mirror_num, 0, btree_submit_bio_start)) 771 return; 772 773 ret = btree_csum_one_bio(bio); 774 if (ret) { 775 btrfs_bio_end_io(bbio, ret); 776 return; 777 } 778 779 btrfs_submit_bio(fs_info, bio, mirror_num); 780 } 781 782 #ifdef CONFIG_MIGRATION 783 static int btree_migrate_folio(struct address_space *mapping, 784 struct folio *dst, struct folio *src, enum migrate_mode mode) 785 { 786 /* 787 * we can't safely write a btree page from here, 788 * we haven't done the locking hook 789 */ 790 if (folio_test_dirty(src)) 791 return -EAGAIN; 792 /* 793 * Buffers may be managed in a filesystem specific way. 794 * We must have no buffers or drop them. 795 */ 796 if (folio_get_private(src) && 797 !filemap_release_folio(src, GFP_KERNEL)) 798 return -EAGAIN; 799 return migrate_folio(mapping, dst, src, mode); 800 } 801 #else 802 #define btree_migrate_folio NULL 803 #endif 804 805 static int btree_writepages(struct address_space *mapping, 806 struct writeback_control *wbc) 807 { 808 struct btrfs_fs_info *fs_info; 809 int ret; 810 811 if (wbc->sync_mode == WB_SYNC_NONE) { 812 813 if (wbc->for_kupdate) 814 return 0; 815 816 fs_info = BTRFS_I(mapping->host)->root->fs_info; 817 /* this is a bit racy, but that's ok */ 818 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 819 BTRFS_DIRTY_METADATA_THRESH, 820 fs_info->dirty_metadata_batch); 821 if (ret < 0) 822 return 0; 823 } 824 return btree_write_cache_pages(mapping, wbc); 825 } 826 827 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 828 { 829 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 830 return false; 831 832 return try_release_extent_buffer(&folio->page); 833 } 834 835 static void btree_invalidate_folio(struct folio *folio, size_t offset, 836 size_t length) 837 { 838 struct extent_io_tree *tree; 839 tree = &BTRFS_I(folio->mapping->host)->io_tree; 840 extent_invalidate_folio(tree, folio, offset); 841 btree_release_folio(folio, GFP_NOFS); 842 if (folio_get_private(folio)) { 843 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info, 844 "folio private not zero on folio %llu", 845 (unsigned long long)folio_pos(folio)); 846 folio_detach_private(folio); 847 } 848 } 849 850 #ifdef DEBUG 851 static bool btree_dirty_folio(struct address_space *mapping, 852 struct folio *folio) 853 { 854 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 855 struct btrfs_subpage *subpage; 856 struct extent_buffer *eb; 857 int cur_bit = 0; 858 u64 page_start = folio_pos(folio); 859 860 if (fs_info->sectorsize == PAGE_SIZE) { 861 eb = folio_get_private(folio); 862 BUG_ON(!eb); 863 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 864 BUG_ON(!atomic_read(&eb->refs)); 865 btrfs_assert_tree_write_locked(eb); 866 return filemap_dirty_folio(mapping, folio); 867 } 868 subpage = folio_get_private(folio); 869 870 ASSERT(subpage->dirty_bitmap); 871 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) { 872 unsigned long flags; 873 u64 cur; 874 u16 tmp = (1 << cur_bit); 875 876 spin_lock_irqsave(&subpage->lock, flags); 877 if (!(tmp & subpage->dirty_bitmap)) { 878 spin_unlock_irqrestore(&subpage->lock, flags); 879 cur_bit++; 880 continue; 881 } 882 spin_unlock_irqrestore(&subpage->lock, flags); 883 cur = page_start + cur_bit * fs_info->sectorsize; 884 885 eb = find_extent_buffer(fs_info, cur); 886 ASSERT(eb); 887 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 888 ASSERT(atomic_read(&eb->refs)); 889 btrfs_assert_tree_write_locked(eb); 890 free_extent_buffer(eb); 891 892 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits); 893 } 894 return filemap_dirty_folio(mapping, folio); 895 } 896 #else 897 #define btree_dirty_folio filemap_dirty_folio 898 #endif 899 900 static const struct address_space_operations btree_aops = { 901 .writepages = btree_writepages, 902 .release_folio = btree_release_folio, 903 .invalidate_folio = btree_invalidate_folio, 904 .migrate_folio = btree_migrate_folio, 905 .dirty_folio = btree_dirty_folio, 906 }; 907 908 struct extent_buffer *btrfs_find_create_tree_block( 909 struct btrfs_fs_info *fs_info, 910 u64 bytenr, u64 owner_root, 911 int level) 912 { 913 if (btrfs_is_testing(fs_info)) 914 return alloc_test_extent_buffer(fs_info, bytenr); 915 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 916 } 917 918 /* 919 * Read tree block at logical address @bytenr and do variant basic but critical 920 * verification. 921 * 922 * @owner_root: the objectid of the root owner for this block. 923 * @parent_transid: expected transid of this tree block, skip check if 0 924 * @level: expected level, mandatory check 925 * @first_key: expected key in slot 0, skip check if NULL 926 */ 927 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 928 u64 owner_root, u64 parent_transid, 929 int level, struct btrfs_key *first_key) 930 { 931 struct extent_buffer *buf = NULL; 932 int ret; 933 934 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 935 if (IS_ERR(buf)) 936 return buf; 937 938 ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key); 939 if (ret) { 940 free_extent_buffer_stale(buf); 941 return ERR_PTR(ret); 942 } 943 if (btrfs_check_eb_owner(buf, owner_root)) { 944 free_extent_buffer_stale(buf); 945 return ERR_PTR(-EUCLEAN); 946 } 947 return buf; 948 949 } 950 951 void btrfs_clean_tree_block(struct extent_buffer *buf) 952 { 953 struct btrfs_fs_info *fs_info = buf->fs_info; 954 if (btrfs_header_generation(buf) == 955 fs_info->running_transaction->transid) { 956 btrfs_assert_tree_write_locked(buf); 957 958 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 959 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 960 -buf->len, 961 fs_info->dirty_metadata_batch); 962 clear_extent_buffer_dirty(buf); 963 } 964 } 965 } 966 967 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 968 u64 objectid) 969 { 970 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 971 972 memset(&root->root_key, 0, sizeof(root->root_key)); 973 memset(&root->root_item, 0, sizeof(root->root_item)); 974 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 975 root->fs_info = fs_info; 976 root->root_key.objectid = objectid; 977 root->node = NULL; 978 root->commit_root = NULL; 979 root->state = 0; 980 RB_CLEAR_NODE(&root->rb_node); 981 982 root->last_trans = 0; 983 root->free_objectid = 0; 984 root->nr_delalloc_inodes = 0; 985 root->nr_ordered_extents = 0; 986 root->inode_tree = RB_ROOT; 987 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 988 989 btrfs_init_root_block_rsv(root); 990 991 INIT_LIST_HEAD(&root->dirty_list); 992 INIT_LIST_HEAD(&root->root_list); 993 INIT_LIST_HEAD(&root->delalloc_inodes); 994 INIT_LIST_HEAD(&root->delalloc_root); 995 INIT_LIST_HEAD(&root->ordered_extents); 996 INIT_LIST_HEAD(&root->ordered_root); 997 INIT_LIST_HEAD(&root->reloc_dirty_list); 998 INIT_LIST_HEAD(&root->logged_list[0]); 999 INIT_LIST_HEAD(&root->logged_list[1]); 1000 spin_lock_init(&root->inode_lock); 1001 spin_lock_init(&root->delalloc_lock); 1002 spin_lock_init(&root->ordered_extent_lock); 1003 spin_lock_init(&root->accounting_lock); 1004 spin_lock_init(&root->log_extents_lock[0]); 1005 spin_lock_init(&root->log_extents_lock[1]); 1006 spin_lock_init(&root->qgroup_meta_rsv_lock); 1007 mutex_init(&root->objectid_mutex); 1008 mutex_init(&root->log_mutex); 1009 mutex_init(&root->ordered_extent_mutex); 1010 mutex_init(&root->delalloc_mutex); 1011 init_waitqueue_head(&root->qgroup_flush_wait); 1012 init_waitqueue_head(&root->log_writer_wait); 1013 init_waitqueue_head(&root->log_commit_wait[0]); 1014 init_waitqueue_head(&root->log_commit_wait[1]); 1015 INIT_LIST_HEAD(&root->log_ctxs[0]); 1016 INIT_LIST_HEAD(&root->log_ctxs[1]); 1017 atomic_set(&root->log_commit[0], 0); 1018 atomic_set(&root->log_commit[1], 0); 1019 atomic_set(&root->log_writers, 0); 1020 atomic_set(&root->log_batch, 0); 1021 refcount_set(&root->refs, 1); 1022 atomic_set(&root->snapshot_force_cow, 0); 1023 atomic_set(&root->nr_swapfiles, 0); 1024 root->log_transid = 0; 1025 root->log_transid_committed = -1; 1026 root->last_log_commit = 0; 1027 root->anon_dev = 0; 1028 if (!dummy) { 1029 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1030 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL); 1031 extent_io_tree_init(fs_info, &root->log_csum_range, 1032 IO_TREE_LOG_CSUM_RANGE, NULL); 1033 } 1034 1035 spin_lock_init(&root->root_item_lock); 1036 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1037 #ifdef CONFIG_BTRFS_DEBUG 1038 INIT_LIST_HEAD(&root->leak_list); 1039 spin_lock(&fs_info->fs_roots_radix_lock); 1040 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 1041 spin_unlock(&fs_info->fs_roots_radix_lock); 1042 #endif 1043 } 1044 1045 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1046 u64 objectid, gfp_t flags) 1047 { 1048 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1049 if (root) 1050 __setup_root(root, fs_info, objectid); 1051 return root; 1052 } 1053 1054 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1055 /* Should only be used by the testing infrastructure */ 1056 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1057 { 1058 struct btrfs_root *root; 1059 1060 if (!fs_info) 1061 return ERR_PTR(-EINVAL); 1062 1063 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 1064 if (!root) 1065 return ERR_PTR(-ENOMEM); 1066 1067 /* We don't use the stripesize in selftest, set it as sectorsize */ 1068 root->alloc_bytenr = 0; 1069 1070 return root; 1071 } 1072 #endif 1073 1074 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 1075 { 1076 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 1077 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 1078 1079 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 1080 } 1081 1082 static int global_root_key_cmp(const void *k, const struct rb_node *node) 1083 { 1084 const struct btrfs_key *key = k; 1085 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 1086 1087 return btrfs_comp_cpu_keys(key, &root->root_key); 1088 } 1089 1090 int btrfs_global_root_insert(struct btrfs_root *root) 1091 { 1092 struct btrfs_fs_info *fs_info = root->fs_info; 1093 struct rb_node *tmp; 1094 1095 write_lock(&fs_info->global_root_lock); 1096 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 1097 write_unlock(&fs_info->global_root_lock); 1098 ASSERT(!tmp); 1099 1100 return tmp ? -EEXIST : 0; 1101 } 1102 1103 void btrfs_global_root_delete(struct btrfs_root *root) 1104 { 1105 struct btrfs_fs_info *fs_info = root->fs_info; 1106 1107 write_lock(&fs_info->global_root_lock); 1108 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1109 write_unlock(&fs_info->global_root_lock); 1110 } 1111 1112 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 1113 struct btrfs_key *key) 1114 { 1115 struct rb_node *node; 1116 struct btrfs_root *root = NULL; 1117 1118 read_lock(&fs_info->global_root_lock); 1119 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 1120 if (node) 1121 root = container_of(node, struct btrfs_root, rb_node); 1122 read_unlock(&fs_info->global_root_lock); 1123 1124 return root; 1125 } 1126 1127 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 1128 { 1129 struct btrfs_block_group *block_group; 1130 u64 ret; 1131 1132 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 1133 return 0; 1134 1135 if (bytenr) 1136 block_group = btrfs_lookup_block_group(fs_info, bytenr); 1137 else 1138 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 1139 ASSERT(block_group); 1140 if (!block_group) 1141 return 0; 1142 ret = block_group->global_root_id; 1143 btrfs_put_block_group(block_group); 1144 1145 return ret; 1146 } 1147 1148 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1149 { 1150 struct btrfs_key key = { 1151 .objectid = BTRFS_CSUM_TREE_OBJECTID, 1152 .type = BTRFS_ROOT_ITEM_KEY, 1153 .offset = btrfs_global_root_id(fs_info, bytenr), 1154 }; 1155 1156 return btrfs_global_root(fs_info, &key); 1157 } 1158 1159 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1160 { 1161 struct btrfs_key key = { 1162 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 1163 .type = BTRFS_ROOT_ITEM_KEY, 1164 .offset = btrfs_global_root_id(fs_info, bytenr), 1165 }; 1166 1167 return btrfs_global_root(fs_info, &key); 1168 } 1169 1170 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1171 u64 objectid) 1172 { 1173 struct btrfs_fs_info *fs_info = trans->fs_info; 1174 struct extent_buffer *leaf; 1175 struct btrfs_root *tree_root = fs_info->tree_root; 1176 struct btrfs_root *root; 1177 struct btrfs_key key; 1178 unsigned int nofs_flag; 1179 int ret = 0; 1180 1181 /* 1182 * We're holding a transaction handle, so use a NOFS memory allocation 1183 * context to avoid deadlock if reclaim happens. 1184 */ 1185 nofs_flag = memalloc_nofs_save(); 1186 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1187 memalloc_nofs_restore(nofs_flag); 1188 if (!root) 1189 return ERR_PTR(-ENOMEM); 1190 1191 root->root_key.objectid = objectid; 1192 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1193 root->root_key.offset = 0; 1194 1195 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 1196 BTRFS_NESTING_NORMAL); 1197 if (IS_ERR(leaf)) { 1198 ret = PTR_ERR(leaf); 1199 leaf = NULL; 1200 goto fail_unlock; 1201 } 1202 1203 root->node = leaf; 1204 btrfs_mark_buffer_dirty(leaf); 1205 1206 root->commit_root = btrfs_root_node(root); 1207 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1208 1209 btrfs_set_root_flags(&root->root_item, 0); 1210 btrfs_set_root_limit(&root->root_item, 0); 1211 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1212 btrfs_set_root_generation(&root->root_item, trans->transid); 1213 btrfs_set_root_level(&root->root_item, 0); 1214 btrfs_set_root_refs(&root->root_item, 1); 1215 btrfs_set_root_used(&root->root_item, leaf->len); 1216 btrfs_set_root_last_snapshot(&root->root_item, 0); 1217 btrfs_set_root_dirid(&root->root_item, 0); 1218 if (is_fstree(objectid)) 1219 generate_random_guid(root->root_item.uuid); 1220 else 1221 export_guid(root->root_item.uuid, &guid_null); 1222 btrfs_set_root_drop_level(&root->root_item, 0); 1223 1224 btrfs_tree_unlock(leaf); 1225 1226 key.objectid = objectid; 1227 key.type = BTRFS_ROOT_ITEM_KEY; 1228 key.offset = 0; 1229 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1230 if (ret) 1231 goto fail; 1232 1233 return root; 1234 1235 fail_unlock: 1236 if (leaf) 1237 btrfs_tree_unlock(leaf); 1238 fail: 1239 btrfs_put_root(root); 1240 1241 return ERR_PTR(ret); 1242 } 1243 1244 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1245 struct btrfs_fs_info *fs_info) 1246 { 1247 struct btrfs_root *root; 1248 1249 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1250 if (!root) 1251 return ERR_PTR(-ENOMEM); 1252 1253 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1254 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1255 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1256 1257 return root; 1258 } 1259 1260 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 1261 struct btrfs_root *root) 1262 { 1263 struct extent_buffer *leaf; 1264 1265 /* 1266 * DON'T set SHAREABLE bit for log trees. 1267 * 1268 * Log trees are not exposed to user space thus can't be snapshotted, 1269 * and they go away before a real commit is actually done. 1270 * 1271 * They do store pointers to file data extents, and those reference 1272 * counts still get updated (along with back refs to the log tree). 1273 */ 1274 1275 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1276 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); 1277 if (IS_ERR(leaf)) 1278 return PTR_ERR(leaf); 1279 1280 root->node = leaf; 1281 1282 btrfs_mark_buffer_dirty(root->node); 1283 btrfs_tree_unlock(root->node); 1284 1285 return 0; 1286 } 1287 1288 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1289 struct btrfs_fs_info *fs_info) 1290 { 1291 struct btrfs_root *log_root; 1292 1293 log_root = alloc_log_tree(trans, fs_info); 1294 if (IS_ERR(log_root)) 1295 return PTR_ERR(log_root); 1296 1297 if (!btrfs_is_zoned(fs_info)) { 1298 int ret = btrfs_alloc_log_tree_node(trans, log_root); 1299 1300 if (ret) { 1301 btrfs_put_root(log_root); 1302 return ret; 1303 } 1304 } 1305 1306 WARN_ON(fs_info->log_root_tree); 1307 fs_info->log_root_tree = log_root; 1308 return 0; 1309 } 1310 1311 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1312 struct btrfs_root *root) 1313 { 1314 struct btrfs_fs_info *fs_info = root->fs_info; 1315 struct btrfs_root *log_root; 1316 struct btrfs_inode_item *inode_item; 1317 int ret; 1318 1319 log_root = alloc_log_tree(trans, fs_info); 1320 if (IS_ERR(log_root)) 1321 return PTR_ERR(log_root); 1322 1323 ret = btrfs_alloc_log_tree_node(trans, log_root); 1324 if (ret) { 1325 btrfs_put_root(log_root); 1326 return ret; 1327 } 1328 1329 log_root->last_trans = trans->transid; 1330 log_root->root_key.offset = root->root_key.objectid; 1331 1332 inode_item = &log_root->root_item.inode; 1333 btrfs_set_stack_inode_generation(inode_item, 1); 1334 btrfs_set_stack_inode_size(inode_item, 3); 1335 btrfs_set_stack_inode_nlink(inode_item, 1); 1336 btrfs_set_stack_inode_nbytes(inode_item, 1337 fs_info->nodesize); 1338 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1339 1340 btrfs_set_root_node(&log_root->root_item, log_root->node); 1341 1342 WARN_ON(root->log_root); 1343 root->log_root = log_root; 1344 root->log_transid = 0; 1345 root->log_transid_committed = -1; 1346 root->last_log_commit = 0; 1347 return 0; 1348 } 1349 1350 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1351 struct btrfs_path *path, 1352 struct btrfs_key *key) 1353 { 1354 struct btrfs_root *root; 1355 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1356 u64 generation; 1357 int ret; 1358 int level; 1359 1360 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1361 if (!root) 1362 return ERR_PTR(-ENOMEM); 1363 1364 ret = btrfs_find_root(tree_root, key, path, 1365 &root->root_item, &root->root_key); 1366 if (ret) { 1367 if (ret > 0) 1368 ret = -ENOENT; 1369 goto fail; 1370 } 1371 1372 generation = btrfs_root_generation(&root->root_item); 1373 level = btrfs_root_level(&root->root_item); 1374 root->node = read_tree_block(fs_info, 1375 btrfs_root_bytenr(&root->root_item), 1376 key->objectid, generation, level, NULL); 1377 if (IS_ERR(root->node)) { 1378 ret = PTR_ERR(root->node); 1379 root->node = NULL; 1380 goto fail; 1381 } 1382 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1383 ret = -EIO; 1384 goto fail; 1385 } 1386 1387 /* 1388 * For real fs, and not log/reloc trees, root owner must 1389 * match its root node owner 1390 */ 1391 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) && 1392 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1393 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1394 root->root_key.objectid != btrfs_header_owner(root->node)) { 1395 btrfs_crit(fs_info, 1396 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1397 root->root_key.objectid, root->node->start, 1398 btrfs_header_owner(root->node), 1399 root->root_key.objectid); 1400 ret = -EUCLEAN; 1401 goto fail; 1402 } 1403 root->commit_root = btrfs_root_node(root); 1404 return root; 1405 fail: 1406 btrfs_put_root(root); 1407 return ERR_PTR(ret); 1408 } 1409 1410 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1411 struct btrfs_key *key) 1412 { 1413 struct btrfs_root *root; 1414 struct btrfs_path *path; 1415 1416 path = btrfs_alloc_path(); 1417 if (!path) 1418 return ERR_PTR(-ENOMEM); 1419 root = read_tree_root_path(tree_root, path, key); 1420 btrfs_free_path(path); 1421 1422 return root; 1423 } 1424 1425 /* 1426 * Initialize subvolume root in-memory structure 1427 * 1428 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1429 */ 1430 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1431 { 1432 int ret; 1433 unsigned int nofs_flag; 1434 1435 /* 1436 * We might be called under a transaction (e.g. indirect backref 1437 * resolution) which could deadlock if it triggers memory reclaim 1438 */ 1439 nofs_flag = memalloc_nofs_save(); 1440 ret = btrfs_drew_lock_init(&root->snapshot_lock); 1441 memalloc_nofs_restore(nofs_flag); 1442 if (ret) 1443 goto fail; 1444 1445 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1446 !btrfs_is_data_reloc_root(root)) { 1447 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1448 btrfs_check_and_init_root_item(&root->root_item); 1449 } 1450 1451 /* 1452 * Don't assign anonymous block device to roots that are not exposed to 1453 * userspace, the id pool is limited to 1M 1454 */ 1455 if (is_fstree(root->root_key.objectid) && 1456 btrfs_root_refs(&root->root_item) > 0) { 1457 if (!anon_dev) { 1458 ret = get_anon_bdev(&root->anon_dev); 1459 if (ret) 1460 goto fail; 1461 } else { 1462 root->anon_dev = anon_dev; 1463 } 1464 } 1465 1466 mutex_lock(&root->objectid_mutex); 1467 ret = btrfs_init_root_free_objectid(root); 1468 if (ret) { 1469 mutex_unlock(&root->objectid_mutex); 1470 goto fail; 1471 } 1472 1473 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1474 1475 mutex_unlock(&root->objectid_mutex); 1476 1477 return 0; 1478 fail: 1479 /* The caller is responsible to call btrfs_free_fs_root */ 1480 return ret; 1481 } 1482 1483 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1484 u64 root_id) 1485 { 1486 struct btrfs_root *root; 1487 1488 spin_lock(&fs_info->fs_roots_radix_lock); 1489 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1490 (unsigned long)root_id); 1491 if (root) 1492 root = btrfs_grab_root(root); 1493 spin_unlock(&fs_info->fs_roots_radix_lock); 1494 return root; 1495 } 1496 1497 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1498 u64 objectid) 1499 { 1500 struct btrfs_key key = { 1501 .objectid = objectid, 1502 .type = BTRFS_ROOT_ITEM_KEY, 1503 .offset = 0, 1504 }; 1505 1506 if (objectid == BTRFS_ROOT_TREE_OBJECTID) 1507 return btrfs_grab_root(fs_info->tree_root); 1508 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 1509 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1510 if (objectid == BTRFS_CHUNK_TREE_OBJECTID) 1511 return btrfs_grab_root(fs_info->chunk_root); 1512 if (objectid == BTRFS_DEV_TREE_OBJECTID) 1513 return btrfs_grab_root(fs_info->dev_root); 1514 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 1515 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1516 if (objectid == BTRFS_QUOTA_TREE_OBJECTID) 1517 return btrfs_grab_root(fs_info->quota_root) ? 1518 fs_info->quota_root : ERR_PTR(-ENOENT); 1519 if (objectid == BTRFS_UUID_TREE_OBJECTID) 1520 return btrfs_grab_root(fs_info->uuid_root) ? 1521 fs_info->uuid_root : ERR_PTR(-ENOENT); 1522 if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID) 1523 return btrfs_grab_root(fs_info->block_group_root) ? 1524 fs_info->block_group_root : ERR_PTR(-ENOENT); 1525 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) { 1526 struct btrfs_root *root = btrfs_global_root(fs_info, &key); 1527 1528 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT); 1529 } 1530 return NULL; 1531 } 1532 1533 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1534 struct btrfs_root *root) 1535 { 1536 int ret; 1537 1538 ret = radix_tree_preload(GFP_NOFS); 1539 if (ret) 1540 return ret; 1541 1542 spin_lock(&fs_info->fs_roots_radix_lock); 1543 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1544 (unsigned long)root->root_key.objectid, 1545 root); 1546 if (ret == 0) { 1547 btrfs_grab_root(root); 1548 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1549 } 1550 spin_unlock(&fs_info->fs_roots_radix_lock); 1551 radix_tree_preload_end(); 1552 1553 return ret; 1554 } 1555 1556 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1557 { 1558 #ifdef CONFIG_BTRFS_DEBUG 1559 struct btrfs_root *root; 1560 1561 while (!list_empty(&fs_info->allocated_roots)) { 1562 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1563 1564 root = list_first_entry(&fs_info->allocated_roots, 1565 struct btrfs_root, leak_list); 1566 btrfs_err(fs_info, "leaked root %s refcount %d", 1567 btrfs_root_name(&root->root_key, buf), 1568 refcount_read(&root->refs)); 1569 while (refcount_read(&root->refs) > 1) 1570 btrfs_put_root(root); 1571 btrfs_put_root(root); 1572 } 1573 #endif 1574 } 1575 1576 static void free_global_roots(struct btrfs_fs_info *fs_info) 1577 { 1578 struct btrfs_root *root; 1579 struct rb_node *node; 1580 1581 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1582 root = rb_entry(node, struct btrfs_root, rb_node); 1583 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1584 btrfs_put_root(root); 1585 } 1586 } 1587 1588 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1589 { 1590 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1591 percpu_counter_destroy(&fs_info->delalloc_bytes); 1592 percpu_counter_destroy(&fs_info->ordered_bytes); 1593 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1594 btrfs_free_csum_hash(fs_info); 1595 btrfs_free_stripe_hash_table(fs_info); 1596 btrfs_free_ref_cache(fs_info); 1597 kfree(fs_info->balance_ctl); 1598 kfree(fs_info->delayed_root); 1599 free_global_roots(fs_info); 1600 btrfs_put_root(fs_info->tree_root); 1601 btrfs_put_root(fs_info->chunk_root); 1602 btrfs_put_root(fs_info->dev_root); 1603 btrfs_put_root(fs_info->quota_root); 1604 btrfs_put_root(fs_info->uuid_root); 1605 btrfs_put_root(fs_info->fs_root); 1606 btrfs_put_root(fs_info->data_reloc_root); 1607 btrfs_put_root(fs_info->block_group_root); 1608 btrfs_check_leaked_roots(fs_info); 1609 btrfs_extent_buffer_leak_debug_check(fs_info); 1610 kfree(fs_info->super_copy); 1611 kfree(fs_info->super_for_commit); 1612 kfree(fs_info->subpage_info); 1613 kvfree(fs_info); 1614 } 1615 1616 1617 /* 1618 * Get an in-memory reference of a root structure. 1619 * 1620 * For essential trees like root/extent tree, we grab it from fs_info directly. 1621 * For subvolume trees, we check the cached filesystem roots first. If not 1622 * found, then read it from disk and add it to cached fs roots. 1623 * 1624 * Caller should release the root by calling btrfs_put_root() after the usage. 1625 * 1626 * NOTE: Reloc and log trees can't be read by this function as they share the 1627 * same root objectid. 1628 * 1629 * @objectid: root id 1630 * @anon_dev: preallocated anonymous block device number for new roots, 1631 * pass 0 for new allocation. 1632 * @check_ref: whether to check root item references, If true, return -ENOENT 1633 * for orphan roots 1634 */ 1635 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1636 u64 objectid, dev_t anon_dev, 1637 bool check_ref) 1638 { 1639 struct btrfs_root *root; 1640 struct btrfs_path *path; 1641 struct btrfs_key key; 1642 int ret; 1643 1644 root = btrfs_get_global_root(fs_info, objectid); 1645 if (root) 1646 return root; 1647 again: 1648 root = btrfs_lookup_fs_root(fs_info, objectid); 1649 if (root) { 1650 /* Shouldn't get preallocated anon_dev for cached roots */ 1651 ASSERT(!anon_dev); 1652 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1653 btrfs_put_root(root); 1654 return ERR_PTR(-ENOENT); 1655 } 1656 return root; 1657 } 1658 1659 key.objectid = objectid; 1660 key.type = BTRFS_ROOT_ITEM_KEY; 1661 key.offset = (u64)-1; 1662 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1663 if (IS_ERR(root)) 1664 return root; 1665 1666 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1667 ret = -ENOENT; 1668 goto fail; 1669 } 1670 1671 ret = btrfs_init_fs_root(root, anon_dev); 1672 if (ret) 1673 goto fail; 1674 1675 path = btrfs_alloc_path(); 1676 if (!path) { 1677 ret = -ENOMEM; 1678 goto fail; 1679 } 1680 key.objectid = BTRFS_ORPHAN_OBJECTID; 1681 key.type = BTRFS_ORPHAN_ITEM_KEY; 1682 key.offset = objectid; 1683 1684 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1685 btrfs_free_path(path); 1686 if (ret < 0) 1687 goto fail; 1688 if (ret == 0) 1689 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1690 1691 ret = btrfs_insert_fs_root(fs_info, root); 1692 if (ret) { 1693 if (ret == -EEXIST) { 1694 btrfs_put_root(root); 1695 goto again; 1696 } 1697 goto fail; 1698 } 1699 return root; 1700 fail: 1701 /* 1702 * If our caller provided us an anonymous device, then it's his 1703 * responsibility to free it in case we fail. So we have to set our 1704 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1705 * and once again by our caller. 1706 */ 1707 if (anon_dev) 1708 root->anon_dev = 0; 1709 btrfs_put_root(root); 1710 return ERR_PTR(ret); 1711 } 1712 1713 /* 1714 * Get in-memory reference of a root structure 1715 * 1716 * @objectid: tree objectid 1717 * @check_ref: if set, verify that the tree exists and the item has at least 1718 * one reference 1719 */ 1720 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1721 u64 objectid, bool check_ref) 1722 { 1723 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1724 } 1725 1726 /* 1727 * Get in-memory reference of a root structure, created as new, optionally pass 1728 * the anonymous block device id 1729 * 1730 * @objectid: tree objectid 1731 * @anon_dev: if zero, allocate a new anonymous block device or use the 1732 * parameter value 1733 */ 1734 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1735 u64 objectid, dev_t anon_dev) 1736 { 1737 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1738 } 1739 1740 /* 1741 * btrfs_get_fs_root_commit_root - return a root for the given objectid 1742 * @fs_info: the fs_info 1743 * @objectid: the objectid we need to lookup 1744 * 1745 * This is exclusively used for backref walking, and exists specifically because 1746 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1747 * creation time, which means we may have to read the tree_root in order to look 1748 * up a fs root that is not in memory. If the root is not in memory we will 1749 * read the tree root commit root and look up the fs root from there. This is a 1750 * temporary root, it will not be inserted into the radix tree as it doesn't 1751 * have the most uptodate information, it'll simply be discarded once the 1752 * backref code is finished using the root. 1753 */ 1754 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1755 struct btrfs_path *path, 1756 u64 objectid) 1757 { 1758 struct btrfs_root *root; 1759 struct btrfs_key key; 1760 1761 ASSERT(path->search_commit_root && path->skip_locking); 1762 1763 /* 1764 * This can return -ENOENT if we ask for a root that doesn't exist, but 1765 * since this is called via the backref walking code we won't be looking 1766 * up a root that doesn't exist, unless there's corruption. So if root 1767 * != NULL just return it. 1768 */ 1769 root = btrfs_get_global_root(fs_info, objectid); 1770 if (root) 1771 return root; 1772 1773 root = btrfs_lookup_fs_root(fs_info, objectid); 1774 if (root) 1775 return root; 1776 1777 key.objectid = objectid; 1778 key.type = BTRFS_ROOT_ITEM_KEY; 1779 key.offset = (u64)-1; 1780 root = read_tree_root_path(fs_info->tree_root, path, &key); 1781 btrfs_release_path(path); 1782 1783 return root; 1784 } 1785 1786 static int cleaner_kthread(void *arg) 1787 { 1788 struct btrfs_fs_info *fs_info = arg; 1789 int again; 1790 1791 while (1) { 1792 again = 0; 1793 1794 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1795 1796 /* Make the cleaner go to sleep early. */ 1797 if (btrfs_need_cleaner_sleep(fs_info)) 1798 goto sleep; 1799 1800 /* 1801 * Do not do anything if we might cause open_ctree() to block 1802 * before we have finished mounting the filesystem. 1803 */ 1804 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1805 goto sleep; 1806 1807 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1808 goto sleep; 1809 1810 /* 1811 * Avoid the problem that we change the status of the fs 1812 * during the above check and trylock. 1813 */ 1814 if (btrfs_need_cleaner_sleep(fs_info)) { 1815 mutex_unlock(&fs_info->cleaner_mutex); 1816 goto sleep; 1817 } 1818 1819 btrfs_run_delayed_iputs(fs_info); 1820 1821 again = btrfs_clean_one_deleted_snapshot(fs_info); 1822 mutex_unlock(&fs_info->cleaner_mutex); 1823 1824 /* 1825 * The defragger has dealt with the R/O remount and umount, 1826 * needn't do anything special here. 1827 */ 1828 btrfs_run_defrag_inodes(fs_info); 1829 1830 /* 1831 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1832 * with relocation (btrfs_relocate_chunk) and relocation 1833 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1834 * after acquiring fs_info->reclaim_bgs_lock. So we 1835 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1836 * unused block groups. 1837 */ 1838 btrfs_delete_unused_bgs(fs_info); 1839 1840 /* 1841 * Reclaim block groups in the reclaim_bgs list after we deleted 1842 * all unused block_groups. This possibly gives us some more free 1843 * space. 1844 */ 1845 btrfs_reclaim_bgs(fs_info); 1846 sleep: 1847 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1848 if (kthread_should_park()) 1849 kthread_parkme(); 1850 if (kthread_should_stop()) 1851 return 0; 1852 if (!again) { 1853 set_current_state(TASK_INTERRUPTIBLE); 1854 schedule(); 1855 __set_current_state(TASK_RUNNING); 1856 } 1857 } 1858 } 1859 1860 static int transaction_kthread(void *arg) 1861 { 1862 struct btrfs_root *root = arg; 1863 struct btrfs_fs_info *fs_info = root->fs_info; 1864 struct btrfs_trans_handle *trans; 1865 struct btrfs_transaction *cur; 1866 u64 transid; 1867 time64_t delta; 1868 unsigned long delay; 1869 bool cannot_commit; 1870 1871 do { 1872 cannot_commit = false; 1873 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1874 mutex_lock(&fs_info->transaction_kthread_mutex); 1875 1876 spin_lock(&fs_info->trans_lock); 1877 cur = fs_info->running_transaction; 1878 if (!cur) { 1879 spin_unlock(&fs_info->trans_lock); 1880 goto sleep; 1881 } 1882 1883 delta = ktime_get_seconds() - cur->start_time; 1884 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1885 cur->state < TRANS_STATE_COMMIT_START && 1886 delta < fs_info->commit_interval) { 1887 spin_unlock(&fs_info->trans_lock); 1888 delay -= msecs_to_jiffies((delta - 1) * 1000); 1889 delay = min(delay, 1890 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1891 goto sleep; 1892 } 1893 transid = cur->transid; 1894 spin_unlock(&fs_info->trans_lock); 1895 1896 /* If the file system is aborted, this will always fail. */ 1897 trans = btrfs_attach_transaction(root); 1898 if (IS_ERR(trans)) { 1899 if (PTR_ERR(trans) != -ENOENT) 1900 cannot_commit = true; 1901 goto sleep; 1902 } 1903 if (transid == trans->transid) { 1904 btrfs_commit_transaction(trans); 1905 } else { 1906 btrfs_end_transaction(trans); 1907 } 1908 sleep: 1909 wake_up_process(fs_info->cleaner_kthread); 1910 mutex_unlock(&fs_info->transaction_kthread_mutex); 1911 1912 if (BTRFS_FS_ERROR(fs_info)) 1913 btrfs_cleanup_transaction(fs_info); 1914 if (!kthread_should_stop() && 1915 (!btrfs_transaction_blocked(fs_info) || 1916 cannot_commit)) 1917 schedule_timeout_interruptible(delay); 1918 } while (!kthread_should_stop()); 1919 return 0; 1920 } 1921 1922 /* 1923 * This will find the highest generation in the array of root backups. The 1924 * index of the highest array is returned, or -EINVAL if we can't find 1925 * anything. 1926 * 1927 * We check to make sure the array is valid by comparing the 1928 * generation of the latest root in the array with the generation 1929 * in the super block. If they don't match we pitch it. 1930 */ 1931 static int find_newest_super_backup(struct btrfs_fs_info *info) 1932 { 1933 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1934 u64 cur; 1935 struct btrfs_root_backup *root_backup; 1936 int i; 1937 1938 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1939 root_backup = info->super_copy->super_roots + i; 1940 cur = btrfs_backup_tree_root_gen(root_backup); 1941 if (cur == newest_gen) 1942 return i; 1943 } 1944 1945 return -EINVAL; 1946 } 1947 1948 /* 1949 * copy all the root pointers into the super backup array. 1950 * this will bump the backup pointer by one when it is 1951 * done 1952 */ 1953 static void backup_super_roots(struct btrfs_fs_info *info) 1954 { 1955 const int next_backup = info->backup_root_index; 1956 struct btrfs_root_backup *root_backup; 1957 1958 root_backup = info->super_for_commit->super_roots + next_backup; 1959 1960 /* 1961 * make sure all of our padding and empty slots get zero filled 1962 * regardless of which ones we use today 1963 */ 1964 memset(root_backup, 0, sizeof(*root_backup)); 1965 1966 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1967 1968 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1969 btrfs_set_backup_tree_root_gen(root_backup, 1970 btrfs_header_generation(info->tree_root->node)); 1971 1972 btrfs_set_backup_tree_root_level(root_backup, 1973 btrfs_header_level(info->tree_root->node)); 1974 1975 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1976 btrfs_set_backup_chunk_root_gen(root_backup, 1977 btrfs_header_generation(info->chunk_root->node)); 1978 btrfs_set_backup_chunk_root_level(root_backup, 1979 btrfs_header_level(info->chunk_root->node)); 1980 1981 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1982 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1983 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1984 1985 btrfs_set_backup_extent_root(root_backup, 1986 extent_root->node->start); 1987 btrfs_set_backup_extent_root_gen(root_backup, 1988 btrfs_header_generation(extent_root->node)); 1989 btrfs_set_backup_extent_root_level(root_backup, 1990 btrfs_header_level(extent_root->node)); 1991 1992 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1993 btrfs_set_backup_csum_root_gen(root_backup, 1994 btrfs_header_generation(csum_root->node)); 1995 btrfs_set_backup_csum_root_level(root_backup, 1996 btrfs_header_level(csum_root->node)); 1997 } 1998 1999 /* 2000 * we might commit during log recovery, which happens before we set 2001 * the fs_root. Make sure it is valid before we fill it in. 2002 */ 2003 if (info->fs_root && info->fs_root->node) { 2004 btrfs_set_backup_fs_root(root_backup, 2005 info->fs_root->node->start); 2006 btrfs_set_backup_fs_root_gen(root_backup, 2007 btrfs_header_generation(info->fs_root->node)); 2008 btrfs_set_backup_fs_root_level(root_backup, 2009 btrfs_header_level(info->fs_root->node)); 2010 } 2011 2012 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2013 btrfs_set_backup_dev_root_gen(root_backup, 2014 btrfs_header_generation(info->dev_root->node)); 2015 btrfs_set_backup_dev_root_level(root_backup, 2016 btrfs_header_level(info->dev_root->node)); 2017 2018 btrfs_set_backup_total_bytes(root_backup, 2019 btrfs_super_total_bytes(info->super_copy)); 2020 btrfs_set_backup_bytes_used(root_backup, 2021 btrfs_super_bytes_used(info->super_copy)); 2022 btrfs_set_backup_num_devices(root_backup, 2023 btrfs_super_num_devices(info->super_copy)); 2024 2025 /* 2026 * if we don't copy this out to the super_copy, it won't get remembered 2027 * for the next commit 2028 */ 2029 memcpy(&info->super_copy->super_roots, 2030 &info->super_for_commit->super_roots, 2031 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2032 } 2033 2034 /* 2035 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 2036 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 2037 * 2038 * fs_info - filesystem whose backup roots need to be read 2039 * priority - priority of backup root required 2040 * 2041 * Returns backup root index on success and -EINVAL otherwise. 2042 */ 2043 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 2044 { 2045 int backup_index = find_newest_super_backup(fs_info); 2046 struct btrfs_super_block *super = fs_info->super_copy; 2047 struct btrfs_root_backup *root_backup; 2048 2049 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 2050 if (priority == 0) 2051 return backup_index; 2052 2053 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 2054 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 2055 } else { 2056 return -EINVAL; 2057 } 2058 2059 root_backup = super->super_roots + backup_index; 2060 2061 btrfs_set_super_generation(super, 2062 btrfs_backup_tree_root_gen(root_backup)); 2063 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2064 btrfs_set_super_root_level(super, 2065 btrfs_backup_tree_root_level(root_backup)); 2066 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2067 2068 /* 2069 * Fixme: the total bytes and num_devices need to match or we should 2070 * need a fsck 2071 */ 2072 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2073 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2074 2075 return backup_index; 2076 } 2077 2078 /* helper to cleanup workers */ 2079 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2080 { 2081 btrfs_destroy_workqueue(fs_info->fixup_workers); 2082 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2083 btrfs_destroy_workqueue(fs_info->hipri_workers); 2084 btrfs_destroy_workqueue(fs_info->workers); 2085 if (fs_info->endio_workers) 2086 destroy_workqueue(fs_info->endio_workers); 2087 if (fs_info->endio_raid56_workers) 2088 destroy_workqueue(fs_info->endio_raid56_workers); 2089 if (fs_info->rmw_workers) 2090 destroy_workqueue(fs_info->rmw_workers); 2091 if (fs_info->compressed_write_workers) 2092 destroy_workqueue(fs_info->compressed_write_workers); 2093 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2094 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2095 btrfs_destroy_workqueue(fs_info->delayed_workers); 2096 btrfs_destroy_workqueue(fs_info->caching_workers); 2097 btrfs_destroy_workqueue(fs_info->flush_workers); 2098 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2099 if (fs_info->discard_ctl.discard_workers) 2100 destroy_workqueue(fs_info->discard_ctl.discard_workers); 2101 /* 2102 * Now that all other work queues are destroyed, we can safely destroy 2103 * the queues used for metadata I/O, since tasks from those other work 2104 * queues can do metadata I/O operations. 2105 */ 2106 if (fs_info->endio_meta_workers) 2107 destroy_workqueue(fs_info->endio_meta_workers); 2108 } 2109 2110 static void free_root_extent_buffers(struct btrfs_root *root) 2111 { 2112 if (root) { 2113 free_extent_buffer(root->node); 2114 free_extent_buffer(root->commit_root); 2115 root->node = NULL; 2116 root->commit_root = NULL; 2117 } 2118 } 2119 2120 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 2121 { 2122 struct btrfs_root *root, *tmp; 2123 2124 rbtree_postorder_for_each_entry_safe(root, tmp, 2125 &fs_info->global_root_tree, 2126 rb_node) 2127 free_root_extent_buffers(root); 2128 } 2129 2130 /* helper to cleanup tree roots */ 2131 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 2132 { 2133 free_root_extent_buffers(info->tree_root); 2134 2135 free_global_root_pointers(info); 2136 free_root_extent_buffers(info->dev_root); 2137 free_root_extent_buffers(info->quota_root); 2138 free_root_extent_buffers(info->uuid_root); 2139 free_root_extent_buffers(info->fs_root); 2140 free_root_extent_buffers(info->data_reloc_root); 2141 free_root_extent_buffers(info->block_group_root); 2142 if (free_chunk_root) 2143 free_root_extent_buffers(info->chunk_root); 2144 } 2145 2146 void btrfs_put_root(struct btrfs_root *root) 2147 { 2148 if (!root) 2149 return; 2150 2151 if (refcount_dec_and_test(&root->refs)) { 2152 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2153 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 2154 if (root->anon_dev) 2155 free_anon_bdev(root->anon_dev); 2156 btrfs_drew_lock_destroy(&root->snapshot_lock); 2157 free_root_extent_buffers(root); 2158 #ifdef CONFIG_BTRFS_DEBUG 2159 spin_lock(&root->fs_info->fs_roots_radix_lock); 2160 list_del_init(&root->leak_list); 2161 spin_unlock(&root->fs_info->fs_roots_radix_lock); 2162 #endif 2163 kfree(root); 2164 } 2165 } 2166 2167 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2168 { 2169 int ret; 2170 struct btrfs_root *gang[8]; 2171 int i; 2172 2173 while (!list_empty(&fs_info->dead_roots)) { 2174 gang[0] = list_entry(fs_info->dead_roots.next, 2175 struct btrfs_root, root_list); 2176 list_del(&gang[0]->root_list); 2177 2178 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2179 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2180 btrfs_put_root(gang[0]); 2181 } 2182 2183 while (1) { 2184 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2185 (void **)gang, 0, 2186 ARRAY_SIZE(gang)); 2187 if (!ret) 2188 break; 2189 for (i = 0; i < ret; i++) 2190 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2191 } 2192 } 2193 2194 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2195 { 2196 mutex_init(&fs_info->scrub_lock); 2197 atomic_set(&fs_info->scrubs_running, 0); 2198 atomic_set(&fs_info->scrub_pause_req, 0); 2199 atomic_set(&fs_info->scrubs_paused, 0); 2200 atomic_set(&fs_info->scrub_cancel_req, 0); 2201 init_waitqueue_head(&fs_info->scrub_pause_wait); 2202 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2203 } 2204 2205 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2206 { 2207 spin_lock_init(&fs_info->balance_lock); 2208 mutex_init(&fs_info->balance_mutex); 2209 atomic_set(&fs_info->balance_pause_req, 0); 2210 atomic_set(&fs_info->balance_cancel_req, 0); 2211 fs_info->balance_ctl = NULL; 2212 init_waitqueue_head(&fs_info->balance_wait_q); 2213 atomic_set(&fs_info->reloc_cancel_req, 0); 2214 } 2215 2216 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2217 { 2218 struct inode *inode = fs_info->btree_inode; 2219 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 2220 fs_info->tree_root); 2221 2222 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2223 set_nlink(inode, 1); 2224 /* 2225 * we set the i_size on the btree inode to the max possible int. 2226 * the real end of the address space is determined by all of 2227 * the devices in the system 2228 */ 2229 inode->i_size = OFFSET_MAX; 2230 inode->i_mapping->a_ops = &btree_aops; 2231 2232 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2233 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2234 IO_TREE_BTREE_INODE_IO, NULL); 2235 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2236 2237 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2238 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID; 2239 BTRFS_I(inode)->location.type = 0; 2240 BTRFS_I(inode)->location.offset = 0; 2241 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2242 __insert_inode_hash(inode, hash); 2243 } 2244 2245 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2246 { 2247 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2248 init_rwsem(&fs_info->dev_replace.rwsem); 2249 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2250 } 2251 2252 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2253 { 2254 spin_lock_init(&fs_info->qgroup_lock); 2255 mutex_init(&fs_info->qgroup_ioctl_lock); 2256 fs_info->qgroup_tree = RB_ROOT; 2257 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2258 fs_info->qgroup_seq = 1; 2259 fs_info->qgroup_ulist = NULL; 2260 fs_info->qgroup_rescan_running = false; 2261 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL; 2262 mutex_init(&fs_info->qgroup_rescan_lock); 2263 } 2264 2265 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 2266 { 2267 u32 max_active = fs_info->thread_pool_size; 2268 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2269 2270 fs_info->workers = 2271 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 2272 fs_info->hipri_workers = 2273 btrfs_alloc_workqueue(fs_info, "worker-high", 2274 flags | WQ_HIGHPRI, max_active, 16); 2275 2276 fs_info->delalloc_workers = 2277 btrfs_alloc_workqueue(fs_info, "delalloc", 2278 flags, max_active, 2); 2279 2280 fs_info->flush_workers = 2281 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2282 flags, max_active, 0); 2283 2284 fs_info->caching_workers = 2285 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2286 2287 fs_info->fixup_workers = 2288 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2289 2290 fs_info->endio_workers = 2291 alloc_workqueue("btrfs-endio", flags, max_active); 2292 fs_info->endio_meta_workers = 2293 alloc_workqueue("btrfs-endio-meta", flags, max_active); 2294 fs_info->endio_raid56_workers = 2295 alloc_workqueue("btrfs-endio-raid56", flags, max_active); 2296 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 2297 fs_info->endio_write_workers = 2298 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2299 max_active, 2); 2300 fs_info->compressed_write_workers = 2301 alloc_workqueue("btrfs-compressed-write", flags, max_active); 2302 fs_info->endio_freespace_worker = 2303 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2304 max_active, 0); 2305 fs_info->delayed_workers = 2306 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2307 max_active, 0); 2308 fs_info->qgroup_rescan_workers = 2309 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2310 fs_info->discard_ctl.discard_workers = 2311 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2312 2313 if (!(fs_info->workers && fs_info->hipri_workers && 2314 fs_info->delalloc_workers && fs_info->flush_workers && 2315 fs_info->endio_workers && fs_info->endio_meta_workers && 2316 fs_info->compressed_write_workers && 2317 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2318 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2319 fs_info->caching_workers && fs_info->fixup_workers && 2320 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2321 fs_info->discard_ctl.discard_workers)) { 2322 return -ENOMEM; 2323 } 2324 2325 return 0; 2326 } 2327 2328 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2329 { 2330 struct crypto_shash *csum_shash; 2331 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2332 2333 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2334 2335 if (IS_ERR(csum_shash)) { 2336 btrfs_err(fs_info, "error allocating %s hash for checksum", 2337 csum_driver); 2338 return PTR_ERR(csum_shash); 2339 } 2340 2341 fs_info->csum_shash = csum_shash; 2342 2343 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2344 btrfs_super_csum_name(csum_type), 2345 crypto_shash_driver_name(csum_shash)); 2346 return 0; 2347 } 2348 2349 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2350 struct btrfs_fs_devices *fs_devices) 2351 { 2352 int ret; 2353 struct btrfs_root *log_tree_root; 2354 struct btrfs_super_block *disk_super = fs_info->super_copy; 2355 u64 bytenr = btrfs_super_log_root(disk_super); 2356 int level = btrfs_super_log_root_level(disk_super); 2357 2358 if (fs_devices->rw_devices == 0) { 2359 btrfs_warn(fs_info, "log replay required on RO media"); 2360 return -EIO; 2361 } 2362 2363 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2364 GFP_KERNEL); 2365 if (!log_tree_root) 2366 return -ENOMEM; 2367 2368 log_tree_root->node = read_tree_block(fs_info, bytenr, 2369 BTRFS_TREE_LOG_OBJECTID, 2370 fs_info->generation + 1, level, 2371 NULL); 2372 if (IS_ERR(log_tree_root->node)) { 2373 btrfs_warn(fs_info, "failed to read log tree"); 2374 ret = PTR_ERR(log_tree_root->node); 2375 log_tree_root->node = NULL; 2376 btrfs_put_root(log_tree_root); 2377 return ret; 2378 } 2379 if (!extent_buffer_uptodate(log_tree_root->node)) { 2380 btrfs_err(fs_info, "failed to read log tree"); 2381 btrfs_put_root(log_tree_root); 2382 return -EIO; 2383 } 2384 2385 /* returns with log_tree_root freed on success */ 2386 ret = btrfs_recover_log_trees(log_tree_root); 2387 if (ret) { 2388 btrfs_handle_fs_error(fs_info, ret, 2389 "Failed to recover log tree"); 2390 btrfs_put_root(log_tree_root); 2391 return ret; 2392 } 2393 2394 if (sb_rdonly(fs_info->sb)) { 2395 ret = btrfs_commit_super(fs_info); 2396 if (ret) 2397 return ret; 2398 } 2399 2400 return 0; 2401 } 2402 2403 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2404 struct btrfs_path *path, u64 objectid, 2405 const char *name) 2406 { 2407 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2408 struct btrfs_root *root; 2409 u64 max_global_id = 0; 2410 int ret; 2411 struct btrfs_key key = { 2412 .objectid = objectid, 2413 .type = BTRFS_ROOT_ITEM_KEY, 2414 .offset = 0, 2415 }; 2416 bool found = false; 2417 2418 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2419 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2420 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2421 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2422 return 0; 2423 } 2424 2425 while (1) { 2426 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2427 if (ret < 0) 2428 break; 2429 2430 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2431 ret = btrfs_next_leaf(tree_root, path); 2432 if (ret) { 2433 if (ret > 0) 2434 ret = 0; 2435 break; 2436 } 2437 } 2438 ret = 0; 2439 2440 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2441 if (key.objectid != objectid) 2442 break; 2443 btrfs_release_path(path); 2444 2445 /* 2446 * Just worry about this for extent tree, it'll be the same for 2447 * everybody. 2448 */ 2449 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2450 max_global_id = max(max_global_id, key.offset); 2451 2452 found = true; 2453 root = read_tree_root_path(tree_root, path, &key); 2454 if (IS_ERR(root)) { 2455 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2456 ret = PTR_ERR(root); 2457 break; 2458 } 2459 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2460 ret = btrfs_global_root_insert(root); 2461 if (ret) { 2462 btrfs_put_root(root); 2463 break; 2464 } 2465 key.offset++; 2466 } 2467 btrfs_release_path(path); 2468 2469 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2470 fs_info->nr_global_roots = max_global_id + 1; 2471 2472 if (!found || ret) { 2473 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2474 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2475 2476 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2477 ret = ret ? ret : -ENOENT; 2478 else 2479 ret = 0; 2480 btrfs_err(fs_info, "failed to load root %s", name); 2481 } 2482 return ret; 2483 } 2484 2485 static int load_global_roots(struct btrfs_root *tree_root) 2486 { 2487 struct btrfs_path *path; 2488 int ret = 0; 2489 2490 path = btrfs_alloc_path(); 2491 if (!path) 2492 return -ENOMEM; 2493 2494 ret = load_global_roots_objectid(tree_root, path, 2495 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2496 if (ret) 2497 goto out; 2498 ret = load_global_roots_objectid(tree_root, path, 2499 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2500 if (ret) 2501 goto out; 2502 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2503 goto out; 2504 ret = load_global_roots_objectid(tree_root, path, 2505 BTRFS_FREE_SPACE_TREE_OBJECTID, 2506 "free space"); 2507 out: 2508 btrfs_free_path(path); 2509 return ret; 2510 } 2511 2512 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2513 { 2514 struct btrfs_root *tree_root = fs_info->tree_root; 2515 struct btrfs_root *root; 2516 struct btrfs_key location; 2517 int ret; 2518 2519 BUG_ON(!fs_info->tree_root); 2520 2521 ret = load_global_roots(tree_root); 2522 if (ret) 2523 return ret; 2524 2525 location.type = BTRFS_ROOT_ITEM_KEY; 2526 location.offset = 0; 2527 2528 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2529 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2530 root = btrfs_read_tree_root(tree_root, &location); 2531 if (IS_ERR(root)) { 2532 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2533 ret = PTR_ERR(root); 2534 goto out; 2535 } 2536 } else { 2537 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2538 fs_info->block_group_root = root; 2539 } 2540 } 2541 2542 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2543 root = btrfs_read_tree_root(tree_root, &location); 2544 if (IS_ERR(root)) { 2545 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2546 ret = PTR_ERR(root); 2547 goto out; 2548 } 2549 } else { 2550 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2551 fs_info->dev_root = root; 2552 } 2553 /* Initialize fs_info for all devices in any case */ 2554 ret = btrfs_init_devices_late(fs_info); 2555 if (ret) 2556 goto out; 2557 2558 /* 2559 * This tree can share blocks with some other fs tree during relocation 2560 * and we need a proper setup by btrfs_get_fs_root 2561 */ 2562 root = btrfs_get_fs_root(tree_root->fs_info, 2563 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2564 if (IS_ERR(root)) { 2565 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2566 ret = PTR_ERR(root); 2567 goto out; 2568 } 2569 } else { 2570 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2571 fs_info->data_reloc_root = root; 2572 } 2573 2574 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2575 root = btrfs_read_tree_root(tree_root, &location); 2576 if (!IS_ERR(root)) { 2577 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2578 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2579 fs_info->quota_root = root; 2580 } 2581 2582 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2583 root = btrfs_read_tree_root(tree_root, &location); 2584 if (IS_ERR(root)) { 2585 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2586 ret = PTR_ERR(root); 2587 if (ret != -ENOENT) 2588 goto out; 2589 } 2590 } else { 2591 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2592 fs_info->uuid_root = root; 2593 } 2594 2595 return 0; 2596 out: 2597 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2598 location.objectid, ret); 2599 return ret; 2600 } 2601 2602 /* 2603 * Real super block validation 2604 * NOTE: super csum type and incompat features will not be checked here. 2605 * 2606 * @sb: super block to check 2607 * @mirror_num: the super block number to check its bytenr: 2608 * 0 the primary (1st) sb 2609 * 1, 2 2nd and 3rd backup copy 2610 * -1 skip bytenr check 2611 */ 2612 int btrfs_validate_super(struct btrfs_fs_info *fs_info, 2613 struct btrfs_super_block *sb, int mirror_num) 2614 { 2615 u64 nodesize = btrfs_super_nodesize(sb); 2616 u64 sectorsize = btrfs_super_sectorsize(sb); 2617 int ret = 0; 2618 2619 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2620 btrfs_err(fs_info, "no valid FS found"); 2621 ret = -EINVAL; 2622 } 2623 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2624 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2625 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2626 ret = -EINVAL; 2627 } 2628 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2629 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2630 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2631 ret = -EINVAL; 2632 } 2633 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2634 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2635 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2636 ret = -EINVAL; 2637 } 2638 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2639 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2640 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2641 ret = -EINVAL; 2642 } 2643 2644 /* 2645 * Check sectorsize and nodesize first, other check will need it. 2646 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2647 */ 2648 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2649 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2650 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2651 ret = -EINVAL; 2652 } 2653 2654 /* 2655 * We only support at most two sectorsizes: 4K and PAGE_SIZE. 2656 * 2657 * We can support 16K sectorsize with 64K page size without problem, 2658 * but such sectorsize/pagesize combination doesn't make much sense. 2659 * 4K will be our future standard, PAGE_SIZE is supported from the very 2660 * beginning. 2661 */ 2662 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { 2663 btrfs_err(fs_info, 2664 "sectorsize %llu not yet supported for page size %lu", 2665 sectorsize, PAGE_SIZE); 2666 ret = -EINVAL; 2667 } 2668 2669 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2670 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2671 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2672 ret = -EINVAL; 2673 } 2674 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2675 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2676 le32_to_cpu(sb->__unused_leafsize), nodesize); 2677 ret = -EINVAL; 2678 } 2679 2680 /* Root alignment check */ 2681 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2682 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2683 btrfs_super_root(sb)); 2684 ret = -EINVAL; 2685 } 2686 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2687 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2688 btrfs_super_chunk_root(sb)); 2689 ret = -EINVAL; 2690 } 2691 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2692 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2693 btrfs_super_log_root(sb)); 2694 ret = -EINVAL; 2695 } 2696 2697 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2698 BTRFS_FSID_SIZE)) { 2699 btrfs_err(fs_info, 2700 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2701 fs_info->super_copy->fsid, fs_info->fs_devices->fsid); 2702 ret = -EINVAL; 2703 } 2704 2705 if (btrfs_fs_incompat(fs_info, METADATA_UUID) && 2706 memcmp(fs_info->fs_devices->metadata_uuid, 2707 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) { 2708 btrfs_err(fs_info, 2709 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2710 fs_info->super_copy->metadata_uuid, 2711 fs_info->fs_devices->metadata_uuid); 2712 ret = -EINVAL; 2713 } 2714 2715 /* 2716 * Artificial requirement for block-group-tree to force newer features 2717 * (free-space-tree, no-holes) so the test matrix is smaller. 2718 */ 2719 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2720 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2721 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2722 btrfs_err(fs_info, 2723 "block-group-tree feature requires fres-space-tree and no-holes"); 2724 ret = -EINVAL; 2725 } 2726 2727 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2728 BTRFS_FSID_SIZE) != 0) { 2729 btrfs_err(fs_info, 2730 "dev_item UUID does not match metadata fsid: %pU != %pU", 2731 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2732 ret = -EINVAL; 2733 } 2734 2735 /* 2736 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2737 * done later 2738 */ 2739 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2740 btrfs_err(fs_info, "bytes_used is too small %llu", 2741 btrfs_super_bytes_used(sb)); 2742 ret = -EINVAL; 2743 } 2744 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2745 btrfs_err(fs_info, "invalid stripesize %u", 2746 btrfs_super_stripesize(sb)); 2747 ret = -EINVAL; 2748 } 2749 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2750 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2751 btrfs_super_num_devices(sb)); 2752 if (btrfs_super_num_devices(sb) == 0) { 2753 btrfs_err(fs_info, "number of devices is 0"); 2754 ret = -EINVAL; 2755 } 2756 2757 if (mirror_num >= 0 && 2758 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2759 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2760 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2761 ret = -EINVAL; 2762 } 2763 2764 /* 2765 * Obvious sys_chunk_array corruptions, it must hold at least one key 2766 * and one chunk 2767 */ 2768 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2769 btrfs_err(fs_info, "system chunk array too big %u > %u", 2770 btrfs_super_sys_array_size(sb), 2771 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2772 ret = -EINVAL; 2773 } 2774 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2775 + sizeof(struct btrfs_chunk)) { 2776 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2777 btrfs_super_sys_array_size(sb), 2778 sizeof(struct btrfs_disk_key) 2779 + sizeof(struct btrfs_chunk)); 2780 ret = -EINVAL; 2781 } 2782 2783 /* 2784 * The generation is a global counter, we'll trust it more than the others 2785 * but it's still possible that it's the one that's wrong. 2786 */ 2787 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2788 btrfs_warn(fs_info, 2789 "suspicious: generation < chunk_root_generation: %llu < %llu", 2790 btrfs_super_generation(sb), 2791 btrfs_super_chunk_root_generation(sb)); 2792 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2793 && btrfs_super_cache_generation(sb) != (u64)-1) 2794 btrfs_warn(fs_info, 2795 "suspicious: generation < cache_generation: %llu < %llu", 2796 btrfs_super_generation(sb), 2797 btrfs_super_cache_generation(sb)); 2798 2799 return ret; 2800 } 2801 2802 /* 2803 * Validation of super block at mount time. 2804 * Some checks already done early at mount time, like csum type and incompat 2805 * flags will be skipped. 2806 */ 2807 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2808 { 2809 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2810 } 2811 2812 /* 2813 * Validation of super block at write time. 2814 * Some checks like bytenr check will be skipped as their values will be 2815 * overwritten soon. 2816 * Extra checks like csum type and incompat flags will be done here. 2817 */ 2818 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2819 struct btrfs_super_block *sb) 2820 { 2821 int ret; 2822 2823 ret = btrfs_validate_super(fs_info, sb, -1); 2824 if (ret < 0) 2825 goto out; 2826 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2827 ret = -EUCLEAN; 2828 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2829 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2830 goto out; 2831 } 2832 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2833 ret = -EUCLEAN; 2834 btrfs_err(fs_info, 2835 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2836 btrfs_super_incompat_flags(sb), 2837 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2838 goto out; 2839 } 2840 out: 2841 if (ret < 0) 2842 btrfs_err(fs_info, 2843 "super block corruption detected before writing it to disk"); 2844 return ret; 2845 } 2846 2847 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2848 { 2849 int ret = 0; 2850 2851 root->node = read_tree_block(root->fs_info, bytenr, 2852 root->root_key.objectid, gen, level, NULL); 2853 if (IS_ERR(root->node)) { 2854 ret = PTR_ERR(root->node); 2855 root->node = NULL; 2856 return ret; 2857 } 2858 if (!extent_buffer_uptodate(root->node)) { 2859 free_extent_buffer(root->node); 2860 root->node = NULL; 2861 return -EIO; 2862 } 2863 2864 btrfs_set_root_node(&root->root_item, root->node); 2865 root->commit_root = btrfs_root_node(root); 2866 btrfs_set_root_refs(&root->root_item, 1); 2867 return ret; 2868 } 2869 2870 static int load_important_roots(struct btrfs_fs_info *fs_info) 2871 { 2872 struct btrfs_super_block *sb = fs_info->super_copy; 2873 u64 gen, bytenr; 2874 int level, ret; 2875 2876 bytenr = btrfs_super_root(sb); 2877 gen = btrfs_super_generation(sb); 2878 level = btrfs_super_root_level(sb); 2879 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2880 if (ret) { 2881 btrfs_warn(fs_info, "couldn't read tree root"); 2882 return ret; 2883 } 2884 return 0; 2885 } 2886 2887 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2888 { 2889 int backup_index = find_newest_super_backup(fs_info); 2890 struct btrfs_super_block *sb = fs_info->super_copy; 2891 struct btrfs_root *tree_root = fs_info->tree_root; 2892 bool handle_error = false; 2893 int ret = 0; 2894 int i; 2895 2896 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2897 if (handle_error) { 2898 if (!IS_ERR(tree_root->node)) 2899 free_extent_buffer(tree_root->node); 2900 tree_root->node = NULL; 2901 2902 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2903 break; 2904 2905 free_root_pointers(fs_info, 0); 2906 2907 /* 2908 * Don't use the log in recovery mode, it won't be 2909 * valid 2910 */ 2911 btrfs_set_super_log_root(sb, 0); 2912 2913 /* We can't trust the free space cache either */ 2914 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2915 2916 ret = read_backup_root(fs_info, i); 2917 backup_index = ret; 2918 if (ret < 0) 2919 return ret; 2920 } 2921 2922 ret = load_important_roots(fs_info); 2923 if (ret) { 2924 handle_error = true; 2925 continue; 2926 } 2927 2928 /* 2929 * No need to hold btrfs_root::objectid_mutex since the fs 2930 * hasn't been fully initialised and we are the only user 2931 */ 2932 ret = btrfs_init_root_free_objectid(tree_root); 2933 if (ret < 0) { 2934 handle_error = true; 2935 continue; 2936 } 2937 2938 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2939 2940 ret = btrfs_read_roots(fs_info); 2941 if (ret < 0) { 2942 handle_error = true; 2943 continue; 2944 } 2945 2946 /* All successful */ 2947 fs_info->generation = btrfs_header_generation(tree_root->node); 2948 fs_info->last_trans_committed = fs_info->generation; 2949 fs_info->last_reloc_trans = 0; 2950 2951 /* Always begin writing backup roots after the one being used */ 2952 if (backup_index < 0) { 2953 fs_info->backup_root_index = 0; 2954 } else { 2955 fs_info->backup_root_index = backup_index + 1; 2956 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2957 } 2958 break; 2959 } 2960 2961 return ret; 2962 } 2963 2964 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2965 { 2966 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2967 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2968 INIT_LIST_HEAD(&fs_info->trans_list); 2969 INIT_LIST_HEAD(&fs_info->dead_roots); 2970 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2971 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2972 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2973 spin_lock_init(&fs_info->delalloc_root_lock); 2974 spin_lock_init(&fs_info->trans_lock); 2975 spin_lock_init(&fs_info->fs_roots_radix_lock); 2976 spin_lock_init(&fs_info->delayed_iput_lock); 2977 spin_lock_init(&fs_info->defrag_inodes_lock); 2978 spin_lock_init(&fs_info->super_lock); 2979 spin_lock_init(&fs_info->buffer_lock); 2980 spin_lock_init(&fs_info->unused_bgs_lock); 2981 spin_lock_init(&fs_info->treelog_bg_lock); 2982 spin_lock_init(&fs_info->zone_active_bgs_lock); 2983 spin_lock_init(&fs_info->relocation_bg_lock); 2984 rwlock_init(&fs_info->tree_mod_log_lock); 2985 rwlock_init(&fs_info->global_root_lock); 2986 mutex_init(&fs_info->unused_bg_unpin_mutex); 2987 mutex_init(&fs_info->reclaim_bgs_lock); 2988 mutex_init(&fs_info->reloc_mutex); 2989 mutex_init(&fs_info->delalloc_root_mutex); 2990 mutex_init(&fs_info->zoned_meta_io_lock); 2991 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2992 seqlock_init(&fs_info->profiles_lock); 2993 2994 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2995 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2996 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2997 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2998 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start, 2999 BTRFS_LOCKDEP_TRANS_COMMIT_START); 3000 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 3001 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 3002 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 3003 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 3004 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 3005 BTRFS_LOCKDEP_TRANS_COMPLETED); 3006 3007 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 3008 INIT_LIST_HEAD(&fs_info->space_info); 3009 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 3010 INIT_LIST_HEAD(&fs_info->unused_bgs); 3011 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 3012 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 3013 #ifdef CONFIG_BTRFS_DEBUG 3014 INIT_LIST_HEAD(&fs_info->allocated_roots); 3015 INIT_LIST_HEAD(&fs_info->allocated_ebs); 3016 spin_lock_init(&fs_info->eb_leak_lock); 3017 #endif 3018 extent_map_tree_init(&fs_info->mapping_tree); 3019 btrfs_init_block_rsv(&fs_info->global_block_rsv, 3020 BTRFS_BLOCK_RSV_GLOBAL); 3021 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 3022 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 3023 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 3024 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 3025 BTRFS_BLOCK_RSV_DELOPS); 3026 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 3027 BTRFS_BLOCK_RSV_DELREFS); 3028 3029 atomic_set(&fs_info->async_delalloc_pages, 0); 3030 atomic_set(&fs_info->defrag_running, 0); 3031 atomic_set(&fs_info->nr_delayed_iputs, 0); 3032 atomic64_set(&fs_info->tree_mod_seq, 0); 3033 fs_info->global_root_tree = RB_ROOT; 3034 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 3035 fs_info->metadata_ratio = 0; 3036 fs_info->defrag_inodes = RB_ROOT; 3037 atomic64_set(&fs_info->free_chunk_space, 0); 3038 fs_info->tree_mod_log = RB_ROOT; 3039 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 3040 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 3041 btrfs_init_ref_verify(fs_info); 3042 3043 fs_info->thread_pool_size = min_t(unsigned long, 3044 num_online_cpus() + 2, 8); 3045 3046 INIT_LIST_HEAD(&fs_info->ordered_roots); 3047 spin_lock_init(&fs_info->ordered_root_lock); 3048 3049 btrfs_init_scrub(fs_info); 3050 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3051 fs_info->check_integrity_print_mask = 0; 3052 #endif 3053 btrfs_init_balance(fs_info); 3054 btrfs_init_async_reclaim_work(fs_info); 3055 3056 rwlock_init(&fs_info->block_group_cache_lock); 3057 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 3058 3059 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 3060 IO_TREE_FS_EXCLUDED_EXTENTS, NULL); 3061 3062 mutex_init(&fs_info->ordered_operations_mutex); 3063 mutex_init(&fs_info->tree_log_mutex); 3064 mutex_init(&fs_info->chunk_mutex); 3065 mutex_init(&fs_info->transaction_kthread_mutex); 3066 mutex_init(&fs_info->cleaner_mutex); 3067 mutex_init(&fs_info->ro_block_group_mutex); 3068 init_rwsem(&fs_info->commit_root_sem); 3069 init_rwsem(&fs_info->cleanup_work_sem); 3070 init_rwsem(&fs_info->subvol_sem); 3071 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 3072 3073 btrfs_init_dev_replace_locks(fs_info); 3074 btrfs_init_qgroup(fs_info); 3075 btrfs_discard_init(fs_info); 3076 3077 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 3078 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 3079 3080 init_waitqueue_head(&fs_info->transaction_throttle); 3081 init_waitqueue_head(&fs_info->transaction_wait); 3082 init_waitqueue_head(&fs_info->transaction_blocked_wait); 3083 init_waitqueue_head(&fs_info->async_submit_wait); 3084 init_waitqueue_head(&fs_info->delayed_iputs_wait); 3085 3086 /* Usable values until the real ones are cached from the superblock */ 3087 fs_info->nodesize = 4096; 3088 fs_info->sectorsize = 4096; 3089 fs_info->sectorsize_bits = ilog2(4096); 3090 fs_info->stripesize = 4096; 3091 3092 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 3093 3094 spin_lock_init(&fs_info->swapfile_pins_lock); 3095 fs_info->swapfile_pins = RB_ROOT; 3096 3097 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 3098 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 3099 } 3100 3101 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 3102 { 3103 int ret; 3104 3105 fs_info->sb = sb; 3106 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 3107 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 3108 3109 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 3110 if (ret) 3111 return ret; 3112 3113 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 3114 if (ret) 3115 return ret; 3116 3117 fs_info->dirty_metadata_batch = PAGE_SIZE * 3118 (1 + ilog2(nr_cpu_ids)); 3119 3120 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 3121 if (ret) 3122 return ret; 3123 3124 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 3125 GFP_KERNEL); 3126 if (ret) 3127 return ret; 3128 3129 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 3130 GFP_KERNEL); 3131 if (!fs_info->delayed_root) 3132 return -ENOMEM; 3133 btrfs_init_delayed_root(fs_info->delayed_root); 3134 3135 if (sb_rdonly(sb)) 3136 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 3137 3138 return btrfs_alloc_stripe_hash_table(fs_info); 3139 } 3140 3141 static int btrfs_uuid_rescan_kthread(void *data) 3142 { 3143 struct btrfs_fs_info *fs_info = data; 3144 int ret; 3145 3146 /* 3147 * 1st step is to iterate through the existing UUID tree and 3148 * to delete all entries that contain outdated data. 3149 * 2nd step is to add all missing entries to the UUID tree. 3150 */ 3151 ret = btrfs_uuid_tree_iterate(fs_info); 3152 if (ret < 0) { 3153 if (ret != -EINTR) 3154 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 3155 ret); 3156 up(&fs_info->uuid_tree_rescan_sem); 3157 return ret; 3158 } 3159 return btrfs_uuid_scan_kthread(data); 3160 } 3161 3162 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 3163 { 3164 struct task_struct *task; 3165 3166 down(&fs_info->uuid_tree_rescan_sem); 3167 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 3168 if (IS_ERR(task)) { 3169 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3170 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 3171 up(&fs_info->uuid_tree_rescan_sem); 3172 return PTR_ERR(task); 3173 } 3174 3175 return 0; 3176 } 3177 3178 /* 3179 * Some options only have meaning at mount time and shouldn't persist across 3180 * remounts, or be displayed. Clear these at the end of mount and remount 3181 * code paths. 3182 */ 3183 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 3184 { 3185 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3186 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 3187 } 3188 3189 /* 3190 * Mounting logic specific to read-write file systems. Shared by open_ctree 3191 * and btrfs_remount when remounting from read-only to read-write. 3192 */ 3193 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 3194 { 3195 int ret; 3196 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 3197 bool clear_free_space_tree = false; 3198 3199 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3200 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3201 clear_free_space_tree = true; 3202 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3203 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3204 btrfs_warn(fs_info, "free space tree is invalid"); 3205 clear_free_space_tree = true; 3206 } 3207 3208 if (clear_free_space_tree) { 3209 btrfs_info(fs_info, "clearing free space tree"); 3210 ret = btrfs_clear_free_space_tree(fs_info); 3211 if (ret) { 3212 btrfs_warn(fs_info, 3213 "failed to clear free space tree: %d", ret); 3214 goto out; 3215 } 3216 } 3217 3218 /* 3219 * btrfs_find_orphan_roots() is responsible for finding all the dead 3220 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3221 * them into the fs_info->fs_roots_radix tree. This must be done before 3222 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3223 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3224 * item before the root's tree is deleted - this means that if we unmount 3225 * or crash before the deletion completes, on the next mount we will not 3226 * delete what remains of the tree because the orphan item does not 3227 * exists anymore, which is what tells us we have a pending deletion. 3228 */ 3229 ret = btrfs_find_orphan_roots(fs_info); 3230 if (ret) 3231 goto out; 3232 3233 ret = btrfs_cleanup_fs_roots(fs_info); 3234 if (ret) 3235 goto out; 3236 3237 down_read(&fs_info->cleanup_work_sem); 3238 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3239 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3240 up_read(&fs_info->cleanup_work_sem); 3241 goto out; 3242 } 3243 up_read(&fs_info->cleanup_work_sem); 3244 3245 mutex_lock(&fs_info->cleaner_mutex); 3246 ret = btrfs_recover_relocation(fs_info); 3247 mutex_unlock(&fs_info->cleaner_mutex); 3248 if (ret < 0) { 3249 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3250 goto out; 3251 } 3252 3253 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3254 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3255 btrfs_info(fs_info, "creating free space tree"); 3256 ret = btrfs_create_free_space_tree(fs_info); 3257 if (ret) { 3258 btrfs_warn(fs_info, 3259 "failed to create free space tree: %d", ret); 3260 goto out; 3261 } 3262 } 3263 3264 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3265 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3266 if (ret) 3267 goto out; 3268 } 3269 3270 ret = btrfs_resume_balance_async(fs_info); 3271 if (ret) 3272 goto out; 3273 3274 ret = btrfs_resume_dev_replace_async(fs_info); 3275 if (ret) { 3276 btrfs_warn(fs_info, "failed to resume dev_replace"); 3277 goto out; 3278 } 3279 3280 btrfs_qgroup_rescan_resume(fs_info); 3281 3282 if (!fs_info->uuid_root) { 3283 btrfs_info(fs_info, "creating UUID tree"); 3284 ret = btrfs_create_uuid_tree(fs_info); 3285 if (ret) { 3286 btrfs_warn(fs_info, 3287 "failed to create the UUID tree %d", ret); 3288 goto out; 3289 } 3290 } 3291 3292 out: 3293 return ret; 3294 } 3295 3296 /* 3297 * Do various sanity and dependency checks of different features. 3298 * 3299 * This is the place for less strict checks (like for subpage or artificial 3300 * feature dependencies). 3301 * 3302 * For strict checks or possible corruption detection, see 3303 * btrfs_validate_super(). 3304 * 3305 * This should be called after btrfs_parse_options(), as some mount options 3306 * (space cache related) can modify on-disk format like free space tree and 3307 * screw up certain feature dependencies. 3308 */ 3309 int btrfs_check_features(struct btrfs_fs_info *fs_info, struct super_block *sb) 3310 { 3311 struct btrfs_super_block *disk_super = fs_info->super_copy; 3312 u64 incompat = btrfs_super_incompat_flags(disk_super); 3313 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3314 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3315 3316 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3317 btrfs_err(fs_info, 3318 "cannot mount because of unknown incompat features (0x%llx)", 3319 incompat); 3320 return -EINVAL; 3321 } 3322 3323 /* Runtime limitation for mixed block groups. */ 3324 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3325 (fs_info->sectorsize != fs_info->nodesize)) { 3326 btrfs_err(fs_info, 3327 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3328 fs_info->nodesize, fs_info->sectorsize); 3329 return -EINVAL; 3330 } 3331 3332 /* Mixed backref is an always-enabled feature. */ 3333 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3334 3335 /* Set compression related flags just in case. */ 3336 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3337 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3338 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3339 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3340 3341 /* 3342 * An ancient flag, which should really be marked deprecated. 3343 * Such runtime limitation doesn't really need a incompat flag. 3344 */ 3345 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3346 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3347 3348 if (compat_ro_unsupp && !sb_rdonly(sb)) { 3349 btrfs_err(fs_info, 3350 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3351 compat_ro); 3352 return -EINVAL; 3353 } 3354 3355 /* 3356 * We have unsupported RO compat features, although RO mounted, we 3357 * should not cause any metadata writes, including log replay. 3358 * Or we could screw up whatever the new feature requires. 3359 */ 3360 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3361 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3362 btrfs_err(fs_info, 3363 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3364 compat_ro); 3365 return -EINVAL; 3366 } 3367 3368 /* 3369 * Artificial limitations for block group tree, to force 3370 * block-group-tree to rely on no-holes and free-space-tree. 3371 */ 3372 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3373 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3374 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3375 btrfs_err(fs_info, 3376 "block-group-tree feature requires no-holes and free-space-tree features"); 3377 return -EINVAL; 3378 } 3379 3380 /* 3381 * Subpage runtime limitation on v1 cache. 3382 * 3383 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3384 * we're already defaulting to v2 cache, no need to bother v1 as it's 3385 * going to be deprecated anyway. 3386 */ 3387 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3388 btrfs_warn(fs_info, 3389 "v1 space cache is not supported for page size %lu with sectorsize %u", 3390 PAGE_SIZE, fs_info->sectorsize); 3391 return -EINVAL; 3392 } 3393 3394 /* This can be called by remount, we need to protect the super block. */ 3395 spin_lock(&fs_info->super_lock); 3396 btrfs_set_super_incompat_flags(disk_super, incompat); 3397 spin_unlock(&fs_info->super_lock); 3398 3399 return 0; 3400 } 3401 3402 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3403 char *options) 3404 { 3405 u32 sectorsize; 3406 u32 nodesize; 3407 u32 stripesize; 3408 u64 generation; 3409 u64 features; 3410 u16 csum_type; 3411 struct btrfs_super_block *disk_super; 3412 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3413 struct btrfs_root *tree_root; 3414 struct btrfs_root *chunk_root; 3415 int ret; 3416 int err = -EINVAL; 3417 int level; 3418 3419 ret = init_mount_fs_info(fs_info, sb); 3420 if (ret) { 3421 err = ret; 3422 goto fail; 3423 } 3424 3425 /* These need to be init'ed before we start creating inodes and such. */ 3426 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3427 GFP_KERNEL); 3428 fs_info->tree_root = tree_root; 3429 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3430 GFP_KERNEL); 3431 fs_info->chunk_root = chunk_root; 3432 if (!tree_root || !chunk_root) { 3433 err = -ENOMEM; 3434 goto fail; 3435 } 3436 3437 fs_info->btree_inode = new_inode(sb); 3438 if (!fs_info->btree_inode) { 3439 err = -ENOMEM; 3440 goto fail; 3441 } 3442 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 3443 btrfs_init_btree_inode(fs_info); 3444 3445 invalidate_bdev(fs_devices->latest_dev->bdev); 3446 3447 /* 3448 * Read super block and check the signature bytes only 3449 */ 3450 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3451 if (IS_ERR(disk_super)) { 3452 err = PTR_ERR(disk_super); 3453 goto fail_alloc; 3454 } 3455 3456 /* 3457 * Verify the type first, if that or the checksum value are 3458 * corrupted, we'll find out 3459 */ 3460 csum_type = btrfs_super_csum_type(disk_super); 3461 if (!btrfs_supported_super_csum(csum_type)) { 3462 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3463 csum_type); 3464 err = -EINVAL; 3465 btrfs_release_disk_super(disk_super); 3466 goto fail_alloc; 3467 } 3468 3469 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3470 3471 ret = btrfs_init_csum_hash(fs_info, csum_type); 3472 if (ret) { 3473 err = ret; 3474 btrfs_release_disk_super(disk_super); 3475 goto fail_alloc; 3476 } 3477 3478 /* 3479 * We want to check superblock checksum, the type is stored inside. 3480 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3481 */ 3482 if (btrfs_check_super_csum(fs_info, disk_super)) { 3483 btrfs_err(fs_info, "superblock checksum mismatch"); 3484 err = -EINVAL; 3485 btrfs_release_disk_super(disk_super); 3486 goto fail_alloc; 3487 } 3488 3489 /* 3490 * super_copy is zeroed at allocation time and we never touch the 3491 * following bytes up to INFO_SIZE, the checksum is calculated from 3492 * the whole block of INFO_SIZE 3493 */ 3494 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3495 btrfs_release_disk_super(disk_super); 3496 3497 disk_super = fs_info->super_copy; 3498 3499 3500 features = btrfs_super_flags(disk_super); 3501 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 3502 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 3503 btrfs_set_super_flags(disk_super, features); 3504 btrfs_info(fs_info, 3505 "found metadata UUID change in progress flag, clearing"); 3506 } 3507 3508 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3509 sizeof(*fs_info->super_for_commit)); 3510 3511 ret = btrfs_validate_mount_super(fs_info); 3512 if (ret) { 3513 btrfs_err(fs_info, "superblock contains fatal errors"); 3514 err = -EINVAL; 3515 goto fail_alloc; 3516 } 3517 3518 if (!btrfs_super_root(disk_super)) 3519 goto fail_alloc; 3520 3521 /* check FS state, whether FS is broken. */ 3522 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3523 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 3524 3525 /* 3526 * In the long term, we'll store the compression type in the super 3527 * block, and it'll be used for per file compression control. 3528 */ 3529 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3530 3531 3532 /* Set up fs_info before parsing mount options */ 3533 nodesize = btrfs_super_nodesize(disk_super); 3534 sectorsize = btrfs_super_sectorsize(disk_super); 3535 stripesize = sectorsize; 3536 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3537 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3538 3539 fs_info->nodesize = nodesize; 3540 fs_info->sectorsize = sectorsize; 3541 fs_info->sectorsize_bits = ilog2(sectorsize); 3542 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3543 fs_info->stripesize = stripesize; 3544 3545 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3546 if (ret) { 3547 err = ret; 3548 goto fail_alloc; 3549 } 3550 3551 ret = btrfs_check_features(fs_info, sb); 3552 if (ret < 0) { 3553 err = ret; 3554 goto fail_alloc; 3555 } 3556 3557 if (sectorsize < PAGE_SIZE) { 3558 struct btrfs_subpage_info *subpage_info; 3559 3560 /* 3561 * V1 space cache has some hardcoded PAGE_SIZE usage, and is 3562 * going to be deprecated. 3563 * 3564 * Force to use v2 cache for subpage case. 3565 */ 3566 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 3567 btrfs_set_and_info(fs_info, FREE_SPACE_TREE, 3568 "forcing free space tree for sector size %u with page size %lu", 3569 sectorsize, PAGE_SIZE); 3570 3571 btrfs_warn(fs_info, 3572 "read-write for sector size %u with page size %lu is experimental", 3573 sectorsize, PAGE_SIZE); 3574 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL); 3575 if (!subpage_info) 3576 goto fail_alloc; 3577 btrfs_init_subpage_info(subpage_info, sectorsize); 3578 fs_info->subpage_info = subpage_info; 3579 } 3580 3581 ret = btrfs_init_workqueues(fs_info); 3582 if (ret) { 3583 err = ret; 3584 goto fail_sb_buffer; 3585 } 3586 3587 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3588 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3589 3590 sb->s_blocksize = sectorsize; 3591 sb->s_blocksize_bits = blksize_bits(sectorsize); 3592 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3593 3594 mutex_lock(&fs_info->chunk_mutex); 3595 ret = btrfs_read_sys_array(fs_info); 3596 mutex_unlock(&fs_info->chunk_mutex); 3597 if (ret) { 3598 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3599 goto fail_sb_buffer; 3600 } 3601 3602 generation = btrfs_super_chunk_root_generation(disk_super); 3603 level = btrfs_super_chunk_root_level(disk_super); 3604 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3605 generation, level); 3606 if (ret) { 3607 btrfs_err(fs_info, "failed to read chunk root"); 3608 goto fail_tree_roots; 3609 } 3610 3611 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3612 offsetof(struct btrfs_header, chunk_tree_uuid), 3613 BTRFS_UUID_SIZE); 3614 3615 ret = btrfs_read_chunk_tree(fs_info); 3616 if (ret) { 3617 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3618 goto fail_tree_roots; 3619 } 3620 3621 /* 3622 * At this point we know all the devices that make this filesystem, 3623 * including the seed devices but we don't know yet if the replace 3624 * target is required. So free devices that are not part of this 3625 * filesystem but skip the replace target device which is checked 3626 * below in btrfs_init_dev_replace(). 3627 */ 3628 btrfs_free_extra_devids(fs_devices); 3629 if (!fs_devices->latest_dev->bdev) { 3630 btrfs_err(fs_info, "failed to read devices"); 3631 goto fail_tree_roots; 3632 } 3633 3634 ret = init_tree_roots(fs_info); 3635 if (ret) 3636 goto fail_tree_roots; 3637 3638 /* 3639 * Get zone type information of zoned block devices. This will also 3640 * handle emulation of a zoned filesystem if a regular device has the 3641 * zoned incompat feature flag set. 3642 */ 3643 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3644 if (ret) { 3645 btrfs_err(fs_info, 3646 "zoned: failed to read device zone info: %d", 3647 ret); 3648 goto fail_block_groups; 3649 } 3650 3651 /* 3652 * If we have a uuid root and we're not being told to rescan we need to 3653 * check the generation here so we can set the 3654 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3655 * transaction during a balance or the log replay without updating the 3656 * uuid generation, and then if we crash we would rescan the uuid tree, 3657 * even though it was perfectly fine. 3658 */ 3659 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3660 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3661 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3662 3663 ret = btrfs_verify_dev_extents(fs_info); 3664 if (ret) { 3665 btrfs_err(fs_info, 3666 "failed to verify dev extents against chunks: %d", 3667 ret); 3668 goto fail_block_groups; 3669 } 3670 ret = btrfs_recover_balance(fs_info); 3671 if (ret) { 3672 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3673 goto fail_block_groups; 3674 } 3675 3676 ret = btrfs_init_dev_stats(fs_info); 3677 if (ret) { 3678 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3679 goto fail_block_groups; 3680 } 3681 3682 ret = btrfs_init_dev_replace(fs_info); 3683 if (ret) { 3684 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3685 goto fail_block_groups; 3686 } 3687 3688 ret = btrfs_check_zoned_mode(fs_info); 3689 if (ret) { 3690 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3691 ret); 3692 goto fail_block_groups; 3693 } 3694 3695 ret = btrfs_sysfs_add_fsid(fs_devices); 3696 if (ret) { 3697 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3698 ret); 3699 goto fail_block_groups; 3700 } 3701 3702 ret = btrfs_sysfs_add_mounted(fs_info); 3703 if (ret) { 3704 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3705 goto fail_fsdev_sysfs; 3706 } 3707 3708 ret = btrfs_init_space_info(fs_info); 3709 if (ret) { 3710 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3711 goto fail_sysfs; 3712 } 3713 3714 ret = btrfs_read_block_groups(fs_info); 3715 if (ret) { 3716 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3717 goto fail_sysfs; 3718 } 3719 3720 btrfs_free_zone_cache(fs_info); 3721 3722 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3723 !btrfs_check_rw_degradable(fs_info, NULL)) { 3724 btrfs_warn(fs_info, 3725 "writable mount is not allowed due to too many missing devices"); 3726 goto fail_sysfs; 3727 } 3728 3729 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3730 "btrfs-cleaner"); 3731 if (IS_ERR(fs_info->cleaner_kthread)) 3732 goto fail_sysfs; 3733 3734 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3735 tree_root, 3736 "btrfs-transaction"); 3737 if (IS_ERR(fs_info->transaction_kthread)) 3738 goto fail_cleaner; 3739 3740 if (!btrfs_test_opt(fs_info, NOSSD) && 3741 !fs_info->fs_devices->rotating) { 3742 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3743 } 3744 3745 /* 3746 * Mount does not set all options immediately, we can do it now and do 3747 * not have to wait for transaction commit 3748 */ 3749 btrfs_apply_pending_changes(fs_info); 3750 3751 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3752 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3753 ret = btrfsic_mount(fs_info, fs_devices, 3754 btrfs_test_opt(fs_info, 3755 CHECK_INTEGRITY_DATA) ? 1 : 0, 3756 fs_info->check_integrity_print_mask); 3757 if (ret) 3758 btrfs_warn(fs_info, 3759 "failed to initialize integrity check module: %d", 3760 ret); 3761 } 3762 #endif 3763 ret = btrfs_read_qgroup_config(fs_info); 3764 if (ret) 3765 goto fail_trans_kthread; 3766 3767 if (btrfs_build_ref_tree(fs_info)) 3768 btrfs_err(fs_info, "couldn't build ref tree"); 3769 3770 /* do not make disk changes in broken FS or nologreplay is given */ 3771 if (btrfs_super_log_root(disk_super) != 0 && 3772 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3773 btrfs_info(fs_info, "start tree-log replay"); 3774 ret = btrfs_replay_log(fs_info, fs_devices); 3775 if (ret) { 3776 err = ret; 3777 goto fail_qgroup; 3778 } 3779 } 3780 3781 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3782 if (IS_ERR(fs_info->fs_root)) { 3783 err = PTR_ERR(fs_info->fs_root); 3784 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3785 fs_info->fs_root = NULL; 3786 goto fail_qgroup; 3787 } 3788 3789 if (sb_rdonly(sb)) 3790 goto clear_oneshot; 3791 3792 ret = btrfs_start_pre_rw_mount(fs_info); 3793 if (ret) { 3794 close_ctree(fs_info); 3795 return ret; 3796 } 3797 btrfs_discard_resume(fs_info); 3798 3799 if (fs_info->uuid_root && 3800 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3801 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3802 btrfs_info(fs_info, "checking UUID tree"); 3803 ret = btrfs_check_uuid_tree(fs_info); 3804 if (ret) { 3805 btrfs_warn(fs_info, 3806 "failed to check the UUID tree: %d", ret); 3807 close_ctree(fs_info); 3808 return ret; 3809 } 3810 } 3811 3812 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3813 3814 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3815 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3816 wake_up_process(fs_info->cleaner_kthread); 3817 3818 clear_oneshot: 3819 btrfs_clear_oneshot_options(fs_info); 3820 return 0; 3821 3822 fail_qgroup: 3823 btrfs_free_qgroup_config(fs_info); 3824 fail_trans_kthread: 3825 kthread_stop(fs_info->transaction_kthread); 3826 btrfs_cleanup_transaction(fs_info); 3827 btrfs_free_fs_roots(fs_info); 3828 fail_cleaner: 3829 kthread_stop(fs_info->cleaner_kthread); 3830 3831 /* 3832 * make sure we're done with the btree inode before we stop our 3833 * kthreads 3834 */ 3835 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3836 3837 fail_sysfs: 3838 btrfs_sysfs_remove_mounted(fs_info); 3839 3840 fail_fsdev_sysfs: 3841 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3842 3843 fail_block_groups: 3844 btrfs_put_block_group_cache(fs_info); 3845 3846 fail_tree_roots: 3847 if (fs_info->data_reloc_root) 3848 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3849 free_root_pointers(fs_info, true); 3850 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3851 3852 fail_sb_buffer: 3853 btrfs_stop_all_workers(fs_info); 3854 btrfs_free_block_groups(fs_info); 3855 fail_alloc: 3856 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3857 3858 iput(fs_info->btree_inode); 3859 fail: 3860 btrfs_close_devices(fs_info->fs_devices); 3861 return err; 3862 } 3863 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3864 3865 static void btrfs_end_super_write(struct bio *bio) 3866 { 3867 struct btrfs_device *device = bio->bi_private; 3868 struct bio_vec *bvec; 3869 struct bvec_iter_all iter_all; 3870 struct page *page; 3871 3872 bio_for_each_segment_all(bvec, bio, iter_all) { 3873 page = bvec->bv_page; 3874 3875 if (bio->bi_status) { 3876 btrfs_warn_rl_in_rcu(device->fs_info, 3877 "lost page write due to IO error on %s (%d)", 3878 rcu_str_deref(device->name), 3879 blk_status_to_errno(bio->bi_status)); 3880 ClearPageUptodate(page); 3881 SetPageError(page); 3882 btrfs_dev_stat_inc_and_print(device, 3883 BTRFS_DEV_STAT_WRITE_ERRS); 3884 } else { 3885 SetPageUptodate(page); 3886 } 3887 3888 put_page(page); 3889 unlock_page(page); 3890 } 3891 3892 bio_put(bio); 3893 } 3894 3895 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3896 int copy_num, bool drop_cache) 3897 { 3898 struct btrfs_super_block *super; 3899 struct page *page; 3900 u64 bytenr, bytenr_orig; 3901 struct address_space *mapping = bdev->bd_inode->i_mapping; 3902 int ret; 3903 3904 bytenr_orig = btrfs_sb_offset(copy_num); 3905 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3906 if (ret == -ENOENT) 3907 return ERR_PTR(-EINVAL); 3908 else if (ret) 3909 return ERR_PTR(ret); 3910 3911 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 3912 return ERR_PTR(-EINVAL); 3913 3914 if (drop_cache) { 3915 /* This should only be called with the primary sb. */ 3916 ASSERT(copy_num == 0); 3917 3918 /* 3919 * Drop the page of the primary superblock, so later read will 3920 * always read from the device. 3921 */ 3922 invalidate_inode_pages2_range(mapping, 3923 bytenr >> PAGE_SHIFT, 3924 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 3925 } 3926 3927 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3928 if (IS_ERR(page)) 3929 return ERR_CAST(page); 3930 3931 super = page_address(page); 3932 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3933 btrfs_release_disk_super(super); 3934 return ERR_PTR(-ENODATA); 3935 } 3936 3937 if (btrfs_super_bytenr(super) != bytenr_orig) { 3938 btrfs_release_disk_super(super); 3939 return ERR_PTR(-EINVAL); 3940 } 3941 3942 return super; 3943 } 3944 3945 3946 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3947 { 3948 struct btrfs_super_block *super, *latest = NULL; 3949 int i; 3950 u64 transid = 0; 3951 3952 /* we would like to check all the supers, but that would make 3953 * a btrfs mount succeed after a mkfs from a different FS. 3954 * So, we need to add a special mount option to scan for 3955 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3956 */ 3957 for (i = 0; i < 1; i++) { 3958 super = btrfs_read_dev_one_super(bdev, i, false); 3959 if (IS_ERR(super)) 3960 continue; 3961 3962 if (!latest || btrfs_super_generation(super) > transid) { 3963 if (latest) 3964 btrfs_release_disk_super(super); 3965 3966 latest = super; 3967 transid = btrfs_super_generation(super); 3968 } 3969 } 3970 3971 return super; 3972 } 3973 3974 /* 3975 * Write superblock @sb to the @device. Do not wait for completion, all the 3976 * pages we use for writing are locked. 3977 * 3978 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3979 * the expected device size at commit time. Note that max_mirrors must be 3980 * same for write and wait phases. 3981 * 3982 * Return number of errors when page is not found or submission fails. 3983 */ 3984 static int write_dev_supers(struct btrfs_device *device, 3985 struct btrfs_super_block *sb, int max_mirrors) 3986 { 3987 struct btrfs_fs_info *fs_info = device->fs_info; 3988 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3989 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3990 int i; 3991 int errors = 0; 3992 int ret; 3993 u64 bytenr, bytenr_orig; 3994 3995 if (max_mirrors == 0) 3996 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3997 3998 shash->tfm = fs_info->csum_shash; 3999 4000 for (i = 0; i < max_mirrors; i++) { 4001 struct page *page; 4002 struct bio *bio; 4003 struct btrfs_super_block *disk_super; 4004 4005 bytenr_orig = btrfs_sb_offset(i); 4006 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 4007 if (ret == -ENOENT) { 4008 continue; 4009 } else if (ret < 0) { 4010 btrfs_err(device->fs_info, 4011 "couldn't get super block location for mirror %d", 4012 i); 4013 errors++; 4014 continue; 4015 } 4016 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 4017 device->commit_total_bytes) 4018 break; 4019 4020 btrfs_set_super_bytenr(sb, bytenr_orig); 4021 4022 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 4023 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 4024 sb->csum); 4025 4026 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 4027 GFP_NOFS); 4028 if (!page) { 4029 btrfs_err(device->fs_info, 4030 "couldn't get super block page for bytenr %llu", 4031 bytenr); 4032 errors++; 4033 continue; 4034 } 4035 4036 /* Bump the refcount for wait_dev_supers() */ 4037 get_page(page); 4038 4039 disk_super = page_address(page); 4040 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 4041 4042 /* 4043 * Directly use bios here instead of relying on the page cache 4044 * to do I/O, so we don't lose the ability to do integrity 4045 * checking. 4046 */ 4047 bio = bio_alloc(device->bdev, 1, 4048 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 4049 GFP_NOFS); 4050 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 4051 bio->bi_private = device; 4052 bio->bi_end_io = btrfs_end_super_write; 4053 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 4054 offset_in_page(bytenr)); 4055 4056 /* 4057 * We FUA only the first super block. The others we allow to 4058 * go down lazy and there's a short window where the on-disk 4059 * copies might still contain the older version. 4060 */ 4061 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 4062 bio->bi_opf |= REQ_FUA; 4063 4064 btrfsic_check_bio(bio); 4065 submit_bio(bio); 4066 4067 if (btrfs_advance_sb_log(device, i)) 4068 errors++; 4069 } 4070 return errors < i ? 0 : -1; 4071 } 4072 4073 /* 4074 * Wait for write completion of superblocks done by write_dev_supers, 4075 * @max_mirrors same for write and wait phases. 4076 * 4077 * Return number of errors when page is not found or not marked up to 4078 * date. 4079 */ 4080 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 4081 { 4082 int i; 4083 int errors = 0; 4084 bool primary_failed = false; 4085 int ret; 4086 u64 bytenr; 4087 4088 if (max_mirrors == 0) 4089 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 4090 4091 for (i = 0; i < max_mirrors; i++) { 4092 struct page *page; 4093 4094 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 4095 if (ret == -ENOENT) { 4096 break; 4097 } else if (ret < 0) { 4098 errors++; 4099 if (i == 0) 4100 primary_failed = true; 4101 continue; 4102 } 4103 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 4104 device->commit_total_bytes) 4105 break; 4106 4107 page = find_get_page(device->bdev->bd_inode->i_mapping, 4108 bytenr >> PAGE_SHIFT); 4109 if (!page) { 4110 errors++; 4111 if (i == 0) 4112 primary_failed = true; 4113 continue; 4114 } 4115 /* Page is submitted locked and unlocked once the IO completes */ 4116 wait_on_page_locked(page); 4117 if (PageError(page)) { 4118 errors++; 4119 if (i == 0) 4120 primary_failed = true; 4121 } 4122 4123 /* Drop our reference */ 4124 put_page(page); 4125 4126 /* Drop the reference from the writing run */ 4127 put_page(page); 4128 } 4129 4130 /* log error, force error return */ 4131 if (primary_failed) { 4132 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 4133 device->devid); 4134 return -1; 4135 } 4136 4137 return errors < i ? 0 : -1; 4138 } 4139 4140 /* 4141 * endio for the write_dev_flush, this will wake anyone waiting 4142 * for the barrier when it is done 4143 */ 4144 static void btrfs_end_empty_barrier(struct bio *bio) 4145 { 4146 bio_uninit(bio); 4147 complete(bio->bi_private); 4148 } 4149 4150 /* 4151 * Submit a flush request to the device if it supports it. Error handling is 4152 * done in the waiting counterpart. 4153 */ 4154 static void write_dev_flush(struct btrfs_device *device) 4155 { 4156 struct bio *bio = &device->flush_bio; 4157 4158 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4159 /* 4160 * When a disk has write caching disabled, we skip submission of a bio 4161 * with flush and sync requests before writing the superblock, since 4162 * it's not needed. However when the integrity checker is enabled, this 4163 * results in reports that there are metadata blocks referred by a 4164 * superblock that were not properly flushed. So don't skip the bio 4165 * submission only when the integrity checker is enabled for the sake 4166 * of simplicity, since this is a debug tool and not meant for use in 4167 * non-debug builds. 4168 */ 4169 if (!bdev_write_cache(device->bdev)) 4170 return; 4171 #endif 4172 4173 bio_init(bio, device->bdev, NULL, 0, 4174 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 4175 bio->bi_end_io = btrfs_end_empty_barrier; 4176 init_completion(&device->flush_wait); 4177 bio->bi_private = &device->flush_wait; 4178 4179 btrfsic_check_bio(bio); 4180 submit_bio(bio); 4181 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 4182 } 4183 4184 /* 4185 * If the flush bio has been submitted by write_dev_flush, wait for it. 4186 */ 4187 static blk_status_t wait_dev_flush(struct btrfs_device *device) 4188 { 4189 struct bio *bio = &device->flush_bio; 4190 4191 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 4192 return BLK_STS_OK; 4193 4194 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 4195 wait_for_completion_io(&device->flush_wait); 4196 4197 return bio->bi_status; 4198 } 4199 4200 static int check_barrier_error(struct btrfs_fs_info *fs_info) 4201 { 4202 if (!btrfs_check_rw_degradable(fs_info, NULL)) 4203 return -EIO; 4204 return 0; 4205 } 4206 4207 /* 4208 * send an empty flush down to each device in parallel, 4209 * then wait for them 4210 */ 4211 static int barrier_all_devices(struct btrfs_fs_info *info) 4212 { 4213 struct list_head *head; 4214 struct btrfs_device *dev; 4215 int errors_wait = 0; 4216 blk_status_t ret; 4217 4218 lockdep_assert_held(&info->fs_devices->device_list_mutex); 4219 /* send down all the barriers */ 4220 head = &info->fs_devices->devices; 4221 list_for_each_entry(dev, head, dev_list) { 4222 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4223 continue; 4224 if (!dev->bdev) 4225 continue; 4226 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4227 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4228 continue; 4229 4230 write_dev_flush(dev); 4231 dev->last_flush_error = BLK_STS_OK; 4232 } 4233 4234 /* wait for all the barriers */ 4235 list_for_each_entry(dev, head, dev_list) { 4236 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4237 continue; 4238 if (!dev->bdev) { 4239 errors_wait++; 4240 continue; 4241 } 4242 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4243 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4244 continue; 4245 4246 ret = wait_dev_flush(dev); 4247 if (ret) { 4248 dev->last_flush_error = ret; 4249 btrfs_dev_stat_inc_and_print(dev, 4250 BTRFS_DEV_STAT_FLUSH_ERRS); 4251 errors_wait++; 4252 } 4253 } 4254 4255 if (errors_wait) { 4256 /* 4257 * At some point we need the status of all disks 4258 * to arrive at the volume status. So error checking 4259 * is being pushed to a separate loop. 4260 */ 4261 return check_barrier_error(info); 4262 } 4263 return 0; 4264 } 4265 4266 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 4267 { 4268 int raid_type; 4269 int min_tolerated = INT_MAX; 4270 4271 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 4272 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 4273 min_tolerated = min_t(int, min_tolerated, 4274 btrfs_raid_array[BTRFS_RAID_SINGLE]. 4275 tolerated_failures); 4276 4277 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4278 if (raid_type == BTRFS_RAID_SINGLE) 4279 continue; 4280 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 4281 continue; 4282 min_tolerated = min_t(int, min_tolerated, 4283 btrfs_raid_array[raid_type]. 4284 tolerated_failures); 4285 } 4286 4287 if (min_tolerated == INT_MAX) { 4288 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4289 min_tolerated = 0; 4290 } 4291 4292 return min_tolerated; 4293 } 4294 4295 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4296 { 4297 struct list_head *head; 4298 struct btrfs_device *dev; 4299 struct btrfs_super_block *sb; 4300 struct btrfs_dev_item *dev_item; 4301 int ret; 4302 int do_barriers; 4303 int max_errors; 4304 int total_errors = 0; 4305 u64 flags; 4306 4307 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4308 4309 /* 4310 * max_mirrors == 0 indicates we're from commit_transaction, 4311 * not from fsync where the tree roots in fs_info have not 4312 * been consistent on disk. 4313 */ 4314 if (max_mirrors == 0) 4315 backup_super_roots(fs_info); 4316 4317 sb = fs_info->super_for_commit; 4318 dev_item = &sb->dev_item; 4319 4320 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4321 head = &fs_info->fs_devices->devices; 4322 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4323 4324 if (do_barriers) { 4325 ret = barrier_all_devices(fs_info); 4326 if (ret) { 4327 mutex_unlock( 4328 &fs_info->fs_devices->device_list_mutex); 4329 btrfs_handle_fs_error(fs_info, ret, 4330 "errors while submitting device barriers."); 4331 return ret; 4332 } 4333 } 4334 4335 list_for_each_entry(dev, head, dev_list) { 4336 if (!dev->bdev) { 4337 total_errors++; 4338 continue; 4339 } 4340 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4341 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4342 continue; 4343 4344 btrfs_set_stack_device_generation(dev_item, 0); 4345 btrfs_set_stack_device_type(dev_item, dev->type); 4346 btrfs_set_stack_device_id(dev_item, dev->devid); 4347 btrfs_set_stack_device_total_bytes(dev_item, 4348 dev->commit_total_bytes); 4349 btrfs_set_stack_device_bytes_used(dev_item, 4350 dev->commit_bytes_used); 4351 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4352 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4353 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4354 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4355 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4356 BTRFS_FSID_SIZE); 4357 4358 flags = btrfs_super_flags(sb); 4359 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4360 4361 ret = btrfs_validate_write_super(fs_info, sb); 4362 if (ret < 0) { 4363 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4364 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4365 "unexpected superblock corruption detected"); 4366 return -EUCLEAN; 4367 } 4368 4369 ret = write_dev_supers(dev, sb, max_mirrors); 4370 if (ret) 4371 total_errors++; 4372 } 4373 if (total_errors > max_errors) { 4374 btrfs_err(fs_info, "%d errors while writing supers", 4375 total_errors); 4376 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4377 4378 /* FUA is masked off if unsupported and can't be the reason */ 4379 btrfs_handle_fs_error(fs_info, -EIO, 4380 "%d errors while writing supers", 4381 total_errors); 4382 return -EIO; 4383 } 4384 4385 total_errors = 0; 4386 list_for_each_entry(dev, head, dev_list) { 4387 if (!dev->bdev) 4388 continue; 4389 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4390 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4391 continue; 4392 4393 ret = wait_dev_supers(dev, max_mirrors); 4394 if (ret) 4395 total_errors++; 4396 } 4397 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4398 if (total_errors > max_errors) { 4399 btrfs_handle_fs_error(fs_info, -EIO, 4400 "%d errors while writing supers", 4401 total_errors); 4402 return -EIO; 4403 } 4404 return 0; 4405 } 4406 4407 /* Drop a fs root from the radix tree and free it. */ 4408 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4409 struct btrfs_root *root) 4410 { 4411 bool drop_ref = false; 4412 4413 spin_lock(&fs_info->fs_roots_radix_lock); 4414 radix_tree_delete(&fs_info->fs_roots_radix, 4415 (unsigned long)root->root_key.objectid); 4416 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4417 drop_ref = true; 4418 spin_unlock(&fs_info->fs_roots_radix_lock); 4419 4420 if (BTRFS_FS_ERROR(fs_info)) { 4421 ASSERT(root->log_root == NULL); 4422 if (root->reloc_root) { 4423 btrfs_put_root(root->reloc_root); 4424 root->reloc_root = NULL; 4425 } 4426 } 4427 4428 if (drop_ref) 4429 btrfs_put_root(root); 4430 } 4431 4432 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 4433 { 4434 u64 root_objectid = 0; 4435 struct btrfs_root *gang[8]; 4436 int i = 0; 4437 int err = 0; 4438 unsigned int ret = 0; 4439 4440 while (1) { 4441 spin_lock(&fs_info->fs_roots_radix_lock); 4442 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4443 (void **)gang, root_objectid, 4444 ARRAY_SIZE(gang)); 4445 if (!ret) { 4446 spin_unlock(&fs_info->fs_roots_radix_lock); 4447 break; 4448 } 4449 root_objectid = gang[ret - 1]->root_key.objectid + 1; 4450 4451 for (i = 0; i < ret; i++) { 4452 /* Avoid to grab roots in dead_roots */ 4453 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 4454 gang[i] = NULL; 4455 continue; 4456 } 4457 /* grab all the search result for later use */ 4458 gang[i] = btrfs_grab_root(gang[i]); 4459 } 4460 spin_unlock(&fs_info->fs_roots_radix_lock); 4461 4462 for (i = 0; i < ret; i++) { 4463 if (!gang[i]) 4464 continue; 4465 root_objectid = gang[i]->root_key.objectid; 4466 err = btrfs_orphan_cleanup(gang[i]); 4467 if (err) 4468 break; 4469 btrfs_put_root(gang[i]); 4470 } 4471 root_objectid++; 4472 } 4473 4474 /* release the uncleaned roots due to error */ 4475 for (; i < ret; i++) { 4476 if (gang[i]) 4477 btrfs_put_root(gang[i]); 4478 } 4479 return err; 4480 } 4481 4482 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4483 { 4484 struct btrfs_root *root = fs_info->tree_root; 4485 struct btrfs_trans_handle *trans; 4486 4487 mutex_lock(&fs_info->cleaner_mutex); 4488 btrfs_run_delayed_iputs(fs_info); 4489 mutex_unlock(&fs_info->cleaner_mutex); 4490 wake_up_process(fs_info->cleaner_kthread); 4491 4492 /* wait until ongoing cleanup work done */ 4493 down_write(&fs_info->cleanup_work_sem); 4494 up_write(&fs_info->cleanup_work_sem); 4495 4496 trans = btrfs_join_transaction(root); 4497 if (IS_ERR(trans)) 4498 return PTR_ERR(trans); 4499 return btrfs_commit_transaction(trans); 4500 } 4501 4502 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4503 { 4504 struct btrfs_transaction *trans; 4505 struct btrfs_transaction *tmp; 4506 bool found = false; 4507 4508 if (list_empty(&fs_info->trans_list)) 4509 return; 4510 4511 /* 4512 * This function is only called at the very end of close_ctree(), 4513 * thus no other running transaction, no need to take trans_lock. 4514 */ 4515 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4516 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4517 struct extent_state *cached = NULL; 4518 u64 dirty_bytes = 0; 4519 u64 cur = 0; 4520 u64 found_start; 4521 u64 found_end; 4522 4523 found = true; 4524 while (!find_first_extent_bit(&trans->dirty_pages, cur, 4525 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4526 dirty_bytes += found_end + 1 - found_start; 4527 cur = found_end + 1; 4528 } 4529 btrfs_warn(fs_info, 4530 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4531 trans->transid, dirty_bytes); 4532 btrfs_cleanup_one_transaction(trans, fs_info); 4533 4534 if (trans == fs_info->running_transaction) 4535 fs_info->running_transaction = NULL; 4536 list_del_init(&trans->list); 4537 4538 btrfs_put_transaction(trans); 4539 trace_btrfs_transaction_commit(fs_info); 4540 } 4541 ASSERT(!found); 4542 } 4543 4544 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4545 { 4546 int ret; 4547 4548 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4549 4550 /* 4551 * If we had UNFINISHED_DROPS we could still be processing them, so 4552 * clear that bit and wake up relocation so it can stop. 4553 * We must do this before stopping the block group reclaim task, because 4554 * at btrfs_relocate_block_group() we wait for this bit, and after the 4555 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4556 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4557 * return 1. 4558 */ 4559 btrfs_wake_unfinished_drop(fs_info); 4560 4561 /* 4562 * We may have the reclaim task running and relocating a data block group, 4563 * in which case it may create delayed iputs. So stop it before we park 4564 * the cleaner kthread otherwise we can get new delayed iputs after 4565 * parking the cleaner, and that can make the async reclaim task to hang 4566 * if it's waiting for delayed iputs to complete, since the cleaner is 4567 * parked and can not run delayed iputs - this will make us hang when 4568 * trying to stop the async reclaim task. 4569 */ 4570 cancel_work_sync(&fs_info->reclaim_bgs_work); 4571 /* 4572 * We don't want the cleaner to start new transactions, add more delayed 4573 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4574 * because that frees the task_struct, and the transaction kthread might 4575 * still try to wake up the cleaner. 4576 */ 4577 kthread_park(fs_info->cleaner_kthread); 4578 4579 /* wait for the qgroup rescan worker to stop */ 4580 btrfs_qgroup_wait_for_completion(fs_info, false); 4581 4582 /* wait for the uuid_scan task to finish */ 4583 down(&fs_info->uuid_tree_rescan_sem); 4584 /* avoid complains from lockdep et al., set sem back to initial state */ 4585 up(&fs_info->uuid_tree_rescan_sem); 4586 4587 /* pause restriper - we want to resume on mount */ 4588 btrfs_pause_balance(fs_info); 4589 4590 btrfs_dev_replace_suspend_for_unmount(fs_info); 4591 4592 btrfs_scrub_cancel(fs_info); 4593 4594 /* wait for any defraggers to finish */ 4595 wait_event(fs_info->transaction_wait, 4596 (atomic_read(&fs_info->defrag_running) == 0)); 4597 4598 /* clear out the rbtree of defraggable inodes */ 4599 btrfs_cleanup_defrag_inodes(fs_info); 4600 4601 /* 4602 * After we parked the cleaner kthread, ordered extents may have 4603 * completed and created new delayed iputs. If one of the async reclaim 4604 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4605 * can hang forever trying to stop it, because if a delayed iput is 4606 * added after it ran btrfs_run_delayed_iputs() and before it called 4607 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4608 * no one else to run iputs. 4609 * 4610 * So wait for all ongoing ordered extents to complete and then run 4611 * delayed iputs. This works because once we reach this point no one 4612 * can either create new ordered extents nor create delayed iputs 4613 * through some other means. 4614 * 4615 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4616 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4617 * but the delayed iput for the respective inode is made only when doing 4618 * the final btrfs_put_ordered_extent() (which must happen at 4619 * btrfs_finish_ordered_io() when we are unmounting). 4620 */ 4621 btrfs_flush_workqueue(fs_info->endio_write_workers); 4622 /* Ordered extents for free space inodes. */ 4623 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4624 btrfs_run_delayed_iputs(fs_info); 4625 4626 cancel_work_sync(&fs_info->async_reclaim_work); 4627 cancel_work_sync(&fs_info->async_data_reclaim_work); 4628 cancel_work_sync(&fs_info->preempt_reclaim_work); 4629 4630 /* Cancel or finish ongoing discard work */ 4631 btrfs_discard_cleanup(fs_info); 4632 4633 if (!sb_rdonly(fs_info->sb)) { 4634 /* 4635 * The cleaner kthread is stopped, so do one final pass over 4636 * unused block groups. 4637 */ 4638 btrfs_delete_unused_bgs(fs_info); 4639 4640 /* 4641 * There might be existing delayed inode workers still running 4642 * and holding an empty delayed inode item. We must wait for 4643 * them to complete first because they can create a transaction. 4644 * This happens when someone calls btrfs_balance_delayed_items() 4645 * and then a transaction commit runs the same delayed nodes 4646 * before any delayed worker has done something with the nodes. 4647 * We must wait for any worker here and not at transaction 4648 * commit time since that could cause a deadlock. 4649 * This is a very rare case. 4650 */ 4651 btrfs_flush_workqueue(fs_info->delayed_workers); 4652 4653 ret = btrfs_commit_super(fs_info); 4654 if (ret) 4655 btrfs_err(fs_info, "commit super ret %d", ret); 4656 } 4657 4658 if (BTRFS_FS_ERROR(fs_info)) 4659 btrfs_error_commit_super(fs_info); 4660 4661 kthread_stop(fs_info->transaction_kthread); 4662 kthread_stop(fs_info->cleaner_kthread); 4663 4664 ASSERT(list_empty(&fs_info->delayed_iputs)); 4665 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4666 4667 if (btrfs_check_quota_leak(fs_info)) { 4668 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4669 btrfs_err(fs_info, "qgroup reserved space leaked"); 4670 } 4671 4672 btrfs_free_qgroup_config(fs_info); 4673 ASSERT(list_empty(&fs_info->delalloc_roots)); 4674 4675 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4676 btrfs_info(fs_info, "at unmount delalloc count %lld", 4677 percpu_counter_sum(&fs_info->delalloc_bytes)); 4678 } 4679 4680 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4681 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4682 percpu_counter_sum(&fs_info->ordered_bytes)); 4683 4684 btrfs_sysfs_remove_mounted(fs_info); 4685 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4686 4687 btrfs_put_block_group_cache(fs_info); 4688 4689 /* 4690 * we must make sure there is not any read request to 4691 * submit after we stopping all workers. 4692 */ 4693 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4694 btrfs_stop_all_workers(fs_info); 4695 4696 /* We shouldn't have any transaction open at this point */ 4697 warn_about_uncommitted_trans(fs_info); 4698 4699 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4700 free_root_pointers(fs_info, true); 4701 btrfs_free_fs_roots(fs_info); 4702 4703 /* 4704 * We must free the block groups after dropping the fs_roots as we could 4705 * have had an IO error and have left over tree log blocks that aren't 4706 * cleaned up until the fs roots are freed. This makes the block group 4707 * accounting appear to be wrong because there's pending reserved bytes, 4708 * so make sure we do the block group cleanup afterwards. 4709 */ 4710 btrfs_free_block_groups(fs_info); 4711 4712 iput(fs_info->btree_inode); 4713 4714 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4715 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4716 btrfsic_unmount(fs_info->fs_devices); 4717 #endif 4718 4719 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4720 btrfs_close_devices(fs_info->fs_devices); 4721 } 4722 4723 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4724 int atomic) 4725 { 4726 int ret; 4727 struct inode *btree_inode = buf->pages[0]->mapping->host; 4728 4729 ret = extent_buffer_uptodate(buf); 4730 if (!ret) 4731 return ret; 4732 4733 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4734 parent_transid, atomic); 4735 if (ret == -EAGAIN) 4736 return ret; 4737 return !ret; 4738 } 4739 4740 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4741 { 4742 struct btrfs_fs_info *fs_info = buf->fs_info; 4743 u64 transid = btrfs_header_generation(buf); 4744 int was_dirty; 4745 4746 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4747 /* 4748 * This is a fast path so only do this check if we have sanity tests 4749 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4750 * outside of the sanity tests. 4751 */ 4752 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4753 return; 4754 #endif 4755 btrfs_assert_tree_write_locked(buf); 4756 if (transid != fs_info->generation) 4757 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4758 buf->start, transid, fs_info->generation); 4759 was_dirty = set_extent_buffer_dirty(buf); 4760 if (!was_dirty) 4761 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4762 buf->len, 4763 fs_info->dirty_metadata_batch); 4764 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4765 /* 4766 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4767 * but item data not updated. 4768 * So here we should only check item pointers, not item data. 4769 */ 4770 if (btrfs_header_level(buf) == 0 && 4771 btrfs_check_leaf_relaxed(buf)) { 4772 btrfs_print_leaf(buf); 4773 ASSERT(0); 4774 } 4775 #endif 4776 } 4777 4778 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4779 int flush_delayed) 4780 { 4781 /* 4782 * looks as though older kernels can get into trouble with 4783 * this code, they end up stuck in balance_dirty_pages forever 4784 */ 4785 int ret; 4786 4787 if (current->flags & PF_MEMALLOC) 4788 return; 4789 4790 if (flush_delayed) 4791 btrfs_balance_delayed_items(fs_info); 4792 4793 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4794 BTRFS_DIRTY_METADATA_THRESH, 4795 fs_info->dirty_metadata_batch); 4796 if (ret > 0) { 4797 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4798 } 4799 } 4800 4801 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4802 { 4803 __btrfs_btree_balance_dirty(fs_info, 1); 4804 } 4805 4806 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4807 { 4808 __btrfs_btree_balance_dirty(fs_info, 0); 4809 } 4810 4811 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4812 { 4813 /* cleanup FS via transaction */ 4814 btrfs_cleanup_transaction(fs_info); 4815 4816 mutex_lock(&fs_info->cleaner_mutex); 4817 btrfs_run_delayed_iputs(fs_info); 4818 mutex_unlock(&fs_info->cleaner_mutex); 4819 4820 down_write(&fs_info->cleanup_work_sem); 4821 up_write(&fs_info->cleanup_work_sem); 4822 } 4823 4824 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4825 { 4826 struct btrfs_root *gang[8]; 4827 u64 root_objectid = 0; 4828 int ret; 4829 4830 spin_lock(&fs_info->fs_roots_radix_lock); 4831 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4832 (void **)gang, root_objectid, 4833 ARRAY_SIZE(gang))) != 0) { 4834 int i; 4835 4836 for (i = 0; i < ret; i++) 4837 gang[i] = btrfs_grab_root(gang[i]); 4838 spin_unlock(&fs_info->fs_roots_radix_lock); 4839 4840 for (i = 0; i < ret; i++) { 4841 if (!gang[i]) 4842 continue; 4843 root_objectid = gang[i]->root_key.objectid; 4844 btrfs_free_log(NULL, gang[i]); 4845 btrfs_put_root(gang[i]); 4846 } 4847 root_objectid++; 4848 spin_lock(&fs_info->fs_roots_radix_lock); 4849 } 4850 spin_unlock(&fs_info->fs_roots_radix_lock); 4851 btrfs_free_log_root_tree(NULL, fs_info); 4852 } 4853 4854 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4855 { 4856 struct btrfs_ordered_extent *ordered; 4857 4858 spin_lock(&root->ordered_extent_lock); 4859 /* 4860 * This will just short circuit the ordered completion stuff which will 4861 * make sure the ordered extent gets properly cleaned up. 4862 */ 4863 list_for_each_entry(ordered, &root->ordered_extents, 4864 root_extent_list) 4865 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4866 spin_unlock(&root->ordered_extent_lock); 4867 } 4868 4869 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4870 { 4871 struct btrfs_root *root; 4872 struct list_head splice; 4873 4874 INIT_LIST_HEAD(&splice); 4875 4876 spin_lock(&fs_info->ordered_root_lock); 4877 list_splice_init(&fs_info->ordered_roots, &splice); 4878 while (!list_empty(&splice)) { 4879 root = list_first_entry(&splice, struct btrfs_root, 4880 ordered_root); 4881 list_move_tail(&root->ordered_root, 4882 &fs_info->ordered_roots); 4883 4884 spin_unlock(&fs_info->ordered_root_lock); 4885 btrfs_destroy_ordered_extents(root); 4886 4887 cond_resched(); 4888 spin_lock(&fs_info->ordered_root_lock); 4889 } 4890 spin_unlock(&fs_info->ordered_root_lock); 4891 4892 /* 4893 * We need this here because if we've been flipped read-only we won't 4894 * get sync() from the umount, so we need to make sure any ordered 4895 * extents that haven't had their dirty pages IO start writeout yet 4896 * actually get run and error out properly. 4897 */ 4898 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4899 } 4900 4901 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4902 struct btrfs_fs_info *fs_info) 4903 { 4904 struct rb_node *node; 4905 struct btrfs_delayed_ref_root *delayed_refs; 4906 struct btrfs_delayed_ref_node *ref; 4907 int ret = 0; 4908 4909 delayed_refs = &trans->delayed_refs; 4910 4911 spin_lock(&delayed_refs->lock); 4912 if (atomic_read(&delayed_refs->num_entries) == 0) { 4913 spin_unlock(&delayed_refs->lock); 4914 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4915 return ret; 4916 } 4917 4918 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4919 struct btrfs_delayed_ref_head *head; 4920 struct rb_node *n; 4921 bool pin_bytes = false; 4922 4923 head = rb_entry(node, struct btrfs_delayed_ref_head, 4924 href_node); 4925 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4926 continue; 4927 4928 spin_lock(&head->lock); 4929 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4930 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4931 ref_node); 4932 ref->in_tree = 0; 4933 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4934 RB_CLEAR_NODE(&ref->ref_node); 4935 if (!list_empty(&ref->add_list)) 4936 list_del(&ref->add_list); 4937 atomic_dec(&delayed_refs->num_entries); 4938 btrfs_put_delayed_ref(ref); 4939 } 4940 if (head->must_insert_reserved) 4941 pin_bytes = true; 4942 btrfs_free_delayed_extent_op(head->extent_op); 4943 btrfs_delete_ref_head(delayed_refs, head); 4944 spin_unlock(&head->lock); 4945 spin_unlock(&delayed_refs->lock); 4946 mutex_unlock(&head->mutex); 4947 4948 if (pin_bytes) { 4949 struct btrfs_block_group *cache; 4950 4951 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4952 BUG_ON(!cache); 4953 4954 spin_lock(&cache->space_info->lock); 4955 spin_lock(&cache->lock); 4956 cache->pinned += head->num_bytes; 4957 btrfs_space_info_update_bytes_pinned(fs_info, 4958 cache->space_info, head->num_bytes); 4959 cache->reserved -= head->num_bytes; 4960 cache->space_info->bytes_reserved -= head->num_bytes; 4961 spin_unlock(&cache->lock); 4962 spin_unlock(&cache->space_info->lock); 4963 4964 btrfs_put_block_group(cache); 4965 4966 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4967 head->bytenr + head->num_bytes - 1); 4968 } 4969 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4970 btrfs_put_delayed_ref_head(head); 4971 cond_resched(); 4972 spin_lock(&delayed_refs->lock); 4973 } 4974 btrfs_qgroup_destroy_extent_records(trans); 4975 4976 spin_unlock(&delayed_refs->lock); 4977 4978 return ret; 4979 } 4980 4981 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4982 { 4983 struct btrfs_inode *btrfs_inode; 4984 struct list_head splice; 4985 4986 INIT_LIST_HEAD(&splice); 4987 4988 spin_lock(&root->delalloc_lock); 4989 list_splice_init(&root->delalloc_inodes, &splice); 4990 4991 while (!list_empty(&splice)) { 4992 struct inode *inode = NULL; 4993 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4994 delalloc_inodes); 4995 __btrfs_del_delalloc_inode(root, btrfs_inode); 4996 spin_unlock(&root->delalloc_lock); 4997 4998 /* 4999 * Make sure we get a live inode and that it'll not disappear 5000 * meanwhile. 5001 */ 5002 inode = igrab(&btrfs_inode->vfs_inode); 5003 if (inode) { 5004 invalidate_inode_pages2(inode->i_mapping); 5005 iput(inode); 5006 } 5007 spin_lock(&root->delalloc_lock); 5008 } 5009 spin_unlock(&root->delalloc_lock); 5010 } 5011 5012 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 5013 { 5014 struct btrfs_root *root; 5015 struct list_head splice; 5016 5017 INIT_LIST_HEAD(&splice); 5018 5019 spin_lock(&fs_info->delalloc_root_lock); 5020 list_splice_init(&fs_info->delalloc_roots, &splice); 5021 while (!list_empty(&splice)) { 5022 root = list_first_entry(&splice, struct btrfs_root, 5023 delalloc_root); 5024 root = btrfs_grab_root(root); 5025 BUG_ON(!root); 5026 spin_unlock(&fs_info->delalloc_root_lock); 5027 5028 btrfs_destroy_delalloc_inodes(root); 5029 btrfs_put_root(root); 5030 5031 spin_lock(&fs_info->delalloc_root_lock); 5032 } 5033 spin_unlock(&fs_info->delalloc_root_lock); 5034 } 5035 5036 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 5037 struct extent_io_tree *dirty_pages, 5038 int mark) 5039 { 5040 int ret; 5041 struct extent_buffer *eb; 5042 u64 start = 0; 5043 u64 end; 5044 5045 while (1) { 5046 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 5047 mark, NULL); 5048 if (ret) 5049 break; 5050 5051 clear_extent_bits(dirty_pages, start, end, mark); 5052 while (start <= end) { 5053 eb = find_extent_buffer(fs_info, start); 5054 start += fs_info->nodesize; 5055 if (!eb) 5056 continue; 5057 wait_on_extent_buffer_writeback(eb); 5058 5059 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 5060 &eb->bflags)) 5061 clear_extent_buffer_dirty(eb); 5062 free_extent_buffer_stale(eb); 5063 } 5064 } 5065 5066 return ret; 5067 } 5068 5069 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 5070 struct extent_io_tree *unpin) 5071 { 5072 u64 start; 5073 u64 end; 5074 int ret; 5075 5076 while (1) { 5077 struct extent_state *cached_state = NULL; 5078 5079 /* 5080 * The btrfs_finish_extent_commit() may get the same range as 5081 * ours between find_first_extent_bit and clear_extent_dirty. 5082 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 5083 * the same extent range. 5084 */ 5085 mutex_lock(&fs_info->unused_bg_unpin_mutex); 5086 ret = find_first_extent_bit(unpin, 0, &start, &end, 5087 EXTENT_DIRTY, &cached_state); 5088 if (ret) { 5089 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5090 break; 5091 } 5092 5093 clear_extent_dirty(unpin, start, end, &cached_state); 5094 free_extent_state(cached_state); 5095 btrfs_error_unpin_extent_range(fs_info, start, end); 5096 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5097 cond_resched(); 5098 } 5099 5100 return 0; 5101 } 5102 5103 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 5104 { 5105 struct inode *inode; 5106 5107 inode = cache->io_ctl.inode; 5108 if (inode) { 5109 invalidate_inode_pages2(inode->i_mapping); 5110 BTRFS_I(inode)->generation = 0; 5111 cache->io_ctl.inode = NULL; 5112 iput(inode); 5113 } 5114 ASSERT(cache->io_ctl.pages == NULL); 5115 btrfs_put_block_group(cache); 5116 } 5117 5118 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 5119 struct btrfs_fs_info *fs_info) 5120 { 5121 struct btrfs_block_group *cache; 5122 5123 spin_lock(&cur_trans->dirty_bgs_lock); 5124 while (!list_empty(&cur_trans->dirty_bgs)) { 5125 cache = list_first_entry(&cur_trans->dirty_bgs, 5126 struct btrfs_block_group, 5127 dirty_list); 5128 5129 if (!list_empty(&cache->io_list)) { 5130 spin_unlock(&cur_trans->dirty_bgs_lock); 5131 list_del_init(&cache->io_list); 5132 btrfs_cleanup_bg_io(cache); 5133 spin_lock(&cur_trans->dirty_bgs_lock); 5134 } 5135 5136 list_del_init(&cache->dirty_list); 5137 spin_lock(&cache->lock); 5138 cache->disk_cache_state = BTRFS_DC_ERROR; 5139 spin_unlock(&cache->lock); 5140 5141 spin_unlock(&cur_trans->dirty_bgs_lock); 5142 btrfs_put_block_group(cache); 5143 btrfs_delayed_refs_rsv_release(fs_info, 1); 5144 spin_lock(&cur_trans->dirty_bgs_lock); 5145 } 5146 spin_unlock(&cur_trans->dirty_bgs_lock); 5147 5148 /* 5149 * Refer to the definition of io_bgs member for details why it's safe 5150 * to use it without any locking 5151 */ 5152 while (!list_empty(&cur_trans->io_bgs)) { 5153 cache = list_first_entry(&cur_trans->io_bgs, 5154 struct btrfs_block_group, 5155 io_list); 5156 5157 list_del_init(&cache->io_list); 5158 spin_lock(&cache->lock); 5159 cache->disk_cache_state = BTRFS_DC_ERROR; 5160 spin_unlock(&cache->lock); 5161 btrfs_cleanup_bg_io(cache); 5162 } 5163 } 5164 5165 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 5166 struct btrfs_fs_info *fs_info) 5167 { 5168 struct btrfs_device *dev, *tmp; 5169 5170 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 5171 ASSERT(list_empty(&cur_trans->dirty_bgs)); 5172 ASSERT(list_empty(&cur_trans->io_bgs)); 5173 5174 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 5175 post_commit_list) { 5176 list_del_init(&dev->post_commit_list); 5177 } 5178 5179 btrfs_destroy_delayed_refs(cur_trans, fs_info); 5180 5181 cur_trans->state = TRANS_STATE_COMMIT_START; 5182 wake_up(&fs_info->transaction_blocked_wait); 5183 5184 cur_trans->state = TRANS_STATE_UNBLOCKED; 5185 wake_up(&fs_info->transaction_wait); 5186 5187 btrfs_destroy_delayed_inodes(fs_info); 5188 5189 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 5190 EXTENT_DIRTY); 5191 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 5192 5193 btrfs_free_redirty_list(cur_trans); 5194 5195 cur_trans->state =TRANS_STATE_COMPLETED; 5196 wake_up(&cur_trans->commit_wait); 5197 } 5198 5199 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 5200 { 5201 struct btrfs_transaction *t; 5202 5203 mutex_lock(&fs_info->transaction_kthread_mutex); 5204 5205 spin_lock(&fs_info->trans_lock); 5206 while (!list_empty(&fs_info->trans_list)) { 5207 t = list_first_entry(&fs_info->trans_list, 5208 struct btrfs_transaction, list); 5209 if (t->state >= TRANS_STATE_COMMIT_START) { 5210 refcount_inc(&t->use_count); 5211 spin_unlock(&fs_info->trans_lock); 5212 btrfs_wait_for_commit(fs_info, t->transid); 5213 btrfs_put_transaction(t); 5214 spin_lock(&fs_info->trans_lock); 5215 continue; 5216 } 5217 if (t == fs_info->running_transaction) { 5218 t->state = TRANS_STATE_COMMIT_DOING; 5219 spin_unlock(&fs_info->trans_lock); 5220 /* 5221 * We wait for 0 num_writers since we don't hold a trans 5222 * handle open currently for this transaction. 5223 */ 5224 wait_event(t->writer_wait, 5225 atomic_read(&t->num_writers) == 0); 5226 } else { 5227 spin_unlock(&fs_info->trans_lock); 5228 } 5229 btrfs_cleanup_one_transaction(t, fs_info); 5230 5231 spin_lock(&fs_info->trans_lock); 5232 if (t == fs_info->running_transaction) 5233 fs_info->running_transaction = NULL; 5234 list_del_init(&t->list); 5235 spin_unlock(&fs_info->trans_lock); 5236 5237 btrfs_put_transaction(t); 5238 trace_btrfs_transaction_commit(fs_info); 5239 spin_lock(&fs_info->trans_lock); 5240 } 5241 spin_unlock(&fs_info->trans_lock); 5242 btrfs_destroy_all_ordered_extents(fs_info); 5243 btrfs_destroy_delayed_inodes(fs_info); 5244 btrfs_assert_delayed_root_empty(fs_info); 5245 btrfs_destroy_all_delalloc_inodes(fs_info); 5246 btrfs_drop_all_logs(fs_info); 5247 mutex_unlock(&fs_info->transaction_kthread_mutex); 5248 5249 return 0; 5250 } 5251 5252 int btrfs_init_root_free_objectid(struct btrfs_root *root) 5253 { 5254 struct btrfs_path *path; 5255 int ret; 5256 struct extent_buffer *l; 5257 struct btrfs_key search_key; 5258 struct btrfs_key found_key; 5259 int slot; 5260 5261 path = btrfs_alloc_path(); 5262 if (!path) 5263 return -ENOMEM; 5264 5265 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 5266 search_key.type = -1; 5267 search_key.offset = (u64)-1; 5268 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5269 if (ret < 0) 5270 goto error; 5271 BUG_ON(ret == 0); /* Corruption */ 5272 if (path->slots[0] > 0) { 5273 slot = path->slots[0] - 1; 5274 l = path->nodes[0]; 5275 btrfs_item_key_to_cpu(l, &found_key, slot); 5276 root->free_objectid = max_t(u64, found_key.objectid + 1, 5277 BTRFS_FIRST_FREE_OBJECTID); 5278 } else { 5279 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 5280 } 5281 ret = 0; 5282 error: 5283 btrfs_free_path(path); 5284 return ret; 5285 } 5286 5287 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 5288 { 5289 int ret; 5290 mutex_lock(&root->objectid_mutex); 5291 5292 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 5293 btrfs_warn(root->fs_info, 5294 "the objectid of root %llu reaches its highest value", 5295 root->root_key.objectid); 5296 ret = -ENOSPC; 5297 goto out; 5298 } 5299 5300 *objectid = root->free_objectid++; 5301 ret = 0; 5302 out: 5303 mutex_unlock(&root->objectid_mutex); 5304 return ret; 5305 } 5306