1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include <linux/slab.h> 31 #include <linux/migrate.h> 32 #include <linux/ratelimit.h> 33 #include <asm/unaligned.h> 34 #include "compat.h" 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "async-thread.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 #include "dev-replace.h" 49 #include "raid56.h" 50 51 #ifdef CONFIG_X86 52 #include <asm/cpufeature.h> 53 #endif 54 55 static struct extent_io_ops btree_extent_io_ops; 56 static void end_workqueue_fn(struct btrfs_work *work); 57 static void free_fs_root(struct btrfs_root *root); 58 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 59 int read_only); 60 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t, 61 struct btrfs_root *root); 62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 64 struct btrfs_root *root); 65 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t); 66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 67 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 68 struct extent_io_tree *dirty_pages, 69 int mark); 70 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 71 struct extent_io_tree *pinned_extents); 72 73 /* 74 * end_io_wq structs are used to do processing in task context when an IO is 75 * complete. This is used during reads to verify checksums, and it is used 76 * by writes to insert metadata for new file extents after IO is complete. 77 */ 78 struct end_io_wq { 79 struct bio *bio; 80 bio_end_io_t *end_io; 81 void *private; 82 struct btrfs_fs_info *info; 83 int error; 84 int metadata; 85 struct list_head list; 86 struct btrfs_work work; 87 }; 88 89 /* 90 * async submit bios are used to offload expensive checksumming 91 * onto the worker threads. They checksum file and metadata bios 92 * just before they are sent down the IO stack. 93 */ 94 struct async_submit_bio { 95 struct inode *inode; 96 struct bio *bio; 97 struct list_head list; 98 extent_submit_bio_hook_t *submit_bio_start; 99 extent_submit_bio_hook_t *submit_bio_done; 100 int rw; 101 int mirror_num; 102 unsigned long bio_flags; 103 /* 104 * bio_offset is optional, can be used if the pages in the bio 105 * can't tell us where in the file the bio should go 106 */ 107 u64 bio_offset; 108 struct btrfs_work work; 109 int error; 110 }; 111 112 /* 113 * Lockdep class keys for extent_buffer->lock's in this root. For a given 114 * eb, the lockdep key is determined by the btrfs_root it belongs to and 115 * the level the eb occupies in the tree. 116 * 117 * Different roots are used for different purposes and may nest inside each 118 * other and they require separate keysets. As lockdep keys should be 119 * static, assign keysets according to the purpose of the root as indicated 120 * by btrfs_root->objectid. This ensures that all special purpose roots 121 * have separate keysets. 122 * 123 * Lock-nesting across peer nodes is always done with the immediate parent 124 * node locked thus preventing deadlock. As lockdep doesn't know this, use 125 * subclass to avoid triggering lockdep warning in such cases. 126 * 127 * The key is set by the readpage_end_io_hook after the buffer has passed 128 * csum validation but before the pages are unlocked. It is also set by 129 * btrfs_init_new_buffer on freshly allocated blocks. 130 * 131 * We also add a check to make sure the highest level of the tree is the 132 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 133 * needs update as well. 134 */ 135 #ifdef CONFIG_DEBUG_LOCK_ALLOC 136 # if BTRFS_MAX_LEVEL != 8 137 # error 138 # endif 139 140 static struct btrfs_lockdep_keyset { 141 u64 id; /* root objectid */ 142 const char *name_stem; /* lock name stem */ 143 char names[BTRFS_MAX_LEVEL + 1][20]; 144 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 145 } btrfs_lockdep_keysets[] = { 146 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 147 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 148 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 149 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 150 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 151 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 152 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" }, 153 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 154 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 155 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 156 { .id = 0, .name_stem = "tree" }, 157 }; 158 159 void __init btrfs_init_lockdep(void) 160 { 161 int i, j; 162 163 /* initialize lockdep class names */ 164 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 165 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 166 167 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 168 snprintf(ks->names[j], sizeof(ks->names[j]), 169 "btrfs-%s-%02d", ks->name_stem, j); 170 } 171 } 172 173 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 174 int level) 175 { 176 struct btrfs_lockdep_keyset *ks; 177 178 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 179 180 /* find the matching keyset, id 0 is the default entry */ 181 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 182 if (ks->id == objectid) 183 break; 184 185 lockdep_set_class_and_name(&eb->lock, 186 &ks->keys[level], ks->names[level]); 187 } 188 189 #endif 190 191 /* 192 * extents on the btree inode are pretty simple, there's one extent 193 * that covers the entire device 194 */ 195 static struct extent_map *btree_get_extent(struct inode *inode, 196 struct page *page, size_t pg_offset, u64 start, u64 len, 197 int create) 198 { 199 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 200 struct extent_map *em; 201 int ret; 202 203 read_lock(&em_tree->lock); 204 em = lookup_extent_mapping(em_tree, start, len); 205 if (em) { 206 em->bdev = 207 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 208 read_unlock(&em_tree->lock); 209 goto out; 210 } 211 read_unlock(&em_tree->lock); 212 213 em = alloc_extent_map(); 214 if (!em) { 215 em = ERR_PTR(-ENOMEM); 216 goto out; 217 } 218 em->start = 0; 219 em->len = (u64)-1; 220 em->block_len = (u64)-1; 221 em->block_start = 0; 222 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 223 224 write_lock(&em_tree->lock); 225 ret = add_extent_mapping(em_tree, em); 226 if (ret == -EEXIST) { 227 free_extent_map(em); 228 em = lookup_extent_mapping(em_tree, start, len); 229 if (!em) 230 em = ERR_PTR(-EIO); 231 } else if (ret) { 232 free_extent_map(em); 233 em = ERR_PTR(ret); 234 } 235 write_unlock(&em_tree->lock); 236 237 out: 238 return em; 239 } 240 241 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 242 { 243 return crc32c(seed, data, len); 244 } 245 246 void btrfs_csum_final(u32 crc, char *result) 247 { 248 put_unaligned_le32(~crc, result); 249 } 250 251 /* 252 * compute the csum for a btree block, and either verify it or write it 253 * into the csum field of the block. 254 */ 255 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 256 int verify) 257 { 258 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 259 char *result = NULL; 260 unsigned long len; 261 unsigned long cur_len; 262 unsigned long offset = BTRFS_CSUM_SIZE; 263 char *kaddr; 264 unsigned long map_start; 265 unsigned long map_len; 266 int err; 267 u32 crc = ~(u32)0; 268 unsigned long inline_result; 269 270 len = buf->len - offset; 271 while (len > 0) { 272 err = map_private_extent_buffer(buf, offset, 32, 273 &kaddr, &map_start, &map_len); 274 if (err) 275 return 1; 276 cur_len = min(len, map_len - (offset - map_start)); 277 crc = btrfs_csum_data(root, kaddr + offset - map_start, 278 crc, cur_len); 279 len -= cur_len; 280 offset += cur_len; 281 } 282 if (csum_size > sizeof(inline_result)) { 283 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 284 if (!result) 285 return 1; 286 } else { 287 result = (char *)&inline_result; 288 } 289 290 btrfs_csum_final(crc, result); 291 292 if (verify) { 293 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 294 u32 val; 295 u32 found = 0; 296 memcpy(&found, result, csum_size); 297 298 read_extent_buffer(buf, &val, 0, csum_size); 299 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify " 300 "failed on %llu wanted %X found %X " 301 "level %d\n", 302 root->fs_info->sb->s_id, 303 (unsigned long long)buf->start, val, found, 304 btrfs_header_level(buf)); 305 if (result != (char *)&inline_result) 306 kfree(result); 307 return 1; 308 } 309 } else { 310 write_extent_buffer(buf, result, 0, csum_size); 311 } 312 if (result != (char *)&inline_result) 313 kfree(result); 314 return 0; 315 } 316 317 /* 318 * we can't consider a given block up to date unless the transid of the 319 * block matches the transid in the parent node's pointer. This is how we 320 * detect blocks that either didn't get written at all or got written 321 * in the wrong place. 322 */ 323 static int verify_parent_transid(struct extent_io_tree *io_tree, 324 struct extent_buffer *eb, u64 parent_transid, 325 int atomic) 326 { 327 struct extent_state *cached_state = NULL; 328 int ret; 329 330 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 331 return 0; 332 333 if (atomic) 334 return -EAGAIN; 335 336 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 337 0, &cached_state); 338 if (extent_buffer_uptodate(eb) && 339 btrfs_header_generation(eb) == parent_transid) { 340 ret = 0; 341 goto out; 342 } 343 printk_ratelimited("parent transid verify failed on %llu wanted %llu " 344 "found %llu\n", 345 (unsigned long long)eb->start, 346 (unsigned long long)parent_transid, 347 (unsigned long long)btrfs_header_generation(eb)); 348 ret = 1; 349 clear_extent_buffer_uptodate(eb); 350 out: 351 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 352 &cached_state, GFP_NOFS); 353 return ret; 354 } 355 356 /* 357 * helper to read a given tree block, doing retries as required when 358 * the checksums don't match and we have alternate mirrors to try. 359 */ 360 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 361 struct extent_buffer *eb, 362 u64 start, u64 parent_transid) 363 { 364 struct extent_io_tree *io_tree; 365 int failed = 0; 366 int ret; 367 int num_copies = 0; 368 int mirror_num = 0; 369 int failed_mirror = 0; 370 371 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 372 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 373 while (1) { 374 ret = read_extent_buffer_pages(io_tree, eb, start, 375 WAIT_COMPLETE, 376 btree_get_extent, mirror_num); 377 if (!ret) { 378 if (!verify_parent_transid(io_tree, eb, 379 parent_transid, 0)) 380 break; 381 else 382 ret = -EIO; 383 } 384 385 /* 386 * This buffer's crc is fine, but its contents are corrupted, so 387 * there is no reason to read the other copies, they won't be 388 * any less wrong. 389 */ 390 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 391 break; 392 393 num_copies = btrfs_num_copies(root->fs_info, 394 eb->start, eb->len); 395 if (num_copies == 1) 396 break; 397 398 if (!failed_mirror) { 399 failed = 1; 400 failed_mirror = eb->read_mirror; 401 } 402 403 mirror_num++; 404 if (mirror_num == failed_mirror) 405 mirror_num++; 406 407 if (mirror_num > num_copies) 408 break; 409 } 410 411 if (failed && !ret && failed_mirror) 412 repair_eb_io_failure(root, eb, failed_mirror); 413 414 return ret; 415 } 416 417 /* 418 * checksum a dirty tree block before IO. This has extra checks to make sure 419 * we only fill in the checksum field in the first page of a multi-page block 420 */ 421 422 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 423 { 424 struct extent_io_tree *tree; 425 u64 start = page_offset(page); 426 u64 found_start; 427 struct extent_buffer *eb; 428 429 tree = &BTRFS_I(page->mapping->host)->io_tree; 430 431 eb = (struct extent_buffer *)page->private; 432 if (page != eb->pages[0]) 433 return 0; 434 found_start = btrfs_header_bytenr(eb); 435 if (found_start != start) { 436 WARN_ON(1); 437 return 0; 438 } 439 if (!PageUptodate(page)) { 440 WARN_ON(1); 441 return 0; 442 } 443 csum_tree_block(root, eb, 0); 444 return 0; 445 } 446 447 static int check_tree_block_fsid(struct btrfs_root *root, 448 struct extent_buffer *eb) 449 { 450 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 451 u8 fsid[BTRFS_UUID_SIZE]; 452 int ret = 1; 453 454 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 455 BTRFS_FSID_SIZE); 456 while (fs_devices) { 457 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 458 ret = 0; 459 break; 460 } 461 fs_devices = fs_devices->seed; 462 } 463 return ret; 464 } 465 466 #define CORRUPT(reason, eb, root, slot) \ 467 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \ 468 "root=%llu, slot=%d\n", reason, \ 469 (unsigned long long)btrfs_header_bytenr(eb), \ 470 (unsigned long long)root->objectid, slot) 471 472 static noinline int check_leaf(struct btrfs_root *root, 473 struct extent_buffer *leaf) 474 { 475 struct btrfs_key key; 476 struct btrfs_key leaf_key; 477 u32 nritems = btrfs_header_nritems(leaf); 478 int slot; 479 480 if (nritems == 0) 481 return 0; 482 483 /* Check the 0 item */ 484 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 485 BTRFS_LEAF_DATA_SIZE(root)) { 486 CORRUPT("invalid item offset size pair", leaf, root, 0); 487 return -EIO; 488 } 489 490 /* 491 * Check to make sure each items keys are in the correct order and their 492 * offsets make sense. We only have to loop through nritems-1 because 493 * we check the current slot against the next slot, which verifies the 494 * next slot's offset+size makes sense and that the current's slot 495 * offset is correct. 496 */ 497 for (slot = 0; slot < nritems - 1; slot++) { 498 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 499 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 500 501 /* Make sure the keys are in the right order */ 502 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 503 CORRUPT("bad key order", leaf, root, slot); 504 return -EIO; 505 } 506 507 /* 508 * Make sure the offset and ends are right, remember that the 509 * item data starts at the end of the leaf and grows towards the 510 * front. 511 */ 512 if (btrfs_item_offset_nr(leaf, slot) != 513 btrfs_item_end_nr(leaf, slot + 1)) { 514 CORRUPT("slot offset bad", leaf, root, slot); 515 return -EIO; 516 } 517 518 /* 519 * Check to make sure that we don't point outside of the leaf, 520 * just incase all the items are consistent to eachother, but 521 * all point outside of the leaf. 522 */ 523 if (btrfs_item_end_nr(leaf, slot) > 524 BTRFS_LEAF_DATA_SIZE(root)) { 525 CORRUPT("slot end outside of leaf", leaf, root, slot); 526 return -EIO; 527 } 528 } 529 530 return 0; 531 } 532 533 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree, 534 struct page *page, int max_walk) 535 { 536 struct extent_buffer *eb; 537 u64 start = page_offset(page); 538 u64 target = start; 539 u64 min_start; 540 541 if (start < max_walk) 542 min_start = 0; 543 else 544 min_start = start - max_walk; 545 546 while (start >= min_start) { 547 eb = find_extent_buffer(tree, start, 0); 548 if (eb) { 549 /* 550 * we found an extent buffer and it contains our page 551 * horray! 552 */ 553 if (eb->start <= target && 554 eb->start + eb->len > target) 555 return eb; 556 557 /* we found an extent buffer that wasn't for us */ 558 free_extent_buffer(eb); 559 return NULL; 560 } 561 if (start == 0) 562 break; 563 start -= PAGE_CACHE_SIZE; 564 } 565 return NULL; 566 } 567 568 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 569 struct extent_state *state, int mirror) 570 { 571 struct extent_io_tree *tree; 572 u64 found_start; 573 int found_level; 574 struct extent_buffer *eb; 575 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 576 int ret = 0; 577 int reads_done; 578 579 if (!page->private) 580 goto out; 581 582 tree = &BTRFS_I(page->mapping->host)->io_tree; 583 eb = (struct extent_buffer *)page->private; 584 585 /* the pending IO might have been the only thing that kept this buffer 586 * in memory. Make sure we have a ref for all this other checks 587 */ 588 extent_buffer_get(eb); 589 590 reads_done = atomic_dec_and_test(&eb->io_pages); 591 if (!reads_done) 592 goto err; 593 594 eb->read_mirror = mirror; 595 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 596 ret = -EIO; 597 goto err; 598 } 599 600 found_start = btrfs_header_bytenr(eb); 601 if (found_start != eb->start) { 602 printk_ratelimited(KERN_INFO "btrfs bad tree block start " 603 "%llu %llu\n", 604 (unsigned long long)found_start, 605 (unsigned long long)eb->start); 606 ret = -EIO; 607 goto err; 608 } 609 if (check_tree_block_fsid(root, eb)) { 610 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n", 611 (unsigned long long)eb->start); 612 ret = -EIO; 613 goto err; 614 } 615 found_level = btrfs_header_level(eb); 616 617 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 618 eb, found_level); 619 620 ret = csum_tree_block(root, eb, 1); 621 if (ret) { 622 ret = -EIO; 623 goto err; 624 } 625 626 /* 627 * If this is a leaf block and it is corrupt, set the corrupt bit so 628 * that we don't try and read the other copies of this block, just 629 * return -EIO. 630 */ 631 if (found_level == 0 && check_leaf(root, eb)) { 632 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 633 ret = -EIO; 634 } 635 636 if (!ret) 637 set_extent_buffer_uptodate(eb); 638 err: 639 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) { 640 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags); 641 btree_readahead_hook(root, eb, eb->start, ret); 642 } 643 644 if (ret) { 645 /* 646 * our io error hook is going to dec the io pages 647 * again, we have to make sure it has something 648 * to decrement 649 */ 650 atomic_inc(&eb->io_pages); 651 clear_extent_buffer_uptodate(eb); 652 } 653 free_extent_buffer(eb); 654 out: 655 return ret; 656 } 657 658 static int btree_io_failed_hook(struct page *page, int failed_mirror) 659 { 660 struct extent_buffer *eb; 661 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 662 663 eb = (struct extent_buffer *)page->private; 664 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 665 eb->read_mirror = failed_mirror; 666 atomic_dec(&eb->io_pages); 667 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 668 btree_readahead_hook(root, eb, eb->start, -EIO); 669 return -EIO; /* we fixed nothing */ 670 } 671 672 static void end_workqueue_bio(struct bio *bio, int err) 673 { 674 struct end_io_wq *end_io_wq = bio->bi_private; 675 struct btrfs_fs_info *fs_info; 676 677 fs_info = end_io_wq->info; 678 end_io_wq->error = err; 679 end_io_wq->work.func = end_workqueue_fn; 680 end_io_wq->work.flags = 0; 681 682 if (bio->bi_rw & REQ_WRITE) { 683 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) 684 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 685 &end_io_wq->work); 686 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) 687 btrfs_queue_worker(&fs_info->endio_freespace_worker, 688 &end_io_wq->work); 689 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 690 btrfs_queue_worker(&fs_info->endio_raid56_workers, 691 &end_io_wq->work); 692 else 693 btrfs_queue_worker(&fs_info->endio_write_workers, 694 &end_io_wq->work); 695 } else { 696 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 697 btrfs_queue_worker(&fs_info->endio_raid56_workers, 698 &end_io_wq->work); 699 else if (end_io_wq->metadata) 700 btrfs_queue_worker(&fs_info->endio_meta_workers, 701 &end_io_wq->work); 702 else 703 btrfs_queue_worker(&fs_info->endio_workers, 704 &end_io_wq->work); 705 } 706 } 707 708 /* 709 * For the metadata arg you want 710 * 711 * 0 - if data 712 * 1 - if normal metadta 713 * 2 - if writing to the free space cache area 714 * 3 - raid parity work 715 */ 716 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 717 int metadata) 718 { 719 struct end_io_wq *end_io_wq; 720 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 721 if (!end_io_wq) 722 return -ENOMEM; 723 724 end_io_wq->private = bio->bi_private; 725 end_io_wq->end_io = bio->bi_end_io; 726 end_io_wq->info = info; 727 end_io_wq->error = 0; 728 end_io_wq->bio = bio; 729 end_io_wq->metadata = metadata; 730 731 bio->bi_private = end_io_wq; 732 bio->bi_end_io = end_workqueue_bio; 733 return 0; 734 } 735 736 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 737 { 738 unsigned long limit = min_t(unsigned long, 739 info->workers.max_workers, 740 info->fs_devices->open_devices); 741 return 256 * limit; 742 } 743 744 static void run_one_async_start(struct btrfs_work *work) 745 { 746 struct async_submit_bio *async; 747 int ret; 748 749 async = container_of(work, struct async_submit_bio, work); 750 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 751 async->mirror_num, async->bio_flags, 752 async->bio_offset); 753 if (ret) 754 async->error = ret; 755 } 756 757 static void run_one_async_done(struct btrfs_work *work) 758 { 759 struct btrfs_fs_info *fs_info; 760 struct async_submit_bio *async; 761 int limit; 762 763 async = container_of(work, struct async_submit_bio, work); 764 fs_info = BTRFS_I(async->inode)->root->fs_info; 765 766 limit = btrfs_async_submit_limit(fs_info); 767 limit = limit * 2 / 3; 768 769 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 770 waitqueue_active(&fs_info->async_submit_wait)) 771 wake_up(&fs_info->async_submit_wait); 772 773 /* If an error occured we just want to clean up the bio and move on */ 774 if (async->error) { 775 bio_endio(async->bio, async->error); 776 return; 777 } 778 779 async->submit_bio_done(async->inode, async->rw, async->bio, 780 async->mirror_num, async->bio_flags, 781 async->bio_offset); 782 } 783 784 static void run_one_async_free(struct btrfs_work *work) 785 { 786 struct async_submit_bio *async; 787 788 async = container_of(work, struct async_submit_bio, work); 789 kfree(async); 790 } 791 792 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 793 int rw, struct bio *bio, int mirror_num, 794 unsigned long bio_flags, 795 u64 bio_offset, 796 extent_submit_bio_hook_t *submit_bio_start, 797 extent_submit_bio_hook_t *submit_bio_done) 798 { 799 struct async_submit_bio *async; 800 801 async = kmalloc(sizeof(*async), GFP_NOFS); 802 if (!async) 803 return -ENOMEM; 804 805 async->inode = inode; 806 async->rw = rw; 807 async->bio = bio; 808 async->mirror_num = mirror_num; 809 async->submit_bio_start = submit_bio_start; 810 async->submit_bio_done = submit_bio_done; 811 812 async->work.func = run_one_async_start; 813 async->work.ordered_func = run_one_async_done; 814 async->work.ordered_free = run_one_async_free; 815 816 async->work.flags = 0; 817 async->bio_flags = bio_flags; 818 async->bio_offset = bio_offset; 819 820 async->error = 0; 821 822 atomic_inc(&fs_info->nr_async_submits); 823 824 if (rw & REQ_SYNC) 825 btrfs_set_work_high_prio(&async->work); 826 827 btrfs_queue_worker(&fs_info->workers, &async->work); 828 829 while (atomic_read(&fs_info->async_submit_draining) && 830 atomic_read(&fs_info->nr_async_submits)) { 831 wait_event(fs_info->async_submit_wait, 832 (atomic_read(&fs_info->nr_async_submits) == 0)); 833 } 834 835 return 0; 836 } 837 838 static int btree_csum_one_bio(struct bio *bio) 839 { 840 struct bio_vec *bvec = bio->bi_io_vec; 841 int bio_index = 0; 842 struct btrfs_root *root; 843 int ret = 0; 844 845 WARN_ON(bio->bi_vcnt <= 0); 846 while (bio_index < bio->bi_vcnt) { 847 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 848 ret = csum_dirty_buffer(root, bvec->bv_page); 849 if (ret) 850 break; 851 bio_index++; 852 bvec++; 853 } 854 return ret; 855 } 856 857 static int __btree_submit_bio_start(struct inode *inode, int rw, 858 struct bio *bio, int mirror_num, 859 unsigned long bio_flags, 860 u64 bio_offset) 861 { 862 /* 863 * when we're called for a write, we're already in the async 864 * submission context. Just jump into btrfs_map_bio 865 */ 866 return btree_csum_one_bio(bio); 867 } 868 869 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 870 int mirror_num, unsigned long bio_flags, 871 u64 bio_offset) 872 { 873 int ret; 874 875 /* 876 * when we're called for a write, we're already in the async 877 * submission context. Just jump into btrfs_map_bio 878 */ 879 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 880 if (ret) 881 bio_endio(bio, ret); 882 return ret; 883 } 884 885 static int check_async_write(struct inode *inode, unsigned long bio_flags) 886 { 887 if (bio_flags & EXTENT_BIO_TREE_LOG) 888 return 0; 889 #ifdef CONFIG_X86 890 if (cpu_has_xmm4_2) 891 return 0; 892 #endif 893 return 1; 894 } 895 896 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 897 int mirror_num, unsigned long bio_flags, 898 u64 bio_offset) 899 { 900 int async = check_async_write(inode, bio_flags); 901 int ret; 902 903 if (!(rw & REQ_WRITE)) { 904 /* 905 * called for a read, do the setup so that checksum validation 906 * can happen in the async kernel threads 907 */ 908 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 909 bio, 1); 910 if (ret) 911 goto out_w_error; 912 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 913 mirror_num, 0); 914 } else if (!async) { 915 ret = btree_csum_one_bio(bio); 916 if (ret) 917 goto out_w_error; 918 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 919 mirror_num, 0); 920 } else { 921 /* 922 * kthread helpers are used to submit writes so that 923 * checksumming can happen in parallel across all CPUs 924 */ 925 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 926 inode, rw, bio, mirror_num, 0, 927 bio_offset, 928 __btree_submit_bio_start, 929 __btree_submit_bio_done); 930 } 931 932 if (ret) { 933 out_w_error: 934 bio_endio(bio, ret); 935 } 936 return ret; 937 } 938 939 #ifdef CONFIG_MIGRATION 940 static int btree_migratepage(struct address_space *mapping, 941 struct page *newpage, struct page *page, 942 enum migrate_mode mode) 943 { 944 /* 945 * we can't safely write a btree page from here, 946 * we haven't done the locking hook 947 */ 948 if (PageDirty(page)) 949 return -EAGAIN; 950 /* 951 * Buffers may be managed in a filesystem specific way. 952 * We must have no buffers or drop them. 953 */ 954 if (page_has_private(page) && 955 !try_to_release_page(page, GFP_KERNEL)) 956 return -EAGAIN; 957 return migrate_page(mapping, newpage, page, mode); 958 } 959 #endif 960 961 962 static int btree_writepages(struct address_space *mapping, 963 struct writeback_control *wbc) 964 { 965 struct extent_io_tree *tree; 966 struct btrfs_fs_info *fs_info; 967 int ret; 968 969 tree = &BTRFS_I(mapping->host)->io_tree; 970 if (wbc->sync_mode == WB_SYNC_NONE) { 971 972 if (wbc->for_kupdate) 973 return 0; 974 975 fs_info = BTRFS_I(mapping->host)->root->fs_info; 976 /* this is a bit racy, but that's ok */ 977 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 978 BTRFS_DIRTY_METADATA_THRESH); 979 if (ret < 0) 980 return 0; 981 } 982 return btree_write_cache_pages(mapping, wbc); 983 } 984 985 static int btree_readpage(struct file *file, struct page *page) 986 { 987 struct extent_io_tree *tree; 988 tree = &BTRFS_I(page->mapping->host)->io_tree; 989 return extent_read_full_page(tree, page, btree_get_extent, 0); 990 } 991 992 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 993 { 994 if (PageWriteback(page) || PageDirty(page)) 995 return 0; 996 /* 997 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing 998 * slab allocation from alloc_extent_state down the callchain where 999 * it'd hit a BUG_ON as those flags are not allowed. 1000 */ 1001 gfp_flags &= ~GFP_SLAB_BUG_MASK; 1002 1003 return try_release_extent_buffer(page, gfp_flags); 1004 } 1005 1006 static void btree_invalidatepage(struct page *page, unsigned long offset) 1007 { 1008 struct extent_io_tree *tree; 1009 tree = &BTRFS_I(page->mapping->host)->io_tree; 1010 extent_invalidatepage(tree, page, offset); 1011 btree_releasepage(page, GFP_NOFS); 1012 if (PagePrivate(page)) { 1013 printk(KERN_WARNING "btrfs warning page private not zero " 1014 "on page %llu\n", (unsigned long long)page_offset(page)); 1015 ClearPagePrivate(page); 1016 set_page_private(page, 0); 1017 page_cache_release(page); 1018 } 1019 } 1020 1021 static int btree_set_page_dirty(struct page *page) 1022 { 1023 #ifdef DEBUG 1024 struct extent_buffer *eb; 1025 1026 BUG_ON(!PagePrivate(page)); 1027 eb = (struct extent_buffer *)page->private; 1028 BUG_ON(!eb); 1029 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1030 BUG_ON(!atomic_read(&eb->refs)); 1031 btrfs_assert_tree_locked(eb); 1032 #endif 1033 return __set_page_dirty_nobuffers(page); 1034 } 1035 1036 static const struct address_space_operations btree_aops = { 1037 .readpage = btree_readpage, 1038 .writepages = btree_writepages, 1039 .releasepage = btree_releasepage, 1040 .invalidatepage = btree_invalidatepage, 1041 #ifdef CONFIG_MIGRATION 1042 .migratepage = btree_migratepage, 1043 #endif 1044 .set_page_dirty = btree_set_page_dirty, 1045 }; 1046 1047 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1048 u64 parent_transid) 1049 { 1050 struct extent_buffer *buf = NULL; 1051 struct inode *btree_inode = root->fs_info->btree_inode; 1052 int ret = 0; 1053 1054 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1055 if (!buf) 1056 return 0; 1057 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1058 buf, 0, WAIT_NONE, btree_get_extent, 0); 1059 free_extent_buffer(buf); 1060 return ret; 1061 } 1062 1063 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1064 int mirror_num, struct extent_buffer **eb) 1065 { 1066 struct extent_buffer *buf = NULL; 1067 struct inode *btree_inode = root->fs_info->btree_inode; 1068 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1069 int ret; 1070 1071 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1072 if (!buf) 1073 return 0; 1074 1075 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1076 1077 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1078 btree_get_extent, mirror_num); 1079 if (ret) { 1080 free_extent_buffer(buf); 1081 return ret; 1082 } 1083 1084 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1085 free_extent_buffer(buf); 1086 return -EIO; 1087 } else if (extent_buffer_uptodate(buf)) { 1088 *eb = buf; 1089 } else { 1090 free_extent_buffer(buf); 1091 } 1092 return 0; 1093 } 1094 1095 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 1096 u64 bytenr, u32 blocksize) 1097 { 1098 struct inode *btree_inode = root->fs_info->btree_inode; 1099 struct extent_buffer *eb; 1100 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1101 bytenr, blocksize); 1102 return eb; 1103 } 1104 1105 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1106 u64 bytenr, u32 blocksize) 1107 { 1108 struct inode *btree_inode = root->fs_info->btree_inode; 1109 struct extent_buffer *eb; 1110 1111 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1112 bytenr, blocksize); 1113 return eb; 1114 } 1115 1116 1117 int btrfs_write_tree_block(struct extent_buffer *buf) 1118 { 1119 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1120 buf->start + buf->len - 1); 1121 } 1122 1123 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1124 { 1125 return filemap_fdatawait_range(buf->pages[0]->mapping, 1126 buf->start, buf->start + buf->len - 1); 1127 } 1128 1129 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1130 u32 blocksize, u64 parent_transid) 1131 { 1132 struct extent_buffer *buf = NULL; 1133 int ret; 1134 1135 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1136 if (!buf) 1137 return NULL; 1138 1139 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1140 return buf; 1141 1142 } 1143 1144 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1145 struct extent_buffer *buf) 1146 { 1147 struct btrfs_fs_info *fs_info = root->fs_info; 1148 1149 if (btrfs_header_generation(buf) == 1150 fs_info->running_transaction->transid) { 1151 btrfs_assert_tree_locked(buf); 1152 1153 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1154 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1155 -buf->len, 1156 fs_info->dirty_metadata_batch); 1157 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1158 btrfs_set_lock_blocking(buf); 1159 clear_extent_buffer_dirty(buf); 1160 } 1161 } 1162 } 1163 1164 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 1165 u32 stripesize, struct btrfs_root *root, 1166 struct btrfs_fs_info *fs_info, 1167 u64 objectid) 1168 { 1169 root->node = NULL; 1170 root->commit_root = NULL; 1171 root->sectorsize = sectorsize; 1172 root->nodesize = nodesize; 1173 root->leafsize = leafsize; 1174 root->stripesize = stripesize; 1175 root->ref_cows = 0; 1176 root->track_dirty = 0; 1177 root->in_radix = 0; 1178 root->orphan_item_inserted = 0; 1179 root->orphan_cleanup_state = 0; 1180 1181 root->objectid = objectid; 1182 root->last_trans = 0; 1183 root->highest_objectid = 0; 1184 root->name = NULL; 1185 root->inode_tree = RB_ROOT; 1186 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1187 root->block_rsv = NULL; 1188 root->orphan_block_rsv = NULL; 1189 1190 INIT_LIST_HEAD(&root->dirty_list); 1191 INIT_LIST_HEAD(&root->root_list); 1192 INIT_LIST_HEAD(&root->logged_list[0]); 1193 INIT_LIST_HEAD(&root->logged_list[1]); 1194 spin_lock_init(&root->orphan_lock); 1195 spin_lock_init(&root->inode_lock); 1196 spin_lock_init(&root->accounting_lock); 1197 spin_lock_init(&root->log_extents_lock[0]); 1198 spin_lock_init(&root->log_extents_lock[1]); 1199 mutex_init(&root->objectid_mutex); 1200 mutex_init(&root->log_mutex); 1201 init_waitqueue_head(&root->log_writer_wait); 1202 init_waitqueue_head(&root->log_commit_wait[0]); 1203 init_waitqueue_head(&root->log_commit_wait[1]); 1204 atomic_set(&root->log_commit[0], 0); 1205 atomic_set(&root->log_commit[1], 0); 1206 atomic_set(&root->log_writers, 0); 1207 atomic_set(&root->log_batch, 0); 1208 atomic_set(&root->orphan_inodes, 0); 1209 root->log_transid = 0; 1210 root->last_log_commit = 0; 1211 extent_io_tree_init(&root->dirty_log_pages, 1212 fs_info->btree_inode->i_mapping); 1213 1214 memset(&root->root_key, 0, sizeof(root->root_key)); 1215 memset(&root->root_item, 0, sizeof(root->root_item)); 1216 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1217 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1218 root->defrag_trans_start = fs_info->generation; 1219 init_completion(&root->kobj_unregister); 1220 root->defrag_running = 0; 1221 root->root_key.objectid = objectid; 1222 root->anon_dev = 0; 1223 1224 spin_lock_init(&root->root_item_lock); 1225 } 1226 1227 static int __must_check find_and_setup_root(struct btrfs_root *tree_root, 1228 struct btrfs_fs_info *fs_info, 1229 u64 objectid, 1230 struct btrfs_root *root) 1231 { 1232 int ret; 1233 u32 blocksize; 1234 u64 generation; 1235 1236 __setup_root(tree_root->nodesize, tree_root->leafsize, 1237 tree_root->sectorsize, tree_root->stripesize, 1238 root, fs_info, objectid); 1239 ret = btrfs_find_last_root(tree_root, objectid, 1240 &root->root_item, &root->root_key); 1241 if (ret > 0) 1242 return -ENOENT; 1243 else if (ret < 0) 1244 return ret; 1245 1246 generation = btrfs_root_generation(&root->root_item); 1247 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1248 root->commit_root = NULL; 1249 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1250 blocksize, generation); 1251 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) { 1252 free_extent_buffer(root->node); 1253 root->node = NULL; 1254 return -EIO; 1255 } 1256 root->commit_root = btrfs_root_node(root); 1257 return 0; 1258 } 1259 1260 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1261 { 1262 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1263 if (root) 1264 root->fs_info = fs_info; 1265 return root; 1266 } 1267 1268 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1269 struct btrfs_fs_info *fs_info, 1270 u64 objectid) 1271 { 1272 struct extent_buffer *leaf; 1273 struct btrfs_root *tree_root = fs_info->tree_root; 1274 struct btrfs_root *root; 1275 struct btrfs_key key; 1276 int ret = 0; 1277 u64 bytenr; 1278 1279 root = btrfs_alloc_root(fs_info); 1280 if (!root) 1281 return ERR_PTR(-ENOMEM); 1282 1283 __setup_root(tree_root->nodesize, tree_root->leafsize, 1284 tree_root->sectorsize, tree_root->stripesize, 1285 root, fs_info, objectid); 1286 root->root_key.objectid = objectid; 1287 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1288 root->root_key.offset = 0; 1289 1290 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 1291 0, objectid, NULL, 0, 0, 0); 1292 if (IS_ERR(leaf)) { 1293 ret = PTR_ERR(leaf); 1294 goto fail; 1295 } 1296 1297 bytenr = leaf->start; 1298 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1299 btrfs_set_header_bytenr(leaf, leaf->start); 1300 btrfs_set_header_generation(leaf, trans->transid); 1301 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1302 btrfs_set_header_owner(leaf, objectid); 1303 root->node = leaf; 1304 1305 write_extent_buffer(leaf, fs_info->fsid, 1306 (unsigned long)btrfs_header_fsid(leaf), 1307 BTRFS_FSID_SIZE); 1308 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1309 (unsigned long)btrfs_header_chunk_tree_uuid(leaf), 1310 BTRFS_UUID_SIZE); 1311 btrfs_mark_buffer_dirty(leaf); 1312 1313 root->commit_root = btrfs_root_node(root); 1314 root->track_dirty = 1; 1315 1316 1317 root->root_item.flags = 0; 1318 root->root_item.byte_limit = 0; 1319 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1320 btrfs_set_root_generation(&root->root_item, trans->transid); 1321 btrfs_set_root_level(&root->root_item, 0); 1322 btrfs_set_root_refs(&root->root_item, 1); 1323 btrfs_set_root_used(&root->root_item, leaf->len); 1324 btrfs_set_root_last_snapshot(&root->root_item, 0); 1325 btrfs_set_root_dirid(&root->root_item, 0); 1326 root->root_item.drop_level = 0; 1327 1328 key.objectid = objectid; 1329 key.type = BTRFS_ROOT_ITEM_KEY; 1330 key.offset = 0; 1331 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1332 if (ret) 1333 goto fail; 1334 1335 btrfs_tree_unlock(leaf); 1336 1337 fail: 1338 if (ret) 1339 return ERR_PTR(ret); 1340 1341 return root; 1342 } 1343 1344 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1345 struct btrfs_fs_info *fs_info) 1346 { 1347 struct btrfs_root *root; 1348 struct btrfs_root *tree_root = fs_info->tree_root; 1349 struct extent_buffer *leaf; 1350 1351 root = btrfs_alloc_root(fs_info); 1352 if (!root) 1353 return ERR_PTR(-ENOMEM); 1354 1355 __setup_root(tree_root->nodesize, tree_root->leafsize, 1356 tree_root->sectorsize, tree_root->stripesize, 1357 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1358 1359 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1360 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1361 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1362 /* 1363 * log trees do not get reference counted because they go away 1364 * before a real commit is actually done. They do store pointers 1365 * to file data extents, and those reference counts still get 1366 * updated (along with back refs to the log tree). 1367 */ 1368 root->ref_cows = 0; 1369 1370 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1371 BTRFS_TREE_LOG_OBJECTID, NULL, 1372 0, 0, 0); 1373 if (IS_ERR(leaf)) { 1374 kfree(root); 1375 return ERR_CAST(leaf); 1376 } 1377 1378 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1379 btrfs_set_header_bytenr(leaf, leaf->start); 1380 btrfs_set_header_generation(leaf, trans->transid); 1381 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1382 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1383 root->node = leaf; 1384 1385 write_extent_buffer(root->node, root->fs_info->fsid, 1386 (unsigned long)btrfs_header_fsid(root->node), 1387 BTRFS_FSID_SIZE); 1388 btrfs_mark_buffer_dirty(root->node); 1389 btrfs_tree_unlock(root->node); 1390 return root; 1391 } 1392 1393 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1394 struct btrfs_fs_info *fs_info) 1395 { 1396 struct btrfs_root *log_root; 1397 1398 log_root = alloc_log_tree(trans, fs_info); 1399 if (IS_ERR(log_root)) 1400 return PTR_ERR(log_root); 1401 WARN_ON(fs_info->log_root_tree); 1402 fs_info->log_root_tree = log_root; 1403 return 0; 1404 } 1405 1406 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1407 struct btrfs_root *root) 1408 { 1409 struct btrfs_root *log_root; 1410 struct btrfs_inode_item *inode_item; 1411 1412 log_root = alloc_log_tree(trans, root->fs_info); 1413 if (IS_ERR(log_root)) 1414 return PTR_ERR(log_root); 1415 1416 log_root->last_trans = trans->transid; 1417 log_root->root_key.offset = root->root_key.objectid; 1418 1419 inode_item = &log_root->root_item.inode; 1420 inode_item->generation = cpu_to_le64(1); 1421 inode_item->size = cpu_to_le64(3); 1422 inode_item->nlink = cpu_to_le32(1); 1423 inode_item->nbytes = cpu_to_le64(root->leafsize); 1424 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1425 1426 btrfs_set_root_node(&log_root->root_item, log_root->node); 1427 1428 WARN_ON(root->log_root); 1429 root->log_root = log_root; 1430 root->log_transid = 0; 1431 root->last_log_commit = 0; 1432 return 0; 1433 } 1434 1435 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1436 struct btrfs_key *location) 1437 { 1438 struct btrfs_root *root; 1439 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1440 struct btrfs_path *path; 1441 struct extent_buffer *l; 1442 u64 generation; 1443 u32 blocksize; 1444 int ret = 0; 1445 int slot; 1446 1447 root = btrfs_alloc_root(fs_info); 1448 if (!root) 1449 return ERR_PTR(-ENOMEM); 1450 if (location->offset == (u64)-1) { 1451 ret = find_and_setup_root(tree_root, fs_info, 1452 location->objectid, root); 1453 if (ret) { 1454 kfree(root); 1455 return ERR_PTR(ret); 1456 } 1457 goto out; 1458 } 1459 1460 __setup_root(tree_root->nodesize, tree_root->leafsize, 1461 tree_root->sectorsize, tree_root->stripesize, 1462 root, fs_info, location->objectid); 1463 1464 path = btrfs_alloc_path(); 1465 if (!path) { 1466 kfree(root); 1467 return ERR_PTR(-ENOMEM); 1468 } 1469 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1470 if (ret == 0) { 1471 l = path->nodes[0]; 1472 slot = path->slots[0]; 1473 btrfs_read_root_item(tree_root, l, slot, &root->root_item); 1474 memcpy(&root->root_key, location, sizeof(*location)); 1475 } 1476 btrfs_free_path(path); 1477 if (ret) { 1478 kfree(root); 1479 if (ret > 0) 1480 ret = -ENOENT; 1481 return ERR_PTR(ret); 1482 } 1483 1484 generation = btrfs_root_generation(&root->root_item); 1485 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1486 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1487 blocksize, generation); 1488 root->commit_root = btrfs_root_node(root); 1489 BUG_ON(!root->node); /* -ENOMEM */ 1490 out: 1491 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { 1492 root->ref_cows = 1; 1493 btrfs_check_and_init_root_item(&root->root_item); 1494 } 1495 1496 return root; 1497 } 1498 1499 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1500 struct btrfs_key *location) 1501 { 1502 struct btrfs_root *root; 1503 int ret; 1504 1505 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1506 return fs_info->tree_root; 1507 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1508 return fs_info->extent_root; 1509 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1510 return fs_info->chunk_root; 1511 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1512 return fs_info->dev_root; 1513 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1514 return fs_info->csum_root; 1515 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1516 return fs_info->quota_root ? fs_info->quota_root : 1517 ERR_PTR(-ENOENT); 1518 again: 1519 spin_lock(&fs_info->fs_roots_radix_lock); 1520 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1521 (unsigned long)location->objectid); 1522 spin_unlock(&fs_info->fs_roots_radix_lock); 1523 if (root) 1524 return root; 1525 1526 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1527 if (IS_ERR(root)) 1528 return root; 1529 1530 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1531 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1532 GFP_NOFS); 1533 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1534 ret = -ENOMEM; 1535 goto fail; 1536 } 1537 1538 btrfs_init_free_ino_ctl(root); 1539 mutex_init(&root->fs_commit_mutex); 1540 spin_lock_init(&root->cache_lock); 1541 init_waitqueue_head(&root->cache_wait); 1542 1543 ret = get_anon_bdev(&root->anon_dev); 1544 if (ret) 1545 goto fail; 1546 1547 if (btrfs_root_refs(&root->root_item) == 0) { 1548 ret = -ENOENT; 1549 goto fail; 1550 } 1551 1552 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1553 if (ret < 0) 1554 goto fail; 1555 if (ret == 0) 1556 root->orphan_item_inserted = 1; 1557 1558 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1559 if (ret) 1560 goto fail; 1561 1562 spin_lock(&fs_info->fs_roots_radix_lock); 1563 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1564 (unsigned long)root->root_key.objectid, 1565 root); 1566 if (ret == 0) 1567 root->in_radix = 1; 1568 1569 spin_unlock(&fs_info->fs_roots_radix_lock); 1570 radix_tree_preload_end(); 1571 if (ret) { 1572 if (ret == -EEXIST) { 1573 free_fs_root(root); 1574 goto again; 1575 } 1576 goto fail; 1577 } 1578 1579 ret = btrfs_find_dead_roots(fs_info->tree_root, 1580 root->root_key.objectid); 1581 WARN_ON(ret); 1582 return root; 1583 fail: 1584 free_fs_root(root); 1585 return ERR_PTR(ret); 1586 } 1587 1588 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1589 { 1590 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1591 int ret = 0; 1592 struct btrfs_device *device; 1593 struct backing_dev_info *bdi; 1594 1595 rcu_read_lock(); 1596 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1597 if (!device->bdev) 1598 continue; 1599 bdi = blk_get_backing_dev_info(device->bdev); 1600 if (bdi && bdi_congested(bdi, bdi_bits)) { 1601 ret = 1; 1602 break; 1603 } 1604 } 1605 rcu_read_unlock(); 1606 return ret; 1607 } 1608 1609 /* 1610 * If this fails, caller must call bdi_destroy() to get rid of the 1611 * bdi again. 1612 */ 1613 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1614 { 1615 int err; 1616 1617 bdi->capabilities = BDI_CAP_MAP_COPY; 1618 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1619 if (err) 1620 return err; 1621 1622 bdi->ra_pages = default_backing_dev_info.ra_pages; 1623 bdi->congested_fn = btrfs_congested_fn; 1624 bdi->congested_data = info; 1625 return 0; 1626 } 1627 1628 /* 1629 * called by the kthread helper functions to finally call the bio end_io 1630 * functions. This is where read checksum verification actually happens 1631 */ 1632 static void end_workqueue_fn(struct btrfs_work *work) 1633 { 1634 struct bio *bio; 1635 struct end_io_wq *end_io_wq; 1636 struct btrfs_fs_info *fs_info; 1637 int error; 1638 1639 end_io_wq = container_of(work, struct end_io_wq, work); 1640 bio = end_io_wq->bio; 1641 fs_info = end_io_wq->info; 1642 1643 error = end_io_wq->error; 1644 bio->bi_private = end_io_wq->private; 1645 bio->bi_end_io = end_io_wq->end_io; 1646 kfree(end_io_wq); 1647 bio_endio(bio, error); 1648 } 1649 1650 static int cleaner_kthread(void *arg) 1651 { 1652 struct btrfs_root *root = arg; 1653 1654 do { 1655 if (!(root->fs_info->sb->s_flags & MS_RDONLY) && 1656 mutex_trylock(&root->fs_info->cleaner_mutex)) { 1657 btrfs_run_delayed_iputs(root); 1658 btrfs_clean_old_snapshots(root); 1659 mutex_unlock(&root->fs_info->cleaner_mutex); 1660 btrfs_run_defrag_inodes(root->fs_info); 1661 } 1662 1663 if (!try_to_freeze()) { 1664 set_current_state(TASK_INTERRUPTIBLE); 1665 if (!kthread_should_stop()) 1666 schedule(); 1667 __set_current_state(TASK_RUNNING); 1668 } 1669 } while (!kthread_should_stop()); 1670 return 0; 1671 } 1672 1673 static int transaction_kthread(void *arg) 1674 { 1675 struct btrfs_root *root = arg; 1676 struct btrfs_trans_handle *trans; 1677 struct btrfs_transaction *cur; 1678 u64 transid; 1679 unsigned long now; 1680 unsigned long delay; 1681 bool cannot_commit; 1682 1683 do { 1684 cannot_commit = false; 1685 delay = HZ * 30; 1686 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1687 1688 spin_lock(&root->fs_info->trans_lock); 1689 cur = root->fs_info->running_transaction; 1690 if (!cur) { 1691 spin_unlock(&root->fs_info->trans_lock); 1692 goto sleep; 1693 } 1694 1695 now = get_seconds(); 1696 if (!cur->blocked && 1697 (now < cur->start_time || now - cur->start_time < 30)) { 1698 spin_unlock(&root->fs_info->trans_lock); 1699 delay = HZ * 5; 1700 goto sleep; 1701 } 1702 transid = cur->transid; 1703 spin_unlock(&root->fs_info->trans_lock); 1704 1705 /* If the file system is aborted, this will always fail. */ 1706 trans = btrfs_attach_transaction(root); 1707 if (IS_ERR(trans)) { 1708 if (PTR_ERR(trans) != -ENOENT) 1709 cannot_commit = true; 1710 goto sleep; 1711 } 1712 if (transid == trans->transid) { 1713 btrfs_commit_transaction(trans, root); 1714 } else { 1715 btrfs_end_transaction(trans, root); 1716 } 1717 sleep: 1718 wake_up_process(root->fs_info->cleaner_kthread); 1719 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1720 1721 if (!try_to_freeze()) { 1722 set_current_state(TASK_INTERRUPTIBLE); 1723 if (!kthread_should_stop() && 1724 (!btrfs_transaction_blocked(root->fs_info) || 1725 cannot_commit)) 1726 schedule_timeout(delay); 1727 __set_current_state(TASK_RUNNING); 1728 } 1729 } while (!kthread_should_stop()); 1730 return 0; 1731 } 1732 1733 /* 1734 * this will find the highest generation in the array of 1735 * root backups. The index of the highest array is returned, 1736 * or -1 if we can't find anything. 1737 * 1738 * We check to make sure the array is valid by comparing the 1739 * generation of the latest root in the array with the generation 1740 * in the super block. If they don't match we pitch it. 1741 */ 1742 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1743 { 1744 u64 cur; 1745 int newest_index = -1; 1746 struct btrfs_root_backup *root_backup; 1747 int i; 1748 1749 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1750 root_backup = info->super_copy->super_roots + i; 1751 cur = btrfs_backup_tree_root_gen(root_backup); 1752 if (cur == newest_gen) 1753 newest_index = i; 1754 } 1755 1756 /* check to see if we actually wrapped around */ 1757 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1758 root_backup = info->super_copy->super_roots; 1759 cur = btrfs_backup_tree_root_gen(root_backup); 1760 if (cur == newest_gen) 1761 newest_index = 0; 1762 } 1763 return newest_index; 1764 } 1765 1766 1767 /* 1768 * find the oldest backup so we know where to store new entries 1769 * in the backup array. This will set the backup_root_index 1770 * field in the fs_info struct 1771 */ 1772 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1773 u64 newest_gen) 1774 { 1775 int newest_index = -1; 1776 1777 newest_index = find_newest_super_backup(info, newest_gen); 1778 /* if there was garbage in there, just move along */ 1779 if (newest_index == -1) { 1780 info->backup_root_index = 0; 1781 } else { 1782 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1783 } 1784 } 1785 1786 /* 1787 * copy all the root pointers into the super backup array. 1788 * this will bump the backup pointer by one when it is 1789 * done 1790 */ 1791 static void backup_super_roots(struct btrfs_fs_info *info) 1792 { 1793 int next_backup; 1794 struct btrfs_root_backup *root_backup; 1795 int last_backup; 1796 1797 next_backup = info->backup_root_index; 1798 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1799 BTRFS_NUM_BACKUP_ROOTS; 1800 1801 /* 1802 * just overwrite the last backup if we're at the same generation 1803 * this happens only at umount 1804 */ 1805 root_backup = info->super_for_commit->super_roots + last_backup; 1806 if (btrfs_backup_tree_root_gen(root_backup) == 1807 btrfs_header_generation(info->tree_root->node)) 1808 next_backup = last_backup; 1809 1810 root_backup = info->super_for_commit->super_roots + next_backup; 1811 1812 /* 1813 * make sure all of our padding and empty slots get zero filled 1814 * regardless of which ones we use today 1815 */ 1816 memset(root_backup, 0, sizeof(*root_backup)); 1817 1818 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1819 1820 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1821 btrfs_set_backup_tree_root_gen(root_backup, 1822 btrfs_header_generation(info->tree_root->node)); 1823 1824 btrfs_set_backup_tree_root_level(root_backup, 1825 btrfs_header_level(info->tree_root->node)); 1826 1827 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1828 btrfs_set_backup_chunk_root_gen(root_backup, 1829 btrfs_header_generation(info->chunk_root->node)); 1830 btrfs_set_backup_chunk_root_level(root_backup, 1831 btrfs_header_level(info->chunk_root->node)); 1832 1833 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1834 btrfs_set_backup_extent_root_gen(root_backup, 1835 btrfs_header_generation(info->extent_root->node)); 1836 btrfs_set_backup_extent_root_level(root_backup, 1837 btrfs_header_level(info->extent_root->node)); 1838 1839 /* 1840 * we might commit during log recovery, which happens before we set 1841 * the fs_root. Make sure it is valid before we fill it in. 1842 */ 1843 if (info->fs_root && info->fs_root->node) { 1844 btrfs_set_backup_fs_root(root_backup, 1845 info->fs_root->node->start); 1846 btrfs_set_backup_fs_root_gen(root_backup, 1847 btrfs_header_generation(info->fs_root->node)); 1848 btrfs_set_backup_fs_root_level(root_backup, 1849 btrfs_header_level(info->fs_root->node)); 1850 } 1851 1852 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1853 btrfs_set_backup_dev_root_gen(root_backup, 1854 btrfs_header_generation(info->dev_root->node)); 1855 btrfs_set_backup_dev_root_level(root_backup, 1856 btrfs_header_level(info->dev_root->node)); 1857 1858 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1859 btrfs_set_backup_csum_root_gen(root_backup, 1860 btrfs_header_generation(info->csum_root->node)); 1861 btrfs_set_backup_csum_root_level(root_backup, 1862 btrfs_header_level(info->csum_root->node)); 1863 1864 btrfs_set_backup_total_bytes(root_backup, 1865 btrfs_super_total_bytes(info->super_copy)); 1866 btrfs_set_backup_bytes_used(root_backup, 1867 btrfs_super_bytes_used(info->super_copy)); 1868 btrfs_set_backup_num_devices(root_backup, 1869 btrfs_super_num_devices(info->super_copy)); 1870 1871 /* 1872 * if we don't copy this out to the super_copy, it won't get remembered 1873 * for the next commit 1874 */ 1875 memcpy(&info->super_copy->super_roots, 1876 &info->super_for_commit->super_roots, 1877 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1878 } 1879 1880 /* 1881 * this copies info out of the root backup array and back into 1882 * the in-memory super block. It is meant to help iterate through 1883 * the array, so you send it the number of backups you've already 1884 * tried and the last backup index you used. 1885 * 1886 * this returns -1 when it has tried all the backups 1887 */ 1888 static noinline int next_root_backup(struct btrfs_fs_info *info, 1889 struct btrfs_super_block *super, 1890 int *num_backups_tried, int *backup_index) 1891 { 1892 struct btrfs_root_backup *root_backup; 1893 int newest = *backup_index; 1894 1895 if (*num_backups_tried == 0) { 1896 u64 gen = btrfs_super_generation(super); 1897 1898 newest = find_newest_super_backup(info, gen); 1899 if (newest == -1) 1900 return -1; 1901 1902 *backup_index = newest; 1903 *num_backups_tried = 1; 1904 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1905 /* we've tried all the backups, all done */ 1906 return -1; 1907 } else { 1908 /* jump to the next oldest backup */ 1909 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1910 BTRFS_NUM_BACKUP_ROOTS; 1911 *backup_index = newest; 1912 *num_backups_tried += 1; 1913 } 1914 root_backup = super->super_roots + newest; 1915 1916 btrfs_set_super_generation(super, 1917 btrfs_backup_tree_root_gen(root_backup)); 1918 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1919 btrfs_set_super_root_level(super, 1920 btrfs_backup_tree_root_level(root_backup)); 1921 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1922 1923 /* 1924 * fixme: the total bytes and num_devices need to match or we should 1925 * need a fsck 1926 */ 1927 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1928 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1929 return 0; 1930 } 1931 1932 /* helper to cleanup tree roots */ 1933 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 1934 { 1935 free_extent_buffer(info->tree_root->node); 1936 free_extent_buffer(info->tree_root->commit_root); 1937 free_extent_buffer(info->dev_root->node); 1938 free_extent_buffer(info->dev_root->commit_root); 1939 free_extent_buffer(info->extent_root->node); 1940 free_extent_buffer(info->extent_root->commit_root); 1941 free_extent_buffer(info->csum_root->node); 1942 free_extent_buffer(info->csum_root->commit_root); 1943 if (info->quota_root) { 1944 free_extent_buffer(info->quota_root->node); 1945 free_extent_buffer(info->quota_root->commit_root); 1946 } 1947 1948 info->tree_root->node = NULL; 1949 info->tree_root->commit_root = NULL; 1950 info->dev_root->node = NULL; 1951 info->dev_root->commit_root = NULL; 1952 info->extent_root->node = NULL; 1953 info->extent_root->commit_root = NULL; 1954 info->csum_root->node = NULL; 1955 info->csum_root->commit_root = NULL; 1956 if (info->quota_root) { 1957 info->quota_root->node = NULL; 1958 info->quota_root->commit_root = NULL; 1959 } 1960 1961 if (chunk_root) { 1962 free_extent_buffer(info->chunk_root->node); 1963 free_extent_buffer(info->chunk_root->commit_root); 1964 info->chunk_root->node = NULL; 1965 info->chunk_root->commit_root = NULL; 1966 } 1967 } 1968 1969 1970 int open_ctree(struct super_block *sb, 1971 struct btrfs_fs_devices *fs_devices, 1972 char *options) 1973 { 1974 u32 sectorsize; 1975 u32 nodesize; 1976 u32 leafsize; 1977 u32 blocksize; 1978 u32 stripesize; 1979 u64 generation; 1980 u64 features; 1981 struct btrfs_key location; 1982 struct buffer_head *bh; 1983 struct btrfs_super_block *disk_super; 1984 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1985 struct btrfs_root *tree_root; 1986 struct btrfs_root *extent_root; 1987 struct btrfs_root *csum_root; 1988 struct btrfs_root *chunk_root; 1989 struct btrfs_root *dev_root; 1990 struct btrfs_root *quota_root; 1991 struct btrfs_root *log_tree_root; 1992 int ret; 1993 int err = -EINVAL; 1994 int num_backups_tried = 0; 1995 int backup_index = 0; 1996 1997 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 1998 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info); 1999 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info); 2000 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 2001 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info); 2002 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info); 2003 2004 if (!tree_root || !extent_root || !csum_root || 2005 !chunk_root || !dev_root || !quota_root) { 2006 err = -ENOMEM; 2007 goto fail; 2008 } 2009 2010 ret = init_srcu_struct(&fs_info->subvol_srcu); 2011 if (ret) { 2012 err = ret; 2013 goto fail; 2014 } 2015 2016 ret = setup_bdi(fs_info, &fs_info->bdi); 2017 if (ret) { 2018 err = ret; 2019 goto fail_srcu; 2020 } 2021 2022 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0); 2023 if (ret) { 2024 err = ret; 2025 goto fail_bdi; 2026 } 2027 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE * 2028 (1 + ilog2(nr_cpu_ids)); 2029 2030 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0); 2031 if (ret) { 2032 err = ret; 2033 goto fail_dirty_metadata_bytes; 2034 } 2035 2036 fs_info->btree_inode = new_inode(sb); 2037 if (!fs_info->btree_inode) { 2038 err = -ENOMEM; 2039 goto fail_delalloc_bytes; 2040 } 2041 2042 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2043 2044 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2045 INIT_LIST_HEAD(&fs_info->trans_list); 2046 INIT_LIST_HEAD(&fs_info->dead_roots); 2047 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2048 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 2049 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2050 spin_lock_init(&fs_info->delalloc_lock); 2051 spin_lock_init(&fs_info->trans_lock); 2052 spin_lock_init(&fs_info->fs_roots_radix_lock); 2053 spin_lock_init(&fs_info->delayed_iput_lock); 2054 spin_lock_init(&fs_info->defrag_inodes_lock); 2055 spin_lock_init(&fs_info->free_chunk_lock); 2056 spin_lock_init(&fs_info->tree_mod_seq_lock); 2057 rwlock_init(&fs_info->tree_mod_log_lock); 2058 mutex_init(&fs_info->reloc_mutex); 2059 seqlock_init(&fs_info->profiles_lock); 2060 2061 init_completion(&fs_info->kobj_unregister); 2062 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2063 INIT_LIST_HEAD(&fs_info->space_info); 2064 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2065 btrfs_mapping_init(&fs_info->mapping_tree); 2066 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2067 BTRFS_BLOCK_RSV_GLOBAL); 2068 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2069 BTRFS_BLOCK_RSV_DELALLOC); 2070 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2071 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2072 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2073 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2074 BTRFS_BLOCK_RSV_DELOPS); 2075 atomic_set(&fs_info->nr_async_submits, 0); 2076 atomic_set(&fs_info->async_delalloc_pages, 0); 2077 atomic_set(&fs_info->async_submit_draining, 0); 2078 atomic_set(&fs_info->nr_async_bios, 0); 2079 atomic_set(&fs_info->defrag_running, 0); 2080 atomic_set(&fs_info->tree_mod_seq, 0); 2081 fs_info->sb = sb; 2082 fs_info->max_inline = 8192 * 1024; 2083 fs_info->metadata_ratio = 0; 2084 fs_info->defrag_inodes = RB_ROOT; 2085 fs_info->trans_no_join = 0; 2086 fs_info->free_chunk_space = 0; 2087 fs_info->tree_mod_log = RB_ROOT; 2088 2089 /* readahead state */ 2090 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 2091 spin_lock_init(&fs_info->reada_lock); 2092 2093 fs_info->thread_pool_size = min_t(unsigned long, 2094 num_online_cpus() + 2, 8); 2095 2096 INIT_LIST_HEAD(&fs_info->ordered_extents); 2097 spin_lock_init(&fs_info->ordered_extent_lock); 2098 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2099 GFP_NOFS); 2100 if (!fs_info->delayed_root) { 2101 err = -ENOMEM; 2102 goto fail_iput; 2103 } 2104 btrfs_init_delayed_root(fs_info->delayed_root); 2105 2106 mutex_init(&fs_info->scrub_lock); 2107 atomic_set(&fs_info->scrubs_running, 0); 2108 atomic_set(&fs_info->scrub_pause_req, 0); 2109 atomic_set(&fs_info->scrubs_paused, 0); 2110 atomic_set(&fs_info->scrub_cancel_req, 0); 2111 init_waitqueue_head(&fs_info->scrub_pause_wait); 2112 init_rwsem(&fs_info->scrub_super_lock); 2113 fs_info->scrub_workers_refcnt = 0; 2114 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2115 fs_info->check_integrity_print_mask = 0; 2116 #endif 2117 2118 spin_lock_init(&fs_info->balance_lock); 2119 mutex_init(&fs_info->balance_mutex); 2120 atomic_set(&fs_info->balance_running, 0); 2121 atomic_set(&fs_info->balance_pause_req, 0); 2122 atomic_set(&fs_info->balance_cancel_req, 0); 2123 fs_info->balance_ctl = NULL; 2124 init_waitqueue_head(&fs_info->balance_wait_q); 2125 2126 sb->s_blocksize = 4096; 2127 sb->s_blocksize_bits = blksize_bits(4096); 2128 sb->s_bdi = &fs_info->bdi; 2129 2130 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2131 set_nlink(fs_info->btree_inode, 1); 2132 /* 2133 * we set the i_size on the btree inode to the max possible int. 2134 * the real end of the address space is determined by all of 2135 * the devices in the system 2136 */ 2137 fs_info->btree_inode->i_size = OFFSET_MAX; 2138 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2139 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 2140 2141 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2142 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2143 fs_info->btree_inode->i_mapping); 2144 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2145 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2146 2147 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2148 2149 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2150 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2151 sizeof(struct btrfs_key)); 2152 set_bit(BTRFS_INODE_DUMMY, 2153 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2154 insert_inode_hash(fs_info->btree_inode); 2155 2156 spin_lock_init(&fs_info->block_group_cache_lock); 2157 fs_info->block_group_cache_tree = RB_ROOT; 2158 fs_info->first_logical_byte = (u64)-1; 2159 2160 extent_io_tree_init(&fs_info->freed_extents[0], 2161 fs_info->btree_inode->i_mapping); 2162 extent_io_tree_init(&fs_info->freed_extents[1], 2163 fs_info->btree_inode->i_mapping); 2164 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2165 fs_info->do_barriers = 1; 2166 2167 2168 mutex_init(&fs_info->ordered_operations_mutex); 2169 mutex_init(&fs_info->tree_log_mutex); 2170 mutex_init(&fs_info->chunk_mutex); 2171 mutex_init(&fs_info->transaction_kthread_mutex); 2172 mutex_init(&fs_info->cleaner_mutex); 2173 mutex_init(&fs_info->volume_mutex); 2174 init_rwsem(&fs_info->extent_commit_sem); 2175 init_rwsem(&fs_info->cleanup_work_sem); 2176 init_rwsem(&fs_info->subvol_sem); 2177 fs_info->dev_replace.lock_owner = 0; 2178 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2179 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2180 mutex_init(&fs_info->dev_replace.lock_management_lock); 2181 mutex_init(&fs_info->dev_replace.lock); 2182 2183 spin_lock_init(&fs_info->qgroup_lock); 2184 fs_info->qgroup_tree = RB_ROOT; 2185 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2186 fs_info->qgroup_seq = 1; 2187 fs_info->quota_enabled = 0; 2188 fs_info->pending_quota_state = 0; 2189 2190 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2191 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2192 2193 init_waitqueue_head(&fs_info->transaction_throttle); 2194 init_waitqueue_head(&fs_info->transaction_wait); 2195 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2196 init_waitqueue_head(&fs_info->async_submit_wait); 2197 2198 ret = btrfs_alloc_stripe_hash_table(fs_info); 2199 if (ret) { 2200 err = ret; 2201 goto fail_alloc; 2202 } 2203 2204 __setup_root(4096, 4096, 4096, 4096, tree_root, 2205 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2206 2207 invalidate_bdev(fs_devices->latest_bdev); 2208 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2209 if (!bh) { 2210 err = -EINVAL; 2211 goto fail_alloc; 2212 } 2213 2214 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2215 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2216 sizeof(*fs_info->super_for_commit)); 2217 brelse(bh); 2218 2219 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2220 2221 disk_super = fs_info->super_copy; 2222 if (!btrfs_super_root(disk_super)) 2223 goto fail_alloc; 2224 2225 /* check FS state, whether FS is broken. */ 2226 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2227 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2228 2229 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2230 if (ret) { 2231 printk(KERN_ERR "btrfs: superblock contains fatal errors\n"); 2232 err = ret; 2233 goto fail_alloc; 2234 } 2235 2236 /* 2237 * run through our array of backup supers and setup 2238 * our ring pointer to the oldest one 2239 */ 2240 generation = btrfs_super_generation(disk_super); 2241 find_oldest_super_backup(fs_info, generation); 2242 2243 /* 2244 * In the long term, we'll store the compression type in the super 2245 * block, and it'll be used for per file compression control. 2246 */ 2247 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2248 2249 ret = btrfs_parse_options(tree_root, options); 2250 if (ret) { 2251 err = ret; 2252 goto fail_alloc; 2253 } 2254 2255 features = btrfs_super_incompat_flags(disk_super) & 2256 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2257 if (features) { 2258 printk(KERN_ERR "BTRFS: couldn't mount because of " 2259 "unsupported optional features (%Lx).\n", 2260 (unsigned long long)features); 2261 err = -EINVAL; 2262 goto fail_alloc; 2263 } 2264 2265 if (btrfs_super_leafsize(disk_super) != 2266 btrfs_super_nodesize(disk_super)) { 2267 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2268 "blocksizes don't match. node %d leaf %d\n", 2269 btrfs_super_nodesize(disk_super), 2270 btrfs_super_leafsize(disk_super)); 2271 err = -EINVAL; 2272 goto fail_alloc; 2273 } 2274 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2275 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2276 "blocksize (%d) was too large\n", 2277 btrfs_super_leafsize(disk_super)); 2278 err = -EINVAL; 2279 goto fail_alloc; 2280 } 2281 2282 features = btrfs_super_incompat_flags(disk_super); 2283 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2284 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2285 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2286 2287 /* 2288 * flag our filesystem as having big metadata blocks if 2289 * they are bigger than the page size 2290 */ 2291 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) { 2292 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2293 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n"); 2294 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2295 } 2296 2297 nodesize = btrfs_super_nodesize(disk_super); 2298 leafsize = btrfs_super_leafsize(disk_super); 2299 sectorsize = btrfs_super_sectorsize(disk_super); 2300 stripesize = btrfs_super_stripesize(disk_super); 2301 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids)); 2302 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2303 2304 /* 2305 * mixed block groups end up with duplicate but slightly offset 2306 * extent buffers for the same range. It leads to corruptions 2307 */ 2308 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2309 (sectorsize != leafsize)) { 2310 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes " 2311 "are not allowed for mixed block groups on %s\n", 2312 sb->s_id); 2313 goto fail_alloc; 2314 } 2315 2316 btrfs_set_super_incompat_flags(disk_super, features); 2317 2318 features = btrfs_super_compat_ro_flags(disk_super) & 2319 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2320 if (!(sb->s_flags & MS_RDONLY) && features) { 2321 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2322 "unsupported option features (%Lx).\n", 2323 (unsigned long long)features); 2324 err = -EINVAL; 2325 goto fail_alloc; 2326 } 2327 2328 btrfs_init_workers(&fs_info->generic_worker, 2329 "genwork", 1, NULL); 2330 2331 btrfs_init_workers(&fs_info->workers, "worker", 2332 fs_info->thread_pool_size, 2333 &fs_info->generic_worker); 2334 2335 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 2336 fs_info->thread_pool_size, 2337 &fs_info->generic_worker); 2338 2339 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc", 2340 fs_info->thread_pool_size, 2341 &fs_info->generic_worker); 2342 2343 btrfs_init_workers(&fs_info->submit_workers, "submit", 2344 min_t(u64, fs_devices->num_devices, 2345 fs_info->thread_pool_size), 2346 &fs_info->generic_worker); 2347 2348 btrfs_init_workers(&fs_info->caching_workers, "cache", 2349 2, &fs_info->generic_worker); 2350 2351 /* a higher idle thresh on the submit workers makes it much more 2352 * likely that bios will be send down in a sane order to the 2353 * devices 2354 */ 2355 fs_info->submit_workers.idle_thresh = 64; 2356 2357 fs_info->workers.idle_thresh = 16; 2358 fs_info->workers.ordered = 1; 2359 2360 fs_info->delalloc_workers.idle_thresh = 2; 2361 fs_info->delalloc_workers.ordered = 1; 2362 2363 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 2364 &fs_info->generic_worker); 2365 btrfs_init_workers(&fs_info->endio_workers, "endio", 2366 fs_info->thread_pool_size, 2367 &fs_info->generic_worker); 2368 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 2369 fs_info->thread_pool_size, 2370 &fs_info->generic_worker); 2371 btrfs_init_workers(&fs_info->endio_meta_write_workers, 2372 "endio-meta-write", fs_info->thread_pool_size, 2373 &fs_info->generic_worker); 2374 btrfs_init_workers(&fs_info->endio_raid56_workers, 2375 "endio-raid56", fs_info->thread_pool_size, 2376 &fs_info->generic_worker); 2377 btrfs_init_workers(&fs_info->rmw_workers, 2378 "rmw", fs_info->thread_pool_size, 2379 &fs_info->generic_worker); 2380 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 2381 fs_info->thread_pool_size, 2382 &fs_info->generic_worker); 2383 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", 2384 1, &fs_info->generic_worker); 2385 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta", 2386 fs_info->thread_pool_size, 2387 &fs_info->generic_worker); 2388 btrfs_init_workers(&fs_info->readahead_workers, "readahead", 2389 fs_info->thread_pool_size, 2390 &fs_info->generic_worker); 2391 2392 /* 2393 * endios are largely parallel and should have a very 2394 * low idle thresh 2395 */ 2396 fs_info->endio_workers.idle_thresh = 4; 2397 fs_info->endio_meta_workers.idle_thresh = 4; 2398 fs_info->endio_raid56_workers.idle_thresh = 4; 2399 fs_info->rmw_workers.idle_thresh = 2; 2400 2401 fs_info->endio_write_workers.idle_thresh = 2; 2402 fs_info->endio_meta_write_workers.idle_thresh = 2; 2403 fs_info->readahead_workers.idle_thresh = 2; 2404 2405 /* 2406 * btrfs_start_workers can really only fail because of ENOMEM so just 2407 * return -ENOMEM if any of these fail. 2408 */ 2409 ret = btrfs_start_workers(&fs_info->workers); 2410 ret |= btrfs_start_workers(&fs_info->generic_worker); 2411 ret |= btrfs_start_workers(&fs_info->submit_workers); 2412 ret |= btrfs_start_workers(&fs_info->delalloc_workers); 2413 ret |= btrfs_start_workers(&fs_info->fixup_workers); 2414 ret |= btrfs_start_workers(&fs_info->endio_workers); 2415 ret |= btrfs_start_workers(&fs_info->endio_meta_workers); 2416 ret |= btrfs_start_workers(&fs_info->rmw_workers); 2417 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers); 2418 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers); 2419 ret |= btrfs_start_workers(&fs_info->endio_write_workers); 2420 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker); 2421 ret |= btrfs_start_workers(&fs_info->delayed_workers); 2422 ret |= btrfs_start_workers(&fs_info->caching_workers); 2423 ret |= btrfs_start_workers(&fs_info->readahead_workers); 2424 ret |= btrfs_start_workers(&fs_info->flush_workers); 2425 if (ret) { 2426 err = -ENOMEM; 2427 goto fail_sb_buffer; 2428 } 2429 2430 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2431 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2432 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2433 2434 tree_root->nodesize = nodesize; 2435 tree_root->leafsize = leafsize; 2436 tree_root->sectorsize = sectorsize; 2437 tree_root->stripesize = stripesize; 2438 2439 sb->s_blocksize = sectorsize; 2440 sb->s_blocksize_bits = blksize_bits(sectorsize); 2441 2442 if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) { 2443 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 2444 goto fail_sb_buffer; 2445 } 2446 2447 if (sectorsize != PAGE_SIZE) { 2448 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) " 2449 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2450 goto fail_sb_buffer; 2451 } 2452 2453 mutex_lock(&fs_info->chunk_mutex); 2454 ret = btrfs_read_sys_array(tree_root); 2455 mutex_unlock(&fs_info->chunk_mutex); 2456 if (ret) { 2457 printk(KERN_WARNING "btrfs: failed to read the system " 2458 "array on %s\n", sb->s_id); 2459 goto fail_sb_buffer; 2460 } 2461 2462 blocksize = btrfs_level_size(tree_root, 2463 btrfs_super_chunk_root_level(disk_super)); 2464 generation = btrfs_super_chunk_root_generation(disk_super); 2465 2466 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2467 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2468 2469 chunk_root->node = read_tree_block(chunk_root, 2470 btrfs_super_chunk_root(disk_super), 2471 blocksize, generation); 2472 BUG_ON(!chunk_root->node); /* -ENOMEM */ 2473 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2474 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 2475 sb->s_id); 2476 goto fail_tree_roots; 2477 } 2478 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2479 chunk_root->commit_root = btrfs_root_node(chunk_root); 2480 2481 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2482 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 2483 BTRFS_UUID_SIZE); 2484 2485 ret = btrfs_read_chunk_tree(chunk_root); 2486 if (ret) { 2487 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 2488 sb->s_id); 2489 goto fail_tree_roots; 2490 } 2491 2492 /* 2493 * keep the device that is marked to be the target device for the 2494 * dev_replace procedure 2495 */ 2496 btrfs_close_extra_devices(fs_info, fs_devices, 0); 2497 2498 if (!fs_devices->latest_bdev) { 2499 printk(KERN_CRIT "btrfs: failed to read devices on %s\n", 2500 sb->s_id); 2501 goto fail_tree_roots; 2502 } 2503 2504 retry_root_backup: 2505 blocksize = btrfs_level_size(tree_root, 2506 btrfs_super_root_level(disk_super)); 2507 generation = btrfs_super_generation(disk_super); 2508 2509 tree_root->node = read_tree_block(tree_root, 2510 btrfs_super_root(disk_super), 2511 blocksize, generation); 2512 if (!tree_root->node || 2513 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2514 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 2515 sb->s_id); 2516 2517 goto recovery_tree_root; 2518 } 2519 2520 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2521 tree_root->commit_root = btrfs_root_node(tree_root); 2522 2523 ret = find_and_setup_root(tree_root, fs_info, 2524 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 2525 if (ret) 2526 goto recovery_tree_root; 2527 extent_root->track_dirty = 1; 2528 2529 ret = find_and_setup_root(tree_root, fs_info, 2530 BTRFS_DEV_TREE_OBJECTID, dev_root); 2531 if (ret) 2532 goto recovery_tree_root; 2533 dev_root->track_dirty = 1; 2534 2535 ret = find_and_setup_root(tree_root, fs_info, 2536 BTRFS_CSUM_TREE_OBJECTID, csum_root); 2537 if (ret) 2538 goto recovery_tree_root; 2539 csum_root->track_dirty = 1; 2540 2541 ret = find_and_setup_root(tree_root, fs_info, 2542 BTRFS_QUOTA_TREE_OBJECTID, quota_root); 2543 if (ret) { 2544 kfree(quota_root); 2545 quota_root = fs_info->quota_root = NULL; 2546 } else { 2547 quota_root->track_dirty = 1; 2548 fs_info->quota_enabled = 1; 2549 fs_info->pending_quota_state = 1; 2550 } 2551 2552 fs_info->generation = generation; 2553 fs_info->last_trans_committed = generation; 2554 2555 ret = btrfs_recover_balance(fs_info); 2556 if (ret) { 2557 printk(KERN_WARNING "btrfs: failed to recover balance\n"); 2558 goto fail_block_groups; 2559 } 2560 2561 ret = btrfs_init_dev_stats(fs_info); 2562 if (ret) { 2563 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n", 2564 ret); 2565 goto fail_block_groups; 2566 } 2567 2568 ret = btrfs_init_dev_replace(fs_info); 2569 if (ret) { 2570 pr_err("btrfs: failed to init dev_replace: %d\n", ret); 2571 goto fail_block_groups; 2572 } 2573 2574 btrfs_close_extra_devices(fs_info, fs_devices, 1); 2575 2576 ret = btrfs_init_space_info(fs_info); 2577 if (ret) { 2578 printk(KERN_ERR "Failed to initial space info: %d\n", ret); 2579 goto fail_block_groups; 2580 } 2581 2582 ret = btrfs_read_block_groups(extent_root); 2583 if (ret) { 2584 printk(KERN_ERR "Failed to read block groups: %d\n", ret); 2585 goto fail_block_groups; 2586 } 2587 fs_info->num_tolerated_disk_barrier_failures = 2588 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2589 if (fs_info->fs_devices->missing_devices > 2590 fs_info->num_tolerated_disk_barrier_failures && 2591 !(sb->s_flags & MS_RDONLY)) { 2592 printk(KERN_WARNING 2593 "Btrfs: too many missing devices, writeable mount is not allowed\n"); 2594 goto fail_block_groups; 2595 } 2596 2597 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2598 "btrfs-cleaner"); 2599 if (IS_ERR(fs_info->cleaner_kthread)) 2600 goto fail_block_groups; 2601 2602 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2603 tree_root, 2604 "btrfs-transaction"); 2605 if (IS_ERR(fs_info->transaction_kthread)) 2606 goto fail_cleaner; 2607 2608 if (!btrfs_test_opt(tree_root, SSD) && 2609 !btrfs_test_opt(tree_root, NOSSD) && 2610 !fs_info->fs_devices->rotating) { 2611 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 2612 "mode\n"); 2613 btrfs_set_opt(fs_info->mount_opt, SSD); 2614 } 2615 2616 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2617 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2618 ret = btrfsic_mount(tree_root, fs_devices, 2619 btrfs_test_opt(tree_root, 2620 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2621 1 : 0, 2622 fs_info->check_integrity_print_mask); 2623 if (ret) 2624 printk(KERN_WARNING "btrfs: failed to initialize" 2625 " integrity check module %s\n", sb->s_id); 2626 } 2627 #endif 2628 ret = btrfs_read_qgroup_config(fs_info); 2629 if (ret) 2630 goto fail_trans_kthread; 2631 2632 /* do not make disk changes in broken FS */ 2633 if (btrfs_super_log_root(disk_super) != 0) { 2634 u64 bytenr = btrfs_super_log_root(disk_super); 2635 2636 if (fs_devices->rw_devices == 0) { 2637 printk(KERN_WARNING "Btrfs log replay required " 2638 "on RO media\n"); 2639 err = -EIO; 2640 goto fail_qgroup; 2641 } 2642 blocksize = 2643 btrfs_level_size(tree_root, 2644 btrfs_super_log_root_level(disk_super)); 2645 2646 log_tree_root = btrfs_alloc_root(fs_info); 2647 if (!log_tree_root) { 2648 err = -ENOMEM; 2649 goto fail_qgroup; 2650 } 2651 2652 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2653 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2654 2655 log_tree_root->node = read_tree_block(tree_root, bytenr, 2656 blocksize, 2657 generation + 1); 2658 /* returns with log_tree_root freed on success */ 2659 ret = btrfs_recover_log_trees(log_tree_root); 2660 if (ret) { 2661 btrfs_error(tree_root->fs_info, ret, 2662 "Failed to recover log tree"); 2663 free_extent_buffer(log_tree_root->node); 2664 kfree(log_tree_root); 2665 goto fail_trans_kthread; 2666 } 2667 2668 if (sb->s_flags & MS_RDONLY) { 2669 ret = btrfs_commit_super(tree_root); 2670 if (ret) 2671 goto fail_trans_kthread; 2672 } 2673 } 2674 2675 ret = btrfs_find_orphan_roots(tree_root); 2676 if (ret) 2677 goto fail_trans_kthread; 2678 2679 if (!(sb->s_flags & MS_RDONLY)) { 2680 ret = btrfs_cleanup_fs_roots(fs_info); 2681 if (ret) 2682 goto fail_trans_kthread; 2683 2684 ret = btrfs_recover_relocation(tree_root); 2685 if (ret < 0) { 2686 printk(KERN_WARNING 2687 "btrfs: failed to recover relocation\n"); 2688 err = -EINVAL; 2689 goto fail_qgroup; 2690 } 2691 } 2692 2693 location.objectid = BTRFS_FS_TREE_OBJECTID; 2694 location.type = BTRFS_ROOT_ITEM_KEY; 2695 location.offset = (u64)-1; 2696 2697 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2698 if (!fs_info->fs_root) 2699 goto fail_qgroup; 2700 if (IS_ERR(fs_info->fs_root)) { 2701 err = PTR_ERR(fs_info->fs_root); 2702 goto fail_qgroup; 2703 } 2704 2705 if (sb->s_flags & MS_RDONLY) 2706 return 0; 2707 2708 down_read(&fs_info->cleanup_work_sem); 2709 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2710 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2711 up_read(&fs_info->cleanup_work_sem); 2712 close_ctree(tree_root); 2713 return ret; 2714 } 2715 up_read(&fs_info->cleanup_work_sem); 2716 2717 ret = btrfs_resume_balance_async(fs_info); 2718 if (ret) { 2719 printk(KERN_WARNING "btrfs: failed to resume balance\n"); 2720 close_ctree(tree_root); 2721 return ret; 2722 } 2723 2724 ret = btrfs_resume_dev_replace_async(fs_info); 2725 if (ret) { 2726 pr_warn("btrfs: failed to resume dev_replace\n"); 2727 close_ctree(tree_root); 2728 return ret; 2729 } 2730 2731 return 0; 2732 2733 fail_qgroup: 2734 btrfs_free_qgroup_config(fs_info); 2735 fail_trans_kthread: 2736 kthread_stop(fs_info->transaction_kthread); 2737 fail_cleaner: 2738 kthread_stop(fs_info->cleaner_kthread); 2739 2740 /* 2741 * make sure we're done with the btree inode before we stop our 2742 * kthreads 2743 */ 2744 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2745 2746 fail_block_groups: 2747 btrfs_free_block_groups(fs_info); 2748 2749 fail_tree_roots: 2750 free_root_pointers(fs_info, 1); 2751 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2752 2753 fail_sb_buffer: 2754 btrfs_stop_workers(&fs_info->generic_worker); 2755 btrfs_stop_workers(&fs_info->readahead_workers); 2756 btrfs_stop_workers(&fs_info->fixup_workers); 2757 btrfs_stop_workers(&fs_info->delalloc_workers); 2758 btrfs_stop_workers(&fs_info->workers); 2759 btrfs_stop_workers(&fs_info->endio_workers); 2760 btrfs_stop_workers(&fs_info->endio_meta_workers); 2761 btrfs_stop_workers(&fs_info->endio_raid56_workers); 2762 btrfs_stop_workers(&fs_info->rmw_workers); 2763 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2764 btrfs_stop_workers(&fs_info->endio_write_workers); 2765 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2766 btrfs_stop_workers(&fs_info->submit_workers); 2767 btrfs_stop_workers(&fs_info->delayed_workers); 2768 btrfs_stop_workers(&fs_info->caching_workers); 2769 btrfs_stop_workers(&fs_info->flush_workers); 2770 fail_alloc: 2771 fail_iput: 2772 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2773 2774 iput(fs_info->btree_inode); 2775 fail_delalloc_bytes: 2776 percpu_counter_destroy(&fs_info->delalloc_bytes); 2777 fail_dirty_metadata_bytes: 2778 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 2779 fail_bdi: 2780 bdi_destroy(&fs_info->bdi); 2781 fail_srcu: 2782 cleanup_srcu_struct(&fs_info->subvol_srcu); 2783 fail: 2784 btrfs_free_stripe_hash_table(fs_info); 2785 btrfs_close_devices(fs_info->fs_devices); 2786 return err; 2787 2788 recovery_tree_root: 2789 if (!btrfs_test_opt(tree_root, RECOVERY)) 2790 goto fail_tree_roots; 2791 2792 free_root_pointers(fs_info, 0); 2793 2794 /* don't use the log in recovery mode, it won't be valid */ 2795 btrfs_set_super_log_root(disk_super, 0); 2796 2797 /* we can't trust the free space cache either */ 2798 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2799 2800 ret = next_root_backup(fs_info, fs_info->super_copy, 2801 &num_backups_tried, &backup_index); 2802 if (ret == -1) 2803 goto fail_block_groups; 2804 goto retry_root_backup; 2805 } 2806 2807 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 2808 { 2809 if (uptodate) { 2810 set_buffer_uptodate(bh); 2811 } else { 2812 struct btrfs_device *device = (struct btrfs_device *) 2813 bh->b_private; 2814 2815 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to " 2816 "I/O error on %s\n", 2817 rcu_str_deref(device->name)); 2818 /* note, we dont' set_buffer_write_io_error because we have 2819 * our own ways of dealing with the IO errors 2820 */ 2821 clear_buffer_uptodate(bh); 2822 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 2823 } 2824 unlock_buffer(bh); 2825 put_bh(bh); 2826 } 2827 2828 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 2829 { 2830 struct buffer_head *bh; 2831 struct buffer_head *latest = NULL; 2832 struct btrfs_super_block *super; 2833 int i; 2834 u64 transid = 0; 2835 u64 bytenr; 2836 2837 /* we would like to check all the supers, but that would make 2838 * a btrfs mount succeed after a mkfs from a different FS. 2839 * So, we need to add a special mount option to scan for 2840 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2841 */ 2842 for (i = 0; i < 1; i++) { 2843 bytenr = btrfs_sb_offset(i); 2844 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2845 break; 2846 bh = __bread(bdev, bytenr / 4096, 4096); 2847 if (!bh) 2848 continue; 2849 2850 super = (struct btrfs_super_block *)bh->b_data; 2851 if (btrfs_super_bytenr(super) != bytenr || 2852 super->magic != cpu_to_le64(BTRFS_MAGIC)) { 2853 brelse(bh); 2854 continue; 2855 } 2856 2857 if (!latest || btrfs_super_generation(super) > transid) { 2858 brelse(latest); 2859 latest = bh; 2860 transid = btrfs_super_generation(super); 2861 } else { 2862 brelse(bh); 2863 } 2864 } 2865 return latest; 2866 } 2867 2868 /* 2869 * this should be called twice, once with wait == 0 and 2870 * once with wait == 1. When wait == 0 is done, all the buffer heads 2871 * we write are pinned. 2872 * 2873 * They are released when wait == 1 is done. 2874 * max_mirrors must be the same for both runs, and it indicates how 2875 * many supers on this one device should be written. 2876 * 2877 * max_mirrors == 0 means to write them all. 2878 */ 2879 static int write_dev_supers(struct btrfs_device *device, 2880 struct btrfs_super_block *sb, 2881 int do_barriers, int wait, int max_mirrors) 2882 { 2883 struct buffer_head *bh; 2884 int i; 2885 int ret; 2886 int errors = 0; 2887 u32 crc; 2888 u64 bytenr; 2889 2890 if (max_mirrors == 0) 2891 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2892 2893 for (i = 0; i < max_mirrors; i++) { 2894 bytenr = btrfs_sb_offset(i); 2895 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2896 break; 2897 2898 if (wait) { 2899 bh = __find_get_block(device->bdev, bytenr / 4096, 2900 BTRFS_SUPER_INFO_SIZE); 2901 BUG_ON(!bh); 2902 wait_on_buffer(bh); 2903 if (!buffer_uptodate(bh)) 2904 errors++; 2905 2906 /* drop our reference */ 2907 brelse(bh); 2908 2909 /* drop the reference from the wait == 0 run */ 2910 brelse(bh); 2911 continue; 2912 } else { 2913 btrfs_set_super_bytenr(sb, bytenr); 2914 2915 crc = ~(u32)0; 2916 crc = btrfs_csum_data(NULL, (char *)sb + 2917 BTRFS_CSUM_SIZE, crc, 2918 BTRFS_SUPER_INFO_SIZE - 2919 BTRFS_CSUM_SIZE); 2920 btrfs_csum_final(crc, sb->csum); 2921 2922 /* 2923 * one reference for us, and we leave it for the 2924 * caller 2925 */ 2926 bh = __getblk(device->bdev, bytenr / 4096, 2927 BTRFS_SUPER_INFO_SIZE); 2928 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2929 2930 /* one reference for submit_bh */ 2931 get_bh(bh); 2932 2933 set_buffer_uptodate(bh); 2934 lock_buffer(bh); 2935 bh->b_end_io = btrfs_end_buffer_write_sync; 2936 bh->b_private = device; 2937 } 2938 2939 /* 2940 * we fua the first super. The others we allow 2941 * to go down lazy. 2942 */ 2943 ret = btrfsic_submit_bh(WRITE_FUA, bh); 2944 if (ret) 2945 errors++; 2946 } 2947 return errors < i ? 0 : -1; 2948 } 2949 2950 /* 2951 * endio for the write_dev_flush, this will wake anyone waiting 2952 * for the barrier when it is done 2953 */ 2954 static void btrfs_end_empty_barrier(struct bio *bio, int err) 2955 { 2956 if (err) { 2957 if (err == -EOPNOTSUPP) 2958 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2959 clear_bit(BIO_UPTODATE, &bio->bi_flags); 2960 } 2961 if (bio->bi_private) 2962 complete(bio->bi_private); 2963 bio_put(bio); 2964 } 2965 2966 /* 2967 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 2968 * sent down. With wait == 1, it waits for the previous flush. 2969 * 2970 * any device where the flush fails with eopnotsupp are flagged as not-barrier 2971 * capable 2972 */ 2973 static int write_dev_flush(struct btrfs_device *device, int wait) 2974 { 2975 struct bio *bio; 2976 int ret = 0; 2977 2978 if (device->nobarriers) 2979 return 0; 2980 2981 if (wait) { 2982 bio = device->flush_bio; 2983 if (!bio) 2984 return 0; 2985 2986 wait_for_completion(&device->flush_wait); 2987 2988 if (bio_flagged(bio, BIO_EOPNOTSUPP)) { 2989 printk_in_rcu("btrfs: disabling barriers on dev %s\n", 2990 rcu_str_deref(device->name)); 2991 device->nobarriers = 1; 2992 } else if (!bio_flagged(bio, BIO_UPTODATE)) { 2993 ret = -EIO; 2994 btrfs_dev_stat_inc_and_print(device, 2995 BTRFS_DEV_STAT_FLUSH_ERRS); 2996 } 2997 2998 /* drop the reference from the wait == 0 run */ 2999 bio_put(bio); 3000 device->flush_bio = NULL; 3001 3002 return ret; 3003 } 3004 3005 /* 3006 * one reference for us, and we leave it for the 3007 * caller 3008 */ 3009 device->flush_bio = NULL; 3010 bio = bio_alloc(GFP_NOFS, 0); 3011 if (!bio) 3012 return -ENOMEM; 3013 3014 bio->bi_end_io = btrfs_end_empty_barrier; 3015 bio->bi_bdev = device->bdev; 3016 init_completion(&device->flush_wait); 3017 bio->bi_private = &device->flush_wait; 3018 device->flush_bio = bio; 3019 3020 bio_get(bio); 3021 btrfsic_submit_bio(WRITE_FLUSH, bio); 3022 3023 return 0; 3024 } 3025 3026 /* 3027 * send an empty flush down to each device in parallel, 3028 * then wait for them 3029 */ 3030 static int barrier_all_devices(struct btrfs_fs_info *info) 3031 { 3032 struct list_head *head; 3033 struct btrfs_device *dev; 3034 int errors_send = 0; 3035 int errors_wait = 0; 3036 int ret; 3037 3038 /* send down all the barriers */ 3039 head = &info->fs_devices->devices; 3040 list_for_each_entry_rcu(dev, head, dev_list) { 3041 if (!dev->bdev) { 3042 errors_send++; 3043 continue; 3044 } 3045 if (!dev->in_fs_metadata || !dev->writeable) 3046 continue; 3047 3048 ret = write_dev_flush(dev, 0); 3049 if (ret) 3050 errors_send++; 3051 } 3052 3053 /* wait for all the barriers */ 3054 list_for_each_entry_rcu(dev, head, dev_list) { 3055 if (!dev->bdev) { 3056 errors_wait++; 3057 continue; 3058 } 3059 if (!dev->in_fs_metadata || !dev->writeable) 3060 continue; 3061 3062 ret = write_dev_flush(dev, 1); 3063 if (ret) 3064 errors_wait++; 3065 } 3066 if (errors_send > info->num_tolerated_disk_barrier_failures || 3067 errors_wait > info->num_tolerated_disk_barrier_failures) 3068 return -EIO; 3069 return 0; 3070 } 3071 3072 int btrfs_calc_num_tolerated_disk_barrier_failures( 3073 struct btrfs_fs_info *fs_info) 3074 { 3075 struct btrfs_ioctl_space_info space; 3076 struct btrfs_space_info *sinfo; 3077 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3078 BTRFS_BLOCK_GROUP_SYSTEM, 3079 BTRFS_BLOCK_GROUP_METADATA, 3080 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3081 int num_types = 4; 3082 int i; 3083 int c; 3084 int num_tolerated_disk_barrier_failures = 3085 (int)fs_info->fs_devices->num_devices; 3086 3087 for (i = 0; i < num_types; i++) { 3088 struct btrfs_space_info *tmp; 3089 3090 sinfo = NULL; 3091 rcu_read_lock(); 3092 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3093 if (tmp->flags == types[i]) { 3094 sinfo = tmp; 3095 break; 3096 } 3097 } 3098 rcu_read_unlock(); 3099 3100 if (!sinfo) 3101 continue; 3102 3103 down_read(&sinfo->groups_sem); 3104 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3105 if (!list_empty(&sinfo->block_groups[c])) { 3106 u64 flags; 3107 3108 btrfs_get_block_group_info( 3109 &sinfo->block_groups[c], &space); 3110 if (space.total_bytes == 0 || 3111 space.used_bytes == 0) 3112 continue; 3113 flags = space.flags; 3114 /* 3115 * return 3116 * 0: if dup, single or RAID0 is configured for 3117 * any of metadata, system or data, else 3118 * 1: if RAID5 is configured, or if RAID1 or 3119 * RAID10 is configured and only two mirrors 3120 * are used, else 3121 * 2: if RAID6 is configured, else 3122 * num_mirrors - 1: if RAID1 or RAID10 is 3123 * configured and more than 3124 * 2 mirrors are used. 3125 */ 3126 if (num_tolerated_disk_barrier_failures > 0 && 3127 ((flags & (BTRFS_BLOCK_GROUP_DUP | 3128 BTRFS_BLOCK_GROUP_RAID0)) || 3129 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) 3130 == 0))) 3131 num_tolerated_disk_barrier_failures = 0; 3132 else if (num_tolerated_disk_barrier_failures > 1) { 3133 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3134 BTRFS_BLOCK_GROUP_RAID5 | 3135 BTRFS_BLOCK_GROUP_RAID10)) { 3136 num_tolerated_disk_barrier_failures = 1; 3137 } else if (flags & 3138 BTRFS_BLOCK_GROUP_RAID5) { 3139 num_tolerated_disk_barrier_failures = 2; 3140 } 3141 } 3142 } 3143 } 3144 up_read(&sinfo->groups_sem); 3145 } 3146 3147 return num_tolerated_disk_barrier_failures; 3148 } 3149 3150 int write_all_supers(struct btrfs_root *root, int max_mirrors) 3151 { 3152 struct list_head *head; 3153 struct btrfs_device *dev; 3154 struct btrfs_super_block *sb; 3155 struct btrfs_dev_item *dev_item; 3156 int ret; 3157 int do_barriers; 3158 int max_errors; 3159 int total_errors = 0; 3160 u64 flags; 3161 3162 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3163 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3164 backup_super_roots(root->fs_info); 3165 3166 sb = root->fs_info->super_for_commit; 3167 dev_item = &sb->dev_item; 3168 3169 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3170 head = &root->fs_info->fs_devices->devices; 3171 3172 if (do_barriers) { 3173 ret = barrier_all_devices(root->fs_info); 3174 if (ret) { 3175 mutex_unlock( 3176 &root->fs_info->fs_devices->device_list_mutex); 3177 btrfs_error(root->fs_info, ret, 3178 "errors while submitting device barriers."); 3179 return ret; 3180 } 3181 } 3182 3183 list_for_each_entry_rcu(dev, head, dev_list) { 3184 if (!dev->bdev) { 3185 total_errors++; 3186 continue; 3187 } 3188 if (!dev->in_fs_metadata || !dev->writeable) 3189 continue; 3190 3191 btrfs_set_stack_device_generation(dev_item, 0); 3192 btrfs_set_stack_device_type(dev_item, dev->type); 3193 btrfs_set_stack_device_id(dev_item, dev->devid); 3194 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 3195 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 3196 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3197 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3198 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3199 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3200 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3201 3202 flags = btrfs_super_flags(sb); 3203 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3204 3205 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3206 if (ret) 3207 total_errors++; 3208 } 3209 if (total_errors > max_errors) { 3210 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 3211 total_errors); 3212 3213 /* This shouldn't happen. FUA is masked off if unsupported */ 3214 BUG(); 3215 } 3216 3217 total_errors = 0; 3218 list_for_each_entry_rcu(dev, head, dev_list) { 3219 if (!dev->bdev) 3220 continue; 3221 if (!dev->in_fs_metadata || !dev->writeable) 3222 continue; 3223 3224 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3225 if (ret) 3226 total_errors++; 3227 } 3228 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3229 if (total_errors > max_errors) { 3230 btrfs_error(root->fs_info, -EIO, 3231 "%d errors while writing supers", total_errors); 3232 return -EIO; 3233 } 3234 return 0; 3235 } 3236 3237 int write_ctree_super(struct btrfs_trans_handle *trans, 3238 struct btrfs_root *root, int max_mirrors) 3239 { 3240 int ret; 3241 3242 ret = write_all_supers(root, max_mirrors); 3243 return ret; 3244 } 3245 3246 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 3247 { 3248 spin_lock(&fs_info->fs_roots_radix_lock); 3249 radix_tree_delete(&fs_info->fs_roots_radix, 3250 (unsigned long)root->root_key.objectid); 3251 spin_unlock(&fs_info->fs_roots_radix_lock); 3252 3253 if (btrfs_root_refs(&root->root_item) == 0) 3254 synchronize_srcu(&fs_info->subvol_srcu); 3255 3256 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 3257 btrfs_free_log(NULL, root); 3258 btrfs_free_log_root_tree(NULL, fs_info); 3259 } 3260 3261 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3262 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3263 free_fs_root(root); 3264 } 3265 3266 static void free_fs_root(struct btrfs_root *root) 3267 { 3268 iput(root->cache_inode); 3269 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3270 if (root->anon_dev) 3271 free_anon_bdev(root->anon_dev); 3272 free_extent_buffer(root->node); 3273 free_extent_buffer(root->commit_root); 3274 kfree(root->free_ino_ctl); 3275 kfree(root->free_ino_pinned); 3276 kfree(root->name); 3277 kfree(root); 3278 } 3279 3280 static void del_fs_roots(struct btrfs_fs_info *fs_info) 3281 { 3282 int ret; 3283 struct btrfs_root *gang[8]; 3284 int i; 3285 3286 while (!list_empty(&fs_info->dead_roots)) { 3287 gang[0] = list_entry(fs_info->dead_roots.next, 3288 struct btrfs_root, root_list); 3289 list_del(&gang[0]->root_list); 3290 3291 if (gang[0]->in_radix) { 3292 btrfs_free_fs_root(fs_info, gang[0]); 3293 } else { 3294 free_extent_buffer(gang[0]->node); 3295 free_extent_buffer(gang[0]->commit_root); 3296 kfree(gang[0]); 3297 } 3298 } 3299 3300 while (1) { 3301 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3302 (void **)gang, 0, 3303 ARRAY_SIZE(gang)); 3304 if (!ret) 3305 break; 3306 for (i = 0; i < ret; i++) 3307 btrfs_free_fs_root(fs_info, gang[i]); 3308 } 3309 } 3310 3311 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3312 { 3313 u64 root_objectid = 0; 3314 struct btrfs_root *gang[8]; 3315 int i; 3316 int ret; 3317 3318 while (1) { 3319 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3320 (void **)gang, root_objectid, 3321 ARRAY_SIZE(gang)); 3322 if (!ret) 3323 break; 3324 3325 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3326 for (i = 0; i < ret; i++) { 3327 int err; 3328 3329 root_objectid = gang[i]->root_key.objectid; 3330 err = btrfs_orphan_cleanup(gang[i]); 3331 if (err) 3332 return err; 3333 } 3334 root_objectid++; 3335 } 3336 return 0; 3337 } 3338 3339 int btrfs_commit_super(struct btrfs_root *root) 3340 { 3341 struct btrfs_trans_handle *trans; 3342 int ret; 3343 3344 mutex_lock(&root->fs_info->cleaner_mutex); 3345 btrfs_run_delayed_iputs(root); 3346 btrfs_clean_old_snapshots(root); 3347 mutex_unlock(&root->fs_info->cleaner_mutex); 3348 3349 /* wait until ongoing cleanup work done */ 3350 down_write(&root->fs_info->cleanup_work_sem); 3351 up_write(&root->fs_info->cleanup_work_sem); 3352 3353 trans = btrfs_join_transaction(root); 3354 if (IS_ERR(trans)) 3355 return PTR_ERR(trans); 3356 ret = btrfs_commit_transaction(trans, root); 3357 if (ret) 3358 return ret; 3359 /* run commit again to drop the original snapshot */ 3360 trans = btrfs_join_transaction(root); 3361 if (IS_ERR(trans)) 3362 return PTR_ERR(trans); 3363 ret = btrfs_commit_transaction(trans, root); 3364 if (ret) 3365 return ret; 3366 ret = btrfs_write_and_wait_transaction(NULL, root); 3367 if (ret) { 3368 btrfs_error(root->fs_info, ret, 3369 "Failed to sync btree inode to disk."); 3370 return ret; 3371 } 3372 3373 ret = write_ctree_super(NULL, root, 0); 3374 return ret; 3375 } 3376 3377 int close_ctree(struct btrfs_root *root) 3378 { 3379 struct btrfs_fs_info *fs_info = root->fs_info; 3380 int ret; 3381 3382 fs_info->closing = 1; 3383 smp_mb(); 3384 3385 /* pause restriper - we want to resume on mount */ 3386 btrfs_pause_balance(fs_info); 3387 3388 btrfs_dev_replace_suspend_for_unmount(fs_info); 3389 3390 btrfs_scrub_cancel(fs_info); 3391 3392 /* wait for any defraggers to finish */ 3393 wait_event(fs_info->transaction_wait, 3394 (atomic_read(&fs_info->defrag_running) == 0)); 3395 3396 /* clear out the rbtree of defraggable inodes */ 3397 btrfs_cleanup_defrag_inodes(fs_info); 3398 3399 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3400 ret = btrfs_commit_super(root); 3401 if (ret) 3402 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 3403 } 3404 3405 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3406 btrfs_error_commit_super(root); 3407 3408 btrfs_put_block_group_cache(fs_info); 3409 3410 kthread_stop(fs_info->transaction_kthread); 3411 kthread_stop(fs_info->cleaner_kthread); 3412 3413 fs_info->closing = 2; 3414 smp_mb(); 3415 3416 btrfs_free_qgroup_config(root->fs_info); 3417 3418 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3419 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n", 3420 percpu_counter_sum(&fs_info->delalloc_bytes)); 3421 } 3422 3423 free_extent_buffer(fs_info->extent_root->node); 3424 free_extent_buffer(fs_info->extent_root->commit_root); 3425 free_extent_buffer(fs_info->tree_root->node); 3426 free_extent_buffer(fs_info->tree_root->commit_root); 3427 free_extent_buffer(fs_info->chunk_root->node); 3428 free_extent_buffer(fs_info->chunk_root->commit_root); 3429 free_extent_buffer(fs_info->dev_root->node); 3430 free_extent_buffer(fs_info->dev_root->commit_root); 3431 free_extent_buffer(fs_info->csum_root->node); 3432 free_extent_buffer(fs_info->csum_root->commit_root); 3433 if (fs_info->quota_root) { 3434 free_extent_buffer(fs_info->quota_root->node); 3435 free_extent_buffer(fs_info->quota_root->commit_root); 3436 } 3437 3438 btrfs_free_block_groups(fs_info); 3439 3440 del_fs_roots(fs_info); 3441 3442 iput(fs_info->btree_inode); 3443 3444 btrfs_stop_workers(&fs_info->generic_worker); 3445 btrfs_stop_workers(&fs_info->fixup_workers); 3446 btrfs_stop_workers(&fs_info->delalloc_workers); 3447 btrfs_stop_workers(&fs_info->workers); 3448 btrfs_stop_workers(&fs_info->endio_workers); 3449 btrfs_stop_workers(&fs_info->endio_meta_workers); 3450 btrfs_stop_workers(&fs_info->endio_raid56_workers); 3451 btrfs_stop_workers(&fs_info->rmw_workers); 3452 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 3453 btrfs_stop_workers(&fs_info->endio_write_workers); 3454 btrfs_stop_workers(&fs_info->endio_freespace_worker); 3455 btrfs_stop_workers(&fs_info->submit_workers); 3456 btrfs_stop_workers(&fs_info->delayed_workers); 3457 btrfs_stop_workers(&fs_info->caching_workers); 3458 btrfs_stop_workers(&fs_info->readahead_workers); 3459 btrfs_stop_workers(&fs_info->flush_workers); 3460 3461 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3462 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3463 btrfsic_unmount(root, fs_info->fs_devices); 3464 #endif 3465 3466 btrfs_close_devices(fs_info->fs_devices); 3467 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3468 3469 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3470 percpu_counter_destroy(&fs_info->delalloc_bytes); 3471 bdi_destroy(&fs_info->bdi); 3472 cleanup_srcu_struct(&fs_info->subvol_srcu); 3473 3474 btrfs_free_stripe_hash_table(fs_info); 3475 3476 return 0; 3477 } 3478 3479 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3480 int atomic) 3481 { 3482 int ret; 3483 struct inode *btree_inode = buf->pages[0]->mapping->host; 3484 3485 ret = extent_buffer_uptodate(buf); 3486 if (!ret) 3487 return ret; 3488 3489 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3490 parent_transid, atomic); 3491 if (ret == -EAGAIN) 3492 return ret; 3493 return !ret; 3494 } 3495 3496 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3497 { 3498 return set_extent_buffer_uptodate(buf); 3499 } 3500 3501 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3502 { 3503 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3504 u64 transid = btrfs_header_generation(buf); 3505 int was_dirty; 3506 3507 btrfs_assert_tree_locked(buf); 3508 if (transid != root->fs_info->generation) 3509 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 3510 "found %llu running %llu\n", 3511 (unsigned long long)buf->start, 3512 (unsigned long long)transid, 3513 (unsigned long long)root->fs_info->generation); 3514 was_dirty = set_extent_buffer_dirty(buf); 3515 if (!was_dirty) 3516 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 3517 buf->len, 3518 root->fs_info->dirty_metadata_batch); 3519 } 3520 3521 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 3522 int flush_delayed) 3523 { 3524 /* 3525 * looks as though older kernels can get into trouble with 3526 * this code, they end up stuck in balance_dirty_pages forever 3527 */ 3528 int ret; 3529 3530 if (current->flags & PF_MEMALLOC) 3531 return; 3532 3533 if (flush_delayed) 3534 btrfs_balance_delayed_items(root); 3535 3536 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 3537 BTRFS_DIRTY_METADATA_THRESH); 3538 if (ret > 0) { 3539 balance_dirty_pages_ratelimited( 3540 root->fs_info->btree_inode->i_mapping); 3541 } 3542 return; 3543 } 3544 3545 void btrfs_btree_balance_dirty(struct btrfs_root *root) 3546 { 3547 __btrfs_btree_balance_dirty(root, 1); 3548 } 3549 3550 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 3551 { 3552 __btrfs_btree_balance_dirty(root, 0); 3553 } 3554 3555 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3556 { 3557 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3558 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3559 } 3560 3561 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3562 int read_only) 3563 { 3564 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) { 3565 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n"); 3566 return -EINVAL; 3567 } 3568 3569 if (read_only) 3570 return 0; 3571 3572 return 0; 3573 } 3574 3575 void btrfs_error_commit_super(struct btrfs_root *root) 3576 { 3577 mutex_lock(&root->fs_info->cleaner_mutex); 3578 btrfs_run_delayed_iputs(root); 3579 mutex_unlock(&root->fs_info->cleaner_mutex); 3580 3581 down_write(&root->fs_info->cleanup_work_sem); 3582 up_write(&root->fs_info->cleanup_work_sem); 3583 3584 /* cleanup FS via transaction */ 3585 btrfs_cleanup_transaction(root); 3586 } 3587 3588 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t, 3589 struct btrfs_root *root) 3590 { 3591 struct btrfs_inode *btrfs_inode; 3592 struct list_head splice; 3593 3594 INIT_LIST_HEAD(&splice); 3595 3596 mutex_lock(&root->fs_info->ordered_operations_mutex); 3597 spin_lock(&root->fs_info->ordered_extent_lock); 3598 3599 list_splice_init(&t->ordered_operations, &splice); 3600 while (!list_empty(&splice)) { 3601 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3602 ordered_operations); 3603 3604 list_del_init(&btrfs_inode->ordered_operations); 3605 3606 btrfs_invalidate_inodes(btrfs_inode->root); 3607 } 3608 3609 spin_unlock(&root->fs_info->ordered_extent_lock); 3610 mutex_unlock(&root->fs_info->ordered_operations_mutex); 3611 } 3612 3613 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 3614 { 3615 struct btrfs_ordered_extent *ordered; 3616 3617 spin_lock(&root->fs_info->ordered_extent_lock); 3618 /* 3619 * This will just short circuit the ordered completion stuff which will 3620 * make sure the ordered extent gets properly cleaned up. 3621 */ 3622 list_for_each_entry(ordered, &root->fs_info->ordered_extents, 3623 root_extent_list) 3624 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 3625 spin_unlock(&root->fs_info->ordered_extent_lock); 3626 } 3627 3628 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 3629 struct btrfs_root *root) 3630 { 3631 struct rb_node *node; 3632 struct btrfs_delayed_ref_root *delayed_refs; 3633 struct btrfs_delayed_ref_node *ref; 3634 int ret = 0; 3635 3636 delayed_refs = &trans->delayed_refs; 3637 3638 spin_lock(&delayed_refs->lock); 3639 if (delayed_refs->num_entries == 0) { 3640 spin_unlock(&delayed_refs->lock); 3641 printk(KERN_INFO "delayed_refs has NO entry\n"); 3642 return ret; 3643 } 3644 3645 while ((node = rb_first(&delayed_refs->root)) != NULL) { 3646 struct btrfs_delayed_ref_head *head = NULL; 3647 3648 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 3649 atomic_set(&ref->refs, 1); 3650 if (btrfs_delayed_ref_is_head(ref)) { 3651 3652 head = btrfs_delayed_node_to_head(ref); 3653 if (!mutex_trylock(&head->mutex)) { 3654 atomic_inc(&ref->refs); 3655 spin_unlock(&delayed_refs->lock); 3656 3657 /* Need to wait for the delayed ref to run */ 3658 mutex_lock(&head->mutex); 3659 mutex_unlock(&head->mutex); 3660 btrfs_put_delayed_ref(ref); 3661 3662 spin_lock(&delayed_refs->lock); 3663 continue; 3664 } 3665 3666 btrfs_free_delayed_extent_op(head->extent_op); 3667 delayed_refs->num_heads--; 3668 if (list_empty(&head->cluster)) 3669 delayed_refs->num_heads_ready--; 3670 list_del_init(&head->cluster); 3671 } 3672 3673 ref->in_tree = 0; 3674 rb_erase(&ref->rb_node, &delayed_refs->root); 3675 delayed_refs->num_entries--; 3676 if (head) 3677 mutex_unlock(&head->mutex); 3678 spin_unlock(&delayed_refs->lock); 3679 btrfs_put_delayed_ref(ref); 3680 3681 cond_resched(); 3682 spin_lock(&delayed_refs->lock); 3683 } 3684 3685 spin_unlock(&delayed_refs->lock); 3686 3687 return ret; 3688 } 3689 3690 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t) 3691 { 3692 struct btrfs_pending_snapshot *snapshot; 3693 struct list_head splice; 3694 3695 INIT_LIST_HEAD(&splice); 3696 3697 list_splice_init(&t->pending_snapshots, &splice); 3698 3699 while (!list_empty(&splice)) { 3700 snapshot = list_entry(splice.next, 3701 struct btrfs_pending_snapshot, 3702 list); 3703 snapshot->error = -ECANCELED; 3704 list_del_init(&snapshot->list); 3705 } 3706 } 3707 3708 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 3709 { 3710 struct btrfs_inode *btrfs_inode; 3711 struct list_head splice; 3712 3713 INIT_LIST_HEAD(&splice); 3714 3715 spin_lock(&root->fs_info->delalloc_lock); 3716 list_splice_init(&root->fs_info->delalloc_inodes, &splice); 3717 3718 while (!list_empty(&splice)) { 3719 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3720 delalloc_inodes); 3721 3722 list_del_init(&btrfs_inode->delalloc_inodes); 3723 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 3724 &btrfs_inode->runtime_flags); 3725 3726 btrfs_invalidate_inodes(btrfs_inode->root); 3727 } 3728 3729 spin_unlock(&root->fs_info->delalloc_lock); 3730 } 3731 3732 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 3733 struct extent_io_tree *dirty_pages, 3734 int mark) 3735 { 3736 int ret; 3737 struct page *page; 3738 struct inode *btree_inode = root->fs_info->btree_inode; 3739 struct extent_buffer *eb; 3740 u64 start = 0; 3741 u64 end; 3742 u64 offset; 3743 unsigned long index; 3744 3745 while (1) { 3746 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 3747 mark, NULL); 3748 if (ret) 3749 break; 3750 3751 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 3752 while (start <= end) { 3753 index = start >> PAGE_CACHE_SHIFT; 3754 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 3755 page = find_get_page(btree_inode->i_mapping, index); 3756 if (!page) 3757 continue; 3758 offset = page_offset(page); 3759 3760 spin_lock(&dirty_pages->buffer_lock); 3761 eb = radix_tree_lookup( 3762 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer, 3763 offset >> PAGE_CACHE_SHIFT); 3764 spin_unlock(&dirty_pages->buffer_lock); 3765 if (eb) 3766 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY, 3767 &eb->bflags); 3768 if (PageWriteback(page)) 3769 end_page_writeback(page); 3770 3771 lock_page(page); 3772 if (PageDirty(page)) { 3773 clear_page_dirty_for_io(page); 3774 spin_lock_irq(&page->mapping->tree_lock); 3775 radix_tree_tag_clear(&page->mapping->page_tree, 3776 page_index(page), 3777 PAGECACHE_TAG_DIRTY); 3778 spin_unlock_irq(&page->mapping->tree_lock); 3779 } 3780 3781 unlock_page(page); 3782 page_cache_release(page); 3783 } 3784 } 3785 3786 return ret; 3787 } 3788 3789 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 3790 struct extent_io_tree *pinned_extents) 3791 { 3792 struct extent_io_tree *unpin; 3793 u64 start; 3794 u64 end; 3795 int ret; 3796 bool loop = true; 3797 3798 unpin = pinned_extents; 3799 again: 3800 while (1) { 3801 ret = find_first_extent_bit(unpin, 0, &start, &end, 3802 EXTENT_DIRTY, NULL); 3803 if (ret) 3804 break; 3805 3806 /* opt_discard */ 3807 if (btrfs_test_opt(root, DISCARD)) 3808 ret = btrfs_error_discard_extent(root, start, 3809 end + 1 - start, 3810 NULL); 3811 3812 clear_extent_dirty(unpin, start, end, GFP_NOFS); 3813 btrfs_error_unpin_extent_range(root, start, end); 3814 cond_resched(); 3815 } 3816 3817 if (loop) { 3818 if (unpin == &root->fs_info->freed_extents[0]) 3819 unpin = &root->fs_info->freed_extents[1]; 3820 else 3821 unpin = &root->fs_info->freed_extents[0]; 3822 loop = false; 3823 goto again; 3824 } 3825 3826 return 0; 3827 } 3828 3829 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 3830 struct btrfs_root *root) 3831 { 3832 btrfs_destroy_delayed_refs(cur_trans, root); 3833 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 3834 cur_trans->dirty_pages.dirty_bytes); 3835 3836 /* FIXME: cleanup wait for commit */ 3837 cur_trans->in_commit = 1; 3838 cur_trans->blocked = 1; 3839 wake_up(&root->fs_info->transaction_blocked_wait); 3840 3841 btrfs_evict_pending_snapshots(cur_trans); 3842 3843 cur_trans->blocked = 0; 3844 wake_up(&root->fs_info->transaction_wait); 3845 3846 cur_trans->commit_done = 1; 3847 wake_up(&cur_trans->commit_wait); 3848 3849 btrfs_destroy_delayed_inodes(root); 3850 btrfs_assert_delayed_root_empty(root); 3851 3852 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 3853 EXTENT_DIRTY); 3854 btrfs_destroy_pinned_extent(root, 3855 root->fs_info->pinned_extents); 3856 3857 /* 3858 memset(cur_trans, 0, sizeof(*cur_trans)); 3859 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 3860 */ 3861 } 3862 3863 int btrfs_cleanup_transaction(struct btrfs_root *root) 3864 { 3865 struct btrfs_transaction *t; 3866 LIST_HEAD(list); 3867 3868 mutex_lock(&root->fs_info->transaction_kthread_mutex); 3869 3870 spin_lock(&root->fs_info->trans_lock); 3871 list_splice_init(&root->fs_info->trans_list, &list); 3872 root->fs_info->trans_no_join = 1; 3873 spin_unlock(&root->fs_info->trans_lock); 3874 3875 while (!list_empty(&list)) { 3876 t = list_entry(list.next, struct btrfs_transaction, list); 3877 3878 btrfs_destroy_ordered_operations(t, root); 3879 3880 btrfs_destroy_ordered_extents(root); 3881 3882 btrfs_destroy_delayed_refs(t, root); 3883 3884 btrfs_block_rsv_release(root, 3885 &root->fs_info->trans_block_rsv, 3886 t->dirty_pages.dirty_bytes); 3887 3888 /* FIXME: cleanup wait for commit */ 3889 t->in_commit = 1; 3890 t->blocked = 1; 3891 smp_mb(); 3892 if (waitqueue_active(&root->fs_info->transaction_blocked_wait)) 3893 wake_up(&root->fs_info->transaction_blocked_wait); 3894 3895 btrfs_evict_pending_snapshots(t); 3896 3897 t->blocked = 0; 3898 smp_mb(); 3899 if (waitqueue_active(&root->fs_info->transaction_wait)) 3900 wake_up(&root->fs_info->transaction_wait); 3901 3902 t->commit_done = 1; 3903 smp_mb(); 3904 if (waitqueue_active(&t->commit_wait)) 3905 wake_up(&t->commit_wait); 3906 3907 btrfs_destroy_delayed_inodes(root); 3908 btrfs_assert_delayed_root_empty(root); 3909 3910 btrfs_destroy_delalloc_inodes(root); 3911 3912 spin_lock(&root->fs_info->trans_lock); 3913 root->fs_info->running_transaction = NULL; 3914 spin_unlock(&root->fs_info->trans_lock); 3915 3916 btrfs_destroy_marked_extents(root, &t->dirty_pages, 3917 EXTENT_DIRTY); 3918 3919 btrfs_destroy_pinned_extent(root, 3920 root->fs_info->pinned_extents); 3921 3922 atomic_set(&t->use_count, 0); 3923 list_del_init(&t->list); 3924 memset(t, 0, sizeof(*t)); 3925 kmem_cache_free(btrfs_transaction_cachep, t); 3926 } 3927 3928 spin_lock(&root->fs_info->trans_lock); 3929 root->fs_info->trans_no_join = 0; 3930 spin_unlock(&root->fs_info->trans_lock); 3931 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 3932 3933 return 0; 3934 } 3935 3936 static struct extent_io_ops btree_extent_io_ops = { 3937 .readpage_end_io_hook = btree_readpage_end_io_hook, 3938 .readpage_io_failed_hook = btree_io_failed_hook, 3939 .submit_bio_hook = btree_submit_bio_hook, 3940 /* note we're sharing with inode.c for the merge bio hook */ 3941 .merge_bio_hook = btrfs_merge_bio_hook, 3942 }; 3943