xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 97da55fc)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 
51 #ifdef CONFIG_X86
52 #include <asm/cpufeature.h>
53 #endif
54 
55 static struct extent_io_ops btree_extent_io_ops;
56 static void end_workqueue_fn(struct btrfs_work *work);
57 static void free_fs_root(struct btrfs_root *root);
58 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
59 				    int read_only);
60 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
61 					     struct btrfs_root *root);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 				      struct btrfs_root *root);
65 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
67 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
68 					struct extent_io_tree *dirty_pages,
69 					int mark);
70 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
71 				       struct extent_io_tree *pinned_extents);
72 
73 /*
74  * end_io_wq structs are used to do processing in task context when an IO is
75  * complete.  This is used during reads to verify checksums, and it is used
76  * by writes to insert metadata for new file extents after IO is complete.
77  */
78 struct end_io_wq {
79 	struct bio *bio;
80 	bio_end_io_t *end_io;
81 	void *private;
82 	struct btrfs_fs_info *info;
83 	int error;
84 	int metadata;
85 	struct list_head list;
86 	struct btrfs_work work;
87 };
88 
89 /*
90  * async submit bios are used to offload expensive checksumming
91  * onto the worker threads.  They checksum file and metadata bios
92  * just before they are sent down the IO stack.
93  */
94 struct async_submit_bio {
95 	struct inode *inode;
96 	struct bio *bio;
97 	struct list_head list;
98 	extent_submit_bio_hook_t *submit_bio_start;
99 	extent_submit_bio_hook_t *submit_bio_done;
100 	int rw;
101 	int mirror_num;
102 	unsigned long bio_flags;
103 	/*
104 	 * bio_offset is optional, can be used if the pages in the bio
105 	 * can't tell us where in the file the bio should go
106 	 */
107 	u64 bio_offset;
108 	struct btrfs_work work;
109 	int error;
110 };
111 
112 /*
113  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
114  * eb, the lockdep key is determined by the btrfs_root it belongs to and
115  * the level the eb occupies in the tree.
116  *
117  * Different roots are used for different purposes and may nest inside each
118  * other and they require separate keysets.  As lockdep keys should be
119  * static, assign keysets according to the purpose of the root as indicated
120  * by btrfs_root->objectid.  This ensures that all special purpose roots
121  * have separate keysets.
122  *
123  * Lock-nesting across peer nodes is always done with the immediate parent
124  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
125  * subclass to avoid triggering lockdep warning in such cases.
126  *
127  * The key is set by the readpage_end_io_hook after the buffer has passed
128  * csum validation but before the pages are unlocked.  It is also set by
129  * btrfs_init_new_buffer on freshly allocated blocks.
130  *
131  * We also add a check to make sure the highest level of the tree is the
132  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
133  * needs update as well.
134  */
135 #ifdef CONFIG_DEBUG_LOCK_ALLOC
136 # if BTRFS_MAX_LEVEL != 8
137 #  error
138 # endif
139 
140 static struct btrfs_lockdep_keyset {
141 	u64			id;		/* root objectid */
142 	const char		*name_stem;	/* lock name stem */
143 	char			names[BTRFS_MAX_LEVEL + 1][20];
144 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
145 } btrfs_lockdep_keysets[] = {
146 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
147 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
148 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
149 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
150 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
151 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
152 	{ .id = BTRFS_ORPHAN_OBJECTID,		.name_stem = "orphan"	},
153 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
154 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
155 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
156 	{ .id = 0,				.name_stem = "tree"	},
157 };
158 
159 void __init btrfs_init_lockdep(void)
160 {
161 	int i, j;
162 
163 	/* initialize lockdep class names */
164 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
165 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
166 
167 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
168 			snprintf(ks->names[j], sizeof(ks->names[j]),
169 				 "btrfs-%s-%02d", ks->name_stem, j);
170 	}
171 }
172 
173 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
174 				    int level)
175 {
176 	struct btrfs_lockdep_keyset *ks;
177 
178 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
179 
180 	/* find the matching keyset, id 0 is the default entry */
181 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
182 		if (ks->id == objectid)
183 			break;
184 
185 	lockdep_set_class_and_name(&eb->lock,
186 				   &ks->keys[level], ks->names[level]);
187 }
188 
189 #endif
190 
191 /*
192  * extents on the btree inode are pretty simple, there's one extent
193  * that covers the entire device
194  */
195 static struct extent_map *btree_get_extent(struct inode *inode,
196 		struct page *page, size_t pg_offset, u64 start, u64 len,
197 		int create)
198 {
199 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
200 	struct extent_map *em;
201 	int ret;
202 
203 	read_lock(&em_tree->lock);
204 	em = lookup_extent_mapping(em_tree, start, len);
205 	if (em) {
206 		em->bdev =
207 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
208 		read_unlock(&em_tree->lock);
209 		goto out;
210 	}
211 	read_unlock(&em_tree->lock);
212 
213 	em = alloc_extent_map();
214 	if (!em) {
215 		em = ERR_PTR(-ENOMEM);
216 		goto out;
217 	}
218 	em->start = 0;
219 	em->len = (u64)-1;
220 	em->block_len = (u64)-1;
221 	em->block_start = 0;
222 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
223 
224 	write_lock(&em_tree->lock);
225 	ret = add_extent_mapping(em_tree, em);
226 	if (ret == -EEXIST) {
227 		free_extent_map(em);
228 		em = lookup_extent_mapping(em_tree, start, len);
229 		if (!em)
230 			em = ERR_PTR(-EIO);
231 	} else if (ret) {
232 		free_extent_map(em);
233 		em = ERR_PTR(ret);
234 	}
235 	write_unlock(&em_tree->lock);
236 
237 out:
238 	return em;
239 }
240 
241 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
242 {
243 	return crc32c(seed, data, len);
244 }
245 
246 void btrfs_csum_final(u32 crc, char *result)
247 {
248 	put_unaligned_le32(~crc, result);
249 }
250 
251 /*
252  * compute the csum for a btree block, and either verify it or write it
253  * into the csum field of the block.
254  */
255 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
256 			   int verify)
257 {
258 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
259 	char *result = NULL;
260 	unsigned long len;
261 	unsigned long cur_len;
262 	unsigned long offset = BTRFS_CSUM_SIZE;
263 	char *kaddr;
264 	unsigned long map_start;
265 	unsigned long map_len;
266 	int err;
267 	u32 crc = ~(u32)0;
268 	unsigned long inline_result;
269 
270 	len = buf->len - offset;
271 	while (len > 0) {
272 		err = map_private_extent_buffer(buf, offset, 32,
273 					&kaddr, &map_start, &map_len);
274 		if (err)
275 			return 1;
276 		cur_len = min(len, map_len - (offset - map_start));
277 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
278 				      crc, cur_len);
279 		len -= cur_len;
280 		offset += cur_len;
281 	}
282 	if (csum_size > sizeof(inline_result)) {
283 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
284 		if (!result)
285 			return 1;
286 	} else {
287 		result = (char *)&inline_result;
288 	}
289 
290 	btrfs_csum_final(crc, result);
291 
292 	if (verify) {
293 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
294 			u32 val;
295 			u32 found = 0;
296 			memcpy(&found, result, csum_size);
297 
298 			read_extent_buffer(buf, &val, 0, csum_size);
299 			printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
300 				       "failed on %llu wanted %X found %X "
301 				       "level %d\n",
302 				       root->fs_info->sb->s_id,
303 				       (unsigned long long)buf->start, val, found,
304 				       btrfs_header_level(buf));
305 			if (result != (char *)&inline_result)
306 				kfree(result);
307 			return 1;
308 		}
309 	} else {
310 		write_extent_buffer(buf, result, 0, csum_size);
311 	}
312 	if (result != (char *)&inline_result)
313 		kfree(result);
314 	return 0;
315 }
316 
317 /*
318  * we can't consider a given block up to date unless the transid of the
319  * block matches the transid in the parent node's pointer.  This is how we
320  * detect blocks that either didn't get written at all or got written
321  * in the wrong place.
322  */
323 static int verify_parent_transid(struct extent_io_tree *io_tree,
324 				 struct extent_buffer *eb, u64 parent_transid,
325 				 int atomic)
326 {
327 	struct extent_state *cached_state = NULL;
328 	int ret;
329 
330 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331 		return 0;
332 
333 	if (atomic)
334 		return -EAGAIN;
335 
336 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
337 			 0, &cached_state);
338 	if (extent_buffer_uptodate(eb) &&
339 	    btrfs_header_generation(eb) == parent_transid) {
340 		ret = 0;
341 		goto out;
342 	}
343 	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
344 		       "found %llu\n",
345 		       (unsigned long long)eb->start,
346 		       (unsigned long long)parent_transid,
347 		       (unsigned long long)btrfs_header_generation(eb));
348 	ret = 1;
349 	clear_extent_buffer_uptodate(eb);
350 out:
351 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
352 			     &cached_state, GFP_NOFS);
353 	return ret;
354 }
355 
356 /*
357  * helper to read a given tree block, doing retries as required when
358  * the checksums don't match and we have alternate mirrors to try.
359  */
360 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
361 					  struct extent_buffer *eb,
362 					  u64 start, u64 parent_transid)
363 {
364 	struct extent_io_tree *io_tree;
365 	int failed = 0;
366 	int ret;
367 	int num_copies = 0;
368 	int mirror_num = 0;
369 	int failed_mirror = 0;
370 
371 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
372 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
373 	while (1) {
374 		ret = read_extent_buffer_pages(io_tree, eb, start,
375 					       WAIT_COMPLETE,
376 					       btree_get_extent, mirror_num);
377 		if (!ret) {
378 			if (!verify_parent_transid(io_tree, eb,
379 						   parent_transid, 0))
380 				break;
381 			else
382 				ret = -EIO;
383 		}
384 
385 		/*
386 		 * This buffer's crc is fine, but its contents are corrupted, so
387 		 * there is no reason to read the other copies, they won't be
388 		 * any less wrong.
389 		 */
390 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
391 			break;
392 
393 		num_copies = btrfs_num_copies(root->fs_info,
394 					      eb->start, eb->len);
395 		if (num_copies == 1)
396 			break;
397 
398 		if (!failed_mirror) {
399 			failed = 1;
400 			failed_mirror = eb->read_mirror;
401 		}
402 
403 		mirror_num++;
404 		if (mirror_num == failed_mirror)
405 			mirror_num++;
406 
407 		if (mirror_num > num_copies)
408 			break;
409 	}
410 
411 	if (failed && !ret && failed_mirror)
412 		repair_eb_io_failure(root, eb, failed_mirror);
413 
414 	return ret;
415 }
416 
417 /*
418  * checksum a dirty tree block before IO.  This has extra checks to make sure
419  * we only fill in the checksum field in the first page of a multi-page block
420  */
421 
422 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
423 {
424 	struct extent_io_tree *tree;
425 	u64 start = page_offset(page);
426 	u64 found_start;
427 	struct extent_buffer *eb;
428 
429 	tree = &BTRFS_I(page->mapping->host)->io_tree;
430 
431 	eb = (struct extent_buffer *)page->private;
432 	if (page != eb->pages[0])
433 		return 0;
434 	found_start = btrfs_header_bytenr(eb);
435 	if (found_start != start) {
436 		WARN_ON(1);
437 		return 0;
438 	}
439 	if (!PageUptodate(page)) {
440 		WARN_ON(1);
441 		return 0;
442 	}
443 	csum_tree_block(root, eb, 0);
444 	return 0;
445 }
446 
447 static int check_tree_block_fsid(struct btrfs_root *root,
448 				 struct extent_buffer *eb)
449 {
450 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
451 	u8 fsid[BTRFS_UUID_SIZE];
452 	int ret = 1;
453 
454 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
455 			   BTRFS_FSID_SIZE);
456 	while (fs_devices) {
457 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
458 			ret = 0;
459 			break;
460 		}
461 		fs_devices = fs_devices->seed;
462 	}
463 	return ret;
464 }
465 
466 #define CORRUPT(reason, eb, root, slot)				\
467 	printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu,"	\
468 	       "root=%llu, slot=%d\n", reason,			\
469 	       (unsigned long long)btrfs_header_bytenr(eb),	\
470 	       (unsigned long long)root->objectid, slot)
471 
472 static noinline int check_leaf(struct btrfs_root *root,
473 			       struct extent_buffer *leaf)
474 {
475 	struct btrfs_key key;
476 	struct btrfs_key leaf_key;
477 	u32 nritems = btrfs_header_nritems(leaf);
478 	int slot;
479 
480 	if (nritems == 0)
481 		return 0;
482 
483 	/* Check the 0 item */
484 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
485 	    BTRFS_LEAF_DATA_SIZE(root)) {
486 		CORRUPT("invalid item offset size pair", leaf, root, 0);
487 		return -EIO;
488 	}
489 
490 	/*
491 	 * Check to make sure each items keys are in the correct order and their
492 	 * offsets make sense.  We only have to loop through nritems-1 because
493 	 * we check the current slot against the next slot, which verifies the
494 	 * next slot's offset+size makes sense and that the current's slot
495 	 * offset is correct.
496 	 */
497 	for (slot = 0; slot < nritems - 1; slot++) {
498 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
499 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
500 
501 		/* Make sure the keys are in the right order */
502 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
503 			CORRUPT("bad key order", leaf, root, slot);
504 			return -EIO;
505 		}
506 
507 		/*
508 		 * Make sure the offset and ends are right, remember that the
509 		 * item data starts at the end of the leaf and grows towards the
510 		 * front.
511 		 */
512 		if (btrfs_item_offset_nr(leaf, slot) !=
513 			btrfs_item_end_nr(leaf, slot + 1)) {
514 			CORRUPT("slot offset bad", leaf, root, slot);
515 			return -EIO;
516 		}
517 
518 		/*
519 		 * Check to make sure that we don't point outside of the leaf,
520 		 * just incase all the items are consistent to eachother, but
521 		 * all point outside of the leaf.
522 		 */
523 		if (btrfs_item_end_nr(leaf, slot) >
524 		    BTRFS_LEAF_DATA_SIZE(root)) {
525 			CORRUPT("slot end outside of leaf", leaf, root, slot);
526 			return -EIO;
527 		}
528 	}
529 
530 	return 0;
531 }
532 
533 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
534 				       struct page *page, int max_walk)
535 {
536 	struct extent_buffer *eb;
537 	u64 start = page_offset(page);
538 	u64 target = start;
539 	u64 min_start;
540 
541 	if (start < max_walk)
542 		min_start = 0;
543 	else
544 		min_start = start - max_walk;
545 
546 	while (start >= min_start) {
547 		eb = find_extent_buffer(tree, start, 0);
548 		if (eb) {
549 			/*
550 			 * we found an extent buffer and it contains our page
551 			 * horray!
552 			 */
553 			if (eb->start <= target &&
554 			    eb->start + eb->len > target)
555 				return eb;
556 
557 			/* we found an extent buffer that wasn't for us */
558 			free_extent_buffer(eb);
559 			return NULL;
560 		}
561 		if (start == 0)
562 			break;
563 		start -= PAGE_CACHE_SIZE;
564 	}
565 	return NULL;
566 }
567 
568 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
569 			       struct extent_state *state, int mirror)
570 {
571 	struct extent_io_tree *tree;
572 	u64 found_start;
573 	int found_level;
574 	struct extent_buffer *eb;
575 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
576 	int ret = 0;
577 	int reads_done;
578 
579 	if (!page->private)
580 		goto out;
581 
582 	tree = &BTRFS_I(page->mapping->host)->io_tree;
583 	eb = (struct extent_buffer *)page->private;
584 
585 	/* the pending IO might have been the only thing that kept this buffer
586 	 * in memory.  Make sure we have a ref for all this other checks
587 	 */
588 	extent_buffer_get(eb);
589 
590 	reads_done = atomic_dec_and_test(&eb->io_pages);
591 	if (!reads_done)
592 		goto err;
593 
594 	eb->read_mirror = mirror;
595 	if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
596 		ret = -EIO;
597 		goto err;
598 	}
599 
600 	found_start = btrfs_header_bytenr(eb);
601 	if (found_start != eb->start) {
602 		printk_ratelimited(KERN_INFO "btrfs bad tree block start "
603 			       "%llu %llu\n",
604 			       (unsigned long long)found_start,
605 			       (unsigned long long)eb->start);
606 		ret = -EIO;
607 		goto err;
608 	}
609 	if (check_tree_block_fsid(root, eb)) {
610 		printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
611 			       (unsigned long long)eb->start);
612 		ret = -EIO;
613 		goto err;
614 	}
615 	found_level = btrfs_header_level(eb);
616 
617 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
618 				       eb, found_level);
619 
620 	ret = csum_tree_block(root, eb, 1);
621 	if (ret) {
622 		ret = -EIO;
623 		goto err;
624 	}
625 
626 	/*
627 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
628 	 * that we don't try and read the other copies of this block, just
629 	 * return -EIO.
630 	 */
631 	if (found_level == 0 && check_leaf(root, eb)) {
632 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
633 		ret = -EIO;
634 	}
635 
636 	if (!ret)
637 		set_extent_buffer_uptodate(eb);
638 err:
639 	if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
640 		clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
641 		btree_readahead_hook(root, eb, eb->start, ret);
642 	}
643 
644 	if (ret) {
645 		/*
646 		 * our io error hook is going to dec the io pages
647 		 * again, we have to make sure it has something
648 		 * to decrement
649 		 */
650 		atomic_inc(&eb->io_pages);
651 		clear_extent_buffer_uptodate(eb);
652 	}
653 	free_extent_buffer(eb);
654 out:
655 	return ret;
656 }
657 
658 static int btree_io_failed_hook(struct page *page, int failed_mirror)
659 {
660 	struct extent_buffer *eb;
661 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
662 
663 	eb = (struct extent_buffer *)page->private;
664 	set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
665 	eb->read_mirror = failed_mirror;
666 	atomic_dec(&eb->io_pages);
667 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
668 		btree_readahead_hook(root, eb, eb->start, -EIO);
669 	return -EIO;	/* we fixed nothing */
670 }
671 
672 static void end_workqueue_bio(struct bio *bio, int err)
673 {
674 	struct end_io_wq *end_io_wq = bio->bi_private;
675 	struct btrfs_fs_info *fs_info;
676 
677 	fs_info = end_io_wq->info;
678 	end_io_wq->error = err;
679 	end_io_wq->work.func = end_workqueue_fn;
680 	end_io_wq->work.flags = 0;
681 
682 	if (bio->bi_rw & REQ_WRITE) {
683 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
684 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
685 					   &end_io_wq->work);
686 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
687 			btrfs_queue_worker(&fs_info->endio_freespace_worker,
688 					   &end_io_wq->work);
689 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
690 			btrfs_queue_worker(&fs_info->endio_raid56_workers,
691 					   &end_io_wq->work);
692 		else
693 			btrfs_queue_worker(&fs_info->endio_write_workers,
694 					   &end_io_wq->work);
695 	} else {
696 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
697 			btrfs_queue_worker(&fs_info->endio_raid56_workers,
698 					   &end_io_wq->work);
699 		else if (end_io_wq->metadata)
700 			btrfs_queue_worker(&fs_info->endio_meta_workers,
701 					   &end_io_wq->work);
702 		else
703 			btrfs_queue_worker(&fs_info->endio_workers,
704 					   &end_io_wq->work);
705 	}
706 }
707 
708 /*
709  * For the metadata arg you want
710  *
711  * 0 - if data
712  * 1 - if normal metadta
713  * 2 - if writing to the free space cache area
714  * 3 - raid parity work
715  */
716 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
717 			int metadata)
718 {
719 	struct end_io_wq *end_io_wq;
720 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
721 	if (!end_io_wq)
722 		return -ENOMEM;
723 
724 	end_io_wq->private = bio->bi_private;
725 	end_io_wq->end_io = bio->bi_end_io;
726 	end_io_wq->info = info;
727 	end_io_wq->error = 0;
728 	end_io_wq->bio = bio;
729 	end_io_wq->metadata = metadata;
730 
731 	bio->bi_private = end_io_wq;
732 	bio->bi_end_io = end_workqueue_bio;
733 	return 0;
734 }
735 
736 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
737 {
738 	unsigned long limit = min_t(unsigned long,
739 				    info->workers.max_workers,
740 				    info->fs_devices->open_devices);
741 	return 256 * limit;
742 }
743 
744 static void run_one_async_start(struct btrfs_work *work)
745 {
746 	struct async_submit_bio *async;
747 	int ret;
748 
749 	async = container_of(work, struct  async_submit_bio, work);
750 	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
751 				      async->mirror_num, async->bio_flags,
752 				      async->bio_offset);
753 	if (ret)
754 		async->error = ret;
755 }
756 
757 static void run_one_async_done(struct btrfs_work *work)
758 {
759 	struct btrfs_fs_info *fs_info;
760 	struct async_submit_bio *async;
761 	int limit;
762 
763 	async = container_of(work, struct  async_submit_bio, work);
764 	fs_info = BTRFS_I(async->inode)->root->fs_info;
765 
766 	limit = btrfs_async_submit_limit(fs_info);
767 	limit = limit * 2 / 3;
768 
769 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
770 	    waitqueue_active(&fs_info->async_submit_wait))
771 		wake_up(&fs_info->async_submit_wait);
772 
773 	/* If an error occured we just want to clean up the bio and move on */
774 	if (async->error) {
775 		bio_endio(async->bio, async->error);
776 		return;
777 	}
778 
779 	async->submit_bio_done(async->inode, async->rw, async->bio,
780 			       async->mirror_num, async->bio_flags,
781 			       async->bio_offset);
782 }
783 
784 static void run_one_async_free(struct btrfs_work *work)
785 {
786 	struct async_submit_bio *async;
787 
788 	async = container_of(work, struct  async_submit_bio, work);
789 	kfree(async);
790 }
791 
792 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
793 			int rw, struct bio *bio, int mirror_num,
794 			unsigned long bio_flags,
795 			u64 bio_offset,
796 			extent_submit_bio_hook_t *submit_bio_start,
797 			extent_submit_bio_hook_t *submit_bio_done)
798 {
799 	struct async_submit_bio *async;
800 
801 	async = kmalloc(sizeof(*async), GFP_NOFS);
802 	if (!async)
803 		return -ENOMEM;
804 
805 	async->inode = inode;
806 	async->rw = rw;
807 	async->bio = bio;
808 	async->mirror_num = mirror_num;
809 	async->submit_bio_start = submit_bio_start;
810 	async->submit_bio_done = submit_bio_done;
811 
812 	async->work.func = run_one_async_start;
813 	async->work.ordered_func = run_one_async_done;
814 	async->work.ordered_free = run_one_async_free;
815 
816 	async->work.flags = 0;
817 	async->bio_flags = bio_flags;
818 	async->bio_offset = bio_offset;
819 
820 	async->error = 0;
821 
822 	atomic_inc(&fs_info->nr_async_submits);
823 
824 	if (rw & REQ_SYNC)
825 		btrfs_set_work_high_prio(&async->work);
826 
827 	btrfs_queue_worker(&fs_info->workers, &async->work);
828 
829 	while (atomic_read(&fs_info->async_submit_draining) &&
830 	      atomic_read(&fs_info->nr_async_submits)) {
831 		wait_event(fs_info->async_submit_wait,
832 			   (atomic_read(&fs_info->nr_async_submits) == 0));
833 	}
834 
835 	return 0;
836 }
837 
838 static int btree_csum_one_bio(struct bio *bio)
839 {
840 	struct bio_vec *bvec = bio->bi_io_vec;
841 	int bio_index = 0;
842 	struct btrfs_root *root;
843 	int ret = 0;
844 
845 	WARN_ON(bio->bi_vcnt <= 0);
846 	while (bio_index < bio->bi_vcnt) {
847 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
848 		ret = csum_dirty_buffer(root, bvec->bv_page);
849 		if (ret)
850 			break;
851 		bio_index++;
852 		bvec++;
853 	}
854 	return ret;
855 }
856 
857 static int __btree_submit_bio_start(struct inode *inode, int rw,
858 				    struct bio *bio, int mirror_num,
859 				    unsigned long bio_flags,
860 				    u64 bio_offset)
861 {
862 	/*
863 	 * when we're called for a write, we're already in the async
864 	 * submission context.  Just jump into btrfs_map_bio
865 	 */
866 	return btree_csum_one_bio(bio);
867 }
868 
869 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
870 				 int mirror_num, unsigned long bio_flags,
871 				 u64 bio_offset)
872 {
873 	int ret;
874 
875 	/*
876 	 * when we're called for a write, we're already in the async
877 	 * submission context.  Just jump into btrfs_map_bio
878 	 */
879 	ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
880 	if (ret)
881 		bio_endio(bio, ret);
882 	return ret;
883 }
884 
885 static int check_async_write(struct inode *inode, unsigned long bio_flags)
886 {
887 	if (bio_flags & EXTENT_BIO_TREE_LOG)
888 		return 0;
889 #ifdef CONFIG_X86
890 	if (cpu_has_xmm4_2)
891 		return 0;
892 #endif
893 	return 1;
894 }
895 
896 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
897 				 int mirror_num, unsigned long bio_flags,
898 				 u64 bio_offset)
899 {
900 	int async = check_async_write(inode, bio_flags);
901 	int ret;
902 
903 	if (!(rw & REQ_WRITE)) {
904 		/*
905 		 * called for a read, do the setup so that checksum validation
906 		 * can happen in the async kernel threads
907 		 */
908 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
909 					  bio, 1);
910 		if (ret)
911 			goto out_w_error;
912 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
913 				    mirror_num, 0);
914 	} else if (!async) {
915 		ret = btree_csum_one_bio(bio);
916 		if (ret)
917 			goto out_w_error;
918 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
919 				    mirror_num, 0);
920 	} else {
921 		/*
922 		 * kthread helpers are used to submit writes so that
923 		 * checksumming can happen in parallel across all CPUs
924 		 */
925 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
926 					  inode, rw, bio, mirror_num, 0,
927 					  bio_offset,
928 					  __btree_submit_bio_start,
929 					  __btree_submit_bio_done);
930 	}
931 
932 	if (ret) {
933 out_w_error:
934 		bio_endio(bio, ret);
935 	}
936 	return ret;
937 }
938 
939 #ifdef CONFIG_MIGRATION
940 static int btree_migratepage(struct address_space *mapping,
941 			struct page *newpage, struct page *page,
942 			enum migrate_mode mode)
943 {
944 	/*
945 	 * we can't safely write a btree page from here,
946 	 * we haven't done the locking hook
947 	 */
948 	if (PageDirty(page))
949 		return -EAGAIN;
950 	/*
951 	 * Buffers may be managed in a filesystem specific way.
952 	 * We must have no buffers or drop them.
953 	 */
954 	if (page_has_private(page) &&
955 	    !try_to_release_page(page, GFP_KERNEL))
956 		return -EAGAIN;
957 	return migrate_page(mapping, newpage, page, mode);
958 }
959 #endif
960 
961 
962 static int btree_writepages(struct address_space *mapping,
963 			    struct writeback_control *wbc)
964 {
965 	struct extent_io_tree *tree;
966 	struct btrfs_fs_info *fs_info;
967 	int ret;
968 
969 	tree = &BTRFS_I(mapping->host)->io_tree;
970 	if (wbc->sync_mode == WB_SYNC_NONE) {
971 
972 		if (wbc->for_kupdate)
973 			return 0;
974 
975 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
976 		/* this is a bit racy, but that's ok */
977 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
978 					     BTRFS_DIRTY_METADATA_THRESH);
979 		if (ret < 0)
980 			return 0;
981 	}
982 	return btree_write_cache_pages(mapping, wbc);
983 }
984 
985 static int btree_readpage(struct file *file, struct page *page)
986 {
987 	struct extent_io_tree *tree;
988 	tree = &BTRFS_I(page->mapping->host)->io_tree;
989 	return extent_read_full_page(tree, page, btree_get_extent, 0);
990 }
991 
992 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
993 {
994 	if (PageWriteback(page) || PageDirty(page))
995 		return 0;
996 	/*
997 	 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
998 	 * slab allocation from alloc_extent_state down the callchain where
999 	 * it'd hit a BUG_ON as those flags are not allowed.
1000 	 */
1001 	gfp_flags &= ~GFP_SLAB_BUG_MASK;
1002 
1003 	return try_release_extent_buffer(page, gfp_flags);
1004 }
1005 
1006 static void btree_invalidatepage(struct page *page, unsigned long offset)
1007 {
1008 	struct extent_io_tree *tree;
1009 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1010 	extent_invalidatepage(tree, page, offset);
1011 	btree_releasepage(page, GFP_NOFS);
1012 	if (PagePrivate(page)) {
1013 		printk(KERN_WARNING "btrfs warning page private not zero "
1014 		       "on page %llu\n", (unsigned long long)page_offset(page));
1015 		ClearPagePrivate(page);
1016 		set_page_private(page, 0);
1017 		page_cache_release(page);
1018 	}
1019 }
1020 
1021 static int btree_set_page_dirty(struct page *page)
1022 {
1023 #ifdef DEBUG
1024 	struct extent_buffer *eb;
1025 
1026 	BUG_ON(!PagePrivate(page));
1027 	eb = (struct extent_buffer *)page->private;
1028 	BUG_ON(!eb);
1029 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1030 	BUG_ON(!atomic_read(&eb->refs));
1031 	btrfs_assert_tree_locked(eb);
1032 #endif
1033 	return __set_page_dirty_nobuffers(page);
1034 }
1035 
1036 static const struct address_space_operations btree_aops = {
1037 	.readpage	= btree_readpage,
1038 	.writepages	= btree_writepages,
1039 	.releasepage	= btree_releasepage,
1040 	.invalidatepage = btree_invalidatepage,
1041 #ifdef CONFIG_MIGRATION
1042 	.migratepage	= btree_migratepage,
1043 #endif
1044 	.set_page_dirty = btree_set_page_dirty,
1045 };
1046 
1047 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1048 			 u64 parent_transid)
1049 {
1050 	struct extent_buffer *buf = NULL;
1051 	struct inode *btree_inode = root->fs_info->btree_inode;
1052 	int ret = 0;
1053 
1054 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1055 	if (!buf)
1056 		return 0;
1057 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1058 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1059 	free_extent_buffer(buf);
1060 	return ret;
1061 }
1062 
1063 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1064 			 int mirror_num, struct extent_buffer **eb)
1065 {
1066 	struct extent_buffer *buf = NULL;
1067 	struct inode *btree_inode = root->fs_info->btree_inode;
1068 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1069 	int ret;
1070 
1071 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1072 	if (!buf)
1073 		return 0;
1074 
1075 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1076 
1077 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1078 				       btree_get_extent, mirror_num);
1079 	if (ret) {
1080 		free_extent_buffer(buf);
1081 		return ret;
1082 	}
1083 
1084 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1085 		free_extent_buffer(buf);
1086 		return -EIO;
1087 	} else if (extent_buffer_uptodate(buf)) {
1088 		*eb = buf;
1089 	} else {
1090 		free_extent_buffer(buf);
1091 	}
1092 	return 0;
1093 }
1094 
1095 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1096 					    u64 bytenr, u32 blocksize)
1097 {
1098 	struct inode *btree_inode = root->fs_info->btree_inode;
1099 	struct extent_buffer *eb;
1100 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1101 				bytenr, blocksize);
1102 	return eb;
1103 }
1104 
1105 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1106 						 u64 bytenr, u32 blocksize)
1107 {
1108 	struct inode *btree_inode = root->fs_info->btree_inode;
1109 	struct extent_buffer *eb;
1110 
1111 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1112 				 bytenr, blocksize);
1113 	return eb;
1114 }
1115 
1116 
1117 int btrfs_write_tree_block(struct extent_buffer *buf)
1118 {
1119 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1120 					buf->start + buf->len - 1);
1121 }
1122 
1123 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1124 {
1125 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1126 				       buf->start, buf->start + buf->len - 1);
1127 }
1128 
1129 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1130 				      u32 blocksize, u64 parent_transid)
1131 {
1132 	struct extent_buffer *buf = NULL;
1133 	int ret;
1134 
1135 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1136 	if (!buf)
1137 		return NULL;
1138 
1139 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1140 	return buf;
1141 
1142 }
1143 
1144 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1145 		      struct extent_buffer *buf)
1146 {
1147 	struct btrfs_fs_info *fs_info = root->fs_info;
1148 
1149 	if (btrfs_header_generation(buf) ==
1150 	    fs_info->running_transaction->transid) {
1151 		btrfs_assert_tree_locked(buf);
1152 
1153 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1154 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1155 					     -buf->len,
1156 					     fs_info->dirty_metadata_batch);
1157 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1158 			btrfs_set_lock_blocking(buf);
1159 			clear_extent_buffer_dirty(buf);
1160 		}
1161 	}
1162 }
1163 
1164 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1165 			 u32 stripesize, struct btrfs_root *root,
1166 			 struct btrfs_fs_info *fs_info,
1167 			 u64 objectid)
1168 {
1169 	root->node = NULL;
1170 	root->commit_root = NULL;
1171 	root->sectorsize = sectorsize;
1172 	root->nodesize = nodesize;
1173 	root->leafsize = leafsize;
1174 	root->stripesize = stripesize;
1175 	root->ref_cows = 0;
1176 	root->track_dirty = 0;
1177 	root->in_radix = 0;
1178 	root->orphan_item_inserted = 0;
1179 	root->orphan_cleanup_state = 0;
1180 
1181 	root->objectid = objectid;
1182 	root->last_trans = 0;
1183 	root->highest_objectid = 0;
1184 	root->name = NULL;
1185 	root->inode_tree = RB_ROOT;
1186 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1187 	root->block_rsv = NULL;
1188 	root->orphan_block_rsv = NULL;
1189 
1190 	INIT_LIST_HEAD(&root->dirty_list);
1191 	INIT_LIST_HEAD(&root->root_list);
1192 	INIT_LIST_HEAD(&root->logged_list[0]);
1193 	INIT_LIST_HEAD(&root->logged_list[1]);
1194 	spin_lock_init(&root->orphan_lock);
1195 	spin_lock_init(&root->inode_lock);
1196 	spin_lock_init(&root->accounting_lock);
1197 	spin_lock_init(&root->log_extents_lock[0]);
1198 	spin_lock_init(&root->log_extents_lock[1]);
1199 	mutex_init(&root->objectid_mutex);
1200 	mutex_init(&root->log_mutex);
1201 	init_waitqueue_head(&root->log_writer_wait);
1202 	init_waitqueue_head(&root->log_commit_wait[0]);
1203 	init_waitqueue_head(&root->log_commit_wait[1]);
1204 	atomic_set(&root->log_commit[0], 0);
1205 	atomic_set(&root->log_commit[1], 0);
1206 	atomic_set(&root->log_writers, 0);
1207 	atomic_set(&root->log_batch, 0);
1208 	atomic_set(&root->orphan_inodes, 0);
1209 	root->log_transid = 0;
1210 	root->last_log_commit = 0;
1211 	extent_io_tree_init(&root->dirty_log_pages,
1212 			     fs_info->btree_inode->i_mapping);
1213 
1214 	memset(&root->root_key, 0, sizeof(root->root_key));
1215 	memset(&root->root_item, 0, sizeof(root->root_item));
1216 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1217 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1218 	root->defrag_trans_start = fs_info->generation;
1219 	init_completion(&root->kobj_unregister);
1220 	root->defrag_running = 0;
1221 	root->root_key.objectid = objectid;
1222 	root->anon_dev = 0;
1223 
1224 	spin_lock_init(&root->root_item_lock);
1225 }
1226 
1227 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1228 					    struct btrfs_fs_info *fs_info,
1229 					    u64 objectid,
1230 					    struct btrfs_root *root)
1231 {
1232 	int ret;
1233 	u32 blocksize;
1234 	u64 generation;
1235 
1236 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1237 		     tree_root->sectorsize, tree_root->stripesize,
1238 		     root, fs_info, objectid);
1239 	ret = btrfs_find_last_root(tree_root, objectid,
1240 				   &root->root_item, &root->root_key);
1241 	if (ret > 0)
1242 		return -ENOENT;
1243 	else if (ret < 0)
1244 		return ret;
1245 
1246 	generation = btrfs_root_generation(&root->root_item);
1247 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1248 	root->commit_root = NULL;
1249 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1250 				     blocksize, generation);
1251 	if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1252 		free_extent_buffer(root->node);
1253 		root->node = NULL;
1254 		return -EIO;
1255 	}
1256 	root->commit_root = btrfs_root_node(root);
1257 	return 0;
1258 }
1259 
1260 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1261 {
1262 	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1263 	if (root)
1264 		root->fs_info = fs_info;
1265 	return root;
1266 }
1267 
1268 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1269 				     struct btrfs_fs_info *fs_info,
1270 				     u64 objectid)
1271 {
1272 	struct extent_buffer *leaf;
1273 	struct btrfs_root *tree_root = fs_info->tree_root;
1274 	struct btrfs_root *root;
1275 	struct btrfs_key key;
1276 	int ret = 0;
1277 	u64 bytenr;
1278 
1279 	root = btrfs_alloc_root(fs_info);
1280 	if (!root)
1281 		return ERR_PTR(-ENOMEM);
1282 
1283 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1284 		     tree_root->sectorsize, tree_root->stripesize,
1285 		     root, fs_info, objectid);
1286 	root->root_key.objectid = objectid;
1287 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1288 	root->root_key.offset = 0;
1289 
1290 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1291 				      0, objectid, NULL, 0, 0, 0);
1292 	if (IS_ERR(leaf)) {
1293 		ret = PTR_ERR(leaf);
1294 		goto fail;
1295 	}
1296 
1297 	bytenr = leaf->start;
1298 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1299 	btrfs_set_header_bytenr(leaf, leaf->start);
1300 	btrfs_set_header_generation(leaf, trans->transid);
1301 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1302 	btrfs_set_header_owner(leaf, objectid);
1303 	root->node = leaf;
1304 
1305 	write_extent_buffer(leaf, fs_info->fsid,
1306 			    (unsigned long)btrfs_header_fsid(leaf),
1307 			    BTRFS_FSID_SIZE);
1308 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1309 			    (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1310 			    BTRFS_UUID_SIZE);
1311 	btrfs_mark_buffer_dirty(leaf);
1312 
1313 	root->commit_root = btrfs_root_node(root);
1314 	root->track_dirty = 1;
1315 
1316 
1317 	root->root_item.flags = 0;
1318 	root->root_item.byte_limit = 0;
1319 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1320 	btrfs_set_root_generation(&root->root_item, trans->transid);
1321 	btrfs_set_root_level(&root->root_item, 0);
1322 	btrfs_set_root_refs(&root->root_item, 1);
1323 	btrfs_set_root_used(&root->root_item, leaf->len);
1324 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1325 	btrfs_set_root_dirid(&root->root_item, 0);
1326 	root->root_item.drop_level = 0;
1327 
1328 	key.objectid = objectid;
1329 	key.type = BTRFS_ROOT_ITEM_KEY;
1330 	key.offset = 0;
1331 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1332 	if (ret)
1333 		goto fail;
1334 
1335 	btrfs_tree_unlock(leaf);
1336 
1337 fail:
1338 	if (ret)
1339 		return ERR_PTR(ret);
1340 
1341 	return root;
1342 }
1343 
1344 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1345 					 struct btrfs_fs_info *fs_info)
1346 {
1347 	struct btrfs_root *root;
1348 	struct btrfs_root *tree_root = fs_info->tree_root;
1349 	struct extent_buffer *leaf;
1350 
1351 	root = btrfs_alloc_root(fs_info);
1352 	if (!root)
1353 		return ERR_PTR(-ENOMEM);
1354 
1355 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1356 		     tree_root->sectorsize, tree_root->stripesize,
1357 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1358 
1359 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1360 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1361 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1362 	/*
1363 	 * log trees do not get reference counted because they go away
1364 	 * before a real commit is actually done.  They do store pointers
1365 	 * to file data extents, and those reference counts still get
1366 	 * updated (along with back refs to the log tree).
1367 	 */
1368 	root->ref_cows = 0;
1369 
1370 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1371 				      BTRFS_TREE_LOG_OBJECTID, NULL,
1372 				      0, 0, 0);
1373 	if (IS_ERR(leaf)) {
1374 		kfree(root);
1375 		return ERR_CAST(leaf);
1376 	}
1377 
1378 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1379 	btrfs_set_header_bytenr(leaf, leaf->start);
1380 	btrfs_set_header_generation(leaf, trans->transid);
1381 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1382 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1383 	root->node = leaf;
1384 
1385 	write_extent_buffer(root->node, root->fs_info->fsid,
1386 			    (unsigned long)btrfs_header_fsid(root->node),
1387 			    BTRFS_FSID_SIZE);
1388 	btrfs_mark_buffer_dirty(root->node);
1389 	btrfs_tree_unlock(root->node);
1390 	return root;
1391 }
1392 
1393 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1394 			     struct btrfs_fs_info *fs_info)
1395 {
1396 	struct btrfs_root *log_root;
1397 
1398 	log_root = alloc_log_tree(trans, fs_info);
1399 	if (IS_ERR(log_root))
1400 		return PTR_ERR(log_root);
1401 	WARN_ON(fs_info->log_root_tree);
1402 	fs_info->log_root_tree = log_root;
1403 	return 0;
1404 }
1405 
1406 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1407 		       struct btrfs_root *root)
1408 {
1409 	struct btrfs_root *log_root;
1410 	struct btrfs_inode_item *inode_item;
1411 
1412 	log_root = alloc_log_tree(trans, root->fs_info);
1413 	if (IS_ERR(log_root))
1414 		return PTR_ERR(log_root);
1415 
1416 	log_root->last_trans = trans->transid;
1417 	log_root->root_key.offset = root->root_key.objectid;
1418 
1419 	inode_item = &log_root->root_item.inode;
1420 	inode_item->generation = cpu_to_le64(1);
1421 	inode_item->size = cpu_to_le64(3);
1422 	inode_item->nlink = cpu_to_le32(1);
1423 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1424 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1425 
1426 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1427 
1428 	WARN_ON(root->log_root);
1429 	root->log_root = log_root;
1430 	root->log_transid = 0;
1431 	root->last_log_commit = 0;
1432 	return 0;
1433 }
1434 
1435 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1436 					       struct btrfs_key *location)
1437 {
1438 	struct btrfs_root *root;
1439 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1440 	struct btrfs_path *path;
1441 	struct extent_buffer *l;
1442 	u64 generation;
1443 	u32 blocksize;
1444 	int ret = 0;
1445 	int slot;
1446 
1447 	root = btrfs_alloc_root(fs_info);
1448 	if (!root)
1449 		return ERR_PTR(-ENOMEM);
1450 	if (location->offset == (u64)-1) {
1451 		ret = find_and_setup_root(tree_root, fs_info,
1452 					  location->objectid, root);
1453 		if (ret) {
1454 			kfree(root);
1455 			return ERR_PTR(ret);
1456 		}
1457 		goto out;
1458 	}
1459 
1460 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1461 		     tree_root->sectorsize, tree_root->stripesize,
1462 		     root, fs_info, location->objectid);
1463 
1464 	path = btrfs_alloc_path();
1465 	if (!path) {
1466 		kfree(root);
1467 		return ERR_PTR(-ENOMEM);
1468 	}
1469 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1470 	if (ret == 0) {
1471 		l = path->nodes[0];
1472 		slot = path->slots[0];
1473 		btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1474 		memcpy(&root->root_key, location, sizeof(*location));
1475 	}
1476 	btrfs_free_path(path);
1477 	if (ret) {
1478 		kfree(root);
1479 		if (ret > 0)
1480 			ret = -ENOENT;
1481 		return ERR_PTR(ret);
1482 	}
1483 
1484 	generation = btrfs_root_generation(&root->root_item);
1485 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1486 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1487 				     blocksize, generation);
1488 	root->commit_root = btrfs_root_node(root);
1489 	BUG_ON(!root->node); /* -ENOMEM */
1490 out:
1491 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1492 		root->ref_cows = 1;
1493 		btrfs_check_and_init_root_item(&root->root_item);
1494 	}
1495 
1496 	return root;
1497 }
1498 
1499 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1500 					      struct btrfs_key *location)
1501 {
1502 	struct btrfs_root *root;
1503 	int ret;
1504 
1505 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1506 		return fs_info->tree_root;
1507 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1508 		return fs_info->extent_root;
1509 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1510 		return fs_info->chunk_root;
1511 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1512 		return fs_info->dev_root;
1513 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1514 		return fs_info->csum_root;
1515 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1516 		return fs_info->quota_root ? fs_info->quota_root :
1517 					     ERR_PTR(-ENOENT);
1518 again:
1519 	spin_lock(&fs_info->fs_roots_radix_lock);
1520 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1521 				 (unsigned long)location->objectid);
1522 	spin_unlock(&fs_info->fs_roots_radix_lock);
1523 	if (root)
1524 		return root;
1525 
1526 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1527 	if (IS_ERR(root))
1528 		return root;
1529 
1530 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1531 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1532 					GFP_NOFS);
1533 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1534 		ret = -ENOMEM;
1535 		goto fail;
1536 	}
1537 
1538 	btrfs_init_free_ino_ctl(root);
1539 	mutex_init(&root->fs_commit_mutex);
1540 	spin_lock_init(&root->cache_lock);
1541 	init_waitqueue_head(&root->cache_wait);
1542 
1543 	ret = get_anon_bdev(&root->anon_dev);
1544 	if (ret)
1545 		goto fail;
1546 
1547 	if (btrfs_root_refs(&root->root_item) == 0) {
1548 		ret = -ENOENT;
1549 		goto fail;
1550 	}
1551 
1552 	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1553 	if (ret < 0)
1554 		goto fail;
1555 	if (ret == 0)
1556 		root->orphan_item_inserted = 1;
1557 
1558 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1559 	if (ret)
1560 		goto fail;
1561 
1562 	spin_lock(&fs_info->fs_roots_radix_lock);
1563 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1564 				(unsigned long)root->root_key.objectid,
1565 				root);
1566 	if (ret == 0)
1567 		root->in_radix = 1;
1568 
1569 	spin_unlock(&fs_info->fs_roots_radix_lock);
1570 	radix_tree_preload_end();
1571 	if (ret) {
1572 		if (ret == -EEXIST) {
1573 			free_fs_root(root);
1574 			goto again;
1575 		}
1576 		goto fail;
1577 	}
1578 
1579 	ret = btrfs_find_dead_roots(fs_info->tree_root,
1580 				    root->root_key.objectid);
1581 	WARN_ON(ret);
1582 	return root;
1583 fail:
1584 	free_fs_root(root);
1585 	return ERR_PTR(ret);
1586 }
1587 
1588 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1589 {
1590 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1591 	int ret = 0;
1592 	struct btrfs_device *device;
1593 	struct backing_dev_info *bdi;
1594 
1595 	rcu_read_lock();
1596 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1597 		if (!device->bdev)
1598 			continue;
1599 		bdi = blk_get_backing_dev_info(device->bdev);
1600 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1601 			ret = 1;
1602 			break;
1603 		}
1604 	}
1605 	rcu_read_unlock();
1606 	return ret;
1607 }
1608 
1609 /*
1610  * If this fails, caller must call bdi_destroy() to get rid of the
1611  * bdi again.
1612  */
1613 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1614 {
1615 	int err;
1616 
1617 	bdi->capabilities = BDI_CAP_MAP_COPY;
1618 	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1619 	if (err)
1620 		return err;
1621 
1622 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1623 	bdi->congested_fn	= btrfs_congested_fn;
1624 	bdi->congested_data	= info;
1625 	return 0;
1626 }
1627 
1628 /*
1629  * called by the kthread helper functions to finally call the bio end_io
1630  * functions.  This is where read checksum verification actually happens
1631  */
1632 static void end_workqueue_fn(struct btrfs_work *work)
1633 {
1634 	struct bio *bio;
1635 	struct end_io_wq *end_io_wq;
1636 	struct btrfs_fs_info *fs_info;
1637 	int error;
1638 
1639 	end_io_wq = container_of(work, struct end_io_wq, work);
1640 	bio = end_io_wq->bio;
1641 	fs_info = end_io_wq->info;
1642 
1643 	error = end_io_wq->error;
1644 	bio->bi_private = end_io_wq->private;
1645 	bio->bi_end_io = end_io_wq->end_io;
1646 	kfree(end_io_wq);
1647 	bio_endio(bio, error);
1648 }
1649 
1650 static int cleaner_kthread(void *arg)
1651 {
1652 	struct btrfs_root *root = arg;
1653 
1654 	do {
1655 		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1656 		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1657 			btrfs_run_delayed_iputs(root);
1658 			btrfs_clean_old_snapshots(root);
1659 			mutex_unlock(&root->fs_info->cleaner_mutex);
1660 			btrfs_run_defrag_inodes(root->fs_info);
1661 		}
1662 
1663 		if (!try_to_freeze()) {
1664 			set_current_state(TASK_INTERRUPTIBLE);
1665 			if (!kthread_should_stop())
1666 				schedule();
1667 			__set_current_state(TASK_RUNNING);
1668 		}
1669 	} while (!kthread_should_stop());
1670 	return 0;
1671 }
1672 
1673 static int transaction_kthread(void *arg)
1674 {
1675 	struct btrfs_root *root = arg;
1676 	struct btrfs_trans_handle *trans;
1677 	struct btrfs_transaction *cur;
1678 	u64 transid;
1679 	unsigned long now;
1680 	unsigned long delay;
1681 	bool cannot_commit;
1682 
1683 	do {
1684 		cannot_commit = false;
1685 		delay = HZ * 30;
1686 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1687 
1688 		spin_lock(&root->fs_info->trans_lock);
1689 		cur = root->fs_info->running_transaction;
1690 		if (!cur) {
1691 			spin_unlock(&root->fs_info->trans_lock);
1692 			goto sleep;
1693 		}
1694 
1695 		now = get_seconds();
1696 		if (!cur->blocked &&
1697 		    (now < cur->start_time || now - cur->start_time < 30)) {
1698 			spin_unlock(&root->fs_info->trans_lock);
1699 			delay = HZ * 5;
1700 			goto sleep;
1701 		}
1702 		transid = cur->transid;
1703 		spin_unlock(&root->fs_info->trans_lock);
1704 
1705 		/* If the file system is aborted, this will always fail. */
1706 		trans = btrfs_attach_transaction(root);
1707 		if (IS_ERR(trans)) {
1708 			if (PTR_ERR(trans) != -ENOENT)
1709 				cannot_commit = true;
1710 			goto sleep;
1711 		}
1712 		if (transid == trans->transid) {
1713 			btrfs_commit_transaction(trans, root);
1714 		} else {
1715 			btrfs_end_transaction(trans, root);
1716 		}
1717 sleep:
1718 		wake_up_process(root->fs_info->cleaner_kthread);
1719 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1720 
1721 		if (!try_to_freeze()) {
1722 			set_current_state(TASK_INTERRUPTIBLE);
1723 			if (!kthread_should_stop() &&
1724 			    (!btrfs_transaction_blocked(root->fs_info) ||
1725 			     cannot_commit))
1726 				schedule_timeout(delay);
1727 			__set_current_state(TASK_RUNNING);
1728 		}
1729 	} while (!kthread_should_stop());
1730 	return 0;
1731 }
1732 
1733 /*
1734  * this will find the highest generation in the array of
1735  * root backups.  The index of the highest array is returned,
1736  * or -1 if we can't find anything.
1737  *
1738  * We check to make sure the array is valid by comparing the
1739  * generation of the latest  root in the array with the generation
1740  * in the super block.  If they don't match we pitch it.
1741  */
1742 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1743 {
1744 	u64 cur;
1745 	int newest_index = -1;
1746 	struct btrfs_root_backup *root_backup;
1747 	int i;
1748 
1749 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1750 		root_backup = info->super_copy->super_roots + i;
1751 		cur = btrfs_backup_tree_root_gen(root_backup);
1752 		if (cur == newest_gen)
1753 			newest_index = i;
1754 	}
1755 
1756 	/* check to see if we actually wrapped around */
1757 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1758 		root_backup = info->super_copy->super_roots;
1759 		cur = btrfs_backup_tree_root_gen(root_backup);
1760 		if (cur == newest_gen)
1761 			newest_index = 0;
1762 	}
1763 	return newest_index;
1764 }
1765 
1766 
1767 /*
1768  * find the oldest backup so we know where to store new entries
1769  * in the backup array.  This will set the backup_root_index
1770  * field in the fs_info struct
1771  */
1772 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1773 				     u64 newest_gen)
1774 {
1775 	int newest_index = -1;
1776 
1777 	newest_index = find_newest_super_backup(info, newest_gen);
1778 	/* if there was garbage in there, just move along */
1779 	if (newest_index == -1) {
1780 		info->backup_root_index = 0;
1781 	} else {
1782 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1783 	}
1784 }
1785 
1786 /*
1787  * copy all the root pointers into the super backup array.
1788  * this will bump the backup pointer by one when it is
1789  * done
1790  */
1791 static void backup_super_roots(struct btrfs_fs_info *info)
1792 {
1793 	int next_backup;
1794 	struct btrfs_root_backup *root_backup;
1795 	int last_backup;
1796 
1797 	next_backup = info->backup_root_index;
1798 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1799 		BTRFS_NUM_BACKUP_ROOTS;
1800 
1801 	/*
1802 	 * just overwrite the last backup if we're at the same generation
1803 	 * this happens only at umount
1804 	 */
1805 	root_backup = info->super_for_commit->super_roots + last_backup;
1806 	if (btrfs_backup_tree_root_gen(root_backup) ==
1807 	    btrfs_header_generation(info->tree_root->node))
1808 		next_backup = last_backup;
1809 
1810 	root_backup = info->super_for_commit->super_roots + next_backup;
1811 
1812 	/*
1813 	 * make sure all of our padding and empty slots get zero filled
1814 	 * regardless of which ones we use today
1815 	 */
1816 	memset(root_backup, 0, sizeof(*root_backup));
1817 
1818 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1819 
1820 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1821 	btrfs_set_backup_tree_root_gen(root_backup,
1822 			       btrfs_header_generation(info->tree_root->node));
1823 
1824 	btrfs_set_backup_tree_root_level(root_backup,
1825 			       btrfs_header_level(info->tree_root->node));
1826 
1827 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1828 	btrfs_set_backup_chunk_root_gen(root_backup,
1829 			       btrfs_header_generation(info->chunk_root->node));
1830 	btrfs_set_backup_chunk_root_level(root_backup,
1831 			       btrfs_header_level(info->chunk_root->node));
1832 
1833 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1834 	btrfs_set_backup_extent_root_gen(root_backup,
1835 			       btrfs_header_generation(info->extent_root->node));
1836 	btrfs_set_backup_extent_root_level(root_backup,
1837 			       btrfs_header_level(info->extent_root->node));
1838 
1839 	/*
1840 	 * we might commit during log recovery, which happens before we set
1841 	 * the fs_root.  Make sure it is valid before we fill it in.
1842 	 */
1843 	if (info->fs_root && info->fs_root->node) {
1844 		btrfs_set_backup_fs_root(root_backup,
1845 					 info->fs_root->node->start);
1846 		btrfs_set_backup_fs_root_gen(root_backup,
1847 			       btrfs_header_generation(info->fs_root->node));
1848 		btrfs_set_backup_fs_root_level(root_backup,
1849 			       btrfs_header_level(info->fs_root->node));
1850 	}
1851 
1852 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1853 	btrfs_set_backup_dev_root_gen(root_backup,
1854 			       btrfs_header_generation(info->dev_root->node));
1855 	btrfs_set_backup_dev_root_level(root_backup,
1856 				       btrfs_header_level(info->dev_root->node));
1857 
1858 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1859 	btrfs_set_backup_csum_root_gen(root_backup,
1860 			       btrfs_header_generation(info->csum_root->node));
1861 	btrfs_set_backup_csum_root_level(root_backup,
1862 			       btrfs_header_level(info->csum_root->node));
1863 
1864 	btrfs_set_backup_total_bytes(root_backup,
1865 			     btrfs_super_total_bytes(info->super_copy));
1866 	btrfs_set_backup_bytes_used(root_backup,
1867 			     btrfs_super_bytes_used(info->super_copy));
1868 	btrfs_set_backup_num_devices(root_backup,
1869 			     btrfs_super_num_devices(info->super_copy));
1870 
1871 	/*
1872 	 * if we don't copy this out to the super_copy, it won't get remembered
1873 	 * for the next commit
1874 	 */
1875 	memcpy(&info->super_copy->super_roots,
1876 	       &info->super_for_commit->super_roots,
1877 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1878 }
1879 
1880 /*
1881  * this copies info out of the root backup array and back into
1882  * the in-memory super block.  It is meant to help iterate through
1883  * the array, so you send it the number of backups you've already
1884  * tried and the last backup index you used.
1885  *
1886  * this returns -1 when it has tried all the backups
1887  */
1888 static noinline int next_root_backup(struct btrfs_fs_info *info,
1889 				     struct btrfs_super_block *super,
1890 				     int *num_backups_tried, int *backup_index)
1891 {
1892 	struct btrfs_root_backup *root_backup;
1893 	int newest = *backup_index;
1894 
1895 	if (*num_backups_tried == 0) {
1896 		u64 gen = btrfs_super_generation(super);
1897 
1898 		newest = find_newest_super_backup(info, gen);
1899 		if (newest == -1)
1900 			return -1;
1901 
1902 		*backup_index = newest;
1903 		*num_backups_tried = 1;
1904 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1905 		/* we've tried all the backups, all done */
1906 		return -1;
1907 	} else {
1908 		/* jump to the next oldest backup */
1909 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1910 			BTRFS_NUM_BACKUP_ROOTS;
1911 		*backup_index = newest;
1912 		*num_backups_tried += 1;
1913 	}
1914 	root_backup = super->super_roots + newest;
1915 
1916 	btrfs_set_super_generation(super,
1917 				   btrfs_backup_tree_root_gen(root_backup));
1918 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1919 	btrfs_set_super_root_level(super,
1920 				   btrfs_backup_tree_root_level(root_backup));
1921 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1922 
1923 	/*
1924 	 * fixme: the total bytes and num_devices need to match or we should
1925 	 * need a fsck
1926 	 */
1927 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1928 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1929 	return 0;
1930 }
1931 
1932 /* helper to cleanup tree roots */
1933 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1934 {
1935 	free_extent_buffer(info->tree_root->node);
1936 	free_extent_buffer(info->tree_root->commit_root);
1937 	free_extent_buffer(info->dev_root->node);
1938 	free_extent_buffer(info->dev_root->commit_root);
1939 	free_extent_buffer(info->extent_root->node);
1940 	free_extent_buffer(info->extent_root->commit_root);
1941 	free_extent_buffer(info->csum_root->node);
1942 	free_extent_buffer(info->csum_root->commit_root);
1943 	if (info->quota_root) {
1944 		free_extent_buffer(info->quota_root->node);
1945 		free_extent_buffer(info->quota_root->commit_root);
1946 	}
1947 
1948 	info->tree_root->node = NULL;
1949 	info->tree_root->commit_root = NULL;
1950 	info->dev_root->node = NULL;
1951 	info->dev_root->commit_root = NULL;
1952 	info->extent_root->node = NULL;
1953 	info->extent_root->commit_root = NULL;
1954 	info->csum_root->node = NULL;
1955 	info->csum_root->commit_root = NULL;
1956 	if (info->quota_root) {
1957 		info->quota_root->node = NULL;
1958 		info->quota_root->commit_root = NULL;
1959 	}
1960 
1961 	if (chunk_root) {
1962 		free_extent_buffer(info->chunk_root->node);
1963 		free_extent_buffer(info->chunk_root->commit_root);
1964 		info->chunk_root->node = NULL;
1965 		info->chunk_root->commit_root = NULL;
1966 	}
1967 }
1968 
1969 
1970 int open_ctree(struct super_block *sb,
1971 	       struct btrfs_fs_devices *fs_devices,
1972 	       char *options)
1973 {
1974 	u32 sectorsize;
1975 	u32 nodesize;
1976 	u32 leafsize;
1977 	u32 blocksize;
1978 	u32 stripesize;
1979 	u64 generation;
1980 	u64 features;
1981 	struct btrfs_key location;
1982 	struct buffer_head *bh;
1983 	struct btrfs_super_block *disk_super;
1984 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1985 	struct btrfs_root *tree_root;
1986 	struct btrfs_root *extent_root;
1987 	struct btrfs_root *csum_root;
1988 	struct btrfs_root *chunk_root;
1989 	struct btrfs_root *dev_root;
1990 	struct btrfs_root *quota_root;
1991 	struct btrfs_root *log_tree_root;
1992 	int ret;
1993 	int err = -EINVAL;
1994 	int num_backups_tried = 0;
1995 	int backup_index = 0;
1996 
1997 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1998 	extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1999 	csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2000 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2001 	dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
2002 	quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
2003 
2004 	if (!tree_root || !extent_root || !csum_root ||
2005 	    !chunk_root || !dev_root || !quota_root) {
2006 		err = -ENOMEM;
2007 		goto fail;
2008 	}
2009 
2010 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2011 	if (ret) {
2012 		err = ret;
2013 		goto fail;
2014 	}
2015 
2016 	ret = setup_bdi(fs_info, &fs_info->bdi);
2017 	if (ret) {
2018 		err = ret;
2019 		goto fail_srcu;
2020 	}
2021 
2022 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2023 	if (ret) {
2024 		err = ret;
2025 		goto fail_bdi;
2026 	}
2027 	fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2028 					(1 + ilog2(nr_cpu_ids));
2029 
2030 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2031 	if (ret) {
2032 		err = ret;
2033 		goto fail_dirty_metadata_bytes;
2034 	}
2035 
2036 	fs_info->btree_inode = new_inode(sb);
2037 	if (!fs_info->btree_inode) {
2038 		err = -ENOMEM;
2039 		goto fail_delalloc_bytes;
2040 	}
2041 
2042 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2043 
2044 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2045 	INIT_LIST_HEAD(&fs_info->trans_list);
2046 	INIT_LIST_HEAD(&fs_info->dead_roots);
2047 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2048 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2049 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2050 	spin_lock_init(&fs_info->delalloc_lock);
2051 	spin_lock_init(&fs_info->trans_lock);
2052 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2053 	spin_lock_init(&fs_info->delayed_iput_lock);
2054 	spin_lock_init(&fs_info->defrag_inodes_lock);
2055 	spin_lock_init(&fs_info->free_chunk_lock);
2056 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2057 	rwlock_init(&fs_info->tree_mod_log_lock);
2058 	mutex_init(&fs_info->reloc_mutex);
2059 	seqlock_init(&fs_info->profiles_lock);
2060 
2061 	init_completion(&fs_info->kobj_unregister);
2062 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2063 	INIT_LIST_HEAD(&fs_info->space_info);
2064 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2065 	btrfs_mapping_init(&fs_info->mapping_tree);
2066 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2067 			     BTRFS_BLOCK_RSV_GLOBAL);
2068 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2069 			     BTRFS_BLOCK_RSV_DELALLOC);
2070 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2071 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2072 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2073 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2074 			     BTRFS_BLOCK_RSV_DELOPS);
2075 	atomic_set(&fs_info->nr_async_submits, 0);
2076 	atomic_set(&fs_info->async_delalloc_pages, 0);
2077 	atomic_set(&fs_info->async_submit_draining, 0);
2078 	atomic_set(&fs_info->nr_async_bios, 0);
2079 	atomic_set(&fs_info->defrag_running, 0);
2080 	atomic_set(&fs_info->tree_mod_seq, 0);
2081 	fs_info->sb = sb;
2082 	fs_info->max_inline = 8192 * 1024;
2083 	fs_info->metadata_ratio = 0;
2084 	fs_info->defrag_inodes = RB_ROOT;
2085 	fs_info->trans_no_join = 0;
2086 	fs_info->free_chunk_space = 0;
2087 	fs_info->tree_mod_log = RB_ROOT;
2088 
2089 	/* readahead state */
2090 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2091 	spin_lock_init(&fs_info->reada_lock);
2092 
2093 	fs_info->thread_pool_size = min_t(unsigned long,
2094 					  num_online_cpus() + 2, 8);
2095 
2096 	INIT_LIST_HEAD(&fs_info->ordered_extents);
2097 	spin_lock_init(&fs_info->ordered_extent_lock);
2098 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2099 					GFP_NOFS);
2100 	if (!fs_info->delayed_root) {
2101 		err = -ENOMEM;
2102 		goto fail_iput;
2103 	}
2104 	btrfs_init_delayed_root(fs_info->delayed_root);
2105 
2106 	mutex_init(&fs_info->scrub_lock);
2107 	atomic_set(&fs_info->scrubs_running, 0);
2108 	atomic_set(&fs_info->scrub_pause_req, 0);
2109 	atomic_set(&fs_info->scrubs_paused, 0);
2110 	atomic_set(&fs_info->scrub_cancel_req, 0);
2111 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2112 	init_rwsem(&fs_info->scrub_super_lock);
2113 	fs_info->scrub_workers_refcnt = 0;
2114 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2115 	fs_info->check_integrity_print_mask = 0;
2116 #endif
2117 
2118 	spin_lock_init(&fs_info->balance_lock);
2119 	mutex_init(&fs_info->balance_mutex);
2120 	atomic_set(&fs_info->balance_running, 0);
2121 	atomic_set(&fs_info->balance_pause_req, 0);
2122 	atomic_set(&fs_info->balance_cancel_req, 0);
2123 	fs_info->balance_ctl = NULL;
2124 	init_waitqueue_head(&fs_info->balance_wait_q);
2125 
2126 	sb->s_blocksize = 4096;
2127 	sb->s_blocksize_bits = blksize_bits(4096);
2128 	sb->s_bdi = &fs_info->bdi;
2129 
2130 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2131 	set_nlink(fs_info->btree_inode, 1);
2132 	/*
2133 	 * we set the i_size on the btree inode to the max possible int.
2134 	 * the real end of the address space is determined by all of
2135 	 * the devices in the system
2136 	 */
2137 	fs_info->btree_inode->i_size = OFFSET_MAX;
2138 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2139 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2140 
2141 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2142 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2143 			     fs_info->btree_inode->i_mapping);
2144 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2145 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2146 
2147 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2148 
2149 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2150 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2151 	       sizeof(struct btrfs_key));
2152 	set_bit(BTRFS_INODE_DUMMY,
2153 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2154 	insert_inode_hash(fs_info->btree_inode);
2155 
2156 	spin_lock_init(&fs_info->block_group_cache_lock);
2157 	fs_info->block_group_cache_tree = RB_ROOT;
2158 	fs_info->first_logical_byte = (u64)-1;
2159 
2160 	extent_io_tree_init(&fs_info->freed_extents[0],
2161 			     fs_info->btree_inode->i_mapping);
2162 	extent_io_tree_init(&fs_info->freed_extents[1],
2163 			     fs_info->btree_inode->i_mapping);
2164 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2165 	fs_info->do_barriers = 1;
2166 
2167 
2168 	mutex_init(&fs_info->ordered_operations_mutex);
2169 	mutex_init(&fs_info->tree_log_mutex);
2170 	mutex_init(&fs_info->chunk_mutex);
2171 	mutex_init(&fs_info->transaction_kthread_mutex);
2172 	mutex_init(&fs_info->cleaner_mutex);
2173 	mutex_init(&fs_info->volume_mutex);
2174 	init_rwsem(&fs_info->extent_commit_sem);
2175 	init_rwsem(&fs_info->cleanup_work_sem);
2176 	init_rwsem(&fs_info->subvol_sem);
2177 	fs_info->dev_replace.lock_owner = 0;
2178 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2179 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2180 	mutex_init(&fs_info->dev_replace.lock_management_lock);
2181 	mutex_init(&fs_info->dev_replace.lock);
2182 
2183 	spin_lock_init(&fs_info->qgroup_lock);
2184 	fs_info->qgroup_tree = RB_ROOT;
2185 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2186 	fs_info->qgroup_seq = 1;
2187 	fs_info->quota_enabled = 0;
2188 	fs_info->pending_quota_state = 0;
2189 
2190 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2191 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2192 
2193 	init_waitqueue_head(&fs_info->transaction_throttle);
2194 	init_waitqueue_head(&fs_info->transaction_wait);
2195 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2196 	init_waitqueue_head(&fs_info->async_submit_wait);
2197 
2198 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2199 	if (ret) {
2200 		err = ret;
2201 		goto fail_alloc;
2202 	}
2203 
2204 	__setup_root(4096, 4096, 4096, 4096, tree_root,
2205 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2206 
2207 	invalidate_bdev(fs_devices->latest_bdev);
2208 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2209 	if (!bh) {
2210 		err = -EINVAL;
2211 		goto fail_alloc;
2212 	}
2213 
2214 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2215 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2216 	       sizeof(*fs_info->super_for_commit));
2217 	brelse(bh);
2218 
2219 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2220 
2221 	disk_super = fs_info->super_copy;
2222 	if (!btrfs_super_root(disk_super))
2223 		goto fail_alloc;
2224 
2225 	/* check FS state, whether FS is broken. */
2226 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2227 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2228 
2229 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2230 	if (ret) {
2231 		printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2232 		err = ret;
2233 		goto fail_alloc;
2234 	}
2235 
2236 	/*
2237 	 * run through our array of backup supers and setup
2238 	 * our ring pointer to the oldest one
2239 	 */
2240 	generation = btrfs_super_generation(disk_super);
2241 	find_oldest_super_backup(fs_info, generation);
2242 
2243 	/*
2244 	 * In the long term, we'll store the compression type in the super
2245 	 * block, and it'll be used for per file compression control.
2246 	 */
2247 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2248 
2249 	ret = btrfs_parse_options(tree_root, options);
2250 	if (ret) {
2251 		err = ret;
2252 		goto fail_alloc;
2253 	}
2254 
2255 	features = btrfs_super_incompat_flags(disk_super) &
2256 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2257 	if (features) {
2258 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2259 		       "unsupported optional features (%Lx).\n",
2260 		       (unsigned long long)features);
2261 		err = -EINVAL;
2262 		goto fail_alloc;
2263 	}
2264 
2265 	if (btrfs_super_leafsize(disk_super) !=
2266 	    btrfs_super_nodesize(disk_super)) {
2267 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2268 		       "blocksizes don't match.  node %d leaf %d\n",
2269 		       btrfs_super_nodesize(disk_super),
2270 		       btrfs_super_leafsize(disk_super));
2271 		err = -EINVAL;
2272 		goto fail_alloc;
2273 	}
2274 	if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2275 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2276 		       "blocksize (%d) was too large\n",
2277 		       btrfs_super_leafsize(disk_super));
2278 		err = -EINVAL;
2279 		goto fail_alloc;
2280 	}
2281 
2282 	features = btrfs_super_incompat_flags(disk_super);
2283 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2284 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2285 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2286 
2287 	/*
2288 	 * flag our filesystem as having big metadata blocks if
2289 	 * they are bigger than the page size
2290 	 */
2291 	if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2292 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2293 			printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2294 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2295 	}
2296 
2297 	nodesize = btrfs_super_nodesize(disk_super);
2298 	leafsize = btrfs_super_leafsize(disk_super);
2299 	sectorsize = btrfs_super_sectorsize(disk_super);
2300 	stripesize = btrfs_super_stripesize(disk_super);
2301 	fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2302 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2303 
2304 	/*
2305 	 * mixed block groups end up with duplicate but slightly offset
2306 	 * extent buffers for the same range.  It leads to corruptions
2307 	 */
2308 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2309 	    (sectorsize != leafsize)) {
2310 		printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2311 				"are not allowed for mixed block groups on %s\n",
2312 				sb->s_id);
2313 		goto fail_alloc;
2314 	}
2315 
2316 	btrfs_set_super_incompat_flags(disk_super, features);
2317 
2318 	features = btrfs_super_compat_ro_flags(disk_super) &
2319 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2320 	if (!(sb->s_flags & MS_RDONLY) && features) {
2321 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2322 		       "unsupported option features (%Lx).\n",
2323 		       (unsigned long long)features);
2324 		err = -EINVAL;
2325 		goto fail_alloc;
2326 	}
2327 
2328 	btrfs_init_workers(&fs_info->generic_worker,
2329 			   "genwork", 1, NULL);
2330 
2331 	btrfs_init_workers(&fs_info->workers, "worker",
2332 			   fs_info->thread_pool_size,
2333 			   &fs_info->generic_worker);
2334 
2335 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2336 			   fs_info->thread_pool_size,
2337 			   &fs_info->generic_worker);
2338 
2339 	btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2340 			   fs_info->thread_pool_size,
2341 			   &fs_info->generic_worker);
2342 
2343 	btrfs_init_workers(&fs_info->submit_workers, "submit",
2344 			   min_t(u64, fs_devices->num_devices,
2345 			   fs_info->thread_pool_size),
2346 			   &fs_info->generic_worker);
2347 
2348 	btrfs_init_workers(&fs_info->caching_workers, "cache",
2349 			   2, &fs_info->generic_worker);
2350 
2351 	/* a higher idle thresh on the submit workers makes it much more
2352 	 * likely that bios will be send down in a sane order to the
2353 	 * devices
2354 	 */
2355 	fs_info->submit_workers.idle_thresh = 64;
2356 
2357 	fs_info->workers.idle_thresh = 16;
2358 	fs_info->workers.ordered = 1;
2359 
2360 	fs_info->delalloc_workers.idle_thresh = 2;
2361 	fs_info->delalloc_workers.ordered = 1;
2362 
2363 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2364 			   &fs_info->generic_worker);
2365 	btrfs_init_workers(&fs_info->endio_workers, "endio",
2366 			   fs_info->thread_pool_size,
2367 			   &fs_info->generic_worker);
2368 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2369 			   fs_info->thread_pool_size,
2370 			   &fs_info->generic_worker);
2371 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
2372 			   "endio-meta-write", fs_info->thread_pool_size,
2373 			   &fs_info->generic_worker);
2374 	btrfs_init_workers(&fs_info->endio_raid56_workers,
2375 			   "endio-raid56", fs_info->thread_pool_size,
2376 			   &fs_info->generic_worker);
2377 	btrfs_init_workers(&fs_info->rmw_workers,
2378 			   "rmw", fs_info->thread_pool_size,
2379 			   &fs_info->generic_worker);
2380 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2381 			   fs_info->thread_pool_size,
2382 			   &fs_info->generic_worker);
2383 	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2384 			   1, &fs_info->generic_worker);
2385 	btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2386 			   fs_info->thread_pool_size,
2387 			   &fs_info->generic_worker);
2388 	btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2389 			   fs_info->thread_pool_size,
2390 			   &fs_info->generic_worker);
2391 
2392 	/*
2393 	 * endios are largely parallel and should have a very
2394 	 * low idle thresh
2395 	 */
2396 	fs_info->endio_workers.idle_thresh = 4;
2397 	fs_info->endio_meta_workers.idle_thresh = 4;
2398 	fs_info->endio_raid56_workers.idle_thresh = 4;
2399 	fs_info->rmw_workers.idle_thresh = 2;
2400 
2401 	fs_info->endio_write_workers.idle_thresh = 2;
2402 	fs_info->endio_meta_write_workers.idle_thresh = 2;
2403 	fs_info->readahead_workers.idle_thresh = 2;
2404 
2405 	/*
2406 	 * btrfs_start_workers can really only fail because of ENOMEM so just
2407 	 * return -ENOMEM if any of these fail.
2408 	 */
2409 	ret = btrfs_start_workers(&fs_info->workers);
2410 	ret |= btrfs_start_workers(&fs_info->generic_worker);
2411 	ret |= btrfs_start_workers(&fs_info->submit_workers);
2412 	ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2413 	ret |= btrfs_start_workers(&fs_info->fixup_workers);
2414 	ret |= btrfs_start_workers(&fs_info->endio_workers);
2415 	ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2416 	ret |= btrfs_start_workers(&fs_info->rmw_workers);
2417 	ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2418 	ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2419 	ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2420 	ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2421 	ret |= btrfs_start_workers(&fs_info->delayed_workers);
2422 	ret |= btrfs_start_workers(&fs_info->caching_workers);
2423 	ret |= btrfs_start_workers(&fs_info->readahead_workers);
2424 	ret |= btrfs_start_workers(&fs_info->flush_workers);
2425 	if (ret) {
2426 		err = -ENOMEM;
2427 		goto fail_sb_buffer;
2428 	}
2429 
2430 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2431 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2432 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2433 
2434 	tree_root->nodesize = nodesize;
2435 	tree_root->leafsize = leafsize;
2436 	tree_root->sectorsize = sectorsize;
2437 	tree_root->stripesize = stripesize;
2438 
2439 	sb->s_blocksize = sectorsize;
2440 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2441 
2442 	if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2443 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2444 		goto fail_sb_buffer;
2445 	}
2446 
2447 	if (sectorsize != PAGE_SIZE) {
2448 		printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2449 		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2450 		goto fail_sb_buffer;
2451 	}
2452 
2453 	mutex_lock(&fs_info->chunk_mutex);
2454 	ret = btrfs_read_sys_array(tree_root);
2455 	mutex_unlock(&fs_info->chunk_mutex);
2456 	if (ret) {
2457 		printk(KERN_WARNING "btrfs: failed to read the system "
2458 		       "array on %s\n", sb->s_id);
2459 		goto fail_sb_buffer;
2460 	}
2461 
2462 	blocksize = btrfs_level_size(tree_root,
2463 				     btrfs_super_chunk_root_level(disk_super));
2464 	generation = btrfs_super_chunk_root_generation(disk_super);
2465 
2466 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
2467 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2468 
2469 	chunk_root->node = read_tree_block(chunk_root,
2470 					   btrfs_super_chunk_root(disk_super),
2471 					   blocksize, generation);
2472 	BUG_ON(!chunk_root->node); /* -ENOMEM */
2473 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2474 		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2475 		       sb->s_id);
2476 		goto fail_tree_roots;
2477 	}
2478 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2479 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2480 
2481 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2482 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2483 	   BTRFS_UUID_SIZE);
2484 
2485 	ret = btrfs_read_chunk_tree(chunk_root);
2486 	if (ret) {
2487 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2488 		       sb->s_id);
2489 		goto fail_tree_roots;
2490 	}
2491 
2492 	/*
2493 	 * keep the device that is marked to be the target device for the
2494 	 * dev_replace procedure
2495 	 */
2496 	btrfs_close_extra_devices(fs_info, fs_devices, 0);
2497 
2498 	if (!fs_devices->latest_bdev) {
2499 		printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2500 		       sb->s_id);
2501 		goto fail_tree_roots;
2502 	}
2503 
2504 retry_root_backup:
2505 	blocksize = btrfs_level_size(tree_root,
2506 				     btrfs_super_root_level(disk_super));
2507 	generation = btrfs_super_generation(disk_super);
2508 
2509 	tree_root->node = read_tree_block(tree_root,
2510 					  btrfs_super_root(disk_super),
2511 					  blocksize, generation);
2512 	if (!tree_root->node ||
2513 	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2514 		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2515 		       sb->s_id);
2516 
2517 		goto recovery_tree_root;
2518 	}
2519 
2520 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2521 	tree_root->commit_root = btrfs_root_node(tree_root);
2522 
2523 	ret = find_and_setup_root(tree_root, fs_info,
2524 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2525 	if (ret)
2526 		goto recovery_tree_root;
2527 	extent_root->track_dirty = 1;
2528 
2529 	ret = find_and_setup_root(tree_root, fs_info,
2530 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
2531 	if (ret)
2532 		goto recovery_tree_root;
2533 	dev_root->track_dirty = 1;
2534 
2535 	ret = find_and_setup_root(tree_root, fs_info,
2536 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
2537 	if (ret)
2538 		goto recovery_tree_root;
2539 	csum_root->track_dirty = 1;
2540 
2541 	ret = find_and_setup_root(tree_root, fs_info,
2542 				  BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2543 	if (ret) {
2544 		kfree(quota_root);
2545 		quota_root = fs_info->quota_root = NULL;
2546 	} else {
2547 		quota_root->track_dirty = 1;
2548 		fs_info->quota_enabled = 1;
2549 		fs_info->pending_quota_state = 1;
2550 	}
2551 
2552 	fs_info->generation = generation;
2553 	fs_info->last_trans_committed = generation;
2554 
2555 	ret = btrfs_recover_balance(fs_info);
2556 	if (ret) {
2557 		printk(KERN_WARNING "btrfs: failed to recover balance\n");
2558 		goto fail_block_groups;
2559 	}
2560 
2561 	ret = btrfs_init_dev_stats(fs_info);
2562 	if (ret) {
2563 		printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2564 		       ret);
2565 		goto fail_block_groups;
2566 	}
2567 
2568 	ret = btrfs_init_dev_replace(fs_info);
2569 	if (ret) {
2570 		pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2571 		goto fail_block_groups;
2572 	}
2573 
2574 	btrfs_close_extra_devices(fs_info, fs_devices, 1);
2575 
2576 	ret = btrfs_init_space_info(fs_info);
2577 	if (ret) {
2578 		printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2579 		goto fail_block_groups;
2580 	}
2581 
2582 	ret = btrfs_read_block_groups(extent_root);
2583 	if (ret) {
2584 		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2585 		goto fail_block_groups;
2586 	}
2587 	fs_info->num_tolerated_disk_barrier_failures =
2588 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2589 	if (fs_info->fs_devices->missing_devices >
2590 	     fs_info->num_tolerated_disk_barrier_failures &&
2591 	    !(sb->s_flags & MS_RDONLY)) {
2592 		printk(KERN_WARNING
2593 		       "Btrfs: too many missing devices, writeable mount is not allowed\n");
2594 		goto fail_block_groups;
2595 	}
2596 
2597 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2598 					       "btrfs-cleaner");
2599 	if (IS_ERR(fs_info->cleaner_kthread))
2600 		goto fail_block_groups;
2601 
2602 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2603 						   tree_root,
2604 						   "btrfs-transaction");
2605 	if (IS_ERR(fs_info->transaction_kthread))
2606 		goto fail_cleaner;
2607 
2608 	if (!btrfs_test_opt(tree_root, SSD) &&
2609 	    !btrfs_test_opt(tree_root, NOSSD) &&
2610 	    !fs_info->fs_devices->rotating) {
2611 		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2612 		       "mode\n");
2613 		btrfs_set_opt(fs_info->mount_opt, SSD);
2614 	}
2615 
2616 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2617 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2618 		ret = btrfsic_mount(tree_root, fs_devices,
2619 				    btrfs_test_opt(tree_root,
2620 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2621 				    1 : 0,
2622 				    fs_info->check_integrity_print_mask);
2623 		if (ret)
2624 			printk(KERN_WARNING "btrfs: failed to initialize"
2625 			       " integrity check module %s\n", sb->s_id);
2626 	}
2627 #endif
2628 	ret = btrfs_read_qgroup_config(fs_info);
2629 	if (ret)
2630 		goto fail_trans_kthread;
2631 
2632 	/* do not make disk changes in broken FS */
2633 	if (btrfs_super_log_root(disk_super) != 0) {
2634 		u64 bytenr = btrfs_super_log_root(disk_super);
2635 
2636 		if (fs_devices->rw_devices == 0) {
2637 			printk(KERN_WARNING "Btrfs log replay required "
2638 			       "on RO media\n");
2639 			err = -EIO;
2640 			goto fail_qgroup;
2641 		}
2642 		blocksize =
2643 		     btrfs_level_size(tree_root,
2644 				      btrfs_super_log_root_level(disk_super));
2645 
2646 		log_tree_root = btrfs_alloc_root(fs_info);
2647 		if (!log_tree_root) {
2648 			err = -ENOMEM;
2649 			goto fail_qgroup;
2650 		}
2651 
2652 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2653 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2654 
2655 		log_tree_root->node = read_tree_block(tree_root, bytenr,
2656 						      blocksize,
2657 						      generation + 1);
2658 		/* returns with log_tree_root freed on success */
2659 		ret = btrfs_recover_log_trees(log_tree_root);
2660 		if (ret) {
2661 			btrfs_error(tree_root->fs_info, ret,
2662 				    "Failed to recover log tree");
2663 			free_extent_buffer(log_tree_root->node);
2664 			kfree(log_tree_root);
2665 			goto fail_trans_kthread;
2666 		}
2667 
2668 		if (sb->s_flags & MS_RDONLY) {
2669 			ret = btrfs_commit_super(tree_root);
2670 			if (ret)
2671 				goto fail_trans_kthread;
2672 		}
2673 	}
2674 
2675 	ret = btrfs_find_orphan_roots(tree_root);
2676 	if (ret)
2677 		goto fail_trans_kthread;
2678 
2679 	if (!(sb->s_flags & MS_RDONLY)) {
2680 		ret = btrfs_cleanup_fs_roots(fs_info);
2681 		if (ret)
2682 			goto fail_trans_kthread;
2683 
2684 		ret = btrfs_recover_relocation(tree_root);
2685 		if (ret < 0) {
2686 			printk(KERN_WARNING
2687 			       "btrfs: failed to recover relocation\n");
2688 			err = -EINVAL;
2689 			goto fail_qgroup;
2690 		}
2691 	}
2692 
2693 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2694 	location.type = BTRFS_ROOT_ITEM_KEY;
2695 	location.offset = (u64)-1;
2696 
2697 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2698 	if (!fs_info->fs_root)
2699 		goto fail_qgroup;
2700 	if (IS_ERR(fs_info->fs_root)) {
2701 		err = PTR_ERR(fs_info->fs_root);
2702 		goto fail_qgroup;
2703 	}
2704 
2705 	if (sb->s_flags & MS_RDONLY)
2706 		return 0;
2707 
2708 	down_read(&fs_info->cleanup_work_sem);
2709 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2710 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2711 		up_read(&fs_info->cleanup_work_sem);
2712 		close_ctree(tree_root);
2713 		return ret;
2714 	}
2715 	up_read(&fs_info->cleanup_work_sem);
2716 
2717 	ret = btrfs_resume_balance_async(fs_info);
2718 	if (ret) {
2719 		printk(KERN_WARNING "btrfs: failed to resume balance\n");
2720 		close_ctree(tree_root);
2721 		return ret;
2722 	}
2723 
2724 	ret = btrfs_resume_dev_replace_async(fs_info);
2725 	if (ret) {
2726 		pr_warn("btrfs: failed to resume dev_replace\n");
2727 		close_ctree(tree_root);
2728 		return ret;
2729 	}
2730 
2731 	return 0;
2732 
2733 fail_qgroup:
2734 	btrfs_free_qgroup_config(fs_info);
2735 fail_trans_kthread:
2736 	kthread_stop(fs_info->transaction_kthread);
2737 fail_cleaner:
2738 	kthread_stop(fs_info->cleaner_kthread);
2739 
2740 	/*
2741 	 * make sure we're done with the btree inode before we stop our
2742 	 * kthreads
2743 	 */
2744 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2745 
2746 fail_block_groups:
2747 	btrfs_free_block_groups(fs_info);
2748 
2749 fail_tree_roots:
2750 	free_root_pointers(fs_info, 1);
2751 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2752 
2753 fail_sb_buffer:
2754 	btrfs_stop_workers(&fs_info->generic_worker);
2755 	btrfs_stop_workers(&fs_info->readahead_workers);
2756 	btrfs_stop_workers(&fs_info->fixup_workers);
2757 	btrfs_stop_workers(&fs_info->delalloc_workers);
2758 	btrfs_stop_workers(&fs_info->workers);
2759 	btrfs_stop_workers(&fs_info->endio_workers);
2760 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2761 	btrfs_stop_workers(&fs_info->endio_raid56_workers);
2762 	btrfs_stop_workers(&fs_info->rmw_workers);
2763 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2764 	btrfs_stop_workers(&fs_info->endio_write_workers);
2765 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2766 	btrfs_stop_workers(&fs_info->submit_workers);
2767 	btrfs_stop_workers(&fs_info->delayed_workers);
2768 	btrfs_stop_workers(&fs_info->caching_workers);
2769 	btrfs_stop_workers(&fs_info->flush_workers);
2770 fail_alloc:
2771 fail_iput:
2772 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2773 
2774 	iput(fs_info->btree_inode);
2775 fail_delalloc_bytes:
2776 	percpu_counter_destroy(&fs_info->delalloc_bytes);
2777 fail_dirty_metadata_bytes:
2778 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2779 fail_bdi:
2780 	bdi_destroy(&fs_info->bdi);
2781 fail_srcu:
2782 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2783 fail:
2784 	btrfs_free_stripe_hash_table(fs_info);
2785 	btrfs_close_devices(fs_info->fs_devices);
2786 	return err;
2787 
2788 recovery_tree_root:
2789 	if (!btrfs_test_opt(tree_root, RECOVERY))
2790 		goto fail_tree_roots;
2791 
2792 	free_root_pointers(fs_info, 0);
2793 
2794 	/* don't use the log in recovery mode, it won't be valid */
2795 	btrfs_set_super_log_root(disk_super, 0);
2796 
2797 	/* we can't trust the free space cache either */
2798 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2799 
2800 	ret = next_root_backup(fs_info, fs_info->super_copy,
2801 			       &num_backups_tried, &backup_index);
2802 	if (ret == -1)
2803 		goto fail_block_groups;
2804 	goto retry_root_backup;
2805 }
2806 
2807 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2808 {
2809 	if (uptodate) {
2810 		set_buffer_uptodate(bh);
2811 	} else {
2812 		struct btrfs_device *device = (struct btrfs_device *)
2813 			bh->b_private;
2814 
2815 		printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2816 					  "I/O error on %s\n",
2817 					  rcu_str_deref(device->name));
2818 		/* note, we dont' set_buffer_write_io_error because we have
2819 		 * our own ways of dealing with the IO errors
2820 		 */
2821 		clear_buffer_uptodate(bh);
2822 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2823 	}
2824 	unlock_buffer(bh);
2825 	put_bh(bh);
2826 }
2827 
2828 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2829 {
2830 	struct buffer_head *bh;
2831 	struct buffer_head *latest = NULL;
2832 	struct btrfs_super_block *super;
2833 	int i;
2834 	u64 transid = 0;
2835 	u64 bytenr;
2836 
2837 	/* we would like to check all the supers, but that would make
2838 	 * a btrfs mount succeed after a mkfs from a different FS.
2839 	 * So, we need to add a special mount option to scan for
2840 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2841 	 */
2842 	for (i = 0; i < 1; i++) {
2843 		bytenr = btrfs_sb_offset(i);
2844 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2845 			break;
2846 		bh = __bread(bdev, bytenr / 4096, 4096);
2847 		if (!bh)
2848 			continue;
2849 
2850 		super = (struct btrfs_super_block *)bh->b_data;
2851 		if (btrfs_super_bytenr(super) != bytenr ||
2852 		    super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2853 			brelse(bh);
2854 			continue;
2855 		}
2856 
2857 		if (!latest || btrfs_super_generation(super) > transid) {
2858 			brelse(latest);
2859 			latest = bh;
2860 			transid = btrfs_super_generation(super);
2861 		} else {
2862 			brelse(bh);
2863 		}
2864 	}
2865 	return latest;
2866 }
2867 
2868 /*
2869  * this should be called twice, once with wait == 0 and
2870  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2871  * we write are pinned.
2872  *
2873  * They are released when wait == 1 is done.
2874  * max_mirrors must be the same for both runs, and it indicates how
2875  * many supers on this one device should be written.
2876  *
2877  * max_mirrors == 0 means to write them all.
2878  */
2879 static int write_dev_supers(struct btrfs_device *device,
2880 			    struct btrfs_super_block *sb,
2881 			    int do_barriers, int wait, int max_mirrors)
2882 {
2883 	struct buffer_head *bh;
2884 	int i;
2885 	int ret;
2886 	int errors = 0;
2887 	u32 crc;
2888 	u64 bytenr;
2889 
2890 	if (max_mirrors == 0)
2891 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2892 
2893 	for (i = 0; i < max_mirrors; i++) {
2894 		bytenr = btrfs_sb_offset(i);
2895 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2896 			break;
2897 
2898 		if (wait) {
2899 			bh = __find_get_block(device->bdev, bytenr / 4096,
2900 					      BTRFS_SUPER_INFO_SIZE);
2901 			BUG_ON(!bh);
2902 			wait_on_buffer(bh);
2903 			if (!buffer_uptodate(bh))
2904 				errors++;
2905 
2906 			/* drop our reference */
2907 			brelse(bh);
2908 
2909 			/* drop the reference from the wait == 0 run */
2910 			brelse(bh);
2911 			continue;
2912 		} else {
2913 			btrfs_set_super_bytenr(sb, bytenr);
2914 
2915 			crc = ~(u32)0;
2916 			crc = btrfs_csum_data(NULL, (char *)sb +
2917 					      BTRFS_CSUM_SIZE, crc,
2918 					      BTRFS_SUPER_INFO_SIZE -
2919 					      BTRFS_CSUM_SIZE);
2920 			btrfs_csum_final(crc, sb->csum);
2921 
2922 			/*
2923 			 * one reference for us, and we leave it for the
2924 			 * caller
2925 			 */
2926 			bh = __getblk(device->bdev, bytenr / 4096,
2927 				      BTRFS_SUPER_INFO_SIZE);
2928 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2929 
2930 			/* one reference for submit_bh */
2931 			get_bh(bh);
2932 
2933 			set_buffer_uptodate(bh);
2934 			lock_buffer(bh);
2935 			bh->b_end_io = btrfs_end_buffer_write_sync;
2936 			bh->b_private = device;
2937 		}
2938 
2939 		/*
2940 		 * we fua the first super.  The others we allow
2941 		 * to go down lazy.
2942 		 */
2943 		ret = btrfsic_submit_bh(WRITE_FUA, bh);
2944 		if (ret)
2945 			errors++;
2946 	}
2947 	return errors < i ? 0 : -1;
2948 }
2949 
2950 /*
2951  * endio for the write_dev_flush, this will wake anyone waiting
2952  * for the barrier when it is done
2953  */
2954 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2955 {
2956 	if (err) {
2957 		if (err == -EOPNOTSUPP)
2958 			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2959 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
2960 	}
2961 	if (bio->bi_private)
2962 		complete(bio->bi_private);
2963 	bio_put(bio);
2964 }
2965 
2966 /*
2967  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2968  * sent down.  With wait == 1, it waits for the previous flush.
2969  *
2970  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2971  * capable
2972  */
2973 static int write_dev_flush(struct btrfs_device *device, int wait)
2974 {
2975 	struct bio *bio;
2976 	int ret = 0;
2977 
2978 	if (device->nobarriers)
2979 		return 0;
2980 
2981 	if (wait) {
2982 		bio = device->flush_bio;
2983 		if (!bio)
2984 			return 0;
2985 
2986 		wait_for_completion(&device->flush_wait);
2987 
2988 		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2989 			printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2990 				      rcu_str_deref(device->name));
2991 			device->nobarriers = 1;
2992 		} else if (!bio_flagged(bio, BIO_UPTODATE)) {
2993 			ret = -EIO;
2994 			btrfs_dev_stat_inc_and_print(device,
2995 				BTRFS_DEV_STAT_FLUSH_ERRS);
2996 		}
2997 
2998 		/* drop the reference from the wait == 0 run */
2999 		bio_put(bio);
3000 		device->flush_bio = NULL;
3001 
3002 		return ret;
3003 	}
3004 
3005 	/*
3006 	 * one reference for us, and we leave it for the
3007 	 * caller
3008 	 */
3009 	device->flush_bio = NULL;
3010 	bio = bio_alloc(GFP_NOFS, 0);
3011 	if (!bio)
3012 		return -ENOMEM;
3013 
3014 	bio->bi_end_io = btrfs_end_empty_barrier;
3015 	bio->bi_bdev = device->bdev;
3016 	init_completion(&device->flush_wait);
3017 	bio->bi_private = &device->flush_wait;
3018 	device->flush_bio = bio;
3019 
3020 	bio_get(bio);
3021 	btrfsic_submit_bio(WRITE_FLUSH, bio);
3022 
3023 	return 0;
3024 }
3025 
3026 /*
3027  * send an empty flush down to each device in parallel,
3028  * then wait for them
3029  */
3030 static int barrier_all_devices(struct btrfs_fs_info *info)
3031 {
3032 	struct list_head *head;
3033 	struct btrfs_device *dev;
3034 	int errors_send = 0;
3035 	int errors_wait = 0;
3036 	int ret;
3037 
3038 	/* send down all the barriers */
3039 	head = &info->fs_devices->devices;
3040 	list_for_each_entry_rcu(dev, head, dev_list) {
3041 		if (!dev->bdev) {
3042 			errors_send++;
3043 			continue;
3044 		}
3045 		if (!dev->in_fs_metadata || !dev->writeable)
3046 			continue;
3047 
3048 		ret = write_dev_flush(dev, 0);
3049 		if (ret)
3050 			errors_send++;
3051 	}
3052 
3053 	/* wait for all the barriers */
3054 	list_for_each_entry_rcu(dev, head, dev_list) {
3055 		if (!dev->bdev) {
3056 			errors_wait++;
3057 			continue;
3058 		}
3059 		if (!dev->in_fs_metadata || !dev->writeable)
3060 			continue;
3061 
3062 		ret = write_dev_flush(dev, 1);
3063 		if (ret)
3064 			errors_wait++;
3065 	}
3066 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3067 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3068 		return -EIO;
3069 	return 0;
3070 }
3071 
3072 int btrfs_calc_num_tolerated_disk_barrier_failures(
3073 	struct btrfs_fs_info *fs_info)
3074 {
3075 	struct btrfs_ioctl_space_info space;
3076 	struct btrfs_space_info *sinfo;
3077 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3078 		       BTRFS_BLOCK_GROUP_SYSTEM,
3079 		       BTRFS_BLOCK_GROUP_METADATA,
3080 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3081 	int num_types = 4;
3082 	int i;
3083 	int c;
3084 	int num_tolerated_disk_barrier_failures =
3085 		(int)fs_info->fs_devices->num_devices;
3086 
3087 	for (i = 0; i < num_types; i++) {
3088 		struct btrfs_space_info *tmp;
3089 
3090 		sinfo = NULL;
3091 		rcu_read_lock();
3092 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3093 			if (tmp->flags == types[i]) {
3094 				sinfo = tmp;
3095 				break;
3096 			}
3097 		}
3098 		rcu_read_unlock();
3099 
3100 		if (!sinfo)
3101 			continue;
3102 
3103 		down_read(&sinfo->groups_sem);
3104 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3105 			if (!list_empty(&sinfo->block_groups[c])) {
3106 				u64 flags;
3107 
3108 				btrfs_get_block_group_info(
3109 					&sinfo->block_groups[c], &space);
3110 				if (space.total_bytes == 0 ||
3111 				    space.used_bytes == 0)
3112 					continue;
3113 				flags = space.flags;
3114 				/*
3115 				 * return
3116 				 * 0: if dup, single or RAID0 is configured for
3117 				 *    any of metadata, system or data, else
3118 				 * 1: if RAID5 is configured, or if RAID1 or
3119 				 *    RAID10 is configured and only two mirrors
3120 				 *    are used, else
3121 				 * 2: if RAID6 is configured, else
3122 				 * num_mirrors - 1: if RAID1 or RAID10 is
3123 				 *                  configured and more than
3124 				 *                  2 mirrors are used.
3125 				 */
3126 				if (num_tolerated_disk_barrier_failures > 0 &&
3127 				    ((flags & (BTRFS_BLOCK_GROUP_DUP |
3128 					       BTRFS_BLOCK_GROUP_RAID0)) ||
3129 				     ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3130 				      == 0)))
3131 					num_tolerated_disk_barrier_failures = 0;
3132 				else if (num_tolerated_disk_barrier_failures > 1) {
3133 					if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3134 					    BTRFS_BLOCK_GROUP_RAID5 |
3135 					    BTRFS_BLOCK_GROUP_RAID10)) {
3136 						num_tolerated_disk_barrier_failures = 1;
3137 					} else if (flags &
3138 						   BTRFS_BLOCK_GROUP_RAID5) {
3139 						num_tolerated_disk_barrier_failures = 2;
3140 					}
3141 				}
3142 			}
3143 		}
3144 		up_read(&sinfo->groups_sem);
3145 	}
3146 
3147 	return num_tolerated_disk_barrier_failures;
3148 }
3149 
3150 int write_all_supers(struct btrfs_root *root, int max_mirrors)
3151 {
3152 	struct list_head *head;
3153 	struct btrfs_device *dev;
3154 	struct btrfs_super_block *sb;
3155 	struct btrfs_dev_item *dev_item;
3156 	int ret;
3157 	int do_barriers;
3158 	int max_errors;
3159 	int total_errors = 0;
3160 	u64 flags;
3161 
3162 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3163 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3164 	backup_super_roots(root->fs_info);
3165 
3166 	sb = root->fs_info->super_for_commit;
3167 	dev_item = &sb->dev_item;
3168 
3169 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3170 	head = &root->fs_info->fs_devices->devices;
3171 
3172 	if (do_barriers) {
3173 		ret = barrier_all_devices(root->fs_info);
3174 		if (ret) {
3175 			mutex_unlock(
3176 				&root->fs_info->fs_devices->device_list_mutex);
3177 			btrfs_error(root->fs_info, ret,
3178 				    "errors while submitting device barriers.");
3179 			return ret;
3180 		}
3181 	}
3182 
3183 	list_for_each_entry_rcu(dev, head, dev_list) {
3184 		if (!dev->bdev) {
3185 			total_errors++;
3186 			continue;
3187 		}
3188 		if (!dev->in_fs_metadata || !dev->writeable)
3189 			continue;
3190 
3191 		btrfs_set_stack_device_generation(dev_item, 0);
3192 		btrfs_set_stack_device_type(dev_item, dev->type);
3193 		btrfs_set_stack_device_id(dev_item, dev->devid);
3194 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3195 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3196 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3197 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3198 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3199 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3200 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3201 
3202 		flags = btrfs_super_flags(sb);
3203 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3204 
3205 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3206 		if (ret)
3207 			total_errors++;
3208 	}
3209 	if (total_errors > max_errors) {
3210 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3211 		       total_errors);
3212 
3213 		/* This shouldn't happen. FUA is masked off if unsupported */
3214 		BUG();
3215 	}
3216 
3217 	total_errors = 0;
3218 	list_for_each_entry_rcu(dev, head, dev_list) {
3219 		if (!dev->bdev)
3220 			continue;
3221 		if (!dev->in_fs_metadata || !dev->writeable)
3222 			continue;
3223 
3224 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3225 		if (ret)
3226 			total_errors++;
3227 	}
3228 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3229 	if (total_errors > max_errors) {
3230 		btrfs_error(root->fs_info, -EIO,
3231 			    "%d errors while writing supers", total_errors);
3232 		return -EIO;
3233 	}
3234 	return 0;
3235 }
3236 
3237 int write_ctree_super(struct btrfs_trans_handle *trans,
3238 		      struct btrfs_root *root, int max_mirrors)
3239 {
3240 	int ret;
3241 
3242 	ret = write_all_supers(root, max_mirrors);
3243 	return ret;
3244 }
3245 
3246 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3247 {
3248 	spin_lock(&fs_info->fs_roots_radix_lock);
3249 	radix_tree_delete(&fs_info->fs_roots_radix,
3250 			  (unsigned long)root->root_key.objectid);
3251 	spin_unlock(&fs_info->fs_roots_radix_lock);
3252 
3253 	if (btrfs_root_refs(&root->root_item) == 0)
3254 		synchronize_srcu(&fs_info->subvol_srcu);
3255 
3256 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3257 		btrfs_free_log(NULL, root);
3258 		btrfs_free_log_root_tree(NULL, fs_info);
3259 	}
3260 
3261 	__btrfs_remove_free_space_cache(root->free_ino_pinned);
3262 	__btrfs_remove_free_space_cache(root->free_ino_ctl);
3263 	free_fs_root(root);
3264 }
3265 
3266 static void free_fs_root(struct btrfs_root *root)
3267 {
3268 	iput(root->cache_inode);
3269 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3270 	if (root->anon_dev)
3271 		free_anon_bdev(root->anon_dev);
3272 	free_extent_buffer(root->node);
3273 	free_extent_buffer(root->commit_root);
3274 	kfree(root->free_ino_ctl);
3275 	kfree(root->free_ino_pinned);
3276 	kfree(root->name);
3277 	kfree(root);
3278 }
3279 
3280 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3281 {
3282 	int ret;
3283 	struct btrfs_root *gang[8];
3284 	int i;
3285 
3286 	while (!list_empty(&fs_info->dead_roots)) {
3287 		gang[0] = list_entry(fs_info->dead_roots.next,
3288 				     struct btrfs_root, root_list);
3289 		list_del(&gang[0]->root_list);
3290 
3291 		if (gang[0]->in_radix) {
3292 			btrfs_free_fs_root(fs_info, gang[0]);
3293 		} else {
3294 			free_extent_buffer(gang[0]->node);
3295 			free_extent_buffer(gang[0]->commit_root);
3296 			kfree(gang[0]);
3297 		}
3298 	}
3299 
3300 	while (1) {
3301 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3302 					     (void **)gang, 0,
3303 					     ARRAY_SIZE(gang));
3304 		if (!ret)
3305 			break;
3306 		for (i = 0; i < ret; i++)
3307 			btrfs_free_fs_root(fs_info, gang[i]);
3308 	}
3309 }
3310 
3311 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3312 {
3313 	u64 root_objectid = 0;
3314 	struct btrfs_root *gang[8];
3315 	int i;
3316 	int ret;
3317 
3318 	while (1) {
3319 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3320 					     (void **)gang, root_objectid,
3321 					     ARRAY_SIZE(gang));
3322 		if (!ret)
3323 			break;
3324 
3325 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3326 		for (i = 0; i < ret; i++) {
3327 			int err;
3328 
3329 			root_objectid = gang[i]->root_key.objectid;
3330 			err = btrfs_orphan_cleanup(gang[i]);
3331 			if (err)
3332 				return err;
3333 		}
3334 		root_objectid++;
3335 	}
3336 	return 0;
3337 }
3338 
3339 int btrfs_commit_super(struct btrfs_root *root)
3340 {
3341 	struct btrfs_trans_handle *trans;
3342 	int ret;
3343 
3344 	mutex_lock(&root->fs_info->cleaner_mutex);
3345 	btrfs_run_delayed_iputs(root);
3346 	btrfs_clean_old_snapshots(root);
3347 	mutex_unlock(&root->fs_info->cleaner_mutex);
3348 
3349 	/* wait until ongoing cleanup work done */
3350 	down_write(&root->fs_info->cleanup_work_sem);
3351 	up_write(&root->fs_info->cleanup_work_sem);
3352 
3353 	trans = btrfs_join_transaction(root);
3354 	if (IS_ERR(trans))
3355 		return PTR_ERR(trans);
3356 	ret = btrfs_commit_transaction(trans, root);
3357 	if (ret)
3358 		return ret;
3359 	/* run commit again to drop the original snapshot */
3360 	trans = btrfs_join_transaction(root);
3361 	if (IS_ERR(trans))
3362 		return PTR_ERR(trans);
3363 	ret = btrfs_commit_transaction(trans, root);
3364 	if (ret)
3365 		return ret;
3366 	ret = btrfs_write_and_wait_transaction(NULL, root);
3367 	if (ret) {
3368 		btrfs_error(root->fs_info, ret,
3369 			    "Failed to sync btree inode to disk.");
3370 		return ret;
3371 	}
3372 
3373 	ret = write_ctree_super(NULL, root, 0);
3374 	return ret;
3375 }
3376 
3377 int close_ctree(struct btrfs_root *root)
3378 {
3379 	struct btrfs_fs_info *fs_info = root->fs_info;
3380 	int ret;
3381 
3382 	fs_info->closing = 1;
3383 	smp_mb();
3384 
3385 	/* pause restriper - we want to resume on mount */
3386 	btrfs_pause_balance(fs_info);
3387 
3388 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3389 
3390 	btrfs_scrub_cancel(fs_info);
3391 
3392 	/* wait for any defraggers to finish */
3393 	wait_event(fs_info->transaction_wait,
3394 		   (atomic_read(&fs_info->defrag_running) == 0));
3395 
3396 	/* clear out the rbtree of defraggable inodes */
3397 	btrfs_cleanup_defrag_inodes(fs_info);
3398 
3399 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3400 		ret = btrfs_commit_super(root);
3401 		if (ret)
3402 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3403 	}
3404 
3405 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3406 		btrfs_error_commit_super(root);
3407 
3408 	btrfs_put_block_group_cache(fs_info);
3409 
3410 	kthread_stop(fs_info->transaction_kthread);
3411 	kthread_stop(fs_info->cleaner_kthread);
3412 
3413 	fs_info->closing = 2;
3414 	smp_mb();
3415 
3416 	btrfs_free_qgroup_config(root->fs_info);
3417 
3418 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3419 		printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3420 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3421 	}
3422 
3423 	free_extent_buffer(fs_info->extent_root->node);
3424 	free_extent_buffer(fs_info->extent_root->commit_root);
3425 	free_extent_buffer(fs_info->tree_root->node);
3426 	free_extent_buffer(fs_info->tree_root->commit_root);
3427 	free_extent_buffer(fs_info->chunk_root->node);
3428 	free_extent_buffer(fs_info->chunk_root->commit_root);
3429 	free_extent_buffer(fs_info->dev_root->node);
3430 	free_extent_buffer(fs_info->dev_root->commit_root);
3431 	free_extent_buffer(fs_info->csum_root->node);
3432 	free_extent_buffer(fs_info->csum_root->commit_root);
3433 	if (fs_info->quota_root) {
3434 		free_extent_buffer(fs_info->quota_root->node);
3435 		free_extent_buffer(fs_info->quota_root->commit_root);
3436 	}
3437 
3438 	btrfs_free_block_groups(fs_info);
3439 
3440 	del_fs_roots(fs_info);
3441 
3442 	iput(fs_info->btree_inode);
3443 
3444 	btrfs_stop_workers(&fs_info->generic_worker);
3445 	btrfs_stop_workers(&fs_info->fixup_workers);
3446 	btrfs_stop_workers(&fs_info->delalloc_workers);
3447 	btrfs_stop_workers(&fs_info->workers);
3448 	btrfs_stop_workers(&fs_info->endio_workers);
3449 	btrfs_stop_workers(&fs_info->endio_meta_workers);
3450 	btrfs_stop_workers(&fs_info->endio_raid56_workers);
3451 	btrfs_stop_workers(&fs_info->rmw_workers);
3452 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3453 	btrfs_stop_workers(&fs_info->endio_write_workers);
3454 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
3455 	btrfs_stop_workers(&fs_info->submit_workers);
3456 	btrfs_stop_workers(&fs_info->delayed_workers);
3457 	btrfs_stop_workers(&fs_info->caching_workers);
3458 	btrfs_stop_workers(&fs_info->readahead_workers);
3459 	btrfs_stop_workers(&fs_info->flush_workers);
3460 
3461 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3462 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3463 		btrfsic_unmount(root, fs_info->fs_devices);
3464 #endif
3465 
3466 	btrfs_close_devices(fs_info->fs_devices);
3467 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3468 
3469 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3470 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3471 	bdi_destroy(&fs_info->bdi);
3472 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3473 
3474 	btrfs_free_stripe_hash_table(fs_info);
3475 
3476 	return 0;
3477 }
3478 
3479 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3480 			  int atomic)
3481 {
3482 	int ret;
3483 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3484 
3485 	ret = extent_buffer_uptodate(buf);
3486 	if (!ret)
3487 		return ret;
3488 
3489 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3490 				    parent_transid, atomic);
3491 	if (ret == -EAGAIN)
3492 		return ret;
3493 	return !ret;
3494 }
3495 
3496 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3497 {
3498 	return set_extent_buffer_uptodate(buf);
3499 }
3500 
3501 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3502 {
3503 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3504 	u64 transid = btrfs_header_generation(buf);
3505 	int was_dirty;
3506 
3507 	btrfs_assert_tree_locked(buf);
3508 	if (transid != root->fs_info->generation)
3509 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3510 		       "found %llu running %llu\n",
3511 			(unsigned long long)buf->start,
3512 			(unsigned long long)transid,
3513 			(unsigned long long)root->fs_info->generation);
3514 	was_dirty = set_extent_buffer_dirty(buf);
3515 	if (!was_dirty)
3516 		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3517 				     buf->len,
3518 				     root->fs_info->dirty_metadata_batch);
3519 }
3520 
3521 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3522 					int flush_delayed)
3523 {
3524 	/*
3525 	 * looks as though older kernels can get into trouble with
3526 	 * this code, they end up stuck in balance_dirty_pages forever
3527 	 */
3528 	int ret;
3529 
3530 	if (current->flags & PF_MEMALLOC)
3531 		return;
3532 
3533 	if (flush_delayed)
3534 		btrfs_balance_delayed_items(root);
3535 
3536 	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3537 				     BTRFS_DIRTY_METADATA_THRESH);
3538 	if (ret > 0) {
3539 		balance_dirty_pages_ratelimited(
3540 				   root->fs_info->btree_inode->i_mapping);
3541 	}
3542 	return;
3543 }
3544 
3545 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3546 {
3547 	__btrfs_btree_balance_dirty(root, 1);
3548 }
3549 
3550 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3551 {
3552 	__btrfs_btree_balance_dirty(root, 0);
3553 }
3554 
3555 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3556 {
3557 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3558 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3559 }
3560 
3561 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3562 			      int read_only)
3563 {
3564 	if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3565 		printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3566 		return -EINVAL;
3567 	}
3568 
3569 	if (read_only)
3570 		return 0;
3571 
3572 	return 0;
3573 }
3574 
3575 void btrfs_error_commit_super(struct btrfs_root *root)
3576 {
3577 	mutex_lock(&root->fs_info->cleaner_mutex);
3578 	btrfs_run_delayed_iputs(root);
3579 	mutex_unlock(&root->fs_info->cleaner_mutex);
3580 
3581 	down_write(&root->fs_info->cleanup_work_sem);
3582 	up_write(&root->fs_info->cleanup_work_sem);
3583 
3584 	/* cleanup FS via transaction */
3585 	btrfs_cleanup_transaction(root);
3586 }
3587 
3588 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3589 					     struct btrfs_root *root)
3590 {
3591 	struct btrfs_inode *btrfs_inode;
3592 	struct list_head splice;
3593 
3594 	INIT_LIST_HEAD(&splice);
3595 
3596 	mutex_lock(&root->fs_info->ordered_operations_mutex);
3597 	spin_lock(&root->fs_info->ordered_extent_lock);
3598 
3599 	list_splice_init(&t->ordered_operations, &splice);
3600 	while (!list_empty(&splice)) {
3601 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3602 					 ordered_operations);
3603 
3604 		list_del_init(&btrfs_inode->ordered_operations);
3605 
3606 		btrfs_invalidate_inodes(btrfs_inode->root);
3607 	}
3608 
3609 	spin_unlock(&root->fs_info->ordered_extent_lock);
3610 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
3611 }
3612 
3613 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3614 {
3615 	struct btrfs_ordered_extent *ordered;
3616 
3617 	spin_lock(&root->fs_info->ordered_extent_lock);
3618 	/*
3619 	 * This will just short circuit the ordered completion stuff which will
3620 	 * make sure the ordered extent gets properly cleaned up.
3621 	 */
3622 	list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3623 			    root_extent_list)
3624 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3625 	spin_unlock(&root->fs_info->ordered_extent_lock);
3626 }
3627 
3628 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3629 			       struct btrfs_root *root)
3630 {
3631 	struct rb_node *node;
3632 	struct btrfs_delayed_ref_root *delayed_refs;
3633 	struct btrfs_delayed_ref_node *ref;
3634 	int ret = 0;
3635 
3636 	delayed_refs = &trans->delayed_refs;
3637 
3638 	spin_lock(&delayed_refs->lock);
3639 	if (delayed_refs->num_entries == 0) {
3640 		spin_unlock(&delayed_refs->lock);
3641 		printk(KERN_INFO "delayed_refs has NO entry\n");
3642 		return ret;
3643 	}
3644 
3645 	while ((node = rb_first(&delayed_refs->root)) != NULL) {
3646 		struct btrfs_delayed_ref_head *head = NULL;
3647 
3648 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3649 		atomic_set(&ref->refs, 1);
3650 		if (btrfs_delayed_ref_is_head(ref)) {
3651 
3652 			head = btrfs_delayed_node_to_head(ref);
3653 			if (!mutex_trylock(&head->mutex)) {
3654 				atomic_inc(&ref->refs);
3655 				spin_unlock(&delayed_refs->lock);
3656 
3657 				/* Need to wait for the delayed ref to run */
3658 				mutex_lock(&head->mutex);
3659 				mutex_unlock(&head->mutex);
3660 				btrfs_put_delayed_ref(ref);
3661 
3662 				spin_lock(&delayed_refs->lock);
3663 				continue;
3664 			}
3665 
3666 			btrfs_free_delayed_extent_op(head->extent_op);
3667 			delayed_refs->num_heads--;
3668 			if (list_empty(&head->cluster))
3669 				delayed_refs->num_heads_ready--;
3670 			list_del_init(&head->cluster);
3671 		}
3672 
3673 		ref->in_tree = 0;
3674 		rb_erase(&ref->rb_node, &delayed_refs->root);
3675 		delayed_refs->num_entries--;
3676 		if (head)
3677 			mutex_unlock(&head->mutex);
3678 		spin_unlock(&delayed_refs->lock);
3679 		btrfs_put_delayed_ref(ref);
3680 
3681 		cond_resched();
3682 		spin_lock(&delayed_refs->lock);
3683 	}
3684 
3685 	spin_unlock(&delayed_refs->lock);
3686 
3687 	return ret;
3688 }
3689 
3690 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3691 {
3692 	struct btrfs_pending_snapshot *snapshot;
3693 	struct list_head splice;
3694 
3695 	INIT_LIST_HEAD(&splice);
3696 
3697 	list_splice_init(&t->pending_snapshots, &splice);
3698 
3699 	while (!list_empty(&splice)) {
3700 		snapshot = list_entry(splice.next,
3701 				      struct btrfs_pending_snapshot,
3702 				      list);
3703 		snapshot->error = -ECANCELED;
3704 		list_del_init(&snapshot->list);
3705 	}
3706 }
3707 
3708 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3709 {
3710 	struct btrfs_inode *btrfs_inode;
3711 	struct list_head splice;
3712 
3713 	INIT_LIST_HEAD(&splice);
3714 
3715 	spin_lock(&root->fs_info->delalloc_lock);
3716 	list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3717 
3718 	while (!list_empty(&splice)) {
3719 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3720 				    delalloc_inodes);
3721 
3722 		list_del_init(&btrfs_inode->delalloc_inodes);
3723 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3724 			  &btrfs_inode->runtime_flags);
3725 
3726 		btrfs_invalidate_inodes(btrfs_inode->root);
3727 	}
3728 
3729 	spin_unlock(&root->fs_info->delalloc_lock);
3730 }
3731 
3732 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3733 					struct extent_io_tree *dirty_pages,
3734 					int mark)
3735 {
3736 	int ret;
3737 	struct page *page;
3738 	struct inode *btree_inode = root->fs_info->btree_inode;
3739 	struct extent_buffer *eb;
3740 	u64 start = 0;
3741 	u64 end;
3742 	u64 offset;
3743 	unsigned long index;
3744 
3745 	while (1) {
3746 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3747 					    mark, NULL);
3748 		if (ret)
3749 			break;
3750 
3751 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3752 		while (start <= end) {
3753 			index = start >> PAGE_CACHE_SHIFT;
3754 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3755 			page = find_get_page(btree_inode->i_mapping, index);
3756 			if (!page)
3757 				continue;
3758 			offset = page_offset(page);
3759 
3760 			spin_lock(&dirty_pages->buffer_lock);
3761 			eb = radix_tree_lookup(
3762 			     &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3763 					       offset >> PAGE_CACHE_SHIFT);
3764 			spin_unlock(&dirty_pages->buffer_lock);
3765 			if (eb)
3766 				ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3767 							 &eb->bflags);
3768 			if (PageWriteback(page))
3769 				end_page_writeback(page);
3770 
3771 			lock_page(page);
3772 			if (PageDirty(page)) {
3773 				clear_page_dirty_for_io(page);
3774 				spin_lock_irq(&page->mapping->tree_lock);
3775 				radix_tree_tag_clear(&page->mapping->page_tree,
3776 							page_index(page),
3777 							PAGECACHE_TAG_DIRTY);
3778 				spin_unlock_irq(&page->mapping->tree_lock);
3779 			}
3780 
3781 			unlock_page(page);
3782 			page_cache_release(page);
3783 		}
3784 	}
3785 
3786 	return ret;
3787 }
3788 
3789 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3790 				       struct extent_io_tree *pinned_extents)
3791 {
3792 	struct extent_io_tree *unpin;
3793 	u64 start;
3794 	u64 end;
3795 	int ret;
3796 	bool loop = true;
3797 
3798 	unpin = pinned_extents;
3799 again:
3800 	while (1) {
3801 		ret = find_first_extent_bit(unpin, 0, &start, &end,
3802 					    EXTENT_DIRTY, NULL);
3803 		if (ret)
3804 			break;
3805 
3806 		/* opt_discard */
3807 		if (btrfs_test_opt(root, DISCARD))
3808 			ret = btrfs_error_discard_extent(root, start,
3809 							 end + 1 - start,
3810 							 NULL);
3811 
3812 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
3813 		btrfs_error_unpin_extent_range(root, start, end);
3814 		cond_resched();
3815 	}
3816 
3817 	if (loop) {
3818 		if (unpin == &root->fs_info->freed_extents[0])
3819 			unpin = &root->fs_info->freed_extents[1];
3820 		else
3821 			unpin = &root->fs_info->freed_extents[0];
3822 		loop = false;
3823 		goto again;
3824 	}
3825 
3826 	return 0;
3827 }
3828 
3829 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3830 				   struct btrfs_root *root)
3831 {
3832 	btrfs_destroy_delayed_refs(cur_trans, root);
3833 	btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3834 				cur_trans->dirty_pages.dirty_bytes);
3835 
3836 	/* FIXME: cleanup wait for commit */
3837 	cur_trans->in_commit = 1;
3838 	cur_trans->blocked = 1;
3839 	wake_up(&root->fs_info->transaction_blocked_wait);
3840 
3841 	btrfs_evict_pending_snapshots(cur_trans);
3842 
3843 	cur_trans->blocked = 0;
3844 	wake_up(&root->fs_info->transaction_wait);
3845 
3846 	cur_trans->commit_done = 1;
3847 	wake_up(&cur_trans->commit_wait);
3848 
3849 	btrfs_destroy_delayed_inodes(root);
3850 	btrfs_assert_delayed_root_empty(root);
3851 
3852 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3853 				     EXTENT_DIRTY);
3854 	btrfs_destroy_pinned_extent(root,
3855 				    root->fs_info->pinned_extents);
3856 
3857 	/*
3858 	memset(cur_trans, 0, sizeof(*cur_trans));
3859 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3860 	*/
3861 }
3862 
3863 int btrfs_cleanup_transaction(struct btrfs_root *root)
3864 {
3865 	struct btrfs_transaction *t;
3866 	LIST_HEAD(list);
3867 
3868 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
3869 
3870 	spin_lock(&root->fs_info->trans_lock);
3871 	list_splice_init(&root->fs_info->trans_list, &list);
3872 	root->fs_info->trans_no_join = 1;
3873 	spin_unlock(&root->fs_info->trans_lock);
3874 
3875 	while (!list_empty(&list)) {
3876 		t = list_entry(list.next, struct btrfs_transaction, list);
3877 
3878 		btrfs_destroy_ordered_operations(t, root);
3879 
3880 		btrfs_destroy_ordered_extents(root);
3881 
3882 		btrfs_destroy_delayed_refs(t, root);
3883 
3884 		btrfs_block_rsv_release(root,
3885 					&root->fs_info->trans_block_rsv,
3886 					t->dirty_pages.dirty_bytes);
3887 
3888 		/* FIXME: cleanup wait for commit */
3889 		t->in_commit = 1;
3890 		t->blocked = 1;
3891 		smp_mb();
3892 		if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3893 			wake_up(&root->fs_info->transaction_blocked_wait);
3894 
3895 		btrfs_evict_pending_snapshots(t);
3896 
3897 		t->blocked = 0;
3898 		smp_mb();
3899 		if (waitqueue_active(&root->fs_info->transaction_wait))
3900 			wake_up(&root->fs_info->transaction_wait);
3901 
3902 		t->commit_done = 1;
3903 		smp_mb();
3904 		if (waitqueue_active(&t->commit_wait))
3905 			wake_up(&t->commit_wait);
3906 
3907 		btrfs_destroy_delayed_inodes(root);
3908 		btrfs_assert_delayed_root_empty(root);
3909 
3910 		btrfs_destroy_delalloc_inodes(root);
3911 
3912 		spin_lock(&root->fs_info->trans_lock);
3913 		root->fs_info->running_transaction = NULL;
3914 		spin_unlock(&root->fs_info->trans_lock);
3915 
3916 		btrfs_destroy_marked_extents(root, &t->dirty_pages,
3917 					     EXTENT_DIRTY);
3918 
3919 		btrfs_destroy_pinned_extent(root,
3920 					    root->fs_info->pinned_extents);
3921 
3922 		atomic_set(&t->use_count, 0);
3923 		list_del_init(&t->list);
3924 		memset(t, 0, sizeof(*t));
3925 		kmem_cache_free(btrfs_transaction_cachep, t);
3926 	}
3927 
3928 	spin_lock(&root->fs_info->trans_lock);
3929 	root->fs_info->trans_no_join = 0;
3930 	spin_unlock(&root->fs_info->trans_lock);
3931 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3932 
3933 	return 0;
3934 }
3935 
3936 static struct extent_io_ops btree_extent_io_ops = {
3937 	.readpage_end_io_hook = btree_readpage_end_io_hook,
3938 	.readpage_io_failed_hook = btree_io_failed_hook,
3939 	.submit_bio_hook = btree_submit_bio_hook,
3940 	/* note we're sharing with inode.c for the merge bio hook */
3941 	.merge_bio_hook = btrfs_merge_bio_hook,
3942 };
3943