1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 #include "block-group.h" 42 #include "discard.h" 43 #include "space-info.h" 44 #include "zoned.h" 45 #include "subpage.h" 46 #include "fs.h" 47 #include "accessors.h" 48 #include "extent-tree.h" 49 #include "root-tree.h" 50 #include "defrag.h" 51 #include "uuid-tree.h" 52 #include "relocation.h" 53 #include "scrub.h" 54 #include "super.h" 55 56 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 57 BTRFS_HEADER_FLAG_RELOC |\ 58 BTRFS_SUPER_FLAG_ERROR |\ 59 BTRFS_SUPER_FLAG_SEEDING |\ 60 BTRFS_SUPER_FLAG_METADUMP |\ 61 BTRFS_SUPER_FLAG_METADUMP_V2) 62 63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 65 66 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 67 { 68 if (fs_info->csum_shash) 69 crypto_free_shash(fs_info->csum_shash); 70 } 71 72 /* 73 * Compute the csum of a btree block and store the result to provided buffer. 74 */ 75 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 76 { 77 struct btrfs_fs_info *fs_info = buf->fs_info; 78 const int num_pages = num_extent_pages(buf); 79 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 80 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 81 char *kaddr; 82 int i; 83 84 shash->tfm = fs_info->csum_shash; 85 crypto_shash_init(shash); 86 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start); 87 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 88 first_page_part - BTRFS_CSUM_SIZE); 89 90 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { 91 kaddr = page_address(buf->pages[i]); 92 crypto_shash_update(shash, kaddr, PAGE_SIZE); 93 } 94 memset(result, 0, BTRFS_CSUM_SIZE); 95 crypto_shash_final(shash, result); 96 } 97 98 /* 99 * we can't consider a given block up to date unless the transid of the 100 * block matches the transid in the parent node's pointer. This is how we 101 * detect blocks that either didn't get written at all or got written 102 * in the wrong place. 103 */ 104 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic) 105 { 106 if (!extent_buffer_uptodate(eb)) 107 return 0; 108 109 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 110 return 1; 111 112 if (atomic) 113 return -EAGAIN; 114 115 if (!extent_buffer_uptodate(eb) || 116 btrfs_header_generation(eb) != parent_transid) { 117 btrfs_err_rl(eb->fs_info, 118 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 119 eb->start, eb->read_mirror, 120 parent_transid, btrfs_header_generation(eb)); 121 clear_extent_buffer_uptodate(eb); 122 return 0; 123 } 124 return 1; 125 } 126 127 static bool btrfs_supported_super_csum(u16 csum_type) 128 { 129 switch (csum_type) { 130 case BTRFS_CSUM_TYPE_CRC32: 131 case BTRFS_CSUM_TYPE_XXHASH: 132 case BTRFS_CSUM_TYPE_SHA256: 133 case BTRFS_CSUM_TYPE_BLAKE2: 134 return true; 135 default: 136 return false; 137 } 138 } 139 140 /* 141 * Return 0 if the superblock checksum type matches the checksum value of that 142 * algorithm. Pass the raw disk superblock data. 143 */ 144 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 145 const struct btrfs_super_block *disk_sb) 146 { 147 char result[BTRFS_CSUM_SIZE]; 148 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 149 150 shash->tfm = fs_info->csum_shash; 151 152 /* 153 * The super_block structure does not span the whole 154 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 155 * filled with zeros and is included in the checksum. 156 */ 157 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 158 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 159 160 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 161 return 1; 162 163 return 0; 164 } 165 166 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 167 int mirror_num) 168 { 169 struct btrfs_fs_info *fs_info = eb->fs_info; 170 int i, num_pages = num_extent_pages(eb); 171 int ret = 0; 172 173 if (sb_rdonly(fs_info->sb)) 174 return -EROFS; 175 176 for (i = 0; i < num_pages; i++) { 177 struct page *p = eb->pages[i]; 178 u64 start = max_t(u64, eb->start, page_offset(p)); 179 u64 end = min_t(u64, eb->start + eb->len, page_offset(p) + PAGE_SIZE); 180 u32 len = end - start; 181 182 ret = btrfs_repair_io_failure(fs_info, 0, start, len, 183 start, p, offset_in_page(start), mirror_num); 184 if (ret) 185 break; 186 } 187 188 return ret; 189 } 190 191 /* 192 * helper to read a given tree block, doing retries as required when 193 * the checksums don't match and we have alternate mirrors to try. 194 * 195 * @check: expected tree parentness check, see the comments of the 196 * structure for details. 197 */ 198 int btrfs_read_extent_buffer(struct extent_buffer *eb, 199 struct btrfs_tree_parent_check *check) 200 { 201 struct btrfs_fs_info *fs_info = eb->fs_info; 202 int failed = 0; 203 int ret; 204 int num_copies = 0; 205 int mirror_num = 0; 206 int failed_mirror = 0; 207 208 ASSERT(check); 209 210 while (1) { 211 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 212 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check); 213 if (!ret) 214 break; 215 216 num_copies = btrfs_num_copies(fs_info, 217 eb->start, eb->len); 218 if (num_copies == 1) 219 break; 220 221 if (!failed_mirror) { 222 failed = 1; 223 failed_mirror = eb->read_mirror; 224 } 225 226 mirror_num++; 227 if (mirror_num == failed_mirror) 228 mirror_num++; 229 230 if (mirror_num > num_copies) 231 break; 232 } 233 234 if (failed && !ret && failed_mirror) 235 btrfs_repair_eb_io_failure(eb, failed_mirror); 236 237 return ret; 238 } 239 240 /* 241 * Checksum a dirty tree block before IO. 242 */ 243 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio) 244 { 245 struct extent_buffer *eb = bbio->private; 246 struct btrfs_fs_info *fs_info = eb->fs_info; 247 u64 found_start = btrfs_header_bytenr(eb); 248 u8 result[BTRFS_CSUM_SIZE]; 249 int ret; 250 251 /* Btree blocks are always contiguous on disk. */ 252 if (WARN_ON_ONCE(bbio->file_offset != eb->start)) 253 return BLK_STS_IOERR; 254 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len)) 255 return BLK_STS_IOERR; 256 257 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) { 258 WARN_ON_ONCE(found_start != 0); 259 return BLK_STS_OK; 260 } 261 262 if (WARN_ON_ONCE(found_start != eb->start)) 263 return BLK_STS_IOERR; 264 if (WARN_ON(!btrfs_page_test_uptodate(fs_info, eb->pages[0], eb->start, 265 eb->len))) 266 return BLK_STS_IOERR; 267 268 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 269 offsetof(struct btrfs_header, fsid), 270 BTRFS_FSID_SIZE) == 0); 271 csum_tree_block(eb, result); 272 273 if (btrfs_header_level(eb)) 274 ret = btrfs_check_node(eb); 275 else 276 ret = btrfs_check_leaf(eb); 277 278 if (ret < 0) 279 goto error; 280 281 /* 282 * Also check the generation, the eb reached here must be newer than 283 * last committed. Or something seriously wrong happened. 284 */ 285 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) { 286 ret = -EUCLEAN; 287 btrfs_err(fs_info, 288 "block=%llu bad generation, have %llu expect > %llu", 289 eb->start, btrfs_header_generation(eb), 290 fs_info->last_trans_committed); 291 goto error; 292 } 293 write_extent_buffer(eb, result, 0, fs_info->csum_size); 294 return BLK_STS_OK; 295 296 error: 297 btrfs_print_tree(eb, 0); 298 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 299 eb->start); 300 /* 301 * Be noisy if this is an extent buffer from a log tree. We don't abort 302 * a transaction in case there's a bad log tree extent buffer, we just 303 * fallback to a transaction commit. Still we want to know when there is 304 * a bad log tree extent buffer, as that may signal a bug somewhere. 305 */ 306 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 307 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 308 return errno_to_blk_status(ret); 309 } 310 311 static bool check_tree_block_fsid(struct extent_buffer *eb) 312 { 313 struct btrfs_fs_info *fs_info = eb->fs_info; 314 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 315 u8 fsid[BTRFS_FSID_SIZE]; 316 317 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 318 BTRFS_FSID_SIZE); 319 320 /* 321 * alloc_fs_devices() copies the fsid into metadata_uuid if the 322 * metadata_uuid is unset in the superblock, including for a seed device. 323 * So, we can use fs_devices->metadata_uuid. 324 */ 325 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) 326 return false; 327 328 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 329 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 330 return false; 331 332 return true; 333 } 334 335 /* Do basic extent buffer checks at read time */ 336 int btrfs_validate_extent_buffer(struct extent_buffer *eb, 337 struct btrfs_tree_parent_check *check) 338 { 339 struct btrfs_fs_info *fs_info = eb->fs_info; 340 u64 found_start; 341 const u32 csum_size = fs_info->csum_size; 342 u8 found_level; 343 u8 result[BTRFS_CSUM_SIZE]; 344 const u8 *header_csum; 345 int ret = 0; 346 347 ASSERT(check); 348 349 found_start = btrfs_header_bytenr(eb); 350 if (found_start != eb->start) { 351 btrfs_err_rl(fs_info, 352 "bad tree block start, mirror %u want %llu have %llu", 353 eb->read_mirror, eb->start, found_start); 354 ret = -EIO; 355 goto out; 356 } 357 if (check_tree_block_fsid(eb)) { 358 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 359 eb->start, eb->read_mirror); 360 ret = -EIO; 361 goto out; 362 } 363 found_level = btrfs_header_level(eb); 364 if (found_level >= BTRFS_MAX_LEVEL) { 365 btrfs_err(fs_info, 366 "bad tree block level, mirror %u level %d on logical %llu", 367 eb->read_mirror, btrfs_header_level(eb), eb->start); 368 ret = -EIO; 369 goto out; 370 } 371 372 csum_tree_block(eb, result); 373 header_csum = page_address(eb->pages[0]) + 374 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum)); 375 376 if (memcmp(result, header_csum, csum_size) != 0) { 377 btrfs_warn_rl(fs_info, 378 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d", 379 eb->start, eb->read_mirror, 380 CSUM_FMT_VALUE(csum_size, header_csum), 381 CSUM_FMT_VALUE(csum_size, result), 382 btrfs_header_level(eb)); 383 ret = -EUCLEAN; 384 goto out; 385 } 386 387 if (found_level != check->level) { 388 btrfs_err(fs_info, 389 "level verify failed on logical %llu mirror %u wanted %u found %u", 390 eb->start, eb->read_mirror, check->level, found_level); 391 ret = -EIO; 392 goto out; 393 } 394 if (unlikely(check->transid && 395 btrfs_header_generation(eb) != check->transid)) { 396 btrfs_err_rl(eb->fs_info, 397 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 398 eb->start, eb->read_mirror, check->transid, 399 btrfs_header_generation(eb)); 400 ret = -EIO; 401 goto out; 402 } 403 if (check->has_first_key) { 404 struct btrfs_key *expect_key = &check->first_key; 405 struct btrfs_key found_key; 406 407 if (found_level) 408 btrfs_node_key_to_cpu(eb, &found_key, 0); 409 else 410 btrfs_item_key_to_cpu(eb, &found_key, 0); 411 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 412 btrfs_err(fs_info, 413 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 414 eb->start, check->transid, 415 expect_key->objectid, 416 expect_key->type, expect_key->offset, 417 found_key.objectid, found_key.type, 418 found_key.offset); 419 ret = -EUCLEAN; 420 goto out; 421 } 422 } 423 if (check->owner_root) { 424 ret = btrfs_check_eb_owner(eb, check->owner_root); 425 if (ret < 0) 426 goto out; 427 } 428 429 /* 430 * If this is a leaf block and it is corrupt, set the corrupt bit so 431 * that we don't try and read the other copies of this block, just 432 * return -EIO. 433 */ 434 if (found_level == 0 && btrfs_check_leaf(eb)) { 435 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 436 ret = -EIO; 437 } 438 439 if (found_level > 0 && btrfs_check_node(eb)) 440 ret = -EIO; 441 442 if (ret) 443 btrfs_err(fs_info, 444 "read time tree block corruption detected on logical %llu mirror %u", 445 eb->start, eb->read_mirror); 446 out: 447 return ret; 448 } 449 450 #ifdef CONFIG_MIGRATION 451 static int btree_migrate_folio(struct address_space *mapping, 452 struct folio *dst, struct folio *src, enum migrate_mode mode) 453 { 454 /* 455 * we can't safely write a btree page from here, 456 * we haven't done the locking hook 457 */ 458 if (folio_test_dirty(src)) 459 return -EAGAIN; 460 /* 461 * Buffers may be managed in a filesystem specific way. 462 * We must have no buffers or drop them. 463 */ 464 if (folio_get_private(src) && 465 !filemap_release_folio(src, GFP_KERNEL)) 466 return -EAGAIN; 467 return migrate_folio(mapping, dst, src, mode); 468 } 469 #else 470 #define btree_migrate_folio NULL 471 #endif 472 473 static int btree_writepages(struct address_space *mapping, 474 struct writeback_control *wbc) 475 { 476 struct btrfs_fs_info *fs_info; 477 int ret; 478 479 if (wbc->sync_mode == WB_SYNC_NONE) { 480 481 if (wbc->for_kupdate) 482 return 0; 483 484 fs_info = BTRFS_I(mapping->host)->root->fs_info; 485 /* this is a bit racy, but that's ok */ 486 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 487 BTRFS_DIRTY_METADATA_THRESH, 488 fs_info->dirty_metadata_batch); 489 if (ret < 0) 490 return 0; 491 } 492 return btree_write_cache_pages(mapping, wbc); 493 } 494 495 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 496 { 497 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 498 return false; 499 500 return try_release_extent_buffer(&folio->page); 501 } 502 503 static void btree_invalidate_folio(struct folio *folio, size_t offset, 504 size_t length) 505 { 506 struct extent_io_tree *tree; 507 tree = &BTRFS_I(folio->mapping->host)->io_tree; 508 extent_invalidate_folio(tree, folio, offset); 509 btree_release_folio(folio, GFP_NOFS); 510 if (folio_get_private(folio)) { 511 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info, 512 "folio private not zero on folio %llu", 513 (unsigned long long)folio_pos(folio)); 514 folio_detach_private(folio); 515 } 516 } 517 518 #ifdef DEBUG 519 static bool btree_dirty_folio(struct address_space *mapping, 520 struct folio *folio) 521 { 522 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 523 struct btrfs_subpage_info *spi = fs_info->subpage_info; 524 struct btrfs_subpage *subpage; 525 struct extent_buffer *eb; 526 int cur_bit = 0; 527 u64 page_start = folio_pos(folio); 528 529 if (fs_info->sectorsize == PAGE_SIZE) { 530 eb = folio_get_private(folio); 531 BUG_ON(!eb); 532 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 533 BUG_ON(!atomic_read(&eb->refs)); 534 btrfs_assert_tree_write_locked(eb); 535 return filemap_dirty_folio(mapping, folio); 536 } 537 538 ASSERT(spi); 539 subpage = folio_get_private(folio); 540 541 for (cur_bit = spi->dirty_offset; 542 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits; 543 cur_bit++) { 544 unsigned long flags; 545 u64 cur; 546 547 spin_lock_irqsave(&subpage->lock, flags); 548 if (!test_bit(cur_bit, subpage->bitmaps)) { 549 spin_unlock_irqrestore(&subpage->lock, flags); 550 continue; 551 } 552 spin_unlock_irqrestore(&subpage->lock, flags); 553 cur = page_start + cur_bit * fs_info->sectorsize; 554 555 eb = find_extent_buffer(fs_info, cur); 556 ASSERT(eb); 557 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 558 ASSERT(atomic_read(&eb->refs)); 559 btrfs_assert_tree_write_locked(eb); 560 free_extent_buffer(eb); 561 562 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1; 563 } 564 return filemap_dirty_folio(mapping, folio); 565 } 566 #else 567 #define btree_dirty_folio filemap_dirty_folio 568 #endif 569 570 static const struct address_space_operations btree_aops = { 571 .writepages = btree_writepages, 572 .release_folio = btree_release_folio, 573 .invalidate_folio = btree_invalidate_folio, 574 .migrate_folio = btree_migrate_folio, 575 .dirty_folio = btree_dirty_folio, 576 }; 577 578 struct extent_buffer *btrfs_find_create_tree_block( 579 struct btrfs_fs_info *fs_info, 580 u64 bytenr, u64 owner_root, 581 int level) 582 { 583 if (btrfs_is_testing(fs_info)) 584 return alloc_test_extent_buffer(fs_info, bytenr); 585 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 586 } 587 588 /* 589 * Read tree block at logical address @bytenr and do variant basic but critical 590 * verification. 591 * 592 * @check: expected tree parentness check, see comments of the 593 * structure for details. 594 */ 595 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 596 struct btrfs_tree_parent_check *check) 597 { 598 struct extent_buffer *buf = NULL; 599 int ret; 600 601 ASSERT(check); 602 603 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 604 check->level); 605 if (IS_ERR(buf)) 606 return buf; 607 608 ret = btrfs_read_extent_buffer(buf, check); 609 if (ret) { 610 free_extent_buffer_stale(buf); 611 return ERR_PTR(ret); 612 } 613 if (btrfs_check_eb_owner(buf, check->owner_root)) { 614 free_extent_buffer_stale(buf); 615 return ERR_PTR(-EUCLEAN); 616 } 617 return buf; 618 619 } 620 621 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 622 u64 objectid) 623 { 624 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 625 626 memset(&root->root_key, 0, sizeof(root->root_key)); 627 memset(&root->root_item, 0, sizeof(root->root_item)); 628 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 629 root->fs_info = fs_info; 630 root->root_key.objectid = objectid; 631 root->node = NULL; 632 root->commit_root = NULL; 633 root->state = 0; 634 RB_CLEAR_NODE(&root->rb_node); 635 636 root->last_trans = 0; 637 root->free_objectid = 0; 638 root->nr_delalloc_inodes = 0; 639 root->nr_ordered_extents = 0; 640 root->inode_tree = RB_ROOT; 641 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 642 643 btrfs_init_root_block_rsv(root); 644 645 INIT_LIST_HEAD(&root->dirty_list); 646 INIT_LIST_HEAD(&root->root_list); 647 INIT_LIST_HEAD(&root->delalloc_inodes); 648 INIT_LIST_HEAD(&root->delalloc_root); 649 INIT_LIST_HEAD(&root->ordered_extents); 650 INIT_LIST_HEAD(&root->ordered_root); 651 INIT_LIST_HEAD(&root->reloc_dirty_list); 652 INIT_LIST_HEAD(&root->logged_list[0]); 653 INIT_LIST_HEAD(&root->logged_list[1]); 654 spin_lock_init(&root->inode_lock); 655 spin_lock_init(&root->delalloc_lock); 656 spin_lock_init(&root->ordered_extent_lock); 657 spin_lock_init(&root->accounting_lock); 658 spin_lock_init(&root->log_extents_lock[0]); 659 spin_lock_init(&root->log_extents_lock[1]); 660 spin_lock_init(&root->qgroup_meta_rsv_lock); 661 mutex_init(&root->objectid_mutex); 662 mutex_init(&root->log_mutex); 663 mutex_init(&root->ordered_extent_mutex); 664 mutex_init(&root->delalloc_mutex); 665 init_waitqueue_head(&root->qgroup_flush_wait); 666 init_waitqueue_head(&root->log_writer_wait); 667 init_waitqueue_head(&root->log_commit_wait[0]); 668 init_waitqueue_head(&root->log_commit_wait[1]); 669 INIT_LIST_HEAD(&root->log_ctxs[0]); 670 INIT_LIST_HEAD(&root->log_ctxs[1]); 671 atomic_set(&root->log_commit[0], 0); 672 atomic_set(&root->log_commit[1], 0); 673 atomic_set(&root->log_writers, 0); 674 atomic_set(&root->log_batch, 0); 675 refcount_set(&root->refs, 1); 676 atomic_set(&root->snapshot_force_cow, 0); 677 atomic_set(&root->nr_swapfiles, 0); 678 root->log_transid = 0; 679 root->log_transid_committed = -1; 680 root->last_log_commit = 0; 681 root->anon_dev = 0; 682 if (!dummy) { 683 extent_io_tree_init(fs_info, &root->dirty_log_pages, 684 IO_TREE_ROOT_DIRTY_LOG_PAGES); 685 extent_io_tree_init(fs_info, &root->log_csum_range, 686 IO_TREE_LOG_CSUM_RANGE); 687 } 688 689 spin_lock_init(&root->root_item_lock); 690 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 691 #ifdef CONFIG_BTRFS_DEBUG 692 INIT_LIST_HEAD(&root->leak_list); 693 spin_lock(&fs_info->fs_roots_radix_lock); 694 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 695 spin_unlock(&fs_info->fs_roots_radix_lock); 696 #endif 697 } 698 699 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 700 u64 objectid, gfp_t flags) 701 { 702 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 703 if (root) 704 __setup_root(root, fs_info, objectid); 705 return root; 706 } 707 708 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 709 /* Should only be used by the testing infrastructure */ 710 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 711 { 712 struct btrfs_root *root; 713 714 if (!fs_info) 715 return ERR_PTR(-EINVAL); 716 717 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 718 if (!root) 719 return ERR_PTR(-ENOMEM); 720 721 /* We don't use the stripesize in selftest, set it as sectorsize */ 722 root->alloc_bytenr = 0; 723 724 return root; 725 } 726 #endif 727 728 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 729 { 730 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 731 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 732 733 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 734 } 735 736 static int global_root_key_cmp(const void *k, const struct rb_node *node) 737 { 738 const struct btrfs_key *key = k; 739 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 740 741 return btrfs_comp_cpu_keys(key, &root->root_key); 742 } 743 744 int btrfs_global_root_insert(struct btrfs_root *root) 745 { 746 struct btrfs_fs_info *fs_info = root->fs_info; 747 struct rb_node *tmp; 748 int ret = 0; 749 750 write_lock(&fs_info->global_root_lock); 751 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 752 write_unlock(&fs_info->global_root_lock); 753 754 if (tmp) { 755 ret = -EEXIST; 756 btrfs_warn(fs_info, "global root %llu %llu already exists", 757 root->root_key.objectid, root->root_key.offset); 758 } 759 return ret; 760 } 761 762 void btrfs_global_root_delete(struct btrfs_root *root) 763 { 764 struct btrfs_fs_info *fs_info = root->fs_info; 765 766 write_lock(&fs_info->global_root_lock); 767 rb_erase(&root->rb_node, &fs_info->global_root_tree); 768 write_unlock(&fs_info->global_root_lock); 769 } 770 771 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 772 struct btrfs_key *key) 773 { 774 struct rb_node *node; 775 struct btrfs_root *root = NULL; 776 777 read_lock(&fs_info->global_root_lock); 778 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 779 if (node) 780 root = container_of(node, struct btrfs_root, rb_node); 781 read_unlock(&fs_info->global_root_lock); 782 783 return root; 784 } 785 786 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 787 { 788 struct btrfs_block_group *block_group; 789 u64 ret; 790 791 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 792 return 0; 793 794 if (bytenr) 795 block_group = btrfs_lookup_block_group(fs_info, bytenr); 796 else 797 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 798 ASSERT(block_group); 799 if (!block_group) 800 return 0; 801 ret = block_group->global_root_id; 802 btrfs_put_block_group(block_group); 803 804 return ret; 805 } 806 807 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 808 { 809 struct btrfs_key key = { 810 .objectid = BTRFS_CSUM_TREE_OBJECTID, 811 .type = BTRFS_ROOT_ITEM_KEY, 812 .offset = btrfs_global_root_id(fs_info, bytenr), 813 }; 814 815 return btrfs_global_root(fs_info, &key); 816 } 817 818 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 819 { 820 struct btrfs_key key = { 821 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 822 .type = BTRFS_ROOT_ITEM_KEY, 823 .offset = btrfs_global_root_id(fs_info, bytenr), 824 }; 825 826 return btrfs_global_root(fs_info, &key); 827 } 828 829 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 830 { 831 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 832 return fs_info->block_group_root; 833 return btrfs_extent_root(fs_info, 0); 834 } 835 836 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 837 u64 objectid) 838 { 839 struct btrfs_fs_info *fs_info = trans->fs_info; 840 struct extent_buffer *leaf; 841 struct btrfs_root *tree_root = fs_info->tree_root; 842 struct btrfs_root *root; 843 struct btrfs_key key; 844 unsigned int nofs_flag; 845 int ret = 0; 846 847 /* 848 * We're holding a transaction handle, so use a NOFS memory allocation 849 * context to avoid deadlock if reclaim happens. 850 */ 851 nofs_flag = memalloc_nofs_save(); 852 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 853 memalloc_nofs_restore(nofs_flag); 854 if (!root) 855 return ERR_PTR(-ENOMEM); 856 857 root->root_key.objectid = objectid; 858 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 859 root->root_key.offset = 0; 860 861 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 862 BTRFS_NESTING_NORMAL); 863 if (IS_ERR(leaf)) { 864 ret = PTR_ERR(leaf); 865 leaf = NULL; 866 goto fail; 867 } 868 869 root->node = leaf; 870 btrfs_mark_buffer_dirty(trans, leaf); 871 872 root->commit_root = btrfs_root_node(root); 873 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 874 875 btrfs_set_root_flags(&root->root_item, 0); 876 btrfs_set_root_limit(&root->root_item, 0); 877 btrfs_set_root_bytenr(&root->root_item, leaf->start); 878 btrfs_set_root_generation(&root->root_item, trans->transid); 879 btrfs_set_root_level(&root->root_item, 0); 880 btrfs_set_root_refs(&root->root_item, 1); 881 btrfs_set_root_used(&root->root_item, leaf->len); 882 btrfs_set_root_last_snapshot(&root->root_item, 0); 883 btrfs_set_root_dirid(&root->root_item, 0); 884 if (is_fstree(objectid)) 885 generate_random_guid(root->root_item.uuid); 886 else 887 export_guid(root->root_item.uuid, &guid_null); 888 btrfs_set_root_drop_level(&root->root_item, 0); 889 890 btrfs_tree_unlock(leaf); 891 892 key.objectid = objectid; 893 key.type = BTRFS_ROOT_ITEM_KEY; 894 key.offset = 0; 895 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 896 if (ret) 897 goto fail; 898 899 return root; 900 901 fail: 902 btrfs_put_root(root); 903 904 return ERR_PTR(ret); 905 } 906 907 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 908 struct btrfs_fs_info *fs_info) 909 { 910 struct btrfs_root *root; 911 912 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 913 if (!root) 914 return ERR_PTR(-ENOMEM); 915 916 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 917 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 918 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 919 920 return root; 921 } 922 923 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 924 struct btrfs_root *root) 925 { 926 struct extent_buffer *leaf; 927 928 /* 929 * DON'T set SHAREABLE bit for log trees. 930 * 931 * Log trees are not exposed to user space thus can't be snapshotted, 932 * and they go away before a real commit is actually done. 933 * 934 * They do store pointers to file data extents, and those reference 935 * counts still get updated (along with back refs to the log tree). 936 */ 937 938 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 939 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); 940 if (IS_ERR(leaf)) 941 return PTR_ERR(leaf); 942 943 root->node = leaf; 944 945 btrfs_mark_buffer_dirty(trans, root->node); 946 btrfs_tree_unlock(root->node); 947 948 return 0; 949 } 950 951 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 952 struct btrfs_fs_info *fs_info) 953 { 954 struct btrfs_root *log_root; 955 956 log_root = alloc_log_tree(trans, fs_info); 957 if (IS_ERR(log_root)) 958 return PTR_ERR(log_root); 959 960 if (!btrfs_is_zoned(fs_info)) { 961 int ret = btrfs_alloc_log_tree_node(trans, log_root); 962 963 if (ret) { 964 btrfs_put_root(log_root); 965 return ret; 966 } 967 } 968 969 WARN_ON(fs_info->log_root_tree); 970 fs_info->log_root_tree = log_root; 971 return 0; 972 } 973 974 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 975 struct btrfs_root *root) 976 { 977 struct btrfs_fs_info *fs_info = root->fs_info; 978 struct btrfs_root *log_root; 979 struct btrfs_inode_item *inode_item; 980 int ret; 981 982 log_root = alloc_log_tree(trans, fs_info); 983 if (IS_ERR(log_root)) 984 return PTR_ERR(log_root); 985 986 ret = btrfs_alloc_log_tree_node(trans, log_root); 987 if (ret) { 988 btrfs_put_root(log_root); 989 return ret; 990 } 991 992 log_root->last_trans = trans->transid; 993 log_root->root_key.offset = root->root_key.objectid; 994 995 inode_item = &log_root->root_item.inode; 996 btrfs_set_stack_inode_generation(inode_item, 1); 997 btrfs_set_stack_inode_size(inode_item, 3); 998 btrfs_set_stack_inode_nlink(inode_item, 1); 999 btrfs_set_stack_inode_nbytes(inode_item, 1000 fs_info->nodesize); 1001 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1002 1003 btrfs_set_root_node(&log_root->root_item, log_root->node); 1004 1005 WARN_ON(root->log_root); 1006 root->log_root = log_root; 1007 root->log_transid = 0; 1008 root->log_transid_committed = -1; 1009 root->last_log_commit = 0; 1010 return 0; 1011 } 1012 1013 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1014 struct btrfs_path *path, 1015 struct btrfs_key *key) 1016 { 1017 struct btrfs_root *root; 1018 struct btrfs_tree_parent_check check = { 0 }; 1019 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1020 u64 generation; 1021 int ret; 1022 int level; 1023 1024 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1025 if (!root) 1026 return ERR_PTR(-ENOMEM); 1027 1028 ret = btrfs_find_root(tree_root, key, path, 1029 &root->root_item, &root->root_key); 1030 if (ret) { 1031 if (ret > 0) 1032 ret = -ENOENT; 1033 goto fail; 1034 } 1035 1036 generation = btrfs_root_generation(&root->root_item); 1037 level = btrfs_root_level(&root->root_item); 1038 check.level = level; 1039 check.transid = generation; 1040 check.owner_root = key->objectid; 1041 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1042 &check); 1043 if (IS_ERR(root->node)) { 1044 ret = PTR_ERR(root->node); 1045 root->node = NULL; 1046 goto fail; 1047 } 1048 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1049 ret = -EIO; 1050 goto fail; 1051 } 1052 1053 /* 1054 * For real fs, and not log/reloc trees, root owner must 1055 * match its root node owner 1056 */ 1057 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) && 1058 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1059 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1060 root->root_key.objectid != btrfs_header_owner(root->node)) { 1061 btrfs_crit(fs_info, 1062 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1063 root->root_key.objectid, root->node->start, 1064 btrfs_header_owner(root->node), 1065 root->root_key.objectid); 1066 ret = -EUCLEAN; 1067 goto fail; 1068 } 1069 root->commit_root = btrfs_root_node(root); 1070 return root; 1071 fail: 1072 btrfs_put_root(root); 1073 return ERR_PTR(ret); 1074 } 1075 1076 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1077 struct btrfs_key *key) 1078 { 1079 struct btrfs_root *root; 1080 struct btrfs_path *path; 1081 1082 path = btrfs_alloc_path(); 1083 if (!path) 1084 return ERR_PTR(-ENOMEM); 1085 root = read_tree_root_path(tree_root, path, key); 1086 btrfs_free_path(path); 1087 1088 return root; 1089 } 1090 1091 /* 1092 * Initialize subvolume root in-memory structure 1093 * 1094 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1095 */ 1096 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1097 { 1098 int ret; 1099 1100 btrfs_drew_lock_init(&root->snapshot_lock); 1101 1102 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1103 !btrfs_is_data_reloc_root(root) && 1104 is_fstree(root->root_key.objectid)) { 1105 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1106 btrfs_check_and_init_root_item(&root->root_item); 1107 } 1108 1109 /* 1110 * Don't assign anonymous block device to roots that are not exposed to 1111 * userspace, the id pool is limited to 1M 1112 */ 1113 if (is_fstree(root->root_key.objectid) && 1114 btrfs_root_refs(&root->root_item) > 0) { 1115 if (!anon_dev) { 1116 ret = get_anon_bdev(&root->anon_dev); 1117 if (ret) 1118 goto fail; 1119 } else { 1120 root->anon_dev = anon_dev; 1121 } 1122 } 1123 1124 mutex_lock(&root->objectid_mutex); 1125 ret = btrfs_init_root_free_objectid(root); 1126 if (ret) { 1127 mutex_unlock(&root->objectid_mutex); 1128 goto fail; 1129 } 1130 1131 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1132 1133 mutex_unlock(&root->objectid_mutex); 1134 1135 return 0; 1136 fail: 1137 /* The caller is responsible to call btrfs_free_fs_root */ 1138 return ret; 1139 } 1140 1141 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1142 u64 root_id) 1143 { 1144 struct btrfs_root *root; 1145 1146 spin_lock(&fs_info->fs_roots_radix_lock); 1147 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1148 (unsigned long)root_id); 1149 root = btrfs_grab_root(root); 1150 spin_unlock(&fs_info->fs_roots_radix_lock); 1151 return root; 1152 } 1153 1154 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1155 u64 objectid) 1156 { 1157 struct btrfs_key key = { 1158 .objectid = objectid, 1159 .type = BTRFS_ROOT_ITEM_KEY, 1160 .offset = 0, 1161 }; 1162 1163 switch (objectid) { 1164 case BTRFS_ROOT_TREE_OBJECTID: 1165 return btrfs_grab_root(fs_info->tree_root); 1166 case BTRFS_EXTENT_TREE_OBJECTID: 1167 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1168 case BTRFS_CHUNK_TREE_OBJECTID: 1169 return btrfs_grab_root(fs_info->chunk_root); 1170 case BTRFS_DEV_TREE_OBJECTID: 1171 return btrfs_grab_root(fs_info->dev_root); 1172 case BTRFS_CSUM_TREE_OBJECTID: 1173 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1174 case BTRFS_QUOTA_TREE_OBJECTID: 1175 return btrfs_grab_root(fs_info->quota_root); 1176 case BTRFS_UUID_TREE_OBJECTID: 1177 return btrfs_grab_root(fs_info->uuid_root); 1178 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 1179 return btrfs_grab_root(fs_info->block_group_root); 1180 case BTRFS_FREE_SPACE_TREE_OBJECTID: 1181 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1182 default: 1183 return NULL; 1184 } 1185 } 1186 1187 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1188 struct btrfs_root *root) 1189 { 1190 int ret; 1191 1192 ret = radix_tree_preload(GFP_NOFS); 1193 if (ret) 1194 return ret; 1195 1196 spin_lock(&fs_info->fs_roots_radix_lock); 1197 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1198 (unsigned long)root->root_key.objectid, 1199 root); 1200 if (ret == 0) { 1201 btrfs_grab_root(root); 1202 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1203 } 1204 spin_unlock(&fs_info->fs_roots_radix_lock); 1205 radix_tree_preload_end(); 1206 1207 return ret; 1208 } 1209 1210 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1211 { 1212 #ifdef CONFIG_BTRFS_DEBUG 1213 struct btrfs_root *root; 1214 1215 while (!list_empty(&fs_info->allocated_roots)) { 1216 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1217 1218 root = list_first_entry(&fs_info->allocated_roots, 1219 struct btrfs_root, leak_list); 1220 btrfs_err(fs_info, "leaked root %s refcount %d", 1221 btrfs_root_name(&root->root_key, buf), 1222 refcount_read(&root->refs)); 1223 while (refcount_read(&root->refs) > 1) 1224 btrfs_put_root(root); 1225 btrfs_put_root(root); 1226 } 1227 #endif 1228 } 1229 1230 static void free_global_roots(struct btrfs_fs_info *fs_info) 1231 { 1232 struct btrfs_root *root; 1233 struct rb_node *node; 1234 1235 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1236 root = rb_entry(node, struct btrfs_root, rb_node); 1237 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1238 btrfs_put_root(root); 1239 } 1240 } 1241 1242 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1243 { 1244 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1245 percpu_counter_destroy(&fs_info->delalloc_bytes); 1246 percpu_counter_destroy(&fs_info->ordered_bytes); 1247 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1248 btrfs_free_csum_hash(fs_info); 1249 btrfs_free_stripe_hash_table(fs_info); 1250 btrfs_free_ref_cache(fs_info); 1251 kfree(fs_info->balance_ctl); 1252 kfree(fs_info->delayed_root); 1253 free_global_roots(fs_info); 1254 btrfs_put_root(fs_info->tree_root); 1255 btrfs_put_root(fs_info->chunk_root); 1256 btrfs_put_root(fs_info->dev_root); 1257 btrfs_put_root(fs_info->quota_root); 1258 btrfs_put_root(fs_info->uuid_root); 1259 btrfs_put_root(fs_info->fs_root); 1260 btrfs_put_root(fs_info->data_reloc_root); 1261 btrfs_put_root(fs_info->block_group_root); 1262 btrfs_check_leaked_roots(fs_info); 1263 btrfs_extent_buffer_leak_debug_check(fs_info); 1264 kfree(fs_info->super_copy); 1265 kfree(fs_info->super_for_commit); 1266 kfree(fs_info->subpage_info); 1267 kvfree(fs_info); 1268 } 1269 1270 1271 /* 1272 * Get an in-memory reference of a root structure. 1273 * 1274 * For essential trees like root/extent tree, we grab it from fs_info directly. 1275 * For subvolume trees, we check the cached filesystem roots first. If not 1276 * found, then read it from disk and add it to cached fs roots. 1277 * 1278 * Caller should release the root by calling btrfs_put_root() after the usage. 1279 * 1280 * NOTE: Reloc and log trees can't be read by this function as they share the 1281 * same root objectid. 1282 * 1283 * @objectid: root id 1284 * @anon_dev: preallocated anonymous block device number for new roots, 1285 * pass NULL for a new allocation. 1286 * @check_ref: whether to check root item references, If true, return -ENOENT 1287 * for orphan roots 1288 */ 1289 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1290 u64 objectid, dev_t *anon_dev, 1291 bool check_ref) 1292 { 1293 struct btrfs_root *root; 1294 struct btrfs_path *path; 1295 struct btrfs_key key; 1296 int ret; 1297 1298 root = btrfs_get_global_root(fs_info, objectid); 1299 if (root) 1300 return root; 1301 1302 /* 1303 * If we're called for non-subvolume trees, and above function didn't 1304 * find one, do not try to read it from disk. 1305 * 1306 * This is namely for free-space-tree and quota tree, which can change 1307 * at runtime and should only be grabbed from fs_info. 1308 */ 1309 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) 1310 return ERR_PTR(-ENOENT); 1311 again: 1312 root = btrfs_lookup_fs_root(fs_info, objectid); 1313 if (root) { 1314 /* 1315 * Some other caller may have read out the newly inserted 1316 * subvolume already (for things like backref walk etc). Not 1317 * that common but still possible. In that case, we just need 1318 * to free the anon_dev. 1319 */ 1320 if (unlikely(anon_dev && *anon_dev)) { 1321 free_anon_bdev(*anon_dev); 1322 *anon_dev = 0; 1323 } 1324 1325 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1326 btrfs_put_root(root); 1327 return ERR_PTR(-ENOENT); 1328 } 1329 return root; 1330 } 1331 1332 key.objectid = objectid; 1333 key.type = BTRFS_ROOT_ITEM_KEY; 1334 key.offset = (u64)-1; 1335 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1336 if (IS_ERR(root)) 1337 return root; 1338 1339 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1340 ret = -ENOENT; 1341 goto fail; 1342 } 1343 1344 ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0); 1345 if (ret) 1346 goto fail; 1347 1348 path = btrfs_alloc_path(); 1349 if (!path) { 1350 ret = -ENOMEM; 1351 goto fail; 1352 } 1353 key.objectid = BTRFS_ORPHAN_OBJECTID; 1354 key.type = BTRFS_ORPHAN_ITEM_KEY; 1355 key.offset = objectid; 1356 1357 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1358 btrfs_free_path(path); 1359 if (ret < 0) 1360 goto fail; 1361 if (ret == 0) 1362 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1363 1364 ret = btrfs_insert_fs_root(fs_info, root); 1365 if (ret) { 1366 if (ret == -EEXIST) { 1367 btrfs_put_root(root); 1368 goto again; 1369 } 1370 goto fail; 1371 } 1372 return root; 1373 fail: 1374 /* 1375 * If our caller provided us an anonymous device, then it's his 1376 * responsibility to free it in case we fail. So we have to set our 1377 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1378 * and once again by our caller. 1379 */ 1380 if (anon_dev && *anon_dev) 1381 root->anon_dev = 0; 1382 btrfs_put_root(root); 1383 return ERR_PTR(ret); 1384 } 1385 1386 /* 1387 * Get in-memory reference of a root structure 1388 * 1389 * @objectid: tree objectid 1390 * @check_ref: if set, verify that the tree exists and the item has at least 1391 * one reference 1392 */ 1393 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1394 u64 objectid, bool check_ref) 1395 { 1396 return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref); 1397 } 1398 1399 /* 1400 * Get in-memory reference of a root structure, created as new, optionally pass 1401 * the anonymous block device id 1402 * 1403 * @objectid: tree objectid 1404 * @anon_dev: if NULL, allocate a new anonymous block device or use the 1405 * parameter value if not NULL 1406 */ 1407 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1408 u64 objectid, dev_t *anon_dev) 1409 { 1410 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1411 } 1412 1413 /* 1414 * btrfs_get_fs_root_commit_root - return a root for the given objectid 1415 * @fs_info: the fs_info 1416 * @objectid: the objectid we need to lookup 1417 * 1418 * This is exclusively used for backref walking, and exists specifically because 1419 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1420 * creation time, which means we may have to read the tree_root in order to look 1421 * up a fs root that is not in memory. If the root is not in memory we will 1422 * read the tree root commit root and look up the fs root from there. This is a 1423 * temporary root, it will not be inserted into the radix tree as it doesn't 1424 * have the most uptodate information, it'll simply be discarded once the 1425 * backref code is finished using the root. 1426 */ 1427 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1428 struct btrfs_path *path, 1429 u64 objectid) 1430 { 1431 struct btrfs_root *root; 1432 struct btrfs_key key; 1433 1434 ASSERT(path->search_commit_root && path->skip_locking); 1435 1436 /* 1437 * This can return -ENOENT if we ask for a root that doesn't exist, but 1438 * since this is called via the backref walking code we won't be looking 1439 * up a root that doesn't exist, unless there's corruption. So if root 1440 * != NULL just return it. 1441 */ 1442 root = btrfs_get_global_root(fs_info, objectid); 1443 if (root) 1444 return root; 1445 1446 root = btrfs_lookup_fs_root(fs_info, objectid); 1447 if (root) 1448 return root; 1449 1450 key.objectid = objectid; 1451 key.type = BTRFS_ROOT_ITEM_KEY; 1452 key.offset = (u64)-1; 1453 root = read_tree_root_path(fs_info->tree_root, path, &key); 1454 btrfs_release_path(path); 1455 1456 return root; 1457 } 1458 1459 static int cleaner_kthread(void *arg) 1460 { 1461 struct btrfs_fs_info *fs_info = arg; 1462 int again; 1463 1464 while (1) { 1465 again = 0; 1466 1467 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1468 1469 /* Make the cleaner go to sleep early. */ 1470 if (btrfs_need_cleaner_sleep(fs_info)) 1471 goto sleep; 1472 1473 /* 1474 * Do not do anything if we might cause open_ctree() to block 1475 * before we have finished mounting the filesystem. 1476 */ 1477 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1478 goto sleep; 1479 1480 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1481 goto sleep; 1482 1483 /* 1484 * Avoid the problem that we change the status of the fs 1485 * during the above check and trylock. 1486 */ 1487 if (btrfs_need_cleaner_sleep(fs_info)) { 1488 mutex_unlock(&fs_info->cleaner_mutex); 1489 goto sleep; 1490 } 1491 1492 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1493 btrfs_sysfs_feature_update(fs_info); 1494 1495 btrfs_run_delayed_iputs(fs_info); 1496 1497 again = btrfs_clean_one_deleted_snapshot(fs_info); 1498 mutex_unlock(&fs_info->cleaner_mutex); 1499 1500 /* 1501 * The defragger has dealt with the R/O remount and umount, 1502 * needn't do anything special here. 1503 */ 1504 btrfs_run_defrag_inodes(fs_info); 1505 1506 /* 1507 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1508 * with relocation (btrfs_relocate_chunk) and relocation 1509 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1510 * after acquiring fs_info->reclaim_bgs_lock. So we 1511 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1512 * unused block groups. 1513 */ 1514 btrfs_delete_unused_bgs(fs_info); 1515 1516 /* 1517 * Reclaim block groups in the reclaim_bgs list after we deleted 1518 * all unused block_groups. This possibly gives us some more free 1519 * space. 1520 */ 1521 btrfs_reclaim_bgs(fs_info); 1522 sleep: 1523 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1524 if (kthread_should_park()) 1525 kthread_parkme(); 1526 if (kthread_should_stop()) 1527 return 0; 1528 if (!again) { 1529 set_current_state(TASK_INTERRUPTIBLE); 1530 schedule(); 1531 __set_current_state(TASK_RUNNING); 1532 } 1533 } 1534 } 1535 1536 static int transaction_kthread(void *arg) 1537 { 1538 struct btrfs_root *root = arg; 1539 struct btrfs_fs_info *fs_info = root->fs_info; 1540 struct btrfs_trans_handle *trans; 1541 struct btrfs_transaction *cur; 1542 u64 transid; 1543 time64_t delta; 1544 unsigned long delay; 1545 bool cannot_commit; 1546 1547 do { 1548 cannot_commit = false; 1549 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1550 mutex_lock(&fs_info->transaction_kthread_mutex); 1551 1552 spin_lock(&fs_info->trans_lock); 1553 cur = fs_info->running_transaction; 1554 if (!cur) { 1555 spin_unlock(&fs_info->trans_lock); 1556 goto sleep; 1557 } 1558 1559 delta = ktime_get_seconds() - cur->start_time; 1560 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1561 cur->state < TRANS_STATE_COMMIT_PREP && 1562 delta < fs_info->commit_interval) { 1563 spin_unlock(&fs_info->trans_lock); 1564 delay -= msecs_to_jiffies((delta - 1) * 1000); 1565 delay = min(delay, 1566 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1567 goto sleep; 1568 } 1569 transid = cur->transid; 1570 spin_unlock(&fs_info->trans_lock); 1571 1572 /* If the file system is aborted, this will always fail. */ 1573 trans = btrfs_attach_transaction(root); 1574 if (IS_ERR(trans)) { 1575 if (PTR_ERR(trans) != -ENOENT) 1576 cannot_commit = true; 1577 goto sleep; 1578 } 1579 if (transid == trans->transid) { 1580 btrfs_commit_transaction(trans); 1581 } else { 1582 btrfs_end_transaction(trans); 1583 } 1584 sleep: 1585 wake_up_process(fs_info->cleaner_kthread); 1586 mutex_unlock(&fs_info->transaction_kthread_mutex); 1587 1588 if (BTRFS_FS_ERROR(fs_info)) 1589 btrfs_cleanup_transaction(fs_info); 1590 if (!kthread_should_stop() && 1591 (!btrfs_transaction_blocked(fs_info) || 1592 cannot_commit)) 1593 schedule_timeout_interruptible(delay); 1594 } while (!kthread_should_stop()); 1595 return 0; 1596 } 1597 1598 /* 1599 * This will find the highest generation in the array of root backups. The 1600 * index of the highest array is returned, or -EINVAL if we can't find 1601 * anything. 1602 * 1603 * We check to make sure the array is valid by comparing the 1604 * generation of the latest root in the array with the generation 1605 * in the super block. If they don't match we pitch it. 1606 */ 1607 static int find_newest_super_backup(struct btrfs_fs_info *info) 1608 { 1609 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1610 u64 cur; 1611 struct btrfs_root_backup *root_backup; 1612 int i; 1613 1614 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1615 root_backup = info->super_copy->super_roots + i; 1616 cur = btrfs_backup_tree_root_gen(root_backup); 1617 if (cur == newest_gen) 1618 return i; 1619 } 1620 1621 return -EINVAL; 1622 } 1623 1624 /* 1625 * copy all the root pointers into the super backup array. 1626 * this will bump the backup pointer by one when it is 1627 * done 1628 */ 1629 static void backup_super_roots(struct btrfs_fs_info *info) 1630 { 1631 const int next_backup = info->backup_root_index; 1632 struct btrfs_root_backup *root_backup; 1633 1634 root_backup = info->super_for_commit->super_roots + next_backup; 1635 1636 /* 1637 * make sure all of our padding and empty slots get zero filled 1638 * regardless of which ones we use today 1639 */ 1640 memset(root_backup, 0, sizeof(*root_backup)); 1641 1642 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1643 1644 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1645 btrfs_set_backup_tree_root_gen(root_backup, 1646 btrfs_header_generation(info->tree_root->node)); 1647 1648 btrfs_set_backup_tree_root_level(root_backup, 1649 btrfs_header_level(info->tree_root->node)); 1650 1651 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1652 btrfs_set_backup_chunk_root_gen(root_backup, 1653 btrfs_header_generation(info->chunk_root->node)); 1654 btrfs_set_backup_chunk_root_level(root_backup, 1655 btrfs_header_level(info->chunk_root->node)); 1656 1657 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1658 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1659 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1660 1661 btrfs_set_backup_extent_root(root_backup, 1662 extent_root->node->start); 1663 btrfs_set_backup_extent_root_gen(root_backup, 1664 btrfs_header_generation(extent_root->node)); 1665 btrfs_set_backup_extent_root_level(root_backup, 1666 btrfs_header_level(extent_root->node)); 1667 1668 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1669 btrfs_set_backup_csum_root_gen(root_backup, 1670 btrfs_header_generation(csum_root->node)); 1671 btrfs_set_backup_csum_root_level(root_backup, 1672 btrfs_header_level(csum_root->node)); 1673 } 1674 1675 /* 1676 * we might commit during log recovery, which happens before we set 1677 * the fs_root. Make sure it is valid before we fill it in. 1678 */ 1679 if (info->fs_root && info->fs_root->node) { 1680 btrfs_set_backup_fs_root(root_backup, 1681 info->fs_root->node->start); 1682 btrfs_set_backup_fs_root_gen(root_backup, 1683 btrfs_header_generation(info->fs_root->node)); 1684 btrfs_set_backup_fs_root_level(root_backup, 1685 btrfs_header_level(info->fs_root->node)); 1686 } 1687 1688 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1689 btrfs_set_backup_dev_root_gen(root_backup, 1690 btrfs_header_generation(info->dev_root->node)); 1691 btrfs_set_backup_dev_root_level(root_backup, 1692 btrfs_header_level(info->dev_root->node)); 1693 1694 btrfs_set_backup_total_bytes(root_backup, 1695 btrfs_super_total_bytes(info->super_copy)); 1696 btrfs_set_backup_bytes_used(root_backup, 1697 btrfs_super_bytes_used(info->super_copy)); 1698 btrfs_set_backup_num_devices(root_backup, 1699 btrfs_super_num_devices(info->super_copy)); 1700 1701 /* 1702 * if we don't copy this out to the super_copy, it won't get remembered 1703 * for the next commit 1704 */ 1705 memcpy(&info->super_copy->super_roots, 1706 &info->super_for_commit->super_roots, 1707 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1708 } 1709 1710 /* 1711 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 1712 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1713 * 1714 * fs_info - filesystem whose backup roots need to be read 1715 * priority - priority of backup root required 1716 * 1717 * Returns backup root index on success and -EINVAL otherwise. 1718 */ 1719 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1720 { 1721 int backup_index = find_newest_super_backup(fs_info); 1722 struct btrfs_super_block *super = fs_info->super_copy; 1723 struct btrfs_root_backup *root_backup; 1724 1725 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1726 if (priority == 0) 1727 return backup_index; 1728 1729 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1730 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1731 } else { 1732 return -EINVAL; 1733 } 1734 1735 root_backup = super->super_roots + backup_index; 1736 1737 btrfs_set_super_generation(super, 1738 btrfs_backup_tree_root_gen(root_backup)); 1739 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1740 btrfs_set_super_root_level(super, 1741 btrfs_backup_tree_root_level(root_backup)); 1742 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1743 1744 /* 1745 * Fixme: the total bytes and num_devices need to match or we should 1746 * need a fsck 1747 */ 1748 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1749 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1750 1751 return backup_index; 1752 } 1753 1754 /* helper to cleanup workers */ 1755 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1756 { 1757 btrfs_destroy_workqueue(fs_info->fixup_workers); 1758 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1759 btrfs_destroy_workqueue(fs_info->workers); 1760 if (fs_info->endio_workers) 1761 destroy_workqueue(fs_info->endio_workers); 1762 if (fs_info->rmw_workers) 1763 destroy_workqueue(fs_info->rmw_workers); 1764 if (fs_info->compressed_write_workers) 1765 destroy_workqueue(fs_info->compressed_write_workers); 1766 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1767 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1768 btrfs_destroy_workqueue(fs_info->delayed_workers); 1769 btrfs_destroy_workqueue(fs_info->caching_workers); 1770 btrfs_destroy_workqueue(fs_info->flush_workers); 1771 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1772 if (fs_info->discard_ctl.discard_workers) 1773 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1774 /* 1775 * Now that all other work queues are destroyed, we can safely destroy 1776 * the queues used for metadata I/O, since tasks from those other work 1777 * queues can do metadata I/O operations. 1778 */ 1779 if (fs_info->endio_meta_workers) 1780 destroy_workqueue(fs_info->endio_meta_workers); 1781 } 1782 1783 static void free_root_extent_buffers(struct btrfs_root *root) 1784 { 1785 if (root) { 1786 free_extent_buffer(root->node); 1787 free_extent_buffer(root->commit_root); 1788 root->node = NULL; 1789 root->commit_root = NULL; 1790 } 1791 } 1792 1793 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 1794 { 1795 struct btrfs_root *root, *tmp; 1796 1797 rbtree_postorder_for_each_entry_safe(root, tmp, 1798 &fs_info->global_root_tree, 1799 rb_node) 1800 free_root_extent_buffers(root); 1801 } 1802 1803 /* helper to cleanup tree roots */ 1804 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1805 { 1806 free_root_extent_buffers(info->tree_root); 1807 1808 free_global_root_pointers(info); 1809 free_root_extent_buffers(info->dev_root); 1810 free_root_extent_buffers(info->quota_root); 1811 free_root_extent_buffers(info->uuid_root); 1812 free_root_extent_buffers(info->fs_root); 1813 free_root_extent_buffers(info->data_reloc_root); 1814 free_root_extent_buffers(info->block_group_root); 1815 if (free_chunk_root) 1816 free_root_extent_buffers(info->chunk_root); 1817 } 1818 1819 void btrfs_put_root(struct btrfs_root *root) 1820 { 1821 if (!root) 1822 return; 1823 1824 if (refcount_dec_and_test(&root->refs)) { 1825 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 1826 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 1827 if (root->anon_dev) 1828 free_anon_bdev(root->anon_dev); 1829 free_root_extent_buffers(root); 1830 #ifdef CONFIG_BTRFS_DEBUG 1831 spin_lock(&root->fs_info->fs_roots_radix_lock); 1832 list_del_init(&root->leak_list); 1833 spin_unlock(&root->fs_info->fs_roots_radix_lock); 1834 #endif 1835 kfree(root); 1836 } 1837 } 1838 1839 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 1840 { 1841 int ret; 1842 struct btrfs_root *gang[8]; 1843 int i; 1844 1845 while (!list_empty(&fs_info->dead_roots)) { 1846 gang[0] = list_entry(fs_info->dead_roots.next, 1847 struct btrfs_root, root_list); 1848 list_del(&gang[0]->root_list); 1849 1850 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 1851 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 1852 btrfs_put_root(gang[0]); 1853 } 1854 1855 while (1) { 1856 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 1857 (void **)gang, 0, 1858 ARRAY_SIZE(gang)); 1859 if (!ret) 1860 break; 1861 for (i = 0; i < ret; i++) 1862 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 1863 } 1864 } 1865 1866 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 1867 { 1868 mutex_init(&fs_info->scrub_lock); 1869 atomic_set(&fs_info->scrubs_running, 0); 1870 atomic_set(&fs_info->scrub_pause_req, 0); 1871 atomic_set(&fs_info->scrubs_paused, 0); 1872 atomic_set(&fs_info->scrub_cancel_req, 0); 1873 init_waitqueue_head(&fs_info->scrub_pause_wait); 1874 refcount_set(&fs_info->scrub_workers_refcnt, 0); 1875 } 1876 1877 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 1878 { 1879 spin_lock_init(&fs_info->balance_lock); 1880 mutex_init(&fs_info->balance_mutex); 1881 atomic_set(&fs_info->balance_pause_req, 0); 1882 atomic_set(&fs_info->balance_cancel_req, 0); 1883 fs_info->balance_ctl = NULL; 1884 init_waitqueue_head(&fs_info->balance_wait_q); 1885 atomic_set(&fs_info->reloc_cancel_req, 0); 1886 } 1887 1888 static int btrfs_init_btree_inode(struct super_block *sb) 1889 { 1890 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1891 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 1892 fs_info->tree_root); 1893 struct inode *inode; 1894 1895 inode = new_inode(sb); 1896 if (!inode) 1897 return -ENOMEM; 1898 1899 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 1900 set_nlink(inode, 1); 1901 /* 1902 * we set the i_size on the btree inode to the max possible int. 1903 * the real end of the address space is determined by all of 1904 * the devices in the system 1905 */ 1906 inode->i_size = OFFSET_MAX; 1907 inode->i_mapping->a_ops = &btree_aops; 1908 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); 1909 1910 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 1911 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 1912 IO_TREE_BTREE_INODE_IO); 1913 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 1914 1915 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 1916 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID; 1917 BTRFS_I(inode)->location.type = 0; 1918 BTRFS_I(inode)->location.offset = 0; 1919 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 1920 __insert_inode_hash(inode, hash); 1921 fs_info->btree_inode = inode; 1922 1923 return 0; 1924 } 1925 1926 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 1927 { 1928 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 1929 init_rwsem(&fs_info->dev_replace.rwsem); 1930 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 1931 } 1932 1933 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 1934 { 1935 spin_lock_init(&fs_info->qgroup_lock); 1936 mutex_init(&fs_info->qgroup_ioctl_lock); 1937 fs_info->qgroup_tree = RB_ROOT; 1938 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 1939 fs_info->qgroup_seq = 1; 1940 fs_info->qgroup_ulist = NULL; 1941 fs_info->qgroup_rescan_running = false; 1942 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL; 1943 mutex_init(&fs_info->qgroup_rescan_lock); 1944 } 1945 1946 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 1947 { 1948 u32 max_active = fs_info->thread_pool_size; 1949 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 1950 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE; 1951 1952 fs_info->workers = 1953 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 1954 1955 fs_info->delalloc_workers = 1956 btrfs_alloc_workqueue(fs_info, "delalloc", 1957 flags, max_active, 2); 1958 1959 fs_info->flush_workers = 1960 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 1961 flags, max_active, 0); 1962 1963 fs_info->caching_workers = 1964 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 1965 1966 fs_info->fixup_workers = 1967 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags); 1968 1969 fs_info->endio_workers = 1970 alloc_workqueue("btrfs-endio", flags, max_active); 1971 fs_info->endio_meta_workers = 1972 alloc_workqueue("btrfs-endio-meta", flags, max_active); 1973 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 1974 fs_info->endio_write_workers = 1975 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 1976 max_active, 2); 1977 fs_info->compressed_write_workers = 1978 alloc_workqueue("btrfs-compressed-write", flags, max_active); 1979 fs_info->endio_freespace_worker = 1980 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 1981 max_active, 0); 1982 fs_info->delayed_workers = 1983 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 1984 max_active, 0); 1985 fs_info->qgroup_rescan_workers = 1986 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan", 1987 ordered_flags); 1988 fs_info->discard_ctl.discard_workers = 1989 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE); 1990 1991 if (!(fs_info->workers && 1992 fs_info->delalloc_workers && fs_info->flush_workers && 1993 fs_info->endio_workers && fs_info->endio_meta_workers && 1994 fs_info->compressed_write_workers && 1995 fs_info->endio_write_workers && 1996 fs_info->endio_freespace_worker && fs_info->rmw_workers && 1997 fs_info->caching_workers && fs_info->fixup_workers && 1998 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 1999 fs_info->discard_ctl.discard_workers)) { 2000 return -ENOMEM; 2001 } 2002 2003 return 0; 2004 } 2005 2006 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2007 { 2008 struct crypto_shash *csum_shash; 2009 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2010 2011 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2012 2013 if (IS_ERR(csum_shash)) { 2014 btrfs_err(fs_info, "error allocating %s hash for checksum", 2015 csum_driver); 2016 return PTR_ERR(csum_shash); 2017 } 2018 2019 fs_info->csum_shash = csum_shash; 2020 2021 /* 2022 * Check if the checksum implementation is a fast accelerated one. 2023 * As-is this is a bit of a hack and should be replaced once the csum 2024 * implementations provide that information themselves. 2025 */ 2026 switch (csum_type) { 2027 case BTRFS_CSUM_TYPE_CRC32: 2028 if (!strstr(crypto_shash_driver_name(csum_shash), "generic")) 2029 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2030 break; 2031 case BTRFS_CSUM_TYPE_XXHASH: 2032 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2033 break; 2034 default: 2035 break; 2036 } 2037 2038 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2039 btrfs_super_csum_name(csum_type), 2040 crypto_shash_driver_name(csum_shash)); 2041 return 0; 2042 } 2043 2044 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2045 struct btrfs_fs_devices *fs_devices) 2046 { 2047 int ret; 2048 struct btrfs_tree_parent_check check = { 0 }; 2049 struct btrfs_root *log_tree_root; 2050 struct btrfs_super_block *disk_super = fs_info->super_copy; 2051 u64 bytenr = btrfs_super_log_root(disk_super); 2052 int level = btrfs_super_log_root_level(disk_super); 2053 2054 if (fs_devices->rw_devices == 0) { 2055 btrfs_warn(fs_info, "log replay required on RO media"); 2056 return -EIO; 2057 } 2058 2059 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2060 GFP_KERNEL); 2061 if (!log_tree_root) 2062 return -ENOMEM; 2063 2064 check.level = level; 2065 check.transid = fs_info->generation + 1; 2066 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2067 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2068 if (IS_ERR(log_tree_root->node)) { 2069 btrfs_warn(fs_info, "failed to read log tree"); 2070 ret = PTR_ERR(log_tree_root->node); 2071 log_tree_root->node = NULL; 2072 btrfs_put_root(log_tree_root); 2073 return ret; 2074 } 2075 if (!extent_buffer_uptodate(log_tree_root->node)) { 2076 btrfs_err(fs_info, "failed to read log tree"); 2077 btrfs_put_root(log_tree_root); 2078 return -EIO; 2079 } 2080 2081 /* returns with log_tree_root freed on success */ 2082 ret = btrfs_recover_log_trees(log_tree_root); 2083 if (ret) { 2084 btrfs_handle_fs_error(fs_info, ret, 2085 "Failed to recover log tree"); 2086 btrfs_put_root(log_tree_root); 2087 return ret; 2088 } 2089 2090 if (sb_rdonly(fs_info->sb)) { 2091 ret = btrfs_commit_super(fs_info); 2092 if (ret) 2093 return ret; 2094 } 2095 2096 return 0; 2097 } 2098 2099 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2100 struct btrfs_path *path, u64 objectid, 2101 const char *name) 2102 { 2103 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2104 struct btrfs_root *root; 2105 u64 max_global_id = 0; 2106 int ret; 2107 struct btrfs_key key = { 2108 .objectid = objectid, 2109 .type = BTRFS_ROOT_ITEM_KEY, 2110 .offset = 0, 2111 }; 2112 bool found = false; 2113 2114 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2115 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2116 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2117 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2118 return 0; 2119 } 2120 2121 while (1) { 2122 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2123 if (ret < 0) 2124 break; 2125 2126 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2127 ret = btrfs_next_leaf(tree_root, path); 2128 if (ret) { 2129 if (ret > 0) 2130 ret = 0; 2131 break; 2132 } 2133 } 2134 ret = 0; 2135 2136 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2137 if (key.objectid != objectid) 2138 break; 2139 btrfs_release_path(path); 2140 2141 /* 2142 * Just worry about this for extent tree, it'll be the same for 2143 * everybody. 2144 */ 2145 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2146 max_global_id = max(max_global_id, key.offset); 2147 2148 found = true; 2149 root = read_tree_root_path(tree_root, path, &key); 2150 if (IS_ERR(root)) { 2151 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2152 ret = PTR_ERR(root); 2153 break; 2154 } 2155 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2156 ret = btrfs_global_root_insert(root); 2157 if (ret) { 2158 btrfs_put_root(root); 2159 break; 2160 } 2161 key.offset++; 2162 } 2163 btrfs_release_path(path); 2164 2165 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2166 fs_info->nr_global_roots = max_global_id + 1; 2167 2168 if (!found || ret) { 2169 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2170 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2171 2172 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2173 ret = ret ? ret : -ENOENT; 2174 else 2175 ret = 0; 2176 btrfs_err(fs_info, "failed to load root %s", name); 2177 } 2178 return ret; 2179 } 2180 2181 static int load_global_roots(struct btrfs_root *tree_root) 2182 { 2183 struct btrfs_path *path; 2184 int ret = 0; 2185 2186 path = btrfs_alloc_path(); 2187 if (!path) 2188 return -ENOMEM; 2189 2190 ret = load_global_roots_objectid(tree_root, path, 2191 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2192 if (ret) 2193 goto out; 2194 ret = load_global_roots_objectid(tree_root, path, 2195 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2196 if (ret) 2197 goto out; 2198 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2199 goto out; 2200 ret = load_global_roots_objectid(tree_root, path, 2201 BTRFS_FREE_SPACE_TREE_OBJECTID, 2202 "free space"); 2203 out: 2204 btrfs_free_path(path); 2205 return ret; 2206 } 2207 2208 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2209 { 2210 struct btrfs_root *tree_root = fs_info->tree_root; 2211 struct btrfs_root *root; 2212 struct btrfs_key location; 2213 int ret; 2214 2215 BUG_ON(!fs_info->tree_root); 2216 2217 ret = load_global_roots(tree_root); 2218 if (ret) 2219 return ret; 2220 2221 location.type = BTRFS_ROOT_ITEM_KEY; 2222 location.offset = 0; 2223 2224 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2225 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2226 root = btrfs_read_tree_root(tree_root, &location); 2227 if (IS_ERR(root)) { 2228 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2229 ret = PTR_ERR(root); 2230 goto out; 2231 } 2232 } else { 2233 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2234 fs_info->block_group_root = root; 2235 } 2236 } 2237 2238 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2239 root = btrfs_read_tree_root(tree_root, &location); 2240 if (IS_ERR(root)) { 2241 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2242 ret = PTR_ERR(root); 2243 goto out; 2244 } 2245 } else { 2246 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2247 fs_info->dev_root = root; 2248 } 2249 /* Initialize fs_info for all devices in any case */ 2250 ret = btrfs_init_devices_late(fs_info); 2251 if (ret) 2252 goto out; 2253 2254 /* 2255 * This tree can share blocks with some other fs tree during relocation 2256 * and we need a proper setup by btrfs_get_fs_root 2257 */ 2258 root = btrfs_get_fs_root(tree_root->fs_info, 2259 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2260 if (IS_ERR(root)) { 2261 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2262 ret = PTR_ERR(root); 2263 goto out; 2264 } 2265 } else { 2266 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2267 fs_info->data_reloc_root = root; 2268 } 2269 2270 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2271 root = btrfs_read_tree_root(tree_root, &location); 2272 if (!IS_ERR(root)) { 2273 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2274 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2275 fs_info->quota_root = root; 2276 } 2277 2278 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2279 root = btrfs_read_tree_root(tree_root, &location); 2280 if (IS_ERR(root)) { 2281 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2282 ret = PTR_ERR(root); 2283 if (ret != -ENOENT) 2284 goto out; 2285 } 2286 } else { 2287 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2288 fs_info->uuid_root = root; 2289 } 2290 2291 return 0; 2292 out: 2293 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2294 location.objectid, ret); 2295 return ret; 2296 } 2297 2298 /* 2299 * Real super block validation 2300 * NOTE: super csum type and incompat features will not be checked here. 2301 * 2302 * @sb: super block to check 2303 * @mirror_num: the super block number to check its bytenr: 2304 * 0 the primary (1st) sb 2305 * 1, 2 2nd and 3rd backup copy 2306 * -1 skip bytenr check 2307 */ 2308 int btrfs_validate_super(struct btrfs_fs_info *fs_info, 2309 struct btrfs_super_block *sb, int mirror_num) 2310 { 2311 u64 nodesize = btrfs_super_nodesize(sb); 2312 u64 sectorsize = btrfs_super_sectorsize(sb); 2313 int ret = 0; 2314 2315 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2316 btrfs_err(fs_info, "no valid FS found"); 2317 ret = -EINVAL; 2318 } 2319 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2320 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2321 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2322 ret = -EINVAL; 2323 } 2324 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2325 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2326 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2327 ret = -EINVAL; 2328 } 2329 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2330 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2331 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2332 ret = -EINVAL; 2333 } 2334 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2335 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2336 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2337 ret = -EINVAL; 2338 } 2339 2340 /* 2341 * Check sectorsize and nodesize first, other check will need it. 2342 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2343 */ 2344 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2345 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2346 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2347 ret = -EINVAL; 2348 } 2349 2350 /* 2351 * We only support at most two sectorsizes: 4K and PAGE_SIZE. 2352 * 2353 * We can support 16K sectorsize with 64K page size without problem, 2354 * but such sectorsize/pagesize combination doesn't make much sense. 2355 * 4K will be our future standard, PAGE_SIZE is supported from the very 2356 * beginning. 2357 */ 2358 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { 2359 btrfs_err(fs_info, 2360 "sectorsize %llu not yet supported for page size %lu", 2361 sectorsize, PAGE_SIZE); 2362 ret = -EINVAL; 2363 } 2364 2365 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2366 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2367 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2368 ret = -EINVAL; 2369 } 2370 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2371 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2372 le32_to_cpu(sb->__unused_leafsize), nodesize); 2373 ret = -EINVAL; 2374 } 2375 2376 /* Root alignment check */ 2377 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2378 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2379 btrfs_super_root(sb)); 2380 ret = -EINVAL; 2381 } 2382 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2383 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2384 btrfs_super_chunk_root(sb)); 2385 ret = -EINVAL; 2386 } 2387 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2388 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2389 btrfs_super_log_root(sb)); 2390 ret = -EINVAL; 2391 } 2392 2393 if (memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) { 2394 btrfs_err(fs_info, 2395 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2396 sb->fsid, fs_info->fs_devices->fsid); 2397 ret = -EINVAL; 2398 } 2399 2400 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb), 2401 BTRFS_FSID_SIZE) != 0) { 2402 btrfs_err(fs_info, 2403 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2404 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid); 2405 ret = -EINVAL; 2406 } 2407 2408 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2409 BTRFS_FSID_SIZE) != 0) { 2410 btrfs_err(fs_info, 2411 "dev_item UUID does not match metadata fsid: %pU != %pU", 2412 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2413 ret = -EINVAL; 2414 } 2415 2416 /* 2417 * Artificial requirement for block-group-tree to force newer features 2418 * (free-space-tree, no-holes) so the test matrix is smaller. 2419 */ 2420 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2421 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2422 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2423 btrfs_err(fs_info, 2424 "block-group-tree feature requires fres-space-tree and no-holes"); 2425 ret = -EINVAL; 2426 } 2427 2428 /* 2429 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2430 * done later 2431 */ 2432 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2433 btrfs_err(fs_info, "bytes_used is too small %llu", 2434 btrfs_super_bytes_used(sb)); 2435 ret = -EINVAL; 2436 } 2437 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2438 btrfs_err(fs_info, "invalid stripesize %u", 2439 btrfs_super_stripesize(sb)); 2440 ret = -EINVAL; 2441 } 2442 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2443 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2444 btrfs_super_num_devices(sb)); 2445 if (btrfs_super_num_devices(sb) == 0) { 2446 btrfs_err(fs_info, "number of devices is 0"); 2447 ret = -EINVAL; 2448 } 2449 2450 if (mirror_num >= 0 && 2451 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2452 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2453 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2454 ret = -EINVAL; 2455 } 2456 2457 /* 2458 * Obvious sys_chunk_array corruptions, it must hold at least one key 2459 * and one chunk 2460 */ 2461 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2462 btrfs_err(fs_info, "system chunk array too big %u > %u", 2463 btrfs_super_sys_array_size(sb), 2464 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2465 ret = -EINVAL; 2466 } 2467 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2468 + sizeof(struct btrfs_chunk)) { 2469 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2470 btrfs_super_sys_array_size(sb), 2471 sizeof(struct btrfs_disk_key) 2472 + sizeof(struct btrfs_chunk)); 2473 ret = -EINVAL; 2474 } 2475 2476 /* 2477 * The generation is a global counter, we'll trust it more than the others 2478 * but it's still possible that it's the one that's wrong. 2479 */ 2480 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2481 btrfs_warn(fs_info, 2482 "suspicious: generation < chunk_root_generation: %llu < %llu", 2483 btrfs_super_generation(sb), 2484 btrfs_super_chunk_root_generation(sb)); 2485 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2486 && btrfs_super_cache_generation(sb) != (u64)-1) 2487 btrfs_warn(fs_info, 2488 "suspicious: generation < cache_generation: %llu < %llu", 2489 btrfs_super_generation(sb), 2490 btrfs_super_cache_generation(sb)); 2491 2492 return ret; 2493 } 2494 2495 /* 2496 * Validation of super block at mount time. 2497 * Some checks already done early at mount time, like csum type and incompat 2498 * flags will be skipped. 2499 */ 2500 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2501 { 2502 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2503 } 2504 2505 /* 2506 * Validation of super block at write time. 2507 * Some checks like bytenr check will be skipped as their values will be 2508 * overwritten soon. 2509 * Extra checks like csum type and incompat flags will be done here. 2510 */ 2511 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2512 struct btrfs_super_block *sb) 2513 { 2514 int ret; 2515 2516 ret = btrfs_validate_super(fs_info, sb, -1); 2517 if (ret < 0) 2518 goto out; 2519 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2520 ret = -EUCLEAN; 2521 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2522 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2523 goto out; 2524 } 2525 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2526 ret = -EUCLEAN; 2527 btrfs_err(fs_info, 2528 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2529 btrfs_super_incompat_flags(sb), 2530 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2531 goto out; 2532 } 2533 out: 2534 if (ret < 0) 2535 btrfs_err(fs_info, 2536 "super block corruption detected before writing it to disk"); 2537 return ret; 2538 } 2539 2540 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2541 { 2542 struct btrfs_tree_parent_check check = { 2543 .level = level, 2544 .transid = gen, 2545 .owner_root = root->root_key.objectid 2546 }; 2547 int ret = 0; 2548 2549 root->node = read_tree_block(root->fs_info, bytenr, &check); 2550 if (IS_ERR(root->node)) { 2551 ret = PTR_ERR(root->node); 2552 root->node = NULL; 2553 return ret; 2554 } 2555 if (!extent_buffer_uptodate(root->node)) { 2556 free_extent_buffer(root->node); 2557 root->node = NULL; 2558 return -EIO; 2559 } 2560 2561 btrfs_set_root_node(&root->root_item, root->node); 2562 root->commit_root = btrfs_root_node(root); 2563 btrfs_set_root_refs(&root->root_item, 1); 2564 return ret; 2565 } 2566 2567 static int load_important_roots(struct btrfs_fs_info *fs_info) 2568 { 2569 struct btrfs_super_block *sb = fs_info->super_copy; 2570 u64 gen, bytenr; 2571 int level, ret; 2572 2573 bytenr = btrfs_super_root(sb); 2574 gen = btrfs_super_generation(sb); 2575 level = btrfs_super_root_level(sb); 2576 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2577 if (ret) { 2578 btrfs_warn(fs_info, "couldn't read tree root"); 2579 return ret; 2580 } 2581 return 0; 2582 } 2583 2584 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2585 { 2586 int backup_index = find_newest_super_backup(fs_info); 2587 struct btrfs_super_block *sb = fs_info->super_copy; 2588 struct btrfs_root *tree_root = fs_info->tree_root; 2589 bool handle_error = false; 2590 int ret = 0; 2591 int i; 2592 2593 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2594 if (handle_error) { 2595 if (!IS_ERR(tree_root->node)) 2596 free_extent_buffer(tree_root->node); 2597 tree_root->node = NULL; 2598 2599 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2600 break; 2601 2602 free_root_pointers(fs_info, 0); 2603 2604 /* 2605 * Don't use the log in recovery mode, it won't be 2606 * valid 2607 */ 2608 btrfs_set_super_log_root(sb, 0); 2609 2610 /* We can't trust the free space cache either */ 2611 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2612 2613 btrfs_warn(fs_info, "try to load backup roots slot %d", i); 2614 ret = read_backup_root(fs_info, i); 2615 backup_index = ret; 2616 if (ret < 0) 2617 return ret; 2618 } 2619 2620 ret = load_important_roots(fs_info); 2621 if (ret) { 2622 handle_error = true; 2623 continue; 2624 } 2625 2626 /* 2627 * No need to hold btrfs_root::objectid_mutex since the fs 2628 * hasn't been fully initialised and we are the only user 2629 */ 2630 ret = btrfs_init_root_free_objectid(tree_root); 2631 if (ret < 0) { 2632 handle_error = true; 2633 continue; 2634 } 2635 2636 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2637 2638 ret = btrfs_read_roots(fs_info); 2639 if (ret < 0) { 2640 handle_error = true; 2641 continue; 2642 } 2643 2644 /* All successful */ 2645 fs_info->generation = btrfs_header_generation(tree_root->node); 2646 fs_info->last_trans_committed = fs_info->generation; 2647 fs_info->last_reloc_trans = 0; 2648 2649 /* Always begin writing backup roots after the one being used */ 2650 if (backup_index < 0) { 2651 fs_info->backup_root_index = 0; 2652 } else { 2653 fs_info->backup_root_index = backup_index + 1; 2654 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2655 } 2656 break; 2657 } 2658 2659 return ret; 2660 } 2661 2662 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2663 { 2664 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2665 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2666 INIT_LIST_HEAD(&fs_info->trans_list); 2667 INIT_LIST_HEAD(&fs_info->dead_roots); 2668 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2669 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2670 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2671 spin_lock_init(&fs_info->delalloc_root_lock); 2672 spin_lock_init(&fs_info->trans_lock); 2673 spin_lock_init(&fs_info->fs_roots_radix_lock); 2674 spin_lock_init(&fs_info->delayed_iput_lock); 2675 spin_lock_init(&fs_info->defrag_inodes_lock); 2676 spin_lock_init(&fs_info->super_lock); 2677 spin_lock_init(&fs_info->buffer_lock); 2678 spin_lock_init(&fs_info->unused_bgs_lock); 2679 spin_lock_init(&fs_info->treelog_bg_lock); 2680 spin_lock_init(&fs_info->zone_active_bgs_lock); 2681 spin_lock_init(&fs_info->relocation_bg_lock); 2682 rwlock_init(&fs_info->tree_mod_log_lock); 2683 rwlock_init(&fs_info->global_root_lock); 2684 mutex_init(&fs_info->unused_bg_unpin_mutex); 2685 mutex_init(&fs_info->reclaim_bgs_lock); 2686 mutex_init(&fs_info->reloc_mutex); 2687 mutex_init(&fs_info->delalloc_root_mutex); 2688 mutex_init(&fs_info->zoned_meta_io_lock); 2689 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2690 seqlock_init(&fs_info->profiles_lock); 2691 2692 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2693 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2694 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2695 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2696 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep, 2697 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2698 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2699 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2700 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2701 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2702 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2703 BTRFS_LOCKDEP_TRANS_COMPLETED); 2704 2705 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2706 INIT_LIST_HEAD(&fs_info->space_info); 2707 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2708 INIT_LIST_HEAD(&fs_info->unused_bgs); 2709 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2710 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2711 #ifdef CONFIG_BTRFS_DEBUG 2712 INIT_LIST_HEAD(&fs_info->allocated_roots); 2713 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2714 spin_lock_init(&fs_info->eb_leak_lock); 2715 #endif 2716 extent_map_tree_init(&fs_info->mapping_tree); 2717 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2718 BTRFS_BLOCK_RSV_GLOBAL); 2719 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2720 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2721 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2722 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2723 BTRFS_BLOCK_RSV_DELOPS); 2724 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2725 BTRFS_BLOCK_RSV_DELREFS); 2726 2727 atomic_set(&fs_info->async_delalloc_pages, 0); 2728 atomic_set(&fs_info->defrag_running, 0); 2729 atomic_set(&fs_info->nr_delayed_iputs, 0); 2730 atomic64_set(&fs_info->tree_mod_seq, 0); 2731 fs_info->global_root_tree = RB_ROOT; 2732 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2733 fs_info->metadata_ratio = 0; 2734 fs_info->defrag_inodes = RB_ROOT; 2735 atomic64_set(&fs_info->free_chunk_space, 0); 2736 fs_info->tree_mod_log = RB_ROOT; 2737 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2738 btrfs_init_ref_verify(fs_info); 2739 2740 fs_info->thread_pool_size = min_t(unsigned long, 2741 num_online_cpus() + 2, 8); 2742 2743 INIT_LIST_HEAD(&fs_info->ordered_roots); 2744 spin_lock_init(&fs_info->ordered_root_lock); 2745 2746 btrfs_init_scrub(fs_info); 2747 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2748 fs_info->check_integrity_print_mask = 0; 2749 #endif 2750 btrfs_init_balance(fs_info); 2751 btrfs_init_async_reclaim_work(fs_info); 2752 2753 rwlock_init(&fs_info->block_group_cache_lock); 2754 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2755 2756 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2757 IO_TREE_FS_EXCLUDED_EXTENTS); 2758 2759 mutex_init(&fs_info->ordered_operations_mutex); 2760 mutex_init(&fs_info->tree_log_mutex); 2761 mutex_init(&fs_info->chunk_mutex); 2762 mutex_init(&fs_info->transaction_kthread_mutex); 2763 mutex_init(&fs_info->cleaner_mutex); 2764 mutex_init(&fs_info->ro_block_group_mutex); 2765 init_rwsem(&fs_info->commit_root_sem); 2766 init_rwsem(&fs_info->cleanup_work_sem); 2767 init_rwsem(&fs_info->subvol_sem); 2768 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2769 2770 btrfs_init_dev_replace_locks(fs_info); 2771 btrfs_init_qgroup(fs_info); 2772 btrfs_discard_init(fs_info); 2773 2774 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2775 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2776 2777 init_waitqueue_head(&fs_info->transaction_throttle); 2778 init_waitqueue_head(&fs_info->transaction_wait); 2779 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2780 init_waitqueue_head(&fs_info->async_submit_wait); 2781 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2782 2783 /* Usable values until the real ones are cached from the superblock */ 2784 fs_info->nodesize = 4096; 2785 fs_info->sectorsize = 4096; 2786 fs_info->sectorsize_bits = ilog2(4096); 2787 fs_info->stripesize = 4096; 2788 2789 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 2790 2791 spin_lock_init(&fs_info->swapfile_pins_lock); 2792 fs_info->swapfile_pins = RB_ROOT; 2793 2794 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 2795 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 2796 } 2797 2798 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2799 { 2800 int ret; 2801 2802 fs_info->sb = sb; 2803 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2804 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2805 2806 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 2807 if (ret) 2808 return ret; 2809 2810 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2811 if (ret) 2812 return ret; 2813 2814 fs_info->dirty_metadata_batch = PAGE_SIZE * 2815 (1 + ilog2(nr_cpu_ids)); 2816 2817 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2818 if (ret) 2819 return ret; 2820 2821 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2822 GFP_KERNEL); 2823 if (ret) 2824 return ret; 2825 2826 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2827 GFP_KERNEL); 2828 if (!fs_info->delayed_root) 2829 return -ENOMEM; 2830 btrfs_init_delayed_root(fs_info->delayed_root); 2831 2832 if (sb_rdonly(sb)) 2833 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2834 2835 return btrfs_alloc_stripe_hash_table(fs_info); 2836 } 2837 2838 static int btrfs_uuid_rescan_kthread(void *data) 2839 { 2840 struct btrfs_fs_info *fs_info = data; 2841 int ret; 2842 2843 /* 2844 * 1st step is to iterate through the existing UUID tree and 2845 * to delete all entries that contain outdated data. 2846 * 2nd step is to add all missing entries to the UUID tree. 2847 */ 2848 ret = btrfs_uuid_tree_iterate(fs_info); 2849 if (ret < 0) { 2850 if (ret != -EINTR) 2851 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2852 ret); 2853 up(&fs_info->uuid_tree_rescan_sem); 2854 return ret; 2855 } 2856 return btrfs_uuid_scan_kthread(data); 2857 } 2858 2859 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2860 { 2861 struct task_struct *task; 2862 2863 down(&fs_info->uuid_tree_rescan_sem); 2864 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2865 if (IS_ERR(task)) { 2866 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2867 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2868 up(&fs_info->uuid_tree_rescan_sem); 2869 return PTR_ERR(task); 2870 } 2871 2872 return 0; 2873 } 2874 2875 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2876 { 2877 u64 root_objectid = 0; 2878 struct btrfs_root *gang[8]; 2879 int i = 0; 2880 int err = 0; 2881 unsigned int ret = 0; 2882 2883 while (1) { 2884 spin_lock(&fs_info->fs_roots_radix_lock); 2885 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2886 (void **)gang, root_objectid, 2887 ARRAY_SIZE(gang)); 2888 if (!ret) { 2889 spin_unlock(&fs_info->fs_roots_radix_lock); 2890 break; 2891 } 2892 root_objectid = gang[ret - 1]->root_key.objectid + 1; 2893 2894 for (i = 0; i < ret; i++) { 2895 /* Avoid to grab roots in dead_roots. */ 2896 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 2897 gang[i] = NULL; 2898 continue; 2899 } 2900 /* Grab all the search result for later use. */ 2901 gang[i] = btrfs_grab_root(gang[i]); 2902 } 2903 spin_unlock(&fs_info->fs_roots_radix_lock); 2904 2905 for (i = 0; i < ret; i++) { 2906 if (!gang[i]) 2907 continue; 2908 root_objectid = gang[i]->root_key.objectid; 2909 err = btrfs_orphan_cleanup(gang[i]); 2910 if (err) 2911 goto out; 2912 btrfs_put_root(gang[i]); 2913 } 2914 root_objectid++; 2915 } 2916 out: 2917 /* Release the uncleaned roots due to error. */ 2918 for (; i < ret; i++) { 2919 if (gang[i]) 2920 btrfs_put_root(gang[i]); 2921 } 2922 return err; 2923 } 2924 2925 /* 2926 * Some options only have meaning at mount time and shouldn't persist across 2927 * remounts, or be displayed. Clear these at the end of mount and remount 2928 * code paths. 2929 */ 2930 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 2931 { 2932 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 2933 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 2934 } 2935 2936 /* 2937 * Mounting logic specific to read-write file systems. Shared by open_ctree 2938 * and btrfs_remount when remounting from read-only to read-write. 2939 */ 2940 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 2941 { 2942 int ret; 2943 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 2944 bool rebuild_free_space_tree = false; 2945 2946 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 2947 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2948 rebuild_free_space_tree = true; 2949 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 2950 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 2951 btrfs_warn(fs_info, "free space tree is invalid"); 2952 rebuild_free_space_tree = true; 2953 } 2954 2955 if (rebuild_free_space_tree) { 2956 btrfs_info(fs_info, "rebuilding free space tree"); 2957 ret = btrfs_rebuild_free_space_tree(fs_info); 2958 if (ret) { 2959 btrfs_warn(fs_info, 2960 "failed to rebuild free space tree: %d", ret); 2961 goto out; 2962 } 2963 } 2964 2965 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 2966 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 2967 btrfs_info(fs_info, "disabling free space tree"); 2968 ret = btrfs_delete_free_space_tree(fs_info); 2969 if (ret) { 2970 btrfs_warn(fs_info, 2971 "failed to disable free space tree: %d", ret); 2972 goto out; 2973 } 2974 } 2975 2976 /* 2977 * btrfs_find_orphan_roots() is responsible for finding all the dead 2978 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 2979 * them into the fs_info->fs_roots_radix tree. This must be done before 2980 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 2981 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 2982 * item before the root's tree is deleted - this means that if we unmount 2983 * or crash before the deletion completes, on the next mount we will not 2984 * delete what remains of the tree because the orphan item does not 2985 * exists anymore, which is what tells us we have a pending deletion. 2986 */ 2987 ret = btrfs_find_orphan_roots(fs_info); 2988 if (ret) 2989 goto out; 2990 2991 ret = btrfs_cleanup_fs_roots(fs_info); 2992 if (ret) 2993 goto out; 2994 2995 down_read(&fs_info->cleanup_work_sem); 2996 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2997 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2998 up_read(&fs_info->cleanup_work_sem); 2999 goto out; 3000 } 3001 up_read(&fs_info->cleanup_work_sem); 3002 3003 mutex_lock(&fs_info->cleaner_mutex); 3004 ret = btrfs_recover_relocation(fs_info); 3005 mutex_unlock(&fs_info->cleaner_mutex); 3006 if (ret < 0) { 3007 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3008 goto out; 3009 } 3010 3011 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3012 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3013 btrfs_info(fs_info, "creating free space tree"); 3014 ret = btrfs_create_free_space_tree(fs_info); 3015 if (ret) { 3016 btrfs_warn(fs_info, 3017 "failed to create free space tree: %d", ret); 3018 goto out; 3019 } 3020 } 3021 3022 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3023 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3024 if (ret) 3025 goto out; 3026 } 3027 3028 ret = btrfs_resume_balance_async(fs_info); 3029 if (ret) 3030 goto out; 3031 3032 ret = btrfs_resume_dev_replace_async(fs_info); 3033 if (ret) { 3034 btrfs_warn(fs_info, "failed to resume dev_replace"); 3035 goto out; 3036 } 3037 3038 btrfs_qgroup_rescan_resume(fs_info); 3039 3040 if (!fs_info->uuid_root) { 3041 btrfs_info(fs_info, "creating UUID tree"); 3042 ret = btrfs_create_uuid_tree(fs_info); 3043 if (ret) { 3044 btrfs_warn(fs_info, 3045 "failed to create the UUID tree %d", ret); 3046 goto out; 3047 } 3048 } 3049 3050 out: 3051 return ret; 3052 } 3053 3054 /* 3055 * Do various sanity and dependency checks of different features. 3056 * 3057 * @is_rw_mount: If the mount is read-write. 3058 * 3059 * This is the place for less strict checks (like for subpage or artificial 3060 * feature dependencies). 3061 * 3062 * For strict checks or possible corruption detection, see 3063 * btrfs_validate_super(). 3064 * 3065 * This should be called after btrfs_parse_options(), as some mount options 3066 * (space cache related) can modify on-disk format like free space tree and 3067 * screw up certain feature dependencies. 3068 */ 3069 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3070 { 3071 struct btrfs_super_block *disk_super = fs_info->super_copy; 3072 u64 incompat = btrfs_super_incompat_flags(disk_super); 3073 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3074 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3075 3076 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3077 btrfs_err(fs_info, 3078 "cannot mount because of unknown incompat features (0x%llx)", 3079 incompat); 3080 return -EINVAL; 3081 } 3082 3083 /* Runtime limitation for mixed block groups. */ 3084 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3085 (fs_info->sectorsize != fs_info->nodesize)) { 3086 btrfs_err(fs_info, 3087 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3088 fs_info->nodesize, fs_info->sectorsize); 3089 return -EINVAL; 3090 } 3091 3092 /* Mixed backref is an always-enabled feature. */ 3093 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3094 3095 /* Set compression related flags just in case. */ 3096 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3097 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3098 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3099 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3100 3101 /* 3102 * An ancient flag, which should really be marked deprecated. 3103 * Such runtime limitation doesn't really need a incompat flag. 3104 */ 3105 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3106 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3107 3108 if (compat_ro_unsupp && is_rw_mount) { 3109 btrfs_err(fs_info, 3110 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3111 compat_ro); 3112 return -EINVAL; 3113 } 3114 3115 /* 3116 * We have unsupported RO compat features, although RO mounted, we 3117 * should not cause any metadata writes, including log replay. 3118 * Or we could screw up whatever the new feature requires. 3119 */ 3120 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3121 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3122 btrfs_err(fs_info, 3123 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3124 compat_ro); 3125 return -EINVAL; 3126 } 3127 3128 /* 3129 * Artificial limitations for block group tree, to force 3130 * block-group-tree to rely on no-holes and free-space-tree. 3131 */ 3132 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3133 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3134 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3135 btrfs_err(fs_info, 3136 "block-group-tree feature requires no-holes and free-space-tree features"); 3137 return -EINVAL; 3138 } 3139 3140 /* 3141 * Subpage runtime limitation on v1 cache. 3142 * 3143 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3144 * we're already defaulting to v2 cache, no need to bother v1 as it's 3145 * going to be deprecated anyway. 3146 */ 3147 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3148 btrfs_warn(fs_info, 3149 "v1 space cache is not supported for page size %lu with sectorsize %u", 3150 PAGE_SIZE, fs_info->sectorsize); 3151 return -EINVAL; 3152 } 3153 3154 /* This can be called by remount, we need to protect the super block. */ 3155 spin_lock(&fs_info->super_lock); 3156 btrfs_set_super_incompat_flags(disk_super, incompat); 3157 spin_unlock(&fs_info->super_lock); 3158 3159 return 0; 3160 } 3161 3162 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3163 char *options) 3164 { 3165 u32 sectorsize; 3166 u32 nodesize; 3167 u32 stripesize; 3168 u64 generation; 3169 u64 features; 3170 u16 csum_type; 3171 struct btrfs_super_block *disk_super; 3172 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3173 struct btrfs_root *tree_root; 3174 struct btrfs_root *chunk_root; 3175 int ret; 3176 int level; 3177 3178 ret = init_mount_fs_info(fs_info, sb); 3179 if (ret) 3180 goto fail; 3181 3182 /* These need to be init'ed before we start creating inodes and such. */ 3183 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3184 GFP_KERNEL); 3185 fs_info->tree_root = tree_root; 3186 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3187 GFP_KERNEL); 3188 fs_info->chunk_root = chunk_root; 3189 if (!tree_root || !chunk_root) { 3190 ret = -ENOMEM; 3191 goto fail; 3192 } 3193 3194 ret = btrfs_init_btree_inode(sb); 3195 if (ret) 3196 goto fail; 3197 3198 invalidate_bdev(fs_devices->latest_dev->bdev); 3199 3200 /* 3201 * Read super block and check the signature bytes only 3202 */ 3203 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3204 if (IS_ERR(disk_super)) { 3205 ret = PTR_ERR(disk_super); 3206 goto fail_alloc; 3207 } 3208 3209 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid); 3210 /* 3211 * Verify the type first, if that or the checksum value are 3212 * corrupted, we'll find out 3213 */ 3214 csum_type = btrfs_super_csum_type(disk_super); 3215 if (!btrfs_supported_super_csum(csum_type)) { 3216 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3217 csum_type); 3218 ret = -EINVAL; 3219 btrfs_release_disk_super(disk_super); 3220 goto fail_alloc; 3221 } 3222 3223 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3224 3225 ret = btrfs_init_csum_hash(fs_info, csum_type); 3226 if (ret) { 3227 btrfs_release_disk_super(disk_super); 3228 goto fail_alloc; 3229 } 3230 3231 /* 3232 * We want to check superblock checksum, the type is stored inside. 3233 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3234 */ 3235 if (btrfs_check_super_csum(fs_info, disk_super)) { 3236 btrfs_err(fs_info, "superblock checksum mismatch"); 3237 ret = -EINVAL; 3238 btrfs_release_disk_super(disk_super); 3239 goto fail_alloc; 3240 } 3241 3242 /* 3243 * super_copy is zeroed at allocation time and we never touch the 3244 * following bytes up to INFO_SIZE, the checksum is calculated from 3245 * the whole block of INFO_SIZE 3246 */ 3247 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3248 btrfs_release_disk_super(disk_super); 3249 3250 disk_super = fs_info->super_copy; 3251 3252 3253 features = btrfs_super_flags(disk_super); 3254 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 3255 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 3256 btrfs_set_super_flags(disk_super, features); 3257 btrfs_info(fs_info, 3258 "found metadata UUID change in progress flag, clearing"); 3259 } 3260 3261 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3262 sizeof(*fs_info->super_for_commit)); 3263 3264 ret = btrfs_validate_mount_super(fs_info); 3265 if (ret) { 3266 btrfs_err(fs_info, "superblock contains fatal errors"); 3267 ret = -EINVAL; 3268 goto fail_alloc; 3269 } 3270 3271 if (!btrfs_super_root(disk_super)) { 3272 btrfs_err(fs_info, "invalid superblock tree root bytenr"); 3273 ret = -EINVAL; 3274 goto fail_alloc; 3275 } 3276 3277 /* check FS state, whether FS is broken. */ 3278 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3279 WRITE_ONCE(fs_info->fs_error, -EUCLEAN); 3280 3281 /* 3282 * In the long term, we'll store the compression type in the super 3283 * block, and it'll be used for per file compression control. 3284 */ 3285 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3286 3287 3288 /* Set up fs_info before parsing mount options */ 3289 nodesize = btrfs_super_nodesize(disk_super); 3290 sectorsize = btrfs_super_sectorsize(disk_super); 3291 stripesize = sectorsize; 3292 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3293 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3294 3295 fs_info->nodesize = nodesize; 3296 fs_info->sectorsize = sectorsize; 3297 fs_info->sectorsize_bits = ilog2(sectorsize); 3298 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3299 fs_info->stripesize = stripesize; 3300 3301 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3302 if (ret) 3303 goto fail_alloc; 3304 3305 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3306 if (ret < 0) 3307 goto fail_alloc; 3308 3309 if (sectorsize < PAGE_SIZE) { 3310 struct btrfs_subpage_info *subpage_info; 3311 3312 /* 3313 * V1 space cache has some hardcoded PAGE_SIZE usage, and is 3314 * going to be deprecated. 3315 * 3316 * Force to use v2 cache for subpage case. 3317 */ 3318 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 3319 btrfs_set_and_info(fs_info, FREE_SPACE_TREE, 3320 "forcing free space tree for sector size %u with page size %lu", 3321 sectorsize, PAGE_SIZE); 3322 3323 btrfs_warn(fs_info, 3324 "read-write for sector size %u with page size %lu is experimental", 3325 sectorsize, PAGE_SIZE); 3326 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL); 3327 if (!subpage_info) { 3328 ret = -ENOMEM; 3329 goto fail_alloc; 3330 } 3331 btrfs_init_subpage_info(subpage_info, sectorsize); 3332 fs_info->subpage_info = subpage_info; 3333 } 3334 3335 ret = btrfs_init_workqueues(fs_info); 3336 if (ret) 3337 goto fail_sb_buffer; 3338 3339 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3340 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3341 3342 sb->s_blocksize = sectorsize; 3343 sb->s_blocksize_bits = blksize_bits(sectorsize); 3344 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3345 3346 mutex_lock(&fs_info->chunk_mutex); 3347 ret = btrfs_read_sys_array(fs_info); 3348 mutex_unlock(&fs_info->chunk_mutex); 3349 if (ret) { 3350 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3351 goto fail_sb_buffer; 3352 } 3353 3354 generation = btrfs_super_chunk_root_generation(disk_super); 3355 level = btrfs_super_chunk_root_level(disk_super); 3356 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3357 generation, level); 3358 if (ret) { 3359 btrfs_err(fs_info, "failed to read chunk root"); 3360 goto fail_tree_roots; 3361 } 3362 3363 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3364 offsetof(struct btrfs_header, chunk_tree_uuid), 3365 BTRFS_UUID_SIZE); 3366 3367 ret = btrfs_read_chunk_tree(fs_info); 3368 if (ret) { 3369 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3370 goto fail_tree_roots; 3371 } 3372 3373 /* 3374 * At this point we know all the devices that make this filesystem, 3375 * including the seed devices but we don't know yet if the replace 3376 * target is required. So free devices that are not part of this 3377 * filesystem but skip the replace target device which is checked 3378 * below in btrfs_init_dev_replace(). 3379 */ 3380 btrfs_free_extra_devids(fs_devices); 3381 if (!fs_devices->latest_dev->bdev) { 3382 btrfs_err(fs_info, "failed to read devices"); 3383 ret = -EIO; 3384 goto fail_tree_roots; 3385 } 3386 3387 ret = init_tree_roots(fs_info); 3388 if (ret) 3389 goto fail_tree_roots; 3390 3391 /* 3392 * Get zone type information of zoned block devices. This will also 3393 * handle emulation of a zoned filesystem if a regular device has the 3394 * zoned incompat feature flag set. 3395 */ 3396 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3397 if (ret) { 3398 btrfs_err(fs_info, 3399 "zoned: failed to read device zone info: %d", ret); 3400 goto fail_block_groups; 3401 } 3402 3403 /* 3404 * If we have a uuid root and we're not being told to rescan we need to 3405 * check the generation here so we can set the 3406 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3407 * transaction during a balance or the log replay without updating the 3408 * uuid generation, and then if we crash we would rescan the uuid tree, 3409 * even though it was perfectly fine. 3410 */ 3411 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3412 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3413 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3414 3415 ret = btrfs_verify_dev_extents(fs_info); 3416 if (ret) { 3417 btrfs_err(fs_info, 3418 "failed to verify dev extents against chunks: %d", 3419 ret); 3420 goto fail_block_groups; 3421 } 3422 ret = btrfs_recover_balance(fs_info); 3423 if (ret) { 3424 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3425 goto fail_block_groups; 3426 } 3427 3428 ret = btrfs_init_dev_stats(fs_info); 3429 if (ret) { 3430 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3431 goto fail_block_groups; 3432 } 3433 3434 ret = btrfs_init_dev_replace(fs_info); 3435 if (ret) { 3436 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3437 goto fail_block_groups; 3438 } 3439 3440 ret = btrfs_check_zoned_mode(fs_info); 3441 if (ret) { 3442 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3443 ret); 3444 goto fail_block_groups; 3445 } 3446 3447 ret = btrfs_sysfs_add_fsid(fs_devices); 3448 if (ret) { 3449 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3450 ret); 3451 goto fail_block_groups; 3452 } 3453 3454 ret = btrfs_sysfs_add_mounted(fs_info); 3455 if (ret) { 3456 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3457 goto fail_fsdev_sysfs; 3458 } 3459 3460 ret = btrfs_init_space_info(fs_info); 3461 if (ret) { 3462 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3463 goto fail_sysfs; 3464 } 3465 3466 ret = btrfs_read_block_groups(fs_info); 3467 if (ret) { 3468 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3469 goto fail_sysfs; 3470 } 3471 3472 btrfs_free_zone_cache(fs_info); 3473 3474 btrfs_check_active_zone_reservation(fs_info); 3475 3476 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3477 !btrfs_check_rw_degradable(fs_info, NULL)) { 3478 btrfs_warn(fs_info, 3479 "writable mount is not allowed due to too many missing devices"); 3480 ret = -EINVAL; 3481 goto fail_sysfs; 3482 } 3483 3484 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3485 "btrfs-cleaner"); 3486 if (IS_ERR(fs_info->cleaner_kthread)) { 3487 ret = PTR_ERR(fs_info->cleaner_kthread); 3488 goto fail_sysfs; 3489 } 3490 3491 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3492 tree_root, 3493 "btrfs-transaction"); 3494 if (IS_ERR(fs_info->transaction_kthread)) { 3495 ret = PTR_ERR(fs_info->transaction_kthread); 3496 goto fail_cleaner; 3497 } 3498 3499 if (!btrfs_test_opt(fs_info, NOSSD) && 3500 !fs_info->fs_devices->rotating) { 3501 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3502 } 3503 3504 /* 3505 * For devices supporting discard turn on discard=async automatically, 3506 * unless it's already set or disabled. This could be turned off by 3507 * nodiscard for the same mount. 3508 * 3509 * The zoned mode piggy backs on the discard functionality for 3510 * resetting a zone. There is no reason to delay the zone reset as it is 3511 * fast enough. So, do not enable async discard for zoned mode. 3512 */ 3513 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) || 3514 btrfs_test_opt(fs_info, DISCARD_ASYNC) || 3515 btrfs_test_opt(fs_info, NODISCARD)) && 3516 fs_info->fs_devices->discardable && 3517 !btrfs_is_zoned(fs_info)) { 3518 btrfs_set_and_info(fs_info, DISCARD_ASYNC, 3519 "auto enabling async discard"); 3520 } 3521 3522 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3523 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3524 ret = btrfsic_mount(fs_info, fs_devices, 3525 btrfs_test_opt(fs_info, 3526 CHECK_INTEGRITY_DATA) ? 1 : 0, 3527 fs_info->check_integrity_print_mask); 3528 if (ret) 3529 btrfs_warn(fs_info, 3530 "failed to initialize integrity check module: %d", 3531 ret); 3532 } 3533 #endif 3534 ret = btrfs_read_qgroup_config(fs_info); 3535 if (ret) 3536 goto fail_trans_kthread; 3537 3538 if (btrfs_build_ref_tree(fs_info)) 3539 btrfs_err(fs_info, "couldn't build ref tree"); 3540 3541 /* do not make disk changes in broken FS or nologreplay is given */ 3542 if (btrfs_super_log_root(disk_super) != 0 && 3543 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3544 btrfs_info(fs_info, "start tree-log replay"); 3545 ret = btrfs_replay_log(fs_info, fs_devices); 3546 if (ret) 3547 goto fail_qgroup; 3548 } 3549 3550 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3551 if (IS_ERR(fs_info->fs_root)) { 3552 ret = PTR_ERR(fs_info->fs_root); 3553 btrfs_warn(fs_info, "failed to read fs tree: %d", ret); 3554 fs_info->fs_root = NULL; 3555 goto fail_qgroup; 3556 } 3557 3558 if (sb_rdonly(sb)) 3559 goto clear_oneshot; 3560 3561 ret = btrfs_start_pre_rw_mount(fs_info); 3562 if (ret) { 3563 close_ctree(fs_info); 3564 return ret; 3565 } 3566 btrfs_discard_resume(fs_info); 3567 3568 if (fs_info->uuid_root && 3569 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3570 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3571 btrfs_info(fs_info, "checking UUID tree"); 3572 ret = btrfs_check_uuid_tree(fs_info); 3573 if (ret) { 3574 btrfs_warn(fs_info, 3575 "failed to check the UUID tree: %d", ret); 3576 close_ctree(fs_info); 3577 return ret; 3578 } 3579 } 3580 3581 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3582 3583 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3584 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3585 wake_up_process(fs_info->cleaner_kthread); 3586 3587 clear_oneshot: 3588 btrfs_clear_oneshot_options(fs_info); 3589 return 0; 3590 3591 fail_qgroup: 3592 btrfs_free_qgroup_config(fs_info); 3593 fail_trans_kthread: 3594 kthread_stop(fs_info->transaction_kthread); 3595 btrfs_cleanup_transaction(fs_info); 3596 btrfs_free_fs_roots(fs_info); 3597 fail_cleaner: 3598 kthread_stop(fs_info->cleaner_kthread); 3599 3600 /* 3601 * make sure we're done with the btree inode before we stop our 3602 * kthreads 3603 */ 3604 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3605 3606 fail_sysfs: 3607 btrfs_sysfs_remove_mounted(fs_info); 3608 3609 fail_fsdev_sysfs: 3610 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3611 3612 fail_block_groups: 3613 btrfs_put_block_group_cache(fs_info); 3614 3615 fail_tree_roots: 3616 if (fs_info->data_reloc_root) 3617 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3618 free_root_pointers(fs_info, true); 3619 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3620 3621 fail_sb_buffer: 3622 btrfs_stop_all_workers(fs_info); 3623 btrfs_free_block_groups(fs_info); 3624 fail_alloc: 3625 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3626 3627 iput(fs_info->btree_inode); 3628 fail: 3629 btrfs_close_devices(fs_info->fs_devices); 3630 ASSERT(ret < 0); 3631 return ret; 3632 } 3633 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3634 3635 static void btrfs_end_super_write(struct bio *bio) 3636 { 3637 struct btrfs_device *device = bio->bi_private; 3638 struct bio_vec *bvec; 3639 struct bvec_iter_all iter_all; 3640 struct page *page; 3641 3642 bio_for_each_segment_all(bvec, bio, iter_all) { 3643 page = bvec->bv_page; 3644 3645 if (bio->bi_status) { 3646 btrfs_warn_rl_in_rcu(device->fs_info, 3647 "lost page write due to IO error on %s (%d)", 3648 btrfs_dev_name(device), 3649 blk_status_to_errno(bio->bi_status)); 3650 ClearPageUptodate(page); 3651 SetPageError(page); 3652 btrfs_dev_stat_inc_and_print(device, 3653 BTRFS_DEV_STAT_WRITE_ERRS); 3654 } else { 3655 SetPageUptodate(page); 3656 } 3657 3658 put_page(page); 3659 unlock_page(page); 3660 } 3661 3662 bio_put(bio); 3663 } 3664 3665 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3666 int copy_num, bool drop_cache) 3667 { 3668 struct btrfs_super_block *super; 3669 struct page *page; 3670 u64 bytenr, bytenr_orig; 3671 struct address_space *mapping = bdev->bd_inode->i_mapping; 3672 int ret; 3673 3674 bytenr_orig = btrfs_sb_offset(copy_num); 3675 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3676 if (ret == -ENOENT) 3677 return ERR_PTR(-EINVAL); 3678 else if (ret) 3679 return ERR_PTR(ret); 3680 3681 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 3682 return ERR_PTR(-EINVAL); 3683 3684 if (drop_cache) { 3685 /* This should only be called with the primary sb. */ 3686 ASSERT(copy_num == 0); 3687 3688 /* 3689 * Drop the page of the primary superblock, so later read will 3690 * always read from the device. 3691 */ 3692 invalidate_inode_pages2_range(mapping, 3693 bytenr >> PAGE_SHIFT, 3694 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 3695 } 3696 3697 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3698 if (IS_ERR(page)) 3699 return ERR_CAST(page); 3700 3701 super = page_address(page); 3702 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3703 btrfs_release_disk_super(super); 3704 return ERR_PTR(-ENODATA); 3705 } 3706 3707 if (btrfs_super_bytenr(super) != bytenr_orig) { 3708 btrfs_release_disk_super(super); 3709 return ERR_PTR(-EINVAL); 3710 } 3711 3712 return super; 3713 } 3714 3715 3716 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3717 { 3718 struct btrfs_super_block *super, *latest = NULL; 3719 int i; 3720 u64 transid = 0; 3721 3722 /* we would like to check all the supers, but that would make 3723 * a btrfs mount succeed after a mkfs from a different FS. 3724 * So, we need to add a special mount option to scan for 3725 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3726 */ 3727 for (i = 0; i < 1; i++) { 3728 super = btrfs_read_dev_one_super(bdev, i, false); 3729 if (IS_ERR(super)) 3730 continue; 3731 3732 if (!latest || btrfs_super_generation(super) > transid) { 3733 if (latest) 3734 btrfs_release_disk_super(super); 3735 3736 latest = super; 3737 transid = btrfs_super_generation(super); 3738 } 3739 } 3740 3741 return super; 3742 } 3743 3744 /* 3745 * Write superblock @sb to the @device. Do not wait for completion, all the 3746 * pages we use for writing are locked. 3747 * 3748 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3749 * the expected device size at commit time. Note that max_mirrors must be 3750 * same for write and wait phases. 3751 * 3752 * Return number of errors when page is not found or submission fails. 3753 */ 3754 static int write_dev_supers(struct btrfs_device *device, 3755 struct btrfs_super_block *sb, int max_mirrors) 3756 { 3757 struct btrfs_fs_info *fs_info = device->fs_info; 3758 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3759 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3760 int i; 3761 int errors = 0; 3762 int ret; 3763 u64 bytenr, bytenr_orig; 3764 3765 if (max_mirrors == 0) 3766 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3767 3768 shash->tfm = fs_info->csum_shash; 3769 3770 for (i = 0; i < max_mirrors; i++) { 3771 struct page *page; 3772 struct bio *bio; 3773 struct btrfs_super_block *disk_super; 3774 3775 bytenr_orig = btrfs_sb_offset(i); 3776 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3777 if (ret == -ENOENT) { 3778 continue; 3779 } else if (ret < 0) { 3780 btrfs_err(device->fs_info, 3781 "couldn't get super block location for mirror %d", 3782 i); 3783 errors++; 3784 continue; 3785 } 3786 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3787 device->commit_total_bytes) 3788 break; 3789 3790 btrfs_set_super_bytenr(sb, bytenr_orig); 3791 3792 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3793 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3794 sb->csum); 3795 3796 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3797 GFP_NOFS); 3798 if (!page) { 3799 btrfs_err(device->fs_info, 3800 "couldn't get super block page for bytenr %llu", 3801 bytenr); 3802 errors++; 3803 continue; 3804 } 3805 3806 /* Bump the refcount for wait_dev_supers() */ 3807 get_page(page); 3808 3809 disk_super = page_address(page); 3810 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3811 3812 /* 3813 * Directly use bios here instead of relying on the page cache 3814 * to do I/O, so we don't lose the ability to do integrity 3815 * checking. 3816 */ 3817 bio = bio_alloc(device->bdev, 1, 3818 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3819 GFP_NOFS); 3820 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3821 bio->bi_private = device; 3822 bio->bi_end_io = btrfs_end_super_write; 3823 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 3824 offset_in_page(bytenr)); 3825 3826 /* 3827 * We FUA only the first super block. The others we allow to 3828 * go down lazy and there's a short window where the on-disk 3829 * copies might still contain the older version. 3830 */ 3831 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3832 bio->bi_opf |= REQ_FUA; 3833 3834 btrfsic_check_bio(bio); 3835 submit_bio(bio); 3836 3837 if (btrfs_advance_sb_log(device, i)) 3838 errors++; 3839 } 3840 return errors < i ? 0 : -1; 3841 } 3842 3843 /* 3844 * Wait for write completion of superblocks done by write_dev_supers, 3845 * @max_mirrors same for write and wait phases. 3846 * 3847 * Return number of errors when page is not found or not marked up to 3848 * date. 3849 */ 3850 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3851 { 3852 int i; 3853 int errors = 0; 3854 bool primary_failed = false; 3855 int ret; 3856 u64 bytenr; 3857 3858 if (max_mirrors == 0) 3859 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3860 3861 for (i = 0; i < max_mirrors; i++) { 3862 struct page *page; 3863 3864 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 3865 if (ret == -ENOENT) { 3866 break; 3867 } else if (ret < 0) { 3868 errors++; 3869 if (i == 0) 3870 primary_failed = true; 3871 continue; 3872 } 3873 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3874 device->commit_total_bytes) 3875 break; 3876 3877 page = find_get_page(device->bdev->bd_inode->i_mapping, 3878 bytenr >> PAGE_SHIFT); 3879 if (!page) { 3880 errors++; 3881 if (i == 0) 3882 primary_failed = true; 3883 continue; 3884 } 3885 /* Page is submitted locked and unlocked once the IO completes */ 3886 wait_on_page_locked(page); 3887 if (PageError(page)) { 3888 errors++; 3889 if (i == 0) 3890 primary_failed = true; 3891 } 3892 3893 /* Drop our reference */ 3894 put_page(page); 3895 3896 /* Drop the reference from the writing run */ 3897 put_page(page); 3898 } 3899 3900 /* log error, force error return */ 3901 if (primary_failed) { 3902 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3903 device->devid); 3904 return -1; 3905 } 3906 3907 return errors < i ? 0 : -1; 3908 } 3909 3910 /* 3911 * endio for the write_dev_flush, this will wake anyone waiting 3912 * for the barrier when it is done 3913 */ 3914 static void btrfs_end_empty_barrier(struct bio *bio) 3915 { 3916 bio_uninit(bio); 3917 complete(bio->bi_private); 3918 } 3919 3920 /* 3921 * Submit a flush request to the device if it supports it. Error handling is 3922 * done in the waiting counterpart. 3923 */ 3924 static void write_dev_flush(struct btrfs_device *device) 3925 { 3926 struct bio *bio = &device->flush_bio; 3927 3928 device->last_flush_error = BLK_STS_OK; 3929 3930 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3931 /* 3932 * When a disk has write caching disabled, we skip submission of a bio 3933 * with flush and sync requests before writing the superblock, since 3934 * it's not needed. However when the integrity checker is enabled, this 3935 * results in reports that there are metadata blocks referred by a 3936 * superblock that were not properly flushed. So don't skip the bio 3937 * submission only when the integrity checker is enabled for the sake 3938 * of simplicity, since this is a debug tool and not meant for use in 3939 * non-debug builds. 3940 */ 3941 if (!bdev_write_cache(device->bdev)) 3942 return; 3943 #endif 3944 3945 bio_init(bio, device->bdev, NULL, 0, 3946 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 3947 bio->bi_end_io = btrfs_end_empty_barrier; 3948 init_completion(&device->flush_wait); 3949 bio->bi_private = &device->flush_wait; 3950 3951 btrfsic_check_bio(bio); 3952 submit_bio(bio); 3953 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3954 } 3955 3956 /* 3957 * If the flush bio has been submitted by write_dev_flush, wait for it. 3958 * Return true for any error, and false otherwise. 3959 */ 3960 static bool wait_dev_flush(struct btrfs_device *device) 3961 { 3962 struct bio *bio = &device->flush_bio; 3963 3964 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3965 return false; 3966 3967 wait_for_completion_io(&device->flush_wait); 3968 3969 if (bio->bi_status) { 3970 device->last_flush_error = bio->bi_status; 3971 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); 3972 return true; 3973 } 3974 3975 return false; 3976 } 3977 3978 /* 3979 * send an empty flush down to each device in parallel, 3980 * then wait for them 3981 */ 3982 static int barrier_all_devices(struct btrfs_fs_info *info) 3983 { 3984 struct list_head *head; 3985 struct btrfs_device *dev; 3986 int errors_wait = 0; 3987 3988 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3989 /* send down all the barriers */ 3990 head = &info->fs_devices->devices; 3991 list_for_each_entry(dev, head, dev_list) { 3992 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3993 continue; 3994 if (!dev->bdev) 3995 continue; 3996 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3997 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3998 continue; 3999 4000 write_dev_flush(dev); 4001 } 4002 4003 /* wait for all the barriers */ 4004 list_for_each_entry(dev, head, dev_list) { 4005 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4006 continue; 4007 if (!dev->bdev) { 4008 errors_wait++; 4009 continue; 4010 } 4011 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4012 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4013 continue; 4014 4015 if (wait_dev_flush(dev)) 4016 errors_wait++; 4017 } 4018 4019 /* 4020 * Checks last_flush_error of disks in order to determine the device 4021 * state. 4022 */ 4023 if (errors_wait && !btrfs_check_rw_degradable(info, NULL)) 4024 return -EIO; 4025 4026 return 0; 4027 } 4028 4029 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 4030 { 4031 int raid_type; 4032 int min_tolerated = INT_MAX; 4033 4034 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 4035 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 4036 min_tolerated = min_t(int, min_tolerated, 4037 btrfs_raid_array[BTRFS_RAID_SINGLE]. 4038 tolerated_failures); 4039 4040 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4041 if (raid_type == BTRFS_RAID_SINGLE) 4042 continue; 4043 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 4044 continue; 4045 min_tolerated = min_t(int, min_tolerated, 4046 btrfs_raid_array[raid_type]. 4047 tolerated_failures); 4048 } 4049 4050 if (min_tolerated == INT_MAX) { 4051 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4052 min_tolerated = 0; 4053 } 4054 4055 return min_tolerated; 4056 } 4057 4058 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4059 { 4060 struct list_head *head; 4061 struct btrfs_device *dev; 4062 struct btrfs_super_block *sb; 4063 struct btrfs_dev_item *dev_item; 4064 int ret; 4065 int do_barriers; 4066 int max_errors; 4067 int total_errors = 0; 4068 u64 flags; 4069 4070 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4071 4072 /* 4073 * max_mirrors == 0 indicates we're from commit_transaction, 4074 * not from fsync where the tree roots in fs_info have not 4075 * been consistent on disk. 4076 */ 4077 if (max_mirrors == 0) 4078 backup_super_roots(fs_info); 4079 4080 sb = fs_info->super_for_commit; 4081 dev_item = &sb->dev_item; 4082 4083 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4084 head = &fs_info->fs_devices->devices; 4085 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4086 4087 if (do_barriers) { 4088 ret = barrier_all_devices(fs_info); 4089 if (ret) { 4090 mutex_unlock( 4091 &fs_info->fs_devices->device_list_mutex); 4092 btrfs_handle_fs_error(fs_info, ret, 4093 "errors while submitting device barriers."); 4094 return ret; 4095 } 4096 } 4097 4098 list_for_each_entry(dev, head, dev_list) { 4099 if (!dev->bdev) { 4100 total_errors++; 4101 continue; 4102 } 4103 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4104 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4105 continue; 4106 4107 btrfs_set_stack_device_generation(dev_item, 0); 4108 btrfs_set_stack_device_type(dev_item, dev->type); 4109 btrfs_set_stack_device_id(dev_item, dev->devid); 4110 btrfs_set_stack_device_total_bytes(dev_item, 4111 dev->commit_total_bytes); 4112 btrfs_set_stack_device_bytes_used(dev_item, 4113 dev->commit_bytes_used); 4114 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4115 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4116 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4117 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4118 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4119 BTRFS_FSID_SIZE); 4120 4121 flags = btrfs_super_flags(sb); 4122 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4123 4124 ret = btrfs_validate_write_super(fs_info, sb); 4125 if (ret < 0) { 4126 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4127 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4128 "unexpected superblock corruption detected"); 4129 return -EUCLEAN; 4130 } 4131 4132 ret = write_dev_supers(dev, sb, max_mirrors); 4133 if (ret) 4134 total_errors++; 4135 } 4136 if (total_errors > max_errors) { 4137 btrfs_err(fs_info, "%d errors while writing supers", 4138 total_errors); 4139 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4140 4141 /* FUA is masked off if unsupported and can't be the reason */ 4142 btrfs_handle_fs_error(fs_info, -EIO, 4143 "%d errors while writing supers", 4144 total_errors); 4145 return -EIO; 4146 } 4147 4148 total_errors = 0; 4149 list_for_each_entry(dev, head, dev_list) { 4150 if (!dev->bdev) 4151 continue; 4152 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4153 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4154 continue; 4155 4156 ret = wait_dev_supers(dev, max_mirrors); 4157 if (ret) 4158 total_errors++; 4159 } 4160 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4161 if (total_errors > max_errors) { 4162 btrfs_handle_fs_error(fs_info, -EIO, 4163 "%d errors while writing supers", 4164 total_errors); 4165 return -EIO; 4166 } 4167 return 0; 4168 } 4169 4170 /* Drop a fs root from the radix tree and free it. */ 4171 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4172 struct btrfs_root *root) 4173 { 4174 bool drop_ref = false; 4175 4176 spin_lock(&fs_info->fs_roots_radix_lock); 4177 radix_tree_delete(&fs_info->fs_roots_radix, 4178 (unsigned long)root->root_key.objectid); 4179 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4180 drop_ref = true; 4181 spin_unlock(&fs_info->fs_roots_radix_lock); 4182 4183 if (BTRFS_FS_ERROR(fs_info)) { 4184 ASSERT(root->log_root == NULL); 4185 if (root->reloc_root) { 4186 btrfs_put_root(root->reloc_root); 4187 root->reloc_root = NULL; 4188 } 4189 } 4190 4191 if (drop_ref) 4192 btrfs_put_root(root); 4193 } 4194 4195 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4196 { 4197 struct btrfs_root *root = fs_info->tree_root; 4198 struct btrfs_trans_handle *trans; 4199 4200 mutex_lock(&fs_info->cleaner_mutex); 4201 btrfs_run_delayed_iputs(fs_info); 4202 mutex_unlock(&fs_info->cleaner_mutex); 4203 wake_up_process(fs_info->cleaner_kthread); 4204 4205 /* wait until ongoing cleanup work done */ 4206 down_write(&fs_info->cleanup_work_sem); 4207 up_write(&fs_info->cleanup_work_sem); 4208 4209 trans = btrfs_join_transaction(root); 4210 if (IS_ERR(trans)) 4211 return PTR_ERR(trans); 4212 return btrfs_commit_transaction(trans); 4213 } 4214 4215 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4216 { 4217 struct btrfs_transaction *trans; 4218 struct btrfs_transaction *tmp; 4219 bool found = false; 4220 4221 if (list_empty(&fs_info->trans_list)) 4222 return; 4223 4224 /* 4225 * This function is only called at the very end of close_ctree(), 4226 * thus no other running transaction, no need to take trans_lock. 4227 */ 4228 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4229 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4230 struct extent_state *cached = NULL; 4231 u64 dirty_bytes = 0; 4232 u64 cur = 0; 4233 u64 found_start; 4234 u64 found_end; 4235 4236 found = true; 4237 while (find_first_extent_bit(&trans->dirty_pages, cur, 4238 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4239 dirty_bytes += found_end + 1 - found_start; 4240 cur = found_end + 1; 4241 } 4242 btrfs_warn(fs_info, 4243 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4244 trans->transid, dirty_bytes); 4245 btrfs_cleanup_one_transaction(trans, fs_info); 4246 4247 if (trans == fs_info->running_transaction) 4248 fs_info->running_transaction = NULL; 4249 list_del_init(&trans->list); 4250 4251 btrfs_put_transaction(trans); 4252 trace_btrfs_transaction_commit(fs_info); 4253 } 4254 ASSERT(!found); 4255 } 4256 4257 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4258 { 4259 int ret; 4260 4261 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4262 4263 /* 4264 * If we had UNFINISHED_DROPS we could still be processing them, so 4265 * clear that bit and wake up relocation so it can stop. 4266 * We must do this before stopping the block group reclaim task, because 4267 * at btrfs_relocate_block_group() we wait for this bit, and after the 4268 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4269 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4270 * return 1. 4271 */ 4272 btrfs_wake_unfinished_drop(fs_info); 4273 4274 /* 4275 * We may have the reclaim task running and relocating a data block group, 4276 * in which case it may create delayed iputs. So stop it before we park 4277 * the cleaner kthread otherwise we can get new delayed iputs after 4278 * parking the cleaner, and that can make the async reclaim task to hang 4279 * if it's waiting for delayed iputs to complete, since the cleaner is 4280 * parked and can not run delayed iputs - this will make us hang when 4281 * trying to stop the async reclaim task. 4282 */ 4283 cancel_work_sync(&fs_info->reclaim_bgs_work); 4284 /* 4285 * We don't want the cleaner to start new transactions, add more delayed 4286 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4287 * because that frees the task_struct, and the transaction kthread might 4288 * still try to wake up the cleaner. 4289 */ 4290 kthread_park(fs_info->cleaner_kthread); 4291 4292 /* wait for the qgroup rescan worker to stop */ 4293 btrfs_qgroup_wait_for_completion(fs_info, false); 4294 4295 /* wait for the uuid_scan task to finish */ 4296 down(&fs_info->uuid_tree_rescan_sem); 4297 /* avoid complains from lockdep et al., set sem back to initial state */ 4298 up(&fs_info->uuid_tree_rescan_sem); 4299 4300 /* pause restriper - we want to resume on mount */ 4301 btrfs_pause_balance(fs_info); 4302 4303 btrfs_dev_replace_suspend_for_unmount(fs_info); 4304 4305 btrfs_scrub_cancel(fs_info); 4306 4307 /* wait for any defraggers to finish */ 4308 wait_event(fs_info->transaction_wait, 4309 (atomic_read(&fs_info->defrag_running) == 0)); 4310 4311 /* clear out the rbtree of defraggable inodes */ 4312 btrfs_cleanup_defrag_inodes(fs_info); 4313 4314 /* 4315 * After we parked the cleaner kthread, ordered extents may have 4316 * completed and created new delayed iputs. If one of the async reclaim 4317 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4318 * can hang forever trying to stop it, because if a delayed iput is 4319 * added after it ran btrfs_run_delayed_iputs() and before it called 4320 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4321 * no one else to run iputs. 4322 * 4323 * So wait for all ongoing ordered extents to complete and then run 4324 * delayed iputs. This works because once we reach this point no one 4325 * can either create new ordered extents nor create delayed iputs 4326 * through some other means. 4327 * 4328 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4329 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4330 * but the delayed iput for the respective inode is made only when doing 4331 * the final btrfs_put_ordered_extent() (which must happen at 4332 * btrfs_finish_ordered_io() when we are unmounting). 4333 */ 4334 btrfs_flush_workqueue(fs_info->endio_write_workers); 4335 /* Ordered extents for free space inodes. */ 4336 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4337 btrfs_run_delayed_iputs(fs_info); 4338 4339 cancel_work_sync(&fs_info->async_reclaim_work); 4340 cancel_work_sync(&fs_info->async_data_reclaim_work); 4341 cancel_work_sync(&fs_info->preempt_reclaim_work); 4342 4343 /* Cancel or finish ongoing discard work */ 4344 btrfs_discard_cleanup(fs_info); 4345 4346 if (!sb_rdonly(fs_info->sb)) { 4347 /* 4348 * The cleaner kthread is stopped, so do one final pass over 4349 * unused block groups. 4350 */ 4351 btrfs_delete_unused_bgs(fs_info); 4352 4353 /* 4354 * There might be existing delayed inode workers still running 4355 * and holding an empty delayed inode item. We must wait for 4356 * them to complete first because they can create a transaction. 4357 * This happens when someone calls btrfs_balance_delayed_items() 4358 * and then a transaction commit runs the same delayed nodes 4359 * before any delayed worker has done something with the nodes. 4360 * We must wait for any worker here and not at transaction 4361 * commit time since that could cause a deadlock. 4362 * This is a very rare case. 4363 */ 4364 btrfs_flush_workqueue(fs_info->delayed_workers); 4365 4366 ret = btrfs_commit_super(fs_info); 4367 if (ret) 4368 btrfs_err(fs_info, "commit super ret %d", ret); 4369 } 4370 4371 if (BTRFS_FS_ERROR(fs_info)) 4372 btrfs_error_commit_super(fs_info); 4373 4374 kthread_stop(fs_info->transaction_kthread); 4375 kthread_stop(fs_info->cleaner_kthread); 4376 4377 ASSERT(list_empty(&fs_info->delayed_iputs)); 4378 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4379 4380 if (btrfs_check_quota_leak(fs_info)) { 4381 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4382 btrfs_err(fs_info, "qgroup reserved space leaked"); 4383 } 4384 4385 btrfs_free_qgroup_config(fs_info); 4386 ASSERT(list_empty(&fs_info->delalloc_roots)); 4387 4388 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4389 btrfs_info(fs_info, "at unmount delalloc count %lld", 4390 percpu_counter_sum(&fs_info->delalloc_bytes)); 4391 } 4392 4393 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4394 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4395 percpu_counter_sum(&fs_info->ordered_bytes)); 4396 4397 btrfs_sysfs_remove_mounted(fs_info); 4398 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4399 4400 btrfs_put_block_group_cache(fs_info); 4401 4402 /* 4403 * we must make sure there is not any read request to 4404 * submit after we stopping all workers. 4405 */ 4406 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4407 btrfs_stop_all_workers(fs_info); 4408 4409 /* We shouldn't have any transaction open at this point */ 4410 warn_about_uncommitted_trans(fs_info); 4411 4412 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4413 free_root_pointers(fs_info, true); 4414 btrfs_free_fs_roots(fs_info); 4415 4416 /* 4417 * We must free the block groups after dropping the fs_roots as we could 4418 * have had an IO error and have left over tree log blocks that aren't 4419 * cleaned up until the fs roots are freed. This makes the block group 4420 * accounting appear to be wrong because there's pending reserved bytes, 4421 * so make sure we do the block group cleanup afterwards. 4422 */ 4423 btrfs_free_block_groups(fs_info); 4424 4425 iput(fs_info->btree_inode); 4426 4427 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4428 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4429 btrfsic_unmount(fs_info->fs_devices); 4430 #endif 4431 4432 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4433 btrfs_close_devices(fs_info->fs_devices); 4434 } 4435 4436 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans, 4437 struct extent_buffer *buf) 4438 { 4439 struct btrfs_fs_info *fs_info = buf->fs_info; 4440 u64 transid = btrfs_header_generation(buf); 4441 4442 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4443 /* 4444 * This is a fast path so only do this check if we have sanity tests 4445 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4446 * outside of the sanity tests. 4447 */ 4448 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4449 return; 4450 #endif 4451 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */ 4452 ASSERT(trans->transid == fs_info->generation); 4453 btrfs_assert_tree_write_locked(buf); 4454 if (transid != fs_info->generation) { 4455 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4456 buf->start, transid, fs_info->generation); 4457 btrfs_abort_transaction(trans, -EUCLEAN); 4458 } 4459 set_extent_buffer_dirty(buf); 4460 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4461 /* 4462 * btrfs_check_leaf() won't check item data if we don't have WRITTEN 4463 * set, so this will only validate the basic structure of the items. 4464 */ 4465 if (btrfs_header_level(buf) == 0 && btrfs_check_leaf(buf)) { 4466 btrfs_print_leaf(buf); 4467 ASSERT(0); 4468 } 4469 #endif 4470 } 4471 4472 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4473 int flush_delayed) 4474 { 4475 /* 4476 * looks as though older kernels can get into trouble with 4477 * this code, they end up stuck in balance_dirty_pages forever 4478 */ 4479 int ret; 4480 4481 if (current->flags & PF_MEMALLOC) 4482 return; 4483 4484 if (flush_delayed) 4485 btrfs_balance_delayed_items(fs_info); 4486 4487 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4488 BTRFS_DIRTY_METADATA_THRESH, 4489 fs_info->dirty_metadata_batch); 4490 if (ret > 0) { 4491 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4492 } 4493 } 4494 4495 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4496 { 4497 __btrfs_btree_balance_dirty(fs_info, 1); 4498 } 4499 4500 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4501 { 4502 __btrfs_btree_balance_dirty(fs_info, 0); 4503 } 4504 4505 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4506 { 4507 /* cleanup FS via transaction */ 4508 btrfs_cleanup_transaction(fs_info); 4509 4510 mutex_lock(&fs_info->cleaner_mutex); 4511 btrfs_run_delayed_iputs(fs_info); 4512 mutex_unlock(&fs_info->cleaner_mutex); 4513 4514 down_write(&fs_info->cleanup_work_sem); 4515 up_write(&fs_info->cleanup_work_sem); 4516 } 4517 4518 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4519 { 4520 struct btrfs_root *gang[8]; 4521 u64 root_objectid = 0; 4522 int ret; 4523 4524 spin_lock(&fs_info->fs_roots_radix_lock); 4525 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4526 (void **)gang, root_objectid, 4527 ARRAY_SIZE(gang))) != 0) { 4528 int i; 4529 4530 for (i = 0; i < ret; i++) 4531 gang[i] = btrfs_grab_root(gang[i]); 4532 spin_unlock(&fs_info->fs_roots_radix_lock); 4533 4534 for (i = 0; i < ret; i++) { 4535 if (!gang[i]) 4536 continue; 4537 root_objectid = gang[i]->root_key.objectid; 4538 btrfs_free_log(NULL, gang[i]); 4539 btrfs_put_root(gang[i]); 4540 } 4541 root_objectid++; 4542 spin_lock(&fs_info->fs_roots_radix_lock); 4543 } 4544 spin_unlock(&fs_info->fs_roots_radix_lock); 4545 btrfs_free_log_root_tree(NULL, fs_info); 4546 } 4547 4548 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4549 { 4550 struct btrfs_ordered_extent *ordered; 4551 4552 spin_lock(&root->ordered_extent_lock); 4553 /* 4554 * This will just short circuit the ordered completion stuff which will 4555 * make sure the ordered extent gets properly cleaned up. 4556 */ 4557 list_for_each_entry(ordered, &root->ordered_extents, 4558 root_extent_list) 4559 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4560 spin_unlock(&root->ordered_extent_lock); 4561 } 4562 4563 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4564 { 4565 struct btrfs_root *root; 4566 LIST_HEAD(splice); 4567 4568 spin_lock(&fs_info->ordered_root_lock); 4569 list_splice_init(&fs_info->ordered_roots, &splice); 4570 while (!list_empty(&splice)) { 4571 root = list_first_entry(&splice, struct btrfs_root, 4572 ordered_root); 4573 list_move_tail(&root->ordered_root, 4574 &fs_info->ordered_roots); 4575 4576 spin_unlock(&fs_info->ordered_root_lock); 4577 btrfs_destroy_ordered_extents(root); 4578 4579 cond_resched(); 4580 spin_lock(&fs_info->ordered_root_lock); 4581 } 4582 spin_unlock(&fs_info->ordered_root_lock); 4583 4584 /* 4585 * We need this here because if we've been flipped read-only we won't 4586 * get sync() from the umount, so we need to make sure any ordered 4587 * extents that haven't had their dirty pages IO start writeout yet 4588 * actually get run and error out properly. 4589 */ 4590 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4591 } 4592 4593 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4594 struct btrfs_fs_info *fs_info) 4595 { 4596 struct rb_node *node; 4597 struct btrfs_delayed_ref_root *delayed_refs; 4598 struct btrfs_delayed_ref_node *ref; 4599 4600 delayed_refs = &trans->delayed_refs; 4601 4602 spin_lock(&delayed_refs->lock); 4603 if (atomic_read(&delayed_refs->num_entries) == 0) { 4604 spin_unlock(&delayed_refs->lock); 4605 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4606 return; 4607 } 4608 4609 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4610 struct btrfs_delayed_ref_head *head; 4611 struct rb_node *n; 4612 bool pin_bytes = false; 4613 4614 head = rb_entry(node, struct btrfs_delayed_ref_head, 4615 href_node); 4616 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4617 continue; 4618 4619 spin_lock(&head->lock); 4620 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4621 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4622 ref_node); 4623 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4624 RB_CLEAR_NODE(&ref->ref_node); 4625 if (!list_empty(&ref->add_list)) 4626 list_del(&ref->add_list); 4627 atomic_dec(&delayed_refs->num_entries); 4628 btrfs_put_delayed_ref(ref); 4629 } 4630 if (head->must_insert_reserved) 4631 pin_bytes = true; 4632 btrfs_free_delayed_extent_op(head->extent_op); 4633 btrfs_delete_ref_head(delayed_refs, head); 4634 spin_unlock(&head->lock); 4635 spin_unlock(&delayed_refs->lock); 4636 mutex_unlock(&head->mutex); 4637 4638 if (pin_bytes) { 4639 struct btrfs_block_group *cache; 4640 4641 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4642 BUG_ON(!cache); 4643 4644 spin_lock(&cache->space_info->lock); 4645 spin_lock(&cache->lock); 4646 cache->pinned += head->num_bytes; 4647 btrfs_space_info_update_bytes_pinned(fs_info, 4648 cache->space_info, head->num_bytes); 4649 cache->reserved -= head->num_bytes; 4650 cache->space_info->bytes_reserved -= head->num_bytes; 4651 spin_unlock(&cache->lock); 4652 spin_unlock(&cache->space_info->lock); 4653 4654 btrfs_put_block_group(cache); 4655 4656 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4657 head->bytenr + head->num_bytes - 1); 4658 } 4659 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4660 btrfs_put_delayed_ref_head(head); 4661 cond_resched(); 4662 spin_lock(&delayed_refs->lock); 4663 } 4664 btrfs_qgroup_destroy_extent_records(trans); 4665 4666 spin_unlock(&delayed_refs->lock); 4667 } 4668 4669 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4670 { 4671 struct btrfs_inode *btrfs_inode; 4672 LIST_HEAD(splice); 4673 4674 spin_lock(&root->delalloc_lock); 4675 list_splice_init(&root->delalloc_inodes, &splice); 4676 4677 while (!list_empty(&splice)) { 4678 struct inode *inode = NULL; 4679 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4680 delalloc_inodes); 4681 __btrfs_del_delalloc_inode(root, btrfs_inode); 4682 spin_unlock(&root->delalloc_lock); 4683 4684 /* 4685 * Make sure we get a live inode and that it'll not disappear 4686 * meanwhile. 4687 */ 4688 inode = igrab(&btrfs_inode->vfs_inode); 4689 if (inode) { 4690 unsigned int nofs_flag; 4691 4692 nofs_flag = memalloc_nofs_save(); 4693 invalidate_inode_pages2(inode->i_mapping); 4694 memalloc_nofs_restore(nofs_flag); 4695 iput(inode); 4696 } 4697 spin_lock(&root->delalloc_lock); 4698 } 4699 spin_unlock(&root->delalloc_lock); 4700 } 4701 4702 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4703 { 4704 struct btrfs_root *root; 4705 LIST_HEAD(splice); 4706 4707 spin_lock(&fs_info->delalloc_root_lock); 4708 list_splice_init(&fs_info->delalloc_roots, &splice); 4709 while (!list_empty(&splice)) { 4710 root = list_first_entry(&splice, struct btrfs_root, 4711 delalloc_root); 4712 root = btrfs_grab_root(root); 4713 BUG_ON(!root); 4714 spin_unlock(&fs_info->delalloc_root_lock); 4715 4716 btrfs_destroy_delalloc_inodes(root); 4717 btrfs_put_root(root); 4718 4719 spin_lock(&fs_info->delalloc_root_lock); 4720 } 4721 spin_unlock(&fs_info->delalloc_root_lock); 4722 } 4723 4724 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4725 struct extent_io_tree *dirty_pages, 4726 int mark) 4727 { 4728 struct extent_buffer *eb; 4729 u64 start = 0; 4730 u64 end; 4731 4732 while (find_first_extent_bit(dirty_pages, start, &start, &end, 4733 mark, NULL)) { 4734 clear_extent_bits(dirty_pages, start, end, mark); 4735 while (start <= end) { 4736 eb = find_extent_buffer(fs_info, start); 4737 start += fs_info->nodesize; 4738 if (!eb) 4739 continue; 4740 4741 btrfs_tree_lock(eb); 4742 wait_on_extent_buffer_writeback(eb); 4743 btrfs_clear_buffer_dirty(NULL, eb); 4744 btrfs_tree_unlock(eb); 4745 4746 free_extent_buffer_stale(eb); 4747 } 4748 } 4749 } 4750 4751 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4752 struct extent_io_tree *unpin) 4753 { 4754 u64 start; 4755 u64 end; 4756 4757 while (1) { 4758 struct extent_state *cached_state = NULL; 4759 4760 /* 4761 * The btrfs_finish_extent_commit() may get the same range as 4762 * ours between find_first_extent_bit and clear_extent_dirty. 4763 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4764 * the same extent range. 4765 */ 4766 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4767 if (!find_first_extent_bit(unpin, 0, &start, &end, 4768 EXTENT_DIRTY, &cached_state)) { 4769 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4770 break; 4771 } 4772 4773 clear_extent_dirty(unpin, start, end, &cached_state); 4774 free_extent_state(cached_state); 4775 btrfs_error_unpin_extent_range(fs_info, start, end); 4776 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4777 cond_resched(); 4778 } 4779 } 4780 4781 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4782 { 4783 struct inode *inode; 4784 4785 inode = cache->io_ctl.inode; 4786 if (inode) { 4787 unsigned int nofs_flag; 4788 4789 nofs_flag = memalloc_nofs_save(); 4790 invalidate_inode_pages2(inode->i_mapping); 4791 memalloc_nofs_restore(nofs_flag); 4792 4793 BTRFS_I(inode)->generation = 0; 4794 cache->io_ctl.inode = NULL; 4795 iput(inode); 4796 } 4797 ASSERT(cache->io_ctl.pages == NULL); 4798 btrfs_put_block_group(cache); 4799 } 4800 4801 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4802 struct btrfs_fs_info *fs_info) 4803 { 4804 struct btrfs_block_group *cache; 4805 4806 spin_lock(&cur_trans->dirty_bgs_lock); 4807 while (!list_empty(&cur_trans->dirty_bgs)) { 4808 cache = list_first_entry(&cur_trans->dirty_bgs, 4809 struct btrfs_block_group, 4810 dirty_list); 4811 4812 if (!list_empty(&cache->io_list)) { 4813 spin_unlock(&cur_trans->dirty_bgs_lock); 4814 list_del_init(&cache->io_list); 4815 btrfs_cleanup_bg_io(cache); 4816 spin_lock(&cur_trans->dirty_bgs_lock); 4817 } 4818 4819 list_del_init(&cache->dirty_list); 4820 spin_lock(&cache->lock); 4821 cache->disk_cache_state = BTRFS_DC_ERROR; 4822 spin_unlock(&cache->lock); 4823 4824 spin_unlock(&cur_trans->dirty_bgs_lock); 4825 btrfs_put_block_group(cache); 4826 btrfs_delayed_refs_rsv_release(fs_info, 1); 4827 spin_lock(&cur_trans->dirty_bgs_lock); 4828 } 4829 spin_unlock(&cur_trans->dirty_bgs_lock); 4830 4831 /* 4832 * Refer to the definition of io_bgs member for details why it's safe 4833 * to use it without any locking 4834 */ 4835 while (!list_empty(&cur_trans->io_bgs)) { 4836 cache = list_first_entry(&cur_trans->io_bgs, 4837 struct btrfs_block_group, 4838 io_list); 4839 4840 list_del_init(&cache->io_list); 4841 spin_lock(&cache->lock); 4842 cache->disk_cache_state = BTRFS_DC_ERROR; 4843 spin_unlock(&cache->lock); 4844 btrfs_cleanup_bg_io(cache); 4845 } 4846 } 4847 4848 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info) 4849 { 4850 struct btrfs_root *gang[8]; 4851 int i; 4852 int ret; 4853 4854 spin_lock(&fs_info->fs_roots_radix_lock); 4855 while (1) { 4856 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 4857 (void **)gang, 0, 4858 ARRAY_SIZE(gang), 4859 BTRFS_ROOT_TRANS_TAG); 4860 if (ret == 0) 4861 break; 4862 for (i = 0; i < ret; i++) { 4863 struct btrfs_root *root = gang[i]; 4864 4865 btrfs_qgroup_free_meta_all_pertrans(root); 4866 radix_tree_tag_clear(&fs_info->fs_roots_radix, 4867 (unsigned long)root->root_key.objectid, 4868 BTRFS_ROOT_TRANS_TAG); 4869 } 4870 } 4871 spin_unlock(&fs_info->fs_roots_radix_lock); 4872 } 4873 4874 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4875 struct btrfs_fs_info *fs_info) 4876 { 4877 struct btrfs_device *dev, *tmp; 4878 4879 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4880 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4881 ASSERT(list_empty(&cur_trans->io_bgs)); 4882 4883 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4884 post_commit_list) { 4885 list_del_init(&dev->post_commit_list); 4886 } 4887 4888 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4889 4890 cur_trans->state = TRANS_STATE_COMMIT_START; 4891 wake_up(&fs_info->transaction_blocked_wait); 4892 4893 cur_trans->state = TRANS_STATE_UNBLOCKED; 4894 wake_up(&fs_info->transaction_wait); 4895 4896 btrfs_destroy_delayed_inodes(fs_info); 4897 4898 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4899 EXTENT_DIRTY); 4900 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4901 4902 btrfs_free_all_qgroup_pertrans(fs_info); 4903 4904 cur_trans->state =TRANS_STATE_COMPLETED; 4905 wake_up(&cur_trans->commit_wait); 4906 } 4907 4908 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4909 { 4910 struct btrfs_transaction *t; 4911 4912 mutex_lock(&fs_info->transaction_kthread_mutex); 4913 4914 spin_lock(&fs_info->trans_lock); 4915 while (!list_empty(&fs_info->trans_list)) { 4916 t = list_first_entry(&fs_info->trans_list, 4917 struct btrfs_transaction, list); 4918 if (t->state >= TRANS_STATE_COMMIT_PREP) { 4919 refcount_inc(&t->use_count); 4920 spin_unlock(&fs_info->trans_lock); 4921 btrfs_wait_for_commit(fs_info, t->transid); 4922 btrfs_put_transaction(t); 4923 spin_lock(&fs_info->trans_lock); 4924 continue; 4925 } 4926 if (t == fs_info->running_transaction) { 4927 t->state = TRANS_STATE_COMMIT_DOING; 4928 spin_unlock(&fs_info->trans_lock); 4929 /* 4930 * We wait for 0 num_writers since we don't hold a trans 4931 * handle open currently for this transaction. 4932 */ 4933 wait_event(t->writer_wait, 4934 atomic_read(&t->num_writers) == 0); 4935 } else { 4936 spin_unlock(&fs_info->trans_lock); 4937 } 4938 btrfs_cleanup_one_transaction(t, fs_info); 4939 4940 spin_lock(&fs_info->trans_lock); 4941 if (t == fs_info->running_transaction) 4942 fs_info->running_transaction = NULL; 4943 list_del_init(&t->list); 4944 spin_unlock(&fs_info->trans_lock); 4945 4946 btrfs_put_transaction(t); 4947 trace_btrfs_transaction_commit(fs_info); 4948 spin_lock(&fs_info->trans_lock); 4949 } 4950 spin_unlock(&fs_info->trans_lock); 4951 btrfs_destroy_all_ordered_extents(fs_info); 4952 btrfs_destroy_delayed_inodes(fs_info); 4953 btrfs_assert_delayed_root_empty(fs_info); 4954 btrfs_destroy_all_delalloc_inodes(fs_info); 4955 btrfs_drop_all_logs(fs_info); 4956 mutex_unlock(&fs_info->transaction_kthread_mutex); 4957 4958 return 0; 4959 } 4960 4961 int btrfs_init_root_free_objectid(struct btrfs_root *root) 4962 { 4963 struct btrfs_path *path; 4964 int ret; 4965 struct extent_buffer *l; 4966 struct btrfs_key search_key; 4967 struct btrfs_key found_key; 4968 int slot; 4969 4970 path = btrfs_alloc_path(); 4971 if (!path) 4972 return -ENOMEM; 4973 4974 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 4975 search_key.type = -1; 4976 search_key.offset = (u64)-1; 4977 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 4978 if (ret < 0) 4979 goto error; 4980 BUG_ON(ret == 0); /* Corruption */ 4981 if (path->slots[0] > 0) { 4982 slot = path->slots[0] - 1; 4983 l = path->nodes[0]; 4984 btrfs_item_key_to_cpu(l, &found_key, slot); 4985 root->free_objectid = max_t(u64, found_key.objectid + 1, 4986 BTRFS_FIRST_FREE_OBJECTID); 4987 } else { 4988 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 4989 } 4990 ret = 0; 4991 error: 4992 btrfs_free_path(path); 4993 return ret; 4994 } 4995 4996 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 4997 { 4998 int ret; 4999 mutex_lock(&root->objectid_mutex); 5000 5001 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 5002 btrfs_warn(root->fs_info, 5003 "the objectid of root %llu reaches its highest value", 5004 root->root_key.objectid); 5005 ret = -ENOSPC; 5006 goto out; 5007 } 5008 5009 *objectid = root->free_objectid++; 5010 ret = 0; 5011 out: 5012 mutex_unlock(&root->objectid_mutex); 5013 return ret; 5014 } 5015