xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 93f5715e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <asm/unaligned.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
25 #include "volumes.h"
26 #include "print-tree.h"
27 #include "locking.h"
28 #include "tree-log.h"
29 #include "free-space-cache.h"
30 #include "free-space-tree.h"
31 #include "inode-map.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 
42 #ifdef CONFIG_X86
43 #include <asm/cpufeature.h>
44 #endif
45 
46 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
47 				 BTRFS_HEADER_FLAG_RELOC |\
48 				 BTRFS_SUPER_FLAG_ERROR |\
49 				 BTRFS_SUPER_FLAG_SEEDING |\
50 				 BTRFS_SUPER_FLAG_METADUMP |\
51 				 BTRFS_SUPER_FLAG_METADUMP_V2)
52 
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 				      struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60 					struct extent_io_tree *dirty_pages,
61 					int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63 				       struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66 
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73 	struct bio *bio;
74 	bio_end_io_t *end_io;
75 	void *private;
76 	struct btrfs_fs_info *info;
77 	blk_status_t status;
78 	enum btrfs_wq_endio_type metadata;
79 	struct btrfs_work work;
80 };
81 
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83 
84 int __init btrfs_end_io_wq_init(void)
85 {
86 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 					sizeof(struct btrfs_end_io_wq),
88 					0,
89 					SLAB_MEM_SPREAD,
90 					NULL);
91 	if (!btrfs_end_io_wq_cache)
92 		return -ENOMEM;
93 	return 0;
94 }
95 
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98 	kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100 
101 /*
102  * async submit bios are used to offload expensive checksumming
103  * onto the worker threads.  They checksum file and metadata bios
104  * just before they are sent down the IO stack.
105  */
106 struct async_submit_bio {
107 	void *private_data;
108 	struct bio *bio;
109 	extent_submit_bio_start_t *submit_bio_start;
110 	int mirror_num;
111 	/*
112 	 * bio_offset is optional, can be used if the pages in the bio
113 	 * can't tell us where in the file the bio should go
114 	 */
115 	u64 bio_offset;
116 	struct btrfs_work work;
117 	blk_status_t status;
118 };
119 
120 /*
121  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
122  * eb, the lockdep key is determined by the btrfs_root it belongs to and
123  * the level the eb occupies in the tree.
124  *
125  * Different roots are used for different purposes and may nest inside each
126  * other and they require separate keysets.  As lockdep keys should be
127  * static, assign keysets according to the purpose of the root as indicated
128  * by btrfs_root->objectid.  This ensures that all special purpose roots
129  * have separate keysets.
130  *
131  * Lock-nesting across peer nodes is always done with the immediate parent
132  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
133  * subclass to avoid triggering lockdep warning in such cases.
134  *
135  * The key is set by the readpage_end_io_hook after the buffer has passed
136  * csum validation but before the pages are unlocked.  It is also set by
137  * btrfs_init_new_buffer on freshly allocated blocks.
138  *
139  * We also add a check to make sure the highest level of the tree is the
140  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
141  * needs update as well.
142  */
143 #ifdef CONFIG_DEBUG_LOCK_ALLOC
144 # if BTRFS_MAX_LEVEL != 8
145 #  error
146 # endif
147 
148 static struct btrfs_lockdep_keyset {
149 	u64			id;		/* root objectid */
150 	const char		*name_stem;	/* lock name stem */
151 	char			names[BTRFS_MAX_LEVEL + 1][20];
152 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
153 } btrfs_lockdep_keysets[] = {
154 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
155 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
156 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
157 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
158 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
159 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
160 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
161 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
162 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
163 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
164 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
165 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
166 	{ .id = 0,				.name_stem = "tree"	},
167 };
168 
169 void __init btrfs_init_lockdep(void)
170 {
171 	int i, j;
172 
173 	/* initialize lockdep class names */
174 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
175 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
176 
177 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
178 			snprintf(ks->names[j], sizeof(ks->names[j]),
179 				 "btrfs-%s-%02d", ks->name_stem, j);
180 	}
181 }
182 
183 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
184 				    int level)
185 {
186 	struct btrfs_lockdep_keyset *ks;
187 
188 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
189 
190 	/* find the matching keyset, id 0 is the default entry */
191 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
192 		if (ks->id == objectid)
193 			break;
194 
195 	lockdep_set_class_and_name(&eb->lock,
196 				   &ks->keys[level], ks->names[level]);
197 }
198 
199 #endif
200 
201 /*
202  * extents on the btree inode are pretty simple, there's one extent
203  * that covers the entire device
204  */
205 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
206 		struct page *page, size_t pg_offset, u64 start, u64 len,
207 		int create)
208 {
209 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
210 	struct extent_map_tree *em_tree = &inode->extent_tree;
211 	struct extent_map *em;
212 	int ret;
213 
214 	read_lock(&em_tree->lock);
215 	em = lookup_extent_mapping(em_tree, start, len);
216 	if (em) {
217 		em->bdev = fs_info->fs_devices->latest_bdev;
218 		read_unlock(&em_tree->lock);
219 		goto out;
220 	}
221 	read_unlock(&em_tree->lock);
222 
223 	em = alloc_extent_map();
224 	if (!em) {
225 		em = ERR_PTR(-ENOMEM);
226 		goto out;
227 	}
228 	em->start = 0;
229 	em->len = (u64)-1;
230 	em->block_len = (u64)-1;
231 	em->block_start = 0;
232 	em->bdev = fs_info->fs_devices->latest_bdev;
233 
234 	write_lock(&em_tree->lock);
235 	ret = add_extent_mapping(em_tree, em, 0);
236 	if (ret == -EEXIST) {
237 		free_extent_map(em);
238 		em = lookup_extent_mapping(em_tree, start, len);
239 		if (!em)
240 			em = ERR_PTR(-EIO);
241 	} else if (ret) {
242 		free_extent_map(em);
243 		em = ERR_PTR(ret);
244 	}
245 	write_unlock(&em_tree->lock);
246 
247 out:
248 	return em;
249 }
250 
251 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
252 {
253 	return crc32c(seed, data, len);
254 }
255 
256 void btrfs_csum_final(u32 crc, u8 *result)
257 {
258 	put_unaligned_le32(~crc, result);
259 }
260 
261 /*
262  * compute the csum for a btree block, and either verify it or write it
263  * into the csum field of the block.
264  */
265 static int csum_tree_block(struct btrfs_fs_info *fs_info,
266 			   struct extent_buffer *buf,
267 			   int verify)
268 {
269 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
270 	char result[BTRFS_CSUM_SIZE];
271 	unsigned long len;
272 	unsigned long cur_len;
273 	unsigned long offset = BTRFS_CSUM_SIZE;
274 	char *kaddr;
275 	unsigned long map_start;
276 	unsigned long map_len;
277 	int err;
278 	u32 crc = ~(u32)0;
279 
280 	len = buf->len - offset;
281 	while (len > 0) {
282 		err = map_private_extent_buffer(buf, offset, 32,
283 					&kaddr, &map_start, &map_len);
284 		if (err)
285 			return err;
286 		cur_len = min(len, map_len - (offset - map_start));
287 		crc = btrfs_csum_data(kaddr + offset - map_start,
288 				      crc, cur_len);
289 		len -= cur_len;
290 		offset += cur_len;
291 	}
292 	memset(result, 0, BTRFS_CSUM_SIZE);
293 
294 	btrfs_csum_final(crc, result);
295 
296 	if (verify) {
297 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298 			u32 val;
299 			u32 found = 0;
300 			memcpy(&found, result, csum_size);
301 
302 			read_extent_buffer(buf, &val, 0, csum_size);
303 			btrfs_warn_rl(fs_info,
304 				"%s checksum verify failed on %llu wanted %X found %X level %d",
305 				fs_info->sb->s_id, buf->start,
306 				val, found, btrfs_header_level(buf));
307 			return -EUCLEAN;
308 		}
309 	} else {
310 		write_extent_buffer(buf, result, 0, csum_size);
311 	}
312 
313 	return 0;
314 }
315 
316 /*
317  * we can't consider a given block up to date unless the transid of the
318  * block matches the transid in the parent node's pointer.  This is how we
319  * detect blocks that either didn't get written at all or got written
320  * in the wrong place.
321  */
322 static int verify_parent_transid(struct extent_io_tree *io_tree,
323 				 struct extent_buffer *eb, u64 parent_transid,
324 				 int atomic)
325 {
326 	struct extent_state *cached_state = NULL;
327 	int ret;
328 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
329 
330 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331 		return 0;
332 
333 	if (atomic)
334 		return -EAGAIN;
335 
336 	if (need_lock) {
337 		btrfs_tree_read_lock(eb);
338 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
339 	}
340 
341 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
342 			 &cached_state);
343 	if (extent_buffer_uptodate(eb) &&
344 	    btrfs_header_generation(eb) == parent_transid) {
345 		ret = 0;
346 		goto out;
347 	}
348 	btrfs_err_rl(eb->fs_info,
349 		"parent transid verify failed on %llu wanted %llu found %llu",
350 			eb->start,
351 			parent_transid, btrfs_header_generation(eb));
352 	ret = 1;
353 
354 	/*
355 	 * Things reading via commit roots that don't have normal protection,
356 	 * like send, can have a really old block in cache that may point at a
357 	 * block that has been freed and re-allocated.  So don't clear uptodate
358 	 * if we find an eb that is under IO (dirty/writeback) because we could
359 	 * end up reading in the stale data and then writing it back out and
360 	 * making everybody very sad.
361 	 */
362 	if (!extent_buffer_under_io(eb))
363 		clear_extent_buffer_uptodate(eb);
364 out:
365 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
366 			     &cached_state);
367 	if (need_lock)
368 		btrfs_tree_read_unlock_blocking(eb);
369 	return ret;
370 }
371 
372 /*
373  * Return 0 if the superblock checksum type matches the checksum value of that
374  * algorithm. Pass the raw disk superblock data.
375  */
376 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
377 				  char *raw_disk_sb)
378 {
379 	struct btrfs_super_block *disk_sb =
380 		(struct btrfs_super_block *)raw_disk_sb;
381 	u16 csum_type = btrfs_super_csum_type(disk_sb);
382 	int ret = 0;
383 
384 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
385 		u32 crc = ~(u32)0;
386 		char result[sizeof(crc)];
387 
388 		/*
389 		 * The super_block structure does not span the whole
390 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
391 		 * is filled with zeros and is included in the checksum.
392 		 */
393 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
394 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
395 		btrfs_csum_final(crc, result);
396 
397 		if (memcmp(raw_disk_sb, result, sizeof(result)))
398 			ret = 1;
399 	}
400 
401 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
402 		btrfs_err(fs_info, "unsupported checksum algorithm %u",
403 				csum_type);
404 		ret = 1;
405 	}
406 
407 	return ret;
408 }
409 
410 static int verify_level_key(struct btrfs_fs_info *fs_info,
411 			    struct extent_buffer *eb, int level,
412 			    struct btrfs_key *first_key, u64 parent_transid)
413 {
414 	int found_level;
415 	struct btrfs_key found_key;
416 	int ret;
417 
418 	found_level = btrfs_header_level(eb);
419 	if (found_level != level) {
420 #ifdef CONFIG_BTRFS_DEBUG
421 		WARN_ON(1);
422 		btrfs_err(fs_info,
423 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
424 			  eb->start, level, found_level);
425 #endif
426 		return -EIO;
427 	}
428 
429 	if (!first_key)
430 		return 0;
431 
432 	/*
433 	 * For live tree block (new tree blocks in current transaction),
434 	 * we need proper lock context to avoid race, which is impossible here.
435 	 * So we only checks tree blocks which is read from disk, whose
436 	 * generation <= fs_info->last_trans_committed.
437 	 */
438 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
439 		return 0;
440 	if (found_level)
441 		btrfs_node_key_to_cpu(eb, &found_key, 0);
442 	else
443 		btrfs_item_key_to_cpu(eb, &found_key, 0);
444 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
445 
446 #ifdef CONFIG_BTRFS_DEBUG
447 	if (ret) {
448 		WARN_ON(1);
449 		btrfs_err(fs_info,
450 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
451 			  eb->start, parent_transid, first_key->objectid,
452 			  first_key->type, first_key->offset,
453 			  found_key.objectid, found_key.type,
454 			  found_key.offset);
455 	}
456 #endif
457 	return ret;
458 }
459 
460 /*
461  * helper to read a given tree block, doing retries as required when
462  * the checksums don't match and we have alternate mirrors to try.
463  *
464  * @parent_transid:	expected transid, skip check if 0
465  * @level:		expected level, mandatory check
466  * @first_key:		expected key of first slot, skip check if NULL
467  */
468 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
469 					  struct extent_buffer *eb,
470 					  u64 parent_transid, int level,
471 					  struct btrfs_key *first_key)
472 {
473 	struct extent_io_tree *io_tree;
474 	int failed = 0;
475 	int ret;
476 	int num_copies = 0;
477 	int mirror_num = 0;
478 	int failed_mirror = 0;
479 
480 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
481 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
482 	while (1) {
483 		ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
484 					       mirror_num);
485 		if (!ret) {
486 			if (verify_parent_transid(io_tree, eb,
487 						   parent_transid, 0))
488 				ret = -EIO;
489 			else if (verify_level_key(fs_info, eb, level,
490 						  first_key, parent_transid))
491 				ret = -EUCLEAN;
492 			else
493 				break;
494 		}
495 
496 		/*
497 		 * This buffer's crc is fine, but its contents are corrupted, so
498 		 * there is no reason to read the other copies, they won't be
499 		 * any less wrong.
500 		 */
501 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags) ||
502 		    ret == -EUCLEAN)
503 			break;
504 
505 		num_copies = btrfs_num_copies(fs_info,
506 					      eb->start, eb->len);
507 		if (num_copies == 1)
508 			break;
509 
510 		if (!failed_mirror) {
511 			failed = 1;
512 			failed_mirror = eb->read_mirror;
513 		}
514 
515 		mirror_num++;
516 		if (mirror_num == failed_mirror)
517 			mirror_num++;
518 
519 		if (mirror_num > num_copies)
520 			break;
521 	}
522 
523 	if (failed && !ret && failed_mirror)
524 		repair_eb_io_failure(fs_info, eb, failed_mirror);
525 
526 	return ret;
527 }
528 
529 /*
530  * checksum a dirty tree block before IO.  This has extra checks to make sure
531  * we only fill in the checksum field in the first page of a multi-page block
532  */
533 
534 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
535 {
536 	u64 start = page_offset(page);
537 	u64 found_start;
538 	struct extent_buffer *eb;
539 
540 	eb = (struct extent_buffer *)page->private;
541 	if (page != eb->pages[0])
542 		return 0;
543 
544 	found_start = btrfs_header_bytenr(eb);
545 	/*
546 	 * Please do not consolidate these warnings into a single if.
547 	 * It is useful to know what went wrong.
548 	 */
549 	if (WARN_ON(found_start != start))
550 		return -EUCLEAN;
551 	if (WARN_ON(!PageUptodate(page)))
552 		return -EUCLEAN;
553 
554 	ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
555 			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
556 
557 	return csum_tree_block(fs_info, eb, 0);
558 }
559 
560 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
561 				 struct extent_buffer *eb)
562 {
563 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
564 	u8 fsid[BTRFS_FSID_SIZE];
565 	int ret = 1;
566 
567 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
568 	while (fs_devices) {
569 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
570 			ret = 0;
571 			break;
572 		}
573 		fs_devices = fs_devices->seed;
574 	}
575 	return ret;
576 }
577 
578 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
579 				      u64 phy_offset, struct page *page,
580 				      u64 start, u64 end, int mirror)
581 {
582 	u64 found_start;
583 	int found_level;
584 	struct extent_buffer *eb;
585 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
586 	struct btrfs_fs_info *fs_info = root->fs_info;
587 	int ret = 0;
588 	int reads_done;
589 
590 	if (!page->private)
591 		goto out;
592 
593 	eb = (struct extent_buffer *)page->private;
594 
595 	/* the pending IO might have been the only thing that kept this buffer
596 	 * in memory.  Make sure we have a ref for all this other checks
597 	 */
598 	extent_buffer_get(eb);
599 
600 	reads_done = atomic_dec_and_test(&eb->io_pages);
601 	if (!reads_done)
602 		goto err;
603 
604 	eb->read_mirror = mirror;
605 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
606 		ret = -EIO;
607 		goto err;
608 	}
609 
610 	found_start = btrfs_header_bytenr(eb);
611 	if (found_start != eb->start) {
612 		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
613 			     eb->start, found_start);
614 		ret = -EIO;
615 		goto err;
616 	}
617 	if (check_tree_block_fsid(fs_info, eb)) {
618 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
619 			     eb->start);
620 		ret = -EIO;
621 		goto err;
622 	}
623 	found_level = btrfs_header_level(eb);
624 	if (found_level >= BTRFS_MAX_LEVEL) {
625 		btrfs_err(fs_info, "bad tree block level %d on %llu",
626 			  (int)btrfs_header_level(eb), eb->start);
627 		ret = -EIO;
628 		goto err;
629 	}
630 
631 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
632 				       eb, found_level);
633 
634 	ret = csum_tree_block(fs_info, eb, 1);
635 	if (ret)
636 		goto err;
637 
638 	/*
639 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
640 	 * that we don't try and read the other copies of this block, just
641 	 * return -EIO.
642 	 */
643 	if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
644 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
645 		ret = -EIO;
646 	}
647 
648 	if (found_level > 0 && btrfs_check_node(fs_info, eb))
649 		ret = -EIO;
650 
651 	if (!ret)
652 		set_extent_buffer_uptodate(eb);
653 err:
654 	if (reads_done &&
655 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
656 		btree_readahead_hook(eb, ret);
657 
658 	if (ret) {
659 		/*
660 		 * our io error hook is going to dec the io pages
661 		 * again, we have to make sure it has something
662 		 * to decrement
663 		 */
664 		atomic_inc(&eb->io_pages);
665 		clear_extent_buffer_uptodate(eb);
666 	}
667 	free_extent_buffer(eb);
668 out:
669 	return ret;
670 }
671 
672 static int btree_io_failed_hook(struct page *page, int failed_mirror)
673 {
674 	struct extent_buffer *eb;
675 
676 	eb = (struct extent_buffer *)page->private;
677 	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
678 	eb->read_mirror = failed_mirror;
679 	atomic_dec(&eb->io_pages);
680 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
681 		btree_readahead_hook(eb, -EIO);
682 	return -EIO;	/* we fixed nothing */
683 }
684 
685 static void end_workqueue_bio(struct bio *bio)
686 {
687 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
688 	struct btrfs_fs_info *fs_info;
689 	struct btrfs_workqueue *wq;
690 	btrfs_work_func_t func;
691 
692 	fs_info = end_io_wq->info;
693 	end_io_wq->status = bio->bi_status;
694 
695 	if (bio_op(bio) == REQ_OP_WRITE) {
696 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
697 			wq = fs_info->endio_meta_write_workers;
698 			func = btrfs_endio_meta_write_helper;
699 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
700 			wq = fs_info->endio_freespace_worker;
701 			func = btrfs_freespace_write_helper;
702 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
703 			wq = fs_info->endio_raid56_workers;
704 			func = btrfs_endio_raid56_helper;
705 		} else {
706 			wq = fs_info->endio_write_workers;
707 			func = btrfs_endio_write_helper;
708 		}
709 	} else {
710 		if (unlikely(end_io_wq->metadata ==
711 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
712 			wq = fs_info->endio_repair_workers;
713 			func = btrfs_endio_repair_helper;
714 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
715 			wq = fs_info->endio_raid56_workers;
716 			func = btrfs_endio_raid56_helper;
717 		} else if (end_io_wq->metadata) {
718 			wq = fs_info->endio_meta_workers;
719 			func = btrfs_endio_meta_helper;
720 		} else {
721 			wq = fs_info->endio_workers;
722 			func = btrfs_endio_helper;
723 		}
724 	}
725 
726 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
727 	btrfs_queue_work(wq, &end_io_wq->work);
728 }
729 
730 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
731 			enum btrfs_wq_endio_type metadata)
732 {
733 	struct btrfs_end_io_wq *end_io_wq;
734 
735 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
736 	if (!end_io_wq)
737 		return BLK_STS_RESOURCE;
738 
739 	end_io_wq->private = bio->bi_private;
740 	end_io_wq->end_io = bio->bi_end_io;
741 	end_io_wq->info = info;
742 	end_io_wq->status = 0;
743 	end_io_wq->bio = bio;
744 	end_io_wq->metadata = metadata;
745 
746 	bio->bi_private = end_io_wq;
747 	bio->bi_end_io = end_workqueue_bio;
748 	return 0;
749 }
750 
751 static void run_one_async_start(struct btrfs_work *work)
752 {
753 	struct async_submit_bio *async;
754 	blk_status_t ret;
755 
756 	async = container_of(work, struct  async_submit_bio, work);
757 	ret = async->submit_bio_start(async->private_data, async->bio,
758 				      async->bio_offset);
759 	if (ret)
760 		async->status = ret;
761 }
762 
763 static void run_one_async_done(struct btrfs_work *work)
764 {
765 	struct async_submit_bio *async;
766 
767 	async = container_of(work, struct  async_submit_bio, work);
768 
769 	/* If an error occurred we just want to clean up the bio and move on */
770 	if (async->status) {
771 		async->bio->bi_status = async->status;
772 		bio_endio(async->bio);
773 		return;
774 	}
775 
776 	btrfs_submit_bio_done(async->private_data, async->bio, async->mirror_num);
777 }
778 
779 static void run_one_async_free(struct btrfs_work *work)
780 {
781 	struct async_submit_bio *async;
782 
783 	async = container_of(work, struct  async_submit_bio, work);
784 	kfree(async);
785 }
786 
787 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
788 				 int mirror_num, unsigned long bio_flags,
789 				 u64 bio_offset, void *private_data,
790 				 extent_submit_bio_start_t *submit_bio_start)
791 {
792 	struct async_submit_bio *async;
793 
794 	async = kmalloc(sizeof(*async), GFP_NOFS);
795 	if (!async)
796 		return BLK_STS_RESOURCE;
797 
798 	async->private_data = private_data;
799 	async->bio = bio;
800 	async->mirror_num = mirror_num;
801 	async->submit_bio_start = submit_bio_start;
802 
803 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
804 			run_one_async_done, run_one_async_free);
805 
806 	async->bio_offset = bio_offset;
807 
808 	async->status = 0;
809 
810 	if (op_is_sync(bio->bi_opf))
811 		btrfs_set_work_high_priority(&async->work);
812 
813 	btrfs_queue_work(fs_info->workers, &async->work);
814 	return 0;
815 }
816 
817 static blk_status_t btree_csum_one_bio(struct bio *bio)
818 {
819 	struct bio_vec *bvec;
820 	struct btrfs_root *root;
821 	int i, ret = 0;
822 
823 	ASSERT(!bio_flagged(bio, BIO_CLONED));
824 	bio_for_each_segment_all(bvec, bio, i) {
825 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
826 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
827 		if (ret)
828 			break;
829 	}
830 
831 	return errno_to_blk_status(ret);
832 }
833 
834 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
835 					     u64 bio_offset)
836 {
837 	/*
838 	 * when we're called for a write, we're already in the async
839 	 * submission context.  Just jump into btrfs_map_bio
840 	 */
841 	return btree_csum_one_bio(bio);
842 }
843 
844 static int check_async_write(struct btrfs_inode *bi)
845 {
846 	if (atomic_read(&bi->sync_writers))
847 		return 0;
848 #ifdef CONFIG_X86
849 	if (static_cpu_has(X86_FEATURE_XMM4_2))
850 		return 0;
851 #endif
852 	return 1;
853 }
854 
855 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
856 					  int mirror_num, unsigned long bio_flags,
857 					  u64 bio_offset)
858 {
859 	struct inode *inode = private_data;
860 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
861 	int async = check_async_write(BTRFS_I(inode));
862 	blk_status_t ret;
863 
864 	if (bio_op(bio) != REQ_OP_WRITE) {
865 		/*
866 		 * called for a read, do the setup so that checksum validation
867 		 * can happen in the async kernel threads
868 		 */
869 		ret = btrfs_bio_wq_end_io(fs_info, bio,
870 					  BTRFS_WQ_ENDIO_METADATA);
871 		if (ret)
872 			goto out_w_error;
873 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
874 	} else if (!async) {
875 		ret = btree_csum_one_bio(bio);
876 		if (ret)
877 			goto out_w_error;
878 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
879 	} else {
880 		/*
881 		 * kthread helpers are used to submit writes so that
882 		 * checksumming can happen in parallel across all CPUs
883 		 */
884 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
885 					  bio_offset, private_data,
886 					  btree_submit_bio_start);
887 	}
888 
889 	if (ret)
890 		goto out_w_error;
891 	return 0;
892 
893 out_w_error:
894 	bio->bi_status = ret;
895 	bio_endio(bio);
896 	return ret;
897 }
898 
899 #ifdef CONFIG_MIGRATION
900 static int btree_migratepage(struct address_space *mapping,
901 			struct page *newpage, struct page *page,
902 			enum migrate_mode mode)
903 {
904 	/*
905 	 * we can't safely write a btree page from here,
906 	 * we haven't done the locking hook
907 	 */
908 	if (PageDirty(page))
909 		return -EAGAIN;
910 	/*
911 	 * Buffers may be managed in a filesystem specific way.
912 	 * We must have no buffers or drop them.
913 	 */
914 	if (page_has_private(page) &&
915 	    !try_to_release_page(page, GFP_KERNEL))
916 		return -EAGAIN;
917 	return migrate_page(mapping, newpage, page, mode);
918 }
919 #endif
920 
921 
922 static int btree_writepages(struct address_space *mapping,
923 			    struct writeback_control *wbc)
924 {
925 	struct btrfs_fs_info *fs_info;
926 	int ret;
927 
928 	if (wbc->sync_mode == WB_SYNC_NONE) {
929 
930 		if (wbc->for_kupdate)
931 			return 0;
932 
933 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
934 		/* this is a bit racy, but that's ok */
935 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
936 					     BTRFS_DIRTY_METADATA_THRESH,
937 					     fs_info->dirty_metadata_batch);
938 		if (ret < 0)
939 			return 0;
940 	}
941 	return btree_write_cache_pages(mapping, wbc);
942 }
943 
944 static int btree_readpage(struct file *file, struct page *page)
945 {
946 	struct extent_io_tree *tree;
947 	tree = &BTRFS_I(page->mapping->host)->io_tree;
948 	return extent_read_full_page(tree, page, btree_get_extent, 0);
949 }
950 
951 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
952 {
953 	if (PageWriteback(page) || PageDirty(page))
954 		return 0;
955 
956 	return try_release_extent_buffer(page);
957 }
958 
959 static void btree_invalidatepage(struct page *page, unsigned int offset,
960 				 unsigned int length)
961 {
962 	struct extent_io_tree *tree;
963 	tree = &BTRFS_I(page->mapping->host)->io_tree;
964 	extent_invalidatepage(tree, page, offset);
965 	btree_releasepage(page, GFP_NOFS);
966 	if (PagePrivate(page)) {
967 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
968 			   "page private not zero on page %llu",
969 			   (unsigned long long)page_offset(page));
970 		ClearPagePrivate(page);
971 		set_page_private(page, 0);
972 		put_page(page);
973 	}
974 }
975 
976 static int btree_set_page_dirty(struct page *page)
977 {
978 #ifdef DEBUG
979 	struct extent_buffer *eb;
980 
981 	BUG_ON(!PagePrivate(page));
982 	eb = (struct extent_buffer *)page->private;
983 	BUG_ON(!eb);
984 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
985 	BUG_ON(!atomic_read(&eb->refs));
986 	btrfs_assert_tree_locked(eb);
987 #endif
988 	return __set_page_dirty_nobuffers(page);
989 }
990 
991 static const struct address_space_operations btree_aops = {
992 	.readpage	= btree_readpage,
993 	.writepages	= btree_writepages,
994 	.releasepage	= btree_releasepage,
995 	.invalidatepage = btree_invalidatepage,
996 #ifdef CONFIG_MIGRATION
997 	.migratepage	= btree_migratepage,
998 #endif
999 	.set_page_dirty = btree_set_page_dirty,
1000 };
1001 
1002 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1003 {
1004 	struct extent_buffer *buf = NULL;
1005 	struct inode *btree_inode = fs_info->btree_inode;
1006 
1007 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1008 	if (IS_ERR(buf))
1009 		return;
1010 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1011 				 buf, WAIT_NONE, 0);
1012 	free_extent_buffer(buf);
1013 }
1014 
1015 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1016 			 int mirror_num, struct extent_buffer **eb)
1017 {
1018 	struct extent_buffer *buf = NULL;
1019 	struct inode *btree_inode = fs_info->btree_inode;
1020 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1021 	int ret;
1022 
1023 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1024 	if (IS_ERR(buf))
1025 		return 0;
1026 
1027 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1028 
1029 	ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1030 				       mirror_num);
1031 	if (ret) {
1032 		free_extent_buffer(buf);
1033 		return ret;
1034 	}
1035 
1036 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1037 		free_extent_buffer(buf);
1038 		return -EIO;
1039 	} else if (extent_buffer_uptodate(buf)) {
1040 		*eb = buf;
1041 	} else {
1042 		free_extent_buffer(buf);
1043 	}
1044 	return 0;
1045 }
1046 
1047 struct extent_buffer *btrfs_find_create_tree_block(
1048 						struct btrfs_fs_info *fs_info,
1049 						u64 bytenr)
1050 {
1051 	if (btrfs_is_testing(fs_info))
1052 		return alloc_test_extent_buffer(fs_info, bytenr);
1053 	return alloc_extent_buffer(fs_info, bytenr);
1054 }
1055 
1056 
1057 int btrfs_write_tree_block(struct extent_buffer *buf)
1058 {
1059 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1060 					buf->start + buf->len - 1);
1061 }
1062 
1063 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1064 {
1065 	filemap_fdatawait_range(buf->pages[0]->mapping,
1066 			        buf->start, buf->start + buf->len - 1);
1067 }
1068 
1069 /*
1070  * Read tree block at logical address @bytenr and do variant basic but critical
1071  * verification.
1072  *
1073  * @parent_transid:	expected transid of this tree block, skip check if 0
1074  * @level:		expected level, mandatory check
1075  * @first_key:		expected key in slot 0, skip check if NULL
1076  */
1077 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1078 				      u64 parent_transid, int level,
1079 				      struct btrfs_key *first_key)
1080 {
1081 	struct extent_buffer *buf = NULL;
1082 	int ret;
1083 
1084 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1085 	if (IS_ERR(buf))
1086 		return buf;
1087 
1088 	ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1089 					     level, first_key);
1090 	if (ret) {
1091 		free_extent_buffer(buf);
1092 		return ERR_PTR(ret);
1093 	}
1094 	return buf;
1095 
1096 }
1097 
1098 void clean_tree_block(struct btrfs_fs_info *fs_info,
1099 		      struct extent_buffer *buf)
1100 {
1101 	if (btrfs_header_generation(buf) ==
1102 	    fs_info->running_transaction->transid) {
1103 		btrfs_assert_tree_locked(buf);
1104 
1105 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1106 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1107 						 -buf->len,
1108 						 fs_info->dirty_metadata_batch);
1109 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1110 			btrfs_set_lock_blocking(buf);
1111 			clear_extent_buffer_dirty(buf);
1112 		}
1113 	}
1114 }
1115 
1116 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1117 {
1118 	struct btrfs_subvolume_writers *writers;
1119 	int ret;
1120 
1121 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1122 	if (!writers)
1123 		return ERR_PTR(-ENOMEM);
1124 
1125 	ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1126 	if (ret < 0) {
1127 		kfree(writers);
1128 		return ERR_PTR(ret);
1129 	}
1130 
1131 	init_waitqueue_head(&writers->wait);
1132 	return writers;
1133 }
1134 
1135 static void
1136 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1137 {
1138 	percpu_counter_destroy(&writers->counter);
1139 	kfree(writers);
1140 }
1141 
1142 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1143 			 u64 objectid)
1144 {
1145 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1146 	root->node = NULL;
1147 	root->commit_root = NULL;
1148 	root->state = 0;
1149 	root->orphan_cleanup_state = 0;
1150 
1151 	root->objectid = objectid;
1152 	root->last_trans = 0;
1153 	root->highest_objectid = 0;
1154 	root->nr_delalloc_inodes = 0;
1155 	root->nr_ordered_extents = 0;
1156 	root->inode_tree = RB_ROOT;
1157 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1158 	root->block_rsv = NULL;
1159 
1160 	INIT_LIST_HEAD(&root->dirty_list);
1161 	INIT_LIST_HEAD(&root->root_list);
1162 	INIT_LIST_HEAD(&root->delalloc_inodes);
1163 	INIT_LIST_HEAD(&root->delalloc_root);
1164 	INIT_LIST_HEAD(&root->ordered_extents);
1165 	INIT_LIST_HEAD(&root->ordered_root);
1166 	INIT_LIST_HEAD(&root->logged_list[0]);
1167 	INIT_LIST_HEAD(&root->logged_list[1]);
1168 	spin_lock_init(&root->inode_lock);
1169 	spin_lock_init(&root->delalloc_lock);
1170 	spin_lock_init(&root->ordered_extent_lock);
1171 	spin_lock_init(&root->accounting_lock);
1172 	spin_lock_init(&root->log_extents_lock[0]);
1173 	spin_lock_init(&root->log_extents_lock[1]);
1174 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1175 	mutex_init(&root->objectid_mutex);
1176 	mutex_init(&root->log_mutex);
1177 	mutex_init(&root->ordered_extent_mutex);
1178 	mutex_init(&root->delalloc_mutex);
1179 	init_waitqueue_head(&root->log_writer_wait);
1180 	init_waitqueue_head(&root->log_commit_wait[0]);
1181 	init_waitqueue_head(&root->log_commit_wait[1]);
1182 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1183 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1184 	atomic_set(&root->log_commit[0], 0);
1185 	atomic_set(&root->log_commit[1], 0);
1186 	atomic_set(&root->log_writers, 0);
1187 	atomic_set(&root->log_batch, 0);
1188 	refcount_set(&root->refs, 1);
1189 	atomic_set(&root->will_be_snapshotted, 0);
1190 	root->log_transid = 0;
1191 	root->log_transid_committed = -1;
1192 	root->last_log_commit = 0;
1193 	if (!dummy)
1194 		extent_io_tree_init(&root->dirty_log_pages, NULL);
1195 
1196 	memset(&root->root_key, 0, sizeof(root->root_key));
1197 	memset(&root->root_item, 0, sizeof(root->root_item));
1198 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1199 	if (!dummy)
1200 		root->defrag_trans_start = fs_info->generation;
1201 	else
1202 		root->defrag_trans_start = 0;
1203 	root->root_key.objectid = objectid;
1204 	root->anon_dev = 0;
1205 
1206 	spin_lock_init(&root->root_item_lock);
1207 }
1208 
1209 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1210 		gfp_t flags)
1211 {
1212 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1213 	if (root)
1214 		root->fs_info = fs_info;
1215 	return root;
1216 }
1217 
1218 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1219 /* Should only be used by the testing infrastructure */
1220 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1221 {
1222 	struct btrfs_root *root;
1223 
1224 	if (!fs_info)
1225 		return ERR_PTR(-EINVAL);
1226 
1227 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1228 	if (!root)
1229 		return ERR_PTR(-ENOMEM);
1230 
1231 	/* We don't use the stripesize in selftest, set it as sectorsize */
1232 	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1233 	root->alloc_bytenr = 0;
1234 
1235 	return root;
1236 }
1237 #endif
1238 
1239 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1240 				     struct btrfs_fs_info *fs_info,
1241 				     u64 objectid)
1242 {
1243 	struct extent_buffer *leaf;
1244 	struct btrfs_root *tree_root = fs_info->tree_root;
1245 	struct btrfs_root *root;
1246 	struct btrfs_key key;
1247 	int ret = 0;
1248 	uuid_le uuid = NULL_UUID_LE;
1249 
1250 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1251 	if (!root)
1252 		return ERR_PTR(-ENOMEM);
1253 
1254 	__setup_root(root, fs_info, objectid);
1255 	root->root_key.objectid = objectid;
1256 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1257 	root->root_key.offset = 0;
1258 
1259 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1260 	if (IS_ERR(leaf)) {
1261 		ret = PTR_ERR(leaf);
1262 		leaf = NULL;
1263 		goto fail;
1264 	}
1265 
1266 	root->node = leaf;
1267 	btrfs_mark_buffer_dirty(leaf);
1268 
1269 	root->commit_root = btrfs_root_node(root);
1270 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1271 
1272 	root->root_item.flags = 0;
1273 	root->root_item.byte_limit = 0;
1274 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1275 	btrfs_set_root_generation(&root->root_item, trans->transid);
1276 	btrfs_set_root_level(&root->root_item, 0);
1277 	btrfs_set_root_refs(&root->root_item, 1);
1278 	btrfs_set_root_used(&root->root_item, leaf->len);
1279 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1280 	btrfs_set_root_dirid(&root->root_item, 0);
1281 	if (is_fstree(objectid))
1282 		uuid_le_gen(&uuid);
1283 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1284 	root->root_item.drop_level = 0;
1285 
1286 	key.objectid = objectid;
1287 	key.type = BTRFS_ROOT_ITEM_KEY;
1288 	key.offset = 0;
1289 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1290 	if (ret)
1291 		goto fail;
1292 
1293 	btrfs_tree_unlock(leaf);
1294 
1295 	return root;
1296 
1297 fail:
1298 	if (leaf) {
1299 		btrfs_tree_unlock(leaf);
1300 		free_extent_buffer(root->commit_root);
1301 		free_extent_buffer(leaf);
1302 	}
1303 	kfree(root);
1304 
1305 	return ERR_PTR(ret);
1306 }
1307 
1308 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1309 					 struct btrfs_fs_info *fs_info)
1310 {
1311 	struct btrfs_root *root;
1312 	struct extent_buffer *leaf;
1313 
1314 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1315 	if (!root)
1316 		return ERR_PTR(-ENOMEM);
1317 
1318 	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1319 
1320 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1321 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1322 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1323 
1324 	/*
1325 	 * DON'T set REF_COWS for log trees
1326 	 *
1327 	 * log trees do not get reference counted because they go away
1328 	 * before a real commit is actually done.  They do store pointers
1329 	 * to file data extents, and those reference counts still get
1330 	 * updated (along with back refs to the log tree).
1331 	 */
1332 
1333 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1334 			NULL, 0, 0, 0);
1335 	if (IS_ERR(leaf)) {
1336 		kfree(root);
1337 		return ERR_CAST(leaf);
1338 	}
1339 
1340 	root->node = leaf;
1341 
1342 	btrfs_mark_buffer_dirty(root->node);
1343 	btrfs_tree_unlock(root->node);
1344 	return root;
1345 }
1346 
1347 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1348 			     struct btrfs_fs_info *fs_info)
1349 {
1350 	struct btrfs_root *log_root;
1351 
1352 	log_root = alloc_log_tree(trans, fs_info);
1353 	if (IS_ERR(log_root))
1354 		return PTR_ERR(log_root);
1355 	WARN_ON(fs_info->log_root_tree);
1356 	fs_info->log_root_tree = log_root;
1357 	return 0;
1358 }
1359 
1360 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1361 		       struct btrfs_root *root)
1362 {
1363 	struct btrfs_fs_info *fs_info = root->fs_info;
1364 	struct btrfs_root *log_root;
1365 	struct btrfs_inode_item *inode_item;
1366 
1367 	log_root = alloc_log_tree(trans, fs_info);
1368 	if (IS_ERR(log_root))
1369 		return PTR_ERR(log_root);
1370 
1371 	log_root->last_trans = trans->transid;
1372 	log_root->root_key.offset = root->root_key.objectid;
1373 
1374 	inode_item = &log_root->root_item.inode;
1375 	btrfs_set_stack_inode_generation(inode_item, 1);
1376 	btrfs_set_stack_inode_size(inode_item, 3);
1377 	btrfs_set_stack_inode_nlink(inode_item, 1);
1378 	btrfs_set_stack_inode_nbytes(inode_item,
1379 				     fs_info->nodesize);
1380 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1381 
1382 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1383 
1384 	WARN_ON(root->log_root);
1385 	root->log_root = log_root;
1386 	root->log_transid = 0;
1387 	root->log_transid_committed = -1;
1388 	root->last_log_commit = 0;
1389 	return 0;
1390 }
1391 
1392 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1393 					       struct btrfs_key *key)
1394 {
1395 	struct btrfs_root *root;
1396 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1397 	struct btrfs_path *path;
1398 	u64 generation;
1399 	int ret;
1400 	int level;
1401 
1402 	path = btrfs_alloc_path();
1403 	if (!path)
1404 		return ERR_PTR(-ENOMEM);
1405 
1406 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1407 	if (!root) {
1408 		ret = -ENOMEM;
1409 		goto alloc_fail;
1410 	}
1411 
1412 	__setup_root(root, fs_info, key->objectid);
1413 
1414 	ret = btrfs_find_root(tree_root, key, path,
1415 			      &root->root_item, &root->root_key);
1416 	if (ret) {
1417 		if (ret > 0)
1418 			ret = -ENOENT;
1419 		goto find_fail;
1420 	}
1421 
1422 	generation = btrfs_root_generation(&root->root_item);
1423 	level = btrfs_root_level(&root->root_item);
1424 	root->node = read_tree_block(fs_info,
1425 				     btrfs_root_bytenr(&root->root_item),
1426 				     generation, level, NULL);
1427 	if (IS_ERR(root->node)) {
1428 		ret = PTR_ERR(root->node);
1429 		goto find_fail;
1430 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1431 		ret = -EIO;
1432 		free_extent_buffer(root->node);
1433 		goto find_fail;
1434 	}
1435 	root->commit_root = btrfs_root_node(root);
1436 out:
1437 	btrfs_free_path(path);
1438 	return root;
1439 
1440 find_fail:
1441 	kfree(root);
1442 alloc_fail:
1443 	root = ERR_PTR(ret);
1444 	goto out;
1445 }
1446 
1447 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1448 				      struct btrfs_key *location)
1449 {
1450 	struct btrfs_root *root;
1451 
1452 	root = btrfs_read_tree_root(tree_root, location);
1453 	if (IS_ERR(root))
1454 		return root;
1455 
1456 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1457 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1458 		btrfs_check_and_init_root_item(&root->root_item);
1459 	}
1460 
1461 	return root;
1462 }
1463 
1464 int btrfs_init_fs_root(struct btrfs_root *root)
1465 {
1466 	int ret;
1467 	struct btrfs_subvolume_writers *writers;
1468 
1469 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1470 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1471 					GFP_NOFS);
1472 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1473 		ret = -ENOMEM;
1474 		goto fail;
1475 	}
1476 
1477 	writers = btrfs_alloc_subvolume_writers();
1478 	if (IS_ERR(writers)) {
1479 		ret = PTR_ERR(writers);
1480 		goto fail;
1481 	}
1482 	root->subv_writers = writers;
1483 
1484 	btrfs_init_free_ino_ctl(root);
1485 	spin_lock_init(&root->ino_cache_lock);
1486 	init_waitqueue_head(&root->ino_cache_wait);
1487 
1488 	ret = get_anon_bdev(&root->anon_dev);
1489 	if (ret)
1490 		goto fail;
1491 
1492 	mutex_lock(&root->objectid_mutex);
1493 	ret = btrfs_find_highest_objectid(root,
1494 					&root->highest_objectid);
1495 	if (ret) {
1496 		mutex_unlock(&root->objectid_mutex);
1497 		goto fail;
1498 	}
1499 
1500 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1501 
1502 	mutex_unlock(&root->objectid_mutex);
1503 
1504 	return 0;
1505 fail:
1506 	/* The caller is responsible to call btrfs_free_fs_root */
1507 	return ret;
1508 }
1509 
1510 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1511 					u64 root_id)
1512 {
1513 	struct btrfs_root *root;
1514 
1515 	spin_lock(&fs_info->fs_roots_radix_lock);
1516 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1517 				 (unsigned long)root_id);
1518 	spin_unlock(&fs_info->fs_roots_radix_lock);
1519 	return root;
1520 }
1521 
1522 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1523 			 struct btrfs_root *root)
1524 {
1525 	int ret;
1526 
1527 	ret = radix_tree_preload(GFP_NOFS);
1528 	if (ret)
1529 		return ret;
1530 
1531 	spin_lock(&fs_info->fs_roots_radix_lock);
1532 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1533 				(unsigned long)root->root_key.objectid,
1534 				root);
1535 	if (ret == 0)
1536 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1537 	spin_unlock(&fs_info->fs_roots_radix_lock);
1538 	radix_tree_preload_end();
1539 
1540 	return ret;
1541 }
1542 
1543 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1544 				     struct btrfs_key *location,
1545 				     bool check_ref)
1546 {
1547 	struct btrfs_root *root;
1548 	struct btrfs_path *path;
1549 	struct btrfs_key key;
1550 	int ret;
1551 
1552 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1553 		return fs_info->tree_root;
1554 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1555 		return fs_info->extent_root;
1556 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1557 		return fs_info->chunk_root;
1558 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1559 		return fs_info->dev_root;
1560 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1561 		return fs_info->csum_root;
1562 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1563 		return fs_info->quota_root ? fs_info->quota_root :
1564 					     ERR_PTR(-ENOENT);
1565 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1566 		return fs_info->uuid_root ? fs_info->uuid_root :
1567 					    ERR_PTR(-ENOENT);
1568 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1569 		return fs_info->free_space_root ? fs_info->free_space_root :
1570 						  ERR_PTR(-ENOENT);
1571 again:
1572 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1573 	if (root) {
1574 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1575 			return ERR_PTR(-ENOENT);
1576 		return root;
1577 	}
1578 
1579 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1580 	if (IS_ERR(root))
1581 		return root;
1582 
1583 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1584 		ret = -ENOENT;
1585 		goto fail;
1586 	}
1587 
1588 	ret = btrfs_init_fs_root(root);
1589 	if (ret)
1590 		goto fail;
1591 
1592 	path = btrfs_alloc_path();
1593 	if (!path) {
1594 		ret = -ENOMEM;
1595 		goto fail;
1596 	}
1597 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1598 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1599 	key.offset = location->objectid;
1600 
1601 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1602 	btrfs_free_path(path);
1603 	if (ret < 0)
1604 		goto fail;
1605 	if (ret == 0)
1606 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1607 
1608 	ret = btrfs_insert_fs_root(fs_info, root);
1609 	if (ret) {
1610 		if (ret == -EEXIST) {
1611 			btrfs_free_fs_root(root);
1612 			goto again;
1613 		}
1614 		goto fail;
1615 	}
1616 	return root;
1617 fail:
1618 	btrfs_free_fs_root(root);
1619 	return ERR_PTR(ret);
1620 }
1621 
1622 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1623 {
1624 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1625 	int ret = 0;
1626 	struct btrfs_device *device;
1627 	struct backing_dev_info *bdi;
1628 
1629 	rcu_read_lock();
1630 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1631 		if (!device->bdev)
1632 			continue;
1633 		bdi = device->bdev->bd_bdi;
1634 		if (bdi_congested(bdi, bdi_bits)) {
1635 			ret = 1;
1636 			break;
1637 		}
1638 	}
1639 	rcu_read_unlock();
1640 	return ret;
1641 }
1642 
1643 /*
1644  * called by the kthread helper functions to finally call the bio end_io
1645  * functions.  This is where read checksum verification actually happens
1646  */
1647 static void end_workqueue_fn(struct btrfs_work *work)
1648 {
1649 	struct bio *bio;
1650 	struct btrfs_end_io_wq *end_io_wq;
1651 
1652 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1653 	bio = end_io_wq->bio;
1654 
1655 	bio->bi_status = end_io_wq->status;
1656 	bio->bi_private = end_io_wq->private;
1657 	bio->bi_end_io = end_io_wq->end_io;
1658 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1659 	bio_endio(bio);
1660 }
1661 
1662 static int cleaner_kthread(void *arg)
1663 {
1664 	struct btrfs_root *root = arg;
1665 	struct btrfs_fs_info *fs_info = root->fs_info;
1666 	int again;
1667 	struct btrfs_trans_handle *trans;
1668 
1669 	do {
1670 		again = 0;
1671 
1672 		/* Make the cleaner go to sleep early. */
1673 		if (btrfs_need_cleaner_sleep(fs_info))
1674 			goto sleep;
1675 
1676 		/*
1677 		 * Do not do anything if we might cause open_ctree() to block
1678 		 * before we have finished mounting the filesystem.
1679 		 */
1680 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1681 			goto sleep;
1682 
1683 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1684 			goto sleep;
1685 
1686 		/*
1687 		 * Avoid the problem that we change the status of the fs
1688 		 * during the above check and trylock.
1689 		 */
1690 		if (btrfs_need_cleaner_sleep(fs_info)) {
1691 			mutex_unlock(&fs_info->cleaner_mutex);
1692 			goto sleep;
1693 		}
1694 
1695 		mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1696 		btrfs_run_delayed_iputs(fs_info);
1697 		mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1698 
1699 		again = btrfs_clean_one_deleted_snapshot(root);
1700 		mutex_unlock(&fs_info->cleaner_mutex);
1701 
1702 		/*
1703 		 * The defragger has dealt with the R/O remount and umount,
1704 		 * needn't do anything special here.
1705 		 */
1706 		btrfs_run_defrag_inodes(fs_info);
1707 
1708 		/*
1709 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1710 		 * with relocation (btrfs_relocate_chunk) and relocation
1711 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1712 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1713 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1714 		 * unused block groups.
1715 		 */
1716 		btrfs_delete_unused_bgs(fs_info);
1717 sleep:
1718 		if (!again) {
1719 			set_current_state(TASK_INTERRUPTIBLE);
1720 			if (!kthread_should_stop())
1721 				schedule();
1722 			__set_current_state(TASK_RUNNING);
1723 		}
1724 	} while (!kthread_should_stop());
1725 
1726 	/*
1727 	 * Transaction kthread is stopped before us and wakes us up.
1728 	 * However we might have started a new transaction and COWed some
1729 	 * tree blocks when deleting unused block groups for example. So
1730 	 * make sure we commit the transaction we started to have a clean
1731 	 * shutdown when evicting the btree inode - if it has dirty pages
1732 	 * when we do the final iput() on it, eviction will trigger a
1733 	 * writeback for it which will fail with null pointer dereferences
1734 	 * since work queues and other resources were already released and
1735 	 * destroyed by the time the iput/eviction/writeback is made.
1736 	 */
1737 	trans = btrfs_attach_transaction(root);
1738 	if (IS_ERR(trans)) {
1739 		if (PTR_ERR(trans) != -ENOENT)
1740 			btrfs_err(fs_info,
1741 				  "cleaner transaction attach returned %ld",
1742 				  PTR_ERR(trans));
1743 	} else {
1744 		int ret;
1745 
1746 		ret = btrfs_commit_transaction(trans);
1747 		if (ret)
1748 			btrfs_err(fs_info,
1749 				  "cleaner open transaction commit returned %d",
1750 				  ret);
1751 	}
1752 
1753 	return 0;
1754 }
1755 
1756 static int transaction_kthread(void *arg)
1757 {
1758 	struct btrfs_root *root = arg;
1759 	struct btrfs_fs_info *fs_info = root->fs_info;
1760 	struct btrfs_trans_handle *trans;
1761 	struct btrfs_transaction *cur;
1762 	u64 transid;
1763 	time64_t now;
1764 	unsigned long delay;
1765 	bool cannot_commit;
1766 
1767 	do {
1768 		cannot_commit = false;
1769 		delay = HZ * fs_info->commit_interval;
1770 		mutex_lock(&fs_info->transaction_kthread_mutex);
1771 
1772 		spin_lock(&fs_info->trans_lock);
1773 		cur = fs_info->running_transaction;
1774 		if (!cur) {
1775 			spin_unlock(&fs_info->trans_lock);
1776 			goto sleep;
1777 		}
1778 
1779 		now = ktime_get_seconds();
1780 		if (cur->state < TRANS_STATE_BLOCKED &&
1781 		    !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1782 		    (now < cur->start_time ||
1783 		     now - cur->start_time < fs_info->commit_interval)) {
1784 			spin_unlock(&fs_info->trans_lock);
1785 			delay = HZ * 5;
1786 			goto sleep;
1787 		}
1788 		transid = cur->transid;
1789 		spin_unlock(&fs_info->trans_lock);
1790 
1791 		/* If the file system is aborted, this will always fail. */
1792 		trans = btrfs_attach_transaction(root);
1793 		if (IS_ERR(trans)) {
1794 			if (PTR_ERR(trans) != -ENOENT)
1795 				cannot_commit = true;
1796 			goto sleep;
1797 		}
1798 		if (transid == trans->transid) {
1799 			btrfs_commit_transaction(trans);
1800 		} else {
1801 			btrfs_end_transaction(trans);
1802 		}
1803 sleep:
1804 		wake_up_process(fs_info->cleaner_kthread);
1805 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1806 
1807 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1808 				      &fs_info->fs_state)))
1809 			btrfs_cleanup_transaction(fs_info);
1810 		if (!kthread_should_stop() &&
1811 				(!btrfs_transaction_blocked(fs_info) ||
1812 				 cannot_commit))
1813 			schedule_timeout_interruptible(delay);
1814 	} while (!kthread_should_stop());
1815 	return 0;
1816 }
1817 
1818 /*
1819  * this will find the highest generation in the array of
1820  * root backups.  The index of the highest array is returned,
1821  * or -1 if we can't find anything.
1822  *
1823  * We check to make sure the array is valid by comparing the
1824  * generation of the latest  root in the array with the generation
1825  * in the super block.  If they don't match we pitch it.
1826  */
1827 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1828 {
1829 	u64 cur;
1830 	int newest_index = -1;
1831 	struct btrfs_root_backup *root_backup;
1832 	int i;
1833 
1834 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1835 		root_backup = info->super_copy->super_roots + i;
1836 		cur = btrfs_backup_tree_root_gen(root_backup);
1837 		if (cur == newest_gen)
1838 			newest_index = i;
1839 	}
1840 
1841 	/* check to see if we actually wrapped around */
1842 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1843 		root_backup = info->super_copy->super_roots;
1844 		cur = btrfs_backup_tree_root_gen(root_backup);
1845 		if (cur == newest_gen)
1846 			newest_index = 0;
1847 	}
1848 	return newest_index;
1849 }
1850 
1851 
1852 /*
1853  * find the oldest backup so we know where to store new entries
1854  * in the backup array.  This will set the backup_root_index
1855  * field in the fs_info struct
1856  */
1857 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1858 				     u64 newest_gen)
1859 {
1860 	int newest_index = -1;
1861 
1862 	newest_index = find_newest_super_backup(info, newest_gen);
1863 	/* if there was garbage in there, just move along */
1864 	if (newest_index == -1) {
1865 		info->backup_root_index = 0;
1866 	} else {
1867 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1868 	}
1869 }
1870 
1871 /*
1872  * copy all the root pointers into the super backup array.
1873  * this will bump the backup pointer by one when it is
1874  * done
1875  */
1876 static void backup_super_roots(struct btrfs_fs_info *info)
1877 {
1878 	int next_backup;
1879 	struct btrfs_root_backup *root_backup;
1880 	int last_backup;
1881 
1882 	next_backup = info->backup_root_index;
1883 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1884 		BTRFS_NUM_BACKUP_ROOTS;
1885 
1886 	/*
1887 	 * just overwrite the last backup if we're at the same generation
1888 	 * this happens only at umount
1889 	 */
1890 	root_backup = info->super_for_commit->super_roots + last_backup;
1891 	if (btrfs_backup_tree_root_gen(root_backup) ==
1892 	    btrfs_header_generation(info->tree_root->node))
1893 		next_backup = last_backup;
1894 
1895 	root_backup = info->super_for_commit->super_roots + next_backup;
1896 
1897 	/*
1898 	 * make sure all of our padding and empty slots get zero filled
1899 	 * regardless of which ones we use today
1900 	 */
1901 	memset(root_backup, 0, sizeof(*root_backup));
1902 
1903 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1904 
1905 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1906 	btrfs_set_backup_tree_root_gen(root_backup,
1907 			       btrfs_header_generation(info->tree_root->node));
1908 
1909 	btrfs_set_backup_tree_root_level(root_backup,
1910 			       btrfs_header_level(info->tree_root->node));
1911 
1912 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1913 	btrfs_set_backup_chunk_root_gen(root_backup,
1914 			       btrfs_header_generation(info->chunk_root->node));
1915 	btrfs_set_backup_chunk_root_level(root_backup,
1916 			       btrfs_header_level(info->chunk_root->node));
1917 
1918 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1919 	btrfs_set_backup_extent_root_gen(root_backup,
1920 			       btrfs_header_generation(info->extent_root->node));
1921 	btrfs_set_backup_extent_root_level(root_backup,
1922 			       btrfs_header_level(info->extent_root->node));
1923 
1924 	/*
1925 	 * we might commit during log recovery, which happens before we set
1926 	 * the fs_root.  Make sure it is valid before we fill it in.
1927 	 */
1928 	if (info->fs_root && info->fs_root->node) {
1929 		btrfs_set_backup_fs_root(root_backup,
1930 					 info->fs_root->node->start);
1931 		btrfs_set_backup_fs_root_gen(root_backup,
1932 			       btrfs_header_generation(info->fs_root->node));
1933 		btrfs_set_backup_fs_root_level(root_backup,
1934 			       btrfs_header_level(info->fs_root->node));
1935 	}
1936 
1937 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1938 	btrfs_set_backup_dev_root_gen(root_backup,
1939 			       btrfs_header_generation(info->dev_root->node));
1940 	btrfs_set_backup_dev_root_level(root_backup,
1941 				       btrfs_header_level(info->dev_root->node));
1942 
1943 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1944 	btrfs_set_backup_csum_root_gen(root_backup,
1945 			       btrfs_header_generation(info->csum_root->node));
1946 	btrfs_set_backup_csum_root_level(root_backup,
1947 			       btrfs_header_level(info->csum_root->node));
1948 
1949 	btrfs_set_backup_total_bytes(root_backup,
1950 			     btrfs_super_total_bytes(info->super_copy));
1951 	btrfs_set_backup_bytes_used(root_backup,
1952 			     btrfs_super_bytes_used(info->super_copy));
1953 	btrfs_set_backup_num_devices(root_backup,
1954 			     btrfs_super_num_devices(info->super_copy));
1955 
1956 	/*
1957 	 * if we don't copy this out to the super_copy, it won't get remembered
1958 	 * for the next commit
1959 	 */
1960 	memcpy(&info->super_copy->super_roots,
1961 	       &info->super_for_commit->super_roots,
1962 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1963 }
1964 
1965 /*
1966  * this copies info out of the root backup array and back into
1967  * the in-memory super block.  It is meant to help iterate through
1968  * the array, so you send it the number of backups you've already
1969  * tried and the last backup index you used.
1970  *
1971  * this returns -1 when it has tried all the backups
1972  */
1973 static noinline int next_root_backup(struct btrfs_fs_info *info,
1974 				     struct btrfs_super_block *super,
1975 				     int *num_backups_tried, int *backup_index)
1976 {
1977 	struct btrfs_root_backup *root_backup;
1978 	int newest = *backup_index;
1979 
1980 	if (*num_backups_tried == 0) {
1981 		u64 gen = btrfs_super_generation(super);
1982 
1983 		newest = find_newest_super_backup(info, gen);
1984 		if (newest == -1)
1985 			return -1;
1986 
1987 		*backup_index = newest;
1988 		*num_backups_tried = 1;
1989 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1990 		/* we've tried all the backups, all done */
1991 		return -1;
1992 	} else {
1993 		/* jump to the next oldest backup */
1994 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1995 			BTRFS_NUM_BACKUP_ROOTS;
1996 		*backup_index = newest;
1997 		*num_backups_tried += 1;
1998 	}
1999 	root_backup = super->super_roots + newest;
2000 
2001 	btrfs_set_super_generation(super,
2002 				   btrfs_backup_tree_root_gen(root_backup));
2003 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2004 	btrfs_set_super_root_level(super,
2005 				   btrfs_backup_tree_root_level(root_backup));
2006 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2007 
2008 	/*
2009 	 * fixme: the total bytes and num_devices need to match or we should
2010 	 * need a fsck
2011 	 */
2012 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2013 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2014 	return 0;
2015 }
2016 
2017 /* helper to cleanup workers */
2018 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2019 {
2020 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2021 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2022 	btrfs_destroy_workqueue(fs_info->workers);
2023 	btrfs_destroy_workqueue(fs_info->endio_workers);
2024 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2025 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2026 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2027 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2028 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2029 	btrfs_destroy_workqueue(fs_info->submit_workers);
2030 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2031 	btrfs_destroy_workqueue(fs_info->caching_workers);
2032 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2033 	btrfs_destroy_workqueue(fs_info->flush_workers);
2034 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2035 	btrfs_destroy_workqueue(fs_info->extent_workers);
2036 	/*
2037 	 * Now that all other work queues are destroyed, we can safely destroy
2038 	 * the queues used for metadata I/O, since tasks from those other work
2039 	 * queues can do metadata I/O operations.
2040 	 */
2041 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2042 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2043 }
2044 
2045 static void free_root_extent_buffers(struct btrfs_root *root)
2046 {
2047 	if (root) {
2048 		free_extent_buffer(root->node);
2049 		free_extent_buffer(root->commit_root);
2050 		root->node = NULL;
2051 		root->commit_root = NULL;
2052 	}
2053 }
2054 
2055 /* helper to cleanup tree roots */
2056 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2057 {
2058 	free_root_extent_buffers(info->tree_root);
2059 
2060 	free_root_extent_buffers(info->dev_root);
2061 	free_root_extent_buffers(info->extent_root);
2062 	free_root_extent_buffers(info->csum_root);
2063 	free_root_extent_buffers(info->quota_root);
2064 	free_root_extent_buffers(info->uuid_root);
2065 	if (chunk_root)
2066 		free_root_extent_buffers(info->chunk_root);
2067 	free_root_extent_buffers(info->free_space_root);
2068 }
2069 
2070 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2071 {
2072 	int ret;
2073 	struct btrfs_root *gang[8];
2074 	int i;
2075 
2076 	while (!list_empty(&fs_info->dead_roots)) {
2077 		gang[0] = list_entry(fs_info->dead_roots.next,
2078 				     struct btrfs_root, root_list);
2079 		list_del(&gang[0]->root_list);
2080 
2081 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2082 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2083 		} else {
2084 			free_extent_buffer(gang[0]->node);
2085 			free_extent_buffer(gang[0]->commit_root);
2086 			btrfs_put_fs_root(gang[0]);
2087 		}
2088 	}
2089 
2090 	while (1) {
2091 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2092 					     (void **)gang, 0,
2093 					     ARRAY_SIZE(gang));
2094 		if (!ret)
2095 			break;
2096 		for (i = 0; i < ret; i++)
2097 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2098 	}
2099 
2100 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2101 		btrfs_free_log_root_tree(NULL, fs_info);
2102 		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2103 	}
2104 }
2105 
2106 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2107 {
2108 	mutex_init(&fs_info->scrub_lock);
2109 	atomic_set(&fs_info->scrubs_running, 0);
2110 	atomic_set(&fs_info->scrub_pause_req, 0);
2111 	atomic_set(&fs_info->scrubs_paused, 0);
2112 	atomic_set(&fs_info->scrub_cancel_req, 0);
2113 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2114 	fs_info->scrub_workers_refcnt = 0;
2115 }
2116 
2117 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2118 {
2119 	spin_lock_init(&fs_info->balance_lock);
2120 	mutex_init(&fs_info->balance_mutex);
2121 	atomic_set(&fs_info->balance_pause_req, 0);
2122 	atomic_set(&fs_info->balance_cancel_req, 0);
2123 	fs_info->balance_ctl = NULL;
2124 	init_waitqueue_head(&fs_info->balance_wait_q);
2125 }
2126 
2127 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2128 {
2129 	struct inode *inode = fs_info->btree_inode;
2130 
2131 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2132 	set_nlink(inode, 1);
2133 	/*
2134 	 * we set the i_size on the btree inode to the max possible int.
2135 	 * the real end of the address space is determined by all of
2136 	 * the devices in the system
2137 	 */
2138 	inode->i_size = OFFSET_MAX;
2139 	inode->i_mapping->a_ops = &btree_aops;
2140 
2141 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2142 	extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2143 	BTRFS_I(inode)->io_tree.track_uptodate = 0;
2144 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2145 
2146 	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2147 
2148 	BTRFS_I(inode)->root = fs_info->tree_root;
2149 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2150 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2151 	btrfs_insert_inode_hash(inode);
2152 }
2153 
2154 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2155 {
2156 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2157 	rwlock_init(&fs_info->dev_replace.lock);
2158 	atomic_set(&fs_info->dev_replace.read_locks, 0);
2159 	atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2160 	init_waitqueue_head(&fs_info->replace_wait);
2161 	init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2162 }
2163 
2164 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2165 {
2166 	spin_lock_init(&fs_info->qgroup_lock);
2167 	mutex_init(&fs_info->qgroup_ioctl_lock);
2168 	fs_info->qgroup_tree = RB_ROOT;
2169 	fs_info->qgroup_op_tree = RB_ROOT;
2170 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2171 	fs_info->qgroup_seq = 1;
2172 	fs_info->qgroup_ulist = NULL;
2173 	fs_info->qgroup_rescan_running = false;
2174 	mutex_init(&fs_info->qgroup_rescan_lock);
2175 }
2176 
2177 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2178 		struct btrfs_fs_devices *fs_devices)
2179 {
2180 	u32 max_active = fs_info->thread_pool_size;
2181 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2182 
2183 	fs_info->workers =
2184 		btrfs_alloc_workqueue(fs_info, "worker",
2185 				      flags | WQ_HIGHPRI, max_active, 16);
2186 
2187 	fs_info->delalloc_workers =
2188 		btrfs_alloc_workqueue(fs_info, "delalloc",
2189 				      flags, max_active, 2);
2190 
2191 	fs_info->flush_workers =
2192 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2193 				      flags, max_active, 0);
2194 
2195 	fs_info->caching_workers =
2196 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2197 
2198 	/*
2199 	 * a higher idle thresh on the submit workers makes it much more
2200 	 * likely that bios will be send down in a sane order to the
2201 	 * devices
2202 	 */
2203 	fs_info->submit_workers =
2204 		btrfs_alloc_workqueue(fs_info, "submit", flags,
2205 				      min_t(u64, fs_devices->num_devices,
2206 					    max_active), 64);
2207 
2208 	fs_info->fixup_workers =
2209 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2210 
2211 	/*
2212 	 * endios are largely parallel and should have a very
2213 	 * low idle thresh
2214 	 */
2215 	fs_info->endio_workers =
2216 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2217 	fs_info->endio_meta_workers =
2218 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2219 				      max_active, 4);
2220 	fs_info->endio_meta_write_workers =
2221 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2222 				      max_active, 2);
2223 	fs_info->endio_raid56_workers =
2224 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2225 				      max_active, 4);
2226 	fs_info->endio_repair_workers =
2227 		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2228 	fs_info->rmw_workers =
2229 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2230 	fs_info->endio_write_workers =
2231 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2232 				      max_active, 2);
2233 	fs_info->endio_freespace_worker =
2234 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2235 				      max_active, 0);
2236 	fs_info->delayed_workers =
2237 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2238 				      max_active, 0);
2239 	fs_info->readahead_workers =
2240 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2241 				      max_active, 2);
2242 	fs_info->qgroup_rescan_workers =
2243 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2244 	fs_info->extent_workers =
2245 		btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2246 				      min_t(u64, fs_devices->num_devices,
2247 					    max_active), 8);
2248 
2249 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2250 	      fs_info->submit_workers && fs_info->flush_workers &&
2251 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2252 	      fs_info->endio_meta_write_workers &&
2253 	      fs_info->endio_repair_workers &&
2254 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2255 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2256 	      fs_info->caching_workers && fs_info->readahead_workers &&
2257 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2258 	      fs_info->extent_workers &&
2259 	      fs_info->qgroup_rescan_workers)) {
2260 		return -ENOMEM;
2261 	}
2262 
2263 	return 0;
2264 }
2265 
2266 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2267 			    struct btrfs_fs_devices *fs_devices)
2268 {
2269 	int ret;
2270 	struct btrfs_root *log_tree_root;
2271 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2272 	u64 bytenr = btrfs_super_log_root(disk_super);
2273 	int level = btrfs_super_log_root_level(disk_super);
2274 
2275 	if (fs_devices->rw_devices == 0) {
2276 		btrfs_warn(fs_info, "log replay required on RO media");
2277 		return -EIO;
2278 	}
2279 
2280 	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2281 	if (!log_tree_root)
2282 		return -ENOMEM;
2283 
2284 	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2285 
2286 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2287 					      fs_info->generation + 1,
2288 					      level, NULL);
2289 	if (IS_ERR(log_tree_root->node)) {
2290 		btrfs_warn(fs_info, "failed to read log tree");
2291 		ret = PTR_ERR(log_tree_root->node);
2292 		kfree(log_tree_root);
2293 		return ret;
2294 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2295 		btrfs_err(fs_info, "failed to read log tree");
2296 		free_extent_buffer(log_tree_root->node);
2297 		kfree(log_tree_root);
2298 		return -EIO;
2299 	}
2300 	/* returns with log_tree_root freed on success */
2301 	ret = btrfs_recover_log_trees(log_tree_root);
2302 	if (ret) {
2303 		btrfs_handle_fs_error(fs_info, ret,
2304 				      "Failed to recover log tree");
2305 		free_extent_buffer(log_tree_root->node);
2306 		kfree(log_tree_root);
2307 		return ret;
2308 	}
2309 
2310 	if (sb_rdonly(fs_info->sb)) {
2311 		ret = btrfs_commit_super(fs_info);
2312 		if (ret)
2313 			return ret;
2314 	}
2315 
2316 	return 0;
2317 }
2318 
2319 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2320 {
2321 	struct btrfs_root *tree_root = fs_info->tree_root;
2322 	struct btrfs_root *root;
2323 	struct btrfs_key location;
2324 	int ret;
2325 
2326 	BUG_ON(!fs_info->tree_root);
2327 
2328 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2329 	location.type = BTRFS_ROOT_ITEM_KEY;
2330 	location.offset = 0;
2331 
2332 	root = btrfs_read_tree_root(tree_root, &location);
2333 	if (IS_ERR(root)) {
2334 		ret = PTR_ERR(root);
2335 		goto out;
2336 	}
2337 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2338 	fs_info->extent_root = root;
2339 
2340 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2341 	root = btrfs_read_tree_root(tree_root, &location);
2342 	if (IS_ERR(root)) {
2343 		ret = PTR_ERR(root);
2344 		goto out;
2345 	}
2346 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2347 	fs_info->dev_root = root;
2348 	btrfs_init_devices_late(fs_info);
2349 
2350 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2351 	root = btrfs_read_tree_root(tree_root, &location);
2352 	if (IS_ERR(root)) {
2353 		ret = PTR_ERR(root);
2354 		goto out;
2355 	}
2356 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2357 	fs_info->csum_root = root;
2358 
2359 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2360 	root = btrfs_read_tree_root(tree_root, &location);
2361 	if (!IS_ERR(root)) {
2362 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2363 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2364 		fs_info->quota_root = root;
2365 	}
2366 
2367 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2368 	root = btrfs_read_tree_root(tree_root, &location);
2369 	if (IS_ERR(root)) {
2370 		ret = PTR_ERR(root);
2371 		if (ret != -ENOENT)
2372 			goto out;
2373 	} else {
2374 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2375 		fs_info->uuid_root = root;
2376 	}
2377 
2378 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2379 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2380 		root = btrfs_read_tree_root(tree_root, &location);
2381 		if (IS_ERR(root)) {
2382 			ret = PTR_ERR(root);
2383 			goto out;
2384 		}
2385 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2386 		fs_info->free_space_root = root;
2387 	}
2388 
2389 	return 0;
2390 out:
2391 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2392 		   location.objectid, ret);
2393 	return ret;
2394 }
2395 
2396 /*
2397  * Real super block validation
2398  * NOTE: super csum type and incompat features will not be checked here.
2399  *
2400  * @sb:		super block to check
2401  * @mirror_num:	the super block number to check its bytenr:
2402  * 		0	the primary (1st) sb
2403  * 		1, 2	2nd and 3rd backup copy
2404  * 	       -1	skip bytenr check
2405  */
2406 static int validate_super(struct btrfs_fs_info *fs_info,
2407 			    struct btrfs_super_block *sb, int mirror_num)
2408 {
2409 	u64 nodesize = btrfs_super_nodesize(sb);
2410 	u64 sectorsize = btrfs_super_sectorsize(sb);
2411 	int ret = 0;
2412 
2413 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2414 		btrfs_err(fs_info, "no valid FS found");
2415 		ret = -EINVAL;
2416 	}
2417 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2418 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2419 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2420 		ret = -EINVAL;
2421 	}
2422 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2423 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2424 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2425 		ret = -EINVAL;
2426 	}
2427 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2428 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2429 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2430 		ret = -EINVAL;
2431 	}
2432 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2433 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2434 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2435 		ret = -EINVAL;
2436 	}
2437 
2438 	/*
2439 	 * Check sectorsize and nodesize first, other check will need it.
2440 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2441 	 */
2442 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2443 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2444 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2445 		ret = -EINVAL;
2446 	}
2447 	/* Only PAGE SIZE is supported yet */
2448 	if (sectorsize != PAGE_SIZE) {
2449 		btrfs_err(fs_info,
2450 			"sectorsize %llu not supported yet, only support %lu",
2451 			sectorsize, PAGE_SIZE);
2452 		ret = -EINVAL;
2453 	}
2454 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2455 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2456 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2457 		ret = -EINVAL;
2458 	}
2459 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2460 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2461 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2462 		ret = -EINVAL;
2463 	}
2464 
2465 	/* Root alignment check */
2466 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2467 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2468 			   btrfs_super_root(sb));
2469 		ret = -EINVAL;
2470 	}
2471 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2472 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2473 			   btrfs_super_chunk_root(sb));
2474 		ret = -EINVAL;
2475 	}
2476 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2477 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2478 			   btrfs_super_log_root(sb));
2479 		ret = -EINVAL;
2480 	}
2481 
2482 	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
2483 		btrfs_err(fs_info,
2484 			   "dev_item UUID does not match fsid: %pU != %pU",
2485 			   fs_info->fsid, sb->dev_item.fsid);
2486 		ret = -EINVAL;
2487 	}
2488 
2489 	/*
2490 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2491 	 * done later
2492 	 */
2493 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2494 		btrfs_err(fs_info, "bytes_used is too small %llu",
2495 			  btrfs_super_bytes_used(sb));
2496 		ret = -EINVAL;
2497 	}
2498 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2499 		btrfs_err(fs_info, "invalid stripesize %u",
2500 			  btrfs_super_stripesize(sb));
2501 		ret = -EINVAL;
2502 	}
2503 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2504 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2505 			   btrfs_super_num_devices(sb));
2506 	if (btrfs_super_num_devices(sb) == 0) {
2507 		btrfs_err(fs_info, "number of devices is 0");
2508 		ret = -EINVAL;
2509 	}
2510 
2511 	if (mirror_num >= 0 &&
2512 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2513 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2514 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2515 		ret = -EINVAL;
2516 	}
2517 
2518 	/*
2519 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2520 	 * and one chunk
2521 	 */
2522 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2523 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2524 			  btrfs_super_sys_array_size(sb),
2525 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2526 		ret = -EINVAL;
2527 	}
2528 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2529 			+ sizeof(struct btrfs_chunk)) {
2530 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2531 			  btrfs_super_sys_array_size(sb),
2532 			  sizeof(struct btrfs_disk_key)
2533 			  + sizeof(struct btrfs_chunk));
2534 		ret = -EINVAL;
2535 	}
2536 
2537 	/*
2538 	 * The generation is a global counter, we'll trust it more than the others
2539 	 * but it's still possible that it's the one that's wrong.
2540 	 */
2541 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2542 		btrfs_warn(fs_info,
2543 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2544 			btrfs_super_generation(sb),
2545 			btrfs_super_chunk_root_generation(sb));
2546 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2547 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2548 		btrfs_warn(fs_info,
2549 			"suspicious: generation < cache_generation: %llu < %llu",
2550 			btrfs_super_generation(sb),
2551 			btrfs_super_cache_generation(sb));
2552 
2553 	return ret;
2554 }
2555 
2556 /*
2557  * Validation of super block at mount time.
2558  * Some checks already done early at mount time, like csum type and incompat
2559  * flags will be skipped.
2560  */
2561 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2562 {
2563 	return validate_super(fs_info, fs_info->super_copy, 0);
2564 }
2565 
2566 /*
2567  * Validation of super block at write time.
2568  * Some checks like bytenr check will be skipped as their values will be
2569  * overwritten soon.
2570  * Extra checks like csum type and incompat flags will be done here.
2571  */
2572 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2573 				      struct btrfs_super_block *sb)
2574 {
2575 	int ret;
2576 
2577 	ret = validate_super(fs_info, sb, -1);
2578 	if (ret < 0)
2579 		goto out;
2580 	if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2581 		ret = -EUCLEAN;
2582 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2583 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2584 		goto out;
2585 	}
2586 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2587 		ret = -EUCLEAN;
2588 		btrfs_err(fs_info,
2589 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2590 			  btrfs_super_incompat_flags(sb),
2591 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2592 		goto out;
2593 	}
2594 out:
2595 	if (ret < 0)
2596 		btrfs_err(fs_info,
2597 		"super block corruption detected before writing it to disk");
2598 	return ret;
2599 }
2600 
2601 int open_ctree(struct super_block *sb,
2602 	       struct btrfs_fs_devices *fs_devices,
2603 	       char *options)
2604 {
2605 	u32 sectorsize;
2606 	u32 nodesize;
2607 	u32 stripesize;
2608 	u64 generation;
2609 	u64 features;
2610 	struct btrfs_key location;
2611 	struct buffer_head *bh;
2612 	struct btrfs_super_block *disk_super;
2613 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2614 	struct btrfs_root *tree_root;
2615 	struct btrfs_root *chunk_root;
2616 	int ret;
2617 	int err = -EINVAL;
2618 	int num_backups_tried = 0;
2619 	int backup_index = 0;
2620 	int clear_free_space_tree = 0;
2621 	int level;
2622 
2623 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2624 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2625 	if (!tree_root || !chunk_root) {
2626 		err = -ENOMEM;
2627 		goto fail;
2628 	}
2629 
2630 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2631 	if (ret) {
2632 		err = ret;
2633 		goto fail;
2634 	}
2635 
2636 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2637 	if (ret) {
2638 		err = ret;
2639 		goto fail_srcu;
2640 	}
2641 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2642 					(1 + ilog2(nr_cpu_ids));
2643 
2644 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2645 	if (ret) {
2646 		err = ret;
2647 		goto fail_dirty_metadata_bytes;
2648 	}
2649 
2650 	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2651 	if (ret) {
2652 		err = ret;
2653 		goto fail_delalloc_bytes;
2654 	}
2655 
2656 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2657 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2658 	INIT_LIST_HEAD(&fs_info->trans_list);
2659 	INIT_LIST_HEAD(&fs_info->dead_roots);
2660 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2661 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2662 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2663 	INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2664 	spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2665 	spin_lock_init(&fs_info->delalloc_root_lock);
2666 	spin_lock_init(&fs_info->trans_lock);
2667 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2668 	spin_lock_init(&fs_info->delayed_iput_lock);
2669 	spin_lock_init(&fs_info->defrag_inodes_lock);
2670 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2671 	spin_lock_init(&fs_info->super_lock);
2672 	spin_lock_init(&fs_info->qgroup_op_lock);
2673 	spin_lock_init(&fs_info->buffer_lock);
2674 	spin_lock_init(&fs_info->unused_bgs_lock);
2675 	rwlock_init(&fs_info->tree_mod_log_lock);
2676 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2677 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2678 	mutex_init(&fs_info->reloc_mutex);
2679 	mutex_init(&fs_info->delalloc_root_mutex);
2680 	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2681 	seqlock_init(&fs_info->profiles_lock);
2682 
2683 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2684 	INIT_LIST_HEAD(&fs_info->space_info);
2685 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2686 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2687 	btrfs_mapping_init(&fs_info->mapping_tree);
2688 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2689 			     BTRFS_BLOCK_RSV_GLOBAL);
2690 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2691 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2692 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2693 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2694 			     BTRFS_BLOCK_RSV_DELOPS);
2695 	atomic_set(&fs_info->async_delalloc_pages, 0);
2696 	atomic_set(&fs_info->defrag_running, 0);
2697 	atomic_set(&fs_info->qgroup_op_seq, 0);
2698 	atomic_set(&fs_info->reada_works_cnt, 0);
2699 	atomic64_set(&fs_info->tree_mod_seq, 0);
2700 	fs_info->sb = sb;
2701 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2702 	fs_info->metadata_ratio = 0;
2703 	fs_info->defrag_inodes = RB_ROOT;
2704 	atomic64_set(&fs_info->free_chunk_space, 0);
2705 	fs_info->tree_mod_log = RB_ROOT;
2706 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2707 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2708 	/* readahead state */
2709 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2710 	spin_lock_init(&fs_info->reada_lock);
2711 	btrfs_init_ref_verify(fs_info);
2712 
2713 	fs_info->thread_pool_size = min_t(unsigned long,
2714 					  num_online_cpus() + 2, 8);
2715 
2716 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2717 	spin_lock_init(&fs_info->ordered_root_lock);
2718 
2719 	fs_info->btree_inode = new_inode(sb);
2720 	if (!fs_info->btree_inode) {
2721 		err = -ENOMEM;
2722 		goto fail_bio_counter;
2723 	}
2724 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2725 
2726 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2727 					GFP_KERNEL);
2728 	if (!fs_info->delayed_root) {
2729 		err = -ENOMEM;
2730 		goto fail_iput;
2731 	}
2732 	btrfs_init_delayed_root(fs_info->delayed_root);
2733 
2734 	btrfs_init_scrub(fs_info);
2735 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2736 	fs_info->check_integrity_print_mask = 0;
2737 #endif
2738 	btrfs_init_balance(fs_info);
2739 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2740 
2741 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2742 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2743 
2744 	btrfs_init_btree_inode(fs_info);
2745 
2746 	spin_lock_init(&fs_info->block_group_cache_lock);
2747 	fs_info->block_group_cache_tree = RB_ROOT;
2748 	fs_info->first_logical_byte = (u64)-1;
2749 
2750 	extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2751 	extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2752 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2753 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2754 
2755 	mutex_init(&fs_info->ordered_operations_mutex);
2756 	mutex_init(&fs_info->tree_log_mutex);
2757 	mutex_init(&fs_info->chunk_mutex);
2758 	mutex_init(&fs_info->transaction_kthread_mutex);
2759 	mutex_init(&fs_info->cleaner_mutex);
2760 	mutex_init(&fs_info->ro_block_group_mutex);
2761 	init_rwsem(&fs_info->commit_root_sem);
2762 	init_rwsem(&fs_info->cleanup_work_sem);
2763 	init_rwsem(&fs_info->subvol_sem);
2764 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2765 
2766 	btrfs_init_dev_replace_locks(fs_info);
2767 	btrfs_init_qgroup(fs_info);
2768 
2769 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2770 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2771 
2772 	init_waitqueue_head(&fs_info->transaction_throttle);
2773 	init_waitqueue_head(&fs_info->transaction_wait);
2774 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2775 	init_waitqueue_head(&fs_info->async_submit_wait);
2776 
2777 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2778 
2779 	/* Usable values until the real ones are cached from the superblock */
2780 	fs_info->nodesize = 4096;
2781 	fs_info->sectorsize = 4096;
2782 	fs_info->stripesize = 4096;
2783 
2784 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2785 	if (ret) {
2786 		err = ret;
2787 		goto fail_alloc;
2788 	}
2789 
2790 	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2791 
2792 	invalidate_bdev(fs_devices->latest_bdev);
2793 
2794 	/*
2795 	 * Read super block and check the signature bytes only
2796 	 */
2797 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2798 	if (IS_ERR(bh)) {
2799 		err = PTR_ERR(bh);
2800 		goto fail_alloc;
2801 	}
2802 
2803 	/*
2804 	 * We want to check superblock checksum, the type is stored inside.
2805 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2806 	 */
2807 	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2808 		btrfs_err(fs_info, "superblock checksum mismatch");
2809 		err = -EINVAL;
2810 		brelse(bh);
2811 		goto fail_alloc;
2812 	}
2813 
2814 	/*
2815 	 * super_copy is zeroed at allocation time and we never touch the
2816 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2817 	 * the whole block of INFO_SIZE
2818 	 */
2819 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2820 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2821 	       sizeof(*fs_info->super_for_commit));
2822 	brelse(bh);
2823 
2824 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2825 
2826 	ret = btrfs_validate_mount_super(fs_info);
2827 	if (ret) {
2828 		btrfs_err(fs_info, "superblock contains fatal errors");
2829 		err = -EINVAL;
2830 		goto fail_alloc;
2831 	}
2832 
2833 	disk_super = fs_info->super_copy;
2834 	if (!btrfs_super_root(disk_super))
2835 		goto fail_alloc;
2836 
2837 	/* check FS state, whether FS is broken. */
2838 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2839 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2840 
2841 	/*
2842 	 * run through our array of backup supers and setup
2843 	 * our ring pointer to the oldest one
2844 	 */
2845 	generation = btrfs_super_generation(disk_super);
2846 	find_oldest_super_backup(fs_info, generation);
2847 
2848 	/*
2849 	 * In the long term, we'll store the compression type in the super
2850 	 * block, and it'll be used for per file compression control.
2851 	 */
2852 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2853 
2854 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2855 	if (ret) {
2856 		err = ret;
2857 		goto fail_alloc;
2858 	}
2859 
2860 	features = btrfs_super_incompat_flags(disk_super) &
2861 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2862 	if (features) {
2863 		btrfs_err(fs_info,
2864 		    "cannot mount because of unsupported optional features (%llx)",
2865 		    features);
2866 		err = -EINVAL;
2867 		goto fail_alloc;
2868 	}
2869 
2870 	features = btrfs_super_incompat_flags(disk_super);
2871 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2872 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2873 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2874 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2875 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2876 
2877 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2878 		btrfs_info(fs_info, "has skinny extents");
2879 
2880 	/*
2881 	 * flag our filesystem as having big metadata blocks if
2882 	 * they are bigger than the page size
2883 	 */
2884 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2885 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2886 			btrfs_info(fs_info,
2887 				"flagging fs with big metadata feature");
2888 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2889 	}
2890 
2891 	nodesize = btrfs_super_nodesize(disk_super);
2892 	sectorsize = btrfs_super_sectorsize(disk_super);
2893 	stripesize = sectorsize;
2894 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2895 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2896 
2897 	/* Cache block sizes */
2898 	fs_info->nodesize = nodesize;
2899 	fs_info->sectorsize = sectorsize;
2900 	fs_info->stripesize = stripesize;
2901 
2902 	/*
2903 	 * mixed block groups end up with duplicate but slightly offset
2904 	 * extent buffers for the same range.  It leads to corruptions
2905 	 */
2906 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2907 	    (sectorsize != nodesize)) {
2908 		btrfs_err(fs_info,
2909 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2910 			nodesize, sectorsize);
2911 		goto fail_alloc;
2912 	}
2913 
2914 	/*
2915 	 * Needn't use the lock because there is no other task which will
2916 	 * update the flag.
2917 	 */
2918 	btrfs_set_super_incompat_flags(disk_super, features);
2919 
2920 	features = btrfs_super_compat_ro_flags(disk_super) &
2921 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2922 	if (!sb_rdonly(sb) && features) {
2923 		btrfs_err(fs_info,
2924 	"cannot mount read-write because of unsupported optional features (%llx)",
2925 		       features);
2926 		err = -EINVAL;
2927 		goto fail_alloc;
2928 	}
2929 
2930 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2931 	if (ret) {
2932 		err = ret;
2933 		goto fail_sb_buffer;
2934 	}
2935 
2936 	sb->s_bdi->congested_fn = btrfs_congested_fn;
2937 	sb->s_bdi->congested_data = fs_info;
2938 	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2939 	sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2940 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2941 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2942 
2943 	sb->s_blocksize = sectorsize;
2944 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2945 	memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2946 
2947 	mutex_lock(&fs_info->chunk_mutex);
2948 	ret = btrfs_read_sys_array(fs_info);
2949 	mutex_unlock(&fs_info->chunk_mutex);
2950 	if (ret) {
2951 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2952 		goto fail_sb_buffer;
2953 	}
2954 
2955 	generation = btrfs_super_chunk_root_generation(disk_super);
2956 	level = btrfs_super_chunk_root_level(disk_super);
2957 
2958 	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2959 
2960 	chunk_root->node = read_tree_block(fs_info,
2961 					   btrfs_super_chunk_root(disk_super),
2962 					   generation, level, NULL);
2963 	if (IS_ERR(chunk_root->node) ||
2964 	    !extent_buffer_uptodate(chunk_root->node)) {
2965 		btrfs_err(fs_info, "failed to read chunk root");
2966 		if (!IS_ERR(chunk_root->node))
2967 			free_extent_buffer(chunk_root->node);
2968 		chunk_root->node = NULL;
2969 		goto fail_tree_roots;
2970 	}
2971 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2972 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2973 
2974 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2975 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2976 
2977 	ret = btrfs_read_chunk_tree(fs_info);
2978 	if (ret) {
2979 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2980 		goto fail_tree_roots;
2981 	}
2982 
2983 	/*
2984 	 * Keep the devid that is marked to be the target device for the
2985 	 * device replace procedure
2986 	 */
2987 	btrfs_free_extra_devids(fs_devices, 0);
2988 
2989 	if (!fs_devices->latest_bdev) {
2990 		btrfs_err(fs_info, "failed to read devices");
2991 		goto fail_tree_roots;
2992 	}
2993 
2994 retry_root_backup:
2995 	generation = btrfs_super_generation(disk_super);
2996 	level = btrfs_super_root_level(disk_super);
2997 
2998 	tree_root->node = read_tree_block(fs_info,
2999 					  btrfs_super_root(disk_super),
3000 					  generation, level, NULL);
3001 	if (IS_ERR(tree_root->node) ||
3002 	    !extent_buffer_uptodate(tree_root->node)) {
3003 		btrfs_warn(fs_info, "failed to read tree root");
3004 		if (!IS_ERR(tree_root->node))
3005 			free_extent_buffer(tree_root->node);
3006 		tree_root->node = NULL;
3007 		goto recovery_tree_root;
3008 	}
3009 
3010 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3011 	tree_root->commit_root = btrfs_root_node(tree_root);
3012 	btrfs_set_root_refs(&tree_root->root_item, 1);
3013 
3014 	mutex_lock(&tree_root->objectid_mutex);
3015 	ret = btrfs_find_highest_objectid(tree_root,
3016 					&tree_root->highest_objectid);
3017 	if (ret) {
3018 		mutex_unlock(&tree_root->objectid_mutex);
3019 		goto recovery_tree_root;
3020 	}
3021 
3022 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3023 
3024 	mutex_unlock(&tree_root->objectid_mutex);
3025 
3026 	ret = btrfs_read_roots(fs_info);
3027 	if (ret)
3028 		goto recovery_tree_root;
3029 
3030 	fs_info->generation = generation;
3031 	fs_info->last_trans_committed = generation;
3032 
3033 	ret = btrfs_verify_dev_extents(fs_info);
3034 	if (ret) {
3035 		btrfs_err(fs_info,
3036 			  "failed to verify dev extents against chunks: %d",
3037 			  ret);
3038 		goto fail_block_groups;
3039 	}
3040 	ret = btrfs_recover_balance(fs_info);
3041 	if (ret) {
3042 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3043 		goto fail_block_groups;
3044 	}
3045 
3046 	ret = btrfs_init_dev_stats(fs_info);
3047 	if (ret) {
3048 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3049 		goto fail_block_groups;
3050 	}
3051 
3052 	ret = btrfs_init_dev_replace(fs_info);
3053 	if (ret) {
3054 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3055 		goto fail_block_groups;
3056 	}
3057 
3058 	btrfs_free_extra_devids(fs_devices, 1);
3059 
3060 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3061 	if (ret) {
3062 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3063 				ret);
3064 		goto fail_block_groups;
3065 	}
3066 
3067 	ret = btrfs_sysfs_add_device(fs_devices);
3068 	if (ret) {
3069 		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3070 				ret);
3071 		goto fail_fsdev_sysfs;
3072 	}
3073 
3074 	ret = btrfs_sysfs_add_mounted(fs_info);
3075 	if (ret) {
3076 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3077 		goto fail_fsdev_sysfs;
3078 	}
3079 
3080 	ret = btrfs_init_space_info(fs_info);
3081 	if (ret) {
3082 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3083 		goto fail_sysfs;
3084 	}
3085 
3086 	ret = btrfs_read_block_groups(fs_info);
3087 	if (ret) {
3088 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3089 		goto fail_sysfs;
3090 	}
3091 
3092 	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3093 		btrfs_warn(fs_info,
3094 		"writeable mount is not allowed due to too many missing devices");
3095 		goto fail_sysfs;
3096 	}
3097 
3098 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3099 					       "btrfs-cleaner");
3100 	if (IS_ERR(fs_info->cleaner_kthread))
3101 		goto fail_sysfs;
3102 
3103 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3104 						   tree_root,
3105 						   "btrfs-transaction");
3106 	if (IS_ERR(fs_info->transaction_kthread))
3107 		goto fail_cleaner;
3108 
3109 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3110 	    !fs_info->fs_devices->rotating) {
3111 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3112 	}
3113 
3114 	/*
3115 	 * Mount does not set all options immediately, we can do it now and do
3116 	 * not have to wait for transaction commit
3117 	 */
3118 	btrfs_apply_pending_changes(fs_info);
3119 
3120 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3121 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3122 		ret = btrfsic_mount(fs_info, fs_devices,
3123 				    btrfs_test_opt(fs_info,
3124 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3125 				    1 : 0,
3126 				    fs_info->check_integrity_print_mask);
3127 		if (ret)
3128 			btrfs_warn(fs_info,
3129 				"failed to initialize integrity check module: %d",
3130 				ret);
3131 	}
3132 #endif
3133 	ret = btrfs_read_qgroup_config(fs_info);
3134 	if (ret)
3135 		goto fail_trans_kthread;
3136 
3137 	if (btrfs_build_ref_tree(fs_info))
3138 		btrfs_err(fs_info, "couldn't build ref tree");
3139 
3140 	/* do not make disk changes in broken FS or nologreplay is given */
3141 	if (btrfs_super_log_root(disk_super) != 0 &&
3142 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3143 		ret = btrfs_replay_log(fs_info, fs_devices);
3144 		if (ret) {
3145 			err = ret;
3146 			goto fail_qgroup;
3147 		}
3148 	}
3149 
3150 	ret = btrfs_find_orphan_roots(fs_info);
3151 	if (ret)
3152 		goto fail_qgroup;
3153 
3154 	if (!sb_rdonly(sb)) {
3155 		ret = btrfs_cleanup_fs_roots(fs_info);
3156 		if (ret)
3157 			goto fail_qgroup;
3158 
3159 		mutex_lock(&fs_info->cleaner_mutex);
3160 		ret = btrfs_recover_relocation(tree_root);
3161 		mutex_unlock(&fs_info->cleaner_mutex);
3162 		if (ret < 0) {
3163 			btrfs_warn(fs_info, "failed to recover relocation: %d",
3164 					ret);
3165 			err = -EINVAL;
3166 			goto fail_qgroup;
3167 		}
3168 	}
3169 
3170 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3171 	location.type = BTRFS_ROOT_ITEM_KEY;
3172 	location.offset = 0;
3173 
3174 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3175 	if (IS_ERR(fs_info->fs_root)) {
3176 		err = PTR_ERR(fs_info->fs_root);
3177 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3178 		goto fail_qgroup;
3179 	}
3180 
3181 	if (sb_rdonly(sb))
3182 		return 0;
3183 
3184 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3185 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3186 		clear_free_space_tree = 1;
3187 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3188 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3189 		btrfs_warn(fs_info, "free space tree is invalid");
3190 		clear_free_space_tree = 1;
3191 	}
3192 
3193 	if (clear_free_space_tree) {
3194 		btrfs_info(fs_info, "clearing free space tree");
3195 		ret = btrfs_clear_free_space_tree(fs_info);
3196 		if (ret) {
3197 			btrfs_warn(fs_info,
3198 				   "failed to clear free space tree: %d", ret);
3199 			close_ctree(fs_info);
3200 			return ret;
3201 		}
3202 	}
3203 
3204 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3205 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3206 		btrfs_info(fs_info, "creating free space tree");
3207 		ret = btrfs_create_free_space_tree(fs_info);
3208 		if (ret) {
3209 			btrfs_warn(fs_info,
3210 				"failed to create free space tree: %d", ret);
3211 			close_ctree(fs_info);
3212 			return ret;
3213 		}
3214 	}
3215 
3216 	down_read(&fs_info->cleanup_work_sem);
3217 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3218 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3219 		up_read(&fs_info->cleanup_work_sem);
3220 		close_ctree(fs_info);
3221 		return ret;
3222 	}
3223 	up_read(&fs_info->cleanup_work_sem);
3224 
3225 	ret = btrfs_resume_balance_async(fs_info);
3226 	if (ret) {
3227 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3228 		close_ctree(fs_info);
3229 		return ret;
3230 	}
3231 
3232 	ret = btrfs_resume_dev_replace_async(fs_info);
3233 	if (ret) {
3234 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3235 		close_ctree(fs_info);
3236 		return ret;
3237 	}
3238 
3239 	btrfs_qgroup_rescan_resume(fs_info);
3240 
3241 	if (!fs_info->uuid_root) {
3242 		btrfs_info(fs_info, "creating UUID tree");
3243 		ret = btrfs_create_uuid_tree(fs_info);
3244 		if (ret) {
3245 			btrfs_warn(fs_info,
3246 				"failed to create the UUID tree: %d", ret);
3247 			close_ctree(fs_info);
3248 			return ret;
3249 		}
3250 	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3251 		   fs_info->generation !=
3252 				btrfs_super_uuid_tree_generation(disk_super)) {
3253 		btrfs_info(fs_info, "checking UUID tree");
3254 		ret = btrfs_check_uuid_tree(fs_info);
3255 		if (ret) {
3256 			btrfs_warn(fs_info,
3257 				"failed to check the UUID tree: %d", ret);
3258 			close_ctree(fs_info);
3259 			return ret;
3260 		}
3261 	} else {
3262 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3263 	}
3264 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3265 
3266 	/*
3267 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3268 	 * no need to keep the flag
3269 	 */
3270 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3271 
3272 	return 0;
3273 
3274 fail_qgroup:
3275 	btrfs_free_qgroup_config(fs_info);
3276 fail_trans_kthread:
3277 	kthread_stop(fs_info->transaction_kthread);
3278 	btrfs_cleanup_transaction(fs_info);
3279 	btrfs_free_fs_roots(fs_info);
3280 fail_cleaner:
3281 	kthread_stop(fs_info->cleaner_kthread);
3282 
3283 	/*
3284 	 * make sure we're done with the btree inode before we stop our
3285 	 * kthreads
3286 	 */
3287 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3288 
3289 fail_sysfs:
3290 	btrfs_sysfs_remove_mounted(fs_info);
3291 
3292 fail_fsdev_sysfs:
3293 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3294 
3295 fail_block_groups:
3296 	btrfs_put_block_group_cache(fs_info);
3297 
3298 fail_tree_roots:
3299 	free_root_pointers(fs_info, 1);
3300 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3301 
3302 fail_sb_buffer:
3303 	btrfs_stop_all_workers(fs_info);
3304 	btrfs_free_block_groups(fs_info);
3305 fail_alloc:
3306 fail_iput:
3307 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3308 
3309 	iput(fs_info->btree_inode);
3310 fail_bio_counter:
3311 	percpu_counter_destroy(&fs_info->bio_counter);
3312 fail_delalloc_bytes:
3313 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3314 fail_dirty_metadata_bytes:
3315 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3316 fail_srcu:
3317 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3318 fail:
3319 	btrfs_free_stripe_hash_table(fs_info);
3320 	btrfs_close_devices(fs_info->fs_devices);
3321 	return err;
3322 
3323 recovery_tree_root:
3324 	if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3325 		goto fail_tree_roots;
3326 
3327 	free_root_pointers(fs_info, 0);
3328 
3329 	/* don't use the log in recovery mode, it won't be valid */
3330 	btrfs_set_super_log_root(disk_super, 0);
3331 
3332 	/* we can't trust the free space cache either */
3333 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3334 
3335 	ret = next_root_backup(fs_info, fs_info->super_copy,
3336 			       &num_backups_tried, &backup_index);
3337 	if (ret == -1)
3338 		goto fail_block_groups;
3339 	goto retry_root_backup;
3340 }
3341 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3342 
3343 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3344 {
3345 	if (uptodate) {
3346 		set_buffer_uptodate(bh);
3347 	} else {
3348 		struct btrfs_device *device = (struct btrfs_device *)
3349 			bh->b_private;
3350 
3351 		btrfs_warn_rl_in_rcu(device->fs_info,
3352 				"lost page write due to IO error on %s",
3353 					  rcu_str_deref(device->name));
3354 		/* note, we don't set_buffer_write_io_error because we have
3355 		 * our own ways of dealing with the IO errors
3356 		 */
3357 		clear_buffer_uptodate(bh);
3358 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3359 	}
3360 	unlock_buffer(bh);
3361 	put_bh(bh);
3362 }
3363 
3364 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3365 			struct buffer_head **bh_ret)
3366 {
3367 	struct buffer_head *bh;
3368 	struct btrfs_super_block *super;
3369 	u64 bytenr;
3370 
3371 	bytenr = btrfs_sb_offset(copy_num);
3372 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3373 		return -EINVAL;
3374 
3375 	bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3376 	/*
3377 	 * If we fail to read from the underlying devices, as of now
3378 	 * the best option we have is to mark it EIO.
3379 	 */
3380 	if (!bh)
3381 		return -EIO;
3382 
3383 	super = (struct btrfs_super_block *)bh->b_data;
3384 	if (btrfs_super_bytenr(super) != bytenr ||
3385 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3386 		brelse(bh);
3387 		return -EINVAL;
3388 	}
3389 
3390 	*bh_ret = bh;
3391 	return 0;
3392 }
3393 
3394 
3395 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3396 {
3397 	struct buffer_head *bh;
3398 	struct buffer_head *latest = NULL;
3399 	struct btrfs_super_block *super;
3400 	int i;
3401 	u64 transid = 0;
3402 	int ret = -EINVAL;
3403 
3404 	/* we would like to check all the supers, but that would make
3405 	 * a btrfs mount succeed after a mkfs from a different FS.
3406 	 * So, we need to add a special mount option to scan for
3407 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3408 	 */
3409 	for (i = 0; i < 1; i++) {
3410 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3411 		if (ret)
3412 			continue;
3413 
3414 		super = (struct btrfs_super_block *)bh->b_data;
3415 
3416 		if (!latest || btrfs_super_generation(super) > transid) {
3417 			brelse(latest);
3418 			latest = bh;
3419 			transid = btrfs_super_generation(super);
3420 		} else {
3421 			brelse(bh);
3422 		}
3423 	}
3424 
3425 	if (!latest)
3426 		return ERR_PTR(ret);
3427 
3428 	return latest;
3429 }
3430 
3431 /*
3432  * Write superblock @sb to the @device. Do not wait for completion, all the
3433  * buffer heads we write are pinned.
3434  *
3435  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3436  * the expected device size at commit time. Note that max_mirrors must be
3437  * same for write and wait phases.
3438  *
3439  * Return number of errors when buffer head is not found or submission fails.
3440  */
3441 static int write_dev_supers(struct btrfs_device *device,
3442 			    struct btrfs_super_block *sb, int max_mirrors)
3443 {
3444 	struct buffer_head *bh;
3445 	int i;
3446 	int ret;
3447 	int errors = 0;
3448 	u32 crc;
3449 	u64 bytenr;
3450 	int op_flags;
3451 
3452 	if (max_mirrors == 0)
3453 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3454 
3455 	for (i = 0; i < max_mirrors; i++) {
3456 		bytenr = btrfs_sb_offset(i);
3457 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3458 		    device->commit_total_bytes)
3459 			break;
3460 
3461 		btrfs_set_super_bytenr(sb, bytenr);
3462 
3463 		crc = ~(u32)0;
3464 		crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3465 				      BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3466 		btrfs_csum_final(crc, sb->csum);
3467 
3468 		/* One reference for us, and we leave it for the caller */
3469 		bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3470 			      BTRFS_SUPER_INFO_SIZE);
3471 		if (!bh) {
3472 			btrfs_err(device->fs_info,
3473 			    "couldn't get super buffer head for bytenr %llu",
3474 			    bytenr);
3475 			errors++;
3476 			continue;
3477 		}
3478 
3479 		memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3480 
3481 		/* one reference for submit_bh */
3482 		get_bh(bh);
3483 
3484 		set_buffer_uptodate(bh);
3485 		lock_buffer(bh);
3486 		bh->b_end_io = btrfs_end_buffer_write_sync;
3487 		bh->b_private = device;
3488 
3489 		/*
3490 		 * we fua the first super.  The others we allow
3491 		 * to go down lazy.
3492 		 */
3493 		op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3494 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3495 			op_flags |= REQ_FUA;
3496 		ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3497 		if (ret)
3498 			errors++;
3499 	}
3500 	return errors < i ? 0 : -1;
3501 }
3502 
3503 /*
3504  * Wait for write completion of superblocks done by write_dev_supers,
3505  * @max_mirrors same for write and wait phases.
3506  *
3507  * Return number of errors when buffer head is not found or not marked up to
3508  * date.
3509  */
3510 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3511 {
3512 	struct buffer_head *bh;
3513 	int i;
3514 	int errors = 0;
3515 	bool primary_failed = false;
3516 	u64 bytenr;
3517 
3518 	if (max_mirrors == 0)
3519 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3520 
3521 	for (i = 0; i < max_mirrors; i++) {
3522 		bytenr = btrfs_sb_offset(i);
3523 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3524 		    device->commit_total_bytes)
3525 			break;
3526 
3527 		bh = __find_get_block(device->bdev,
3528 				      bytenr / BTRFS_BDEV_BLOCKSIZE,
3529 				      BTRFS_SUPER_INFO_SIZE);
3530 		if (!bh) {
3531 			errors++;
3532 			if (i == 0)
3533 				primary_failed = true;
3534 			continue;
3535 		}
3536 		wait_on_buffer(bh);
3537 		if (!buffer_uptodate(bh)) {
3538 			errors++;
3539 			if (i == 0)
3540 				primary_failed = true;
3541 		}
3542 
3543 		/* drop our reference */
3544 		brelse(bh);
3545 
3546 		/* drop the reference from the writing run */
3547 		brelse(bh);
3548 	}
3549 
3550 	/* log error, force error return */
3551 	if (primary_failed) {
3552 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3553 			  device->devid);
3554 		return -1;
3555 	}
3556 
3557 	return errors < i ? 0 : -1;
3558 }
3559 
3560 /*
3561  * endio for the write_dev_flush, this will wake anyone waiting
3562  * for the barrier when it is done
3563  */
3564 static void btrfs_end_empty_barrier(struct bio *bio)
3565 {
3566 	complete(bio->bi_private);
3567 }
3568 
3569 /*
3570  * Submit a flush request to the device if it supports it. Error handling is
3571  * done in the waiting counterpart.
3572  */
3573 static void write_dev_flush(struct btrfs_device *device)
3574 {
3575 	struct request_queue *q = bdev_get_queue(device->bdev);
3576 	struct bio *bio = device->flush_bio;
3577 
3578 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3579 		return;
3580 
3581 	bio_reset(bio);
3582 	bio->bi_end_io = btrfs_end_empty_barrier;
3583 	bio_set_dev(bio, device->bdev);
3584 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3585 	init_completion(&device->flush_wait);
3586 	bio->bi_private = &device->flush_wait;
3587 
3588 	btrfsic_submit_bio(bio);
3589 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3590 }
3591 
3592 /*
3593  * If the flush bio has been submitted by write_dev_flush, wait for it.
3594  */
3595 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3596 {
3597 	struct bio *bio = device->flush_bio;
3598 
3599 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3600 		return BLK_STS_OK;
3601 
3602 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3603 	wait_for_completion_io(&device->flush_wait);
3604 
3605 	return bio->bi_status;
3606 }
3607 
3608 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3609 {
3610 	if (!btrfs_check_rw_degradable(fs_info, NULL))
3611 		return -EIO;
3612 	return 0;
3613 }
3614 
3615 /*
3616  * send an empty flush down to each device in parallel,
3617  * then wait for them
3618  */
3619 static int barrier_all_devices(struct btrfs_fs_info *info)
3620 {
3621 	struct list_head *head;
3622 	struct btrfs_device *dev;
3623 	int errors_wait = 0;
3624 	blk_status_t ret;
3625 
3626 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3627 	/* send down all the barriers */
3628 	head = &info->fs_devices->devices;
3629 	list_for_each_entry(dev, head, dev_list) {
3630 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3631 			continue;
3632 		if (!dev->bdev)
3633 			continue;
3634 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3635 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3636 			continue;
3637 
3638 		write_dev_flush(dev);
3639 		dev->last_flush_error = BLK_STS_OK;
3640 	}
3641 
3642 	/* wait for all the barriers */
3643 	list_for_each_entry(dev, head, dev_list) {
3644 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3645 			continue;
3646 		if (!dev->bdev) {
3647 			errors_wait++;
3648 			continue;
3649 		}
3650 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3651 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3652 			continue;
3653 
3654 		ret = wait_dev_flush(dev);
3655 		if (ret) {
3656 			dev->last_flush_error = ret;
3657 			btrfs_dev_stat_inc_and_print(dev,
3658 					BTRFS_DEV_STAT_FLUSH_ERRS);
3659 			errors_wait++;
3660 		}
3661 	}
3662 
3663 	if (errors_wait) {
3664 		/*
3665 		 * At some point we need the status of all disks
3666 		 * to arrive at the volume status. So error checking
3667 		 * is being pushed to a separate loop.
3668 		 */
3669 		return check_barrier_error(info);
3670 	}
3671 	return 0;
3672 }
3673 
3674 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3675 {
3676 	int raid_type;
3677 	int min_tolerated = INT_MAX;
3678 
3679 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3680 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3681 		min_tolerated = min(min_tolerated,
3682 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3683 				    tolerated_failures);
3684 
3685 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3686 		if (raid_type == BTRFS_RAID_SINGLE)
3687 			continue;
3688 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3689 			continue;
3690 		min_tolerated = min(min_tolerated,
3691 				    btrfs_raid_array[raid_type].
3692 				    tolerated_failures);
3693 	}
3694 
3695 	if (min_tolerated == INT_MAX) {
3696 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3697 		min_tolerated = 0;
3698 	}
3699 
3700 	return min_tolerated;
3701 }
3702 
3703 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3704 {
3705 	struct list_head *head;
3706 	struct btrfs_device *dev;
3707 	struct btrfs_super_block *sb;
3708 	struct btrfs_dev_item *dev_item;
3709 	int ret;
3710 	int do_barriers;
3711 	int max_errors;
3712 	int total_errors = 0;
3713 	u64 flags;
3714 
3715 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3716 
3717 	/*
3718 	 * max_mirrors == 0 indicates we're from commit_transaction,
3719 	 * not from fsync where the tree roots in fs_info have not
3720 	 * been consistent on disk.
3721 	 */
3722 	if (max_mirrors == 0)
3723 		backup_super_roots(fs_info);
3724 
3725 	sb = fs_info->super_for_commit;
3726 	dev_item = &sb->dev_item;
3727 
3728 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3729 	head = &fs_info->fs_devices->devices;
3730 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3731 
3732 	if (do_barriers) {
3733 		ret = barrier_all_devices(fs_info);
3734 		if (ret) {
3735 			mutex_unlock(
3736 				&fs_info->fs_devices->device_list_mutex);
3737 			btrfs_handle_fs_error(fs_info, ret,
3738 					      "errors while submitting device barriers.");
3739 			return ret;
3740 		}
3741 	}
3742 
3743 	list_for_each_entry(dev, head, dev_list) {
3744 		if (!dev->bdev) {
3745 			total_errors++;
3746 			continue;
3747 		}
3748 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3749 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3750 			continue;
3751 
3752 		btrfs_set_stack_device_generation(dev_item, 0);
3753 		btrfs_set_stack_device_type(dev_item, dev->type);
3754 		btrfs_set_stack_device_id(dev_item, dev->devid);
3755 		btrfs_set_stack_device_total_bytes(dev_item,
3756 						   dev->commit_total_bytes);
3757 		btrfs_set_stack_device_bytes_used(dev_item,
3758 						  dev->commit_bytes_used);
3759 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3760 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3761 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3762 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3763 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3764 
3765 		flags = btrfs_super_flags(sb);
3766 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3767 
3768 		ret = btrfs_validate_write_super(fs_info, sb);
3769 		if (ret < 0) {
3770 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3771 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
3772 				"unexpected superblock corruption detected");
3773 			return -EUCLEAN;
3774 		}
3775 
3776 		ret = write_dev_supers(dev, sb, max_mirrors);
3777 		if (ret)
3778 			total_errors++;
3779 	}
3780 	if (total_errors > max_errors) {
3781 		btrfs_err(fs_info, "%d errors while writing supers",
3782 			  total_errors);
3783 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3784 
3785 		/* FUA is masked off if unsupported and can't be the reason */
3786 		btrfs_handle_fs_error(fs_info, -EIO,
3787 				      "%d errors while writing supers",
3788 				      total_errors);
3789 		return -EIO;
3790 	}
3791 
3792 	total_errors = 0;
3793 	list_for_each_entry(dev, head, dev_list) {
3794 		if (!dev->bdev)
3795 			continue;
3796 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3797 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3798 			continue;
3799 
3800 		ret = wait_dev_supers(dev, max_mirrors);
3801 		if (ret)
3802 			total_errors++;
3803 	}
3804 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3805 	if (total_errors > max_errors) {
3806 		btrfs_handle_fs_error(fs_info, -EIO,
3807 				      "%d errors while writing supers",
3808 				      total_errors);
3809 		return -EIO;
3810 	}
3811 	return 0;
3812 }
3813 
3814 /* Drop a fs root from the radix tree and free it. */
3815 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3816 				  struct btrfs_root *root)
3817 {
3818 	spin_lock(&fs_info->fs_roots_radix_lock);
3819 	radix_tree_delete(&fs_info->fs_roots_radix,
3820 			  (unsigned long)root->root_key.objectid);
3821 	spin_unlock(&fs_info->fs_roots_radix_lock);
3822 
3823 	if (btrfs_root_refs(&root->root_item) == 0)
3824 		synchronize_srcu(&fs_info->subvol_srcu);
3825 
3826 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3827 		btrfs_free_log(NULL, root);
3828 		if (root->reloc_root) {
3829 			free_extent_buffer(root->reloc_root->node);
3830 			free_extent_buffer(root->reloc_root->commit_root);
3831 			btrfs_put_fs_root(root->reloc_root);
3832 			root->reloc_root = NULL;
3833 		}
3834 	}
3835 
3836 	if (root->free_ino_pinned)
3837 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3838 	if (root->free_ino_ctl)
3839 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3840 	btrfs_free_fs_root(root);
3841 }
3842 
3843 void btrfs_free_fs_root(struct btrfs_root *root)
3844 {
3845 	iput(root->ino_cache_inode);
3846 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3847 	if (root->anon_dev)
3848 		free_anon_bdev(root->anon_dev);
3849 	if (root->subv_writers)
3850 		btrfs_free_subvolume_writers(root->subv_writers);
3851 	free_extent_buffer(root->node);
3852 	free_extent_buffer(root->commit_root);
3853 	kfree(root->free_ino_ctl);
3854 	kfree(root->free_ino_pinned);
3855 	btrfs_put_fs_root(root);
3856 }
3857 
3858 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3859 {
3860 	u64 root_objectid = 0;
3861 	struct btrfs_root *gang[8];
3862 	int i = 0;
3863 	int err = 0;
3864 	unsigned int ret = 0;
3865 	int index;
3866 
3867 	while (1) {
3868 		index = srcu_read_lock(&fs_info->subvol_srcu);
3869 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3870 					     (void **)gang, root_objectid,
3871 					     ARRAY_SIZE(gang));
3872 		if (!ret) {
3873 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3874 			break;
3875 		}
3876 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3877 
3878 		for (i = 0; i < ret; i++) {
3879 			/* Avoid to grab roots in dead_roots */
3880 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3881 				gang[i] = NULL;
3882 				continue;
3883 			}
3884 			/* grab all the search result for later use */
3885 			gang[i] = btrfs_grab_fs_root(gang[i]);
3886 		}
3887 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3888 
3889 		for (i = 0; i < ret; i++) {
3890 			if (!gang[i])
3891 				continue;
3892 			root_objectid = gang[i]->root_key.objectid;
3893 			err = btrfs_orphan_cleanup(gang[i]);
3894 			if (err)
3895 				break;
3896 			btrfs_put_fs_root(gang[i]);
3897 		}
3898 		root_objectid++;
3899 	}
3900 
3901 	/* release the uncleaned roots due to error */
3902 	for (; i < ret; i++) {
3903 		if (gang[i])
3904 			btrfs_put_fs_root(gang[i]);
3905 	}
3906 	return err;
3907 }
3908 
3909 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3910 {
3911 	struct btrfs_root *root = fs_info->tree_root;
3912 	struct btrfs_trans_handle *trans;
3913 
3914 	mutex_lock(&fs_info->cleaner_mutex);
3915 	btrfs_run_delayed_iputs(fs_info);
3916 	mutex_unlock(&fs_info->cleaner_mutex);
3917 	wake_up_process(fs_info->cleaner_kthread);
3918 
3919 	/* wait until ongoing cleanup work done */
3920 	down_write(&fs_info->cleanup_work_sem);
3921 	up_write(&fs_info->cleanup_work_sem);
3922 
3923 	trans = btrfs_join_transaction(root);
3924 	if (IS_ERR(trans))
3925 		return PTR_ERR(trans);
3926 	return btrfs_commit_transaction(trans);
3927 }
3928 
3929 void close_ctree(struct btrfs_fs_info *fs_info)
3930 {
3931 	int ret;
3932 
3933 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3934 
3935 	/* wait for the qgroup rescan worker to stop */
3936 	btrfs_qgroup_wait_for_completion(fs_info, false);
3937 
3938 	/* wait for the uuid_scan task to finish */
3939 	down(&fs_info->uuid_tree_rescan_sem);
3940 	/* avoid complains from lockdep et al., set sem back to initial state */
3941 	up(&fs_info->uuid_tree_rescan_sem);
3942 
3943 	/* pause restriper - we want to resume on mount */
3944 	btrfs_pause_balance(fs_info);
3945 
3946 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3947 
3948 	btrfs_scrub_cancel(fs_info);
3949 
3950 	/* wait for any defraggers to finish */
3951 	wait_event(fs_info->transaction_wait,
3952 		   (atomic_read(&fs_info->defrag_running) == 0));
3953 
3954 	/* clear out the rbtree of defraggable inodes */
3955 	btrfs_cleanup_defrag_inodes(fs_info);
3956 
3957 	cancel_work_sync(&fs_info->async_reclaim_work);
3958 
3959 	if (!sb_rdonly(fs_info->sb)) {
3960 		/*
3961 		 * If the cleaner thread is stopped and there are
3962 		 * block groups queued for removal, the deletion will be
3963 		 * skipped when we quit the cleaner thread.
3964 		 */
3965 		btrfs_delete_unused_bgs(fs_info);
3966 
3967 		ret = btrfs_commit_super(fs_info);
3968 		if (ret)
3969 			btrfs_err(fs_info, "commit super ret %d", ret);
3970 	}
3971 
3972 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3973 	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3974 		btrfs_error_commit_super(fs_info);
3975 
3976 	kthread_stop(fs_info->transaction_kthread);
3977 	kthread_stop(fs_info->cleaner_kthread);
3978 
3979 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3980 
3981 	btrfs_free_qgroup_config(fs_info);
3982 	ASSERT(list_empty(&fs_info->delalloc_roots));
3983 
3984 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3985 		btrfs_info(fs_info, "at unmount delalloc count %lld",
3986 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3987 	}
3988 
3989 	btrfs_sysfs_remove_mounted(fs_info);
3990 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3991 
3992 	btrfs_free_fs_roots(fs_info);
3993 
3994 	btrfs_put_block_group_cache(fs_info);
3995 
3996 	/*
3997 	 * we must make sure there is not any read request to
3998 	 * submit after we stopping all workers.
3999 	 */
4000 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4001 	btrfs_stop_all_workers(fs_info);
4002 
4003 	btrfs_free_block_groups(fs_info);
4004 
4005 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4006 	free_root_pointers(fs_info, 1);
4007 
4008 	iput(fs_info->btree_inode);
4009 
4010 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4011 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4012 		btrfsic_unmount(fs_info->fs_devices);
4013 #endif
4014 
4015 	btrfs_close_devices(fs_info->fs_devices);
4016 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4017 
4018 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4019 	percpu_counter_destroy(&fs_info->delalloc_bytes);
4020 	percpu_counter_destroy(&fs_info->bio_counter);
4021 	cleanup_srcu_struct(&fs_info->subvol_srcu);
4022 
4023 	btrfs_free_stripe_hash_table(fs_info);
4024 	btrfs_free_ref_cache(fs_info);
4025 
4026 	while (!list_empty(&fs_info->pinned_chunks)) {
4027 		struct extent_map *em;
4028 
4029 		em = list_first_entry(&fs_info->pinned_chunks,
4030 				      struct extent_map, list);
4031 		list_del_init(&em->list);
4032 		free_extent_map(em);
4033 	}
4034 }
4035 
4036 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4037 			  int atomic)
4038 {
4039 	int ret;
4040 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4041 
4042 	ret = extent_buffer_uptodate(buf);
4043 	if (!ret)
4044 		return ret;
4045 
4046 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4047 				    parent_transid, atomic);
4048 	if (ret == -EAGAIN)
4049 		return ret;
4050 	return !ret;
4051 }
4052 
4053 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4054 {
4055 	struct btrfs_fs_info *fs_info;
4056 	struct btrfs_root *root;
4057 	u64 transid = btrfs_header_generation(buf);
4058 	int was_dirty;
4059 
4060 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4061 	/*
4062 	 * This is a fast path so only do this check if we have sanity tests
4063 	 * enabled.  Normal people shouldn't be using umapped buffers as dirty
4064 	 * outside of the sanity tests.
4065 	 */
4066 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4067 		return;
4068 #endif
4069 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4070 	fs_info = root->fs_info;
4071 	btrfs_assert_tree_locked(buf);
4072 	if (transid != fs_info->generation)
4073 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4074 			buf->start, transid, fs_info->generation);
4075 	was_dirty = set_extent_buffer_dirty(buf);
4076 	if (!was_dirty)
4077 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4078 					 buf->len,
4079 					 fs_info->dirty_metadata_batch);
4080 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4081 	/*
4082 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4083 	 * but item data not updated.
4084 	 * So here we should only check item pointers, not item data.
4085 	 */
4086 	if (btrfs_header_level(buf) == 0 &&
4087 	    btrfs_check_leaf_relaxed(fs_info, buf)) {
4088 		btrfs_print_leaf(buf);
4089 		ASSERT(0);
4090 	}
4091 #endif
4092 }
4093 
4094 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4095 					int flush_delayed)
4096 {
4097 	/*
4098 	 * looks as though older kernels can get into trouble with
4099 	 * this code, they end up stuck in balance_dirty_pages forever
4100 	 */
4101 	int ret;
4102 
4103 	if (current->flags & PF_MEMALLOC)
4104 		return;
4105 
4106 	if (flush_delayed)
4107 		btrfs_balance_delayed_items(fs_info);
4108 
4109 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4110 				     BTRFS_DIRTY_METADATA_THRESH,
4111 				     fs_info->dirty_metadata_batch);
4112 	if (ret > 0) {
4113 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4114 	}
4115 }
4116 
4117 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4118 {
4119 	__btrfs_btree_balance_dirty(fs_info, 1);
4120 }
4121 
4122 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4123 {
4124 	__btrfs_btree_balance_dirty(fs_info, 0);
4125 }
4126 
4127 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4128 		      struct btrfs_key *first_key)
4129 {
4130 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4131 	struct btrfs_fs_info *fs_info = root->fs_info;
4132 
4133 	return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4134 					      level, first_key);
4135 }
4136 
4137 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4138 {
4139 	/* cleanup FS via transaction */
4140 	btrfs_cleanup_transaction(fs_info);
4141 
4142 	mutex_lock(&fs_info->cleaner_mutex);
4143 	btrfs_run_delayed_iputs(fs_info);
4144 	mutex_unlock(&fs_info->cleaner_mutex);
4145 
4146 	down_write(&fs_info->cleanup_work_sem);
4147 	up_write(&fs_info->cleanup_work_sem);
4148 }
4149 
4150 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4151 {
4152 	struct btrfs_ordered_extent *ordered;
4153 
4154 	spin_lock(&root->ordered_extent_lock);
4155 	/*
4156 	 * This will just short circuit the ordered completion stuff which will
4157 	 * make sure the ordered extent gets properly cleaned up.
4158 	 */
4159 	list_for_each_entry(ordered, &root->ordered_extents,
4160 			    root_extent_list)
4161 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4162 	spin_unlock(&root->ordered_extent_lock);
4163 }
4164 
4165 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4166 {
4167 	struct btrfs_root *root;
4168 	struct list_head splice;
4169 
4170 	INIT_LIST_HEAD(&splice);
4171 
4172 	spin_lock(&fs_info->ordered_root_lock);
4173 	list_splice_init(&fs_info->ordered_roots, &splice);
4174 	while (!list_empty(&splice)) {
4175 		root = list_first_entry(&splice, struct btrfs_root,
4176 					ordered_root);
4177 		list_move_tail(&root->ordered_root,
4178 			       &fs_info->ordered_roots);
4179 
4180 		spin_unlock(&fs_info->ordered_root_lock);
4181 		btrfs_destroy_ordered_extents(root);
4182 
4183 		cond_resched();
4184 		spin_lock(&fs_info->ordered_root_lock);
4185 	}
4186 	spin_unlock(&fs_info->ordered_root_lock);
4187 }
4188 
4189 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4190 				      struct btrfs_fs_info *fs_info)
4191 {
4192 	struct rb_node *node;
4193 	struct btrfs_delayed_ref_root *delayed_refs;
4194 	struct btrfs_delayed_ref_node *ref;
4195 	int ret = 0;
4196 
4197 	delayed_refs = &trans->delayed_refs;
4198 
4199 	spin_lock(&delayed_refs->lock);
4200 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4201 		spin_unlock(&delayed_refs->lock);
4202 		btrfs_info(fs_info, "delayed_refs has NO entry");
4203 		return ret;
4204 	}
4205 
4206 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4207 		struct btrfs_delayed_ref_head *head;
4208 		struct rb_node *n;
4209 		bool pin_bytes = false;
4210 
4211 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4212 				href_node);
4213 		if (!mutex_trylock(&head->mutex)) {
4214 			refcount_inc(&head->refs);
4215 			spin_unlock(&delayed_refs->lock);
4216 
4217 			mutex_lock(&head->mutex);
4218 			mutex_unlock(&head->mutex);
4219 			btrfs_put_delayed_ref_head(head);
4220 			spin_lock(&delayed_refs->lock);
4221 			continue;
4222 		}
4223 		spin_lock(&head->lock);
4224 		while ((n = rb_first(&head->ref_tree)) != NULL) {
4225 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4226 				       ref_node);
4227 			ref->in_tree = 0;
4228 			rb_erase(&ref->ref_node, &head->ref_tree);
4229 			RB_CLEAR_NODE(&ref->ref_node);
4230 			if (!list_empty(&ref->add_list))
4231 				list_del(&ref->add_list);
4232 			atomic_dec(&delayed_refs->num_entries);
4233 			btrfs_put_delayed_ref(ref);
4234 		}
4235 		if (head->must_insert_reserved)
4236 			pin_bytes = true;
4237 		btrfs_free_delayed_extent_op(head->extent_op);
4238 		delayed_refs->num_heads--;
4239 		if (head->processing == 0)
4240 			delayed_refs->num_heads_ready--;
4241 		atomic_dec(&delayed_refs->num_entries);
4242 		rb_erase(&head->href_node, &delayed_refs->href_root);
4243 		RB_CLEAR_NODE(&head->href_node);
4244 		spin_unlock(&head->lock);
4245 		spin_unlock(&delayed_refs->lock);
4246 		mutex_unlock(&head->mutex);
4247 
4248 		if (pin_bytes)
4249 			btrfs_pin_extent(fs_info, head->bytenr,
4250 					 head->num_bytes, 1);
4251 		btrfs_put_delayed_ref_head(head);
4252 		cond_resched();
4253 		spin_lock(&delayed_refs->lock);
4254 	}
4255 
4256 	spin_unlock(&delayed_refs->lock);
4257 
4258 	return ret;
4259 }
4260 
4261 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4262 {
4263 	struct btrfs_inode *btrfs_inode;
4264 	struct list_head splice;
4265 
4266 	INIT_LIST_HEAD(&splice);
4267 
4268 	spin_lock(&root->delalloc_lock);
4269 	list_splice_init(&root->delalloc_inodes, &splice);
4270 
4271 	while (!list_empty(&splice)) {
4272 		struct inode *inode = NULL;
4273 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4274 					       delalloc_inodes);
4275 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4276 		spin_unlock(&root->delalloc_lock);
4277 
4278 		/*
4279 		 * Make sure we get a live inode and that it'll not disappear
4280 		 * meanwhile.
4281 		 */
4282 		inode = igrab(&btrfs_inode->vfs_inode);
4283 		if (inode) {
4284 			invalidate_inode_pages2(inode->i_mapping);
4285 			iput(inode);
4286 		}
4287 		spin_lock(&root->delalloc_lock);
4288 	}
4289 	spin_unlock(&root->delalloc_lock);
4290 }
4291 
4292 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4293 {
4294 	struct btrfs_root *root;
4295 	struct list_head splice;
4296 
4297 	INIT_LIST_HEAD(&splice);
4298 
4299 	spin_lock(&fs_info->delalloc_root_lock);
4300 	list_splice_init(&fs_info->delalloc_roots, &splice);
4301 	while (!list_empty(&splice)) {
4302 		root = list_first_entry(&splice, struct btrfs_root,
4303 					 delalloc_root);
4304 		root = btrfs_grab_fs_root(root);
4305 		BUG_ON(!root);
4306 		spin_unlock(&fs_info->delalloc_root_lock);
4307 
4308 		btrfs_destroy_delalloc_inodes(root);
4309 		btrfs_put_fs_root(root);
4310 
4311 		spin_lock(&fs_info->delalloc_root_lock);
4312 	}
4313 	spin_unlock(&fs_info->delalloc_root_lock);
4314 }
4315 
4316 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4317 					struct extent_io_tree *dirty_pages,
4318 					int mark)
4319 {
4320 	int ret;
4321 	struct extent_buffer *eb;
4322 	u64 start = 0;
4323 	u64 end;
4324 
4325 	while (1) {
4326 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4327 					    mark, NULL);
4328 		if (ret)
4329 			break;
4330 
4331 		clear_extent_bits(dirty_pages, start, end, mark);
4332 		while (start <= end) {
4333 			eb = find_extent_buffer(fs_info, start);
4334 			start += fs_info->nodesize;
4335 			if (!eb)
4336 				continue;
4337 			wait_on_extent_buffer_writeback(eb);
4338 
4339 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4340 					       &eb->bflags))
4341 				clear_extent_buffer_dirty(eb);
4342 			free_extent_buffer_stale(eb);
4343 		}
4344 	}
4345 
4346 	return ret;
4347 }
4348 
4349 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4350 				       struct extent_io_tree *pinned_extents)
4351 {
4352 	struct extent_io_tree *unpin;
4353 	u64 start;
4354 	u64 end;
4355 	int ret;
4356 	bool loop = true;
4357 
4358 	unpin = pinned_extents;
4359 again:
4360 	while (1) {
4361 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4362 					    EXTENT_DIRTY, NULL);
4363 		if (ret)
4364 			break;
4365 
4366 		clear_extent_dirty(unpin, start, end);
4367 		btrfs_error_unpin_extent_range(fs_info, start, end);
4368 		cond_resched();
4369 	}
4370 
4371 	if (loop) {
4372 		if (unpin == &fs_info->freed_extents[0])
4373 			unpin = &fs_info->freed_extents[1];
4374 		else
4375 			unpin = &fs_info->freed_extents[0];
4376 		loop = false;
4377 		goto again;
4378 	}
4379 
4380 	return 0;
4381 }
4382 
4383 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4384 {
4385 	struct inode *inode;
4386 
4387 	inode = cache->io_ctl.inode;
4388 	if (inode) {
4389 		invalidate_inode_pages2(inode->i_mapping);
4390 		BTRFS_I(inode)->generation = 0;
4391 		cache->io_ctl.inode = NULL;
4392 		iput(inode);
4393 	}
4394 	btrfs_put_block_group(cache);
4395 }
4396 
4397 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4398 			     struct btrfs_fs_info *fs_info)
4399 {
4400 	struct btrfs_block_group_cache *cache;
4401 
4402 	spin_lock(&cur_trans->dirty_bgs_lock);
4403 	while (!list_empty(&cur_trans->dirty_bgs)) {
4404 		cache = list_first_entry(&cur_trans->dirty_bgs,
4405 					 struct btrfs_block_group_cache,
4406 					 dirty_list);
4407 
4408 		if (!list_empty(&cache->io_list)) {
4409 			spin_unlock(&cur_trans->dirty_bgs_lock);
4410 			list_del_init(&cache->io_list);
4411 			btrfs_cleanup_bg_io(cache);
4412 			spin_lock(&cur_trans->dirty_bgs_lock);
4413 		}
4414 
4415 		list_del_init(&cache->dirty_list);
4416 		spin_lock(&cache->lock);
4417 		cache->disk_cache_state = BTRFS_DC_ERROR;
4418 		spin_unlock(&cache->lock);
4419 
4420 		spin_unlock(&cur_trans->dirty_bgs_lock);
4421 		btrfs_put_block_group(cache);
4422 		spin_lock(&cur_trans->dirty_bgs_lock);
4423 	}
4424 	spin_unlock(&cur_trans->dirty_bgs_lock);
4425 
4426 	/*
4427 	 * Refer to the definition of io_bgs member for details why it's safe
4428 	 * to use it without any locking
4429 	 */
4430 	while (!list_empty(&cur_trans->io_bgs)) {
4431 		cache = list_first_entry(&cur_trans->io_bgs,
4432 					 struct btrfs_block_group_cache,
4433 					 io_list);
4434 
4435 		list_del_init(&cache->io_list);
4436 		spin_lock(&cache->lock);
4437 		cache->disk_cache_state = BTRFS_DC_ERROR;
4438 		spin_unlock(&cache->lock);
4439 		btrfs_cleanup_bg_io(cache);
4440 	}
4441 }
4442 
4443 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4444 				   struct btrfs_fs_info *fs_info)
4445 {
4446 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4447 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4448 	ASSERT(list_empty(&cur_trans->io_bgs));
4449 
4450 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4451 
4452 	cur_trans->state = TRANS_STATE_COMMIT_START;
4453 	wake_up(&fs_info->transaction_blocked_wait);
4454 
4455 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4456 	wake_up(&fs_info->transaction_wait);
4457 
4458 	btrfs_destroy_delayed_inodes(fs_info);
4459 	btrfs_assert_delayed_root_empty(fs_info);
4460 
4461 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4462 				     EXTENT_DIRTY);
4463 	btrfs_destroy_pinned_extent(fs_info,
4464 				    fs_info->pinned_extents);
4465 
4466 	cur_trans->state =TRANS_STATE_COMPLETED;
4467 	wake_up(&cur_trans->commit_wait);
4468 }
4469 
4470 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4471 {
4472 	struct btrfs_transaction *t;
4473 
4474 	mutex_lock(&fs_info->transaction_kthread_mutex);
4475 
4476 	spin_lock(&fs_info->trans_lock);
4477 	while (!list_empty(&fs_info->trans_list)) {
4478 		t = list_first_entry(&fs_info->trans_list,
4479 				     struct btrfs_transaction, list);
4480 		if (t->state >= TRANS_STATE_COMMIT_START) {
4481 			refcount_inc(&t->use_count);
4482 			spin_unlock(&fs_info->trans_lock);
4483 			btrfs_wait_for_commit(fs_info, t->transid);
4484 			btrfs_put_transaction(t);
4485 			spin_lock(&fs_info->trans_lock);
4486 			continue;
4487 		}
4488 		if (t == fs_info->running_transaction) {
4489 			t->state = TRANS_STATE_COMMIT_DOING;
4490 			spin_unlock(&fs_info->trans_lock);
4491 			/*
4492 			 * We wait for 0 num_writers since we don't hold a trans
4493 			 * handle open currently for this transaction.
4494 			 */
4495 			wait_event(t->writer_wait,
4496 				   atomic_read(&t->num_writers) == 0);
4497 		} else {
4498 			spin_unlock(&fs_info->trans_lock);
4499 		}
4500 		btrfs_cleanup_one_transaction(t, fs_info);
4501 
4502 		spin_lock(&fs_info->trans_lock);
4503 		if (t == fs_info->running_transaction)
4504 			fs_info->running_transaction = NULL;
4505 		list_del_init(&t->list);
4506 		spin_unlock(&fs_info->trans_lock);
4507 
4508 		btrfs_put_transaction(t);
4509 		trace_btrfs_transaction_commit(fs_info->tree_root);
4510 		spin_lock(&fs_info->trans_lock);
4511 	}
4512 	spin_unlock(&fs_info->trans_lock);
4513 	btrfs_destroy_all_ordered_extents(fs_info);
4514 	btrfs_destroy_delayed_inodes(fs_info);
4515 	btrfs_assert_delayed_root_empty(fs_info);
4516 	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4517 	btrfs_destroy_all_delalloc_inodes(fs_info);
4518 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4519 
4520 	return 0;
4521 }
4522 
4523 static const struct extent_io_ops btree_extent_io_ops = {
4524 	/* mandatory callbacks */
4525 	.submit_bio_hook = btree_submit_bio_hook,
4526 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4527 	.readpage_io_failed_hook = btree_io_failed_hook,
4528 
4529 	/* optional callbacks */
4530 };
4531