1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include <linux/slab.h> 31 #include <linux/migrate.h> 32 #include <linux/ratelimit.h> 33 #include <asm/unaligned.h> 34 #include "compat.h" 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "async-thread.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 48 static struct extent_io_ops btree_extent_io_ops; 49 static void end_workqueue_fn(struct btrfs_work *work); 50 static void free_fs_root(struct btrfs_root *root); 51 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 52 int read_only); 53 static void btrfs_destroy_ordered_operations(struct btrfs_root *root); 54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 56 struct btrfs_root *root); 57 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t); 58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 59 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 60 struct extent_io_tree *dirty_pages, 61 int mark); 62 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 63 struct extent_io_tree *pinned_extents); 64 65 /* 66 * end_io_wq structs are used to do processing in task context when an IO is 67 * complete. This is used during reads to verify checksums, and it is used 68 * by writes to insert metadata for new file extents after IO is complete. 69 */ 70 struct end_io_wq { 71 struct bio *bio; 72 bio_end_io_t *end_io; 73 void *private; 74 struct btrfs_fs_info *info; 75 int error; 76 int metadata; 77 struct list_head list; 78 struct btrfs_work work; 79 }; 80 81 /* 82 * async submit bios are used to offload expensive checksumming 83 * onto the worker threads. They checksum file and metadata bios 84 * just before they are sent down the IO stack. 85 */ 86 struct async_submit_bio { 87 struct inode *inode; 88 struct bio *bio; 89 struct list_head list; 90 extent_submit_bio_hook_t *submit_bio_start; 91 extent_submit_bio_hook_t *submit_bio_done; 92 int rw; 93 int mirror_num; 94 unsigned long bio_flags; 95 /* 96 * bio_offset is optional, can be used if the pages in the bio 97 * can't tell us where in the file the bio should go 98 */ 99 u64 bio_offset; 100 struct btrfs_work work; 101 int error; 102 }; 103 104 /* 105 * Lockdep class keys for extent_buffer->lock's in this root. For a given 106 * eb, the lockdep key is determined by the btrfs_root it belongs to and 107 * the level the eb occupies in the tree. 108 * 109 * Different roots are used for different purposes and may nest inside each 110 * other and they require separate keysets. As lockdep keys should be 111 * static, assign keysets according to the purpose of the root as indicated 112 * by btrfs_root->objectid. This ensures that all special purpose roots 113 * have separate keysets. 114 * 115 * Lock-nesting across peer nodes is always done with the immediate parent 116 * node locked thus preventing deadlock. As lockdep doesn't know this, use 117 * subclass to avoid triggering lockdep warning in such cases. 118 * 119 * The key is set by the readpage_end_io_hook after the buffer has passed 120 * csum validation but before the pages are unlocked. It is also set by 121 * btrfs_init_new_buffer on freshly allocated blocks. 122 * 123 * We also add a check to make sure the highest level of the tree is the 124 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 125 * needs update as well. 126 */ 127 #ifdef CONFIG_DEBUG_LOCK_ALLOC 128 # if BTRFS_MAX_LEVEL != 8 129 # error 130 # endif 131 132 static struct btrfs_lockdep_keyset { 133 u64 id; /* root objectid */ 134 const char *name_stem; /* lock name stem */ 135 char names[BTRFS_MAX_LEVEL + 1][20]; 136 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 137 } btrfs_lockdep_keysets[] = { 138 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 139 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 140 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 141 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 142 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 143 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 144 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" }, 145 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 146 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 147 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 148 { .id = 0, .name_stem = "tree" }, 149 }; 150 151 void __init btrfs_init_lockdep(void) 152 { 153 int i, j; 154 155 /* initialize lockdep class names */ 156 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 157 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 158 159 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 160 snprintf(ks->names[j], sizeof(ks->names[j]), 161 "btrfs-%s-%02d", ks->name_stem, j); 162 } 163 } 164 165 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 166 int level) 167 { 168 struct btrfs_lockdep_keyset *ks; 169 170 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 171 172 /* find the matching keyset, id 0 is the default entry */ 173 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 174 if (ks->id == objectid) 175 break; 176 177 lockdep_set_class_and_name(&eb->lock, 178 &ks->keys[level], ks->names[level]); 179 } 180 181 #endif 182 183 /* 184 * extents on the btree inode are pretty simple, there's one extent 185 * that covers the entire device 186 */ 187 static struct extent_map *btree_get_extent(struct inode *inode, 188 struct page *page, size_t pg_offset, u64 start, u64 len, 189 int create) 190 { 191 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 192 struct extent_map *em; 193 int ret; 194 195 read_lock(&em_tree->lock); 196 em = lookup_extent_mapping(em_tree, start, len); 197 if (em) { 198 em->bdev = 199 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 200 read_unlock(&em_tree->lock); 201 goto out; 202 } 203 read_unlock(&em_tree->lock); 204 205 em = alloc_extent_map(); 206 if (!em) { 207 em = ERR_PTR(-ENOMEM); 208 goto out; 209 } 210 em->start = 0; 211 em->len = (u64)-1; 212 em->block_len = (u64)-1; 213 em->block_start = 0; 214 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 215 216 write_lock(&em_tree->lock); 217 ret = add_extent_mapping(em_tree, em); 218 if (ret == -EEXIST) { 219 u64 failed_start = em->start; 220 u64 failed_len = em->len; 221 222 free_extent_map(em); 223 em = lookup_extent_mapping(em_tree, start, len); 224 if (em) { 225 ret = 0; 226 } else { 227 em = lookup_extent_mapping(em_tree, failed_start, 228 failed_len); 229 ret = -EIO; 230 } 231 } else if (ret) { 232 free_extent_map(em); 233 em = NULL; 234 } 235 write_unlock(&em_tree->lock); 236 237 if (ret) 238 em = ERR_PTR(ret); 239 out: 240 return em; 241 } 242 243 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 244 { 245 return crc32c(seed, data, len); 246 } 247 248 void btrfs_csum_final(u32 crc, char *result) 249 { 250 put_unaligned_le32(~crc, result); 251 } 252 253 /* 254 * compute the csum for a btree block, and either verify it or write it 255 * into the csum field of the block. 256 */ 257 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 258 int verify) 259 { 260 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 261 char *result = NULL; 262 unsigned long len; 263 unsigned long cur_len; 264 unsigned long offset = BTRFS_CSUM_SIZE; 265 char *kaddr; 266 unsigned long map_start; 267 unsigned long map_len; 268 int err; 269 u32 crc = ~(u32)0; 270 unsigned long inline_result; 271 272 len = buf->len - offset; 273 while (len > 0) { 274 err = map_private_extent_buffer(buf, offset, 32, 275 &kaddr, &map_start, &map_len); 276 if (err) 277 return 1; 278 cur_len = min(len, map_len - (offset - map_start)); 279 crc = btrfs_csum_data(root, kaddr + offset - map_start, 280 crc, cur_len); 281 len -= cur_len; 282 offset += cur_len; 283 } 284 if (csum_size > sizeof(inline_result)) { 285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 286 if (!result) 287 return 1; 288 } else { 289 result = (char *)&inline_result; 290 } 291 292 btrfs_csum_final(crc, result); 293 294 if (verify) { 295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 296 u32 val; 297 u32 found = 0; 298 memcpy(&found, result, csum_size); 299 300 read_extent_buffer(buf, &val, 0, csum_size); 301 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify " 302 "failed on %llu wanted %X found %X " 303 "level %d\n", 304 root->fs_info->sb->s_id, 305 (unsigned long long)buf->start, val, found, 306 btrfs_header_level(buf)); 307 if (result != (char *)&inline_result) 308 kfree(result); 309 return 1; 310 } 311 } else { 312 write_extent_buffer(buf, result, 0, csum_size); 313 } 314 if (result != (char *)&inline_result) 315 kfree(result); 316 return 0; 317 } 318 319 /* 320 * we can't consider a given block up to date unless the transid of the 321 * block matches the transid in the parent node's pointer. This is how we 322 * detect blocks that either didn't get written at all or got written 323 * in the wrong place. 324 */ 325 static int verify_parent_transid(struct extent_io_tree *io_tree, 326 struct extent_buffer *eb, u64 parent_transid) 327 { 328 struct extent_state *cached_state = NULL; 329 int ret; 330 331 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 332 return 0; 333 334 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 335 0, &cached_state); 336 if (extent_buffer_uptodate(eb) && 337 btrfs_header_generation(eb) == parent_transid) { 338 ret = 0; 339 goto out; 340 } 341 printk_ratelimited("parent transid verify failed on %llu wanted %llu " 342 "found %llu\n", 343 (unsigned long long)eb->start, 344 (unsigned long long)parent_transid, 345 (unsigned long long)btrfs_header_generation(eb)); 346 ret = 1; 347 clear_extent_buffer_uptodate(eb); 348 out: 349 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 350 &cached_state, GFP_NOFS); 351 return ret; 352 } 353 354 /* 355 * helper to read a given tree block, doing retries as required when 356 * the checksums don't match and we have alternate mirrors to try. 357 */ 358 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 359 struct extent_buffer *eb, 360 u64 start, u64 parent_transid) 361 { 362 struct extent_io_tree *io_tree; 363 int failed = 0; 364 int ret; 365 int num_copies = 0; 366 int mirror_num = 0; 367 int failed_mirror = 0; 368 369 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 370 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 371 while (1) { 372 ret = read_extent_buffer_pages(io_tree, eb, start, 373 WAIT_COMPLETE, 374 btree_get_extent, mirror_num); 375 if (!ret && !verify_parent_transid(io_tree, eb, parent_transid)) 376 break; 377 378 /* 379 * This buffer's crc is fine, but its contents are corrupted, so 380 * there is no reason to read the other copies, they won't be 381 * any less wrong. 382 */ 383 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 384 break; 385 386 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 387 eb->start, eb->len); 388 if (num_copies == 1) 389 break; 390 391 if (!failed_mirror) { 392 failed = 1; 393 failed_mirror = eb->read_mirror; 394 } 395 396 mirror_num++; 397 if (mirror_num == failed_mirror) 398 mirror_num++; 399 400 if (mirror_num > num_copies) 401 break; 402 } 403 404 if (failed && !ret) 405 repair_eb_io_failure(root, eb, failed_mirror); 406 407 return ret; 408 } 409 410 /* 411 * checksum a dirty tree block before IO. This has extra checks to make sure 412 * we only fill in the checksum field in the first page of a multi-page block 413 */ 414 415 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 416 { 417 struct extent_io_tree *tree; 418 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 419 u64 found_start; 420 struct extent_buffer *eb; 421 422 tree = &BTRFS_I(page->mapping->host)->io_tree; 423 424 eb = (struct extent_buffer *)page->private; 425 if (page != eb->pages[0]) 426 return 0; 427 found_start = btrfs_header_bytenr(eb); 428 if (found_start != start) { 429 WARN_ON(1); 430 return 0; 431 } 432 if (eb->pages[0] != page) { 433 WARN_ON(1); 434 return 0; 435 } 436 if (!PageUptodate(page)) { 437 WARN_ON(1); 438 return 0; 439 } 440 csum_tree_block(root, eb, 0); 441 return 0; 442 } 443 444 static int check_tree_block_fsid(struct btrfs_root *root, 445 struct extent_buffer *eb) 446 { 447 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 448 u8 fsid[BTRFS_UUID_SIZE]; 449 int ret = 1; 450 451 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 452 BTRFS_FSID_SIZE); 453 while (fs_devices) { 454 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 455 ret = 0; 456 break; 457 } 458 fs_devices = fs_devices->seed; 459 } 460 return ret; 461 } 462 463 #define CORRUPT(reason, eb, root, slot) \ 464 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \ 465 "root=%llu, slot=%d\n", reason, \ 466 (unsigned long long)btrfs_header_bytenr(eb), \ 467 (unsigned long long)root->objectid, slot) 468 469 static noinline int check_leaf(struct btrfs_root *root, 470 struct extent_buffer *leaf) 471 { 472 struct btrfs_key key; 473 struct btrfs_key leaf_key; 474 u32 nritems = btrfs_header_nritems(leaf); 475 int slot; 476 477 if (nritems == 0) 478 return 0; 479 480 /* Check the 0 item */ 481 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 482 BTRFS_LEAF_DATA_SIZE(root)) { 483 CORRUPT("invalid item offset size pair", leaf, root, 0); 484 return -EIO; 485 } 486 487 /* 488 * Check to make sure each items keys are in the correct order and their 489 * offsets make sense. We only have to loop through nritems-1 because 490 * we check the current slot against the next slot, which verifies the 491 * next slot's offset+size makes sense and that the current's slot 492 * offset is correct. 493 */ 494 for (slot = 0; slot < nritems - 1; slot++) { 495 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 496 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 497 498 /* Make sure the keys are in the right order */ 499 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 500 CORRUPT("bad key order", leaf, root, slot); 501 return -EIO; 502 } 503 504 /* 505 * Make sure the offset and ends are right, remember that the 506 * item data starts at the end of the leaf and grows towards the 507 * front. 508 */ 509 if (btrfs_item_offset_nr(leaf, slot) != 510 btrfs_item_end_nr(leaf, slot + 1)) { 511 CORRUPT("slot offset bad", leaf, root, slot); 512 return -EIO; 513 } 514 515 /* 516 * Check to make sure that we don't point outside of the leaf, 517 * just incase all the items are consistent to eachother, but 518 * all point outside of the leaf. 519 */ 520 if (btrfs_item_end_nr(leaf, slot) > 521 BTRFS_LEAF_DATA_SIZE(root)) { 522 CORRUPT("slot end outside of leaf", leaf, root, slot); 523 return -EIO; 524 } 525 } 526 527 return 0; 528 } 529 530 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree, 531 struct page *page, int max_walk) 532 { 533 struct extent_buffer *eb; 534 u64 start = page_offset(page); 535 u64 target = start; 536 u64 min_start; 537 538 if (start < max_walk) 539 min_start = 0; 540 else 541 min_start = start - max_walk; 542 543 while (start >= min_start) { 544 eb = find_extent_buffer(tree, start, 0); 545 if (eb) { 546 /* 547 * we found an extent buffer and it contains our page 548 * horray! 549 */ 550 if (eb->start <= target && 551 eb->start + eb->len > target) 552 return eb; 553 554 /* we found an extent buffer that wasn't for us */ 555 free_extent_buffer(eb); 556 return NULL; 557 } 558 if (start == 0) 559 break; 560 start -= PAGE_CACHE_SIZE; 561 } 562 return NULL; 563 } 564 565 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 566 struct extent_state *state, int mirror) 567 { 568 struct extent_io_tree *tree; 569 u64 found_start; 570 int found_level; 571 struct extent_buffer *eb; 572 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 573 int ret = 0; 574 int reads_done; 575 576 if (!page->private) 577 goto out; 578 579 tree = &BTRFS_I(page->mapping->host)->io_tree; 580 eb = (struct extent_buffer *)page->private; 581 582 /* the pending IO might have been the only thing that kept this buffer 583 * in memory. Make sure we have a ref for all this other checks 584 */ 585 extent_buffer_get(eb); 586 587 reads_done = atomic_dec_and_test(&eb->io_pages); 588 if (!reads_done) 589 goto err; 590 591 eb->read_mirror = mirror; 592 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 593 ret = -EIO; 594 goto err; 595 } 596 597 found_start = btrfs_header_bytenr(eb); 598 if (found_start != eb->start) { 599 printk_ratelimited(KERN_INFO "btrfs bad tree block start " 600 "%llu %llu\n", 601 (unsigned long long)found_start, 602 (unsigned long long)eb->start); 603 ret = -EIO; 604 goto err; 605 } 606 if (check_tree_block_fsid(root, eb)) { 607 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n", 608 (unsigned long long)eb->start); 609 ret = -EIO; 610 goto err; 611 } 612 found_level = btrfs_header_level(eb); 613 614 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 615 eb, found_level); 616 617 ret = csum_tree_block(root, eb, 1); 618 if (ret) { 619 ret = -EIO; 620 goto err; 621 } 622 623 /* 624 * If this is a leaf block and it is corrupt, set the corrupt bit so 625 * that we don't try and read the other copies of this block, just 626 * return -EIO. 627 */ 628 if (found_level == 0 && check_leaf(root, eb)) { 629 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 630 ret = -EIO; 631 } 632 633 if (!ret) 634 set_extent_buffer_uptodate(eb); 635 err: 636 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) { 637 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags); 638 btree_readahead_hook(root, eb, eb->start, ret); 639 } 640 641 if (ret) 642 clear_extent_buffer_uptodate(eb); 643 free_extent_buffer(eb); 644 out: 645 return ret; 646 } 647 648 static int btree_io_failed_hook(struct page *page, int failed_mirror) 649 { 650 struct extent_buffer *eb; 651 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 652 653 eb = (struct extent_buffer *)page->private; 654 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 655 eb->read_mirror = failed_mirror; 656 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 657 btree_readahead_hook(root, eb, eb->start, -EIO); 658 return -EIO; /* we fixed nothing */ 659 } 660 661 static void end_workqueue_bio(struct bio *bio, int err) 662 { 663 struct end_io_wq *end_io_wq = bio->bi_private; 664 struct btrfs_fs_info *fs_info; 665 666 fs_info = end_io_wq->info; 667 end_io_wq->error = err; 668 end_io_wq->work.func = end_workqueue_fn; 669 end_io_wq->work.flags = 0; 670 671 if (bio->bi_rw & REQ_WRITE) { 672 if (end_io_wq->metadata == 1) 673 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 674 &end_io_wq->work); 675 else if (end_io_wq->metadata == 2) 676 btrfs_queue_worker(&fs_info->endio_freespace_worker, 677 &end_io_wq->work); 678 else 679 btrfs_queue_worker(&fs_info->endio_write_workers, 680 &end_io_wq->work); 681 } else { 682 if (end_io_wq->metadata) 683 btrfs_queue_worker(&fs_info->endio_meta_workers, 684 &end_io_wq->work); 685 else 686 btrfs_queue_worker(&fs_info->endio_workers, 687 &end_io_wq->work); 688 } 689 } 690 691 /* 692 * For the metadata arg you want 693 * 694 * 0 - if data 695 * 1 - if normal metadta 696 * 2 - if writing to the free space cache area 697 */ 698 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 699 int metadata) 700 { 701 struct end_io_wq *end_io_wq; 702 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 703 if (!end_io_wq) 704 return -ENOMEM; 705 706 end_io_wq->private = bio->bi_private; 707 end_io_wq->end_io = bio->bi_end_io; 708 end_io_wq->info = info; 709 end_io_wq->error = 0; 710 end_io_wq->bio = bio; 711 end_io_wq->metadata = metadata; 712 713 bio->bi_private = end_io_wq; 714 bio->bi_end_io = end_workqueue_bio; 715 return 0; 716 } 717 718 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 719 { 720 unsigned long limit = min_t(unsigned long, 721 info->workers.max_workers, 722 info->fs_devices->open_devices); 723 return 256 * limit; 724 } 725 726 static void run_one_async_start(struct btrfs_work *work) 727 { 728 struct async_submit_bio *async; 729 int ret; 730 731 async = container_of(work, struct async_submit_bio, work); 732 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 733 async->mirror_num, async->bio_flags, 734 async->bio_offset); 735 if (ret) 736 async->error = ret; 737 } 738 739 static void run_one_async_done(struct btrfs_work *work) 740 { 741 struct btrfs_fs_info *fs_info; 742 struct async_submit_bio *async; 743 int limit; 744 745 async = container_of(work, struct async_submit_bio, work); 746 fs_info = BTRFS_I(async->inode)->root->fs_info; 747 748 limit = btrfs_async_submit_limit(fs_info); 749 limit = limit * 2 / 3; 750 751 atomic_dec(&fs_info->nr_async_submits); 752 753 if (atomic_read(&fs_info->nr_async_submits) < limit && 754 waitqueue_active(&fs_info->async_submit_wait)) 755 wake_up(&fs_info->async_submit_wait); 756 757 /* If an error occured we just want to clean up the bio and move on */ 758 if (async->error) { 759 bio_endio(async->bio, async->error); 760 return; 761 } 762 763 async->submit_bio_done(async->inode, async->rw, async->bio, 764 async->mirror_num, async->bio_flags, 765 async->bio_offset); 766 } 767 768 static void run_one_async_free(struct btrfs_work *work) 769 { 770 struct async_submit_bio *async; 771 772 async = container_of(work, struct async_submit_bio, work); 773 kfree(async); 774 } 775 776 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 777 int rw, struct bio *bio, int mirror_num, 778 unsigned long bio_flags, 779 u64 bio_offset, 780 extent_submit_bio_hook_t *submit_bio_start, 781 extent_submit_bio_hook_t *submit_bio_done) 782 { 783 struct async_submit_bio *async; 784 785 async = kmalloc(sizeof(*async), GFP_NOFS); 786 if (!async) 787 return -ENOMEM; 788 789 async->inode = inode; 790 async->rw = rw; 791 async->bio = bio; 792 async->mirror_num = mirror_num; 793 async->submit_bio_start = submit_bio_start; 794 async->submit_bio_done = submit_bio_done; 795 796 async->work.func = run_one_async_start; 797 async->work.ordered_func = run_one_async_done; 798 async->work.ordered_free = run_one_async_free; 799 800 async->work.flags = 0; 801 async->bio_flags = bio_flags; 802 async->bio_offset = bio_offset; 803 804 async->error = 0; 805 806 atomic_inc(&fs_info->nr_async_submits); 807 808 if (rw & REQ_SYNC) 809 btrfs_set_work_high_prio(&async->work); 810 811 btrfs_queue_worker(&fs_info->workers, &async->work); 812 813 while (atomic_read(&fs_info->async_submit_draining) && 814 atomic_read(&fs_info->nr_async_submits)) { 815 wait_event(fs_info->async_submit_wait, 816 (atomic_read(&fs_info->nr_async_submits) == 0)); 817 } 818 819 return 0; 820 } 821 822 static int btree_csum_one_bio(struct bio *bio) 823 { 824 struct bio_vec *bvec = bio->bi_io_vec; 825 int bio_index = 0; 826 struct btrfs_root *root; 827 int ret = 0; 828 829 WARN_ON(bio->bi_vcnt <= 0); 830 while (bio_index < bio->bi_vcnt) { 831 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 832 ret = csum_dirty_buffer(root, bvec->bv_page); 833 if (ret) 834 break; 835 bio_index++; 836 bvec++; 837 } 838 return ret; 839 } 840 841 static int __btree_submit_bio_start(struct inode *inode, int rw, 842 struct bio *bio, int mirror_num, 843 unsigned long bio_flags, 844 u64 bio_offset) 845 { 846 /* 847 * when we're called for a write, we're already in the async 848 * submission context. Just jump into btrfs_map_bio 849 */ 850 return btree_csum_one_bio(bio); 851 } 852 853 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 854 int mirror_num, unsigned long bio_flags, 855 u64 bio_offset) 856 { 857 /* 858 * when we're called for a write, we're already in the async 859 * submission context. Just jump into btrfs_map_bio 860 */ 861 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 862 } 863 864 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 865 int mirror_num, unsigned long bio_flags, 866 u64 bio_offset) 867 { 868 int ret; 869 870 if (!(rw & REQ_WRITE)) { 871 872 /* 873 * called for a read, do the setup so that checksum validation 874 * can happen in the async kernel threads 875 */ 876 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 877 bio, 1); 878 if (ret) 879 return ret; 880 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 881 mirror_num, 0); 882 } 883 884 /* 885 * kthread helpers are used to submit writes so that checksumming 886 * can happen in parallel across all CPUs 887 */ 888 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 889 inode, rw, bio, mirror_num, 0, 890 bio_offset, 891 __btree_submit_bio_start, 892 __btree_submit_bio_done); 893 } 894 895 #ifdef CONFIG_MIGRATION 896 static int btree_migratepage(struct address_space *mapping, 897 struct page *newpage, struct page *page, 898 enum migrate_mode mode) 899 { 900 /* 901 * we can't safely write a btree page from here, 902 * we haven't done the locking hook 903 */ 904 if (PageDirty(page)) 905 return -EAGAIN; 906 /* 907 * Buffers may be managed in a filesystem specific way. 908 * We must have no buffers or drop them. 909 */ 910 if (page_has_private(page) && 911 !try_to_release_page(page, GFP_KERNEL)) 912 return -EAGAIN; 913 return migrate_page(mapping, newpage, page, mode); 914 } 915 #endif 916 917 918 static int btree_writepages(struct address_space *mapping, 919 struct writeback_control *wbc) 920 { 921 struct extent_io_tree *tree; 922 tree = &BTRFS_I(mapping->host)->io_tree; 923 if (wbc->sync_mode == WB_SYNC_NONE) { 924 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 925 u64 num_dirty; 926 unsigned long thresh = 32 * 1024 * 1024; 927 928 if (wbc->for_kupdate) 929 return 0; 930 931 /* this is a bit racy, but that's ok */ 932 num_dirty = root->fs_info->dirty_metadata_bytes; 933 if (num_dirty < thresh) 934 return 0; 935 } 936 return btree_write_cache_pages(mapping, wbc); 937 } 938 939 static int btree_readpage(struct file *file, struct page *page) 940 { 941 struct extent_io_tree *tree; 942 tree = &BTRFS_I(page->mapping->host)->io_tree; 943 return extent_read_full_page(tree, page, btree_get_extent, 0); 944 } 945 946 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 947 { 948 if (PageWriteback(page) || PageDirty(page)) 949 return 0; 950 /* 951 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing 952 * slab allocation from alloc_extent_state down the callchain where 953 * it'd hit a BUG_ON as those flags are not allowed. 954 */ 955 gfp_flags &= ~GFP_SLAB_BUG_MASK; 956 957 return try_release_extent_buffer(page, gfp_flags); 958 } 959 960 static void btree_invalidatepage(struct page *page, unsigned long offset) 961 { 962 struct extent_io_tree *tree; 963 tree = &BTRFS_I(page->mapping->host)->io_tree; 964 extent_invalidatepage(tree, page, offset); 965 btree_releasepage(page, GFP_NOFS); 966 if (PagePrivate(page)) { 967 printk(KERN_WARNING "btrfs warning page private not zero " 968 "on page %llu\n", (unsigned long long)page_offset(page)); 969 ClearPagePrivate(page); 970 set_page_private(page, 0); 971 page_cache_release(page); 972 } 973 } 974 975 static int btree_set_page_dirty(struct page *page) 976 { 977 struct extent_buffer *eb; 978 979 BUG_ON(!PagePrivate(page)); 980 eb = (struct extent_buffer *)page->private; 981 BUG_ON(!eb); 982 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 983 BUG_ON(!atomic_read(&eb->refs)); 984 btrfs_assert_tree_locked(eb); 985 return __set_page_dirty_nobuffers(page); 986 } 987 988 static const struct address_space_operations btree_aops = { 989 .readpage = btree_readpage, 990 .writepages = btree_writepages, 991 .releasepage = btree_releasepage, 992 .invalidatepage = btree_invalidatepage, 993 #ifdef CONFIG_MIGRATION 994 .migratepage = btree_migratepage, 995 #endif 996 .set_page_dirty = btree_set_page_dirty, 997 }; 998 999 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1000 u64 parent_transid) 1001 { 1002 struct extent_buffer *buf = NULL; 1003 struct inode *btree_inode = root->fs_info->btree_inode; 1004 int ret = 0; 1005 1006 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1007 if (!buf) 1008 return 0; 1009 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1010 buf, 0, WAIT_NONE, btree_get_extent, 0); 1011 free_extent_buffer(buf); 1012 return ret; 1013 } 1014 1015 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1016 int mirror_num, struct extent_buffer **eb) 1017 { 1018 struct extent_buffer *buf = NULL; 1019 struct inode *btree_inode = root->fs_info->btree_inode; 1020 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1021 int ret; 1022 1023 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1024 if (!buf) 1025 return 0; 1026 1027 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1028 1029 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1030 btree_get_extent, mirror_num); 1031 if (ret) { 1032 free_extent_buffer(buf); 1033 return ret; 1034 } 1035 1036 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1037 free_extent_buffer(buf); 1038 return -EIO; 1039 } else if (extent_buffer_uptodate(buf)) { 1040 *eb = buf; 1041 } else { 1042 free_extent_buffer(buf); 1043 } 1044 return 0; 1045 } 1046 1047 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 1048 u64 bytenr, u32 blocksize) 1049 { 1050 struct inode *btree_inode = root->fs_info->btree_inode; 1051 struct extent_buffer *eb; 1052 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1053 bytenr, blocksize); 1054 return eb; 1055 } 1056 1057 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1058 u64 bytenr, u32 blocksize) 1059 { 1060 struct inode *btree_inode = root->fs_info->btree_inode; 1061 struct extent_buffer *eb; 1062 1063 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1064 bytenr, blocksize); 1065 return eb; 1066 } 1067 1068 1069 int btrfs_write_tree_block(struct extent_buffer *buf) 1070 { 1071 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1072 buf->start + buf->len - 1); 1073 } 1074 1075 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1076 { 1077 return filemap_fdatawait_range(buf->pages[0]->mapping, 1078 buf->start, buf->start + buf->len - 1); 1079 } 1080 1081 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1082 u32 blocksize, u64 parent_transid) 1083 { 1084 struct extent_buffer *buf = NULL; 1085 int ret; 1086 1087 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1088 if (!buf) 1089 return NULL; 1090 1091 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1092 return buf; 1093 1094 } 1095 1096 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1097 struct extent_buffer *buf) 1098 { 1099 if (btrfs_header_generation(buf) == 1100 root->fs_info->running_transaction->transid) { 1101 btrfs_assert_tree_locked(buf); 1102 1103 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1104 spin_lock(&root->fs_info->delalloc_lock); 1105 if (root->fs_info->dirty_metadata_bytes >= buf->len) 1106 root->fs_info->dirty_metadata_bytes -= buf->len; 1107 else { 1108 spin_unlock(&root->fs_info->delalloc_lock); 1109 btrfs_panic(root->fs_info, -EOVERFLOW, 1110 "Can't clear %lu bytes from " 1111 " dirty_mdatadata_bytes (%lu)", 1112 buf->len, 1113 root->fs_info->dirty_metadata_bytes); 1114 } 1115 spin_unlock(&root->fs_info->delalloc_lock); 1116 } 1117 1118 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1119 btrfs_set_lock_blocking(buf); 1120 clear_extent_buffer_dirty(buf); 1121 } 1122 } 1123 1124 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 1125 u32 stripesize, struct btrfs_root *root, 1126 struct btrfs_fs_info *fs_info, 1127 u64 objectid) 1128 { 1129 root->node = NULL; 1130 root->commit_root = NULL; 1131 root->sectorsize = sectorsize; 1132 root->nodesize = nodesize; 1133 root->leafsize = leafsize; 1134 root->stripesize = stripesize; 1135 root->ref_cows = 0; 1136 root->track_dirty = 0; 1137 root->in_radix = 0; 1138 root->orphan_item_inserted = 0; 1139 root->orphan_cleanup_state = 0; 1140 1141 root->objectid = objectid; 1142 root->last_trans = 0; 1143 root->highest_objectid = 0; 1144 root->name = NULL; 1145 root->inode_tree = RB_ROOT; 1146 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1147 root->block_rsv = NULL; 1148 root->orphan_block_rsv = NULL; 1149 1150 INIT_LIST_HEAD(&root->dirty_list); 1151 INIT_LIST_HEAD(&root->orphan_list); 1152 INIT_LIST_HEAD(&root->root_list); 1153 spin_lock_init(&root->orphan_lock); 1154 spin_lock_init(&root->inode_lock); 1155 spin_lock_init(&root->accounting_lock); 1156 mutex_init(&root->objectid_mutex); 1157 mutex_init(&root->log_mutex); 1158 init_waitqueue_head(&root->log_writer_wait); 1159 init_waitqueue_head(&root->log_commit_wait[0]); 1160 init_waitqueue_head(&root->log_commit_wait[1]); 1161 atomic_set(&root->log_commit[0], 0); 1162 atomic_set(&root->log_commit[1], 0); 1163 atomic_set(&root->log_writers, 0); 1164 root->log_batch = 0; 1165 root->log_transid = 0; 1166 root->last_log_commit = 0; 1167 extent_io_tree_init(&root->dirty_log_pages, 1168 fs_info->btree_inode->i_mapping); 1169 1170 memset(&root->root_key, 0, sizeof(root->root_key)); 1171 memset(&root->root_item, 0, sizeof(root->root_item)); 1172 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1173 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1174 root->defrag_trans_start = fs_info->generation; 1175 init_completion(&root->kobj_unregister); 1176 root->defrag_running = 0; 1177 root->root_key.objectid = objectid; 1178 root->anon_dev = 0; 1179 } 1180 1181 static int __must_check find_and_setup_root(struct btrfs_root *tree_root, 1182 struct btrfs_fs_info *fs_info, 1183 u64 objectid, 1184 struct btrfs_root *root) 1185 { 1186 int ret; 1187 u32 blocksize; 1188 u64 generation; 1189 1190 __setup_root(tree_root->nodesize, tree_root->leafsize, 1191 tree_root->sectorsize, tree_root->stripesize, 1192 root, fs_info, objectid); 1193 ret = btrfs_find_last_root(tree_root, objectid, 1194 &root->root_item, &root->root_key); 1195 if (ret > 0) 1196 return -ENOENT; 1197 else if (ret < 0) 1198 return ret; 1199 1200 generation = btrfs_root_generation(&root->root_item); 1201 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1202 root->commit_root = NULL; 1203 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1204 blocksize, generation); 1205 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) { 1206 free_extent_buffer(root->node); 1207 root->node = NULL; 1208 return -EIO; 1209 } 1210 root->commit_root = btrfs_root_node(root); 1211 return 0; 1212 } 1213 1214 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1215 { 1216 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1217 if (root) 1218 root->fs_info = fs_info; 1219 return root; 1220 } 1221 1222 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1223 struct btrfs_fs_info *fs_info) 1224 { 1225 struct btrfs_root *root; 1226 struct btrfs_root *tree_root = fs_info->tree_root; 1227 struct extent_buffer *leaf; 1228 1229 root = btrfs_alloc_root(fs_info); 1230 if (!root) 1231 return ERR_PTR(-ENOMEM); 1232 1233 __setup_root(tree_root->nodesize, tree_root->leafsize, 1234 tree_root->sectorsize, tree_root->stripesize, 1235 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1236 1237 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1238 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1239 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1240 /* 1241 * log trees do not get reference counted because they go away 1242 * before a real commit is actually done. They do store pointers 1243 * to file data extents, and those reference counts still get 1244 * updated (along with back refs to the log tree). 1245 */ 1246 root->ref_cows = 0; 1247 1248 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1249 BTRFS_TREE_LOG_OBJECTID, NULL, 1250 0, 0, 0, 0); 1251 if (IS_ERR(leaf)) { 1252 kfree(root); 1253 return ERR_CAST(leaf); 1254 } 1255 1256 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1257 btrfs_set_header_bytenr(leaf, leaf->start); 1258 btrfs_set_header_generation(leaf, trans->transid); 1259 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1260 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1261 root->node = leaf; 1262 1263 write_extent_buffer(root->node, root->fs_info->fsid, 1264 (unsigned long)btrfs_header_fsid(root->node), 1265 BTRFS_FSID_SIZE); 1266 btrfs_mark_buffer_dirty(root->node); 1267 btrfs_tree_unlock(root->node); 1268 return root; 1269 } 1270 1271 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1272 struct btrfs_fs_info *fs_info) 1273 { 1274 struct btrfs_root *log_root; 1275 1276 log_root = alloc_log_tree(trans, fs_info); 1277 if (IS_ERR(log_root)) 1278 return PTR_ERR(log_root); 1279 WARN_ON(fs_info->log_root_tree); 1280 fs_info->log_root_tree = log_root; 1281 return 0; 1282 } 1283 1284 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1285 struct btrfs_root *root) 1286 { 1287 struct btrfs_root *log_root; 1288 struct btrfs_inode_item *inode_item; 1289 1290 log_root = alloc_log_tree(trans, root->fs_info); 1291 if (IS_ERR(log_root)) 1292 return PTR_ERR(log_root); 1293 1294 log_root->last_trans = trans->transid; 1295 log_root->root_key.offset = root->root_key.objectid; 1296 1297 inode_item = &log_root->root_item.inode; 1298 inode_item->generation = cpu_to_le64(1); 1299 inode_item->size = cpu_to_le64(3); 1300 inode_item->nlink = cpu_to_le32(1); 1301 inode_item->nbytes = cpu_to_le64(root->leafsize); 1302 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1303 1304 btrfs_set_root_node(&log_root->root_item, log_root->node); 1305 1306 WARN_ON(root->log_root); 1307 root->log_root = log_root; 1308 root->log_transid = 0; 1309 root->last_log_commit = 0; 1310 return 0; 1311 } 1312 1313 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1314 struct btrfs_key *location) 1315 { 1316 struct btrfs_root *root; 1317 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1318 struct btrfs_path *path; 1319 struct extent_buffer *l; 1320 u64 generation; 1321 u32 blocksize; 1322 int ret = 0; 1323 1324 root = btrfs_alloc_root(fs_info); 1325 if (!root) 1326 return ERR_PTR(-ENOMEM); 1327 if (location->offset == (u64)-1) { 1328 ret = find_and_setup_root(tree_root, fs_info, 1329 location->objectid, root); 1330 if (ret) { 1331 kfree(root); 1332 return ERR_PTR(ret); 1333 } 1334 goto out; 1335 } 1336 1337 __setup_root(tree_root->nodesize, tree_root->leafsize, 1338 tree_root->sectorsize, tree_root->stripesize, 1339 root, fs_info, location->objectid); 1340 1341 path = btrfs_alloc_path(); 1342 if (!path) { 1343 kfree(root); 1344 return ERR_PTR(-ENOMEM); 1345 } 1346 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1347 if (ret == 0) { 1348 l = path->nodes[0]; 1349 read_extent_buffer(l, &root->root_item, 1350 btrfs_item_ptr_offset(l, path->slots[0]), 1351 sizeof(root->root_item)); 1352 memcpy(&root->root_key, location, sizeof(*location)); 1353 } 1354 btrfs_free_path(path); 1355 if (ret) { 1356 kfree(root); 1357 if (ret > 0) 1358 ret = -ENOENT; 1359 return ERR_PTR(ret); 1360 } 1361 1362 generation = btrfs_root_generation(&root->root_item); 1363 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1364 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1365 blocksize, generation); 1366 root->commit_root = btrfs_root_node(root); 1367 BUG_ON(!root->node); /* -ENOMEM */ 1368 out: 1369 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { 1370 root->ref_cows = 1; 1371 btrfs_check_and_init_root_item(&root->root_item); 1372 } 1373 1374 return root; 1375 } 1376 1377 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1378 struct btrfs_key *location) 1379 { 1380 struct btrfs_root *root; 1381 int ret; 1382 1383 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1384 return fs_info->tree_root; 1385 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1386 return fs_info->extent_root; 1387 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1388 return fs_info->chunk_root; 1389 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1390 return fs_info->dev_root; 1391 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1392 return fs_info->csum_root; 1393 again: 1394 spin_lock(&fs_info->fs_roots_radix_lock); 1395 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1396 (unsigned long)location->objectid); 1397 spin_unlock(&fs_info->fs_roots_radix_lock); 1398 if (root) 1399 return root; 1400 1401 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1402 if (IS_ERR(root)) 1403 return root; 1404 1405 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1406 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1407 GFP_NOFS); 1408 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1409 ret = -ENOMEM; 1410 goto fail; 1411 } 1412 1413 btrfs_init_free_ino_ctl(root); 1414 mutex_init(&root->fs_commit_mutex); 1415 spin_lock_init(&root->cache_lock); 1416 init_waitqueue_head(&root->cache_wait); 1417 1418 ret = get_anon_bdev(&root->anon_dev); 1419 if (ret) 1420 goto fail; 1421 1422 if (btrfs_root_refs(&root->root_item) == 0) { 1423 ret = -ENOENT; 1424 goto fail; 1425 } 1426 1427 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1428 if (ret < 0) 1429 goto fail; 1430 if (ret == 0) 1431 root->orphan_item_inserted = 1; 1432 1433 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1434 if (ret) 1435 goto fail; 1436 1437 spin_lock(&fs_info->fs_roots_radix_lock); 1438 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1439 (unsigned long)root->root_key.objectid, 1440 root); 1441 if (ret == 0) 1442 root->in_radix = 1; 1443 1444 spin_unlock(&fs_info->fs_roots_radix_lock); 1445 radix_tree_preload_end(); 1446 if (ret) { 1447 if (ret == -EEXIST) { 1448 free_fs_root(root); 1449 goto again; 1450 } 1451 goto fail; 1452 } 1453 1454 ret = btrfs_find_dead_roots(fs_info->tree_root, 1455 root->root_key.objectid); 1456 WARN_ON(ret); 1457 return root; 1458 fail: 1459 free_fs_root(root); 1460 return ERR_PTR(ret); 1461 } 1462 1463 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1464 { 1465 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1466 int ret = 0; 1467 struct btrfs_device *device; 1468 struct backing_dev_info *bdi; 1469 1470 rcu_read_lock(); 1471 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1472 if (!device->bdev) 1473 continue; 1474 bdi = blk_get_backing_dev_info(device->bdev); 1475 if (bdi && bdi_congested(bdi, bdi_bits)) { 1476 ret = 1; 1477 break; 1478 } 1479 } 1480 rcu_read_unlock(); 1481 return ret; 1482 } 1483 1484 /* 1485 * If this fails, caller must call bdi_destroy() to get rid of the 1486 * bdi again. 1487 */ 1488 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1489 { 1490 int err; 1491 1492 bdi->capabilities = BDI_CAP_MAP_COPY; 1493 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1494 if (err) 1495 return err; 1496 1497 bdi->ra_pages = default_backing_dev_info.ra_pages; 1498 bdi->congested_fn = btrfs_congested_fn; 1499 bdi->congested_data = info; 1500 return 0; 1501 } 1502 1503 /* 1504 * called by the kthread helper functions to finally call the bio end_io 1505 * functions. This is where read checksum verification actually happens 1506 */ 1507 static void end_workqueue_fn(struct btrfs_work *work) 1508 { 1509 struct bio *bio; 1510 struct end_io_wq *end_io_wq; 1511 struct btrfs_fs_info *fs_info; 1512 int error; 1513 1514 end_io_wq = container_of(work, struct end_io_wq, work); 1515 bio = end_io_wq->bio; 1516 fs_info = end_io_wq->info; 1517 1518 error = end_io_wq->error; 1519 bio->bi_private = end_io_wq->private; 1520 bio->bi_end_io = end_io_wq->end_io; 1521 kfree(end_io_wq); 1522 bio_endio(bio, error); 1523 } 1524 1525 static int cleaner_kthread(void *arg) 1526 { 1527 struct btrfs_root *root = arg; 1528 1529 do { 1530 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1531 1532 if (!(root->fs_info->sb->s_flags & MS_RDONLY) && 1533 mutex_trylock(&root->fs_info->cleaner_mutex)) { 1534 btrfs_run_delayed_iputs(root); 1535 btrfs_clean_old_snapshots(root); 1536 mutex_unlock(&root->fs_info->cleaner_mutex); 1537 btrfs_run_defrag_inodes(root->fs_info); 1538 } 1539 1540 if (!try_to_freeze()) { 1541 set_current_state(TASK_INTERRUPTIBLE); 1542 if (!kthread_should_stop()) 1543 schedule(); 1544 __set_current_state(TASK_RUNNING); 1545 } 1546 } while (!kthread_should_stop()); 1547 return 0; 1548 } 1549 1550 static int transaction_kthread(void *arg) 1551 { 1552 struct btrfs_root *root = arg; 1553 struct btrfs_trans_handle *trans; 1554 struct btrfs_transaction *cur; 1555 u64 transid; 1556 unsigned long now; 1557 unsigned long delay; 1558 bool cannot_commit; 1559 1560 do { 1561 cannot_commit = false; 1562 delay = HZ * 30; 1563 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1564 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1565 1566 spin_lock(&root->fs_info->trans_lock); 1567 cur = root->fs_info->running_transaction; 1568 if (!cur) { 1569 spin_unlock(&root->fs_info->trans_lock); 1570 goto sleep; 1571 } 1572 1573 now = get_seconds(); 1574 if (!cur->blocked && 1575 (now < cur->start_time || now - cur->start_time < 30)) { 1576 spin_unlock(&root->fs_info->trans_lock); 1577 delay = HZ * 5; 1578 goto sleep; 1579 } 1580 transid = cur->transid; 1581 spin_unlock(&root->fs_info->trans_lock); 1582 1583 /* If the file system is aborted, this will always fail. */ 1584 trans = btrfs_join_transaction(root); 1585 if (IS_ERR(trans)) { 1586 cannot_commit = true; 1587 goto sleep; 1588 } 1589 if (transid == trans->transid) { 1590 btrfs_commit_transaction(trans, root); 1591 } else { 1592 btrfs_end_transaction(trans, root); 1593 } 1594 sleep: 1595 wake_up_process(root->fs_info->cleaner_kthread); 1596 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1597 1598 if (!try_to_freeze()) { 1599 set_current_state(TASK_INTERRUPTIBLE); 1600 if (!kthread_should_stop() && 1601 (!btrfs_transaction_blocked(root->fs_info) || 1602 cannot_commit)) 1603 schedule_timeout(delay); 1604 __set_current_state(TASK_RUNNING); 1605 } 1606 } while (!kthread_should_stop()); 1607 return 0; 1608 } 1609 1610 /* 1611 * this will find the highest generation in the array of 1612 * root backups. The index of the highest array is returned, 1613 * or -1 if we can't find anything. 1614 * 1615 * We check to make sure the array is valid by comparing the 1616 * generation of the latest root in the array with the generation 1617 * in the super block. If they don't match we pitch it. 1618 */ 1619 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1620 { 1621 u64 cur; 1622 int newest_index = -1; 1623 struct btrfs_root_backup *root_backup; 1624 int i; 1625 1626 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1627 root_backup = info->super_copy->super_roots + i; 1628 cur = btrfs_backup_tree_root_gen(root_backup); 1629 if (cur == newest_gen) 1630 newest_index = i; 1631 } 1632 1633 /* check to see if we actually wrapped around */ 1634 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1635 root_backup = info->super_copy->super_roots; 1636 cur = btrfs_backup_tree_root_gen(root_backup); 1637 if (cur == newest_gen) 1638 newest_index = 0; 1639 } 1640 return newest_index; 1641 } 1642 1643 1644 /* 1645 * find the oldest backup so we know where to store new entries 1646 * in the backup array. This will set the backup_root_index 1647 * field in the fs_info struct 1648 */ 1649 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1650 u64 newest_gen) 1651 { 1652 int newest_index = -1; 1653 1654 newest_index = find_newest_super_backup(info, newest_gen); 1655 /* if there was garbage in there, just move along */ 1656 if (newest_index == -1) { 1657 info->backup_root_index = 0; 1658 } else { 1659 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1660 } 1661 } 1662 1663 /* 1664 * copy all the root pointers into the super backup array. 1665 * this will bump the backup pointer by one when it is 1666 * done 1667 */ 1668 static void backup_super_roots(struct btrfs_fs_info *info) 1669 { 1670 int next_backup; 1671 struct btrfs_root_backup *root_backup; 1672 int last_backup; 1673 1674 next_backup = info->backup_root_index; 1675 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1676 BTRFS_NUM_BACKUP_ROOTS; 1677 1678 /* 1679 * just overwrite the last backup if we're at the same generation 1680 * this happens only at umount 1681 */ 1682 root_backup = info->super_for_commit->super_roots + last_backup; 1683 if (btrfs_backup_tree_root_gen(root_backup) == 1684 btrfs_header_generation(info->tree_root->node)) 1685 next_backup = last_backup; 1686 1687 root_backup = info->super_for_commit->super_roots + next_backup; 1688 1689 /* 1690 * make sure all of our padding and empty slots get zero filled 1691 * regardless of which ones we use today 1692 */ 1693 memset(root_backup, 0, sizeof(*root_backup)); 1694 1695 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1696 1697 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1698 btrfs_set_backup_tree_root_gen(root_backup, 1699 btrfs_header_generation(info->tree_root->node)); 1700 1701 btrfs_set_backup_tree_root_level(root_backup, 1702 btrfs_header_level(info->tree_root->node)); 1703 1704 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1705 btrfs_set_backup_chunk_root_gen(root_backup, 1706 btrfs_header_generation(info->chunk_root->node)); 1707 btrfs_set_backup_chunk_root_level(root_backup, 1708 btrfs_header_level(info->chunk_root->node)); 1709 1710 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1711 btrfs_set_backup_extent_root_gen(root_backup, 1712 btrfs_header_generation(info->extent_root->node)); 1713 btrfs_set_backup_extent_root_level(root_backup, 1714 btrfs_header_level(info->extent_root->node)); 1715 1716 /* 1717 * we might commit during log recovery, which happens before we set 1718 * the fs_root. Make sure it is valid before we fill it in. 1719 */ 1720 if (info->fs_root && info->fs_root->node) { 1721 btrfs_set_backup_fs_root(root_backup, 1722 info->fs_root->node->start); 1723 btrfs_set_backup_fs_root_gen(root_backup, 1724 btrfs_header_generation(info->fs_root->node)); 1725 btrfs_set_backup_fs_root_level(root_backup, 1726 btrfs_header_level(info->fs_root->node)); 1727 } 1728 1729 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1730 btrfs_set_backup_dev_root_gen(root_backup, 1731 btrfs_header_generation(info->dev_root->node)); 1732 btrfs_set_backup_dev_root_level(root_backup, 1733 btrfs_header_level(info->dev_root->node)); 1734 1735 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1736 btrfs_set_backup_csum_root_gen(root_backup, 1737 btrfs_header_generation(info->csum_root->node)); 1738 btrfs_set_backup_csum_root_level(root_backup, 1739 btrfs_header_level(info->csum_root->node)); 1740 1741 btrfs_set_backup_total_bytes(root_backup, 1742 btrfs_super_total_bytes(info->super_copy)); 1743 btrfs_set_backup_bytes_used(root_backup, 1744 btrfs_super_bytes_used(info->super_copy)); 1745 btrfs_set_backup_num_devices(root_backup, 1746 btrfs_super_num_devices(info->super_copy)); 1747 1748 /* 1749 * if we don't copy this out to the super_copy, it won't get remembered 1750 * for the next commit 1751 */ 1752 memcpy(&info->super_copy->super_roots, 1753 &info->super_for_commit->super_roots, 1754 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1755 } 1756 1757 /* 1758 * this copies info out of the root backup array and back into 1759 * the in-memory super block. It is meant to help iterate through 1760 * the array, so you send it the number of backups you've already 1761 * tried and the last backup index you used. 1762 * 1763 * this returns -1 when it has tried all the backups 1764 */ 1765 static noinline int next_root_backup(struct btrfs_fs_info *info, 1766 struct btrfs_super_block *super, 1767 int *num_backups_tried, int *backup_index) 1768 { 1769 struct btrfs_root_backup *root_backup; 1770 int newest = *backup_index; 1771 1772 if (*num_backups_tried == 0) { 1773 u64 gen = btrfs_super_generation(super); 1774 1775 newest = find_newest_super_backup(info, gen); 1776 if (newest == -1) 1777 return -1; 1778 1779 *backup_index = newest; 1780 *num_backups_tried = 1; 1781 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1782 /* we've tried all the backups, all done */ 1783 return -1; 1784 } else { 1785 /* jump to the next oldest backup */ 1786 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1787 BTRFS_NUM_BACKUP_ROOTS; 1788 *backup_index = newest; 1789 *num_backups_tried += 1; 1790 } 1791 root_backup = super->super_roots + newest; 1792 1793 btrfs_set_super_generation(super, 1794 btrfs_backup_tree_root_gen(root_backup)); 1795 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1796 btrfs_set_super_root_level(super, 1797 btrfs_backup_tree_root_level(root_backup)); 1798 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1799 1800 /* 1801 * fixme: the total bytes and num_devices need to match or we should 1802 * need a fsck 1803 */ 1804 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1805 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1806 return 0; 1807 } 1808 1809 /* helper to cleanup tree roots */ 1810 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 1811 { 1812 free_extent_buffer(info->tree_root->node); 1813 free_extent_buffer(info->tree_root->commit_root); 1814 free_extent_buffer(info->dev_root->node); 1815 free_extent_buffer(info->dev_root->commit_root); 1816 free_extent_buffer(info->extent_root->node); 1817 free_extent_buffer(info->extent_root->commit_root); 1818 free_extent_buffer(info->csum_root->node); 1819 free_extent_buffer(info->csum_root->commit_root); 1820 1821 info->tree_root->node = NULL; 1822 info->tree_root->commit_root = NULL; 1823 info->dev_root->node = NULL; 1824 info->dev_root->commit_root = NULL; 1825 info->extent_root->node = NULL; 1826 info->extent_root->commit_root = NULL; 1827 info->csum_root->node = NULL; 1828 info->csum_root->commit_root = NULL; 1829 1830 if (chunk_root) { 1831 free_extent_buffer(info->chunk_root->node); 1832 free_extent_buffer(info->chunk_root->commit_root); 1833 info->chunk_root->node = NULL; 1834 info->chunk_root->commit_root = NULL; 1835 } 1836 } 1837 1838 1839 int open_ctree(struct super_block *sb, 1840 struct btrfs_fs_devices *fs_devices, 1841 char *options) 1842 { 1843 u32 sectorsize; 1844 u32 nodesize; 1845 u32 leafsize; 1846 u32 blocksize; 1847 u32 stripesize; 1848 u64 generation; 1849 u64 features; 1850 struct btrfs_key location; 1851 struct buffer_head *bh; 1852 struct btrfs_super_block *disk_super; 1853 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1854 struct btrfs_root *tree_root; 1855 struct btrfs_root *extent_root; 1856 struct btrfs_root *csum_root; 1857 struct btrfs_root *chunk_root; 1858 struct btrfs_root *dev_root; 1859 struct btrfs_root *log_tree_root; 1860 int ret; 1861 int err = -EINVAL; 1862 int num_backups_tried = 0; 1863 int backup_index = 0; 1864 1865 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 1866 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info); 1867 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info); 1868 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 1869 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info); 1870 1871 if (!tree_root || !extent_root || !csum_root || 1872 !chunk_root || !dev_root) { 1873 err = -ENOMEM; 1874 goto fail; 1875 } 1876 1877 ret = init_srcu_struct(&fs_info->subvol_srcu); 1878 if (ret) { 1879 err = ret; 1880 goto fail; 1881 } 1882 1883 ret = setup_bdi(fs_info, &fs_info->bdi); 1884 if (ret) { 1885 err = ret; 1886 goto fail_srcu; 1887 } 1888 1889 fs_info->btree_inode = new_inode(sb); 1890 if (!fs_info->btree_inode) { 1891 err = -ENOMEM; 1892 goto fail_bdi; 1893 } 1894 1895 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 1896 1897 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 1898 INIT_LIST_HEAD(&fs_info->trans_list); 1899 INIT_LIST_HEAD(&fs_info->dead_roots); 1900 INIT_LIST_HEAD(&fs_info->delayed_iputs); 1901 INIT_LIST_HEAD(&fs_info->hashers); 1902 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 1903 INIT_LIST_HEAD(&fs_info->ordered_operations); 1904 INIT_LIST_HEAD(&fs_info->caching_block_groups); 1905 spin_lock_init(&fs_info->delalloc_lock); 1906 spin_lock_init(&fs_info->trans_lock); 1907 spin_lock_init(&fs_info->ref_cache_lock); 1908 spin_lock_init(&fs_info->fs_roots_radix_lock); 1909 spin_lock_init(&fs_info->delayed_iput_lock); 1910 spin_lock_init(&fs_info->defrag_inodes_lock); 1911 spin_lock_init(&fs_info->free_chunk_lock); 1912 mutex_init(&fs_info->reloc_mutex); 1913 1914 init_completion(&fs_info->kobj_unregister); 1915 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 1916 INIT_LIST_HEAD(&fs_info->space_info); 1917 btrfs_mapping_init(&fs_info->mapping_tree); 1918 btrfs_init_block_rsv(&fs_info->global_block_rsv); 1919 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv); 1920 btrfs_init_block_rsv(&fs_info->trans_block_rsv); 1921 btrfs_init_block_rsv(&fs_info->chunk_block_rsv); 1922 btrfs_init_block_rsv(&fs_info->empty_block_rsv); 1923 btrfs_init_block_rsv(&fs_info->delayed_block_rsv); 1924 atomic_set(&fs_info->nr_async_submits, 0); 1925 atomic_set(&fs_info->async_delalloc_pages, 0); 1926 atomic_set(&fs_info->async_submit_draining, 0); 1927 atomic_set(&fs_info->nr_async_bios, 0); 1928 atomic_set(&fs_info->defrag_running, 0); 1929 fs_info->sb = sb; 1930 fs_info->max_inline = 8192 * 1024; 1931 fs_info->metadata_ratio = 0; 1932 fs_info->defrag_inodes = RB_ROOT; 1933 fs_info->trans_no_join = 0; 1934 fs_info->free_chunk_space = 0; 1935 1936 /* readahead state */ 1937 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 1938 spin_lock_init(&fs_info->reada_lock); 1939 1940 fs_info->thread_pool_size = min_t(unsigned long, 1941 num_online_cpus() + 2, 8); 1942 1943 INIT_LIST_HEAD(&fs_info->ordered_extents); 1944 spin_lock_init(&fs_info->ordered_extent_lock); 1945 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 1946 GFP_NOFS); 1947 if (!fs_info->delayed_root) { 1948 err = -ENOMEM; 1949 goto fail_iput; 1950 } 1951 btrfs_init_delayed_root(fs_info->delayed_root); 1952 1953 mutex_init(&fs_info->scrub_lock); 1954 atomic_set(&fs_info->scrubs_running, 0); 1955 atomic_set(&fs_info->scrub_pause_req, 0); 1956 atomic_set(&fs_info->scrubs_paused, 0); 1957 atomic_set(&fs_info->scrub_cancel_req, 0); 1958 init_waitqueue_head(&fs_info->scrub_pause_wait); 1959 init_rwsem(&fs_info->scrub_super_lock); 1960 fs_info->scrub_workers_refcnt = 0; 1961 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1962 fs_info->check_integrity_print_mask = 0; 1963 #endif 1964 1965 spin_lock_init(&fs_info->balance_lock); 1966 mutex_init(&fs_info->balance_mutex); 1967 atomic_set(&fs_info->balance_running, 0); 1968 atomic_set(&fs_info->balance_pause_req, 0); 1969 atomic_set(&fs_info->balance_cancel_req, 0); 1970 fs_info->balance_ctl = NULL; 1971 init_waitqueue_head(&fs_info->balance_wait_q); 1972 1973 sb->s_blocksize = 4096; 1974 sb->s_blocksize_bits = blksize_bits(4096); 1975 sb->s_bdi = &fs_info->bdi; 1976 1977 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 1978 set_nlink(fs_info->btree_inode, 1); 1979 /* 1980 * we set the i_size on the btree inode to the max possible int. 1981 * the real end of the address space is determined by all of 1982 * the devices in the system 1983 */ 1984 fs_info->btree_inode->i_size = OFFSET_MAX; 1985 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 1986 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 1987 1988 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 1989 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 1990 fs_info->btree_inode->i_mapping); 1991 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 1992 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 1993 1994 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 1995 1996 BTRFS_I(fs_info->btree_inode)->root = tree_root; 1997 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 1998 sizeof(struct btrfs_key)); 1999 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1; 2000 insert_inode_hash(fs_info->btree_inode); 2001 2002 spin_lock_init(&fs_info->block_group_cache_lock); 2003 fs_info->block_group_cache_tree = RB_ROOT; 2004 2005 extent_io_tree_init(&fs_info->freed_extents[0], 2006 fs_info->btree_inode->i_mapping); 2007 extent_io_tree_init(&fs_info->freed_extents[1], 2008 fs_info->btree_inode->i_mapping); 2009 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2010 fs_info->do_barriers = 1; 2011 2012 2013 mutex_init(&fs_info->ordered_operations_mutex); 2014 mutex_init(&fs_info->tree_log_mutex); 2015 mutex_init(&fs_info->chunk_mutex); 2016 mutex_init(&fs_info->transaction_kthread_mutex); 2017 mutex_init(&fs_info->cleaner_mutex); 2018 mutex_init(&fs_info->volume_mutex); 2019 init_rwsem(&fs_info->extent_commit_sem); 2020 init_rwsem(&fs_info->cleanup_work_sem); 2021 init_rwsem(&fs_info->subvol_sem); 2022 2023 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2024 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2025 2026 init_waitqueue_head(&fs_info->transaction_throttle); 2027 init_waitqueue_head(&fs_info->transaction_wait); 2028 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2029 init_waitqueue_head(&fs_info->async_submit_wait); 2030 2031 __setup_root(4096, 4096, 4096, 4096, tree_root, 2032 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2033 2034 invalidate_bdev(fs_devices->latest_bdev); 2035 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2036 if (!bh) { 2037 err = -EINVAL; 2038 goto fail_alloc; 2039 } 2040 2041 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2042 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2043 sizeof(*fs_info->super_for_commit)); 2044 brelse(bh); 2045 2046 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2047 2048 disk_super = fs_info->super_copy; 2049 if (!btrfs_super_root(disk_super)) 2050 goto fail_alloc; 2051 2052 /* check FS state, whether FS is broken. */ 2053 fs_info->fs_state |= btrfs_super_flags(disk_super); 2054 2055 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2056 if (ret) { 2057 printk(KERN_ERR "btrfs: superblock contains fatal errors\n"); 2058 err = ret; 2059 goto fail_alloc; 2060 } 2061 2062 /* 2063 * run through our array of backup supers and setup 2064 * our ring pointer to the oldest one 2065 */ 2066 generation = btrfs_super_generation(disk_super); 2067 find_oldest_super_backup(fs_info, generation); 2068 2069 /* 2070 * In the long term, we'll store the compression type in the super 2071 * block, and it'll be used for per file compression control. 2072 */ 2073 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2074 2075 ret = btrfs_parse_options(tree_root, options); 2076 if (ret) { 2077 err = ret; 2078 goto fail_alloc; 2079 } 2080 2081 features = btrfs_super_incompat_flags(disk_super) & 2082 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2083 if (features) { 2084 printk(KERN_ERR "BTRFS: couldn't mount because of " 2085 "unsupported optional features (%Lx).\n", 2086 (unsigned long long)features); 2087 err = -EINVAL; 2088 goto fail_alloc; 2089 } 2090 2091 if (btrfs_super_leafsize(disk_super) != 2092 btrfs_super_nodesize(disk_super)) { 2093 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2094 "blocksizes don't match. node %d leaf %d\n", 2095 btrfs_super_nodesize(disk_super), 2096 btrfs_super_leafsize(disk_super)); 2097 err = -EINVAL; 2098 goto fail_alloc; 2099 } 2100 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2101 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2102 "blocksize (%d) was too large\n", 2103 btrfs_super_leafsize(disk_super)); 2104 err = -EINVAL; 2105 goto fail_alloc; 2106 } 2107 2108 features = btrfs_super_incompat_flags(disk_super); 2109 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2110 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO) 2111 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2112 2113 /* 2114 * flag our filesystem as having big metadata blocks if 2115 * they are bigger than the page size 2116 */ 2117 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) { 2118 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2119 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n"); 2120 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2121 } 2122 2123 nodesize = btrfs_super_nodesize(disk_super); 2124 leafsize = btrfs_super_leafsize(disk_super); 2125 sectorsize = btrfs_super_sectorsize(disk_super); 2126 stripesize = btrfs_super_stripesize(disk_super); 2127 2128 /* 2129 * mixed block groups end up with duplicate but slightly offset 2130 * extent buffers for the same range. It leads to corruptions 2131 */ 2132 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2133 (sectorsize != leafsize)) { 2134 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes " 2135 "are not allowed for mixed block groups on %s\n", 2136 sb->s_id); 2137 goto fail_alloc; 2138 } 2139 2140 btrfs_set_super_incompat_flags(disk_super, features); 2141 2142 features = btrfs_super_compat_ro_flags(disk_super) & 2143 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2144 if (!(sb->s_flags & MS_RDONLY) && features) { 2145 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2146 "unsupported option features (%Lx).\n", 2147 (unsigned long long)features); 2148 err = -EINVAL; 2149 goto fail_alloc; 2150 } 2151 2152 btrfs_init_workers(&fs_info->generic_worker, 2153 "genwork", 1, NULL); 2154 2155 btrfs_init_workers(&fs_info->workers, "worker", 2156 fs_info->thread_pool_size, 2157 &fs_info->generic_worker); 2158 2159 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 2160 fs_info->thread_pool_size, 2161 &fs_info->generic_worker); 2162 2163 btrfs_init_workers(&fs_info->submit_workers, "submit", 2164 min_t(u64, fs_devices->num_devices, 2165 fs_info->thread_pool_size), 2166 &fs_info->generic_worker); 2167 2168 btrfs_init_workers(&fs_info->caching_workers, "cache", 2169 2, &fs_info->generic_worker); 2170 2171 /* a higher idle thresh on the submit workers makes it much more 2172 * likely that bios will be send down in a sane order to the 2173 * devices 2174 */ 2175 fs_info->submit_workers.idle_thresh = 64; 2176 2177 fs_info->workers.idle_thresh = 16; 2178 fs_info->workers.ordered = 1; 2179 2180 fs_info->delalloc_workers.idle_thresh = 2; 2181 fs_info->delalloc_workers.ordered = 1; 2182 2183 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 2184 &fs_info->generic_worker); 2185 btrfs_init_workers(&fs_info->endio_workers, "endio", 2186 fs_info->thread_pool_size, 2187 &fs_info->generic_worker); 2188 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 2189 fs_info->thread_pool_size, 2190 &fs_info->generic_worker); 2191 btrfs_init_workers(&fs_info->endio_meta_write_workers, 2192 "endio-meta-write", fs_info->thread_pool_size, 2193 &fs_info->generic_worker); 2194 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 2195 fs_info->thread_pool_size, 2196 &fs_info->generic_worker); 2197 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", 2198 1, &fs_info->generic_worker); 2199 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta", 2200 fs_info->thread_pool_size, 2201 &fs_info->generic_worker); 2202 btrfs_init_workers(&fs_info->readahead_workers, "readahead", 2203 fs_info->thread_pool_size, 2204 &fs_info->generic_worker); 2205 2206 /* 2207 * endios are largely parallel and should have a very 2208 * low idle thresh 2209 */ 2210 fs_info->endio_workers.idle_thresh = 4; 2211 fs_info->endio_meta_workers.idle_thresh = 4; 2212 2213 fs_info->endio_write_workers.idle_thresh = 2; 2214 fs_info->endio_meta_write_workers.idle_thresh = 2; 2215 fs_info->readahead_workers.idle_thresh = 2; 2216 2217 /* 2218 * btrfs_start_workers can really only fail because of ENOMEM so just 2219 * return -ENOMEM if any of these fail. 2220 */ 2221 ret = btrfs_start_workers(&fs_info->workers); 2222 ret |= btrfs_start_workers(&fs_info->generic_worker); 2223 ret |= btrfs_start_workers(&fs_info->submit_workers); 2224 ret |= btrfs_start_workers(&fs_info->delalloc_workers); 2225 ret |= btrfs_start_workers(&fs_info->fixup_workers); 2226 ret |= btrfs_start_workers(&fs_info->endio_workers); 2227 ret |= btrfs_start_workers(&fs_info->endio_meta_workers); 2228 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers); 2229 ret |= btrfs_start_workers(&fs_info->endio_write_workers); 2230 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker); 2231 ret |= btrfs_start_workers(&fs_info->delayed_workers); 2232 ret |= btrfs_start_workers(&fs_info->caching_workers); 2233 ret |= btrfs_start_workers(&fs_info->readahead_workers); 2234 if (ret) { 2235 ret = -ENOMEM; 2236 goto fail_sb_buffer; 2237 } 2238 2239 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2240 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2241 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2242 2243 tree_root->nodesize = nodesize; 2244 tree_root->leafsize = leafsize; 2245 tree_root->sectorsize = sectorsize; 2246 tree_root->stripesize = stripesize; 2247 2248 sb->s_blocksize = sectorsize; 2249 sb->s_blocksize_bits = blksize_bits(sectorsize); 2250 2251 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 2252 sizeof(disk_super->magic))) { 2253 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 2254 goto fail_sb_buffer; 2255 } 2256 2257 if (sectorsize != PAGE_SIZE) { 2258 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) " 2259 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2260 goto fail_sb_buffer; 2261 } 2262 2263 mutex_lock(&fs_info->chunk_mutex); 2264 ret = btrfs_read_sys_array(tree_root); 2265 mutex_unlock(&fs_info->chunk_mutex); 2266 if (ret) { 2267 printk(KERN_WARNING "btrfs: failed to read the system " 2268 "array on %s\n", sb->s_id); 2269 goto fail_sb_buffer; 2270 } 2271 2272 blocksize = btrfs_level_size(tree_root, 2273 btrfs_super_chunk_root_level(disk_super)); 2274 generation = btrfs_super_chunk_root_generation(disk_super); 2275 2276 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2277 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2278 2279 chunk_root->node = read_tree_block(chunk_root, 2280 btrfs_super_chunk_root(disk_super), 2281 blocksize, generation); 2282 BUG_ON(!chunk_root->node); /* -ENOMEM */ 2283 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2284 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 2285 sb->s_id); 2286 goto fail_tree_roots; 2287 } 2288 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2289 chunk_root->commit_root = btrfs_root_node(chunk_root); 2290 2291 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2292 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 2293 BTRFS_UUID_SIZE); 2294 2295 ret = btrfs_read_chunk_tree(chunk_root); 2296 if (ret) { 2297 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 2298 sb->s_id); 2299 goto fail_tree_roots; 2300 } 2301 2302 btrfs_close_extra_devices(fs_devices); 2303 2304 if (!fs_devices->latest_bdev) { 2305 printk(KERN_CRIT "btrfs: failed to read devices on %s\n", 2306 sb->s_id); 2307 goto fail_tree_roots; 2308 } 2309 2310 retry_root_backup: 2311 blocksize = btrfs_level_size(tree_root, 2312 btrfs_super_root_level(disk_super)); 2313 generation = btrfs_super_generation(disk_super); 2314 2315 tree_root->node = read_tree_block(tree_root, 2316 btrfs_super_root(disk_super), 2317 blocksize, generation); 2318 if (!tree_root->node || 2319 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2320 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 2321 sb->s_id); 2322 2323 goto recovery_tree_root; 2324 } 2325 2326 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2327 tree_root->commit_root = btrfs_root_node(tree_root); 2328 2329 ret = find_and_setup_root(tree_root, fs_info, 2330 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 2331 if (ret) 2332 goto recovery_tree_root; 2333 extent_root->track_dirty = 1; 2334 2335 ret = find_and_setup_root(tree_root, fs_info, 2336 BTRFS_DEV_TREE_OBJECTID, dev_root); 2337 if (ret) 2338 goto recovery_tree_root; 2339 dev_root->track_dirty = 1; 2340 2341 ret = find_and_setup_root(tree_root, fs_info, 2342 BTRFS_CSUM_TREE_OBJECTID, csum_root); 2343 if (ret) 2344 goto recovery_tree_root; 2345 2346 csum_root->track_dirty = 1; 2347 2348 fs_info->generation = generation; 2349 fs_info->last_trans_committed = generation; 2350 2351 ret = btrfs_init_space_info(fs_info); 2352 if (ret) { 2353 printk(KERN_ERR "Failed to initial space info: %d\n", ret); 2354 goto fail_block_groups; 2355 } 2356 2357 ret = btrfs_read_block_groups(extent_root); 2358 if (ret) { 2359 printk(KERN_ERR "Failed to read block groups: %d\n", ret); 2360 goto fail_block_groups; 2361 } 2362 2363 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2364 "btrfs-cleaner"); 2365 if (IS_ERR(fs_info->cleaner_kthread)) 2366 goto fail_block_groups; 2367 2368 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2369 tree_root, 2370 "btrfs-transaction"); 2371 if (IS_ERR(fs_info->transaction_kthread)) 2372 goto fail_cleaner; 2373 2374 if (!btrfs_test_opt(tree_root, SSD) && 2375 !btrfs_test_opt(tree_root, NOSSD) && 2376 !fs_info->fs_devices->rotating) { 2377 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 2378 "mode\n"); 2379 btrfs_set_opt(fs_info->mount_opt, SSD); 2380 } 2381 2382 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2383 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2384 ret = btrfsic_mount(tree_root, fs_devices, 2385 btrfs_test_opt(tree_root, 2386 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2387 1 : 0, 2388 fs_info->check_integrity_print_mask); 2389 if (ret) 2390 printk(KERN_WARNING "btrfs: failed to initialize" 2391 " integrity check module %s\n", sb->s_id); 2392 } 2393 #endif 2394 2395 /* do not make disk changes in broken FS */ 2396 if (btrfs_super_log_root(disk_super) != 0 && 2397 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) { 2398 u64 bytenr = btrfs_super_log_root(disk_super); 2399 2400 if (fs_devices->rw_devices == 0) { 2401 printk(KERN_WARNING "Btrfs log replay required " 2402 "on RO media\n"); 2403 err = -EIO; 2404 goto fail_trans_kthread; 2405 } 2406 blocksize = 2407 btrfs_level_size(tree_root, 2408 btrfs_super_log_root_level(disk_super)); 2409 2410 log_tree_root = btrfs_alloc_root(fs_info); 2411 if (!log_tree_root) { 2412 err = -ENOMEM; 2413 goto fail_trans_kthread; 2414 } 2415 2416 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2417 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2418 2419 log_tree_root->node = read_tree_block(tree_root, bytenr, 2420 blocksize, 2421 generation + 1); 2422 /* returns with log_tree_root freed on success */ 2423 ret = btrfs_recover_log_trees(log_tree_root); 2424 if (ret) { 2425 btrfs_error(tree_root->fs_info, ret, 2426 "Failed to recover log tree"); 2427 free_extent_buffer(log_tree_root->node); 2428 kfree(log_tree_root); 2429 goto fail_trans_kthread; 2430 } 2431 2432 if (sb->s_flags & MS_RDONLY) { 2433 ret = btrfs_commit_super(tree_root); 2434 if (ret) 2435 goto fail_trans_kthread; 2436 } 2437 } 2438 2439 ret = btrfs_find_orphan_roots(tree_root); 2440 if (ret) 2441 goto fail_trans_kthread; 2442 2443 if (!(sb->s_flags & MS_RDONLY)) { 2444 ret = btrfs_cleanup_fs_roots(fs_info); 2445 if (ret) { 2446 } 2447 2448 ret = btrfs_recover_relocation(tree_root); 2449 if (ret < 0) { 2450 printk(KERN_WARNING 2451 "btrfs: failed to recover relocation\n"); 2452 err = -EINVAL; 2453 goto fail_trans_kthread; 2454 } 2455 } 2456 2457 location.objectid = BTRFS_FS_TREE_OBJECTID; 2458 location.type = BTRFS_ROOT_ITEM_KEY; 2459 location.offset = (u64)-1; 2460 2461 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2462 if (!fs_info->fs_root) 2463 goto fail_trans_kthread; 2464 if (IS_ERR(fs_info->fs_root)) { 2465 err = PTR_ERR(fs_info->fs_root); 2466 goto fail_trans_kthread; 2467 } 2468 2469 if (!(sb->s_flags & MS_RDONLY)) { 2470 down_read(&fs_info->cleanup_work_sem); 2471 err = btrfs_orphan_cleanup(fs_info->fs_root); 2472 if (!err) 2473 err = btrfs_orphan_cleanup(fs_info->tree_root); 2474 up_read(&fs_info->cleanup_work_sem); 2475 2476 if (!err) 2477 err = btrfs_recover_balance(fs_info->tree_root); 2478 2479 if (err) { 2480 close_ctree(tree_root); 2481 return err; 2482 } 2483 } 2484 2485 return 0; 2486 2487 fail_trans_kthread: 2488 kthread_stop(fs_info->transaction_kthread); 2489 fail_cleaner: 2490 kthread_stop(fs_info->cleaner_kthread); 2491 2492 /* 2493 * make sure we're done with the btree inode before we stop our 2494 * kthreads 2495 */ 2496 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2497 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2498 2499 fail_block_groups: 2500 btrfs_free_block_groups(fs_info); 2501 2502 fail_tree_roots: 2503 free_root_pointers(fs_info, 1); 2504 2505 fail_sb_buffer: 2506 btrfs_stop_workers(&fs_info->generic_worker); 2507 btrfs_stop_workers(&fs_info->readahead_workers); 2508 btrfs_stop_workers(&fs_info->fixup_workers); 2509 btrfs_stop_workers(&fs_info->delalloc_workers); 2510 btrfs_stop_workers(&fs_info->workers); 2511 btrfs_stop_workers(&fs_info->endio_workers); 2512 btrfs_stop_workers(&fs_info->endio_meta_workers); 2513 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2514 btrfs_stop_workers(&fs_info->endio_write_workers); 2515 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2516 btrfs_stop_workers(&fs_info->submit_workers); 2517 btrfs_stop_workers(&fs_info->delayed_workers); 2518 btrfs_stop_workers(&fs_info->caching_workers); 2519 fail_alloc: 2520 fail_iput: 2521 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2522 2523 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2524 iput(fs_info->btree_inode); 2525 fail_bdi: 2526 bdi_destroy(&fs_info->bdi); 2527 fail_srcu: 2528 cleanup_srcu_struct(&fs_info->subvol_srcu); 2529 fail: 2530 btrfs_close_devices(fs_info->fs_devices); 2531 return err; 2532 2533 recovery_tree_root: 2534 if (!btrfs_test_opt(tree_root, RECOVERY)) 2535 goto fail_tree_roots; 2536 2537 free_root_pointers(fs_info, 0); 2538 2539 /* don't use the log in recovery mode, it won't be valid */ 2540 btrfs_set_super_log_root(disk_super, 0); 2541 2542 /* we can't trust the free space cache either */ 2543 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2544 2545 ret = next_root_backup(fs_info, fs_info->super_copy, 2546 &num_backups_tried, &backup_index); 2547 if (ret == -1) 2548 goto fail_block_groups; 2549 goto retry_root_backup; 2550 } 2551 2552 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 2553 { 2554 char b[BDEVNAME_SIZE]; 2555 2556 if (uptodate) { 2557 set_buffer_uptodate(bh); 2558 } else { 2559 printk_ratelimited(KERN_WARNING "lost page write due to " 2560 "I/O error on %s\n", 2561 bdevname(bh->b_bdev, b)); 2562 /* note, we dont' set_buffer_write_io_error because we have 2563 * our own ways of dealing with the IO errors 2564 */ 2565 clear_buffer_uptodate(bh); 2566 } 2567 unlock_buffer(bh); 2568 put_bh(bh); 2569 } 2570 2571 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 2572 { 2573 struct buffer_head *bh; 2574 struct buffer_head *latest = NULL; 2575 struct btrfs_super_block *super; 2576 int i; 2577 u64 transid = 0; 2578 u64 bytenr; 2579 2580 /* we would like to check all the supers, but that would make 2581 * a btrfs mount succeed after a mkfs from a different FS. 2582 * So, we need to add a special mount option to scan for 2583 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2584 */ 2585 for (i = 0; i < 1; i++) { 2586 bytenr = btrfs_sb_offset(i); 2587 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2588 break; 2589 bh = __bread(bdev, bytenr / 4096, 4096); 2590 if (!bh) 2591 continue; 2592 2593 super = (struct btrfs_super_block *)bh->b_data; 2594 if (btrfs_super_bytenr(super) != bytenr || 2595 strncmp((char *)(&super->magic), BTRFS_MAGIC, 2596 sizeof(super->magic))) { 2597 brelse(bh); 2598 continue; 2599 } 2600 2601 if (!latest || btrfs_super_generation(super) > transid) { 2602 brelse(latest); 2603 latest = bh; 2604 transid = btrfs_super_generation(super); 2605 } else { 2606 brelse(bh); 2607 } 2608 } 2609 return latest; 2610 } 2611 2612 /* 2613 * this should be called twice, once with wait == 0 and 2614 * once with wait == 1. When wait == 0 is done, all the buffer heads 2615 * we write are pinned. 2616 * 2617 * They are released when wait == 1 is done. 2618 * max_mirrors must be the same for both runs, and it indicates how 2619 * many supers on this one device should be written. 2620 * 2621 * max_mirrors == 0 means to write them all. 2622 */ 2623 static int write_dev_supers(struct btrfs_device *device, 2624 struct btrfs_super_block *sb, 2625 int do_barriers, int wait, int max_mirrors) 2626 { 2627 struct buffer_head *bh; 2628 int i; 2629 int ret; 2630 int errors = 0; 2631 u32 crc; 2632 u64 bytenr; 2633 2634 if (max_mirrors == 0) 2635 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2636 2637 for (i = 0; i < max_mirrors; i++) { 2638 bytenr = btrfs_sb_offset(i); 2639 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2640 break; 2641 2642 if (wait) { 2643 bh = __find_get_block(device->bdev, bytenr / 4096, 2644 BTRFS_SUPER_INFO_SIZE); 2645 BUG_ON(!bh); 2646 wait_on_buffer(bh); 2647 if (!buffer_uptodate(bh)) 2648 errors++; 2649 2650 /* drop our reference */ 2651 brelse(bh); 2652 2653 /* drop the reference from the wait == 0 run */ 2654 brelse(bh); 2655 continue; 2656 } else { 2657 btrfs_set_super_bytenr(sb, bytenr); 2658 2659 crc = ~(u32)0; 2660 crc = btrfs_csum_data(NULL, (char *)sb + 2661 BTRFS_CSUM_SIZE, crc, 2662 BTRFS_SUPER_INFO_SIZE - 2663 BTRFS_CSUM_SIZE); 2664 btrfs_csum_final(crc, sb->csum); 2665 2666 /* 2667 * one reference for us, and we leave it for the 2668 * caller 2669 */ 2670 bh = __getblk(device->bdev, bytenr / 4096, 2671 BTRFS_SUPER_INFO_SIZE); 2672 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2673 2674 /* one reference for submit_bh */ 2675 get_bh(bh); 2676 2677 set_buffer_uptodate(bh); 2678 lock_buffer(bh); 2679 bh->b_end_io = btrfs_end_buffer_write_sync; 2680 } 2681 2682 /* 2683 * we fua the first super. The others we allow 2684 * to go down lazy. 2685 */ 2686 ret = btrfsic_submit_bh(WRITE_FUA, bh); 2687 if (ret) 2688 errors++; 2689 } 2690 return errors < i ? 0 : -1; 2691 } 2692 2693 /* 2694 * endio for the write_dev_flush, this will wake anyone waiting 2695 * for the barrier when it is done 2696 */ 2697 static void btrfs_end_empty_barrier(struct bio *bio, int err) 2698 { 2699 if (err) { 2700 if (err == -EOPNOTSUPP) 2701 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2702 clear_bit(BIO_UPTODATE, &bio->bi_flags); 2703 } 2704 if (bio->bi_private) 2705 complete(bio->bi_private); 2706 bio_put(bio); 2707 } 2708 2709 /* 2710 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 2711 * sent down. With wait == 1, it waits for the previous flush. 2712 * 2713 * any device where the flush fails with eopnotsupp are flagged as not-barrier 2714 * capable 2715 */ 2716 static int write_dev_flush(struct btrfs_device *device, int wait) 2717 { 2718 struct bio *bio; 2719 int ret = 0; 2720 2721 if (device->nobarriers) 2722 return 0; 2723 2724 if (wait) { 2725 bio = device->flush_bio; 2726 if (!bio) 2727 return 0; 2728 2729 wait_for_completion(&device->flush_wait); 2730 2731 if (bio_flagged(bio, BIO_EOPNOTSUPP)) { 2732 printk("btrfs: disabling barriers on dev %s\n", 2733 device->name); 2734 device->nobarriers = 1; 2735 } 2736 if (!bio_flagged(bio, BIO_UPTODATE)) { 2737 ret = -EIO; 2738 } 2739 2740 /* drop the reference from the wait == 0 run */ 2741 bio_put(bio); 2742 device->flush_bio = NULL; 2743 2744 return ret; 2745 } 2746 2747 /* 2748 * one reference for us, and we leave it for the 2749 * caller 2750 */ 2751 device->flush_bio = NULL;; 2752 bio = bio_alloc(GFP_NOFS, 0); 2753 if (!bio) 2754 return -ENOMEM; 2755 2756 bio->bi_end_io = btrfs_end_empty_barrier; 2757 bio->bi_bdev = device->bdev; 2758 init_completion(&device->flush_wait); 2759 bio->bi_private = &device->flush_wait; 2760 device->flush_bio = bio; 2761 2762 bio_get(bio); 2763 btrfsic_submit_bio(WRITE_FLUSH, bio); 2764 2765 return 0; 2766 } 2767 2768 /* 2769 * send an empty flush down to each device in parallel, 2770 * then wait for them 2771 */ 2772 static int barrier_all_devices(struct btrfs_fs_info *info) 2773 { 2774 struct list_head *head; 2775 struct btrfs_device *dev; 2776 int errors = 0; 2777 int ret; 2778 2779 /* send down all the barriers */ 2780 head = &info->fs_devices->devices; 2781 list_for_each_entry_rcu(dev, head, dev_list) { 2782 if (!dev->bdev) { 2783 errors++; 2784 continue; 2785 } 2786 if (!dev->in_fs_metadata || !dev->writeable) 2787 continue; 2788 2789 ret = write_dev_flush(dev, 0); 2790 if (ret) 2791 errors++; 2792 } 2793 2794 /* wait for all the barriers */ 2795 list_for_each_entry_rcu(dev, head, dev_list) { 2796 if (!dev->bdev) { 2797 errors++; 2798 continue; 2799 } 2800 if (!dev->in_fs_metadata || !dev->writeable) 2801 continue; 2802 2803 ret = write_dev_flush(dev, 1); 2804 if (ret) 2805 errors++; 2806 } 2807 if (errors) 2808 return -EIO; 2809 return 0; 2810 } 2811 2812 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2813 { 2814 struct list_head *head; 2815 struct btrfs_device *dev; 2816 struct btrfs_super_block *sb; 2817 struct btrfs_dev_item *dev_item; 2818 int ret; 2819 int do_barriers; 2820 int max_errors; 2821 int total_errors = 0; 2822 u64 flags; 2823 2824 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 2825 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2826 backup_super_roots(root->fs_info); 2827 2828 sb = root->fs_info->super_for_commit; 2829 dev_item = &sb->dev_item; 2830 2831 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2832 head = &root->fs_info->fs_devices->devices; 2833 2834 if (do_barriers) 2835 barrier_all_devices(root->fs_info); 2836 2837 list_for_each_entry_rcu(dev, head, dev_list) { 2838 if (!dev->bdev) { 2839 total_errors++; 2840 continue; 2841 } 2842 if (!dev->in_fs_metadata || !dev->writeable) 2843 continue; 2844 2845 btrfs_set_stack_device_generation(dev_item, 0); 2846 btrfs_set_stack_device_type(dev_item, dev->type); 2847 btrfs_set_stack_device_id(dev_item, dev->devid); 2848 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2849 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2850 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 2851 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 2852 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 2853 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 2854 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2855 2856 flags = btrfs_super_flags(sb); 2857 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 2858 2859 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 2860 if (ret) 2861 total_errors++; 2862 } 2863 if (total_errors > max_errors) { 2864 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2865 total_errors); 2866 2867 /* This shouldn't happen. FUA is masked off if unsupported */ 2868 BUG(); 2869 } 2870 2871 total_errors = 0; 2872 list_for_each_entry_rcu(dev, head, dev_list) { 2873 if (!dev->bdev) 2874 continue; 2875 if (!dev->in_fs_metadata || !dev->writeable) 2876 continue; 2877 2878 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 2879 if (ret) 2880 total_errors++; 2881 } 2882 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2883 if (total_errors > max_errors) { 2884 btrfs_error(root->fs_info, -EIO, 2885 "%d errors while writing supers", total_errors); 2886 return -EIO; 2887 } 2888 return 0; 2889 } 2890 2891 int write_ctree_super(struct btrfs_trans_handle *trans, 2892 struct btrfs_root *root, int max_mirrors) 2893 { 2894 int ret; 2895 2896 ret = write_all_supers(root, max_mirrors); 2897 return ret; 2898 } 2899 2900 /* Kill all outstanding I/O */ 2901 void btrfs_abort_devices(struct btrfs_root *root) 2902 { 2903 struct list_head *head; 2904 struct btrfs_device *dev; 2905 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2906 head = &root->fs_info->fs_devices->devices; 2907 list_for_each_entry_rcu(dev, head, dev_list) { 2908 blk_abort_queue(dev->bdev->bd_disk->queue); 2909 } 2910 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2911 } 2912 2913 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2914 { 2915 spin_lock(&fs_info->fs_roots_radix_lock); 2916 radix_tree_delete(&fs_info->fs_roots_radix, 2917 (unsigned long)root->root_key.objectid); 2918 spin_unlock(&fs_info->fs_roots_radix_lock); 2919 2920 if (btrfs_root_refs(&root->root_item) == 0) 2921 synchronize_srcu(&fs_info->subvol_srcu); 2922 2923 __btrfs_remove_free_space_cache(root->free_ino_pinned); 2924 __btrfs_remove_free_space_cache(root->free_ino_ctl); 2925 free_fs_root(root); 2926 } 2927 2928 static void free_fs_root(struct btrfs_root *root) 2929 { 2930 iput(root->cache_inode); 2931 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2932 if (root->anon_dev) 2933 free_anon_bdev(root->anon_dev); 2934 free_extent_buffer(root->node); 2935 free_extent_buffer(root->commit_root); 2936 kfree(root->free_ino_ctl); 2937 kfree(root->free_ino_pinned); 2938 kfree(root->name); 2939 kfree(root); 2940 } 2941 2942 static void del_fs_roots(struct btrfs_fs_info *fs_info) 2943 { 2944 int ret; 2945 struct btrfs_root *gang[8]; 2946 int i; 2947 2948 while (!list_empty(&fs_info->dead_roots)) { 2949 gang[0] = list_entry(fs_info->dead_roots.next, 2950 struct btrfs_root, root_list); 2951 list_del(&gang[0]->root_list); 2952 2953 if (gang[0]->in_radix) { 2954 btrfs_free_fs_root(fs_info, gang[0]); 2955 } else { 2956 free_extent_buffer(gang[0]->node); 2957 free_extent_buffer(gang[0]->commit_root); 2958 kfree(gang[0]); 2959 } 2960 } 2961 2962 while (1) { 2963 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2964 (void **)gang, 0, 2965 ARRAY_SIZE(gang)); 2966 if (!ret) 2967 break; 2968 for (i = 0; i < ret; i++) 2969 btrfs_free_fs_root(fs_info, gang[i]); 2970 } 2971 } 2972 2973 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2974 { 2975 u64 root_objectid = 0; 2976 struct btrfs_root *gang[8]; 2977 int i; 2978 int ret; 2979 2980 while (1) { 2981 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2982 (void **)gang, root_objectid, 2983 ARRAY_SIZE(gang)); 2984 if (!ret) 2985 break; 2986 2987 root_objectid = gang[ret - 1]->root_key.objectid + 1; 2988 for (i = 0; i < ret; i++) { 2989 int err; 2990 2991 root_objectid = gang[i]->root_key.objectid; 2992 err = btrfs_orphan_cleanup(gang[i]); 2993 if (err) 2994 return err; 2995 } 2996 root_objectid++; 2997 } 2998 return 0; 2999 } 3000 3001 int btrfs_commit_super(struct btrfs_root *root) 3002 { 3003 struct btrfs_trans_handle *trans; 3004 int ret; 3005 3006 mutex_lock(&root->fs_info->cleaner_mutex); 3007 btrfs_run_delayed_iputs(root); 3008 btrfs_clean_old_snapshots(root); 3009 mutex_unlock(&root->fs_info->cleaner_mutex); 3010 3011 /* wait until ongoing cleanup work done */ 3012 down_write(&root->fs_info->cleanup_work_sem); 3013 up_write(&root->fs_info->cleanup_work_sem); 3014 3015 trans = btrfs_join_transaction(root); 3016 if (IS_ERR(trans)) 3017 return PTR_ERR(trans); 3018 ret = btrfs_commit_transaction(trans, root); 3019 if (ret) 3020 return ret; 3021 /* run commit again to drop the original snapshot */ 3022 trans = btrfs_join_transaction(root); 3023 if (IS_ERR(trans)) 3024 return PTR_ERR(trans); 3025 ret = btrfs_commit_transaction(trans, root); 3026 if (ret) 3027 return ret; 3028 ret = btrfs_write_and_wait_transaction(NULL, root); 3029 if (ret) { 3030 btrfs_error(root->fs_info, ret, 3031 "Failed to sync btree inode to disk."); 3032 return ret; 3033 } 3034 3035 ret = write_ctree_super(NULL, root, 0); 3036 return ret; 3037 } 3038 3039 int close_ctree(struct btrfs_root *root) 3040 { 3041 struct btrfs_fs_info *fs_info = root->fs_info; 3042 int ret; 3043 3044 fs_info->closing = 1; 3045 smp_mb(); 3046 3047 /* pause restriper - we want to resume on mount */ 3048 btrfs_pause_balance(root->fs_info); 3049 3050 btrfs_scrub_cancel(root); 3051 3052 /* wait for any defraggers to finish */ 3053 wait_event(fs_info->transaction_wait, 3054 (atomic_read(&fs_info->defrag_running) == 0)); 3055 3056 /* clear out the rbtree of defraggable inodes */ 3057 btrfs_run_defrag_inodes(fs_info); 3058 3059 /* 3060 * Here come 2 situations when btrfs is broken to flip readonly: 3061 * 3062 * 1. when btrfs flips readonly somewhere else before 3063 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag, 3064 * and btrfs will skip to write sb directly to keep 3065 * ERROR state on disk. 3066 * 3067 * 2. when btrfs flips readonly just in btrfs_commit_super, 3068 * and in such case, btrfs cannot write sb via btrfs_commit_super, 3069 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag, 3070 * btrfs will cleanup all FS resources first and write sb then. 3071 */ 3072 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3073 ret = btrfs_commit_super(root); 3074 if (ret) 3075 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 3076 } 3077 3078 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 3079 ret = btrfs_error_commit_super(root); 3080 if (ret) 3081 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 3082 } 3083 3084 btrfs_put_block_group_cache(fs_info); 3085 3086 kthread_stop(fs_info->transaction_kthread); 3087 kthread_stop(fs_info->cleaner_kthread); 3088 3089 fs_info->closing = 2; 3090 smp_mb(); 3091 3092 if (fs_info->delalloc_bytes) { 3093 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 3094 (unsigned long long)fs_info->delalloc_bytes); 3095 } 3096 if (fs_info->total_ref_cache_size) { 3097 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 3098 (unsigned long long)fs_info->total_ref_cache_size); 3099 } 3100 3101 free_extent_buffer(fs_info->extent_root->node); 3102 free_extent_buffer(fs_info->extent_root->commit_root); 3103 free_extent_buffer(fs_info->tree_root->node); 3104 free_extent_buffer(fs_info->tree_root->commit_root); 3105 free_extent_buffer(fs_info->chunk_root->node); 3106 free_extent_buffer(fs_info->chunk_root->commit_root); 3107 free_extent_buffer(fs_info->dev_root->node); 3108 free_extent_buffer(fs_info->dev_root->commit_root); 3109 free_extent_buffer(fs_info->csum_root->node); 3110 free_extent_buffer(fs_info->csum_root->commit_root); 3111 3112 btrfs_free_block_groups(fs_info); 3113 3114 del_fs_roots(fs_info); 3115 3116 iput(fs_info->btree_inode); 3117 3118 btrfs_stop_workers(&fs_info->generic_worker); 3119 btrfs_stop_workers(&fs_info->fixup_workers); 3120 btrfs_stop_workers(&fs_info->delalloc_workers); 3121 btrfs_stop_workers(&fs_info->workers); 3122 btrfs_stop_workers(&fs_info->endio_workers); 3123 btrfs_stop_workers(&fs_info->endio_meta_workers); 3124 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 3125 btrfs_stop_workers(&fs_info->endio_write_workers); 3126 btrfs_stop_workers(&fs_info->endio_freespace_worker); 3127 btrfs_stop_workers(&fs_info->submit_workers); 3128 btrfs_stop_workers(&fs_info->delayed_workers); 3129 btrfs_stop_workers(&fs_info->caching_workers); 3130 btrfs_stop_workers(&fs_info->readahead_workers); 3131 3132 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3133 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3134 btrfsic_unmount(root, fs_info->fs_devices); 3135 #endif 3136 3137 btrfs_close_devices(fs_info->fs_devices); 3138 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3139 3140 bdi_destroy(&fs_info->bdi); 3141 cleanup_srcu_struct(&fs_info->subvol_srcu); 3142 3143 return 0; 3144 } 3145 3146 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) 3147 { 3148 int ret; 3149 struct inode *btree_inode = buf->pages[0]->mapping->host; 3150 3151 ret = extent_buffer_uptodate(buf); 3152 if (!ret) 3153 return ret; 3154 3155 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3156 parent_transid); 3157 return !ret; 3158 } 3159 3160 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3161 { 3162 return set_extent_buffer_uptodate(buf); 3163 } 3164 3165 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3166 { 3167 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3168 u64 transid = btrfs_header_generation(buf); 3169 int was_dirty; 3170 3171 btrfs_assert_tree_locked(buf); 3172 if (transid != root->fs_info->generation) { 3173 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 3174 "found %llu running %llu\n", 3175 (unsigned long long)buf->start, 3176 (unsigned long long)transid, 3177 (unsigned long long)root->fs_info->generation); 3178 WARN_ON(1); 3179 } 3180 was_dirty = set_extent_buffer_dirty(buf); 3181 if (!was_dirty) { 3182 spin_lock(&root->fs_info->delalloc_lock); 3183 root->fs_info->dirty_metadata_bytes += buf->len; 3184 spin_unlock(&root->fs_info->delalloc_lock); 3185 } 3186 } 3187 3188 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 3189 { 3190 /* 3191 * looks as though older kernels can get into trouble with 3192 * this code, they end up stuck in balance_dirty_pages forever 3193 */ 3194 u64 num_dirty; 3195 unsigned long thresh = 32 * 1024 * 1024; 3196 3197 if (current->flags & PF_MEMALLOC) 3198 return; 3199 3200 btrfs_balance_delayed_items(root); 3201 3202 num_dirty = root->fs_info->dirty_metadata_bytes; 3203 3204 if (num_dirty > thresh) { 3205 balance_dirty_pages_ratelimited_nr( 3206 root->fs_info->btree_inode->i_mapping, 1); 3207 } 3208 return; 3209 } 3210 3211 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 3212 { 3213 /* 3214 * looks as though older kernels can get into trouble with 3215 * this code, they end up stuck in balance_dirty_pages forever 3216 */ 3217 u64 num_dirty; 3218 unsigned long thresh = 32 * 1024 * 1024; 3219 3220 if (current->flags & PF_MEMALLOC) 3221 return; 3222 3223 num_dirty = root->fs_info->dirty_metadata_bytes; 3224 3225 if (num_dirty > thresh) { 3226 balance_dirty_pages_ratelimited_nr( 3227 root->fs_info->btree_inode->i_mapping, 1); 3228 } 3229 return; 3230 } 3231 3232 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3233 { 3234 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3235 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3236 } 3237 3238 static int btree_lock_page_hook(struct page *page, void *data, 3239 void (*flush_fn)(void *)) 3240 { 3241 struct inode *inode = page->mapping->host; 3242 struct btrfs_root *root = BTRFS_I(inode)->root; 3243 struct extent_buffer *eb; 3244 3245 /* 3246 * We culled this eb but the page is still hanging out on the mapping, 3247 * carry on. 3248 */ 3249 if (!PagePrivate(page)) 3250 goto out; 3251 3252 eb = (struct extent_buffer *)page->private; 3253 if (!eb) { 3254 WARN_ON(1); 3255 goto out; 3256 } 3257 if (page != eb->pages[0]) 3258 goto out; 3259 3260 if (!btrfs_try_tree_write_lock(eb)) { 3261 flush_fn(data); 3262 btrfs_tree_lock(eb); 3263 } 3264 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3265 3266 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3267 spin_lock(&root->fs_info->delalloc_lock); 3268 if (root->fs_info->dirty_metadata_bytes >= eb->len) 3269 root->fs_info->dirty_metadata_bytes -= eb->len; 3270 else 3271 WARN_ON(1); 3272 spin_unlock(&root->fs_info->delalloc_lock); 3273 } 3274 3275 btrfs_tree_unlock(eb); 3276 out: 3277 if (!trylock_page(page)) { 3278 flush_fn(data); 3279 lock_page(page); 3280 } 3281 return 0; 3282 } 3283 3284 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3285 int read_only) 3286 { 3287 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) { 3288 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n"); 3289 return -EINVAL; 3290 } 3291 3292 if (read_only) 3293 return 0; 3294 3295 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 3296 printk(KERN_WARNING "warning: mount fs with errors, " 3297 "running btrfsck is recommended\n"); 3298 } 3299 3300 return 0; 3301 } 3302 3303 int btrfs_error_commit_super(struct btrfs_root *root) 3304 { 3305 int ret; 3306 3307 mutex_lock(&root->fs_info->cleaner_mutex); 3308 btrfs_run_delayed_iputs(root); 3309 mutex_unlock(&root->fs_info->cleaner_mutex); 3310 3311 down_write(&root->fs_info->cleanup_work_sem); 3312 up_write(&root->fs_info->cleanup_work_sem); 3313 3314 /* cleanup FS via transaction */ 3315 btrfs_cleanup_transaction(root); 3316 3317 ret = write_ctree_super(NULL, root, 0); 3318 3319 return ret; 3320 } 3321 3322 static void btrfs_destroy_ordered_operations(struct btrfs_root *root) 3323 { 3324 struct btrfs_inode *btrfs_inode; 3325 struct list_head splice; 3326 3327 INIT_LIST_HEAD(&splice); 3328 3329 mutex_lock(&root->fs_info->ordered_operations_mutex); 3330 spin_lock(&root->fs_info->ordered_extent_lock); 3331 3332 list_splice_init(&root->fs_info->ordered_operations, &splice); 3333 while (!list_empty(&splice)) { 3334 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3335 ordered_operations); 3336 3337 list_del_init(&btrfs_inode->ordered_operations); 3338 3339 btrfs_invalidate_inodes(btrfs_inode->root); 3340 } 3341 3342 spin_unlock(&root->fs_info->ordered_extent_lock); 3343 mutex_unlock(&root->fs_info->ordered_operations_mutex); 3344 } 3345 3346 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 3347 { 3348 struct list_head splice; 3349 struct btrfs_ordered_extent *ordered; 3350 struct inode *inode; 3351 3352 INIT_LIST_HEAD(&splice); 3353 3354 spin_lock(&root->fs_info->ordered_extent_lock); 3355 3356 list_splice_init(&root->fs_info->ordered_extents, &splice); 3357 while (!list_empty(&splice)) { 3358 ordered = list_entry(splice.next, struct btrfs_ordered_extent, 3359 root_extent_list); 3360 3361 list_del_init(&ordered->root_extent_list); 3362 atomic_inc(&ordered->refs); 3363 3364 /* the inode may be getting freed (in sys_unlink path). */ 3365 inode = igrab(ordered->inode); 3366 3367 spin_unlock(&root->fs_info->ordered_extent_lock); 3368 if (inode) 3369 iput(inode); 3370 3371 atomic_set(&ordered->refs, 1); 3372 btrfs_put_ordered_extent(ordered); 3373 3374 spin_lock(&root->fs_info->ordered_extent_lock); 3375 } 3376 3377 spin_unlock(&root->fs_info->ordered_extent_lock); 3378 } 3379 3380 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 3381 struct btrfs_root *root) 3382 { 3383 struct rb_node *node; 3384 struct btrfs_delayed_ref_root *delayed_refs; 3385 struct btrfs_delayed_ref_node *ref; 3386 int ret = 0; 3387 3388 delayed_refs = &trans->delayed_refs; 3389 3390 again: 3391 spin_lock(&delayed_refs->lock); 3392 if (delayed_refs->num_entries == 0) { 3393 spin_unlock(&delayed_refs->lock); 3394 printk(KERN_INFO "delayed_refs has NO entry\n"); 3395 return ret; 3396 } 3397 3398 node = rb_first(&delayed_refs->root); 3399 while (node) { 3400 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 3401 node = rb_next(node); 3402 3403 ref->in_tree = 0; 3404 rb_erase(&ref->rb_node, &delayed_refs->root); 3405 delayed_refs->num_entries--; 3406 3407 atomic_set(&ref->refs, 1); 3408 if (btrfs_delayed_ref_is_head(ref)) { 3409 struct btrfs_delayed_ref_head *head; 3410 3411 head = btrfs_delayed_node_to_head(ref); 3412 spin_unlock(&delayed_refs->lock); 3413 mutex_lock(&head->mutex); 3414 kfree(head->extent_op); 3415 delayed_refs->num_heads--; 3416 if (list_empty(&head->cluster)) 3417 delayed_refs->num_heads_ready--; 3418 list_del_init(&head->cluster); 3419 mutex_unlock(&head->mutex); 3420 btrfs_put_delayed_ref(ref); 3421 goto again; 3422 } 3423 spin_unlock(&delayed_refs->lock); 3424 btrfs_put_delayed_ref(ref); 3425 3426 cond_resched(); 3427 spin_lock(&delayed_refs->lock); 3428 } 3429 3430 spin_unlock(&delayed_refs->lock); 3431 3432 return ret; 3433 } 3434 3435 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t) 3436 { 3437 struct btrfs_pending_snapshot *snapshot; 3438 struct list_head splice; 3439 3440 INIT_LIST_HEAD(&splice); 3441 3442 list_splice_init(&t->pending_snapshots, &splice); 3443 3444 while (!list_empty(&splice)) { 3445 snapshot = list_entry(splice.next, 3446 struct btrfs_pending_snapshot, 3447 list); 3448 3449 list_del_init(&snapshot->list); 3450 3451 kfree(snapshot); 3452 } 3453 } 3454 3455 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 3456 { 3457 struct btrfs_inode *btrfs_inode; 3458 struct list_head splice; 3459 3460 INIT_LIST_HEAD(&splice); 3461 3462 spin_lock(&root->fs_info->delalloc_lock); 3463 list_splice_init(&root->fs_info->delalloc_inodes, &splice); 3464 3465 while (!list_empty(&splice)) { 3466 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3467 delalloc_inodes); 3468 3469 list_del_init(&btrfs_inode->delalloc_inodes); 3470 3471 btrfs_invalidate_inodes(btrfs_inode->root); 3472 } 3473 3474 spin_unlock(&root->fs_info->delalloc_lock); 3475 } 3476 3477 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 3478 struct extent_io_tree *dirty_pages, 3479 int mark) 3480 { 3481 int ret; 3482 struct page *page; 3483 struct inode *btree_inode = root->fs_info->btree_inode; 3484 struct extent_buffer *eb; 3485 u64 start = 0; 3486 u64 end; 3487 u64 offset; 3488 unsigned long index; 3489 3490 while (1) { 3491 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 3492 mark); 3493 if (ret) 3494 break; 3495 3496 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 3497 while (start <= end) { 3498 index = start >> PAGE_CACHE_SHIFT; 3499 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 3500 page = find_get_page(btree_inode->i_mapping, index); 3501 if (!page) 3502 continue; 3503 offset = page_offset(page); 3504 3505 spin_lock(&dirty_pages->buffer_lock); 3506 eb = radix_tree_lookup( 3507 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer, 3508 offset >> PAGE_CACHE_SHIFT); 3509 spin_unlock(&dirty_pages->buffer_lock); 3510 if (eb) { 3511 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY, 3512 &eb->bflags); 3513 atomic_set(&eb->refs, 1); 3514 } 3515 if (PageWriteback(page)) 3516 end_page_writeback(page); 3517 3518 lock_page(page); 3519 if (PageDirty(page)) { 3520 clear_page_dirty_for_io(page); 3521 spin_lock_irq(&page->mapping->tree_lock); 3522 radix_tree_tag_clear(&page->mapping->page_tree, 3523 page_index(page), 3524 PAGECACHE_TAG_DIRTY); 3525 spin_unlock_irq(&page->mapping->tree_lock); 3526 } 3527 3528 page->mapping->a_ops->invalidatepage(page, 0); 3529 unlock_page(page); 3530 } 3531 } 3532 3533 return ret; 3534 } 3535 3536 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 3537 struct extent_io_tree *pinned_extents) 3538 { 3539 struct extent_io_tree *unpin; 3540 u64 start; 3541 u64 end; 3542 int ret; 3543 3544 unpin = pinned_extents; 3545 while (1) { 3546 ret = find_first_extent_bit(unpin, 0, &start, &end, 3547 EXTENT_DIRTY); 3548 if (ret) 3549 break; 3550 3551 /* opt_discard */ 3552 if (btrfs_test_opt(root, DISCARD)) 3553 ret = btrfs_error_discard_extent(root, start, 3554 end + 1 - start, 3555 NULL); 3556 3557 clear_extent_dirty(unpin, start, end, GFP_NOFS); 3558 btrfs_error_unpin_extent_range(root, start, end); 3559 cond_resched(); 3560 } 3561 3562 return 0; 3563 } 3564 3565 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 3566 struct btrfs_root *root) 3567 { 3568 btrfs_destroy_delayed_refs(cur_trans, root); 3569 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 3570 cur_trans->dirty_pages.dirty_bytes); 3571 3572 /* FIXME: cleanup wait for commit */ 3573 cur_trans->in_commit = 1; 3574 cur_trans->blocked = 1; 3575 if (waitqueue_active(&root->fs_info->transaction_blocked_wait)) 3576 wake_up(&root->fs_info->transaction_blocked_wait); 3577 3578 cur_trans->blocked = 0; 3579 if (waitqueue_active(&root->fs_info->transaction_wait)) 3580 wake_up(&root->fs_info->transaction_wait); 3581 3582 cur_trans->commit_done = 1; 3583 if (waitqueue_active(&cur_trans->commit_wait)) 3584 wake_up(&cur_trans->commit_wait); 3585 3586 btrfs_destroy_pending_snapshots(cur_trans); 3587 3588 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 3589 EXTENT_DIRTY); 3590 3591 /* 3592 memset(cur_trans, 0, sizeof(*cur_trans)); 3593 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 3594 */ 3595 } 3596 3597 int btrfs_cleanup_transaction(struct btrfs_root *root) 3598 { 3599 struct btrfs_transaction *t; 3600 LIST_HEAD(list); 3601 3602 mutex_lock(&root->fs_info->transaction_kthread_mutex); 3603 3604 spin_lock(&root->fs_info->trans_lock); 3605 list_splice_init(&root->fs_info->trans_list, &list); 3606 root->fs_info->trans_no_join = 1; 3607 spin_unlock(&root->fs_info->trans_lock); 3608 3609 while (!list_empty(&list)) { 3610 t = list_entry(list.next, struct btrfs_transaction, list); 3611 if (!t) 3612 break; 3613 3614 btrfs_destroy_ordered_operations(root); 3615 3616 btrfs_destroy_ordered_extents(root); 3617 3618 btrfs_destroy_delayed_refs(t, root); 3619 3620 btrfs_block_rsv_release(root, 3621 &root->fs_info->trans_block_rsv, 3622 t->dirty_pages.dirty_bytes); 3623 3624 /* FIXME: cleanup wait for commit */ 3625 t->in_commit = 1; 3626 t->blocked = 1; 3627 if (waitqueue_active(&root->fs_info->transaction_blocked_wait)) 3628 wake_up(&root->fs_info->transaction_blocked_wait); 3629 3630 t->blocked = 0; 3631 if (waitqueue_active(&root->fs_info->transaction_wait)) 3632 wake_up(&root->fs_info->transaction_wait); 3633 3634 t->commit_done = 1; 3635 if (waitqueue_active(&t->commit_wait)) 3636 wake_up(&t->commit_wait); 3637 3638 btrfs_destroy_pending_snapshots(t); 3639 3640 btrfs_destroy_delalloc_inodes(root); 3641 3642 spin_lock(&root->fs_info->trans_lock); 3643 root->fs_info->running_transaction = NULL; 3644 spin_unlock(&root->fs_info->trans_lock); 3645 3646 btrfs_destroy_marked_extents(root, &t->dirty_pages, 3647 EXTENT_DIRTY); 3648 3649 btrfs_destroy_pinned_extent(root, 3650 root->fs_info->pinned_extents); 3651 3652 atomic_set(&t->use_count, 0); 3653 list_del_init(&t->list); 3654 memset(t, 0, sizeof(*t)); 3655 kmem_cache_free(btrfs_transaction_cachep, t); 3656 } 3657 3658 spin_lock(&root->fs_info->trans_lock); 3659 root->fs_info->trans_no_join = 0; 3660 spin_unlock(&root->fs_info->trans_lock); 3661 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 3662 3663 return 0; 3664 } 3665 3666 static int btree_writepage_io_failed_hook(struct bio *bio, struct page *page, 3667 u64 start, u64 end, 3668 struct extent_state *state) 3669 { 3670 struct super_block *sb = page->mapping->host->i_sb; 3671 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3672 btrfs_error(fs_info, -EIO, 3673 "Error occured while writing out btree at %llu", start); 3674 return -EIO; 3675 } 3676 3677 static struct extent_io_ops btree_extent_io_ops = { 3678 .write_cache_pages_lock_hook = btree_lock_page_hook, 3679 .readpage_end_io_hook = btree_readpage_end_io_hook, 3680 .readpage_io_failed_hook = btree_io_failed_hook, 3681 .submit_bio_hook = btree_submit_bio_hook, 3682 /* note we're sharing with inode.c for the merge bio hook */ 3683 .merge_bio_hook = btrfs_merge_bio_hook, 3684 .writepage_io_failed_hook = btree_writepage_io_failed_hook, 3685 }; 3686