xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 90099433)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 
48 static struct extent_io_ops btree_extent_io_ops;
49 static void end_workqueue_fn(struct btrfs_work *work);
50 static void free_fs_root(struct btrfs_root *root);
51 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
52 				    int read_only);
53 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 				      struct btrfs_root *root);
57 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
60 					struct extent_io_tree *dirty_pages,
61 					int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
63 				       struct extent_io_tree *pinned_extents);
64 
65 /*
66  * end_io_wq structs are used to do processing in task context when an IO is
67  * complete.  This is used during reads to verify checksums, and it is used
68  * by writes to insert metadata for new file extents after IO is complete.
69  */
70 struct end_io_wq {
71 	struct bio *bio;
72 	bio_end_io_t *end_io;
73 	void *private;
74 	struct btrfs_fs_info *info;
75 	int error;
76 	int metadata;
77 	struct list_head list;
78 	struct btrfs_work work;
79 };
80 
81 /*
82  * async submit bios are used to offload expensive checksumming
83  * onto the worker threads.  They checksum file and metadata bios
84  * just before they are sent down the IO stack.
85  */
86 struct async_submit_bio {
87 	struct inode *inode;
88 	struct bio *bio;
89 	struct list_head list;
90 	extent_submit_bio_hook_t *submit_bio_start;
91 	extent_submit_bio_hook_t *submit_bio_done;
92 	int rw;
93 	int mirror_num;
94 	unsigned long bio_flags;
95 	/*
96 	 * bio_offset is optional, can be used if the pages in the bio
97 	 * can't tell us where in the file the bio should go
98 	 */
99 	u64 bio_offset;
100 	struct btrfs_work work;
101 	int error;
102 };
103 
104 /*
105  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
106  * eb, the lockdep key is determined by the btrfs_root it belongs to and
107  * the level the eb occupies in the tree.
108  *
109  * Different roots are used for different purposes and may nest inside each
110  * other and they require separate keysets.  As lockdep keys should be
111  * static, assign keysets according to the purpose of the root as indicated
112  * by btrfs_root->objectid.  This ensures that all special purpose roots
113  * have separate keysets.
114  *
115  * Lock-nesting across peer nodes is always done with the immediate parent
116  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
117  * subclass to avoid triggering lockdep warning in such cases.
118  *
119  * The key is set by the readpage_end_io_hook after the buffer has passed
120  * csum validation but before the pages are unlocked.  It is also set by
121  * btrfs_init_new_buffer on freshly allocated blocks.
122  *
123  * We also add a check to make sure the highest level of the tree is the
124  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
125  * needs update as well.
126  */
127 #ifdef CONFIG_DEBUG_LOCK_ALLOC
128 # if BTRFS_MAX_LEVEL != 8
129 #  error
130 # endif
131 
132 static struct btrfs_lockdep_keyset {
133 	u64			id;		/* root objectid */
134 	const char		*name_stem;	/* lock name stem */
135 	char			names[BTRFS_MAX_LEVEL + 1][20];
136 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
137 } btrfs_lockdep_keysets[] = {
138 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
139 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
140 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
141 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
142 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
143 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
144 	{ .id = BTRFS_ORPHAN_OBJECTID,		.name_stem = "orphan"	},
145 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
146 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
147 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
148 	{ .id = 0,				.name_stem = "tree"	},
149 };
150 
151 void __init btrfs_init_lockdep(void)
152 {
153 	int i, j;
154 
155 	/* initialize lockdep class names */
156 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
157 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
158 
159 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
160 			snprintf(ks->names[j], sizeof(ks->names[j]),
161 				 "btrfs-%s-%02d", ks->name_stem, j);
162 	}
163 }
164 
165 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
166 				    int level)
167 {
168 	struct btrfs_lockdep_keyset *ks;
169 
170 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
171 
172 	/* find the matching keyset, id 0 is the default entry */
173 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
174 		if (ks->id == objectid)
175 			break;
176 
177 	lockdep_set_class_and_name(&eb->lock,
178 				   &ks->keys[level], ks->names[level]);
179 }
180 
181 #endif
182 
183 /*
184  * extents on the btree inode are pretty simple, there's one extent
185  * that covers the entire device
186  */
187 static struct extent_map *btree_get_extent(struct inode *inode,
188 		struct page *page, size_t pg_offset, u64 start, u64 len,
189 		int create)
190 {
191 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
192 	struct extent_map *em;
193 	int ret;
194 
195 	read_lock(&em_tree->lock);
196 	em = lookup_extent_mapping(em_tree, start, len);
197 	if (em) {
198 		em->bdev =
199 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
200 		read_unlock(&em_tree->lock);
201 		goto out;
202 	}
203 	read_unlock(&em_tree->lock);
204 
205 	em = alloc_extent_map();
206 	if (!em) {
207 		em = ERR_PTR(-ENOMEM);
208 		goto out;
209 	}
210 	em->start = 0;
211 	em->len = (u64)-1;
212 	em->block_len = (u64)-1;
213 	em->block_start = 0;
214 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
215 
216 	write_lock(&em_tree->lock);
217 	ret = add_extent_mapping(em_tree, em);
218 	if (ret == -EEXIST) {
219 		u64 failed_start = em->start;
220 		u64 failed_len = em->len;
221 
222 		free_extent_map(em);
223 		em = lookup_extent_mapping(em_tree, start, len);
224 		if (em) {
225 			ret = 0;
226 		} else {
227 			em = lookup_extent_mapping(em_tree, failed_start,
228 						   failed_len);
229 			ret = -EIO;
230 		}
231 	} else if (ret) {
232 		free_extent_map(em);
233 		em = NULL;
234 	}
235 	write_unlock(&em_tree->lock);
236 
237 	if (ret)
238 		em = ERR_PTR(ret);
239 out:
240 	return em;
241 }
242 
243 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
244 {
245 	return crc32c(seed, data, len);
246 }
247 
248 void btrfs_csum_final(u32 crc, char *result)
249 {
250 	put_unaligned_le32(~crc, result);
251 }
252 
253 /*
254  * compute the csum for a btree block, and either verify it or write it
255  * into the csum field of the block.
256  */
257 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258 			   int verify)
259 {
260 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
261 	char *result = NULL;
262 	unsigned long len;
263 	unsigned long cur_len;
264 	unsigned long offset = BTRFS_CSUM_SIZE;
265 	char *kaddr;
266 	unsigned long map_start;
267 	unsigned long map_len;
268 	int err;
269 	u32 crc = ~(u32)0;
270 	unsigned long inline_result;
271 
272 	len = buf->len - offset;
273 	while (len > 0) {
274 		err = map_private_extent_buffer(buf, offset, 32,
275 					&kaddr, &map_start, &map_len);
276 		if (err)
277 			return 1;
278 		cur_len = min(len, map_len - (offset - map_start));
279 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
280 				      crc, cur_len);
281 		len -= cur_len;
282 		offset += cur_len;
283 	}
284 	if (csum_size > sizeof(inline_result)) {
285 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286 		if (!result)
287 			return 1;
288 	} else {
289 		result = (char *)&inline_result;
290 	}
291 
292 	btrfs_csum_final(crc, result);
293 
294 	if (verify) {
295 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
296 			u32 val;
297 			u32 found = 0;
298 			memcpy(&found, result, csum_size);
299 
300 			read_extent_buffer(buf, &val, 0, csum_size);
301 			printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
302 				       "failed on %llu wanted %X found %X "
303 				       "level %d\n",
304 				       root->fs_info->sb->s_id,
305 				       (unsigned long long)buf->start, val, found,
306 				       btrfs_header_level(buf));
307 			if (result != (char *)&inline_result)
308 				kfree(result);
309 			return 1;
310 		}
311 	} else {
312 		write_extent_buffer(buf, result, 0, csum_size);
313 	}
314 	if (result != (char *)&inline_result)
315 		kfree(result);
316 	return 0;
317 }
318 
319 /*
320  * we can't consider a given block up to date unless the transid of the
321  * block matches the transid in the parent node's pointer.  This is how we
322  * detect blocks that either didn't get written at all or got written
323  * in the wrong place.
324  */
325 static int verify_parent_transid(struct extent_io_tree *io_tree,
326 				 struct extent_buffer *eb, u64 parent_transid)
327 {
328 	struct extent_state *cached_state = NULL;
329 	int ret;
330 
331 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332 		return 0;
333 
334 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335 			 0, &cached_state);
336 	if (extent_buffer_uptodate(eb) &&
337 	    btrfs_header_generation(eb) == parent_transid) {
338 		ret = 0;
339 		goto out;
340 	}
341 	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
342 		       "found %llu\n",
343 		       (unsigned long long)eb->start,
344 		       (unsigned long long)parent_transid,
345 		       (unsigned long long)btrfs_header_generation(eb));
346 	ret = 1;
347 	clear_extent_buffer_uptodate(eb);
348 out:
349 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350 			     &cached_state, GFP_NOFS);
351 	return ret;
352 }
353 
354 /*
355  * helper to read a given tree block, doing retries as required when
356  * the checksums don't match and we have alternate mirrors to try.
357  */
358 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359 					  struct extent_buffer *eb,
360 					  u64 start, u64 parent_transid)
361 {
362 	struct extent_io_tree *io_tree;
363 	int failed = 0;
364 	int ret;
365 	int num_copies = 0;
366 	int mirror_num = 0;
367 	int failed_mirror = 0;
368 
369 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
370 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
371 	while (1) {
372 		ret = read_extent_buffer_pages(io_tree, eb, start,
373 					       WAIT_COMPLETE,
374 					       btree_get_extent, mirror_num);
375 		if (!ret && !verify_parent_transid(io_tree, eb, parent_transid))
376 			break;
377 
378 		/*
379 		 * This buffer's crc is fine, but its contents are corrupted, so
380 		 * there is no reason to read the other copies, they won't be
381 		 * any less wrong.
382 		 */
383 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
384 			break;
385 
386 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
387 					      eb->start, eb->len);
388 		if (num_copies == 1)
389 			break;
390 
391 		if (!failed_mirror) {
392 			failed = 1;
393 			failed_mirror = eb->read_mirror;
394 		}
395 
396 		mirror_num++;
397 		if (mirror_num == failed_mirror)
398 			mirror_num++;
399 
400 		if (mirror_num > num_copies)
401 			break;
402 	}
403 
404 	if (failed && !ret)
405 		repair_eb_io_failure(root, eb, failed_mirror);
406 
407 	return ret;
408 }
409 
410 /*
411  * checksum a dirty tree block before IO.  This has extra checks to make sure
412  * we only fill in the checksum field in the first page of a multi-page block
413  */
414 
415 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
416 {
417 	struct extent_io_tree *tree;
418 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
419 	u64 found_start;
420 	struct extent_buffer *eb;
421 
422 	tree = &BTRFS_I(page->mapping->host)->io_tree;
423 
424 	eb = (struct extent_buffer *)page->private;
425 	if (page != eb->pages[0])
426 		return 0;
427 	found_start = btrfs_header_bytenr(eb);
428 	if (found_start != start) {
429 		WARN_ON(1);
430 		return 0;
431 	}
432 	if (eb->pages[0] != page) {
433 		WARN_ON(1);
434 		return 0;
435 	}
436 	if (!PageUptodate(page)) {
437 		WARN_ON(1);
438 		return 0;
439 	}
440 	csum_tree_block(root, eb, 0);
441 	return 0;
442 }
443 
444 static int check_tree_block_fsid(struct btrfs_root *root,
445 				 struct extent_buffer *eb)
446 {
447 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
448 	u8 fsid[BTRFS_UUID_SIZE];
449 	int ret = 1;
450 
451 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
452 			   BTRFS_FSID_SIZE);
453 	while (fs_devices) {
454 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
455 			ret = 0;
456 			break;
457 		}
458 		fs_devices = fs_devices->seed;
459 	}
460 	return ret;
461 }
462 
463 #define CORRUPT(reason, eb, root, slot)				\
464 	printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu,"	\
465 	       "root=%llu, slot=%d\n", reason,			\
466 	       (unsigned long long)btrfs_header_bytenr(eb),	\
467 	       (unsigned long long)root->objectid, slot)
468 
469 static noinline int check_leaf(struct btrfs_root *root,
470 			       struct extent_buffer *leaf)
471 {
472 	struct btrfs_key key;
473 	struct btrfs_key leaf_key;
474 	u32 nritems = btrfs_header_nritems(leaf);
475 	int slot;
476 
477 	if (nritems == 0)
478 		return 0;
479 
480 	/* Check the 0 item */
481 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
482 	    BTRFS_LEAF_DATA_SIZE(root)) {
483 		CORRUPT("invalid item offset size pair", leaf, root, 0);
484 		return -EIO;
485 	}
486 
487 	/*
488 	 * Check to make sure each items keys are in the correct order and their
489 	 * offsets make sense.  We only have to loop through nritems-1 because
490 	 * we check the current slot against the next slot, which verifies the
491 	 * next slot's offset+size makes sense and that the current's slot
492 	 * offset is correct.
493 	 */
494 	for (slot = 0; slot < nritems - 1; slot++) {
495 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
496 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
497 
498 		/* Make sure the keys are in the right order */
499 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
500 			CORRUPT("bad key order", leaf, root, slot);
501 			return -EIO;
502 		}
503 
504 		/*
505 		 * Make sure the offset and ends are right, remember that the
506 		 * item data starts at the end of the leaf and grows towards the
507 		 * front.
508 		 */
509 		if (btrfs_item_offset_nr(leaf, slot) !=
510 			btrfs_item_end_nr(leaf, slot + 1)) {
511 			CORRUPT("slot offset bad", leaf, root, slot);
512 			return -EIO;
513 		}
514 
515 		/*
516 		 * Check to make sure that we don't point outside of the leaf,
517 		 * just incase all the items are consistent to eachother, but
518 		 * all point outside of the leaf.
519 		 */
520 		if (btrfs_item_end_nr(leaf, slot) >
521 		    BTRFS_LEAF_DATA_SIZE(root)) {
522 			CORRUPT("slot end outside of leaf", leaf, root, slot);
523 			return -EIO;
524 		}
525 	}
526 
527 	return 0;
528 }
529 
530 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
531 				       struct page *page, int max_walk)
532 {
533 	struct extent_buffer *eb;
534 	u64 start = page_offset(page);
535 	u64 target = start;
536 	u64 min_start;
537 
538 	if (start < max_walk)
539 		min_start = 0;
540 	else
541 		min_start = start - max_walk;
542 
543 	while (start >= min_start) {
544 		eb = find_extent_buffer(tree, start, 0);
545 		if (eb) {
546 			/*
547 			 * we found an extent buffer and it contains our page
548 			 * horray!
549 			 */
550 			if (eb->start <= target &&
551 			    eb->start + eb->len > target)
552 				return eb;
553 
554 			/* we found an extent buffer that wasn't for us */
555 			free_extent_buffer(eb);
556 			return NULL;
557 		}
558 		if (start == 0)
559 			break;
560 		start -= PAGE_CACHE_SIZE;
561 	}
562 	return NULL;
563 }
564 
565 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
566 			       struct extent_state *state, int mirror)
567 {
568 	struct extent_io_tree *tree;
569 	u64 found_start;
570 	int found_level;
571 	struct extent_buffer *eb;
572 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
573 	int ret = 0;
574 	int reads_done;
575 
576 	if (!page->private)
577 		goto out;
578 
579 	tree = &BTRFS_I(page->mapping->host)->io_tree;
580 	eb = (struct extent_buffer *)page->private;
581 
582 	/* the pending IO might have been the only thing that kept this buffer
583 	 * in memory.  Make sure we have a ref for all this other checks
584 	 */
585 	extent_buffer_get(eb);
586 
587 	reads_done = atomic_dec_and_test(&eb->io_pages);
588 	if (!reads_done)
589 		goto err;
590 
591 	eb->read_mirror = mirror;
592 	if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
593 		ret = -EIO;
594 		goto err;
595 	}
596 
597 	found_start = btrfs_header_bytenr(eb);
598 	if (found_start != eb->start) {
599 		printk_ratelimited(KERN_INFO "btrfs bad tree block start "
600 			       "%llu %llu\n",
601 			       (unsigned long long)found_start,
602 			       (unsigned long long)eb->start);
603 		ret = -EIO;
604 		goto err;
605 	}
606 	if (check_tree_block_fsid(root, eb)) {
607 		printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
608 			       (unsigned long long)eb->start);
609 		ret = -EIO;
610 		goto err;
611 	}
612 	found_level = btrfs_header_level(eb);
613 
614 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
615 				       eb, found_level);
616 
617 	ret = csum_tree_block(root, eb, 1);
618 	if (ret) {
619 		ret = -EIO;
620 		goto err;
621 	}
622 
623 	/*
624 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
625 	 * that we don't try and read the other copies of this block, just
626 	 * return -EIO.
627 	 */
628 	if (found_level == 0 && check_leaf(root, eb)) {
629 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
630 		ret = -EIO;
631 	}
632 
633 	if (!ret)
634 		set_extent_buffer_uptodate(eb);
635 err:
636 	if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
637 		clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
638 		btree_readahead_hook(root, eb, eb->start, ret);
639 	}
640 
641 	if (ret)
642 		clear_extent_buffer_uptodate(eb);
643 	free_extent_buffer(eb);
644 out:
645 	return ret;
646 }
647 
648 static int btree_io_failed_hook(struct page *page, int failed_mirror)
649 {
650 	struct extent_buffer *eb;
651 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
652 
653 	eb = (struct extent_buffer *)page->private;
654 	set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
655 	eb->read_mirror = failed_mirror;
656 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
657 		btree_readahead_hook(root, eb, eb->start, -EIO);
658 	return -EIO;	/* we fixed nothing */
659 }
660 
661 static void end_workqueue_bio(struct bio *bio, int err)
662 {
663 	struct end_io_wq *end_io_wq = bio->bi_private;
664 	struct btrfs_fs_info *fs_info;
665 
666 	fs_info = end_io_wq->info;
667 	end_io_wq->error = err;
668 	end_io_wq->work.func = end_workqueue_fn;
669 	end_io_wq->work.flags = 0;
670 
671 	if (bio->bi_rw & REQ_WRITE) {
672 		if (end_io_wq->metadata == 1)
673 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
674 					   &end_io_wq->work);
675 		else if (end_io_wq->metadata == 2)
676 			btrfs_queue_worker(&fs_info->endio_freespace_worker,
677 					   &end_io_wq->work);
678 		else
679 			btrfs_queue_worker(&fs_info->endio_write_workers,
680 					   &end_io_wq->work);
681 	} else {
682 		if (end_io_wq->metadata)
683 			btrfs_queue_worker(&fs_info->endio_meta_workers,
684 					   &end_io_wq->work);
685 		else
686 			btrfs_queue_worker(&fs_info->endio_workers,
687 					   &end_io_wq->work);
688 	}
689 }
690 
691 /*
692  * For the metadata arg you want
693  *
694  * 0 - if data
695  * 1 - if normal metadta
696  * 2 - if writing to the free space cache area
697  */
698 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
699 			int metadata)
700 {
701 	struct end_io_wq *end_io_wq;
702 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
703 	if (!end_io_wq)
704 		return -ENOMEM;
705 
706 	end_io_wq->private = bio->bi_private;
707 	end_io_wq->end_io = bio->bi_end_io;
708 	end_io_wq->info = info;
709 	end_io_wq->error = 0;
710 	end_io_wq->bio = bio;
711 	end_io_wq->metadata = metadata;
712 
713 	bio->bi_private = end_io_wq;
714 	bio->bi_end_io = end_workqueue_bio;
715 	return 0;
716 }
717 
718 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
719 {
720 	unsigned long limit = min_t(unsigned long,
721 				    info->workers.max_workers,
722 				    info->fs_devices->open_devices);
723 	return 256 * limit;
724 }
725 
726 static void run_one_async_start(struct btrfs_work *work)
727 {
728 	struct async_submit_bio *async;
729 	int ret;
730 
731 	async = container_of(work, struct  async_submit_bio, work);
732 	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
733 				      async->mirror_num, async->bio_flags,
734 				      async->bio_offset);
735 	if (ret)
736 		async->error = ret;
737 }
738 
739 static void run_one_async_done(struct btrfs_work *work)
740 {
741 	struct btrfs_fs_info *fs_info;
742 	struct async_submit_bio *async;
743 	int limit;
744 
745 	async = container_of(work, struct  async_submit_bio, work);
746 	fs_info = BTRFS_I(async->inode)->root->fs_info;
747 
748 	limit = btrfs_async_submit_limit(fs_info);
749 	limit = limit * 2 / 3;
750 
751 	atomic_dec(&fs_info->nr_async_submits);
752 
753 	if (atomic_read(&fs_info->nr_async_submits) < limit &&
754 	    waitqueue_active(&fs_info->async_submit_wait))
755 		wake_up(&fs_info->async_submit_wait);
756 
757 	/* If an error occured we just want to clean up the bio and move on */
758 	if (async->error) {
759 		bio_endio(async->bio, async->error);
760 		return;
761 	}
762 
763 	async->submit_bio_done(async->inode, async->rw, async->bio,
764 			       async->mirror_num, async->bio_flags,
765 			       async->bio_offset);
766 }
767 
768 static void run_one_async_free(struct btrfs_work *work)
769 {
770 	struct async_submit_bio *async;
771 
772 	async = container_of(work, struct  async_submit_bio, work);
773 	kfree(async);
774 }
775 
776 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
777 			int rw, struct bio *bio, int mirror_num,
778 			unsigned long bio_flags,
779 			u64 bio_offset,
780 			extent_submit_bio_hook_t *submit_bio_start,
781 			extent_submit_bio_hook_t *submit_bio_done)
782 {
783 	struct async_submit_bio *async;
784 
785 	async = kmalloc(sizeof(*async), GFP_NOFS);
786 	if (!async)
787 		return -ENOMEM;
788 
789 	async->inode = inode;
790 	async->rw = rw;
791 	async->bio = bio;
792 	async->mirror_num = mirror_num;
793 	async->submit_bio_start = submit_bio_start;
794 	async->submit_bio_done = submit_bio_done;
795 
796 	async->work.func = run_one_async_start;
797 	async->work.ordered_func = run_one_async_done;
798 	async->work.ordered_free = run_one_async_free;
799 
800 	async->work.flags = 0;
801 	async->bio_flags = bio_flags;
802 	async->bio_offset = bio_offset;
803 
804 	async->error = 0;
805 
806 	atomic_inc(&fs_info->nr_async_submits);
807 
808 	if (rw & REQ_SYNC)
809 		btrfs_set_work_high_prio(&async->work);
810 
811 	btrfs_queue_worker(&fs_info->workers, &async->work);
812 
813 	while (atomic_read(&fs_info->async_submit_draining) &&
814 	      atomic_read(&fs_info->nr_async_submits)) {
815 		wait_event(fs_info->async_submit_wait,
816 			   (atomic_read(&fs_info->nr_async_submits) == 0));
817 	}
818 
819 	return 0;
820 }
821 
822 static int btree_csum_one_bio(struct bio *bio)
823 {
824 	struct bio_vec *bvec = bio->bi_io_vec;
825 	int bio_index = 0;
826 	struct btrfs_root *root;
827 	int ret = 0;
828 
829 	WARN_ON(bio->bi_vcnt <= 0);
830 	while (bio_index < bio->bi_vcnt) {
831 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
832 		ret = csum_dirty_buffer(root, bvec->bv_page);
833 		if (ret)
834 			break;
835 		bio_index++;
836 		bvec++;
837 	}
838 	return ret;
839 }
840 
841 static int __btree_submit_bio_start(struct inode *inode, int rw,
842 				    struct bio *bio, int mirror_num,
843 				    unsigned long bio_flags,
844 				    u64 bio_offset)
845 {
846 	/*
847 	 * when we're called for a write, we're already in the async
848 	 * submission context.  Just jump into btrfs_map_bio
849 	 */
850 	return btree_csum_one_bio(bio);
851 }
852 
853 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
854 				 int mirror_num, unsigned long bio_flags,
855 				 u64 bio_offset)
856 {
857 	/*
858 	 * when we're called for a write, we're already in the async
859 	 * submission context.  Just jump into btrfs_map_bio
860 	 */
861 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
862 }
863 
864 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
865 				 int mirror_num, unsigned long bio_flags,
866 				 u64 bio_offset)
867 {
868 	int ret;
869 
870 	if (!(rw & REQ_WRITE)) {
871 
872 		/*
873 		 * called for a read, do the setup so that checksum validation
874 		 * can happen in the async kernel threads
875 		 */
876 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
877 					  bio, 1);
878 		if (ret)
879 			return ret;
880 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
881 				     mirror_num, 0);
882 	}
883 
884 	/*
885 	 * kthread helpers are used to submit writes so that checksumming
886 	 * can happen in parallel across all CPUs
887 	 */
888 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
889 				   inode, rw, bio, mirror_num, 0,
890 				   bio_offset,
891 				   __btree_submit_bio_start,
892 				   __btree_submit_bio_done);
893 }
894 
895 #ifdef CONFIG_MIGRATION
896 static int btree_migratepage(struct address_space *mapping,
897 			struct page *newpage, struct page *page,
898 			enum migrate_mode mode)
899 {
900 	/*
901 	 * we can't safely write a btree page from here,
902 	 * we haven't done the locking hook
903 	 */
904 	if (PageDirty(page))
905 		return -EAGAIN;
906 	/*
907 	 * Buffers may be managed in a filesystem specific way.
908 	 * We must have no buffers or drop them.
909 	 */
910 	if (page_has_private(page) &&
911 	    !try_to_release_page(page, GFP_KERNEL))
912 		return -EAGAIN;
913 	return migrate_page(mapping, newpage, page, mode);
914 }
915 #endif
916 
917 
918 static int btree_writepages(struct address_space *mapping,
919 			    struct writeback_control *wbc)
920 {
921 	struct extent_io_tree *tree;
922 	tree = &BTRFS_I(mapping->host)->io_tree;
923 	if (wbc->sync_mode == WB_SYNC_NONE) {
924 		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
925 		u64 num_dirty;
926 		unsigned long thresh = 32 * 1024 * 1024;
927 
928 		if (wbc->for_kupdate)
929 			return 0;
930 
931 		/* this is a bit racy, but that's ok */
932 		num_dirty = root->fs_info->dirty_metadata_bytes;
933 		if (num_dirty < thresh)
934 			return 0;
935 	}
936 	return btree_write_cache_pages(mapping, wbc);
937 }
938 
939 static int btree_readpage(struct file *file, struct page *page)
940 {
941 	struct extent_io_tree *tree;
942 	tree = &BTRFS_I(page->mapping->host)->io_tree;
943 	return extent_read_full_page(tree, page, btree_get_extent, 0);
944 }
945 
946 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
947 {
948 	if (PageWriteback(page) || PageDirty(page))
949 		return 0;
950 	/*
951 	 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
952 	 * slab allocation from alloc_extent_state down the callchain where
953 	 * it'd hit a BUG_ON as those flags are not allowed.
954 	 */
955 	gfp_flags &= ~GFP_SLAB_BUG_MASK;
956 
957 	return try_release_extent_buffer(page, gfp_flags);
958 }
959 
960 static void btree_invalidatepage(struct page *page, unsigned long offset)
961 {
962 	struct extent_io_tree *tree;
963 	tree = &BTRFS_I(page->mapping->host)->io_tree;
964 	extent_invalidatepage(tree, page, offset);
965 	btree_releasepage(page, GFP_NOFS);
966 	if (PagePrivate(page)) {
967 		printk(KERN_WARNING "btrfs warning page private not zero "
968 		       "on page %llu\n", (unsigned long long)page_offset(page));
969 		ClearPagePrivate(page);
970 		set_page_private(page, 0);
971 		page_cache_release(page);
972 	}
973 }
974 
975 static int btree_set_page_dirty(struct page *page)
976 {
977 	struct extent_buffer *eb;
978 
979 	BUG_ON(!PagePrivate(page));
980 	eb = (struct extent_buffer *)page->private;
981 	BUG_ON(!eb);
982 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
983 	BUG_ON(!atomic_read(&eb->refs));
984 	btrfs_assert_tree_locked(eb);
985 	return __set_page_dirty_nobuffers(page);
986 }
987 
988 static const struct address_space_operations btree_aops = {
989 	.readpage	= btree_readpage,
990 	.writepages	= btree_writepages,
991 	.releasepage	= btree_releasepage,
992 	.invalidatepage = btree_invalidatepage,
993 #ifdef CONFIG_MIGRATION
994 	.migratepage	= btree_migratepage,
995 #endif
996 	.set_page_dirty = btree_set_page_dirty,
997 };
998 
999 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1000 			 u64 parent_transid)
1001 {
1002 	struct extent_buffer *buf = NULL;
1003 	struct inode *btree_inode = root->fs_info->btree_inode;
1004 	int ret = 0;
1005 
1006 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1007 	if (!buf)
1008 		return 0;
1009 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1010 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1011 	free_extent_buffer(buf);
1012 	return ret;
1013 }
1014 
1015 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1016 			 int mirror_num, struct extent_buffer **eb)
1017 {
1018 	struct extent_buffer *buf = NULL;
1019 	struct inode *btree_inode = root->fs_info->btree_inode;
1020 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1021 	int ret;
1022 
1023 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1024 	if (!buf)
1025 		return 0;
1026 
1027 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1028 
1029 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1030 				       btree_get_extent, mirror_num);
1031 	if (ret) {
1032 		free_extent_buffer(buf);
1033 		return ret;
1034 	}
1035 
1036 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1037 		free_extent_buffer(buf);
1038 		return -EIO;
1039 	} else if (extent_buffer_uptodate(buf)) {
1040 		*eb = buf;
1041 	} else {
1042 		free_extent_buffer(buf);
1043 	}
1044 	return 0;
1045 }
1046 
1047 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1048 					    u64 bytenr, u32 blocksize)
1049 {
1050 	struct inode *btree_inode = root->fs_info->btree_inode;
1051 	struct extent_buffer *eb;
1052 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1053 				bytenr, blocksize);
1054 	return eb;
1055 }
1056 
1057 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1058 						 u64 bytenr, u32 blocksize)
1059 {
1060 	struct inode *btree_inode = root->fs_info->btree_inode;
1061 	struct extent_buffer *eb;
1062 
1063 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1064 				 bytenr, blocksize);
1065 	return eb;
1066 }
1067 
1068 
1069 int btrfs_write_tree_block(struct extent_buffer *buf)
1070 {
1071 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1072 					buf->start + buf->len - 1);
1073 }
1074 
1075 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1076 {
1077 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1078 				       buf->start, buf->start + buf->len - 1);
1079 }
1080 
1081 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1082 				      u32 blocksize, u64 parent_transid)
1083 {
1084 	struct extent_buffer *buf = NULL;
1085 	int ret;
1086 
1087 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1088 	if (!buf)
1089 		return NULL;
1090 
1091 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1092 	return buf;
1093 
1094 }
1095 
1096 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1097 		      struct extent_buffer *buf)
1098 {
1099 	if (btrfs_header_generation(buf) ==
1100 	    root->fs_info->running_transaction->transid) {
1101 		btrfs_assert_tree_locked(buf);
1102 
1103 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1104 			spin_lock(&root->fs_info->delalloc_lock);
1105 			if (root->fs_info->dirty_metadata_bytes >= buf->len)
1106 				root->fs_info->dirty_metadata_bytes -= buf->len;
1107 			else {
1108 				spin_unlock(&root->fs_info->delalloc_lock);
1109 				btrfs_panic(root->fs_info, -EOVERFLOW,
1110 					  "Can't clear %lu bytes from "
1111 					  " dirty_mdatadata_bytes (%lu)",
1112 					  buf->len,
1113 					  root->fs_info->dirty_metadata_bytes);
1114 			}
1115 			spin_unlock(&root->fs_info->delalloc_lock);
1116 		}
1117 
1118 		/* ugh, clear_extent_buffer_dirty needs to lock the page */
1119 		btrfs_set_lock_blocking(buf);
1120 		clear_extent_buffer_dirty(buf);
1121 	}
1122 }
1123 
1124 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1125 			 u32 stripesize, struct btrfs_root *root,
1126 			 struct btrfs_fs_info *fs_info,
1127 			 u64 objectid)
1128 {
1129 	root->node = NULL;
1130 	root->commit_root = NULL;
1131 	root->sectorsize = sectorsize;
1132 	root->nodesize = nodesize;
1133 	root->leafsize = leafsize;
1134 	root->stripesize = stripesize;
1135 	root->ref_cows = 0;
1136 	root->track_dirty = 0;
1137 	root->in_radix = 0;
1138 	root->orphan_item_inserted = 0;
1139 	root->orphan_cleanup_state = 0;
1140 
1141 	root->objectid = objectid;
1142 	root->last_trans = 0;
1143 	root->highest_objectid = 0;
1144 	root->name = NULL;
1145 	root->inode_tree = RB_ROOT;
1146 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1147 	root->block_rsv = NULL;
1148 	root->orphan_block_rsv = NULL;
1149 
1150 	INIT_LIST_HEAD(&root->dirty_list);
1151 	INIT_LIST_HEAD(&root->orphan_list);
1152 	INIT_LIST_HEAD(&root->root_list);
1153 	spin_lock_init(&root->orphan_lock);
1154 	spin_lock_init(&root->inode_lock);
1155 	spin_lock_init(&root->accounting_lock);
1156 	mutex_init(&root->objectid_mutex);
1157 	mutex_init(&root->log_mutex);
1158 	init_waitqueue_head(&root->log_writer_wait);
1159 	init_waitqueue_head(&root->log_commit_wait[0]);
1160 	init_waitqueue_head(&root->log_commit_wait[1]);
1161 	atomic_set(&root->log_commit[0], 0);
1162 	atomic_set(&root->log_commit[1], 0);
1163 	atomic_set(&root->log_writers, 0);
1164 	root->log_batch = 0;
1165 	root->log_transid = 0;
1166 	root->last_log_commit = 0;
1167 	extent_io_tree_init(&root->dirty_log_pages,
1168 			     fs_info->btree_inode->i_mapping);
1169 
1170 	memset(&root->root_key, 0, sizeof(root->root_key));
1171 	memset(&root->root_item, 0, sizeof(root->root_item));
1172 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1173 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1174 	root->defrag_trans_start = fs_info->generation;
1175 	init_completion(&root->kobj_unregister);
1176 	root->defrag_running = 0;
1177 	root->root_key.objectid = objectid;
1178 	root->anon_dev = 0;
1179 }
1180 
1181 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1182 					    struct btrfs_fs_info *fs_info,
1183 					    u64 objectid,
1184 					    struct btrfs_root *root)
1185 {
1186 	int ret;
1187 	u32 blocksize;
1188 	u64 generation;
1189 
1190 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1191 		     tree_root->sectorsize, tree_root->stripesize,
1192 		     root, fs_info, objectid);
1193 	ret = btrfs_find_last_root(tree_root, objectid,
1194 				   &root->root_item, &root->root_key);
1195 	if (ret > 0)
1196 		return -ENOENT;
1197 	else if (ret < 0)
1198 		return ret;
1199 
1200 	generation = btrfs_root_generation(&root->root_item);
1201 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1202 	root->commit_root = NULL;
1203 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1204 				     blocksize, generation);
1205 	if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1206 		free_extent_buffer(root->node);
1207 		root->node = NULL;
1208 		return -EIO;
1209 	}
1210 	root->commit_root = btrfs_root_node(root);
1211 	return 0;
1212 }
1213 
1214 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1215 {
1216 	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1217 	if (root)
1218 		root->fs_info = fs_info;
1219 	return root;
1220 }
1221 
1222 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1223 					 struct btrfs_fs_info *fs_info)
1224 {
1225 	struct btrfs_root *root;
1226 	struct btrfs_root *tree_root = fs_info->tree_root;
1227 	struct extent_buffer *leaf;
1228 
1229 	root = btrfs_alloc_root(fs_info);
1230 	if (!root)
1231 		return ERR_PTR(-ENOMEM);
1232 
1233 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1234 		     tree_root->sectorsize, tree_root->stripesize,
1235 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1236 
1237 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1238 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1239 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1240 	/*
1241 	 * log trees do not get reference counted because they go away
1242 	 * before a real commit is actually done.  They do store pointers
1243 	 * to file data extents, and those reference counts still get
1244 	 * updated (along with back refs to the log tree).
1245 	 */
1246 	root->ref_cows = 0;
1247 
1248 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1249 				      BTRFS_TREE_LOG_OBJECTID, NULL,
1250 				      0, 0, 0, 0);
1251 	if (IS_ERR(leaf)) {
1252 		kfree(root);
1253 		return ERR_CAST(leaf);
1254 	}
1255 
1256 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1257 	btrfs_set_header_bytenr(leaf, leaf->start);
1258 	btrfs_set_header_generation(leaf, trans->transid);
1259 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1260 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1261 	root->node = leaf;
1262 
1263 	write_extent_buffer(root->node, root->fs_info->fsid,
1264 			    (unsigned long)btrfs_header_fsid(root->node),
1265 			    BTRFS_FSID_SIZE);
1266 	btrfs_mark_buffer_dirty(root->node);
1267 	btrfs_tree_unlock(root->node);
1268 	return root;
1269 }
1270 
1271 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1272 			     struct btrfs_fs_info *fs_info)
1273 {
1274 	struct btrfs_root *log_root;
1275 
1276 	log_root = alloc_log_tree(trans, fs_info);
1277 	if (IS_ERR(log_root))
1278 		return PTR_ERR(log_root);
1279 	WARN_ON(fs_info->log_root_tree);
1280 	fs_info->log_root_tree = log_root;
1281 	return 0;
1282 }
1283 
1284 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1285 		       struct btrfs_root *root)
1286 {
1287 	struct btrfs_root *log_root;
1288 	struct btrfs_inode_item *inode_item;
1289 
1290 	log_root = alloc_log_tree(trans, root->fs_info);
1291 	if (IS_ERR(log_root))
1292 		return PTR_ERR(log_root);
1293 
1294 	log_root->last_trans = trans->transid;
1295 	log_root->root_key.offset = root->root_key.objectid;
1296 
1297 	inode_item = &log_root->root_item.inode;
1298 	inode_item->generation = cpu_to_le64(1);
1299 	inode_item->size = cpu_to_le64(3);
1300 	inode_item->nlink = cpu_to_le32(1);
1301 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1302 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1303 
1304 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1305 
1306 	WARN_ON(root->log_root);
1307 	root->log_root = log_root;
1308 	root->log_transid = 0;
1309 	root->last_log_commit = 0;
1310 	return 0;
1311 }
1312 
1313 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1314 					       struct btrfs_key *location)
1315 {
1316 	struct btrfs_root *root;
1317 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1318 	struct btrfs_path *path;
1319 	struct extent_buffer *l;
1320 	u64 generation;
1321 	u32 blocksize;
1322 	int ret = 0;
1323 
1324 	root = btrfs_alloc_root(fs_info);
1325 	if (!root)
1326 		return ERR_PTR(-ENOMEM);
1327 	if (location->offset == (u64)-1) {
1328 		ret = find_and_setup_root(tree_root, fs_info,
1329 					  location->objectid, root);
1330 		if (ret) {
1331 			kfree(root);
1332 			return ERR_PTR(ret);
1333 		}
1334 		goto out;
1335 	}
1336 
1337 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1338 		     tree_root->sectorsize, tree_root->stripesize,
1339 		     root, fs_info, location->objectid);
1340 
1341 	path = btrfs_alloc_path();
1342 	if (!path) {
1343 		kfree(root);
1344 		return ERR_PTR(-ENOMEM);
1345 	}
1346 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1347 	if (ret == 0) {
1348 		l = path->nodes[0];
1349 		read_extent_buffer(l, &root->root_item,
1350 				btrfs_item_ptr_offset(l, path->slots[0]),
1351 				sizeof(root->root_item));
1352 		memcpy(&root->root_key, location, sizeof(*location));
1353 	}
1354 	btrfs_free_path(path);
1355 	if (ret) {
1356 		kfree(root);
1357 		if (ret > 0)
1358 			ret = -ENOENT;
1359 		return ERR_PTR(ret);
1360 	}
1361 
1362 	generation = btrfs_root_generation(&root->root_item);
1363 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1364 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1365 				     blocksize, generation);
1366 	root->commit_root = btrfs_root_node(root);
1367 	BUG_ON(!root->node); /* -ENOMEM */
1368 out:
1369 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1370 		root->ref_cows = 1;
1371 		btrfs_check_and_init_root_item(&root->root_item);
1372 	}
1373 
1374 	return root;
1375 }
1376 
1377 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1378 					      struct btrfs_key *location)
1379 {
1380 	struct btrfs_root *root;
1381 	int ret;
1382 
1383 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1384 		return fs_info->tree_root;
1385 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1386 		return fs_info->extent_root;
1387 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1388 		return fs_info->chunk_root;
1389 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1390 		return fs_info->dev_root;
1391 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1392 		return fs_info->csum_root;
1393 again:
1394 	spin_lock(&fs_info->fs_roots_radix_lock);
1395 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1396 				 (unsigned long)location->objectid);
1397 	spin_unlock(&fs_info->fs_roots_radix_lock);
1398 	if (root)
1399 		return root;
1400 
1401 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1402 	if (IS_ERR(root))
1403 		return root;
1404 
1405 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1406 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1407 					GFP_NOFS);
1408 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1409 		ret = -ENOMEM;
1410 		goto fail;
1411 	}
1412 
1413 	btrfs_init_free_ino_ctl(root);
1414 	mutex_init(&root->fs_commit_mutex);
1415 	spin_lock_init(&root->cache_lock);
1416 	init_waitqueue_head(&root->cache_wait);
1417 
1418 	ret = get_anon_bdev(&root->anon_dev);
1419 	if (ret)
1420 		goto fail;
1421 
1422 	if (btrfs_root_refs(&root->root_item) == 0) {
1423 		ret = -ENOENT;
1424 		goto fail;
1425 	}
1426 
1427 	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1428 	if (ret < 0)
1429 		goto fail;
1430 	if (ret == 0)
1431 		root->orphan_item_inserted = 1;
1432 
1433 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1434 	if (ret)
1435 		goto fail;
1436 
1437 	spin_lock(&fs_info->fs_roots_radix_lock);
1438 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1439 				(unsigned long)root->root_key.objectid,
1440 				root);
1441 	if (ret == 0)
1442 		root->in_radix = 1;
1443 
1444 	spin_unlock(&fs_info->fs_roots_radix_lock);
1445 	radix_tree_preload_end();
1446 	if (ret) {
1447 		if (ret == -EEXIST) {
1448 			free_fs_root(root);
1449 			goto again;
1450 		}
1451 		goto fail;
1452 	}
1453 
1454 	ret = btrfs_find_dead_roots(fs_info->tree_root,
1455 				    root->root_key.objectid);
1456 	WARN_ON(ret);
1457 	return root;
1458 fail:
1459 	free_fs_root(root);
1460 	return ERR_PTR(ret);
1461 }
1462 
1463 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1464 {
1465 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1466 	int ret = 0;
1467 	struct btrfs_device *device;
1468 	struct backing_dev_info *bdi;
1469 
1470 	rcu_read_lock();
1471 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1472 		if (!device->bdev)
1473 			continue;
1474 		bdi = blk_get_backing_dev_info(device->bdev);
1475 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1476 			ret = 1;
1477 			break;
1478 		}
1479 	}
1480 	rcu_read_unlock();
1481 	return ret;
1482 }
1483 
1484 /*
1485  * If this fails, caller must call bdi_destroy() to get rid of the
1486  * bdi again.
1487  */
1488 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1489 {
1490 	int err;
1491 
1492 	bdi->capabilities = BDI_CAP_MAP_COPY;
1493 	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1494 	if (err)
1495 		return err;
1496 
1497 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1498 	bdi->congested_fn	= btrfs_congested_fn;
1499 	bdi->congested_data	= info;
1500 	return 0;
1501 }
1502 
1503 /*
1504  * called by the kthread helper functions to finally call the bio end_io
1505  * functions.  This is where read checksum verification actually happens
1506  */
1507 static void end_workqueue_fn(struct btrfs_work *work)
1508 {
1509 	struct bio *bio;
1510 	struct end_io_wq *end_io_wq;
1511 	struct btrfs_fs_info *fs_info;
1512 	int error;
1513 
1514 	end_io_wq = container_of(work, struct end_io_wq, work);
1515 	bio = end_io_wq->bio;
1516 	fs_info = end_io_wq->info;
1517 
1518 	error = end_io_wq->error;
1519 	bio->bi_private = end_io_wq->private;
1520 	bio->bi_end_io = end_io_wq->end_io;
1521 	kfree(end_io_wq);
1522 	bio_endio(bio, error);
1523 }
1524 
1525 static int cleaner_kthread(void *arg)
1526 {
1527 	struct btrfs_root *root = arg;
1528 
1529 	do {
1530 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1531 
1532 		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1533 		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1534 			btrfs_run_delayed_iputs(root);
1535 			btrfs_clean_old_snapshots(root);
1536 			mutex_unlock(&root->fs_info->cleaner_mutex);
1537 			btrfs_run_defrag_inodes(root->fs_info);
1538 		}
1539 
1540 		if (!try_to_freeze()) {
1541 			set_current_state(TASK_INTERRUPTIBLE);
1542 			if (!kthread_should_stop())
1543 				schedule();
1544 			__set_current_state(TASK_RUNNING);
1545 		}
1546 	} while (!kthread_should_stop());
1547 	return 0;
1548 }
1549 
1550 static int transaction_kthread(void *arg)
1551 {
1552 	struct btrfs_root *root = arg;
1553 	struct btrfs_trans_handle *trans;
1554 	struct btrfs_transaction *cur;
1555 	u64 transid;
1556 	unsigned long now;
1557 	unsigned long delay;
1558 	bool cannot_commit;
1559 
1560 	do {
1561 		cannot_commit = false;
1562 		delay = HZ * 30;
1563 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1564 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1565 
1566 		spin_lock(&root->fs_info->trans_lock);
1567 		cur = root->fs_info->running_transaction;
1568 		if (!cur) {
1569 			spin_unlock(&root->fs_info->trans_lock);
1570 			goto sleep;
1571 		}
1572 
1573 		now = get_seconds();
1574 		if (!cur->blocked &&
1575 		    (now < cur->start_time || now - cur->start_time < 30)) {
1576 			spin_unlock(&root->fs_info->trans_lock);
1577 			delay = HZ * 5;
1578 			goto sleep;
1579 		}
1580 		transid = cur->transid;
1581 		spin_unlock(&root->fs_info->trans_lock);
1582 
1583 		/* If the file system is aborted, this will always fail. */
1584 		trans = btrfs_join_transaction(root);
1585 		if (IS_ERR(trans)) {
1586 			cannot_commit = true;
1587 			goto sleep;
1588 		}
1589 		if (transid == trans->transid) {
1590 			btrfs_commit_transaction(trans, root);
1591 		} else {
1592 			btrfs_end_transaction(trans, root);
1593 		}
1594 sleep:
1595 		wake_up_process(root->fs_info->cleaner_kthread);
1596 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1597 
1598 		if (!try_to_freeze()) {
1599 			set_current_state(TASK_INTERRUPTIBLE);
1600 			if (!kthread_should_stop() &&
1601 			    (!btrfs_transaction_blocked(root->fs_info) ||
1602 			     cannot_commit))
1603 				schedule_timeout(delay);
1604 			__set_current_state(TASK_RUNNING);
1605 		}
1606 	} while (!kthread_should_stop());
1607 	return 0;
1608 }
1609 
1610 /*
1611  * this will find the highest generation in the array of
1612  * root backups.  The index of the highest array is returned,
1613  * or -1 if we can't find anything.
1614  *
1615  * We check to make sure the array is valid by comparing the
1616  * generation of the latest  root in the array with the generation
1617  * in the super block.  If they don't match we pitch it.
1618  */
1619 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1620 {
1621 	u64 cur;
1622 	int newest_index = -1;
1623 	struct btrfs_root_backup *root_backup;
1624 	int i;
1625 
1626 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1627 		root_backup = info->super_copy->super_roots + i;
1628 		cur = btrfs_backup_tree_root_gen(root_backup);
1629 		if (cur == newest_gen)
1630 			newest_index = i;
1631 	}
1632 
1633 	/* check to see if we actually wrapped around */
1634 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1635 		root_backup = info->super_copy->super_roots;
1636 		cur = btrfs_backup_tree_root_gen(root_backup);
1637 		if (cur == newest_gen)
1638 			newest_index = 0;
1639 	}
1640 	return newest_index;
1641 }
1642 
1643 
1644 /*
1645  * find the oldest backup so we know where to store new entries
1646  * in the backup array.  This will set the backup_root_index
1647  * field in the fs_info struct
1648  */
1649 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1650 				     u64 newest_gen)
1651 {
1652 	int newest_index = -1;
1653 
1654 	newest_index = find_newest_super_backup(info, newest_gen);
1655 	/* if there was garbage in there, just move along */
1656 	if (newest_index == -1) {
1657 		info->backup_root_index = 0;
1658 	} else {
1659 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1660 	}
1661 }
1662 
1663 /*
1664  * copy all the root pointers into the super backup array.
1665  * this will bump the backup pointer by one when it is
1666  * done
1667  */
1668 static void backup_super_roots(struct btrfs_fs_info *info)
1669 {
1670 	int next_backup;
1671 	struct btrfs_root_backup *root_backup;
1672 	int last_backup;
1673 
1674 	next_backup = info->backup_root_index;
1675 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1676 		BTRFS_NUM_BACKUP_ROOTS;
1677 
1678 	/*
1679 	 * just overwrite the last backup if we're at the same generation
1680 	 * this happens only at umount
1681 	 */
1682 	root_backup = info->super_for_commit->super_roots + last_backup;
1683 	if (btrfs_backup_tree_root_gen(root_backup) ==
1684 	    btrfs_header_generation(info->tree_root->node))
1685 		next_backup = last_backup;
1686 
1687 	root_backup = info->super_for_commit->super_roots + next_backup;
1688 
1689 	/*
1690 	 * make sure all of our padding and empty slots get zero filled
1691 	 * regardless of which ones we use today
1692 	 */
1693 	memset(root_backup, 0, sizeof(*root_backup));
1694 
1695 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1696 
1697 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1698 	btrfs_set_backup_tree_root_gen(root_backup,
1699 			       btrfs_header_generation(info->tree_root->node));
1700 
1701 	btrfs_set_backup_tree_root_level(root_backup,
1702 			       btrfs_header_level(info->tree_root->node));
1703 
1704 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1705 	btrfs_set_backup_chunk_root_gen(root_backup,
1706 			       btrfs_header_generation(info->chunk_root->node));
1707 	btrfs_set_backup_chunk_root_level(root_backup,
1708 			       btrfs_header_level(info->chunk_root->node));
1709 
1710 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1711 	btrfs_set_backup_extent_root_gen(root_backup,
1712 			       btrfs_header_generation(info->extent_root->node));
1713 	btrfs_set_backup_extent_root_level(root_backup,
1714 			       btrfs_header_level(info->extent_root->node));
1715 
1716 	/*
1717 	 * we might commit during log recovery, which happens before we set
1718 	 * the fs_root.  Make sure it is valid before we fill it in.
1719 	 */
1720 	if (info->fs_root && info->fs_root->node) {
1721 		btrfs_set_backup_fs_root(root_backup,
1722 					 info->fs_root->node->start);
1723 		btrfs_set_backup_fs_root_gen(root_backup,
1724 			       btrfs_header_generation(info->fs_root->node));
1725 		btrfs_set_backup_fs_root_level(root_backup,
1726 			       btrfs_header_level(info->fs_root->node));
1727 	}
1728 
1729 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1730 	btrfs_set_backup_dev_root_gen(root_backup,
1731 			       btrfs_header_generation(info->dev_root->node));
1732 	btrfs_set_backup_dev_root_level(root_backup,
1733 				       btrfs_header_level(info->dev_root->node));
1734 
1735 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1736 	btrfs_set_backup_csum_root_gen(root_backup,
1737 			       btrfs_header_generation(info->csum_root->node));
1738 	btrfs_set_backup_csum_root_level(root_backup,
1739 			       btrfs_header_level(info->csum_root->node));
1740 
1741 	btrfs_set_backup_total_bytes(root_backup,
1742 			     btrfs_super_total_bytes(info->super_copy));
1743 	btrfs_set_backup_bytes_used(root_backup,
1744 			     btrfs_super_bytes_used(info->super_copy));
1745 	btrfs_set_backup_num_devices(root_backup,
1746 			     btrfs_super_num_devices(info->super_copy));
1747 
1748 	/*
1749 	 * if we don't copy this out to the super_copy, it won't get remembered
1750 	 * for the next commit
1751 	 */
1752 	memcpy(&info->super_copy->super_roots,
1753 	       &info->super_for_commit->super_roots,
1754 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1755 }
1756 
1757 /*
1758  * this copies info out of the root backup array and back into
1759  * the in-memory super block.  It is meant to help iterate through
1760  * the array, so you send it the number of backups you've already
1761  * tried and the last backup index you used.
1762  *
1763  * this returns -1 when it has tried all the backups
1764  */
1765 static noinline int next_root_backup(struct btrfs_fs_info *info,
1766 				     struct btrfs_super_block *super,
1767 				     int *num_backups_tried, int *backup_index)
1768 {
1769 	struct btrfs_root_backup *root_backup;
1770 	int newest = *backup_index;
1771 
1772 	if (*num_backups_tried == 0) {
1773 		u64 gen = btrfs_super_generation(super);
1774 
1775 		newest = find_newest_super_backup(info, gen);
1776 		if (newest == -1)
1777 			return -1;
1778 
1779 		*backup_index = newest;
1780 		*num_backups_tried = 1;
1781 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1782 		/* we've tried all the backups, all done */
1783 		return -1;
1784 	} else {
1785 		/* jump to the next oldest backup */
1786 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1787 			BTRFS_NUM_BACKUP_ROOTS;
1788 		*backup_index = newest;
1789 		*num_backups_tried += 1;
1790 	}
1791 	root_backup = super->super_roots + newest;
1792 
1793 	btrfs_set_super_generation(super,
1794 				   btrfs_backup_tree_root_gen(root_backup));
1795 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1796 	btrfs_set_super_root_level(super,
1797 				   btrfs_backup_tree_root_level(root_backup));
1798 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1799 
1800 	/*
1801 	 * fixme: the total bytes and num_devices need to match or we should
1802 	 * need a fsck
1803 	 */
1804 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1805 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1806 	return 0;
1807 }
1808 
1809 /* helper to cleanup tree roots */
1810 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1811 {
1812 	free_extent_buffer(info->tree_root->node);
1813 	free_extent_buffer(info->tree_root->commit_root);
1814 	free_extent_buffer(info->dev_root->node);
1815 	free_extent_buffer(info->dev_root->commit_root);
1816 	free_extent_buffer(info->extent_root->node);
1817 	free_extent_buffer(info->extent_root->commit_root);
1818 	free_extent_buffer(info->csum_root->node);
1819 	free_extent_buffer(info->csum_root->commit_root);
1820 
1821 	info->tree_root->node = NULL;
1822 	info->tree_root->commit_root = NULL;
1823 	info->dev_root->node = NULL;
1824 	info->dev_root->commit_root = NULL;
1825 	info->extent_root->node = NULL;
1826 	info->extent_root->commit_root = NULL;
1827 	info->csum_root->node = NULL;
1828 	info->csum_root->commit_root = NULL;
1829 
1830 	if (chunk_root) {
1831 		free_extent_buffer(info->chunk_root->node);
1832 		free_extent_buffer(info->chunk_root->commit_root);
1833 		info->chunk_root->node = NULL;
1834 		info->chunk_root->commit_root = NULL;
1835 	}
1836 }
1837 
1838 
1839 int open_ctree(struct super_block *sb,
1840 	       struct btrfs_fs_devices *fs_devices,
1841 	       char *options)
1842 {
1843 	u32 sectorsize;
1844 	u32 nodesize;
1845 	u32 leafsize;
1846 	u32 blocksize;
1847 	u32 stripesize;
1848 	u64 generation;
1849 	u64 features;
1850 	struct btrfs_key location;
1851 	struct buffer_head *bh;
1852 	struct btrfs_super_block *disk_super;
1853 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1854 	struct btrfs_root *tree_root;
1855 	struct btrfs_root *extent_root;
1856 	struct btrfs_root *csum_root;
1857 	struct btrfs_root *chunk_root;
1858 	struct btrfs_root *dev_root;
1859 	struct btrfs_root *log_tree_root;
1860 	int ret;
1861 	int err = -EINVAL;
1862 	int num_backups_tried = 0;
1863 	int backup_index = 0;
1864 
1865 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1866 	extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1867 	csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1868 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1869 	dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1870 
1871 	if (!tree_root || !extent_root || !csum_root ||
1872 	    !chunk_root || !dev_root) {
1873 		err = -ENOMEM;
1874 		goto fail;
1875 	}
1876 
1877 	ret = init_srcu_struct(&fs_info->subvol_srcu);
1878 	if (ret) {
1879 		err = ret;
1880 		goto fail;
1881 	}
1882 
1883 	ret = setup_bdi(fs_info, &fs_info->bdi);
1884 	if (ret) {
1885 		err = ret;
1886 		goto fail_srcu;
1887 	}
1888 
1889 	fs_info->btree_inode = new_inode(sb);
1890 	if (!fs_info->btree_inode) {
1891 		err = -ENOMEM;
1892 		goto fail_bdi;
1893 	}
1894 
1895 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1896 
1897 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1898 	INIT_LIST_HEAD(&fs_info->trans_list);
1899 	INIT_LIST_HEAD(&fs_info->dead_roots);
1900 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
1901 	INIT_LIST_HEAD(&fs_info->hashers);
1902 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1903 	INIT_LIST_HEAD(&fs_info->ordered_operations);
1904 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
1905 	spin_lock_init(&fs_info->delalloc_lock);
1906 	spin_lock_init(&fs_info->trans_lock);
1907 	spin_lock_init(&fs_info->ref_cache_lock);
1908 	spin_lock_init(&fs_info->fs_roots_radix_lock);
1909 	spin_lock_init(&fs_info->delayed_iput_lock);
1910 	spin_lock_init(&fs_info->defrag_inodes_lock);
1911 	spin_lock_init(&fs_info->free_chunk_lock);
1912 	mutex_init(&fs_info->reloc_mutex);
1913 
1914 	init_completion(&fs_info->kobj_unregister);
1915 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1916 	INIT_LIST_HEAD(&fs_info->space_info);
1917 	btrfs_mapping_init(&fs_info->mapping_tree);
1918 	btrfs_init_block_rsv(&fs_info->global_block_rsv);
1919 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1920 	btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1921 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1922 	btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1923 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
1924 	atomic_set(&fs_info->nr_async_submits, 0);
1925 	atomic_set(&fs_info->async_delalloc_pages, 0);
1926 	atomic_set(&fs_info->async_submit_draining, 0);
1927 	atomic_set(&fs_info->nr_async_bios, 0);
1928 	atomic_set(&fs_info->defrag_running, 0);
1929 	fs_info->sb = sb;
1930 	fs_info->max_inline = 8192 * 1024;
1931 	fs_info->metadata_ratio = 0;
1932 	fs_info->defrag_inodes = RB_ROOT;
1933 	fs_info->trans_no_join = 0;
1934 	fs_info->free_chunk_space = 0;
1935 
1936 	/* readahead state */
1937 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1938 	spin_lock_init(&fs_info->reada_lock);
1939 
1940 	fs_info->thread_pool_size = min_t(unsigned long,
1941 					  num_online_cpus() + 2, 8);
1942 
1943 	INIT_LIST_HEAD(&fs_info->ordered_extents);
1944 	spin_lock_init(&fs_info->ordered_extent_lock);
1945 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1946 					GFP_NOFS);
1947 	if (!fs_info->delayed_root) {
1948 		err = -ENOMEM;
1949 		goto fail_iput;
1950 	}
1951 	btrfs_init_delayed_root(fs_info->delayed_root);
1952 
1953 	mutex_init(&fs_info->scrub_lock);
1954 	atomic_set(&fs_info->scrubs_running, 0);
1955 	atomic_set(&fs_info->scrub_pause_req, 0);
1956 	atomic_set(&fs_info->scrubs_paused, 0);
1957 	atomic_set(&fs_info->scrub_cancel_req, 0);
1958 	init_waitqueue_head(&fs_info->scrub_pause_wait);
1959 	init_rwsem(&fs_info->scrub_super_lock);
1960 	fs_info->scrub_workers_refcnt = 0;
1961 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1962 	fs_info->check_integrity_print_mask = 0;
1963 #endif
1964 
1965 	spin_lock_init(&fs_info->balance_lock);
1966 	mutex_init(&fs_info->balance_mutex);
1967 	atomic_set(&fs_info->balance_running, 0);
1968 	atomic_set(&fs_info->balance_pause_req, 0);
1969 	atomic_set(&fs_info->balance_cancel_req, 0);
1970 	fs_info->balance_ctl = NULL;
1971 	init_waitqueue_head(&fs_info->balance_wait_q);
1972 
1973 	sb->s_blocksize = 4096;
1974 	sb->s_blocksize_bits = blksize_bits(4096);
1975 	sb->s_bdi = &fs_info->bdi;
1976 
1977 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1978 	set_nlink(fs_info->btree_inode, 1);
1979 	/*
1980 	 * we set the i_size on the btree inode to the max possible int.
1981 	 * the real end of the address space is determined by all of
1982 	 * the devices in the system
1983 	 */
1984 	fs_info->btree_inode->i_size = OFFSET_MAX;
1985 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1986 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1987 
1988 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1989 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1990 			     fs_info->btree_inode->i_mapping);
1991 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
1992 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
1993 
1994 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1995 
1996 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
1997 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1998 	       sizeof(struct btrfs_key));
1999 	BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
2000 	insert_inode_hash(fs_info->btree_inode);
2001 
2002 	spin_lock_init(&fs_info->block_group_cache_lock);
2003 	fs_info->block_group_cache_tree = RB_ROOT;
2004 
2005 	extent_io_tree_init(&fs_info->freed_extents[0],
2006 			     fs_info->btree_inode->i_mapping);
2007 	extent_io_tree_init(&fs_info->freed_extents[1],
2008 			     fs_info->btree_inode->i_mapping);
2009 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2010 	fs_info->do_barriers = 1;
2011 
2012 
2013 	mutex_init(&fs_info->ordered_operations_mutex);
2014 	mutex_init(&fs_info->tree_log_mutex);
2015 	mutex_init(&fs_info->chunk_mutex);
2016 	mutex_init(&fs_info->transaction_kthread_mutex);
2017 	mutex_init(&fs_info->cleaner_mutex);
2018 	mutex_init(&fs_info->volume_mutex);
2019 	init_rwsem(&fs_info->extent_commit_sem);
2020 	init_rwsem(&fs_info->cleanup_work_sem);
2021 	init_rwsem(&fs_info->subvol_sem);
2022 
2023 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2024 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2025 
2026 	init_waitqueue_head(&fs_info->transaction_throttle);
2027 	init_waitqueue_head(&fs_info->transaction_wait);
2028 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2029 	init_waitqueue_head(&fs_info->async_submit_wait);
2030 
2031 	__setup_root(4096, 4096, 4096, 4096, tree_root,
2032 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2033 
2034 	invalidate_bdev(fs_devices->latest_bdev);
2035 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2036 	if (!bh) {
2037 		err = -EINVAL;
2038 		goto fail_alloc;
2039 	}
2040 
2041 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2042 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2043 	       sizeof(*fs_info->super_for_commit));
2044 	brelse(bh);
2045 
2046 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2047 
2048 	disk_super = fs_info->super_copy;
2049 	if (!btrfs_super_root(disk_super))
2050 		goto fail_alloc;
2051 
2052 	/* check FS state, whether FS is broken. */
2053 	fs_info->fs_state |= btrfs_super_flags(disk_super);
2054 
2055 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2056 	if (ret) {
2057 		printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2058 		err = ret;
2059 		goto fail_alloc;
2060 	}
2061 
2062 	/*
2063 	 * run through our array of backup supers and setup
2064 	 * our ring pointer to the oldest one
2065 	 */
2066 	generation = btrfs_super_generation(disk_super);
2067 	find_oldest_super_backup(fs_info, generation);
2068 
2069 	/*
2070 	 * In the long term, we'll store the compression type in the super
2071 	 * block, and it'll be used for per file compression control.
2072 	 */
2073 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2074 
2075 	ret = btrfs_parse_options(tree_root, options);
2076 	if (ret) {
2077 		err = ret;
2078 		goto fail_alloc;
2079 	}
2080 
2081 	features = btrfs_super_incompat_flags(disk_super) &
2082 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2083 	if (features) {
2084 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2085 		       "unsupported optional features (%Lx).\n",
2086 		       (unsigned long long)features);
2087 		err = -EINVAL;
2088 		goto fail_alloc;
2089 	}
2090 
2091 	if (btrfs_super_leafsize(disk_super) !=
2092 	    btrfs_super_nodesize(disk_super)) {
2093 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2094 		       "blocksizes don't match.  node %d leaf %d\n",
2095 		       btrfs_super_nodesize(disk_super),
2096 		       btrfs_super_leafsize(disk_super));
2097 		err = -EINVAL;
2098 		goto fail_alloc;
2099 	}
2100 	if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2101 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2102 		       "blocksize (%d) was too large\n",
2103 		       btrfs_super_leafsize(disk_super));
2104 		err = -EINVAL;
2105 		goto fail_alloc;
2106 	}
2107 
2108 	features = btrfs_super_incompat_flags(disk_super);
2109 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2110 	if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2111 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2112 
2113 	/*
2114 	 * flag our filesystem as having big metadata blocks if
2115 	 * they are bigger than the page size
2116 	 */
2117 	if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2118 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2119 			printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2120 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2121 	}
2122 
2123 	nodesize = btrfs_super_nodesize(disk_super);
2124 	leafsize = btrfs_super_leafsize(disk_super);
2125 	sectorsize = btrfs_super_sectorsize(disk_super);
2126 	stripesize = btrfs_super_stripesize(disk_super);
2127 
2128 	/*
2129 	 * mixed block groups end up with duplicate but slightly offset
2130 	 * extent buffers for the same range.  It leads to corruptions
2131 	 */
2132 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2133 	    (sectorsize != leafsize)) {
2134 		printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2135 				"are not allowed for mixed block groups on %s\n",
2136 				sb->s_id);
2137 		goto fail_alloc;
2138 	}
2139 
2140 	btrfs_set_super_incompat_flags(disk_super, features);
2141 
2142 	features = btrfs_super_compat_ro_flags(disk_super) &
2143 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2144 	if (!(sb->s_flags & MS_RDONLY) && features) {
2145 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2146 		       "unsupported option features (%Lx).\n",
2147 		       (unsigned long long)features);
2148 		err = -EINVAL;
2149 		goto fail_alloc;
2150 	}
2151 
2152 	btrfs_init_workers(&fs_info->generic_worker,
2153 			   "genwork", 1, NULL);
2154 
2155 	btrfs_init_workers(&fs_info->workers, "worker",
2156 			   fs_info->thread_pool_size,
2157 			   &fs_info->generic_worker);
2158 
2159 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2160 			   fs_info->thread_pool_size,
2161 			   &fs_info->generic_worker);
2162 
2163 	btrfs_init_workers(&fs_info->submit_workers, "submit",
2164 			   min_t(u64, fs_devices->num_devices,
2165 			   fs_info->thread_pool_size),
2166 			   &fs_info->generic_worker);
2167 
2168 	btrfs_init_workers(&fs_info->caching_workers, "cache",
2169 			   2, &fs_info->generic_worker);
2170 
2171 	/* a higher idle thresh on the submit workers makes it much more
2172 	 * likely that bios will be send down in a sane order to the
2173 	 * devices
2174 	 */
2175 	fs_info->submit_workers.idle_thresh = 64;
2176 
2177 	fs_info->workers.idle_thresh = 16;
2178 	fs_info->workers.ordered = 1;
2179 
2180 	fs_info->delalloc_workers.idle_thresh = 2;
2181 	fs_info->delalloc_workers.ordered = 1;
2182 
2183 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2184 			   &fs_info->generic_worker);
2185 	btrfs_init_workers(&fs_info->endio_workers, "endio",
2186 			   fs_info->thread_pool_size,
2187 			   &fs_info->generic_worker);
2188 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2189 			   fs_info->thread_pool_size,
2190 			   &fs_info->generic_worker);
2191 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
2192 			   "endio-meta-write", fs_info->thread_pool_size,
2193 			   &fs_info->generic_worker);
2194 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2195 			   fs_info->thread_pool_size,
2196 			   &fs_info->generic_worker);
2197 	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2198 			   1, &fs_info->generic_worker);
2199 	btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2200 			   fs_info->thread_pool_size,
2201 			   &fs_info->generic_worker);
2202 	btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2203 			   fs_info->thread_pool_size,
2204 			   &fs_info->generic_worker);
2205 
2206 	/*
2207 	 * endios are largely parallel and should have a very
2208 	 * low idle thresh
2209 	 */
2210 	fs_info->endio_workers.idle_thresh = 4;
2211 	fs_info->endio_meta_workers.idle_thresh = 4;
2212 
2213 	fs_info->endio_write_workers.idle_thresh = 2;
2214 	fs_info->endio_meta_write_workers.idle_thresh = 2;
2215 	fs_info->readahead_workers.idle_thresh = 2;
2216 
2217 	/*
2218 	 * btrfs_start_workers can really only fail because of ENOMEM so just
2219 	 * return -ENOMEM if any of these fail.
2220 	 */
2221 	ret = btrfs_start_workers(&fs_info->workers);
2222 	ret |= btrfs_start_workers(&fs_info->generic_worker);
2223 	ret |= btrfs_start_workers(&fs_info->submit_workers);
2224 	ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2225 	ret |= btrfs_start_workers(&fs_info->fixup_workers);
2226 	ret |= btrfs_start_workers(&fs_info->endio_workers);
2227 	ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2228 	ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2229 	ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2230 	ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2231 	ret |= btrfs_start_workers(&fs_info->delayed_workers);
2232 	ret |= btrfs_start_workers(&fs_info->caching_workers);
2233 	ret |= btrfs_start_workers(&fs_info->readahead_workers);
2234 	if (ret) {
2235 		ret = -ENOMEM;
2236 		goto fail_sb_buffer;
2237 	}
2238 
2239 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2240 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2241 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2242 
2243 	tree_root->nodesize = nodesize;
2244 	tree_root->leafsize = leafsize;
2245 	tree_root->sectorsize = sectorsize;
2246 	tree_root->stripesize = stripesize;
2247 
2248 	sb->s_blocksize = sectorsize;
2249 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2250 
2251 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2252 		    sizeof(disk_super->magic))) {
2253 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2254 		goto fail_sb_buffer;
2255 	}
2256 
2257 	if (sectorsize != PAGE_SIZE) {
2258 		printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2259 		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2260 		goto fail_sb_buffer;
2261 	}
2262 
2263 	mutex_lock(&fs_info->chunk_mutex);
2264 	ret = btrfs_read_sys_array(tree_root);
2265 	mutex_unlock(&fs_info->chunk_mutex);
2266 	if (ret) {
2267 		printk(KERN_WARNING "btrfs: failed to read the system "
2268 		       "array on %s\n", sb->s_id);
2269 		goto fail_sb_buffer;
2270 	}
2271 
2272 	blocksize = btrfs_level_size(tree_root,
2273 				     btrfs_super_chunk_root_level(disk_super));
2274 	generation = btrfs_super_chunk_root_generation(disk_super);
2275 
2276 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
2277 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2278 
2279 	chunk_root->node = read_tree_block(chunk_root,
2280 					   btrfs_super_chunk_root(disk_super),
2281 					   blocksize, generation);
2282 	BUG_ON(!chunk_root->node); /* -ENOMEM */
2283 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2284 		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2285 		       sb->s_id);
2286 		goto fail_tree_roots;
2287 	}
2288 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2289 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2290 
2291 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2292 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2293 	   BTRFS_UUID_SIZE);
2294 
2295 	ret = btrfs_read_chunk_tree(chunk_root);
2296 	if (ret) {
2297 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2298 		       sb->s_id);
2299 		goto fail_tree_roots;
2300 	}
2301 
2302 	btrfs_close_extra_devices(fs_devices);
2303 
2304 	if (!fs_devices->latest_bdev) {
2305 		printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2306 		       sb->s_id);
2307 		goto fail_tree_roots;
2308 	}
2309 
2310 retry_root_backup:
2311 	blocksize = btrfs_level_size(tree_root,
2312 				     btrfs_super_root_level(disk_super));
2313 	generation = btrfs_super_generation(disk_super);
2314 
2315 	tree_root->node = read_tree_block(tree_root,
2316 					  btrfs_super_root(disk_super),
2317 					  blocksize, generation);
2318 	if (!tree_root->node ||
2319 	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2320 		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2321 		       sb->s_id);
2322 
2323 		goto recovery_tree_root;
2324 	}
2325 
2326 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2327 	tree_root->commit_root = btrfs_root_node(tree_root);
2328 
2329 	ret = find_and_setup_root(tree_root, fs_info,
2330 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2331 	if (ret)
2332 		goto recovery_tree_root;
2333 	extent_root->track_dirty = 1;
2334 
2335 	ret = find_and_setup_root(tree_root, fs_info,
2336 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
2337 	if (ret)
2338 		goto recovery_tree_root;
2339 	dev_root->track_dirty = 1;
2340 
2341 	ret = find_and_setup_root(tree_root, fs_info,
2342 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
2343 	if (ret)
2344 		goto recovery_tree_root;
2345 
2346 	csum_root->track_dirty = 1;
2347 
2348 	fs_info->generation = generation;
2349 	fs_info->last_trans_committed = generation;
2350 
2351 	ret = btrfs_init_space_info(fs_info);
2352 	if (ret) {
2353 		printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2354 		goto fail_block_groups;
2355 	}
2356 
2357 	ret = btrfs_read_block_groups(extent_root);
2358 	if (ret) {
2359 		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2360 		goto fail_block_groups;
2361 	}
2362 
2363 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2364 					       "btrfs-cleaner");
2365 	if (IS_ERR(fs_info->cleaner_kthread))
2366 		goto fail_block_groups;
2367 
2368 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2369 						   tree_root,
2370 						   "btrfs-transaction");
2371 	if (IS_ERR(fs_info->transaction_kthread))
2372 		goto fail_cleaner;
2373 
2374 	if (!btrfs_test_opt(tree_root, SSD) &&
2375 	    !btrfs_test_opt(tree_root, NOSSD) &&
2376 	    !fs_info->fs_devices->rotating) {
2377 		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2378 		       "mode\n");
2379 		btrfs_set_opt(fs_info->mount_opt, SSD);
2380 	}
2381 
2382 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2383 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2384 		ret = btrfsic_mount(tree_root, fs_devices,
2385 				    btrfs_test_opt(tree_root,
2386 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2387 				    1 : 0,
2388 				    fs_info->check_integrity_print_mask);
2389 		if (ret)
2390 			printk(KERN_WARNING "btrfs: failed to initialize"
2391 			       " integrity check module %s\n", sb->s_id);
2392 	}
2393 #endif
2394 
2395 	/* do not make disk changes in broken FS */
2396 	if (btrfs_super_log_root(disk_super) != 0 &&
2397 	    !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2398 		u64 bytenr = btrfs_super_log_root(disk_super);
2399 
2400 		if (fs_devices->rw_devices == 0) {
2401 			printk(KERN_WARNING "Btrfs log replay required "
2402 			       "on RO media\n");
2403 			err = -EIO;
2404 			goto fail_trans_kthread;
2405 		}
2406 		blocksize =
2407 		     btrfs_level_size(tree_root,
2408 				      btrfs_super_log_root_level(disk_super));
2409 
2410 		log_tree_root = btrfs_alloc_root(fs_info);
2411 		if (!log_tree_root) {
2412 			err = -ENOMEM;
2413 			goto fail_trans_kthread;
2414 		}
2415 
2416 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2417 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2418 
2419 		log_tree_root->node = read_tree_block(tree_root, bytenr,
2420 						      blocksize,
2421 						      generation + 1);
2422 		/* returns with log_tree_root freed on success */
2423 		ret = btrfs_recover_log_trees(log_tree_root);
2424 		if (ret) {
2425 			btrfs_error(tree_root->fs_info, ret,
2426 				    "Failed to recover log tree");
2427 			free_extent_buffer(log_tree_root->node);
2428 			kfree(log_tree_root);
2429 			goto fail_trans_kthread;
2430 		}
2431 
2432 		if (sb->s_flags & MS_RDONLY) {
2433 			ret = btrfs_commit_super(tree_root);
2434 			if (ret)
2435 				goto fail_trans_kthread;
2436 		}
2437 	}
2438 
2439 	ret = btrfs_find_orphan_roots(tree_root);
2440 	if (ret)
2441 		goto fail_trans_kthread;
2442 
2443 	if (!(sb->s_flags & MS_RDONLY)) {
2444 		ret = btrfs_cleanup_fs_roots(fs_info);
2445 		if (ret) {
2446 			}
2447 
2448 		ret = btrfs_recover_relocation(tree_root);
2449 		if (ret < 0) {
2450 			printk(KERN_WARNING
2451 			       "btrfs: failed to recover relocation\n");
2452 			err = -EINVAL;
2453 			goto fail_trans_kthread;
2454 		}
2455 	}
2456 
2457 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2458 	location.type = BTRFS_ROOT_ITEM_KEY;
2459 	location.offset = (u64)-1;
2460 
2461 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2462 	if (!fs_info->fs_root)
2463 		goto fail_trans_kthread;
2464 	if (IS_ERR(fs_info->fs_root)) {
2465 		err = PTR_ERR(fs_info->fs_root);
2466 		goto fail_trans_kthread;
2467 	}
2468 
2469 	if (!(sb->s_flags & MS_RDONLY)) {
2470 		down_read(&fs_info->cleanup_work_sem);
2471 		err = btrfs_orphan_cleanup(fs_info->fs_root);
2472 		if (!err)
2473 			err = btrfs_orphan_cleanup(fs_info->tree_root);
2474 		up_read(&fs_info->cleanup_work_sem);
2475 
2476 		if (!err)
2477 			err = btrfs_recover_balance(fs_info->tree_root);
2478 
2479 		if (err) {
2480 			close_ctree(tree_root);
2481 			return err;
2482 		}
2483 	}
2484 
2485 	return 0;
2486 
2487 fail_trans_kthread:
2488 	kthread_stop(fs_info->transaction_kthread);
2489 fail_cleaner:
2490 	kthread_stop(fs_info->cleaner_kthread);
2491 
2492 	/*
2493 	 * make sure we're done with the btree inode before we stop our
2494 	 * kthreads
2495 	 */
2496 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2497 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2498 
2499 fail_block_groups:
2500 	btrfs_free_block_groups(fs_info);
2501 
2502 fail_tree_roots:
2503 	free_root_pointers(fs_info, 1);
2504 
2505 fail_sb_buffer:
2506 	btrfs_stop_workers(&fs_info->generic_worker);
2507 	btrfs_stop_workers(&fs_info->readahead_workers);
2508 	btrfs_stop_workers(&fs_info->fixup_workers);
2509 	btrfs_stop_workers(&fs_info->delalloc_workers);
2510 	btrfs_stop_workers(&fs_info->workers);
2511 	btrfs_stop_workers(&fs_info->endio_workers);
2512 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2513 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2514 	btrfs_stop_workers(&fs_info->endio_write_workers);
2515 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2516 	btrfs_stop_workers(&fs_info->submit_workers);
2517 	btrfs_stop_workers(&fs_info->delayed_workers);
2518 	btrfs_stop_workers(&fs_info->caching_workers);
2519 fail_alloc:
2520 fail_iput:
2521 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2522 
2523 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2524 	iput(fs_info->btree_inode);
2525 fail_bdi:
2526 	bdi_destroy(&fs_info->bdi);
2527 fail_srcu:
2528 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2529 fail:
2530 	btrfs_close_devices(fs_info->fs_devices);
2531 	return err;
2532 
2533 recovery_tree_root:
2534 	if (!btrfs_test_opt(tree_root, RECOVERY))
2535 		goto fail_tree_roots;
2536 
2537 	free_root_pointers(fs_info, 0);
2538 
2539 	/* don't use the log in recovery mode, it won't be valid */
2540 	btrfs_set_super_log_root(disk_super, 0);
2541 
2542 	/* we can't trust the free space cache either */
2543 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2544 
2545 	ret = next_root_backup(fs_info, fs_info->super_copy,
2546 			       &num_backups_tried, &backup_index);
2547 	if (ret == -1)
2548 		goto fail_block_groups;
2549 	goto retry_root_backup;
2550 }
2551 
2552 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2553 {
2554 	char b[BDEVNAME_SIZE];
2555 
2556 	if (uptodate) {
2557 		set_buffer_uptodate(bh);
2558 	} else {
2559 		printk_ratelimited(KERN_WARNING "lost page write due to "
2560 					"I/O error on %s\n",
2561 				       bdevname(bh->b_bdev, b));
2562 		/* note, we dont' set_buffer_write_io_error because we have
2563 		 * our own ways of dealing with the IO errors
2564 		 */
2565 		clear_buffer_uptodate(bh);
2566 	}
2567 	unlock_buffer(bh);
2568 	put_bh(bh);
2569 }
2570 
2571 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2572 {
2573 	struct buffer_head *bh;
2574 	struct buffer_head *latest = NULL;
2575 	struct btrfs_super_block *super;
2576 	int i;
2577 	u64 transid = 0;
2578 	u64 bytenr;
2579 
2580 	/* we would like to check all the supers, but that would make
2581 	 * a btrfs mount succeed after a mkfs from a different FS.
2582 	 * So, we need to add a special mount option to scan for
2583 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2584 	 */
2585 	for (i = 0; i < 1; i++) {
2586 		bytenr = btrfs_sb_offset(i);
2587 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2588 			break;
2589 		bh = __bread(bdev, bytenr / 4096, 4096);
2590 		if (!bh)
2591 			continue;
2592 
2593 		super = (struct btrfs_super_block *)bh->b_data;
2594 		if (btrfs_super_bytenr(super) != bytenr ||
2595 		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2596 			    sizeof(super->magic))) {
2597 			brelse(bh);
2598 			continue;
2599 		}
2600 
2601 		if (!latest || btrfs_super_generation(super) > transid) {
2602 			brelse(latest);
2603 			latest = bh;
2604 			transid = btrfs_super_generation(super);
2605 		} else {
2606 			brelse(bh);
2607 		}
2608 	}
2609 	return latest;
2610 }
2611 
2612 /*
2613  * this should be called twice, once with wait == 0 and
2614  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2615  * we write are pinned.
2616  *
2617  * They are released when wait == 1 is done.
2618  * max_mirrors must be the same for both runs, and it indicates how
2619  * many supers on this one device should be written.
2620  *
2621  * max_mirrors == 0 means to write them all.
2622  */
2623 static int write_dev_supers(struct btrfs_device *device,
2624 			    struct btrfs_super_block *sb,
2625 			    int do_barriers, int wait, int max_mirrors)
2626 {
2627 	struct buffer_head *bh;
2628 	int i;
2629 	int ret;
2630 	int errors = 0;
2631 	u32 crc;
2632 	u64 bytenr;
2633 
2634 	if (max_mirrors == 0)
2635 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2636 
2637 	for (i = 0; i < max_mirrors; i++) {
2638 		bytenr = btrfs_sb_offset(i);
2639 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2640 			break;
2641 
2642 		if (wait) {
2643 			bh = __find_get_block(device->bdev, bytenr / 4096,
2644 					      BTRFS_SUPER_INFO_SIZE);
2645 			BUG_ON(!bh);
2646 			wait_on_buffer(bh);
2647 			if (!buffer_uptodate(bh))
2648 				errors++;
2649 
2650 			/* drop our reference */
2651 			brelse(bh);
2652 
2653 			/* drop the reference from the wait == 0 run */
2654 			brelse(bh);
2655 			continue;
2656 		} else {
2657 			btrfs_set_super_bytenr(sb, bytenr);
2658 
2659 			crc = ~(u32)0;
2660 			crc = btrfs_csum_data(NULL, (char *)sb +
2661 					      BTRFS_CSUM_SIZE, crc,
2662 					      BTRFS_SUPER_INFO_SIZE -
2663 					      BTRFS_CSUM_SIZE);
2664 			btrfs_csum_final(crc, sb->csum);
2665 
2666 			/*
2667 			 * one reference for us, and we leave it for the
2668 			 * caller
2669 			 */
2670 			bh = __getblk(device->bdev, bytenr / 4096,
2671 				      BTRFS_SUPER_INFO_SIZE);
2672 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2673 
2674 			/* one reference for submit_bh */
2675 			get_bh(bh);
2676 
2677 			set_buffer_uptodate(bh);
2678 			lock_buffer(bh);
2679 			bh->b_end_io = btrfs_end_buffer_write_sync;
2680 		}
2681 
2682 		/*
2683 		 * we fua the first super.  The others we allow
2684 		 * to go down lazy.
2685 		 */
2686 		ret = btrfsic_submit_bh(WRITE_FUA, bh);
2687 		if (ret)
2688 			errors++;
2689 	}
2690 	return errors < i ? 0 : -1;
2691 }
2692 
2693 /*
2694  * endio for the write_dev_flush, this will wake anyone waiting
2695  * for the barrier when it is done
2696  */
2697 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2698 {
2699 	if (err) {
2700 		if (err == -EOPNOTSUPP)
2701 			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2702 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
2703 	}
2704 	if (bio->bi_private)
2705 		complete(bio->bi_private);
2706 	bio_put(bio);
2707 }
2708 
2709 /*
2710  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2711  * sent down.  With wait == 1, it waits for the previous flush.
2712  *
2713  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2714  * capable
2715  */
2716 static int write_dev_flush(struct btrfs_device *device, int wait)
2717 {
2718 	struct bio *bio;
2719 	int ret = 0;
2720 
2721 	if (device->nobarriers)
2722 		return 0;
2723 
2724 	if (wait) {
2725 		bio = device->flush_bio;
2726 		if (!bio)
2727 			return 0;
2728 
2729 		wait_for_completion(&device->flush_wait);
2730 
2731 		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2732 			printk("btrfs: disabling barriers on dev %s\n",
2733 			       device->name);
2734 			device->nobarriers = 1;
2735 		}
2736 		if (!bio_flagged(bio, BIO_UPTODATE)) {
2737 			ret = -EIO;
2738 		}
2739 
2740 		/* drop the reference from the wait == 0 run */
2741 		bio_put(bio);
2742 		device->flush_bio = NULL;
2743 
2744 		return ret;
2745 	}
2746 
2747 	/*
2748 	 * one reference for us, and we leave it for the
2749 	 * caller
2750 	 */
2751 	device->flush_bio = NULL;;
2752 	bio = bio_alloc(GFP_NOFS, 0);
2753 	if (!bio)
2754 		return -ENOMEM;
2755 
2756 	bio->bi_end_io = btrfs_end_empty_barrier;
2757 	bio->bi_bdev = device->bdev;
2758 	init_completion(&device->flush_wait);
2759 	bio->bi_private = &device->flush_wait;
2760 	device->flush_bio = bio;
2761 
2762 	bio_get(bio);
2763 	btrfsic_submit_bio(WRITE_FLUSH, bio);
2764 
2765 	return 0;
2766 }
2767 
2768 /*
2769  * send an empty flush down to each device in parallel,
2770  * then wait for them
2771  */
2772 static int barrier_all_devices(struct btrfs_fs_info *info)
2773 {
2774 	struct list_head *head;
2775 	struct btrfs_device *dev;
2776 	int errors = 0;
2777 	int ret;
2778 
2779 	/* send down all the barriers */
2780 	head = &info->fs_devices->devices;
2781 	list_for_each_entry_rcu(dev, head, dev_list) {
2782 		if (!dev->bdev) {
2783 			errors++;
2784 			continue;
2785 		}
2786 		if (!dev->in_fs_metadata || !dev->writeable)
2787 			continue;
2788 
2789 		ret = write_dev_flush(dev, 0);
2790 		if (ret)
2791 			errors++;
2792 	}
2793 
2794 	/* wait for all the barriers */
2795 	list_for_each_entry_rcu(dev, head, dev_list) {
2796 		if (!dev->bdev) {
2797 			errors++;
2798 			continue;
2799 		}
2800 		if (!dev->in_fs_metadata || !dev->writeable)
2801 			continue;
2802 
2803 		ret = write_dev_flush(dev, 1);
2804 		if (ret)
2805 			errors++;
2806 	}
2807 	if (errors)
2808 		return -EIO;
2809 	return 0;
2810 }
2811 
2812 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2813 {
2814 	struct list_head *head;
2815 	struct btrfs_device *dev;
2816 	struct btrfs_super_block *sb;
2817 	struct btrfs_dev_item *dev_item;
2818 	int ret;
2819 	int do_barriers;
2820 	int max_errors;
2821 	int total_errors = 0;
2822 	u64 flags;
2823 
2824 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2825 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2826 	backup_super_roots(root->fs_info);
2827 
2828 	sb = root->fs_info->super_for_commit;
2829 	dev_item = &sb->dev_item;
2830 
2831 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2832 	head = &root->fs_info->fs_devices->devices;
2833 
2834 	if (do_barriers)
2835 		barrier_all_devices(root->fs_info);
2836 
2837 	list_for_each_entry_rcu(dev, head, dev_list) {
2838 		if (!dev->bdev) {
2839 			total_errors++;
2840 			continue;
2841 		}
2842 		if (!dev->in_fs_metadata || !dev->writeable)
2843 			continue;
2844 
2845 		btrfs_set_stack_device_generation(dev_item, 0);
2846 		btrfs_set_stack_device_type(dev_item, dev->type);
2847 		btrfs_set_stack_device_id(dev_item, dev->devid);
2848 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2849 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2850 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2851 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2852 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2853 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2854 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2855 
2856 		flags = btrfs_super_flags(sb);
2857 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2858 
2859 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2860 		if (ret)
2861 			total_errors++;
2862 	}
2863 	if (total_errors > max_errors) {
2864 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2865 		       total_errors);
2866 
2867 		/* This shouldn't happen. FUA is masked off if unsupported */
2868 		BUG();
2869 	}
2870 
2871 	total_errors = 0;
2872 	list_for_each_entry_rcu(dev, head, dev_list) {
2873 		if (!dev->bdev)
2874 			continue;
2875 		if (!dev->in_fs_metadata || !dev->writeable)
2876 			continue;
2877 
2878 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2879 		if (ret)
2880 			total_errors++;
2881 	}
2882 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2883 	if (total_errors > max_errors) {
2884 		btrfs_error(root->fs_info, -EIO,
2885 			    "%d errors while writing supers", total_errors);
2886 		return -EIO;
2887 	}
2888 	return 0;
2889 }
2890 
2891 int write_ctree_super(struct btrfs_trans_handle *trans,
2892 		      struct btrfs_root *root, int max_mirrors)
2893 {
2894 	int ret;
2895 
2896 	ret = write_all_supers(root, max_mirrors);
2897 	return ret;
2898 }
2899 
2900 /* Kill all outstanding I/O */
2901 void btrfs_abort_devices(struct btrfs_root *root)
2902 {
2903 	struct list_head *head;
2904 	struct btrfs_device *dev;
2905 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2906 	head = &root->fs_info->fs_devices->devices;
2907 	list_for_each_entry_rcu(dev, head, dev_list) {
2908 		blk_abort_queue(dev->bdev->bd_disk->queue);
2909 	}
2910 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2911 }
2912 
2913 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2914 {
2915 	spin_lock(&fs_info->fs_roots_radix_lock);
2916 	radix_tree_delete(&fs_info->fs_roots_radix,
2917 			  (unsigned long)root->root_key.objectid);
2918 	spin_unlock(&fs_info->fs_roots_radix_lock);
2919 
2920 	if (btrfs_root_refs(&root->root_item) == 0)
2921 		synchronize_srcu(&fs_info->subvol_srcu);
2922 
2923 	__btrfs_remove_free_space_cache(root->free_ino_pinned);
2924 	__btrfs_remove_free_space_cache(root->free_ino_ctl);
2925 	free_fs_root(root);
2926 }
2927 
2928 static void free_fs_root(struct btrfs_root *root)
2929 {
2930 	iput(root->cache_inode);
2931 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2932 	if (root->anon_dev)
2933 		free_anon_bdev(root->anon_dev);
2934 	free_extent_buffer(root->node);
2935 	free_extent_buffer(root->commit_root);
2936 	kfree(root->free_ino_ctl);
2937 	kfree(root->free_ino_pinned);
2938 	kfree(root->name);
2939 	kfree(root);
2940 }
2941 
2942 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2943 {
2944 	int ret;
2945 	struct btrfs_root *gang[8];
2946 	int i;
2947 
2948 	while (!list_empty(&fs_info->dead_roots)) {
2949 		gang[0] = list_entry(fs_info->dead_roots.next,
2950 				     struct btrfs_root, root_list);
2951 		list_del(&gang[0]->root_list);
2952 
2953 		if (gang[0]->in_radix) {
2954 			btrfs_free_fs_root(fs_info, gang[0]);
2955 		} else {
2956 			free_extent_buffer(gang[0]->node);
2957 			free_extent_buffer(gang[0]->commit_root);
2958 			kfree(gang[0]);
2959 		}
2960 	}
2961 
2962 	while (1) {
2963 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2964 					     (void **)gang, 0,
2965 					     ARRAY_SIZE(gang));
2966 		if (!ret)
2967 			break;
2968 		for (i = 0; i < ret; i++)
2969 			btrfs_free_fs_root(fs_info, gang[i]);
2970 	}
2971 }
2972 
2973 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2974 {
2975 	u64 root_objectid = 0;
2976 	struct btrfs_root *gang[8];
2977 	int i;
2978 	int ret;
2979 
2980 	while (1) {
2981 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2982 					     (void **)gang, root_objectid,
2983 					     ARRAY_SIZE(gang));
2984 		if (!ret)
2985 			break;
2986 
2987 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
2988 		for (i = 0; i < ret; i++) {
2989 			int err;
2990 
2991 			root_objectid = gang[i]->root_key.objectid;
2992 			err = btrfs_orphan_cleanup(gang[i]);
2993 			if (err)
2994 				return err;
2995 		}
2996 		root_objectid++;
2997 	}
2998 	return 0;
2999 }
3000 
3001 int btrfs_commit_super(struct btrfs_root *root)
3002 {
3003 	struct btrfs_trans_handle *trans;
3004 	int ret;
3005 
3006 	mutex_lock(&root->fs_info->cleaner_mutex);
3007 	btrfs_run_delayed_iputs(root);
3008 	btrfs_clean_old_snapshots(root);
3009 	mutex_unlock(&root->fs_info->cleaner_mutex);
3010 
3011 	/* wait until ongoing cleanup work done */
3012 	down_write(&root->fs_info->cleanup_work_sem);
3013 	up_write(&root->fs_info->cleanup_work_sem);
3014 
3015 	trans = btrfs_join_transaction(root);
3016 	if (IS_ERR(trans))
3017 		return PTR_ERR(trans);
3018 	ret = btrfs_commit_transaction(trans, root);
3019 	if (ret)
3020 		return ret;
3021 	/* run commit again to drop the original snapshot */
3022 	trans = btrfs_join_transaction(root);
3023 	if (IS_ERR(trans))
3024 		return PTR_ERR(trans);
3025 	ret = btrfs_commit_transaction(trans, root);
3026 	if (ret)
3027 		return ret;
3028 	ret = btrfs_write_and_wait_transaction(NULL, root);
3029 	if (ret) {
3030 		btrfs_error(root->fs_info, ret,
3031 			    "Failed to sync btree inode to disk.");
3032 		return ret;
3033 	}
3034 
3035 	ret = write_ctree_super(NULL, root, 0);
3036 	return ret;
3037 }
3038 
3039 int close_ctree(struct btrfs_root *root)
3040 {
3041 	struct btrfs_fs_info *fs_info = root->fs_info;
3042 	int ret;
3043 
3044 	fs_info->closing = 1;
3045 	smp_mb();
3046 
3047 	/* pause restriper - we want to resume on mount */
3048 	btrfs_pause_balance(root->fs_info);
3049 
3050 	btrfs_scrub_cancel(root);
3051 
3052 	/* wait for any defraggers to finish */
3053 	wait_event(fs_info->transaction_wait,
3054 		   (atomic_read(&fs_info->defrag_running) == 0));
3055 
3056 	/* clear out the rbtree of defraggable inodes */
3057 	btrfs_run_defrag_inodes(fs_info);
3058 
3059 	/*
3060 	 * Here come 2 situations when btrfs is broken to flip readonly:
3061 	 *
3062 	 * 1. when btrfs flips readonly somewhere else before
3063 	 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3064 	 * and btrfs will skip to write sb directly to keep
3065 	 * ERROR state on disk.
3066 	 *
3067 	 * 2. when btrfs flips readonly just in btrfs_commit_super,
3068 	 * and in such case, btrfs cannot write sb via btrfs_commit_super,
3069 	 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3070 	 * btrfs will cleanup all FS resources first and write sb then.
3071 	 */
3072 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3073 		ret = btrfs_commit_super(root);
3074 		if (ret)
3075 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3076 	}
3077 
3078 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3079 		ret = btrfs_error_commit_super(root);
3080 		if (ret)
3081 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3082 	}
3083 
3084 	btrfs_put_block_group_cache(fs_info);
3085 
3086 	kthread_stop(fs_info->transaction_kthread);
3087 	kthread_stop(fs_info->cleaner_kthread);
3088 
3089 	fs_info->closing = 2;
3090 	smp_mb();
3091 
3092 	if (fs_info->delalloc_bytes) {
3093 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3094 		       (unsigned long long)fs_info->delalloc_bytes);
3095 	}
3096 	if (fs_info->total_ref_cache_size) {
3097 		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3098 		       (unsigned long long)fs_info->total_ref_cache_size);
3099 	}
3100 
3101 	free_extent_buffer(fs_info->extent_root->node);
3102 	free_extent_buffer(fs_info->extent_root->commit_root);
3103 	free_extent_buffer(fs_info->tree_root->node);
3104 	free_extent_buffer(fs_info->tree_root->commit_root);
3105 	free_extent_buffer(fs_info->chunk_root->node);
3106 	free_extent_buffer(fs_info->chunk_root->commit_root);
3107 	free_extent_buffer(fs_info->dev_root->node);
3108 	free_extent_buffer(fs_info->dev_root->commit_root);
3109 	free_extent_buffer(fs_info->csum_root->node);
3110 	free_extent_buffer(fs_info->csum_root->commit_root);
3111 
3112 	btrfs_free_block_groups(fs_info);
3113 
3114 	del_fs_roots(fs_info);
3115 
3116 	iput(fs_info->btree_inode);
3117 
3118 	btrfs_stop_workers(&fs_info->generic_worker);
3119 	btrfs_stop_workers(&fs_info->fixup_workers);
3120 	btrfs_stop_workers(&fs_info->delalloc_workers);
3121 	btrfs_stop_workers(&fs_info->workers);
3122 	btrfs_stop_workers(&fs_info->endio_workers);
3123 	btrfs_stop_workers(&fs_info->endio_meta_workers);
3124 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3125 	btrfs_stop_workers(&fs_info->endio_write_workers);
3126 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
3127 	btrfs_stop_workers(&fs_info->submit_workers);
3128 	btrfs_stop_workers(&fs_info->delayed_workers);
3129 	btrfs_stop_workers(&fs_info->caching_workers);
3130 	btrfs_stop_workers(&fs_info->readahead_workers);
3131 
3132 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3133 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3134 		btrfsic_unmount(root, fs_info->fs_devices);
3135 #endif
3136 
3137 	btrfs_close_devices(fs_info->fs_devices);
3138 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3139 
3140 	bdi_destroy(&fs_info->bdi);
3141 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3142 
3143 	return 0;
3144 }
3145 
3146 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
3147 {
3148 	int ret;
3149 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3150 
3151 	ret = extent_buffer_uptodate(buf);
3152 	if (!ret)
3153 		return ret;
3154 
3155 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3156 				    parent_transid);
3157 	return !ret;
3158 }
3159 
3160 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3161 {
3162 	return set_extent_buffer_uptodate(buf);
3163 }
3164 
3165 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3166 {
3167 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3168 	u64 transid = btrfs_header_generation(buf);
3169 	int was_dirty;
3170 
3171 	btrfs_assert_tree_locked(buf);
3172 	if (transid != root->fs_info->generation) {
3173 		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3174 		       "found %llu running %llu\n",
3175 			(unsigned long long)buf->start,
3176 			(unsigned long long)transid,
3177 			(unsigned long long)root->fs_info->generation);
3178 		WARN_ON(1);
3179 	}
3180 	was_dirty = set_extent_buffer_dirty(buf);
3181 	if (!was_dirty) {
3182 		spin_lock(&root->fs_info->delalloc_lock);
3183 		root->fs_info->dirty_metadata_bytes += buf->len;
3184 		spin_unlock(&root->fs_info->delalloc_lock);
3185 	}
3186 }
3187 
3188 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3189 {
3190 	/*
3191 	 * looks as though older kernels can get into trouble with
3192 	 * this code, they end up stuck in balance_dirty_pages forever
3193 	 */
3194 	u64 num_dirty;
3195 	unsigned long thresh = 32 * 1024 * 1024;
3196 
3197 	if (current->flags & PF_MEMALLOC)
3198 		return;
3199 
3200 	btrfs_balance_delayed_items(root);
3201 
3202 	num_dirty = root->fs_info->dirty_metadata_bytes;
3203 
3204 	if (num_dirty > thresh) {
3205 		balance_dirty_pages_ratelimited_nr(
3206 				   root->fs_info->btree_inode->i_mapping, 1);
3207 	}
3208 	return;
3209 }
3210 
3211 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3212 {
3213 	/*
3214 	 * looks as though older kernels can get into trouble with
3215 	 * this code, they end up stuck in balance_dirty_pages forever
3216 	 */
3217 	u64 num_dirty;
3218 	unsigned long thresh = 32 * 1024 * 1024;
3219 
3220 	if (current->flags & PF_MEMALLOC)
3221 		return;
3222 
3223 	num_dirty = root->fs_info->dirty_metadata_bytes;
3224 
3225 	if (num_dirty > thresh) {
3226 		balance_dirty_pages_ratelimited_nr(
3227 				   root->fs_info->btree_inode->i_mapping, 1);
3228 	}
3229 	return;
3230 }
3231 
3232 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3233 {
3234 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3235 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3236 }
3237 
3238 static int btree_lock_page_hook(struct page *page, void *data,
3239 				void (*flush_fn)(void *))
3240 {
3241 	struct inode *inode = page->mapping->host;
3242 	struct btrfs_root *root = BTRFS_I(inode)->root;
3243 	struct extent_buffer *eb;
3244 
3245 	/*
3246 	 * We culled this eb but the page is still hanging out on the mapping,
3247 	 * carry on.
3248 	 */
3249 	if (!PagePrivate(page))
3250 		goto out;
3251 
3252 	eb = (struct extent_buffer *)page->private;
3253 	if (!eb) {
3254 		WARN_ON(1);
3255 		goto out;
3256 	}
3257 	if (page != eb->pages[0])
3258 		goto out;
3259 
3260 	if (!btrfs_try_tree_write_lock(eb)) {
3261 		flush_fn(data);
3262 		btrfs_tree_lock(eb);
3263 	}
3264 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3265 
3266 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3267 		spin_lock(&root->fs_info->delalloc_lock);
3268 		if (root->fs_info->dirty_metadata_bytes >= eb->len)
3269 			root->fs_info->dirty_metadata_bytes -= eb->len;
3270 		else
3271 			WARN_ON(1);
3272 		spin_unlock(&root->fs_info->delalloc_lock);
3273 	}
3274 
3275 	btrfs_tree_unlock(eb);
3276 out:
3277 	if (!trylock_page(page)) {
3278 		flush_fn(data);
3279 		lock_page(page);
3280 	}
3281 	return 0;
3282 }
3283 
3284 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3285 			      int read_only)
3286 {
3287 	if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3288 		printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3289 		return -EINVAL;
3290 	}
3291 
3292 	if (read_only)
3293 		return 0;
3294 
3295 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3296 		printk(KERN_WARNING "warning: mount fs with errors, "
3297 		       "running btrfsck is recommended\n");
3298 	}
3299 
3300 	return 0;
3301 }
3302 
3303 int btrfs_error_commit_super(struct btrfs_root *root)
3304 {
3305 	int ret;
3306 
3307 	mutex_lock(&root->fs_info->cleaner_mutex);
3308 	btrfs_run_delayed_iputs(root);
3309 	mutex_unlock(&root->fs_info->cleaner_mutex);
3310 
3311 	down_write(&root->fs_info->cleanup_work_sem);
3312 	up_write(&root->fs_info->cleanup_work_sem);
3313 
3314 	/* cleanup FS via transaction */
3315 	btrfs_cleanup_transaction(root);
3316 
3317 	ret = write_ctree_super(NULL, root, 0);
3318 
3319 	return ret;
3320 }
3321 
3322 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3323 {
3324 	struct btrfs_inode *btrfs_inode;
3325 	struct list_head splice;
3326 
3327 	INIT_LIST_HEAD(&splice);
3328 
3329 	mutex_lock(&root->fs_info->ordered_operations_mutex);
3330 	spin_lock(&root->fs_info->ordered_extent_lock);
3331 
3332 	list_splice_init(&root->fs_info->ordered_operations, &splice);
3333 	while (!list_empty(&splice)) {
3334 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3335 					 ordered_operations);
3336 
3337 		list_del_init(&btrfs_inode->ordered_operations);
3338 
3339 		btrfs_invalidate_inodes(btrfs_inode->root);
3340 	}
3341 
3342 	spin_unlock(&root->fs_info->ordered_extent_lock);
3343 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
3344 }
3345 
3346 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3347 {
3348 	struct list_head splice;
3349 	struct btrfs_ordered_extent *ordered;
3350 	struct inode *inode;
3351 
3352 	INIT_LIST_HEAD(&splice);
3353 
3354 	spin_lock(&root->fs_info->ordered_extent_lock);
3355 
3356 	list_splice_init(&root->fs_info->ordered_extents, &splice);
3357 	while (!list_empty(&splice)) {
3358 		ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3359 				     root_extent_list);
3360 
3361 		list_del_init(&ordered->root_extent_list);
3362 		atomic_inc(&ordered->refs);
3363 
3364 		/* the inode may be getting freed (in sys_unlink path). */
3365 		inode = igrab(ordered->inode);
3366 
3367 		spin_unlock(&root->fs_info->ordered_extent_lock);
3368 		if (inode)
3369 			iput(inode);
3370 
3371 		atomic_set(&ordered->refs, 1);
3372 		btrfs_put_ordered_extent(ordered);
3373 
3374 		spin_lock(&root->fs_info->ordered_extent_lock);
3375 	}
3376 
3377 	spin_unlock(&root->fs_info->ordered_extent_lock);
3378 }
3379 
3380 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3381 			       struct btrfs_root *root)
3382 {
3383 	struct rb_node *node;
3384 	struct btrfs_delayed_ref_root *delayed_refs;
3385 	struct btrfs_delayed_ref_node *ref;
3386 	int ret = 0;
3387 
3388 	delayed_refs = &trans->delayed_refs;
3389 
3390 again:
3391 	spin_lock(&delayed_refs->lock);
3392 	if (delayed_refs->num_entries == 0) {
3393 		spin_unlock(&delayed_refs->lock);
3394 		printk(KERN_INFO "delayed_refs has NO entry\n");
3395 		return ret;
3396 	}
3397 
3398 	node = rb_first(&delayed_refs->root);
3399 	while (node) {
3400 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3401 		node = rb_next(node);
3402 
3403 		ref->in_tree = 0;
3404 		rb_erase(&ref->rb_node, &delayed_refs->root);
3405 		delayed_refs->num_entries--;
3406 
3407 		atomic_set(&ref->refs, 1);
3408 		if (btrfs_delayed_ref_is_head(ref)) {
3409 			struct btrfs_delayed_ref_head *head;
3410 
3411 			head = btrfs_delayed_node_to_head(ref);
3412 			spin_unlock(&delayed_refs->lock);
3413 			mutex_lock(&head->mutex);
3414 			kfree(head->extent_op);
3415 			delayed_refs->num_heads--;
3416 			if (list_empty(&head->cluster))
3417 				delayed_refs->num_heads_ready--;
3418 			list_del_init(&head->cluster);
3419 			mutex_unlock(&head->mutex);
3420 			btrfs_put_delayed_ref(ref);
3421 			goto again;
3422 		}
3423 		spin_unlock(&delayed_refs->lock);
3424 		btrfs_put_delayed_ref(ref);
3425 
3426 		cond_resched();
3427 		spin_lock(&delayed_refs->lock);
3428 	}
3429 
3430 	spin_unlock(&delayed_refs->lock);
3431 
3432 	return ret;
3433 }
3434 
3435 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3436 {
3437 	struct btrfs_pending_snapshot *snapshot;
3438 	struct list_head splice;
3439 
3440 	INIT_LIST_HEAD(&splice);
3441 
3442 	list_splice_init(&t->pending_snapshots, &splice);
3443 
3444 	while (!list_empty(&splice)) {
3445 		snapshot = list_entry(splice.next,
3446 				      struct btrfs_pending_snapshot,
3447 				      list);
3448 
3449 		list_del_init(&snapshot->list);
3450 
3451 		kfree(snapshot);
3452 	}
3453 }
3454 
3455 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3456 {
3457 	struct btrfs_inode *btrfs_inode;
3458 	struct list_head splice;
3459 
3460 	INIT_LIST_HEAD(&splice);
3461 
3462 	spin_lock(&root->fs_info->delalloc_lock);
3463 	list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3464 
3465 	while (!list_empty(&splice)) {
3466 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3467 				    delalloc_inodes);
3468 
3469 		list_del_init(&btrfs_inode->delalloc_inodes);
3470 
3471 		btrfs_invalidate_inodes(btrfs_inode->root);
3472 	}
3473 
3474 	spin_unlock(&root->fs_info->delalloc_lock);
3475 }
3476 
3477 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3478 					struct extent_io_tree *dirty_pages,
3479 					int mark)
3480 {
3481 	int ret;
3482 	struct page *page;
3483 	struct inode *btree_inode = root->fs_info->btree_inode;
3484 	struct extent_buffer *eb;
3485 	u64 start = 0;
3486 	u64 end;
3487 	u64 offset;
3488 	unsigned long index;
3489 
3490 	while (1) {
3491 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3492 					    mark);
3493 		if (ret)
3494 			break;
3495 
3496 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3497 		while (start <= end) {
3498 			index = start >> PAGE_CACHE_SHIFT;
3499 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3500 			page = find_get_page(btree_inode->i_mapping, index);
3501 			if (!page)
3502 				continue;
3503 			offset = page_offset(page);
3504 
3505 			spin_lock(&dirty_pages->buffer_lock);
3506 			eb = radix_tree_lookup(
3507 			     &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3508 					       offset >> PAGE_CACHE_SHIFT);
3509 			spin_unlock(&dirty_pages->buffer_lock);
3510 			if (eb) {
3511 				ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3512 							 &eb->bflags);
3513 				atomic_set(&eb->refs, 1);
3514 			}
3515 			if (PageWriteback(page))
3516 				end_page_writeback(page);
3517 
3518 			lock_page(page);
3519 			if (PageDirty(page)) {
3520 				clear_page_dirty_for_io(page);
3521 				spin_lock_irq(&page->mapping->tree_lock);
3522 				radix_tree_tag_clear(&page->mapping->page_tree,
3523 							page_index(page),
3524 							PAGECACHE_TAG_DIRTY);
3525 				spin_unlock_irq(&page->mapping->tree_lock);
3526 			}
3527 
3528 			page->mapping->a_ops->invalidatepage(page, 0);
3529 			unlock_page(page);
3530 		}
3531 	}
3532 
3533 	return ret;
3534 }
3535 
3536 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3537 				       struct extent_io_tree *pinned_extents)
3538 {
3539 	struct extent_io_tree *unpin;
3540 	u64 start;
3541 	u64 end;
3542 	int ret;
3543 
3544 	unpin = pinned_extents;
3545 	while (1) {
3546 		ret = find_first_extent_bit(unpin, 0, &start, &end,
3547 					    EXTENT_DIRTY);
3548 		if (ret)
3549 			break;
3550 
3551 		/* opt_discard */
3552 		if (btrfs_test_opt(root, DISCARD))
3553 			ret = btrfs_error_discard_extent(root, start,
3554 							 end + 1 - start,
3555 							 NULL);
3556 
3557 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
3558 		btrfs_error_unpin_extent_range(root, start, end);
3559 		cond_resched();
3560 	}
3561 
3562 	return 0;
3563 }
3564 
3565 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3566 				   struct btrfs_root *root)
3567 {
3568 	btrfs_destroy_delayed_refs(cur_trans, root);
3569 	btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3570 				cur_trans->dirty_pages.dirty_bytes);
3571 
3572 	/* FIXME: cleanup wait for commit */
3573 	cur_trans->in_commit = 1;
3574 	cur_trans->blocked = 1;
3575 	if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3576 		wake_up(&root->fs_info->transaction_blocked_wait);
3577 
3578 	cur_trans->blocked = 0;
3579 	if (waitqueue_active(&root->fs_info->transaction_wait))
3580 		wake_up(&root->fs_info->transaction_wait);
3581 
3582 	cur_trans->commit_done = 1;
3583 	if (waitqueue_active(&cur_trans->commit_wait))
3584 		wake_up(&cur_trans->commit_wait);
3585 
3586 	btrfs_destroy_pending_snapshots(cur_trans);
3587 
3588 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3589 				     EXTENT_DIRTY);
3590 
3591 	/*
3592 	memset(cur_trans, 0, sizeof(*cur_trans));
3593 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3594 	*/
3595 }
3596 
3597 int btrfs_cleanup_transaction(struct btrfs_root *root)
3598 {
3599 	struct btrfs_transaction *t;
3600 	LIST_HEAD(list);
3601 
3602 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
3603 
3604 	spin_lock(&root->fs_info->trans_lock);
3605 	list_splice_init(&root->fs_info->trans_list, &list);
3606 	root->fs_info->trans_no_join = 1;
3607 	spin_unlock(&root->fs_info->trans_lock);
3608 
3609 	while (!list_empty(&list)) {
3610 		t = list_entry(list.next, struct btrfs_transaction, list);
3611 		if (!t)
3612 			break;
3613 
3614 		btrfs_destroy_ordered_operations(root);
3615 
3616 		btrfs_destroy_ordered_extents(root);
3617 
3618 		btrfs_destroy_delayed_refs(t, root);
3619 
3620 		btrfs_block_rsv_release(root,
3621 					&root->fs_info->trans_block_rsv,
3622 					t->dirty_pages.dirty_bytes);
3623 
3624 		/* FIXME: cleanup wait for commit */
3625 		t->in_commit = 1;
3626 		t->blocked = 1;
3627 		if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3628 			wake_up(&root->fs_info->transaction_blocked_wait);
3629 
3630 		t->blocked = 0;
3631 		if (waitqueue_active(&root->fs_info->transaction_wait))
3632 			wake_up(&root->fs_info->transaction_wait);
3633 
3634 		t->commit_done = 1;
3635 		if (waitqueue_active(&t->commit_wait))
3636 			wake_up(&t->commit_wait);
3637 
3638 		btrfs_destroy_pending_snapshots(t);
3639 
3640 		btrfs_destroy_delalloc_inodes(root);
3641 
3642 		spin_lock(&root->fs_info->trans_lock);
3643 		root->fs_info->running_transaction = NULL;
3644 		spin_unlock(&root->fs_info->trans_lock);
3645 
3646 		btrfs_destroy_marked_extents(root, &t->dirty_pages,
3647 					     EXTENT_DIRTY);
3648 
3649 		btrfs_destroy_pinned_extent(root,
3650 					    root->fs_info->pinned_extents);
3651 
3652 		atomic_set(&t->use_count, 0);
3653 		list_del_init(&t->list);
3654 		memset(t, 0, sizeof(*t));
3655 		kmem_cache_free(btrfs_transaction_cachep, t);
3656 	}
3657 
3658 	spin_lock(&root->fs_info->trans_lock);
3659 	root->fs_info->trans_no_join = 0;
3660 	spin_unlock(&root->fs_info->trans_lock);
3661 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3662 
3663 	return 0;
3664 }
3665 
3666 static int btree_writepage_io_failed_hook(struct bio *bio, struct page *page,
3667 					  u64 start, u64 end,
3668 					  struct extent_state *state)
3669 {
3670 	struct super_block *sb = page->mapping->host->i_sb;
3671 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3672 	btrfs_error(fs_info, -EIO,
3673 		    "Error occured while writing out btree at %llu", start);
3674 	return -EIO;
3675 }
3676 
3677 static struct extent_io_ops btree_extent_io_ops = {
3678 	.write_cache_pages_lock_hook = btree_lock_page_hook,
3679 	.readpage_end_io_hook = btree_readpage_end_io_hook,
3680 	.readpage_io_failed_hook = btree_io_failed_hook,
3681 	.submit_bio_hook = btree_submit_bio_hook,
3682 	/* note we're sharing with inode.c for the merge bio hook */
3683 	.merge_bio_hook = btrfs_merge_bio_hook,
3684 	.writepage_io_failed_hook = btree_writepage_io_failed_hook,
3685 };
3686