xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 8e9356c6)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52 
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56 
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 				    int read_only);
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63 					     struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66 				      struct btrfs_root *root);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 					struct extent_io_tree *dirty_pages,
70 					int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 				       struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75 
76 /*
77  * end_io_wq structs are used to do processing in task context when an IO is
78  * complete.  This is used during reads to verify checksums, and it is used
79  * by writes to insert metadata for new file extents after IO is complete.
80  */
81 struct end_io_wq {
82 	struct bio *bio;
83 	bio_end_io_t *end_io;
84 	void *private;
85 	struct btrfs_fs_info *info;
86 	int error;
87 	int metadata;
88 	struct list_head list;
89 	struct btrfs_work work;
90 };
91 
92 /*
93  * async submit bios are used to offload expensive checksumming
94  * onto the worker threads.  They checksum file and metadata bios
95  * just before they are sent down the IO stack.
96  */
97 struct async_submit_bio {
98 	struct inode *inode;
99 	struct bio *bio;
100 	struct list_head list;
101 	extent_submit_bio_hook_t *submit_bio_start;
102 	extent_submit_bio_hook_t *submit_bio_done;
103 	int rw;
104 	int mirror_num;
105 	unsigned long bio_flags;
106 	/*
107 	 * bio_offset is optional, can be used if the pages in the bio
108 	 * can't tell us where in the file the bio should go
109 	 */
110 	u64 bio_offset;
111 	struct btrfs_work work;
112 	int error;
113 };
114 
115 /*
116  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
117  * eb, the lockdep key is determined by the btrfs_root it belongs to and
118  * the level the eb occupies in the tree.
119  *
120  * Different roots are used for different purposes and may nest inside each
121  * other and they require separate keysets.  As lockdep keys should be
122  * static, assign keysets according to the purpose of the root as indicated
123  * by btrfs_root->objectid.  This ensures that all special purpose roots
124  * have separate keysets.
125  *
126  * Lock-nesting across peer nodes is always done with the immediate parent
127  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
128  * subclass to avoid triggering lockdep warning in such cases.
129  *
130  * The key is set by the readpage_end_io_hook after the buffer has passed
131  * csum validation but before the pages are unlocked.  It is also set by
132  * btrfs_init_new_buffer on freshly allocated blocks.
133  *
134  * We also add a check to make sure the highest level of the tree is the
135  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
136  * needs update as well.
137  */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 #  error
141 # endif
142 
143 static struct btrfs_lockdep_keyset {
144 	u64			id;		/* root objectid */
145 	const char		*name_stem;	/* lock name stem */
146 	char			names[BTRFS_MAX_LEVEL + 1][20];
147 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
150 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
151 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
152 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
153 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
154 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
155 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
156 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
157 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
158 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
159 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
160 	{ .id = 0,				.name_stem = "tree"	},
161 };
162 
163 void __init btrfs_init_lockdep(void)
164 {
165 	int i, j;
166 
167 	/* initialize lockdep class names */
168 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170 
171 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172 			snprintf(ks->names[j], sizeof(ks->names[j]),
173 				 "btrfs-%s-%02d", ks->name_stem, j);
174 	}
175 }
176 
177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178 				    int level)
179 {
180 	struct btrfs_lockdep_keyset *ks;
181 
182 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
183 
184 	/* find the matching keyset, id 0 is the default entry */
185 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186 		if (ks->id == objectid)
187 			break;
188 
189 	lockdep_set_class_and_name(&eb->lock,
190 				   &ks->keys[level], ks->names[level]);
191 }
192 
193 #endif
194 
195 /*
196  * extents on the btree inode are pretty simple, there's one extent
197  * that covers the entire device
198  */
199 static struct extent_map *btree_get_extent(struct inode *inode,
200 		struct page *page, size_t pg_offset, u64 start, u64 len,
201 		int create)
202 {
203 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204 	struct extent_map *em;
205 	int ret;
206 
207 	read_lock(&em_tree->lock);
208 	em = lookup_extent_mapping(em_tree, start, len);
209 	if (em) {
210 		em->bdev =
211 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
212 		read_unlock(&em_tree->lock);
213 		goto out;
214 	}
215 	read_unlock(&em_tree->lock);
216 
217 	em = alloc_extent_map();
218 	if (!em) {
219 		em = ERR_PTR(-ENOMEM);
220 		goto out;
221 	}
222 	em->start = 0;
223 	em->len = (u64)-1;
224 	em->block_len = (u64)-1;
225 	em->block_start = 0;
226 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
227 
228 	write_lock(&em_tree->lock);
229 	ret = add_extent_mapping(em_tree, em, 0);
230 	if (ret == -EEXIST) {
231 		free_extent_map(em);
232 		em = lookup_extent_mapping(em_tree, start, len);
233 		if (!em)
234 			em = ERR_PTR(-EIO);
235 	} else if (ret) {
236 		free_extent_map(em);
237 		em = ERR_PTR(ret);
238 	}
239 	write_unlock(&em_tree->lock);
240 
241 out:
242 	return em;
243 }
244 
245 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
246 {
247 	return btrfs_crc32c(seed, data, len);
248 }
249 
250 void btrfs_csum_final(u32 crc, char *result)
251 {
252 	put_unaligned_le32(~crc, result);
253 }
254 
255 /*
256  * compute the csum for a btree block, and either verify it or write it
257  * into the csum field of the block.
258  */
259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260 			   int verify)
261 {
262 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
263 	char *result = NULL;
264 	unsigned long len;
265 	unsigned long cur_len;
266 	unsigned long offset = BTRFS_CSUM_SIZE;
267 	char *kaddr;
268 	unsigned long map_start;
269 	unsigned long map_len;
270 	int err;
271 	u32 crc = ~(u32)0;
272 	unsigned long inline_result;
273 
274 	len = buf->len - offset;
275 	while (len > 0) {
276 		err = map_private_extent_buffer(buf, offset, 32,
277 					&kaddr, &map_start, &map_len);
278 		if (err)
279 			return 1;
280 		cur_len = min(len, map_len - (offset - map_start));
281 		crc = btrfs_csum_data(kaddr + offset - map_start,
282 				      crc, cur_len);
283 		len -= cur_len;
284 		offset += cur_len;
285 	}
286 	if (csum_size > sizeof(inline_result)) {
287 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288 		if (!result)
289 			return 1;
290 	} else {
291 		result = (char *)&inline_result;
292 	}
293 
294 	btrfs_csum_final(crc, result);
295 
296 	if (verify) {
297 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298 			u32 val;
299 			u32 found = 0;
300 			memcpy(&found, result, csum_size);
301 
302 			read_extent_buffer(buf, &val, 0, csum_size);
303 			printk_ratelimited(KERN_INFO
304 				"BTRFS: %s checksum verify failed on %llu wanted %X found %X "
305 				"level %d\n",
306 				root->fs_info->sb->s_id, buf->start,
307 				val, found, btrfs_header_level(buf));
308 			if (result != (char *)&inline_result)
309 				kfree(result);
310 			return 1;
311 		}
312 	} else {
313 		write_extent_buffer(buf, result, 0, csum_size);
314 	}
315 	if (result != (char *)&inline_result)
316 		kfree(result);
317 	return 0;
318 }
319 
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 				 struct extent_buffer *eb, u64 parent_transid,
328 				 int atomic)
329 {
330 	struct extent_state *cached_state = NULL;
331 	int ret;
332 
333 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 		return 0;
335 
336 	if (atomic)
337 		return -EAGAIN;
338 
339 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340 			 0, &cached_state);
341 	if (extent_buffer_uptodate(eb) &&
342 	    btrfs_header_generation(eb) == parent_transid) {
343 		ret = 0;
344 		goto out;
345 	}
346 	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347 		       "found %llu\n",
348 		       eb->start, parent_transid, btrfs_header_generation(eb));
349 	ret = 1;
350 	clear_extent_buffer_uptodate(eb);
351 out:
352 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353 			     &cached_state, GFP_NOFS);
354 	return ret;
355 }
356 
357 /*
358  * Return 0 if the superblock checksum type matches the checksum value of that
359  * algorithm. Pass the raw disk superblock data.
360  */
361 static int btrfs_check_super_csum(char *raw_disk_sb)
362 {
363 	struct btrfs_super_block *disk_sb =
364 		(struct btrfs_super_block *)raw_disk_sb;
365 	u16 csum_type = btrfs_super_csum_type(disk_sb);
366 	int ret = 0;
367 
368 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
369 		u32 crc = ~(u32)0;
370 		const int csum_size = sizeof(crc);
371 		char result[csum_size];
372 
373 		/*
374 		 * The super_block structure does not span the whole
375 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
376 		 * is filled with zeros and is included in the checkum.
377 		 */
378 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
379 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
380 		btrfs_csum_final(crc, result);
381 
382 		if (memcmp(raw_disk_sb, result, csum_size))
383 			ret = 1;
384 
385 		if (ret && btrfs_super_generation(disk_sb) < 10) {
386 			printk(KERN_WARNING
387 				"BTRFS: super block crcs don't match, older mkfs detected\n");
388 			ret = 0;
389 		}
390 	}
391 
392 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
393 		printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
394 				csum_type);
395 		ret = 1;
396 	}
397 
398 	return ret;
399 }
400 
401 /*
402  * helper to read a given tree block, doing retries as required when
403  * the checksums don't match and we have alternate mirrors to try.
404  */
405 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
406 					  struct extent_buffer *eb,
407 					  u64 start, u64 parent_transid)
408 {
409 	struct extent_io_tree *io_tree;
410 	int failed = 0;
411 	int ret;
412 	int num_copies = 0;
413 	int mirror_num = 0;
414 	int failed_mirror = 0;
415 
416 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
417 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
418 	while (1) {
419 		ret = read_extent_buffer_pages(io_tree, eb, start,
420 					       WAIT_COMPLETE,
421 					       btree_get_extent, mirror_num);
422 		if (!ret) {
423 			if (!verify_parent_transid(io_tree, eb,
424 						   parent_transid, 0))
425 				break;
426 			else
427 				ret = -EIO;
428 		}
429 
430 		/*
431 		 * This buffer's crc is fine, but its contents are corrupted, so
432 		 * there is no reason to read the other copies, they won't be
433 		 * any less wrong.
434 		 */
435 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
436 			break;
437 
438 		num_copies = btrfs_num_copies(root->fs_info,
439 					      eb->start, eb->len);
440 		if (num_copies == 1)
441 			break;
442 
443 		if (!failed_mirror) {
444 			failed = 1;
445 			failed_mirror = eb->read_mirror;
446 		}
447 
448 		mirror_num++;
449 		if (mirror_num == failed_mirror)
450 			mirror_num++;
451 
452 		if (mirror_num > num_copies)
453 			break;
454 	}
455 
456 	if (failed && !ret && failed_mirror)
457 		repair_eb_io_failure(root, eb, failed_mirror);
458 
459 	return ret;
460 }
461 
462 /*
463  * checksum a dirty tree block before IO.  This has extra checks to make sure
464  * we only fill in the checksum field in the first page of a multi-page block
465  */
466 
467 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
468 {
469 	u64 start = page_offset(page);
470 	u64 found_start;
471 	struct extent_buffer *eb;
472 
473 	eb = (struct extent_buffer *)page->private;
474 	if (page != eb->pages[0])
475 		return 0;
476 	found_start = btrfs_header_bytenr(eb);
477 	if (WARN_ON(found_start != start || !PageUptodate(page)))
478 		return 0;
479 	csum_tree_block(root, eb, 0);
480 	return 0;
481 }
482 
483 static int check_tree_block_fsid(struct btrfs_root *root,
484 				 struct extent_buffer *eb)
485 {
486 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
487 	u8 fsid[BTRFS_UUID_SIZE];
488 	int ret = 1;
489 
490 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
491 	while (fs_devices) {
492 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
493 			ret = 0;
494 			break;
495 		}
496 		fs_devices = fs_devices->seed;
497 	}
498 	return ret;
499 }
500 
501 #define CORRUPT(reason, eb, root, slot)				\
502 	btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"	\
503 		   "root=%llu, slot=%d", reason,			\
504 	       btrfs_header_bytenr(eb),	root->objectid, slot)
505 
506 static noinline int check_leaf(struct btrfs_root *root,
507 			       struct extent_buffer *leaf)
508 {
509 	struct btrfs_key key;
510 	struct btrfs_key leaf_key;
511 	u32 nritems = btrfs_header_nritems(leaf);
512 	int slot;
513 
514 	if (nritems == 0)
515 		return 0;
516 
517 	/* Check the 0 item */
518 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
519 	    BTRFS_LEAF_DATA_SIZE(root)) {
520 		CORRUPT("invalid item offset size pair", leaf, root, 0);
521 		return -EIO;
522 	}
523 
524 	/*
525 	 * Check to make sure each items keys are in the correct order and their
526 	 * offsets make sense.  We only have to loop through nritems-1 because
527 	 * we check the current slot against the next slot, which verifies the
528 	 * next slot's offset+size makes sense and that the current's slot
529 	 * offset is correct.
530 	 */
531 	for (slot = 0; slot < nritems - 1; slot++) {
532 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
533 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
534 
535 		/* Make sure the keys are in the right order */
536 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
537 			CORRUPT("bad key order", leaf, root, slot);
538 			return -EIO;
539 		}
540 
541 		/*
542 		 * Make sure the offset and ends are right, remember that the
543 		 * item data starts at the end of the leaf and grows towards the
544 		 * front.
545 		 */
546 		if (btrfs_item_offset_nr(leaf, slot) !=
547 			btrfs_item_end_nr(leaf, slot + 1)) {
548 			CORRUPT("slot offset bad", leaf, root, slot);
549 			return -EIO;
550 		}
551 
552 		/*
553 		 * Check to make sure that we don't point outside of the leaf,
554 		 * just incase all the items are consistent to eachother, but
555 		 * all point outside of the leaf.
556 		 */
557 		if (btrfs_item_end_nr(leaf, slot) >
558 		    BTRFS_LEAF_DATA_SIZE(root)) {
559 			CORRUPT("slot end outside of leaf", leaf, root, slot);
560 			return -EIO;
561 		}
562 	}
563 
564 	return 0;
565 }
566 
567 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
568 				      u64 phy_offset, struct page *page,
569 				      u64 start, u64 end, int mirror)
570 {
571 	u64 found_start;
572 	int found_level;
573 	struct extent_buffer *eb;
574 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
575 	int ret = 0;
576 	int reads_done;
577 
578 	if (!page->private)
579 		goto out;
580 
581 	eb = (struct extent_buffer *)page->private;
582 
583 	/* the pending IO might have been the only thing that kept this buffer
584 	 * in memory.  Make sure we have a ref for all this other checks
585 	 */
586 	extent_buffer_get(eb);
587 
588 	reads_done = atomic_dec_and_test(&eb->io_pages);
589 	if (!reads_done)
590 		goto err;
591 
592 	eb->read_mirror = mirror;
593 	if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
594 		ret = -EIO;
595 		goto err;
596 	}
597 
598 	found_start = btrfs_header_bytenr(eb);
599 	if (found_start != eb->start) {
600 		printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
601 			       "%llu %llu\n",
602 			       found_start, eb->start);
603 		ret = -EIO;
604 		goto err;
605 	}
606 	if (check_tree_block_fsid(root, eb)) {
607 		printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
608 			       eb->start);
609 		ret = -EIO;
610 		goto err;
611 	}
612 	found_level = btrfs_header_level(eb);
613 	if (found_level >= BTRFS_MAX_LEVEL) {
614 		btrfs_info(root->fs_info, "bad tree block level %d",
615 			   (int)btrfs_header_level(eb));
616 		ret = -EIO;
617 		goto err;
618 	}
619 
620 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621 				       eb, found_level);
622 
623 	ret = csum_tree_block(root, eb, 1);
624 	if (ret) {
625 		ret = -EIO;
626 		goto err;
627 	}
628 
629 	/*
630 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
631 	 * that we don't try and read the other copies of this block, just
632 	 * return -EIO.
633 	 */
634 	if (found_level == 0 && check_leaf(root, eb)) {
635 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636 		ret = -EIO;
637 	}
638 
639 	if (!ret)
640 		set_extent_buffer_uptodate(eb);
641 err:
642 	if (reads_done &&
643 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
644 		btree_readahead_hook(root, eb, eb->start, ret);
645 
646 	if (ret) {
647 		/*
648 		 * our io error hook is going to dec the io pages
649 		 * again, we have to make sure it has something
650 		 * to decrement
651 		 */
652 		atomic_inc(&eb->io_pages);
653 		clear_extent_buffer_uptodate(eb);
654 	}
655 	free_extent_buffer(eb);
656 out:
657 	return ret;
658 }
659 
660 static int btree_io_failed_hook(struct page *page, int failed_mirror)
661 {
662 	struct extent_buffer *eb;
663 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
664 
665 	eb = (struct extent_buffer *)page->private;
666 	set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
667 	eb->read_mirror = failed_mirror;
668 	atomic_dec(&eb->io_pages);
669 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
670 		btree_readahead_hook(root, eb, eb->start, -EIO);
671 	return -EIO;	/* we fixed nothing */
672 }
673 
674 static void end_workqueue_bio(struct bio *bio, int err)
675 {
676 	struct end_io_wq *end_io_wq = bio->bi_private;
677 	struct btrfs_fs_info *fs_info;
678 
679 	fs_info = end_io_wq->info;
680 	end_io_wq->error = err;
681 	end_io_wq->work.func = end_workqueue_fn;
682 	end_io_wq->work.flags = 0;
683 
684 	if (bio->bi_rw & REQ_WRITE) {
685 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
686 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
687 					   &end_io_wq->work);
688 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
689 			btrfs_queue_worker(&fs_info->endio_freespace_worker,
690 					   &end_io_wq->work);
691 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
692 			btrfs_queue_worker(&fs_info->endio_raid56_workers,
693 					   &end_io_wq->work);
694 		else
695 			btrfs_queue_worker(&fs_info->endio_write_workers,
696 					   &end_io_wq->work);
697 	} else {
698 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
699 			btrfs_queue_worker(&fs_info->endio_raid56_workers,
700 					   &end_io_wq->work);
701 		else if (end_io_wq->metadata)
702 			btrfs_queue_worker(&fs_info->endio_meta_workers,
703 					   &end_io_wq->work);
704 		else
705 			btrfs_queue_worker(&fs_info->endio_workers,
706 					   &end_io_wq->work);
707 	}
708 }
709 
710 /*
711  * For the metadata arg you want
712  *
713  * 0 - if data
714  * 1 - if normal metadta
715  * 2 - if writing to the free space cache area
716  * 3 - raid parity work
717  */
718 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
719 			int metadata)
720 {
721 	struct end_io_wq *end_io_wq;
722 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
723 	if (!end_io_wq)
724 		return -ENOMEM;
725 
726 	end_io_wq->private = bio->bi_private;
727 	end_io_wq->end_io = bio->bi_end_io;
728 	end_io_wq->info = info;
729 	end_io_wq->error = 0;
730 	end_io_wq->bio = bio;
731 	end_io_wq->metadata = metadata;
732 
733 	bio->bi_private = end_io_wq;
734 	bio->bi_end_io = end_workqueue_bio;
735 	return 0;
736 }
737 
738 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
739 {
740 	unsigned long limit = min_t(unsigned long,
741 				    info->workers.max_workers,
742 				    info->fs_devices->open_devices);
743 	return 256 * limit;
744 }
745 
746 static void run_one_async_start(struct btrfs_work *work)
747 {
748 	struct async_submit_bio *async;
749 	int ret;
750 
751 	async = container_of(work, struct  async_submit_bio, work);
752 	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
753 				      async->mirror_num, async->bio_flags,
754 				      async->bio_offset);
755 	if (ret)
756 		async->error = ret;
757 }
758 
759 static void run_one_async_done(struct btrfs_work *work)
760 {
761 	struct btrfs_fs_info *fs_info;
762 	struct async_submit_bio *async;
763 	int limit;
764 
765 	async = container_of(work, struct  async_submit_bio, work);
766 	fs_info = BTRFS_I(async->inode)->root->fs_info;
767 
768 	limit = btrfs_async_submit_limit(fs_info);
769 	limit = limit * 2 / 3;
770 
771 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
772 	    waitqueue_active(&fs_info->async_submit_wait))
773 		wake_up(&fs_info->async_submit_wait);
774 
775 	/* If an error occured we just want to clean up the bio and move on */
776 	if (async->error) {
777 		bio_endio(async->bio, async->error);
778 		return;
779 	}
780 
781 	async->submit_bio_done(async->inode, async->rw, async->bio,
782 			       async->mirror_num, async->bio_flags,
783 			       async->bio_offset);
784 }
785 
786 static void run_one_async_free(struct btrfs_work *work)
787 {
788 	struct async_submit_bio *async;
789 
790 	async = container_of(work, struct  async_submit_bio, work);
791 	kfree(async);
792 }
793 
794 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
795 			int rw, struct bio *bio, int mirror_num,
796 			unsigned long bio_flags,
797 			u64 bio_offset,
798 			extent_submit_bio_hook_t *submit_bio_start,
799 			extent_submit_bio_hook_t *submit_bio_done)
800 {
801 	struct async_submit_bio *async;
802 
803 	async = kmalloc(sizeof(*async), GFP_NOFS);
804 	if (!async)
805 		return -ENOMEM;
806 
807 	async->inode = inode;
808 	async->rw = rw;
809 	async->bio = bio;
810 	async->mirror_num = mirror_num;
811 	async->submit_bio_start = submit_bio_start;
812 	async->submit_bio_done = submit_bio_done;
813 
814 	async->work.func = run_one_async_start;
815 	async->work.ordered_func = run_one_async_done;
816 	async->work.ordered_free = run_one_async_free;
817 
818 	async->work.flags = 0;
819 	async->bio_flags = bio_flags;
820 	async->bio_offset = bio_offset;
821 
822 	async->error = 0;
823 
824 	atomic_inc(&fs_info->nr_async_submits);
825 
826 	if (rw & REQ_SYNC)
827 		btrfs_set_work_high_prio(&async->work);
828 
829 	btrfs_queue_worker(&fs_info->workers, &async->work);
830 
831 	while (atomic_read(&fs_info->async_submit_draining) &&
832 	      atomic_read(&fs_info->nr_async_submits)) {
833 		wait_event(fs_info->async_submit_wait,
834 			   (atomic_read(&fs_info->nr_async_submits) == 0));
835 	}
836 
837 	return 0;
838 }
839 
840 static int btree_csum_one_bio(struct bio *bio)
841 {
842 	struct bio_vec *bvec;
843 	struct btrfs_root *root;
844 	int i, ret = 0;
845 
846 	bio_for_each_segment_all(bvec, bio, i) {
847 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
848 		ret = csum_dirty_buffer(root, bvec->bv_page);
849 		if (ret)
850 			break;
851 	}
852 
853 	return ret;
854 }
855 
856 static int __btree_submit_bio_start(struct inode *inode, int rw,
857 				    struct bio *bio, int mirror_num,
858 				    unsigned long bio_flags,
859 				    u64 bio_offset)
860 {
861 	/*
862 	 * when we're called for a write, we're already in the async
863 	 * submission context.  Just jump into btrfs_map_bio
864 	 */
865 	return btree_csum_one_bio(bio);
866 }
867 
868 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
869 				 int mirror_num, unsigned long bio_flags,
870 				 u64 bio_offset)
871 {
872 	int ret;
873 
874 	/*
875 	 * when we're called for a write, we're already in the async
876 	 * submission context.  Just jump into btrfs_map_bio
877 	 */
878 	ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
879 	if (ret)
880 		bio_endio(bio, ret);
881 	return ret;
882 }
883 
884 static int check_async_write(struct inode *inode, unsigned long bio_flags)
885 {
886 	if (bio_flags & EXTENT_BIO_TREE_LOG)
887 		return 0;
888 #ifdef CONFIG_X86
889 	if (cpu_has_xmm4_2)
890 		return 0;
891 #endif
892 	return 1;
893 }
894 
895 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
896 				 int mirror_num, unsigned long bio_flags,
897 				 u64 bio_offset)
898 {
899 	int async = check_async_write(inode, bio_flags);
900 	int ret;
901 
902 	if (!(rw & REQ_WRITE)) {
903 		/*
904 		 * called for a read, do the setup so that checksum validation
905 		 * can happen in the async kernel threads
906 		 */
907 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
908 					  bio, 1);
909 		if (ret)
910 			goto out_w_error;
911 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
912 				    mirror_num, 0);
913 	} else if (!async) {
914 		ret = btree_csum_one_bio(bio);
915 		if (ret)
916 			goto out_w_error;
917 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
918 				    mirror_num, 0);
919 	} else {
920 		/*
921 		 * kthread helpers are used to submit writes so that
922 		 * checksumming can happen in parallel across all CPUs
923 		 */
924 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
925 					  inode, rw, bio, mirror_num, 0,
926 					  bio_offset,
927 					  __btree_submit_bio_start,
928 					  __btree_submit_bio_done);
929 	}
930 
931 	if (ret) {
932 out_w_error:
933 		bio_endio(bio, ret);
934 	}
935 	return ret;
936 }
937 
938 #ifdef CONFIG_MIGRATION
939 static int btree_migratepage(struct address_space *mapping,
940 			struct page *newpage, struct page *page,
941 			enum migrate_mode mode)
942 {
943 	/*
944 	 * we can't safely write a btree page from here,
945 	 * we haven't done the locking hook
946 	 */
947 	if (PageDirty(page))
948 		return -EAGAIN;
949 	/*
950 	 * Buffers may be managed in a filesystem specific way.
951 	 * We must have no buffers or drop them.
952 	 */
953 	if (page_has_private(page) &&
954 	    !try_to_release_page(page, GFP_KERNEL))
955 		return -EAGAIN;
956 	return migrate_page(mapping, newpage, page, mode);
957 }
958 #endif
959 
960 
961 static int btree_writepages(struct address_space *mapping,
962 			    struct writeback_control *wbc)
963 {
964 	struct btrfs_fs_info *fs_info;
965 	int ret;
966 
967 	if (wbc->sync_mode == WB_SYNC_NONE) {
968 
969 		if (wbc->for_kupdate)
970 			return 0;
971 
972 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
973 		/* this is a bit racy, but that's ok */
974 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
975 					     BTRFS_DIRTY_METADATA_THRESH);
976 		if (ret < 0)
977 			return 0;
978 	}
979 	return btree_write_cache_pages(mapping, wbc);
980 }
981 
982 static int btree_readpage(struct file *file, struct page *page)
983 {
984 	struct extent_io_tree *tree;
985 	tree = &BTRFS_I(page->mapping->host)->io_tree;
986 	return extent_read_full_page(tree, page, btree_get_extent, 0);
987 }
988 
989 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
990 {
991 	if (PageWriteback(page) || PageDirty(page))
992 		return 0;
993 
994 	return try_release_extent_buffer(page);
995 }
996 
997 static void btree_invalidatepage(struct page *page, unsigned int offset,
998 				 unsigned int length)
999 {
1000 	struct extent_io_tree *tree;
1001 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1002 	extent_invalidatepage(tree, page, offset);
1003 	btree_releasepage(page, GFP_NOFS);
1004 	if (PagePrivate(page)) {
1005 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1006 			   "page private not zero on page %llu",
1007 			   (unsigned long long)page_offset(page));
1008 		ClearPagePrivate(page);
1009 		set_page_private(page, 0);
1010 		page_cache_release(page);
1011 	}
1012 }
1013 
1014 static int btree_set_page_dirty(struct page *page)
1015 {
1016 #ifdef DEBUG
1017 	struct extent_buffer *eb;
1018 
1019 	BUG_ON(!PagePrivate(page));
1020 	eb = (struct extent_buffer *)page->private;
1021 	BUG_ON(!eb);
1022 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1023 	BUG_ON(!atomic_read(&eb->refs));
1024 	btrfs_assert_tree_locked(eb);
1025 #endif
1026 	return __set_page_dirty_nobuffers(page);
1027 }
1028 
1029 static const struct address_space_operations btree_aops = {
1030 	.readpage	= btree_readpage,
1031 	.writepages	= btree_writepages,
1032 	.releasepage	= btree_releasepage,
1033 	.invalidatepage = btree_invalidatepage,
1034 #ifdef CONFIG_MIGRATION
1035 	.migratepage	= btree_migratepage,
1036 #endif
1037 	.set_page_dirty = btree_set_page_dirty,
1038 };
1039 
1040 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1041 			 u64 parent_transid)
1042 {
1043 	struct extent_buffer *buf = NULL;
1044 	struct inode *btree_inode = root->fs_info->btree_inode;
1045 	int ret = 0;
1046 
1047 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1048 	if (!buf)
1049 		return 0;
1050 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1051 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1052 	free_extent_buffer(buf);
1053 	return ret;
1054 }
1055 
1056 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1057 			 int mirror_num, struct extent_buffer **eb)
1058 {
1059 	struct extent_buffer *buf = NULL;
1060 	struct inode *btree_inode = root->fs_info->btree_inode;
1061 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1062 	int ret;
1063 
1064 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1065 	if (!buf)
1066 		return 0;
1067 
1068 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1069 
1070 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1071 				       btree_get_extent, mirror_num);
1072 	if (ret) {
1073 		free_extent_buffer(buf);
1074 		return ret;
1075 	}
1076 
1077 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1078 		free_extent_buffer(buf);
1079 		return -EIO;
1080 	} else if (extent_buffer_uptodate(buf)) {
1081 		*eb = buf;
1082 	} else {
1083 		free_extent_buffer(buf);
1084 	}
1085 	return 0;
1086 }
1087 
1088 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1089 					    u64 bytenr, u32 blocksize)
1090 {
1091 	return find_extent_buffer(root->fs_info, bytenr);
1092 }
1093 
1094 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1095 						 u64 bytenr, u32 blocksize)
1096 {
1097 	return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1098 }
1099 
1100 
1101 int btrfs_write_tree_block(struct extent_buffer *buf)
1102 {
1103 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1104 					buf->start + buf->len - 1);
1105 }
1106 
1107 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1108 {
1109 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1110 				       buf->start, buf->start + buf->len - 1);
1111 }
1112 
1113 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1114 				      u32 blocksize, u64 parent_transid)
1115 {
1116 	struct extent_buffer *buf = NULL;
1117 	int ret;
1118 
1119 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1120 	if (!buf)
1121 		return NULL;
1122 
1123 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1124 	if (ret) {
1125 		free_extent_buffer(buf);
1126 		return NULL;
1127 	}
1128 	return buf;
1129 
1130 }
1131 
1132 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1133 		      struct extent_buffer *buf)
1134 {
1135 	struct btrfs_fs_info *fs_info = root->fs_info;
1136 
1137 	if (btrfs_header_generation(buf) ==
1138 	    fs_info->running_transaction->transid) {
1139 		btrfs_assert_tree_locked(buf);
1140 
1141 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1142 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1143 					     -buf->len,
1144 					     fs_info->dirty_metadata_batch);
1145 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1146 			btrfs_set_lock_blocking(buf);
1147 			clear_extent_buffer_dirty(buf);
1148 		}
1149 	}
1150 }
1151 
1152 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1153 			 u32 stripesize, struct btrfs_root *root,
1154 			 struct btrfs_fs_info *fs_info,
1155 			 u64 objectid)
1156 {
1157 	root->node = NULL;
1158 	root->commit_root = NULL;
1159 	root->sectorsize = sectorsize;
1160 	root->nodesize = nodesize;
1161 	root->leafsize = leafsize;
1162 	root->stripesize = stripesize;
1163 	root->ref_cows = 0;
1164 	root->track_dirty = 0;
1165 	root->in_radix = 0;
1166 	root->orphan_item_inserted = 0;
1167 	root->orphan_cleanup_state = 0;
1168 
1169 	root->objectid = objectid;
1170 	root->last_trans = 0;
1171 	root->highest_objectid = 0;
1172 	root->nr_delalloc_inodes = 0;
1173 	root->nr_ordered_extents = 0;
1174 	root->name = NULL;
1175 	root->inode_tree = RB_ROOT;
1176 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1177 	root->block_rsv = NULL;
1178 	root->orphan_block_rsv = NULL;
1179 
1180 	INIT_LIST_HEAD(&root->dirty_list);
1181 	INIT_LIST_HEAD(&root->root_list);
1182 	INIT_LIST_HEAD(&root->delalloc_inodes);
1183 	INIT_LIST_HEAD(&root->delalloc_root);
1184 	INIT_LIST_HEAD(&root->ordered_extents);
1185 	INIT_LIST_HEAD(&root->ordered_root);
1186 	INIT_LIST_HEAD(&root->logged_list[0]);
1187 	INIT_LIST_HEAD(&root->logged_list[1]);
1188 	spin_lock_init(&root->orphan_lock);
1189 	spin_lock_init(&root->inode_lock);
1190 	spin_lock_init(&root->delalloc_lock);
1191 	spin_lock_init(&root->ordered_extent_lock);
1192 	spin_lock_init(&root->accounting_lock);
1193 	spin_lock_init(&root->log_extents_lock[0]);
1194 	spin_lock_init(&root->log_extents_lock[1]);
1195 	mutex_init(&root->objectid_mutex);
1196 	mutex_init(&root->log_mutex);
1197 	init_waitqueue_head(&root->log_writer_wait);
1198 	init_waitqueue_head(&root->log_commit_wait[0]);
1199 	init_waitqueue_head(&root->log_commit_wait[1]);
1200 	atomic_set(&root->log_commit[0], 0);
1201 	atomic_set(&root->log_commit[1], 0);
1202 	atomic_set(&root->log_writers, 0);
1203 	atomic_set(&root->log_batch, 0);
1204 	atomic_set(&root->orphan_inodes, 0);
1205 	atomic_set(&root->refs, 1);
1206 	root->log_transid = 0;
1207 	root->last_log_commit = 0;
1208 	if (fs_info)
1209 		extent_io_tree_init(&root->dirty_log_pages,
1210 				     fs_info->btree_inode->i_mapping);
1211 
1212 	memset(&root->root_key, 0, sizeof(root->root_key));
1213 	memset(&root->root_item, 0, sizeof(root->root_item));
1214 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1215 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1216 	if (fs_info)
1217 		root->defrag_trans_start = fs_info->generation;
1218 	else
1219 		root->defrag_trans_start = 0;
1220 	init_completion(&root->kobj_unregister);
1221 	root->defrag_running = 0;
1222 	root->root_key.objectid = objectid;
1223 	root->anon_dev = 0;
1224 
1225 	spin_lock_init(&root->root_item_lock);
1226 }
1227 
1228 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1229 {
1230 	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1231 	if (root)
1232 		root->fs_info = fs_info;
1233 	return root;
1234 }
1235 
1236 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1237 /* Should only be used by the testing infrastructure */
1238 struct btrfs_root *btrfs_alloc_dummy_root(void)
1239 {
1240 	struct btrfs_root *root;
1241 
1242 	root = btrfs_alloc_root(NULL);
1243 	if (!root)
1244 		return ERR_PTR(-ENOMEM);
1245 	__setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1246 	root->dummy_root = 1;
1247 
1248 	return root;
1249 }
1250 #endif
1251 
1252 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1253 				     struct btrfs_fs_info *fs_info,
1254 				     u64 objectid)
1255 {
1256 	struct extent_buffer *leaf;
1257 	struct btrfs_root *tree_root = fs_info->tree_root;
1258 	struct btrfs_root *root;
1259 	struct btrfs_key key;
1260 	int ret = 0;
1261 	uuid_le uuid;
1262 
1263 	root = btrfs_alloc_root(fs_info);
1264 	if (!root)
1265 		return ERR_PTR(-ENOMEM);
1266 
1267 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1268 		     tree_root->sectorsize, tree_root->stripesize,
1269 		     root, fs_info, objectid);
1270 	root->root_key.objectid = objectid;
1271 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1272 	root->root_key.offset = 0;
1273 
1274 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1275 				      0, objectid, NULL, 0, 0, 0);
1276 	if (IS_ERR(leaf)) {
1277 		ret = PTR_ERR(leaf);
1278 		leaf = NULL;
1279 		goto fail;
1280 	}
1281 
1282 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1283 	btrfs_set_header_bytenr(leaf, leaf->start);
1284 	btrfs_set_header_generation(leaf, trans->transid);
1285 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1286 	btrfs_set_header_owner(leaf, objectid);
1287 	root->node = leaf;
1288 
1289 	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1290 			    BTRFS_FSID_SIZE);
1291 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1292 			    btrfs_header_chunk_tree_uuid(leaf),
1293 			    BTRFS_UUID_SIZE);
1294 	btrfs_mark_buffer_dirty(leaf);
1295 
1296 	root->commit_root = btrfs_root_node(root);
1297 	root->track_dirty = 1;
1298 
1299 
1300 	root->root_item.flags = 0;
1301 	root->root_item.byte_limit = 0;
1302 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1303 	btrfs_set_root_generation(&root->root_item, trans->transid);
1304 	btrfs_set_root_level(&root->root_item, 0);
1305 	btrfs_set_root_refs(&root->root_item, 1);
1306 	btrfs_set_root_used(&root->root_item, leaf->len);
1307 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1308 	btrfs_set_root_dirid(&root->root_item, 0);
1309 	uuid_le_gen(&uuid);
1310 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1311 	root->root_item.drop_level = 0;
1312 
1313 	key.objectid = objectid;
1314 	key.type = BTRFS_ROOT_ITEM_KEY;
1315 	key.offset = 0;
1316 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1317 	if (ret)
1318 		goto fail;
1319 
1320 	btrfs_tree_unlock(leaf);
1321 
1322 	return root;
1323 
1324 fail:
1325 	if (leaf) {
1326 		btrfs_tree_unlock(leaf);
1327 		free_extent_buffer(leaf);
1328 	}
1329 	kfree(root);
1330 
1331 	return ERR_PTR(ret);
1332 }
1333 
1334 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1335 					 struct btrfs_fs_info *fs_info)
1336 {
1337 	struct btrfs_root *root;
1338 	struct btrfs_root *tree_root = fs_info->tree_root;
1339 	struct extent_buffer *leaf;
1340 
1341 	root = btrfs_alloc_root(fs_info);
1342 	if (!root)
1343 		return ERR_PTR(-ENOMEM);
1344 
1345 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1346 		     tree_root->sectorsize, tree_root->stripesize,
1347 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1348 
1349 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1350 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1351 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1352 	/*
1353 	 * log trees do not get reference counted because they go away
1354 	 * before a real commit is actually done.  They do store pointers
1355 	 * to file data extents, and those reference counts still get
1356 	 * updated (along with back refs to the log tree).
1357 	 */
1358 	root->ref_cows = 0;
1359 
1360 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1361 				      BTRFS_TREE_LOG_OBJECTID, NULL,
1362 				      0, 0, 0);
1363 	if (IS_ERR(leaf)) {
1364 		kfree(root);
1365 		return ERR_CAST(leaf);
1366 	}
1367 
1368 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1369 	btrfs_set_header_bytenr(leaf, leaf->start);
1370 	btrfs_set_header_generation(leaf, trans->transid);
1371 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1372 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1373 	root->node = leaf;
1374 
1375 	write_extent_buffer(root->node, root->fs_info->fsid,
1376 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
1377 	btrfs_mark_buffer_dirty(root->node);
1378 	btrfs_tree_unlock(root->node);
1379 	return root;
1380 }
1381 
1382 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1383 			     struct btrfs_fs_info *fs_info)
1384 {
1385 	struct btrfs_root *log_root;
1386 
1387 	log_root = alloc_log_tree(trans, fs_info);
1388 	if (IS_ERR(log_root))
1389 		return PTR_ERR(log_root);
1390 	WARN_ON(fs_info->log_root_tree);
1391 	fs_info->log_root_tree = log_root;
1392 	return 0;
1393 }
1394 
1395 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1396 		       struct btrfs_root *root)
1397 {
1398 	struct btrfs_root *log_root;
1399 	struct btrfs_inode_item *inode_item;
1400 
1401 	log_root = alloc_log_tree(trans, root->fs_info);
1402 	if (IS_ERR(log_root))
1403 		return PTR_ERR(log_root);
1404 
1405 	log_root->last_trans = trans->transid;
1406 	log_root->root_key.offset = root->root_key.objectid;
1407 
1408 	inode_item = &log_root->root_item.inode;
1409 	btrfs_set_stack_inode_generation(inode_item, 1);
1410 	btrfs_set_stack_inode_size(inode_item, 3);
1411 	btrfs_set_stack_inode_nlink(inode_item, 1);
1412 	btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1413 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1414 
1415 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1416 
1417 	WARN_ON(root->log_root);
1418 	root->log_root = log_root;
1419 	root->log_transid = 0;
1420 	root->last_log_commit = 0;
1421 	return 0;
1422 }
1423 
1424 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1425 					       struct btrfs_key *key)
1426 {
1427 	struct btrfs_root *root;
1428 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1429 	struct btrfs_path *path;
1430 	u64 generation;
1431 	u32 blocksize;
1432 	int ret;
1433 
1434 	path = btrfs_alloc_path();
1435 	if (!path)
1436 		return ERR_PTR(-ENOMEM);
1437 
1438 	root = btrfs_alloc_root(fs_info);
1439 	if (!root) {
1440 		ret = -ENOMEM;
1441 		goto alloc_fail;
1442 	}
1443 
1444 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1445 		     tree_root->sectorsize, tree_root->stripesize,
1446 		     root, fs_info, key->objectid);
1447 
1448 	ret = btrfs_find_root(tree_root, key, path,
1449 			      &root->root_item, &root->root_key);
1450 	if (ret) {
1451 		if (ret > 0)
1452 			ret = -ENOENT;
1453 		goto find_fail;
1454 	}
1455 
1456 	generation = btrfs_root_generation(&root->root_item);
1457 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1458 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1459 				     blocksize, generation);
1460 	if (!root->node) {
1461 		ret = -ENOMEM;
1462 		goto find_fail;
1463 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1464 		ret = -EIO;
1465 		goto read_fail;
1466 	}
1467 	root->commit_root = btrfs_root_node(root);
1468 out:
1469 	btrfs_free_path(path);
1470 	return root;
1471 
1472 read_fail:
1473 	free_extent_buffer(root->node);
1474 find_fail:
1475 	kfree(root);
1476 alloc_fail:
1477 	root = ERR_PTR(ret);
1478 	goto out;
1479 }
1480 
1481 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1482 				      struct btrfs_key *location)
1483 {
1484 	struct btrfs_root *root;
1485 
1486 	root = btrfs_read_tree_root(tree_root, location);
1487 	if (IS_ERR(root))
1488 		return root;
1489 
1490 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1491 		root->ref_cows = 1;
1492 		btrfs_check_and_init_root_item(&root->root_item);
1493 	}
1494 
1495 	return root;
1496 }
1497 
1498 int btrfs_init_fs_root(struct btrfs_root *root)
1499 {
1500 	int ret;
1501 
1502 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1503 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1504 					GFP_NOFS);
1505 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1506 		ret = -ENOMEM;
1507 		goto fail;
1508 	}
1509 
1510 	btrfs_init_free_ino_ctl(root);
1511 	mutex_init(&root->fs_commit_mutex);
1512 	spin_lock_init(&root->cache_lock);
1513 	init_waitqueue_head(&root->cache_wait);
1514 
1515 	ret = get_anon_bdev(&root->anon_dev);
1516 	if (ret)
1517 		goto fail;
1518 	return 0;
1519 fail:
1520 	kfree(root->free_ino_ctl);
1521 	kfree(root->free_ino_pinned);
1522 	return ret;
1523 }
1524 
1525 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1526 					       u64 root_id)
1527 {
1528 	struct btrfs_root *root;
1529 
1530 	spin_lock(&fs_info->fs_roots_radix_lock);
1531 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1532 				 (unsigned long)root_id);
1533 	spin_unlock(&fs_info->fs_roots_radix_lock);
1534 	return root;
1535 }
1536 
1537 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1538 			 struct btrfs_root *root)
1539 {
1540 	int ret;
1541 
1542 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1543 	if (ret)
1544 		return ret;
1545 
1546 	spin_lock(&fs_info->fs_roots_radix_lock);
1547 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1548 				(unsigned long)root->root_key.objectid,
1549 				root);
1550 	if (ret == 0)
1551 		root->in_radix = 1;
1552 	spin_unlock(&fs_info->fs_roots_radix_lock);
1553 	radix_tree_preload_end();
1554 
1555 	return ret;
1556 }
1557 
1558 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1559 				     struct btrfs_key *location,
1560 				     bool check_ref)
1561 {
1562 	struct btrfs_root *root;
1563 	int ret;
1564 
1565 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1566 		return fs_info->tree_root;
1567 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1568 		return fs_info->extent_root;
1569 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1570 		return fs_info->chunk_root;
1571 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1572 		return fs_info->dev_root;
1573 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1574 		return fs_info->csum_root;
1575 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1576 		return fs_info->quota_root ? fs_info->quota_root :
1577 					     ERR_PTR(-ENOENT);
1578 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1579 		return fs_info->uuid_root ? fs_info->uuid_root :
1580 					    ERR_PTR(-ENOENT);
1581 again:
1582 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1583 	if (root) {
1584 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1585 			return ERR_PTR(-ENOENT);
1586 		return root;
1587 	}
1588 
1589 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1590 	if (IS_ERR(root))
1591 		return root;
1592 
1593 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1594 		ret = -ENOENT;
1595 		goto fail;
1596 	}
1597 
1598 	ret = btrfs_init_fs_root(root);
1599 	if (ret)
1600 		goto fail;
1601 
1602 	ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1603 			location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1604 	if (ret < 0)
1605 		goto fail;
1606 	if (ret == 0)
1607 		root->orphan_item_inserted = 1;
1608 
1609 	ret = btrfs_insert_fs_root(fs_info, root);
1610 	if (ret) {
1611 		if (ret == -EEXIST) {
1612 			free_fs_root(root);
1613 			goto again;
1614 		}
1615 		goto fail;
1616 	}
1617 	return root;
1618 fail:
1619 	free_fs_root(root);
1620 	return ERR_PTR(ret);
1621 }
1622 
1623 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1624 {
1625 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1626 	int ret = 0;
1627 	struct btrfs_device *device;
1628 	struct backing_dev_info *bdi;
1629 
1630 	rcu_read_lock();
1631 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1632 		if (!device->bdev)
1633 			continue;
1634 		bdi = blk_get_backing_dev_info(device->bdev);
1635 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1636 			ret = 1;
1637 			break;
1638 		}
1639 	}
1640 	rcu_read_unlock();
1641 	return ret;
1642 }
1643 
1644 /*
1645  * If this fails, caller must call bdi_destroy() to get rid of the
1646  * bdi again.
1647  */
1648 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1649 {
1650 	int err;
1651 
1652 	bdi->capabilities = BDI_CAP_MAP_COPY;
1653 	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1654 	if (err)
1655 		return err;
1656 
1657 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1658 	bdi->congested_fn	= btrfs_congested_fn;
1659 	bdi->congested_data	= info;
1660 	return 0;
1661 }
1662 
1663 /*
1664  * called by the kthread helper functions to finally call the bio end_io
1665  * functions.  This is where read checksum verification actually happens
1666  */
1667 static void end_workqueue_fn(struct btrfs_work *work)
1668 {
1669 	struct bio *bio;
1670 	struct end_io_wq *end_io_wq;
1671 	int error;
1672 
1673 	end_io_wq = container_of(work, struct end_io_wq, work);
1674 	bio = end_io_wq->bio;
1675 
1676 	error = end_io_wq->error;
1677 	bio->bi_private = end_io_wq->private;
1678 	bio->bi_end_io = end_io_wq->end_io;
1679 	kfree(end_io_wq);
1680 	bio_endio_nodec(bio, error);
1681 }
1682 
1683 static int cleaner_kthread(void *arg)
1684 {
1685 	struct btrfs_root *root = arg;
1686 	int again;
1687 
1688 	do {
1689 		again = 0;
1690 
1691 		/* Make the cleaner go to sleep early. */
1692 		if (btrfs_need_cleaner_sleep(root))
1693 			goto sleep;
1694 
1695 		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1696 			goto sleep;
1697 
1698 		/*
1699 		 * Avoid the problem that we change the status of the fs
1700 		 * during the above check and trylock.
1701 		 */
1702 		if (btrfs_need_cleaner_sleep(root)) {
1703 			mutex_unlock(&root->fs_info->cleaner_mutex);
1704 			goto sleep;
1705 		}
1706 
1707 		btrfs_run_delayed_iputs(root);
1708 		again = btrfs_clean_one_deleted_snapshot(root);
1709 		mutex_unlock(&root->fs_info->cleaner_mutex);
1710 
1711 		/*
1712 		 * The defragger has dealt with the R/O remount and umount,
1713 		 * needn't do anything special here.
1714 		 */
1715 		btrfs_run_defrag_inodes(root->fs_info);
1716 sleep:
1717 		if (!try_to_freeze() && !again) {
1718 			set_current_state(TASK_INTERRUPTIBLE);
1719 			if (!kthread_should_stop())
1720 				schedule();
1721 			__set_current_state(TASK_RUNNING);
1722 		}
1723 	} while (!kthread_should_stop());
1724 	return 0;
1725 }
1726 
1727 static int transaction_kthread(void *arg)
1728 {
1729 	struct btrfs_root *root = arg;
1730 	struct btrfs_trans_handle *trans;
1731 	struct btrfs_transaction *cur;
1732 	u64 transid;
1733 	unsigned long now;
1734 	unsigned long delay;
1735 	bool cannot_commit;
1736 
1737 	do {
1738 		cannot_commit = false;
1739 		delay = HZ * root->fs_info->commit_interval;
1740 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1741 
1742 		spin_lock(&root->fs_info->trans_lock);
1743 		cur = root->fs_info->running_transaction;
1744 		if (!cur) {
1745 			spin_unlock(&root->fs_info->trans_lock);
1746 			goto sleep;
1747 		}
1748 
1749 		now = get_seconds();
1750 		if (cur->state < TRANS_STATE_BLOCKED &&
1751 		    (now < cur->start_time ||
1752 		     now - cur->start_time < root->fs_info->commit_interval)) {
1753 			spin_unlock(&root->fs_info->trans_lock);
1754 			delay = HZ * 5;
1755 			goto sleep;
1756 		}
1757 		transid = cur->transid;
1758 		spin_unlock(&root->fs_info->trans_lock);
1759 
1760 		/* If the file system is aborted, this will always fail. */
1761 		trans = btrfs_attach_transaction(root);
1762 		if (IS_ERR(trans)) {
1763 			if (PTR_ERR(trans) != -ENOENT)
1764 				cannot_commit = true;
1765 			goto sleep;
1766 		}
1767 		if (transid == trans->transid) {
1768 			btrfs_commit_transaction(trans, root);
1769 		} else {
1770 			btrfs_end_transaction(trans, root);
1771 		}
1772 sleep:
1773 		wake_up_process(root->fs_info->cleaner_kthread);
1774 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1775 
1776 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1777 				      &root->fs_info->fs_state)))
1778 			btrfs_cleanup_transaction(root);
1779 		if (!try_to_freeze()) {
1780 			set_current_state(TASK_INTERRUPTIBLE);
1781 			if (!kthread_should_stop() &&
1782 			    (!btrfs_transaction_blocked(root->fs_info) ||
1783 			     cannot_commit))
1784 				schedule_timeout(delay);
1785 			__set_current_state(TASK_RUNNING);
1786 		}
1787 	} while (!kthread_should_stop());
1788 	return 0;
1789 }
1790 
1791 /*
1792  * this will find the highest generation in the array of
1793  * root backups.  The index of the highest array is returned,
1794  * or -1 if we can't find anything.
1795  *
1796  * We check to make sure the array is valid by comparing the
1797  * generation of the latest  root in the array with the generation
1798  * in the super block.  If they don't match we pitch it.
1799  */
1800 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1801 {
1802 	u64 cur;
1803 	int newest_index = -1;
1804 	struct btrfs_root_backup *root_backup;
1805 	int i;
1806 
1807 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1808 		root_backup = info->super_copy->super_roots + i;
1809 		cur = btrfs_backup_tree_root_gen(root_backup);
1810 		if (cur == newest_gen)
1811 			newest_index = i;
1812 	}
1813 
1814 	/* check to see if we actually wrapped around */
1815 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1816 		root_backup = info->super_copy->super_roots;
1817 		cur = btrfs_backup_tree_root_gen(root_backup);
1818 		if (cur == newest_gen)
1819 			newest_index = 0;
1820 	}
1821 	return newest_index;
1822 }
1823 
1824 
1825 /*
1826  * find the oldest backup so we know where to store new entries
1827  * in the backup array.  This will set the backup_root_index
1828  * field in the fs_info struct
1829  */
1830 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1831 				     u64 newest_gen)
1832 {
1833 	int newest_index = -1;
1834 
1835 	newest_index = find_newest_super_backup(info, newest_gen);
1836 	/* if there was garbage in there, just move along */
1837 	if (newest_index == -1) {
1838 		info->backup_root_index = 0;
1839 	} else {
1840 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1841 	}
1842 }
1843 
1844 /*
1845  * copy all the root pointers into the super backup array.
1846  * this will bump the backup pointer by one when it is
1847  * done
1848  */
1849 static void backup_super_roots(struct btrfs_fs_info *info)
1850 {
1851 	int next_backup;
1852 	struct btrfs_root_backup *root_backup;
1853 	int last_backup;
1854 
1855 	next_backup = info->backup_root_index;
1856 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1857 		BTRFS_NUM_BACKUP_ROOTS;
1858 
1859 	/*
1860 	 * just overwrite the last backup if we're at the same generation
1861 	 * this happens only at umount
1862 	 */
1863 	root_backup = info->super_for_commit->super_roots + last_backup;
1864 	if (btrfs_backup_tree_root_gen(root_backup) ==
1865 	    btrfs_header_generation(info->tree_root->node))
1866 		next_backup = last_backup;
1867 
1868 	root_backup = info->super_for_commit->super_roots + next_backup;
1869 
1870 	/*
1871 	 * make sure all of our padding and empty slots get zero filled
1872 	 * regardless of which ones we use today
1873 	 */
1874 	memset(root_backup, 0, sizeof(*root_backup));
1875 
1876 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1877 
1878 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1879 	btrfs_set_backup_tree_root_gen(root_backup,
1880 			       btrfs_header_generation(info->tree_root->node));
1881 
1882 	btrfs_set_backup_tree_root_level(root_backup,
1883 			       btrfs_header_level(info->tree_root->node));
1884 
1885 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1886 	btrfs_set_backup_chunk_root_gen(root_backup,
1887 			       btrfs_header_generation(info->chunk_root->node));
1888 	btrfs_set_backup_chunk_root_level(root_backup,
1889 			       btrfs_header_level(info->chunk_root->node));
1890 
1891 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1892 	btrfs_set_backup_extent_root_gen(root_backup,
1893 			       btrfs_header_generation(info->extent_root->node));
1894 	btrfs_set_backup_extent_root_level(root_backup,
1895 			       btrfs_header_level(info->extent_root->node));
1896 
1897 	/*
1898 	 * we might commit during log recovery, which happens before we set
1899 	 * the fs_root.  Make sure it is valid before we fill it in.
1900 	 */
1901 	if (info->fs_root && info->fs_root->node) {
1902 		btrfs_set_backup_fs_root(root_backup,
1903 					 info->fs_root->node->start);
1904 		btrfs_set_backup_fs_root_gen(root_backup,
1905 			       btrfs_header_generation(info->fs_root->node));
1906 		btrfs_set_backup_fs_root_level(root_backup,
1907 			       btrfs_header_level(info->fs_root->node));
1908 	}
1909 
1910 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1911 	btrfs_set_backup_dev_root_gen(root_backup,
1912 			       btrfs_header_generation(info->dev_root->node));
1913 	btrfs_set_backup_dev_root_level(root_backup,
1914 				       btrfs_header_level(info->dev_root->node));
1915 
1916 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1917 	btrfs_set_backup_csum_root_gen(root_backup,
1918 			       btrfs_header_generation(info->csum_root->node));
1919 	btrfs_set_backup_csum_root_level(root_backup,
1920 			       btrfs_header_level(info->csum_root->node));
1921 
1922 	btrfs_set_backup_total_bytes(root_backup,
1923 			     btrfs_super_total_bytes(info->super_copy));
1924 	btrfs_set_backup_bytes_used(root_backup,
1925 			     btrfs_super_bytes_used(info->super_copy));
1926 	btrfs_set_backup_num_devices(root_backup,
1927 			     btrfs_super_num_devices(info->super_copy));
1928 
1929 	/*
1930 	 * if we don't copy this out to the super_copy, it won't get remembered
1931 	 * for the next commit
1932 	 */
1933 	memcpy(&info->super_copy->super_roots,
1934 	       &info->super_for_commit->super_roots,
1935 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1936 }
1937 
1938 /*
1939  * this copies info out of the root backup array and back into
1940  * the in-memory super block.  It is meant to help iterate through
1941  * the array, so you send it the number of backups you've already
1942  * tried and the last backup index you used.
1943  *
1944  * this returns -1 when it has tried all the backups
1945  */
1946 static noinline int next_root_backup(struct btrfs_fs_info *info,
1947 				     struct btrfs_super_block *super,
1948 				     int *num_backups_tried, int *backup_index)
1949 {
1950 	struct btrfs_root_backup *root_backup;
1951 	int newest = *backup_index;
1952 
1953 	if (*num_backups_tried == 0) {
1954 		u64 gen = btrfs_super_generation(super);
1955 
1956 		newest = find_newest_super_backup(info, gen);
1957 		if (newest == -1)
1958 			return -1;
1959 
1960 		*backup_index = newest;
1961 		*num_backups_tried = 1;
1962 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1963 		/* we've tried all the backups, all done */
1964 		return -1;
1965 	} else {
1966 		/* jump to the next oldest backup */
1967 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1968 			BTRFS_NUM_BACKUP_ROOTS;
1969 		*backup_index = newest;
1970 		*num_backups_tried += 1;
1971 	}
1972 	root_backup = super->super_roots + newest;
1973 
1974 	btrfs_set_super_generation(super,
1975 				   btrfs_backup_tree_root_gen(root_backup));
1976 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1977 	btrfs_set_super_root_level(super,
1978 				   btrfs_backup_tree_root_level(root_backup));
1979 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1980 
1981 	/*
1982 	 * fixme: the total bytes and num_devices need to match or we should
1983 	 * need a fsck
1984 	 */
1985 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1986 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1987 	return 0;
1988 }
1989 
1990 /* helper to cleanup workers */
1991 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1992 {
1993 	btrfs_stop_workers(&fs_info->generic_worker);
1994 	btrfs_stop_workers(&fs_info->fixup_workers);
1995 	btrfs_stop_workers(&fs_info->delalloc_workers);
1996 	btrfs_stop_workers(&fs_info->workers);
1997 	btrfs_stop_workers(&fs_info->endio_workers);
1998 	btrfs_stop_workers(&fs_info->endio_meta_workers);
1999 	btrfs_stop_workers(&fs_info->endio_raid56_workers);
2000 	btrfs_stop_workers(&fs_info->rmw_workers);
2001 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2002 	btrfs_stop_workers(&fs_info->endio_write_workers);
2003 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2004 	btrfs_stop_workers(&fs_info->submit_workers);
2005 	btrfs_stop_workers(&fs_info->delayed_workers);
2006 	btrfs_stop_workers(&fs_info->caching_workers);
2007 	btrfs_stop_workers(&fs_info->readahead_workers);
2008 	btrfs_stop_workers(&fs_info->flush_workers);
2009 	btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2010 }
2011 
2012 static void free_root_extent_buffers(struct btrfs_root *root)
2013 {
2014 	if (root) {
2015 		free_extent_buffer(root->node);
2016 		free_extent_buffer(root->commit_root);
2017 		root->node = NULL;
2018 		root->commit_root = NULL;
2019 	}
2020 }
2021 
2022 /* helper to cleanup tree roots */
2023 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2024 {
2025 	free_root_extent_buffers(info->tree_root);
2026 
2027 	free_root_extent_buffers(info->dev_root);
2028 	free_root_extent_buffers(info->extent_root);
2029 	free_root_extent_buffers(info->csum_root);
2030 	free_root_extent_buffers(info->quota_root);
2031 	free_root_extent_buffers(info->uuid_root);
2032 	if (chunk_root)
2033 		free_root_extent_buffers(info->chunk_root);
2034 }
2035 
2036 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2037 {
2038 	int ret;
2039 	struct btrfs_root *gang[8];
2040 	int i;
2041 
2042 	while (!list_empty(&fs_info->dead_roots)) {
2043 		gang[0] = list_entry(fs_info->dead_roots.next,
2044 				     struct btrfs_root, root_list);
2045 		list_del(&gang[0]->root_list);
2046 
2047 		if (gang[0]->in_radix) {
2048 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2049 		} else {
2050 			free_extent_buffer(gang[0]->node);
2051 			free_extent_buffer(gang[0]->commit_root);
2052 			btrfs_put_fs_root(gang[0]);
2053 		}
2054 	}
2055 
2056 	while (1) {
2057 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2058 					     (void **)gang, 0,
2059 					     ARRAY_SIZE(gang));
2060 		if (!ret)
2061 			break;
2062 		for (i = 0; i < ret; i++)
2063 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2064 	}
2065 
2066 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2067 		btrfs_free_log_root_tree(NULL, fs_info);
2068 		btrfs_destroy_pinned_extent(fs_info->tree_root,
2069 					    fs_info->pinned_extents);
2070 	}
2071 }
2072 
2073 int open_ctree(struct super_block *sb,
2074 	       struct btrfs_fs_devices *fs_devices,
2075 	       char *options)
2076 {
2077 	u32 sectorsize;
2078 	u32 nodesize;
2079 	u32 leafsize;
2080 	u32 blocksize;
2081 	u32 stripesize;
2082 	u64 generation;
2083 	u64 features;
2084 	struct btrfs_key location;
2085 	struct buffer_head *bh;
2086 	struct btrfs_super_block *disk_super;
2087 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2088 	struct btrfs_root *tree_root;
2089 	struct btrfs_root *extent_root;
2090 	struct btrfs_root *csum_root;
2091 	struct btrfs_root *chunk_root;
2092 	struct btrfs_root *dev_root;
2093 	struct btrfs_root *quota_root;
2094 	struct btrfs_root *uuid_root;
2095 	struct btrfs_root *log_tree_root;
2096 	int ret;
2097 	int err = -EINVAL;
2098 	int num_backups_tried = 0;
2099 	int backup_index = 0;
2100 	bool create_uuid_tree;
2101 	bool check_uuid_tree;
2102 
2103 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2104 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2105 	if (!tree_root || !chunk_root) {
2106 		err = -ENOMEM;
2107 		goto fail;
2108 	}
2109 
2110 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2111 	if (ret) {
2112 		err = ret;
2113 		goto fail;
2114 	}
2115 
2116 	ret = setup_bdi(fs_info, &fs_info->bdi);
2117 	if (ret) {
2118 		err = ret;
2119 		goto fail_srcu;
2120 	}
2121 
2122 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2123 	if (ret) {
2124 		err = ret;
2125 		goto fail_bdi;
2126 	}
2127 	fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2128 					(1 + ilog2(nr_cpu_ids));
2129 
2130 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2131 	if (ret) {
2132 		err = ret;
2133 		goto fail_dirty_metadata_bytes;
2134 	}
2135 
2136 	fs_info->btree_inode = new_inode(sb);
2137 	if (!fs_info->btree_inode) {
2138 		err = -ENOMEM;
2139 		goto fail_delalloc_bytes;
2140 	}
2141 
2142 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2143 
2144 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2145 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2146 	INIT_LIST_HEAD(&fs_info->trans_list);
2147 	INIT_LIST_HEAD(&fs_info->dead_roots);
2148 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2149 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2150 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2151 	spin_lock_init(&fs_info->delalloc_root_lock);
2152 	spin_lock_init(&fs_info->trans_lock);
2153 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2154 	spin_lock_init(&fs_info->delayed_iput_lock);
2155 	spin_lock_init(&fs_info->defrag_inodes_lock);
2156 	spin_lock_init(&fs_info->free_chunk_lock);
2157 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2158 	spin_lock_init(&fs_info->super_lock);
2159 	spin_lock_init(&fs_info->buffer_lock);
2160 	rwlock_init(&fs_info->tree_mod_log_lock);
2161 	mutex_init(&fs_info->reloc_mutex);
2162 	seqlock_init(&fs_info->profiles_lock);
2163 
2164 	init_completion(&fs_info->kobj_unregister);
2165 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2166 	INIT_LIST_HEAD(&fs_info->space_info);
2167 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2168 	btrfs_mapping_init(&fs_info->mapping_tree);
2169 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2170 			     BTRFS_BLOCK_RSV_GLOBAL);
2171 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2172 			     BTRFS_BLOCK_RSV_DELALLOC);
2173 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2174 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2175 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2176 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2177 			     BTRFS_BLOCK_RSV_DELOPS);
2178 	atomic_set(&fs_info->nr_async_submits, 0);
2179 	atomic_set(&fs_info->async_delalloc_pages, 0);
2180 	atomic_set(&fs_info->async_submit_draining, 0);
2181 	atomic_set(&fs_info->nr_async_bios, 0);
2182 	atomic_set(&fs_info->defrag_running, 0);
2183 	atomic64_set(&fs_info->tree_mod_seq, 0);
2184 	fs_info->sb = sb;
2185 	fs_info->max_inline = 8192 * 1024;
2186 	fs_info->metadata_ratio = 0;
2187 	fs_info->defrag_inodes = RB_ROOT;
2188 	fs_info->free_chunk_space = 0;
2189 	fs_info->tree_mod_log = RB_ROOT;
2190 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2191 	fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2192 	/* readahead state */
2193 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2194 	spin_lock_init(&fs_info->reada_lock);
2195 
2196 	fs_info->thread_pool_size = min_t(unsigned long,
2197 					  num_online_cpus() + 2, 8);
2198 
2199 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2200 	spin_lock_init(&fs_info->ordered_root_lock);
2201 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2202 					GFP_NOFS);
2203 	if (!fs_info->delayed_root) {
2204 		err = -ENOMEM;
2205 		goto fail_iput;
2206 	}
2207 	btrfs_init_delayed_root(fs_info->delayed_root);
2208 
2209 	mutex_init(&fs_info->scrub_lock);
2210 	atomic_set(&fs_info->scrubs_running, 0);
2211 	atomic_set(&fs_info->scrub_pause_req, 0);
2212 	atomic_set(&fs_info->scrubs_paused, 0);
2213 	atomic_set(&fs_info->scrub_cancel_req, 0);
2214 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2215 	fs_info->scrub_workers_refcnt = 0;
2216 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2217 	fs_info->check_integrity_print_mask = 0;
2218 #endif
2219 
2220 	spin_lock_init(&fs_info->balance_lock);
2221 	mutex_init(&fs_info->balance_mutex);
2222 	atomic_set(&fs_info->balance_running, 0);
2223 	atomic_set(&fs_info->balance_pause_req, 0);
2224 	atomic_set(&fs_info->balance_cancel_req, 0);
2225 	fs_info->balance_ctl = NULL;
2226 	init_waitqueue_head(&fs_info->balance_wait_q);
2227 
2228 	sb->s_blocksize = 4096;
2229 	sb->s_blocksize_bits = blksize_bits(4096);
2230 	sb->s_bdi = &fs_info->bdi;
2231 
2232 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2233 	set_nlink(fs_info->btree_inode, 1);
2234 	/*
2235 	 * we set the i_size on the btree inode to the max possible int.
2236 	 * the real end of the address space is determined by all of
2237 	 * the devices in the system
2238 	 */
2239 	fs_info->btree_inode->i_size = OFFSET_MAX;
2240 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2241 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2242 
2243 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2244 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2245 			     fs_info->btree_inode->i_mapping);
2246 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2247 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2248 
2249 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2250 
2251 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2252 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2253 	       sizeof(struct btrfs_key));
2254 	set_bit(BTRFS_INODE_DUMMY,
2255 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2256 	btrfs_insert_inode_hash(fs_info->btree_inode);
2257 
2258 	spin_lock_init(&fs_info->block_group_cache_lock);
2259 	fs_info->block_group_cache_tree = RB_ROOT;
2260 	fs_info->first_logical_byte = (u64)-1;
2261 
2262 	extent_io_tree_init(&fs_info->freed_extents[0],
2263 			     fs_info->btree_inode->i_mapping);
2264 	extent_io_tree_init(&fs_info->freed_extents[1],
2265 			     fs_info->btree_inode->i_mapping);
2266 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2267 	fs_info->do_barriers = 1;
2268 
2269 
2270 	mutex_init(&fs_info->ordered_operations_mutex);
2271 	mutex_init(&fs_info->ordered_extent_flush_mutex);
2272 	mutex_init(&fs_info->tree_log_mutex);
2273 	mutex_init(&fs_info->chunk_mutex);
2274 	mutex_init(&fs_info->transaction_kthread_mutex);
2275 	mutex_init(&fs_info->cleaner_mutex);
2276 	mutex_init(&fs_info->volume_mutex);
2277 	init_rwsem(&fs_info->extent_commit_sem);
2278 	init_rwsem(&fs_info->cleanup_work_sem);
2279 	init_rwsem(&fs_info->subvol_sem);
2280 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2281 	fs_info->dev_replace.lock_owner = 0;
2282 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2283 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2284 	mutex_init(&fs_info->dev_replace.lock_management_lock);
2285 	mutex_init(&fs_info->dev_replace.lock);
2286 
2287 	spin_lock_init(&fs_info->qgroup_lock);
2288 	mutex_init(&fs_info->qgroup_ioctl_lock);
2289 	fs_info->qgroup_tree = RB_ROOT;
2290 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2291 	fs_info->qgroup_seq = 1;
2292 	fs_info->quota_enabled = 0;
2293 	fs_info->pending_quota_state = 0;
2294 	fs_info->qgroup_ulist = NULL;
2295 	mutex_init(&fs_info->qgroup_rescan_lock);
2296 
2297 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2298 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2299 
2300 	init_waitqueue_head(&fs_info->transaction_throttle);
2301 	init_waitqueue_head(&fs_info->transaction_wait);
2302 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2303 	init_waitqueue_head(&fs_info->async_submit_wait);
2304 
2305 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2306 	if (ret) {
2307 		err = ret;
2308 		goto fail_alloc;
2309 	}
2310 
2311 	__setup_root(4096, 4096, 4096, 4096, tree_root,
2312 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2313 
2314 	invalidate_bdev(fs_devices->latest_bdev);
2315 
2316 	/*
2317 	 * Read super block and check the signature bytes only
2318 	 */
2319 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2320 	if (!bh) {
2321 		err = -EINVAL;
2322 		goto fail_alloc;
2323 	}
2324 
2325 	/*
2326 	 * We want to check superblock checksum, the type is stored inside.
2327 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2328 	 */
2329 	if (btrfs_check_super_csum(bh->b_data)) {
2330 		printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2331 		err = -EINVAL;
2332 		goto fail_alloc;
2333 	}
2334 
2335 	/*
2336 	 * super_copy is zeroed at allocation time and we never touch the
2337 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2338 	 * the whole block of INFO_SIZE
2339 	 */
2340 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2341 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2342 	       sizeof(*fs_info->super_for_commit));
2343 	brelse(bh);
2344 
2345 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2346 
2347 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2348 	if (ret) {
2349 		printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2350 		err = -EINVAL;
2351 		goto fail_alloc;
2352 	}
2353 
2354 	disk_super = fs_info->super_copy;
2355 	if (!btrfs_super_root(disk_super))
2356 		goto fail_alloc;
2357 
2358 	/* check FS state, whether FS is broken. */
2359 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2360 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2361 
2362 	/*
2363 	 * run through our array of backup supers and setup
2364 	 * our ring pointer to the oldest one
2365 	 */
2366 	generation = btrfs_super_generation(disk_super);
2367 	find_oldest_super_backup(fs_info, generation);
2368 
2369 	/*
2370 	 * In the long term, we'll store the compression type in the super
2371 	 * block, and it'll be used for per file compression control.
2372 	 */
2373 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2374 
2375 	ret = btrfs_parse_options(tree_root, options);
2376 	if (ret) {
2377 		err = ret;
2378 		goto fail_alloc;
2379 	}
2380 
2381 	features = btrfs_super_incompat_flags(disk_super) &
2382 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2383 	if (features) {
2384 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2385 		       "unsupported optional features (%Lx).\n",
2386 		       features);
2387 		err = -EINVAL;
2388 		goto fail_alloc;
2389 	}
2390 
2391 	if (btrfs_super_leafsize(disk_super) !=
2392 	    btrfs_super_nodesize(disk_super)) {
2393 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2394 		       "blocksizes don't match.  node %d leaf %d\n",
2395 		       btrfs_super_nodesize(disk_super),
2396 		       btrfs_super_leafsize(disk_super));
2397 		err = -EINVAL;
2398 		goto fail_alloc;
2399 	}
2400 	if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2401 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2402 		       "blocksize (%d) was too large\n",
2403 		       btrfs_super_leafsize(disk_super));
2404 		err = -EINVAL;
2405 		goto fail_alloc;
2406 	}
2407 
2408 	features = btrfs_super_incompat_flags(disk_super);
2409 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2410 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2411 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2412 
2413 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2414 		printk(KERN_ERR "BTRFS: has skinny extents\n");
2415 
2416 	/*
2417 	 * flag our filesystem as having big metadata blocks if
2418 	 * they are bigger than the page size
2419 	 */
2420 	if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2421 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2422 			printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2423 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2424 	}
2425 
2426 	nodesize = btrfs_super_nodesize(disk_super);
2427 	leafsize = btrfs_super_leafsize(disk_super);
2428 	sectorsize = btrfs_super_sectorsize(disk_super);
2429 	stripesize = btrfs_super_stripesize(disk_super);
2430 	fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2431 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2432 
2433 	/*
2434 	 * mixed block groups end up with duplicate but slightly offset
2435 	 * extent buffers for the same range.  It leads to corruptions
2436 	 */
2437 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2438 	    (sectorsize != leafsize)) {
2439 		printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2440 				"are not allowed for mixed block groups on %s\n",
2441 				sb->s_id);
2442 		goto fail_alloc;
2443 	}
2444 
2445 	/*
2446 	 * Needn't use the lock because there is no other task which will
2447 	 * update the flag.
2448 	 */
2449 	btrfs_set_super_incompat_flags(disk_super, features);
2450 
2451 	features = btrfs_super_compat_ro_flags(disk_super) &
2452 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2453 	if (!(sb->s_flags & MS_RDONLY) && features) {
2454 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2455 		       "unsupported option features (%Lx).\n",
2456 		       features);
2457 		err = -EINVAL;
2458 		goto fail_alloc;
2459 	}
2460 
2461 	btrfs_init_workers(&fs_info->generic_worker,
2462 			   "genwork", 1, NULL);
2463 
2464 	btrfs_init_workers(&fs_info->workers, "worker",
2465 			   fs_info->thread_pool_size,
2466 			   &fs_info->generic_worker);
2467 
2468 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2469 			   fs_info->thread_pool_size, NULL);
2470 
2471 	btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2472 			   fs_info->thread_pool_size, NULL);
2473 
2474 	btrfs_init_workers(&fs_info->submit_workers, "submit",
2475 			   min_t(u64, fs_devices->num_devices,
2476 			   fs_info->thread_pool_size), NULL);
2477 
2478 	btrfs_init_workers(&fs_info->caching_workers, "cache",
2479 			   fs_info->thread_pool_size, NULL);
2480 
2481 	/* a higher idle thresh on the submit workers makes it much more
2482 	 * likely that bios will be send down in a sane order to the
2483 	 * devices
2484 	 */
2485 	fs_info->submit_workers.idle_thresh = 64;
2486 
2487 	fs_info->workers.idle_thresh = 16;
2488 	fs_info->workers.ordered = 1;
2489 
2490 	fs_info->delalloc_workers.idle_thresh = 2;
2491 	fs_info->delalloc_workers.ordered = 1;
2492 
2493 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2494 			   &fs_info->generic_worker);
2495 	btrfs_init_workers(&fs_info->endio_workers, "endio",
2496 			   fs_info->thread_pool_size,
2497 			   &fs_info->generic_worker);
2498 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2499 			   fs_info->thread_pool_size,
2500 			   &fs_info->generic_worker);
2501 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
2502 			   "endio-meta-write", fs_info->thread_pool_size,
2503 			   &fs_info->generic_worker);
2504 	btrfs_init_workers(&fs_info->endio_raid56_workers,
2505 			   "endio-raid56", fs_info->thread_pool_size,
2506 			   &fs_info->generic_worker);
2507 	btrfs_init_workers(&fs_info->rmw_workers,
2508 			   "rmw", fs_info->thread_pool_size,
2509 			   &fs_info->generic_worker);
2510 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2511 			   fs_info->thread_pool_size,
2512 			   &fs_info->generic_worker);
2513 	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2514 			   1, &fs_info->generic_worker);
2515 	btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2516 			   fs_info->thread_pool_size,
2517 			   &fs_info->generic_worker);
2518 	btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2519 			   fs_info->thread_pool_size,
2520 			   &fs_info->generic_worker);
2521 	btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2522 			   &fs_info->generic_worker);
2523 
2524 	/*
2525 	 * endios are largely parallel and should have a very
2526 	 * low idle thresh
2527 	 */
2528 	fs_info->endio_workers.idle_thresh = 4;
2529 	fs_info->endio_meta_workers.idle_thresh = 4;
2530 	fs_info->endio_raid56_workers.idle_thresh = 4;
2531 	fs_info->rmw_workers.idle_thresh = 2;
2532 
2533 	fs_info->endio_write_workers.idle_thresh = 2;
2534 	fs_info->endio_meta_write_workers.idle_thresh = 2;
2535 	fs_info->readahead_workers.idle_thresh = 2;
2536 
2537 	/*
2538 	 * btrfs_start_workers can really only fail because of ENOMEM so just
2539 	 * return -ENOMEM if any of these fail.
2540 	 */
2541 	ret = btrfs_start_workers(&fs_info->workers);
2542 	ret |= btrfs_start_workers(&fs_info->generic_worker);
2543 	ret |= btrfs_start_workers(&fs_info->submit_workers);
2544 	ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2545 	ret |= btrfs_start_workers(&fs_info->fixup_workers);
2546 	ret |= btrfs_start_workers(&fs_info->endio_workers);
2547 	ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2548 	ret |= btrfs_start_workers(&fs_info->rmw_workers);
2549 	ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2550 	ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2551 	ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2552 	ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2553 	ret |= btrfs_start_workers(&fs_info->delayed_workers);
2554 	ret |= btrfs_start_workers(&fs_info->caching_workers);
2555 	ret |= btrfs_start_workers(&fs_info->readahead_workers);
2556 	ret |= btrfs_start_workers(&fs_info->flush_workers);
2557 	ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2558 	if (ret) {
2559 		err = -ENOMEM;
2560 		goto fail_sb_buffer;
2561 	}
2562 
2563 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2564 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2565 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2566 
2567 	tree_root->nodesize = nodesize;
2568 	tree_root->leafsize = leafsize;
2569 	tree_root->sectorsize = sectorsize;
2570 	tree_root->stripesize = stripesize;
2571 
2572 	sb->s_blocksize = sectorsize;
2573 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2574 
2575 	if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2576 		printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2577 		goto fail_sb_buffer;
2578 	}
2579 
2580 	if (sectorsize != PAGE_SIZE) {
2581 		printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2582 		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2583 		goto fail_sb_buffer;
2584 	}
2585 
2586 	mutex_lock(&fs_info->chunk_mutex);
2587 	ret = btrfs_read_sys_array(tree_root);
2588 	mutex_unlock(&fs_info->chunk_mutex);
2589 	if (ret) {
2590 		printk(KERN_WARNING "BTRFS: failed to read the system "
2591 		       "array on %s\n", sb->s_id);
2592 		goto fail_sb_buffer;
2593 	}
2594 
2595 	blocksize = btrfs_level_size(tree_root,
2596 				     btrfs_super_chunk_root_level(disk_super));
2597 	generation = btrfs_super_chunk_root_generation(disk_super);
2598 
2599 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
2600 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2601 
2602 	chunk_root->node = read_tree_block(chunk_root,
2603 					   btrfs_super_chunk_root(disk_super),
2604 					   blocksize, generation);
2605 	if (!chunk_root->node ||
2606 	    !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2607 		printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2608 		       sb->s_id);
2609 		goto fail_tree_roots;
2610 	}
2611 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2612 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2613 
2614 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2615 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2616 
2617 	ret = btrfs_read_chunk_tree(chunk_root);
2618 	if (ret) {
2619 		printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2620 		       sb->s_id);
2621 		goto fail_tree_roots;
2622 	}
2623 
2624 	/*
2625 	 * keep the device that is marked to be the target device for the
2626 	 * dev_replace procedure
2627 	 */
2628 	btrfs_close_extra_devices(fs_info, fs_devices, 0);
2629 
2630 	if (!fs_devices->latest_bdev) {
2631 		printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2632 		       sb->s_id);
2633 		goto fail_tree_roots;
2634 	}
2635 
2636 retry_root_backup:
2637 	blocksize = btrfs_level_size(tree_root,
2638 				     btrfs_super_root_level(disk_super));
2639 	generation = btrfs_super_generation(disk_super);
2640 
2641 	tree_root->node = read_tree_block(tree_root,
2642 					  btrfs_super_root(disk_super),
2643 					  blocksize, generation);
2644 	if (!tree_root->node ||
2645 	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2646 		printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2647 		       sb->s_id);
2648 
2649 		goto recovery_tree_root;
2650 	}
2651 
2652 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2653 	tree_root->commit_root = btrfs_root_node(tree_root);
2654 	btrfs_set_root_refs(&tree_root->root_item, 1);
2655 
2656 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2657 	location.type = BTRFS_ROOT_ITEM_KEY;
2658 	location.offset = 0;
2659 
2660 	extent_root = btrfs_read_tree_root(tree_root, &location);
2661 	if (IS_ERR(extent_root)) {
2662 		ret = PTR_ERR(extent_root);
2663 		goto recovery_tree_root;
2664 	}
2665 	extent_root->track_dirty = 1;
2666 	fs_info->extent_root = extent_root;
2667 
2668 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2669 	dev_root = btrfs_read_tree_root(tree_root, &location);
2670 	if (IS_ERR(dev_root)) {
2671 		ret = PTR_ERR(dev_root);
2672 		goto recovery_tree_root;
2673 	}
2674 	dev_root->track_dirty = 1;
2675 	fs_info->dev_root = dev_root;
2676 	btrfs_init_devices_late(fs_info);
2677 
2678 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2679 	csum_root = btrfs_read_tree_root(tree_root, &location);
2680 	if (IS_ERR(csum_root)) {
2681 		ret = PTR_ERR(csum_root);
2682 		goto recovery_tree_root;
2683 	}
2684 	csum_root->track_dirty = 1;
2685 	fs_info->csum_root = csum_root;
2686 
2687 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2688 	quota_root = btrfs_read_tree_root(tree_root, &location);
2689 	if (!IS_ERR(quota_root)) {
2690 		quota_root->track_dirty = 1;
2691 		fs_info->quota_enabled = 1;
2692 		fs_info->pending_quota_state = 1;
2693 		fs_info->quota_root = quota_root;
2694 	}
2695 
2696 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2697 	uuid_root = btrfs_read_tree_root(tree_root, &location);
2698 	if (IS_ERR(uuid_root)) {
2699 		ret = PTR_ERR(uuid_root);
2700 		if (ret != -ENOENT)
2701 			goto recovery_tree_root;
2702 		create_uuid_tree = true;
2703 		check_uuid_tree = false;
2704 	} else {
2705 		uuid_root->track_dirty = 1;
2706 		fs_info->uuid_root = uuid_root;
2707 		create_uuid_tree = false;
2708 		check_uuid_tree =
2709 		    generation != btrfs_super_uuid_tree_generation(disk_super);
2710 	}
2711 
2712 	fs_info->generation = generation;
2713 	fs_info->last_trans_committed = generation;
2714 
2715 	ret = btrfs_recover_balance(fs_info);
2716 	if (ret) {
2717 		printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2718 		goto fail_block_groups;
2719 	}
2720 
2721 	ret = btrfs_init_dev_stats(fs_info);
2722 	if (ret) {
2723 		printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2724 		       ret);
2725 		goto fail_block_groups;
2726 	}
2727 
2728 	ret = btrfs_init_dev_replace(fs_info);
2729 	if (ret) {
2730 		pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2731 		goto fail_block_groups;
2732 	}
2733 
2734 	btrfs_close_extra_devices(fs_info, fs_devices, 1);
2735 
2736 	ret = btrfs_sysfs_add_one(fs_info);
2737 	if (ret) {
2738 		pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2739 		goto fail_block_groups;
2740 	}
2741 
2742 	ret = btrfs_init_space_info(fs_info);
2743 	if (ret) {
2744 		printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2745 		goto fail_sysfs;
2746 	}
2747 
2748 	ret = btrfs_read_block_groups(extent_root);
2749 	if (ret) {
2750 		printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2751 		goto fail_sysfs;
2752 	}
2753 	fs_info->num_tolerated_disk_barrier_failures =
2754 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2755 	if (fs_info->fs_devices->missing_devices >
2756 	     fs_info->num_tolerated_disk_barrier_failures &&
2757 	    !(sb->s_flags & MS_RDONLY)) {
2758 		printk(KERN_WARNING "BTRFS: "
2759 			"too many missing devices, writeable mount is not allowed\n");
2760 		goto fail_sysfs;
2761 	}
2762 
2763 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2764 					       "btrfs-cleaner");
2765 	if (IS_ERR(fs_info->cleaner_kthread))
2766 		goto fail_sysfs;
2767 
2768 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2769 						   tree_root,
2770 						   "btrfs-transaction");
2771 	if (IS_ERR(fs_info->transaction_kthread))
2772 		goto fail_cleaner;
2773 
2774 	if (!btrfs_test_opt(tree_root, SSD) &&
2775 	    !btrfs_test_opt(tree_root, NOSSD) &&
2776 	    !fs_info->fs_devices->rotating) {
2777 		printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2778 		       "mode\n");
2779 		btrfs_set_opt(fs_info->mount_opt, SSD);
2780 	}
2781 
2782 	/* Set the real inode map cache flag */
2783 	if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2784 		btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2785 
2786 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2787 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2788 		ret = btrfsic_mount(tree_root, fs_devices,
2789 				    btrfs_test_opt(tree_root,
2790 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2791 				    1 : 0,
2792 				    fs_info->check_integrity_print_mask);
2793 		if (ret)
2794 			printk(KERN_WARNING "BTRFS: failed to initialize"
2795 			       " integrity check module %s\n", sb->s_id);
2796 	}
2797 #endif
2798 	ret = btrfs_read_qgroup_config(fs_info);
2799 	if (ret)
2800 		goto fail_trans_kthread;
2801 
2802 	/* do not make disk changes in broken FS */
2803 	if (btrfs_super_log_root(disk_super) != 0) {
2804 		u64 bytenr = btrfs_super_log_root(disk_super);
2805 
2806 		if (fs_devices->rw_devices == 0) {
2807 			printk(KERN_WARNING "BTRFS: log replay required "
2808 			       "on RO media\n");
2809 			err = -EIO;
2810 			goto fail_qgroup;
2811 		}
2812 		blocksize =
2813 		     btrfs_level_size(tree_root,
2814 				      btrfs_super_log_root_level(disk_super));
2815 
2816 		log_tree_root = btrfs_alloc_root(fs_info);
2817 		if (!log_tree_root) {
2818 			err = -ENOMEM;
2819 			goto fail_qgroup;
2820 		}
2821 
2822 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2823 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2824 
2825 		log_tree_root->node = read_tree_block(tree_root, bytenr,
2826 						      blocksize,
2827 						      generation + 1);
2828 		if (!log_tree_root->node ||
2829 		    !extent_buffer_uptodate(log_tree_root->node)) {
2830 			printk(KERN_ERR "BTRFS: failed to read log tree\n");
2831 			free_extent_buffer(log_tree_root->node);
2832 			kfree(log_tree_root);
2833 			goto fail_trans_kthread;
2834 		}
2835 		/* returns with log_tree_root freed on success */
2836 		ret = btrfs_recover_log_trees(log_tree_root);
2837 		if (ret) {
2838 			btrfs_error(tree_root->fs_info, ret,
2839 				    "Failed to recover log tree");
2840 			free_extent_buffer(log_tree_root->node);
2841 			kfree(log_tree_root);
2842 			goto fail_trans_kthread;
2843 		}
2844 
2845 		if (sb->s_flags & MS_RDONLY) {
2846 			ret = btrfs_commit_super(tree_root);
2847 			if (ret)
2848 				goto fail_trans_kthread;
2849 		}
2850 	}
2851 
2852 	ret = btrfs_find_orphan_roots(tree_root);
2853 	if (ret)
2854 		goto fail_trans_kthread;
2855 
2856 	if (!(sb->s_flags & MS_RDONLY)) {
2857 		ret = btrfs_cleanup_fs_roots(fs_info);
2858 		if (ret)
2859 			goto fail_trans_kthread;
2860 
2861 		ret = btrfs_recover_relocation(tree_root);
2862 		if (ret < 0) {
2863 			printk(KERN_WARNING
2864 			       "BTRFS: failed to recover relocation\n");
2865 			err = -EINVAL;
2866 			goto fail_qgroup;
2867 		}
2868 	}
2869 
2870 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2871 	location.type = BTRFS_ROOT_ITEM_KEY;
2872 	location.offset = 0;
2873 
2874 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2875 	if (IS_ERR(fs_info->fs_root)) {
2876 		err = PTR_ERR(fs_info->fs_root);
2877 		goto fail_qgroup;
2878 	}
2879 
2880 	if (sb->s_flags & MS_RDONLY)
2881 		return 0;
2882 
2883 	down_read(&fs_info->cleanup_work_sem);
2884 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2885 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2886 		up_read(&fs_info->cleanup_work_sem);
2887 		close_ctree(tree_root);
2888 		return ret;
2889 	}
2890 	up_read(&fs_info->cleanup_work_sem);
2891 
2892 	ret = btrfs_resume_balance_async(fs_info);
2893 	if (ret) {
2894 		printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2895 		close_ctree(tree_root);
2896 		return ret;
2897 	}
2898 
2899 	ret = btrfs_resume_dev_replace_async(fs_info);
2900 	if (ret) {
2901 		pr_warn("BTRFS: failed to resume dev_replace\n");
2902 		close_ctree(tree_root);
2903 		return ret;
2904 	}
2905 
2906 	btrfs_qgroup_rescan_resume(fs_info);
2907 
2908 	if (create_uuid_tree) {
2909 		pr_info("BTRFS: creating UUID tree\n");
2910 		ret = btrfs_create_uuid_tree(fs_info);
2911 		if (ret) {
2912 			pr_warn("BTRFS: failed to create the UUID tree %d\n",
2913 				ret);
2914 			close_ctree(tree_root);
2915 			return ret;
2916 		}
2917 	} else if (check_uuid_tree ||
2918 		   btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2919 		pr_info("BTRFS: checking UUID tree\n");
2920 		ret = btrfs_check_uuid_tree(fs_info);
2921 		if (ret) {
2922 			pr_warn("BTRFS: failed to check the UUID tree %d\n",
2923 				ret);
2924 			close_ctree(tree_root);
2925 			return ret;
2926 		}
2927 	} else {
2928 		fs_info->update_uuid_tree_gen = 1;
2929 	}
2930 
2931 	return 0;
2932 
2933 fail_qgroup:
2934 	btrfs_free_qgroup_config(fs_info);
2935 fail_trans_kthread:
2936 	kthread_stop(fs_info->transaction_kthread);
2937 	btrfs_cleanup_transaction(fs_info->tree_root);
2938 	del_fs_roots(fs_info);
2939 fail_cleaner:
2940 	kthread_stop(fs_info->cleaner_kthread);
2941 
2942 	/*
2943 	 * make sure we're done with the btree inode before we stop our
2944 	 * kthreads
2945 	 */
2946 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2947 
2948 fail_sysfs:
2949 	btrfs_sysfs_remove_one(fs_info);
2950 
2951 fail_block_groups:
2952 	btrfs_put_block_group_cache(fs_info);
2953 	btrfs_free_block_groups(fs_info);
2954 
2955 fail_tree_roots:
2956 	free_root_pointers(fs_info, 1);
2957 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2958 
2959 fail_sb_buffer:
2960 	btrfs_stop_all_workers(fs_info);
2961 fail_alloc:
2962 fail_iput:
2963 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2964 
2965 	iput(fs_info->btree_inode);
2966 fail_delalloc_bytes:
2967 	percpu_counter_destroy(&fs_info->delalloc_bytes);
2968 fail_dirty_metadata_bytes:
2969 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2970 fail_bdi:
2971 	bdi_destroy(&fs_info->bdi);
2972 fail_srcu:
2973 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2974 fail:
2975 	btrfs_free_stripe_hash_table(fs_info);
2976 	btrfs_close_devices(fs_info->fs_devices);
2977 	return err;
2978 
2979 recovery_tree_root:
2980 	if (!btrfs_test_opt(tree_root, RECOVERY))
2981 		goto fail_tree_roots;
2982 
2983 	free_root_pointers(fs_info, 0);
2984 
2985 	/* don't use the log in recovery mode, it won't be valid */
2986 	btrfs_set_super_log_root(disk_super, 0);
2987 
2988 	/* we can't trust the free space cache either */
2989 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2990 
2991 	ret = next_root_backup(fs_info, fs_info->super_copy,
2992 			       &num_backups_tried, &backup_index);
2993 	if (ret == -1)
2994 		goto fail_block_groups;
2995 	goto retry_root_backup;
2996 }
2997 
2998 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2999 {
3000 	if (uptodate) {
3001 		set_buffer_uptodate(bh);
3002 	} else {
3003 		struct btrfs_device *device = (struct btrfs_device *)
3004 			bh->b_private;
3005 
3006 		printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3007 					  "I/O error on %s\n",
3008 					  rcu_str_deref(device->name));
3009 		/* note, we dont' set_buffer_write_io_error because we have
3010 		 * our own ways of dealing with the IO errors
3011 		 */
3012 		clear_buffer_uptodate(bh);
3013 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3014 	}
3015 	unlock_buffer(bh);
3016 	put_bh(bh);
3017 }
3018 
3019 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3020 {
3021 	struct buffer_head *bh;
3022 	struct buffer_head *latest = NULL;
3023 	struct btrfs_super_block *super;
3024 	int i;
3025 	u64 transid = 0;
3026 	u64 bytenr;
3027 
3028 	/* we would like to check all the supers, but that would make
3029 	 * a btrfs mount succeed after a mkfs from a different FS.
3030 	 * So, we need to add a special mount option to scan for
3031 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3032 	 */
3033 	for (i = 0; i < 1; i++) {
3034 		bytenr = btrfs_sb_offset(i);
3035 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3036 					i_size_read(bdev->bd_inode))
3037 			break;
3038 		bh = __bread(bdev, bytenr / 4096,
3039 					BTRFS_SUPER_INFO_SIZE);
3040 		if (!bh)
3041 			continue;
3042 
3043 		super = (struct btrfs_super_block *)bh->b_data;
3044 		if (btrfs_super_bytenr(super) != bytenr ||
3045 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3046 			brelse(bh);
3047 			continue;
3048 		}
3049 
3050 		if (!latest || btrfs_super_generation(super) > transid) {
3051 			brelse(latest);
3052 			latest = bh;
3053 			transid = btrfs_super_generation(super);
3054 		} else {
3055 			brelse(bh);
3056 		}
3057 	}
3058 	return latest;
3059 }
3060 
3061 /*
3062  * this should be called twice, once with wait == 0 and
3063  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3064  * we write are pinned.
3065  *
3066  * They are released when wait == 1 is done.
3067  * max_mirrors must be the same for both runs, and it indicates how
3068  * many supers on this one device should be written.
3069  *
3070  * max_mirrors == 0 means to write them all.
3071  */
3072 static int write_dev_supers(struct btrfs_device *device,
3073 			    struct btrfs_super_block *sb,
3074 			    int do_barriers, int wait, int max_mirrors)
3075 {
3076 	struct buffer_head *bh;
3077 	int i;
3078 	int ret;
3079 	int errors = 0;
3080 	u32 crc;
3081 	u64 bytenr;
3082 
3083 	if (max_mirrors == 0)
3084 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3085 
3086 	for (i = 0; i < max_mirrors; i++) {
3087 		bytenr = btrfs_sb_offset(i);
3088 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3089 			break;
3090 
3091 		if (wait) {
3092 			bh = __find_get_block(device->bdev, bytenr / 4096,
3093 					      BTRFS_SUPER_INFO_SIZE);
3094 			if (!bh) {
3095 				errors++;
3096 				continue;
3097 			}
3098 			wait_on_buffer(bh);
3099 			if (!buffer_uptodate(bh))
3100 				errors++;
3101 
3102 			/* drop our reference */
3103 			brelse(bh);
3104 
3105 			/* drop the reference from the wait == 0 run */
3106 			brelse(bh);
3107 			continue;
3108 		} else {
3109 			btrfs_set_super_bytenr(sb, bytenr);
3110 
3111 			crc = ~(u32)0;
3112 			crc = btrfs_csum_data((char *)sb +
3113 					      BTRFS_CSUM_SIZE, crc,
3114 					      BTRFS_SUPER_INFO_SIZE -
3115 					      BTRFS_CSUM_SIZE);
3116 			btrfs_csum_final(crc, sb->csum);
3117 
3118 			/*
3119 			 * one reference for us, and we leave it for the
3120 			 * caller
3121 			 */
3122 			bh = __getblk(device->bdev, bytenr / 4096,
3123 				      BTRFS_SUPER_INFO_SIZE);
3124 			if (!bh) {
3125 				printk(KERN_ERR "BTRFS: couldn't get super "
3126 				       "buffer head for bytenr %Lu\n", bytenr);
3127 				errors++;
3128 				continue;
3129 			}
3130 
3131 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3132 
3133 			/* one reference for submit_bh */
3134 			get_bh(bh);
3135 
3136 			set_buffer_uptodate(bh);
3137 			lock_buffer(bh);
3138 			bh->b_end_io = btrfs_end_buffer_write_sync;
3139 			bh->b_private = device;
3140 		}
3141 
3142 		/*
3143 		 * we fua the first super.  The others we allow
3144 		 * to go down lazy.
3145 		 */
3146 		if (i == 0)
3147 			ret = btrfsic_submit_bh(WRITE_FUA, bh);
3148 		else
3149 			ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3150 		if (ret)
3151 			errors++;
3152 	}
3153 	return errors < i ? 0 : -1;
3154 }
3155 
3156 /*
3157  * endio for the write_dev_flush, this will wake anyone waiting
3158  * for the barrier when it is done
3159  */
3160 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3161 {
3162 	if (err) {
3163 		if (err == -EOPNOTSUPP)
3164 			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3165 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
3166 	}
3167 	if (bio->bi_private)
3168 		complete(bio->bi_private);
3169 	bio_put(bio);
3170 }
3171 
3172 /*
3173  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3174  * sent down.  With wait == 1, it waits for the previous flush.
3175  *
3176  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3177  * capable
3178  */
3179 static int write_dev_flush(struct btrfs_device *device, int wait)
3180 {
3181 	struct bio *bio;
3182 	int ret = 0;
3183 
3184 	if (device->nobarriers)
3185 		return 0;
3186 
3187 	if (wait) {
3188 		bio = device->flush_bio;
3189 		if (!bio)
3190 			return 0;
3191 
3192 		wait_for_completion(&device->flush_wait);
3193 
3194 		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3195 			printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3196 				      rcu_str_deref(device->name));
3197 			device->nobarriers = 1;
3198 		} else if (!bio_flagged(bio, BIO_UPTODATE)) {
3199 			ret = -EIO;
3200 			btrfs_dev_stat_inc_and_print(device,
3201 				BTRFS_DEV_STAT_FLUSH_ERRS);
3202 		}
3203 
3204 		/* drop the reference from the wait == 0 run */
3205 		bio_put(bio);
3206 		device->flush_bio = NULL;
3207 
3208 		return ret;
3209 	}
3210 
3211 	/*
3212 	 * one reference for us, and we leave it for the
3213 	 * caller
3214 	 */
3215 	device->flush_bio = NULL;
3216 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3217 	if (!bio)
3218 		return -ENOMEM;
3219 
3220 	bio->bi_end_io = btrfs_end_empty_barrier;
3221 	bio->bi_bdev = device->bdev;
3222 	init_completion(&device->flush_wait);
3223 	bio->bi_private = &device->flush_wait;
3224 	device->flush_bio = bio;
3225 
3226 	bio_get(bio);
3227 	btrfsic_submit_bio(WRITE_FLUSH, bio);
3228 
3229 	return 0;
3230 }
3231 
3232 /*
3233  * send an empty flush down to each device in parallel,
3234  * then wait for them
3235  */
3236 static int barrier_all_devices(struct btrfs_fs_info *info)
3237 {
3238 	struct list_head *head;
3239 	struct btrfs_device *dev;
3240 	int errors_send = 0;
3241 	int errors_wait = 0;
3242 	int ret;
3243 
3244 	/* send down all the barriers */
3245 	head = &info->fs_devices->devices;
3246 	list_for_each_entry_rcu(dev, head, dev_list) {
3247 		if (!dev->bdev) {
3248 			errors_send++;
3249 			continue;
3250 		}
3251 		if (!dev->in_fs_metadata || !dev->writeable)
3252 			continue;
3253 
3254 		ret = write_dev_flush(dev, 0);
3255 		if (ret)
3256 			errors_send++;
3257 	}
3258 
3259 	/* wait for all the barriers */
3260 	list_for_each_entry_rcu(dev, head, dev_list) {
3261 		if (!dev->bdev) {
3262 			errors_wait++;
3263 			continue;
3264 		}
3265 		if (!dev->in_fs_metadata || !dev->writeable)
3266 			continue;
3267 
3268 		ret = write_dev_flush(dev, 1);
3269 		if (ret)
3270 			errors_wait++;
3271 	}
3272 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3273 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3274 		return -EIO;
3275 	return 0;
3276 }
3277 
3278 int btrfs_calc_num_tolerated_disk_barrier_failures(
3279 	struct btrfs_fs_info *fs_info)
3280 {
3281 	struct btrfs_ioctl_space_info space;
3282 	struct btrfs_space_info *sinfo;
3283 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3284 		       BTRFS_BLOCK_GROUP_SYSTEM,
3285 		       BTRFS_BLOCK_GROUP_METADATA,
3286 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3287 	int num_types = 4;
3288 	int i;
3289 	int c;
3290 	int num_tolerated_disk_barrier_failures =
3291 		(int)fs_info->fs_devices->num_devices;
3292 
3293 	for (i = 0; i < num_types; i++) {
3294 		struct btrfs_space_info *tmp;
3295 
3296 		sinfo = NULL;
3297 		rcu_read_lock();
3298 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3299 			if (tmp->flags == types[i]) {
3300 				sinfo = tmp;
3301 				break;
3302 			}
3303 		}
3304 		rcu_read_unlock();
3305 
3306 		if (!sinfo)
3307 			continue;
3308 
3309 		down_read(&sinfo->groups_sem);
3310 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3311 			if (!list_empty(&sinfo->block_groups[c])) {
3312 				u64 flags;
3313 
3314 				btrfs_get_block_group_info(
3315 					&sinfo->block_groups[c], &space);
3316 				if (space.total_bytes == 0 ||
3317 				    space.used_bytes == 0)
3318 					continue;
3319 				flags = space.flags;
3320 				/*
3321 				 * return
3322 				 * 0: if dup, single or RAID0 is configured for
3323 				 *    any of metadata, system or data, else
3324 				 * 1: if RAID5 is configured, or if RAID1 or
3325 				 *    RAID10 is configured and only two mirrors
3326 				 *    are used, else
3327 				 * 2: if RAID6 is configured, else
3328 				 * num_mirrors - 1: if RAID1 or RAID10 is
3329 				 *                  configured and more than
3330 				 *                  2 mirrors are used.
3331 				 */
3332 				if (num_tolerated_disk_barrier_failures > 0 &&
3333 				    ((flags & (BTRFS_BLOCK_GROUP_DUP |
3334 					       BTRFS_BLOCK_GROUP_RAID0)) ||
3335 				     ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3336 				      == 0)))
3337 					num_tolerated_disk_barrier_failures = 0;
3338 				else if (num_tolerated_disk_barrier_failures > 1) {
3339 					if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3340 					    BTRFS_BLOCK_GROUP_RAID5 |
3341 					    BTRFS_BLOCK_GROUP_RAID10)) {
3342 						num_tolerated_disk_barrier_failures = 1;
3343 					} else if (flags &
3344 						   BTRFS_BLOCK_GROUP_RAID6) {
3345 						num_tolerated_disk_barrier_failures = 2;
3346 					}
3347 				}
3348 			}
3349 		}
3350 		up_read(&sinfo->groups_sem);
3351 	}
3352 
3353 	return num_tolerated_disk_barrier_failures;
3354 }
3355 
3356 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3357 {
3358 	struct list_head *head;
3359 	struct btrfs_device *dev;
3360 	struct btrfs_super_block *sb;
3361 	struct btrfs_dev_item *dev_item;
3362 	int ret;
3363 	int do_barriers;
3364 	int max_errors;
3365 	int total_errors = 0;
3366 	u64 flags;
3367 
3368 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3369 	backup_super_roots(root->fs_info);
3370 
3371 	sb = root->fs_info->super_for_commit;
3372 	dev_item = &sb->dev_item;
3373 
3374 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3375 	head = &root->fs_info->fs_devices->devices;
3376 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3377 
3378 	if (do_barriers) {
3379 		ret = barrier_all_devices(root->fs_info);
3380 		if (ret) {
3381 			mutex_unlock(
3382 				&root->fs_info->fs_devices->device_list_mutex);
3383 			btrfs_error(root->fs_info, ret,
3384 				    "errors while submitting device barriers.");
3385 			return ret;
3386 		}
3387 	}
3388 
3389 	list_for_each_entry_rcu(dev, head, dev_list) {
3390 		if (!dev->bdev) {
3391 			total_errors++;
3392 			continue;
3393 		}
3394 		if (!dev->in_fs_metadata || !dev->writeable)
3395 			continue;
3396 
3397 		btrfs_set_stack_device_generation(dev_item, 0);
3398 		btrfs_set_stack_device_type(dev_item, dev->type);
3399 		btrfs_set_stack_device_id(dev_item, dev->devid);
3400 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3401 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3402 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3403 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3404 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3405 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3406 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3407 
3408 		flags = btrfs_super_flags(sb);
3409 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3410 
3411 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3412 		if (ret)
3413 			total_errors++;
3414 	}
3415 	if (total_errors > max_errors) {
3416 		btrfs_err(root->fs_info, "%d errors while writing supers",
3417 		       total_errors);
3418 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3419 
3420 		/* FUA is masked off if unsupported and can't be the reason */
3421 		btrfs_error(root->fs_info, -EIO,
3422 			    "%d errors while writing supers", total_errors);
3423 		return -EIO;
3424 	}
3425 
3426 	total_errors = 0;
3427 	list_for_each_entry_rcu(dev, head, dev_list) {
3428 		if (!dev->bdev)
3429 			continue;
3430 		if (!dev->in_fs_metadata || !dev->writeable)
3431 			continue;
3432 
3433 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3434 		if (ret)
3435 			total_errors++;
3436 	}
3437 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3438 	if (total_errors > max_errors) {
3439 		btrfs_error(root->fs_info, -EIO,
3440 			    "%d errors while writing supers", total_errors);
3441 		return -EIO;
3442 	}
3443 	return 0;
3444 }
3445 
3446 int write_ctree_super(struct btrfs_trans_handle *trans,
3447 		      struct btrfs_root *root, int max_mirrors)
3448 {
3449 	return write_all_supers(root, max_mirrors);
3450 }
3451 
3452 /* Drop a fs root from the radix tree and free it. */
3453 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3454 				  struct btrfs_root *root)
3455 {
3456 	spin_lock(&fs_info->fs_roots_radix_lock);
3457 	radix_tree_delete(&fs_info->fs_roots_radix,
3458 			  (unsigned long)root->root_key.objectid);
3459 	spin_unlock(&fs_info->fs_roots_radix_lock);
3460 
3461 	if (btrfs_root_refs(&root->root_item) == 0)
3462 		synchronize_srcu(&fs_info->subvol_srcu);
3463 
3464 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3465 		btrfs_free_log(NULL, root);
3466 
3467 	__btrfs_remove_free_space_cache(root->free_ino_pinned);
3468 	__btrfs_remove_free_space_cache(root->free_ino_ctl);
3469 	free_fs_root(root);
3470 }
3471 
3472 static void free_fs_root(struct btrfs_root *root)
3473 {
3474 	iput(root->cache_inode);
3475 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3476 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3477 	root->orphan_block_rsv = NULL;
3478 	if (root->anon_dev)
3479 		free_anon_bdev(root->anon_dev);
3480 	free_extent_buffer(root->node);
3481 	free_extent_buffer(root->commit_root);
3482 	kfree(root->free_ino_ctl);
3483 	kfree(root->free_ino_pinned);
3484 	kfree(root->name);
3485 	btrfs_put_fs_root(root);
3486 }
3487 
3488 void btrfs_free_fs_root(struct btrfs_root *root)
3489 {
3490 	free_fs_root(root);
3491 }
3492 
3493 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3494 {
3495 	u64 root_objectid = 0;
3496 	struct btrfs_root *gang[8];
3497 	int i;
3498 	int ret;
3499 
3500 	while (1) {
3501 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3502 					     (void **)gang, root_objectid,
3503 					     ARRAY_SIZE(gang));
3504 		if (!ret)
3505 			break;
3506 
3507 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3508 		for (i = 0; i < ret; i++) {
3509 			int err;
3510 
3511 			root_objectid = gang[i]->root_key.objectid;
3512 			err = btrfs_orphan_cleanup(gang[i]);
3513 			if (err)
3514 				return err;
3515 		}
3516 		root_objectid++;
3517 	}
3518 	return 0;
3519 }
3520 
3521 int btrfs_commit_super(struct btrfs_root *root)
3522 {
3523 	struct btrfs_trans_handle *trans;
3524 
3525 	mutex_lock(&root->fs_info->cleaner_mutex);
3526 	btrfs_run_delayed_iputs(root);
3527 	mutex_unlock(&root->fs_info->cleaner_mutex);
3528 	wake_up_process(root->fs_info->cleaner_kthread);
3529 
3530 	/* wait until ongoing cleanup work done */
3531 	down_write(&root->fs_info->cleanup_work_sem);
3532 	up_write(&root->fs_info->cleanup_work_sem);
3533 
3534 	trans = btrfs_join_transaction(root);
3535 	if (IS_ERR(trans))
3536 		return PTR_ERR(trans);
3537 	return btrfs_commit_transaction(trans, root);
3538 }
3539 
3540 int close_ctree(struct btrfs_root *root)
3541 {
3542 	struct btrfs_fs_info *fs_info = root->fs_info;
3543 	int ret;
3544 
3545 	fs_info->closing = 1;
3546 	smp_mb();
3547 
3548 	/* wait for the uuid_scan task to finish */
3549 	down(&fs_info->uuid_tree_rescan_sem);
3550 	/* avoid complains from lockdep et al., set sem back to initial state */
3551 	up(&fs_info->uuid_tree_rescan_sem);
3552 
3553 	/* pause restriper - we want to resume on mount */
3554 	btrfs_pause_balance(fs_info);
3555 
3556 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3557 
3558 	btrfs_scrub_cancel(fs_info);
3559 
3560 	/* wait for any defraggers to finish */
3561 	wait_event(fs_info->transaction_wait,
3562 		   (atomic_read(&fs_info->defrag_running) == 0));
3563 
3564 	/* clear out the rbtree of defraggable inodes */
3565 	btrfs_cleanup_defrag_inodes(fs_info);
3566 
3567 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3568 		ret = btrfs_commit_super(root);
3569 		if (ret)
3570 			btrfs_err(root->fs_info, "commit super ret %d", ret);
3571 	}
3572 
3573 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3574 		btrfs_error_commit_super(root);
3575 
3576 	kthread_stop(fs_info->transaction_kthread);
3577 	kthread_stop(fs_info->cleaner_kthread);
3578 
3579 	fs_info->closing = 2;
3580 	smp_mb();
3581 
3582 	btrfs_free_qgroup_config(root->fs_info);
3583 
3584 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3585 		btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3586 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3587 	}
3588 
3589 	btrfs_sysfs_remove_one(fs_info);
3590 
3591 	del_fs_roots(fs_info);
3592 
3593 	btrfs_put_block_group_cache(fs_info);
3594 
3595 	btrfs_free_block_groups(fs_info);
3596 
3597 	btrfs_stop_all_workers(fs_info);
3598 
3599 	free_root_pointers(fs_info, 1);
3600 
3601 	iput(fs_info->btree_inode);
3602 
3603 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3604 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3605 		btrfsic_unmount(root, fs_info->fs_devices);
3606 #endif
3607 
3608 	btrfs_close_devices(fs_info->fs_devices);
3609 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3610 
3611 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3612 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3613 	bdi_destroy(&fs_info->bdi);
3614 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3615 
3616 	btrfs_free_stripe_hash_table(fs_info);
3617 
3618 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3619 	root->orphan_block_rsv = NULL;
3620 
3621 	return 0;
3622 }
3623 
3624 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3625 			  int atomic)
3626 {
3627 	int ret;
3628 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3629 
3630 	ret = extent_buffer_uptodate(buf);
3631 	if (!ret)
3632 		return ret;
3633 
3634 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3635 				    parent_transid, atomic);
3636 	if (ret == -EAGAIN)
3637 		return ret;
3638 	return !ret;
3639 }
3640 
3641 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3642 {
3643 	return set_extent_buffer_uptodate(buf);
3644 }
3645 
3646 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3647 {
3648 	struct btrfs_root *root;
3649 	u64 transid = btrfs_header_generation(buf);
3650 	int was_dirty;
3651 
3652 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3653 	/*
3654 	 * This is a fast path so only do this check if we have sanity tests
3655 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3656 	 * outside of the sanity tests.
3657 	 */
3658 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3659 		return;
3660 #endif
3661 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3662 	btrfs_assert_tree_locked(buf);
3663 	if (transid != root->fs_info->generation)
3664 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3665 		       "found %llu running %llu\n",
3666 			buf->start, transid, root->fs_info->generation);
3667 	was_dirty = set_extent_buffer_dirty(buf);
3668 	if (!was_dirty)
3669 		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3670 				     buf->len,
3671 				     root->fs_info->dirty_metadata_batch);
3672 }
3673 
3674 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3675 					int flush_delayed)
3676 {
3677 	/*
3678 	 * looks as though older kernels can get into trouble with
3679 	 * this code, they end up stuck in balance_dirty_pages forever
3680 	 */
3681 	int ret;
3682 
3683 	if (current->flags & PF_MEMALLOC)
3684 		return;
3685 
3686 	if (flush_delayed)
3687 		btrfs_balance_delayed_items(root);
3688 
3689 	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3690 				     BTRFS_DIRTY_METADATA_THRESH);
3691 	if (ret > 0) {
3692 		balance_dirty_pages_ratelimited(
3693 				   root->fs_info->btree_inode->i_mapping);
3694 	}
3695 	return;
3696 }
3697 
3698 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3699 {
3700 	__btrfs_btree_balance_dirty(root, 1);
3701 }
3702 
3703 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3704 {
3705 	__btrfs_btree_balance_dirty(root, 0);
3706 }
3707 
3708 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3709 {
3710 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3711 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3712 }
3713 
3714 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3715 			      int read_only)
3716 {
3717 	/*
3718 	 * Placeholder for checks
3719 	 */
3720 	return 0;
3721 }
3722 
3723 static void btrfs_error_commit_super(struct btrfs_root *root)
3724 {
3725 	mutex_lock(&root->fs_info->cleaner_mutex);
3726 	btrfs_run_delayed_iputs(root);
3727 	mutex_unlock(&root->fs_info->cleaner_mutex);
3728 
3729 	down_write(&root->fs_info->cleanup_work_sem);
3730 	up_write(&root->fs_info->cleanup_work_sem);
3731 
3732 	/* cleanup FS via transaction */
3733 	btrfs_cleanup_transaction(root);
3734 }
3735 
3736 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3737 					     struct btrfs_root *root)
3738 {
3739 	struct btrfs_inode *btrfs_inode;
3740 	struct list_head splice;
3741 
3742 	INIT_LIST_HEAD(&splice);
3743 
3744 	mutex_lock(&root->fs_info->ordered_operations_mutex);
3745 	spin_lock(&root->fs_info->ordered_root_lock);
3746 
3747 	list_splice_init(&t->ordered_operations, &splice);
3748 	while (!list_empty(&splice)) {
3749 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3750 					 ordered_operations);
3751 
3752 		list_del_init(&btrfs_inode->ordered_operations);
3753 		spin_unlock(&root->fs_info->ordered_root_lock);
3754 
3755 		btrfs_invalidate_inodes(btrfs_inode->root);
3756 
3757 		spin_lock(&root->fs_info->ordered_root_lock);
3758 	}
3759 
3760 	spin_unlock(&root->fs_info->ordered_root_lock);
3761 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
3762 }
3763 
3764 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3765 {
3766 	struct btrfs_ordered_extent *ordered;
3767 
3768 	spin_lock(&root->ordered_extent_lock);
3769 	/*
3770 	 * This will just short circuit the ordered completion stuff which will
3771 	 * make sure the ordered extent gets properly cleaned up.
3772 	 */
3773 	list_for_each_entry(ordered, &root->ordered_extents,
3774 			    root_extent_list)
3775 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3776 	spin_unlock(&root->ordered_extent_lock);
3777 }
3778 
3779 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3780 {
3781 	struct btrfs_root *root;
3782 	struct list_head splice;
3783 
3784 	INIT_LIST_HEAD(&splice);
3785 
3786 	spin_lock(&fs_info->ordered_root_lock);
3787 	list_splice_init(&fs_info->ordered_roots, &splice);
3788 	while (!list_empty(&splice)) {
3789 		root = list_first_entry(&splice, struct btrfs_root,
3790 					ordered_root);
3791 		list_move_tail(&root->ordered_root,
3792 			       &fs_info->ordered_roots);
3793 
3794 		btrfs_destroy_ordered_extents(root);
3795 
3796 		cond_resched_lock(&fs_info->ordered_root_lock);
3797 	}
3798 	spin_unlock(&fs_info->ordered_root_lock);
3799 }
3800 
3801 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3802 				      struct btrfs_root *root)
3803 {
3804 	struct rb_node *node;
3805 	struct btrfs_delayed_ref_root *delayed_refs;
3806 	struct btrfs_delayed_ref_node *ref;
3807 	int ret = 0;
3808 
3809 	delayed_refs = &trans->delayed_refs;
3810 
3811 	spin_lock(&delayed_refs->lock);
3812 	if (atomic_read(&delayed_refs->num_entries) == 0) {
3813 		spin_unlock(&delayed_refs->lock);
3814 		btrfs_info(root->fs_info, "delayed_refs has NO entry");
3815 		return ret;
3816 	}
3817 
3818 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3819 		struct btrfs_delayed_ref_head *head;
3820 		bool pin_bytes = false;
3821 
3822 		head = rb_entry(node, struct btrfs_delayed_ref_head,
3823 				href_node);
3824 		if (!mutex_trylock(&head->mutex)) {
3825 			atomic_inc(&head->node.refs);
3826 			spin_unlock(&delayed_refs->lock);
3827 
3828 			mutex_lock(&head->mutex);
3829 			mutex_unlock(&head->mutex);
3830 			btrfs_put_delayed_ref(&head->node);
3831 			spin_lock(&delayed_refs->lock);
3832 			continue;
3833 		}
3834 		spin_lock(&head->lock);
3835 		while ((node = rb_first(&head->ref_root)) != NULL) {
3836 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
3837 				       rb_node);
3838 			ref->in_tree = 0;
3839 			rb_erase(&ref->rb_node, &head->ref_root);
3840 			atomic_dec(&delayed_refs->num_entries);
3841 			btrfs_put_delayed_ref(ref);
3842 		}
3843 		if (head->must_insert_reserved)
3844 			pin_bytes = true;
3845 		btrfs_free_delayed_extent_op(head->extent_op);
3846 		delayed_refs->num_heads--;
3847 		if (head->processing == 0)
3848 			delayed_refs->num_heads_ready--;
3849 		atomic_dec(&delayed_refs->num_entries);
3850 		head->node.in_tree = 0;
3851 		rb_erase(&head->href_node, &delayed_refs->href_root);
3852 		spin_unlock(&head->lock);
3853 		spin_unlock(&delayed_refs->lock);
3854 		mutex_unlock(&head->mutex);
3855 
3856 		if (pin_bytes)
3857 			btrfs_pin_extent(root, head->node.bytenr,
3858 					 head->node.num_bytes, 1);
3859 		btrfs_put_delayed_ref(&head->node);
3860 		cond_resched();
3861 		spin_lock(&delayed_refs->lock);
3862 	}
3863 
3864 	spin_unlock(&delayed_refs->lock);
3865 
3866 	return ret;
3867 }
3868 
3869 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3870 {
3871 	struct btrfs_inode *btrfs_inode;
3872 	struct list_head splice;
3873 
3874 	INIT_LIST_HEAD(&splice);
3875 
3876 	spin_lock(&root->delalloc_lock);
3877 	list_splice_init(&root->delalloc_inodes, &splice);
3878 
3879 	while (!list_empty(&splice)) {
3880 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3881 					       delalloc_inodes);
3882 
3883 		list_del_init(&btrfs_inode->delalloc_inodes);
3884 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3885 			  &btrfs_inode->runtime_flags);
3886 		spin_unlock(&root->delalloc_lock);
3887 
3888 		btrfs_invalidate_inodes(btrfs_inode->root);
3889 
3890 		spin_lock(&root->delalloc_lock);
3891 	}
3892 
3893 	spin_unlock(&root->delalloc_lock);
3894 }
3895 
3896 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3897 {
3898 	struct btrfs_root *root;
3899 	struct list_head splice;
3900 
3901 	INIT_LIST_HEAD(&splice);
3902 
3903 	spin_lock(&fs_info->delalloc_root_lock);
3904 	list_splice_init(&fs_info->delalloc_roots, &splice);
3905 	while (!list_empty(&splice)) {
3906 		root = list_first_entry(&splice, struct btrfs_root,
3907 					 delalloc_root);
3908 		list_del_init(&root->delalloc_root);
3909 		root = btrfs_grab_fs_root(root);
3910 		BUG_ON(!root);
3911 		spin_unlock(&fs_info->delalloc_root_lock);
3912 
3913 		btrfs_destroy_delalloc_inodes(root);
3914 		btrfs_put_fs_root(root);
3915 
3916 		spin_lock(&fs_info->delalloc_root_lock);
3917 	}
3918 	spin_unlock(&fs_info->delalloc_root_lock);
3919 }
3920 
3921 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3922 					struct extent_io_tree *dirty_pages,
3923 					int mark)
3924 {
3925 	int ret;
3926 	struct extent_buffer *eb;
3927 	u64 start = 0;
3928 	u64 end;
3929 
3930 	while (1) {
3931 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3932 					    mark, NULL);
3933 		if (ret)
3934 			break;
3935 
3936 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3937 		while (start <= end) {
3938 			eb = btrfs_find_tree_block(root, start,
3939 						   root->leafsize);
3940 			start += root->leafsize;
3941 			if (!eb)
3942 				continue;
3943 			wait_on_extent_buffer_writeback(eb);
3944 
3945 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3946 					       &eb->bflags))
3947 				clear_extent_buffer_dirty(eb);
3948 			free_extent_buffer_stale(eb);
3949 		}
3950 	}
3951 
3952 	return ret;
3953 }
3954 
3955 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3956 				       struct extent_io_tree *pinned_extents)
3957 {
3958 	struct extent_io_tree *unpin;
3959 	u64 start;
3960 	u64 end;
3961 	int ret;
3962 	bool loop = true;
3963 
3964 	unpin = pinned_extents;
3965 again:
3966 	while (1) {
3967 		ret = find_first_extent_bit(unpin, 0, &start, &end,
3968 					    EXTENT_DIRTY, NULL);
3969 		if (ret)
3970 			break;
3971 
3972 		/* opt_discard */
3973 		if (btrfs_test_opt(root, DISCARD))
3974 			ret = btrfs_error_discard_extent(root, start,
3975 							 end + 1 - start,
3976 							 NULL);
3977 
3978 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
3979 		btrfs_error_unpin_extent_range(root, start, end);
3980 		cond_resched();
3981 	}
3982 
3983 	if (loop) {
3984 		if (unpin == &root->fs_info->freed_extents[0])
3985 			unpin = &root->fs_info->freed_extents[1];
3986 		else
3987 			unpin = &root->fs_info->freed_extents[0];
3988 		loop = false;
3989 		goto again;
3990 	}
3991 
3992 	return 0;
3993 }
3994 
3995 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3996 				   struct btrfs_root *root)
3997 {
3998 	btrfs_destroy_ordered_operations(cur_trans, root);
3999 
4000 	btrfs_destroy_delayed_refs(cur_trans, root);
4001 
4002 	cur_trans->state = TRANS_STATE_COMMIT_START;
4003 	wake_up(&root->fs_info->transaction_blocked_wait);
4004 
4005 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4006 	wake_up(&root->fs_info->transaction_wait);
4007 
4008 	btrfs_destroy_delayed_inodes(root);
4009 	btrfs_assert_delayed_root_empty(root);
4010 
4011 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4012 				     EXTENT_DIRTY);
4013 	btrfs_destroy_pinned_extent(root,
4014 				    root->fs_info->pinned_extents);
4015 
4016 	cur_trans->state =TRANS_STATE_COMPLETED;
4017 	wake_up(&cur_trans->commit_wait);
4018 
4019 	/*
4020 	memset(cur_trans, 0, sizeof(*cur_trans));
4021 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4022 	*/
4023 }
4024 
4025 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4026 {
4027 	struct btrfs_transaction *t;
4028 
4029 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
4030 
4031 	spin_lock(&root->fs_info->trans_lock);
4032 	while (!list_empty(&root->fs_info->trans_list)) {
4033 		t = list_first_entry(&root->fs_info->trans_list,
4034 				     struct btrfs_transaction, list);
4035 		if (t->state >= TRANS_STATE_COMMIT_START) {
4036 			atomic_inc(&t->use_count);
4037 			spin_unlock(&root->fs_info->trans_lock);
4038 			btrfs_wait_for_commit(root, t->transid);
4039 			btrfs_put_transaction(t);
4040 			spin_lock(&root->fs_info->trans_lock);
4041 			continue;
4042 		}
4043 		if (t == root->fs_info->running_transaction) {
4044 			t->state = TRANS_STATE_COMMIT_DOING;
4045 			spin_unlock(&root->fs_info->trans_lock);
4046 			/*
4047 			 * We wait for 0 num_writers since we don't hold a trans
4048 			 * handle open currently for this transaction.
4049 			 */
4050 			wait_event(t->writer_wait,
4051 				   atomic_read(&t->num_writers) == 0);
4052 		} else {
4053 			spin_unlock(&root->fs_info->trans_lock);
4054 		}
4055 		btrfs_cleanup_one_transaction(t, root);
4056 
4057 		spin_lock(&root->fs_info->trans_lock);
4058 		if (t == root->fs_info->running_transaction)
4059 			root->fs_info->running_transaction = NULL;
4060 		list_del_init(&t->list);
4061 		spin_unlock(&root->fs_info->trans_lock);
4062 
4063 		btrfs_put_transaction(t);
4064 		trace_btrfs_transaction_commit(root);
4065 		spin_lock(&root->fs_info->trans_lock);
4066 	}
4067 	spin_unlock(&root->fs_info->trans_lock);
4068 	btrfs_destroy_all_ordered_extents(root->fs_info);
4069 	btrfs_destroy_delayed_inodes(root);
4070 	btrfs_assert_delayed_root_empty(root);
4071 	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4072 	btrfs_destroy_all_delalloc_inodes(root->fs_info);
4073 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4074 
4075 	return 0;
4076 }
4077 
4078 static struct extent_io_ops btree_extent_io_ops = {
4079 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4080 	.readpage_io_failed_hook = btree_io_failed_hook,
4081 	.submit_bio_hook = btree_submit_bio_hook,
4082 	/* note we're sharing with inode.c for the merge bio hook */
4083 	.merge_bio_hook = btrfs_merge_bio_hook,
4084 };
4085