1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/slab.h> 30 #include <linux/migrate.h> 31 #include <linux/ratelimit.h> 32 #include <linux/uuid.h> 33 #include <linux/semaphore.h> 34 #include <asm/unaligned.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "hash.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "volumes.h" 41 #include "print-tree.h" 42 #include "async-thread.h" 43 #include "locking.h" 44 #include "tree-log.h" 45 #include "free-space-cache.h" 46 #include "inode-map.h" 47 #include "check-integrity.h" 48 #include "rcu-string.h" 49 #include "dev-replace.h" 50 #include "raid56.h" 51 #include "sysfs.h" 52 53 #ifdef CONFIG_X86 54 #include <asm/cpufeature.h> 55 #endif 56 57 static struct extent_io_ops btree_extent_io_ops; 58 static void end_workqueue_fn(struct btrfs_work *work); 59 static void free_fs_root(struct btrfs_root *root); 60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 61 int read_only); 62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t, 63 struct btrfs_root *root); 64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 66 struct btrfs_root *root); 67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 68 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 69 struct extent_io_tree *dirty_pages, 70 int mark); 71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 72 struct extent_io_tree *pinned_extents); 73 static int btrfs_cleanup_transaction(struct btrfs_root *root); 74 static void btrfs_error_commit_super(struct btrfs_root *root); 75 76 /* 77 * end_io_wq structs are used to do processing in task context when an IO is 78 * complete. This is used during reads to verify checksums, and it is used 79 * by writes to insert metadata for new file extents after IO is complete. 80 */ 81 struct end_io_wq { 82 struct bio *bio; 83 bio_end_io_t *end_io; 84 void *private; 85 struct btrfs_fs_info *info; 86 int error; 87 int metadata; 88 struct list_head list; 89 struct btrfs_work work; 90 }; 91 92 /* 93 * async submit bios are used to offload expensive checksumming 94 * onto the worker threads. They checksum file and metadata bios 95 * just before they are sent down the IO stack. 96 */ 97 struct async_submit_bio { 98 struct inode *inode; 99 struct bio *bio; 100 struct list_head list; 101 extent_submit_bio_hook_t *submit_bio_start; 102 extent_submit_bio_hook_t *submit_bio_done; 103 int rw; 104 int mirror_num; 105 unsigned long bio_flags; 106 /* 107 * bio_offset is optional, can be used if the pages in the bio 108 * can't tell us where in the file the bio should go 109 */ 110 u64 bio_offset; 111 struct btrfs_work work; 112 int error; 113 }; 114 115 /* 116 * Lockdep class keys for extent_buffer->lock's in this root. For a given 117 * eb, the lockdep key is determined by the btrfs_root it belongs to and 118 * the level the eb occupies in the tree. 119 * 120 * Different roots are used for different purposes and may nest inside each 121 * other and they require separate keysets. As lockdep keys should be 122 * static, assign keysets according to the purpose of the root as indicated 123 * by btrfs_root->objectid. This ensures that all special purpose roots 124 * have separate keysets. 125 * 126 * Lock-nesting across peer nodes is always done with the immediate parent 127 * node locked thus preventing deadlock. As lockdep doesn't know this, use 128 * subclass to avoid triggering lockdep warning in such cases. 129 * 130 * The key is set by the readpage_end_io_hook after the buffer has passed 131 * csum validation but before the pages are unlocked. It is also set by 132 * btrfs_init_new_buffer on freshly allocated blocks. 133 * 134 * We also add a check to make sure the highest level of the tree is the 135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 136 * needs update as well. 137 */ 138 #ifdef CONFIG_DEBUG_LOCK_ALLOC 139 # if BTRFS_MAX_LEVEL != 8 140 # error 141 # endif 142 143 static struct btrfs_lockdep_keyset { 144 u64 id; /* root objectid */ 145 const char *name_stem; /* lock name stem */ 146 char names[BTRFS_MAX_LEVEL + 1][20]; 147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 148 } btrfs_lockdep_keysets[] = { 149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 159 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 160 { .id = 0, .name_stem = "tree" }, 161 }; 162 163 void __init btrfs_init_lockdep(void) 164 { 165 int i, j; 166 167 /* initialize lockdep class names */ 168 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 169 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 170 171 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 172 snprintf(ks->names[j], sizeof(ks->names[j]), 173 "btrfs-%s-%02d", ks->name_stem, j); 174 } 175 } 176 177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 178 int level) 179 { 180 struct btrfs_lockdep_keyset *ks; 181 182 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 183 184 /* find the matching keyset, id 0 is the default entry */ 185 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 186 if (ks->id == objectid) 187 break; 188 189 lockdep_set_class_and_name(&eb->lock, 190 &ks->keys[level], ks->names[level]); 191 } 192 193 #endif 194 195 /* 196 * extents on the btree inode are pretty simple, there's one extent 197 * that covers the entire device 198 */ 199 static struct extent_map *btree_get_extent(struct inode *inode, 200 struct page *page, size_t pg_offset, u64 start, u64 len, 201 int create) 202 { 203 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 204 struct extent_map *em; 205 int ret; 206 207 read_lock(&em_tree->lock); 208 em = lookup_extent_mapping(em_tree, start, len); 209 if (em) { 210 em->bdev = 211 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 212 read_unlock(&em_tree->lock); 213 goto out; 214 } 215 read_unlock(&em_tree->lock); 216 217 em = alloc_extent_map(); 218 if (!em) { 219 em = ERR_PTR(-ENOMEM); 220 goto out; 221 } 222 em->start = 0; 223 em->len = (u64)-1; 224 em->block_len = (u64)-1; 225 em->block_start = 0; 226 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 227 228 write_lock(&em_tree->lock); 229 ret = add_extent_mapping(em_tree, em, 0); 230 if (ret == -EEXIST) { 231 free_extent_map(em); 232 em = lookup_extent_mapping(em_tree, start, len); 233 if (!em) 234 em = ERR_PTR(-EIO); 235 } else if (ret) { 236 free_extent_map(em); 237 em = ERR_PTR(ret); 238 } 239 write_unlock(&em_tree->lock); 240 241 out: 242 return em; 243 } 244 245 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 246 { 247 return btrfs_crc32c(seed, data, len); 248 } 249 250 void btrfs_csum_final(u32 crc, char *result) 251 { 252 put_unaligned_le32(~crc, result); 253 } 254 255 /* 256 * compute the csum for a btree block, and either verify it or write it 257 * into the csum field of the block. 258 */ 259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 260 int verify) 261 { 262 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 263 char *result = NULL; 264 unsigned long len; 265 unsigned long cur_len; 266 unsigned long offset = BTRFS_CSUM_SIZE; 267 char *kaddr; 268 unsigned long map_start; 269 unsigned long map_len; 270 int err; 271 u32 crc = ~(u32)0; 272 unsigned long inline_result; 273 274 len = buf->len - offset; 275 while (len > 0) { 276 err = map_private_extent_buffer(buf, offset, 32, 277 &kaddr, &map_start, &map_len); 278 if (err) 279 return 1; 280 cur_len = min(len, map_len - (offset - map_start)); 281 crc = btrfs_csum_data(kaddr + offset - map_start, 282 crc, cur_len); 283 len -= cur_len; 284 offset += cur_len; 285 } 286 if (csum_size > sizeof(inline_result)) { 287 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 288 if (!result) 289 return 1; 290 } else { 291 result = (char *)&inline_result; 292 } 293 294 btrfs_csum_final(crc, result); 295 296 if (verify) { 297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 298 u32 val; 299 u32 found = 0; 300 memcpy(&found, result, csum_size); 301 302 read_extent_buffer(buf, &val, 0, csum_size); 303 printk_ratelimited(KERN_INFO 304 "BTRFS: %s checksum verify failed on %llu wanted %X found %X " 305 "level %d\n", 306 root->fs_info->sb->s_id, buf->start, 307 val, found, btrfs_header_level(buf)); 308 if (result != (char *)&inline_result) 309 kfree(result); 310 return 1; 311 } 312 } else { 313 write_extent_buffer(buf, result, 0, csum_size); 314 } 315 if (result != (char *)&inline_result) 316 kfree(result); 317 return 0; 318 } 319 320 /* 321 * we can't consider a given block up to date unless the transid of the 322 * block matches the transid in the parent node's pointer. This is how we 323 * detect blocks that either didn't get written at all or got written 324 * in the wrong place. 325 */ 326 static int verify_parent_transid(struct extent_io_tree *io_tree, 327 struct extent_buffer *eb, u64 parent_transid, 328 int atomic) 329 { 330 struct extent_state *cached_state = NULL; 331 int ret; 332 333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 334 return 0; 335 336 if (atomic) 337 return -EAGAIN; 338 339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 340 0, &cached_state); 341 if (extent_buffer_uptodate(eb) && 342 btrfs_header_generation(eb) == parent_transid) { 343 ret = 0; 344 goto out; 345 } 346 printk_ratelimited("parent transid verify failed on %llu wanted %llu " 347 "found %llu\n", 348 eb->start, parent_transid, btrfs_header_generation(eb)); 349 ret = 1; 350 clear_extent_buffer_uptodate(eb); 351 out: 352 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 353 &cached_state, GFP_NOFS); 354 return ret; 355 } 356 357 /* 358 * Return 0 if the superblock checksum type matches the checksum value of that 359 * algorithm. Pass the raw disk superblock data. 360 */ 361 static int btrfs_check_super_csum(char *raw_disk_sb) 362 { 363 struct btrfs_super_block *disk_sb = 364 (struct btrfs_super_block *)raw_disk_sb; 365 u16 csum_type = btrfs_super_csum_type(disk_sb); 366 int ret = 0; 367 368 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 369 u32 crc = ~(u32)0; 370 const int csum_size = sizeof(crc); 371 char result[csum_size]; 372 373 /* 374 * The super_block structure does not span the whole 375 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 376 * is filled with zeros and is included in the checkum. 377 */ 378 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 379 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 380 btrfs_csum_final(crc, result); 381 382 if (memcmp(raw_disk_sb, result, csum_size)) 383 ret = 1; 384 385 if (ret && btrfs_super_generation(disk_sb) < 10) { 386 printk(KERN_WARNING 387 "BTRFS: super block crcs don't match, older mkfs detected\n"); 388 ret = 0; 389 } 390 } 391 392 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 393 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n", 394 csum_type); 395 ret = 1; 396 } 397 398 return ret; 399 } 400 401 /* 402 * helper to read a given tree block, doing retries as required when 403 * the checksums don't match and we have alternate mirrors to try. 404 */ 405 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 406 struct extent_buffer *eb, 407 u64 start, u64 parent_transid) 408 { 409 struct extent_io_tree *io_tree; 410 int failed = 0; 411 int ret; 412 int num_copies = 0; 413 int mirror_num = 0; 414 int failed_mirror = 0; 415 416 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 417 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 418 while (1) { 419 ret = read_extent_buffer_pages(io_tree, eb, start, 420 WAIT_COMPLETE, 421 btree_get_extent, mirror_num); 422 if (!ret) { 423 if (!verify_parent_transid(io_tree, eb, 424 parent_transid, 0)) 425 break; 426 else 427 ret = -EIO; 428 } 429 430 /* 431 * This buffer's crc is fine, but its contents are corrupted, so 432 * there is no reason to read the other copies, they won't be 433 * any less wrong. 434 */ 435 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 436 break; 437 438 num_copies = btrfs_num_copies(root->fs_info, 439 eb->start, eb->len); 440 if (num_copies == 1) 441 break; 442 443 if (!failed_mirror) { 444 failed = 1; 445 failed_mirror = eb->read_mirror; 446 } 447 448 mirror_num++; 449 if (mirror_num == failed_mirror) 450 mirror_num++; 451 452 if (mirror_num > num_copies) 453 break; 454 } 455 456 if (failed && !ret && failed_mirror) 457 repair_eb_io_failure(root, eb, failed_mirror); 458 459 return ret; 460 } 461 462 /* 463 * checksum a dirty tree block before IO. This has extra checks to make sure 464 * we only fill in the checksum field in the first page of a multi-page block 465 */ 466 467 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 468 { 469 u64 start = page_offset(page); 470 u64 found_start; 471 struct extent_buffer *eb; 472 473 eb = (struct extent_buffer *)page->private; 474 if (page != eb->pages[0]) 475 return 0; 476 found_start = btrfs_header_bytenr(eb); 477 if (WARN_ON(found_start != start || !PageUptodate(page))) 478 return 0; 479 csum_tree_block(root, eb, 0); 480 return 0; 481 } 482 483 static int check_tree_block_fsid(struct btrfs_root *root, 484 struct extent_buffer *eb) 485 { 486 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 487 u8 fsid[BTRFS_UUID_SIZE]; 488 int ret = 1; 489 490 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 491 while (fs_devices) { 492 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 493 ret = 0; 494 break; 495 } 496 fs_devices = fs_devices->seed; 497 } 498 return ret; 499 } 500 501 #define CORRUPT(reason, eb, root, slot) \ 502 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \ 503 "root=%llu, slot=%d", reason, \ 504 btrfs_header_bytenr(eb), root->objectid, slot) 505 506 static noinline int check_leaf(struct btrfs_root *root, 507 struct extent_buffer *leaf) 508 { 509 struct btrfs_key key; 510 struct btrfs_key leaf_key; 511 u32 nritems = btrfs_header_nritems(leaf); 512 int slot; 513 514 if (nritems == 0) 515 return 0; 516 517 /* Check the 0 item */ 518 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 519 BTRFS_LEAF_DATA_SIZE(root)) { 520 CORRUPT("invalid item offset size pair", leaf, root, 0); 521 return -EIO; 522 } 523 524 /* 525 * Check to make sure each items keys are in the correct order and their 526 * offsets make sense. We only have to loop through nritems-1 because 527 * we check the current slot against the next slot, which verifies the 528 * next slot's offset+size makes sense and that the current's slot 529 * offset is correct. 530 */ 531 for (slot = 0; slot < nritems - 1; slot++) { 532 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 533 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 534 535 /* Make sure the keys are in the right order */ 536 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 537 CORRUPT("bad key order", leaf, root, slot); 538 return -EIO; 539 } 540 541 /* 542 * Make sure the offset and ends are right, remember that the 543 * item data starts at the end of the leaf and grows towards the 544 * front. 545 */ 546 if (btrfs_item_offset_nr(leaf, slot) != 547 btrfs_item_end_nr(leaf, slot + 1)) { 548 CORRUPT("slot offset bad", leaf, root, slot); 549 return -EIO; 550 } 551 552 /* 553 * Check to make sure that we don't point outside of the leaf, 554 * just incase all the items are consistent to eachother, but 555 * all point outside of the leaf. 556 */ 557 if (btrfs_item_end_nr(leaf, slot) > 558 BTRFS_LEAF_DATA_SIZE(root)) { 559 CORRUPT("slot end outside of leaf", leaf, root, slot); 560 return -EIO; 561 } 562 } 563 564 return 0; 565 } 566 567 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 568 u64 phy_offset, struct page *page, 569 u64 start, u64 end, int mirror) 570 { 571 u64 found_start; 572 int found_level; 573 struct extent_buffer *eb; 574 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 575 int ret = 0; 576 int reads_done; 577 578 if (!page->private) 579 goto out; 580 581 eb = (struct extent_buffer *)page->private; 582 583 /* the pending IO might have been the only thing that kept this buffer 584 * in memory. Make sure we have a ref for all this other checks 585 */ 586 extent_buffer_get(eb); 587 588 reads_done = atomic_dec_and_test(&eb->io_pages); 589 if (!reads_done) 590 goto err; 591 592 eb->read_mirror = mirror; 593 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 594 ret = -EIO; 595 goto err; 596 } 597 598 found_start = btrfs_header_bytenr(eb); 599 if (found_start != eb->start) { 600 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start " 601 "%llu %llu\n", 602 found_start, eb->start); 603 ret = -EIO; 604 goto err; 605 } 606 if (check_tree_block_fsid(root, eb)) { 607 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n", 608 eb->start); 609 ret = -EIO; 610 goto err; 611 } 612 found_level = btrfs_header_level(eb); 613 if (found_level >= BTRFS_MAX_LEVEL) { 614 btrfs_info(root->fs_info, "bad tree block level %d", 615 (int)btrfs_header_level(eb)); 616 ret = -EIO; 617 goto err; 618 } 619 620 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 621 eb, found_level); 622 623 ret = csum_tree_block(root, eb, 1); 624 if (ret) { 625 ret = -EIO; 626 goto err; 627 } 628 629 /* 630 * If this is a leaf block and it is corrupt, set the corrupt bit so 631 * that we don't try and read the other copies of this block, just 632 * return -EIO. 633 */ 634 if (found_level == 0 && check_leaf(root, eb)) { 635 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 636 ret = -EIO; 637 } 638 639 if (!ret) 640 set_extent_buffer_uptodate(eb); 641 err: 642 if (reads_done && 643 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 644 btree_readahead_hook(root, eb, eb->start, ret); 645 646 if (ret) { 647 /* 648 * our io error hook is going to dec the io pages 649 * again, we have to make sure it has something 650 * to decrement 651 */ 652 atomic_inc(&eb->io_pages); 653 clear_extent_buffer_uptodate(eb); 654 } 655 free_extent_buffer(eb); 656 out: 657 return ret; 658 } 659 660 static int btree_io_failed_hook(struct page *page, int failed_mirror) 661 { 662 struct extent_buffer *eb; 663 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 664 665 eb = (struct extent_buffer *)page->private; 666 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 667 eb->read_mirror = failed_mirror; 668 atomic_dec(&eb->io_pages); 669 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 670 btree_readahead_hook(root, eb, eb->start, -EIO); 671 return -EIO; /* we fixed nothing */ 672 } 673 674 static void end_workqueue_bio(struct bio *bio, int err) 675 { 676 struct end_io_wq *end_io_wq = bio->bi_private; 677 struct btrfs_fs_info *fs_info; 678 679 fs_info = end_io_wq->info; 680 end_io_wq->error = err; 681 end_io_wq->work.func = end_workqueue_fn; 682 end_io_wq->work.flags = 0; 683 684 if (bio->bi_rw & REQ_WRITE) { 685 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) 686 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 687 &end_io_wq->work); 688 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) 689 btrfs_queue_worker(&fs_info->endio_freespace_worker, 690 &end_io_wq->work); 691 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 692 btrfs_queue_worker(&fs_info->endio_raid56_workers, 693 &end_io_wq->work); 694 else 695 btrfs_queue_worker(&fs_info->endio_write_workers, 696 &end_io_wq->work); 697 } else { 698 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 699 btrfs_queue_worker(&fs_info->endio_raid56_workers, 700 &end_io_wq->work); 701 else if (end_io_wq->metadata) 702 btrfs_queue_worker(&fs_info->endio_meta_workers, 703 &end_io_wq->work); 704 else 705 btrfs_queue_worker(&fs_info->endio_workers, 706 &end_io_wq->work); 707 } 708 } 709 710 /* 711 * For the metadata arg you want 712 * 713 * 0 - if data 714 * 1 - if normal metadta 715 * 2 - if writing to the free space cache area 716 * 3 - raid parity work 717 */ 718 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 719 int metadata) 720 { 721 struct end_io_wq *end_io_wq; 722 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 723 if (!end_io_wq) 724 return -ENOMEM; 725 726 end_io_wq->private = bio->bi_private; 727 end_io_wq->end_io = bio->bi_end_io; 728 end_io_wq->info = info; 729 end_io_wq->error = 0; 730 end_io_wq->bio = bio; 731 end_io_wq->metadata = metadata; 732 733 bio->bi_private = end_io_wq; 734 bio->bi_end_io = end_workqueue_bio; 735 return 0; 736 } 737 738 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 739 { 740 unsigned long limit = min_t(unsigned long, 741 info->workers.max_workers, 742 info->fs_devices->open_devices); 743 return 256 * limit; 744 } 745 746 static void run_one_async_start(struct btrfs_work *work) 747 { 748 struct async_submit_bio *async; 749 int ret; 750 751 async = container_of(work, struct async_submit_bio, work); 752 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 753 async->mirror_num, async->bio_flags, 754 async->bio_offset); 755 if (ret) 756 async->error = ret; 757 } 758 759 static void run_one_async_done(struct btrfs_work *work) 760 { 761 struct btrfs_fs_info *fs_info; 762 struct async_submit_bio *async; 763 int limit; 764 765 async = container_of(work, struct async_submit_bio, work); 766 fs_info = BTRFS_I(async->inode)->root->fs_info; 767 768 limit = btrfs_async_submit_limit(fs_info); 769 limit = limit * 2 / 3; 770 771 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 772 waitqueue_active(&fs_info->async_submit_wait)) 773 wake_up(&fs_info->async_submit_wait); 774 775 /* If an error occured we just want to clean up the bio and move on */ 776 if (async->error) { 777 bio_endio(async->bio, async->error); 778 return; 779 } 780 781 async->submit_bio_done(async->inode, async->rw, async->bio, 782 async->mirror_num, async->bio_flags, 783 async->bio_offset); 784 } 785 786 static void run_one_async_free(struct btrfs_work *work) 787 { 788 struct async_submit_bio *async; 789 790 async = container_of(work, struct async_submit_bio, work); 791 kfree(async); 792 } 793 794 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 795 int rw, struct bio *bio, int mirror_num, 796 unsigned long bio_flags, 797 u64 bio_offset, 798 extent_submit_bio_hook_t *submit_bio_start, 799 extent_submit_bio_hook_t *submit_bio_done) 800 { 801 struct async_submit_bio *async; 802 803 async = kmalloc(sizeof(*async), GFP_NOFS); 804 if (!async) 805 return -ENOMEM; 806 807 async->inode = inode; 808 async->rw = rw; 809 async->bio = bio; 810 async->mirror_num = mirror_num; 811 async->submit_bio_start = submit_bio_start; 812 async->submit_bio_done = submit_bio_done; 813 814 async->work.func = run_one_async_start; 815 async->work.ordered_func = run_one_async_done; 816 async->work.ordered_free = run_one_async_free; 817 818 async->work.flags = 0; 819 async->bio_flags = bio_flags; 820 async->bio_offset = bio_offset; 821 822 async->error = 0; 823 824 atomic_inc(&fs_info->nr_async_submits); 825 826 if (rw & REQ_SYNC) 827 btrfs_set_work_high_prio(&async->work); 828 829 btrfs_queue_worker(&fs_info->workers, &async->work); 830 831 while (atomic_read(&fs_info->async_submit_draining) && 832 atomic_read(&fs_info->nr_async_submits)) { 833 wait_event(fs_info->async_submit_wait, 834 (atomic_read(&fs_info->nr_async_submits) == 0)); 835 } 836 837 return 0; 838 } 839 840 static int btree_csum_one_bio(struct bio *bio) 841 { 842 struct bio_vec *bvec; 843 struct btrfs_root *root; 844 int i, ret = 0; 845 846 bio_for_each_segment_all(bvec, bio, i) { 847 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 848 ret = csum_dirty_buffer(root, bvec->bv_page); 849 if (ret) 850 break; 851 } 852 853 return ret; 854 } 855 856 static int __btree_submit_bio_start(struct inode *inode, int rw, 857 struct bio *bio, int mirror_num, 858 unsigned long bio_flags, 859 u64 bio_offset) 860 { 861 /* 862 * when we're called for a write, we're already in the async 863 * submission context. Just jump into btrfs_map_bio 864 */ 865 return btree_csum_one_bio(bio); 866 } 867 868 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 869 int mirror_num, unsigned long bio_flags, 870 u64 bio_offset) 871 { 872 int ret; 873 874 /* 875 * when we're called for a write, we're already in the async 876 * submission context. Just jump into btrfs_map_bio 877 */ 878 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 879 if (ret) 880 bio_endio(bio, ret); 881 return ret; 882 } 883 884 static int check_async_write(struct inode *inode, unsigned long bio_flags) 885 { 886 if (bio_flags & EXTENT_BIO_TREE_LOG) 887 return 0; 888 #ifdef CONFIG_X86 889 if (cpu_has_xmm4_2) 890 return 0; 891 #endif 892 return 1; 893 } 894 895 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 896 int mirror_num, unsigned long bio_flags, 897 u64 bio_offset) 898 { 899 int async = check_async_write(inode, bio_flags); 900 int ret; 901 902 if (!(rw & REQ_WRITE)) { 903 /* 904 * called for a read, do the setup so that checksum validation 905 * can happen in the async kernel threads 906 */ 907 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 908 bio, 1); 909 if (ret) 910 goto out_w_error; 911 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 912 mirror_num, 0); 913 } else if (!async) { 914 ret = btree_csum_one_bio(bio); 915 if (ret) 916 goto out_w_error; 917 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 918 mirror_num, 0); 919 } else { 920 /* 921 * kthread helpers are used to submit writes so that 922 * checksumming can happen in parallel across all CPUs 923 */ 924 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 925 inode, rw, bio, mirror_num, 0, 926 bio_offset, 927 __btree_submit_bio_start, 928 __btree_submit_bio_done); 929 } 930 931 if (ret) { 932 out_w_error: 933 bio_endio(bio, ret); 934 } 935 return ret; 936 } 937 938 #ifdef CONFIG_MIGRATION 939 static int btree_migratepage(struct address_space *mapping, 940 struct page *newpage, struct page *page, 941 enum migrate_mode mode) 942 { 943 /* 944 * we can't safely write a btree page from here, 945 * we haven't done the locking hook 946 */ 947 if (PageDirty(page)) 948 return -EAGAIN; 949 /* 950 * Buffers may be managed in a filesystem specific way. 951 * We must have no buffers or drop them. 952 */ 953 if (page_has_private(page) && 954 !try_to_release_page(page, GFP_KERNEL)) 955 return -EAGAIN; 956 return migrate_page(mapping, newpage, page, mode); 957 } 958 #endif 959 960 961 static int btree_writepages(struct address_space *mapping, 962 struct writeback_control *wbc) 963 { 964 struct btrfs_fs_info *fs_info; 965 int ret; 966 967 if (wbc->sync_mode == WB_SYNC_NONE) { 968 969 if (wbc->for_kupdate) 970 return 0; 971 972 fs_info = BTRFS_I(mapping->host)->root->fs_info; 973 /* this is a bit racy, but that's ok */ 974 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 975 BTRFS_DIRTY_METADATA_THRESH); 976 if (ret < 0) 977 return 0; 978 } 979 return btree_write_cache_pages(mapping, wbc); 980 } 981 982 static int btree_readpage(struct file *file, struct page *page) 983 { 984 struct extent_io_tree *tree; 985 tree = &BTRFS_I(page->mapping->host)->io_tree; 986 return extent_read_full_page(tree, page, btree_get_extent, 0); 987 } 988 989 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 990 { 991 if (PageWriteback(page) || PageDirty(page)) 992 return 0; 993 994 return try_release_extent_buffer(page); 995 } 996 997 static void btree_invalidatepage(struct page *page, unsigned int offset, 998 unsigned int length) 999 { 1000 struct extent_io_tree *tree; 1001 tree = &BTRFS_I(page->mapping->host)->io_tree; 1002 extent_invalidatepage(tree, page, offset); 1003 btree_releasepage(page, GFP_NOFS); 1004 if (PagePrivate(page)) { 1005 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1006 "page private not zero on page %llu", 1007 (unsigned long long)page_offset(page)); 1008 ClearPagePrivate(page); 1009 set_page_private(page, 0); 1010 page_cache_release(page); 1011 } 1012 } 1013 1014 static int btree_set_page_dirty(struct page *page) 1015 { 1016 #ifdef DEBUG 1017 struct extent_buffer *eb; 1018 1019 BUG_ON(!PagePrivate(page)); 1020 eb = (struct extent_buffer *)page->private; 1021 BUG_ON(!eb); 1022 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1023 BUG_ON(!atomic_read(&eb->refs)); 1024 btrfs_assert_tree_locked(eb); 1025 #endif 1026 return __set_page_dirty_nobuffers(page); 1027 } 1028 1029 static const struct address_space_operations btree_aops = { 1030 .readpage = btree_readpage, 1031 .writepages = btree_writepages, 1032 .releasepage = btree_releasepage, 1033 .invalidatepage = btree_invalidatepage, 1034 #ifdef CONFIG_MIGRATION 1035 .migratepage = btree_migratepage, 1036 #endif 1037 .set_page_dirty = btree_set_page_dirty, 1038 }; 1039 1040 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1041 u64 parent_transid) 1042 { 1043 struct extent_buffer *buf = NULL; 1044 struct inode *btree_inode = root->fs_info->btree_inode; 1045 int ret = 0; 1046 1047 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1048 if (!buf) 1049 return 0; 1050 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1051 buf, 0, WAIT_NONE, btree_get_extent, 0); 1052 free_extent_buffer(buf); 1053 return ret; 1054 } 1055 1056 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1057 int mirror_num, struct extent_buffer **eb) 1058 { 1059 struct extent_buffer *buf = NULL; 1060 struct inode *btree_inode = root->fs_info->btree_inode; 1061 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1062 int ret; 1063 1064 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1065 if (!buf) 1066 return 0; 1067 1068 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1069 1070 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1071 btree_get_extent, mirror_num); 1072 if (ret) { 1073 free_extent_buffer(buf); 1074 return ret; 1075 } 1076 1077 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1078 free_extent_buffer(buf); 1079 return -EIO; 1080 } else if (extent_buffer_uptodate(buf)) { 1081 *eb = buf; 1082 } else { 1083 free_extent_buffer(buf); 1084 } 1085 return 0; 1086 } 1087 1088 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 1089 u64 bytenr, u32 blocksize) 1090 { 1091 return find_extent_buffer(root->fs_info, bytenr); 1092 } 1093 1094 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1095 u64 bytenr, u32 blocksize) 1096 { 1097 return alloc_extent_buffer(root->fs_info, bytenr, blocksize); 1098 } 1099 1100 1101 int btrfs_write_tree_block(struct extent_buffer *buf) 1102 { 1103 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1104 buf->start + buf->len - 1); 1105 } 1106 1107 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1108 { 1109 return filemap_fdatawait_range(buf->pages[0]->mapping, 1110 buf->start, buf->start + buf->len - 1); 1111 } 1112 1113 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1114 u32 blocksize, u64 parent_transid) 1115 { 1116 struct extent_buffer *buf = NULL; 1117 int ret; 1118 1119 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1120 if (!buf) 1121 return NULL; 1122 1123 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1124 if (ret) { 1125 free_extent_buffer(buf); 1126 return NULL; 1127 } 1128 return buf; 1129 1130 } 1131 1132 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1133 struct extent_buffer *buf) 1134 { 1135 struct btrfs_fs_info *fs_info = root->fs_info; 1136 1137 if (btrfs_header_generation(buf) == 1138 fs_info->running_transaction->transid) { 1139 btrfs_assert_tree_locked(buf); 1140 1141 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1142 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1143 -buf->len, 1144 fs_info->dirty_metadata_batch); 1145 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1146 btrfs_set_lock_blocking(buf); 1147 clear_extent_buffer_dirty(buf); 1148 } 1149 } 1150 } 1151 1152 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 1153 u32 stripesize, struct btrfs_root *root, 1154 struct btrfs_fs_info *fs_info, 1155 u64 objectid) 1156 { 1157 root->node = NULL; 1158 root->commit_root = NULL; 1159 root->sectorsize = sectorsize; 1160 root->nodesize = nodesize; 1161 root->leafsize = leafsize; 1162 root->stripesize = stripesize; 1163 root->ref_cows = 0; 1164 root->track_dirty = 0; 1165 root->in_radix = 0; 1166 root->orphan_item_inserted = 0; 1167 root->orphan_cleanup_state = 0; 1168 1169 root->objectid = objectid; 1170 root->last_trans = 0; 1171 root->highest_objectid = 0; 1172 root->nr_delalloc_inodes = 0; 1173 root->nr_ordered_extents = 0; 1174 root->name = NULL; 1175 root->inode_tree = RB_ROOT; 1176 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1177 root->block_rsv = NULL; 1178 root->orphan_block_rsv = NULL; 1179 1180 INIT_LIST_HEAD(&root->dirty_list); 1181 INIT_LIST_HEAD(&root->root_list); 1182 INIT_LIST_HEAD(&root->delalloc_inodes); 1183 INIT_LIST_HEAD(&root->delalloc_root); 1184 INIT_LIST_HEAD(&root->ordered_extents); 1185 INIT_LIST_HEAD(&root->ordered_root); 1186 INIT_LIST_HEAD(&root->logged_list[0]); 1187 INIT_LIST_HEAD(&root->logged_list[1]); 1188 spin_lock_init(&root->orphan_lock); 1189 spin_lock_init(&root->inode_lock); 1190 spin_lock_init(&root->delalloc_lock); 1191 spin_lock_init(&root->ordered_extent_lock); 1192 spin_lock_init(&root->accounting_lock); 1193 spin_lock_init(&root->log_extents_lock[0]); 1194 spin_lock_init(&root->log_extents_lock[1]); 1195 mutex_init(&root->objectid_mutex); 1196 mutex_init(&root->log_mutex); 1197 init_waitqueue_head(&root->log_writer_wait); 1198 init_waitqueue_head(&root->log_commit_wait[0]); 1199 init_waitqueue_head(&root->log_commit_wait[1]); 1200 atomic_set(&root->log_commit[0], 0); 1201 atomic_set(&root->log_commit[1], 0); 1202 atomic_set(&root->log_writers, 0); 1203 atomic_set(&root->log_batch, 0); 1204 atomic_set(&root->orphan_inodes, 0); 1205 atomic_set(&root->refs, 1); 1206 root->log_transid = 0; 1207 root->last_log_commit = 0; 1208 if (fs_info) 1209 extent_io_tree_init(&root->dirty_log_pages, 1210 fs_info->btree_inode->i_mapping); 1211 1212 memset(&root->root_key, 0, sizeof(root->root_key)); 1213 memset(&root->root_item, 0, sizeof(root->root_item)); 1214 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1215 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1216 if (fs_info) 1217 root->defrag_trans_start = fs_info->generation; 1218 else 1219 root->defrag_trans_start = 0; 1220 init_completion(&root->kobj_unregister); 1221 root->defrag_running = 0; 1222 root->root_key.objectid = objectid; 1223 root->anon_dev = 0; 1224 1225 spin_lock_init(&root->root_item_lock); 1226 } 1227 1228 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1229 { 1230 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1231 if (root) 1232 root->fs_info = fs_info; 1233 return root; 1234 } 1235 1236 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1237 /* Should only be used by the testing infrastructure */ 1238 struct btrfs_root *btrfs_alloc_dummy_root(void) 1239 { 1240 struct btrfs_root *root; 1241 1242 root = btrfs_alloc_root(NULL); 1243 if (!root) 1244 return ERR_PTR(-ENOMEM); 1245 __setup_root(4096, 4096, 4096, 4096, root, NULL, 1); 1246 root->dummy_root = 1; 1247 1248 return root; 1249 } 1250 #endif 1251 1252 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1253 struct btrfs_fs_info *fs_info, 1254 u64 objectid) 1255 { 1256 struct extent_buffer *leaf; 1257 struct btrfs_root *tree_root = fs_info->tree_root; 1258 struct btrfs_root *root; 1259 struct btrfs_key key; 1260 int ret = 0; 1261 uuid_le uuid; 1262 1263 root = btrfs_alloc_root(fs_info); 1264 if (!root) 1265 return ERR_PTR(-ENOMEM); 1266 1267 __setup_root(tree_root->nodesize, tree_root->leafsize, 1268 tree_root->sectorsize, tree_root->stripesize, 1269 root, fs_info, objectid); 1270 root->root_key.objectid = objectid; 1271 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1272 root->root_key.offset = 0; 1273 1274 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 1275 0, objectid, NULL, 0, 0, 0); 1276 if (IS_ERR(leaf)) { 1277 ret = PTR_ERR(leaf); 1278 leaf = NULL; 1279 goto fail; 1280 } 1281 1282 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1283 btrfs_set_header_bytenr(leaf, leaf->start); 1284 btrfs_set_header_generation(leaf, trans->transid); 1285 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1286 btrfs_set_header_owner(leaf, objectid); 1287 root->node = leaf; 1288 1289 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(), 1290 BTRFS_FSID_SIZE); 1291 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1292 btrfs_header_chunk_tree_uuid(leaf), 1293 BTRFS_UUID_SIZE); 1294 btrfs_mark_buffer_dirty(leaf); 1295 1296 root->commit_root = btrfs_root_node(root); 1297 root->track_dirty = 1; 1298 1299 1300 root->root_item.flags = 0; 1301 root->root_item.byte_limit = 0; 1302 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1303 btrfs_set_root_generation(&root->root_item, trans->transid); 1304 btrfs_set_root_level(&root->root_item, 0); 1305 btrfs_set_root_refs(&root->root_item, 1); 1306 btrfs_set_root_used(&root->root_item, leaf->len); 1307 btrfs_set_root_last_snapshot(&root->root_item, 0); 1308 btrfs_set_root_dirid(&root->root_item, 0); 1309 uuid_le_gen(&uuid); 1310 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1311 root->root_item.drop_level = 0; 1312 1313 key.objectid = objectid; 1314 key.type = BTRFS_ROOT_ITEM_KEY; 1315 key.offset = 0; 1316 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1317 if (ret) 1318 goto fail; 1319 1320 btrfs_tree_unlock(leaf); 1321 1322 return root; 1323 1324 fail: 1325 if (leaf) { 1326 btrfs_tree_unlock(leaf); 1327 free_extent_buffer(leaf); 1328 } 1329 kfree(root); 1330 1331 return ERR_PTR(ret); 1332 } 1333 1334 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1335 struct btrfs_fs_info *fs_info) 1336 { 1337 struct btrfs_root *root; 1338 struct btrfs_root *tree_root = fs_info->tree_root; 1339 struct extent_buffer *leaf; 1340 1341 root = btrfs_alloc_root(fs_info); 1342 if (!root) 1343 return ERR_PTR(-ENOMEM); 1344 1345 __setup_root(tree_root->nodesize, tree_root->leafsize, 1346 tree_root->sectorsize, tree_root->stripesize, 1347 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1348 1349 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1350 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1351 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1352 /* 1353 * log trees do not get reference counted because they go away 1354 * before a real commit is actually done. They do store pointers 1355 * to file data extents, and those reference counts still get 1356 * updated (along with back refs to the log tree). 1357 */ 1358 root->ref_cows = 0; 1359 1360 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1361 BTRFS_TREE_LOG_OBJECTID, NULL, 1362 0, 0, 0); 1363 if (IS_ERR(leaf)) { 1364 kfree(root); 1365 return ERR_CAST(leaf); 1366 } 1367 1368 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1369 btrfs_set_header_bytenr(leaf, leaf->start); 1370 btrfs_set_header_generation(leaf, trans->transid); 1371 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1372 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1373 root->node = leaf; 1374 1375 write_extent_buffer(root->node, root->fs_info->fsid, 1376 btrfs_header_fsid(), BTRFS_FSID_SIZE); 1377 btrfs_mark_buffer_dirty(root->node); 1378 btrfs_tree_unlock(root->node); 1379 return root; 1380 } 1381 1382 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1383 struct btrfs_fs_info *fs_info) 1384 { 1385 struct btrfs_root *log_root; 1386 1387 log_root = alloc_log_tree(trans, fs_info); 1388 if (IS_ERR(log_root)) 1389 return PTR_ERR(log_root); 1390 WARN_ON(fs_info->log_root_tree); 1391 fs_info->log_root_tree = log_root; 1392 return 0; 1393 } 1394 1395 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1396 struct btrfs_root *root) 1397 { 1398 struct btrfs_root *log_root; 1399 struct btrfs_inode_item *inode_item; 1400 1401 log_root = alloc_log_tree(trans, root->fs_info); 1402 if (IS_ERR(log_root)) 1403 return PTR_ERR(log_root); 1404 1405 log_root->last_trans = trans->transid; 1406 log_root->root_key.offset = root->root_key.objectid; 1407 1408 inode_item = &log_root->root_item.inode; 1409 btrfs_set_stack_inode_generation(inode_item, 1); 1410 btrfs_set_stack_inode_size(inode_item, 3); 1411 btrfs_set_stack_inode_nlink(inode_item, 1); 1412 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize); 1413 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1414 1415 btrfs_set_root_node(&log_root->root_item, log_root->node); 1416 1417 WARN_ON(root->log_root); 1418 root->log_root = log_root; 1419 root->log_transid = 0; 1420 root->last_log_commit = 0; 1421 return 0; 1422 } 1423 1424 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1425 struct btrfs_key *key) 1426 { 1427 struct btrfs_root *root; 1428 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1429 struct btrfs_path *path; 1430 u64 generation; 1431 u32 blocksize; 1432 int ret; 1433 1434 path = btrfs_alloc_path(); 1435 if (!path) 1436 return ERR_PTR(-ENOMEM); 1437 1438 root = btrfs_alloc_root(fs_info); 1439 if (!root) { 1440 ret = -ENOMEM; 1441 goto alloc_fail; 1442 } 1443 1444 __setup_root(tree_root->nodesize, tree_root->leafsize, 1445 tree_root->sectorsize, tree_root->stripesize, 1446 root, fs_info, key->objectid); 1447 1448 ret = btrfs_find_root(tree_root, key, path, 1449 &root->root_item, &root->root_key); 1450 if (ret) { 1451 if (ret > 0) 1452 ret = -ENOENT; 1453 goto find_fail; 1454 } 1455 1456 generation = btrfs_root_generation(&root->root_item); 1457 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1458 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1459 blocksize, generation); 1460 if (!root->node) { 1461 ret = -ENOMEM; 1462 goto find_fail; 1463 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1464 ret = -EIO; 1465 goto read_fail; 1466 } 1467 root->commit_root = btrfs_root_node(root); 1468 out: 1469 btrfs_free_path(path); 1470 return root; 1471 1472 read_fail: 1473 free_extent_buffer(root->node); 1474 find_fail: 1475 kfree(root); 1476 alloc_fail: 1477 root = ERR_PTR(ret); 1478 goto out; 1479 } 1480 1481 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1482 struct btrfs_key *location) 1483 { 1484 struct btrfs_root *root; 1485 1486 root = btrfs_read_tree_root(tree_root, location); 1487 if (IS_ERR(root)) 1488 return root; 1489 1490 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1491 root->ref_cows = 1; 1492 btrfs_check_and_init_root_item(&root->root_item); 1493 } 1494 1495 return root; 1496 } 1497 1498 int btrfs_init_fs_root(struct btrfs_root *root) 1499 { 1500 int ret; 1501 1502 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1503 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1504 GFP_NOFS); 1505 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1506 ret = -ENOMEM; 1507 goto fail; 1508 } 1509 1510 btrfs_init_free_ino_ctl(root); 1511 mutex_init(&root->fs_commit_mutex); 1512 spin_lock_init(&root->cache_lock); 1513 init_waitqueue_head(&root->cache_wait); 1514 1515 ret = get_anon_bdev(&root->anon_dev); 1516 if (ret) 1517 goto fail; 1518 return 0; 1519 fail: 1520 kfree(root->free_ino_ctl); 1521 kfree(root->free_ino_pinned); 1522 return ret; 1523 } 1524 1525 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1526 u64 root_id) 1527 { 1528 struct btrfs_root *root; 1529 1530 spin_lock(&fs_info->fs_roots_radix_lock); 1531 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1532 (unsigned long)root_id); 1533 spin_unlock(&fs_info->fs_roots_radix_lock); 1534 return root; 1535 } 1536 1537 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1538 struct btrfs_root *root) 1539 { 1540 int ret; 1541 1542 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1543 if (ret) 1544 return ret; 1545 1546 spin_lock(&fs_info->fs_roots_radix_lock); 1547 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1548 (unsigned long)root->root_key.objectid, 1549 root); 1550 if (ret == 0) 1551 root->in_radix = 1; 1552 spin_unlock(&fs_info->fs_roots_radix_lock); 1553 radix_tree_preload_end(); 1554 1555 return ret; 1556 } 1557 1558 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1559 struct btrfs_key *location, 1560 bool check_ref) 1561 { 1562 struct btrfs_root *root; 1563 int ret; 1564 1565 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1566 return fs_info->tree_root; 1567 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1568 return fs_info->extent_root; 1569 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1570 return fs_info->chunk_root; 1571 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1572 return fs_info->dev_root; 1573 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1574 return fs_info->csum_root; 1575 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1576 return fs_info->quota_root ? fs_info->quota_root : 1577 ERR_PTR(-ENOENT); 1578 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1579 return fs_info->uuid_root ? fs_info->uuid_root : 1580 ERR_PTR(-ENOENT); 1581 again: 1582 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1583 if (root) { 1584 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1585 return ERR_PTR(-ENOENT); 1586 return root; 1587 } 1588 1589 root = btrfs_read_fs_root(fs_info->tree_root, location); 1590 if (IS_ERR(root)) 1591 return root; 1592 1593 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1594 ret = -ENOENT; 1595 goto fail; 1596 } 1597 1598 ret = btrfs_init_fs_root(root); 1599 if (ret) 1600 goto fail; 1601 1602 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID, 1603 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL); 1604 if (ret < 0) 1605 goto fail; 1606 if (ret == 0) 1607 root->orphan_item_inserted = 1; 1608 1609 ret = btrfs_insert_fs_root(fs_info, root); 1610 if (ret) { 1611 if (ret == -EEXIST) { 1612 free_fs_root(root); 1613 goto again; 1614 } 1615 goto fail; 1616 } 1617 return root; 1618 fail: 1619 free_fs_root(root); 1620 return ERR_PTR(ret); 1621 } 1622 1623 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1624 { 1625 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1626 int ret = 0; 1627 struct btrfs_device *device; 1628 struct backing_dev_info *bdi; 1629 1630 rcu_read_lock(); 1631 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1632 if (!device->bdev) 1633 continue; 1634 bdi = blk_get_backing_dev_info(device->bdev); 1635 if (bdi && bdi_congested(bdi, bdi_bits)) { 1636 ret = 1; 1637 break; 1638 } 1639 } 1640 rcu_read_unlock(); 1641 return ret; 1642 } 1643 1644 /* 1645 * If this fails, caller must call bdi_destroy() to get rid of the 1646 * bdi again. 1647 */ 1648 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1649 { 1650 int err; 1651 1652 bdi->capabilities = BDI_CAP_MAP_COPY; 1653 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1654 if (err) 1655 return err; 1656 1657 bdi->ra_pages = default_backing_dev_info.ra_pages; 1658 bdi->congested_fn = btrfs_congested_fn; 1659 bdi->congested_data = info; 1660 return 0; 1661 } 1662 1663 /* 1664 * called by the kthread helper functions to finally call the bio end_io 1665 * functions. This is where read checksum verification actually happens 1666 */ 1667 static void end_workqueue_fn(struct btrfs_work *work) 1668 { 1669 struct bio *bio; 1670 struct end_io_wq *end_io_wq; 1671 int error; 1672 1673 end_io_wq = container_of(work, struct end_io_wq, work); 1674 bio = end_io_wq->bio; 1675 1676 error = end_io_wq->error; 1677 bio->bi_private = end_io_wq->private; 1678 bio->bi_end_io = end_io_wq->end_io; 1679 kfree(end_io_wq); 1680 bio_endio_nodec(bio, error); 1681 } 1682 1683 static int cleaner_kthread(void *arg) 1684 { 1685 struct btrfs_root *root = arg; 1686 int again; 1687 1688 do { 1689 again = 0; 1690 1691 /* Make the cleaner go to sleep early. */ 1692 if (btrfs_need_cleaner_sleep(root)) 1693 goto sleep; 1694 1695 if (!mutex_trylock(&root->fs_info->cleaner_mutex)) 1696 goto sleep; 1697 1698 /* 1699 * Avoid the problem that we change the status of the fs 1700 * during the above check and trylock. 1701 */ 1702 if (btrfs_need_cleaner_sleep(root)) { 1703 mutex_unlock(&root->fs_info->cleaner_mutex); 1704 goto sleep; 1705 } 1706 1707 btrfs_run_delayed_iputs(root); 1708 again = btrfs_clean_one_deleted_snapshot(root); 1709 mutex_unlock(&root->fs_info->cleaner_mutex); 1710 1711 /* 1712 * The defragger has dealt with the R/O remount and umount, 1713 * needn't do anything special here. 1714 */ 1715 btrfs_run_defrag_inodes(root->fs_info); 1716 sleep: 1717 if (!try_to_freeze() && !again) { 1718 set_current_state(TASK_INTERRUPTIBLE); 1719 if (!kthread_should_stop()) 1720 schedule(); 1721 __set_current_state(TASK_RUNNING); 1722 } 1723 } while (!kthread_should_stop()); 1724 return 0; 1725 } 1726 1727 static int transaction_kthread(void *arg) 1728 { 1729 struct btrfs_root *root = arg; 1730 struct btrfs_trans_handle *trans; 1731 struct btrfs_transaction *cur; 1732 u64 transid; 1733 unsigned long now; 1734 unsigned long delay; 1735 bool cannot_commit; 1736 1737 do { 1738 cannot_commit = false; 1739 delay = HZ * root->fs_info->commit_interval; 1740 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1741 1742 spin_lock(&root->fs_info->trans_lock); 1743 cur = root->fs_info->running_transaction; 1744 if (!cur) { 1745 spin_unlock(&root->fs_info->trans_lock); 1746 goto sleep; 1747 } 1748 1749 now = get_seconds(); 1750 if (cur->state < TRANS_STATE_BLOCKED && 1751 (now < cur->start_time || 1752 now - cur->start_time < root->fs_info->commit_interval)) { 1753 spin_unlock(&root->fs_info->trans_lock); 1754 delay = HZ * 5; 1755 goto sleep; 1756 } 1757 transid = cur->transid; 1758 spin_unlock(&root->fs_info->trans_lock); 1759 1760 /* If the file system is aborted, this will always fail. */ 1761 trans = btrfs_attach_transaction(root); 1762 if (IS_ERR(trans)) { 1763 if (PTR_ERR(trans) != -ENOENT) 1764 cannot_commit = true; 1765 goto sleep; 1766 } 1767 if (transid == trans->transid) { 1768 btrfs_commit_transaction(trans, root); 1769 } else { 1770 btrfs_end_transaction(trans, root); 1771 } 1772 sleep: 1773 wake_up_process(root->fs_info->cleaner_kthread); 1774 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1775 1776 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1777 &root->fs_info->fs_state))) 1778 btrfs_cleanup_transaction(root); 1779 if (!try_to_freeze()) { 1780 set_current_state(TASK_INTERRUPTIBLE); 1781 if (!kthread_should_stop() && 1782 (!btrfs_transaction_blocked(root->fs_info) || 1783 cannot_commit)) 1784 schedule_timeout(delay); 1785 __set_current_state(TASK_RUNNING); 1786 } 1787 } while (!kthread_should_stop()); 1788 return 0; 1789 } 1790 1791 /* 1792 * this will find the highest generation in the array of 1793 * root backups. The index of the highest array is returned, 1794 * or -1 if we can't find anything. 1795 * 1796 * We check to make sure the array is valid by comparing the 1797 * generation of the latest root in the array with the generation 1798 * in the super block. If they don't match we pitch it. 1799 */ 1800 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1801 { 1802 u64 cur; 1803 int newest_index = -1; 1804 struct btrfs_root_backup *root_backup; 1805 int i; 1806 1807 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1808 root_backup = info->super_copy->super_roots + i; 1809 cur = btrfs_backup_tree_root_gen(root_backup); 1810 if (cur == newest_gen) 1811 newest_index = i; 1812 } 1813 1814 /* check to see if we actually wrapped around */ 1815 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1816 root_backup = info->super_copy->super_roots; 1817 cur = btrfs_backup_tree_root_gen(root_backup); 1818 if (cur == newest_gen) 1819 newest_index = 0; 1820 } 1821 return newest_index; 1822 } 1823 1824 1825 /* 1826 * find the oldest backup so we know where to store new entries 1827 * in the backup array. This will set the backup_root_index 1828 * field in the fs_info struct 1829 */ 1830 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1831 u64 newest_gen) 1832 { 1833 int newest_index = -1; 1834 1835 newest_index = find_newest_super_backup(info, newest_gen); 1836 /* if there was garbage in there, just move along */ 1837 if (newest_index == -1) { 1838 info->backup_root_index = 0; 1839 } else { 1840 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1841 } 1842 } 1843 1844 /* 1845 * copy all the root pointers into the super backup array. 1846 * this will bump the backup pointer by one when it is 1847 * done 1848 */ 1849 static void backup_super_roots(struct btrfs_fs_info *info) 1850 { 1851 int next_backup; 1852 struct btrfs_root_backup *root_backup; 1853 int last_backup; 1854 1855 next_backup = info->backup_root_index; 1856 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1857 BTRFS_NUM_BACKUP_ROOTS; 1858 1859 /* 1860 * just overwrite the last backup if we're at the same generation 1861 * this happens only at umount 1862 */ 1863 root_backup = info->super_for_commit->super_roots + last_backup; 1864 if (btrfs_backup_tree_root_gen(root_backup) == 1865 btrfs_header_generation(info->tree_root->node)) 1866 next_backup = last_backup; 1867 1868 root_backup = info->super_for_commit->super_roots + next_backup; 1869 1870 /* 1871 * make sure all of our padding and empty slots get zero filled 1872 * regardless of which ones we use today 1873 */ 1874 memset(root_backup, 0, sizeof(*root_backup)); 1875 1876 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1877 1878 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1879 btrfs_set_backup_tree_root_gen(root_backup, 1880 btrfs_header_generation(info->tree_root->node)); 1881 1882 btrfs_set_backup_tree_root_level(root_backup, 1883 btrfs_header_level(info->tree_root->node)); 1884 1885 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1886 btrfs_set_backup_chunk_root_gen(root_backup, 1887 btrfs_header_generation(info->chunk_root->node)); 1888 btrfs_set_backup_chunk_root_level(root_backup, 1889 btrfs_header_level(info->chunk_root->node)); 1890 1891 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1892 btrfs_set_backup_extent_root_gen(root_backup, 1893 btrfs_header_generation(info->extent_root->node)); 1894 btrfs_set_backup_extent_root_level(root_backup, 1895 btrfs_header_level(info->extent_root->node)); 1896 1897 /* 1898 * we might commit during log recovery, which happens before we set 1899 * the fs_root. Make sure it is valid before we fill it in. 1900 */ 1901 if (info->fs_root && info->fs_root->node) { 1902 btrfs_set_backup_fs_root(root_backup, 1903 info->fs_root->node->start); 1904 btrfs_set_backup_fs_root_gen(root_backup, 1905 btrfs_header_generation(info->fs_root->node)); 1906 btrfs_set_backup_fs_root_level(root_backup, 1907 btrfs_header_level(info->fs_root->node)); 1908 } 1909 1910 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1911 btrfs_set_backup_dev_root_gen(root_backup, 1912 btrfs_header_generation(info->dev_root->node)); 1913 btrfs_set_backup_dev_root_level(root_backup, 1914 btrfs_header_level(info->dev_root->node)); 1915 1916 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1917 btrfs_set_backup_csum_root_gen(root_backup, 1918 btrfs_header_generation(info->csum_root->node)); 1919 btrfs_set_backup_csum_root_level(root_backup, 1920 btrfs_header_level(info->csum_root->node)); 1921 1922 btrfs_set_backup_total_bytes(root_backup, 1923 btrfs_super_total_bytes(info->super_copy)); 1924 btrfs_set_backup_bytes_used(root_backup, 1925 btrfs_super_bytes_used(info->super_copy)); 1926 btrfs_set_backup_num_devices(root_backup, 1927 btrfs_super_num_devices(info->super_copy)); 1928 1929 /* 1930 * if we don't copy this out to the super_copy, it won't get remembered 1931 * for the next commit 1932 */ 1933 memcpy(&info->super_copy->super_roots, 1934 &info->super_for_commit->super_roots, 1935 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1936 } 1937 1938 /* 1939 * this copies info out of the root backup array and back into 1940 * the in-memory super block. It is meant to help iterate through 1941 * the array, so you send it the number of backups you've already 1942 * tried and the last backup index you used. 1943 * 1944 * this returns -1 when it has tried all the backups 1945 */ 1946 static noinline int next_root_backup(struct btrfs_fs_info *info, 1947 struct btrfs_super_block *super, 1948 int *num_backups_tried, int *backup_index) 1949 { 1950 struct btrfs_root_backup *root_backup; 1951 int newest = *backup_index; 1952 1953 if (*num_backups_tried == 0) { 1954 u64 gen = btrfs_super_generation(super); 1955 1956 newest = find_newest_super_backup(info, gen); 1957 if (newest == -1) 1958 return -1; 1959 1960 *backup_index = newest; 1961 *num_backups_tried = 1; 1962 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1963 /* we've tried all the backups, all done */ 1964 return -1; 1965 } else { 1966 /* jump to the next oldest backup */ 1967 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1968 BTRFS_NUM_BACKUP_ROOTS; 1969 *backup_index = newest; 1970 *num_backups_tried += 1; 1971 } 1972 root_backup = super->super_roots + newest; 1973 1974 btrfs_set_super_generation(super, 1975 btrfs_backup_tree_root_gen(root_backup)); 1976 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1977 btrfs_set_super_root_level(super, 1978 btrfs_backup_tree_root_level(root_backup)); 1979 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1980 1981 /* 1982 * fixme: the total bytes and num_devices need to match or we should 1983 * need a fsck 1984 */ 1985 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1986 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1987 return 0; 1988 } 1989 1990 /* helper to cleanup workers */ 1991 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1992 { 1993 btrfs_stop_workers(&fs_info->generic_worker); 1994 btrfs_stop_workers(&fs_info->fixup_workers); 1995 btrfs_stop_workers(&fs_info->delalloc_workers); 1996 btrfs_stop_workers(&fs_info->workers); 1997 btrfs_stop_workers(&fs_info->endio_workers); 1998 btrfs_stop_workers(&fs_info->endio_meta_workers); 1999 btrfs_stop_workers(&fs_info->endio_raid56_workers); 2000 btrfs_stop_workers(&fs_info->rmw_workers); 2001 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2002 btrfs_stop_workers(&fs_info->endio_write_workers); 2003 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2004 btrfs_stop_workers(&fs_info->submit_workers); 2005 btrfs_stop_workers(&fs_info->delayed_workers); 2006 btrfs_stop_workers(&fs_info->caching_workers); 2007 btrfs_stop_workers(&fs_info->readahead_workers); 2008 btrfs_stop_workers(&fs_info->flush_workers); 2009 btrfs_stop_workers(&fs_info->qgroup_rescan_workers); 2010 } 2011 2012 static void free_root_extent_buffers(struct btrfs_root *root) 2013 { 2014 if (root) { 2015 free_extent_buffer(root->node); 2016 free_extent_buffer(root->commit_root); 2017 root->node = NULL; 2018 root->commit_root = NULL; 2019 } 2020 } 2021 2022 /* helper to cleanup tree roots */ 2023 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2024 { 2025 free_root_extent_buffers(info->tree_root); 2026 2027 free_root_extent_buffers(info->dev_root); 2028 free_root_extent_buffers(info->extent_root); 2029 free_root_extent_buffers(info->csum_root); 2030 free_root_extent_buffers(info->quota_root); 2031 free_root_extent_buffers(info->uuid_root); 2032 if (chunk_root) 2033 free_root_extent_buffers(info->chunk_root); 2034 } 2035 2036 static void del_fs_roots(struct btrfs_fs_info *fs_info) 2037 { 2038 int ret; 2039 struct btrfs_root *gang[8]; 2040 int i; 2041 2042 while (!list_empty(&fs_info->dead_roots)) { 2043 gang[0] = list_entry(fs_info->dead_roots.next, 2044 struct btrfs_root, root_list); 2045 list_del(&gang[0]->root_list); 2046 2047 if (gang[0]->in_radix) { 2048 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2049 } else { 2050 free_extent_buffer(gang[0]->node); 2051 free_extent_buffer(gang[0]->commit_root); 2052 btrfs_put_fs_root(gang[0]); 2053 } 2054 } 2055 2056 while (1) { 2057 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2058 (void **)gang, 0, 2059 ARRAY_SIZE(gang)); 2060 if (!ret) 2061 break; 2062 for (i = 0; i < ret; i++) 2063 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2064 } 2065 2066 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2067 btrfs_free_log_root_tree(NULL, fs_info); 2068 btrfs_destroy_pinned_extent(fs_info->tree_root, 2069 fs_info->pinned_extents); 2070 } 2071 } 2072 2073 int open_ctree(struct super_block *sb, 2074 struct btrfs_fs_devices *fs_devices, 2075 char *options) 2076 { 2077 u32 sectorsize; 2078 u32 nodesize; 2079 u32 leafsize; 2080 u32 blocksize; 2081 u32 stripesize; 2082 u64 generation; 2083 u64 features; 2084 struct btrfs_key location; 2085 struct buffer_head *bh; 2086 struct btrfs_super_block *disk_super; 2087 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2088 struct btrfs_root *tree_root; 2089 struct btrfs_root *extent_root; 2090 struct btrfs_root *csum_root; 2091 struct btrfs_root *chunk_root; 2092 struct btrfs_root *dev_root; 2093 struct btrfs_root *quota_root; 2094 struct btrfs_root *uuid_root; 2095 struct btrfs_root *log_tree_root; 2096 int ret; 2097 int err = -EINVAL; 2098 int num_backups_tried = 0; 2099 int backup_index = 0; 2100 bool create_uuid_tree; 2101 bool check_uuid_tree; 2102 2103 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 2104 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 2105 if (!tree_root || !chunk_root) { 2106 err = -ENOMEM; 2107 goto fail; 2108 } 2109 2110 ret = init_srcu_struct(&fs_info->subvol_srcu); 2111 if (ret) { 2112 err = ret; 2113 goto fail; 2114 } 2115 2116 ret = setup_bdi(fs_info, &fs_info->bdi); 2117 if (ret) { 2118 err = ret; 2119 goto fail_srcu; 2120 } 2121 2122 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0); 2123 if (ret) { 2124 err = ret; 2125 goto fail_bdi; 2126 } 2127 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE * 2128 (1 + ilog2(nr_cpu_ids)); 2129 2130 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0); 2131 if (ret) { 2132 err = ret; 2133 goto fail_dirty_metadata_bytes; 2134 } 2135 2136 fs_info->btree_inode = new_inode(sb); 2137 if (!fs_info->btree_inode) { 2138 err = -ENOMEM; 2139 goto fail_delalloc_bytes; 2140 } 2141 2142 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2143 2144 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2145 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2146 INIT_LIST_HEAD(&fs_info->trans_list); 2147 INIT_LIST_HEAD(&fs_info->dead_roots); 2148 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2149 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2150 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2151 spin_lock_init(&fs_info->delalloc_root_lock); 2152 spin_lock_init(&fs_info->trans_lock); 2153 spin_lock_init(&fs_info->fs_roots_radix_lock); 2154 spin_lock_init(&fs_info->delayed_iput_lock); 2155 spin_lock_init(&fs_info->defrag_inodes_lock); 2156 spin_lock_init(&fs_info->free_chunk_lock); 2157 spin_lock_init(&fs_info->tree_mod_seq_lock); 2158 spin_lock_init(&fs_info->super_lock); 2159 spin_lock_init(&fs_info->buffer_lock); 2160 rwlock_init(&fs_info->tree_mod_log_lock); 2161 mutex_init(&fs_info->reloc_mutex); 2162 seqlock_init(&fs_info->profiles_lock); 2163 2164 init_completion(&fs_info->kobj_unregister); 2165 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2166 INIT_LIST_HEAD(&fs_info->space_info); 2167 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2168 btrfs_mapping_init(&fs_info->mapping_tree); 2169 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2170 BTRFS_BLOCK_RSV_GLOBAL); 2171 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2172 BTRFS_BLOCK_RSV_DELALLOC); 2173 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2174 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2175 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2176 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2177 BTRFS_BLOCK_RSV_DELOPS); 2178 atomic_set(&fs_info->nr_async_submits, 0); 2179 atomic_set(&fs_info->async_delalloc_pages, 0); 2180 atomic_set(&fs_info->async_submit_draining, 0); 2181 atomic_set(&fs_info->nr_async_bios, 0); 2182 atomic_set(&fs_info->defrag_running, 0); 2183 atomic64_set(&fs_info->tree_mod_seq, 0); 2184 fs_info->sb = sb; 2185 fs_info->max_inline = 8192 * 1024; 2186 fs_info->metadata_ratio = 0; 2187 fs_info->defrag_inodes = RB_ROOT; 2188 fs_info->free_chunk_space = 0; 2189 fs_info->tree_mod_log = RB_ROOT; 2190 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2191 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64); 2192 /* readahead state */ 2193 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 2194 spin_lock_init(&fs_info->reada_lock); 2195 2196 fs_info->thread_pool_size = min_t(unsigned long, 2197 num_online_cpus() + 2, 8); 2198 2199 INIT_LIST_HEAD(&fs_info->ordered_roots); 2200 spin_lock_init(&fs_info->ordered_root_lock); 2201 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2202 GFP_NOFS); 2203 if (!fs_info->delayed_root) { 2204 err = -ENOMEM; 2205 goto fail_iput; 2206 } 2207 btrfs_init_delayed_root(fs_info->delayed_root); 2208 2209 mutex_init(&fs_info->scrub_lock); 2210 atomic_set(&fs_info->scrubs_running, 0); 2211 atomic_set(&fs_info->scrub_pause_req, 0); 2212 atomic_set(&fs_info->scrubs_paused, 0); 2213 atomic_set(&fs_info->scrub_cancel_req, 0); 2214 init_waitqueue_head(&fs_info->scrub_pause_wait); 2215 fs_info->scrub_workers_refcnt = 0; 2216 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2217 fs_info->check_integrity_print_mask = 0; 2218 #endif 2219 2220 spin_lock_init(&fs_info->balance_lock); 2221 mutex_init(&fs_info->balance_mutex); 2222 atomic_set(&fs_info->balance_running, 0); 2223 atomic_set(&fs_info->balance_pause_req, 0); 2224 atomic_set(&fs_info->balance_cancel_req, 0); 2225 fs_info->balance_ctl = NULL; 2226 init_waitqueue_head(&fs_info->balance_wait_q); 2227 2228 sb->s_blocksize = 4096; 2229 sb->s_blocksize_bits = blksize_bits(4096); 2230 sb->s_bdi = &fs_info->bdi; 2231 2232 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2233 set_nlink(fs_info->btree_inode, 1); 2234 /* 2235 * we set the i_size on the btree inode to the max possible int. 2236 * the real end of the address space is determined by all of 2237 * the devices in the system 2238 */ 2239 fs_info->btree_inode->i_size = OFFSET_MAX; 2240 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2241 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 2242 2243 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2244 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2245 fs_info->btree_inode->i_mapping); 2246 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2247 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2248 2249 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2250 2251 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2252 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2253 sizeof(struct btrfs_key)); 2254 set_bit(BTRFS_INODE_DUMMY, 2255 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2256 btrfs_insert_inode_hash(fs_info->btree_inode); 2257 2258 spin_lock_init(&fs_info->block_group_cache_lock); 2259 fs_info->block_group_cache_tree = RB_ROOT; 2260 fs_info->first_logical_byte = (u64)-1; 2261 2262 extent_io_tree_init(&fs_info->freed_extents[0], 2263 fs_info->btree_inode->i_mapping); 2264 extent_io_tree_init(&fs_info->freed_extents[1], 2265 fs_info->btree_inode->i_mapping); 2266 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2267 fs_info->do_barriers = 1; 2268 2269 2270 mutex_init(&fs_info->ordered_operations_mutex); 2271 mutex_init(&fs_info->ordered_extent_flush_mutex); 2272 mutex_init(&fs_info->tree_log_mutex); 2273 mutex_init(&fs_info->chunk_mutex); 2274 mutex_init(&fs_info->transaction_kthread_mutex); 2275 mutex_init(&fs_info->cleaner_mutex); 2276 mutex_init(&fs_info->volume_mutex); 2277 init_rwsem(&fs_info->extent_commit_sem); 2278 init_rwsem(&fs_info->cleanup_work_sem); 2279 init_rwsem(&fs_info->subvol_sem); 2280 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2281 fs_info->dev_replace.lock_owner = 0; 2282 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2283 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2284 mutex_init(&fs_info->dev_replace.lock_management_lock); 2285 mutex_init(&fs_info->dev_replace.lock); 2286 2287 spin_lock_init(&fs_info->qgroup_lock); 2288 mutex_init(&fs_info->qgroup_ioctl_lock); 2289 fs_info->qgroup_tree = RB_ROOT; 2290 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2291 fs_info->qgroup_seq = 1; 2292 fs_info->quota_enabled = 0; 2293 fs_info->pending_quota_state = 0; 2294 fs_info->qgroup_ulist = NULL; 2295 mutex_init(&fs_info->qgroup_rescan_lock); 2296 2297 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2298 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2299 2300 init_waitqueue_head(&fs_info->transaction_throttle); 2301 init_waitqueue_head(&fs_info->transaction_wait); 2302 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2303 init_waitqueue_head(&fs_info->async_submit_wait); 2304 2305 ret = btrfs_alloc_stripe_hash_table(fs_info); 2306 if (ret) { 2307 err = ret; 2308 goto fail_alloc; 2309 } 2310 2311 __setup_root(4096, 4096, 4096, 4096, tree_root, 2312 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2313 2314 invalidate_bdev(fs_devices->latest_bdev); 2315 2316 /* 2317 * Read super block and check the signature bytes only 2318 */ 2319 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2320 if (!bh) { 2321 err = -EINVAL; 2322 goto fail_alloc; 2323 } 2324 2325 /* 2326 * We want to check superblock checksum, the type is stored inside. 2327 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2328 */ 2329 if (btrfs_check_super_csum(bh->b_data)) { 2330 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n"); 2331 err = -EINVAL; 2332 goto fail_alloc; 2333 } 2334 2335 /* 2336 * super_copy is zeroed at allocation time and we never touch the 2337 * following bytes up to INFO_SIZE, the checksum is calculated from 2338 * the whole block of INFO_SIZE 2339 */ 2340 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2341 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2342 sizeof(*fs_info->super_for_commit)); 2343 brelse(bh); 2344 2345 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2346 2347 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2348 if (ret) { 2349 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n"); 2350 err = -EINVAL; 2351 goto fail_alloc; 2352 } 2353 2354 disk_super = fs_info->super_copy; 2355 if (!btrfs_super_root(disk_super)) 2356 goto fail_alloc; 2357 2358 /* check FS state, whether FS is broken. */ 2359 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2360 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2361 2362 /* 2363 * run through our array of backup supers and setup 2364 * our ring pointer to the oldest one 2365 */ 2366 generation = btrfs_super_generation(disk_super); 2367 find_oldest_super_backup(fs_info, generation); 2368 2369 /* 2370 * In the long term, we'll store the compression type in the super 2371 * block, and it'll be used for per file compression control. 2372 */ 2373 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2374 2375 ret = btrfs_parse_options(tree_root, options); 2376 if (ret) { 2377 err = ret; 2378 goto fail_alloc; 2379 } 2380 2381 features = btrfs_super_incompat_flags(disk_super) & 2382 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2383 if (features) { 2384 printk(KERN_ERR "BTRFS: couldn't mount because of " 2385 "unsupported optional features (%Lx).\n", 2386 features); 2387 err = -EINVAL; 2388 goto fail_alloc; 2389 } 2390 2391 if (btrfs_super_leafsize(disk_super) != 2392 btrfs_super_nodesize(disk_super)) { 2393 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2394 "blocksizes don't match. node %d leaf %d\n", 2395 btrfs_super_nodesize(disk_super), 2396 btrfs_super_leafsize(disk_super)); 2397 err = -EINVAL; 2398 goto fail_alloc; 2399 } 2400 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2401 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2402 "blocksize (%d) was too large\n", 2403 btrfs_super_leafsize(disk_super)); 2404 err = -EINVAL; 2405 goto fail_alloc; 2406 } 2407 2408 features = btrfs_super_incompat_flags(disk_super); 2409 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2410 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2411 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2412 2413 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2414 printk(KERN_ERR "BTRFS: has skinny extents\n"); 2415 2416 /* 2417 * flag our filesystem as having big metadata blocks if 2418 * they are bigger than the page size 2419 */ 2420 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) { 2421 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2422 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n"); 2423 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2424 } 2425 2426 nodesize = btrfs_super_nodesize(disk_super); 2427 leafsize = btrfs_super_leafsize(disk_super); 2428 sectorsize = btrfs_super_sectorsize(disk_super); 2429 stripesize = btrfs_super_stripesize(disk_super); 2430 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids)); 2431 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2432 2433 /* 2434 * mixed block groups end up with duplicate but slightly offset 2435 * extent buffers for the same range. It leads to corruptions 2436 */ 2437 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2438 (sectorsize != leafsize)) { 2439 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes " 2440 "are not allowed for mixed block groups on %s\n", 2441 sb->s_id); 2442 goto fail_alloc; 2443 } 2444 2445 /* 2446 * Needn't use the lock because there is no other task which will 2447 * update the flag. 2448 */ 2449 btrfs_set_super_incompat_flags(disk_super, features); 2450 2451 features = btrfs_super_compat_ro_flags(disk_super) & 2452 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2453 if (!(sb->s_flags & MS_RDONLY) && features) { 2454 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2455 "unsupported option features (%Lx).\n", 2456 features); 2457 err = -EINVAL; 2458 goto fail_alloc; 2459 } 2460 2461 btrfs_init_workers(&fs_info->generic_worker, 2462 "genwork", 1, NULL); 2463 2464 btrfs_init_workers(&fs_info->workers, "worker", 2465 fs_info->thread_pool_size, 2466 &fs_info->generic_worker); 2467 2468 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 2469 fs_info->thread_pool_size, NULL); 2470 2471 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc", 2472 fs_info->thread_pool_size, NULL); 2473 2474 btrfs_init_workers(&fs_info->submit_workers, "submit", 2475 min_t(u64, fs_devices->num_devices, 2476 fs_info->thread_pool_size), NULL); 2477 2478 btrfs_init_workers(&fs_info->caching_workers, "cache", 2479 fs_info->thread_pool_size, NULL); 2480 2481 /* a higher idle thresh on the submit workers makes it much more 2482 * likely that bios will be send down in a sane order to the 2483 * devices 2484 */ 2485 fs_info->submit_workers.idle_thresh = 64; 2486 2487 fs_info->workers.idle_thresh = 16; 2488 fs_info->workers.ordered = 1; 2489 2490 fs_info->delalloc_workers.idle_thresh = 2; 2491 fs_info->delalloc_workers.ordered = 1; 2492 2493 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 2494 &fs_info->generic_worker); 2495 btrfs_init_workers(&fs_info->endio_workers, "endio", 2496 fs_info->thread_pool_size, 2497 &fs_info->generic_worker); 2498 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 2499 fs_info->thread_pool_size, 2500 &fs_info->generic_worker); 2501 btrfs_init_workers(&fs_info->endio_meta_write_workers, 2502 "endio-meta-write", fs_info->thread_pool_size, 2503 &fs_info->generic_worker); 2504 btrfs_init_workers(&fs_info->endio_raid56_workers, 2505 "endio-raid56", fs_info->thread_pool_size, 2506 &fs_info->generic_worker); 2507 btrfs_init_workers(&fs_info->rmw_workers, 2508 "rmw", fs_info->thread_pool_size, 2509 &fs_info->generic_worker); 2510 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 2511 fs_info->thread_pool_size, 2512 &fs_info->generic_worker); 2513 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", 2514 1, &fs_info->generic_worker); 2515 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta", 2516 fs_info->thread_pool_size, 2517 &fs_info->generic_worker); 2518 btrfs_init_workers(&fs_info->readahead_workers, "readahead", 2519 fs_info->thread_pool_size, 2520 &fs_info->generic_worker); 2521 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1, 2522 &fs_info->generic_worker); 2523 2524 /* 2525 * endios are largely parallel and should have a very 2526 * low idle thresh 2527 */ 2528 fs_info->endio_workers.idle_thresh = 4; 2529 fs_info->endio_meta_workers.idle_thresh = 4; 2530 fs_info->endio_raid56_workers.idle_thresh = 4; 2531 fs_info->rmw_workers.idle_thresh = 2; 2532 2533 fs_info->endio_write_workers.idle_thresh = 2; 2534 fs_info->endio_meta_write_workers.idle_thresh = 2; 2535 fs_info->readahead_workers.idle_thresh = 2; 2536 2537 /* 2538 * btrfs_start_workers can really only fail because of ENOMEM so just 2539 * return -ENOMEM if any of these fail. 2540 */ 2541 ret = btrfs_start_workers(&fs_info->workers); 2542 ret |= btrfs_start_workers(&fs_info->generic_worker); 2543 ret |= btrfs_start_workers(&fs_info->submit_workers); 2544 ret |= btrfs_start_workers(&fs_info->delalloc_workers); 2545 ret |= btrfs_start_workers(&fs_info->fixup_workers); 2546 ret |= btrfs_start_workers(&fs_info->endio_workers); 2547 ret |= btrfs_start_workers(&fs_info->endio_meta_workers); 2548 ret |= btrfs_start_workers(&fs_info->rmw_workers); 2549 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers); 2550 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers); 2551 ret |= btrfs_start_workers(&fs_info->endio_write_workers); 2552 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker); 2553 ret |= btrfs_start_workers(&fs_info->delayed_workers); 2554 ret |= btrfs_start_workers(&fs_info->caching_workers); 2555 ret |= btrfs_start_workers(&fs_info->readahead_workers); 2556 ret |= btrfs_start_workers(&fs_info->flush_workers); 2557 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers); 2558 if (ret) { 2559 err = -ENOMEM; 2560 goto fail_sb_buffer; 2561 } 2562 2563 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2564 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2565 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2566 2567 tree_root->nodesize = nodesize; 2568 tree_root->leafsize = leafsize; 2569 tree_root->sectorsize = sectorsize; 2570 tree_root->stripesize = stripesize; 2571 2572 sb->s_blocksize = sectorsize; 2573 sb->s_blocksize_bits = blksize_bits(sectorsize); 2574 2575 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 2576 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id); 2577 goto fail_sb_buffer; 2578 } 2579 2580 if (sectorsize != PAGE_SIZE) { 2581 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) " 2582 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2583 goto fail_sb_buffer; 2584 } 2585 2586 mutex_lock(&fs_info->chunk_mutex); 2587 ret = btrfs_read_sys_array(tree_root); 2588 mutex_unlock(&fs_info->chunk_mutex); 2589 if (ret) { 2590 printk(KERN_WARNING "BTRFS: failed to read the system " 2591 "array on %s\n", sb->s_id); 2592 goto fail_sb_buffer; 2593 } 2594 2595 blocksize = btrfs_level_size(tree_root, 2596 btrfs_super_chunk_root_level(disk_super)); 2597 generation = btrfs_super_chunk_root_generation(disk_super); 2598 2599 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2600 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2601 2602 chunk_root->node = read_tree_block(chunk_root, 2603 btrfs_super_chunk_root(disk_super), 2604 blocksize, generation); 2605 if (!chunk_root->node || 2606 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2607 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n", 2608 sb->s_id); 2609 goto fail_tree_roots; 2610 } 2611 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2612 chunk_root->commit_root = btrfs_root_node(chunk_root); 2613 2614 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2615 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2616 2617 ret = btrfs_read_chunk_tree(chunk_root); 2618 if (ret) { 2619 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n", 2620 sb->s_id); 2621 goto fail_tree_roots; 2622 } 2623 2624 /* 2625 * keep the device that is marked to be the target device for the 2626 * dev_replace procedure 2627 */ 2628 btrfs_close_extra_devices(fs_info, fs_devices, 0); 2629 2630 if (!fs_devices->latest_bdev) { 2631 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n", 2632 sb->s_id); 2633 goto fail_tree_roots; 2634 } 2635 2636 retry_root_backup: 2637 blocksize = btrfs_level_size(tree_root, 2638 btrfs_super_root_level(disk_super)); 2639 generation = btrfs_super_generation(disk_super); 2640 2641 tree_root->node = read_tree_block(tree_root, 2642 btrfs_super_root(disk_super), 2643 blocksize, generation); 2644 if (!tree_root->node || 2645 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2646 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n", 2647 sb->s_id); 2648 2649 goto recovery_tree_root; 2650 } 2651 2652 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2653 tree_root->commit_root = btrfs_root_node(tree_root); 2654 btrfs_set_root_refs(&tree_root->root_item, 1); 2655 2656 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2657 location.type = BTRFS_ROOT_ITEM_KEY; 2658 location.offset = 0; 2659 2660 extent_root = btrfs_read_tree_root(tree_root, &location); 2661 if (IS_ERR(extent_root)) { 2662 ret = PTR_ERR(extent_root); 2663 goto recovery_tree_root; 2664 } 2665 extent_root->track_dirty = 1; 2666 fs_info->extent_root = extent_root; 2667 2668 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2669 dev_root = btrfs_read_tree_root(tree_root, &location); 2670 if (IS_ERR(dev_root)) { 2671 ret = PTR_ERR(dev_root); 2672 goto recovery_tree_root; 2673 } 2674 dev_root->track_dirty = 1; 2675 fs_info->dev_root = dev_root; 2676 btrfs_init_devices_late(fs_info); 2677 2678 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2679 csum_root = btrfs_read_tree_root(tree_root, &location); 2680 if (IS_ERR(csum_root)) { 2681 ret = PTR_ERR(csum_root); 2682 goto recovery_tree_root; 2683 } 2684 csum_root->track_dirty = 1; 2685 fs_info->csum_root = csum_root; 2686 2687 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2688 quota_root = btrfs_read_tree_root(tree_root, &location); 2689 if (!IS_ERR(quota_root)) { 2690 quota_root->track_dirty = 1; 2691 fs_info->quota_enabled = 1; 2692 fs_info->pending_quota_state = 1; 2693 fs_info->quota_root = quota_root; 2694 } 2695 2696 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2697 uuid_root = btrfs_read_tree_root(tree_root, &location); 2698 if (IS_ERR(uuid_root)) { 2699 ret = PTR_ERR(uuid_root); 2700 if (ret != -ENOENT) 2701 goto recovery_tree_root; 2702 create_uuid_tree = true; 2703 check_uuid_tree = false; 2704 } else { 2705 uuid_root->track_dirty = 1; 2706 fs_info->uuid_root = uuid_root; 2707 create_uuid_tree = false; 2708 check_uuid_tree = 2709 generation != btrfs_super_uuid_tree_generation(disk_super); 2710 } 2711 2712 fs_info->generation = generation; 2713 fs_info->last_trans_committed = generation; 2714 2715 ret = btrfs_recover_balance(fs_info); 2716 if (ret) { 2717 printk(KERN_WARNING "BTRFS: failed to recover balance\n"); 2718 goto fail_block_groups; 2719 } 2720 2721 ret = btrfs_init_dev_stats(fs_info); 2722 if (ret) { 2723 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n", 2724 ret); 2725 goto fail_block_groups; 2726 } 2727 2728 ret = btrfs_init_dev_replace(fs_info); 2729 if (ret) { 2730 pr_err("BTRFS: failed to init dev_replace: %d\n", ret); 2731 goto fail_block_groups; 2732 } 2733 2734 btrfs_close_extra_devices(fs_info, fs_devices, 1); 2735 2736 ret = btrfs_sysfs_add_one(fs_info); 2737 if (ret) { 2738 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret); 2739 goto fail_block_groups; 2740 } 2741 2742 ret = btrfs_init_space_info(fs_info); 2743 if (ret) { 2744 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret); 2745 goto fail_sysfs; 2746 } 2747 2748 ret = btrfs_read_block_groups(extent_root); 2749 if (ret) { 2750 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret); 2751 goto fail_sysfs; 2752 } 2753 fs_info->num_tolerated_disk_barrier_failures = 2754 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2755 if (fs_info->fs_devices->missing_devices > 2756 fs_info->num_tolerated_disk_barrier_failures && 2757 !(sb->s_flags & MS_RDONLY)) { 2758 printk(KERN_WARNING "BTRFS: " 2759 "too many missing devices, writeable mount is not allowed\n"); 2760 goto fail_sysfs; 2761 } 2762 2763 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2764 "btrfs-cleaner"); 2765 if (IS_ERR(fs_info->cleaner_kthread)) 2766 goto fail_sysfs; 2767 2768 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2769 tree_root, 2770 "btrfs-transaction"); 2771 if (IS_ERR(fs_info->transaction_kthread)) 2772 goto fail_cleaner; 2773 2774 if (!btrfs_test_opt(tree_root, SSD) && 2775 !btrfs_test_opt(tree_root, NOSSD) && 2776 !fs_info->fs_devices->rotating) { 2777 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD " 2778 "mode\n"); 2779 btrfs_set_opt(fs_info->mount_opt, SSD); 2780 } 2781 2782 /* Set the real inode map cache flag */ 2783 if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE)) 2784 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE); 2785 2786 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2787 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2788 ret = btrfsic_mount(tree_root, fs_devices, 2789 btrfs_test_opt(tree_root, 2790 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2791 1 : 0, 2792 fs_info->check_integrity_print_mask); 2793 if (ret) 2794 printk(KERN_WARNING "BTRFS: failed to initialize" 2795 " integrity check module %s\n", sb->s_id); 2796 } 2797 #endif 2798 ret = btrfs_read_qgroup_config(fs_info); 2799 if (ret) 2800 goto fail_trans_kthread; 2801 2802 /* do not make disk changes in broken FS */ 2803 if (btrfs_super_log_root(disk_super) != 0) { 2804 u64 bytenr = btrfs_super_log_root(disk_super); 2805 2806 if (fs_devices->rw_devices == 0) { 2807 printk(KERN_WARNING "BTRFS: log replay required " 2808 "on RO media\n"); 2809 err = -EIO; 2810 goto fail_qgroup; 2811 } 2812 blocksize = 2813 btrfs_level_size(tree_root, 2814 btrfs_super_log_root_level(disk_super)); 2815 2816 log_tree_root = btrfs_alloc_root(fs_info); 2817 if (!log_tree_root) { 2818 err = -ENOMEM; 2819 goto fail_qgroup; 2820 } 2821 2822 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2823 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2824 2825 log_tree_root->node = read_tree_block(tree_root, bytenr, 2826 blocksize, 2827 generation + 1); 2828 if (!log_tree_root->node || 2829 !extent_buffer_uptodate(log_tree_root->node)) { 2830 printk(KERN_ERR "BTRFS: failed to read log tree\n"); 2831 free_extent_buffer(log_tree_root->node); 2832 kfree(log_tree_root); 2833 goto fail_trans_kthread; 2834 } 2835 /* returns with log_tree_root freed on success */ 2836 ret = btrfs_recover_log_trees(log_tree_root); 2837 if (ret) { 2838 btrfs_error(tree_root->fs_info, ret, 2839 "Failed to recover log tree"); 2840 free_extent_buffer(log_tree_root->node); 2841 kfree(log_tree_root); 2842 goto fail_trans_kthread; 2843 } 2844 2845 if (sb->s_flags & MS_RDONLY) { 2846 ret = btrfs_commit_super(tree_root); 2847 if (ret) 2848 goto fail_trans_kthread; 2849 } 2850 } 2851 2852 ret = btrfs_find_orphan_roots(tree_root); 2853 if (ret) 2854 goto fail_trans_kthread; 2855 2856 if (!(sb->s_flags & MS_RDONLY)) { 2857 ret = btrfs_cleanup_fs_roots(fs_info); 2858 if (ret) 2859 goto fail_trans_kthread; 2860 2861 ret = btrfs_recover_relocation(tree_root); 2862 if (ret < 0) { 2863 printk(KERN_WARNING 2864 "BTRFS: failed to recover relocation\n"); 2865 err = -EINVAL; 2866 goto fail_qgroup; 2867 } 2868 } 2869 2870 location.objectid = BTRFS_FS_TREE_OBJECTID; 2871 location.type = BTRFS_ROOT_ITEM_KEY; 2872 location.offset = 0; 2873 2874 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2875 if (IS_ERR(fs_info->fs_root)) { 2876 err = PTR_ERR(fs_info->fs_root); 2877 goto fail_qgroup; 2878 } 2879 2880 if (sb->s_flags & MS_RDONLY) 2881 return 0; 2882 2883 down_read(&fs_info->cleanup_work_sem); 2884 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2885 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2886 up_read(&fs_info->cleanup_work_sem); 2887 close_ctree(tree_root); 2888 return ret; 2889 } 2890 up_read(&fs_info->cleanup_work_sem); 2891 2892 ret = btrfs_resume_balance_async(fs_info); 2893 if (ret) { 2894 printk(KERN_WARNING "BTRFS: failed to resume balance\n"); 2895 close_ctree(tree_root); 2896 return ret; 2897 } 2898 2899 ret = btrfs_resume_dev_replace_async(fs_info); 2900 if (ret) { 2901 pr_warn("BTRFS: failed to resume dev_replace\n"); 2902 close_ctree(tree_root); 2903 return ret; 2904 } 2905 2906 btrfs_qgroup_rescan_resume(fs_info); 2907 2908 if (create_uuid_tree) { 2909 pr_info("BTRFS: creating UUID tree\n"); 2910 ret = btrfs_create_uuid_tree(fs_info); 2911 if (ret) { 2912 pr_warn("BTRFS: failed to create the UUID tree %d\n", 2913 ret); 2914 close_ctree(tree_root); 2915 return ret; 2916 } 2917 } else if (check_uuid_tree || 2918 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) { 2919 pr_info("BTRFS: checking UUID tree\n"); 2920 ret = btrfs_check_uuid_tree(fs_info); 2921 if (ret) { 2922 pr_warn("BTRFS: failed to check the UUID tree %d\n", 2923 ret); 2924 close_ctree(tree_root); 2925 return ret; 2926 } 2927 } else { 2928 fs_info->update_uuid_tree_gen = 1; 2929 } 2930 2931 return 0; 2932 2933 fail_qgroup: 2934 btrfs_free_qgroup_config(fs_info); 2935 fail_trans_kthread: 2936 kthread_stop(fs_info->transaction_kthread); 2937 btrfs_cleanup_transaction(fs_info->tree_root); 2938 del_fs_roots(fs_info); 2939 fail_cleaner: 2940 kthread_stop(fs_info->cleaner_kthread); 2941 2942 /* 2943 * make sure we're done with the btree inode before we stop our 2944 * kthreads 2945 */ 2946 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2947 2948 fail_sysfs: 2949 btrfs_sysfs_remove_one(fs_info); 2950 2951 fail_block_groups: 2952 btrfs_put_block_group_cache(fs_info); 2953 btrfs_free_block_groups(fs_info); 2954 2955 fail_tree_roots: 2956 free_root_pointers(fs_info, 1); 2957 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2958 2959 fail_sb_buffer: 2960 btrfs_stop_all_workers(fs_info); 2961 fail_alloc: 2962 fail_iput: 2963 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2964 2965 iput(fs_info->btree_inode); 2966 fail_delalloc_bytes: 2967 percpu_counter_destroy(&fs_info->delalloc_bytes); 2968 fail_dirty_metadata_bytes: 2969 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 2970 fail_bdi: 2971 bdi_destroy(&fs_info->bdi); 2972 fail_srcu: 2973 cleanup_srcu_struct(&fs_info->subvol_srcu); 2974 fail: 2975 btrfs_free_stripe_hash_table(fs_info); 2976 btrfs_close_devices(fs_info->fs_devices); 2977 return err; 2978 2979 recovery_tree_root: 2980 if (!btrfs_test_opt(tree_root, RECOVERY)) 2981 goto fail_tree_roots; 2982 2983 free_root_pointers(fs_info, 0); 2984 2985 /* don't use the log in recovery mode, it won't be valid */ 2986 btrfs_set_super_log_root(disk_super, 0); 2987 2988 /* we can't trust the free space cache either */ 2989 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2990 2991 ret = next_root_backup(fs_info, fs_info->super_copy, 2992 &num_backups_tried, &backup_index); 2993 if (ret == -1) 2994 goto fail_block_groups; 2995 goto retry_root_backup; 2996 } 2997 2998 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 2999 { 3000 if (uptodate) { 3001 set_buffer_uptodate(bh); 3002 } else { 3003 struct btrfs_device *device = (struct btrfs_device *) 3004 bh->b_private; 3005 3006 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to " 3007 "I/O error on %s\n", 3008 rcu_str_deref(device->name)); 3009 /* note, we dont' set_buffer_write_io_error because we have 3010 * our own ways of dealing with the IO errors 3011 */ 3012 clear_buffer_uptodate(bh); 3013 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3014 } 3015 unlock_buffer(bh); 3016 put_bh(bh); 3017 } 3018 3019 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3020 { 3021 struct buffer_head *bh; 3022 struct buffer_head *latest = NULL; 3023 struct btrfs_super_block *super; 3024 int i; 3025 u64 transid = 0; 3026 u64 bytenr; 3027 3028 /* we would like to check all the supers, but that would make 3029 * a btrfs mount succeed after a mkfs from a different FS. 3030 * So, we need to add a special mount option to scan for 3031 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3032 */ 3033 for (i = 0; i < 1; i++) { 3034 bytenr = btrfs_sb_offset(i); 3035 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3036 i_size_read(bdev->bd_inode)) 3037 break; 3038 bh = __bread(bdev, bytenr / 4096, 3039 BTRFS_SUPER_INFO_SIZE); 3040 if (!bh) 3041 continue; 3042 3043 super = (struct btrfs_super_block *)bh->b_data; 3044 if (btrfs_super_bytenr(super) != bytenr || 3045 btrfs_super_magic(super) != BTRFS_MAGIC) { 3046 brelse(bh); 3047 continue; 3048 } 3049 3050 if (!latest || btrfs_super_generation(super) > transid) { 3051 brelse(latest); 3052 latest = bh; 3053 transid = btrfs_super_generation(super); 3054 } else { 3055 brelse(bh); 3056 } 3057 } 3058 return latest; 3059 } 3060 3061 /* 3062 * this should be called twice, once with wait == 0 and 3063 * once with wait == 1. When wait == 0 is done, all the buffer heads 3064 * we write are pinned. 3065 * 3066 * They are released when wait == 1 is done. 3067 * max_mirrors must be the same for both runs, and it indicates how 3068 * many supers on this one device should be written. 3069 * 3070 * max_mirrors == 0 means to write them all. 3071 */ 3072 static int write_dev_supers(struct btrfs_device *device, 3073 struct btrfs_super_block *sb, 3074 int do_barriers, int wait, int max_mirrors) 3075 { 3076 struct buffer_head *bh; 3077 int i; 3078 int ret; 3079 int errors = 0; 3080 u32 crc; 3081 u64 bytenr; 3082 3083 if (max_mirrors == 0) 3084 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3085 3086 for (i = 0; i < max_mirrors; i++) { 3087 bytenr = btrfs_sb_offset(i); 3088 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 3089 break; 3090 3091 if (wait) { 3092 bh = __find_get_block(device->bdev, bytenr / 4096, 3093 BTRFS_SUPER_INFO_SIZE); 3094 if (!bh) { 3095 errors++; 3096 continue; 3097 } 3098 wait_on_buffer(bh); 3099 if (!buffer_uptodate(bh)) 3100 errors++; 3101 3102 /* drop our reference */ 3103 brelse(bh); 3104 3105 /* drop the reference from the wait == 0 run */ 3106 brelse(bh); 3107 continue; 3108 } else { 3109 btrfs_set_super_bytenr(sb, bytenr); 3110 3111 crc = ~(u32)0; 3112 crc = btrfs_csum_data((char *)sb + 3113 BTRFS_CSUM_SIZE, crc, 3114 BTRFS_SUPER_INFO_SIZE - 3115 BTRFS_CSUM_SIZE); 3116 btrfs_csum_final(crc, sb->csum); 3117 3118 /* 3119 * one reference for us, and we leave it for the 3120 * caller 3121 */ 3122 bh = __getblk(device->bdev, bytenr / 4096, 3123 BTRFS_SUPER_INFO_SIZE); 3124 if (!bh) { 3125 printk(KERN_ERR "BTRFS: couldn't get super " 3126 "buffer head for bytenr %Lu\n", bytenr); 3127 errors++; 3128 continue; 3129 } 3130 3131 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3132 3133 /* one reference for submit_bh */ 3134 get_bh(bh); 3135 3136 set_buffer_uptodate(bh); 3137 lock_buffer(bh); 3138 bh->b_end_io = btrfs_end_buffer_write_sync; 3139 bh->b_private = device; 3140 } 3141 3142 /* 3143 * we fua the first super. The others we allow 3144 * to go down lazy. 3145 */ 3146 if (i == 0) 3147 ret = btrfsic_submit_bh(WRITE_FUA, bh); 3148 else 3149 ret = btrfsic_submit_bh(WRITE_SYNC, bh); 3150 if (ret) 3151 errors++; 3152 } 3153 return errors < i ? 0 : -1; 3154 } 3155 3156 /* 3157 * endio for the write_dev_flush, this will wake anyone waiting 3158 * for the barrier when it is done 3159 */ 3160 static void btrfs_end_empty_barrier(struct bio *bio, int err) 3161 { 3162 if (err) { 3163 if (err == -EOPNOTSUPP) 3164 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 3165 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3166 } 3167 if (bio->bi_private) 3168 complete(bio->bi_private); 3169 bio_put(bio); 3170 } 3171 3172 /* 3173 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3174 * sent down. With wait == 1, it waits for the previous flush. 3175 * 3176 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3177 * capable 3178 */ 3179 static int write_dev_flush(struct btrfs_device *device, int wait) 3180 { 3181 struct bio *bio; 3182 int ret = 0; 3183 3184 if (device->nobarriers) 3185 return 0; 3186 3187 if (wait) { 3188 bio = device->flush_bio; 3189 if (!bio) 3190 return 0; 3191 3192 wait_for_completion(&device->flush_wait); 3193 3194 if (bio_flagged(bio, BIO_EOPNOTSUPP)) { 3195 printk_in_rcu("BTRFS: disabling barriers on dev %s\n", 3196 rcu_str_deref(device->name)); 3197 device->nobarriers = 1; 3198 } else if (!bio_flagged(bio, BIO_UPTODATE)) { 3199 ret = -EIO; 3200 btrfs_dev_stat_inc_and_print(device, 3201 BTRFS_DEV_STAT_FLUSH_ERRS); 3202 } 3203 3204 /* drop the reference from the wait == 0 run */ 3205 bio_put(bio); 3206 device->flush_bio = NULL; 3207 3208 return ret; 3209 } 3210 3211 /* 3212 * one reference for us, and we leave it for the 3213 * caller 3214 */ 3215 device->flush_bio = NULL; 3216 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3217 if (!bio) 3218 return -ENOMEM; 3219 3220 bio->bi_end_io = btrfs_end_empty_barrier; 3221 bio->bi_bdev = device->bdev; 3222 init_completion(&device->flush_wait); 3223 bio->bi_private = &device->flush_wait; 3224 device->flush_bio = bio; 3225 3226 bio_get(bio); 3227 btrfsic_submit_bio(WRITE_FLUSH, bio); 3228 3229 return 0; 3230 } 3231 3232 /* 3233 * send an empty flush down to each device in parallel, 3234 * then wait for them 3235 */ 3236 static int barrier_all_devices(struct btrfs_fs_info *info) 3237 { 3238 struct list_head *head; 3239 struct btrfs_device *dev; 3240 int errors_send = 0; 3241 int errors_wait = 0; 3242 int ret; 3243 3244 /* send down all the barriers */ 3245 head = &info->fs_devices->devices; 3246 list_for_each_entry_rcu(dev, head, dev_list) { 3247 if (!dev->bdev) { 3248 errors_send++; 3249 continue; 3250 } 3251 if (!dev->in_fs_metadata || !dev->writeable) 3252 continue; 3253 3254 ret = write_dev_flush(dev, 0); 3255 if (ret) 3256 errors_send++; 3257 } 3258 3259 /* wait for all the barriers */ 3260 list_for_each_entry_rcu(dev, head, dev_list) { 3261 if (!dev->bdev) { 3262 errors_wait++; 3263 continue; 3264 } 3265 if (!dev->in_fs_metadata || !dev->writeable) 3266 continue; 3267 3268 ret = write_dev_flush(dev, 1); 3269 if (ret) 3270 errors_wait++; 3271 } 3272 if (errors_send > info->num_tolerated_disk_barrier_failures || 3273 errors_wait > info->num_tolerated_disk_barrier_failures) 3274 return -EIO; 3275 return 0; 3276 } 3277 3278 int btrfs_calc_num_tolerated_disk_barrier_failures( 3279 struct btrfs_fs_info *fs_info) 3280 { 3281 struct btrfs_ioctl_space_info space; 3282 struct btrfs_space_info *sinfo; 3283 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3284 BTRFS_BLOCK_GROUP_SYSTEM, 3285 BTRFS_BLOCK_GROUP_METADATA, 3286 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3287 int num_types = 4; 3288 int i; 3289 int c; 3290 int num_tolerated_disk_barrier_failures = 3291 (int)fs_info->fs_devices->num_devices; 3292 3293 for (i = 0; i < num_types; i++) { 3294 struct btrfs_space_info *tmp; 3295 3296 sinfo = NULL; 3297 rcu_read_lock(); 3298 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3299 if (tmp->flags == types[i]) { 3300 sinfo = tmp; 3301 break; 3302 } 3303 } 3304 rcu_read_unlock(); 3305 3306 if (!sinfo) 3307 continue; 3308 3309 down_read(&sinfo->groups_sem); 3310 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3311 if (!list_empty(&sinfo->block_groups[c])) { 3312 u64 flags; 3313 3314 btrfs_get_block_group_info( 3315 &sinfo->block_groups[c], &space); 3316 if (space.total_bytes == 0 || 3317 space.used_bytes == 0) 3318 continue; 3319 flags = space.flags; 3320 /* 3321 * return 3322 * 0: if dup, single or RAID0 is configured for 3323 * any of metadata, system or data, else 3324 * 1: if RAID5 is configured, or if RAID1 or 3325 * RAID10 is configured and only two mirrors 3326 * are used, else 3327 * 2: if RAID6 is configured, else 3328 * num_mirrors - 1: if RAID1 or RAID10 is 3329 * configured and more than 3330 * 2 mirrors are used. 3331 */ 3332 if (num_tolerated_disk_barrier_failures > 0 && 3333 ((flags & (BTRFS_BLOCK_GROUP_DUP | 3334 BTRFS_BLOCK_GROUP_RAID0)) || 3335 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) 3336 == 0))) 3337 num_tolerated_disk_barrier_failures = 0; 3338 else if (num_tolerated_disk_barrier_failures > 1) { 3339 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3340 BTRFS_BLOCK_GROUP_RAID5 | 3341 BTRFS_BLOCK_GROUP_RAID10)) { 3342 num_tolerated_disk_barrier_failures = 1; 3343 } else if (flags & 3344 BTRFS_BLOCK_GROUP_RAID6) { 3345 num_tolerated_disk_barrier_failures = 2; 3346 } 3347 } 3348 } 3349 } 3350 up_read(&sinfo->groups_sem); 3351 } 3352 3353 return num_tolerated_disk_barrier_failures; 3354 } 3355 3356 static int write_all_supers(struct btrfs_root *root, int max_mirrors) 3357 { 3358 struct list_head *head; 3359 struct btrfs_device *dev; 3360 struct btrfs_super_block *sb; 3361 struct btrfs_dev_item *dev_item; 3362 int ret; 3363 int do_barriers; 3364 int max_errors; 3365 int total_errors = 0; 3366 u64 flags; 3367 3368 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3369 backup_super_roots(root->fs_info); 3370 3371 sb = root->fs_info->super_for_commit; 3372 dev_item = &sb->dev_item; 3373 3374 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3375 head = &root->fs_info->fs_devices->devices; 3376 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3377 3378 if (do_barriers) { 3379 ret = barrier_all_devices(root->fs_info); 3380 if (ret) { 3381 mutex_unlock( 3382 &root->fs_info->fs_devices->device_list_mutex); 3383 btrfs_error(root->fs_info, ret, 3384 "errors while submitting device barriers."); 3385 return ret; 3386 } 3387 } 3388 3389 list_for_each_entry_rcu(dev, head, dev_list) { 3390 if (!dev->bdev) { 3391 total_errors++; 3392 continue; 3393 } 3394 if (!dev->in_fs_metadata || !dev->writeable) 3395 continue; 3396 3397 btrfs_set_stack_device_generation(dev_item, 0); 3398 btrfs_set_stack_device_type(dev_item, dev->type); 3399 btrfs_set_stack_device_id(dev_item, dev->devid); 3400 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 3401 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 3402 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3403 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3404 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3405 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3406 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3407 3408 flags = btrfs_super_flags(sb); 3409 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3410 3411 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3412 if (ret) 3413 total_errors++; 3414 } 3415 if (total_errors > max_errors) { 3416 btrfs_err(root->fs_info, "%d errors while writing supers", 3417 total_errors); 3418 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3419 3420 /* FUA is masked off if unsupported and can't be the reason */ 3421 btrfs_error(root->fs_info, -EIO, 3422 "%d errors while writing supers", total_errors); 3423 return -EIO; 3424 } 3425 3426 total_errors = 0; 3427 list_for_each_entry_rcu(dev, head, dev_list) { 3428 if (!dev->bdev) 3429 continue; 3430 if (!dev->in_fs_metadata || !dev->writeable) 3431 continue; 3432 3433 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3434 if (ret) 3435 total_errors++; 3436 } 3437 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3438 if (total_errors > max_errors) { 3439 btrfs_error(root->fs_info, -EIO, 3440 "%d errors while writing supers", total_errors); 3441 return -EIO; 3442 } 3443 return 0; 3444 } 3445 3446 int write_ctree_super(struct btrfs_trans_handle *trans, 3447 struct btrfs_root *root, int max_mirrors) 3448 { 3449 return write_all_supers(root, max_mirrors); 3450 } 3451 3452 /* Drop a fs root from the radix tree and free it. */ 3453 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3454 struct btrfs_root *root) 3455 { 3456 spin_lock(&fs_info->fs_roots_radix_lock); 3457 radix_tree_delete(&fs_info->fs_roots_radix, 3458 (unsigned long)root->root_key.objectid); 3459 spin_unlock(&fs_info->fs_roots_radix_lock); 3460 3461 if (btrfs_root_refs(&root->root_item) == 0) 3462 synchronize_srcu(&fs_info->subvol_srcu); 3463 3464 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3465 btrfs_free_log(NULL, root); 3466 3467 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3468 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3469 free_fs_root(root); 3470 } 3471 3472 static void free_fs_root(struct btrfs_root *root) 3473 { 3474 iput(root->cache_inode); 3475 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3476 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3477 root->orphan_block_rsv = NULL; 3478 if (root->anon_dev) 3479 free_anon_bdev(root->anon_dev); 3480 free_extent_buffer(root->node); 3481 free_extent_buffer(root->commit_root); 3482 kfree(root->free_ino_ctl); 3483 kfree(root->free_ino_pinned); 3484 kfree(root->name); 3485 btrfs_put_fs_root(root); 3486 } 3487 3488 void btrfs_free_fs_root(struct btrfs_root *root) 3489 { 3490 free_fs_root(root); 3491 } 3492 3493 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3494 { 3495 u64 root_objectid = 0; 3496 struct btrfs_root *gang[8]; 3497 int i; 3498 int ret; 3499 3500 while (1) { 3501 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3502 (void **)gang, root_objectid, 3503 ARRAY_SIZE(gang)); 3504 if (!ret) 3505 break; 3506 3507 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3508 for (i = 0; i < ret; i++) { 3509 int err; 3510 3511 root_objectid = gang[i]->root_key.objectid; 3512 err = btrfs_orphan_cleanup(gang[i]); 3513 if (err) 3514 return err; 3515 } 3516 root_objectid++; 3517 } 3518 return 0; 3519 } 3520 3521 int btrfs_commit_super(struct btrfs_root *root) 3522 { 3523 struct btrfs_trans_handle *trans; 3524 3525 mutex_lock(&root->fs_info->cleaner_mutex); 3526 btrfs_run_delayed_iputs(root); 3527 mutex_unlock(&root->fs_info->cleaner_mutex); 3528 wake_up_process(root->fs_info->cleaner_kthread); 3529 3530 /* wait until ongoing cleanup work done */ 3531 down_write(&root->fs_info->cleanup_work_sem); 3532 up_write(&root->fs_info->cleanup_work_sem); 3533 3534 trans = btrfs_join_transaction(root); 3535 if (IS_ERR(trans)) 3536 return PTR_ERR(trans); 3537 return btrfs_commit_transaction(trans, root); 3538 } 3539 3540 int close_ctree(struct btrfs_root *root) 3541 { 3542 struct btrfs_fs_info *fs_info = root->fs_info; 3543 int ret; 3544 3545 fs_info->closing = 1; 3546 smp_mb(); 3547 3548 /* wait for the uuid_scan task to finish */ 3549 down(&fs_info->uuid_tree_rescan_sem); 3550 /* avoid complains from lockdep et al., set sem back to initial state */ 3551 up(&fs_info->uuid_tree_rescan_sem); 3552 3553 /* pause restriper - we want to resume on mount */ 3554 btrfs_pause_balance(fs_info); 3555 3556 btrfs_dev_replace_suspend_for_unmount(fs_info); 3557 3558 btrfs_scrub_cancel(fs_info); 3559 3560 /* wait for any defraggers to finish */ 3561 wait_event(fs_info->transaction_wait, 3562 (atomic_read(&fs_info->defrag_running) == 0)); 3563 3564 /* clear out the rbtree of defraggable inodes */ 3565 btrfs_cleanup_defrag_inodes(fs_info); 3566 3567 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3568 ret = btrfs_commit_super(root); 3569 if (ret) 3570 btrfs_err(root->fs_info, "commit super ret %d", ret); 3571 } 3572 3573 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3574 btrfs_error_commit_super(root); 3575 3576 kthread_stop(fs_info->transaction_kthread); 3577 kthread_stop(fs_info->cleaner_kthread); 3578 3579 fs_info->closing = 2; 3580 smp_mb(); 3581 3582 btrfs_free_qgroup_config(root->fs_info); 3583 3584 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3585 btrfs_info(root->fs_info, "at unmount delalloc count %lld", 3586 percpu_counter_sum(&fs_info->delalloc_bytes)); 3587 } 3588 3589 btrfs_sysfs_remove_one(fs_info); 3590 3591 del_fs_roots(fs_info); 3592 3593 btrfs_put_block_group_cache(fs_info); 3594 3595 btrfs_free_block_groups(fs_info); 3596 3597 btrfs_stop_all_workers(fs_info); 3598 3599 free_root_pointers(fs_info, 1); 3600 3601 iput(fs_info->btree_inode); 3602 3603 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3604 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3605 btrfsic_unmount(root, fs_info->fs_devices); 3606 #endif 3607 3608 btrfs_close_devices(fs_info->fs_devices); 3609 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3610 3611 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3612 percpu_counter_destroy(&fs_info->delalloc_bytes); 3613 bdi_destroy(&fs_info->bdi); 3614 cleanup_srcu_struct(&fs_info->subvol_srcu); 3615 3616 btrfs_free_stripe_hash_table(fs_info); 3617 3618 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3619 root->orphan_block_rsv = NULL; 3620 3621 return 0; 3622 } 3623 3624 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3625 int atomic) 3626 { 3627 int ret; 3628 struct inode *btree_inode = buf->pages[0]->mapping->host; 3629 3630 ret = extent_buffer_uptodate(buf); 3631 if (!ret) 3632 return ret; 3633 3634 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3635 parent_transid, atomic); 3636 if (ret == -EAGAIN) 3637 return ret; 3638 return !ret; 3639 } 3640 3641 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3642 { 3643 return set_extent_buffer_uptodate(buf); 3644 } 3645 3646 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3647 { 3648 struct btrfs_root *root; 3649 u64 transid = btrfs_header_generation(buf); 3650 int was_dirty; 3651 3652 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3653 /* 3654 * This is a fast path so only do this check if we have sanity tests 3655 * enabled. Normal people shouldn't be marking dummy buffers as dirty 3656 * outside of the sanity tests. 3657 */ 3658 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 3659 return; 3660 #endif 3661 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3662 btrfs_assert_tree_locked(buf); 3663 if (transid != root->fs_info->generation) 3664 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 3665 "found %llu running %llu\n", 3666 buf->start, transid, root->fs_info->generation); 3667 was_dirty = set_extent_buffer_dirty(buf); 3668 if (!was_dirty) 3669 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 3670 buf->len, 3671 root->fs_info->dirty_metadata_batch); 3672 } 3673 3674 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 3675 int flush_delayed) 3676 { 3677 /* 3678 * looks as though older kernels can get into trouble with 3679 * this code, they end up stuck in balance_dirty_pages forever 3680 */ 3681 int ret; 3682 3683 if (current->flags & PF_MEMALLOC) 3684 return; 3685 3686 if (flush_delayed) 3687 btrfs_balance_delayed_items(root); 3688 3689 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 3690 BTRFS_DIRTY_METADATA_THRESH); 3691 if (ret > 0) { 3692 balance_dirty_pages_ratelimited( 3693 root->fs_info->btree_inode->i_mapping); 3694 } 3695 return; 3696 } 3697 3698 void btrfs_btree_balance_dirty(struct btrfs_root *root) 3699 { 3700 __btrfs_btree_balance_dirty(root, 1); 3701 } 3702 3703 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 3704 { 3705 __btrfs_btree_balance_dirty(root, 0); 3706 } 3707 3708 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3709 { 3710 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3711 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3712 } 3713 3714 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3715 int read_only) 3716 { 3717 /* 3718 * Placeholder for checks 3719 */ 3720 return 0; 3721 } 3722 3723 static void btrfs_error_commit_super(struct btrfs_root *root) 3724 { 3725 mutex_lock(&root->fs_info->cleaner_mutex); 3726 btrfs_run_delayed_iputs(root); 3727 mutex_unlock(&root->fs_info->cleaner_mutex); 3728 3729 down_write(&root->fs_info->cleanup_work_sem); 3730 up_write(&root->fs_info->cleanup_work_sem); 3731 3732 /* cleanup FS via transaction */ 3733 btrfs_cleanup_transaction(root); 3734 } 3735 3736 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t, 3737 struct btrfs_root *root) 3738 { 3739 struct btrfs_inode *btrfs_inode; 3740 struct list_head splice; 3741 3742 INIT_LIST_HEAD(&splice); 3743 3744 mutex_lock(&root->fs_info->ordered_operations_mutex); 3745 spin_lock(&root->fs_info->ordered_root_lock); 3746 3747 list_splice_init(&t->ordered_operations, &splice); 3748 while (!list_empty(&splice)) { 3749 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3750 ordered_operations); 3751 3752 list_del_init(&btrfs_inode->ordered_operations); 3753 spin_unlock(&root->fs_info->ordered_root_lock); 3754 3755 btrfs_invalidate_inodes(btrfs_inode->root); 3756 3757 spin_lock(&root->fs_info->ordered_root_lock); 3758 } 3759 3760 spin_unlock(&root->fs_info->ordered_root_lock); 3761 mutex_unlock(&root->fs_info->ordered_operations_mutex); 3762 } 3763 3764 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 3765 { 3766 struct btrfs_ordered_extent *ordered; 3767 3768 spin_lock(&root->ordered_extent_lock); 3769 /* 3770 * This will just short circuit the ordered completion stuff which will 3771 * make sure the ordered extent gets properly cleaned up. 3772 */ 3773 list_for_each_entry(ordered, &root->ordered_extents, 3774 root_extent_list) 3775 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 3776 spin_unlock(&root->ordered_extent_lock); 3777 } 3778 3779 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 3780 { 3781 struct btrfs_root *root; 3782 struct list_head splice; 3783 3784 INIT_LIST_HEAD(&splice); 3785 3786 spin_lock(&fs_info->ordered_root_lock); 3787 list_splice_init(&fs_info->ordered_roots, &splice); 3788 while (!list_empty(&splice)) { 3789 root = list_first_entry(&splice, struct btrfs_root, 3790 ordered_root); 3791 list_move_tail(&root->ordered_root, 3792 &fs_info->ordered_roots); 3793 3794 btrfs_destroy_ordered_extents(root); 3795 3796 cond_resched_lock(&fs_info->ordered_root_lock); 3797 } 3798 spin_unlock(&fs_info->ordered_root_lock); 3799 } 3800 3801 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 3802 struct btrfs_root *root) 3803 { 3804 struct rb_node *node; 3805 struct btrfs_delayed_ref_root *delayed_refs; 3806 struct btrfs_delayed_ref_node *ref; 3807 int ret = 0; 3808 3809 delayed_refs = &trans->delayed_refs; 3810 3811 spin_lock(&delayed_refs->lock); 3812 if (atomic_read(&delayed_refs->num_entries) == 0) { 3813 spin_unlock(&delayed_refs->lock); 3814 btrfs_info(root->fs_info, "delayed_refs has NO entry"); 3815 return ret; 3816 } 3817 3818 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 3819 struct btrfs_delayed_ref_head *head; 3820 bool pin_bytes = false; 3821 3822 head = rb_entry(node, struct btrfs_delayed_ref_head, 3823 href_node); 3824 if (!mutex_trylock(&head->mutex)) { 3825 atomic_inc(&head->node.refs); 3826 spin_unlock(&delayed_refs->lock); 3827 3828 mutex_lock(&head->mutex); 3829 mutex_unlock(&head->mutex); 3830 btrfs_put_delayed_ref(&head->node); 3831 spin_lock(&delayed_refs->lock); 3832 continue; 3833 } 3834 spin_lock(&head->lock); 3835 while ((node = rb_first(&head->ref_root)) != NULL) { 3836 ref = rb_entry(node, struct btrfs_delayed_ref_node, 3837 rb_node); 3838 ref->in_tree = 0; 3839 rb_erase(&ref->rb_node, &head->ref_root); 3840 atomic_dec(&delayed_refs->num_entries); 3841 btrfs_put_delayed_ref(ref); 3842 } 3843 if (head->must_insert_reserved) 3844 pin_bytes = true; 3845 btrfs_free_delayed_extent_op(head->extent_op); 3846 delayed_refs->num_heads--; 3847 if (head->processing == 0) 3848 delayed_refs->num_heads_ready--; 3849 atomic_dec(&delayed_refs->num_entries); 3850 head->node.in_tree = 0; 3851 rb_erase(&head->href_node, &delayed_refs->href_root); 3852 spin_unlock(&head->lock); 3853 spin_unlock(&delayed_refs->lock); 3854 mutex_unlock(&head->mutex); 3855 3856 if (pin_bytes) 3857 btrfs_pin_extent(root, head->node.bytenr, 3858 head->node.num_bytes, 1); 3859 btrfs_put_delayed_ref(&head->node); 3860 cond_resched(); 3861 spin_lock(&delayed_refs->lock); 3862 } 3863 3864 spin_unlock(&delayed_refs->lock); 3865 3866 return ret; 3867 } 3868 3869 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 3870 { 3871 struct btrfs_inode *btrfs_inode; 3872 struct list_head splice; 3873 3874 INIT_LIST_HEAD(&splice); 3875 3876 spin_lock(&root->delalloc_lock); 3877 list_splice_init(&root->delalloc_inodes, &splice); 3878 3879 while (!list_empty(&splice)) { 3880 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 3881 delalloc_inodes); 3882 3883 list_del_init(&btrfs_inode->delalloc_inodes); 3884 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 3885 &btrfs_inode->runtime_flags); 3886 spin_unlock(&root->delalloc_lock); 3887 3888 btrfs_invalidate_inodes(btrfs_inode->root); 3889 3890 spin_lock(&root->delalloc_lock); 3891 } 3892 3893 spin_unlock(&root->delalloc_lock); 3894 } 3895 3896 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 3897 { 3898 struct btrfs_root *root; 3899 struct list_head splice; 3900 3901 INIT_LIST_HEAD(&splice); 3902 3903 spin_lock(&fs_info->delalloc_root_lock); 3904 list_splice_init(&fs_info->delalloc_roots, &splice); 3905 while (!list_empty(&splice)) { 3906 root = list_first_entry(&splice, struct btrfs_root, 3907 delalloc_root); 3908 list_del_init(&root->delalloc_root); 3909 root = btrfs_grab_fs_root(root); 3910 BUG_ON(!root); 3911 spin_unlock(&fs_info->delalloc_root_lock); 3912 3913 btrfs_destroy_delalloc_inodes(root); 3914 btrfs_put_fs_root(root); 3915 3916 spin_lock(&fs_info->delalloc_root_lock); 3917 } 3918 spin_unlock(&fs_info->delalloc_root_lock); 3919 } 3920 3921 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 3922 struct extent_io_tree *dirty_pages, 3923 int mark) 3924 { 3925 int ret; 3926 struct extent_buffer *eb; 3927 u64 start = 0; 3928 u64 end; 3929 3930 while (1) { 3931 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 3932 mark, NULL); 3933 if (ret) 3934 break; 3935 3936 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 3937 while (start <= end) { 3938 eb = btrfs_find_tree_block(root, start, 3939 root->leafsize); 3940 start += root->leafsize; 3941 if (!eb) 3942 continue; 3943 wait_on_extent_buffer_writeback(eb); 3944 3945 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 3946 &eb->bflags)) 3947 clear_extent_buffer_dirty(eb); 3948 free_extent_buffer_stale(eb); 3949 } 3950 } 3951 3952 return ret; 3953 } 3954 3955 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 3956 struct extent_io_tree *pinned_extents) 3957 { 3958 struct extent_io_tree *unpin; 3959 u64 start; 3960 u64 end; 3961 int ret; 3962 bool loop = true; 3963 3964 unpin = pinned_extents; 3965 again: 3966 while (1) { 3967 ret = find_first_extent_bit(unpin, 0, &start, &end, 3968 EXTENT_DIRTY, NULL); 3969 if (ret) 3970 break; 3971 3972 /* opt_discard */ 3973 if (btrfs_test_opt(root, DISCARD)) 3974 ret = btrfs_error_discard_extent(root, start, 3975 end + 1 - start, 3976 NULL); 3977 3978 clear_extent_dirty(unpin, start, end, GFP_NOFS); 3979 btrfs_error_unpin_extent_range(root, start, end); 3980 cond_resched(); 3981 } 3982 3983 if (loop) { 3984 if (unpin == &root->fs_info->freed_extents[0]) 3985 unpin = &root->fs_info->freed_extents[1]; 3986 else 3987 unpin = &root->fs_info->freed_extents[0]; 3988 loop = false; 3989 goto again; 3990 } 3991 3992 return 0; 3993 } 3994 3995 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 3996 struct btrfs_root *root) 3997 { 3998 btrfs_destroy_ordered_operations(cur_trans, root); 3999 4000 btrfs_destroy_delayed_refs(cur_trans, root); 4001 4002 cur_trans->state = TRANS_STATE_COMMIT_START; 4003 wake_up(&root->fs_info->transaction_blocked_wait); 4004 4005 cur_trans->state = TRANS_STATE_UNBLOCKED; 4006 wake_up(&root->fs_info->transaction_wait); 4007 4008 btrfs_destroy_delayed_inodes(root); 4009 btrfs_assert_delayed_root_empty(root); 4010 4011 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 4012 EXTENT_DIRTY); 4013 btrfs_destroy_pinned_extent(root, 4014 root->fs_info->pinned_extents); 4015 4016 cur_trans->state =TRANS_STATE_COMPLETED; 4017 wake_up(&cur_trans->commit_wait); 4018 4019 /* 4020 memset(cur_trans, 0, sizeof(*cur_trans)); 4021 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4022 */ 4023 } 4024 4025 static int btrfs_cleanup_transaction(struct btrfs_root *root) 4026 { 4027 struct btrfs_transaction *t; 4028 4029 mutex_lock(&root->fs_info->transaction_kthread_mutex); 4030 4031 spin_lock(&root->fs_info->trans_lock); 4032 while (!list_empty(&root->fs_info->trans_list)) { 4033 t = list_first_entry(&root->fs_info->trans_list, 4034 struct btrfs_transaction, list); 4035 if (t->state >= TRANS_STATE_COMMIT_START) { 4036 atomic_inc(&t->use_count); 4037 spin_unlock(&root->fs_info->trans_lock); 4038 btrfs_wait_for_commit(root, t->transid); 4039 btrfs_put_transaction(t); 4040 spin_lock(&root->fs_info->trans_lock); 4041 continue; 4042 } 4043 if (t == root->fs_info->running_transaction) { 4044 t->state = TRANS_STATE_COMMIT_DOING; 4045 spin_unlock(&root->fs_info->trans_lock); 4046 /* 4047 * We wait for 0 num_writers since we don't hold a trans 4048 * handle open currently for this transaction. 4049 */ 4050 wait_event(t->writer_wait, 4051 atomic_read(&t->num_writers) == 0); 4052 } else { 4053 spin_unlock(&root->fs_info->trans_lock); 4054 } 4055 btrfs_cleanup_one_transaction(t, root); 4056 4057 spin_lock(&root->fs_info->trans_lock); 4058 if (t == root->fs_info->running_transaction) 4059 root->fs_info->running_transaction = NULL; 4060 list_del_init(&t->list); 4061 spin_unlock(&root->fs_info->trans_lock); 4062 4063 btrfs_put_transaction(t); 4064 trace_btrfs_transaction_commit(root); 4065 spin_lock(&root->fs_info->trans_lock); 4066 } 4067 spin_unlock(&root->fs_info->trans_lock); 4068 btrfs_destroy_all_ordered_extents(root->fs_info); 4069 btrfs_destroy_delayed_inodes(root); 4070 btrfs_assert_delayed_root_empty(root); 4071 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents); 4072 btrfs_destroy_all_delalloc_inodes(root->fs_info); 4073 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 4074 4075 return 0; 4076 } 4077 4078 static struct extent_io_ops btree_extent_io_ops = { 4079 .readpage_end_io_hook = btree_readpage_end_io_hook, 4080 .readpage_io_failed_hook = btree_io_failed_hook, 4081 .submit_bio_hook = btree_submit_bio_hook, 4082 /* note we're sharing with inode.c for the merge bio hook */ 4083 .merge_bio_hook = btrfs_merge_bio_hook, 4084 }; 4085