1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/slab.h> 30 #include <linux/migrate.h> 31 #include <linux/ratelimit.h> 32 #include <linux/uuid.h> 33 #include <linux/semaphore.h> 34 #include <asm/unaligned.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "hash.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "volumes.h" 41 #include "print-tree.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "free-space-tree.h" 46 #include "inode-map.h" 47 #include "check-integrity.h" 48 #include "rcu-string.h" 49 #include "dev-replace.h" 50 #include "raid56.h" 51 #include "sysfs.h" 52 #include "qgroup.h" 53 54 #ifdef CONFIG_X86 55 #include <asm/cpufeature.h> 56 #endif 57 58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 59 BTRFS_HEADER_FLAG_RELOC |\ 60 BTRFS_SUPER_FLAG_ERROR |\ 61 BTRFS_SUPER_FLAG_SEEDING |\ 62 BTRFS_SUPER_FLAG_METADUMP) 63 64 static const struct extent_io_ops btree_extent_io_ops; 65 static void end_workqueue_fn(struct btrfs_work *work); 66 static void free_fs_root(struct btrfs_root *root); 67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 68 int read_only); 69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 71 struct btrfs_root *root); 72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 73 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 74 struct extent_io_tree *dirty_pages, 75 int mark); 76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 77 struct extent_io_tree *pinned_extents); 78 static int btrfs_cleanup_transaction(struct btrfs_root *root); 79 static void btrfs_error_commit_super(struct btrfs_root *root); 80 81 /* 82 * btrfs_end_io_wq structs are used to do processing in task context when an IO 83 * is complete. This is used during reads to verify checksums, and it is used 84 * by writes to insert metadata for new file extents after IO is complete. 85 */ 86 struct btrfs_end_io_wq { 87 struct bio *bio; 88 bio_end_io_t *end_io; 89 void *private; 90 struct btrfs_fs_info *info; 91 int error; 92 enum btrfs_wq_endio_type metadata; 93 struct list_head list; 94 struct btrfs_work work; 95 }; 96 97 static struct kmem_cache *btrfs_end_io_wq_cache; 98 99 int __init btrfs_end_io_wq_init(void) 100 { 101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 102 sizeof(struct btrfs_end_io_wq), 103 0, 104 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 105 NULL); 106 if (!btrfs_end_io_wq_cache) 107 return -ENOMEM; 108 return 0; 109 } 110 111 void btrfs_end_io_wq_exit(void) 112 { 113 if (btrfs_end_io_wq_cache) 114 kmem_cache_destroy(btrfs_end_io_wq_cache); 115 } 116 117 /* 118 * async submit bios are used to offload expensive checksumming 119 * onto the worker threads. They checksum file and metadata bios 120 * just before they are sent down the IO stack. 121 */ 122 struct async_submit_bio { 123 struct inode *inode; 124 struct bio *bio; 125 struct list_head list; 126 extent_submit_bio_hook_t *submit_bio_start; 127 extent_submit_bio_hook_t *submit_bio_done; 128 int rw; 129 int mirror_num; 130 unsigned long bio_flags; 131 /* 132 * bio_offset is optional, can be used if the pages in the bio 133 * can't tell us where in the file the bio should go 134 */ 135 u64 bio_offset; 136 struct btrfs_work work; 137 int error; 138 }; 139 140 /* 141 * Lockdep class keys for extent_buffer->lock's in this root. For a given 142 * eb, the lockdep key is determined by the btrfs_root it belongs to and 143 * the level the eb occupies in the tree. 144 * 145 * Different roots are used for different purposes and may nest inside each 146 * other and they require separate keysets. As lockdep keys should be 147 * static, assign keysets according to the purpose of the root as indicated 148 * by btrfs_root->objectid. This ensures that all special purpose roots 149 * have separate keysets. 150 * 151 * Lock-nesting across peer nodes is always done with the immediate parent 152 * node locked thus preventing deadlock. As lockdep doesn't know this, use 153 * subclass to avoid triggering lockdep warning in such cases. 154 * 155 * The key is set by the readpage_end_io_hook after the buffer has passed 156 * csum validation but before the pages are unlocked. It is also set by 157 * btrfs_init_new_buffer on freshly allocated blocks. 158 * 159 * We also add a check to make sure the highest level of the tree is the 160 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 161 * needs update as well. 162 */ 163 #ifdef CONFIG_DEBUG_LOCK_ALLOC 164 # if BTRFS_MAX_LEVEL != 8 165 # error 166 # endif 167 168 static struct btrfs_lockdep_keyset { 169 u64 id; /* root objectid */ 170 const char *name_stem; /* lock name stem */ 171 char names[BTRFS_MAX_LEVEL + 1][20]; 172 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 173 } btrfs_lockdep_keysets[] = { 174 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 175 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 176 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 177 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 178 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 179 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 180 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 181 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 182 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 183 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 184 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 185 { .id = 0, .name_stem = "tree" }, 186 }; 187 188 void __init btrfs_init_lockdep(void) 189 { 190 int i, j; 191 192 /* initialize lockdep class names */ 193 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 194 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 195 196 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 197 snprintf(ks->names[j], sizeof(ks->names[j]), 198 "btrfs-%s-%02d", ks->name_stem, j); 199 } 200 } 201 202 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 203 int level) 204 { 205 struct btrfs_lockdep_keyset *ks; 206 207 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 208 209 /* find the matching keyset, id 0 is the default entry */ 210 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 211 if (ks->id == objectid) 212 break; 213 214 lockdep_set_class_and_name(&eb->lock, 215 &ks->keys[level], ks->names[level]); 216 } 217 218 #endif 219 220 /* 221 * extents on the btree inode are pretty simple, there's one extent 222 * that covers the entire device 223 */ 224 static struct extent_map *btree_get_extent(struct inode *inode, 225 struct page *page, size_t pg_offset, u64 start, u64 len, 226 int create) 227 { 228 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 229 struct extent_map *em; 230 int ret; 231 232 read_lock(&em_tree->lock); 233 em = lookup_extent_mapping(em_tree, start, len); 234 if (em) { 235 em->bdev = 236 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 237 read_unlock(&em_tree->lock); 238 goto out; 239 } 240 read_unlock(&em_tree->lock); 241 242 em = alloc_extent_map(); 243 if (!em) { 244 em = ERR_PTR(-ENOMEM); 245 goto out; 246 } 247 em->start = 0; 248 em->len = (u64)-1; 249 em->block_len = (u64)-1; 250 em->block_start = 0; 251 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 252 253 write_lock(&em_tree->lock); 254 ret = add_extent_mapping(em_tree, em, 0); 255 if (ret == -EEXIST) { 256 free_extent_map(em); 257 em = lookup_extent_mapping(em_tree, start, len); 258 if (!em) 259 em = ERR_PTR(-EIO); 260 } else if (ret) { 261 free_extent_map(em); 262 em = ERR_PTR(ret); 263 } 264 write_unlock(&em_tree->lock); 265 266 out: 267 return em; 268 } 269 270 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 271 { 272 return btrfs_crc32c(seed, data, len); 273 } 274 275 void btrfs_csum_final(u32 crc, char *result) 276 { 277 put_unaligned_le32(~crc, result); 278 } 279 280 /* 281 * compute the csum for a btree block, and either verify it or write it 282 * into the csum field of the block. 283 */ 284 static int csum_tree_block(struct btrfs_fs_info *fs_info, 285 struct extent_buffer *buf, 286 int verify) 287 { 288 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 289 char *result = NULL; 290 unsigned long len; 291 unsigned long cur_len; 292 unsigned long offset = BTRFS_CSUM_SIZE; 293 char *kaddr; 294 unsigned long map_start; 295 unsigned long map_len; 296 int err; 297 u32 crc = ~(u32)0; 298 unsigned long inline_result; 299 300 len = buf->len - offset; 301 while (len > 0) { 302 err = map_private_extent_buffer(buf, offset, 32, 303 &kaddr, &map_start, &map_len); 304 if (err) 305 return 1; 306 cur_len = min(len, map_len - (offset - map_start)); 307 crc = btrfs_csum_data(kaddr + offset - map_start, 308 crc, cur_len); 309 len -= cur_len; 310 offset += cur_len; 311 } 312 if (csum_size > sizeof(inline_result)) { 313 result = kzalloc(csum_size, GFP_NOFS); 314 if (!result) 315 return 1; 316 } else { 317 result = (char *)&inline_result; 318 } 319 320 btrfs_csum_final(crc, result); 321 322 if (verify) { 323 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 324 u32 val; 325 u32 found = 0; 326 memcpy(&found, result, csum_size); 327 328 read_extent_buffer(buf, &val, 0, csum_size); 329 btrfs_warn_rl(fs_info, 330 "%s checksum verify failed on %llu wanted %X found %X " 331 "level %d", 332 fs_info->sb->s_id, buf->start, 333 val, found, btrfs_header_level(buf)); 334 if (result != (char *)&inline_result) 335 kfree(result); 336 return 1; 337 } 338 } else { 339 write_extent_buffer(buf, result, 0, csum_size); 340 } 341 if (result != (char *)&inline_result) 342 kfree(result); 343 return 0; 344 } 345 346 /* 347 * we can't consider a given block up to date unless the transid of the 348 * block matches the transid in the parent node's pointer. This is how we 349 * detect blocks that either didn't get written at all or got written 350 * in the wrong place. 351 */ 352 static int verify_parent_transid(struct extent_io_tree *io_tree, 353 struct extent_buffer *eb, u64 parent_transid, 354 int atomic) 355 { 356 struct extent_state *cached_state = NULL; 357 int ret; 358 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 359 360 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 361 return 0; 362 363 if (atomic) 364 return -EAGAIN; 365 366 if (need_lock) { 367 btrfs_tree_read_lock(eb); 368 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 369 } 370 371 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 372 &cached_state); 373 if (extent_buffer_uptodate(eb) && 374 btrfs_header_generation(eb) == parent_transid) { 375 ret = 0; 376 goto out; 377 } 378 btrfs_err_rl(eb->fs_info, 379 "parent transid verify failed on %llu wanted %llu found %llu", 380 eb->start, 381 parent_transid, btrfs_header_generation(eb)); 382 ret = 1; 383 384 /* 385 * Things reading via commit roots that don't have normal protection, 386 * like send, can have a really old block in cache that may point at a 387 * block that has been free'd and re-allocated. So don't clear uptodate 388 * if we find an eb that is under IO (dirty/writeback) because we could 389 * end up reading in the stale data and then writing it back out and 390 * making everybody very sad. 391 */ 392 if (!extent_buffer_under_io(eb)) 393 clear_extent_buffer_uptodate(eb); 394 out: 395 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 396 &cached_state, GFP_NOFS); 397 if (need_lock) 398 btrfs_tree_read_unlock_blocking(eb); 399 return ret; 400 } 401 402 /* 403 * Return 0 if the superblock checksum type matches the checksum value of that 404 * algorithm. Pass the raw disk superblock data. 405 */ 406 static int btrfs_check_super_csum(char *raw_disk_sb) 407 { 408 struct btrfs_super_block *disk_sb = 409 (struct btrfs_super_block *)raw_disk_sb; 410 u16 csum_type = btrfs_super_csum_type(disk_sb); 411 int ret = 0; 412 413 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 414 u32 crc = ~(u32)0; 415 const int csum_size = sizeof(crc); 416 char result[csum_size]; 417 418 /* 419 * The super_block structure does not span the whole 420 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 421 * is filled with zeros and is included in the checkum. 422 */ 423 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 424 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 425 btrfs_csum_final(crc, result); 426 427 if (memcmp(raw_disk_sb, result, csum_size)) 428 ret = 1; 429 } 430 431 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 432 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n", 433 csum_type); 434 ret = 1; 435 } 436 437 return ret; 438 } 439 440 /* 441 * helper to read a given tree block, doing retries as required when 442 * the checksums don't match and we have alternate mirrors to try. 443 */ 444 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 445 struct extent_buffer *eb, 446 u64 start, u64 parent_transid) 447 { 448 struct extent_io_tree *io_tree; 449 int failed = 0; 450 int ret; 451 int num_copies = 0; 452 int mirror_num = 0; 453 int failed_mirror = 0; 454 455 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 456 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 457 while (1) { 458 ret = read_extent_buffer_pages(io_tree, eb, start, 459 WAIT_COMPLETE, 460 btree_get_extent, mirror_num); 461 if (!ret) { 462 if (!verify_parent_transid(io_tree, eb, 463 parent_transid, 0)) 464 break; 465 else 466 ret = -EIO; 467 } 468 469 /* 470 * This buffer's crc is fine, but its contents are corrupted, so 471 * there is no reason to read the other copies, they won't be 472 * any less wrong. 473 */ 474 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 475 break; 476 477 num_copies = btrfs_num_copies(root->fs_info, 478 eb->start, eb->len); 479 if (num_copies == 1) 480 break; 481 482 if (!failed_mirror) { 483 failed = 1; 484 failed_mirror = eb->read_mirror; 485 } 486 487 mirror_num++; 488 if (mirror_num == failed_mirror) 489 mirror_num++; 490 491 if (mirror_num > num_copies) 492 break; 493 } 494 495 if (failed && !ret && failed_mirror) 496 repair_eb_io_failure(root, eb, failed_mirror); 497 498 return ret; 499 } 500 501 /* 502 * checksum a dirty tree block before IO. This has extra checks to make sure 503 * we only fill in the checksum field in the first page of a multi-page block 504 */ 505 506 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 507 { 508 u64 start = page_offset(page); 509 u64 found_start; 510 struct extent_buffer *eb; 511 512 eb = (struct extent_buffer *)page->private; 513 if (page != eb->pages[0]) 514 return 0; 515 found_start = btrfs_header_bytenr(eb); 516 if (WARN_ON(found_start != start || !PageUptodate(page))) 517 return 0; 518 csum_tree_block(fs_info, eb, 0); 519 return 0; 520 } 521 522 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 523 struct extent_buffer *eb) 524 { 525 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 526 u8 fsid[BTRFS_UUID_SIZE]; 527 int ret = 1; 528 529 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 530 while (fs_devices) { 531 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 532 ret = 0; 533 break; 534 } 535 fs_devices = fs_devices->seed; 536 } 537 return ret; 538 } 539 540 #define CORRUPT(reason, eb, root, slot) \ 541 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \ 542 "root=%llu, slot=%d", reason, \ 543 btrfs_header_bytenr(eb), root->objectid, slot) 544 545 static noinline int check_leaf(struct btrfs_root *root, 546 struct extent_buffer *leaf) 547 { 548 struct btrfs_key key; 549 struct btrfs_key leaf_key; 550 u32 nritems = btrfs_header_nritems(leaf); 551 int slot; 552 553 if (nritems == 0) 554 return 0; 555 556 /* Check the 0 item */ 557 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 558 BTRFS_LEAF_DATA_SIZE(root)) { 559 CORRUPT("invalid item offset size pair", leaf, root, 0); 560 return -EIO; 561 } 562 563 /* 564 * Check to make sure each items keys are in the correct order and their 565 * offsets make sense. We only have to loop through nritems-1 because 566 * we check the current slot against the next slot, which verifies the 567 * next slot's offset+size makes sense and that the current's slot 568 * offset is correct. 569 */ 570 for (slot = 0; slot < nritems - 1; slot++) { 571 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 572 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 573 574 /* Make sure the keys are in the right order */ 575 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 576 CORRUPT("bad key order", leaf, root, slot); 577 return -EIO; 578 } 579 580 /* 581 * Make sure the offset and ends are right, remember that the 582 * item data starts at the end of the leaf and grows towards the 583 * front. 584 */ 585 if (btrfs_item_offset_nr(leaf, slot) != 586 btrfs_item_end_nr(leaf, slot + 1)) { 587 CORRUPT("slot offset bad", leaf, root, slot); 588 return -EIO; 589 } 590 591 /* 592 * Check to make sure that we don't point outside of the leaf, 593 * just incase all the items are consistent to eachother, but 594 * all point outside of the leaf. 595 */ 596 if (btrfs_item_end_nr(leaf, slot) > 597 BTRFS_LEAF_DATA_SIZE(root)) { 598 CORRUPT("slot end outside of leaf", leaf, root, slot); 599 return -EIO; 600 } 601 } 602 603 return 0; 604 } 605 606 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 607 u64 phy_offset, struct page *page, 608 u64 start, u64 end, int mirror) 609 { 610 u64 found_start; 611 int found_level; 612 struct extent_buffer *eb; 613 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 614 int ret = 0; 615 int reads_done; 616 617 if (!page->private) 618 goto out; 619 620 eb = (struct extent_buffer *)page->private; 621 622 /* the pending IO might have been the only thing that kept this buffer 623 * in memory. Make sure we have a ref for all this other checks 624 */ 625 extent_buffer_get(eb); 626 627 reads_done = atomic_dec_and_test(&eb->io_pages); 628 if (!reads_done) 629 goto err; 630 631 eb->read_mirror = mirror; 632 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 633 ret = -EIO; 634 goto err; 635 } 636 637 found_start = btrfs_header_bytenr(eb); 638 if (found_start != eb->start) { 639 btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu", 640 found_start, eb->start); 641 ret = -EIO; 642 goto err; 643 } 644 if (check_tree_block_fsid(root->fs_info, eb)) { 645 btrfs_err_rl(eb->fs_info, "bad fsid on block %llu", 646 eb->start); 647 ret = -EIO; 648 goto err; 649 } 650 found_level = btrfs_header_level(eb); 651 if (found_level >= BTRFS_MAX_LEVEL) { 652 btrfs_err(root->fs_info, "bad tree block level %d", 653 (int)btrfs_header_level(eb)); 654 ret = -EIO; 655 goto err; 656 } 657 658 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 659 eb, found_level); 660 661 ret = csum_tree_block(root->fs_info, eb, 1); 662 if (ret) { 663 ret = -EIO; 664 goto err; 665 } 666 667 /* 668 * If this is a leaf block and it is corrupt, set the corrupt bit so 669 * that we don't try and read the other copies of this block, just 670 * return -EIO. 671 */ 672 if (found_level == 0 && check_leaf(root, eb)) { 673 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 674 ret = -EIO; 675 } 676 677 if (!ret) 678 set_extent_buffer_uptodate(eb); 679 err: 680 if (reads_done && 681 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 682 btree_readahead_hook(root, eb, eb->start, ret); 683 684 if (ret) { 685 /* 686 * our io error hook is going to dec the io pages 687 * again, we have to make sure it has something 688 * to decrement 689 */ 690 atomic_inc(&eb->io_pages); 691 clear_extent_buffer_uptodate(eb); 692 } 693 free_extent_buffer(eb); 694 out: 695 return ret; 696 } 697 698 static int btree_io_failed_hook(struct page *page, int failed_mirror) 699 { 700 struct extent_buffer *eb; 701 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 702 703 eb = (struct extent_buffer *)page->private; 704 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 705 eb->read_mirror = failed_mirror; 706 atomic_dec(&eb->io_pages); 707 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 708 btree_readahead_hook(root, eb, eb->start, -EIO); 709 return -EIO; /* we fixed nothing */ 710 } 711 712 static void end_workqueue_bio(struct bio *bio) 713 { 714 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 715 struct btrfs_fs_info *fs_info; 716 struct btrfs_workqueue *wq; 717 btrfs_work_func_t func; 718 719 fs_info = end_io_wq->info; 720 end_io_wq->error = bio->bi_error; 721 722 if (bio->bi_rw & REQ_WRITE) { 723 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 724 wq = fs_info->endio_meta_write_workers; 725 func = btrfs_endio_meta_write_helper; 726 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 727 wq = fs_info->endio_freespace_worker; 728 func = btrfs_freespace_write_helper; 729 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 730 wq = fs_info->endio_raid56_workers; 731 func = btrfs_endio_raid56_helper; 732 } else { 733 wq = fs_info->endio_write_workers; 734 func = btrfs_endio_write_helper; 735 } 736 } else { 737 if (unlikely(end_io_wq->metadata == 738 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 739 wq = fs_info->endio_repair_workers; 740 func = btrfs_endio_repair_helper; 741 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 742 wq = fs_info->endio_raid56_workers; 743 func = btrfs_endio_raid56_helper; 744 } else if (end_io_wq->metadata) { 745 wq = fs_info->endio_meta_workers; 746 func = btrfs_endio_meta_helper; 747 } else { 748 wq = fs_info->endio_workers; 749 func = btrfs_endio_helper; 750 } 751 } 752 753 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 754 btrfs_queue_work(wq, &end_io_wq->work); 755 } 756 757 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 758 enum btrfs_wq_endio_type metadata) 759 { 760 struct btrfs_end_io_wq *end_io_wq; 761 762 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 763 if (!end_io_wq) 764 return -ENOMEM; 765 766 end_io_wq->private = bio->bi_private; 767 end_io_wq->end_io = bio->bi_end_io; 768 end_io_wq->info = info; 769 end_io_wq->error = 0; 770 end_io_wq->bio = bio; 771 end_io_wq->metadata = metadata; 772 773 bio->bi_private = end_io_wq; 774 bio->bi_end_io = end_workqueue_bio; 775 return 0; 776 } 777 778 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 779 { 780 unsigned long limit = min_t(unsigned long, 781 info->thread_pool_size, 782 info->fs_devices->open_devices); 783 return 256 * limit; 784 } 785 786 static void run_one_async_start(struct btrfs_work *work) 787 { 788 struct async_submit_bio *async; 789 int ret; 790 791 async = container_of(work, struct async_submit_bio, work); 792 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 793 async->mirror_num, async->bio_flags, 794 async->bio_offset); 795 if (ret) 796 async->error = ret; 797 } 798 799 static void run_one_async_done(struct btrfs_work *work) 800 { 801 struct btrfs_fs_info *fs_info; 802 struct async_submit_bio *async; 803 int limit; 804 805 async = container_of(work, struct async_submit_bio, work); 806 fs_info = BTRFS_I(async->inode)->root->fs_info; 807 808 limit = btrfs_async_submit_limit(fs_info); 809 limit = limit * 2 / 3; 810 811 /* 812 * atomic_dec_return implies a barrier for waitqueue_active 813 */ 814 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 815 waitqueue_active(&fs_info->async_submit_wait)) 816 wake_up(&fs_info->async_submit_wait); 817 818 /* If an error occured we just want to clean up the bio and move on */ 819 if (async->error) { 820 async->bio->bi_error = async->error; 821 bio_endio(async->bio); 822 return; 823 } 824 825 async->submit_bio_done(async->inode, async->rw, async->bio, 826 async->mirror_num, async->bio_flags, 827 async->bio_offset); 828 } 829 830 static void run_one_async_free(struct btrfs_work *work) 831 { 832 struct async_submit_bio *async; 833 834 async = container_of(work, struct async_submit_bio, work); 835 kfree(async); 836 } 837 838 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 839 int rw, struct bio *bio, int mirror_num, 840 unsigned long bio_flags, 841 u64 bio_offset, 842 extent_submit_bio_hook_t *submit_bio_start, 843 extent_submit_bio_hook_t *submit_bio_done) 844 { 845 struct async_submit_bio *async; 846 847 async = kmalloc(sizeof(*async), GFP_NOFS); 848 if (!async) 849 return -ENOMEM; 850 851 async->inode = inode; 852 async->rw = rw; 853 async->bio = bio; 854 async->mirror_num = mirror_num; 855 async->submit_bio_start = submit_bio_start; 856 async->submit_bio_done = submit_bio_done; 857 858 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 859 run_one_async_done, run_one_async_free); 860 861 async->bio_flags = bio_flags; 862 async->bio_offset = bio_offset; 863 864 async->error = 0; 865 866 atomic_inc(&fs_info->nr_async_submits); 867 868 if (rw & REQ_SYNC) 869 btrfs_set_work_high_priority(&async->work); 870 871 btrfs_queue_work(fs_info->workers, &async->work); 872 873 while (atomic_read(&fs_info->async_submit_draining) && 874 atomic_read(&fs_info->nr_async_submits)) { 875 wait_event(fs_info->async_submit_wait, 876 (atomic_read(&fs_info->nr_async_submits) == 0)); 877 } 878 879 return 0; 880 } 881 882 static int btree_csum_one_bio(struct bio *bio) 883 { 884 struct bio_vec *bvec; 885 struct btrfs_root *root; 886 int i, ret = 0; 887 888 bio_for_each_segment_all(bvec, bio, i) { 889 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 890 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 891 if (ret) 892 break; 893 } 894 895 return ret; 896 } 897 898 static int __btree_submit_bio_start(struct inode *inode, int rw, 899 struct bio *bio, int mirror_num, 900 unsigned long bio_flags, 901 u64 bio_offset) 902 { 903 /* 904 * when we're called for a write, we're already in the async 905 * submission context. Just jump into btrfs_map_bio 906 */ 907 return btree_csum_one_bio(bio); 908 } 909 910 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 911 int mirror_num, unsigned long bio_flags, 912 u64 bio_offset) 913 { 914 int ret; 915 916 /* 917 * when we're called for a write, we're already in the async 918 * submission context. Just jump into btrfs_map_bio 919 */ 920 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 921 if (ret) { 922 bio->bi_error = ret; 923 bio_endio(bio); 924 } 925 return ret; 926 } 927 928 static int check_async_write(struct inode *inode, unsigned long bio_flags) 929 { 930 if (bio_flags & EXTENT_BIO_TREE_LOG) 931 return 0; 932 #ifdef CONFIG_X86 933 if (static_cpu_has_safe(X86_FEATURE_XMM4_2)) 934 return 0; 935 #endif 936 return 1; 937 } 938 939 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 940 int mirror_num, unsigned long bio_flags, 941 u64 bio_offset) 942 { 943 int async = check_async_write(inode, bio_flags); 944 int ret; 945 946 if (!(rw & REQ_WRITE)) { 947 /* 948 * called for a read, do the setup so that checksum validation 949 * can happen in the async kernel threads 950 */ 951 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 952 bio, BTRFS_WQ_ENDIO_METADATA); 953 if (ret) 954 goto out_w_error; 955 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 956 mirror_num, 0); 957 } else if (!async) { 958 ret = btree_csum_one_bio(bio); 959 if (ret) 960 goto out_w_error; 961 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 962 mirror_num, 0); 963 } else { 964 /* 965 * kthread helpers are used to submit writes so that 966 * checksumming can happen in parallel across all CPUs 967 */ 968 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 969 inode, rw, bio, mirror_num, 0, 970 bio_offset, 971 __btree_submit_bio_start, 972 __btree_submit_bio_done); 973 } 974 975 if (ret) 976 goto out_w_error; 977 return 0; 978 979 out_w_error: 980 bio->bi_error = ret; 981 bio_endio(bio); 982 return ret; 983 } 984 985 #ifdef CONFIG_MIGRATION 986 static int btree_migratepage(struct address_space *mapping, 987 struct page *newpage, struct page *page, 988 enum migrate_mode mode) 989 { 990 /* 991 * we can't safely write a btree page from here, 992 * we haven't done the locking hook 993 */ 994 if (PageDirty(page)) 995 return -EAGAIN; 996 /* 997 * Buffers may be managed in a filesystem specific way. 998 * We must have no buffers or drop them. 999 */ 1000 if (page_has_private(page) && 1001 !try_to_release_page(page, GFP_KERNEL)) 1002 return -EAGAIN; 1003 return migrate_page(mapping, newpage, page, mode); 1004 } 1005 #endif 1006 1007 1008 static int btree_writepages(struct address_space *mapping, 1009 struct writeback_control *wbc) 1010 { 1011 struct btrfs_fs_info *fs_info; 1012 int ret; 1013 1014 if (wbc->sync_mode == WB_SYNC_NONE) { 1015 1016 if (wbc->for_kupdate) 1017 return 0; 1018 1019 fs_info = BTRFS_I(mapping->host)->root->fs_info; 1020 /* this is a bit racy, but that's ok */ 1021 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 1022 BTRFS_DIRTY_METADATA_THRESH); 1023 if (ret < 0) 1024 return 0; 1025 } 1026 return btree_write_cache_pages(mapping, wbc); 1027 } 1028 1029 static int btree_readpage(struct file *file, struct page *page) 1030 { 1031 struct extent_io_tree *tree; 1032 tree = &BTRFS_I(page->mapping->host)->io_tree; 1033 return extent_read_full_page(tree, page, btree_get_extent, 0); 1034 } 1035 1036 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1037 { 1038 if (PageWriteback(page) || PageDirty(page)) 1039 return 0; 1040 1041 return try_release_extent_buffer(page); 1042 } 1043 1044 static void btree_invalidatepage(struct page *page, unsigned int offset, 1045 unsigned int length) 1046 { 1047 struct extent_io_tree *tree; 1048 tree = &BTRFS_I(page->mapping->host)->io_tree; 1049 extent_invalidatepage(tree, page, offset); 1050 btree_releasepage(page, GFP_NOFS); 1051 if (PagePrivate(page)) { 1052 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1053 "page private not zero on page %llu", 1054 (unsigned long long)page_offset(page)); 1055 ClearPagePrivate(page); 1056 set_page_private(page, 0); 1057 page_cache_release(page); 1058 } 1059 } 1060 1061 static int btree_set_page_dirty(struct page *page) 1062 { 1063 #ifdef DEBUG 1064 struct extent_buffer *eb; 1065 1066 BUG_ON(!PagePrivate(page)); 1067 eb = (struct extent_buffer *)page->private; 1068 BUG_ON(!eb); 1069 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1070 BUG_ON(!atomic_read(&eb->refs)); 1071 btrfs_assert_tree_locked(eb); 1072 #endif 1073 return __set_page_dirty_nobuffers(page); 1074 } 1075 1076 static const struct address_space_operations btree_aops = { 1077 .readpage = btree_readpage, 1078 .writepages = btree_writepages, 1079 .releasepage = btree_releasepage, 1080 .invalidatepage = btree_invalidatepage, 1081 #ifdef CONFIG_MIGRATION 1082 .migratepage = btree_migratepage, 1083 #endif 1084 .set_page_dirty = btree_set_page_dirty, 1085 }; 1086 1087 void readahead_tree_block(struct btrfs_root *root, u64 bytenr) 1088 { 1089 struct extent_buffer *buf = NULL; 1090 struct inode *btree_inode = root->fs_info->btree_inode; 1091 1092 buf = btrfs_find_create_tree_block(root, bytenr); 1093 if (!buf) 1094 return; 1095 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1096 buf, 0, WAIT_NONE, btree_get_extent, 0); 1097 free_extent_buffer(buf); 1098 } 1099 1100 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, 1101 int mirror_num, struct extent_buffer **eb) 1102 { 1103 struct extent_buffer *buf = NULL; 1104 struct inode *btree_inode = root->fs_info->btree_inode; 1105 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1106 int ret; 1107 1108 buf = btrfs_find_create_tree_block(root, bytenr); 1109 if (!buf) 1110 return 0; 1111 1112 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1113 1114 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1115 btree_get_extent, mirror_num); 1116 if (ret) { 1117 free_extent_buffer(buf); 1118 return ret; 1119 } 1120 1121 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1122 free_extent_buffer(buf); 1123 return -EIO; 1124 } else if (extent_buffer_uptodate(buf)) { 1125 *eb = buf; 1126 } else { 1127 free_extent_buffer(buf); 1128 } 1129 return 0; 1130 } 1131 1132 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info, 1133 u64 bytenr) 1134 { 1135 return find_extent_buffer(fs_info, bytenr); 1136 } 1137 1138 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1139 u64 bytenr) 1140 { 1141 if (btrfs_test_is_dummy_root(root)) 1142 return alloc_test_extent_buffer(root->fs_info, bytenr); 1143 return alloc_extent_buffer(root->fs_info, bytenr); 1144 } 1145 1146 1147 int btrfs_write_tree_block(struct extent_buffer *buf) 1148 { 1149 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1150 buf->start + buf->len - 1); 1151 } 1152 1153 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1154 { 1155 return filemap_fdatawait_range(buf->pages[0]->mapping, 1156 buf->start, buf->start + buf->len - 1); 1157 } 1158 1159 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1160 u64 parent_transid) 1161 { 1162 struct extent_buffer *buf = NULL; 1163 int ret; 1164 1165 buf = btrfs_find_create_tree_block(root, bytenr); 1166 if (!buf) 1167 return ERR_PTR(-ENOMEM); 1168 1169 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1170 if (ret) { 1171 free_extent_buffer(buf); 1172 return ERR_PTR(ret); 1173 } 1174 return buf; 1175 1176 } 1177 1178 void clean_tree_block(struct btrfs_trans_handle *trans, 1179 struct btrfs_fs_info *fs_info, 1180 struct extent_buffer *buf) 1181 { 1182 if (btrfs_header_generation(buf) == 1183 fs_info->running_transaction->transid) { 1184 btrfs_assert_tree_locked(buf); 1185 1186 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1187 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1188 -buf->len, 1189 fs_info->dirty_metadata_batch); 1190 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1191 btrfs_set_lock_blocking(buf); 1192 clear_extent_buffer_dirty(buf); 1193 } 1194 } 1195 } 1196 1197 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1198 { 1199 struct btrfs_subvolume_writers *writers; 1200 int ret; 1201 1202 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1203 if (!writers) 1204 return ERR_PTR(-ENOMEM); 1205 1206 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL); 1207 if (ret < 0) { 1208 kfree(writers); 1209 return ERR_PTR(ret); 1210 } 1211 1212 init_waitqueue_head(&writers->wait); 1213 return writers; 1214 } 1215 1216 static void 1217 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1218 { 1219 percpu_counter_destroy(&writers->counter); 1220 kfree(writers); 1221 } 1222 1223 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize, 1224 struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1225 u64 objectid) 1226 { 1227 root->node = NULL; 1228 root->commit_root = NULL; 1229 root->sectorsize = sectorsize; 1230 root->nodesize = nodesize; 1231 root->stripesize = stripesize; 1232 root->state = 0; 1233 root->orphan_cleanup_state = 0; 1234 1235 root->objectid = objectid; 1236 root->last_trans = 0; 1237 root->highest_objectid = 0; 1238 root->nr_delalloc_inodes = 0; 1239 root->nr_ordered_extents = 0; 1240 root->name = NULL; 1241 root->inode_tree = RB_ROOT; 1242 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1243 root->block_rsv = NULL; 1244 root->orphan_block_rsv = NULL; 1245 1246 INIT_LIST_HEAD(&root->dirty_list); 1247 INIT_LIST_HEAD(&root->root_list); 1248 INIT_LIST_HEAD(&root->delalloc_inodes); 1249 INIT_LIST_HEAD(&root->delalloc_root); 1250 INIT_LIST_HEAD(&root->ordered_extents); 1251 INIT_LIST_HEAD(&root->ordered_root); 1252 INIT_LIST_HEAD(&root->logged_list[0]); 1253 INIT_LIST_HEAD(&root->logged_list[1]); 1254 spin_lock_init(&root->orphan_lock); 1255 spin_lock_init(&root->inode_lock); 1256 spin_lock_init(&root->delalloc_lock); 1257 spin_lock_init(&root->ordered_extent_lock); 1258 spin_lock_init(&root->accounting_lock); 1259 spin_lock_init(&root->log_extents_lock[0]); 1260 spin_lock_init(&root->log_extents_lock[1]); 1261 mutex_init(&root->objectid_mutex); 1262 mutex_init(&root->log_mutex); 1263 mutex_init(&root->ordered_extent_mutex); 1264 mutex_init(&root->delalloc_mutex); 1265 init_waitqueue_head(&root->log_writer_wait); 1266 init_waitqueue_head(&root->log_commit_wait[0]); 1267 init_waitqueue_head(&root->log_commit_wait[1]); 1268 INIT_LIST_HEAD(&root->log_ctxs[0]); 1269 INIT_LIST_HEAD(&root->log_ctxs[1]); 1270 atomic_set(&root->log_commit[0], 0); 1271 atomic_set(&root->log_commit[1], 0); 1272 atomic_set(&root->log_writers, 0); 1273 atomic_set(&root->log_batch, 0); 1274 atomic_set(&root->orphan_inodes, 0); 1275 atomic_set(&root->refs, 1); 1276 atomic_set(&root->will_be_snapshoted, 0); 1277 atomic_set(&root->qgroup_meta_rsv, 0); 1278 root->log_transid = 0; 1279 root->log_transid_committed = -1; 1280 root->last_log_commit = 0; 1281 if (fs_info) 1282 extent_io_tree_init(&root->dirty_log_pages, 1283 fs_info->btree_inode->i_mapping); 1284 1285 memset(&root->root_key, 0, sizeof(root->root_key)); 1286 memset(&root->root_item, 0, sizeof(root->root_item)); 1287 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1288 if (fs_info) 1289 root->defrag_trans_start = fs_info->generation; 1290 else 1291 root->defrag_trans_start = 0; 1292 root->root_key.objectid = objectid; 1293 root->anon_dev = 0; 1294 1295 spin_lock_init(&root->root_item_lock); 1296 } 1297 1298 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1299 { 1300 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1301 if (root) 1302 root->fs_info = fs_info; 1303 return root; 1304 } 1305 1306 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1307 /* Should only be used by the testing infrastructure */ 1308 struct btrfs_root *btrfs_alloc_dummy_root(void) 1309 { 1310 struct btrfs_root *root; 1311 1312 root = btrfs_alloc_root(NULL); 1313 if (!root) 1314 return ERR_PTR(-ENOMEM); 1315 __setup_root(4096, 4096, 4096, root, NULL, 1); 1316 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state); 1317 root->alloc_bytenr = 0; 1318 1319 return root; 1320 } 1321 #endif 1322 1323 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1324 struct btrfs_fs_info *fs_info, 1325 u64 objectid) 1326 { 1327 struct extent_buffer *leaf; 1328 struct btrfs_root *tree_root = fs_info->tree_root; 1329 struct btrfs_root *root; 1330 struct btrfs_key key; 1331 int ret = 0; 1332 uuid_le uuid; 1333 1334 root = btrfs_alloc_root(fs_info); 1335 if (!root) 1336 return ERR_PTR(-ENOMEM); 1337 1338 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1339 tree_root->stripesize, root, fs_info, objectid); 1340 root->root_key.objectid = objectid; 1341 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1342 root->root_key.offset = 0; 1343 1344 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1345 if (IS_ERR(leaf)) { 1346 ret = PTR_ERR(leaf); 1347 leaf = NULL; 1348 goto fail; 1349 } 1350 1351 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1352 btrfs_set_header_bytenr(leaf, leaf->start); 1353 btrfs_set_header_generation(leaf, trans->transid); 1354 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1355 btrfs_set_header_owner(leaf, objectid); 1356 root->node = leaf; 1357 1358 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(), 1359 BTRFS_FSID_SIZE); 1360 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1361 btrfs_header_chunk_tree_uuid(leaf), 1362 BTRFS_UUID_SIZE); 1363 btrfs_mark_buffer_dirty(leaf); 1364 1365 root->commit_root = btrfs_root_node(root); 1366 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1367 1368 root->root_item.flags = 0; 1369 root->root_item.byte_limit = 0; 1370 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1371 btrfs_set_root_generation(&root->root_item, trans->transid); 1372 btrfs_set_root_level(&root->root_item, 0); 1373 btrfs_set_root_refs(&root->root_item, 1); 1374 btrfs_set_root_used(&root->root_item, leaf->len); 1375 btrfs_set_root_last_snapshot(&root->root_item, 0); 1376 btrfs_set_root_dirid(&root->root_item, 0); 1377 uuid_le_gen(&uuid); 1378 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1379 root->root_item.drop_level = 0; 1380 1381 key.objectid = objectid; 1382 key.type = BTRFS_ROOT_ITEM_KEY; 1383 key.offset = 0; 1384 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1385 if (ret) 1386 goto fail; 1387 1388 btrfs_tree_unlock(leaf); 1389 1390 return root; 1391 1392 fail: 1393 if (leaf) { 1394 btrfs_tree_unlock(leaf); 1395 free_extent_buffer(root->commit_root); 1396 free_extent_buffer(leaf); 1397 } 1398 kfree(root); 1399 1400 return ERR_PTR(ret); 1401 } 1402 1403 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1404 struct btrfs_fs_info *fs_info) 1405 { 1406 struct btrfs_root *root; 1407 struct btrfs_root *tree_root = fs_info->tree_root; 1408 struct extent_buffer *leaf; 1409 1410 root = btrfs_alloc_root(fs_info); 1411 if (!root) 1412 return ERR_PTR(-ENOMEM); 1413 1414 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1415 tree_root->stripesize, root, fs_info, 1416 BTRFS_TREE_LOG_OBJECTID); 1417 1418 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1419 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1420 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1421 1422 /* 1423 * DON'T set REF_COWS for log trees 1424 * 1425 * log trees do not get reference counted because they go away 1426 * before a real commit is actually done. They do store pointers 1427 * to file data extents, and those reference counts still get 1428 * updated (along with back refs to the log tree). 1429 */ 1430 1431 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1432 NULL, 0, 0, 0); 1433 if (IS_ERR(leaf)) { 1434 kfree(root); 1435 return ERR_CAST(leaf); 1436 } 1437 1438 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1439 btrfs_set_header_bytenr(leaf, leaf->start); 1440 btrfs_set_header_generation(leaf, trans->transid); 1441 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1442 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1443 root->node = leaf; 1444 1445 write_extent_buffer(root->node, root->fs_info->fsid, 1446 btrfs_header_fsid(), BTRFS_FSID_SIZE); 1447 btrfs_mark_buffer_dirty(root->node); 1448 btrfs_tree_unlock(root->node); 1449 return root; 1450 } 1451 1452 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1453 struct btrfs_fs_info *fs_info) 1454 { 1455 struct btrfs_root *log_root; 1456 1457 log_root = alloc_log_tree(trans, fs_info); 1458 if (IS_ERR(log_root)) 1459 return PTR_ERR(log_root); 1460 WARN_ON(fs_info->log_root_tree); 1461 fs_info->log_root_tree = log_root; 1462 return 0; 1463 } 1464 1465 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1466 struct btrfs_root *root) 1467 { 1468 struct btrfs_root *log_root; 1469 struct btrfs_inode_item *inode_item; 1470 1471 log_root = alloc_log_tree(trans, root->fs_info); 1472 if (IS_ERR(log_root)) 1473 return PTR_ERR(log_root); 1474 1475 log_root->last_trans = trans->transid; 1476 log_root->root_key.offset = root->root_key.objectid; 1477 1478 inode_item = &log_root->root_item.inode; 1479 btrfs_set_stack_inode_generation(inode_item, 1); 1480 btrfs_set_stack_inode_size(inode_item, 3); 1481 btrfs_set_stack_inode_nlink(inode_item, 1); 1482 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize); 1483 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1484 1485 btrfs_set_root_node(&log_root->root_item, log_root->node); 1486 1487 WARN_ON(root->log_root); 1488 root->log_root = log_root; 1489 root->log_transid = 0; 1490 root->log_transid_committed = -1; 1491 root->last_log_commit = 0; 1492 return 0; 1493 } 1494 1495 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1496 struct btrfs_key *key) 1497 { 1498 struct btrfs_root *root; 1499 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1500 struct btrfs_path *path; 1501 u64 generation; 1502 int ret; 1503 1504 path = btrfs_alloc_path(); 1505 if (!path) 1506 return ERR_PTR(-ENOMEM); 1507 1508 root = btrfs_alloc_root(fs_info); 1509 if (!root) { 1510 ret = -ENOMEM; 1511 goto alloc_fail; 1512 } 1513 1514 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1515 tree_root->stripesize, root, fs_info, key->objectid); 1516 1517 ret = btrfs_find_root(tree_root, key, path, 1518 &root->root_item, &root->root_key); 1519 if (ret) { 1520 if (ret > 0) 1521 ret = -ENOENT; 1522 goto find_fail; 1523 } 1524 1525 generation = btrfs_root_generation(&root->root_item); 1526 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1527 generation); 1528 if (IS_ERR(root->node)) { 1529 ret = PTR_ERR(root->node); 1530 goto find_fail; 1531 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1532 ret = -EIO; 1533 free_extent_buffer(root->node); 1534 goto find_fail; 1535 } 1536 root->commit_root = btrfs_root_node(root); 1537 out: 1538 btrfs_free_path(path); 1539 return root; 1540 1541 find_fail: 1542 kfree(root); 1543 alloc_fail: 1544 root = ERR_PTR(ret); 1545 goto out; 1546 } 1547 1548 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1549 struct btrfs_key *location) 1550 { 1551 struct btrfs_root *root; 1552 1553 root = btrfs_read_tree_root(tree_root, location); 1554 if (IS_ERR(root)) 1555 return root; 1556 1557 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1558 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1559 btrfs_check_and_init_root_item(&root->root_item); 1560 } 1561 1562 return root; 1563 } 1564 1565 int btrfs_init_fs_root(struct btrfs_root *root) 1566 { 1567 int ret; 1568 struct btrfs_subvolume_writers *writers; 1569 1570 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1571 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1572 GFP_NOFS); 1573 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1574 ret = -ENOMEM; 1575 goto fail; 1576 } 1577 1578 writers = btrfs_alloc_subvolume_writers(); 1579 if (IS_ERR(writers)) { 1580 ret = PTR_ERR(writers); 1581 goto fail; 1582 } 1583 root->subv_writers = writers; 1584 1585 btrfs_init_free_ino_ctl(root); 1586 spin_lock_init(&root->ino_cache_lock); 1587 init_waitqueue_head(&root->ino_cache_wait); 1588 1589 ret = get_anon_bdev(&root->anon_dev); 1590 if (ret) 1591 goto free_writers; 1592 1593 mutex_lock(&root->objectid_mutex); 1594 ret = btrfs_find_highest_objectid(root, 1595 &root->highest_objectid); 1596 if (ret) { 1597 mutex_unlock(&root->objectid_mutex); 1598 goto free_root_dev; 1599 } 1600 1601 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1602 1603 mutex_unlock(&root->objectid_mutex); 1604 1605 return 0; 1606 1607 free_root_dev: 1608 free_anon_bdev(root->anon_dev); 1609 free_writers: 1610 btrfs_free_subvolume_writers(root->subv_writers); 1611 fail: 1612 kfree(root->free_ino_ctl); 1613 kfree(root->free_ino_pinned); 1614 return ret; 1615 } 1616 1617 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1618 u64 root_id) 1619 { 1620 struct btrfs_root *root; 1621 1622 spin_lock(&fs_info->fs_roots_radix_lock); 1623 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1624 (unsigned long)root_id); 1625 spin_unlock(&fs_info->fs_roots_radix_lock); 1626 return root; 1627 } 1628 1629 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1630 struct btrfs_root *root) 1631 { 1632 int ret; 1633 1634 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1635 if (ret) 1636 return ret; 1637 1638 spin_lock(&fs_info->fs_roots_radix_lock); 1639 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1640 (unsigned long)root->root_key.objectid, 1641 root); 1642 if (ret == 0) 1643 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1644 spin_unlock(&fs_info->fs_roots_radix_lock); 1645 radix_tree_preload_end(); 1646 1647 return ret; 1648 } 1649 1650 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1651 struct btrfs_key *location, 1652 bool check_ref) 1653 { 1654 struct btrfs_root *root; 1655 struct btrfs_path *path; 1656 struct btrfs_key key; 1657 int ret; 1658 1659 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1660 return fs_info->tree_root; 1661 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1662 return fs_info->extent_root; 1663 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1664 return fs_info->chunk_root; 1665 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1666 return fs_info->dev_root; 1667 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1668 return fs_info->csum_root; 1669 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1670 return fs_info->quota_root ? fs_info->quota_root : 1671 ERR_PTR(-ENOENT); 1672 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1673 return fs_info->uuid_root ? fs_info->uuid_root : 1674 ERR_PTR(-ENOENT); 1675 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1676 return fs_info->free_space_root ? fs_info->free_space_root : 1677 ERR_PTR(-ENOENT); 1678 again: 1679 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1680 if (root) { 1681 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1682 return ERR_PTR(-ENOENT); 1683 return root; 1684 } 1685 1686 root = btrfs_read_fs_root(fs_info->tree_root, location); 1687 if (IS_ERR(root)) 1688 return root; 1689 1690 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1691 ret = -ENOENT; 1692 goto fail; 1693 } 1694 1695 ret = btrfs_init_fs_root(root); 1696 if (ret) 1697 goto fail; 1698 1699 path = btrfs_alloc_path(); 1700 if (!path) { 1701 ret = -ENOMEM; 1702 goto fail; 1703 } 1704 key.objectid = BTRFS_ORPHAN_OBJECTID; 1705 key.type = BTRFS_ORPHAN_ITEM_KEY; 1706 key.offset = location->objectid; 1707 1708 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1709 btrfs_free_path(path); 1710 if (ret < 0) 1711 goto fail; 1712 if (ret == 0) 1713 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1714 1715 ret = btrfs_insert_fs_root(fs_info, root); 1716 if (ret) { 1717 if (ret == -EEXIST) { 1718 free_fs_root(root); 1719 goto again; 1720 } 1721 goto fail; 1722 } 1723 return root; 1724 fail: 1725 free_fs_root(root); 1726 return ERR_PTR(ret); 1727 } 1728 1729 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1730 { 1731 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1732 int ret = 0; 1733 struct btrfs_device *device; 1734 struct backing_dev_info *bdi; 1735 1736 rcu_read_lock(); 1737 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1738 if (!device->bdev) 1739 continue; 1740 bdi = blk_get_backing_dev_info(device->bdev); 1741 if (bdi_congested(bdi, bdi_bits)) { 1742 ret = 1; 1743 break; 1744 } 1745 } 1746 rcu_read_unlock(); 1747 return ret; 1748 } 1749 1750 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1751 { 1752 int err; 1753 1754 err = bdi_setup_and_register(bdi, "btrfs"); 1755 if (err) 1756 return err; 1757 1758 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE; 1759 bdi->congested_fn = btrfs_congested_fn; 1760 bdi->congested_data = info; 1761 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 1762 return 0; 1763 } 1764 1765 /* 1766 * called by the kthread helper functions to finally call the bio end_io 1767 * functions. This is where read checksum verification actually happens 1768 */ 1769 static void end_workqueue_fn(struct btrfs_work *work) 1770 { 1771 struct bio *bio; 1772 struct btrfs_end_io_wq *end_io_wq; 1773 1774 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1775 bio = end_io_wq->bio; 1776 1777 bio->bi_error = end_io_wq->error; 1778 bio->bi_private = end_io_wq->private; 1779 bio->bi_end_io = end_io_wq->end_io; 1780 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1781 bio_endio(bio); 1782 } 1783 1784 static int cleaner_kthread(void *arg) 1785 { 1786 struct btrfs_root *root = arg; 1787 int again; 1788 struct btrfs_trans_handle *trans; 1789 1790 set_freezable(); 1791 do { 1792 again = 0; 1793 1794 /* Make the cleaner go to sleep early. */ 1795 if (btrfs_need_cleaner_sleep(root)) 1796 goto sleep; 1797 1798 if (!mutex_trylock(&root->fs_info->cleaner_mutex)) 1799 goto sleep; 1800 1801 /* 1802 * Avoid the problem that we change the status of the fs 1803 * during the above check and trylock. 1804 */ 1805 if (btrfs_need_cleaner_sleep(root)) { 1806 mutex_unlock(&root->fs_info->cleaner_mutex); 1807 goto sleep; 1808 } 1809 1810 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex); 1811 btrfs_run_delayed_iputs(root); 1812 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex); 1813 1814 again = btrfs_clean_one_deleted_snapshot(root); 1815 mutex_unlock(&root->fs_info->cleaner_mutex); 1816 1817 /* 1818 * The defragger has dealt with the R/O remount and umount, 1819 * needn't do anything special here. 1820 */ 1821 btrfs_run_defrag_inodes(root->fs_info); 1822 1823 /* 1824 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1825 * with relocation (btrfs_relocate_chunk) and relocation 1826 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1827 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1828 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1829 * unused block groups. 1830 */ 1831 btrfs_delete_unused_bgs(root->fs_info); 1832 sleep: 1833 if (!try_to_freeze() && !again) { 1834 set_current_state(TASK_INTERRUPTIBLE); 1835 if (!kthread_should_stop()) 1836 schedule(); 1837 __set_current_state(TASK_RUNNING); 1838 } 1839 } while (!kthread_should_stop()); 1840 1841 /* 1842 * Transaction kthread is stopped before us and wakes us up. 1843 * However we might have started a new transaction and COWed some 1844 * tree blocks when deleting unused block groups for example. So 1845 * make sure we commit the transaction we started to have a clean 1846 * shutdown when evicting the btree inode - if it has dirty pages 1847 * when we do the final iput() on it, eviction will trigger a 1848 * writeback for it which will fail with null pointer dereferences 1849 * since work queues and other resources were already released and 1850 * destroyed by the time the iput/eviction/writeback is made. 1851 */ 1852 trans = btrfs_attach_transaction(root); 1853 if (IS_ERR(trans)) { 1854 if (PTR_ERR(trans) != -ENOENT) 1855 btrfs_err(root->fs_info, 1856 "cleaner transaction attach returned %ld", 1857 PTR_ERR(trans)); 1858 } else { 1859 int ret; 1860 1861 ret = btrfs_commit_transaction(trans, root); 1862 if (ret) 1863 btrfs_err(root->fs_info, 1864 "cleaner open transaction commit returned %d", 1865 ret); 1866 } 1867 1868 return 0; 1869 } 1870 1871 static int transaction_kthread(void *arg) 1872 { 1873 struct btrfs_root *root = arg; 1874 struct btrfs_trans_handle *trans; 1875 struct btrfs_transaction *cur; 1876 u64 transid; 1877 unsigned long now; 1878 unsigned long delay; 1879 bool cannot_commit; 1880 1881 do { 1882 cannot_commit = false; 1883 delay = HZ * root->fs_info->commit_interval; 1884 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1885 1886 spin_lock(&root->fs_info->trans_lock); 1887 cur = root->fs_info->running_transaction; 1888 if (!cur) { 1889 spin_unlock(&root->fs_info->trans_lock); 1890 goto sleep; 1891 } 1892 1893 now = get_seconds(); 1894 if (cur->state < TRANS_STATE_BLOCKED && 1895 (now < cur->start_time || 1896 now - cur->start_time < root->fs_info->commit_interval)) { 1897 spin_unlock(&root->fs_info->trans_lock); 1898 delay = HZ * 5; 1899 goto sleep; 1900 } 1901 transid = cur->transid; 1902 spin_unlock(&root->fs_info->trans_lock); 1903 1904 /* If the file system is aborted, this will always fail. */ 1905 trans = btrfs_attach_transaction(root); 1906 if (IS_ERR(trans)) { 1907 if (PTR_ERR(trans) != -ENOENT) 1908 cannot_commit = true; 1909 goto sleep; 1910 } 1911 if (transid == trans->transid) { 1912 btrfs_commit_transaction(trans, root); 1913 } else { 1914 btrfs_end_transaction(trans, root); 1915 } 1916 sleep: 1917 wake_up_process(root->fs_info->cleaner_kthread); 1918 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1919 1920 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1921 &root->fs_info->fs_state))) 1922 btrfs_cleanup_transaction(root); 1923 if (!try_to_freeze()) { 1924 set_current_state(TASK_INTERRUPTIBLE); 1925 if (!kthread_should_stop() && 1926 (!btrfs_transaction_blocked(root->fs_info) || 1927 cannot_commit)) 1928 schedule_timeout(delay); 1929 __set_current_state(TASK_RUNNING); 1930 } 1931 } while (!kthread_should_stop()); 1932 return 0; 1933 } 1934 1935 /* 1936 * this will find the highest generation in the array of 1937 * root backups. The index of the highest array is returned, 1938 * or -1 if we can't find anything. 1939 * 1940 * We check to make sure the array is valid by comparing the 1941 * generation of the latest root in the array with the generation 1942 * in the super block. If they don't match we pitch it. 1943 */ 1944 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1945 { 1946 u64 cur; 1947 int newest_index = -1; 1948 struct btrfs_root_backup *root_backup; 1949 int i; 1950 1951 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1952 root_backup = info->super_copy->super_roots + i; 1953 cur = btrfs_backup_tree_root_gen(root_backup); 1954 if (cur == newest_gen) 1955 newest_index = i; 1956 } 1957 1958 /* check to see if we actually wrapped around */ 1959 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1960 root_backup = info->super_copy->super_roots; 1961 cur = btrfs_backup_tree_root_gen(root_backup); 1962 if (cur == newest_gen) 1963 newest_index = 0; 1964 } 1965 return newest_index; 1966 } 1967 1968 1969 /* 1970 * find the oldest backup so we know where to store new entries 1971 * in the backup array. This will set the backup_root_index 1972 * field in the fs_info struct 1973 */ 1974 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1975 u64 newest_gen) 1976 { 1977 int newest_index = -1; 1978 1979 newest_index = find_newest_super_backup(info, newest_gen); 1980 /* if there was garbage in there, just move along */ 1981 if (newest_index == -1) { 1982 info->backup_root_index = 0; 1983 } else { 1984 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1985 } 1986 } 1987 1988 /* 1989 * copy all the root pointers into the super backup array. 1990 * this will bump the backup pointer by one when it is 1991 * done 1992 */ 1993 static void backup_super_roots(struct btrfs_fs_info *info) 1994 { 1995 int next_backup; 1996 struct btrfs_root_backup *root_backup; 1997 int last_backup; 1998 1999 next_backup = info->backup_root_index; 2000 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 2001 BTRFS_NUM_BACKUP_ROOTS; 2002 2003 /* 2004 * just overwrite the last backup if we're at the same generation 2005 * this happens only at umount 2006 */ 2007 root_backup = info->super_for_commit->super_roots + last_backup; 2008 if (btrfs_backup_tree_root_gen(root_backup) == 2009 btrfs_header_generation(info->tree_root->node)) 2010 next_backup = last_backup; 2011 2012 root_backup = info->super_for_commit->super_roots + next_backup; 2013 2014 /* 2015 * make sure all of our padding and empty slots get zero filled 2016 * regardless of which ones we use today 2017 */ 2018 memset(root_backup, 0, sizeof(*root_backup)); 2019 2020 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 2021 2022 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 2023 btrfs_set_backup_tree_root_gen(root_backup, 2024 btrfs_header_generation(info->tree_root->node)); 2025 2026 btrfs_set_backup_tree_root_level(root_backup, 2027 btrfs_header_level(info->tree_root->node)); 2028 2029 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 2030 btrfs_set_backup_chunk_root_gen(root_backup, 2031 btrfs_header_generation(info->chunk_root->node)); 2032 btrfs_set_backup_chunk_root_level(root_backup, 2033 btrfs_header_level(info->chunk_root->node)); 2034 2035 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 2036 btrfs_set_backup_extent_root_gen(root_backup, 2037 btrfs_header_generation(info->extent_root->node)); 2038 btrfs_set_backup_extent_root_level(root_backup, 2039 btrfs_header_level(info->extent_root->node)); 2040 2041 /* 2042 * we might commit during log recovery, which happens before we set 2043 * the fs_root. Make sure it is valid before we fill it in. 2044 */ 2045 if (info->fs_root && info->fs_root->node) { 2046 btrfs_set_backup_fs_root(root_backup, 2047 info->fs_root->node->start); 2048 btrfs_set_backup_fs_root_gen(root_backup, 2049 btrfs_header_generation(info->fs_root->node)); 2050 btrfs_set_backup_fs_root_level(root_backup, 2051 btrfs_header_level(info->fs_root->node)); 2052 } 2053 2054 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2055 btrfs_set_backup_dev_root_gen(root_backup, 2056 btrfs_header_generation(info->dev_root->node)); 2057 btrfs_set_backup_dev_root_level(root_backup, 2058 btrfs_header_level(info->dev_root->node)); 2059 2060 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 2061 btrfs_set_backup_csum_root_gen(root_backup, 2062 btrfs_header_generation(info->csum_root->node)); 2063 btrfs_set_backup_csum_root_level(root_backup, 2064 btrfs_header_level(info->csum_root->node)); 2065 2066 btrfs_set_backup_total_bytes(root_backup, 2067 btrfs_super_total_bytes(info->super_copy)); 2068 btrfs_set_backup_bytes_used(root_backup, 2069 btrfs_super_bytes_used(info->super_copy)); 2070 btrfs_set_backup_num_devices(root_backup, 2071 btrfs_super_num_devices(info->super_copy)); 2072 2073 /* 2074 * if we don't copy this out to the super_copy, it won't get remembered 2075 * for the next commit 2076 */ 2077 memcpy(&info->super_copy->super_roots, 2078 &info->super_for_commit->super_roots, 2079 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2080 } 2081 2082 /* 2083 * this copies info out of the root backup array and back into 2084 * the in-memory super block. It is meant to help iterate through 2085 * the array, so you send it the number of backups you've already 2086 * tried and the last backup index you used. 2087 * 2088 * this returns -1 when it has tried all the backups 2089 */ 2090 static noinline int next_root_backup(struct btrfs_fs_info *info, 2091 struct btrfs_super_block *super, 2092 int *num_backups_tried, int *backup_index) 2093 { 2094 struct btrfs_root_backup *root_backup; 2095 int newest = *backup_index; 2096 2097 if (*num_backups_tried == 0) { 2098 u64 gen = btrfs_super_generation(super); 2099 2100 newest = find_newest_super_backup(info, gen); 2101 if (newest == -1) 2102 return -1; 2103 2104 *backup_index = newest; 2105 *num_backups_tried = 1; 2106 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2107 /* we've tried all the backups, all done */ 2108 return -1; 2109 } else { 2110 /* jump to the next oldest backup */ 2111 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2112 BTRFS_NUM_BACKUP_ROOTS; 2113 *backup_index = newest; 2114 *num_backups_tried += 1; 2115 } 2116 root_backup = super->super_roots + newest; 2117 2118 btrfs_set_super_generation(super, 2119 btrfs_backup_tree_root_gen(root_backup)); 2120 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2121 btrfs_set_super_root_level(super, 2122 btrfs_backup_tree_root_level(root_backup)); 2123 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2124 2125 /* 2126 * fixme: the total bytes and num_devices need to match or we should 2127 * need a fsck 2128 */ 2129 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2130 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2131 return 0; 2132 } 2133 2134 /* helper to cleanup workers */ 2135 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2136 { 2137 btrfs_destroy_workqueue(fs_info->fixup_workers); 2138 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2139 btrfs_destroy_workqueue(fs_info->workers); 2140 btrfs_destroy_workqueue(fs_info->endio_workers); 2141 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2142 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2143 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2144 btrfs_destroy_workqueue(fs_info->rmw_workers); 2145 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2146 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2147 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2148 btrfs_destroy_workqueue(fs_info->submit_workers); 2149 btrfs_destroy_workqueue(fs_info->delayed_workers); 2150 btrfs_destroy_workqueue(fs_info->caching_workers); 2151 btrfs_destroy_workqueue(fs_info->readahead_workers); 2152 btrfs_destroy_workqueue(fs_info->flush_workers); 2153 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2154 btrfs_destroy_workqueue(fs_info->extent_workers); 2155 } 2156 2157 static void free_root_extent_buffers(struct btrfs_root *root) 2158 { 2159 if (root) { 2160 free_extent_buffer(root->node); 2161 free_extent_buffer(root->commit_root); 2162 root->node = NULL; 2163 root->commit_root = NULL; 2164 } 2165 } 2166 2167 /* helper to cleanup tree roots */ 2168 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2169 { 2170 free_root_extent_buffers(info->tree_root); 2171 2172 free_root_extent_buffers(info->dev_root); 2173 free_root_extent_buffers(info->extent_root); 2174 free_root_extent_buffers(info->csum_root); 2175 free_root_extent_buffers(info->quota_root); 2176 free_root_extent_buffers(info->uuid_root); 2177 if (chunk_root) 2178 free_root_extent_buffers(info->chunk_root); 2179 free_root_extent_buffers(info->free_space_root); 2180 } 2181 2182 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2183 { 2184 int ret; 2185 struct btrfs_root *gang[8]; 2186 int i; 2187 2188 while (!list_empty(&fs_info->dead_roots)) { 2189 gang[0] = list_entry(fs_info->dead_roots.next, 2190 struct btrfs_root, root_list); 2191 list_del(&gang[0]->root_list); 2192 2193 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2194 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2195 } else { 2196 free_extent_buffer(gang[0]->node); 2197 free_extent_buffer(gang[0]->commit_root); 2198 btrfs_put_fs_root(gang[0]); 2199 } 2200 } 2201 2202 while (1) { 2203 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2204 (void **)gang, 0, 2205 ARRAY_SIZE(gang)); 2206 if (!ret) 2207 break; 2208 for (i = 0; i < ret; i++) 2209 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2210 } 2211 2212 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2213 btrfs_free_log_root_tree(NULL, fs_info); 2214 btrfs_destroy_pinned_extent(fs_info->tree_root, 2215 fs_info->pinned_extents); 2216 } 2217 } 2218 2219 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2220 { 2221 mutex_init(&fs_info->scrub_lock); 2222 atomic_set(&fs_info->scrubs_running, 0); 2223 atomic_set(&fs_info->scrub_pause_req, 0); 2224 atomic_set(&fs_info->scrubs_paused, 0); 2225 atomic_set(&fs_info->scrub_cancel_req, 0); 2226 init_waitqueue_head(&fs_info->scrub_pause_wait); 2227 fs_info->scrub_workers_refcnt = 0; 2228 } 2229 2230 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2231 { 2232 spin_lock_init(&fs_info->balance_lock); 2233 mutex_init(&fs_info->balance_mutex); 2234 atomic_set(&fs_info->balance_running, 0); 2235 atomic_set(&fs_info->balance_pause_req, 0); 2236 atomic_set(&fs_info->balance_cancel_req, 0); 2237 fs_info->balance_ctl = NULL; 2238 init_waitqueue_head(&fs_info->balance_wait_q); 2239 } 2240 2241 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info, 2242 struct btrfs_root *tree_root) 2243 { 2244 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2245 set_nlink(fs_info->btree_inode, 1); 2246 /* 2247 * we set the i_size on the btree inode to the max possible int. 2248 * the real end of the address space is determined by all of 2249 * the devices in the system 2250 */ 2251 fs_info->btree_inode->i_size = OFFSET_MAX; 2252 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2253 2254 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2255 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2256 fs_info->btree_inode->i_mapping); 2257 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2258 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2259 2260 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2261 2262 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2263 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2264 sizeof(struct btrfs_key)); 2265 set_bit(BTRFS_INODE_DUMMY, 2266 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2267 btrfs_insert_inode_hash(fs_info->btree_inode); 2268 } 2269 2270 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2271 { 2272 fs_info->dev_replace.lock_owner = 0; 2273 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2274 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2275 mutex_init(&fs_info->dev_replace.lock_management_lock); 2276 mutex_init(&fs_info->dev_replace.lock); 2277 init_waitqueue_head(&fs_info->replace_wait); 2278 } 2279 2280 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2281 { 2282 spin_lock_init(&fs_info->qgroup_lock); 2283 mutex_init(&fs_info->qgroup_ioctl_lock); 2284 fs_info->qgroup_tree = RB_ROOT; 2285 fs_info->qgroup_op_tree = RB_ROOT; 2286 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2287 fs_info->qgroup_seq = 1; 2288 fs_info->quota_enabled = 0; 2289 fs_info->pending_quota_state = 0; 2290 fs_info->qgroup_ulist = NULL; 2291 mutex_init(&fs_info->qgroup_rescan_lock); 2292 } 2293 2294 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2295 struct btrfs_fs_devices *fs_devices) 2296 { 2297 int max_active = fs_info->thread_pool_size; 2298 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2299 2300 fs_info->workers = 2301 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI, 2302 max_active, 16); 2303 2304 fs_info->delalloc_workers = 2305 btrfs_alloc_workqueue("delalloc", flags, max_active, 2); 2306 2307 fs_info->flush_workers = 2308 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0); 2309 2310 fs_info->caching_workers = 2311 btrfs_alloc_workqueue("cache", flags, max_active, 0); 2312 2313 /* 2314 * a higher idle thresh on the submit workers makes it much more 2315 * likely that bios will be send down in a sane order to the 2316 * devices 2317 */ 2318 fs_info->submit_workers = 2319 btrfs_alloc_workqueue("submit", flags, 2320 min_t(u64, fs_devices->num_devices, 2321 max_active), 64); 2322 2323 fs_info->fixup_workers = 2324 btrfs_alloc_workqueue("fixup", flags, 1, 0); 2325 2326 /* 2327 * endios are largely parallel and should have a very 2328 * low idle thresh 2329 */ 2330 fs_info->endio_workers = 2331 btrfs_alloc_workqueue("endio", flags, max_active, 4); 2332 fs_info->endio_meta_workers = 2333 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4); 2334 fs_info->endio_meta_write_workers = 2335 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2); 2336 fs_info->endio_raid56_workers = 2337 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4); 2338 fs_info->endio_repair_workers = 2339 btrfs_alloc_workqueue("endio-repair", flags, 1, 0); 2340 fs_info->rmw_workers = 2341 btrfs_alloc_workqueue("rmw", flags, max_active, 2); 2342 fs_info->endio_write_workers = 2343 btrfs_alloc_workqueue("endio-write", flags, max_active, 2); 2344 fs_info->endio_freespace_worker = 2345 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0); 2346 fs_info->delayed_workers = 2347 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0); 2348 fs_info->readahead_workers = 2349 btrfs_alloc_workqueue("readahead", flags, max_active, 2); 2350 fs_info->qgroup_rescan_workers = 2351 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0); 2352 fs_info->extent_workers = 2353 btrfs_alloc_workqueue("extent-refs", flags, 2354 min_t(u64, fs_devices->num_devices, 2355 max_active), 8); 2356 2357 if (!(fs_info->workers && fs_info->delalloc_workers && 2358 fs_info->submit_workers && fs_info->flush_workers && 2359 fs_info->endio_workers && fs_info->endio_meta_workers && 2360 fs_info->endio_meta_write_workers && 2361 fs_info->endio_repair_workers && 2362 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2363 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2364 fs_info->caching_workers && fs_info->readahead_workers && 2365 fs_info->fixup_workers && fs_info->delayed_workers && 2366 fs_info->extent_workers && 2367 fs_info->qgroup_rescan_workers)) { 2368 return -ENOMEM; 2369 } 2370 2371 return 0; 2372 } 2373 2374 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2375 struct btrfs_fs_devices *fs_devices) 2376 { 2377 int ret; 2378 struct btrfs_root *tree_root = fs_info->tree_root; 2379 struct btrfs_root *log_tree_root; 2380 struct btrfs_super_block *disk_super = fs_info->super_copy; 2381 u64 bytenr = btrfs_super_log_root(disk_super); 2382 2383 if (fs_devices->rw_devices == 0) { 2384 btrfs_warn(fs_info, "log replay required on RO media"); 2385 return -EIO; 2386 } 2387 2388 log_tree_root = btrfs_alloc_root(fs_info); 2389 if (!log_tree_root) 2390 return -ENOMEM; 2391 2392 __setup_root(tree_root->nodesize, tree_root->sectorsize, 2393 tree_root->stripesize, log_tree_root, fs_info, 2394 BTRFS_TREE_LOG_OBJECTID); 2395 2396 log_tree_root->node = read_tree_block(tree_root, bytenr, 2397 fs_info->generation + 1); 2398 if (IS_ERR(log_tree_root->node)) { 2399 btrfs_warn(fs_info, "failed to read log tree"); 2400 ret = PTR_ERR(log_tree_root->node); 2401 kfree(log_tree_root); 2402 return ret; 2403 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2404 btrfs_err(fs_info, "failed to read log tree"); 2405 free_extent_buffer(log_tree_root->node); 2406 kfree(log_tree_root); 2407 return -EIO; 2408 } 2409 /* returns with log_tree_root freed on success */ 2410 ret = btrfs_recover_log_trees(log_tree_root); 2411 if (ret) { 2412 btrfs_std_error(tree_root->fs_info, ret, 2413 "Failed to recover log tree"); 2414 free_extent_buffer(log_tree_root->node); 2415 kfree(log_tree_root); 2416 return ret; 2417 } 2418 2419 if (fs_info->sb->s_flags & MS_RDONLY) { 2420 ret = btrfs_commit_super(tree_root); 2421 if (ret) 2422 return ret; 2423 } 2424 2425 return 0; 2426 } 2427 2428 static int btrfs_read_roots(struct btrfs_fs_info *fs_info, 2429 struct btrfs_root *tree_root) 2430 { 2431 struct btrfs_root *root; 2432 struct btrfs_key location; 2433 int ret; 2434 2435 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2436 location.type = BTRFS_ROOT_ITEM_KEY; 2437 location.offset = 0; 2438 2439 root = btrfs_read_tree_root(tree_root, &location); 2440 if (IS_ERR(root)) 2441 return PTR_ERR(root); 2442 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2443 fs_info->extent_root = root; 2444 2445 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2446 root = btrfs_read_tree_root(tree_root, &location); 2447 if (IS_ERR(root)) 2448 return PTR_ERR(root); 2449 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2450 fs_info->dev_root = root; 2451 btrfs_init_devices_late(fs_info); 2452 2453 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2454 root = btrfs_read_tree_root(tree_root, &location); 2455 if (IS_ERR(root)) 2456 return PTR_ERR(root); 2457 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2458 fs_info->csum_root = root; 2459 2460 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2461 root = btrfs_read_tree_root(tree_root, &location); 2462 if (!IS_ERR(root)) { 2463 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2464 fs_info->quota_enabled = 1; 2465 fs_info->pending_quota_state = 1; 2466 fs_info->quota_root = root; 2467 } 2468 2469 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2470 root = btrfs_read_tree_root(tree_root, &location); 2471 if (IS_ERR(root)) { 2472 ret = PTR_ERR(root); 2473 if (ret != -ENOENT) 2474 return ret; 2475 } else { 2476 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2477 fs_info->uuid_root = root; 2478 } 2479 2480 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2481 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2482 root = btrfs_read_tree_root(tree_root, &location); 2483 if (IS_ERR(root)) 2484 return PTR_ERR(root); 2485 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2486 fs_info->free_space_root = root; 2487 } 2488 2489 return 0; 2490 } 2491 2492 int open_ctree(struct super_block *sb, 2493 struct btrfs_fs_devices *fs_devices, 2494 char *options) 2495 { 2496 u32 sectorsize; 2497 u32 nodesize; 2498 u32 stripesize; 2499 u64 generation; 2500 u64 features; 2501 struct btrfs_key location; 2502 struct buffer_head *bh; 2503 struct btrfs_super_block *disk_super; 2504 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2505 struct btrfs_root *tree_root; 2506 struct btrfs_root *chunk_root; 2507 int ret; 2508 int err = -EINVAL; 2509 int num_backups_tried = 0; 2510 int backup_index = 0; 2511 int max_active; 2512 2513 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 2514 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 2515 if (!tree_root || !chunk_root) { 2516 err = -ENOMEM; 2517 goto fail; 2518 } 2519 2520 ret = init_srcu_struct(&fs_info->subvol_srcu); 2521 if (ret) { 2522 err = ret; 2523 goto fail; 2524 } 2525 2526 ret = setup_bdi(fs_info, &fs_info->bdi); 2527 if (ret) { 2528 err = ret; 2529 goto fail_srcu; 2530 } 2531 2532 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2533 if (ret) { 2534 err = ret; 2535 goto fail_bdi; 2536 } 2537 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE * 2538 (1 + ilog2(nr_cpu_ids)); 2539 2540 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2541 if (ret) { 2542 err = ret; 2543 goto fail_dirty_metadata_bytes; 2544 } 2545 2546 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2547 if (ret) { 2548 err = ret; 2549 goto fail_delalloc_bytes; 2550 } 2551 2552 fs_info->btree_inode = new_inode(sb); 2553 if (!fs_info->btree_inode) { 2554 err = -ENOMEM; 2555 goto fail_bio_counter; 2556 } 2557 2558 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2559 2560 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2561 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2562 INIT_LIST_HEAD(&fs_info->trans_list); 2563 INIT_LIST_HEAD(&fs_info->dead_roots); 2564 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2565 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2566 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2567 spin_lock_init(&fs_info->delalloc_root_lock); 2568 spin_lock_init(&fs_info->trans_lock); 2569 spin_lock_init(&fs_info->fs_roots_radix_lock); 2570 spin_lock_init(&fs_info->delayed_iput_lock); 2571 spin_lock_init(&fs_info->defrag_inodes_lock); 2572 spin_lock_init(&fs_info->free_chunk_lock); 2573 spin_lock_init(&fs_info->tree_mod_seq_lock); 2574 spin_lock_init(&fs_info->super_lock); 2575 spin_lock_init(&fs_info->qgroup_op_lock); 2576 spin_lock_init(&fs_info->buffer_lock); 2577 spin_lock_init(&fs_info->unused_bgs_lock); 2578 rwlock_init(&fs_info->tree_mod_log_lock); 2579 mutex_init(&fs_info->unused_bg_unpin_mutex); 2580 mutex_init(&fs_info->delete_unused_bgs_mutex); 2581 mutex_init(&fs_info->reloc_mutex); 2582 mutex_init(&fs_info->delalloc_root_mutex); 2583 mutex_init(&fs_info->cleaner_delayed_iput_mutex); 2584 seqlock_init(&fs_info->profiles_lock); 2585 2586 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2587 INIT_LIST_HEAD(&fs_info->space_info); 2588 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2589 INIT_LIST_HEAD(&fs_info->unused_bgs); 2590 btrfs_mapping_init(&fs_info->mapping_tree); 2591 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2592 BTRFS_BLOCK_RSV_GLOBAL); 2593 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2594 BTRFS_BLOCK_RSV_DELALLOC); 2595 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2596 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2597 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2598 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2599 BTRFS_BLOCK_RSV_DELOPS); 2600 atomic_set(&fs_info->nr_async_submits, 0); 2601 atomic_set(&fs_info->async_delalloc_pages, 0); 2602 atomic_set(&fs_info->async_submit_draining, 0); 2603 atomic_set(&fs_info->nr_async_bios, 0); 2604 atomic_set(&fs_info->defrag_running, 0); 2605 atomic_set(&fs_info->qgroup_op_seq, 0); 2606 atomic64_set(&fs_info->tree_mod_seq, 0); 2607 fs_info->sb = sb; 2608 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2609 fs_info->metadata_ratio = 0; 2610 fs_info->defrag_inodes = RB_ROOT; 2611 fs_info->free_chunk_space = 0; 2612 fs_info->tree_mod_log = RB_ROOT; 2613 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2614 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2615 /* readahead state */ 2616 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2617 spin_lock_init(&fs_info->reada_lock); 2618 2619 fs_info->thread_pool_size = min_t(unsigned long, 2620 num_online_cpus() + 2, 8); 2621 2622 INIT_LIST_HEAD(&fs_info->ordered_roots); 2623 spin_lock_init(&fs_info->ordered_root_lock); 2624 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2625 GFP_NOFS); 2626 if (!fs_info->delayed_root) { 2627 err = -ENOMEM; 2628 goto fail_iput; 2629 } 2630 btrfs_init_delayed_root(fs_info->delayed_root); 2631 2632 btrfs_init_scrub(fs_info); 2633 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2634 fs_info->check_integrity_print_mask = 0; 2635 #endif 2636 btrfs_init_balance(fs_info); 2637 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2638 2639 sb->s_blocksize = 4096; 2640 sb->s_blocksize_bits = blksize_bits(4096); 2641 sb->s_bdi = &fs_info->bdi; 2642 2643 btrfs_init_btree_inode(fs_info, tree_root); 2644 2645 spin_lock_init(&fs_info->block_group_cache_lock); 2646 fs_info->block_group_cache_tree = RB_ROOT; 2647 fs_info->first_logical_byte = (u64)-1; 2648 2649 extent_io_tree_init(&fs_info->freed_extents[0], 2650 fs_info->btree_inode->i_mapping); 2651 extent_io_tree_init(&fs_info->freed_extents[1], 2652 fs_info->btree_inode->i_mapping); 2653 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2654 fs_info->do_barriers = 1; 2655 2656 2657 mutex_init(&fs_info->ordered_operations_mutex); 2658 mutex_init(&fs_info->tree_log_mutex); 2659 mutex_init(&fs_info->chunk_mutex); 2660 mutex_init(&fs_info->transaction_kthread_mutex); 2661 mutex_init(&fs_info->cleaner_mutex); 2662 mutex_init(&fs_info->volume_mutex); 2663 mutex_init(&fs_info->ro_block_group_mutex); 2664 init_rwsem(&fs_info->commit_root_sem); 2665 init_rwsem(&fs_info->cleanup_work_sem); 2666 init_rwsem(&fs_info->subvol_sem); 2667 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2668 2669 btrfs_init_dev_replace_locks(fs_info); 2670 btrfs_init_qgroup(fs_info); 2671 2672 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2673 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2674 2675 init_waitqueue_head(&fs_info->transaction_throttle); 2676 init_waitqueue_head(&fs_info->transaction_wait); 2677 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2678 init_waitqueue_head(&fs_info->async_submit_wait); 2679 2680 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2681 2682 ret = btrfs_alloc_stripe_hash_table(fs_info); 2683 if (ret) { 2684 err = ret; 2685 goto fail_alloc; 2686 } 2687 2688 __setup_root(4096, 4096, 4096, tree_root, 2689 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2690 2691 invalidate_bdev(fs_devices->latest_bdev); 2692 2693 /* 2694 * Read super block and check the signature bytes only 2695 */ 2696 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2697 if (IS_ERR(bh)) { 2698 err = PTR_ERR(bh); 2699 goto fail_alloc; 2700 } 2701 2702 /* 2703 * We want to check superblock checksum, the type is stored inside. 2704 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2705 */ 2706 if (btrfs_check_super_csum(bh->b_data)) { 2707 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n"); 2708 err = -EINVAL; 2709 brelse(bh); 2710 goto fail_alloc; 2711 } 2712 2713 /* 2714 * super_copy is zeroed at allocation time and we never touch the 2715 * following bytes up to INFO_SIZE, the checksum is calculated from 2716 * the whole block of INFO_SIZE 2717 */ 2718 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2719 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2720 sizeof(*fs_info->super_for_commit)); 2721 brelse(bh); 2722 2723 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2724 2725 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2726 if (ret) { 2727 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n"); 2728 err = -EINVAL; 2729 goto fail_alloc; 2730 } 2731 2732 disk_super = fs_info->super_copy; 2733 if (!btrfs_super_root(disk_super)) 2734 goto fail_alloc; 2735 2736 /* check FS state, whether FS is broken. */ 2737 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2738 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2739 2740 /* 2741 * run through our array of backup supers and setup 2742 * our ring pointer to the oldest one 2743 */ 2744 generation = btrfs_super_generation(disk_super); 2745 find_oldest_super_backup(fs_info, generation); 2746 2747 /* 2748 * In the long term, we'll store the compression type in the super 2749 * block, and it'll be used for per file compression control. 2750 */ 2751 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2752 2753 ret = btrfs_parse_options(tree_root, options); 2754 if (ret) { 2755 err = ret; 2756 goto fail_alloc; 2757 } 2758 2759 features = btrfs_super_incompat_flags(disk_super) & 2760 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2761 if (features) { 2762 printk(KERN_ERR "BTRFS: couldn't mount because of " 2763 "unsupported optional features (%Lx).\n", 2764 features); 2765 err = -EINVAL; 2766 goto fail_alloc; 2767 } 2768 2769 features = btrfs_super_incompat_flags(disk_super); 2770 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2771 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2772 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2773 2774 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2775 printk(KERN_INFO "BTRFS: has skinny extents\n"); 2776 2777 /* 2778 * flag our filesystem as having big metadata blocks if 2779 * they are bigger than the page size 2780 */ 2781 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) { 2782 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2783 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n"); 2784 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2785 } 2786 2787 nodesize = btrfs_super_nodesize(disk_super); 2788 sectorsize = btrfs_super_sectorsize(disk_super); 2789 stripesize = btrfs_super_stripesize(disk_super); 2790 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2791 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2792 2793 /* 2794 * mixed block groups end up with duplicate but slightly offset 2795 * extent buffers for the same range. It leads to corruptions 2796 */ 2797 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2798 (sectorsize != nodesize)) { 2799 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes " 2800 "are not allowed for mixed block groups on %s\n", 2801 sb->s_id); 2802 goto fail_alloc; 2803 } 2804 2805 /* 2806 * Needn't use the lock because there is no other task which will 2807 * update the flag. 2808 */ 2809 btrfs_set_super_incompat_flags(disk_super, features); 2810 2811 features = btrfs_super_compat_ro_flags(disk_super) & 2812 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2813 if (!(sb->s_flags & MS_RDONLY) && features) { 2814 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2815 "unsupported option features (%Lx).\n", 2816 features); 2817 err = -EINVAL; 2818 goto fail_alloc; 2819 } 2820 2821 max_active = fs_info->thread_pool_size; 2822 2823 ret = btrfs_init_workqueues(fs_info, fs_devices); 2824 if (ret) { 2825 err = ret; 2826 goto fail_sb_buffer; 2827 } 2828 2829 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2830 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2831 SZ_4M / PAGE_CACHE_SIZE); 2832 2833 tree_root->nodesize = nodesize; 2834 tree_root->sectorsize = sectorsize; 2835 tree_root->stripesize = stripesize; 2836 2837 sb->s_blocksize = sectorsize; 2838 sb->s_blocksize_bits = blksize_bits(sectorsize); 2839 2840 mutex_lock(&fs_info->chunk_mutex); 2841 ret = btrfs_read_sys_array(tree_root); 2842 mutex_unlock(&fs_info->chunk_mutex); 2843 if (ret) { 2844 printk(KERN_ERR "BTRFS: failed to read the system " 2845 "array on %s\n", sb->s_id); 2846 goto fail_sb_buffer; 2847 } 2848 2849 generation = btrfs_super_chunk_root_generation(disk_super); 2850 2851 __setup_root(nodesize, sectorsize, stripesize, chunk_root, 2852 fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2853 2854 chunk_root->node = read_tree_block(chunk_root, 2855 btrfs_super_chunk_root(disk_super), 2856 generation); 2857 if (IS_ERR(chunk_root->node) || 2858 !extent_buffer_uptodate(chunk_root->node)) { 2859 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n", 2860 sb->s_id); 2861 if (!IS_ERR(chunk_root->node)) 2862 free_extent_buffer(chunk_root->node); 2863 chunk_root->node = NULL; 2864 goto fail_tree_roots; 2865 } 2866 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2867 chunk_root->commit_root = btrfs_root_node(chunk_root); 2868 2869 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2870 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2871 2872 ret = btrfs_read_chunk_tree(chunk_root); 2873 if (ret) { 2874 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n", 2875 sb->s_id); 2876 goto fail_tree_roots; 2877 } 2878 2879 /* 2880 * keep the device that is marked to be the target device for the 2881 * dev_replace procedure 2882 */ 2883 btrfs_close_extra_devices(fs_devices, 0); 2884 2885 if (!fs_devices->latest_bdev) { 2886 printk(KERN_ERR "BTRFS: failed to read devices on %s\n", 2887 sb->s_id); 2888 goto fail_tree_roots; 2889 } 2890 2891 retry_root_backup: 2892 generation = btrfs_super_generation(disk_super); 2893 2894 tree_root->node = read_tree_block(tree_root, 2895 btrfs_super_root(disk_super), 2896 generation); 2897 if (IS_ERR(tree_root->node) || 2898 !extent_buffer_uptodate(tree_root->node)) { 2899 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n", 2900 sb->s_id); 2901 if (!IS_ERR(tree_root->node)) 2902 free_extent_buffer(tree_root->node); 2903 tree_root->node = NULL; 2904 goto recovery_tree_root; 2905 } 2906 2907 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2908 tree_root->commit_root = btrfs_root_node(tree_root); 2909 btrfs_set_root_refs(&tree_root->root_item, 1); 2910 2911 mutex_lock(&tree_root->objectid_mutex); 2912 ret = btrfs_find_highest_objectid(tree_root, 2913 &tree_root->highest_objectid); 2914 if (ret) { 2915 mutex_unlock(&tree_root->objectid_mutex); 2916 goto recovery_tree_root; 2917 } 2918 2919 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2920 2921 mutex_unlock(&tree_root->objectid_mutex); 2922 2923 ret = btrfs_read_roots(fs_info, tree_root); 2924 if (ret) 2925 goto recovery_tree_root; 2926 2927 fs_info->generation = generation; 2928 fs_info->last_trans_committed = generation; 2929 2930 ret = btrfs_recover_balance(fs_info); 2931 if (ret) { 2932 printk(KERN_ERR "BTRFS: failed to recover balance\n"); 2933 goto fail_block_groups; 2934 } 2935 2936 ret = btrfs_init_dev_stats(fs_info); 2937 if (ret) { 2938 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n", 2939 ret); 2940 goto fail_block_groups; 2941 } 2942 2943 ret = btrfs_init_dev_replace(fs_info); 2944 if (ret) { 2945 pr_err("BTRFS: failed to init dev_replace: %d\n", ret); 2946 goto fail_block_groups; 2947 } 2948 2949 btrfs_close_extra_devices(fs_devices, 1); 2950 2951 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 2952 if (ret) { 2953 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret); 2954 goto fail_block_groups; 2955 } 2956 2957 ret = btrfs_sysfs_add_device(fs_devices); 2958 if (ret) { 2959 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret); 2960 goto fail_fsdev_sysfs; 2961 } 2962 2963 ret = btrfs_sysfs_add_mounted(fs_info); 2964 if (ret) { 2965 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret); 2966 goto fail_fsdev_sysfs; 2967 } 2968 2969 ret = btrfs_init_space_info(fs_info); 2970 if (ret) { 2971 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret); 2972 goto fail_sysfs; 2973 } 2974 2975 ret = btrfs_read_block_groups(fs_info->extent_root); 2976 if (ret) { 2977 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret); 2978 goto fail_sysfs; 2979 } 2980 fs_info->num_tolerated_disk_barrier_failures = 2981 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2982 if (fs_info->fs_devices->missing_devices > 2983 fs_info->num_tolerated_disk_barrier_failures && 2984 !(sb->s_flags & MS_RDONLY)) { 2985 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n", 2986 fs_info->fs_devices->missing_devices, 2987 fs_info->num_tolerated_disk_barrier_failures); 2988 goto fail_sysfs; 2989 } 2990 2991 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2992 "btrfs-cleaner"); 2993 if (IS_ERR(fs_info->cleaner_kthread)) 2994 goto fail_sysfs; 2995 2996 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2997 tree_root, 2998 "btrfs-transaction"); 2999 if (IS_ERR(fs_info->transaction_kthread)) 3000 goto fail_cleaner; 3001 3002 if (!btrfs_test_opt(tree_root, SSD) && 3003 !btrfs_test_opt(tree_root, NOSSD) && 3004 !fs_info->fs_devices->rotating) { 3005 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD " 3006 "mode\n"); 3007 btrfs_set_opt(fs_info->mount_opt, SSD); 3008 } 3009 3010 /* 3011 * Mount does not set all options immediatelly, we can do it now and do 3012 * not have to wait for transaction commit 3013 */ 3014 btrfs_apply_pending_changes(fs_info); 3015 3016 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3017 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 3018 ret = btrfsic_mount(tree_root, fs_devices, 3019 btrfs_test_opt(tree_root, 3020 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3021 1 : 0, 3022 fs_info->check_integrity_print_mask); 3023 if (ret) 3024 printk(KERN_WARNING "BTRFS: failed to initialize" 3025 " integrity check module %s\n", sb->s_id); 3026 } 3027 #endif 3028 ret = btrfs_read_qgroup_config(fs_info); 3029 if (ret) 3030 goto fail_trans_kthread; 3031 3032 /* do not make disk changes in broken FS */ 3033 if (btrfs_super_log_root(disk_super) != 0) { 3034 ret = btrfs_replay_log(fs_info, fs_devices); 3035 if (ret) { 3036 err = ret; 3037 goto fail_qgroup; 3038 } 3039 } 3040 3041 ret = btrfs_find_orphan_roots(tree_root); 3042 if (ret) 3043 goto fail_qgroup; 3044 3045 if (!(sb->s_flags & MS_RDONLY)) { 3046 ret = btrfs_cleanup_fs_roots(fs_info); 3047 if (ret) 3048 goto fail_qgroup; 3049 3050 mutex_lock(&fs_info->cleaner_mutex); 3051 ret = btrfs_recover_relocation(tree_root); 3052 mutex_unlock(&fs_info->cleaner_mutex); 3053 if (ret < 0) { 3054 printk(KERN_WARNING 3055 "BTRFS: failed to recover relocation\n"); 3056 err = -EINVAL; 3057 goto fail_qgroup; 3058 } 3059 } 3060 3061 location.objectid = BTRFS_FS_TREE_OBJECTID; 3062 location.type = BTRFS_ROOT_ITEM_KEY; 3063 location.offset = 0; 3064 3065 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3066 if (IS_ERR(fs_info->fs_root)) { 3067 err = PTR_ERR(fs_info->fs_root); 3068 goto fail_qgroup; 3069 } 3070 3071 if (sb->s_flags & MS_RDONLY) 3072 return 0; 3073 3074 if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) && 3075 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3076 pr_info("BTRFS: creating free space tree\n"); 3077 ret = btrfs_create_free_space_tree(fs_info); 3078 if (ret) { 3079 pr_warn("BTRFS: failed to create free space tree %d\n", 3080 ret); 3081 close_ctree(tree_root); 3082 return ret; 3083 } 3084 } 3085 3086 down_read(&fs_info->cleanup_work_sem); 3087 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3088 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3089 up_read(&fs_info->cleanup_work_sem); 3090 close_ctree(tree_root); 3091 return ret; 3092 } 3093 up_read(&fs_info->cleanup_work_sem); 3094 3095 ret = btrfs_resume_balance_async(fs_info); 3096 if (ret) { 3097 printk(KERN_WARNING "BTRFS: failed to resume balance\n"); 3098 close_ctree(tree_root); 3099 return ret; 3100 } 3101 3102 ret = btrfs_resume_dev_replace_async(fs_info); 3103 if (ret) { 3104 pr_warn("BTRFS: failed to resume dev_replace\n"); 3105 close_ctree(tree_root); 3106 return ret; 3107 } 3108 3109 btrfs_qgroup_rescan_resume(fs_info); 3110 3111 if (btrfs_test_opt(tree_root, CLEAR_CACHE) && 3112 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3113 pr_info("BTRFS: clearing free space tree\n"); 3114 ret = btrfs_clear_free_space_tree(fs_info); 3115 if (ret) { 3116 pr_warn("BTRFS: failed to clear free space tree %d\n", 3117 ret); 3118 close_ctree(tree_root); 3119 return ret; 3120 } 3121 } 3122 3123 if (!fs_info->uuid_root) { 3124 pr_info("BTRFS: creating UUID tree\n"); 3125 ret = btrfs_create_uuid_tree(fs_info); 3126 if (ret) { 3127 pr_warn("BTRFS: failed to create the UUID tree %d\n", 3128 ret); 3129 close_ctree(tree_root); 3130 return ret; 3131 } 3132 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) || 3133 fs_info->generation != 3134 btrfs_super_uuid_tree_generation(disk_super)) { 3135 pr_info("BTRFS: checking UUID tree\n"); 3136 ret = btrfs_check_uuid_tree(fs_info); 3137 if (ret) { 3138 pr_warn("BTRFS: failed to check the UUID tree %d\n", 3139 ret); 3140 close_ctree(tree_root); 3141 return ret; 3142 } 3143 } else { 3144 fs_info->update_uuid_tree_gen = 1; 3145 } 3146 3147 fs_info->open = 1; 3148 3149 return 0; 3150 3151 fail_qgroup: 3152 btrfs_free_qgroup_config(fs_info); 3153 fail_trans_kthread: 3154 kthread_stop(fs_info->transaction_kthread); 3155 btrfs_cleanup_transaction(fs_info->tree_root); 3156 btrfs_free_fs_roots(fs_info); 3157 fail_cleaner: 3158 kthread_stop(fs_info->cleaner_kthread); 3159 3160 /* 3161 * make sure we're done with the btree inode before we stop our 3162 * kthreads 3163 */ 3164 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3165 3166 fail_sysfs: 3167 btrfs_sysfs_remove_mounted(fs_info); 3168 3169 fail_fsdev_sysfs: 3170 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3171 3172 fail_block_groups: 3173 btrfs_put_block_group_cache(fs_info); 3174 btrfs_free_block_groups(fs_info); 3175 3176 fail_tree_roots: 3177 free_root_pointers(fs_info, 1); 3178 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3179 3180 fail_sb_buffer: 3181 btrfs_stop_all_workers(fs_info); 3182 fail_alloc: 3183 fail_iput: 3184 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3185 3186 iput(fs_info->btree_inode); 3187 fail_bio_counter: 3188 percpu_counter_destroy(&fs_info->bio_counter); 3189 fail_delalloc_bytes: 3190 percpu_counter_destroy(&fs_info->delalloc_bytes); 3191 fail_dirty_metadata_bytes: 3192 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3193 fail_bdi: 3194 bdi_destroy(&fs_info->bdi); 3195 fail_srcu: 3196 cleanup_srcu_struct(&fs_info->subvol_srcu); 3197 fail: 3198 btrfs_free_stripe_hash_table(fs_info); 3199 btrfs_close_devices(fs_info->fs_devices); 3200 return err; 3201 3202 recovery_tree_root: 3203 if (!btrfs_test_opt(tree_root, RECOVERY)) 3204 goto fail_tree_roots; 3205 3206 free_root_pointers(fs_info, 0); 3207 3208 /* don't use the log in recovery mode, it won't be valid */ 3209 btrfs_set_super_log_root(disk_super, 0); 3210 3211 /* we can't trust the free space cache either */ 3212 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3213 3214 ret = next_root_backup(fs_info, fs_info->super_copy, 3215 &num_backups_tried, &backup_index); 3216 if (ret == -1) 3217 goto fail_block_groups; 3218 goto retry_root_backup; 3219 } 3220 3221 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3222 { 3223 if (uptodate) { 3224 set_buffer_uptodate(bh); 3225 } else { 3226 struct btrfs_device *device = (struct btrfs_device *) 3227 bh->b_private; 3228 3229 btrfs_warn_rl_in_rcu(device->dev_root->fs_info, 3230 "lost page write due to IO error on %s", 3231 rcu_str_deref(device->name)); 3232 /* note, we dont' set_buffer_write_io_error because we have 3233 * our own ways of dealing with the IO errors 3234 */ 3235 clear_buffer_uptodate(bh); 3236 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3237 } 3238 unlock_buffer(bh); 3239 put_bh(bh); 3240 } 3241 3242 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3243 struct buffer_head **bh_ret) 3244 { 3245 struct buffer_head *bh; 3246 struct btrfs_super_block *super; 3247 u64 bytenr; 3248 3249 bytenr = btrfs_sb_offset(copy_num); 3250 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3251 return -EINVAL; 3252 3253 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE); 3254 /* 3255 * If we fail to read from the underlying devices, as of now 3256 * the best option we have is to mark it EIO. 3257 */ 3258 if (!bh) 3259 return -EIO; 3260 3261 super = (struct btrfs_super_block *)bh->b_data; 3262 if (btrfs_super_bytenr(super) != bytenr || 3263 btrfs_super_magic(super) != BTRFS_MAGIC) { 3264 brelse(bh); 3265 return -EINVAL; 3266 } 3267 3268 *bh_ret = bh; 3269 return 0; 3270 } 3271 3272 3273 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3274 { 3275 struct buffer_head *bh; 3276 struct buffer_head *latest = NULL; 3277 struct btrfs_super_block *super; 3278 int i; 3279 u64 transid = 0; 3280 int ret = -EINVAL; 3281 3282 /* we would like to check all the supers, but that would make 3283 * a btrfs mount succeed after a mkfs from a different FS. 3284 * So, we need to add a special mount option to scan for 3285 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3286 */ 3287 for (i = 0; i < 1; i++) { 3288 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3289 if (ret) 3290 continue; 3291 3292 super = (struct btrfs_super_block *)bh->b_data; 3293 3294 if (!latest || btrfs_super_generation(super) > transid) { 3295 brelse(latest); 3296 latest = bh; 3297 transid = btrfs_super_generation(super); 3298 } else { 3299 brelse(bh); 3300 } 3301 } 3302 3303 if (!latest) 3304 return ERR_PTR(ret); 3305 3306 return latest; 3307 } 3308 3309 /* 3310 * this should be called twice, once with wait == 0 and 3311 * once with wait == 1. When wait == 0 is done, all the buffer heads 3312 * we write are pinned. 3313 * 3314 * They are released when wait == 1 is done. 3315 * max_mirrors must be the same for both runs, and it indicates how 3316 * many supers on this one device should be written. 3317 * 3318 * max_mirrors == 0 means to write them all. 3319 */ 3320 static int write_dev_supers(struct btrfs_device *device, 3321 struct btrfs_super_block *sb, 3322 int do_barriers, int wait, int max_mirrors) 3323 { 3324 struct buffer_head *bh; 3325 int i; 3326 int ret; 3327 int errors = 0; 3328 u32 crc; 3329 u64 bytenr; 3330 3331 if (max_mirrors == 0) 3332 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3333 3334 for (i = 0; i < max_mirrors; i++) { 3335 bytenr = btrfs_sb_offset(i); 3336 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3337 device->commit_total_bytes) 3338 break; 3339 3340 if (wait) { 3341 bh = __find_get_block(device->bdev, bytenr / 4096, 3342 BTRFS_SUPER_INFO_SIZE); 3343 if (!bh) { 3344 errors++; 3345 continue; 3346 } 3347 wait_on_buffer(bh); 3348 if (!buffer_uptodate(bh)) 3349 errors++; 3350 3351 /* drop our reference */ 3352 brelse(bh); 3353 3354 /* drop the reference from the wait == 0 run */ 3355 brelse(bh); 3356 continue; 3357 } else { 3358 btrfs_set_super_bytenr(sb, bytenr); 3359 3360 crc = ~(u32)0; 3361 crc = btrfs_csum_data((char *)sb + 3362 BTRFS_CSUM_SIZE, crc, 3363 BTRFS_SUPER_INFO_SIZE - 3364 BTRFS_CSUM_SIZE); 3365 btrfs_csum_final(crc, sb->csum); 3366 3367 /* 3368 * one reference for us, and we leave it for the 3369 * caller 3370 */ 3371 bh = __getblk(device->bdev, bytenr / 4096, 3372 BTRFS_SUPER_INFO_SIZE); 3373 if (!bh) { 3374 btrfs_err(device->dev_root->fs_info, 3375 "couldn't get super buffer head for bytenr %llu", 3376 bytenr); 3377 errors++; 3378 continue; 3379 } 3380 3381 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3382 3383 /* one reference for submit_bh */ 3384 get_bh(bh); 3385 3386 set_buffer_uptodate(bh); 3387 lock_buffer(bh); 3388 bh->b_end_io = btrfs_end_buffer_write_sync; 3389 bh->b_private = device; 3390 } 3391 3392 /* 3393 * we fua the first super. The others we allow 3394 * to go down lazy. 3395 */ 3396 if (i == 0) 3397 ret = btrfsic_submit_bh(WRITE_FUA, bh); 3398 else 3399 ret = btrfsic_submit_bh(WRITE_SYNC, bh); 3400 if (ret) 3401 errors++; 3402 } 3403 return errors < i ? 0 : -1; 3404 } 3405 3406 /* 3407 * endio for the write_dev_flush, this will wake anyone waiting 3408 * for the barrier when it is done 3409 */ 3410 static void btrfs_end_empty_barrier(struct bio *bio) 3411 { 3412 if (bio->bi_private) 3413 complete(bio->bi_private); 3414 bio_put(bio); 3415 } 3416 3417 /* 3418 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3419 * sent down. With wait == 1, it waits for the previous flush. 3420 * 3421 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3422 * capable 3423 */ 3424 static int write_dev_flush(struct btrfs_device *device, int wait) 3425 { 3426 struct bio *bio; 3427 int ret = 0; 3428 3429 if (device->nobarriers) 3430 return 0; 3431 3432 if (wait) { 3433 bio = device->flush_bio; 3434 if (!bio) 3435 return 0; 3436 3437 wait_for_completion(&device->flush_wait); 3438 3439 if (bio->bi_error) { 3440 ret = bio->bi_error; 3441 btrfs_dev_stat_inc_and_print(device, 3442 BTRFS_DEV_STAT_FLUSH_ERRS); 3443 } 3444 3445 /* drop the reference from the wait == 0 run */ 3446 bio_put(bio); 3447 device->flush_bio = NULL; 3448 3449 return ret; 3450 } 3451 3452 /* 3453 * one reference for us, and we leave it for the 3454 * caller 3455 */ 3456 device->flush_bio = NULL; 3457 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3458 if (!bio) 3459 return -ENOMEM; 3460 3461 bio->bi_end_io = btrfs_end_empty_barrier; 3462 bio->bi_bdev = device->bdev; 3463 init_completion(&device->flush_wait); 3464 bio->bi_private = &device->flush_wait; 3465 device->flush_bio = bio; 3466 3467 bio_get(bio); 3468 btrfsic_submit_bio(WRITE_FLUSH, bio); 3469 3470 return 0; 3471 } 3472 3473 /* 3474 * send an empty flush down to each device in parallel, 3475 * then wait for them 3476 */ 3477 static int barrier_all_devices(struct btrfs_fs_info *info) 3478 { 3479 struct list_head *head; 3480 struct btrfs_device *dev; 3481 int errors_send = 0; 3482 int errors_wait = 0; 3483 int ret; 3484 3485 /* send down all the barriers */ 3486 head = &info->fs_devices->devices; 3487 list_for_each_entry_rcu(dev, head, dev_list) { 3488 if (dev->missing) 3489 continue; 3490 if (!dev->bdev) { 3491 errors_send++; 3492 continue; 3493 } 3494 if (!dev->in_fs_metadata || !dev->writeable) 3495 continue; 3496 3497 ret = write_dev_flush(dev, 0); 3498 if (ret) 3499 errors_send++; 3500 } 3501 3502 /* wait for all the barriers */ 3503 list_for_each_entry_rcu(dev, head, dev_list) { 3504 if (dev->missing) 3505 continue; 3506 if (!dev->bdev) { 3507 errors_wait++; 3508 continue; 3509 } 3510 if (!dev->in_fs_metadata || !dev->writeable) 3511 continue; 3512 3513 ret = write_dev_flush(dev, 1); 3514 if (ret) 3515 errors_wait++; 3516 } 3517 if (errors_send > info->num_tolerated_disk_barrier_failures || 3518 errors_wait > info->num_tolerated_disk_barrier_failures) 3519 return -EIO; 3520 return 0; 3521 } 3522 3523 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3524 { 3525 int raid_type; 3526 int min_tolerated = INT_MAX; 3527 3528 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3529 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3530 min_tolerated = min(min_tolerated, 3531 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3532 tolerated_failures); 3533 3534 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3535 if (raid_type == BTRFS_RAID_SINGLE) 3536 continue; 3537 if (!(flags & btrfs_raid_group[raid_type])) 3538 continue; 3539 min_tolerated = min(min_tolerated, 3540 btrfs_raid_array[raid_type]. 3541 tolerated_failures); 3542 } 3543 3544 if (min_tolerated == INT_MAX) { 3545 pr_warn("BTRFS: unknown raid flag: %llu\n", flags); 3546 min_tolerated = 0; 3547 } 3548 3549 return min_tolerated; 3550 } 3551 3552 int btrfs_calc_num_tolerated_disk_barrier_failures( 3553 struct btrfs_fs_info *fs_info) 3554 { 3555 struct btrfs_ioctl_space_info space; 3556 struct btrfs_space_info *sinfo; 3557 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3558 BTRFS_BLOCK_GROUP_SYSTEM, 3559 BTRFS_BLOCK_GROUP_METADATA, 3560 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3561 int i; 3562 int c; 3563 int num_tolerated_disk_barrier_failures = 3564 (int)fs_info->fs_devices->num_devices; 3565 3566 for (i = 0; i < ARRAY_SIZE(types); i++) { 3567 struct btrfs_space_info *tmp; 3568 3569 sinfo = NULL; 3570 rcu_read_lock(); 3571 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3572 if (tmp->flags == types[i]) { 3573 sinfo = tmp; 3574 break; 3575 } 3576 } 3577 rcu_read_unlock(); 3578 3579 if (!sinfo) 3580 continue; 3581 3582 down_read(&sinfo->groups_sem); 3583 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3584 u64 flags; 3585 3586 if (list_empty(&sinfo->block_groups[c])) 3587 continue; 3588 3589 btrfs_get_block_group_info(&sinfo->block_groups[c], 3590 &space); 3591 if (space.total_bytes == 0 || space.used_bytes == 0) 3592 continue; 3593 flags = space.flags; 3594 3595 num_tolerated_disk_barrier_failures = min( 3596 num_tolerated_disk_barrier_failures, 3597 btrfs_get_num_tolerated_disk_barrier_failures( 3598 flags)); 3599 } 3600 up_read(&sinfo->groups_sem); 3601 } 3602 3603 return num_tolerated_disk_barrier_failures; 3604 } 3605 3606 static int write_all_supers(struct btrfs_root *root, int max_mirrors) 3607 { 3608 struct list_head *head; 3609 struct btrfs_device *dev; 3610 struct btrfs_super_block *sb; 3611 struct btrfs_dev_item *dev_item; 3612 int ret; 3613 int do_barriers; 3614 int max_errors; 3615 int total_errors = 0; 3616 u64 flags; 3617 3618 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3619 backup_super_roots(root->fs_info); 3620 3621 sb = root->fs_info->super_for_commit; 3622 dev_item = &sb->dev_item; 3623 3624 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3625 head = &root->fs_info->fs_devices->devices; 3626 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3627 3628 if (do_barriers) { 3629 ret = barrier_all_devices(root->fs_info); 3630 if (ret) { 3631 mutex_unlock( 3632 &root->fs_info->fs_devices->device_list_mutex); 3633 btrfs_std_error(root->fs_info, ret, 3634 "errors while submitting device barriers."); 3635 return ret; 3636 } 3637 } 3638 3639 list_for_each_entry_rcu(dev, head, dev_list) { 3640 if (!dev->bdev) { 3641 total_errors++; 3642 continue; 3643 } 3644 if (!dev->in_fs_metadata || !dev->writeable) 3645 continue; 3646 3647 btrfs_set_stack_device_generation(dev_item, 0); 3648 btrfs_set_stack_device_type(dev_item, dev->type); 3649 btrfs_set_stack_device_id(dev_item, dev->devid); 3650 btrfs_set_stack_device_total_bytes(dev_item, 3651 dev->commit_total_bytes); 3652 btrfs_set_stack_device_bytes_used(dev_item, 3653 dev->commit_bytes_used); 3654 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3655 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3656 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3657 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3658 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3659 3660 flags = btrfs_super_flags(sb); 3661 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3662 3663 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3664 if (ret) 3665 total_errors++; 3666 } 3667 if (total_errors > max_errors) { 3668 btrfs_err(root->fs_info, "%d errors while writing supers", 3669 total_errors); 3670 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3671 3672 /* FUA is masked off if unsupported and can't be the reason */ 3673 btrfs_std_error(root->fs_info, -EIO, 3674 "%d errors while writing supers", total_errors); 3675 return -EIO; 3676 } 3677 3678 total_errors = 0; 3679 list_for_each_entry_rcu(dev, head, dev_list) { 3680 if (!dev->bdev) 3681 continue; 3682 if (!dev->in_fs_metadata || !dev->writeable) 3683 continue; 3684 3685 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3686 if (ret) 3687 total_errors++; 3688 } 3689 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3690 if (total_errors > max_errors) { 3691 btrfs_std_error(root->fs_info, -EIO, 3692 "%d errors while writing supers", total_errors); 3693 return -EIO; 3694 } 3695 return 0; 3696 } 3697 3698 int write_ctree_super(struct btrfs_trans_handle *trans, 3699 struct btrfs_root *root, int max_mirrors) 3700 { 3701 return write_all_supers(root, max_mirrors); 3702 } 3703 3704 /* Drop a fs root from the radix tree and free it. */ 3705 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3706 struct btrfs_root *root) 3707 { 3708 spin_lock(&fs_info->fs_roots_radix_lock); 3709 radix_tree_delete(&fs_info->fs_roots_radix, 3710 (unsigned long)root->root_key.objectid); 3711 spin_unlock(&fs_info->fs_roots_radix_lock); 3712 3713 if (btrfs_root_refs(&root->root_item) == 0) 3714 synchronize_srcu(&fs_info->subvol_srcu); 3715 3716 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3717 btrfs_free_log(NULL, root); 3718 3719 if (root->free_ino_pinned) 3720 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3721 if (root->free_ino_ctl) 3722 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3723 free_fs_root(root); 3724 } 3725 3726 static void free_fs_root(struct btrfs_root *root) 3727 { 3728 iput(root->ino_cache_inode); 3729 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3730 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3731 root->orphan_block_rsv = NULL; 3732 if (root->anon_dev) 3733 free_anon_bdev(root->anon_dev); 3734 if (root->subv_writers) 3735 btrfs_free_subvolume_writers(root->subv_writers); 3736 free_extent_buffer(root->node); 3737 free_extent_buffer(root->commit_root); 3738 kfree(root->free_ino_ctl); 3739 kfree(root->free_ino_pinned); 3740 kfree(root->name); 3741 btrfs_put_fs_root(root); 3742 } 3743 3744 void btrfs_free_fs_root(struct btrfs_root *root) 3745 { 3746 free_fs_root(root); 3747 } 3748 3749 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3750 { 3751 u64 root_objectid = 0; 3752 struct btrfs_root *gang[8]; 3753 int i = 0; 3754 int err = 0; 3755 unsigned int ret = 0; 3756 int index; 3757 3758 while (1) { 3759 index = srcu_read_lock(&fs_info->subvol_srcu); 3760 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3761 (void **)gang, root_objectid, 3762 ARRAY_SIZE(gang)); 3763 if (!ret) { 3764 srcu_read_unlock(&fs_info->subvol_srcu, index); 3765 break; 3766 } 3767 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3768 3769 for (i = 0; i < ret; i++) { 3770 /* Avoid to grab roots in dead_roots */ 3771 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3772 gang[i] = NULL; 3773 continue; 3774 } 3775 /* grab all the search result for later use */ 3776 gang[i] = btrfs_grab_fs_root(gang[i]); 3777 } 3778 srcu_read_unlock(&fs_info->subvol_srcu, index); 3779 3780 for (i = 0; i < ret; i++) { 3781 if (!gang[i]) 3782 continue; 3783 root_objectid = gang[i]->root_key.objectid; 3784 err = btrfs_orphan_cleanup(gang[i]); 3785 if (err) 3786 break; 3787 btrfs_put_fs_root(gang[i]); 3788 } 3789 root_objectid++; 3790 } 3791 3792 /* release the uncleaned roots due to error */ 3793 for (; i < ret; i++) { 3794 if (gang[i]) 3795 btrfs_put_fs_root(gang[i]); 3796 } 3797 return err; 3798 } 3799 3800 int btrfs_commit_super(struct btrfs_root *root) 3801 { 3802 struct btrfs_trans_handle *trans; 3803 3804 mutex_lock(&root->fs_info->cleaner_mutex); 3805 btrfs_run_delayed_iputs(root); 3806 mutex_unlock(&root->fs_info->cleaner_mutex); 3807 wake_up_process(root->fs_info->cleaner_kthread); 3808 3809 /* wait until ongoing cleanup work done */ 3810 down_write(&root->fs_info->cleanup_work_sem); 3811 up_write(&root->fs_info->cleanup_work_sem); 3812 3813 trans = btrfs_join_transaction(root); 3814 if (IS_ERR(trans)) 3815 return PTR_ERR(trans); 3816 return btrfs_commit_transaction(trans, root); 3817 } 3818 3819 void close_ctree(struct btrfs_root *root) 3820 { 3821 struct btrfs_fs_info *fs_info = root->fs_info; 3822 int ret; 3823 3824 fs_info->closing = 1; 3825 smp_mb(); 3826 3827 /* wait for the qgroup rescan worker to stop */ 3828 btrfs_qgroup_wait_for_completion(fs_info); 3829 3830 /* wait for the uuid_scan task to finish */ 3831 down(&fs_info->uuid_tree_rescan_sem); 3832 /* avoid complains from lockdep et al., set sem back to initial state */ 3833 up(&fs_info->uuid_tree_rescan_sem); 3834 3835 /* pause restriper - we want to resume on mount */ 3836 btrfs_pause_balance(fs_info); 3837 3838 btrfs_dev_replace_suspend_for_unmount(fs_info); 3839 3840 btrfs_scrub_cancel(fs_info); 3841 3842 /* wait for any defraggers to finish */ 3843 wait_event(fs_info->transaction_wait, 3844 (atomic_read(&fs_info->defrag_running) == 0)); 3845 3846 /* clear out the rbtree of defraggable inodes */ 3847 btrfs_cleanup_defrag_inodes(fs_info); 3848 3849 cancel_work_sync(&fs_info->async_reclaim_work); 3850 3851 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3852 /* 3853 * If the cleaner thread is stopped and there are 3854 * block groups queued for removal, the deletion will be 3855 * skipped when we quit the cleaner thread. 3856 */ 3857 btrfs_delete_unused_bgs(root->fs_info); 3858 3859 ret = btrfs_commit_super(root); 3860 if (ret) 3861 btrfs_err(fs_info, "commit super ret %d", ret); 3862 } 3863 3864 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3865 btrfs_error_commit_super(root); 3866 3867 kthread_stop(fs_info->transaction_kthread); 3868 kthread_stop(fs_info->cleaner_kthread); 3869 3870 fs_info->closing = 2; 3871 smp_mb(); 3872 3873 btrfs_free_qgroup_config(fs_info); 3874 3875 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3876 btrfs_info(fs_info, "at unmount delalloc count %lld", 3877 percpu_counter_sum(&fs_info->delalloc_bytes)); 3878 } 3879 3880 btrfs_sysfs_remove_mounted(fs_info); 3881 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3882 3883 btrfs_free_fs_roots(fs_info); 3884 3885 btrfs_put_block_group_cache(fs_info); 3886 3887 btrfs_free_block_groups(fs_info); 3888 3889 /* 3890 * we must make sure there is not any read request to 3891 * submit after we stopping all workers. 3892 */ 3893 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3894 btrfs_stop_all_workers(fs_info); 3895 3896 fs_info->open = 0; 3897 free_root_pointers(fs_info, 1); 3898 3899 iput(fs_info->btree_inode); 3900 3901 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3902 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3903 btrfsic_unmount(root, fs_info->fs_devices); 3904 #endif 3905 3906 btrfs_close_devices(fs_info->fs_devices); 3907 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3908 3909 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3910 percpu_counter_destroy(&fs_info->delalloc_bytes); 3911 percpu_counter_destroy(&fs_info->bio_counter); 3912 bdi_destroy(&fs_info->bdi); 3913 cleanup_srcu_struct(&fs_info->subvol_srcu); 3914 3915 btrfs_free_stripe_hash_table(fs_info); 3916 3917 __btrfs_free_block_rsv(root->orphan_block_rsv); 3918 root->orphan_block_rsv = NULL; 3919 3920 lock_chunks(root); 3921 while (!list_empty(&fs_info->pinned_chunks)) { 3922 struct extent_map *em; 3923 3924 em = list_first_entry(&fs_info->pinned_chunks, 3925 struct extent_map, list); 3926 list_del_init(&em->list); 3927 free_extent_map(em); 3928 } 3929 unlock_chunks(root); 3930 } 3931 3932 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3933 int atomic) 3934 { 3935 int ret; 3936 struct inode *btree_inode = buf->pages[0]->mapping->host; 3937 3938 ret = extent_buffer_uptodate(buf); 3939 if (!ret) 3940 return ret; 3941 3942 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3943 parent_transid, atomic); 3944 if (ret == -EAGAIN) 3945 return ret; 3946 return !ret; 3947 } 3948 3949 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3950 { 3951 struct btrfs_root *root; 3952 u64 transid = btrfs_header_generation(buf); 3953 int was_dirty; 3954 3955 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3956 /* 3957 * This is a fast path so only do this check if we have sanity tests 3958 * enabled. Normal people shouldn't be marking dummy buffers as dirty 3959 * outside of the sanity tests. 3960 */ 3961 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 3962 return; 3963 #endif 3964 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3965 btrfs_assert_tree_locked(buf); 3966 if (transid != root->fs_info->generation) 3967 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 3968 "found %llu running %llu\n", 3969 buf->start, transid, root->fs_info->generation); 3970 was_dirty = set_extent_buffer_dirty(buf); 3971 if (!was_dirty) 3972 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 3973 buf->len, 3974 root->fs_info->dirty_metadata_batch); 3975 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3976 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) { 3977 btrfs_print_leaf(root, buf); 3978 ASSERT(0); 3979 } 3980 #endif 3981 } 3982 3983 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 3984 int flush_delayed) 3985 { 3986 /* 3987 * looks as though older kernels can get into trouble with 3988 * this code, they end up stuck in balance_dirty_pages forever 3989 */ 3990 int ret; 3991 3992 if (current->flags & PF_MEMALLOC) 3993 return; 3994 3995 if (flush_delayed) 3996 btrfs_balance_delayed_items(root); 3997 3998 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 3999 BTRFS_DIRTY_METADATA_THRESH); 4000 if (ret > 0) { 4001 balance_dirty_pages_ratelimited( 4002 root->fs_info->btree_inode->i_mapping); 4003 } 4004 } 4005 4006 void btrfs_btree_balance_dirty(struct btrfs_root *root) 4007 { 4008 __btrfs_btree_balance_dirty(root, 1); 4009 } 4010 4011 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 4012 { 4013 __btrfs_btree_balance_dirty(root, 0); 4014 } 4015 4016 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 4017 { 4018 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4019 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 4020 } 4021 4022 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 4023 int read_only) 4024 { 4025 struct btrfs_super_block *sb = fs_info->super_copy; 4026 u64 nodesize = btrfs_super_nodesize(sb); 4027 u64 sectorsize = btrfs_super_sectorsize(sb); 4028 int ret = 0; 4029 4030 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 4031 printk(KERN_ERR "BTRFS: no valid FS found\n"); 4032 ret = -EINVAL; 4033 } 4034 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) 4035 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n", 4036 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 4037 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 4038 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n", 4039 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 4040 ret = -EINVAL; 4041 } 4042 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 4043 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n", 4044 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 4045 ret = -EINVAL; 4046 } 4047 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 4048 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n", 4049 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 4050 ret = -EINVAL; 4051 } 4052 4053 /* 4054 * Check sectorsize and nodesize first, other check will need it. 4055 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 4056 */ 4057 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 4058 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4059 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize); 4060 ret = -EINVAL; 4061 } 4062 /* Only PAGE SIZE is supported yet */ 4063 if (sectorsize != PAGE_CACHE_SIZE) { 4064 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n", 4065 sectorsize, PAGE_CACHE_SIZE); 4066 ret = -EINVAL; 4067 } 4068 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 4069 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4070 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize); 4071 ret = -EINVAL; 4072 } 4073 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 4074 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n", 4075 le32_to_cpu(sb->__unused_leafsize), 4076 nodesize); 4077 ret = -EINVAL; 4078 } 4079 4080 /* Root alignment check */ 4081 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 4082 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n", 4083 btrfs_super_root(sb)); 4084 ret = -EINVAL; 4085 } 4086 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 4087 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n", 4088 btrfs_super_chunk_root(sb)); 4089 ret = -EINVAL; 4090 } 4091 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 4092 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n", 4093 btrfs_super_log_root(sb)); 4094 ret = -EINVAL; 4095 } 4096 4097 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) { 4098 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n", 4099 fs_info->fsid, sb->dev_item.fsid); 4100 ret = -EINVAL; 4101 } 4102 4103 /* 4104 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 4105 * done later 4106 */ 4107 if (btrfs_super_num_devices(sb) > (1UL << 31)) 4108 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n", 4109 btrfs_super_num_devices(sb)); 4110 if (btrfs_super_num_devices(sb) == 0) { 4111 printk(KERN_ERR "BTRFS: number of devices is 0\n"); 4112 ret = -EINVAL; 4113 } 4114 4115 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { 4116 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n", 4117 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 4118 ret = -EINVAL; 4119 } 4120 4121 /* 4122 * Obvious sys_chunk_array corruptions, it must hold at least one key 4123 * and one chunk 4124 */ 4125 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4126 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n", 4127 btrfs_super_sys_array_size(sb), 4128 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 4129 ret = -EINVAL; 4130 } 4131 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 4132 + sizeof(struct btrfs_chunk)) { 4133 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n", 4134 btrfs_super_sys_array_size(sb), 4135 sizeof(struct btrfs_disk_key) 4136 + sizeof(struct btrfs_chunk)); 4137 ret = -EINVAL; 4138 } 4139 4140 /* 4141 * The generation is a global counter, we'll trust it more than the others 4142 * but it's still possible that it's the one that's wrong. 4143 */ 4144 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 4145 printk(KERN_WARNING 4146 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n", 4147 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb)); 4148 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 4149 && btrfs_super_cache_generation(sb) != (u64)-1) 4150 printk(KERN_WARNING 4151 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n", 4152 btrfs_super_generation(sb), btrfs_super_cache_generation(sb)); 4153 4154 return ret; 4155 } 4156 4157 static void btrfs_error_commit_super(struct btrfs_root *root) 4158 { 4159 mutex_lock(&root->fs_info->cleaner_mutex); 4160 btrfs_run_delayed_iputs(root); 4161 mutex_unlock(&root->fs_info->cleaner_mutex); 4162 4163 down_write(&root->fs_info->cleanup_work_sem); 4164 up_write(&root->fs_info->cleanup_work_sem); 4165 4166 /* cleanup FS via transaction */ 4167 btrfs_cleanup_transaction(root); 4168 } 4169 4170 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4171 { 4172 struct btrfs_ordered_extent *ordered; 4173 4174 spin_lock(&root->ordered_extent_lock); 4175 /* 4176 * This will just short circuit the ordered completion stuff which will 4177 * make sure the ordered extent gets properly cleaned up. 4178 */ 4179 list_for_each_entry(ordered, &root->ordered_extents, 4180 root_extent_list) 4181 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4182 spin_unlock(&root->ordered_extent_lock); 4183 } 4184 4185 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4186 { 4187 struct btrfs_root *root; 4188 struct list_head splice; 4189 4190 INIT_LIST_HEAD(&splice); 4191 4192 spin_lock(&fs_info->ordered_root_lock); 4193 list_splice_init(&fs_info->ordered_roots, &splice); 4194 while (!list_empty(&splice)) { 4195 root = list_first_entry(&splice, struct btrfs_root, 4196 ordered_root); 4197 list_move_tail(&root->ordered_root, 4198 &fs_info->ordered_roots); 4199 4200 spin_unlock(&fs_info->ordered_root_lock); 4201 btrfs_destroy_ordered_extents(root); 4202 4203 cond_resched(); 4204 spin_lock(&fs_info->ordered_root_lock); 4205 } 4206 spin_unlock(&fs_info->ordered_root_lock); 4207 } 4208 4209 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4210 struct btrfs_root *root) 4211 { 4212 struct rb_node *node; 4213 struct btrfs_delayed_ref_root *delayed_refs; 4214 struct btrfs_delayed_ref_node *ref; 4215 int ret = 0; 4216 4217 delayed_refs = &trans->delayed_refs; 4218 4219 spin_lock(&delayed_refs->lock); 4220 if (atomic_read(&delayed_refs->num_entries) == 0) { 4221 spin_unlock(&delayed_refs->lock); 4222 btrfs_info(root->fs_info, "delayed_refs has NO entry"); 4223 return ret; 4224 } 4225 4226 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 4227 struct btrfs_delayed_ref_head *head; 4228 struct btrfs_delayed_ref_node *tmp; 4229 bool pin_bytes = false; 4230 4231 head = rb_entry(node, struct btrfs_delayed_ref_head, 4232 href_node); 4233 if (!mutex_trylock(&head->mutex)) { 4234 atomic_inc(&head->node.refs); 4235 spin_unlock(&delayed_refs->lock); 4236 4237 mutex_lock(&head->mutex); 4238 mutex_unlock(&head->mutex); 4239 btrfs_put_delayed_ref(&head->node); 4240 spin_lock(&delayed_refs->lock); 4241 continue; 4242 } 4243 spin_lock(&head->lock); 4244 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list, 4245 list) { 4246 ref->in_tree = 0; 4247 list_del(&ref->list); 4248 atomic_dec(&delayed_refs->num_entries); 4249 btrfs_put_delayed_ref(ref); 4250 } 4251 if (head->must_insert_reserved) 4252 pin_bytes = true; 4253 btrfs_free_delayed_extent_op(head->extent_op); 4254 delayed_refs->num_heads--; 4255 if (head->processing == 0) 4256 delayed_refs->num_heads_ready--; 4257 atomic_dec(&delayed_refs->num_entries); 4258 head->node.in_tree = 0; 4259 rb_erase(&head->href_node, &delayed_refs->href_root); 4260 spin_unlock(&head->lock); 4261 spin_unlock(&delayed_refs->lock); 4262 mutex_unlock(&head->mutex); 4263 4264 if (pin_bytes) 4265 btrfs_pin_extent(root, head->node.bytenr, 4266 head->node.num_bytes, 1); 4267 btrfs_put_delayed_ref(&head->node); 4268 cond_resched(); 4269 spin_lock(&delayed_refs->lock); 4270 } 4271 4272 spin_unlock(&delayed_refs->lock); 4273 4274 return ret; 4275 } 4276 4277 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4278 { 4279 struct btrfs_inode *btrfs_inode; 4280 struct list_head splice; 4281 4282 INIT_LIST_HEAD(&splice); 4283 4284 spin_lock(&root->delalloc_lock); 4285 list_splice_init(&root->delalloc_inodes, &splice); 4286 4287 while (!list_empty(&splice)) { 4288 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4289 delalloc_inodes); 4290 4291 list_del_init(&btrfs_inode->delalloc_inodes); 4292 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 4293 &btrfs_inode->runtime_flags); 4294 spin_unlock(&root->delalloc_lock); 4295 4296 btrfs_invalidate_inodes(btrfs_inode->root); 4297 4298 spin_lock(&root->delalloc_lock); 4299 } 4300 4301 spin_unlock(&root->delalloc_lock); 4302 } 4303 4304 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4305 { 4306 struct btrfs_root *root; 4307 struct list_head splice; 4308 4309 INIT_LIST_HEAD(&splice); 4310 4311 spin_lock(&fs_info->delalloc_root_lock); 4312 list_splice_init(&fs_info->delalloc_roots, &splice); 4313 while (!list_empty(&splice)) { 4314 root = list_first_entry(&splice, struct btrfs_root, 4315 delalloc_root); 4316 list_del_init(&root->delalloc_root); 4317 root = btrfs_grab_fs_root(root); 4318 BUG_ON(!root); 4319 spin_unlock(&fs_info->delalloc_root_lock); 4320 4321 btrfs_destroy_delalloc_inodes(root); 4322 btrfs_put_fs_root(root); 4323 4324 spin_lock(&fs_info->delalloc_root_lock); 4325 } 4326 spin_unlock(&fs_info->delalloc_root_lock); 4327 } 4328 4329 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 4330 struct extent_io_tree *dirty_pages, 4331 int mark) 4332 { 4333 int ret; 4334 struct extent_buffer *eb; 4335 u64 start = 0; 4336 u64 end; 4337 4338 while (1) { 4339 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4340 mark, NULL); 4341 if (ret) 4342 break; 4343 4344 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 4345 while (start <= end) { 4346 eb = btrfs_find_tree_block(root->fs_info, start); 4347 start += root->nodesize; 4348 if (!eb) 4349 continue; 4350 wait_on_extent_buffer_writeback(eb); 4351 4352 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4353 &eb->bflags)) 4354 clear_extent_buffer_dirty(eb); 4355 free_extent_buffer_stale(eb); 4356 } 4357 } 4358 4359 return ret; 4360 } 4361 4362 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 4363 struct extent_io_tree *pinned_extents) 4364 { 4365 struct extent_io_tree *unpin; 4366 u64 start; 4367 u64 end; 4368 int ret; 4369 bool loop = true; 4370 4371 unpin = pinned_extents; 4372 again: 4373 while (1) { 4374 ret = find_first_extent_bit(unpin, 0, &start, &end, 4375 EXTENT_DIRTY, NULL); 4376 if (ret) 4377 break; 4378 4379 clear_extent_dirty(unpin, start, end, GFP_NOFS); 4380 btrfs_error_unpin_extent_range(root, start, end); 4381 cond_resched(); 4382 } 4383 4384 if (loop) { 4385 if (unpin == &root->fs_info->freed_extents[0]) 4386 unpin = &root->fs_info->freed_extents[1]; 4387 else 4388 unpin = &root->fs_info->freed_extents[0]; 4389 loop = false; 4390 goto again; 4391 } 4392 4393 return 0; 4394 } 4395 4396 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4397 struct btrfs_root *root) 4398 { 4399 btrfs_destroy_delayed_refs(cur_trans, root); 4400 4401 cur_trans->state = TRANS_STATE_COMMIT_START; 4402 wake_up(&root->fs_info->transaction_blocked_wait); 4403 4404 cur_trans->state = TRANS_STATE_UNBLOCKED; 4405 wake_up(&root->fs_info->transaction_wait); 4406 4407 btrfs_destroy_delayed_inodes(root); 4408 btrfs_assert_delayed_root_empty(root); 4409 4410 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 4411 EXTENT_DIRTY); 4412 btrfs_destroy_pinned_extent(root, 4413 root->fs_info->pinned_extents); 4414 4415 cur_trans->state =TRANS_STATE_COMPLETED; 4416 wake_up(&cur_trans->commit_wait); 4417 4418 /* 4419 memset(cur_trans, 0, sizeof(*cur_trans)); 4420 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4421 */ 4422 } 4423 4424 static int btrfs_cleanup_transaction(struct btrfs_root *root) 4425 { 4426 struct btrfs_transaction *t; 4427 4428 mutex_lock(&root->fs_info->transaction_kthread_mutex); 4429 4430 spin_lock(&root->fs_info->trans_lock); 4431 while (!list_empty(&root->fs_info->trans_list)) { 4432 t = list_first_entry(&root->fs_info->trans_list, 4433 struct btrfs_transaction, list); 4434 if (t->state >= TRANS_STATE_COMMIT_START) { 4435 atomic_inc(&t->use_count); 4436 spin_unlock(&root->fs_info->trans_lock); 4437 btrfs_wait_for_commit(root, t->transid); 4438 btrfs_put_transaction(t); 4439 spin_lock(&root->fs_info->trans_lock); 4440 continue; 4441 } 4442 if (t == root->fs_info->running_transaction) { 4443 t->state = TRANS_STATE_COMMIT_DOING; 4444 spin_unlock(&root->fs_info->trans_lock); 4445 /* 4446 * We wait for 0 num_writers since we don't hold a trans 4447 * handle open currently for this transaction. 4448 */ 4449 wait_event(t->writer_wait, 4450 atomic_read(&t->num_writers) == 0); 4451 } else { 4452 spin_unlock(&root->fs_info->trans_lock); 4453 } 4454 btrfs_cleanup_one_transaction(t, root); 4455 4456 spin_lock(&root->fs_info->trans_lock); 4457 if (t == root->fs_info->running_transaction) 4458 root->fs_info->running_transaction = NULL; 4459 list_del_init(&t->list); 4460 spin_unlock(&root->fs_info->trans_lock); 4461 4462 btrfs_put_transaction(t); 4463 trace_btrfs_transaction_commit(root); 4464 spin_lock(&root->fs_info->trans_lock); 4465 } 4466 spin_unlock(&root->fs_info->trans_lock); 4467 btrfs_destroy_all_ordered_extents(root->fs_info); 4468 btrfs_destroy_delayed_inodes(root); 4469 btrfs_assert_delayed_root_empty(root); 4470 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents); 4471 btrfs_destroy_all_delalloc_inodes(root->fs_info); 4472 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 4473 4474 return 0; 4475 } 4476 4477 static const struct extent_io_ops btree_extent_io_ops = { 4478 .readpage_end_io_hook = btree_readpage_end_io_hook, 4479 .readpage_io_failed_hook = btree_io_failed_hook, 4480 .submit_bio_hook = btree_submit_bio_hook, 4481 /* note we're sharing with inode.c for the merge bio hook */ 4482 .merge_bio_hook = btrfs_merge_bio_hook, 4483 }; 4484