xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 8bbecfb4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 
46 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
47 				 BTRFS_HEADER_FLAG_RELOC |\
48 				 BTRFS_SUPER_FLAG_ERROR |\
49 				 BTRFS_SUPER_FLAG_SEEDING |\
50 				 BTRFS_SUPER_FLAG_METADUMP |\
51 				 BTRFS_SUPER_FLAG_METADUMP_V2)
52 
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 				      struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59 					struct extent_io_tree *dirty_pages,
60 					int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62 				       struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65 
66 /*
67  * btrfs_end_io_wq structs are used to do processing in task context when an IO
68  * is complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct btrfs_end_io_wq {
72 	struct bio *bio;
73 	bio_end_io_t *end_io;
74 	void *private;
75 	struct btrfs_fs_info *info;
76 	blk_status_t status;
77 	enum btrfs_wq_endio_type metadata;
78 	struct btrfs_work work;
79 };
80 
81 static struct kmem_cache *btrfs_end_io_wq_cache;
82 
83 int __init btrfs_end_io_wq_init(void)
84 {
85 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 					sizeof(struct btrfs_end_io_wq),
87 					0,
88 					SLAB_MEM_SPREAD,
89 					NULL);
90 	if (!btrfs_end_io_wq_cache)
91 		return -ENOMEM;
92 	return 0;
93 }
94 
95 void __cold btrfs_end_io_wq_exit(void)
96 {
97 	kmem_cache_destroy(btrfs_end_io_wq_cache);
98 }
99 
100 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101 {
102 	if (fs_info->csum_shash)
103 		crypto_free_shash(fs_info->csum_shash);
104 }
105 
106 /*
107  * async submit bios are used to offload expensive checksumming
108  * onto the worker threads.  They checksum file and metadata bios
109  * just before they are sent down the IO stack.
110  */
111 struct async_submit_bio {
112 	struct inode *inode;
113 	struct bio *bio;
114 	extent_submit_bio_start_t *submit_bio_start;
115 	int mirror_num;
116 
117 	/* Optional parameter for submit_bio_start used by direct io */
118 	u64 dio_file_offset;
119 	struct btrfs_work work;
120 	blk_status_t status;
121 };
122 
123 /*
124  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
125  * eb, the lockdep key is determined by the btrfs_root it belongs to and
126  * the level the eb occupies in the tree.
127  *
128  * Different roots are used for different purposes and may nest inside each
129  * other and they require separate keysets.  As lockdep keys should be
130  * static, assign keysets according to the purpose of the root as indicated
131  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
132  * roots have separate keysets.
133  *
134  * Lock-nesting across peer nodes is always done with the immediate parent
135  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
136  * subclass to avoid triggering lockdep warning in such cases.
137  *
138  * The key is set by the readpage_end_io_hook after the buffer has passed
139  * csum validation but before the pages are unlocked.  It is also set by
140  * btrfs_init_new_buffer on freshly allocated blocks.
141  *
142  * We also add a check to make sure the highest level of the tree is the
143  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
144  * needs update as well.
145  */
146 #ifdef CONFIG_DEBUG_LOCK_ALLOC
147 # if BTRFS_MAX_LEVEL != 8
148 #  error
149 # endif
150 
151 #define DEFINE_LEVEL(stem, level)					\
152 	.names[level] = "btrfs-" stem "-0" #level,
153 
154 #define DEFINE_NAME(stem)						\
155 	DEFINE_LEVEL(stem, 0)						\
156 	DEFINE_LEVEL(stem, 1)						\
157 	DEFINE_LEVEL(stem, 2)						\
158 	DEFINE_LEVEL(stem, 3)						\
159 	DEFINE_LEVEL(stem, 4)						\
160 	DEFINE_LEVEL(stem, 5)						\
161 	DEFINE_LEVEL(stem, 6)						\
162 	DEFINE_LEVEL(stem, 7)
163 
164 static struct btrfs_lockdep_keyset {
165 	u64			id;		/* root objectid */
166 	/* Longest entry: btrfs-free-space-00 */
167 	char			names[BTRFS_MAX_LEVEL][20];
168 	struct lock_class_key	keys[BTRFS_MAX_LEVEL];
169 } btrfs_lockdep_keysets[] = {
170 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	DEFINE_NAME("root")	},
171 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	DEFINE_NAME("extent")	},
172 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	DEFINE_NAME("chunk")	},
173 	{ .id = BTRFS_DEV_TREE_OBJECTID,	DEFINE_NAME("dev")	},
174 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	DEFINE_NAME("csum")	},
175 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	DEFINE_NAME("quota")	},
176 	{ .id = BTRFS_TREE_LOG_OBJECTID,	DEFINE_NAME("log")	},
177 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	DEFINE_NAME("treloc")	},
178 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	DEFINE_NAME("dreloc")	},
179 	{ .id = BTRFS_UUID_TREE_OBJECTID,	DEFINE_NAME("uuid")	},
180 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	DEFINE_NAME("free-space") },
181 	{ .id = 0,				DEFINE_NAME("tree")	},
182 };
183 
184 #undef DEFINE_LEVEL
185 #undef DEFINE_NAME
186 
187 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
188 				    int level)
189 {
190 	struct btrfs_lockdep_keyset *ks;
191 
192 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
193 
194 	/* find the matching keyset, id 0 is the default entry */
195 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
196 		if (ks->id == objectid)
197 			break;
198 
199 	lockdep_set_class_and_name(&eb->lock,
200 				   &ks->keys[level], ks->names[level]);
201 }
202 
203 #endif
204 
205 /*
206  * Compute the csum of a btree block and store the result to provided buffer.
207  */
208 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
209 {
210 	struct btrfs_fs_info *fs_info = buf->fs_info;
211 	const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
212 	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
213 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
214 	char *kaddr;
215 	int i;
216 
217 	shash->tfm = fs_info->csum_shash;
218 	crypto_shash_init(shash);
219 	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
220 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
221 			    first_page_part - BTRFS_CSUM_SIZE);
222 
223 	for (i = 1; i < num_pages; i++) {
224 		kaddr = page_address(buf->pages[i]);
225 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
226 	}
227 	memset(result, 0, BTRFS_CSUM_SIZE);
228 	crypto_shash_final(shash, result);
229 }
230 
231 /*
232  * we can't consider a given block up to date unless the transid of the
233  * block matches the transid in the parent node's pointer.  This is how we
234  * detect blocks that either didn't get written at all or got written
235  * in the wrong place.
236  */
237 static int verify_parent_transid(struct extent_io_tree *io_tree,
238 				 struct extent_buffer *eb, u64 parent_transid,
239 				 int atomic)
240 {
241 	struct extent_state *cached_state = NULL;
242 	int ret;
243 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
244 
245 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246 		return 0;
247 
248 	if (atomic)
249 		return -EAGAIN;
250 
251 	if (need_lock)
252 		btrfs_tree_read_lock(eb);
253 
254 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
255 			 &cached_state);
256 	if (extent_buffer_uptodate(eb) &&
257 	    btrfs_header_generation(eb) == parent_transid) {
258 		ret = 0;
259 		goto out;
260 	}
261 	btrfs_err_rl(eb->fs_info,
262 		"parent transid verify failed on %llu wanted %llu found %llu",
263 			eb->start,
264 			parent_transid, btrfs_header_generation(eb));
265 	ret = 1;
266 
267 	/*
268 	 * Things reading via commit roots that don't have normal protection,
269 	 * like send, can have a really old block in cache that may point at a
270 	 * block that has been freed and re-allocated.  So don't clear uptodate
271 	 * if we find an eb that is under IO (dirty/writeback) because we could
272 	 * end up reading in the stale data and then writing it back out and
273 	 * making everybody very sad.
274 	 */
275 	if (!extent_buffer_under_io(eb))
276 		clear_extent_buffer_uptodate(eb);
277 out:
278 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
279 			     &cached_state);
280 	if (need_lock)
281 		btrfs_tree_read_unlock(eb);
282 	return ret;
283 }
284 
285 static bool btrfs_supported_super_csum(u16 csum_type)
286 {
287 	switch (csum_type) {
288 	case BTRFS_CSUM_TYPE_CRC32:
289 	case BTRFS_CSUM_TYPE_XXHASH:
290 	case BTRFS_CSUM_TYPE_SHA256:
291 	case BTRFS_CSUM_TYPE_BLAKE2:
292 		return true;
293 	default:
294 		return false;
295 	}
296 }
297 
298 /*
299  * Return 0 if the superblock checksum type matches the checksum value of that
300  * algorithm. Pass the raw disk superblock data.
301  */
302 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
303 				  char *raw_disk_sb)
304 {
305 	struct btrfs_super_block *disk_sb =
306 		(struct btrfs_super_block *)raw_disk_sb;
307 	char result[BTRFS_CSUM_SIZE];
308 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
309 
310 	shash->tfm = fs_info->csum_shash;
311 
312 	/*
313 	 * The super_block structure does not span the whole
314 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
315 	 * filled with zeros and is included in the checksum.
316 	 */
317 	crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
318 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
319 
320 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
321 		return 1;
322 
323 	return 0;
324 }
325 
326 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
327 			   struct btrfs_key *first_key, u64 parent_transid)
328 {
329 	struct btrfs_fs_info *fs_info = eb->fs_info;
330 	int found_level;
331 	struct btrfs_key found_key;
332 	int ret;
333 
334 	found_level = btrfs_header_level(eb);
335 	if (found_level != level) {
336 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
337 		     KERN_ERR "BTRFS: tree level check failed\n");
338 		btrfs_err(fs_info,
339 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
340 			  eb->start, level, found_level);
341 		return -EIO;
342 	}
343 
344 	if (!first_key)
345 		return 0;
346 
347 	/*
348 	 * For live tree block (new tree blocks in current transaction),
349 	 * we need proper lock context to avoid race, which is impossible here.
350 	 * So we only checks tree blocks which is read from disk, whose
351 	 * generation <= fs_info->last_trans_committed.
352 	 */
353 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
354 		return 0;
355 
356 	/* We have @first_key, so this @eb must have at least one item */
357 	if (btrfs_header_nritems(eb) == 0) {
358 		btrfs_err(fs_info,
359 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
360 			  eb->start);
361 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
362 		return -EUCLEAN;
363 	}
364 
365 	if (found_level)
366 		btrfs_node_key_to_cpu(eb, &found_key, 0);
367 	else
368 		btrfs_item_key_to_cpu(eb, &found_key, 0);
369 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
370 
371 	if (ret) {
372 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
373 		     KERN_ERR "BTRFS: tree first key check failed\n");
374 		btrfs_err(fs_info,
375 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
376 			  eb->start, parent_transid, first_key->objectid,
377 			  first_key->type, first_key->offset,
378 			  found_key.objectid, found_key.type,
379 			  found_key.offset);
380 	}
381 	return ret;
382 }
383 
384 /*
385  * helper to read a given tree block, doing retries as required when
386  * the checksums don't match and we have alternate mirrors to try.
387  *
388  * @parent_transid:	expected transid, skip check if 0
389  * @level:		expected level, mandatory check
390  * @first_key:		expected key of first slot, skip check if NULL
391  */
392 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
393 					  u64 parent_transid, int level,
394 					  struct btrfs_key *first_key)
395 {
396 	struct btrfs_fs_info *fs_info = eb->fs_info;
397 	struct extent_io_tree *io_tree;
398 	int failed = 0;
399 	int ret;
400 	int num_copies = 0;
401 	int mirror_num = 0;
402 	int failed_mirror = 0;
403 
404 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
405 	while (1) {
406 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
407 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
408 		if (!ret) {
409 			if (verify_parent_transid(io_tree, eb,
410 						   parent_transid, 0))
411 				ret = -EIO;
412 			else if (btrfs_verify_level_key(eb, level,
413 						first_key, parent_transid))
414 				ret = -EUCLEAN;
415 			else
416 				break;
417 		}
418 
419 		num_copies = btrfs_num_copies(fs_info,
420 					      eb->start, eb->len);
421 		if (num_copies == 1)
422 			break;
423 
424 		if (!failed_mirror) {
425 			failed = 1;
426 			failed_mirror = eb->read_mirror;
427 		}
428 
429 		mirror_num++;
430 		if (mirror_num == failed_mirror)
431 			mirror_num++;
432 
433 		if (mirror_num > num_copies)
434 			break;
435 	}
436 
437 	if (failed && !ret && failed_mirror)
438 		btrfs_repair_eb_io_failure(eb, failed_mirror);
439 
440 	return ret;
441 }
442 
443 /*
444  * Checksum a dirty tree block before IO.  This has extra checks to make sure
445  * we only fill in the checksum field in the first page of a multi-page block.
446  * For subpage extent buffers we need bvec to also read the offset in the page.
447  */
448 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
449 {
450 	struct page *page = bvec->bv_page;
451 	u64 start = page_offset(page);
452 	u64 found_start;
453 	u8 result[BTRFS_CSUM_SIZE];
454 	struct extent_buffer *eb;
455 	int ret;
456 
457 	eb = (struct extent_buffer *)page->private;
458 	if (page != eb->pages[0])
459 		return 0;
460 
461 	found_start = btrfs_header_bytenr(eb);
462 
463 	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
464 		WARN_ON(found_start != 0);
465 		return 0;
466 	}
467 
468 	/*
469 	 * Please do not consolidate these warnings into a single if.
470 	 * It is useful to know what went wrong.
471 	 */
472 	if (WARN_ON(found_start != start))
473 		return -EUCLEAN;
474 	if (WARN_ON(!PageUptodate(page)))
475 		return -EUCLEAN;
476 
477 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
478 				    offsetof(struct btrfs_header, fsid),
479 				    BTRFS_FSID_SIZE) == 0);
480 
481 	csum_tree_block(eb, result);
482 
483 	if (btrfs_header_level(eb))
484 		ret = btrfs_check_node(eb);
485 	else
486 		ret = btrfs_check_leaf_full(eb);
487 
488 	if (ret < 0) {
489 		btrfs_print_tree(eb, 0);
490 		btrfs_err(fs_info,
491 		"block=%llu write time tree block corruption detected",
492 			  eb->start);
493 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
494 		return ret;
495 	}
496 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
497 
498 	return 0;
499 }
500 
501 static int check_tree_block_fsid(struct extent_buffer *eb)
502 {
503 	struct btrfs_fs_info *fs_info = eb->fs_info;
504 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
505 	u8 fsid[BTRFS_FSID_SIZE];
506 	u8 *metadata_uuid;
507 
508 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
509 			   BTRFS_FSID_SIZE);
510 	/*
511 	 * Checking the incompat flag is only valid for the current fs. For
512 	 * seed devices it's forbidden to have their uuid changed so reading
513 	 * ->fsid in this case is fine
514 	 */
515 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
516 		metadata_uuid = fs_devices->metadata_uuid;
517 	else
518 		metadata_uuid = fs_devices->fsid;
519 
520 	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
521 		return 0;
522 
523 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
524 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
525 			return 0;
526 
527 	return 1;
528 }
529 
530 /* Do basic extent buffer checks at read time */
531 static int validate_extent_buffer(struct extent_buffer *eb)
532 {
533 	struct btrfs_fs_info *fs_info = eb->fs_info;
534 	u64 found_start;
535 	const u32 csum_size = fs_info->csum_size;
536 	u8 found_level;
537 	u8 result[BTRFS_CSUM_SIZE];
538 	int ret = 0;
539 
540 	found_start = btrfs_header_bytenr(eb);
541 	if (found_start != eb->start) {
542 		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
543 			     eb->start, found_start);
544 		ret = -EIO;
545 		goto out;
546 	}
547 	if (check_tree_block_fsid(eb)) {
548 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
549 			     eb->start);
550 		ret = -EIO;
551 		goto out;
552 	}
553 	found_level = btrfs_header_level(eb);
554 	if (found_level >= BTRFS_MAX_LEVEL) {
555 		btrfs_err(fs_info, "bad tree block level %d on %llu",
556 			  (int)btrfs_header_level(eb), eb->start);
557 		ret = -EIO;
558 		goto out;
559 	}
560 
561 	csum_tree_block(eb, result);
562 
563 	if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
564 		u8 val[BTRFS_CSUM_SIZE] = { 0 };
565 
566 		read_extent_buffer(eb, &val, 0, csum_size);
567 		btrfs_warn_rl(fs_info,
568 	"%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
569 			      fs_info->sb->s_id, eb->start,
570 			      CSUM_FMT_VALUE(csum_size, val),
571 			      CSUM_FMT_VALUE(csum_size, result),
572 			      btrfs_header_level(eb));
573 		ret = -EUCLEAN;
574 		goto out;
575 	}
576 
577 	/*
578 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
579 	 * that we don't try and read the other copies of this block, just
580 	 * return -EIO.
581 	 */
582 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
583 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
584 		ret = -EIO;
585 	}
586 
587 	if (found_level > 0 && btrfs_check_node(eb))
588 		ret = -EIO;
589 
590 	if (!ret)
591 		set_extent_buffer_uptodate(eb);
592 	else
593 		btrfs_err(fs_info,
594 			  "block=%llu read time tree block corruption detected",
595 			  eb->start);
596 out:
597 	return ret;
598 }
599 
600 static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
601 				   int mirror)
602 {
603 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
604 	struct extent_buffer *eb;
605 	bool reads_done;
606 	int ret = 0;
607 
608 	/*
609 	 * We don't allow bio merge for subpage metadata read, so we should
610 	 * only get one eb for each endio hook.
611 	 */
612 	ASSERT(end == start + fs_info->nodesize - 1);
613 	ASSERT(PagePrivate(page));
614 
615 	eb = find_extent_buffer(fs_info, start);
616 	/*
617 	 * When we are reading one tree block, eb must have been inserted into
618 	 * the radix tree. If not, something is wrong.
619 	 */
620 	ASSERT(eb);
621 
622 	reads_done = atomic_dec_and_test(&eb->io_pages);
623 	/* Subpage read must finish in page read */
624 	ASSERT(reads_done);
625 
626 	eb->read_mirror = mirror;
627 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
628 		ret = -EIO;
629 		goto err;
630 	}
631 	ret = validate_extent_buffer(eb);
632 	if (ret < 0)
633 		goto err;
634 
635 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
636 		btree_readahead_hook(eb, ret);
637 
638 	set_extent_buffer_uptodate(eb);
639 
640 	free_extent_buffer(eb);
641 	return ret;
642 err:
643 	/*
644 	 * end_bio_extent_readpage decrements io_pages in case of error,
645 	 * make sure it has something to decrement.
646 	 */
647 	atomic_inc(&eb->io_pages);
648 	clear_extent_buffer_uptodate(eb);
649 	free_extent_buffer(eb);
650 	return ret;
651 }
652 
653 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio,
654 				   struct page *page, u64 start, u64 end,
655 				   int mirror)
656 {
657 	struct extent_buffer *eb;
658 	int ret = 0;
659 	int reads_done;
660 
661 	ASSERT(page->private);
662 
663 	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
664 		return validate_subpage_buffer(page, start, end, mirror);
665 
666 	eb = (struct extent_buffer *)page->private;
667 
668 	/*
669 	 * The pending IO might have been the only thing that kept this buffer
670 	 * in memory.  Make sure we have a ref for all this other checks
671 	 */
672 	atomic_inc(&eb->refs);
673 
674 	reads_done = atomic_dec_and_test(&eb->io_pages);
675 	if (!reads_done)
676 		goto err;
677 
678 	eb->read_mirror = mirror;
679 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
680 		ret = -EIO;
681 		goto err;
682 	}
683 	ret = validate_extent_buffer(eb);
684 err:
685 	if (reads_done &&
686 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
687 		btree_readahead_hook(eb, ret);
688 
689 	if (ret) {
690 		/*
691 		 * our io error hook is going to dec the io pages
692 		 * again, we have to make sure it has something
693 		 * to decrement
694 		 */
695 		atomic_inc(&eb->io_pages);
696 		clear_extent_buffer_uptodate(eb);
697 	}
698 	free_extent_buffer(eb);
699 
700 	return ret;
701 }
702 
703 static void end_workqueue_bio(struct bio *bio)
704 {
705 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
706 	struct btrfs_fs_info *fs_info;
707 	struct btrfs_workqueue *wq;
708 
709 	fs_info = end_io_wq->info;
710 	end_io_wq->status = bio->bi_status;
711 
712 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
713 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
714 			wq = fs_info->endio_meta_write_workers;
715 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
716 			wq = fs_info->endio_freespace_worker;
717 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
718 			wq = fs_info->endio_raid56_workers;
719 		else
720 			wq = fs_info->endio_write_workers;
721 	} else {
722 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
723 			wq = fs_info->endio_raid56_workers;
724 		else if (end_io_wq->metadata)
725 			wq = fs_info->endio_meta_workers;
726 		else
727 			wq = fs_info->endio_workers;
728 	}
729 
730 	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
731 	btrfs_queue_work(wq, &end_io_wq->work);
732 }
733 
734 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
735 			enum btrfs_wq_endio_type metadata)
736 {
737 	struct btrfs_end_io_wq *end_io_wq;
738 
739 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
740 	if (!end_io_wq)
741 		return BLK_STS_RESOURCE;
742 
743 	end_io_wq->private = bio->bi_private;
744 	end_io_wq->end_io = bio->bi_end_io;
745 	end_io_wq->info = info;
746 	end_io_wq->status = 0;
747 	end_io_wq->bio = bio;
748 	end_io_wq->metadata = metadata;
749 
750 	bio->bi_private = end_io_wq;
751 	bio->bi_end_io = end_workqueue_bio;
752 	return 0;
753 }
754 
755 static void run_one_async_start(struct btrfs_work *work)
756 {
757 	struct async_submit_bio *async;
758 	blk_status_t ret;
759 
760 	async = container_of(work, struct  async_submit_bio, work);
761 	ret = async->submit_bio_start(async->inode, async->bio,
762 				      async->dio_file_offset);
763 	if (ret)
764 		async->status = ret;
765 }
766 
767 /*
768  * In order to insert checksums into the metadata in large chunks, we wait
769  * until bio submission time.   All the pages in the bio are checksummed and
770  * sums are attached onto the ordered extent record.
771  *
772  * At IO completion time the csums attached on the ordered extent record are
773  * inserted into the tree.
774  */
775 static void run_one_async_done(struct btrfs_work *work)
776 {
777 	struct async_submit_bio *async;
778 	struct inode *inode;
779 	blk_status_t ret;
780 
781 	async = container_of(work, struct  async_submit_bio, work);
782 	inode = async->inode;
783 
784 	/* If an error occurred we just want to clean up the bio and move on */
785 	if (async->status) {
786 		async->bio->bi_status = async->status;
787 		bio_endio(async->bio);
788 		return;
789 	}
790 
791 	/*
792 	 * All of the bios that pass through here are from async helpers.
793 	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
794 	 * This changes nothing when cgroups aren't in use.
795 	 */
796 	async->bio->bi_opf |= REQ_CGROUP_PUNT;
797 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
798 	if (ret) {
799 		async->bio->bi_status = ret;
800 		bio_endio(async->bio);
801 	}
802 }
803 
804 static void run_one_async_free(struct btrfs_work *work)
805 {
806 	struct async_submit_bio *async;
807 
808 	async = container_of(work, struct  async_submit_bio, work);
809 	kfree(async);
810 }
811 
812 blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
813 				 int mirror_num, unsigned long bio_flags,
814 				 u64 dio_file_offset,
815 				 extent_submit_bio_start_t *submit_bio_start)
816 {
817 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
818 	struct async_submit_bio *async;
819 
820 	async = kmalloc(sizeof(*async), GFP_NOFS);
821 	if (!async)
822 		return BLK_STS_RESOURCE;
823 
824 	async->inode = inode;
825 	async->bio = bio;
826 	async->mirror_num = mirror_num;
827 	async->submit_bio_start = submit_bio_start;
828 
829 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
830 			run_one_async_free);
831 
832 	async->dio_file_offset = dio_file_offset;
833 
834 	async->status = 0;
835 
836 	if (op_is_sync(bio->bi_opf))
837 		btrfs_set_work_high_priority(&async->work);
838 
839 	btrfs_queue_work(fs_info->workers, &async->work);
840 	return 0;
841 }
842 
843 static blk_status_t btree_csum_one_bio(struct bio *bio)
844 {
845 	struct bio_vec *bvec;
846 	struct btrfs_root *root;
847 	int ret = 0;
848 	struct bvec_iter_all iter_all;
849 
850 	ASSERT(!bio_flagged(bio, BIO_CLONED));
851 	bio_for_each_segment_all(bvec, bio, iter_all) {
852 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
853 		ret = csum_dirty_buffer(root->fs_info, bvec);
854 		if (ret)
855 			break;
856 	}
857 
858 	return errno_to_blk_status(ret);
859 }
860 
861 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
862 					   u64 dio_file_offset)
863 {
864 	/*
865 	 * when we're called for a write, we're already in the async
866 	 * submission context.  Just jump into btrfs_map_bio
867 	 */
868 	return btree_csum_one_bio(bio);
869 }
870 
871 static int check_async_write(struct btrfs_fs_info *fs_info,
872 			     struct btrfs_inode *bi)
873 {
874 	if (btrfs_is_zoned(fs_info))
875 		return 0;
876 	if (atomic_read(&bi->sync_writers))
877 		return 0;
878 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
879 		return 0;
880 	return 1;
881 }
882 
883 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
884 				       int mirror_num, unsigned long bio_flags)
885 {
886 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
887 	int async = check_async_write(fs_info, BTRFS_I(inode));
888 	blk_status_t ret;
889 
890 	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
891 		/*
892 		 * called for a read, do the setup so that checksum validation
893 		 * can happen in the async kernel threads
894 		 */
895 		ret = btrfs_bio_wq_end_io(fs_info, bio,
896 					  BTRFS_WQ_ENDIO_METADATA);
897 		if (ret)
898 			goto out_w_error;
899 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
900 	} else if (!async) {
901 		ret = btree_csum_one_bio(bio);
902 		if (ret)
903 			goto out_w_error;
904 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
905 	} else {
906 		/*
907 		 * kthread helpers are used to submit writes so that
908 		 * checksumming can happen in parallel across all CPUs
909 		 */
910 		ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
911 					  0, btree_submit_bio_start);
912 	}
913 
914 	if (ret)
915 		goto out_w_error;
916 	return 0;
917 
918 out_w_error:
919 	bio->bi_status = ret;
920 	bio_endio(bio);
921 	return ret;
922 }
923 
924 #ifdef CONFIG_MIGRATION
925 static int btree_migratepage(struct address_space *mapping,
926 			struct page *newpage, struct page *page,
927 			enum migrate_mode mode)
928 {
929 	/*
930 	 * we can't safely write a btree page from here,
931 	 * we haven't done the locking hook
932 	 */
933 	if (PageDirty(page))
934 		return -EAGAIN;
935 	/*
936 	 * Buffers may be managed in a filesystem specific way.
937 	 * We must have no buffers or drop them.
938 	 */
939 	if (page_has_private(page) &&
940 	    !try_to_release_page(page, GFP_KERNEL))
941 		return -EAGAIN;
942 	return migrate_page(mapping, newpage, page, mode);
943 }
944 #endif
945 
946 
947 static int btree_writepages(struct address_space *mapping,
948 			    struct writeback_control *wbc)
949 {
950 	struct btrfs_fs_info *fs_info;
951 	int ret;
952 
953 	if (wbc->sync_mode == WB_SYNC_NONE) {
954 
955 		if (wbc->for_kupdate)
956 			return 0;
957 
958 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
959 		/* this is a bit racy, but that's ok */
960 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
961 					     BTRFS_DIRTY_METADATA_THRESH,
962 					     fs_info->dirty_metadata_batch);
963 		if (ret < 0)
964 			return 0;
965 	}
966 	return btree_write_cache_pages(mapping, wbc);
967 }
968 
969 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
970 {
971 	if (PageWriteback(page) || PageDirty(page))
972 		return 0;
973 
974 	return try_release_extent_buffer(page);
975 }
976 
977 static void btree_invalidatepage(struct page *page, unsigned int offset,
978 				 unsigned int length)
979 {
980 	struct extent_io_tree *tree;
981 	tree = &BTRFS_I(page->mapping->host)->io_tree;
982 	extent_invalidatepage(tree, page, offset);
983 	btree_releasepage(page, GFP_NOFS);
984 	if (PagePrivate(page)) {
985 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
986 			   "page private not zero on page %llu",
987 			   (unsigned long long)page_offset(page));
988 		detach_page_private(page);
989 	}
990 }
991 
992 static int btree_set_page_dirty(struct page *page)
993 {
994 #ifdef DEBUG
995 	struct extent_buffer *eb;
996 
997 	BUG_ON(!PagePrivate(page));
998 	eb = (struct extent_buffer *)page->private;
999 	BUG_ON(!eb);
1000 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1001 	BUG_ON(!atomic_read(&eb->refs));
1002 	btrfs_assert_tree_locked(eb);
1003 #endif
1004 	return __set_page_dirty_nobuffers(page);
1005 }
1006 
1007 static const struct address_space_operations btree_aops = {
1008 	.writepages	= btree_writepages,
1009 	.releasepage	= btree_releasepage,
1010 	.invalidatepage = btree_invalidatepage,
1011 #ifdef CONFIG_MIGRATION
1012 	.migratepage	= btree_migratepage,
1013 #endif
1014 	.set_page_dirty = btree_set_page_dirty,
1015 };
1016 
1017 struct extent_buffer *btrfs_find_create_tree_block(
1018 						struct btrfs_fs_info *fs_info,
1019 						u64 bytenr, u64 owner_root,
1020 						int level)
1021 {
1022 	if (btrfs_is_testing(fs_info))
1023 		return alloc_test_extent_buffer(fs_info, bytenr);
1024 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
1025 }
1026 
1027 /*
1028  * Read tree block at logical address @bytenr and do variant basic but critical
1029  * verification.
1030  *
1031  * @owner_root:		the objectid of the root owner for this block.
1032  * @parent_transid:	expected transid of this tree block, skip check if 0
1033  * @level:		expected level, mandatory check
1034  * @first_key:		expected key in slot 0, skip check if NULL
1035  */
1036 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1037 				      u64 owner_root, u64 parent_transid,
1038 				      int level, struct btrfs_key *first_key)
1039 {
1040 	struct extent_buffer *buf = NULL;
1041 	int ret;
1042 
1043 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
1044 	if (IS_ERR(buf))
1045 		return buf;
1046 
1047 	ret = btree_read_extent_buffer_pages(buf, parent_transid,
1048 					     level, first_key);
1049 	if (ret) {
1050 		free_extent_buffer_stale(buf);
1051 		return ERR_PTR(ret);
1052 	}
1053 	return buf;
1054 
1055 }
1056 
1057 void btrfs_clean_tree_block(struct extent_buffer *buf)
1058 {
1059 	struct btrfs_fs_info *fs_info = buf->fs_info;
1060 	if (btrfs_header_generation(buf) ==
1061 	    fs_info->running_transaction->transid) {
1062 		btrfs_assert_tree_locked(buf);
1063 
1064 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1065 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1066 						 -buf->len,
1067 						 fs_info->dirty_metadata_batch);
1068 			clear_extent_buffer_dirty(buf);
1069 		}
1070 	}
1071 }
1072 
1073 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1074 			 u64 objectid)
1075 {
1076 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1077 	root->fs_info = fs_info;
1078 	root->node = NULL;
1079 	root->commit_root = NULL;
1080 	root->state = 0;
1081 	root->orphan_cleanup_state = 0;
1082 
1083 	root->last_trans = 0;
1084 	root->free_objectid = 0;
1085 	root->nr_delalloc_inodes = 0;
1086 	root->nr_ordered_extents = 0;
1087 	root->inode_tree = RB_ROOT;
1088 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1089 	root->block_rsv = NULL;
1090 
1091 	INIT_LIST_HEAD(&root->dirty_list);
1092 	INIT_LIST_HEAD(&root->root_list);
1093 	INIT_LIST_HEAD(&root->delalloc_inodes);
1094 	INIT_LIST_HEAD(&root->delalloc_root);
1095 	INIT_LIST_HEAD(&root->ordered_extents);
1096 	INIT_LIST_HEAD(&root->ordered_root);
1097 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1098 	INIT_LIST_HEAD(&root->logged_list[0]);
1099 	INIT_LIST_HEAD(&root->logged_list[1]);
1100 	spin_lock_init(&root->inode_lock);
1101 	spin_lock_init(&root->delalloc_lock);
1102 	spin_lock_init(&root->ordered_extent_lock);
1103 	spin_lock_init(&root->accounting_lock);
1104 	spin_lock_init(&root->log_extents_lock[0]);
1105 	spin_lock_init(&root->log_extents_lock[1]);
1106 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1107 	mutex_init(&root->objectid_mutex);
1108 	mutex_init(&root->log_mutex);
1109 	mutex_init(&root->ordered_extent_mutex);
1110 	mutex_init(&root->delalloc_mutex);
1111 	init_waitqueue_head(&root->qgroup_flush_wait);
1112 	init_waitqueue_head(&root->log_writer_wait);
1113 	init_waitqueue_head(&root->log_commit_wait[0]);
1114 	init_waitqueue_head(&root->log_commit_wait[1]);
1115 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1116 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1117 	atomic_set(&root->log_commit[0], 0);
1118 	atomic_set(&root->log_commit[1], 0);
1119 	atomic_set(&root->log_writers, 0);
1120 	atomic_set(&root->log_batch, 0);
1121 	refcount_set(&root->refs, 1);
1122 	atomic_set(&root->snapshot_force_cow, 0);
1123 	atomic_set(&root->nr_swapfiles, 0);
1124 	root->log_transid = 0;
1125 	root->log_transid_committed = -1;
1126 	root->last_log_commit = 0;
1127 	if (!dummy) {
1128 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1129 				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1130 		extent_io_tree_init(fs_info, &root->log_csum_range,
1131 				    IO_TREE_LOG_CSUM_RANGE, NULL);
1132 	}
1133 
1134 	memset(&root->root_key, 0, sizeof(root->root_key));
1135 	memset(&root->root_item, 0, sizeof(root->root_item));
1136 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1137 	root->root_key.objectid = objectid;
1138 	root->anon_dev = 0;
1139 
1140 	spin_lock_init(&root->root_item_lock);
1141 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1142 #ifdef CONFIG_BTRFS_DEBUG
1143 	INIT_LIST_HEAD(&root->leak_list);
1144 	spin_lock(&fs_info->fs_roots_radix_lock);
1145 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1146 	spin_unlock(&fs_info->fs_roots_radix_lock);
1147 #endif
1148 }
1149 
1150 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1151 					   u64 objectid, gfp_t flags)
1152 {
1153 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1154 	if (root)
1155 		__setup_root(root, fs_info, objectid);
1156 	return root;
1157 }
1158 
1159 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1160 /* Should only be used by the testing infrastructure */
1161 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1162 {
1163 	struct btrfs_root *root;
1164 
1165 	if (!fs_info)
1166 		return ERR_PTR(-EINVAL);
1167 
1168 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1169 	if (!root)
1170 		return ERR_PTR(-ENOMEM);
1171 
1172 	/* We don't use the stripesize in selftest, set it as sectorsize */
1173 	root->alloc_bytenr = 0;
1174 
1175 	return root;
1176 }
1177 #endif
1178 
1179 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1180 				     u64 objectid)
1181 {
1182 	struct btrfs_fs_info *fs_info = trans->fs_info;
1183 	struct extent_buffer *leaf;
1184 	struct btrfs_root *tree_root = fs_info->tree_root;
1185 	struct btrfs_root *root;
1186 	struct btrfs_key key;
1187 	unsigned int nofs_flag;
1188 	int ret = 0;
1189 
1190 	/*
1191 	 * We're holding a transaction handle, so use a NOFS memory allocation
1192 	 * context to avoid deadlock if reclaim happens.
1193 	 */
1194 	nofs_flag = memalloc_nofs_save();
1195 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1196 	memalloc_nofs_restore(nofs_flag);
1197 	if (!root)
1198 		return ERR_PTR(-ENOMEM);
1199 
1200 	root->root_key.objectid = objectid;
1201 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1202 	root->root_key.offset = 0;
1203 
1204 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1205 				      BTRFS_NESTING_NORMAL);
1206 	if (IS_ERR(leaf)) {
1207 		ret = PTR_ERR(leaf);
1208 		leaf = NULL;
1209 		goto fail_unlock;
1210 	}
1211 
1212 	root->node = leaf;
1213 	btrfs_mark_buffer_dirty(leaf);
1214 
1215 	root->commit_root = btrfs_root_node(root);
1216 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1217 
1218 	btrfs_set_root_flags(&root->root_item, 0);
1219 	btrfs_set_root_limit(&root->root_item, 0);
1220 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1221 	btrfs_set_root_generation(&root->root_item, trans->transid);
1222 	btrfs_set_root_level(&root->root_item, 0);
1223 	btrfs_set_root_refs(&root->root_item, 1);
1224 	btrfs_set_root_used(&root->root_item, leaf->len);
1225 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1226 	btrfs_set_root_dirid(&root->root_item, 0);
1227 	if (is_fstree(objectid))
1228 		generate_random_guid(root->root_item.uuid);
1229 	else
1230 		export_guid(root->root_item.uuid, &guid_null);
1231 	btrfs_set_root_drop_level(&root->root_item, 0);
1232 
1233 	btrfs_tree_unlock(leaf);
1234 
1235 	key.objectid = objectid;
1236 	key.type = BTRFS_ROOT_ITEM_KEY;
1237 	key.offset = 0;
1238 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1239 	if (ret)
1240 		goto fail;
1241 
1242 	return root;
1243 
1244 fail_unlock:
1245 	if (leaf)
1246 		btrfs_tree_unlock(leaf);
1247 fail:
1248 	btrfs_put_root(root);
1249 
1250 	return ERR_PTR(ret);
1251 }
1252 
1253 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1254 					 struct btrfs_fs_info *fs_info)
1255 {
1256 	struct btrfs_root *root;
1257 
1258 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1259 	if (!root)
1260 		return ERR_PTR(-ENOMEM);
1261 
1262 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1263 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1264 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1265 
1266 	return root;
1267 }
1268 
1269 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1270 			      struct btrfs_root *root)
1271 {
1272 	struct extent_buffer *leaf;
1273 
1274 	/*
1275 	 * DON'T set SHAREABLE bit for log trees.
1276 	 *
1277 	 * Log trees are not exposed to user space thus can't be snapshotted,
1278 	 * and they go away before a real commit is actually done.
1279 	 *
1280 	 * They do store pointers to file data extents, and those reference
1281 	 * counts still get updated (along with back refs to the log tree).
1282 	 */
1283 
1284 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1285 			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1286 	if (IS_ERR(leaf))
1287 		return PTR_ERR(leaf);
1288 
1289 	root->node = leaf;
1290 
1291 	btrfs_mark_buffer_dirty(root->node);
1292 	btrfs_tree_unlock(root->node);
1293 
1294 	return 0;
1295 }
1296 
1297 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1298 			     struct btrfs_fs_info *fs_info)
1299 {
1300 	struct btrfs_root *log_root;
1301 
1302 	log_root = alloc_log_tree(trans, fs_info);
1303 	if (IS_ERR(log_root))
1304 		return PTR_ERR(log_root);
1305 
1306 	if (!btrfs_is_zoned(fs_info)) {
1307 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
1308 
1309 		if (ret) {
1310 			btrfs_put_root(log_root);
1311 			return ret;
1312 		}
1313 	}
1314 
1315 	WARN_ON(fs_info->log_root_tree);
1316 	fs_info->log_root_tree = log_root;
1317 	return 0;
1318 }
1319 
1320 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1321 		       struct btrfs_root *root)
1322 {
1323 	struct btrfs_fs_info *fs_info = root->fs_info;
1324 	struct btrfs_root *log_root;
1325 	struct btrfs_inode_item *inode_item;
1326 	int ret;
1327 
1328 	log_root = alloc_log_tree(trans, fs_info);
1329 	if (IS_ERR(log_root))
1330 		return PTR_ERR(log_root);
1331 
1332 	ret = btrfs_alloc_log_tree_node(trans, log_root);
1333 	if (ret) {
1334 		btrfs_put_root(log_root);
1335 		return ret;
1336 	}
1337 
1338 	log_root->last_trans = trans->transid;
1339 	log_root->root_key.offset = root->root_key.objectid;
1340 
1341 	inode_item = &log_root->root_item.inode;
1342 	btrfs_set_stack_inode_generation(inode_item, 1);
1343 	btrfs_set_stack_inode_size(inode_item, 3);
1344 	btrfs_set_stack_inode_nlink(inode_item, 1);
1345 	btrfs_set_stack_inode_nbytes(inode_item,
1346 				     fs_info->nodesize);
1347 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1348 
1349 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1350 
1351 	WARN_ON(root->log_root);
1352 	root->log_root = log_root;
1353 	root->log_transid = 0;
1354 	root->log_transid_committed = -1;
1355 	root->last_log_commit = 0;
1356 	return 0;
1357 }
1358 
1359 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1360 					      struct btrfs_path *path,
1361 					      struct btrfs_key *key)
1362 {
1363 	struct btrfs_root *root;
1364 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1365 	u64 generation;
1366 	int ret;
1367 	int level;
1368 
1369 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1370 	if (!root)
1371 		return ERR_PTR(-ENOMEM);
1372 
1373 	ret = btrfs_find_root(tree_root, key, path,
1374 			      &root->root_item, &root->root_key);
1375 	if (ret) {
1376 		if (ret > 0)
1377 			ret = -ENOENT;
1378 		goto fail;
1379 	}
1380 
1381 	generation = btrfs_root_generation(&root->root_item);
1382 	level = btrfs_root_level(&root->root_item);
1383 	root->node = read_tree_block(fs_info,
1384 				     btrfs_root_bytenr(&root->root_item),
1385 				     key->objectid, generation, level, NULL);
1386 	if (IS_ERR(root->node)) {
1387 		ret = PTR_ERR(root->node);
1388 		root->node = NULL;
1389 		goto fail;
1390 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1391 		ret = -EIO;
1392 		goto fail;
1393 	}
1394 	root->commit_root = btrfs_root_node(root);
1395 	return root;
1396 fail:
1397 	btrfs_put_root(root);
1398 	return ERR_PTR(ret);
1399 }
1400 
1401 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1402 					struct btrfs_key *key)
1403 {
1404 	struct btrfs_root *root;
1405 	struct btrfs_path *path;
1406 
1407 	path = btrfs_alloc_path();
1408 	if (!path)
1409 		return ERR_PTR(-ENOMEM);
1410 	root = read_tree_root_path(tree_root, path, key);
1411 	btrfs_free_path(path);
1412 
1413 	return root;
1414 }
1415 
1416 /*
1417  * Initialize subvolume root in-memory structure
1418  *
1419  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1420  */
1421 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1422 {
1423 	int ret;
1424 	unsigned int nofs_flag;
1425 
1426 	/*
1427 	 * We might be called under a transaction (e.g. indirect backref
1428 	 * resolution) which could deadlock if it triggers memory reclaim
1429 	 */
1430 	nofs_flag = memalloc_nofs_save();
1431 	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1432 	memalloc_nofs_restore(nofs_flag);
1433 	if (ret)
1434 		goto fail;
1435 
1436 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1437 	    root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1438 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1439 		btrfs_check_and_init_root_item(&root->root_item);
1440 	}
1441 
1442 	/*
1443 	 * Don't assign anonymous block device to roots that are not exposed to
1444 	 * userspace, the id pool is limited to 1M
1445 	 */
1446 	if (is_fstree(root->root_key.objectid) &&
1447 	    btrfs_root_refs(&root->root_item) > 0) {
1448 		if (!anon_dev) {
1449 			ret = get_anon_bdev(&root->anon_dev);
1450 			if (ret)
1451 				goto fail;
1452 		} else {
1453 			root->anon_dev = anon_dev;
1454 		}
1455 	}
1456 
1457 	mutex_lock(&root->objectid_mutex);
1458 	ret = btrfs_init_root_free_objectid(root);
1459 	if (ret) {
1460 		mutex_unlock(&root->objectid_mutex);
1461 		goto fail;
1462 	}
1463 
1464 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1465 
1466 	mutex_unlock(&root->objectid_mutex);
1467 
1468 	return 0;
1469 fail:
1470 	/* The caller is responsible to call btrfs_free_fs_root */
1471 	return ret;
1472 }
1473 
1474 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1475 					       u64 root_id)
1476 {
1477 	struct btrfs_root *root;
1478 
1479 	spin_lock(&fs_info->fs_roots_radix_lock);
1480 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1481 				 (unsigned long)root_id);
1482 	if (root)
1483 		root = btrfs_grab_root(root);
1484 	spin_unlock(&fs_info->fs_roots_radix_lock);
1485 	return root;
1486 }
1487 
1488 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1489 						u64 objectid)
1490 {
1491 	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1492 		return btrfs_grab_root(fs_info->tree_root);
1493 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1494 		return btrfs_grab_root(fs_info->extent_root);
1495 	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1496 		return btrfs_grab_root(fs_info->chunk_root);
1497 	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1498 		return btrfs_grab_root(fs_info->dev_root);
1499 	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1500 		return btrfs_grab_root(fs_info->csum_root);
1501 	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1502 		return btrfs_grab_root(fs_info->quota_root) ?
1503 			fs_info->quota_root : ERR_PTR(-ENOENT);
1504 	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1505 		return btrfs_grab_root(fs_info->uuid_root) ?
1506 			fs_info->uuid_root : ERR_PTR(-ENOENT);
1507 	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1508 		return btrfs_grab_root(fs_info->free_space_root) ?
1509 			fs_info->free_space_root : ERR_PTR(-ENOENT);
1510 	return NULL;
1511 }
1512 
1513 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1514 			 struct btrfs_root *root)
1515 {
1516 	int ret;
1517 
1518 	ret = radix_tree_preload(GFP_NOFS);
1519 	if (ret)
1520 		return ret;
1521 
1522 	spin_lock(&fs_info->fs_roots_radix_lock);
1523 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1524 				(unsigned long)root->root_key.objectid,
1525 				root);
1526 	if (ret == 0) {
1527 		btrfs_grab_root(root);
1528 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1529 	}
1530 	spin_unlock(&fs_info->fs_roots_radix_lock);
1531 	radix_tree_preload_end();
1532 
1533 	return ret;
1534 }
1535 
1536 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1537 {
1538 #ifdef CONFIG_BTRFS_DEBUG
1539 	struct btrfs_root *root;
1540 
1541 	while (!list_empty(&fs_info->allocated_roots)) {
1542 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1543 
1544 		root = list_first_entry(&fs_info->allocated_roots,
1545 					struct btrfs_root, leak_list);
1546 		btrfs_err(fs_info, "leaked root %s refcount %d",
1547 			  btrfs_root_name(&root->root_key, buf),
1548 			  refcount_read(&root->refs));
1549 		while (refcount_read(&root->refs) > 1)
1550 			btrfs_put_root(root);
1551 		btrfs_put_root(root);
1552 	}
1553 #endif
1554 }
1555 
1556 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1557 {
1558 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1559 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1560 	percpu_counter_destroy(&fs_info->ordered_bytes);
1561 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1562 	btrfs_free_csum_hash(fs_info);
1563 	btrfs_free_stripe_hash_table(fs_info);
1564 	btrfs_free_ref_cache(fs_info);
1565 	kfree(fs_info->balance_ctl);
1566 	kfree(fs_info->delayed_root);
1567 	btrfs_put_root(fs_info->extent_root);
1568 	btrfs_put_root(fs_info->tree_root);
1569 	btrfs_put_root(fs_info->chunk_root);
1570 	btrfs_put_root(fs_info->dev_root);
1571 	btrfs_put_root(fs_info->csum_root);
1572 	btrfs_put_root(fs_info->quota_root);
1573 	btrfs_put_root(fs_info->uuid_root);
1574 	btrfs_put_root(fs_info->free_space_root);
1575 	btrfs_put_root(fs_info->fs_root);
1576 	btrfs_put_root(fs_info->data_reloc_root);
1577 	btrfs_check_leaked_roots(fs_info);
1578 	btrfs_extent_buffer_leak_debug_check(fs_info);
1579 	kfree(fs_info->super_copy);
1580 	kfree(fs_info->super_for_commit);
1581 	kvfree(fs_info);
1582 }
1583 
1584 
1585 /*
1586  * Get an in-memory reference of a root structure.
1587  *
1588  * For essential trees like root/extent tree, we grab it from fs_info directly.
1589  * For subvolume trees, we check the cached filesystem roots first. If not
1590  * found, then read it from disk and add it to cached fs roots.
1591  *
1592  * Caller should release the root by calling btrfs_put_root() after the usage.
1593  *
1594  * NOTE: Reloc and log trees can't be read by this function as they share the
1595  *	 same root objectid.
1596  *
1597  * @objectid:	root id
1598  * @anon_dev:	preallocated anonymous block device number for new roots,
1599  * 		pass 0 for new allocation.
1600  * @check_ref:	whether to check root item references, If true, return -ENOENT
1601  *		for orphan roots
1602  */
1603 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1604 					     u64 objectid, dev_t anon_dev,
1605 					     bool check_ref)
1606 {
1607 	struct btrfs_root *root;
1608 	struct btrfs_path *path;
1609 	struct btrfs_key key;
1610 	int ret;
1611 
1612 	root = btrfs_get_global_root(fs_info, objectid);
1613 	if (root)
1614 		return root;
1615 again:
1616 	root = btrfs_lookup_fs_root(fs_info, objectid);
1617 	if (root) {
1618 		/* Shouldn't get preallocated anon_dev for cached roots */
1619 		ASSERT(!anon_dev);
1620 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1621 			btrfs_put_root(root);
1622 			return ERR_PTR(-ENOENT);
1623 		}
1624 		return root;
1625 	}
1626 
1627 	key.objectid = objectid;
1628 	key.type = BTRFS_ROOT_ITEM_KEY;
1629 	key.offset = (u64)-1;
1630 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1631 	if (IS_ERR(root))
1632 		return root;
1633 
1634 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1635 		ret = -ENOENT;
1636 		goto fail;
1637 	}
1638 
1639 	ret = btrfs_init_fs_root(root, anon_dev);
1640 	if (ret)
1641 		goto fail;
1642 
1643 	path = btrfs_alloc_path();
1644 	if (!path) {
1645 		ret = -ENOMEM;
1646 		goto fail;
1647 	}
1648 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1649 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1650 	key.offset = objectid;
1651 
1652 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1653 	btrfs_free_path(path);
1654 	if (ret < 0)
1655 		goto fail;
1656 	if (ret == 0)
1657 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1658 
1659 	ret = btrfs_insert_fs_root(fs_info, root);
1660 	if (ret) {
1661 		btrfs_put_root(root);
1662 		if (ret == -EEXIST)
1663 			goto again;
1664 		goto fail;
1665 	}
1666 	return root;
1667 fail:
1668 	btrfs_put_root(root);
1669 	return ERR_PTR(ret);
1670 }
1671 
1672 /*
1673  * Get in-memory reference of a root structure
1674  *
1675  * @objectid:	tree objectid
1676  * @check_ref:	if set, verify that the tree exists and the item has at least
1677  *		one reference
1678  */
1679 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1680 				     u64 objectid, bool check_ref)
1681 {
1682 	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1683 }
1684 
1685 /*
1686  * Get in-memory reference of a root structure, created as new, optionally pass
1687  * the anonymous block device id
1688  *
1689  * @objectid:	tree objectid
1690  * @anon_dev:	if zero, allocate a new anonymous block device or use the
1691  *		parameter value
1692  */
1693 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1694 					 u64 objectid, dev_t anon_dev)
1695 {
1696 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1697 }
1698 
1699 /*
1700  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1701  * @fs_info:	the fs_info
1702  * @objectid:	the objectid we need to lookup
1703  *
1704  * This is exclusively used for backref walking, and exists specifically because
1705  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1706  * creation time, which means we may have to read the tree_root in order to look
1707  * up a fs root that is not in memory.  If the root is not in memory we will
1708  * read the tree root commit root and look up the fs root from there.  This is a
1709  * temporary root, it will not be inserted into the radix tree as it doesn't
1710  * have the most uptodate information, it'll simply be discarded once the
1711  * backref code is finished using the root.
1712  */
1713 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1714 						 struct btrfs_path *path,
1715 						 u64 objectid)
1716 {
1717 	struct btrfs_root *root;
1718 	struct btrfs_key key;
1719 
1720 	ASSERT(path->search_commit_root && path->skip_locking);
1721 
1722 	/*
1723 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1724 	 * since this is called via the backref walking code we won't be looking
1725 	 * up a root that doesn't exist, unless there's corruption.  So if root
1726 	 * != NULL just return it.
1727 	 */
1728 	root = btrfs_get_global_root(fs_info, objectid);
1729 	if (root)
1730 		return root;
1731 
1732 	root = btrfs_lookup_fs_root(fs_info, objectid);
1733 	if (root)
1734 		return root;
1735 
1736 	key.objectid = objectid;
1737 	key.type = BTRFS_ROOT_ITEM_KEY;
1738 	key.offset = (u64)-1;
1739 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1740 	btrfs_release_path(path);
1741 
1742 	return root;
1743 }
1744 
1745 /*
1746  * called by the kthread helper functions to finally call the bio end_io
1747  * functions.  This is where read checksum verification actually happens
1748  */
1749 static void end_workqueue_fn(struct btrfs_work *work)
1750 {
1751 	struct bio *bio;
1752 	struct btrfs_end_io_wq *end_io_wq;
1753 
1754 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1755 	bio = end_io_wq->bio;
1756 
1757 	bio->bi_status = end_io_wq->status;
1758 	bio->bi_private = end_io_wq->private;
1759 	bio->bi_end_io = end_io_wq->end_io;
1760 	bio_endio(bio);
1761 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1762 }
1763 
1764 static int cleaner_kthread(void *arg)
1765 {
1766 	struct btrfs_root *root = arg;
1767 	struct btrfs_fs_info *fs_info = root->fs_info;
1768 	int again;
1769 
1770 	while (1) {
1771 		again = 0;
1772 
1773 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1774 
1775 		/* Make the cleaner go to sleep early. */
1776 		if (btrfs_need_cleaner_sleep(fs_info))
1777 			goto sleep;
1778 
1779 		/*
1780 		 * Do not do anything if we might cause open_ctree() to block
1781 		 * before we have finished mounting the filesystem.
1782 		 */
1783 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1784 			goto sleep;
1785 
1786 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1787 			goto sleep;
1788 
1789 		/*
1790 		 * Avoid the problem that we change the status of the fs
1791 		 * during the above check and trylock.
1792 		 */
1793 		if (btrfs_need_cleaner_sleep(fs_info)) {
1794 			mutex_unlock(&fs_info->cleaner_mutex);
1795 			goto sleep;
1796 		}
1797 
1798 		btrfs_run_delayed_iputs(fs_info);
1799 
1800 		again = btrfs_clean_one_deleted_snapshot(root);
1801 		mutex_unlock(&fs_info->cleaner_mutex);
1802 
1803 		/*
1804 		 * The defragger has dealt with the R/O remount and umount,
1805 		 * needn't do anything special here.
1806 		 */
1807 		btrfs_run_defrag_inodes(fs_info);
1808 
1809 		/*
1810 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1811 		 * with relocation (btrfs_relocate_chunk) and relocation
1812 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1813 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1814 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1815 		 * unused block groups.
1816 		 */
1817 		btrfs_delete_unused_bgs(fs_info);
1818 sleep:
1819 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1820 		if (kthread_should_park())
1821 			kthread_parkme();
1822 		if (kthread_should_stop())
1823 			return 0;
1824 		if (!again) {
1825 			set_current_state(TASK_INTERRUPTIBLE);
1826 			schedule();
1827 			__set_current_state(TASK_RUNNING);
1828 		}
1829 	}
1830 }
1831 
1832 static int transaction_kthread(void *arg)
1833 {
1834 	struct btrfs_root *root = arg;
1835 	struct btrfs_fs_info *fs_info = root->fs_info;
1836 	struct btrfs_trans_handle *trans;
1837 	struct btrfs_transaction *cur;
1838 	u64 transid;
1839 	time64_t delta;
1840 	unsigned long delay;
1841 	bool cannot_commit;
1842 
1843 	do {
1844 		cannot_commit = false;
1845 		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1846 		mutex_lock(&fs_info->transaction_kthread_mutex);
1847 
1848 		spin_lock(&fs_info->trans_lock);
1849 		cur = fs_info->running_transaction;
1850 		if (!cur) {
1851 			spin_unlock(&fs_info->trans_lock);
1852 			goto sleep;
1853 		}
1854 
1855 		delta = ktime_get_seconds() - cur->start_time;
1856 		if (cur->state < TRANS_STATE_COMMIT_START &&
1857 		    delta < fs_info->commit_interval) {
1858 			spin_unlock(&fs_info->trans_lock);
1859 			delay -= msecs_to_jiffies((delta - 1) * 1000);
1860 			delay = min(delay,
1861 				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1862 			goto sleep;
1863 		}
1864 		transid = cur->transid;
1865 		spin_unlock(&fs_info->trans_lock);
1866 
1867 		/* If the file system is aborted, this will always fail. */
1868 		trans = btrfs_attach_transaction(root);
1869 		if (IS_ERR(trans)) {
1870 			if (PTR_ERR(trans) != -ENOENT)
1871 				cannot_commit = true;
1872 			goto sleep;
1873 		}
1874 		if (transid == trans->transid) {
1875 			btrfs_commit_transaction(trans);
1876 		} else {
1877 			btrfs_end_transaction(trans);
1878 		}
1879 sleep:
1880 		wake_up_process(fs_info->cleaner_kthread);
1881 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1882 
1883 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1884 				      &fs_info->fs_state)))
1885 			btrfs_cleanup_transaction(fs_info);
1886 		if (!kthread_should_stop() &&
1887 				(!btrfs_transaction_blocked(fs_info) ||
1888 				 cannot_commit))
1889 			schedule_timeout_interruptible(delay);
1890 	} while (!kthread_should_stop());
1891 	return 0;
1892 }
1893 
1894 /*
1895  * This will find the highest generation in the array of root backups.  The
1896  * index of the highest array is returned, or -EINVAL if we can't find
1897  * anything.
1898  *
1899  * We check to make sure the array is valid by comparing the
1900  * generation of the latest  root in the array with the generation
1901  * in the super block.  If they don't match we pitch it.
1902  */
1903 static int find_newest_super_backup(struct btrfs_fs_info *info)
1904 {
1905 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1906 	u64 cur;
1907 	struct btrfs_root_backup *root_backup;
1908 	int i;
1909 
1910 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1911 		root_backup = info->super_copy->super_roots + i;
1912 		cur = btrfs_backup_tree_root_gen(root_backup);
1913 		if (cur == newest_gen)
1914 			return i;
1915 	}
1916 
1917 	return -EINVAL;
1918 }
1919 
1920 /*
1921  * copy all the root pointers into the super backup array.
1922  * this will bump the backup pointer by one when it is
1923  * done
1924  */
1925 static void backup_super_roots(struct btrfs_fs_info *info)
1926 {
1927 	const int next_backup = info->backup_root_index;
1928 	struct btrfs_root_backup *root_backup;
1929 
1930 	root_backup = info->super_for_commit->super_roots + next_backup;
1931 
1932 	/*
1933 	 * make sure all of our padding and empty slots get zero filled
1934 	 * regardless of which ones we use today
1935 	 */
1936 	memset(root_backup, 0, sizeof(*root_backup));
1937 
1938 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1939 
1940 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1941 	btrfs_set_backup_tree_root_gen(root_backup,
1942 			       btrfs_header_generation(info->tree_root->node));
1943 
1944 	btrfs_set_backup_tree_root_level(root_backup,
1945 			       btrfs_header_level(info->tree_root->node));
1946 
1947 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1948 	btrfs_set_backup_chunk_root_gen(root_backup,
1949 			       btrfs_header_generation(info->chunk_root->node));
1950 	btrfs_set_backup_chunk_root_level(root_backup,
1951 			       btrfs_header_level(info->chunk_root->node));
1952 
1953 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1954 	btrfs_set_backup_extent_root_gen(root_backup,
1955 			       btrfs_header_generation(info->extent_root->node));
1956 	btrfs_set_backup_extent_root_level(root_backup,
1957 			       btrfs_header_level(info->extent_root->node));
1958 
1959 	/*
1960 	 * we might commit during log recovery, which happens before we set
1961 	 * the fs_root.  Make sure it is valid before we fill it in.
1962 	 */
1963 	if (info->fs_root && info->fs_root->node) {
1964 		btrfs_set_backup_fs_root(root_backup,
1965 					 info->fs_root->node->start);
1966 		btrfs_set_backup_fs_root_gen(root_backup,
1967 			       btrfs_header_generation(info->fs_root->node));
1968 		btrfs_set_backup_fs_root_level(root_backup,
1969 			       btrfs_header_level(info->fs_root->node));
1970 	}
1971 
1972 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1973 	btrfs_set_backup_dev_root_gen(root_backup,
1974 			       btrfs_header_generation(info->dev_root->node));
1975 	btrfs_set_backup_dev_root_level(root_backup,
1976 				       btrfs_header_level(info->dev_root->node));
1977 
1978 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1979 	btrfs_set_backup_csum_root_gen(root_backup,
1980 			       btrfs_header_generation(info->csum_root->node));
1981 	btrfs_set_backup_csum_root_level(root_backup,
1982 			       btrfs_header_level(info->csum_root->node));
1983 
1984 	btrfs_set_backup_total_bytes(root_backup,
1985 			     btrfs_super_total_bytes(info->super_copy));
1986 	btrfs_set_backup_bytes_used(root_backup,
1987 			     btrfs_super_bytes_used(info->super_copy));
1988 	btrfs_set_backup_num_devices(root_backup,
1989 			     btrfs_super_num_devices(info->super_copy));
1990 
1991 	/*
1992 	 * if we don't copy this out to the super_copy, it won't get remembered
1993 	 * for the next commit
1994 	 */
1995 	memcpy(&info->super_copy->super_roots,
1996 	       &info->super_for_commit->super_roots,
1997 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1998 }
1999 
2000 /*
2001  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2002  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2003  *
2004  * fs_info - filesystem whose backup roots need to be read
2005  * priority - priority of backup root required
2006  *
2007  * Returns backup root index on success and -EINVAL otherwise.
2008  */
2009 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2010 {
2011 	int backup_index = find_newest_super_backup(fs_info);
2012 	struct btrfs_super_block *super = fs_info->super_copy;
2013 	struct btrfs_root_backup *root_backup;
2014 
2015 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2016 		if (priority == 0)
2017 			return backup_index;
2018 
2019 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2020 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2021 	} else {
2022 		return -EINVAL;
2023 	}
2024 
2025 	root_backup = super->super_roots + backup_index;
2026 
2027 	btrfs_set_super_generation(super,
2028 				   btrfs_backup_tree_root_gen(root_backup));
2029 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2030 	btrfs_set_super_root_level(super,
2031 				   btrfs_backup_tree_root_level(root_backup));
2032 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2033 
2034 	/*
2035 	 * Fixme: the total bytes and num_devices need to match or we should
2036 	 * need a fsck
2037 	 */
2038 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2039 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2040 
2041 	return backup_index;
2042 }
2043 
2044 /* helper to cleanup workers */
2045 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2046 {
2047 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2048 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2049 	btrfs_destroy_workqueue(fs_info->workers);
2050 	btrfs_destroy_workqueue(fs_info->endio_workers);
2051 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2052 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2053 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2054 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2055 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2056 	btrfs_destroy_workqueue(fs_info->caching_workers);
2057 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2058 	btrfs_destroy_workqueue(fs_info->flush_workers);
2059 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2060 	if (fs_info->discard_ctl.discard_workers)
2061 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
2062 	/*
2063 	 * Now that all other work queues are destroyed, we can safely destroy
2064 	 * the queues used for metadata I/O, since tasks from those other work
2065 	 * queues can do metadata I/O operations.
2066 	 */
2067 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2068 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2069 }
2070 
2071 static void free_root_extent_buffers(struct btrfs_root *root)
2072 {
2073 	if (root) {
2074 		free_extent_buffer(root->node);
2075 		free_extent_buffer(root->commit_root);
2076 		root->node = NULL;
2077 		root->commit_root = NULL;
2078 	}
2079 }
2080 
2081 /* helper to cleanup tree roots */
2082 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2083 {
2084 	free_root_extent_buffers(info->tree_root);
2085 
2086 	free_root_extent_buffers(info->dev_root);
2087 	free_root_extent_buffers(info->extent_root);
2088 	free_root_extent_buffers(info->csum_root);
2089 	free_root_extent_buffers(info->quota_root);
2090 	free_root_extent_buffers(info->uuid_root);
2091 	free_root_extent_buffers(info->fs_root);
2092 	free_root_extent_buffers(info->data_reloc_root);
2093 	if (free_chunk_root)
2094 		free_root_extent_buffers(info->chunk_root);
2095 	free_root_extent_buffers(info->free_space_root);
2096 }
2097 
2098 void btrfs_put_root(struct btrfs_root *root)
2099 {
2100 	if (!root)
2101 		return;
2102 
2103 	if (refcount_dec_and_test(&root->refs)) {
2104 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2105 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2106 		if (root->anon_dev)
2107 			free_anon_bdev(root->anon_dev);
2108 		btrfs_drew_lock_destroy(&root->snapshot_lock);
2109 		free_root_extent_buffers(root);
2110 #ifdef CONFIG_BTRFS_DEBUG
2111 		spin_lock(&root->fs_info->fs_roots_radix_lock);
2112 		list_del_init(&root->leak_list);
2113 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2114 #endif
2115 		kfree(root);
2116 	}
2117 }
2118 
2119 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2120 {
2121 	int ret;
2122 	struct btrfs_root *gang[8];
2123 	int i;
2124 
2125 	while (!list_empty(&fs_info->dead_roots)) {
2126 		gang[0] = list_entry(fs_info->dead_roots.next,
2127 				     struct btrfs_root, root_list);
2128 		list_del(&gang[0]->root_list);
2129 
2130 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2131 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2132 		btrfs_put_root(gang[0]);
2133 	}
2134 
2135 	while (1) {
2136 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2137 					     (void **)gang, 0,
2138 					     ARRAY_SIZE(gang));
2139 		if (!ret)
2140 			break;
2141 		for (i = 0; i < ret; i++)
2142 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2143 	}
2144 }
2145 
2146 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2147 {
2148 	mutex_init(&fs_info->scrub_lock);
2149 	atomic_set(&fs_info->scrubs_running, 0);
2150 	atomic_set(&fs_info->scrub_pause_req, 0);
2151 	atomic_set(&fs_info->scrubs_paused, 0);
2152 	atomic_set(&fs_info->scrub_cancel_req, 0);
2153 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2154 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2155 }
2156 
2157 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2158 {
2159 	spin_lock_init(&fs_info->balance_lock);
2160 	mutex_init(&fs_info->balance_mutex);
2161 	atomic_set(&fs_info->balance_pause_req, 0);
2162 	atomic_set(&fs_info->balance_cancel_req, 0);
2163 	fs_info->balance_ctl = NULL;
2164 	init_waitqueue_head(&fs_info->balance_wait_q);
2165 }
2166 
2167 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2168 {
2169 	struct inode *inode = fs_info->btree_inode;
2170 
2171 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2172 	set_nlink(inode, 1);
2173 	/*
2174 	 * we set the i_size on the btree inode to the max possible int.
2175 	 * the real end of the address space is determined by all of
2176 	 * the devices in the system
2177 	 */
2178 	inode->i_size = OFFSET_MAX;
2179 	inode->i_mapping->a_ops = &btree_aops;
2180 
2181 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2182 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2183 			    IO_TREE_BTREE_INODE_IO, inode);
2184 	BTRFS_I(inode)->io_tree.track_uptodate = false;
2185 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2186 
2187 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2188 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2189 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2190 	btrfs_insert_inode_hash(inode);
2191 }
2192 
2193 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2194 {
2195 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2196 	init_rwsem(&fs_info->dev_replace.rwsem);
2197 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2198 }
2199 
2200 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2201 {
2202 	spin_lock_init(&fs_info->qgroup_lock);
2203 	mutex_init(&fs_info->qgroup_ioctl_lock);
2204 	fs_info->qgroup_tree = RB_ROOT;
2205 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2206 	fs_info->qgroup_seq = 1;
2207 	fs_info->qgroup_ulist = NULL;
2208 	fs_info->qgroup_rescan_running = false;
2209 	mutex_init(&fs_info->qgroup_rescan_lock);
2210 }
2211 
2212 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2213 		struct btrfs_fs_devices *fs_devices)
2214 {
2215 	u32 max_active = fs_info->thread_pool_size;
2216 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2217 
2218 	fs_info->workers =
2219 		btrfs_alloc_workqueue(fs_info, "worker",
2220 				      flags | WQ_HIGHPRI, max_active, 16);
2221 
2222 	fs_info->delalloc_workers =
2223 		btrfs_alloc_workqueue(fs_info, "delalloc",
2224 				      flags, max_active, 2);
2225 
2226 	fs_info->flush_workers =
2227 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2228 				      flags, max_active, 0);
2229 
2230 	fs_info->caching_workers =
2231 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2232 
2233 	fs_info->fixup_workers =
2234 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2235 
2236 	/*
2237 	 * endios are largely parallel and should have a very
2238 	 * low idle thresh
2239 	 */
2240 	fs_info->endio_workers =
2241 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2242 	fs_info->endio_meta_workers =
2243 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2244 				      max_active, 4);
2245 	fs_info->endio_meta_write_workers =
2246 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2247 				      max_active, 2);
2248 	fs_info->endio_raid56_workers =
2249 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2250 				      max_active, 4);
2251 	fs_info->rmw_workers =
2252 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2253 	fs_info->endio_write_workers =
2254 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2255 				      max_active, 2);
2256 	fs_info->endio_freespace_worker =
2257 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2258 				      max_active, 0);
2259 	fs_info->delayed_workers =
2260 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2261 				      max_active, 0);
2262 	fs_info->readahead_workers =
2263 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2264 				      max_active, 2);
2265 	fs_info->qgroup_rescan_workers =
2266 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2267 	fs_info->discard_ctl.discard_workers =
2268 		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2269 
2270 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2271 	      fs_info->flush_workers &&
2272 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2273 	      fs_info->endio_meta_write_workers &&
2274 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2275 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2276 	      fs_info->caching_workers && fs_info->readahead_workers &&
2277 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2278 	      fs_info->qgroup_rescan_workers &&
2279 	      fs_info->discard_ctl.discard_workers)) {
2280 		return -ENOMEM;
2281 	}
2282 
2283 	return 0;
2284 }
2285 
2286 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2287 {
2288 	struct crypto_shash *csum_shash;
2289 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2290 
2291 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2292 
2293 	if (IS_ERR(csum_shash)) {
2294 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2295 			  csum_driver);
2296 		return PTR_ERR(csum_shash);
2297 	}
2298 
2299 	fs_info->csum_shash = csum_shash;
2300 
2301 	return 0;
2302 }
2303 
2304 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2305 			    struct btrfs_fs_devices *fs_devices)
2306 {
2307 	int ret;
2308 	struct btrfs_root *log_tree_root;
2309 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2310 	u64 bytenr = btrfs_super_log_root(disk_super);
2311 	int level = btrfs_super_log_root_level(disk_super);
2312 
2313 	if (fs_devices->rw_devices == 0) {
2314 		btrfs_warn(fs_info, "log replay required on RO media");
2315 		return -EIO;
2316 	}
2317 
2318 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2319 					 GFP_KERNEL);
2320 	if (!log_tree_root)
2321 		return -ENOMEM;
2322 
2323 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2324 					      BTRFS_TREE_LOG_OBJECTID,
2325 					      fs_info->generation + 1, level,
2326 					      NULL);
2327 	if (IS_ERR(log_tree_root->node)) {
2328 		btrfs_warn(fs_info, "failed to read log tree");
2329 		ret = PTR_ERR(log_tree_root->node);
2330 		log_tree_root->node = NULL;
2331 		btrfs_put_root(log_tree_root);
2332 		return ret;
2333 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2334 		btrfs_err(fs_info, "failed to read log tree");
2335 		btrfs_put_root(log_tree_root);
2336 		return -EIO;
2337 	}
2338 	/* returns with log_tree_root freed on success */
2339 	ret = btrfs_recover_log_trees(log_tree_root);
2340 	if (ret) {
2341 		btrfs_handle_fs_error(fs_info, ret,
2342 				      "Failed to recover log tree");
2343 		btrfs_put_root(log_tree_root);
2344 		return ret;
2345 	}
2346 
2347 	if (sb_rdonly(fs_info->sb)) {
2348 		ret = btrfs_commit_super(fs_info);
2349 		if (ret)
2350 			return ret;
2351 	}
2352 
2353 	return 0;
2354 }
2355 
2356 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2357 {
2358 	struct btrfs_root *tree_root = fs_info->tree_root;
2359 	struct btrfs_root *root;
2360 	struct btrfs_key location;
2361 	int ret;
2362 
2363 	BUG_ON(!fs_info->tree_root);
2364 
2365 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2366 	location.type = BTRFS_ROOT_ITEM_KEY;
2367 	location.offset = 0;
2368 
2369 	root = btrfs_read_tree_root(tree_root, &location);
2370 	if (IS_ERR(root)) {
2371 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2372 			ret = PTR_ERR(root);
2373 			goto out;
2374 		}
2375 	} else {
2376 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2377 		fs_info->extent_root = root;
2378 	}
2379 
2380 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2381 	root = btrfs_read_tree_root(tree_root, &location);
2382 	if (IS_ERR(root)) {
2383 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2384 			ret = PTR_ERR(root);
2385 			goto out;
2386 		}
2387 	} else {
2388 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2389 		fs_info->dev_root = root;
2390 		btrfs_init_devices_late(fs_info);
2391 	}
2392 
2393 	/* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2394 	if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2395 		location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2396 		root = btrfs_read_tree_root(tree_root, &location);
2397 		if (IS_ERR(root)) {
2398 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2399 				ret = PTR_ERR(root);
2400 				goto out;
2401 			}
2402 		} else {
2403 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2404 			fs_info->csum_root = root;
2405 		}
2406 	}
2407 
2408 	/*
2409 	 * This tree can share blocks with some other fs tree during relocation
2410 	 * and we need a proper setup by btrfs_get_fs_root
2411 	 */
2412 	root = btrfs_get_fs_root(tree_root->fs_info,
2413 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2414 	if (IS_ERR(root)) {
2415 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2416 			ret = PTR_ERR(root);
2417 			goto out;
2418 		}
2419 	} else {
2420 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2421 		fs_info->data_reloc_root = root;
2422 	}
2423 
2424 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2425 	root = btrfs_read_tree_root(tree_root, &location);
2426 	if (!IS_ERR(root)) {
2427 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2428 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2429 		fs_info->quota_root = root;
2430 	}
2431 
2432 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2433 	root = btrfs_read_tree_root(tree_root, &location);
2434 	if (IS_ERR(root)) {
2435 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2436 			ret = PTR_ERR(root);
2437 			if (ret != -ENOENT)
2438 				goto out;
2439 		}
2440 	} else {
2441 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2442 		fs_info->uuid_root = root;
2443 	}
2444 
2445 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2446 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2447 		root = btrfs_read_tree_root(tree_root, &location);
2448 		if (IS_ERR(root)) {
2449 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2450 				ret = PTR_ERR(root);
2451 				goto out;
2452 			}
2453 		}  else {
2454 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2455 			fs_info->free_space_root = root;
2456 		}
2457 	}
2458 
2459 	return 0;
2460 out:
2461 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2462 		   location.objectid, ret);
2463 	return ret;
2464 }
2465 
2466 /*
2467  * Real super block validation
2468  * NOTE: super csum type and incompat features will not be checked here.
2469  *
2470  * @sb:		super block to check
2471  * @mirror_num:	the super block number to check its bytenr:
2472  * 		0	the primary (1st) sb
2473  * 		1, 2	2nd and 3rd backup copy
2474  * 	       -1	skip bytenr check
2475  */
2476 static int validate_super(struct btrfs_fs_info *fs_info,
2477 			    struct btrfs_super_block *sb, int mirror_num)
2478 {
2479 	u64 nodesize = btrfs_super_nodesize(sb);
2480 	u64 sectorsize = btrfs_super_sectorsize(sb);
2481 	int ret = 0;
2482 
2483 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2484 		btrfs_err(fs_info, "no valid FS found");
2485 		ret = -EINVAL;
2486 	}
2487 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2488 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2489 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2490 		ret = -EINVAL;
2491 	}
2492 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2493 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2494 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2495 		ret = -EINVAL;
2496 	}
2497 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2498 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2499 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2500 		ret = -EINVAL;
2501 	}
2502 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2503 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2504 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2505 		ret = -EINVAL;
2506 	}
2507 
2508 	/*
2509 	 * Check sectorsize and nodesize first, other check will need it.
2510 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2511 	 */
2512 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2513 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2514 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2515 		ret = -EINVAL;
2516 	}
2517 
2518 	/*
2519 	 * For 4K page size, we only support 4K sector size.
2520 	 * For 64K page size, we support read-write for 64K sector size, and
2521 	 * read-only for 4K sector size.
2522 	 */
2523 	if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) ||
2524 	    (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K &&
2525 				     sectorsize != SZ_64K))) {
2526 		btrfs_err(fs_info,
2527 			"sectorsize %llu not yet supported for page size %lu",
2528 			sectorsize, PAGE_SIZE);
2529 		ret = -EINVAL;
2530 	}
2531 
2532 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2533 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2534 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2535 		ret = -EINVAL;
2536 	}
2537 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2538 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2539 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2540 		ret = -EINVAL;
2541 	}
2542 
2543 	/* Root alignment check */
2544 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2545 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2546 			   btrfs_super_root(sb));
2547 		ret = -EINVAL;
2548 	}
2549 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2550 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2551 			   btrfs_super_chunk_root(sb));
2552 		ret = -EINVAL;
2553 	}
2554 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2555 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2556 			   btrfs_super_log_root(sb));
2557 		ret = -EINVAL;
2558 	}
2559 
2560 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2561 		   BTRFS_FSID_SIZE) != 0) {
2562 		btrfs_err(fs_info,
2563 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2564 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2565 		ret = -EINVAL;
2566 	}
2567 
2568 	/*
2569 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2570 	 * done later
2571 	 */
2572 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2573 		btrfs_err(fs_info, "bytes_used is too small %llu",
2574 			  btrfs_super_bytes_used(sb));
2575 		ret = -EINVAL;
2576 	}
2577 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2578 		btrfs_err(fs_info, "invalid stripesize %u",
2579 			  btrfs_super_stripesize(sb));
2580 		ret = -EINVAL;
2581 	}
2582 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2583 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2584 			   btrfs_super_num_devices(sb));
2585 	if (btrfs_super_num_devices(sb) == 0) {
2586 		btrfs_err(fs_info, "number of devices is 0");
2587 		ret = -EINVAL;
2588 	}
2589 
2590 	if (mirror_num >= 0 &&
2591 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2592 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2593 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2594 		ret = -EINVAL;
2595 	}
2596 
2597 	/*
2598 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2599 	 * and one chunk
2600 	 */
2601 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2602 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2603 			  btrfs_super_sys_array_size(sb),
2604 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2605 		ret = -EINVAL;
2606 	}
2607 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2608 			+ sizeof(struct btrfs_chunk)) {
2609 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2610 			  btrfs_super_sys_array_size(sb),
2611 			  sizeof(struct btrfs_disk_key)
2612 			  + sizeof(struct btrfs_chunk));
2613 		ret = -EINVAL;
2614 	}
2615 
2616 	/*
2617 	 * The generation is a global counter, we'll trust it more than the others
2618 	 * but it's still possible that it's the one that's wrong.
2619 	 */
2620 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2621 		btrfs_warn(fs_info,
2622 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2623 			btrfs_super_generation(sb),
2624 			btrfs_super_chunk_root_generation(sb));
2625 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2626 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2627 		btrfs_warn(fs_info,
2628 			"suspicious: generation < cache_generation: %llu < %llu",
2629 			btrfs_super_generation(sb),
2630 			btrfs_super_cache_generation(sb));
2631 
2632 	return ret;
2633 }
2634 
2635 /*
2636  * Validation of super block at mount time.
2637  * Some checks already done early at mount time, like csum type and incompat
2638  * flags will be skipped.
2639  */
2640 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2641 {
2642 	return validate_super(fs_info, fs_info->super_copy, 0);
2643 }
2644 
2645 /*
2646  * Validation of super block at write time.
2647  * Some checks like bytenr check will be skipped as their values will be
2648  * overwritten soon.
2649  * Extra checks like csum type and incompat flags will be done here.
2650  */
2651 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2652 				      struct btrfs_super_block *sb)
2653 {
2654 	int ret;
2655 
2656 	ret = validate_super(fs_info, sb, -1);
2657 	if (ret < 0)
2658 		goto out;
2659 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2660 		ret = -EUCLEAN;
2661 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2662 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2663 		goto out;
2664 	}
2665 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2666 		ret = -EUCLEAN;
2667 		btrfs_err(fs_info,
2668 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2669 			  btrfs_super_incompat_flags(sb),
2670 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2671 		goto out;
2672 	}
2673 out:
2674 	if (ret < 0)
2675 		btrfs_err(fs_info,
2676 		"super block corruption detected before writing it to disk");
2677 	return ret;
2678 }
2679 
2680 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2681 {
2682 	int backup_index = find_newest_super_backup(fs_info);
2683 	struct btrfs_super_block *sb = fs_info->super_copy;
2684 	struct btrfs_root *tree_root = fs_info->tree_root;
2685 	bool handle_error = false;
2686 	int ret = 0;
2687 	int i;
2688 
2689 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2690 		u64 generation;
2691 		int level;
2692 
2693 		if (handle_error) {
2694 			if (!IS_ERR(tree_root->node))
2695 				free_extent_buffer(tree_root->node);
2696 			tree_root->node = NULL;
2697 
2698 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2699 				break;
2700 
2701 			free_root_pointers(fs_info, 0);
2702 
2703 			/*
2704 			 * Don't use the log in recovery mode, it won't be
2705 			 * valid
2706 			 */
2707 			btrfs_set_super_log_root(sb, 0);
2708 
2709 			/* We can't trust the free space cache either */
2710 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2711 
2712 			ret = read_backup_root(fs_info, i);
2713 			backup_index = ret;
2714 			if (ret < 0)
2715 				return ret;
2716 		}
2717 		generation = btrfs_super_generation(sb);
2718 		level = btrfs_super_root_level(sb);
2719 		tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2720 						  BTRFS_ROOT_TREE_OBJECTID,
2721 						  generation, level, NULL);
2722 		if (IS_ERR(tree_root->node)) {
2723 			handle_error = true;
2724 			ret = PTR_ERR(tree_root->node);
2725 			tree_root->node = NULL;
2726 			btrfs_warn(fs_info, "couldn't read tree root");
2727 			continue;
2728 
2729 		} else if (!extent_buffer_uptodate(tree_root->node)) {
2730 			handle_error = true;
2731 			ret = -EIO;
2732 			btrfs_warn(fs_info, "error while reading tree root");
2733 			continue;
2734 		}
2735 
2736 		btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2737 		tree_root->commit_root = btrfs_root_node(tree_root);
2738 		btrfs_set_root_refs(&tree_root->root_item, 1);
2739 
2740 		/*
2741 		 * No need to hold btrfs_root::objectid_mutex since the fs
2742 		 * hasn't been fully initialised and we are the only user
2743 		 */
2744 		ret = btrfs_init_root_free_objectid(tree_root);
2745 		if (ret < 0) {
2746 			handle_error = true;
2747 			continue;
2748 		}
2749 
2750 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2751 
2752 		ret = btrfs_read_roots(fs_info);
2753 		if (ret < 0) {
2754 			handle_error = true;
2755 			continue;
2756 		}
2757 
2758 		/* All successful */
2759 		fs_info->generation = generation;
2760 		fs_info->last_trans_committed = generation;
2761 
2762 		/* Always begin writing backup roots after the one being used */
2763 		if (backup_index < 0) {
2764 			fs_info->backup_root_index = 0;
2765 		} else {
2766 			fs_info->backup_root_index = backup_index + 1;
2767 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2768 		}
2769 		break;
2770 	}
2771 
2772 	return ret;
2773 }
2774 
2775 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2776 {
2777 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2778 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2779 	INIT_LIST_HEAD(&fs_info->trans_list);
2780 	INIT_LIST_HEAD(&fs_info->dead_roots);
2781 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2782 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2783 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2784 	spin_lock_init(&fs_info->delalloc_root_lock);
2785 	spin_lock_init(&fs_info->trans_lock);
2786 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2787 	spin_lock_init(&fs_info->delayed_iput_lock);
2788 	spin_lock_init(&fs_info->defrag_inodes_lock);
2789 	spin_lock_init(&fs_info->super_lock);
2790 	spin_lock_init(&fs_info->buffer_lock);
2791 	spin_lock_init(&fs_info->unused_bgs_lock);
2792 	spin_lock_init(&fs_info->treelog_bg_lock);
2793 	rwlock_init(&fs_info->tree_mod_log_lock);
2794 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2795 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2796 	mutex_init(&fs_info->reloc_mutex);
2797 	mutex_init(&fs_info->delalloc_root_mutex);
2798 	mutex_init(&fs_info->zoned_meta_io_lock);
2799 	seqlock_init(&fs_info->profiles_lock);
2800 
2801 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2802 	INIT_LIST_HEAD(&fs_info->space_info);
2803 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2804 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2805 #ifdef CONFIG_BTRFS_DEBUG
2806 	INIT_LIST_HEAD(&fs_info->allocated_roots);
2807 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2808 	spin_lock_init(&fs_info->eb_leak_lock);
2809 #endif
2810 	extent_map_tree_init(&fs_info->mapping_tree);
2811 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2812 			     BTRFS_BLOCK_RSV_GLOBAL);
2813 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2814 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2815 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2816 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2817 			     BTRFS_BLOCK_RSV_DELOPS);
2818 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2819 			     BTRFS_BLOCK_RSV_DELREFS);
2820 
2821 	atomic_set(&fs_info->async_delalloc_pages, 0);
2822 	atomic_set(&fs_info->defrag_running, 0);
2823 	atomic_set(&fs_info->reada_works_cnt, 0);
2824 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2825 	atomic64_set(&fs_info->tree_mod_seq, 0);
2826 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2827 	fs_info->metadata_ratio = 0;
2828 	fs_info->defrag_inodes = RB_ROOT;
2829 	atomic64_set(&fs_info->free_chunk_space, 0);
2830 	fs_info->tree_mod_log = RB_ROOT;
2831 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2832 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2833 	/* readahead state */
2834 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2835 	spin_lock_init(&fs_info->reada_lock);
2836 	btrfs_init_ref_verify(fs_info);
2837 
2838 	fs_info->thread_pool_size = min_t(unsigned long,
2839 					  num_online_cpus() + 2, 8);
2840 
2841 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2842 	spin_lock_init(&fs_info->ordered_root_lock);
2843 
2844 	btrfs_init_scrub(fs_info);
2845 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2846 	fs_info->check_integrity_print_mask = 0;
2847 #endif
2848 	btrfs_init_balance(fs_info);
2849 	btrfs_init_async_reclaim_work(fs_info);
2850 
2851 	spin_lock_init(&fs_info->block_group_cache_lock);
2852 	fs_info->block_group_cache_tree = RB_ROOT;
2853 	fs_info->first_logical_byte = (u64)-1;
2854 
2855 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2856 			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2857 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2858 
2859 	mutex_init(&fs_info->ordered_operations_mutex);
2860 	mutex_init(&fs_info->tree_log_mutex);
2861 	mutex_init(&fs_info->chunk_mutex);
2862 	mutex_init(&fs_info->transaction_kthread_mutex);
2863 	mutex_init(&fs_info->cleaner_mutex);
2864 	mutex_init(&fs_info->ro_block_group_mutex);
2865 	init_rwsem(&fs_info->commit_root_sem);
2866 	init_rwsem(&fs_info->cleanup_work_sem);
2867 	init_rwsem(&fs_info->subvol_sem);
2868 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2869 
2870 	btrfs_init_dev_replace_locks(fs_info);
2871 	btrfs_init_qgroup(fs_info);
2872 	btrfs_discard_init(fs_info);
2873 
2874 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2875 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2876 
2877 	init_waitqueue_head(&fs_info->transaction_throttle);
2878 	init_waitqueue_head(&fs_info->transaction_wait);
2879 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2880 	init_waitqueue_head(&fs_info->async_submit_wait);
2881 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2882 
2883 	/* Usable values until the real ones are cached from the superblock */
2884 	fs_info->nodesize = 4096;
2885 	fs_info->sectorsize = 4096;
2886 	fs_info->sectorsize_bits = ilog2(4096);
2887 	fs_info->stripesize = 4096;
2888 
2889 	spin_lock_init(&fs_info->swapfile_pins_lock);
2890 	fs_info->swapfile_pins = RB_ROOT;
2891 
2892 	fs_info->send_in_progress = 0;
2893 }
2894 
2895 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2896 {
2897 	int ret;
2898 
2899 	fs_info->sb = sb;
2900 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2901 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2902 
2903 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2904 	if (ret)
2905 		return ret;
2906 
2907 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2908 	if (ret)
2909 		return ret;
2910 
2911 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2912 					(1 + ilog2(nr_cpu_ids));
2913 
2914 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2915 	if (ret)
2916 		return ret;
2917 
2918 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2919 			GFP_KERNEL);
2920 	if (ret)
2921 		return ret;
2922 
2923 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2924 					GFP_KERNEL);
2925 	if (!fs_info->delayed_root)
2926 		return -ENOMEM;
2927 	btrfs_init_delayed_root(fs_info->delayed_root);
2928 
2929 	if (sb_rdonly(sb))
2930 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2931 
2932 	return btrfs_alloc_stripe_hash_table(fs_info);
2933 }
2934 
2935 static int btrfs_uuid_rescan_kthread(void *data)
2936 {
2937 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2938 	int ret;
2939 
2940 	/*
2941 	 * 1st step is to iterate through the existing UUID tree and
2942 	 * to delete all entries that contain outdated data.
2943 	 * 2nd step is to add all missing entries to the UUID tree.
2944 	 */
2945 	ret = btrfs_uuid_tree_iterate(fs_info);
2946 	if (ret < 0) {
2947 		if (ret != -EINTR)
2948 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2949 				   ret);
2950 		up(&fs_info->uuid_tree_rescan_sem);
2951 		return ret;
2952 	}
2953 	return btrfs_uuid_scan_kthread(data);
2954 }
2955 
2956 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2957 {
2958 	struct task_struct *task;
2959 
2960 	down(&fs_info->uuid_tree_rescan_sem);
2961 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2962 	if (IS_ERR(task)) {
2963 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2964 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2965 		up(&fs_info->uuid_tree_rescan_sem);
2966 		return PTR_ERR(task);
2967 	}
2968 
2969 	return 0;
2970 }
2971 
2972 /*
2973  * Some options only have meaning at mount time and shouldn't persist across
2974  * remounts, or be displayed. Clear these at the end of mount and remount
2975  * code paths.
2976  */
2977 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
2978 {
2979 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
2980 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
2981 }
2982 
2983 /*
2984  * Mounting logic specific to read-write file systems. Shared by open_ctree
2985  * and btrfs_remount when remounting from read-only to read-write.
2986  */
2987 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2988 {
2989 	int ret;
2990 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2991 	bool clear_free_space_tree = false;
2992 
2993 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2994 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2995 		clear_free_space_tree = true;
2996 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2997 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2998 		btrfs_warn(fs_info, "free space tree is invalid");
2999 		clear_free_space_tree = true;
3000 	}
3001 
3002 	if (clear_free_space_tree) {
3003 		btrfs_info(fs_info, "clearing free space tree");
3004 		ret = btrfs_clear_free_space_tree(fs_info);
3005 		if (ret) {
3006 			btrfs_warn(fs_info,
3007 				   "failed to clear free space tree: %d", ret);
3008 			goto out;
3009 		}
3010 	}
3011 
3012 	ret = btrfs_cleanup_fs_roots(fs_info);
3013 	if (ret)
3014 		goto out;
3015 
3016 	down_read(&fs_info->cleanup_work_sem);
3017 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3018 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3019 		up_read(&fs_info->cleanup_work_sem);
3020 		goto out;
3021 	}
3022 	up_read(&fs_info->cleanup_work_sem);
3023 
3024 	mutex_lock(&fs_info->cleaner_mutex);
3025 	ret = btrfs_recover_relocation(fs_info->tree_root);
3026 	mutex_unlock(&fs_info->cleaner_mutex);
3027 	if (ret < 0) {
3028 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3029 		goto out;
3030 	}
3031 
3032 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3033 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3034 		btrfs_info(fs_info, "creating free space tree");
3035 		ret = btrfs_create_free_space_tree(fs_info);
3036 		if (ret) {
3037 			btrfs_warn(fs_info,
3038 				"failed to create free space tree: %d", ret);
3039 			goto out;
3040 		}
3041 	}
3042 
3043 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3044 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3045 		if (ret)
3046 			goto out;
3047 	}
3048 
3049 	ret = btrfs_resume_balance_async(fs_info);
3050 	if (ret)
3051 		goto out;
3052 
3053 	ret = btrfs_resume_dev_replace_async(fs_info);
3054 	if (ret) {
3055 		btrfs_warn(fs_info, "failed to resume dev_replace");
3056 		goto out;
3057 	}
3058 
3059 	btrfs_qgroup_rescan_resume(fs_info);
3060 
3061 	if (!fs_info->uuid_root) {
3062 		btrfs_info(fs_info, "creating UUID tree");
3063 		ret = btrfs_create_uuid_tree(fs_info);
3064 		if (ret) {
3065 			btrfs_warn(fs_info,
3066 				   "failed to create the UUID tree %d", ret);
3067 			goto out;
3068 		}
3069 	}
3070 
3071 	ret = btrfs_find_orphan_roots(fs_info);
3072 out:
3073 	return ret;
3074 }
3075 
3076 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3077 		      char *options)
3078 {
3079 	u32 sectorsize;
3080 	u32 nodesize;
3081 	u32 stripesize;
3082 	u64 generation;
3083 	u64 features;
3084 	u16 csum_type;
3085 	struct btrfs_super_block *disk_super;
3086 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3087 	struct btrfs_root *tree_root;
3088 	struct btrfs_root *chunk_root;
3089 	int ret;
3090 	int err = -EINVAL;
3091 	int level;
3092 
3093 	ret = init_mount_fs_info(fs_info, sb);
3094 	if (ret) {
3095 		err = ret;
3096 		goto fail;
3097 	}
3098 
3099 	/* These need to be init'ed before we start creating inodes and such. */
3100 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3101 				     GFP_KERNEL);
3102 	fs_info->tree_root = tree_root;
3103 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3104 				      GFP_KERNEL);
3105 	fs_info->chunk_root = chunk_root;
3106 	if (!tree_root || !chunk_root) {
3107 		err = -ENOMEM;
3108 		goto fail;
3109 	}
3110 
3111 	fs_info->btree_inode = new_inode(sb);
3112 	if (!fs_info->btree_inode) {
3113 		err = -ENOMEM;
3114 		goto fail;
3115 	}
3116 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3117 	btrfs_init_btree_inode(fs_info);
3118 
3119 	invalidate_bdev(fs_devices->latest_bdev);
3120 
3121 	/*
3122 	 * Read super block and check the signature bytes only
3123 	 */
3124 	disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
3125 	if (IS_ERR(disk_super)) {
3126 		err = PTR_ERR(disk_super);
3127 		goto fail_alloc;
3128 	}
3129 
3130 	/*
3131 	 * Verify the type first, if that or the checksum value are
3132 	 * corrupted, we'll find out
3133 	 */
3134 	csum_type = btrfs_super_csum_type(disk_super);
3135 	if (!btrfs_supported_super_csum(csum_type)) {
3136 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3137 			  csum_type);
3138 		err = -EINVAL;
3139 		btrfs_release_disk_super(disk_super);
3140 		goto fail_alloc;
3141 	}
3142 
3143 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3144 
3145 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3146 	if (ret) {
3147 		err = ret;
3148 		btrfs_release_disk_super(disk_super);
3149 		goto fail_alloc;
3150 	}
3151 
3152 	/*
3153 	 * We want to check superblock checksum, the type is stored inside.
3154 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3155 	 */
3156 	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3157 		btrfs_err(fs_info, "superblock checksum mismatch");
3158 		err = -EINVAL;
3159 		btrfs_release_disk_super(disk_super);
3160 		goto fail_alloc;
3161 	}
3162 
3163 	/*
3164 	 * super_copy is zeroed at allocation time and we never touch the
3165 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3166 	 * the whole block of INFO_SIZE
3167 	 */
3168 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3169 	btrfs_release_disk_super(disk_super);
3170 
3171 	disk_super = fs_info->super_copy;
3172 
3173 	ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
3174 		       BTRFS_FSID_SIZE));
3175 
3176 	if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
3177 		ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
3178 				fs_info->super_copy->metadata_uuid,
3179 				BTRFS_FSID_SIZE));
3180 	}
3181 
3182 	features = btrfs_super_flags(disk_super);
3183 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3184 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3185 		btrfs_set_super_flags(disk_super, features);
3186 		btrfs_info(fs_info,
3187 			"found metadata UUID change in progress flag, clearing");
3188 	}
3189 
3190 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3191 	       sizeof(*fs_info->super_for_commit));
3192 
3193 	ret = btrfs_validate_mount_super(fs_info);
3194 	if (ret) {
3195 		btrfs_err(fs_info, "superblock contains fatal errors");
3196 		err = -EINVAL;
3197 		goto fail_alloc;
3198 	}
3199 
3200 	if (!btrfs_super_root(disk_super))
3201 		goto fail_alloc;
3202 
3203 	/* check FS state, whether FS is broken. */
3204 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3205 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3206 
3207 	/*
3208 	 * In the long term, we'll store the compression type in the super
3209 	 * block, and it'll be used for per file compression control.
3210 	 */
3211 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3212 
3213 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3214 	if (ret) {
3215 		err = ret;
3216 		goto fail_alloc;
3217 	}
3218 
3219 	features = btrfs_super_incompat_flags(disk_super) &
3220 		~BTRFS_FEATURE_INCOMPAT_SUPP;
3221 	if (features) {
3222 		btrfs_err(fs_info,
3223 		    "cannot mount because of unsupported optional features (%llx)",
3224 		    features);
3225 		err = -EINVAL;
3226 		goto fail_alloc;
3227 	}
3228 
3229 	features = btrfs_super_incompat_flags(disk_super);
3230 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3231 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3232 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3233 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3234 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3235 
3236 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3237 		btrfs_info(fs_info, "has skinny extents");
3238 
3239 	/*
3240 	 * flag our filesystem as having big metadata blocks if
3241 	 * they are bigger than the page size
3242 	 */
3243 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3244 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3245 			btrfs_info(fs_info,
3246 				"flagging fs with big metadata feature");
3247 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3248 	}
3249 
3250 	nodesize = btrfs_super_nodesize(disk_super);
3251 	sectorsize = btrfs_super_sectorsize(disk_super);
3252 	stripesize = sectorsize;
3253 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3254 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3255 
3256 	/* Cache block sizes */
3257 	fs_info->nodesize = nodesize;
3258 	fs_info->sectorsize = sectorsize;
3259 	fs_info->sectorsize_bits = ilog2(sectorsize);
3260 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3261 	fs_info->stripesize = stripesize;
3262 
3263 	/*
3264 	 * mixed block groups end up with duplicate but slightly offset
3265 	 * extent buffers for the same range.  It leads to corruptions
3266 	 */
3267 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3268 	    (sectorsize != nodesize)) {
3269 		btrfs_err(fs_info,
3270 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3271 			nodesize, sectorsize);
3272 		goto fail_alloc;
3273 	}
3274 
3275 	/*
3276 	 * Needn't use the lock because there is no other task which will
3277 	 * update the flag.
3278 	 */
3279 	btrfs_set_super_incompat_flags(disk_super, features);
3280 
3281 	features = btrfs_super_compat_ro_flags(disk_super) &
3282 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3283 	if (!sb_rdonly(sb) && features) {
3284 		btrfs_err(fs_info,
3285 	"cannot mount read-write because of unsupported optional features (%llx)",
3286 		       features);
3287 		err = -EINVAL;
3288 		goto fail_alloc;
3289 	}
3290 
3291 	/* For 4K sector size support, it's only read-only */
3292 	if (PAGE_SIZE == SZ_64K && sectorsize == SZ_4K) {
3293 		if (!sb_rdonly(sb) || btrfs_super_log_root(disk_super)) {
3294 			btrfs_err(fs_info,
3295 	"subpage sectorsize %u only supported read-only for page size %lu",
3296 				sectorsize, PAGE_SIZE);
3297 			err = -EINVAL;
3298 			goto fail_alloc;
3299 		}
3300 	}
3301 
3302 	ret = btrfs_init_workqueues(fs_info, fs_devices);
3303 	if (ret) {
3304 		err = ret;
3305 		goto fail_sb_buffer;
3306 	}
3307 
3308 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3309 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3310 
3311 	sb->s_blocksize = sectorsize;
3312 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3313 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3314 
3315 	mutex_lock(&fs_info->chunk_mutex);
3316 	ret = btrfs_read_sys_array(fs_info);
3317 	mutex_unlock(&fs_info->chunk_mutex);
3318 	if (ret) {
3319 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3320 		goto fail_sb_buffer;
3321 	}
3322 
3323 	generation = btrfs_super_chunk_root_generation(disk_super);
3324 	level = btrfs_super_chunk_root_level(disk_super);
3325 
3326 	chunk_root->node = read_tree_block(fs_info,
3327 					   btrfs_super_chunk_root(disk_super),
3328 					   BTRFS_CHUNK_TREE_OBJECTID,
3329 					   generation, level, NULL);
3330 	if (IS_ERR(chunk_root->node) ||
3331 	    !extent_buffer_uptodate(chunk_root->node)) {
3332 		btrfs_err(fs_info, "failed to read chunk root");
3333 		if (!IS_ERR(chunk_root->node))
3334 			free_extent_buffer(chunk_root->node);
3335 		chunk_root->node = NULL;
3336 		goto fail_tree_roots;
3337 	}
3338 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3339 	chunk_root->commit_root = btrfs_root_node(chunk_root);
3340 
3341 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3342 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3343 			   BTRFS_UUID_SIZE);
3344 
3345 	ret = btrfs_read_chunk_tree(fs_info);
3346 	if (ret) {
3347 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3348 		goto fail_tree_roots;
3349 	}
3350 
3351 	/*
3352 	 * At this point we know all the devices that make this filesystem,
3353 	 * including the seed devices but we don't know yet if the replace
3354 	 * target is required. So free devices that are not part of this
3355 	 * filesystem but skip the replace traget device which is checked
3356 	 * below in btrfs_init_dev_replace().
3357 	 */
3358 	btrfs_free_extra_devids(fs_devices);
3359 	if (!fs_devices->latest_bdev) {
3360 		btrfs_err(fs_info, "failed to read devices");
3361 		goto fail_tree_roots;
3362 	}
3363 
3364 	ret = init_tree_roots(fs_info);
3365 	if (ret)
3366 		goto fail_tree_roots;
3367 
3368 	/*
3369 	 * Get zone type information of zoned block devices. This will also
3370 	 * handle emulation of a zoned filesystem if a regular device has the
3371 	 * zoned incompat feature flag set.
3372 	 */
3373 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3374 	if (ret) {
3375 		btrfs_err(fs_info,
3376 			  "zoned: failed to read device zone info: %d",
3377 			  ret);
3378 		goto fail_block_groups;
3379 	}
3380 
3381 	/*
3382 	 * If we have a uuid root and we're not being told to rescan we need to
3383 	 * check the generation here so we can set the
3384 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3385 	 * transaction during a balance or the log replay without updating the
3386 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3387 	 * even though it was perfectly fine.
3388 	 */
3389 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3390 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3391 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3392 
3393 	ret = btrfs_verify_dev_extents(fs_info);
3394 	if (ret) {
3395 		btrfs_err(fs_info,
3396 			  "failed to verify dev extents against chunks: %d",
3397 			  ret);
3398 		goto fail_block_groups;
3399 	}
3400 	ret = btrfs_recover_balance(fs_info);
3401 	if (ret) {
3402 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3403 		goto fail_block_groups;
3404 	}
3405 
3406 	ret = btrfs_init_dev_stats(fs_info);
3407 	if (ret) {
3408 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3409 		goto fail_block_groups;
3410 	}
3411 
3412 	ret = btrfs_init_dev_replace(fs_info);
3413 	if (ret) {
3414 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3415 		goto fail_block_groups;
3416 	}
3417 
3418 	ret = btrfs_check_zoned_mode(fs_info);
3419 	if (ret) {
3420 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3421 			  ret);
3422 		goto fail_block_groups;
3423 	}
3424 
3425 	ret = btrfs_sysfs_add_fsid(fs_devices);
3426 	if (ret) {
3427 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3428 				ret);
3429 		goto fail_block_groups;
3430 	}
3431 
3432 	ret = btrfs_sysfs_add_mounted(fs_info);
3433 	if (ret) {
3434 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3435 		goto fail_fsdev_sysfs;
3436 	}
3437 
3438 	ret = btrfs_init_space_info(fs_info);
3439 	if (ret) {
3440 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3441 		goto fail_sysfs;
3442 	}
3443 
3444 	ret = btrfs_read_block_groups(fs_info);
3445 	if (ret) {
3446 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3447 		goto fail_sysfs;
3448 	}
3449 
3450 	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3451 		btrfs_warn(fs_info,
3452 		"writable mount is not allowed due to too many missing devices");
3453 		goto fail_sysfs;
3454 	}
3455 
3456 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3457 					       "btrfs-cleaner");
3458 	if (IS_ERR(fs_info->cleaner_kthread))
3459 		goto fail_sysfs;
3460 
3461 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3462 						   tree_root,
3463 						   "btrfs-transaction");
3464 	if (IS_ERR(fs_info->transaction_kthread))
3465 		goto fail_cleaner;
3466 
3467 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3468 	    !fs_info->fs_devices->rotating) {
3469 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3470 	}
3471 
3472 	/*
3473 	 * Mount does not set all options immediately, we can do it now and do
3474 	 * not have to wait for transaction commit
3475 	 */
3476 	btrfs_apply_pending_changes(fs_info);
3477 
3478 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3479 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3480 		ret = btrfsic_mount(fs_info, fs_devices,
3481 				    btrfs_test_opt(fs_info,
3482 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3483 				    1 : 0,
3484 				    fs_info->check_integrity_print_mask);
3485 		if (ret)
3486 			btrfs_warn(fs_info,
3487 				"failed to initialize integrity check module: %d",
3488 				ret);
3489 	}
3490 #endif
3491 	ret = btrfs_read_qgroup_config(fs_info);
3492 	if (ret)
3493 		goto fail_trans_kthread;
3494 
3495 	if (btrfs_build_ref_tree(fs_info))
3496 		btrfs_err(fs_info, "couldn't build ref tree");
3497 
3498 	/* do not make disk changes in broken FS or nologreplay is given */
3499 	if (btrfs_super_log_root(disk_super) != 0 &&
3500 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3501 		btrfs_info(fs_info, "start tree-log replay");
3502 		ret = btrfs_replay_log(fs_info, fs_devices);
3503 		if (ret) {
3504 			err = ret;
3505 			goto fail_qgroup;
3506 		}
3507 	}
3508 
3509 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3510 	if (IS_ERR(fs_info->fs_root)) {
3511 		err = PTR_ERR(fs_info->fs_root);
3512 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3513 		fs_info->fs_root = NULL;
3514 		goto fail_qgroup;
3515 	}
3516 
3517 	if (sb_rdonly(sb))
3518 		goto clear_oneshot;
3519 
3520 	ret = btrfs_start_pre_rw_mount(fs_info);
3521 	if (ret) {
3522 		close_ctree(fs_info);
3523 		return ret;
3524 	}
3525 	btrfs_discard_resume(fs_info);
3526 
3527 	if (fs_info->uuid_root &&
3528 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3529 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3530 		btrfs_info(fs_info, "checking UUID tree");
3531 		ret = btrfs_check_uuid_tree(fs_info);
3532 		if (ret) {
3533 			btrfs_warn(fs_info,
3534 				"failed to check the UUID tree: %d", ret);
3535 			close_ctree(fs_info);
3536 			return ret;
3537 		}
3538 	}
3539 
3540 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3541 
3542 clear_oneshot:
3543 	btrfs_clear_oneshot_options(fs_info);
3544 	return 0;
3545 
3546 fail_qgroup:
3547 	btrfs_free_qgroup_config(fs_info);
3548 fail_trans_kthread:
3549 	kthread_stop(fs_info->transaction_kthread);
3550 	btrfs_cleanup_transaction(fs_info);
3551 	btrfs_free_fs_roots(fs_info);
3552 fail_cleaner:
3553 	kthread_stop(fs_info->cleaner_kthread);
3554 
3555 	/*
3556 	 * make sure we're done with the btree inode before we stop our
3557 	 * kthreads
3558 	 */
3559 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3560 
3561 fail_sysfs:
3562 	btrfs_sysfs_remove_mounted(fs_info);
3563 
3564 fail_fsdev_sysfs:
3565 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3566 
3567 fail_block_groups:
3568 	btrfs_put_block_group_cache(fs_info);
3569 
3570 fail_tree_roots:
3571 	if (fs_info->data_reloc_root)
3572 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3573 	free_root_pointers(fs_info, true);
3574 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3575 
3576 fail_sb_buffer:
3577 	btrfs_stop_all_workers(fs_info);
3578 	btrfs_free_block_groups(fs_info);
3579 fail_alloc:
3580 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3581 
3582 	iput(fs_info->btree_inode);
3583 fail:
3584 	btrfs_close_devices(fs_info->fs_devices);
3585 	return err;
3586 }
3587 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3588 
3589 static void btrfs_end_super_write(struct bio *bio)
3590 {
3591 	struct btrfs_device *device = bio->bi_private;
3592 	struct bio_vec *bvec;
3593 	struct bvec_iter_all iter_all;
3594 	struct page *page;
3595 
3596 	bio_for_each_segment_all(bvec, bio, iter_all) {
3597 		page = bvec->bv_page;
3598 
3599 		if (bio->bi_status) {
3600 			btrfs_warn_rl_in_rcu(device->fs_info,
3601 				"lost page write due to IO error on %s (%d)",
3602 				rcu_str_deref(device->name),
3603 				blk_status_to_errno(bio->bi_status));
3604 			ClearPageUptodate(page);
3605 			SetPageError(page);
3606 			btrfs_dev_stat_inc_and_print(device,
3607 						     BTRFS_DEV_STAT_WRITE_ERRS);
3608 		} else {
3609 			SetPageUptodate(page);
3610 		}
3611 
3612 		put_page(page);
3613 		unlock_page(page);
3614 	}
3615 
3616 	bio_put(bio);
3617 }
3618 
3619 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3620 						   int copy_num)
3621 {
3622 	struct btrfs_super_block *super;
3623 	struct page *page;
3624 	u64 bytenr, bytenr_orig;
3625 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3626 	int ret;
3627 
3628 	bytenr_orig = btrfs_sb_offset(copy_num);
3629 	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3630 	if (ret == -ENOENT)
3631 		return ERR_PTR(-EINVAL);
3632 	else if (ret)
3633 		return ERR_PTR(ret);
3634 
3635 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3636 		return ERR_PTR(-EINVAL);
3637 
3638 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3639 	if (IS_ERR(page))
3640 		return ERR_CAST(page);
3641 
3642 	super = page_address(page);
3643 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3644 		btrfs_release_disk_super(super);
3645 		return ERR_PTR(-ENODATA);
3646 	}
3647 
3648 	if (btrfs_super_bytenr(super) != bytenr_orig) {
3649 		btrfs_release_disk_super(super);
3650 		return ERR_PTR(-EINVAL);
3651 	}
3652 
3653 	return super;
3654 }
3655 
3656 
3657 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3658 {
3659 	struct btrfs_super_block *super, *latest = NULL;
3660 	int i;
3661 	u64 transid = 0;
3662 
3663 	/* we would like to check all the supers, but that would make
3664 	 * a btrfs mount succeed after a mkfs from a different FS.
3665 	 * So, we need to add a special mount option to scan for
3666 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3667 	 */
3668 	for (i = 0; i < 1; i++) {
3669 		super = btrfs_read_dev_one_super(bdev, i);
3670 		if (IS_ERR(super))
3671 			continue;
3672 
3673 		if (!latest || btrfs_super_generation(super) > transid) {
3674 			if (latest)
3675 				btrfs_release_disk_super(super);
3676 
3677 			latest = super;
3678 			transid = btrfs_super_generation(super);
3679 		}
3680 	}
3681 
3682 	return super;
3683 }
3684 
3685 /*
3686  * Write superblock @sb to the @device. Do not wait for completion, all the
3687  * pages we use for writing are locked.
3688  *
3689  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3690  * the expected device size at commit time. Note that max_mirrors must be
3691  * same for write and wait phases.
3692  *
3693  * Return number of errors when page is not found or submission fails.
3694  */
3695 static int write_dev_supers(struct btrfs_device *device,
3696 			    struct btrfs_super_block *sb, int max_mirrors)
3697 {
3698 	struct btrfs_fs_info *fs_info = device->fs_info;
3699 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3700 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3701 	int i;
3702 	int errors = 0;
3703 	int ret;
3704 	u64 bytenr, bytenr_orig;
3705 
3706 	if (max_mirrors == 0)
3707 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3708 
3709 	shash->tfm = fs_info->csum_shash;
3710 
3711 	for (i = 0; i < max_mirrors; i++) {
3712 		struct page *page;
3713 		struct bio *bio;
3714 		struct btrfs_super_block *disk_super;
3715 
3716 		bytenr_orig = btrfs_sb_offset(i);
3717 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3718 		if (ret == -ENOENT) {
3719 			continue;
3720 		} else if (ret < 0) {
3721 			btrfs_err(device->fs_info,
3722 				"couldn't get super block location for mirror %d",
3723 				i);
3724 			errors++;
3725 			continue;
3726 		}
3727 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3728 		    device->commit_total_bytes)
3729 			break;
3730 
3731 		btrfs_set_super_bytenr(sb, bytenr_orig);
3732 
3733 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3734 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3735 				    sb->csum);
3736 
3737 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3738 					   GFP_NOFS);
3739 		if (!page) {
3740 			btrfs_err(device->fs_info,
3741 			    "couldn't get super block page for bytenr %llu",
3742 			    bytenr);
3743 			errors++;
3744 			continue;
3745 		}
3746 
3747 		/* Bump the refcount for wait_dev_supers() */
3748 		get_page(page);
3749 
3750 		disk_super = page_address(page);
3751 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3752 
3753 		/*
3754 		 * Directly use bios here instead of relying on the page cache
3755 		 * to do I/O, so we don't lose the ability to do integrity
3756 		 * checking.
3757 		 */
3758 		bio = bio_alloc(GFP_NOFS, 1);
3759 		bio_set_dev(bio, device->bdev);
3760 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3761 		bio->bi_private = device;
3762 		bio->bi_end_io = btrfs_end_super_write;
3763 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3764 			       offset_in_page(bytenr));
3765 
3766 		/*
3767 		 * We FUA only the first super block.  The others we allow to
3768 		 * go down lazy and there's a short window where the on-disk
3769 		 * copies might still contain the older version.
3770 		 */
3771 		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3772 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3773 			bio->bi_opf |= REQ_FUA;
3774 
3775 		btrfsic_submit_bio(bio);
3776 		btrfs_advance_sb_log(device, i);
3777 	}
3778 	return errors < i ? 0 : -1;
3779 }
3780 
3781 /*
3782  * Wait for write completion of superblocks done by write_dev_supers,
3783  * @max_mirrors same for write and wait phases.
3784  *
3785  * Return number of errors when page is not found or not marked up to
3786  * date.
3787  */
3788 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3789 {
3790 	int i;
3791 	int errors = 0;
3792 	bool primary_failed = false;
3793 	int ret;
3794 	u64 bytenr;
3795 
3796 	if (max_mirrors == 0)
3797 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3798 
3799 	for (i = 0; i < max_mirrors; i++) {
3800 		struct page *page;
3801 
3802 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3803 		if (ret == -ENOENT) {
3804 			break;
3805 		} else if (ret < 0) {
3806 			errors++;
3807 			if (i == 0)
3808 				primary_failed = true;
3809 			continue;
3810 		}
3811 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3812 		    device->commit_total_bytes)
3813 			break;
3814 
3815 		page = find_get_page(device->bdev->bd_inode->i_mapping,
3816 				     bytenr >> PAGE_SHIFT);
3817 		if (!page) {
3818 			errors++;
3819 			if (i == 0)
3820 				primary_failed = true;
3821 			continue;
3822 		}
3823 		/* Page is submitted locked and unlocked once the IO completes */
3824 		wait_on_page_locked(page);
3825 		if (PageError(page)) {
3826 			errors++;
3827 			if (i == 0)
3828 				primary_failed = true;
3829 		}
3830 
3831 		/* Drop our reference */
3832 		put_page(page);
3833 
3834 		/* Drop the reference from the writing run */
3835 		put_page(page);
3836 	}
3837 
3838 	/* log error, force error return */
3839 	if (primary_failed) {
3840 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3841 			  device->devid);
3842 		return -1;
3843 	}
3844 
3845 	return errors < i ? 0 : -1;
3846 }
3847 
3848 /*
3849  * endio for the write_dev_flush, this will wake anyone waiting
3850  * for the barrier when it is done
3851  */
3852 static void btrfs_end_empty_barrier(struct bio *bio)
3853 {
3854 	complete(bio->bi_private);
3855 }
3856 
3857 /*
3858  * Submit a flush request to the device if it supports it. Error handling is
3859  * done in the waiting counterpart.
3860  */
3861 static void write_dev_flush(struct btrfs_device *device)
3862 {
3863 	struct request_queue *q = bdev_get_queue(device->bdev);
3864 	struct bio *bio = device->flush_bio;
3865 
3866 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3867 		return;
3868 
3869 	bio_reset(bio);
3870 	bio->bi_end_io = btrfs_end_empty_barrier;
3871 	bio_set_dev(bio, device->bdev);
3872 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3873 	init_completion(&device->flush_wait);
3874 	bio->bi_private = &device->flush_wait;
3875 
3876 	btrfsic_submit_bio(bio);
3877 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3878 }
3879 
3880 /*
3881  * If the flush bio has been submitted by write_dev_flush, wait for it.
3882  */
3883 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3884 {
3885 	struct bio *bio = device->flush_bio;
3886 
3887 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3888 		return BLK_STS_OK;
3889 
3890 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3891 	wait_for_completion_io(&device->flush_wait);
3892 
3893 	return bio->bi_status;
3894 }
3895 
3896 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3897 {
3898 	if (!btrfs_check_rw_degradable(fs_info, NULL))
3899 		return -EIO;
3900 	return 0;
3901 }
3902 
3903 /*
3904  * send an empty flush down to each device in parallel,
3905  * then wait for them
3906  */
3907 static int barrier_all_devices(struct btrfs_fs_info *info)
3908 {
3909 	struct list_head *head;
3910 	struct btrfs_device *dev;
3911 	int errors_wait = 0;
3912 	blk_status_t ret;
3913 
3914 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3915 	/* send down all the barriers */
3916 	head = &info->fs_devices->devices;
3917 	list_for_each_entry(dev, head, dev_list) {
3918 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3919 			continue;
3920 		if (!dev->bdev)
3921 			continue;
3922 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3923 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3924 			continue;
3925 
3926 		write_dev_flush(dev);
3927 		dev->last_flush_error = BLK_STS_OK;
3928 	}
3929 
3930 	/* wait for all the barriers */
3931 	list_for_each_entry(dev, head, dev_list) {
3932 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3933 			continue;
3934 		if (!dev->bdev) {
3935 			errors_wait++;
3936 			continue;
3937 		}
3938 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3939 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3940 			continue;
3941 
3942 		ret = wait_dev_flush(dev);
3943 		if (ret) {
3944 			dev->last_flush_error = ret;
3945 			btrfs_dev_stat_inc_and_print(dev,
3946 					BTRFS_DEV_STAT_FLUSH_ERRS);
3947 			errors_wait++;
3948 		}
3949 	}
3950 
3951 	if (errors_wait) {
3952 		/*
3953 		 * At some point we need the status of all disks
3954 		 * to arrive at the volume status. So error checking
3955 		 * is being pushed to a separate loop.
3956 		 */
3957 		return check_barrier_error(info);
3958 	}
3959 	return 0;
3960 }
3961 
3962 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3963 {
3964 	int raid_type;
3965 	int min_tolerated = INT_MAX;
3966 
3967 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3968 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3969 		min_tolerated = min_t(int, min_tolerated,
3970 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3971 				    tolerated_failures);
3972 
3973 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3974 		if (raid_type == BTRFS_RAID_SINGLE)
3975 			continue;
3976 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3977 			continue;
3978 		min_tolerated = min_t(int, min_tolerated,
3979 				    btrfs_raid_array[raid_type].
3980 				    tolerated_failures);
3981 	}
3982 
3983 	if (min_tolerated == INT_MAX) {
3984 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3985 		min_tolerated = 0;
3986 	}
3987 
3988 	return min_tolerated;
3989 }
3990 
3991 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3992 {
3993 	struct list_head *head;
3994 	struct btrfs_device *dev;
3995 	struct btrfs_super_block *sb;
3996 	struct btrfs_dev_item *dev_item;
3997 	int ret;
3998 	int do_barriers;
3999 	int max_errors;
4000 	int total_errors = 0;
4001 	u64 flags;
4002 
4003 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4004 
4005 	/*
4006 	 * max_mirrors == 0 indicates we're from commit_transaction,
4007 	 * not from fsync where the tree roots in fs_info have not
4008 	 * been consistent on disk.
4009 	 */
4010 	if (max_mirrors == 0)
4011 		backup_super_roots(fs_info);
4012 
4013 	sb = fs_info->super_for_commit;
4014 	dev_item = &sb->dev_item;
4015 
4016 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4017 	head = &fs_info->fs_devices->devices;
4018 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4019 
4020 	if (do_barriers) {
4021 		ret = barrier_all_devices(fs_info);
4022 		if (ret) {
4023 			mutex_unlock(
4024 				&fs_info->fs_devices->device_list_mutex);
4025 			btrfs_handle_fs_error(fs_info, ret,
4026 					      "errors while submitting device barriers.");
4027 			return ret;
4028 		}
4029 	}
4030 
4031 	list_for_each_entry(dev, head, dev_list) {
4032 		if (!dev->bdev) {
4033 			total_errors++;
4034 			continue;
4035 		}
4036 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4037 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4038 			continue;
4039 
4040 		btrfs_set_stack_device_generation(dev_item, 0);
4041 		btrfs_set_stack_device_type(dev_item, dev->type);
4042 		btrfs_set_stack_device_id(dev_item, dev->devid);
4043 		btrfs_set_stack_device_total_bytes(dev_item,
4044 						   dev->commit_total_bytes);
4045 		btrfs_set_stack_device_bytes_used(dev_item,
4046 						  dev->commit_bytes_used);
4047 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4048 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4049 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4050 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4051 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4052 		       BTRFS_FSID_SIZE);
4053 
4054 		flags = btrfs_super_flags(sb);
4055 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4056 
4057 		ret = btrfs_validate_write_super(fs_info, sb);
4058 		if (ret < 0) {
4059 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4060 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4061 				"unexpected superblock corruption detected");
4062 			return -EUCLEAN;
4063 		}
4064 
4065 		ret = write_dev_supers(dev, sb, max_mirrors);
4066 		if (ret)
4067 			total_errors++;
4068 	}
4069 	if (total_errors > max_errors) {
4070 		btrfs_err(fs_info, "%d errors while writing supers",
4071 			  total_errors);
4072 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4073 
4074 		/* FUA is masked off if unsupported and can't be the reason */
4075 		btrfs_handle_fs_error(fs_info, -EIO,
4076 				      "%d errors while writing supers",
4077 				      total_errors);
4078 		return -EIO;
4079 	}
4080 
4081 	total_errors = 0;
4082 	list_for_each_entry(dev, head, dev_list) {
4083 		if (!dev->bdev)
4084 			continue;
4085 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4086 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4087 			continue;
4088 
4089 		ret = wait_dev_supers(dev, max_mirrors);
4090 		if (ret)
4091 			total_errors++;
4092 	}
4093 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4094 	if (total_errors > max_errors) {
4095 		btrfs_handle_fs_error(fs_info, -EIO,
4096 				      "%d errors while writing supers",
4097 				      total_errors);
4098 		return -EIO;
4099 	}
4100 	return 0;
4101 }
4102 
4103 /* Drop a fs root from the radix tree and free it. */
4104 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4105 				  struct btrfs_root *root)
4106 {
4107 	bool drop_ref = false;
4108 
4109 	spin_lock(&fs_info->fs_roots_radix_lock);
4110 	radix_tree_delete(&fs_info->fs_roots_radix,
4111 			  (unsigned long)root->root_key.objectid);
4112 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4113 		drop_ref = true;
4114 	spin_unlock(&fs_info->fs_roots_radix_lock);
4115 
4116 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4117 		ASSERT(root->log_root == NULL);
4118 		if (root->reloc_root) {
4119 			btrfs_put_root(root->reloc_root);
4120 			root->reloc_root = NULL;
4121 		}
4122 	}
4123 
4124 	if (drop_ref)
4125 		btrfs_put_root(root);
4126 }
4127 
4128 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4129 {
4130 	u64 root_objectid = 0;
4131 	struct btrfs_root *gang[8];
4132 	int i = 0;
4133 	int err = 0;
4134 	unsigned int ret = 0;
4135 
4136 	while (1) {
4137 		spin_lock(&fs_info->fs_roots_radix_lock);
4138 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4139 					     (void **)gang, root_objectid,
4140 					     ARRAY_SIZE(gang));
4141 		if (!ret) {
4142 			spin_unlock(&fs_info->fs_roots_radix_lock);
4143 			break;
4144 		}
4145 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4146 
4147 		for (i = 0; i < ret; i++) {
4148 			/* Avoid to grab roots in dead_roots */
4149 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4150 				gang[i] = NULL;
4151 				continue;
4152 			}
4153 			/* grab all the search result for later use */
4154 			gang[i] = btrfs_grab_root(gang[i]);
4155 		}
4156 		spin_unlock(&fs_info->fs_roots_radix_lock);
4157 
4158 		for (i = 0; i < ret; i++) {
4159 			if (!gang[i])
4160 				continue;
4161 			root_objectid = gang[i]->root_key.objectid;
4162 			err = btrfs_orphan_cleanup(gang[i]);
4163 			if (err)
4164 				break;
4165 			btrfs_put_root(gang[i]);
4166 		}
4167 		root_objectid++;
4168 	}
4169 
4170 	/* release the uncleaned roots due to error */
4171 	for (; i < ret; i++) {
4172 		if (gang[i])
4173 			btrfs_put_root(gang[i]);
4174 	}
4175 	return err;
4176 }
4177 
4178 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4179 {
4180 	struct btrfs_root *root = fs_info->tree_root;
4181 	struct btrfs_trans_handle *trans;
4182 
4183 	mutex_lock(&fs_info->cleaner_mutex);
4184 	btrfs_run_delayed_iputs(fs_info);
4185 	mutex_unlock(&fs_info->cleaner_mutex);
4186 	wake_up_process(fs_info->cleaner_kthread);
4187 
4188 	/* wait until ongoing cleanup work done */
4189 	down_write(&fs_info->cleanup_work_sem);
4190 	up_write(&fs_info->cleanup_work_sem);
4191 
4192 	trans = btrfs_join_transaction(root);
4193 	if (IS_ERR(trans))
4194 		return PTR_ERR(trans);
4195 	return btrfs_commit_transaction(trans);
4196 }
4197 
4198 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4199 {
4200 	int ret;
4201 
4202 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4203 	/*
4204 	 * We don't want the cleaner to start new transactions, add more delayed
4205 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4206 	 * because that frees the task_struct, and the transaction kthread might
4207 	 * still try to wake up the cleaner.
4208 	 */
4209 	kthread_park(fs_info->cleaner_kthread);
4210 
4211 	/* wait for the qgroup rescan worker to stop */
4212 	btrfs_qgroup_wait_for_completion(fs_info, false);
4213 
4214 	/* wait for the uuid_scan task to finish */
4215 	down(&fs_info->uuid_tree_rescan_sem);
4216 	/* avoid complains from lockdep et al., set sem back to initial state */
4217 	up(&fs_info->uuid_tree_rescan_sem);
4218 
4219 	/* pause restriper - we want to resume on mount */
4220 	btrfs_pause_balance(fs_info);
4221 
4222 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4223 
4224 	btrfs_scrub_cancel(fs_info);
4225 
4226 	/* wait for any defraggers to finish */
4227 	wait_event(fs_info->transaction_wait,
4228 		   (atomic_read(&fs_info->defrag_running) == 0));
4229 
4230 	/* clear out the rbtree of defraggable inodes */
4231 	btrfs_cleanup_defrag_inodes(fs_info);
4232 
4233 	cancel_work_sync(&fs_info->async_reclaim_work);
4234 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4235 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4236 
4237 	/* Cancel or finish ongoing discard work */
4238 	btrfs_discard_cleanup(fs_info);
4239 
4240 	if (!sb_rdonly(fs_info->sb)) {
4241 		/*
4242 		 * The cleaner kthread is stopped, so do one final pass over
4243 		 * unused block groups.
4244 		 */
4245 		btrfs_delete_unused_bgs(fs_info);
4246 
4247 		/*
4248 		 * There might be existing delayed inode workers still running
4249 		 * and holding an empty delayed inode item. We must wait for
4250 		 * them to complete first because they can create a transaction.
4251 		 * This happens when someone calls btrfs_balance_delayed_items()
4252 		 * and then a transaction commit runs the same delayed nodes
4253 		 * before any delayed worker has done something with the nodes.
4254 		 * We must wait for any worker here and not at transaction
4255 		 * commit time since that could cause a deadlock.
4256 		 * This is a very rare case.
4257 		 */
4258 		btrfs_flush_workqueue(fs_info->delayed_workers);
4259 
4260 		ret = btrfs_commit_super(fs_info);
4261 		if (ret)
4262 			btrfs_err(fs_info, "commit super ret %d", ret);
4263 	}
4264 
4265 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4266 	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4267 		btrfs_error_commit_super(fs_info);
4268 
4269 	kthread_stop(fs_info->transaction_kthread);
4270 	kthread_stop(fs_info->cleaner_kthread);
4271 
4272 	ASSERT(list_empty(&fs_info->delayed_iputs));
4273 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4274 
4275 	if (btrfs_check_quota_leak(fs_info)) {
4276 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4277 		btrfs_err(fs_info, "qgroup reserved space leaked");
4278 	}
4279 
4280 	btrfs_free_qgroup_config(fs_info);
4281 	ASSERT(list_empty(&fs_info->delalloc_roots));
4282 
4283 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4284 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4285 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4286 	}
4287 
4288 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4289 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4290 			   percpu_counter_sum(&fs_info->ordered_bytes));
4291 
4292 	btrfs_sysfs_remove_mounted(fs_info);
4293 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4294 
4295 	btrfs_put_block_group_cache(fs_info);
4296 
4297 	/*
4298 	 * we must make sure there is not any read request to
4299 	 * submit after we stopping all workers.
4300 	 */
4301 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4302 	btrfs_stop_all_workers(fs_info);
4303 
4304 	/* We shouldn't have any transaction open at this point */
4305 	ASSERT(list_empty(&fs_info->trans_list));
4306 
4307 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4308 	free_root_pointers(fs_info, true);
4309 	btrfs_free_fs_roots(fs_info);
4310 
4311 	/*
4312 	 * We must free the block groups after dropping the fs_roots as we could
4313 	 * have had an IO error and have left over tree log blocks that aren't
4314 	 * cleaned up until the fs roots are freed.  This makes the block group
4315 	 * accounting appear to be wrong because there's pending reserved bytes,
4316 	 * so make sure we do the block group cleanup afterwards.
4317 	 */
4318 	btrfs_free_block_groups(fs_info);
4319 
4320 	iput(fs_info->btree_inode);
4321 
4322 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4323 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4324 		btrfsic_unmount(fs_info->fs_devices);
4325 #endif
4326 
4327 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4328 	btrfs_close_devices(fs_info->fs_devices);
4329 }
4330 
4331 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4332 			  int atomic)
4333 {
4334 	int ret;
4335 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4336 
4337 	ret = extent_buffer_uptodate(buf);
4338 	if (!ret)
4339 		return ret;
4340 
4341 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4342 				    parent_transid, atomic);
4343 	if (ret == -EAGAIN)
4344 		return ret;
4345 	return !ret;
4346 }
4347 
4348 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4349 {
4350 	struct btrfs_fs_info *fs_info = buf->fs_info;
4351 	u64 transid = btrfs_header_generation(buf);
4352 	int was_dirty;
4353 
4354 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4355 	/*
4356 	 * This is a fast path so only do this check if we have sanity tests
4357 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4358 	 * outside of the sanity tests.
4359 	 */
4360 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4361 		return;
4362 #endif
4363 	btrfs_assert_tree_locked(buf);
4364 	if (transid != fs_info->generation)
4365 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4366 			buf->start, transid, fs_info->generation);
4367 	was_dirty = set_extent_buffer_dirty(buf);
4368 	if (!was_dirty)
4369 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4370 					 buf->len,
4371 					 fs_info->dirty_metadata_batch);
4372 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4373 	/*
4374 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4375 	 * but item data not updated.
4376 	 * So here we should only check item pointers, not item data.
4377 	 */
4378 	if (btrfs_header_level(buf) == 0 &&
4379 	    btrfs_check_leaf_relaxed(buf)) {
4380 		btrfs_print_leaf(buf);
4381 		ASSERT(0);
4382 	}
4383 #endif
4384 }
4385 
4386 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4387 					int flush_delayed)
4388 {
4389 	/*
4390 	 * looks as though older kernels can get into trouble with
4391 	 * this code, they end up stuck in balance_dirty_pages forever
4392 	 */
4393 	int ret;
4394 
4395 	if (current->flags & PF_MEMALLOC)
4396 		return;
4397 
4398 	if (flush_delayed)
4399 		btrfs_balance_delayed_items(fs_info);
4400 
4401 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4402 				     BTRFS_DIRTY_METADATA_THRESH,
4403 				     fs_info->dirty_metadata_batch);
4404 	if (ret > 0) {
4405 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4406 	}
4407 }
4408 
4409 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4410 {
4411 	__btrfs_btree_balance_dirty(fs_info, 1);
4412 }
4413 
4414 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4415 {
4416 	__btrfs_btree_balance_dirty(fs_info, 0);
4417 }
4418 
4419 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4420 		      struct btrfs_key *first_key)
4421 {
4422 	return btree_read_extent_buffer_pages(buf, parent_transid,
4423 					      level, first_key);
4424 }
4425 
4426 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4427 {
4428 	/* cleanup FS via transaction */
4429 	btrfs_cleanup_transaction(fs_info);
4430 
4431 	mutex_lock(&fs_info->cleaner_mutex);
4432 	btrfs_run_delayed_iputs(fs_info);
4433 	mutex_unlock(&fs_info->cleaner_mutex);
4434 
4435 	down_write(&fs_info->cleanup_work_sem);
4436 	up_write(&fs_info->cleanup_work_sem);
4437 }
4438 
4439 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4440 {
4441 	struct btrfs_root *gang[8];
4442 	u64 root_objectid = 0;
4443 	int ret;
4444 
4445 	spin_lock(&fs_info->fs_roots_radix_lock);
4446 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4447 					     (void **)gang, root_objectid,
4448 					     ARRAY_SIZE(gang))) != 0) {
4449 		int i;
4450 
4451 		for (i = 0; i < ret; i++)
4452 			gang[i] = btrfs_grab_root(gang[i]);
4453 		spin_unlock(&fs_info->fs_roots_radix_lock);
4454 
4455 		for (i = 0; i < ret; i++) {
4456 			if (!gang[i])
4457 				continue;
4458 			root_objectid = gang[i]->root_key.objectid;
4459 			btrfs_free_log(NULL, gang[i]);
4460 			btrfs_put_root(gang[i]);
4461 		}
4462 		root_objectid++;
4463 		spin_lock(&fs_info->fs_roots_radix_lock);
4464 	}
4465 	spin_unlock(&fs_info->fs_roots_radix_lock);
4466 	btrfs_free_log_root_tree(NULL, fs_info);
4467 }
4468 
4469 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4470 {
4471 	struct btrfs_ordered_extent *ordered;
4472 
4473 	spin_lock(&root->ordered_extent_lock);
4474 	/*
4475 	 * This will just short circuit the ordered completion stuff which will
4476 	 * make sure the ordered extent gets properly cleaned up.
4477 	 */
4478 	list_for_each_entry(ordered, &root->ordered_extents,
4479 			    root_extent_list)
4480 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4481 	spin_unlock(&root->ordered_extent_lock);
4482 }
4483 
4484 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4485 {
4486 	struct btrfs_root *root;
4487 	struct list_head splice;
4488 
4489 	INIT_LIST_HEAD(&splice);
4490 
4491 	spin_lock(&fs_info->ordered_root_lock);
4492 	list_splice_init(&fs_info->ordered_roots, &splice);
4493 	while (!list_empty(&splice)) {
4494 		root = list_first_entry(&splice, struct btrfs_root,
4495 					ordered_root);
4496 		list_move_tail(&root->ordered_root,
4497 			       &fs_info->ordered_roots);
4498 
4499 		spin_unlock(&fs_info->ordered_root_lock);
4500 		btrfs_destroy_ordered_extents(root);
4501 
4502 		cond_resched();
4503 		spin_lock(&fs_info->ordered_root_lock);
4504 	}
4505 	spin_unlock(&fs_info->ordered_root_lock);
4506 
4507 	/*
4508 	 * We need this here because if we've been flipped read-only we won't
4509 	 * get sync() from the umount, so we need to make sure any ordered
4510 	 * extents that haven't had their dirty pages IO start writeout yet
4511 	 * actually get run and error out properly.
4512 	 */
4513 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4514 }
4515 
4516 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4517 				      struct btrfs_fs_info *fs_info)
4518 {
4519 	struct rb_node *node;
4520 	struct btrfs_delayed_ref_root *delayed_refs;
4521 	struct btrfs_delayed_ref_node *ref;
4522 	int ret = 0;
4523 
4524 	delayed_refs = &trans->delayed_refs;
4525 
4526 	spin_lock(&delayed_refs->lock);
4527 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4528 		spin_unlock(&delayed_refs->lock);
4529 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4530 		return ret;
4531 	}
4532 
4533 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4534 		struct btrfs_delayed_ref_head *head;
4535 		struct rb_node *n;
4536 		bool pin_bytes = false;
4537 
4538 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4539 				href_node);
4540 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4541 			continue;
4542 
4543 		spin_lock(&head->lock);
4544 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4545 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4546 				       ref_node);
4547 			ref->in_tree = 0;
4548 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4549 			RB_CLEAR_NODE(&ref->ref_node);
4550 			if (!list_empty(&ref->add_list))
4551 				list_del(&ref->add_list);
4552 			atomic_dec(&delayed_refs->num_entries);
4553 			btrfs_put_delayed_ref(ref);
4554 		}
4555 		if (head->must_insert_reserved)
4556 			pin_bytes = true;
4557 		btrfs_free_delayed_extent_op(head->extent_op);
4558 		btrfs_delete_ref_head(delayed_refs, head);
4559 		spin_unlock(&head->lock);
4560 		spin_unlock(&delayed_refs->lock);
4561 		mutex_unlock(&head->mutex);
4562 
4563 		if (pin_bytes) {
4564 			struct btrfs_block_group *cache;
4565 
4566 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4567 			BUG_ON(!cache);
4568 
4569 			spin_lock(&cache->space_info->lock);
4570 			spin_lock(&cache->lock);
4571 			cache->pinned += head->num_bytes;
4572 			btrfs_space_info_update_bytes_pinned(fs_info,
4573 				cache->space_info, head->num_bytes);
4574 			cache->reserved -= head->num_bytes;
4575 			cache->space_info->bytes_reserved -= head->num_bytes;
4576 			spin_unlock(&cache->lock);
4577 			spin_unlock(&cache->space_info->lock);
4578 			percpu_counter_add_batch(
4579 				&cache->space_info->total_bytes_pinned,
4580 				head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4581 
4582 			btrfs_put_block_group(cache);
4583 
4584 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4585 				head->bytenr + head->num_bytes - 1);
4586 		}
4587 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4588 		btrfs_put_delayed_ref_head(head);
4589 		cond_resched();
4590 		spin_lock(&delayed_refs->lock);
4591 	}
4592 	btrfs_qgroup_destroy_extent_records(trans);
4593 
4594 	spin_unlock(&delayed_refs->lock);
4595 
4596 	return ret;
4597 }
4598 
4599 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4600 {
4601 	struct btrfs_inode *btrfs_inode;
4602 	struct list_head splice;
4603 
4604 	INIT_LIST_HEAD(&splice);
4605 
4606 	spin_lock(&root->delalloc_lock);
4607 	list_splice_init(&root->delalloc_inodes, &splice);
4608 
4609 	while (!list_empty(&splice)) {
4610 		struct inode *inode = NULL;
4611 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4612 					       delalloc_inodes);
4613 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4614 		spin_unlock(&root->delalloc_lock);
4615 
4616 		/*
4617 		 * Make sure we get a live inode and that it'll not disappear
4618 		 * meanwhile.
4619 		 */
4620 		inode = igrab(&btrfs_inode->vfs_inode);
4621 		if (inode) {
4622 			invalidate_inode_pages2(inode->i_mapping);
4623 			iput(inode);
4624 		}
4625 		spin_lock(&root->delalloc_lock);
4626 	}
4627 	spin_unlock(&root->delalloc_lock);
4628 }
4629 
4630 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4631 {
4632 	struct btrfs_root *root;
4633 	struct list_head splice;
4634 
4635 	INIT_LIST_HEAD(&splice);
4636 
4637 	spin_lock(&fs_info->delalloc_root_lock);
4638 	list_splice_init(&fs_info->delalloc_roots, &splice);
4639 	while (!list_empty(&splice)) {
4640 		root = list_first_entry(&splice, struct btrfs_root,
4641 					 delalloc_root);
4642 		root = btrfs_grab_root(root);
4643 		BUG_ON(!root);
4644 		spin_unlock(&fs_info->delalloc_root_lock);
4645 
4646 		btrfs_destroy_delalloc_inodes(root);
4647 		btrfs_put_root(root);
4648 
4649 		spin_lock(&fs_info->delalloc_root_lock);
4650 	}
4651 	spin_unlock(&fs_info->delalloc_root_lock);
4652 }
4653 
4654 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4655 					struct extent_io_tree *dirty_pages,
4656 					int mark)
4657 {
4658 	int ret;
4659 	struct extent_buffer *eb;
4660 	u64 start = 0;
4661 	u64 end;
4662 
4663 	while (1) {
4664 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4665 					    mark, NULL);
4666 		if (ret)
4667 			break;
4668 
4669 		clear_extent_bits(dirty_pages, start, end, mark);
4670 		while (start <= end) {
4671 			eb = find_extent_buffer(fs_info, start);
4672 			start += fs_info->nodesize;
4673 			if (!eb)
4674 				continue;
4675 			wait_on_extent_buffer_writeback(eb);
4676 
4677 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4678 					       &eb->bflags))
4679 				clear_extent_buffer_dirty(eb);
4680 			free_extent_buffer_stale(eb);
4681 		}
4682 	}
4683 
4684 	return ret;
4685 }
4686 
4687 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4688 				       struct extent_io_tree *unpin)
4689 {
4690 	u64 start;
4691 	u64 end;
4692 	int ret;
4693 
4694 	while (1) {
4695 		struct extent_state *cached_state = NULL;
4696 
4697 		/*
4698 		 * The btrfs_finish_extent_commit() may get the same range as
4699 		 * ours between find_first_extent_bit and clear_extent_dirty.
4700 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4701 		 * the same extent range.
4702 		 */
4703 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4704 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4705 					    EXTENT_DIRTY, &cached_state);
4706 		if (ret) {
4707 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4708 			break;
4709 		}
4710 
4711 		clear_extent_dirty(unpin, start, end, &cached_state);
4712 		free_extent_state(cached_state);
4713 		btrfs_error_unpin_extent_range(fs_info, start, end);
4714 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4715 		cond_resched();
4716 	}
4717 
4718 	return 0;
4719 }
4720 
4721 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4722 {
4723 	struct inode *inode;
4724 
4725 	inode = cache->io_ctl.inode;
4726 	if (inode) {
4727 		invalidate_inode_pages2(inode->i_mapping);
4728 		BTRFS_I(inode)->generation = 0;
4729 		cache->io_ctl.inode = NULL;
4730 		iput(inode);
4731 	}
4732 	ASSERT(cache->io_ctl.pages == NULL);
4733 	btrfs_put_block_group(cache);
4734 }
4735 
4736 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4737 			     struct btrfs_fs_info *fs_info)
4738 {
4739 	struct btrfs_block_group *cache;
4740 
4741 	spin_lock(&cur_trans->dirty_bgs_lock);
4742 	while (!list_empty(&cur_trans->dirty_bgs)) {
4743 		cache = list_first_entry(&cur_trans->dirty_bgs,
4744 					 struct btrfs_block_group,
4745 					 dirty_list);
4746 
4747 		if (!list_empty(&cache->io_list)) {
4748 			spin_unlock(&cur_trans->dirty_bgs_lock);
4749 			list_del_init(&cache->io_list);
4750 			btrfs_cleanup_bg_io(cache);
4751 			spin_lock(&cur_trans->dirty_bgs_lock);
4752 		}
4753 
4754 		list_del_init(&cache->dirty_list);
4755 		spin_lock(&cache->lock);
4756 		cache->disk_cache_state = BTRFS_DC_ERROR;
4757 		spin_unlock(&cache->lock);
4758 
4759 		spin_unlock(&cur_trans->dirty_bgs_lock);
4760 		btrfs_put_block_group(cache);
4761 		btrfs_delayed_refs_rsv_release(fs_info, 1);
4762 		spin_lock(&cur_trans->dirty_bgs_lock);
4763 	}
4764 	spin_unlock(&cur_trans->dirty_bgs_lock);
4765 
4766 	/*
4767 	 * Refer to the definition of io_bgs member for details why it's safe
4768 	 * to use it without any locking
4769 	 */
4770 	while (!list_empty(&cur_trans->io_bgs)) {
4771 		cache = list_first_entry(&cur_trans->io_bgs,
4772 					 struct btrfs_block_group,
4773 					 io_list);
4774 
4775 		list_del_init(&cache->io_list);
4776 		spin_lock(&cache->lock);
4777 		cache->disk_cache_state = BTRFS_DC_ERROR;
4778 		spin_unlock(&cache->lock);
4779 		btrfs_cleanup_bg_io(cache);
4780 	}
4781 }
4782 
4783 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4784 				   struct btrfs_fs_info *fs_info)
4785 {
4786 	struct btrfs_device *dev, *tmp;
4787 
4788 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4789 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4790 	ASSERT(list_empty(&cur_trans->io_bgs));
4791 
4792 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4793 				 post_commit_list) {
4794 		list_del_init(&dev->post_commit_list);
4795 	}
4796 
4797 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4798 
4799 	cur_trans->state = TRANS_STATE_COMMIT_START;
4800 	wake_up(&fs_info->transaction_blocked_wait);
4801 
4802 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4803 	wake_up(&fs_info->transaction_wait);
4804 
4805 	btrfs_destroy_delayed_inodes(fs_info);
4806 
4807 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4808 				     EXTENT_DIRTY);
4809 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4810 
4811 	btrfs_free_redirty_list(cur_trans);
4812 
4813 	cur_trans->state =TRANS_STATE_COMPLETED;
4814 	wake_up(&cur_trans->commit_wait);
4815 }
4816 
4817 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4818 {
4819 	struct btrfs_transaction *t;
4820 
4821 	mutex_lock(&fs_info->transaction_kthread_mutex);
4822 
4823 	spin_lock(&fs_info->trans_lock);
4824 	while (!list_empty(&fs_info->trans_list)) {
4825 		t = list_first_entry(&fs_info->trans_list,
4826 				     struct btrfs_transaction, list);
4827 		if (t->state >= TRANS_STATE_COMMIT_START) {
4828 			refcount_inc(&t->use_count);
4829 			spin_unlock(&fs_info->trans_lock);
4830 			btrfs_wait_for_commit(fs_info, t->transid);
4831 			btrfs_put_transaction(t);
4832 			spin_lock(&fs_info->trans_lock);
4833 			continue;
4834 		}
4835 		if (t == fs_info->running_transaction) {
4836 			t->state = TRANS_STATE_COMMIT_DOING;
4837 			spin_unlock(&fs_info->trans_lock);
4838 			/*
4839 			 * We wait for 0 num_writers since we don't hold a trans
4840 			 * handle open currently for this transaction.
4841 			 */
4842 			wait_event(t->writer_wait,
4843 				   atomic_read(&t->num_writers) == 0);
4844 		} else {
4845 			spin_unlock(&fs_info->trans_lock);
4846 		}
4847 		btrfs_cleanup_one_transaction(t, fs_info);
4848 
4849 		spin_lock(&fs_info->trans_lock);
4850 		if (t == fs_info->running_transaction)
4851 			fs_info->running_transaction = NULL;
4852 		list_del_init(&t->list);
4853 		spin_unlock(&fs_info->trans_lock);
4854 
4855 		btrfs_put_transaction(t);
4856 		trace_btrfs_transaction_commit(fs_info->tree_root);
4857 		spin_lock(&fs_info->trans_lock);
4858 	}
4859 	spin_unlock(&fs_info->trans_lock);
4860 	btrfs_destroy_all_ordered_extents(fs_info);
4861 	btrfs_destroy_delayed_inodes(fs_info);
4862 	btrfs_assert_delayed_root_empty(fs_info);
4863 	btrfs_destroy_all_delalloc_inodes(fs_info);
4864 	btrfs_drop_all_logs(fs_info);
4865 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4866 
4867 	return 0;
4868 }
4869 
4870 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4871 {
4872 	struct btrfs_path *path;
4873 	int ret;
4874 	struct extent_buffer *l;
4875 	struct btrfs_key search_key;
4876 	struct btrfs_key found_key;
4877 	int slot;
4878 
4879 	path = btrfs_alloc_path();
4880 	if (!path)
4881 		return -ENOMEM;
4882 
4883 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4884 	search_key.type = -1;
4885 	search_key.offset = (u64)-1;
4886 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4887 	if (ret < 0)
4888 		goto error;
4889 	BUG_ON(ret == 0); /* Corruption */
4890 	if (path->slots[0] > 0) {
4891 		slot = path->slots[0] - 1;
4892 		l = path->nodes[0];
4893 		btrfs_item_key_to_cpu(l, &found_key, slot);
4894 		root->free_objectid = max_t(u64, found_key.objectid + 1,
4895 					    BTRFS_FIRST_FREE_OBJECTID);
4896 	} else {
4897 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4898 	}
4899 	ret = 0;
4900 error:
4901 	btrfs_free_path(path);
4902 	return ret;
4903 }
4904 
4905 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4906 {
4907 	int ret;
4908 	mutex_lock(&root->objectid_mutex);
4909 
4910 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4911 		btrfs_warn(root->fs_info,
4912 			   "the objectid of root %llu reaches its highest value",
4913 			   root->root_key.objectid);
4914 		ret = -ENOSPC;
4915 		goto out;
4916 	}
4917 
4918 	*objectid = root->free_objectid++;
4919 	ret = 0;
4920 out:
4921 	mutex_unlock(&root->objectid_mutex);
4922 	return ret;
4923 }
4924