1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/buffer_head.h> 11 #include <linux/workqueue.h> 12 #include <linux/kthread.h> 13 #include <linux/slab.h> 14 #include <linux/migrate.h> 15 #include <linux/ratelimit.h> 16 #include <linux/uuid.h> 17 #include <linux/semaphore.h> 18 #include <linux/error-injection.h> 19 #include <linux/crc32c.h> 20 #include <asm/unaligned.h> 21 #include "ctree.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "btrfs_inode.h" 25 #include "volumes.h" 26 #include "print-tree.h" 27 #include "locking.h" 28 #include "tree-log.h" 29 #include "free-space-cache.h" 30 #include "free-space-tree.h" 31 #include "inode-map.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 42 #ifdef CONFIG_X86 43 #include <asm/cpufeature.h> 44 #endif 45 46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 47 BTRFS_HEADER_FLAG_RELOC |\ 48 BTRFS_SUPER_FLAG_ERROR |\ 49 BTRFS_SUPER_FLAG_SEEDING |\ 50 BTRFS_SUPER_FLAG_METADUMP |\ 51 BTRFS_SUPER_FLAG_METADUMP_V2) 52 53 static const struct extent_io_ops btree_extent_io_ops; 54 static void end_workqueue_fn(struct btrfs_work *work); 55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 57 struct btrfs_fs_info *fs_info); 58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 60 struct extent_io_tree *dirty_pages, 61 int mark); 62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 63 struct extent_io_tree *pinned_extents); 64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 66 67 /* 68 * btrfs_end_io_wq structs are used to do processing in task context when an IO 69 * is complete. This is used during reads to verify checksums, and it is used 70 * by writes to insert metadata for new file extents after IO is complete. 71 */ 72 struct btrfs_end_io_wq { 73 struct bio *bio; 74 bio_end_io_t *end_io; 75 void *private; 76 struct btrfs_fs_info *info; 77 blk_status_t status; 78 enum btrfs_wq_endio_type metadata; 79 struct btrfs_work work; 80 }; 81 82 static struct kmem_cache *btrfs_end_io_wq_cache; 83 84 int __init btrfs_end_io_wq_init(void) 85 { 86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 87 sizeof(struct btrfs_end_io_wq), 88 0, 89 SLAB_MEM_SPREAD, 90 NULL); 91 if (!btrfs_end_io_wq_cache) 92 return -ENOMEM; 93 return 0; 94 } 95 96 void __cold btrfs_end_io_wq_exit(void) 97 { 98 kmem_cache_destroy(btrfs_end_io_wq_cache); 99 } 100 101 /* 102 * async submit bios are used to offload expensive checksumming 103 * onto the worker threads. They checksum file and metadata bios 104 * just before they are sent down the IO stack. 105 */ 106 struct async_submit_bio { 107 void *private_data; 108 struct bio *bio; 109 extent_submit_bio_start_t *submit_bio_start; 110 int mirror_num; 111 /* 112 * bio_offset is optional, can be used if the pages in the bio 113 * can't tell us where in the file the bio should go 114 */ 115 u64 bio_offset; 116 struct btrfs_work work; 117 blk_status_t status; 118 }; 119 120 /* 121 * Lockdep class keys for extent_buffer->lock's in this root. For a given 122 * eb, the lockdep key is determined by the btrfs_root it belongs to and 123 * the level the eb occupies in the tree. 124 * 125 * Different roots are used for different purposes and may nest inside each 126 * other and they require separate keysets. As lockdep keys should be 127 * static, assign keysets according to the purpose of the root as indicated 128 * by btrfs_root->root_key.objectid. This ensures that all special purpose 129 * roots have separate keysets. 130 * 131 * Lock-nesting across peer nodes is always done with the immediate parent 132 * node locked thus preventing deadlock. As lockdep doesn't know this, use 133 * subclass to avoid triggering lockdep warning in such cases. 134 * 135 * The key is set by the readpage_end_io_hook after the buffer has passed 136 * csum validation but before the pages are unlocked. It is also set by 137 * btrfs_init_new_buffer on freshly allocated blocks. 138 * 139 * We also add a check to make sure the highest level of the tree is the 140 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 141 * needs update as well. 142 */ 143 #ifdef CONFIG_DEBUG_LOCK_ALLOC 144 # if BTRFS_MAX_LEVEL != 8 145 # error 146 # endif 147 148 static struct btrfs_lockdep_keyset { 149 u64 id; /* root objectid */ 150 const char *name_stem; /* lock name stem */ 151 char names[BTRFS_MAX_LEVEL + 1][20]; 152 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 153 } btrfs_lockdep_keysets[] = { 154 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 155 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 156 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 157 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 158 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 159 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 160 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 161 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 162 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 163 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 164 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 165 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 166 { .id = 0, .name_stem = "tree" }, 167 }; 168 169 void __init btrfs_init_lockdep(void) 170 { 171 int i, j; 172 173 /* initialize lockdep class names */ 174 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 175 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 176 177 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 178 snprintf(ks->names[j], sizeof(ks->names[j]), 179 "btrfs-%s-%02d", ks->name_stem, j); 180 } 181 } 182 183 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 184 int level) 185 { 186 struct btrfs_lockdep_keyset *ks; 187 188 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 189 190 /* find the matching keyset, id 0 is the default entry */ 191 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 192 if (ks->id == objectid) 193 break; 194 195 lockdep_set_class_and_name(&eb->lock, 196 &ks->keys[level], ks->names[level]); 197 } 198 199 #endif 200 201 /* 202 * extents on the btree inode are pretty simple, there's one extent 203 * that covers the entire device 204 */ 205 struct extent_map *btree_get_extent(struct btrfs_inode *inode, 206 struct page *page, size_t pg_offset, u64 start, u64 len, 207 int create) 208 { 209 struct btrfs_fs_info *fs_info = inode->root->fs_info; 210 struct extent_map_tree *em_tree = &inode->extent_tree; 211 struct extent_map *em; 212 int ret; 213 214 read_lock(&em_tree->lock); 215 em = lookup_extent_mapping(em_tree, start, len); 216 if (em) { 217 em->bdev = fs_info->fs_devices->latest_bdev; 218 read_unlock(&em_tree->lock); 219 goto out; 220 } 221 read_unlock(&em_tree->lock); 222 223 em = alloc_extent_map(); 224 if (!em) { 225 em = ERR_PTR(-ENOMEM); 226 goto out; 227 } 228 em->start = 0; 229 em->len = (u64)-1; 230 em->block_len = (u64)-1; 231 em->block_start = 0; 232 em->bdev = fs_info->fs_devices->latest_bdev; 233 234 write_lock(&em_tree->lock); 235 ret = add_extent_mapping(em_tree, em, 0); 236 if (ret == -EEXIST) { 237 free_extent_map(em); 238 em = lookup_extent_mapping(em_tree, start, len); 239 if (!em) 240 em = ERR_PTR(-EIO); 241 } else if (ret) { 242 free_extent_map(em); 243 em = ERR_PTR(ret); 244 } 245 write_unlock(&em_tree->lock); 246 247 out: 248 return em; 249 } 250 251 u32 btrfs_csum_data(const char *data, u32 seed, size_t len) 252 { 253 return crc32c(seed, data, len); 254 } 255 256 void btrfs_csum_final(u32 crc, u8 *result) 257 { 258 put_unaligned_le32(~crc, result); 259 } 260 261 /* 262 * compute the csum for a btree block, and either verify it or write it 263 * into the csum field of the block. 264 */ 265 static int csum_tree_block(struct btrfs_fs_info *fs_info, 266 struct extent_buffer *buf, 267 int verify) 268 { 269 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 270 char result[BTRFS_CSUM_SIZE]; 271 unsigned long len; 272 unsigned long cur_len; 273 unsigned long offset = BTRFS_CSUM_SIZE; 274 char *kaddr; 275 unsigned long map_start; 276 unsigned long map_len; 277 int err; 278 u32 crc = ~(u32)0; 279 280 len = buf->len - offset; 281 while (len > 0) { 282 /* 283 * Note: we don't need to check for the err == 1 case here, as 284 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)' 285 * and 'min_len = 32' and the currently implemented mapping 286 * algorithm we cannot cross a page boundary. 287 */ 288 err = map_private_extent_buffer(buf, offset, 32, 289 &kaddr, &map_start, &map_len); 290 if (err) 291 return err; 292 cur_len = min(len, map_len - (offset - map_start)); 293 crc = btrfs_csum_data(kaddr + offset - map_start, 294 crc, cur_len); 295 len -= cur_len; 296 offset += cur_len; 297 } 298 memset(result, 0, BTRFS_CSUM_SIZE); 299 300 btrfs_csum_final(crc, result); 301 302 if (verify) { 303 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 304 u32 val; 305 u32 found = 0; 306 memcpy(&found, result, csum_size); 307 308 read_extent_buffer(buf, &val, 0, csum_size); 309 btrfs_warn_rl(fs_info, 310 "%s checksum verify failed on %llu wanted %X found %X level %d", 311 fs_info->sb->s_id, buf->start, 312 val, found, btrfs_header_level(buf)); 313 return -EUCLEAN; 314 } 315 } else { 316 write_extent_buffer(buf, result, 0, csum_size); 317 } 318 319 return 0; 320 } 321 322 /* 323 * we can't consider a given block up to date unless the transid of the 324 * block matches the transid in the parent node's pointer. This is how we 325 * detect blocks that either didn't get written at all or got written 326 * in the wrong place. 327 */ 328 static int verify_parent_transid(struct extent_io_tree *io_tree, 329 struct extent_buffer *eb, u64 parent_transid, 330 int atomic) 331 { 332 struct extent_state *cached_state = NULL; 333 int ret; 334 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 335 336 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 337 return 0; 338 339 if (atomic) 340 return -EAGAIN; 341 342 if (need_lock) { 343 btrfs_tree_read_lock(eb); 344 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 345 } 346 347 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 348 &cached_state); 349 if (extent_buffer_uptodate(eb) && 350 btrfs_header_generation(eb) == parent_transid) { 351 ret = 0; 352 goto out; 353 } 354 btrfs_err_rl(eb->fs_info, 355 "parent transid verify failed on %llu wanted %llu found %llu", 356 eb->start, 357 parent_transid, btrfs_header_generation(eb)); 358 ret = 1; 359 360 /* 361 * Things reading via commit roots that don't have normal protection, 362 * like send, can have a really old block in cache that may point at a 363 * block that has been freed and re-allocated. So don't clear uptodate 364 * if we find an eb that is under IO (dirty/writeback) because we could 365 * end up reading in the stale data and then writing it back out and 366 * making everybody very sad. 367 */ 368 if (!extent_buffer_under_io(eb)) 369 clear_extent_buffer_uptodate(eb); 370 out: 371 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 372 &cached_state); 373 if (need_lock) 374 btrfs_tree_read_unlock_blocking(eb); 375 return ret; 376 } 377 378 /* 379 * Return 0 if the superblock checksum type matches the checksum value of that 380 * algorithm. Pass the raw disk superblock data. 381 */ 382 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 383 char *raw_disk_sb) 384 { 385 struct btrfs_super_block *disk_sb = 386 (struct btrfs_super_block *)raw_disk_sb; 387 u16 csum_type = btrfs_super_csum_type(disk_sb); 388 int ret = 0; 389 390 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 391 u32 crc = ~(u32)0; 392 char result[sizeof(crc)]; 393 394 /* 395 * The super_block structure does not span the whole 396 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 397 * is filled with zeros and is included in the checksum. 398 */ 399 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 400 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 401 btrfs_csum_final(crc, result); 402 403 if (memcmp(raw_disk_sb, result, sizeof(result))) 404 ret = 1; 405 } 406 407 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 408 btrfs_err(fs_info, "unsupported checksum algorithm %u", 409 csum_type); 410 ret = 1; 411 } 412 413 return ret; 414 } 415 416 static int verify_level_key(struct btrfs_fs_info *fs_info, 417 struct extent_buffer *eb, int level, 418 struct btrfs_key *first_key, u64 parent_transid) 419 { 420 int found_level; 421 struct btrfs_key found_key; 422 int ret; 423 424 found_level = btrfs_header_level(eb); 425 if (found_level != level) { 426 #ifdef CONFIG_BTRFS_DEBUG 427 WARN_ON(1); 428 btrfs_err(fs_info, 429 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 430 eb->start, level, found_level); 431 #endif 432 return -EIO; 433 } 434 435 if (!first_key) 436 return 0; 437 438 /* 439 * For live tree block (new tree blocks in current transaction), 440 * we need proper lock context to avoid race, which is impossible here. 441 * So we only checks tree blocks which is read from disk, whose 442 * generation <= fs_info->last_trans_committed. 443 */ 444 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 445 return 0; 446 if (found_level) 447 btrfs_node_key_to_cpu(eb, &found_key, 0); 448 else 449 btrfs_item_key_to_cpu(eb, &found_key, 0); 450 ret = btrfs_comp_cpu_keys(first_key, &found_key); 451 452 #ifdef CONFIG_BTRFS_DEBUG 453 if (ret) { 454 WARN_ON(1); 455 btrfs_err(fs_info, 456 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 457 eb->start, parent_transid, first_key->objectid, 458 first_key->type, first_key->offset, 459 found_key.objectid, found_key.type, 460 found_key.offset); 461 } 462 #endif 463 return ret; 464 } 465 466 /* 467 * helper to read a given tree block, doing retries as required when 468 * the checksums don't match and we have alternate mirrors to try. 469 * 470 * @parent_transid: expected transid, skip check if 0 471 * @level: expected level, mandatory check 472 * @first_key: expected key of first slot, skip check if NULL 473 */ 474 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info, 475 struct extent_buffer *eb, 476 u64 parent_transid, int level, 477 struct btrfs_key *first_key) 478 { 479 struct extent_io_tree *io_tree; 480 int failed = 0; 481 int ret; 482 int num_copies = 0; 483 int mirror_num = 0; 484 int failed_mirror = 0; 485 486 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 487 while (1) { 488 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 489 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE, 490 mirror_num); 491 if (!ret) { 492 if (verify_parent_transid(io_tree, eb, 493 parent_transid, 0)) 494 ret = -EIO; 495 else if (verify_level_key(fs_info, eb, level, 496 first_key, parent_transid)) 497 ret = -EUCLEAN; 498 else 499 break; 500 } 501 502 num_copies = btrfs_num_copies(fs_info, 503 eb->start, eb->len); 504 if (num_copies == 1) 505 break; 506 507 if (!failed_mirror) { 508 failed = 1; 509 failed_mirror = eb->read_mirror; 510 } 511 512 mirror_num++; 513 if (mirror_num == failed_mirror) 514 mirror_num++; 515 516 if (mirror_num > num_copies) 517 break; 518 } 519 520 if (failed && !ret && failed_mirror) 521 repair_eb_io_failure(fs_info, eb, failed_mirror); 522 523 return ret; 524 } 525 526 /* 527 * checksum a dirty tree block before IO. This has extra checks to make sure 528 * we only fill in the checksum field in the first page of a multi-page block 529 */ 530 531 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 532 { 533 u64 start = page_offset(page); 534 u64 found_start; 535 struct extent_buffer *eb; 536 537 eb = (struct extent_buffer *)page->private; 538 if (page != eb->pages[0]) 539 return 0; 540 541 found_start = btrfs_header_bytenr(eb); 542 /* 543 * Please do not consolidate these warnings into a single if. 544 * It is useful to know what went wrong. 545 */ 546 if (WARN_ON(found_start != start)) 547 return -EUCLEAN; 548 if (WARN_ON(!PageUptodate(page))) 549 return -EUCLEAN; 550 551 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 552 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 553 554 return csum_tree_block(fs_info, eb, 0); 555 } 556 557 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 558 struct extent_buffer *eb) 559 { 560 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 561 u8 fsid[BTRFS_FSID_SIZE]; 562 int ret = 1; 563 564 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 565 while (fs_devices) { 566 u8 *metadata_uuid; 567 568 /* 569 * Checking the incompat flag is only valid for the current 570 * fs. For seed devices it's forbidden to have their uuid 571 * changed so reading ->fsid in this case is fine 572 */ 573 if (fs_devices == fs_info->fs_devices && 574 btrfs_fs_incompat(fs_info, METADATA_UUID)) 575 metadata_uuid = fs_devices->metadata_uuid; 576 else 577 metadata_uuid = fs_devices->fsid; 578 579 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) { 580 ret = 0; 581 break; 582 } 583 fs_devices = fs_devices->seed; 584 } 585 return ret; 586 } 587 588 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 589 u64 phy_offset, struct page *page, 590 u64 start, u64 end, int mirror) 591 { 592 u64 found_start; 593 int found_level; 594 struct extent_buffer *eb; 595 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 596 struct btrfs_fs_info *fs_info = root->fs_info; 597 int ret = 0; 598 int reads_done; 599 600 if (!page->private) 601 goto out; 602 603 eb = (struct extent_buffer *)page->private; 604 605 /* the pending IO might have been the only thing that kept this buffer 606 * in memory. Make sure we have a ref for all this other checks 607 */ 608 extent_buffer_get(eb); 609 610 reads_done = atomic_dec_and_test(&eb->io_pages); 611 if (!reads_done) 612 goto err; 613 614 eb->read_mirror = mirror; 615 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 616 ret = -EIO; 617 goto err; 618 } 619 620 found_start = btrfs_header_bytenr(eb); 621 if (found_start != eb->start) { 622 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 623 eb->start, found_start); 624 ret = -EIO; 625 goto err; 626 } 627 if (check_tree_block_fsid(fs_info, eb)) { 628 btrfs_err_rl(fs_info, "bad fsid on block %llu", 629 eb->start); 630 ret = -EIO; 631 goto err; 632 } 633 found_level = btrfs_header_level(eb); 634 if (found_level >= BTRFS_MAX_LEVEL) { 635 btrfs_err(fs_info, "bad tree block level %d on %llu", 636 (int)btrfs_header_level(eb), eb->start); 637 ret = -EIO; 638 goto err; 639 } 640 641 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 642 eb, found_level); 643 644 ret = csum_tree_block(fs_info, eb, 1); 645 if (ret) 646 goto err; 647 648 /* 649 * If this is a leaf block and it is corrupt, set the corrupt bit so 650 * that we don't try and read the other copies of this block, just 651 * return -EIO. 652 */ 653 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) { 654 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 655 ret = -EIO; 656 } 657 658 if (found_level > 0 && btrfs_check_node(fs_info, eb)) 659 ret = -EIO; 660 661 if (!ret) 662 set_extent_buffer_uptodate(eb); 663 err: 664 if (reads_done && 665 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 666 btree_readahead_hook(eb, ret); 667 668 if (ret) { 669 /* 670 * our io error hook is going to dec the io pages 671 * again, we have to make sure it has something 672 * to decrement 673 */ 674 atomic_inc(&eb->io_pages); 675 clear_extent_buffer_uptodate(eb); 676 } 677 free_extent_buffer(eb); 678 out: 679 return ret; 680 } 681 682 static void end_workqueue_bio(struct bio *bio) 683 { 684 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 685 struct btrfs_fs_info *fs_info; 686 struct btrfs_workqueue *wq; 687 btrfs_work_func_t func; 688 689 fs_info = end_io_wq->info; 690 end_io_wq->status = bio->bi_status; 691 692 if (bio_op(bio) == REQ_OP_WRITE) { 693 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 694 wq = fs_info->endio_meta_write_workers; 695 func = btrfs_endio_meta_write_helper; 696 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 697 wq = fs_info->endio_freespace_worker; 698 func = btrfs_freespace_write_helper; 699 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 700 wq = fs_info->endio_raid56_workers; 701 func = btrfs_endio_raid56_helper; 702 } else { 703 wq = fs_info->endio_write_workers; 704 func = btrfs_endio_write_helper; 705 } 706 } else { 707 if (unlikely(end_io_wq->metadata == 708 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 709 wq = fs_info->endio_repair_workers; 710 func = btrfs_endio_repair_helper; 711 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 712 wq = fs_info->endio_raid56_workers; 713 func = btrfs_endio_raid56_helper; 714 } else if (end_io_wq->metadata) { 715 wq = fs_info->endio_meta_workers; 716 func = btrfs_endio_meta_helper; 717 } else { 718 wq = fs_info->endio_workers; 719 func = btrfs_endio_helper; 720 } 721 } 722 723 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 724 btrfs_queue_work(wq, &end_io_wq->work); 725 } 726 727 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 728 enum btrfs_wq_endio_type metadata) 729 { 730 struct btrfs_end_io_wq *end_io_wq; 731 732 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 733 if (!end_io_wq) 734 return BLK_STS_RESOURCE; 735 736 end_io_wq->private = bio->bi_private; 737 end_io_wq->end_io = bio->bi_end_io; 738 end_io_wq->info = info; 739 end_io_wq->status = 0; 740 end_io_wq->bio = bio; 741 end_io_wq->metadata = metadata; 742 743 bio->bi_private = end_io_wq; 744 bio->bi_end_io = end_workqueue_bio; 745 return 0; 746 } 747 748 static void run_one_async_start(struct btrfs_work *work) 749 { 750 struct async_submit_bio *async; 751 blk_status_t ret; 752 753 async = container_of(work, struct async_submit_bio, work); 754 ret = async->submit_bio_start(async->private_data, async->bio, 755 async->bio_offset); 756 if (ret) 757 async->status = ret; 758 } 759 760 /* 761 * In order to insert checksums into the metadata in large chunks, we wait 762 * until bio submission time. All the pages in the bio are checksummed and 763 * sums are attached onto the ordered extent record. 764 * 765 * At IO completion time the csums attached on the ordered extent record are 766 * inserted into the tree. 767 */ 768 static void run_one_async_done(struct btrfs_work *work) 769 { 770 struct async_submit_bio *async; 771 struct inode *inode; 772 blk_status_t ret; 773 774 async = container_of(work, struct async_submit_bio, work); 775 inode = async->private_data; 776 777 /* If an error occurred we just want to clean up the bio and move on */ 778 if (async->status) { 779 async->bio->bi_status = async->status; 780 bio_endio(async->bio); 781 return; 782 } 783 784 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, 785 async->mirror_num, 1); 786 if (ret) { 787 async->bio->bi_status = ret; 788 bio_endio(async->bio); 789 } 790 } 791 792 static void run_one_async_free(struct btrfs_work *work) 793 { 794 struct async_submit_bio *async; 795 796 async = container_of(work, struct async_submit_bio, work); 797 kfree(async); 798 } 799 800 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 801 int mirror_num, unsigned long bio_flags, 802 u64 bio_offset, void *private_data, 803 extent_submit_bio_start_t *submit_bio_start) 804 { 805 struct async_submit_bio *async; 806 807 async = kmalloc(sizeof(*async), GFP_NOFS); 808 if (!async) 809 return BLK_STS_RESOURCE; 810 811 async->private_data = private_data; 812 async->bio = bio; 813 async->mirror_num = mirror_num; 814 async->submit_bio_start = submit_bio_start; 815 816 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 817 run_one_async_done, run_one_async_free); 818 819 async->bio_offset = bio_offset; 820 821 async->status = 0; 822 823 if (op_is_sync(bio->bi_opf)) 824 btrfs_set_work_high_priority(&async->work); 825 826 btrfs_queue_work(fs_info->workers, &async->work); 827 return 0; 828 } 829 830 static blk_status_t btree_csum_one_bio(struct bio *bio) 831 { 832 struct bio_vec *bvec; 833 struct btrfs_root *root; 834 int i, ret = 0; 835 836 ASSERT(!bio_flagged(bio, BIO_CLONED)); 837 bio_for_each_segment_all(bvec, bio, i) { 838 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 839 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 840 if (ret) 841 break; 842 } 843 844 return errno_to_blk_status(ret); 845 } 846 847 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, 848 u64 bio_offset) 849 { 850 /* 851 * when we're called for a write, we're already in the async 852 * submission context. Just jump into btrfs_map_bio 853 */ 854 return btree_csum_one_bio(bio); 855 } 856 857 static int check_async_write(struct btrfs_inode *bi) 858 { 859 if (atomic_read(&bi->sync_writers)) 860 return 0; 861 #ifdef CONFIG_X86 862 if (static_cpu_has(X86_FEATURE_XMM4_2)) 863 return 0; 864 #endif 865 return 1; 866 } 867 868 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio, 869 int mirror_num, unsigned long bio_flags, 870 u64 bio_offset) 871 { 872 struct inode *inode = private_data; 873 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 874 int async = check_async_write(BTRFS_I(inode)); 875 blk_status_t ret; 876 877 if (bio_op(bio) != REQ_OP_WRITE) { 878 /* 879 * called for a read, do the setup so that checksum validation 880 * can happen in the async kernel threads 881 */ 882 ret = btrfs_bio_wq_end_io(fs_info, bio, 883 BTRFS_WQ_ENDIO_METADATA); 884 if (ret) 885 goto out_w_error; 886 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 887 } else if (!async) { 888 ret = btree_csum_one_bio(bio); 889 if (ret) 890 goto out_w_error; 891 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 892 } else { 893 /* 894 * kthread helpers are used to submit writes so that 895 * checksumming can happen in parallel across all CPUs 896 */ 897 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 898 bio_offset, private_data, 899 btree_submit_bio_start); 900 } 901 902 if (ret) 903 goto out_w_error; 904 return 0; 905 906 out_w_error: 907 bio->bi_status = ret; 908 bio_endio(bio); 909 return ret; 910 } 911 912 #ifdef CONFIG_MIGRATION 913 static int btree_migratepage(struct address_space *mapping, 914 struct page *newpage, struct page *page, 915 enum migrate_mode mode) 916 { 917 /* 918 * we can't safely write a btree page from here, 919 * we haven't done the locking hook 920 */ 921 if (PageDirty(page)) 922 return -EAGAIN; 923 /* 924 * Buffers may be managed in a filesystem specific way. 925 * We must have no buffers or drop them. 926 */ 927 if (page_has_private(page) && 928 !try_to_release_page(page, GFP_KERNEL)) 929 return -EAGAIN; 930 return migrate_page(mapping, newpage, page, mode); 931 } 932 #endif 933 934 935 static int btree_writepages(struct address_space *mapping, 936 struct writeback_control *wbc) 937 { 938 struct btrfs_fs_info *fs_info; 939 int ret; 940 941 if (wbc->sync_mode == WB_SYNC_NONE) { 942 943 if (wbc->for_kupdate) 944 return 0; 945 946 fs_info = BTRFS_I(mapping->host)->root->fs_info; 947 /* this is a bit racy, but that's ok */ 948 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 949 BTRFS_DIRTY_METADATA_THRESH, 950 fs_info->dirty_metadata_batch); 951 if (ret < 0) 952 return 0; 953 } 954 return btree_write_cache_pages(mapping, wbc); 955 } 956 957 static int btree_readpage(struct file *file, struct page *page) 958 { 959 struct extent_io_tree *tree; 960 tree = &BTRFS_I(page->mapping->host)->io_tree; 961 return extent_read_full_page(tree, page, btree_get_extent, 0); 962 } 963 964 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 965 { 966 if (PageWriteback(page) || PageDirty(page)) 967 return 0; 968 969 return try_release_extent_buffer(page); 970 } 971 972 static void btree_invalidatepage(struct page *page, unsigned int offset, 973 unsigned int length) 974 { 975 struct extent_io_tree *tree; 976 tree = &BTRFS_I(page->mapping->host)->io_tree; 977 extent_invalidatepage(tree, page, offset); 978 btree_releasepage(page, GFP_NOFS); 979 if (PagePrivate(page)) { 980 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 981 "page private not zero on page %llu", 982 (unsigned long long)page_offset(page)); 983 ClearPagePrivate(page); 984 set_page_private(page, 0); 985 put_page(page); 986 } 987 } 988 989 static int btree_set_page_dirty(struct page *page) 990 { 991 #ifdef DEBUG 992 struct extent_buffer *eb; 993 994 BUG_ON(!PagePrivate(page)); 995 eb = (struct extent_buffer *)page->private; 996 BUG_ON(!eb); 997 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 998 BUG_ON(!atomic_read(&eb->refs)); 999 btrfs_assert_tree_locked(eb); 1000 #endif 1001 return __set_page_dirty_nobuffers(page); 1002 } 1003 1004 static const struct address_space_operations btree_aops = { 1005 .readpage = btree_readpage, 1006 .writepages = btree_writepages, 1007 .releasepage = btree_releasepage, 1008 .invalidatepage = btree_invalidatepage, 1009 #ifdef CONFIG_MIGRATION 1010 .migratepage = btree_migratepage, 1011 #endif 1012 .set_page_dirty = btree_set_page_dirty, 1013 }; 1014 1015 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1016 { 1017 struct extent_buffer *buf = NULL; 1018 struct inode *btree_inode = fs_info->btree_inode; 1019 1020 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1021 if (IS_ERR(buf)) 1022 return; 1023 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1024 buf, WAIT_NONE, 0); 1025 free_extent_buffer(buf); 1026 } 1027 1028 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr, 1029 int mirror_num, struct extent_buffer **eb) 1030 { 1031 struct extent_buffer *buf = NULL; 1032 struct inode *btree_inode = fs_info->btree_inode; 1033 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1034 int ret; 1035 1036 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1037 if (IS_ERR(buf)) 1038 return 0; 1039 1040 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1041 1042 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK, 1043 mirror_num); 1044 if (ret) { 1045 free_extent_buffer(buf); 1046 return ret; 1047 } 1048 1049 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1050 free_extent_buffer(buf); 1051 return -EIO; 1052 } else if (extent_buffer_uptodate(buf)) { 1053 *eb = buf; 1054 } else { 1055 free_extent_buffer(buf); 1056 } 1057 return 0; 1058 } 1059 1060 struct extent_buffer *btrfs_find_create_tree_block( 1061 struct btrfs_fs_info *fs_info, 1062 u64 bytenr) 1063 { 1064 if (btrfs_is_testing(fs_info)) 1065 return alloc_test_extent_buffer(fs_info, bytenr); 1066 return alloc_extent_buffer(fs_info, bytenr); 1067 } 1068 1069 1070 int btrfs_write_tree_block(struct extent_buffer *buf) 1071 { 1072 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1073 buf->start + buf->len - 1); 1074 } 1075 1076 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1077 { 1078 filemap_fdatawait_range(buf->pages[0]->mapping, 1079 buf->start, buf->start + buf->len - 1); 1080 } 1081 1082 /* 1083 * Read tree block at logical address @bytenr and do variant basic but critical 1084 * verification. 1085 * 1086 * @parent_transid: expected transid of this tree block, skip check if 0 1087 * @level: expected level, mandatory check 1088 * @first_key: expected key in slot 0, skip check if NULL 1089 */ 1090 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1091 u64 parent_transid, int level, 1092 struct btrfs_key *first_key) 1093 { 1094 struct extent_buffer *buf = NULL; 1095 int ret; 1096 1097 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1098 if (IS_ERR(buf)) 1099 return buf; 1100 1101 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid, 1102 level, first_key); 1103 if (ret) { 1104 free_extent_buffer(buf); 1105 return ERR_PTR(ret); 1106 } 1107 return buf; 1108 1109 } 1110 1111 void clean_tree_block(struct btrfs_fs_info *fs_info, 1112 struct extent_buffer *buf) 1113 { 1114 if (btrfs_header_generation(buf) == 1115 fs_info->running_transaction->transid) { 1116 btrfs_assert_tree_locked(buf); 1117 1118 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1119 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1120 -buf->len, 1121 fs_info->dirty_metadata_batch); 1122 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1123 btrfs_set_lock_blocking(buf); 1124 clear_extent_buffer_dirty(buf); 1125 } 1126 } 1127 } 1128 1129 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1130 { 1131 struct btrfs_subvolume_writers *writers; 1132 int ret; 1133 1134 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1135 if (!writers) 1136 return ERR_PTR(-ENOMEM); 1137 1138 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS); 1139 if (ret < 0) { 1140 kfree(writers); 1141 return ERR_PTR(ret); 1142 } 1143 1144 init_waitqueue_head(&writers->wait); 1145 return writers; 1146 } 1147 1148 static void 1149 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1150 { 1151 percpu_counter_destroy(&writers->counter); 1152 kfree(writers); 1153 } 1154 1155 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1156 u64 objectid) 1157 { 1158 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1159 root->node = NULL; 1160 root->commit_root = NULL; 1161 root->state = 0; 1162 root->orphan_cleanup_state = 0; 1163 1164 root->last_trans = 0; 1165 root->highest_objectid = 0; 1166 root->nr_delalloc_inodes = 0; 1167 root->nr_ordered_extents = 0; 1168 root->inode_tree = RB_ROOT; 1169 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1170 root->block_rsv = NULL; 1171 1172 INIT_LIST_HEAD(&root->dirty_list); 1173 INIT_LIST_HEAD(&root->root_list); 1174 INIT_LIST_HEAD(&root->delalloc_inodes); 1175 INIT_LIST_HEAD(&root->delalloc_root); 1176 INIT_LIST_HEAD(&root->ordered_extents); 1177 INIT_LIST_HEAD(&root->ordered_root); 1178 INIT_LIST_HEAD(&root->logged_list[0]); 1179 INIT_LIST_HEAD(&root->logged_list[1]); 1180 spin_lock_init(&root->inode_lock); 1181 spin_lock_init(&root->delalloc_lock); 1182 spin_lock_init(&root->ordered_extent_lock); 1183 spin_lock_init(&root->accounting_lock); 1184 spin_lock_init(&root->log_extents_lock[0]); 1185 spin_lock_init(&root->log_extents_lock[1]); 1186 spin_lock_init(&root->qgroup_meta_rsv_lock); 1187 mutex_init(&root->objectid_mutex); 1188 mutex_init(&root->log_mutex); 1189 mutex_init(&root->ordered_extent_mutex); 1190 mutex_init(&root->delalloc_mutex); 1191 init_waitqueue_head(&root->log_writer_wait); 1192 init_waitqueue_head(&root->log_commit_wait[0]); 1193 init_waitqueue_head(&root->log_commit_wait[1]); 1194 INIT_LIST_HEAD(&root->log_ctxs[0]); 1195 INIT_LIST_HEAD(&root->log_ctxs[1]); 1196 atomic_set(&root->log_commit[0], 0); 1197 atomic_set(&root->log_commit[1], 0); 1198 atomic_set(&root->log_writers, 0); 1199 atomic_set(&root->log_batch, 0); 1200 refcount_set(&root->refs, 1); 1201 atomic_set(&root->will_be_snapshotted, 0); 1202 atomic_set(&root->snapshot_force_cow, 0); 1203 atomic_set(&root->nr_swapfiles, 0); 1204 root->log_transid = 0; 1205 root->log_transid_committed = -1; 1206 root->last_log_commit = 0; 1207 if (!dummy) 1208 extent_io_tree_init(&root->dirty_log_pages, NULL); 1209 1210 memset(&root->root_key, 0, sizeof(root->root_key)); 1211 memset(&root->root_item, 0, sizeof(root->root_item)); 1212 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1213 if (!dummy) 1214 root->defrag_trans_start = fs_info->generation; 1215 else 1216 root->defrag_trans_start = 0; 1217 root->root_key.objectid = objectid; 1218 root->anon_dev = 0; 1219 1220 spin_lock_init(&root->root_item_lock); 1221 } 1222 1223 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1224 gfp_t flags) 1225 { 1226 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1227 if (root) 1228 root->fs_info = fs_info; 1229 return root; 1230 } 1231 1232 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1233 /* Should only be used by the testing infrastructure */ 1234 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1235 { 1236 struct btrfs_root *root; 1237 1238 if (!fs_info) 1239 return ERR_PTR(-EINVAL); 1240 1241 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1242 if (!root) 1243 return ERR_PTR(-ENOMEM); 1244 1245 /* We don't use the stripesize in selftest, set it as sectorsize */ 1246 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 1247 root->alloc_bytenr = 0; 1248 1249 return root; 1250 } 1251 #endif 1252 1253 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1254 struct btrfs_fs_info *fs_info, 1255 u64 objectid) 1256 { 1257 struct extent_buffer *leaf; 1258 struct btrfs_root *tree_root = fs_info->tree_root; 1259 struct btrfs_root *root; 1260 struct btrfs_key key; 1261 int ret = 0; 1262 uuid_le uuid = NULL_UUID_LE; 1263 1264 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1265 if (!root) 1266 return ERR_PTR(-ENOMEM); 1267 1268 __setup_root(root, fs_info, objectid); 1269 root->root_key.objectid = objectid; 1270 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1271 root->root_key.offset = 0; 1272 1273 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1274 if (IS_ERR(leaf)) { 1275 ret = PTR_ERR(leaf); 1276 leaf = NULL; 1277 goto fail; 1278 } 1279 1280 root->node = leaf; 1281 btrfs_mark_buffer_dirty(leaf); 1282 1283 root->commit_root = btrfs_root_node(root); 1284 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1285 1286 root->root_item.flags = 0; 1287 root->root_item.byte_limit = 0; 1288 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1289 btrfs_set_root_generation(&root->root_item, trans->transid); 1290 btrfs_set_root_level(&root->root_item, 0); 1291 btrfs_set_root_refs(&root->root_item, 1); 1292 btrfs_set_root_used(&root->root_item, leaf->len); 1293 btrfs_set_root_last_snapshot(&root->root_item, 0); 1294 btrfs_set_root_dirid(&root->root_item, 0); 1295 if (is_fstree(objectid)) 1296 uuid_le_gen(&uuid); 1297 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1298 root->root_item.drop_level = 0; 1299 1300 key.objectid = objectid; 1301 key.type = BTRFS_ROOT_ITEM_KEY; 1302 key.offset = 0; 1303 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1304 if (ret) 1305 goto fail; 1306 1307 btrfs_tree_unlock(leaf); 1308 1309 return root; 1310 1311 fail: 1312 if (leaf) { 1313 btrfs_tree_unlock(leaf); 1314 free_extent_buffer(root->commit_root); 1315 free_extent_buffer(leaf); 1316 } 1317 kfree(root); 1318 1319 return ERR_PTR(ret); 1320 } 1321 1322 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1323 struct btrfs_fs_info *fs_info) 1324 { 1325 struct btrfs_root *root; 1326 struct extent_buffer *leaf; 1327 1328 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1329 if (!root) 1330 return ERR_PTR(-ENOMEM); 1331 1332 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1333 1334 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1335 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1336 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1337 1338 /* 1339 * DON'T set REF_COWS for log trees 1340 * 1341 * log trees do not get reference counted because they go away 1342 * before a real commit is actually done. They do store pointers 1343 * to file data extents, and those reference counts still get 1344 * updated (along with back refs to the log tree). 1345 */ 1346 1347 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1348 NULL, 0, 0, 0); 1349 if (IS_ERR(leaf)) { 1350 kfree(root); 1351 return ERR_CAST(leaf); 1352 } 1353 1354 root->node = leaf; 1355 1356 btrfs_mark_buffer_dirty(root->node); 1357 btrfs_tree_unlock(root->node); 1358 return root; 1359 } 1360 1361 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1362 struct btrfs_fs_info *fs_info) 1363 { 1364 struct btrfs_root *log_root; 1365 1366 log_root = alloc_log_tree(trans, fs_info); 1367 if (IS_ERR(log_root)) 1368 return PTR_ERR(log_root); 1369 WARN_ON(fs_info->log_root_tree); 1370 fs_info->log_root_tree = log_root; 1371 return 0; 1372 } 1373 1374 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1375 struct btrfs_root *root) 1376 { 1377 struct btrfs_fs_info *fs_info = root->fs_info; 1378 struct btrfs_root *log_root; 1379 struct btrfs_inode_item *inode_item; 1380 1381 log_root = alloc_log_tree(trans, fs_info); 1382 if (IS_ERR(log_root)) 1383 return PTR_ERR(log_root); 1384 1385 log_root->last_trans = trans->transid; 1386 log_root->root_key.offset = root->root_key.objectid; 1387 1388 inode_item = &log_root->root_item.inode; 1389 btrfs_set_stack_inode_generation(inode_item, 1); 1390 btrfs_set_stack_inode_size(inode_item, 3); 1391 btrfs_set_stack_inode_nlink(inode_item, 1); 1392 btrfs_set_stack_inode_nbytes(inode_item, 1393 fs_info->nodesize); 1394 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1395 1396 btrfs_set_root_node(&log_root->root_item, log_root->node); 1397 1398 WARN_ON(root->log_root); 1399 root->log_root = log_root; 1400 root->log_transid = 0; 1401 root->log_transid_committed = -1; 1402 root->last_log_commit = 0; 1403 return 0; 1404 } 1405 1406 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1407 struct btrfs_key *key) 1408 { 1409 struct btrfs_root *root; 1410 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1411 struct btrfs_path *path; 1412 u64 generation; 1413 int ret; 1414 int level; 1415 1416 path = btrfs_alloc_path(); 1417 if (!path) 1418 return ERR_PTR(-ENOMEM); 1419 1420 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1421 if (!root) { 1422 ret = -ENOMEM; 1423 goto alloc_fail; 1424 } 1425 1426 __setup_root(root, fs_info, key->objectid); 1427 1428 ret = btrfs_find_root(tree_root, key, path, 1429 &root->root_item, &root->root_key); 1430 if (ret) { 1431 if (ret > 0) 1432 ret = -ENOENT; 1433 goto find_fail; 1434 } 1435 1436 generation = btrfs_root_generation(&root->root_item); 1437 level = btrfs_root_level(&root->root_item); 1438 root->node = read_tree_block(fs_info, 1439 btrfs_root_bytenr(&root->root_item), 1440 generation, level, NULL); 1441 if (IS_ERR(root->node)) { 1442 ret = PTR_ERR(root->node); 1443 goto find_fail; 1444 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1445 ret = -EIO; 1446 free_extent_buffer(root->node); 1447 goto find_fail; 1448 } 1449 root->commit_root = btrfs_root_node(root); 1450 out: 1451 btrfs_free_path(path); 1452 return root; 1453 1454 find_fail: 1455 kfree(root); 1456 alloc_fail: 1457 root = ERR_PTR(ret); 1458 goto out; 1459 } 1460 1461 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1462 struct btrfs_key *location) 1463 { 1464 struct btrfs_root *root; 1465 1466 root = btrfs_read_tree_root(tree_root, location); 1467 if (IS_ERR(root)) 1468 return root; 1469 1470 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1471 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1472 btrfs_check_and_init_root_item(&root->root_item); 1473 } 1474 1475 return root; 1476 } 1477 1478 int btrfs_init_fs_root(struct btrfs_root *root) 1479 { 1480 int ret; 1481 struct btrfs_subvolume_writers *writers; 1482 1483 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1484 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1485 GFP_NOFS); 1486 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1487 ret = -ENOMEM; 1488 goto fail; 1489 } 1490 1491 writers = btrfs_alloc_subvolume_writers(); 1492 if (IS_ERR(writers)) { 1493 ret = PTR_ERR(writers); 1494 goto fail; 1495 } 1496 root->subv_writers = writers; 1497 1498 btrfs_init_free_ino_ctl(root); 1499 spin_lock_init(&root->ino_cache_lock); 1500 init_waitqueue_head(&root->ino_cache_wait); 1501 1502 ret = get_anon_bdev(&root->anon_dev); 1503 if (ret) 1504 goto fail; 1505 1506 mutex_lock(&root->objectid_mutex); 1507 ret = btrfs_find_highest_objectid(root, 1508 &root->highest_objectid); 1509 if (ret) { 1510 mutex_unlock(&root->objectid_mutex); 1511 goto fail; 1512 } 1513 1514 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1515 1516 mutex_unlock(&root->objectid_mutex); 1517 1518 return 0; 1519 fail: 1520 /* The caller is responsible to call btrfs_free_fs_root */ 1521 return ret; 1522 } 1523 1524 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1525 u64 root_id) 1526 { 1527 struct btrfs_root *root; 1528 1529 spin_lock(&fs_info->fs_roots_radix_lock); 1530 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1531 (unsigned long)root_id); 1532 spin_unlock(&fs_info->fs_roots_radix_lock); 1533 return root; 1534 } 1535 1536 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1537 struct btrfs_root *root) 1538 { 1539 int ret; 1540 1541 ret = radix_tree_preload(GFP_NOFS); 1542 if (ret) 1543 return ret; 1544 1545 spin_lock(&fs_info->fs_roots_radix_lock); 1546 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1547 (unsigned long)root->root_key.objectid, 1548 root); 1549 if (ret == 0) 1550 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1551 spin_unlock(&fs_info->fs_roots_radix_lock); 1552 radix_tree_preload_end(); 1553 1554 return ret; 1555 } 1556 1557 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1558 struct btrfs_key *location, 1559 bool check_ref) 1560 { 1561 struct btrfs_root *root; 1562 struct btrfs_path *path; 1563 struct btrfs_key key; 1564 int ret; 1565 1566 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1567 return fs_info->tree_root; 1568 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1569 return fs_info->extent_root; 1570 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1571 return fs_info->chunk_root; 1572 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1573 return fs_info->dev_root; 1574 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1575 return fs_info->csum_root; 1576 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1577 return fs_info->quota_root ? fs_info->quota_root : 1578 ERR_PTR(-ENOENT); 1579 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1580 return fs_info->uuid_root ? fs_info->uuid_root : 1581 ERR_PTR(-ENOENT); 1582 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1583 return fs_info->free_space_root ? fs_info->free_space_root : 1584 ERR_PTR(-ENOENT); 1585 again: 1586 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1587 if (root) { 1588 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1589 return ERR_PTR(-ENOENT); 1590 return root; 1591 } 1592 1593 root = btrfs_read_fs_root(fs_info->tree_root, location); 1594 if (IS_ERR(root)) 1595 return root; 1596 1597 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1598 ret = -ENOENT; 1599 goto fail; 1600 } 1601 1602 ret = btrfs_init_fs_root(root); 1603 if (ret) 1604 goto fail; 1605 1606 path = btrfs_alloc_path(); 1607 if (!path) { 1608 ret = -ENOMEM; 1609 goto fail; 1610 } 1611 key.objectid = BTRFS_ORPHAN_OBJECTID; 1612 key.type = BTRFS_ORPHAN_ITEM_KEY; 1613 key.offset = location->objectid; 1614 1615 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1616 btrfs_free_path(path); 1617 if (ret < 0) 1618 goto fail; 1619 if (ret == 0) 1620 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1621 1622 ret = btrfs_insert_fs_root(fs_info, root); 1623 if (ret) { 1624 if (ret == -EEXIST) { 1625 btrfs_free_fs_root(root); 1626 goto again; 1627 } 1628 goto fail; 1629 } 1630 return root; 1631 fail: 1632 btrfs_free_fs_root(root); 1633 return ERR_PTR(ret); 1634 } 1635 1636 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1637 { 1638 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1639 int ret = 0; 1640 struct btrfs_device *device; 1641 struct backing_dev_info *bdi; 1642 1643 rcu_read_lock(); 1644 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1645 if (!device->bdev) 1646 continue; 1647 bdi = device->bdev->bd_bdi; 1648 if (bdi_congested(bdi, bdi_bits)) { 1649 ret = 1; 1650 break; 1651 } 1652 } 1653 rcu_read_unlock(); 1654 return ret; 1655 } 1656 1657 /* 1658 * called by the kthread helper functions to finally call the bio end_io 1659 * functions. This is where read checksum verification actually happens 1660 */ 1661 static void end_workqueue_fn(struct btrfs_work *work) 1662 { 1663 struct bio *bio; 1664 struct btrfs_end_io_wq *end_io_wq; 1665 1666 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1667 bio = end_io_wq->bio; 1668 1669 bio->bi_status = end_io_wq->status; 1670 bio->bi_private = end_io_wq->private; 1671 bio->bi_end_io = end_io_wq->end_io; 1672 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1673 bio_endio(bio); 1674 } 1675 1676 static int cleaner_kthread(void *arg) 1677 { 1678 struct btrfs_root *root = arg; 1679 struct btrfs_fs_info *fs_info = root->fs_info; 1680 int again; 1681 1682 while (1) { 1683 again = 0; 1684 1685 /* Make the cleaner go to sleep early. */ 1686 if (btrfs_need_cleaner_sleep(fs_info)) 1687 goto sleep; 1688 1689 /* 1690 * Do not do anything if we might cause open_ctree() to block 1691 * before we have finished mounting the filesystem. 1692 */ 1693 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1694 goto sleep; 1695 1696 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1697 goto sleep; 1698 1699 /* 1700 * Avoid the problem that we change the status of the fs 1701 * during the above check and trylock. 1702 */ 1703 if (btrfs_need_cleaner_sleep(fs_info)) { 1704 mutex_unlock(&fs_info->cleaner_mutex); 1705 goto sleep; 1706 } 1707 1708 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 1709 btrfs_run_delayed_iputs(fs_info); 1710 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 1711 1712 again = btrfs_clean_one_deleted_snapshot(root); 1713 mutex_unlock(&fs_info->cleaner_mutex); 1714 1715 /* 1716 * The defragger has dealt with the R/O remount and umount, 1717 * needn't do anything special here. 1718 */ 1719 btrfs_run_defrag_inodes(fs_info); 1720 1721 /* 1722 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1723 * with relocation (btrfs_relocate_chunk) and relocation 1724 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1725 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1726 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1727 * unused block groups. 1728 */ 1729 btrfs_delete_unused_bgs(fs_info); 1730 sleep: 1731 if (kthread_should_park()) 1732 kthread_parkme(); 1733 if (kthread_should_stop()) 1734 return 0; 1735 if (!again) { 1736 set_current_state(TASK_INTERRUPTIBLE); 1737 schedule(); 1738 __set_current_state(TASK_RUNNING); 1739 } 1740 } 1741 } 1742 1743 static int transaction_kthread(void *arg) 1744 { 1745 struct btrfs_root *root = arg; 1746 struct btrfs_fs_info *fs_info = root->fs_info; 1747 struct btrfs_trans_handle *trans; 1748 struct btrfs_transaction *cur; 1749 u64 transid; 1750 time64_t now; 1751 unsigned long delay; 1752 bool cannot_commit; 1753 1754 do { 1755 cannot_commit = false; 1756 delay = HZ * fs_info->commit_interval; 1757 mutex_lock(&fs_info->transaction_kthread_mutex); 1758 1759 spin_lock(&fs_info->trans_lock); 1760 cur = fs_info->running_transaction; 1761 if (!cur) { 1762 spin_unlock(&fs_info->trans_lock); 1763 goto sleep; 1764 } 1765 1766 now = ktime_get_seconds(); 1767 if (cur->state < TRANS_STATE_BLOCKED && 1768 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) && 1769 (now < cur->start_time || 1770 now - cur->start_time < fs_info->commit_interval)) { 1771 spin_unlock(&fs_info->trans_lock); 1772 delay = HZ * 5; 1773 goto sleep; 1774 } 1775 transid = cur->transid; 1776 spin_unlock(&fs_info->trans_lock); 1777 1778 /* If the file system is aborted, this will always fail. */ 1779 trans = btrfs_attach_transaction(root); 1780 if (IS_ERR(trans)) { 1781 if (PTR_ERR(trans) != -ENOENT) 1782 cannot_commit = true; 1783 goto sleep; 1784 } 1785 if (transid == trans->transid) { 1786 btrfs_commit_transaction(trans); 1787 } else { 1788 btrfs_end_transaction(trans); 1789 } 1790 sleep: 1791 wake_up_process(fs_info->cleaner_kthread); 1792 mutex_unlock(&fs_info->transaction_kthread_mutex); 1793 1794 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1795 &fs_info->fs_state))) 1796 btrfs_cleanup_transaction(fs_info); 1797 if (!kthread_should_stop() && 1798 (!btrfs_transaction_blocked(fs_info) || 1799 cannot_commit)) 1800 schedule_timeout_interruptible(delay); 1801 } while (!kthread_should_stop()); 1802 return 0; 1803 } 1804 1805 /* 1806 * this will find the highest generation in the array of 1807 * root backups. The index of the highest array is returned, 1808 * or -1 if we can't find anything. 1809 * 1810 * We check to make sure the array is valid by comparing the 1811 * generation of the latest root in the array with the generation 1812 * in the super block. If they don't match we pitch it. 1813 */ 1814 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1815 { 1816 u64 cur; 1817 int newest_index = -1; 1818 struct btrfs_root_backup *root_backup; 1819 int i; 1820 1821 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1822 root_backup = info->super_copy->super_roots + i; 1823 cur = btrfs_backup_tree_root_gen(root_backup); 1824 if (cur == newest_gen) 1825 newest_index = i; 1826 } 1827 1828 /* check to see if we actually wrapped around */ 1829 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1830 root_backup = info->super_copy->super_roots; 1831 cur = btrfs_backup_tree_root_gen(root_backup); 1832 if (cur == newest_gen) 1833 newest_index = 0; 1834 } 1835 return newest_index; 1836 } 1837 1838 1839 /* 1840 * find the oldest backup so we know where to store new entries 1841 * in the backup array. This will set the backup_root_index 1842 * field in the fs_info struct 1843 */ 1844 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1845 u64 newest_gen) 1846 { 1847 int newest_index = -1; 1848 1849 newest_index = find_newest_super_backup(info, newest_gen); 1850 /* if there was garbage in there, just move along */ 1851 if (newest_index == -1) { 1852 info->backup_root_index = 0; 1853 } else { 1854 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1855 } 1856 } 1857 1858 /* 1859 * copy all the root pointers into the super backup array. 1860 * this will bump the backup pointer by one when it is 1861 * done 1862 */ 1863 static void backup_super_roots(struct btrfs_fs_info *info) 1864 { 1865 int next_backup; 1866 struct btrfs_root_backup *root_backup; 1867 int last_backup; 1868 1869 next_backup = info->backup_root_index; 1870 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1871 BTRFS_NUM_BACKUP_ROOTS; 1872 1873 /* 1874 * just overwrite the last backup if we're at the same generation 1875 * this happens only at umount 1876 */ 1877 root_backup = info->super_for_commit->super_roots + last_backup; 1878 if (btrfs_backup_tree_root_gen(root_backup) == 1879 btrfs_header_generation(info->tree_root->node)) 1880 next_backup = last_backup; 1881 1882 root_backup = info->super_for_commit->super_roots + next_backup; 1883 1884 /* 1885 * make sure all of our padding and empty slots get zero filled 1886 * regardless of which ones we use today 1887 */ 1888 memset(root_backup, 0, sizeof(*root_backup)); 1889 1890 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1891 1892 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1893 btrfs_set_backup_tree_root_gen(root_backup, 1894 btrfs_header_generation(info->tree_root->node)); 1895 1896 btrfs_set_backup_tree_root_level(root_backup, 1897 btrfs_header_level(info->tree_root->node)); 1898 1899 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1900 btrfs_set_backup_chunk_root_gen(root_backup, 1901 btrfs_header_generation(info->chunk_root->node)); 1902 btrfs_set_backup_chunk_root_level(root_backup, 1903 btrfs_header_level(info->chunk_root->node)); 1904 1905 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1906 btrfs_set_backup_extent_root_gen(root_backup, 1907 btrfs_header_generation(info->extent_root->node)); 1908 btrfs_set_backup_extent_root_level(root_backup, 1909 btrfs_header_level(info->extent_root->node)); 1910 1911 /* 1912 * we might commit during log recovery, which happens before we set 1913 * the fs_root. Make sure it is valid before we fill it in. 1914 */ 1915 if (info->fs_root && info->fs_root->node) { 1916 btrfs_set_backup_fs_root(root_backup, 1917 info->fs_root->node->start); 1918 btrfs_set_backup_fs_root_gen(root_backup, 1919 btrfs_header_generation(info->fs_root->node)); 1920 btrfs_set_backup_fs_root_level(root_backup, 1921 btrfs_header_level(info->fs_root->node)); 1922 } 1923 1924 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1925 btrfs_set_backup_dev_root_gen(root_backup, 1926 btrfs_header_generation(info->dev_root->node)); 1927 btrfs_set_backup_dev_root_level(root_backup, 1928 btrfs_header_level(info->dev_root->node)); 1929 1930 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1931 btrfs_set_backup_csum_root_gen(root_backup, 1932 btrfs_header_generation(info->csum_root->node)); 1933 btrfs_set_backup_csum_root_level(root_backup, 1934 btrfs_header_level(info->csum_root->node)); 1935 1936 btrfs_set_backup_total_bytes(root_backup, 1937 btrfs_super_total_bytes(info->super_copy)); 1938 btrfs_set_backup_bytes_used(root_backup, 1939 btrfs_super_bytes_used(info->super_copy)); 1940 btrfs_set_backup_num_devices(root_backup, 1941 btrfs_super_num_devices(info->super_copy)); 1942 1943 /* 1944 * if we don't copy this out to the super_copy, it won't get remembered 1945 * for the next commit 1946 */ 1947 memcpy(&info->super_copy->super_roots, 1948 &info->super_for_commit->super_roots, 1949 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1950 } 1951 1952 /* 1953 * this copies info out of the root backup array and back into 1954 * the in-memory super block. It is meant to help iterate through 1955 * the array, so you send it the number of backups you've already 1956 * tried and the last backup index you used. 1957 * 1958 * this returns -1 when it has tried all the backups 1959 */ 1960 static noinline int next_root_backup(struct btrfs_fs_info *info, 1961 struct btrfs_super_block *super, 1962 int *num_backups_tried, int *backup_index) 1963 { 1964 struct btrfs_root_backup *root_backup; 1965 int newest = *backup_index; 1966 1967 if (*num_backups_tried == 0) { 1968 u64 gen = btrfs_super_generation(super); 1969 1970 newest = find_newest_super_backup(info, gen); 1971 if (newest == -1) 1972 return -1; 1973 1974 *backup_index = newest; 1975 *num_backups_tried = 1; 1976 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1977 /* we've tried all the backups, all done */ 1978 return -1; 1979 } else { 1980 /* jump to the next oldest backup */ 1981 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1982 BTRFS_NUM_BACKUP_ROOTS; 1983 *backup_index = newest; 1984 *num_backups_tried += 1; 1985 } 1986 root_backup = super->super_roots + newest; 1987 1988 btrfs_set_super_generation(super, 1989 btrfs_backup_tree_root_gen(root_backup)); 1990 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1991 btrfs_set_super_root_level(super, 1992 btrfs_backup_tree_root_level(root_backup)); 1993 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1994 1995 /* 1996 * fixme: the total bytes and num_devices need to match or we should 1997 * need a fsck 1998 */ 1999 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2000 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2001 return 0; 2002 } 2003 2004 /* helper to cleanup workers */ 2005 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2006 { 2007 btrfs_destroy_workqueue(fs_info->fixup_workers); 2008 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2009 btrfs_destroy_workqueue(fs_info->workers); 2010 btrfs_destroy_workqueue(fs_info->endio_workers); 2011 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2012 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2013 btrfs_destroy_workqueue(fs_info->rmw_workers); 2014 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2015 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2016 btrfs_destroy_workqueue(fs_info->submit_workers); 2017 btrfs_destroy_workqueue(fs_info->delayed_workers); 2018 btrfs_destroy_workqueue(fs_info->caching_workers); 2019 btrfs_destroy_workqueue(fs_info->readahead_workers); 2020 btrfs_destroy_workqueue(fs_info->flush_workers); 2021 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2022 btrfs_destroy_workqueue(fs_info->extent_workers); 2023 /* 2024 * Now that all other work queues are destroyed, we can safely destroy 2025 * the queues used for metadata I/O, since tasks from those other work 2026 * queues can do metadata I/O operations. 2027 */ 2028 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2029 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2030 } 2031 2032 static void free_root_extent_buffers(struct btrfs_root *root) 2033 { 2034 if (root) { 2035 free_extent_buffer(root->node); 2036 free_extent_buffer(root->commit_root); 2037 root->node = NULL; 2038 root->commit_root = NULL; 2039 } 2040 } 2041 2042 /* helper to cleanup tree roots */ 2043 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2044 { 2045 free_root_extent_buffers(info->tree_root); 2046 2047 free_root_extent_buffers(info->dev_root); 2048 free_root_extent_buffers(info->extent_root); 2049 free_root_extent_buffers(info->csum_root); 2050 free_root_extent_buffers(info->quota_root); 2051 free_root_extent_buffers(info->uuid_root); 2052 if (chunk_root) 2053 free_root_extent_buffers(info->chunk_root); 2054 free_root_extent_buffers(info->free_space_root); 2055 } 2056 2057 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2058 { 2059 int ret; 2060 struct btrfs_root *gang[8]; 2061 int i; 2062 2063 while (!list_empty(&fs_info->dead_roots)) { 2064 gang[0] = list_entry(fs_info->dead_roots.next, 2065 struct btrfs_root, root_list); 2066 list_del(&gang[0]->root_list); 2067 2068 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2069 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2070 } else { 2071 free_extent_buffer(gang[0]->node); 2072 free_extent_buffer(gang[0]->commit_root); 2073 btrfs_put_fs_root(gang[0]); 2074 } 2075 } 2076 2077 while (1) { 2078 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2079 (void **)gang, 0, 2080 ARRAY_SIZE(gang)); 2081 if (!ret) 2082 break; 2083 for (i = 0; i < ret; i++) 2084 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2085 } 2086 2087 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2088 btrfs_free_log_root_tree(NULL, fs_info); 2089 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 2090 } 2091 } 2092 2093 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2094 { 2095 mutex_init(&fs_info->scrub_lock); 2096 atomic_set(&fs_info->scrubs_running, 0); 2097 atomic_set(&fs_info->scrub_pause_req, 0); 2098 atomic_set(&fs_info->scrubs_paused, 0); 2099 atomic_set(&fs_info->scrub_cancel_req, 0); 2100 init_waitqueue_head(&fs_info->scrub_pause_wait); 2101 fs_info->scrub_workers_refcnt = 0; 2102 } 2103 2104 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2105 { 2106 spin_lock_init(&fs_info->balance_lock); 2107 mutex_init(&fs_info->balance_mutex); 2108 atomic_set(&fs_info->balance_pause_req, 0); 2109 atomic_set(&fs_info->balance_cancel_req, 0); 2110 fs_info->balance_ctl = NULL; 2111 init_waitqueue_head(&fs_info->balance_wait_q); 2112 } 2113 2114 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2115 { 2116 struct inode *inode = fs_info->btree_inode; 2117 2118 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2119 set_nlink(inode, 1); 2120 /* 2121 * we set the i_size on the btree inode to the max possible int. 2122 * the real end of the address space is determined by all of 2123 * the devices in the system 2124 */ 2125 inode->i_size = OFFSET_MAX; 2126 inode->i_mapping->a_ops = &btree_aops; 2127 2128 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2129 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode); 2130 BTRFS_I(inode)->io_tree.track_uptodate = 0; 2131 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2132 2133 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2134 2135 BTRFS_I(inode)->root = fs_info->tree_root; 2136 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2137 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2138 btrfs_insert_inode_hash(inode); 2139 } 2140 2141 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2142 { 2143 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2144 init_rwsem(&fs_info->dev_replace.rwsem); 2145 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2146 } 2147 2148 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2149 { 2150 spin_lock_init(&fs_info->qgroup_lock); 2151 mutex_init(&fs_info->qgroup_ioctl_lock); 2152 fs_info->qgroup_tree = RB_ROOT; 2153 fs_info->qgroup_op_tree = RB_ROOT; 2154 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2155 fs_info->qgroup_seq = 1; 2156 fs_info->qgroup_ulist = NULL; 2157 fs_info->qgroup_rescan_running = false; 2158 mutex_init(&fs_info->qgroup_rescan_lock); 2159 } 2160 2161 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2162 struct btrfs_fs_devices *fs_devices) 2163 { 2164 u32 max_active = fs_info->thread_pool_size; 2165 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2166 2167 fs_info->workers = 2168 btrfs_alloc_workqueue(fs_info, "worker", 2169 flags | WQ_HIGHPRI, max_active, 16); 2170 2171 fs_info->delalloc_workers = 2172 btrfs_alloc_workqueue(fs_info, "delalloc", 2173 flags, max_active, 2); 2174 2175 fs_info->flush_workers = 2176 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2177 flags, max_active, 0); 2178 2179 fs_info->caching_workers = 2180 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2181 2182 /* 2183 * a higher idle thresh on the submit workers makes it much more 2184 * likely that bios will be send down in a sane order to the 2185 * devices 2186 */ 2187 fs_info->submit_workers = 2188 btrfs_alloc_workqueue(fs_info, "submit", flags, 2189 min_t(u64, fs_devices->num_devices, 2190 max_active), 64); 2191 2192 fs_info->fixup_workers = 2193 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2194 2195 /* 2196 * endios are largely parallel and should have a very 2197 * low idle thresh 2198 */ 2199 fs_info->endio_workers = 2200 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2201 fs_info->endio_meta_workers = 2202 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2203 max_active, 4); 2204 fs_info->endio_meta_write_workers = 2205 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2206 max_active, 2); 2207 fs_info->endio_raid56_workers = 2208 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2209 max_active, 4); 2210 fs_info->endio_repair_workers = 2211 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2212 fs_info->rmw_workers = 2213 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2214 fs_info->endio_write_workers = 2215 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2216 max_active, 2); 2217 fs_info->endio_freespace_worker = 2218 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2219 max_active, 0); 2220 fs_info->delayed_workers = 2221 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2222 max_active, 0); 2223 fs_info->readahead_workers = 2224 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2225 max_active, 2); 2226 fs_info->qgroup_rescan_workers = 2227 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2228 fs_info->extent_workers = 2229 btrfs_alloc_workqueue(fs_info, "extent-refs", flags, 2230 min_t(u64, fs_devices->num_devices, 2231 max_active), 8); 2232 2233 if (!(fs_info->workers && fs_info->delalloc_workers && 2234 fs_info->submit_workers && fs_info->flush_workers && 2235 fs_info->endio_workers && fs_info->endio_meta_workers && 2236 fs_info->endio_meta_write_workers && 2237 fs_info->endio_repair_workers && 2238 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2239 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2240 fs_info->caching_workers && fs_info->readahead_workers && 2241 fs_info->fixup_workers && fs_info->delayed_workers && 2242 fs_info->extent_workers && 2243 fs_info->qgroup_rescan_workers)) { 2244 return -ENOMEM; 2245 } 2246 2247 return 0; 2248 } 2249 2250 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2251 struct btrfs_fs_devices *fs_devices) 2252 { 2253 int ret; 2254 struct btrfs_root *log_tree_root; 2255 struct btrfs_super_block *disk_super = fs_info->super_copy; 2256 u64 bytenr = btrfs_super_log_root(disk_super); 2257 int level = btrfs_super_log_root_level(disk_super); 2258 2259 if (fs_devices->rw_devices == 0) { 2260 btrfs_warn(fs_info, "log replay required on RO media"); 2261 return -EIO; 2262 } 2263 2264 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2265 if (!log_tree_root) 2266 return -ENOMEM; 2267 2268 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2269 2270 log_tree_root->node = read_tree_block(fs_info, bytenr, 2271 fs_info->generation + 1, 2272 level, NULL); 2273 if (IS_ERR(log_tree_root->node)) { 2274 btrfs_warn(fs_info, "failed to read log tree"); 2275 ret = PTR_ERR(log_tree_root->node); 2276 kfree(log_tree_root); 2277 return ret; 2278 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2279 btrfs_err(fs_info, "failed to read log tree"); 2280 free_extent_buffer(log_tree_root->node); 2281 kfree(log_tree_root); 2282 return -EIO; 2283 } 2284 /* returns with log_tree_root freed on success */ 2285 ret = btrfs_recover_log_trees(log_tree_root); 2286 if (ret) { 2287 btrfs_handle_fs_error(fs_info, ret, 2288 "Failed to recover log tree"); 2289 free_extent_buffer(log_tree_root->node); 2290 kfree(log_tree_root); 2291 return ret; 2292 } 2293 2294 if (sb_rdonly(fs_info->sb)) { 2295 ret = btrfs_commit_super(fs_info); 2296 if (ret) 2297 return ret; 2298 } 2299 2300 return 0; 2301 } 2302 2303 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2304 { 2305 struct btrfs_root *tree_root = fs_info->tree_root; 2306 struct btrfs_root *root; 2307 struct btrfs_key location; 2308 int ret; 2309 2310 BUG_ON(!fs_info->tree_root); 2311 2312 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2313 location.type = BTRFS_ROOT_ITEM_KEY; 2314 location.offset = 0; 2315 2316 root = btrfs_read_tree_root(tree_root, &location); 2317 if (IS_ERR(root)) { 2318 ret = PTR_ERR(root); 2319 goto out; 2320 } 2321 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2322 fs_info->extent_root = root; 2323 2324 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2325 root = btrfs_read_tree_root(tree_root, &location); 2326 if (IS_ERR(root)) { 2327 ret = PTR_ERR(root); 2328 goto out; 2329 } 2330 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2331 fs_info->dev_root = root; 2332 btrfs_init_devices_late(fs_info); 2333 2334 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2335 root = btrfs_read_tree_root(tree_root, &location); 2336 if (IS_ERR(root)) { 2337 ret = PTR_ERR(root); 2338 goto out; 2339 } 2340 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2341 fs_info->csum_root = root; 2342 2343 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2344 root = btrfs_read_tree_root(tree_root, &location); 2345 if (!IS_ERR(root)) { 2346 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2347 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2348 fs_info->quota_root = root; 2349 } 2350 2351 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2352 root = btrfs_read_tree_root(tree_root, &location); 2353 if (IS_ERR(root)) { 2354 ret = PTR_ERR(root); 2355 if (ret != -ENOENT) 2356 goto out; 2357 } else { 2358 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2359 fs_info->uuid_root = root; 2360 } 2361 2362 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2363 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2364 root = btrfs_read_tree_root(tree_root, &location); 2365 if (IS_ERR(root)) { 2366 ret = PTR_ERR(root); 2367 goto out; 2368 } 2369 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2370 fs_info->free_space_root = root; 2371 } 2372 2373 return 0; 2374 out: 2375 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2376 location.objectid, ret); 2377 return ret; 2378 } 2379 2380 /* 2381 * Real super block validation 2382 * NOTE: super csum type and incompat features will not be checked here. 2383 * 2384 * @sb: super block to check 2385 * @mirror_num: the super block number to check its bytenr: 2386 * 0 the primary (1st) sb 2387 * 1, 2 2nd and 3rd backup copy 2388 * -1 skip bytenr check 2389 */ 2390 static int validate_super(struct btrfs_fs_info *fs_info, 2391 struct btrfs_super_block *sb, int mirror_num) 2392 { 2393 u64 nodesize = btrfs_super_nodesize(sb); 2394 u64 sectorsize = btrfs_super_sectorsize(sb); 2395 int ret = 0; 2396 2397 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2398 btrfs_err(fs_info, "no valid FS found"); 2399 ret = -EINVAL; 2400 } 2401 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2402 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2403 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2404 ret = -EINVAL; 2405 } 2406 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2407 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2408 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2409 ret = -EINVAL; 2410 } 2411 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2412 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2413 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2414 ret = -EINVAL; 2415 } 2416 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2417 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2418 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2419 ret = -EINVAL; 2420 } 2421 2422 /* 2423 * Check sectorsize and nodesize first, other check will need it. 2424 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2425 */ 2426 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2427 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2428 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2429 ret = -EINVAL; 2430 } 2431 /* Only PAGE SIZE is supported yet */ 2432 if (sectorsize != PAGE_SIZE) { 2433 btrfs_err(fs_info, 2434 "sectorsize %llu not supported yet, only support %lu", 2435 sectorsize, PAGE_SIZE); 2436 ret = -EINVAL; 2437 } 2438 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2439 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2440 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2441 ret = -EINVAL; 2442 } 2443 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2444 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2445 le32_to_cpu(sb->__unused_leafsize), nodesize); 2446 ret = -EINVAL; 2447 } 2448 2449 /* Root alignment check */ 2450 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2451 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2452 btrfs_super_root(sb)); 2453 ret = -EINVAL; 2454 } 2455 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2456 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2457 btrfs_super_chunk_root(sb)); 2458 ret = -EINVAL; 2459 } 2460 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2461 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2462 btrfs_super_log_root(sb)); 2463 ret = -EINVAL; 2464 } 2465 2466 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2467 BTRFS_FSID_SIZE) != 0) { 2468 btrfs_err(fs_info, 2469 "dev_item UUID does not match metadata fsid: %pU != %pU", 2470 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2471 ret = -EINVAL; 2472 } 2473 2474 /* 2475 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2476 * done later 2477 */ 2478 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2479 btrfs_err(fs_info, "bytes_used is too small %llu", 2480 btrfs_super_bytes_used(sb)); 2481 ret = -EINVAL; 2482 } 2483 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2484 btrfs_err(fs_info, "invalid stripesize %u", 2485 btrfs_super_stripesize(sb)); 2486 ret = -EINVAL; 2487 } 2488 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2489 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2490 btrfs_super_num_devices(sb)); 2491 if (btrfs_super_num_devices(sb) == 0) { 2492 btrfs_err(fs_info, "number of devices is 0"); 2493 ret = -EINVAL; 2494 } 2495 2496 if (mirror_num >= 0 && 2497 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2498 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2499 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2500 ret = -EINVAL; 2501 } 2502 2503 /* 2504 * Obvious sys_chunk_array corruptions, it must hold at least one key 2505 * and one chunk 2506 */ 2507 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2508 btrfs_err(fs_info, "system chunk array too big %u > %u", 2509 btrfs_super_sys_array_size(sb), 2510 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2511 ret = -EINVAL; 2512 } 2513 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2514 + sizeof(struct btrfs_chunk)) { 2515 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2516 btrfs_super_sys_array_size(sb), 2517 sizeof(struct btrfs_disk_key) 2518 + sizeof(struct btrfs_chunk)); 2519 ret = -EINVAL; 2520 } 2521 2522 /* 2523 * The generation is a global counter, we'll trust it more than the others 2524 * but it's still possible that it's the one that's wrong. 2525 */ 2526 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2527 btrfs_warn(fs_info, 2528 "suspicious: generation < chunk_root_generation: %llu < %llu", 2529 btrfs_super_generation(sb), 2530 btrfs_super_chunk_root_generation(sb)); 2531 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2532 && btrfs_super_cache_generation(sb) != (u64)-1) 2533 btrfs_warn(fs_info, 2534 "suspicious: generation < cache_generation: %llu < %llu", 2535 btrfs_super_generation(sb), 2536 btrfs_super_cache_generation(sb)); 2537 2538 return ret; 2539 } 2540 2541 /* 2542 * Validation of super block at mount time. 2543 * Some checks already done early at mount time, like csum type and incompat 2544 * flags will be skipped. 2545 */ 2546 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2547 { 2548 return validate_super(fs_info, fs_info->super_copy, 0); 2549 } 2550 2551 /* 2552 * Validation of super block at write time. 2553 * Some checks like bytenr check will be skipped as their values will be 2554 * overwritten soon. 2555 * Extra checks like csum type and incompat flags will be done here. 2556 */ 2557 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2558 struct btrfs_super_block *sb) 2559 { 2560 int ret; 2561 2562 ret = validate_super(fs_info, sb, -1); 2563 if (ret < 0) 2564 goto out; 2565 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) { 2566 ret = -EUCLEAN; 2567 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2568 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2569 goto out; 2570 } 2571 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2572 ret = -EUCLEAN; 2573 btrfs_err(fs_info, 2574 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2575 btrfs_super_incompat_flags(sb), 2576 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2577 goto out; 2578 } 2579 out: 2580 if (ret < 0) 2581 btrfs_err(fs_info, 2582 "super block corruption detected before writing it to disk"); 2583 return ret; 2584 } 2585 2586 int open_ctree(struct super_block *sb, 2587 struct btrfs_fs_devices *fs_devices, 2588 char *options) 2589 { 2590 u32 sectorsize; 2591 u32 nodesize; 2592 u32 stripesize; 2593 u64 generation; 2594 u64 features; 2595 struct btrfs_key location; 2596 struct buffer_head *bh; 2597 struct btrfs_super_block *disk_super; 2598 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2599 struct btrfs_root *tree_root; 2600 struct btrfs_root *chunk_root; 2601 int ret; 2602 int err = -EINVAL; 2603 int num_backups_tried = 0; 2604 int backup_index = 0; 2605 int clear_free_space_tree = 0; 2606 int level; 2607 2608 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2609 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2610 if (!tree_root || !chunk_root) { 2611 err = -ENOMEM; 2612 goto fail; 2613 } 2614 2615 ret = init_srcu_struct(&fs_info->subvol_srcu); 2616 if (ret) { 2617 err = ret; 2618 goto fail; 2619 } 2620 2621 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2622 if (ret) { 2623 err = ret; 2624 goto fail_srcu; 2625 } 2626 fs_info->dirty_metadata_batch = PAGE_SIZE * 2627 (1 + ilog2(nr_cpu_ids)); 2628 2629 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2630 if (ret) { 2631 err = ret; 2632 goto fail_dirty_metadata_bytes; 2633 } 2634 2635 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2636 GFP_KERNEL); 2637 if (ret) { 2638 err = ret; 2639 goto fail_delalloc_bytes; 2640 } 2641 2642 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2643 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2644 INIT_LIST_HEAD(&fs_info->trans_list); 2645 INIT_LIST_HEAD(&fs_info->dead_roots); 2646 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2647 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2648 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2649 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs); 2650 spin_lock_init(&fs_info->pending_raid_kobjs_lock); 2651 spin_lock_init(&fs_info->delalloc_root_lock); 2652 spin_lock_init(&fs_info->trans_lock); 2653 spin_lock_init(&fs_info->fs_roots_radix_lock); 2654 spin_lock_init(&fs_info->delayed_iput_lock); 2655 spin_lock_init(&fs_info->defrag_inodes_lock); 2656 spin_lock_init(&fs_info->tree_mod_seq_lock); 2657 spin_lock_init(&fs_info->super_lock); 2658 spin_lock_init(&fs_info->qgroup_op_lock); 2659 spin_lock_init(&fs_info->buffer_lock); 2660 spin_lock_init(&fs_info->unused_bgs_lock); 2661 rwlock_init(&fs_info->tree_mod_log_lock); 2662 mutex_init(&fs_info->unused_bg_unpin_mutex); 2663 mutex_init(&fs_info->delete_unused_bgs_mutex); 2664 mutex_init(&fs_info->reloc_mutex); 2665 mutex_init(&fs_info->delalloc_root_mutex); 2666 mutex_init(&fs_info->cleaner_delayed_iput_mutex); 2667 seqlock_init(&fs_info->profiles_lock); 2668 2669 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2670 INIT_LIST_HEAD(&fs_info->space_info); 2671 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2672 INIT_LIST_HEAD(&fs_info->unused_bgs); 2673 btrfs_mapping_init(&fs_info->mapping_tree); 2674 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2675 BTRFS_BLOCK_RSV_GLOBAL); 2676 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2677 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2678 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2679 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2680 BTRFS_BLOCK_RSV_DELOPS); 2681 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2682 BTRFS_BLOCK_RSV_DELREFS); 2683 2684 atomic_set(&fs_info->async_delalloc_pages, 0); 2685 atomic_set(&fs_info->defrag_running, 0); 2686 atomic_set(&fs_info->qgroup_op_seq, 0); 2687 atomic_set(&fs_info->reada_works_cnt, 0); 2688 atomic64_set(&fs_info->tree_mod_seq, 0); 2689 fs_info->sb = sb; 2690 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2691 fs_info->metadata_ratio = 0; 2692 fs_info->defrag_inodes = RB_ROOT; 2693 atomic64_set(&fs_info->free_chunk_space, 0); 2694 fs_info->tree_mod_log = RB_ROOT; 2695 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2696 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2697 /* readahead state */ 2698 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2699 spin_lock_init(&fs_info->reada_lock); 2700 btrfs_init_ref_verify(fs_info); 2701 2702 fs_info->thread_pool_size = min_t(unsigned long, 2703 num_online_cpus() + 2, 8); 2704 2705 INIT_LIST_HEAD(&fs_info->ordered_roots); 2706 spin_lock_init(&fs_info->ordered_root_lock); 2707 2708 fs_info->btree_inode = new_inode(sb); 2709 if (!fs_info->btree_inode) { 2710 err = -ENOMEM; 2711 goto fail_bio_counter; 2712 } 2713 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2714 2715 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2716 GFP_KERNEL); 2717 if (!fs_info->delayed_root) { 2718 err = -ENOMEM; 2719 goto fail_iput; 2720 } 2721 btrfs_init_delayed_root(fs_info->delayed_root); 2722 2723 btrfs_init_scrub(fs_info); 2724 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2725 fs_info->check_integrity_print_mask = 0; 2726 #endif 2727 btrfs_init_balance(fs_info); 2728 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2729 2730 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2731 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2732 2733 btrfs_init_btree_inode(fs_info); 2734 2735 spin_lock_init(&fs_info->block_group_cache_lock); 2736 fs_info->block_group_cache_tree = RB_ROOT; 2737 fs_info->first_logical_byte = (u64)-1; 2738 2739 extent_io_tree_init(&fs_info->freed_extents[0], NULL); 2740 extent_io_tree_init(&fs_info->freed_extents[1], NULL); 2741 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2742 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2743 2744 mutex_init(&fs_info->ordered_operations_mutex); 2745 mutex_init(&fs_info->tree_log_mutex); 2746 mutex_init(&fs_info->chunk_mutex); 2747 mutex_init(&fs_info->transaction_kthread_mutex); 2748 mutex_init(&fs_info->cleaner_mutex); 2749 mutex_init(&fs_info->ro_block_group_mutex); 2750 init_rwsem(&fs_info->commit_root_sem); 2751 init_rwsem(&fs_info->cleanup_work_sem); 2752 init_rwsem(&fs_info->subvol_sem); 2753 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2754 2755 btrfs_init_dev_replace_locks(fs_info); 2756 btrfs_init_qgroup(fs_info); 2757 2758 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2759 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2760 2761 init_waitqueue_head(&fs_info->transaction_throttle); 2762 init_waitqueue_head(&fs_info->transaction_wait); 2763 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2764 init_waitqueue_head(&fs_info->async_submit_wait); 2765 2766 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2767 2768 /* Usable values until the real ones are cached from the superblock */ 2769 fs_info->nodesize = 4096; 2770 fs_info->sectorsize = 4096; 2771 fs_info->stripesize = 4096; 2772 2773 spin_lock_init(&fs_info->swapfile_pins_lock); 2774 fs_info->swapfile_pins = RB_ROOT; 2775 2776 ret = btrfs_alloc_stripe_hash_table(fs_info); 2777 if (ret) { 2778 err = ret; 2779 goto fail_alloc; 2780 } 2781 2782 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 2783 2784 invalidate_bdev(fs_devices->latest_bdev); 2785 2786 /* 2787 * Read super block and check the signature bytes only 2788 */ 2789 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2790 if (IS_ERR(bh)) { 2791 err = PTR_ERR(bh); 2792 goto fail_alloc; 2793 } 2794 2795 /* 2796 * We want to check superblock checksum, the type is stored inside. 2797 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2798 */ 2799 if (btrfs_check_super_csum(fs_info, bh->b_data)) { 2800 btrfs_err(fs_info, "superblock checksum mismatch"); 2801 err = -EINVAL; 2802 brelse(bh); 2803 goto fail_alloc; 2804 } 2805 2806 /* 2807 * super_copy is zeroed at allocation time and we never touch the 2808 * following bytes up to INFO_SIZE, the checksum is calculated from 2809 * the whole block of INFO_SIZE 2810 */ 2811 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2812 brelse(bh); 2813 2814 disk_super = fs_info->super_copy; 2815 2816 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2817 BTRFS_FSID_SIZE)); 2818 2819 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) { 2820 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid, 2821 fs_info->super_copy->metadata_uuid, 2822 BTRFS_FSID_SIZE)); 2823 } 2824 2825 features = btrfs_super_flags(disk_super); 2826 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 2827 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 2828 btrfs_set_super_flags(disk_super, features); 2829 btrfs_info(fs_info, 2830 "found metadata UUID change in progress flag, clearing"); 2831 } 2832 2833 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2834 sizeof(*fs_info->super_for_commit)); 2835 2836 ret = btrfs_validate_mount_super(fs_info); 2837 if (ret) { 2838 btrfs_err(fs_info, "superblock contains fatal errors"); 2839 err = -EINVAL; 2840 goto fail_alloc; 2841 } 2842 2843 if (!btrfs_super_root(disk_super)) 2844 goto fail_alloc; 2845 2846 /* check FS state, whether FS is broken. */ 2847 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2848 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2849 2850 /* 2851 * run through our array of backup supers and setup 2852 * our ring pointer to the oldest one 2853 */ 2854 generation = btrfs_super_generation(disk_super); 2855 find_oldest_super_backup(fs_info, generation); 2856 2857 /* 2858 * In the long term, we'll store the compression type in the super 2859 * block, and it'll be used for per file compression control. 2860 */ 2861 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2862 2863 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2864 if (ret) { 2865 err = ret; 2866 goto fail_alloc; 2867 } 2868 2869 features = btrfs_super_incompat_flags(disk_super) & 2870 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2871 if (features) { 2872 btrfs_err(fs_info, 2873 "cannot mount because of unsupported optional features (%llx)", 2874 features); 2875 err = -EINVAL; 2876 goto fail_alloc; 2877 } 2878 2879 features = btrfs_super_incompat_flags(disk_super); 2880 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2881 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2882 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2883 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 2884 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 2885 2886 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2887 btrfs_info(fs_info, "has skinny extents"); 2888 2889 /* 2890 * flag our filesystem as having big metadata blocks if 2891 * they are bigger than the page size 2892 */ 2893 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2894 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2895 btrfs_info(fs_info, 2896 "flagging fs with big metadata feature"); 2897 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2898 } 2899 2900 nodesize = btrfs_super_nodesize(disk_super); 2901 sectorsize = btrfs_super_sectorsize(disk_super); 2902 stripesize = sectorsize; 2903 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2904 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2905 2906 /* Cache block sizes */ 2907 fs_info->nodesize = nodesize; 2908 fs_info->sectorsize = sectorsize; 2909 fs_info->stripesize = stripesize; 2910 2911 /* 2912 * mixed block groups end up with duplicate but slightly offset 2913 * extent buffers for the same range. It leads to corruptions 2914 */ 2915 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2916 (sectorsize != nodesize)) { 2917 btrfs_err(fs_info, 2918 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2919 nodesize, sectorsize); 2920 goto fail_alloc; 2921 } 2922 2923 /* 2924 * Needn't use the lock because there is no other task which will 2925 * update the flag. 2926 */ 2927 btrfs_set_super_incompat_flags(disk_super, features); 2928 2929 features = btrfs_super_compat_ro_flags(disk_super) & 2930 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2931 if (!sb_rdonly(sb) && features) { 2932 btrfs_err(fs_info, 2933 "cannot mount read-write because of unsupported optional features (%llx)", 2934 features); 2935 err = -EINVAL; 2936 goto fail_alloc; 2937 } 2938 2939 ret = btrfs_init_workqueues(fs_info, fs_devices); 2940 if (ret) { 2941 err = ret; 2942 goto fail_sb_buffer; 2943 } 2944 2945 sb->s_bdi->congested_fn = btrfs_congested_fn; 2946 sb->s_bdi->congested_data = fs_info; 2947 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 2948 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE; 2949 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 2950 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 2951 2952 sb->s_blocksize = sectorsize; 2953 sb->s_blocksize_bits = blksize_bits(sectorsize); 2954 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 2955 2956 mutex_lock(&fs_info->chunk_mutex); 2957 ret = btrfs_read_sys_array(fs_info); 2958 mutex_unlock(&fs_info->chunk_mutex); 2959 if (ret) { 2960 btrfs_err(fs_info, "failed to read the system array: %d", ret); 2961 goto fail_sb_buffer; 2962 } 2963 2964 generation = btrfs_super_chunk_root_generation(disk_super); 2965 level = btrfs_super_chunk_root_level(disk_super); 2966 2967 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2968 2969 chunk_root->node = read_tree_block(fs_info, 2970 btrfs_super_chunk_root(disk_super), 2971 generation, level, NULL); 2972 if (IS_ERR(chunk_root->node) || 2973 !extent_buffer_uptodate(chunk_root->node)) { 2974 btrfs_err(fs_info, "failed to read chunk root"); 2975 if (!IS_ERR(chunk_root->node)) 2976 free_extent_buffer(chunk_root->node); 2977 chunk_root->node = NULL; 2978 goto fail_tree_roots; 2979 } 2980 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2981 chunk_root->commit_root = btrfs_root_node(chunk_root); 2982 2983 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2984 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2985 2986 ret = btrfs_read_chunk_tree(fs_info); 2987 if (ret) { 2988 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 2989 goto fail_tree_roots; 2990 } 2991 2992 /* 2993 * Keep the devid that is marked to be the target device for the 2994 * device replace procedure 2995 */ 2996 btrfs_free_extra_devids(fs_devices, 0); 2997 2998 if (!fs_devices->latest_bdev) { 2999 btrfs_err(fs_info, "failed to read devices"); 3000 goto fail_tree_roots; 3001 } 3002 3003 retry_root_backup: 3004 generation = btrfs_super_generation(disk_super); 3005 level = btrfs_super_root_level(disk_super); 3006 3007 tree_root->node = read_tree_block(fs_info, 3008 btrfs_super_root(disk_super), 3009 generation, level, NULL); 3010 if (IS_ERR(tree_root->node) || 3011 !extent_buffer_uptodate(tree_root->node)) { 3012 btrfs_warn(fs_info, "failed to read tree root"); 3013 if (!IS_ERR(tree_root->node)) 3014 free_extent_buffer(tree_root->node); 3015 tree_root->node = NULL; 3016 goto recovery_tree_root; 3017 } 3018 3019 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 3020 tree_root->commit_root = btrfs_root_node(tree_root); 3021 btrfs_set_root_refs(&tree_root->root_item, 1); 3022 3023 mutex_lock(&tree_root->objectid_mutex); 3024 ret = btrfs_find_highest_objectid(tree_root, 3025 &tree_root->highest_objectid); 3026 if (ret) { 3027 mutex_unlock(&tree_root->objectid_mutex); 3028 goto recovery_tree_root; 3029 } 3030 3031 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 3032 3033 mutex_unlock(&tree_root->objectid_mutex); 3034 3035 ret = btrfs_read_roots(fs_info); 3036 if (ret) 3037 goto recovery_tree_root; 3038 3039 fs_info->generation = generation; 3040 fs_info->last_trans_committed = generation; 3041 3042 ret = btrfs_verify_dev_extents(fs_info); 3043 if (ret) { 3044 btrfs_err(fs_info, 3045 "failed to verify dev extents against chunks: %d", 3046 ret); 3047 goto fail_block_groups; 3048 } 3049 ret = btrfs_recover_balance(fs_info); 3050 if (ret) { 3051 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3052 goto fail_block_groups; 3053 } 3054 3055 ret = btrfs_init_dev_stats(fs_info); 3056 if (ret) { 3057 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3058 goto fail_block_groups; 3059 } 3060 3061 ret = btrfs_init_dev_replace(fs_info); 3062 if (ret) { 3063 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3064 goto fail_block_groups; 3065 } 3066 3067 btrfs_free_extra_devids(fs_devices, 1); 3068 3069 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 3070 if (ret) { 3071 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3072 ret); 3073 goto fail_block_groups; 3074 } 3075 3076 ret = btrfs_sysfs_add_device(fs_devices); 3077 if (ret) { 3078 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 3079 ret); 3080 goto fail_fsdev_sysfs; 3081 } 3082 3083 ret = btrfs_sysfs_add_mounted(fs_info); 3084 if (ret) { 3085 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3086 goto fail_fsdev_sysfs; 3087 } 3088 3089 ret = btrfs_init_space_info(fs_info); 3090 if (ret) { 3091 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3092 goto fail_sysfs; 3093 } 3094 3095 ret = btrfs_read_block_groups(fs_info); 3096 if (ret) { 3097 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3098 goto fail_sysfs; 3099 } 3100 3101 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 3102 btrfs_warn(fs_info, 3103 "writable mount is not allowed due to too many missing devices"); 3104 goto fail_sysfs; 3105 } 3106 3107 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3108 "btrfs-cleaner"); 3109 if (IS_ERR(fs_info->cleaner_kthread)) 3110 goto fail_sysfs; 3111 3112 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3113 tree_root, 3114 "btrfs-transaction"); 3115 if (IS_ERR(fs_info->transaction_kthread)) 3116 goto fail_cleaner; 3117 3118 if (!btrfs_test_opt(fs_info, NOSSD) && 3119 !fs_info->fs_devices->rotating) { 3120 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3121 } 3122 3123 /* 3124 * Mount does not set all options immediately, we can do it now and do 3125 * not have to wait for transaction commit 3126 */ 3127 btrfs_apply_pending_changes(fs_info); 3128 3129 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3130 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3131 ret = btrfsic_mount(fs_info, fs_devices, 3132 btrfs_test_opt(fs_info, 3133 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3134 1 : 0, 3135 fs_info->check_integrity_print_mask); 3136 if (ret) 3137 btrfs_warn(fs_info, 3138 "failed to initialize integrity check module: %d", 3139 ret); 3140 } 3141 #endif 3142 ret = btrfs_read_qgroup_config(fs_info); 3143 if (ret) 3144 goto fail_trans_kthread; 3145 3146 if (btrfs_build_ref_tree(fs_info)) 3147 btrfs_err(fs_info, "couldn't build ref tree"); 3148 3149 /* do not make disk changes in broken FS or nologreplay is given */ 3150 if (btrfs_super_log_root(disk_super) != 0 && 3151 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3152 ret = btrfs_replay_log(fs_info, fs_devices); 3153 if (ret) { 3154 err = ret; 3155 goto fail_qgroup; 3156 } 3157 } 3158 3159 ret = btrfs_find_orphan_roots(fs_info); 3160 if (ret) 3161 goto fail_qgroup; 3162 3163 if (!sb_rdonly(sb)) { 3164 ret = btrfs_cleanup_fs_roots(fs_info); 3165 if (ret) 3166 goto fail_qgroup; 3167 3168 mutex_lock(&fs_info->cleaner_mutex); 3169 ret = btrfs_recover_relocation(tree_root); 3170 mutex_unlock(&fs_info->cleaner_mutex); 3171 if (ret < 0) { 3172 btrfs_warn(fs_info, "failed to recover relocation: %d", 3173 ret); 3174 err = -EINVAL; 3175 goto fail_qgroup; 3176 } 3177 } 3178 3179 location.objectid = BTRFS_FS_TREE_OBJECTID; 3180 location.type = BTRFS_ROOT_ITEM_KEY; 3181 location.offset = 0; 3182 3183 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3184 if (IS_ERR(fs_info->fs_root)) { 3185 err = PTR_ERR(fs_info->fs_root); 3186 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3187 goto fail_qgroup; 3188 } 3189 3190 if (sb_rdonly(sb)) 3191 return 0; 3192 3193 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3194 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3195 clear_free_space_tree = 1; 3196 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3197 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3198 btrfs_warn(fs_info, "free space tree is invalid"); 3199 clear_free_space_tree = 1; 3200 } 3201 3202 if (clear_free_space_tree) { 3203 btrfs_info(fs_info, "clearing free space tree"); 3204 ret = btrfs_clear_free_space_tree(fs_info); 3205 if (ret) { 3206 btrfs_warn(fs_info, 3207 "failed to clear free space tree: %d", ret); 3208 close_ctree(fs_info); 3209 return ret; 3210 } 3211 } 3212 3213 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3214 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3215 btrfs_info(fs_info, "creating free space tree"); 3216 ret = btrfs_create_free_space_tree(fs_info); 3217 if (ret) { 3218 btrfs_warn(fs_info, 3219 "failed to create free space tree: %d", ret); 3220 close_ctree(fs_info); 3221 return ret; 3222 } 3223 } 3224 3225 down_read(&fs_info->cleanup_work_sem); 3226 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3227 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3228 up_read(&fs_info->cleanup_work_sem); 3229 close_ctree(fs_info); 3230 return ret; 3231 } 3232 up_read(&fs_info->cleanup_work_sem); 3233 3234 ret = btrfs_resume_balance_async(fs_info); 3235 if (ret) { 3236 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3237 close_ctree(fs_info); 3238 return ret; 3239 } 3240 3241 ret = btrfs_resume_dev_replace_async(fs_info); 3242 if (ret) { 3243 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3244 close_ctree(fs_info); 3245 return ret; 3246 } 3247 3248 btrfs_qgroup_rescan_resume(fs_info); 3249 3250 if (!fs_info->uuid_root) { 3251 btrfs_info(fs_info, "creating UUID tree"); 3252 ret = btrfs_create_uuid_tree(fs_info); 3253 if (ret) { 3254 btrfs_warn(fs_info, 3255 "failed to create the UUID tree: %d", ret); 3256 close_ctree(fs_info); 3257 return ret; 3258 } 3259 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3260 fs_info->generation != 3261 btrfs_super_uuid_tree_generation(disk_super)) { 3262 btrfs_info(fs_info, "checking UUID tree"); 3263 ret = btrfs_check_uuid_tree(fs_info); 3264 if (ret) { 3265 btrfs_warn(fs_info, 3266 "failed to check the UUID tree: %d", ret); 3267 close_ctree(fs_info); 3268 return ret; 3269 } 3270 } else { 3271 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3272 } 3273 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3274 3275 /* 3276 * backuproot only affect mount behavior, and if open_ctree succeeded, 3277 * no need to keep the flag 3278 */ 3279 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3280 3281 return 0; 3282 3283 fail_qgroup: 3284 btrfs_free_qgroup_config(fs_info); 3285 fail_trans_kthread: 3286 kthread_stop(fs_info->transaction_kthread); 3287 btrfs_cleanup_transaction(fs_info); 3288 btrfs_free_fs_roots(fs_info); 3289 fail_cleaner: 3290 kthread_stop(fs_info->cleaner_kthread); 3291 3292 /* 3293 * make sure we're done with the btree inode before we stop our 3294 * kthreads 3295 */ 3296 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3297 3298 fail_sysfs: 3299 btrfs_sysfs_remove_mounted(fs_info); 3300 3301 fail_fsdev_sysfs: 3302 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3303 3304 fail_block_groups: 3305 btrfs_put_block_group_cache(fs_info); 3306 3307 fail_tree_roots: 3308 free_root_pointers(fs_info, 1); 3309 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3310 3311 fail_sb_buffer: 3312 btrfs_stop_all_workers(fs_info); 3313 btrfs_free_block_groups(fs_info); 3314 fail_alloc: 3315 fail_iput: 3316 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3317 3318 iput(fs_info->btree_inode); 3319 fail_bio_counter: 3320 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 3321 fail_delalloc_bytes: 3322 percpu_counter_destroy(&fs_info->delalloc_bytes); 3323 fail_dirty_metadata_bytes: 3324 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3325 fail_srcu: 3326 cleanup_srcu_struct(&fs_info->subvol_srcu); 3327 fail: 3328 btrfs_free_stripe_hash_table(fs_info); 3329 btrfs_close_devices(fs_info->fs_devices); 3330 return err; 3331 3332 recovery_tree_root: 3333 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 3334 goto fail_tree_roots; 3335 3336 free_root_pointers(fs_info, 0); 3337 3338 /* don't use the log in recovery mode, it won't be valid */ 3339 btrfs_set_super_log_root(disk_super, 0); 3340 3341 /* we can't trust the free space cache either */ 3342 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3343 3344 ret = next_root_backup(fs_info, fs_info->super_copy, 3345 &num_backups_tried, &backup_index); 3346 if (ret == -1) 3347 goto fail_block_groups; 3348 goto retry_root_backup; 3349 } 3350 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3351 3352 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3353 { 3354 if (uptodate) { 3355 set_buffer_uptodate(bh); 3356 } else { 3357 struct btrfs_device *device = (struct btrfs_device *) 3358 bh->b_private; 3359 3360 btrfs_warn_rl_in_rcu(device->fs_info, 3361 "lost page write due to IO error on %s", 3362 rcu_str_deref(device->name)); 3363 /* note, we don't set_buffer_write_io_error because we have 3364 * our own ways of dealing with the IO errors 3365 */ 3366 clear_buffer_uptodate(bh); 3367 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3368 } 3369 unlock_buffer(bh); 3370 put_bh(bh); 3371 } 3372 3373 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3374 struct buffer_head **bh_ret) 3375 { 3376 struct buffer_head *bh; 3377 struct btrfs_super_block *super; 3378 u64 bytenr; 3379 3380 bytenr = btrfs_sb_offset(copy_num); 3381 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3382 return -EINVAL; 3383 3384 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE); 3385 /* 3386 * If we fail to read from the underlying devices, as of now 3387 * the best option we have is to mark it EIO. 3388 */ 3389 if (!bh) 3390 return -EIO; 3391 3392 super = (struct btrfs_super_block *)bh->b_data; 3393 if (btrfs_super_bytenr(super) != bytenr || 3394 btrfs_super_magic(super) != BTRFS_MAGIC) { 3395 brelse(bh); 3396 return -EINVAL; 3397 } 3398 3399 *bh_ret = bh; 3400 return 0; 3401 } 3402 3403 3404 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3405 { 3406 struct buffer_head *bh; 3407 struct buffer_head *latest = NULL; 3408 struct btrfs_super_block *super; 3409 int i; 3410 u64 transid = 0; 3411 int ret = -EINVAL; 3412 3413 /* we would like to check all the supers, but that would make 3414 * a btrfs mount succeed after a mkfs from a different FS. 3415 * So, we need to add a special mount option to scan for 3416 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3417 */ 3418 for (i = 0; i < 1; i++) { 3419 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3420 if (ret) 3421 continue; 3422 3423 super = (struct btrfs_super_block *)bh->b_data; 3424 3425 if (!latest || btrfs_super_generation(super) > transid) { 3426 brelse(latest); 3427 latest = bh; 3428 transid = btrfs_super_generation(super); 3429 } else { 3430 brelse(bh); 3431 } 3432 } 3433 3434 if (!latest) 3435 return ERR_PTR(ret); 3436 3437 return latest; 3438 } 3439 3440 /* 3441 * Write superblock @sb to the @device. Do not wait for completion, all the 3442 * buffer heads we write are pinned. 3443 * 3444 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3445 * the expected device size at commit time. Note that max_mirrors must be 3446 * same for write and wait phases. 3447 * 3448 * Return number of errors when buffer head is not found or submission fails. 3449 */ 3450 static int write_dev_supers(struct btrfs_device *device, 3451 struct btrfs_super_block *sb, int max_mirrors) 3452 { 3453 struct buffer_head *bh; 3454 int i; 3455 int ret; 3456 int errors = 0; 3457 u32 crc; 3458 u64 bytenr; 3459 int op_flags; 3460 3461 if (max_mirrors == 0) 3462 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3463 3464 for (i = 0; i < max_mirrors; i++) { 3465 bytenr = btrfs_sb_offset(i); 3466 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3467 device->commit_total_bytes) 3468 break; 3469 3470 btrfs_set_super_bytenr(sb, bytenr); 3471 3472 crc = ~(u32)0; 3473 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc, 3474 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 3475 btrfs_csum_final(crc, sb->csum); 3476 3477 /* One reference for us, and we leave it for the caller */ 3478 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, 3479 BTRFS_SUPER_INFO_SIZE); 3480 if (!bh) { 3481 btrfs_err(device->fs_info, 3482 "couldn't get super buffer head for bytenr %llu", 3483 bytenr); 3484 errors++; 3485 continue; 3486 } 3487 3488 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3489 3490 /* one reference for submit_bh */ 3491 get_bh(bh); 3492 3493 set_buffer_uptodate(bh); 3494 lock_buffer(bh); 3495 bh->b_end_io = btrfs_end_buffer_write_sync; 3496 bh->b_private = device; 3497 3498 /* 3499 * we fua the first super. The others we allow 3500 * to go down lazy. 3501 */ 3502 op_flags = REQ_SYNC | REQ_META | REQ_PRIO; 3503 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3504 op_flags |= REQ_FUA; 3505 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh); 3506 if (ret) 3507 errors++; 3508 } 3509 return errors < i ? 0 : -1; 3510 } 3511 3512 /* 3513 * Wait for write completion of superblocks done by write_dev_supers, 3514 * @max_mirrors same for write and wait phases. 3515 * 3516 * Return number of errors when buffer head is not found or not marked up to 3517 * date. 3518 */ 3519 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3520 { 3521 struct buffer_head *bh; 3522 int i; 3523 int errors = 0; 3524 bool primary_failed = false; 3525 u64 bytenr; 3526 3527 if (max_mirrors == 0) 3528 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3529 3530 for (i = 0; i < max_mirrors; i++) { 3531 bytenr = btrfs_sb_offset(i); 3532 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3533 device->commit_total_bytes) 3534 break; 3535 3536 bh = __find_get_block(device->bdev, 3537 bytenr / BTRFS_BDEV_BLOCKSIZE, 3538 BTRFS_SUPER_INFO_SIZE); 3539 if (!bh) { 3540 errors++; 3541 if (i == 0) 3542 primary_failed = true; 3543 continue; 3544 } 3545 wait_on_buffer(bh); 3546 if (!buffer_uptodate(bh)) { 3547 errors++; 3548 if (i == 0) 3549 primary_failed = true; 3550 } 3551 3552 /* drop our reference */ 3553 brelse(bh); 3554 3555 /* drop the reference from the writing run */ 3556 brelse(bh); 3557 } 3558 3559 /* log error, force error return */ 3560 if (primary_failed) { 3561 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3562 device->devid); 3563 return -1; 3564 } 3565 3566 return errors < i ? 0 : -1; 3567 } 3568 3569 /* 3570 * endio for the write_dev_flush, this will wake anyone waiting 3571 * for the barrier when it is done 3572 */ 3573 static void btrfs_end_empty_barrier(struct bio *bio) 3574 { 3575 complete(bio->bi_private); 3576 } 3577 3578 /* 3579 * Submit a flush request to the device if it supports it. Error handling is 3580 * done in the waiting counterpart. 3581 */ 3582 static void write_dev_flush(struct btrfs_device *device) 3583 { 3584 struct request_queue *q = bdev_get_queue(device->bdev); 3585 struct bio *bio = device->flush_bio; 3586 3587 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3588 return; 3589 3590 bio_reset(bio); 3591 bio->bi_end_io = btrfs_end_empty_barrier; 3592 bio_set_dev(bio, device->bdev); 3593 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3594 init_completion(&device->flush_wait); 3595 bio->bi_private = &device->flush_wait; 3596 3597 btrfsic_submit_bio(bio); 3598 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3599 } 3600 3601 /* 3602 * If the flush bio has been submitted by write_dev_flush, wait for it. 3603 */ 3604 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3605 { 3606 struct bio *bio = device->flush_bio; 3607 3608 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3609 return BLK_STS_OK; 3610 3611 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3612 wait_for_completion_io(&device->flush_wait); 3613 3614 return bio->bi_status; 3615 } 3616 3617 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3618 { 3619 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3620 return -EIO; 3621 return 0; 3622 } 3623 3624 /* 3625 * send an empty flush down to each device in parallel, 3626 * then wait for them 3627 */ 3628 static int barrier_all_devices(struct btrfs_fs_info *info) 3629 { 3630 struct list_head *head; 3631 struct btrfs_device *dev; 3632 int errors_wait = 0; 3633 blk_status_t ret; 3634 3635 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3636 /* send down all the barriers */ 3637 head = &info->fs_devices->devices; 3638 list_for_each_entry(dev, head, dev_list) { 3639 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3640 continue; 3641 if (!dev->bdev) 3642 continue; 3643 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3644 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3645 continue; 3646 3647 write_dev_flush(dev); 3648 dev->last_flush_error = BLK_STS_OK; 3649 } 3650 3651 /* wait for all the barriers */ 3652 list_for_each_entry(dev, head, dev_list) { 3653 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3654 continue; 3655 if (!dev->bdev) { 3656 errors_wait++; 3657 continue; 3658 } 3659 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3660 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3661 continue; 3662 3663 ret = wait_dev_flush(dev); 3664 if (ret) { 3665 dev->last_flush_error = ret; 3666 btrfs_dev_stat_inc_and_print(dev, 3667 BTRFS_DEV_STAT_FLUSH_ERRS); 3668 errors_wait++; 3669 } 3670 } 3671 3672 if (errors_wait) { 3673 /* 3674 * At some point we need the status of all disks 3675 * to arrive at the volume status. So error checking 3676 * is being pushed to a separate loop. 3677 */ 3678 return check_barrier_error(info); 3679 } 3680 return 0; 3681 } 3682 3683 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3684 { 3685 int raid_type; 3686 int min_tolerated = INT_MAX; 3687 3688 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3689 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3690 min_tolerated = min(min_tolerated, 3691 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3692 tolerated_failures); 3693 3694 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3695 if (raid_type == BTRFS_RAID_SINGLE) 3696 continue; 3697 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3698 continue; 3699 min_tolerated = min(min_tolerated, 3700 btrfs_raid_array[raid_type]. 3701 tolerated_failures); 3702 } 3703 3704 if (min_tolerated == INT_MAX) { 3705 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3706 min_tolerated = 0; 3707 } 3708 3709 return min_tolerated; 3710 } 3711 3712 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3713 { 3714 struct list_head *head; 3715 struct btrfs_device *dev; 3716 struct btrfs_super_block *sb; 3717 struct btrfs_dev_item *dev_item; 3718 int ret; 3719 int do_barriers; 3720 int max_errors; 3721 int total_errors = 0; 3722 u64 flags; 3723 3724 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3725 3726 /* 3727 * max_mirrors == 0 indicates we're from commit_transaction, 3728 * not from fsync where the tree roots in fs_info have not 3729 * been consistent on disk. 3730 */ 3731 if (max_mirrors == 0) 3732 backup_super_roots(fs_info); 3733 3734 sb = fs_info->super_for_commit; 3735 dev_item = &sb->dev_item; 3736 3737 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3738 head = &fs_info->fs_devices->devices; 3739 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3740 3741 if (do_barriers) { 3742 ret = barrier_all_devices(fs_info); 3743 if (ret) { 3744 mutex_unlock( 3745 &fs_info->fs_devices->device_list_mutex); 3746 btrfs_handle_fs_error(fs_info, ret, 3747 "errors while submitting device barriers."); 3748 return ret; 3749 } 3750 } 3751 3752 list_for_each_entry(dev, head, dev_list) { 3753 if (!dev->bdev) { 3754 total_errors++; 3755 continue; 3756 } 3757 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3758 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3759 continue; 3760 3761 btrfs_set_stack_device_generation(dev_item, 0); 3762 btrfs_set_stack_device_type(dev_item, dev->type); 3763 btrfs_set_stack_device_id(dev_item, dev->devid); 3764 btrfs_set_stack_device_total_bytes(dev_item, 3765 dev->commit_total_bytes); 3766 btrfs_set_stack_device_bytes_used(dev_item, 3767 dev->commit_bytes_used); 3768 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3769 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3770 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3771 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3772 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 3773 BTRFS_FSID_SIZE); 3774 3775 flags = btrfs_super_flags(sb); 3776 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3777 3778 ret = btrfs_validate_write_super(fs_info, sb); 3779 if (ret < 0) { 3780 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3781 btrfs_handle_fs_error(fs_info, -EUCLEAN, 3782 "unexpected superblock corruption detected"); 3783 return -EUCLEAN; 3784 } 3785 3786 ret = write_dev_supers(dev, sb, max_mirrors); 3787 if (ret) 3788 total_errors++; 3789 } 3790 if (total_errors > max_errors) { 3791 btrfs_err(fs_info, "%d errors while writing supers", 3792 total_errors); 3793 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3794 3795 /* FUA is masked off if unsupported and can't be the reason */ 3796 btrfs_handle_fs_error(fs_info, -EIO, 3797 "%d errors while writing supers", 3798 total_errors); 3799 return -EIO; 3800 } 3801 3802 total_errors = 0; 3803 list_for_each_entry(dev, head, dev_list) { 3804 if (!dev->bdev) 3805 continue; 3806 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3807 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3808 continue; 3809 3810 ret = wait_dev_supers(dev, max_mirrors); 3811 if (ret) 3812 total_errors++; 3813 } 3814 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3815 if (total_errors > max_errors) { 3816 btrfs_handle_fs_error(fs_info, -EIO, 3817 "%d errors while writing supers", 3818 total_errors); 3819 return -EIO; 3820 } 3821 return 0; 3822 } 3823 3824 /* Drop a fs root from the radix tree and free it. */ 3825 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3826 struct btrfs_root *root) 3827 { 3828 spin_lock(&fs_info->fs_roots_radix_lock); 3829 radix_tree_delete(&fs_info->fs_roots_radix, 3830 (unsigned long)root->root_key.objectid); 3831 spin_unlock(&fs_info->fs_roots_radix_lock); 3832 3833 if (btrfs_root_refs(&root->root_item) == 0) 3834 synchronize_srcu(&fs_info->subvol_srcu); 3835 3836 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3837 btrfs_free_log(NULL, root); 3838 if (root->reloc_root) { 3839 free_extent_buffer(root->reloc_root->node); 3840 free_extent_buffer(root->reloc_root->commit_root); 3841 btrfs_put_fs_root(root->reloc_root); 3842 root->reloc_root = NULL; 3843 } 3844 } 3845 3846 if (root->free_ino_pinned) 3847 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3848 if (root->free_ino_ctl) 3849 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3850 btrfs_free_fs_root(root); 3851 } 3852 3853 void btrfs_free_fs_root(struct btrfs_root *root) 3854 { 3855 iput(root->ino_cache_inode); 3856 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3857 if (root->anon_dev) 3858 free_anon_bdev(root->anon_dev); 3859 if (root->subv_writers) 3860 btrfs_free_subvolume_writers(root->subv_writers); 3861 free_extent_buffer(root->node); 3862 free_extent_buffer(root->commit_root); 3863 kfree(root->free_ino_ctl); 3864 kfree(root->free_ino_pinned); 3865 btrfs_put_fs_root(root); 3866 } 3867 3868 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3869 { 3870 u64 root_objectid = 0; 3871 struct btrfs_root *gang[8]; 3872 int i = 0; 3873 int err = 0; 3874 unsigned int ret = 0; 3875 int index; 3876 3877 while (1) { 3878 index = srcu_read_lock(&fs_info->subvol_srcu); 3879 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3880 (void **)gang, root_objectid, 3881 ARRAY_SIZE(gang)); 3882 if (!ret) { 3883 srcu_read_unlock(&fs_info->subvol_srcu, index); 3884 break; 3885 } 3886 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3887 3888 for (i = 0; i < ret; i++) { 3889 /* Avoid to grab roots in dead_roots */ 3890 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3891 gang[i] = NULL; 3892 continue; 3893 } 3894 /* grab all the search result for later use */ 3895 gang[i] = btrfs_grab_fs_root(gang[i]); 3896 } 3897 srcu_read_unlock(&fs_info->subvol_srcu, index); 3898 3899 for (i = 0; i < ret; i++) { 3900 if (!gang[i]) 3901 continue; 3902 root_objectid = gang[i]->root_key.objectid; 3903 err = btrfs_orphan_cleanup(gang[i]); 3904 if (err) 3905 break; 3906 btrfs_put_fs_root(gang[i]); 3907 } 3908 root_objectid++; 3909 } 3910 3911 /* release the uncleaned roots due to error */ 3912 for (; i < ret; i++) { 3913 if (gang[i]) 3914 btrfs_put_fs_root(gang[i]); 3915 } 3916 return err; 3917 } 3918 3919 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3920 { 3921 struct btrfs_root *root = fs_info->tree_root; 3922 struct btrfs_trans_handle *trans; 3923 3924 mutex_lock(&fs_info->cleaner_mutex); 3925 btrfs_run_delayed_iputs(fs_info); 3926 mutex_unlock(&fs_info->cleaner_mutex); 3927 wake_up_process(fs_info->cleaner_kthread); 3928 3929 /* wait until ongoing cleanup work done */ 3930 down_write(&fs_info->cleanup_work_sem); 3931 up_write(&fs_info->cleanup_work_sem); 3932 3933 trans = btrfs_join_transaction(root); 3934 if (IS_ERR(trans)) 3935 return PTR_ERR(trans); 3936 return btrfs_commit_transaction(trans); 3937 } 3938 3939 void close_ctree(struct btrfs_fs_info *fs_info) 3940 { 3941 int ret; 3942 3943 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3944 /* 3945 * We don't want the cleaner to start new transactions, add more delayed 3946 * iputs, etc. while we're closing. We can't use kthread_stop() yet 3947 * because that frees the task_struct, and the transaction kthread might 3948 * still try to wake up the cleaner. 3949 */ 3950 kthread_park(fs_info->cleaner_kthread); 3951 3952 /* wait for the qgroup rescan worker to stop */ 3953 btrfs_qgroup_wait_for_completion(fs_info, false); 3954 3955 /* wait for the uuid_scan task to finish */ 3956 down(&fs_info->uuid_tree_rescan_sem); 3957 /* avoid complains from lockdep et al., set sem back to initial state */ 3958 up(&fs_info->uuid_tree_rescan_sem); 3959 3960 /* pause restriper - we want to resume on mount */ 3961 btrfs_pause_balance(fs_info); 3962 3963 btrfs_dev_replace_suspend_for_unmount(fs_info); 3964 3965 btrfs_scrub_cancel(fs_info); 3966 3967 /* wait for any defraggers to finish */ 3968 wait_event(fs_info->transaction_wait, 3969 (atomic_read(&fs_info->defrag_running) == 0)); 3970 3971 /* clear out the rbtree of defraggable inodes */ 3972 btrfs_cleanup_defrag_inodes(fs_info); 3973 3974 cancel_work_sync(&fs_info->async_reclaim_work); 3975 3976 if (!sb_rdonly(fs_info->sb)) { 3977 /* 3978 * The cleaner kthread is stopped, so do one final pass over 3979 * unused block groups. 3980 */ 3981 btrfs_delete_unused_bgs(fs_info); 3982 3983 ret = btrfs_commit_super(fs_info); 3984 if (ret) 3985 btrfs_err(fs_info, "commit super ret %d", ret); 3986 } 3987 3988 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 3989 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 3990 btrfs_error_commit_super(fs_info); 3991 3992 kthread_stop(fs_info->transaction_kthread); 3993 kthread_stop(fs_info->cleaner_kthread); 3994 3995 ASSERT(list_empty(&fs_info->delayed_iputs)); 3996 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 3997 3998 btrfs_free_qgroup_config(fs_info); 3999 ASSERT(list_empty(&fs_info->delalloc_roots)); 4000 4001 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4002 btrfs_info(fs_info, "at unmount delalloc count %lld", 4003 percpu_counter_sum(&fs_info->delalloc_bytes)); 4004 } 4005 4006 btrfs_sysfs_remove_mounted(fs_info); 4007 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4008 4009 btrfs_free_fs_roots(fs_info); 4010 4011 btrfs_put_block_group_cache(fs_info); 4012 4013 /* 4014 * we must make sure there is not any read request to 4015 * submit after we stopping all workers. 4016 */ 4017 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4018 btrfs_stop_all_workers(fs_info); 4019 4020 btrfs_free_block_groups(fs_info); 4021 4022 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4023 free_root_pointers(fs_info, 1); 4024 4025 iput(fs_info->btree_inode); 4026 4027 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4028 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4029 btrfsic_unmount(fs_info->fs_devices); 4030 #endif 4031 4032 btrfs_close_devices(fs_info->fs_devices); 4033 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4034 4035 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 4036 percpu_counter_destroy(&fs_info->delalloc_bytes); 4037 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 4038 cleanup_srcu_struct(&fs_info->subvol_srcu); 4039 4040 btrfs_free_stripe_hash_table(fs_info); 4041 btrfs_free_ref_cache(fs_info); 4042 4043 while (!list_empty(&fs_info->pinned_chunks)) { 4044 struct extent_map *em; 4045 4046 em = list_first_entry(&fs_info->pinned_chunks, 4047 struct extent_map, list); 4048 list_del_init(&em->list); 4049 free_extent_map(em); 4050 } 4051 } 4052 4053 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4054 int atomic) 4055 { 4056 int ret; 4057 struct inode *btree_inode = buf->pages[0]->mapping->host; 4058 4059 ret = extent_buffer_uptodate(buf); 4060 if (!ret) 4061 return ret; 4062 4063 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4064 parent_transid, atomic); 4065 if (ret == -EAGAIN) 4066 return ret; 4067 return !ret; 4068 } 4069 4070 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4071 { 4072 struct btrfs_fs_info *fs_info; 4073 struct btrfs_root *root; 4074 u64 transid = btrfs_header_generation(buf); 4075 int was_dirty; 4076 4077 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4078 /* 4079 * This is a fast path so only do this check if we have sanity tests 4080 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4081 * outside of the sanity tests. 4082 */ 4083 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4084 return; 4085 #endif 4086 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4087 fs_info = root->fs_info; 4088 btrfs_assert_tree_locked(buf); 4089 if (transid != fs_info->generation) 4090 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4091 buf->start, transid, fs_info->generation); 4092 was_dirty = set_extent_buffer_dirty(buf); 4093 if (!was_dirty) 4094 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4095 buf->len, 4096 fs_info->dirty_metadata_batch); 4097 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4098 /* 4099 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4100 * but item data not updated. 4101 * So here we should only check item pointers, not item data. 4102 */ 4103 if (btrfs_header_level(buf) == 0 && 4104 btrfs_check_leaf_relaxed(fs_info, buf)) { 4105 btrfs_print_leaf(buf); 4106 ASSERT(0); 4107 } 4108 #endif 4109 } 4110 4111 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4112 int flush_delayed) 4113 { 4114 /* 4115 * looks as though older kernels can get into trouble with 4116 * this code, they end up stuck in balance_dirty_pages forever 4117 */ 4118 int ret; 4119 4120 if (current->flags & PF_MEMALLOC) 4121 return; 4122 4123 if (flush_delayed) 4124 btrfs_balance_delayed_items(fs_info); 4125 4126 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4127 BTRFS_DIRTY_METADATA_THRESH, 4128 fs_info->dirty_metadata_batch); 4129 if (ret > 0) { 4130 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4131 } 4132 } 4133 4134 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4135 { 4136 __btrfs_btree_balance_dirty(fs_info, 1); 4137 } 4138 4139 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4140 { 4141 __btrfs_btree_balance_dirty(fs_info, 0); 4142 } 4143 4144 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4145 struct btrfs_key *first_key) 4146 { 4147 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4148 struct btrfs_fs_info *fs_info = root->fs_info; 4149 4150 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid, 4151 level, first_key); 4152 } 4153 4154 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4155 { 4156 /* cleanup FS via transaction */ 4157 btrfs_cleanup_transaction(fs_info); 4158 4159 mutex_lock(&fs_info->cleaner_mutex); 4160 btrfs_run_delayed_iputs(fs_info); 4161 mutex_unlock(&fs_info->cleaner_mutex); 4162 4163 down_write(&fs_info->cleanup_work_sem); 4164 up_write(&fs_info->cleanup_work_sem); 4165 } 4166 4167 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4168 { 4169 struct btrfs_ordered_extent *ordered; 4170 4171 spin_lock(&root->ordered_extent_lock); 4172 /* 4173 * This will just short circuit the ordered completion stuff which will 4174 * make sure the ordered extent gets properly cleaned up. 4175 */ 4176 list_for_each_entry(ordered, &root->ordered_extents, 4177 root_extent_list) 4178 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4179 spin_unlock(&root->ordered_extent_lock); 4180 } 4181 4182 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4183 { 4184 struct btrfs_root *root; 4185 struct list_head splice; 4186 4187 INIT_LIST_HEAD(&splice); 4188 4189 spin_lock(&fs_info->ordered_root_lock); 4190 list_splice_init(&fs_info->ordered_roots, &splice); 4191 while (!list_empty(&splice)) { 4192 root = list_first_entry(&splice, struct btrfs_root, 4193 ordered_root); 4194 list_move_tail(&root->ordered_root, 4195 &fs_info->ordered_roots); 4196 4197 spin_unlock(&fs_info->ordered_root_lock); 4198 btrfs_destroy_ordered_extents(root); 4199 4200 cond_resched(); 4201 spin_lock(&fs_info->ordered_root_lock); 4202 } 4203 spin_unlock(&fs_info->ordered_root_lock); 4204 } 4205 4206 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4207 struct btrfs_fs_info *fs_info) 4208 { 4209 struct rb_node *node; 4210 struct btrfs_delayed_ref_root *delayed_refs; 4211 struct btrfs_delayed_ref_node *ref; 4212 int ret = 0; 4213 4214 delayed_refs = &trans->delayed_refs; 4215 4216 spin_lock(&delayed_refs->lock); 4217 if (atomic_read(&delayed_refs->num_entries) == 0) { 4218 spin_unlock(&delayed_refs->lock); 4219 btrfs_info(fs_info, "delayed_refs has NO entry"); 4220 return ret; 4221 } 4222 4223 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4224 struct btrfs_delayed_ref_head *head; 4225 struct rb_node *n; 4226 bool pin_bytes = false; 4227 4228 head = rb_entry(node, struct btrfs_delayed_ref_head, 4229 href_node); 4230 if (!mutex_trylock(&head->mutex)) { 4231 refcount_inc(&head->refs); 4232 spin_unlock(&delayed_refs->lock); 4233 4234 mutex_lock(&head->mutex); 4235 mutex_unlock(&head->mutex); 4236 btrfs_put_delayed_ref_head(head); 4237 spin_lock(&delayed_refs->lock); 4238 continue; 4239 } 4240 spin_lock(&head->lock); 4241 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4242 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4243 ref_node); 4244 ref->in_tree = 0; 4245 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4246 RB_CLEAR_NODE(&ref->ref_node); 4247 if (!list_empty(&ref->add_list)) 4248 list_del(&ref->add_list); 4249 atomic_dec(&delayed_refs->num_entries); 4250 btrfs_put_delayed_ref(ref); 4251 } 4252 if (head->must_insert_reserved) 4253 pin_bytes = true; 4254 btrfs_free_delayed_extent_op(head->extent_op); 4255 delayed_refs->num_heads--; 4256 if (head->processing == 0) 4257 delayed_refs->num_heads_ready--; 4258 atomic_dec(&delayed_refs->num_entries); 4259 rb_erase_cached(&head->href_node, &delayed_refs->href_root); 4260 RB_CLEAR_NODE(&head->href_node); 4261 spin_unlock(&head->lock); 4262 spin_unlock(&delayed_refs->lock); 4263 mutex_unlock(&head->mutex); 4264 4265 if (pin_bytes) 4266 btrfs_pin_extent(fs_info, head->bytenr, 4267 head->num_bytes, 1); 4268 btrfs_put_delayed_ref_head(head); 4269 cond_resched(); 4270 spin_lock(&delayed_refs->lock); 4271 } 4272 4273 spin_unlock(&delayed_refs->lock); 4274 4275 return ret; 4276 } 4277 4278 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4279 { 4280 struct btrfs_inode *btrfs_inode; 4281 struct list_head splice; 4282 4283 INIT_LIST_HEAD(&splice); 4284 4285 spin_lock(&root->delalloc_lock); 4286 list_splice_init(&root->delalloc_inodes, &splice); 4287 4288 while (!list_empty(&splice)) { 4289 struct inode *inode = NULL; 4290 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4291 delalloc_inodes); 4292 __btrfs_del_delalloc_inode(root, btrfs_inode); 4293 spin_unlock(&root->delalloc_lock); 4294 4295 /* 4296 * Make sure we get a live inode and that it'll not disappear 4297 * meanwhile. 4298 */ 4299 inode = igrab(&btrfs_inode->vfs_inode); 4300 if (inode) { 4301 invalidate_inode_pages2(inode->i_mapping); 4302 iput(inode); 4303 } 4304 spin_lock(&root->delalloc_lock); 4305 } 4306 spin_unlock(&root->delalloc_lock); 4307 } 4308 4309 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4310 { 4311 struct btrfs_root *root; 4312 struct list_head splice; 4313 4314 INIT_LIST_HEAD(&splice); 4315 4316 spin_lock(&fs_info->delalloc_root_lock); 4317 list_splice_init(&fs_info->delalloc_roots, &splice); 4318 while (!list_empty(&splice)) { 4319 root = list_first_entry(&splice, struct btrfs_root, 4320 delalloc_root); 4321 root = btrfs_grab_fs_root(root); 4322 BUG_ON(!root); 4323 spin_unlock(&fs_info->delalloc_root_lock); 4324 4325 btrfs_destroy_delalloc_inodes(root); 4326 btrfs_put_fs_root(root); 4327 4328 spin_lock(&fs_info->delalloc_root_lock); 4329 } 4330 spin_unlock(&fs_info->delalloc_root_lock); 4331 } 4332 4333 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4334 struct extent_io_tree *dirty_pages, 4335 int mark) 4336 { 4337 int ret; 4338 struct extent_buffer *eb; 4339 u64 start = 0; 4340 u64 end; 4341 4342 while (1) { 4343 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4344 mark, NULL); 4345 if (ret) 4346 break; 4347 4348 clear_extent_bits(dirty_pages, start, end, mark); 4349 while (start <= end) { 4350 eb = find_extent_buffer(fs_info, start); 4351 start += fs_info->nodesize; 4352 if (!eb) 4353 continue; 4354 wait_on_extent_buffer_writeback(eb); 4355 4356 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4357 &eb->bflags)) 4358 clear_extent_buffer_dirty(eb); 4359 free_extent_buffer_stale(eb); 4360 } 4361 } 4362 4363 return ret; 4364 } 4365 4366 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4367 struct extent_io_tree *pinned_extents) 4368 { 4369 struct extent_io_tree *unpin; 4370 u64 start; 4371 u64 end; 4372 int ret; 4373 bool loop = true; 4374 4375 unpin = pinned_extents; 4376 again: 4377 while (1) { 4378 struct extent_state *cached_state = NULL; 4379 4380 /* 4381 * The btrfs_finish_extent_commit() may get the same range as 4382 * ours between find_first_extent_bit and clear_extent_dirty. 4383 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4384 * the same extent range. 4385 */ 4386 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4387 ret = find_first_extent_bit(unpin, 0, &start, &end, 4388 EXTENT_DIRTY, &cached_state); 4389 if (ret) { 4390 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4391 break; 4392 } 4393 4394 clear_extent_dirty(unpin, start, end, &cached_state); 4395 free_extent_state(cached_state); 4396 btrfs_error_unpin_extent_range(fs_info, start, end); 4397 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4398 cond_resched(); 4399 } 4400 4401 if (loop) { 4402 if (unpin == &fs_info->freed_extents[0]) 4403 unpin = &fs_info->freed_extents[1]; 4404 else 4405 unpin = &fs_info->freed_extents[0]; 4406 loop = false; 4407 goto again; 4408 } 4409 4410 return 0; 4411 } 4412 4413 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) 4414 { 4415 struct inode *inode; 4416 4417 inode = cache->io_ctl.inode; 4418 if (inode) { 4419 invalidate_inode_pages2(inode->i_mapping); 4420 BTRFS_I(inode)->generation = 0; 4421 cache->io_ctl.inode = NULL; 4422 iput(inode); 4423 } 4424 btrfs_put_block_group(cache); 4425 } 4426 4427 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4428 struct btrfs_fs_info *fs_info) 4429 { 4430 struct btrfs_block_group_cache *cache; 4431 4432 spin_lock(&cur_trans->dirty_bgs_lock); 4433 while (!list_empty(&cur_trans->dirty_bgs)) { 4434 cache = list_first_entry(&cur_trans->dirty_bgs, 4435 struct btrfs_block_group_cache, 4436 dirty_list); 4437 4438 if (!list_empty(&cache->io_list)) { 4439 spin_unlock(&cur_trans->dirty_bgs_lock); 4440 list_del_init(&cache->io_list); 4441 btrfs_cleanup_bg_io(cache); 4442 spin_lock(&cur_trans->dirty_bgs_lock); 4443 } 4444 4445 list_del_init(&cache->dirty_list); 4446 spin_lock(&cache->lock); 4447 cache->disk_cache_state = BTRFS_DC_ERROR; 4448 spin_unlock(&cache->lock); 4449 4450 spin_unlock(&cur_trans->dirty_bgs_lock); 4451 btrfs_put_block_group(cache); 4452 btrfs_delayed_refs_rsv_release(fs_info, 1); 4453 spin_lock(&cur_trans->dirty_bgs_lock); 4454 } 4455 spin_unlock(&cur_trans->dirty_bgs_lock); 4456 4457 /* 4458 * Refer to the definition of io_bgs member for details why it's safe 4459 * to use it without any locking 4460 */ 4461 while (!list_empty(&cur_trans->io_bgs)) { 4462 cache = list_first_entry(&cur_trans->io_bgs, 4463 struct btrfs_block_group_cache, 4464 io_list); 4465 4466 list_del_init(&cache->io_list); 4467 spin_lock(&cache->lock); 4468 cache->disk_cache_state = BTRFS_DC_ERROR; 4469 spin_unlock(&cache->lock); 4470 btrfs_cleanup_bg_io(cache); 4471 } 4472 } 4473 4474 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4475 struct btrfs_fs_info *fs_info) 4476 { 4477 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4478 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4479 ASSERT(list_empty(&cur_trans->io_bgs)); 4480 4481 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4482 4483 cur_trans->state = TRANS_STATE_COMMIT_START; 4484 wake_up(&fs_info->transaction_blocked_wait); 4485 4486 cur_trans->state = TRANS_STATE_UNBLOCKED; 4487 wake_up(&fs_info->transaction_wait); 4488 4489 btrfs_destroy_delayed_inodes(fs_info); 4490 btrfs_assert_delayed_root_empty(fs_info); 4491 4492 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4493 EXTENT_DIRTY); 4494 btrfs_destroy_pinned_extent(fs_info, 4495 fs_info->pinned_extents); 4496 4497 cur_trans->state =TRANS_STATE_COMPLETED; 4498 wake_up(&cur_trans->commit_wait); 4499 } 4500 4501 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4502 { 4503 struct btrfs_transaction *t; 4504 4505 mutex_lock(&fs_info->transaction_kthread_mutex); 4506 4507 spin_lock(&fs_info->trans_lock); 4508 while (!list_empty(&fs_info->trans_list)) { 4509 t = list_first_entry(&fs_info->trans_list, 4510 struct btrfs_transaction, list); 4511 if (t->state >= TRANS_STATE_COMMIT_START) { 4512 refcount_inc(&t->use_count); 4513 spin_unlock(&fs_info->trans_lock); 4514 btrfs_wait_for_commit(fs_info, t->transid); 4515 btrfs_put_transaction(t); 4516 spin_lock(&fs_info->trans_lock); 4517 continue; 4518 } 4519 if (t == fs_info->running_transaction) { 4520 t->state = TRANS_STATE_COMMIT_DOING; 4521 spin_unlock(&fs_info->trans_lock); 4522 /* 4523 * We wait for 0 num_writers since we don't hold a trans 4524 * handle open currently for this transaction. 4525 */ 4526 wait_event(t->writer_wait, 4527 atomic_read(&t->num_writers) == 0); 4528 } else { 4529 spin_unlock(&fs_info->trans_lock); 4530 } 4531 btrfs_cleanup_one_transaction(t, fs_info); 4532 4533 spin_lock(&fs_info->trans_lock); 4534 if (t == fs_info->running_transaction) 4535 fs_info->running_transaction = NULL; 4536 list_del_init(&t->list); 4537 spin_unlock(&fs_info->trans_lock); 4538 4539 btrfs_put_transaction(t); 4540 trace_btrfs_transaction_commit(fs_info->tree_root); 4541 spin_lock(&fs_info->trans_lock); 4542 } 4543 spin_unlock(&fs_info->trans_lock); 4544 btrfs_destroy_all_ordered_extents(fs_info); 4545 btrfs_destroy_delayed_inodes(fs_info); 4546 btrfs_assert_delayed_root_empty(fs_info); 4547 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 4548 btrfs_destroy_all_delalloc_inodes(fs_info); 4549 mutex_unlock(&fs_info->transaction_kthread_mutex); 4550 4551 return 0; 4552 } 4553 4554 static const struct extent_io_ops btree_extent_io_ops = { 4555 /* mandatory callbacks */ 4556 .submit_bio_hook = btree_submit_bio_hook, 4557 .readpage_end_io_hook = btree_readpage_end_io_hook, 4558 }; 4559