xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 8631f940b81bf0da3d375fce166d381fa8c47bb2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <asm/unaligned.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
25 #include "volumes.h"
26 #include "print-tree.h"
27 #include "locking.h"
28 #include "tree-log.h"
29 #include "free-space-cache.h"
30 #include "free-space-tree.h"
31 #include "inode-map.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 
42 #ifdef CONFIG_X86
43 #include <asm/cpufeature.h>
44 #endif
45 
46 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
47 				 BTRFS_HEADER_FLAG_RELOC |\
48 				 BTRFS_SUPER_FLAG_ERROR |\
49 				 BTRFS_SUPER_FLAG_SEEDING |\
50 				 BTRFS_SUPER_FLAG_METADUMP |\
51 				 BTRFS_SUPER_FLAG_METADUMP_V2)
52 
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 				      struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60 					struct extent_io_tree *dirty_pages,
61 					int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63 				       struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66 
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73 	struct bio *bio;
74 	bio_end_io_t *end_io;
75 	void *private;
76 	struct btrfs_fs_info *info;
77 	blk_status_t status;
78 	enum btrfs_wq_endio_type metadata;
79 	struct btrfs_work work;
80 };
81 
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83 
84 int __init btrfs_end_io_wq_init(void)
85 {
86 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 					sizeof(struct btrfs_end_io_wq),
88 					0,
89 					SLAB_MEM_SPREAD,
90 					NULL);
91 	if (!btrfs_end_io_wq_cache)
92 		return -ENOMEM;
93 	return 0;
94 }
95 
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98 	kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100 
101 /*
102  * async submit bios are used to offload expensive checksumming
103  * onto the worker threads.  They checksum file and metadata bios
104  * just before they are sent down the IO stack.
105  */
106 struct async_submit_bio {
107 	void *private_data;
108 	struct bio *bio;
109 	extent_submit_bio_start_t *submit_bio_start;
110 	int mirror_num;
111 	/*
112 	 * bio_offset is optional, can be used if the pages in the bio
113 	 * can't tell us where in the file the bio should go
114 	 */
115 	u64 bio_offset;
116 	struct btrfs_work work;
117 	blk_status_t status;
118 };
119 
120 /*
121  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
122  * eb, the lockdep key is determined by the btrfs_root it belongs to and
123  * the level the eb occupies in the tree.
124  *
125  * Different roots are used for different purposes and may nest inside each
126  * other and they require separate keysets.  As lockdep keys should be
127  * static, assign keysets according to the purpose of the root as indicated
128  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
129  * roots have separate keysets.
130  *
131  * Lock-nesting across peer nodes is always done with the immediate parent
132  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
133  * subclass to avoid triggering lockdep warning in such cases.
134  *
135  * The key is set by the readpage_end_io_hook after the buffer has passed
136  * csum validation but before the pages are unlocked.  It is also set by
137  * btrfs_init_new_buffer on freshly allocated blocks.
138  *
139  * We also add a check to make sure the highest level of the tree is the
140  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
141  * needs update as well.
142  */
143 #ifdef CONFIG_DEBUG_LOCK_ALLOC
144 # if BTRFS_MAX_LEVEL != 8
145 #  error
146 # endif
147 
148 static struct btrfs_lockdep_keyset {
149 	u64			id;		/* root objectid */
150 	const char		*name_stem;	/* lock name stem */
151 	char			names[BTRFS_MAX_LEVEL + 1][20];
152 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
153 } btrfs_lockdep_keysets[] = {
154 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
155 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
156 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
157 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
158 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
159 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
160 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
161 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
162 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
163 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
164 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
165 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
166 	{ .id = 0,				.name_stem = "tree"	},
167 };
168 
169 void __init btrfs_init_lockdep(void)
170 {
171 	int i, j;
172 
173 	/* initialize lockdep class names */
174 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
175 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
176 
177 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
178 			snprintf(ks->names[j], sizeof(ks->names[j]),
179 				 "btrfs-%s-%02d", ks->name_stem, j);
180 	}
181 }
182 
183 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
184 				    int level)
185 {
186 	struct btrfs_lockdep_keyset *ks;
187 
188 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
189 
190 	/* find the matching keyset, id 0 is the default entry */
191 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
192 		if (ks->id == objectid)
193 			break;
194 
195 	lockdep_set_class_and_name(&eb->lock,
196 				   &ks->keys[level], ks->names[level]);
197 }
198 
199 #endif
200 
201 /*
202  * extents on the btree inode are pretty simple, there's one extent
203  * that covers the entire device
204  */
205 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
206 		struct page *page, size_t pg_offset, u64 start, u64 len,
207 		int create)
208 {
209 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
210 	struct extent_map_tree *em_tree = &inode->extent_tree;
211 	struct extent_map *em;
212 	int ret;
213 
214 	read_lock(&em_tree->lock);
215 	em = lookup_extent_mapping(em_tree, start, len);
216 	if (em) {
217 		em->bdev = fs_info->fs_devices->latest_bdev;
218 		read_unlock(&em_tree->lock);
219 		goto out;
220 	}
221 	read_unlock(&em_tree->lock);
222 
223 	em = alloc_extent_map();
224 	if (!em) {
225 		em = ERR_PTR(-ENOMEM);
226 		goto out;
227 	}
228 	em->start = 0;
229 	em->len = (u64)-1;
230 	em->block_len = (u64)-1;
231 	em->block_start = 0;
232 	em->bdev = fs_info->fs_devices->latest_bdev;
233 
234 	write_lock(&em_tree->lock);
235 	ret = add_extent_mapping(em_tree, em, 0);
236 	if (ret == -EEXIST) {
237 		free_extent_map(em);
238 		em = lookup_extent_mapping(em_tree, start, len);
239 		if (!em)
240 			em = ERR_PTR(-EIO);
241 	} else if (ret) {
242 		free_extent_map(em);
243 		em = ERR_PTR(ret);
244 	}
245 	write_unlock(&em_tree->lock);
246 
247 out:
248 	return em;
249 }
250 
251 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
252 {
253 	return crc32c(seed, data, len);
254 }
255 
256 void btrfs_csum_final(u32 crc, u8 *result)
257 {
258 	put_unaligned_le32(~crc, result);
259 }
260 
261 /*
262  * compute the csum for a btree block, and either verify it or write it
263  * into the csum field of the block.
264  */
265 static int csum_tree_block(struct btrfs_fs_info *fs_info,
266 			   struct extent_buffer *buf,
267 			   int verify)
268 {
269 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
270 	char result[BTRFS_CSUM_SIZE];
271 	unsigned long len;
272 	unsigned long cur_len;
273 	unsigned long offset = BTRFS_CSUM_SIZE;
274 	char *kaddr;
275 	unsigned long map_start;
276 	unsigned long map_len;
277 	int err;
278 	u32 crc = ~(u32)0;
279 
280 	len = buf->len - offset;
281 	while (len > 0) {
282 		/*
283 		 * Note: we don't need to check for the err == 1 case here, as
284 		 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
285 		 * and 'min_len = 32' and the currently implemented mapping
286 		 * algorithm we cannot cross a page boundary.
287 		 */
288 		err = map_private_extent_buffer(buf, offset, 32,
289 					&kaddr, &map_start, &map_len);
290 		if (err)
291 			return err;
292 		cur_len = min(len, map_len - (offset - map_start));
293 		crc = btrfs_csum_data(kaddr + offset - map_start,
294 				      crc, cur_len);
295 		len -= cur_len;
296 		offset += cur_len;
297 	}
298 	memset(result, 0, BTRFS_CSUM_SIZE);
299 
300 	btrfs_csum_final(crc, result);
301 
302 	if (verify) {
303 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
304 			u32 val;
305 			u32 found = 0;
306 			memcpy(&found, result, csum_size);
307 
308 			read_extent_buffer(buf, &val, 0, csum_size);
309 			btrfs_warn_rl(fs_info,
310 				"%s checksum verify failed on %llu wanted %X found %X level %d",
311 				fs_info->sb->s_id, buf->start,
312 				val, found, btrfs_header_level(buf));
313 			return -EUCLEAN;
314 		}
315 	} else {
316 		write_extent_buffer(buf, result, 0, csum_size);
317 	}
318 
319 	return 0;
320 }
321 
322 /*
323  * we can't consider a given block up to date unless the transid of the
324  * block matches the transid in the parent node's pointer.  This is how we
325  * detect blocks that either didn't get written at all or got written
326  * in the wrong place.
327  */
328 static int verify_parent_transid(struct extent_io_tree *io_tree,
329 				 struct extent_buffer *eb, u64 parent_transid,
330 				 int atomic)
331 {
332 	struct extent_state *cached_state = NULL;
333 	int ret;
334 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
335 
336 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
337 		return 0;
338 
339 	if (atomic)
340 		return -EAGAIN;
341 
342 	if (need_lock) {
343 		btrfs_tree_read_lock(eb);
344 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
345 	}
346 
347 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
348 			 &cached_state);
349 	if (extent_buffer_uptodate(eb) &&
350 	    btrfs_header_generation(eb) == parent_transid) {
351 		ret = 0;
352 		goto out;
353 	}
354 	btrfs_err_rl(eb->fs_info,
355 		"parent transid verify failed on %llu wanted %llu found %llu",
356 			eb->start,
357 			parent_transid, btrfs_header_generation(eb));
358 	ret = 1;
359 
360 	/*
361 	 * Things reading via commit roots that don't have normal protection,
362 	 * like send, can have a really old block in cache that may point at a
363 	 * block that has been freed and re-allocated.  So don't clear uptodate
364 	 * if we find an eb that is under IO (dirty/writeback) because we could
365 	 * end up reading in the stale data and then writing it back out and
366 	 * making everybody very sad.
367 	 */
368 	if (!extent_buffer_under_io(eb))
369 		clear_extent_buffer_uptodate(eb);
370 out:
371 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
372 			     &cached_state);
373 	if (need_lock)
374 		btrfs_tree_read_unlock_blocking(eb);
375 	return ret;
376 }
377 
378 /*
379  * Return 0 if the superblock checksum type matches the checksum value of that
380  * algorithm. Pass the raw disk superblock data.
381  */
382 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
383 				  char *raw_disk_sb)
384 {
385 	struct btrfs_super_block *disk_sb =
386 		(struct btrfs_super_block *)raw_disk_sb;
387 	u16 csum_type = btrfs_super_csum_type(disk_sb);
388 	int ret = 0;
389 
390 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
391 		u32 crc = ~(u32)0;
392 		char result[sizeof(crc)];
393 
394 		/*
395 		 * The super_block structure does not span the whole
396 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
397 		 * is filled with zeros and is included in the checksum.
398 		 */
399 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
400 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
401 		btrfs_csum_final(crc, result);
402 
403 		if (memcmp(raw_disk_sb, result, sizeof(result)))
404 			ret = 1;
405 	}
406 
407 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
408 		btrfs_err(fs_info, "unsupported checksum algorithm %u",
409 				csum_type);
410 		ret = 1;
411 	}
412 
413 	return ret;
414 }
415 
416 static int verify_level_key(struct btrfs_fs_info *fs_info,
417 			    struct extent_buffer *eb, int level,
418 			    struct btrfs_key *first_key, u64 parent_transid)
419 {
420 	int found_level;
421 	struct btrfs_key found_key;
422 	int ret;
423 
424 	found_level = btrfs_header_level(eb);
425 	if (found_level != level) {
426 #ifdef CONFIG_BTRFS_DEBUG
427 		WARN_ON(1);
428 		btrfs_err(fs_info,
429 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
430 			  eb->start, level, found_level);
431 #endif
432 		return -EIO;
433 	}
434 
435 	if (!first_key)
436 		return 0;
437 
438 	/*
439 	 * For live tree block (new tree blocks in current transaction),
440 	 * we need proper lock context to avoid race, which is impossible here.
441 	 * So we only checks tree blocks which is read from disk, whose
442 	 * generation <= fs_info->last_trans_committed.
443 	 */
444 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
445 		return 0;
446 	if (found_level)
447 		btrfs_node_key_to_cpu(eb, &found_key, 0);
448 	else
449 		btrfs_item_key_to_cpu(eb, &found_key, 0);
450 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
451 
452 #ifdef CONFIG_BTRFS_DEBUG
453 	if (ret) {
454 		WARN_ON(1);
455 		btrfs_err(fs_info,
456 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
457 			  eb->start, parent_transid, first_key->objectid,
458 			  first_key->type, first_key->offset,
459 			  found_key.objectid, found_key.type,
460 			  found_key.offset);
461 	}
462 #endif
463 	return ret;
464 }
465 
466 /*
467  * helper to read a given tree block, doing retries as required when
468  * the checksums don't match and we have alternate mirrors to try.
469  *
470  * @parent_transid:	expected transid, skip check if 0
471  * @level:		expected level, mandatory check
472  * @first_key:		expected key of first slot, skip check if NULL
473  */
474 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
475 					  struct extent_buffer *eb,
476 					  u64 parent_transid, int level,
477 					  struct btrfs_key *first_key)
478 {
479 	struct extent_io_tree *io_tree;
480 	int failed = 0;
481 	int ret;
482 	int num_copies = 0;
483 	int mirror_num = 0;
484 	int failed_mirror = 0;
485 
486 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
487 	while (1) {
488 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
489 		ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
490 					       mirror_num);
491 		if (!ret) {
492 			if (verify_parent_transid(io_tree, eb,
493 						   parent_transid, 0))
494 				ret = -EIO;
495 			else if (verify_level_key(fs_info, eb, level,
496 						  first_key, parent_transid))
497 				ret = -EUCLEAN;
498 			else
499 				break;
500 		}
501 
502 		num_copies = btrfs_num_copies(fs_info,
503 					      eb->start, eb->len);
504 		if (num_copies == 1)
505 			break;
506 
507 		if (!failed_mirror) {
508 			failed = 1;
509 			failed_mirror = eb->read_mirror;
510 		}
511 
512 		mirror_num++;
513 		if (mirror_num == failed_mirror)
514 			mirror_num++;
515 
516 		if (mirror_num > num_copies)
517 			break;
518 	}
519 
520 	if (failed && !ret && failed_mirror)
521 		repair_eb_io_failure(fs_info, eb, failed_mirror);
522 
523 	return ret;
524 }
525 
526 /*
527  * checksum a dirty tree block before IO.  This has extra checks to make sure
528  * we only fill in the checksum field in the first page of a multi-page block
529  */
530 
531 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
532 {
533 	u64 start = page_offset(page);
534 	u64 found_start;
535 	struct extent_buffer *eb;
536 
537 	eb = (struct extent_buffer *)page->private;
538 	if (page != eb->pages[0])
539 		return 0;
540 
541 	found_start = btrfs_header_bytenr(eb);
542 	/*
543 	 * Please do not consolidate these warnings into a single if.
544 	 * It is useful to know what went wrong.
545 	 */
546 	if (WARN_ON(found_start != start))
547 		return -EUCLEAN;
548 	if (WARN_ON(!PageUptodate(page)))
549 		return -EUCLEAN;
550 
551 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
552 			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
553 
554 	return csum_tree_block(fs_info, eb, 0);
555 }
556 
557 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
558 				 struct extent_buffer *eb)
559 {
560 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
561 	u8 fsid[BTRFS_FSID_SIZE];
562 	int ret = 1;
563 
564 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
565 	while (fs_devices) {
566 		u8 *metadata_uuid;
567 
568 		/*
569 		 * Checking the incompat flag is only valid for the current
570 		 * fs. For seed devices it's forbidden to have their uuid
571 		 * changed so reading ->fsid in this case is fine
572 		 */
573 		if (fs_devices == fs_info->fs_devices &&
574 		    btrfs_fs_incompat(fs_info, METADATA_UUID))
575 			metadata_uuid = fs_devices->metadata_uuid;
576 		else
577 			metadata_uuid = fs_devices->fsid;
578 
579 		if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
580 			ret = 0;
581 			break;
582 		}
583 		fs_devices = fs_devices->seed;
584 	}
585 	return ret;
586 }
587 
588 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
589 				      u64 phy_offset, struct page *page,
590 				      u64 start, u64 end, int mirror)
591 {
592 	u64 found_start;
593 	int found_level;
594 	struct extent_buffer *eb;
595 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
596 	struct btrfs_fs_info *fs_info = root->fs_info;
597 	int ret = 0;
598 	int reads_done;
599 
600 	if (!page->private)
601 		goto out;
602 
603 	eb = (struct extent_buffer *)page->private;
604 
605 	/* the pending IO might have been the only thing that kept this buffer
606 	 * in memory.  Make sure we have a ref for all this other checks
607 	 */
608 	extent_buffer_get(eb);
609 
610 	reads_done = atomic_dec_and_test(&eb->io_pages);
611 	if (!reads_done)
612 		goto err;
613 
614 	eb->read_mirror = mirror;
615 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
616 		ret = -EIO;
617 		goto err;
618 	}
619 
620 	found_start = btrfs_header_bytenr(eb);
621 	if (found_start != eb->start) {
622 		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
623 			     eb->start, found_start);
624 		ret = -EIO;
625 		goto err;
626 	}
627 	if (check_tree_block_fsid(fs_info, eb)) {
628 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
629 			     eb->start);
630 		ret = -EIO;
631 		goto err;
632 	}
633 	found_level = btrfs_header_level(eb);
634 	if (found_level >= BTRFS_MAX_LEVEL) {
635 		btrfs_err(fs_info, "bad tree block level %d on %llu",
636 			  (int)btrfs_header_level(eb), eb->start);
637 		ret = -EIO;
638 		goto err;
639 	}
640 
641 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
642 				       eb, found_level);
643 
644 	ret = csum_tree_block(fs_info, eb, 1);
645 	if (ret)
646 		goto err;
647 
648 	/*
649 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
650 	 * that we don't try and read the other copies of this block, just
651 	 * return -EIO.
652 	 */
653 	if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
654 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
655 		ret = -EIO;
656 	}
657 
658 	if (found_level > 0 && btrfs_check_node(fs_info, eb))
659 		ret = -EIO;
660 
661 	if (!ret)
662 		set_extent_buffer_uptodate(eb);
663 err:
664 	if (reads_done &&
665 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
666 		btree_readahead_hook(eb, ret);
667 
668 	if (ret) {
669 		/*
670 		 * our io error hook is going to dec the io pages
671 		 * again, we have to make sure it has something
672 		 * to decrement
673 		 */
674 		atomic_inc(&eb->io_pages);
675 		clear_extent_buffer_uptodate(eb);
676 	}
677 	free_extent_buffer(eb);
678 out:
679 	return ret;
680 }
681 
682 static void end_workqueue_bio(struct bio *bio)
683 {
684 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
685 	struct btrfs_fs_info *fs_info;
686 	struct btrfs_workqueue *wq;
687 	btrfs_work_func_t func;
688 
689 	fs_info = end_io_wq->info;
690 	end_io_wq->status = bio->bi_status;
691 
692 	if (bio_op(bio) == REQ_OP_WRITE) {
693 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
694 			wq = fs_info->endio_meta_write_workers;
695 			func = btrfs_endio_meta_write_helper;
696 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
697 			wq = fs_info->endio_freespace_worker;
698 			func = btrfs_freespace_write_helper;
699 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
700 			wq = fs_info->endio_raid56_workers;
701 			func = btrfs_endio_raid56_helper;
702 		} else {
703 			wq = fs_info->endio_write_workers;
704 			func = btrfs_endio_write_helper;
705 		}
706 	} else {
707 		if (unlikely(end_io_wq->metadata ==
708 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
709 			wq = fs_info->endio_repair_workers;
710 			func = btrfs_endio_repair_helper;
711 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
712 			wq = fs_info->endio_raid56_workers;
713 			func = btrfs_endio_raid56_helper;
714 		} else if (end_io_wq->metadata) {
715 			wq = fs_info->endio_meta_workers;
716 			func = btrfs_endio_meta_helper;
717 		} else {
718 			wq = fs_info->endio_workers;
719 			func = btrfs_endio_helper;
720 		}
721 	}
722 
723 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
724 	btrfs_queue_work(wq, &end_io_wq->work);
725 }
726 
727 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
728 			enum btrfs_wq_endio_type metadata)
729 {
730 	struct btrfs_end_io_wq *end_io_wq;
731 
732 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
733 	if (!end_io_wq)
734 		return BLK_STS_RESOURCE;
735 
736 	end_io_wq->private = bio->bi_private;
737 	end_io_wq->end_io = bio->bi_end_io;
738 	end_io_wq->info = info;
739 	end_io_wq->status = 0;
740 	end_io_wq->bio = bio;
741 	end_io_wq->metadata = metadata;
742 
743 	bio->bi_private = end_io_wq;
744 	bio->bi_end_io = end_workqueue_bio;
745 	return 0;
746 }
747 
748 static void run_one_async_start(struct btrfs_work *work)
749 {
750 	struct async_submit_bio *async;
751 	blk_status_t ret;
752 
753 	async = container_of(work, struct  async_submit_bio, work);
754 	ret = async->submit_bio_start(async->private_data, async->bio,
755 				      async->bio_offset);
756 	if (ret)
757 		async->status = ret;
758 }
759 
760 /*
761  * In order to insert checksums into the metadata in large chunks, we wait
762  * until bio submission time.   All the pages in the bio are checksummed and
763  * sums are attached onto the ordered extent record.
764  *
765  * At IO completion time the csums attached on the ordered extent record are
766  * inserted into the tree.
767  */
768 static void run_one_async_done(struct btrfs_work *work)
769 {
770 	struct async_submit_bio *async;
771 	struct inode *inode;
772 	blk_status_t ret;
773 
774 	async = container_of(work, struct  async_submit_bio, work);
775 	inode = async->private_data;
776 
777 	/* If an error occurred we just want to clean up the bio and move on */
778 	if (async->status) {
779 		async->bio->bi_status = async->status;
780 		bio_endio(async->bio);
781 		return;
782 	}
783 
784 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
785 			async->mirror_num, 1);
786 	if (ret) {
787 		async->bio->bi_status = ret;
788 		bio_endio(async->bio);
789 	}
790 }
791 
792 static void run_one_async_free(struct btrfs_work *work)
793 {
794 	struct async_submit_bio *async;
795 
796 	async = container_of(work, struct  async_submit_bio, work);
797 	kfree(async);
798 }
799 
800 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
801 				 int mirror_num, unsigned long bio_flags,
802 				 u64 bio_offset, void *private_data,
803 				 extent_submit_bio_start_t *submit_bio_start)
804 {
805 	struct async_submit_bio *async;
806 
807 	async = kmalloc(sizeof(*async), GFP_NOFS);
808 	if (!async)
809 		return BLK_STS_RESOURCE;
810 
811 	async->private_data = private_data;
812 	async->bio = bio;
813 	async->mirror_num = mirror_num;
814 	async->submit_bio_start = submit_bio_start;
815 
816 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
817 			run_one_async_done, run_one_async_free);
818 
819 	async->bio_offset = bio_offset;
820 
821 	async->status = 0;
822 
823 	if (op_is_sync(bio->bi_opf))
824 		btrfs_set_work_high_priority(&async->work);
825 
826 	btrfs_queue_work(fs_info->workers, &async->work);
827 	return 0;
828 }
829 
830 static blk_status_t btree_csum_one_bio(struct bio *bio)
831 {
832 	struct bio_vec *bvec;
833 	struct btrfs_root *root;
834 	int i, ret = 0;
835 
836 	ASSERT(!bio_flagged(bio, BIO_CLONED));
837 	bio_for_each_segment_all(bvec, bio, i) {
838 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
839 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
840 		if (ret)
841 			break;
842 	}
843 
844 	return errno_to_blk_status(ret);
845 }
846 
847 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
848 					     u64 bio_offset)
849 {
850 	/*
851 	 * when we're called for a write, we're already in the async
852 	 * submission context.  Just jump into btrfs_map_bio
853 	 */
854 	return btree_csum_one_bio(bio);
855 }
856 
857 static int check_async_write(struct btrfs_inode *bi)
858 {
859 	if (atomic_read(&bi->sync_writers))
860 		return 0;
861 #ifdef CONFIG_X86
862 	if (static_cpu_has(X86_FEATURE_XMM4_2))
863 		return 0;
864 #endif
865 	return 1;
866 }
867 
868 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
869 					  int mirror_num, unsigned long bio_flags,
870 					  u64 bio_offset)
871 {
872 	struct inode *inode = private_data;
873 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
874 	int async = check_async_write(BTRFS_I(inode));
875 	blk_status_t ret;
876 
877 	if (bio_op(bio) != REQ_OP_WRITE) {
878 		/*
879 		 * called for a read, do the setup so that checksum validation
880 		 * can happen in the async kernel threads
881 		 */
882 		ret = btrfs_bio_wq_end_io(fs_info, bio,
883 					  BTRFS_WQ_ENDIO_METADATA);
884 		if (ret)
885 			goto out_w_error;
886 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
887 	} else if (!async) {
888 		ret = btree_csum_one_bio(bio);
889 		if (ret)
890 			goto out_w_error;
891 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
892 	} else {
893 		/*
894 		 * kthread helpers are used to submit writes so that
895 		 * checksumming can happen in parallel across all CPUs
896 		 */
897 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
898 					  bio_offset, private_data,
899 					  btree_submit_bio_start);
900 	}
901 
902 	if (ret)
903 		goto out_w_error;
904 	return 0;
905 
906 out_w_error:
907 	bio->bi_status = ret;
908 	bio_endio(bio);
909 	return ret;
910 }
911 
912 #ifdef CONFIG_MIGRATION
913 static int btree_migratepage(struct address_space *mapping,
914 			struct page *newpage, struct page *page,
915 			enum migrate_mode mode)
916 {
917 	/*
918 	 * we can't safely write a btree page from here,
919 	 * we haven't done the locking hook
920 	 */
921 	if (PageDirty(page))
922 		return -EAGAIN;
923 	/*
924 	 * Buffers may be managed in a filesystem specific way.
925 	 * We must have no buffers or drop them.
926 	 */
927 	if (page_has_private(page) &&
928 	    !try_to_release_page(page, GFP_KERNEL))
929 		return -EAGAIN;
930 	return migrate_page(mapping, newpage, page, mode);
931 }
932 #endif
933 
934 
935 static int btree_writepages(struct address_space *mapping,
936 			    struct writeback_control *wbc)
937 {
938 	struct btrfs_fs_info *fs_info;
939 	int ret;
940 
941 	if (wbc->sync_mode == WB_SYNC_NONE) {
942 
943 		if (wbc->for_kupdate)
944 			return 0;
945 
946 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
947 		/* this is a bit racy, but that's ok */
948 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
949 					     BTRFS_DIRTY_METADATA_THRESH,
950 					     fs_info->dirty_metadata_batch);
951 		if (ret < 0)
952 			return 0;
953 	}
954 	return btree_write_cache_pages(mapping, wbc);
955 }
956 
957 static int btree_readpage(struct file *file, struct page *page)
958 {
959 	struct extent_io_tree *tree;
960 	tree = &BTRFS_I(page->mapping->host)->io_tree;
961 	return extent_read_full_page(tree, page, btree_get_extent, 0);
962 }
963 
964 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
965 {
966 	if (PageWriteback(page) || PageDirty(page))
967 		return 0;
968 
969 	return try_release_extent_buffer(page);
970 }
971 
972 static void btree_invalidatepage(struct page *page, unsigned int offset,
973 				 unsigned int length)
974 {
975 	struct extent_io_tree *tree;
976 	tree = &BTRFS_I(page->mapping->host)->io_tree;
977 	extent_invalidatepage(tree, page, offset);
978 	btree_releasepage(page, GFP_NOFS);
979 	if (PagePrivate(page)) {
980 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
981 			   "page private not zero on page %llu",
982 			   (unsigned long long)page_offset(page));
983 		ClearPagePrivate(page);
984 		set_page_private(page, 0);
985 		put_page(page);
986 	}
987 }
988 
989 static int btree_set_page_dirty(struct page *page)
990 {
991 #ifdef DEBUG
992 	struct extent_buffer *eb;
993 
994 	BUG_ON(!PagePrivate(page));
995 	eb = (struct extent_buffer *)page->private;
996 	BUG_ON(!eb);
997 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
998 	BUG_ON(!atomic_read(&eb->refs));
999 	btrfs_assert_tree_locked(eb);
1000 #endif
1001 	return __set_page_dirty_nobuffers(page);
1002 }
1003 
1004 static const struct address_space_operations btree_aops = {
1005 	.readpage	= btree_readpage,
1006 	.writepages	= btree_writepages,
1007 	.releasepage	= btree_releasepage,
1008 	.invalidatepage = btree_invalidatepage,
1009 #ifdef CONFIG_MIGRATION
1010 	.migratepage	= btree_migratepage,
1011 #endif
1012 	.set_page_dirty = btree_set_page_dirty,
1013 };
1014 
1015 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1016 {
1017 	struct extent_buffer *buf = NULL;
1018 	struct inode *btree_inode = fs_info->btree_inode;
1019 
1020 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1021 	if (IS_ERR(buf))
1022 		return;
1023 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1024 				 buf, WAIT_NONE, 0);
1025 	free_extent_buffer(buf);
1026 }
1027 
1028 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1029 			 int mirror_num, struct extent_buffer **eb)
1030 {
1031 	struct extent_buffer *buf = NULL;
1032 	struct inode *btree_inode = fs_info->btree_inode;
1033 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1034 	int ret;
1035 
1036 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1037 	if (IS_ERR(buf))
1038 		return 0;
1039 
1040 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1041 
1042 	ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1043 				       mirror_num);
1044 	if (ret) {
1045 		free_extent_buffer(buf);
1046 		return ret;
1047 	}
1048 
1049 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1050 		free_extent_buffer(buf);
1051 		return -EIO;
1052 	} else if (extent_buffer_uptodate(buf)) {
1053 		*eb = buf;
1054 	} else {
1055 		free_extent_buffer(buf);
1056 	}
1057 	return 0;
1058 }
1059 
1060 struct extent_buffer *btrfs_find_create_tree_block(
1061 						struct btrfs_fs_info *fs_info,
1062 						u64 bytenr)
1063 {
1064 	if (btrfs_is_testing(fs_info))
1065 		return alloc_test_extent_buffer(fs_info, bytenr);
1066 	return alloc_extent_buffer(fs_info, bytenr);
1067 }
1068 
1069 
1070 int btrfs_write_tree_block(struct extent_buffer *buf)
1071 {
1072 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1073 					buf->start + buf->len - 1);
1074 }
1075 
1076 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1077 {
1078 	filemap_fdatawait_range(buf->pages[0]->mapping,
1079 			        buf->start, buf->start + buf->len - 1);
1080 }
1081 
1082 /*
1083  * Read tree block at logical address @bytenr and do variant basic but critical
1084  * verification.
1085  *
1086  * @parent_transid:	expected transid of this tree block, skip check if 0
1087  * @level:		expected level, mandatory check
1088  * @first_key:		expected key in slot 0, skip check if NULL
1089  */
1090 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1091 				      u64 parent_transid, int level,
1092 				      struct btrfs_key *first_key)
1093 {
1094 	struct extent_buffer *buf = NULL;
1095 	int ret;
1096 
1097 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1098 	if (IS_ERR(buf))
1099 		return buf;
1100 
1101 	ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1102 					     level, first_key);
1103 	if (ret) {
1104 		free_extent_buffer(buf);
1105 		return ERR_PTR(ret);
1106 	}
1107 	return buf;
1108 
1109 }
1110 
1111 void clean_tree_block(struct btrfs_fs_info *fs_info,
1112 		      struct extent_buffer *buf)
1113 {
1114 	if (btrfs_header_generation(buf) ==
1115 	    fs_info->running_transaction->transid) {
1116 		btrfs_assert_tree_locked(buf);
1117 
1118 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1119 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1120 						 -buf->len,
1121 						 fs_info->dirty_metadata_batch);
1122 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1123 			btrfs_set_lock_blocking(buf);
1124 			clear_extent_buffer_dirty(buf);
1125 		}
1126 	}
1127 }
1128 
1129 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1130 {
1131 	struct btrfs_subvolume_writers *writers;
1132 	int ret;
1133 
1134 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1135 	if (!writers)
1136 		return ERR_PTR(-ENOMEM);
1137 
1138 	ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1139 	if (ret < 0) {
1140 		kfree(writers);
1141 		return ERR_PTR(ret);
1142 	}
1143 
1144 	init_waitqueue_head(&writers->wait);
1145 	return writers;
1146 }
1147 
1148 static void
1149 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1150 {
1151 	percpu_counter_destroy(&writers->counter);
1152 	kfree(writers);
1153 }
1154 
1155 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1156 			 u64 objectid)
1157 {
1158 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1159 	root->node = NULL;
1160 	root->commit_root = NULL;
1161 	root->state = 0;
1162 	root->orphan_cleanup_state = 0;
1163 
1164 	root->last_trans = 0;
1165 	root->highest_objectid = 0;
1166 	root->nr_delalloc_inodes = 0;
1167 	root->nr_ordered_extents = 0;
1168 	root->inode_tree = RB_ROOT;
1169 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1170 	root->block_rsv = NULL;
1171 
1172 	INIT_LIST_HEAD(&root->dirty_list);
1173 	INIT_LIST_HEAD(&root->root_list);
1174 	INIT_LIST_HEAD(&root->delalloc_inodes);
1175 	INIT_LIST_HEAD(&root->delalloc_root);
1176 	INIT_LIST_HEAD(&root->ordered_extents);
1177 	INIT_LIST_HEAD(&root->ordered_root);
1178 	INIT_LIST_HEAD(&root->logged_list[0]);
1179 	INIT_LIST_HEAD(&root->logged_list[1]);
1180 	spin_lock_init(&root->inode_lock);
1181 	spin_lock_init(&root->delalloc_lock);
1182 	spin_lock_init(&root->ordered_extent_lock);
1183 	spin_lock_init(&root->accounting_lock);
1184 	spin_lock_init(&root->log_extents_lock[0]);
1185 	spin_lock_init(&root->log_extents_lock[1]);
1186 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1187 	mutex_init(&root->objectid_mutex);
1188 	mutex_init(&root->log_mutex);
1189 	mutex_init(&root->ordered_extent_mutex);
1190 	mutex_init(&root->delalloc_mutex);
1191 	init_waitqueue_head(&root->log_writer_wait);
1192 	init_waitqueue_head(&root->log_commit_wait[0]);
1193 	init_waitqueue_head(&root->log_commit_wait[1]);
1194 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1195 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1196 	atomic_set(&root->log_commit[0], 0);
1197 	atomic_set(&root->log_commit[1], 0);
1198 	atomic_set(&root->log_writers, 0);
1199 	atomic_set(&root->log_batch, 0);
1200 	refcount_set(&root->refs, 1);
1201 	atomic_set(&root->will_be_snapshotted, 0);
1202 	atomic_set(&root->snapshot_force_cow, 0);
1203 	atomic_set(&root->nr_swapfiles, 0);
1204 	root->log_transid = 0;
1205 	root->log_transid_committed = -1;
1206 	root->last_log_commit = 0;
1207 	if (!dummy)
1208 		extent_io_tree_init(&root->dirty_log_pages, NULL);
1209 
1210 	memset(&root->root_key, 0, sizeof(root->root_key));
1211 	memset(&root->root_item, 0, sizeof(root->root_item));
1212 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1213 	if (!dummy)
1214 		root->defrag_trans_start = fs_info->generation;
1215 	else
1216 		root->defrag_trans_start = 0;
1217 	root->root_key.objectid = objectid;
1218 	root->anon_dev = 0;
1219 
1220 	spin_lock_init(&root->root_item_lock);
1221 }
1222 
1223 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1224 		gfp_t flags)
1225 {
1226 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1227 	if (root)
1228 		root->fs_info = fs_info;
1229 	return root;
1230 }
1231 
1232 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1233 /* Should only be used by the testing infrastructure */
1234 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1235 {
1236 	struct btrfs_root *root;
1237 
1238 	if (!fs_info)
1239 		return ERR_PTR(-EINVAL);
1240 
1241 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1242 	if (!root)
1243 		return ERR_PTR(-ENOMEM);
1244 
1245 	/* We don't use the stripesize in selftest, set it as sectorsize */
1246 	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1247 	root->alloc_bytenr = 0;
1248 
1249 	return root;
1250 }
1251 #endif
1252 
1253 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1254 				     struct btrfs_fs_info *fs_info,
1255 				     u64 objectid)
1256 {
1257 	struct extent_buffer *leaf;
1258 	struct btrfs_root *tree_root = fs_info->tree_root;
1259 	struct btrfs_root *root;
1260 	struct btrfs_key key;
1261 	int ret = 0;
1262 	uuid_le uuid = NULL_UUID_LE;
1263 
1264 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1265 	if (!root)
1266 		return ERR_PTR(-ENOMEM);
1267 
1268 	__setup_root(root, fs_info, objectid);
1269 	root->root_key.objectid = objectid;
1270 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1271 	root->root_key.offset = 0;
1272 
1273 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1274 	if (IS_ERR(leaf)) {
1275 		ret = PTR_ERR(leaf);
1276 		leaf = NULL;
1277 		goto fail;
1278 	}
1279 
1280 	root->node = leaf;
1281 	btrfs_mark_buffer_dirty(leaf);
1282 
1283 	root->commit_root = btrfs_root_node(root);
1284 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1285 
1286 	root->root_item.flags = 0;
1287 	root->root_item.byte_limit = 0;
1288 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1289 	btrfs_set_root_generation(&root->root_item, trans->transid);
1290 	btrfs_set_root_level(&root->root_item, 0);
1291 	btrfs_set_root_refs(&root->root_item, 1);
1292 	btrfs_set_root_used(&root->root_item, leaf->len);
1293 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1294 	btrfs_set_root_dirid(&root->root_item, 0);
1295 	if (is_fstree(objectid))
1296 		uuid_le_gen(&uuid);
1297 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1298 	root->root_item.drop_level = 0;
1299 
1300 	key.objectid = objectid;
1301 	key.type = BTRFS_ROOT_ITEM_KEY;
1302 	key.offset = 0;
1303 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1304 	if (ret)
1305 		goto fail;
1306 
1307 	btrfs_tree_unlock(leaf);
1308 
1309 	return root;
1310 
1311 fail:
1312 	if (leaf) {
1313 		btrfs_tree_unlock(leaf);
1314 		free_extent_buffer(root->commit_root);
1315 		free_extent_buffer(leaf);
1316 	}
1317 	kfree(root);
1318 
1319 	return ERR_PTR(ret);
1320 }
1321 
1322 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1323 					 struct btrfs_fs_info *fs_info)
1324 {
1325 	struct btrfs_root *root;
1326 	struct extent_buffer *leaf;
1327 
1328 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1329 	if (!root)
1330 		return ERR_PTR(-ENOMEM);
1331 
1332 	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1333 
1334 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1335 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1336 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1337 
1338 	/*
1339 	 * DON'T set REF_COWS for log trees
1340 	 *
1341 	 * log trees do not get reference counted because they go away
1342 	 * before a real commit is actually done.  They do store pointers
1343 	 * to file data extents, and those reference counts still get
1344 	 * updated (along with back refs to the log tree).
1345 	 */
1346 
1347 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1348 			NULL, 0, 0, 0);
1349 	if (IS_ERR(leaf)) {
1350 		kfree(root);
1351 		return ERR_CAST(leaf);
1352 	}
1353 
1354 	root->node = leaf;
1355 
1356 	btrfs_mark_buffer_dirty(root->node);
1357 	btrfs_tree_unlock(root->node);
1358 	return root;
1359 }
1360 
1361 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1362 			     struct btrfs_fs_info *fs_info)
1363 {
1364 	struct btrfs_root *log_root;
1365 
1366 	log_root = alloc_log_tree(trans, fs_info);
1367 	if (IS_ERR(log_root))
1368 		return PTR_ERR(log_root);
1369 	WARN_ON(fs_info->log_root_tree);
1370 	fs_info->log_root_tree = log_root;
1371 	return 0;
1372 }
1373 
1374 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1375 		       struct btrfs_root *root)
1376 {
1377 	struct btrfs_fs_info *fs_info = root->fs_info;
1378 	struct btrfs_root *log_root;
1379 	struct btrfs_inode_item *inode_item;
1380 
1381 	log_root = alloc_log_tree(trans, fs_info);
1382 	if (IS_ERR(log_root))
1383 		return PTR_ERR(log_root);
1384 
1385 	log_root->last_trans = trans->transid;
1386 	log_root->root_key.offset = root->root_key.objectid;
1387 
1388 	inode_item = &log_root->root_item.inode;
1389 	btrfs_set_stack_inode_generation(inode_item, 1);
1390 	btrfs_set_stack_inode_size(inode_item, 3);
1391 	btrfs_set_stack_inode_nlink(inode_item, 1);
1392 	btrfs_set_stack_inode_nbytes(inode_item,
1393 				     fs_info->nodesize);
1394 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1395 
1396 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1397 
1398 	WARN_ON(root->log_root);
1399 	root->log_root = log_root;
1400 	root->log_transid = 0;
1401 	root->log_transid_committed = -1;
1402 	root->last_log_commit = 0;
1403 	return 0;
1404 }
1405 
1406 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1407 					       struct btrfs_key *key)
1408 {
1409 	struct btrfs_root *root;
1410 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1411 	struct btrfs_path *path;
1412 	u64 generation;
1413 	int ret;
1414 	int level;
1415 
1416 	path = btrfs_alloc_path();
1417 	if (!path)
1418 		return ERR_PTR(-ENOMEM);
1419 
1420 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1421 	if (!root) {
1422 		ret = -ENOMEM;
1423 		goto alloc_fail;
1424 	}
1425 
1426 	__setup_root(root, fs_info, key->objectid);
1427 
1428 	ret = btrfs_find_root(tree_root, key, path,
1429 			      &root->root_item, &root->root_key);
1430 	if (ret) {
1431 		if (ret > 0)
1432 			ret = -ENOENT;
1433 		goto find_fail;
1434 	}
1435 
1436 	generation = btrfs_root_generation(&root->root_item);
1437 	level = btrfs_root_level(&root->root_item);
1438 	root->node = read_tree_block(fs_info,
1439 				     btrfs_root_bytenr(&root->root_item),
1440 				     generation, level, NULL);
1441 	if (IS_ERR(root->node)) {
1442 		ret = PTR_ERR(root->node);
1443 		goto find_fail;
1444 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1445 		ret = -EIO;
1446 		free_extent_buffer(root->node);
1447 		goto find_fail;
1448 	}
1449 	root->commit_root = btrfs_root_node(root);
1450 out:
1451 	btrfs_free_path(path);
1452 	return root;
1453 
1454 find_fail:
1455 	kfree(root);
1456 alloc_fail:
1457 	root = ERR_PTR(ret);
1458 	goto out;
1459 }
1460 
1461 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1462 				      struct btrfs_key *location)
1463 {
1464 	struct btrfs_root *root;
1465 
1466 	root = btrfs_read_tree_root(tree_root, location);
1467 	if (IS_ERR(root))
1468 		return root;
1469 
1470 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1471 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1472 		btrfs_check_and_init_root_item(&root->root_item);
1473 	}
1474 
1475 	return root;
1476 }
1477 
1478 int btrfs_init_fs_root(struct btrfs_root *root)
1479 {
1480 	int ret;
1481 	struct btrfs_subvolume_writers *writers;
1482 
1483 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1484 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1485 					GFP_NOFS);
1486 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1487 		ret = -ENOMEM;
1488 		goto fail;
1489 	}
1490 
1491 	writers = btrfs_alloc_subvolume_writers();
1492 	if (IS_ERR(writers)) {
1493 		ret = PTR_ERR(writers);
1494 		goto fail;
1495 	}
1496 	root->subv_writers = writers;
1497 
1498 	btrfs_init_free_ino_ctl(root);
1499 	spin_lock_init(&root->ino_cache_lock);
1500 	init_waitqueue_head(&root->ino_cache_wait);
1501 
1502 	ret = get_anon_bdev(&root->anon_dev);
1503 	if (ret)
1504 		goto fail;
1505 
1506 	mutex_lock(&root->objectid_mutex);
1507 	ret = btrfs_find_highest_objectid(root,
1508 					&root->highest_objectid);
1509 	if (ret) {
1510 		mutex_unlock(&root->objectid_mutex);
1511 		goto fail;
1512 	}
1513 
1514 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1515 
1516 	mutex_unlock(&root->objectid_mutex);
1517 
1518 	return 0;
1519 fail:
1520 	/* The caller is responsible to call btrfs_free_fs_root */
1521 	return ret;
1522 }
1523 
1524 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1525 					u64 root_id)
1526 {
1527 	struct btrfs_root *root;
1528 
1529 	spin_lock(&fs_info->fs_roots_radix_lock);
1530 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1531 				 (unsigned long)root_id);
1532 	spin_unlock(&fs_info->fs_roots_radix_lock);
1533 	return root;
1534 }
1535 
1536 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1537 			 struct btrfs_root *root)
1538 {
1539 	int ret;
1540 
1541 	ret = radix_tree_preload(GFP_NOFS);
1542 	if (ret)
1543 		return ret;
1544 
1545 	spin_lock(&fs_info->fs_roots_radix_lock);
1546 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1547 				(unsigned long)root->root_key.objectid,
1548 				root);
1549 	if (ret == 0)
1550 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1551 	spin_unlock(&fs_info->fs_roots_radix_lock);
1552 	radix_tree_preload_end();
1553 
1554 	return ret;
1555 }
1556 
1557 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1558 				     struct btrfs_key *location,
1559 				     bool check_ref)
1560 {
1561 	struct btrfs_root *root;
1562 	struct btrfs_path *path;
1563 	struct btrfs_key key;
1564 	int ret;
1565 
1566 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1567 		return fs_info->tree_root;
1568 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1569 		return fs_info->extent_root;
1570 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1571 		return fs_info->chunk_root;
1572 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1573 		return fs_info->dev_root;
1574 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1575 		return fs_info->csum_root;
1576 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1577 		return fs_info->quota_root ? fs_info->quota_root :
1578 					     ERR_PTR(-ENOENT);
1579 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1580 		return fs_info->uuid_root ? fs_info->uuid_root :
1581 					    ERR_PTR(-ENOENT);
1582 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1583 		return fs_info->free_space_root ? fs_info->free_space_root :
1584 						  ERR_PTR(-ENOENT);
1585 again:
1586 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1587 	if (root) {
1588 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1589 			return ERR_PTR(-ENOENT);
1590 		return root;
1591 	}
1592 
1593 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1594 	if (IS_ERR(root))
1595 		return root;
1596 
1597 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1598 		ret = -ENOENT;
1599 		goto fail;
1600 	}
1601 
1602 	ret = btrfs_init_fs_root(root);
1603 	if (ret)
1604 		goto fail;
1605 
1606 	path = btrfs_alloc_path();
1607 	if (!path) {
1608 		ret = -ENOMEM;
1609 		goto fail;
1610 	}
1611 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1612 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1613 	key.offset = location->objectid;
1614 
1615 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1616 	btrfs_free_path(path);
1617 	if (ret < 0)
1618 		goto fail;
1619 	if (ret == 0)
1620 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1621 
1622 	ret = btrfs_insert_fs_root(fs_info, root);
1623 	if (ret) {
1624 		if (ret == -EEXIST) {
1625 			btrfs_free_fs_root(root);
1626 			goto again;
1627 		}
1628 		goto fail;
1629 	}
1630 	return root;
1631 fail:
1632 	btrfs_free_fs_root(root);
1633 	return ERR_PTR(ret);
1634 }
1635 
1636 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1637 {
1638 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1639 	int ret = 0;
1640 	struct btrfs_device *device;
1641 	struct backing_dev_info *bdi;
1642 
1643 	rcu_read_lock();
1644 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1645 		if (!device->bdev)
1646 			continue;
1647 		bdi = device->bdev->bd_bdi;
1648 		if (bdi_congested(bdi, bdi_bits)) {
1649 			ret = 1;
1650 			break;
1651 		}
1652 	}
1653 	rcu_read_unlock();
1654 	return ret;
1655 }
1656 
1657 /*
1658  * called by the kthread helper functions to finally call the bio end_io
1659  * functions.  This is where read checksum verification actually happens
1660  */
1661 static void end_workqueue_fn(struct btrfs_work *work)
1662 {
1663 	struct bio *bio;
1664 	struct btrfs_end_io_wq *end_io_wq;
1665 
1666 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1667 	bio = end_io_wq->bio;
1668 
1669 	bio->bi_status = end_io_wq->status;
1670 	bio->bi_private = end_io_wq->private;
1671 	bio->bi_end_io = end_io_wq->end_io;
1672 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1673 	bio_endio(bio);
1674 }
1675 
1676 static int cleaner_kthread(void *arg)
1677 {
1678 	struct btrfs_root *root = arg;
1679 	struct btrfs_fs_info *fs_info = root->fs_info;
1680 	int again;
1681 
1682 	while (1) {
1683 		again = 0;
1684 
1685 		/* Make the cleaner go to sleep early. */
1686 		if (btrfs_need_cleaner_sleep(fs_info))
1687 			goto sleep;
1688 
1689 		/*
1690 		 * Do not do anything if we might cause open_ctree() to block
1691 		 * before we have finished mounting the filesystem.
1692 		 */
1693 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1694 			goto sleep;
1695 
1696 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1697 			goto sleep;
1698 
1699 		/*
1700 		 * Avoid the problem that we change the status of the fs
1701 		 * during the above check and trylock.
1702 		 */
1703 		if (btrfs_need_cleaner_sleep(fs_info)) {
1704 			mutex_unlock(&fs_info->cleaner_mutex);
1705 			goto sleep;
1706 		}
1707 
1708 		mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1709 		btrfs_run_delayed_iputs(fs_info);
1710 		mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1711 
1712 		again = btrfs_clean_one_deleted_snapshot(root);
1713 		mutex_unlock(&fs_info->cleaner_mutex);
1714 
1715 		/*
1716 		 * The defragger has dealt with the R/O remount and umount,
1717 		 * needn't do anything special here.
1718 		 */
1719 		btrfs_run_defrag_inodes(fs_info);
1720 
1721 		/*
1722 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1723 		 * with relocation (btrfs_relocate_chunk) and relocation
1724 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1725 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1726 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1727 		 * unused block groups.
1728 		 */
1729 		btrfs_delete_unused_bgs(fs_info);
1730 sleep:
1731 		if (kthread_should_park())
1732 			kthread_parkme();
1733 		if (kthread_should_stop())
1734 			return 0;
1735 		if (!again) {
1736 			set_current_state(TASK_INTERRUPTIBLE);
1737 			schedule();
1738 			__set_current_state(TASK_RUNNING);
1739 		}
1740 	}
1741 }
1742 
1743 static int transaction_kthread(void *arg)
1744 {
1745 	struct btrfs_root *root = arg;
1746 	struct btrfs_fs_info *fs_info = root->fs_info;
1747 	struct btrfs_trans_handle *trans;
1748 	struct btrfs_transaction *cur;
1749 	u64 transid;
1750 	time64_t now;
1751 	unsigned long delay;
1752 	bool cannot_commit;
1753 
1754 	do {
1755 		cannot_commit = false;
1756 		delay = HZ * fs_info->commit_interval;
1757 		mutex_lock(&fs_info->transaction_kthread_mutex);
1758 
1759 		spin_lock(&fs_info->trans_lock);
1760 		cur = fs_info->running_transaction;
1761 		if (!cur) {
1762 			spin_unlock(&fs_info->trans_lock);
1763 			goto sleep;
1764 		}
1765 
1766 		now = ktime_get_seconds();
1767 		if (cur->state < TRANS_STATE_BLOCKED &&
1768 		    !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1769 		    (now < cur->start_time ||
1770 		     now - cur->start_time < fs_info->commit_interval)) {
1771 			spin_unlock(&fs_info->trans_lock);
1772 			delay = HZ * 5;
1773 			goto sleep;
1774 		}
1775 		transid = cur->transid;
1776 		spin_unlock(&fs_info->trans_lock);
1777 
1778 		/* If the file system is aborted, this will always fail. */
1779 		trans = btrfs_attach_transaction(root);
1780 		if (IS_ERR(trans)) {
1781 			if (PTR_ERR(trans) != -ENOENT)
1782 				cannot_commit = true;
1783 			goto sleep;
1784 		}
1785 		if (transid == trans->transid) {
1786 			btrfs_commit_transaction(trans);
1787 		} else {
1788 			btrfs_end_transaction(trans);
1789 		}
1790 sleep:
1791 		wake_up_process(fs_info->cleaner_kthread);
1792 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1793 
1794 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1795 				      &fs_info->fs_state)))
1796 			btrfs_cleanup_transaction(fs_info);
1797 		if (!kthread_should_stop() &&
1798 				(!btrfs_transaction_blocked(fs_info) ||
1799 				 cannot_commit))
1800 			schedule_timeout_interruptible(delay);
1801 	} while (!kthread_should_stop());
1802 	return 0;
1803 }
1804 
1805 /*
1806  * this will find the highest generation in the array of
1807  * root backups.  The index of the highest array is returned,
1808  * or -1 if we can't find anything.
1809  *
1810  * We check to make sure the array is valid by comparing the
1811  * generation of the latest  root in the array with the generation
1812  * in the super block.  If they don't match we pitch it.
1813  */
1814 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1815 {
1816 	u64 cur;
1817 	int newest_index = -1;
1818 	struct btrfs_root_backup *root_backup;
1819 	int i;
1820 
1821 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1822 		root_backup = info->super_copy->super_roots + i;
1823 		cur = btrfs_backup_tree_root_gen(root_backup);
1824 		if (cur == newest_gen)
1825 			newest_index = i;
1826 	}
1827 
1828 	/* check to see if we actually wrapped around */
1829 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1830 		root_backup = info->super_copy->super_roots;
1831 		cur = btrfs_backup_tree_root_gen(root_backup);
1832 		if (cur == newest_gen)
1833 			newest_index = 0;
1834 	}
1835 	return newest_index;
1836 }
1837 
1838 
1839 /*
1840  * find the oldest backup so we know where to store new entries
1841  * in the backup array.  This will set the backup_root_index
1842  * field in the fs_info struct
1843  */
1844 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1845 				     u64 newest_gen)
1846 {
1847 	int newest_index = -1;
1848 
1849 	newest_index = find_newest_super_backup(info, newest_gen);
1850 	/* if there was garbage in there, just move along */
1851 	if (newest_index == -1) {
1852 		info->backup_root_index = 0;
1853 	} else {
1854 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1855 	}
1856 }
1857 
1858 /*
1859  * copy all the root pointers into the super backup array.
1860  * this will bump the backup pointer by one when it is
1861  * done
1862  */
1863 static void backup_super_roots(struct btrfs_fs_info *info)
1864 {
1865 	int next_backup;
1866 	struct btrfs_root_backup *root_backup;
1867 	int last_backup;
1868 
1869 	next_backup = info->backup_root_index;
1870 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1871 		BTRFS_NUM_BACKUP_ROOTS;
1872 
1873 	/*
1874 	 * just overwrite the last backup if we're at the same generation
1875 	 * this happens only at umount
1876 	 */
1877 	root_backup = info->super_for_commit->super_roots + last_backup;
1878 	if (btrfs_backup_tree_root_gen(root_backup) ==
1879 	    btrfs_header_generation(info->tree_root->node))
1880 		next_backup = last_backup;
1881 
1882 	root_backup = info->super_for_commit->super_roots + next_backup;
1883 
1884 	/*
1885 	 * make sure all of our padding and empty slots get zero filled
1886 	 * regardless of which ones we use today
1887 	 */
1888 	memset(root_backup, 0, sizeof(*root_backup));
1889 
1890 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1891 
1892 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1893 	btrfs_set_backup_tree_root_gen(root_backup,
1894 			       btrfs_header_generation(info->tree_root->node));
1895 
1896 	btrfs_set_backup_tree_root_level(root_backup,
1897 			       btrfs_header_level(info->tree_root->node));
1898 
1899 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1900 	btrfs_set_backup_chunk_root_gen(root_backup,
1901 			       btrfs_header_generation(info->chunk_root->node));
1902 	btrfs_set_backup_chunk_root_level(root_backup,
1903 			       btrfs_header_level(info->chunk_root->node));
1904 
1905 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1906 	btrfs_set_backup_extent_root_gen(root_backup,
1907 			       btrfs_header_generation(info->extent_root->node));
1908 	btrfs_set_backup_extent_root_level(root_backup,
1909 			       btrfs_header_level(info->extent_root->node));
1910 
1911 	/*
1912 	 * we might commit during log recovery, which happens before we set
1913 	 * the fs_root.  Make sure it is valid before we fill it in.
1914 	 */
1915 	if (info->fs_root && info->fs_root->node) {
1916 		btrfs_set_backup_fs_root(root_backup,
1917 					 info->fs_root->node->start);
1918 		btrfs_set_backup_fs_root_gen(root_backup,
1919 			       btrfs_header_generation(info->fs_root->node));
1920 		btrfs_set_backup_fs_root_level(root_backup,
1921 			       btrfs_header_level(info->fs_root->node));
1922 	}
1923 
1924 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1925 	btrfs_set_backup_dev_root_gen(root_backup,
1926 			       btrfs_header_generation(info->dev_root->node));
1927 	btrfs_set_backup_dev_root_level(root_backup,
1928 				       btrfs_header_level(info->dev_root->node));
1929 
1930 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1931 	btrfs_set_backup_csum_root_gen(root_backup,
1932 			       btrfs_header_generation(info->csum_root->node));
1933 	btrfs_set_backup_csum_root_level(root_backup,
1934 			       btrfs_header_level(info->csum_root->node));
1935 
1936 	btrfs_set_backup_total_bytes(root_backup,
1937 			     btrfs_super_total_bytes(info->super_copy));
1938 	btrfs_set_backup_bytes_used(root_backup,
1939 			     btrfs_super_bytes_used(info->super_copy));
1940 	btrfs_set_backup_num_devices(root_backup,
1941 			     btrfs_super_num_devices(info->super_copy));
1942 
1943 	/*
1944 	 * if we don't copy this out to the super_copy, it won't get remembered
1945 	 * for the next commit
1946 	 */
1947 	memcpy(&info->super_copy->super_roots,
1948 	       &info->super_for_commit->super_roots,
1949 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1950 }
1951 
1952 /*
1953  * this copies info out of the root backup array and back into
1954  * the in-memory super block.  It is meant to help iterate through
1955  * the array, so you send it the number of backups you've already
1956  * tried and the last backup index you used.
1957  *
1958  * this returns -1 when it has tried all the backups
1959  */
1960 static noinline int next_root_backup(struct btrfs_fs_info *info,
1961 				     struct btrfs_super_block *super,
1962 				     int *num_backups_tried, int *backup_index)
1963 {
1964 	struct btrfs_root_backup *root_backup;
1965 	int newest = *backup_index;
1966 
1967 	if (*num_backups_tried == 0) {
1968 		u64 gen = btrfs_super_generation(super);
1969 
1970 		newest = find_newest_super_backup(info, gen);
1971 		if (newest == -1)
1972 			return -1;
1973 
1974 		*backup_index = newest;
1975 		*num_backups_tried = 1;
1976 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1977 		/* we've tried all the backups, all done */
1978 		return -1;
1979 	} else {
1980 		/* jump to the next oldest backup */
1981 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1982 			BTRFS_NUM_BACKUP_ROOTS;
1983 		*backup_index = newest;
1984 		*num_backups_tried += 1;
1985 	}
1986 	root_backup = super->super_roots + newest;
1987 
1988 	btrfs_set_super_generation(super,
1989 				   btrfs_backup_tree_root_gen(root_backup));
1990 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1991 	btrfs_set_super_root_level(super,
1992 				   btrfs_backup_tree_root_level(root_backup));
1993 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1994 
1995 	/*
1996 	 * fixme: the total bytes and num_devices need to match or we should
1997 	 * need a fsck
1998 	 */
1999 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2000 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2001 	return 0;
2002 }
2003 
2004 /* helper to cleanup workers */
2005 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2006 {
2007 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2008 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2009 	btrfs_destroy_workqueue(fs_info->workers);
2010 	btrfs_destroy_workqueue(fs_info->endio_workers);
2011 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2012 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2013 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2014 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2015 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2016 	btrfs_destroy_workqueue(fs_info->submit_workers);
2017 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2018 	btrfs_destroy_workqueue(fs_info->caching_workers);
2019 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2020 	btrfs_destroy_workqueue(fs_info->flush_workers);
2021 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2022 	btrfs_destroy_workqueue(fs_info->extent_workers);
2023 	/*
2024 	 * Now that all other work queues are destroyed, we can safely destroy
2025 	 * the queues used for metadata I/O, since tasks from those other work
2026 	 * queues can do metadata I/O operations.
2027 	 */
2028 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2029 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2030 }
2031 
2032 static void free_root_extent_buffers(struct btrfs_root *root)
2033 {
2034 	if (root) {
2035 		free_extent_buffer(root->node);
2036 		free_extent_buffer(root->commit_root);
2037 		root->node = NULL;
2038 		root->commit_root = NULL;
2039 	}
2040 }
2041 
2042 /* helper to cleanup tree roots */
2043 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2044 {
2045 	free_root_extent_buffers(info->tree_root);
2046 
2047 	free_root_extent_buffers(info->dev_root);
2048 	free_root_extent_buffers(info->extent_root);
2049 	free_root_extent_buffers(info->csum_root);
2050 	free_root_extent_buffers(info->quota_root);
2051 	free_root_extent_buffers(info->uuid_root);
2052 	if (chunk_root)
2053 		free_root_extent_buffers(info->chunk_root);
2054 	free_root_extent_buffers(info->free_space_root);
2055 }
2056 
2057 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2058 {
2059 	int ret;
2060 	struct btrfs_root *gang[8];
2061 	int i;
2062 
2063 	while (!list_empty(&fs_info->dead_roots)) {
2064 		gang[0] = list_entry(fs_info->dead_roots.next,
2065 				     struct btrfs_root, root_list);
2066 		list_del(&gang[0]->root_list);
2067 
2068 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2069 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2070 		} else {
2071 			free_extent_buffer(gang[0]->node);
2072 			free_extent_buffer(gang[0]->commit_root);
2073 			btrfs_put_fs_root(gang[0]);
2074 		}
2075 	}
2076 
2077 	while (1) {
2078 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2079 					     (void **)gang, 0,
2080 					     ARRAY_SIZE(gang));
2081 		if (!ret)
2082 			break;
2083 		for (i = 0; i < ret; i++)
2084 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2085 	}
2086 
2087 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2088 		btrfs_free_log_root_tree(NULL, fs_info);
2089 		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2090 	}
2091 }
2092 
2093 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2094 {
2095 	mutex_init(&fs_info->scrub_lock);
2096 	atomic_set(&fs_info->scrubs_running, 0);
2097 	atomic_set(&fs_info->scrub_pause_req, 0);
2098 	atomic_set(&fs_info->scrubs_paused, 0);
2099 	atomic_set(&fs_info->scrub_cancel_req, 0);
2100 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2101 	fs_info->scrub_workers_refcnt = 0;
2102 }
2103 
2104 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2105 {
2106 	spin_lock_init(&fs_info->balance_lock);
2107 	mutex_init(&fs_info->balance_mutex);
2108 	atomic_set(&fs_info->balance_pause_req, 0);
2109 	atomic_set(&fs_info->balance_cancel_req, 0);
2110 	fs_info->balance_ctl = NULL;
2111 	init_waitqueue_head(&fs_info->balance_wait_q);
2112 }
2113 
2114 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2115 {
2116 	struct inode *inode = fs_info->btree_inode;
2117 
2118 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2119 	set_nlink(inode, 1);
2120 	/*
2121 	 * we set the i_size on the btree inode to the max possible int.
2122 	 * the real end of the address space is determined by all of
2123 	 * the devices in the system
2124 	 */
2125 	inode->i_size = OFFSET_MAX;
2126 	inode->i_mapping->a_ops = &btree_aops;
2127 
2128 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2129 	extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2130 	BTRFS_I(inode)->io_tree.track_uptodate = 0;
2131 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2132 
2133 	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2134 
2135 	BTRFS_I(inode)->root = fs_info->tree_root;
2136 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2137 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2138 	btrfs_insert_inode_hash(inode);
2139 }
2140 
2141 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2142 {
2143 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2144 	init_rwsem(&fs_info->dev_replace.rwsem);
2145 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2146 }
2147 
2148 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2149 {
2150 	spin_lock_init(&fs_info->qgroup_lock);
2151 	mutex_init(&fs_info->qgroup_ioctl_lock);
2152 	fs_info->qgroup_tree = RB_ROOT;
2153 	fs_info->qgroup_op_tree = RB_ROOT;
2154 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2155 	fs_info->qgroup_seq = 1;
2156 	fs_info->qgroup_ulist = NULL;
2157 	fs_info->qgroup_rescan_running = false;
2158 	mutex_init(&fs_info->qgroup_rescan_lock);
2159 }
2160 
2161 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2162 		struct btrfs_fs_devices *fs_devices)
2163 {
2164 	u32 max_active = fs_info->thread_pool_size;
2165 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2166 
2167 	fs_info->workers =
2168 		btrfs_alloc_workqueue(fs_info, "worker",
2169 				      flags | WQ_HIGHPRI, max_active, 16);
2170 
2171 	fs_info->delalloc_workers =
2172 		btrfs_alloc_workqueue(fs_info, "delalloc",
2173 				      flags, max_active, 2);
2174 
2175 	fs_info->flush_workers =
2176 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2177 				      flags, max_active, 0);
2178 
2179 	fs_info->caching_workers =
2180 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2181 
2182 	/*
2183 	 * a higher idle thresh on the submit workers makes it much more
2184 	 * likely that bios will be send down in a sane order to the
2185 	 * devices
2186 	 */
2187 	fs_info->submit_workers =
2188 		btrfs_alloc_workqueue(fs_info, "submit", flags,
2189 				      min_t(u64, fs_devices->num_devices,
2190 					    max_active), 64);
2191 
2192 	fs_info->fixup_workers =
2193 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2194 
2195 	/*
2196 	 * endios are largely parallel and should have a very
2197 	 * low idle thresh
2198 	 */
2199 	fs_info->endio_workers =
2200 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2201 	fs_info->endio_meta_workers =
2202 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2203 				      max_active, 4);
2204 	fs_info->endio_meta_write_workers =
2205 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2206 				      max_active, 2);
2207 	fs_info->endio_raid56_workers =
2208 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2209 				      max_active, 4);
2210 	fs_info->endio_repair_workers =
2211 		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2212 	fs_info->rmw_workers =
2213 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2214 	fs_info->endio_write_workers =
2215 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2216 				      max_active, 2);
2217 	fs_info->endio_freespace_worker =
2218 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2219 				      max_active, 0);
2220 	fs_info->delayed_workers =
2221 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2222 				      max_active, 0);
2223 	fs_info->readahead_workers =
2224 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2225 				      max_active, 2);
2226 	fs_info->qgroup_rescan_workers =
2227 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2228 	fs_info->extent_workers =
2229 		btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2230 				      min_t(u64, fs_devices->num_devices,
2231 					    max_active), 8);
2232 
2233 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2234 	      fs_info->submit_workers && fs_info->flush_workers &&
2235 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2236 	      fs_info->endio_meta_write_workers &&
2237 	      fs_info->endio_repair_workers &&
2238 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2239 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2240 	      fs_info->caching_workers && fs_info->readahead_workers &&
2241 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2242 	      fs_info->extent_workers &&
2243 	      fs_info->qgroup_rescan_workers)) {
2244 		return -ENOMEM;
2245 	}
2246 
2247 	return 0;
2248 }
2249 
2250 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2251 			    struct btrfs_fs_devices *fs_devices)
2252 {
2253 	int ret;
2254 	struct btrfs_root *log_tree_root;
2255 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2256 	u64 bytenr = btrfs_super_log_root(disk_super);
2257 	int level = btrfs_super_log_root_level(disk_super);
2258 
2259 	if (fs_devices->rw_devices == 0) {
2260 		btrfs_warn(fs_info, "log replay required on RO media");
2261 		return -EIO;
2262 	}
2263 
2264 	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2265 	if (!log_tree_root)
2266 		return -ENOMEM;
2267 
2268 	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2269 
2270 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2271 					      fs_info->generation + 1,
2272 					      level, NULL);
2273 	if (IS_ERR(log_tree_root->node)) {
2274 		btrfs_warn(fs_info, "failed to read log tree");
2275 		ret = PTR_ERR(log_tree_root->node);
2276 		kfree(log_tree_root);
2277 		return ret;
2278 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2279 		btrfs_err(fs_info, "failed to read log tree");
2280 		free_extent_buffer(log_tree_root->node);
2281 		kfree(log_tree_root);
2282 		return -EIO;
2283 	}
2284 	/* returns with log_tree_root freed on success */
2285 	ret = btrfs_recover_log_trees(log_tree_root);
2286 	if (ret) {
2287 		btrfs_handle_fs_error(fs_info, ret,
2288 				      "Failed to recover log tree");
2289 		free_extent_buffer(log_tree_root->node);
2290 		kfree(log_tree_root);
2291 		return ret;
2292 	}
2293 
2294 	if (sb_rdonly(fs_info->sb)) {
2295 		ret = btrfs_commit_super(fs_info);
2296 		if (ret)
2297 			return ret;
2298 	}
2299 
2300 	return 0;
2301 }
2302 
2303 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2304 {
2305 	struct btrfs_root *tree_root = fs_info->tree_root;
2306 	struct btrfs_root *root;
2307 	struct btrfs_key location;
2308 	int ret;
2309 
2310 	BUG_ON(!fs_info->tree_root);
2311 
2312 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2313 	location.type = BTRFS_ROOT_ITEM_KEY;
2314 	location.offset = 0;
2315 
2316 	root = btrfs_read_tree_root(tree_root, &location);
2317 	if (IS_ERR(root)) {
2318 		ret = PTR_ERR(root);
2319 		goto out;
2320 	}
2321 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2322 	fs_info->extent_root = root;
2323 
2324 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2325 	root = btrfs_read_tree_root(tree_root, &location);
2326 	if (IS_ERR(root)) {
2327 		ret = PTR_ERR(root);
2328 		goto out;
2329 	}
2330 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2331 	fs_info->dev_root = root;
2332 	btrfs_init_devices_late(fs_info);
2333 
2334 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2335 	root = btrfs_read_tree_root(tree_root, &location);
2336 	if (IS_ERR(root)) {
2337 		ret = PTR_ERR(root);
2338 		goto out;
2339 	}
2340 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2341 	fs_info->csum_root = root;
2342 
2343 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2344 	root = btrfs_read_tree_root(tree_root, &location);
2345 	if (!IS_ERR(root)) {
2346 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2347 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2348 		fs_info->quota_root = root;
2349 	}
2350 
2351 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2352 	root = btrfs_read_tree_root(tree_root, &location);
2353 	if (IS_ERR(root)) {
2354 		ret = PTR_ERR(root);
2355 		if (ret != -ENOENT)
2356 			goto out;
2357 	} else {
2358 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2359 		fs_info->uuid_root = root;
2360 	}
2361 
2362 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2363 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2364 		root = btrfs_read_tree_root(tree_root, &location);
2365 		if (IS_ERR(root)) {
2366 			ret = PTR_ERR(root);
2367 			goto out;
2368 		}
2369 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2370 		fs_info->free_space_root = root;
2371 	}
2372 
2373 	return 0;
2374 out:
2375 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2376 		   location.objectid, ret);
2377 	return ret;
2378 }
2379 
2380 /*
2381  * Real super block validation
2382  * NOTE: super csum type and incompat features will not be checked here.
2383  *
2384  * @sb:		super block to check
2385  * @mirror_num:	the super block number to check its bytenr:
2386  * 		0	the primary (1st) sb
2387  * 		1, 2	2nd and 3rd backup copy
2388  * 	       -1	skip bytenr check
2389  */
2390 static int validate_super(struct btrfs_fs_info *fs_info,
2391 			    struct btrfs_super_block *sb, int mirror_num)
2392 {
2393 	u64 nodesize = btrfs_super_nodesize(sb);
2394 	u64 sectorsize = btrfs_super_sectorsize(sb);
2395 	int ret = 0;
2396 
2397 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2398 		btrfs_err(fs_info, "no valid FS found");
2399 		ret = -EINVAL;
2400 	}
2401 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2402 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2403 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2404 		ret = -EINVAL;
2405 	}
2406 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2407 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2408 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2409 		ret = -EINVAL;
2410 	}
2411 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2412 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2413 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2414 		ret = -EINVAL;
2415 	}
2416 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2417 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2418 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2419 		ret = -EINVAL;
2420 	}
2421 
2422 	/*
2423 	 * Check sectorsize and nodesize first, other check will need it.
2424 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2425 	 */
2426 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2427 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2428 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2429 		ret = -EINVAL;
2430 	}
2431 	/* Only PAGE SIZE is supported yet */
2432 	if (sectorsize != PAGE_SIZE) {
2433 		btrfs_err(fs_info,
2434 			"sectorsize %llu not supported yet, only support %lu",
2435 			sectorsize, PAGE_SIZE);
2436 		ret = -EINVAL;
2437 	}
2438 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2439 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2440 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2441 		ret = -EINVAL;
2442 	}
2443 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2444 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2445 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2446 		ret = -EINVAL;
2447 	}
2448 
2449 	/* Root alignment check */
2450 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2451 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2452 			   btrfs_super_root(sb));
2453 		ret = -EINVAL;
2454 	}
2455 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2456 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2457 			   btrfs_super_chunk_root(sb));
2458 		ret = -EINVAL;
2459 	}
2460 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2461 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2462 			   btrfs_super_log_root(sb));
2463 		ret = -EINVAL;
2464 	}
2465 
2466 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2467 		   BTRFS_FSID_SIZE) != 0) {
2468 		btrfs_err(fs_info,
2469 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2470 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2471 		ret = -EINVAL;
2472 	}
2473 
2474 	/*
2475 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2476 	 * done later
2477 	 */
2478 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2479 		btrfs_err(fs_info, "bytes_used is too small %llu",
2480 			  btrfs_super_bytes_used(sb));
2481 		ret = -EINVAL;
2482 	}
2483 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2484 		btrfs_err(fs_info, "invalid stripesize %u",
2485 			  btrfs_super_stripesize(sb));
2486 		ret = -EINVAL;
2487 	}
2488 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2489 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2490 			   btrfs_super_num_devices(sb));
2491 	if (btrfs_super_num_devices(sb) == 0) {
2492 		btrfs_err(fs_info, "number of devices is 0");
2493 		ret = -EINVAL;
2494 	}
2495 
2496 	if (mirror_num >= 0 &&
2497 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2498 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2499 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2500 		ret = -EINVAL;
2501 	}
2502 
2503 	/*
2504 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2505 	 * and one chunk
2506 	 */
2507 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2508 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2509 			  btrfs_super_sys_array_size(sb),
2510 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2511 		ret = -EINVAL;
2512 	}
2513 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2514 			+ sizeof(struct btrfs_chunk)) {
2515 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2516 			  btrfs_super_sys_array_size(sb),
2517 			  sizeof(struct btrfs_disk_key)
2518 			  + sizeof(struct btrfs_chunk));
2519 		ret = -EINVAL;
2520 	}
2521 
2522 	/*
2523 	 * The generation is a global counter, we'll trust it more than the others
2524 	 * but it's still possible that it's the one that's wrong.
2525 	 */
2526 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2527 		btrfs_warn(fs_info,
2528 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2529 			btrfs_super_generation(sb),
2530 			btrfs_super_chunk_root_generation(sb));
2531 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2532 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2533 		btrfs_warn(fs_info,
2534 			"suspicious: generation < cache_generation: %llu < %llu",
2535 			btrfs_super_generation(sb),
2536 			btrfs_super_cache_generation(sb));
2537 
2538 	return ret;
2539 }
2540 
2541 /*
2542  * Validation of super block at mount time.
2543  * Some checks already done early at mount time, like csum type and incompat
2544  * flags will be skipped.
2545  */
2546 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2547 {
2548 	return validate_super(fs_info, fs_info->super_copy, 0);
2549 }
2550 
2551 /*
2552  * Validation of super block at write time.
2553  * Some checks like bytenr check will be skipped as their values will be
2554  * overwritten soon.
2555  * Extra checks like csum type and incompat flags will be done here.
2556  */
2557 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2558 				      struct btrfs_super_block *sb)
2559 {
2560 	int ret;
2561 
2562 	ret = validate_super(fs_info, sb, -1);
2563 	if (ret < 0)
2564 		goto out;
2565 	if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2566 		ret = -EUCLEAN;
2567 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2568 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2569 		goto out;
2570 	}
2571 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2572 		ret = -EUCLEAN;
2573 		btrfs_err(fs_info,
2574 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2575 			  btrfs_super_incompat_flags(sb),
2576 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2577 		goto out;
2578 	}
2579 out:
2580 	if (ret < 0)
2581 		btrfs_err(fs_info,
2582 		"super block corruption detected before writing it to disk");
2583 	return ret;
2584 }
2585 
2586 int open_ctree(struct super_block *sb,
2587 	       struct btrfs_fs_devices *fs_devices,
2588 	       char *options)
2589 {
2590 	u32 sectorsize;
2591 	u32 nodesize;
2592 	u32 stripesize;
2593 	u64 generation;
2594 	u64 features;
2595 	struct btrfs_key location;
2596 	struct buffer_head *bh;
2597 	struct btrfs_super_block *disk_super;
2598 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2599 	struct btrfs_root *tree_root;
2600 	struct btrfs_root *chunk_root;
2601 	int ret;
2602 	int err = -EINVAL;
2603 	int num_backups_tried = 0;
2604 	int backup_index = 0;
2605 	int clear_free_space_tree = 0;
2606 	int level;
2607 
2608 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2609 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2610 	if (!tree_root || !chunk_root) {
2611 		err = -ENOMEM;
2612 		goto fail;
2613 	}
2614 
2615 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2616 	if (ret) {
2617 		err = ret;
2618 		goto fail;
2619 	}
2620 
2621 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2622 	if (ret) {
2623 		err = ret;
2624 		goto fail_srcu;
2625 	}
2626 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2627 					(1 + ilog2(nr_cpu_ids));
2628 
2629 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2630 	if (ret) {
2631 		err = ret;
2632 		goto fail_dirty_metadata_bytes;
2633 	}
2634 
2635 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2636 			GFP_KERNEL);
2637 	if (ret) {
2638 		err = ret;
2639 		goto fail_delalloc_bytes;
2640 	}
2641 
2642 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2643 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2644 	INIT_LIST_HEAD(&fs_info->trans_list);
2645 	INIT_LIST_HEAD(&fs_info->dead_roots);
2646 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2647 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2648 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2649 	INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2650 	spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2651 	spin_lock_init(&fs_info->delalloc_root_lock);
2652 	spin_lock_init(&fs_info->trans_lock);
2653 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2654 	spin_lock_init(&fs_info->delayed_iput_lock);
2655 	spin_lock_init(&fs_info->defrag_inodes_lock);
2656 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2657 	spin_lock_init(&fs_info->super_lock);
2658 	spin_lock_init(&fs_info->qgroup_op_lock);
2659 	spin_lock_init(&fs_info->buffer_lock);
2660 	spin_lock_init(&fs_info->unused_bgs_lock);
2661 	rwlock_init(&fs_info->tree_mod_log_lock);
2662 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2663 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2664 	mutex_init(&fs_info->reloc_mutex);
2665 	mutex_init(&fs_info->delalloc_root_mutex);
2666 	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2667 	seqlock_init(&fs_info->profiles_lock);
2668 
2669 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2670 	INIT_LIST_HEAD(&fs_info->space_info);
2671 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2672 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2673 	btrfs_mapping_init(&fs_info->mapping_tree);
2674 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2675 			     BTRFS_BLOCK_RSV_GLOBAL);
2676 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2677 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2678 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2679 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2680 			     BTRFS_BLOCK_RSV_DELOPS);
2681 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2682 			     BTRFS_BLOCK_RSV_DELREFS);
2683 
2684 	atomic_set(&fs_info->async_delalloc_pages, 0);
2685 	atomic_set(&fs_info->defrag_running, 0);
2686 	atomic_set(&fs_info->qgroup_op_seq, 0);
2687 	atomic_set(&fs_info->reada_works_cnt, 0);
2688 	atomic64_set(&fs_info->tree_mod_seq, 0);
2689 	fs_info->sb = sb;
2690 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2691 	fs_info->metadata_ratio = 0;
2692 	fs_info->defrag_inodes = RB_ROOT;
2693 	atomic64_set(&fs_info->free_chunk_space, 0);
2694 	fs_info->tree_mod_log = RB_ROOT;
2695 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2696 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2697 	/* readahead state */
2698 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2699 	spin_lock_init(&fs_info->reada_lock);
2700 	btrfs_init_ref_verify(fs_info);
2701 
2702 	fs_info->thread_pool_size = min_t(unsigned long,
2703 					  num_online_cpus() + 2, 8);
2704 
2705 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2706 	spin_lock_init(&fs_info->ordered_root_lock);
2707 
2708 	fs_info->btree_inode = new_inode(sb);
2709 	if (!fs_info->btree_inode) {
2710 		err = -ENOMEM;
2711 		goto fail_bio_counter;
2712 	}
2713 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2714 
2715 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2716 					GFP_KERNEL);
2717 	if (!fs_info->delayed_root) {
2718 		err = -ENOMEM;
2719 		goto fail_iput;
2720 	}
2721 	btrfs_init_delayed_root(fs_info->delayed_root);
2722 
2723 	btrfs_init_scrub(fs_info);
2724 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2725 	fs_info->check_integrity_print_mask = 0;
2726 #endif
2727 	btrfs_init_balance(fs_info);
2728 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2729 
2730 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2731 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2732 
2733 	btrfs_init_btree_inode(fs_info);
2734 
2735 	spin_lock_init(&fs_info->block_group_cache_lock);
2736 	fs_info->block_group_cache_tree = RB_ROOT;
2737 	fs_info->first_logical_byte = (u64)-1;
2738 
2739 	extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2740 	extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2741 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2742 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2743 
2744 	mutex_init(&fs_info->ordered_operations_mutex);
2745 	mutex_init(&fs_info->tree_log_mutex);
2746 	mutex_init(&fs_info->chunk_mutex);
2747 	mutex_init(&fs_info->transaction_kthread_mutex);
2748 	mutex_init(&fs_info->cleaner_mutex);
2749 	mutex_init(&fs_info->ro_block_group_mutex);
2750 	init_rwsem(&fs_info->commit_root_sem);
2751 	init_rwsem(&fs_info->cleanup_work_sem);
2752 	init_rwsem(&fs_info->subvol_sem);
2753 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2754 
2755 	btrfs_init_dev_replace_locks(fs_info);
2756 	btrfs_init_qgroup(fs_info);
2757 
2758 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2759 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2760 
2761 	init_waitqueue_head(&fs_info->transaction_throttle);
2762 	init_waitqueue_head(&fs_info->transaction_wait);
2763 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2764 	init_waitqueue_head(&fs_info->async_submit_wait);
2765 
2766 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2767 
2768 	/* Usable values until the real ones are cached from the superblock */
2769 	fs_info->nodesize = 4096;
2770 	fs_info->sectorsize = 4096;
2771 	fs_info->stripesize = 4096;
2772 
2773 	spin_lock_init(&fs_info->swapfile_pins_lock);
2774 	fs_info->swapfile_pins = RB_ROOT;
2775 
2776 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2777 	if (ret) {
2778 		err = ret;
2779 		goto fail_alloc;
2780 	}
2781 
2782 	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2783 
2784 	invalidate_bdev(fs_devices->latest_bdev);
2785 
2786 	/*
2787 	 * Read super block and check the signature bytes only
2788 	 */
2789 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2790 	if (IS_ERR(bh)) {
2791 		err = PTR_ERR(bh);
2792 		goto fail_alloc;
2793 	}
2794 
2795 	/*
2796 	 * We want to check superblock checksum, the type is stored inside.
2797 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2798 	 */
2799 	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2800 		btrfs_err(fs_info, "superblock checksum mismatch");
2801 		err = -EINVAL;
2802 		brelse(bh);
2803 		goto fail_alloc;
2804 	}
2805 
2806 	/*
2807 	 * super_copy is zeroed at allocation time and we never touch the
2808 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2809 	 * the whole block of INFO_SIZE
2810 	 */
2811 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2812 	brelse(bh);
2813 
2814 	disk_super = fs_info->super_copy;
2815 
2816 	ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2817 		       BTRFS_FSID_SIZE));
2818 
2819 	if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2820 		ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2821 				fs_info->super_copy->metadata_uuid,
2822 				BTRFS_FSID_SIZE));
2823 	}
2824 
2825 	features = btrfs_super_flags(disk_super);
2826 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2827 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2828 		btrfs_set_super_flags(disk_super, features);
2829 		btrfs_info(fs_info,
2830 			"found metadata UUID change in progress flag, clearing");
2831 	}
2832 
2833 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2834 	       sizeof(*fs_info->super_for_commit));
2835 
2836 	ret = btrfs_validate_mount_super(fs_info);
2837 	if (ret) {
2838 		btrfs_err(fs_info, "superblock contains fatal errors");
2839 		err = -EINVAL;
2840 		goto fail_alloc;
2841 	}
2842 
2843 	if (!btrfs_super_root(disk_super))
2844 		goto fail_alloc;
2845 
2846 	/* check FS state, whether FS is broken. */
2847 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2848 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2849 
2850 	/*
2851 	 * run through our array of backup supers and setup
2852 	 * our ring pointer to the oldest one
2853 	 */
2854 	generation = btrfs_super_generation(disk_super);
2855 	find_oldest_super_backup(fs_info, generation);
2856 
2857 	/*
2858 	 * In the long term, we'll store the compression type in the super
2859 	 * block, and it'll be used for per file compression control.
2860 	 */
2861 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2862 
2863 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2864 	if (ret) {
2865 		err = ret;
2866 		goto fail_alloc;
2867 	}
2868 
2869 	features = btrfs_super_incompat_flags(disk_super) &
2870 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2871 	if (features) {
2872 		btrfs_err(fs_info,
2873 		    "cannot mount because of unsupported optional features (%llx)",
2874 		    features);
2875 		err = -EINVAL;
2876 		goto fail_alloc;
2877 	}
2878 
2879 	features = btrfs_super_incompat_flags(disk_super);
2880 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2881 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2882 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2883 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2884 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2885 
2886 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2887 		btrfs_info(fs_info, "has skinny extents");
2888 
2889 	/*
2890 	 * flag our filesystem as having big metadata blocks if
2891 	 * they are bigger than the page size
2892 	 */
2893 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2894 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2895 			btrfs_info(fs_info,
2896 				"flagging fs with big metadata feature");
2897 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2898 	}
2899 
2900 	nodesize = btrfs_super_nodesize(disk_super);
2901 	sectorsize = btrfs_super_sectorsize(disk_super);
2902 	stripesize = sectorsize;
2903 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2904 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2905 
2906 	/* Cache block sizes */
2907 	fs_info->nodesize = nodesize;
2908 	fs_info->sectorsize = sectorsize;
2909 	fs_info->stripesize = stripesize;
2910 
2911 	/*
2912 	 * mixed block groups end up with duplicate but slightly offset
2913 	 * extent buffers for the same range.  It leads to corruptions
2914 	 */
2915 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2916 	    (sectorsize != nodesize)) {
2917 		btrfs_err(fs_info,
2918 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2919 			nodesize, sectorsize);
2920 		goto fail_alloc;
2921 	}
2922 
2923 	/*
2924 	 * Needn't use the lock because there is no other task which will
2925 	 * update the flag.
2926 	 */
2927 	btrfs_set_super_incompat_flags(disk_super, features);
2928 
2929 	features = btrfs_super_compat_ro_flags(disk_super) &
2930 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2931 	if (!sb_rdonly(sb) && features) {
2932 		btrfs_err(fs_info,
2933 	"cannot mount read-write because of unsupported optional features (%llx)",
2934 		       features);
2935 		err = -EINVAL;
2936 		goto fail_alloc;
2937 	}
2938 
2939 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2940 	if (ret) {
2941 		err = ret;
2942 		goto fail_sb_buffer;
2943 	}
2944 
2945 	sb->s_bdi->congested_fn = btrfs_congested_fn;
2946 	sb->s_bdi->congested_data = fs_info;
2947 	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2948 	sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2949 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2950 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2951 
2952 	sb->s_blocksize = sectorsize;
2953 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2954 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
2955 
2956 	mutex_lock(&fs_info->chunk_mutex);
2957 	ret = btrfs_read_sys_array(fs_info);
2958 	mutex_unlock(&fs_info->chunk_mutex);
2959 	if (ret) {
2960 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2961 		goto fail_sb_buffer;
2962 	}
2963 
2964 	generation = btrfs_super_chunk_root_generation(disk_super);
2965 	level = btrfs_super_chunk_root_level(disk_super);
2966 
2967 	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2968 
2969 	chunk_root->node = read_tree_block(fs_info,
2970 					   btrfs_super_chunk_root(disk_super),
2971 					   generation, level, NULL);
2972 	if (IS_ERR(chunk_root->node) ||
2973 	    !extent_buffer_uptodate(chunk_root->node)) {
2974 		btrfs_err(fs_info, "failed to read chunk root");
2975 		if (!IS_ERR(chunk_root->node))
2976 			free_extent_buffer(chunk_root->node);
2977 		chunk_root->node = NULL;
2978 		goto fail_tree_roots;
2979 	}
2980 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2981 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2982 
2983 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2984 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2985 
2986 	ret = btrfs_read_chunk_tree(fs_info);
2987 	if (ret) {
2988 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2989 		goto fail_tree_roots;
2990 	}
2991 
2992 	/*
2993 	 * Keep the devid that is marked to be the target device for the
2994 	 * device replace procedure
2995 	 */
2996 	btrfs_free_extra_devids(fs_devices, 0);
2997 
2998 	if (!fs_devices->latest_bdev) {
2999 		btrfs_err(fs_info, "failed to read devices");
3000 		goto fail_tree_roots;
3001 	}
3002 
3003 retry_root_backup:
3004 	generation = btrfs_super_generation(disk_super);
3005 	level = btrfs_super_root_level(disk_super);
3006 
3007 	tree_root->node = read_tree_block(fs_info,
3008 					  btrfs_super_root(disk_super),
3009 					  generation, level, NULL);
3010 	if (IS_ERR(tree_root->node) ||
3011 	    !extent_buffer_uptodate(tree_root->node)) {
3012 		btrfs_warn(fs_info, "failed to read tree root");
3013 		if (!IS_ERR(tree_root->node))
3014 			free_extent_buffer(tree_root->node);
3015 		tree_root->node = NULL;
3016 		goto recovery_tree_root;
3017 	}
3018 
3019 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3020 	tree_root->commit_root = btrfs_root_node(tree_root);
3021 	btrfs_set_root_refs(&tree_root->root_item, 1);
3022 
3023 	mutex_lock(&tree_root->objectid_mutex);
3024 	ret = btrfs_find_highest_objectid(tree_root,
3025 					&tree_root->highest_objectid);
3026 	if (ret) {
3027 		mutex_unlock(&tree_root->objectid_mutex);
3028 		goto recovery_tree_root;
3029 	}
3030 
3031 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3032 
3033 	mutex_unlock(&tree_root->objectid_mutex);
3034 
3035 	ret = btrfs_read_roots(fs_info);
3036 	if (ret)
3037 		goto recovery_tree_root;
3038 
3039 	fs_info->generation = generation;
3040 	fs_info->last_trans_committed = generation;
3041 
3042 	ret = btrfs_verify_dev_extents(fs_info);
3043 	if (ret) {
3044 		btrfs_err(fs_info,
3045 			  "failed to verify dev extents against chunks: %d",
3046 			  ret);
3047 		goto fail_block_groups;
3048 	}
3049 	ret = btrfs_recover_balance(fs_info);
3050 	if (ret) {
3051 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3052 		goto fail_block_groups;
3053 	}
3054 
3055 	ret = btrfs_init_dev_stats(fs_info);
3056 	if (ret) {
3057 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3058 		goto fail_block_groups;
3059 	}
3060 
3061 	ret = btrfs_init_dev_replace(fs_info);
3062 	if (ret) {
3063 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3064 		goto fail_block_groups;
3065 	}
3066 
3067 	btrfs_free_extra_devids(fs_devices, 1);
3068 
3069 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3070 	if (ret) {
3071 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3072 				ret);
3073 		goto fail_block_groups;
3074 	}
3075 
3076 	ret = btrfs_sysfs_add_device(fs_devices);
3077 	if (ret) {
3078 		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3079 				ret);
3080 		goto fail_fsdev_sysfs;
3081 	}
3082 
3083 	ret = btrfs_sysfs_add_mounted(fs_info);
3084 	if (ret) {
3085 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3086 		goto fail_fsdev_sysfs;
3087 	}
3088 
3089 	ret = btrfs_init_space_info(fs_info);
3090 	if (ret) {
3091 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3092 		goto fail_sysfs;
3093 	}
3094 
3095 	ret = btrfs_read_block_groups(fs_info);
3096 	if (ret) {
3097 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3098 		goto fail_sysfs;
3099 	}
3100 
3101 	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3102 		btrfs_warn(fs_info,
3103 		"writable mount is not allowed due to too many missing devices");
3104 		goto fail_sysfs;
3105 	}
3106 
3107 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3108 					       "btrfs-cleaner");
3109 	if (IS_ERR(fs_info->cleaner_kthread))
3110 		goto fail_sysfs;
3111 
3112 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3113 						   tree_root,
3114 						   "btrfs-transaction");
3115 	if (IS_ERR(fs_info->transaction_kthread))
3116 		goto fail_cleaner;
3117 
3118 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3119 	    !fs_info->fs_devices->rotating) {
3120 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3121 	}
3122 
3123 	/*
3124 	 * Mount does not set all options immediately, we can do it now and do
3125 	 * not have to wait for transaction commit
3126 	 */
3127 	btrfs_apply_pending_changes(fs_info);
3128 
3129 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3130 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3131 		ret = btrfsic_mount(fs_info, fs_devices,
3132 				    btrfs_test_opt(fs_info,
3133 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3134 				    1 : 0,
3135 				    fs_info->check_integrity_print_mask);
3136 		if (ret)
3137 			btrfs_warn(fs_info,
3138 				"failed to initialize integrity check module: %d",
3139 				ret);
3140 	}
3141 #endif
3142 	ret = btrfs_read_qgroup_config(fs_info);
3143 	if (ret)
3144 		goto fail_trans_kthread;
3145 
3146 	if (btrfs_build_ref_tree(fs_info))
3147 		btrfs_err(fs_info, "couldn't build ref tree");
3148 
3149 	/* do not make disk changes in broken FS or nologreplay is given */
3150 	if (btrfs_super_log_root(disk_super) != 0 &&
3151 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3152 		ret = btrfs_replay_log(fs_info, fs_devices);
3153 		if (ret) {
3154 			err = ret;
3155 			goto fail_qgroup;
3156 		}
3157 	}
3158 
3159 	ret = btrfs_find_orphan_roots(fs_info);
3160 	if (ret)
3161 		goto fail_qgroup;
3162 
3163 	if (!sb_rdonly(sb)) {
3164 		ret = btrfs_cleanup_fs_roots(fs_info);
3165 		if (ret)
3166 			goto fail_qgroup;
3167 
3168 		mutex_lock(&fs_info->cleaner_mutex);
3169 		ret = btrfs_recover_relocation(tree_root);
3170 		mutex_unlock(&fs_info->cleaner_mutex);
3171 		if (ret < 0) {
3172 			btrfs_warn(fs_info, "failed to recover relocation: %d",
3173 					ret);
3174 			err = -EINVAL;
3175 			goto fail_qgroup;
3176 		}
3177 	}
3178 
3179 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3180 	location.type = BTRFS_ROOT_ITEM_KEY;
3181 	location.offset = 0;
3182 
3183 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3184 	if (IS_ERR(fs_info->fs_root)) {
3185 		err = PTR_ERR(fs_info->fs_root);
3186 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3187 		goto fail_qgroup;
3188 	}
3189 
3190 	if (sb_rdonly(sb))
3191 		return 0;
3192 
3193 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3194 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3195 		clear_free_space_tree = 1;
3196 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3197 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3198 		btrfs_warn(fs_info, "free space tree is invalid");
3199 		clear_free_space_tree = 1;
3200 	}
3201 
3202 	if (clear_free_space_tree) {
3203 		btrfs_info(fs_info, "clearing free space tree");
3204 		ret = btrfs_clear_free_space_tree(fs_info);
3205 		if (ret) {
3206 			btrfs_warn(fs_info,
3207 				   "failed to clear free space tree: %d", ret);
3208 			close_ctree(fs_info);
3209 			return ret;
3210 		}
3211 	}
3212 
3213 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3214 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3215 		btrfs_info(fs_info, "creating free space tree");
3216 		ret = btrfs_create_free_space_tree(fs_info);
3217 		if (ret) {
3218 			btrfs_warn(fs_info,
3219 				"failed to create free space tree: %d", ret);
3220 			close_ctree(fs_info);
3221 			return ret;
3222 		}
3223 	}
3224 
3225 	down_read(&fs_info->cleanup_work_sem);
3226 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3227 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3228 		up_read(&fs_info->cleanup_work_sem);
3229 		close_ctree(fs_info);
3230 		return ret;
3231 	}
3232 	up_read(&fs_info->cleanup_work_sem);
3233 
3234 	ret = btrfs_resume_balance_async(fs_info);
3235 	if (ret) {
3236 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3237 		close_ctree(fs_info);
3238 		return ret;
3239 	}
3240 
3241 	ret = btrfs_resume_dev_replace_async(fs_info);
3242 	if (ret) {
3243 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3244 		close_ctree(fs_info);
3245 		return ret;
3246 	}
3247 
3248 	btrfs_qgroup_rescan_resume(fs_info);
3249 
3250 	if (!fs_info->uuid_root) {
3251 		btrfs_info(fs_info, "creating UUID tree");
3252 		ret = btrfs_create_uuid_tree(fs_info);
3253 		if (ret) {
3254 			btrfs_warn(fs_info,
3255 				"failed to create the UUID tree: %d", ret);
3256 			close_ctree(fs_info);
3257 			return ret;
3258 		}
3259 	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3260 		   fs_info->generation !=
3261 				btrfs_super_uuid_tree_generation(disk_super)) {
3262 		btrfs_info(fs_info, "checking UUID tree");
3263 		ret = btrfs_check_uuid_tree(fs_info);
3264 		if (ret) {
3265 			btrfs_warn(fs_info,
3266 				"failed to check the UUID tree: %d", ret);
3267 			close_ctree(fs_info);
3268 			return ret;
3269 		}
3270 	} else {
3271 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3272 	}
3273 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3274 
3275 	/*
3276 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3277 	 * no need to keep the flag
3278 	 */
3279 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3280 
3281 	return 0;
3282 
3283 fail_qgroup:
3284 	btrfs_free_qgroup_config(fs_info);
3285 fail_trans_kthread:
3286 	kthread_stop(fs_info->transaction_kthread);
3287 	btrfs_cleanup_transaction(fs_info);
3288 	btrfs_free_fs_roots(fs_info);
3289 fail_cleaner:
3290 	kthread_stop(fs_info->cleaner_kthread);
3291 
3292 	/*
3293 	 * make sure we're done with the btree inode before we stop our
3294 	 * kthreads
3295 	 */
3296 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3297 
3298 fail_sysfs:
3299 	btrfs_sysfs_remove_mounted(fs_info);
3300 
3301 fail_fsdev_sysfs:
3302 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3303 
3304 fail_block_groups:
3305 	btrfs_put_block_group_cache(fs_info);
3306 
3307 fail_tree_roots:
3308 	free_root_pointers(fs_info, 1);
3309 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3310 
3311 fail_sb_buffer:
3312 	btrfs_stop_all_workers(fs_info);
3313 	btrfs_free_block_groups(fs_info);
3314 fail_alloc:
3315 fail_iput:
3316 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3317 
3318 	iput(fs_info->btree_inode);
3319 fail_bio_counter:
3320 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3321 fail_delalloc_bytes:
3322 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3323 fail_dirty_metadata_bytes:
3324 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3325 fail_srcu:
3326 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3327 fail:
3328 	btrfs_free_stripe_hash_table(fs_info);
3329 	btrfs_close_devices(fs_info->fs_devices);
3330 	return err;
3331 
3332 recovery_tree_root:
3333 	if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3334 		goto fail_tree_roots;
3335 
3336 	free_root_pointers(fs_info, 0);
3337 
3338 	/* don't use the log in recovery mode, it won't be valid */
3339 	btrfs_set_super_log_root(disk_super, 0);
3340 
3341 	/* we can't trust the free space cache either */
3342 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3343 
3344 	ret = next_root_backup(fs_info, fs_info->super_copy,
3345 			       &num_backups_tried, &backup_index);
3346 	if (ret == -1)
3347 		goto fail_block_groups;
3348 	goto retry_root_backup;
3349 }
3350 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3351 
3352 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3353 {
3354 	if (uptodate) {
3355 		set_buffer_uptodate(bh);
3356 	} else {
3357 		struct btrfs_device *device = (struct btrfs_device *)
3358 			bh->b_private;
3359 
3360 		btrfs_warn_rl_in_rcu(device->fs_info,
3361 				"lost page write due to IO error on %s",
3362 					  rcu_str_deref(device->name));
3363 		/* note, we don't set_buffer_write_io_error because we have
3364 		 * our own ways of dealing with the IO errors
3365 		 */
3366 		clear_buffer_uptodate(bh);
3367 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3368 	}
3369 	unlock_buffer(bh);
3370 	put_bh(bh);
3371 }
3372 
3373 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3374 			struct buffer_head **bh_ret)
3375 {
3376 	struct buffer_head *bh;
3377 	struct btrfs_super_block *super;
3378 	u64 bytenr;
3379 
3380 	bytenr = btrfs_sb_offset(copy_num);
3381 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3382 		return -EINVAL;
3383 
3384 	bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3385 	/*
3386 	 * If we fail to read from the underlying devices, as of now
3387 	 * the best option we have is to mark it EIO.
3388 	 */
3389 	if (!bh)
3390 		return -EIO;
3391 
3392 	super = (struct btrfs_super_block *)bh->b_data;
3393 	if (btrfs_super_bytenr(super) != bytenr ||
3394 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3395 		brelse(bh);
3396 		return -EINVAL;
3397 	}
3398 
3399 	*bh_ret = bh;
3400 	return 0;
3401 }
3402 
3403 
3404 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3405 {
3406 	struct buffer_head *bh;
3407 	struct buffer_head *latest = NULL;
3408 	struct btrfs_super_block *super;
3409 	int i;
3410 	u64 transid = 0;
3411 	int ret = -EINVAL;
3412 
3413 	/* we would like to check all the supers, but that would make
3414 	 * a btrfs mount succeed after a mkfs from a different FS.
3415 	 * So, we need to add a special mount option to scan for
3416 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3417 	 */
3418 	for (i = 0; i < 1; i++) {
3419 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3420 		if (ret)
3421 			continue;
3422 
3423 		super = (struct btrfs_super_block *)bh->b_data;
3424 
3425 		if (!latest || btrfs_super_generation(super) > transid) {
3426 			brelse(latest);
3427 			latest = bh;
3428 			transid = btrfs_super_generation(super);
3429 		} else {
3430 			brelse(bh);
3431 		}
3432 	}
3433 
3434 	if (!latest)
3435 		return ERR_PTR(ret);
3436 
3437 	return latest;
3438 }
3439 
3440 /*
3441  * Write superblock @sb to the @device. Do not wait for completion, all the
3442  * buffer heads we write are pinned.
3443  *
3444  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3445  * the expected device size at commit time. Note that max_mirrors must be
3446  * same for write and wait phases.
3447  *
3448  * Return number of errors when buffer head is not found or submission fails.
3449  */
3450 static int write_dev_supers(struct btrfs_device *device,
3451 			    struct btrfs_super_block *sb, int max_mirrors)
3452 {
3453 	struct buffer_head *bh;
3454 	int i;
3455 	int ret;
3456 	int errors = 0;
3457 	u32 crc;
3458 	u64 bytenr;
3459 	int op_flags;
3460 
3461 	if (max_mirrors == 0)
3462 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3463 
3464 	for (i = 0; i < max_mirrors; i++) {
3465 		bytenr = btrfs_sb_offset(i);
3466 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3467 		    device->commit_total_bytes)
3468 			break;
3469 
3470 		btrfs_set_super_bytenr(sb, bytenr);
3471 
3472 		crc = ~(u32)0;
3473 		crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3474 				      BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3475 		btrfs_csum_final(crc, sb->csum);
3476 
3477 		/* One reference for us, and we leave it for the caller */
3478 		bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3479 			      BTRFS_SUPER_INFO_SIZE);
3480 		if (!bh) {
3481 			btrfs_err(device->fs_info,
3482 			    "couldn't get super buffer head for bytenr %llu",
3483 			    bytenr);
3484 			errors++;
3485 			continue;
3486 		}
3487 
3488 		memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3489 
3490 		/* one reference for submit_bh */
3491 		get_bh(bh);
3492 
3493 		set_buffer_uptodate(bh);
3494 		lock_buffer(bh);
3495 		bh->b_end_io = btrfs_end_buffer_write_sync;
3496 		bh->b_private = device;
3497 
3498 		/*
3499 		 * we fua the first super.  The others we allow
3500 		 * to go down lazy.
3501 		 */
3502 		op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3503 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3504 			op_flags |= REQ_FUA;
3505 		ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3506 		if (ret)
3507 			errors++;
3508 	}
3509 	return errors < i ? 0 : -1;
3510 }
3511 
3512 /*
3513  * Wait for write completion of superblocks done by write_dev_supers,
3514  * @max_mirrors same for write and wait phases.
3515  *
3516  * Return number of errors when buffer head is not found or not marked up to
3517  * date.
3518  */
3519 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3520 {
3521 	struct buffer_head *bh;
3522 	int i;
3523 	int errors = 0;
3524 	bool primary_failed = false;
3525 	u64 bytenr;
3526 
3527 	if (max_mirrors == 0)
3528 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3529 
3530 	for (i = 0; i < max_mirrors; i++) {
3531 		bytenr = btrfs_sb_offset(i);
3532 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3533 		    device->commit_total_bytes)
3534 			break;
3535 
3536 		bh = __find_get_block(device->bdev,
3537 				      bytenr / BTRFS_BDEV_BLOCKSIZE,
3538 				      BTRFS_SUPER_INFO_SIZE);
3539 		if (!bh) {
3540 			errors++;
3541 			if (i == 0)
3542 				primary_failed = true;
3543 			continue;
3544 		}
3545 		wait_on_buffer(bh);
3546 		if (!buffer_uptodate(bh)) {
3547 			errors++;
3548 			if (i == 0)
3549 				primary_failed = true;
3550 		}
3551 
3552 		/* drop our reference */
3553 		brelse(bh);
3554 
3555 		/* drop the reference from the writing run */
3556 		brelse(bh);
3557 	}
3558 
3559 	/* log error, force error return */
3560 	if (primary_failed) {
3561 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3562 			  device->devid);
3563 		return -1;
3564 	}
3565 
3566 	return errors < i ? 0 : -1;
3567 }
3568 
3569 /*
3570  * endio for the write_dev_flush, this will wake anyone waiting
3571  * for the barrier when it is done
3572  */
3573 static void btrfs_end_empty_barrier(struct bio *bio)
3574 {
3575 	complete(bio->bi_private);
3576 }
3577 
3578 /*
3579  * Submit a flush request to the device if it supports it. Error handling is
3580  * done in the waiting counterpart.
3581  */
3582 static void write_dev_flush(struct btrfs_device *device)
3583 {
3584 	struct request_queue *q = bdev_get_queue(device->bdev);
3585 	struct bio *bio = device->flush_bio;
3586 
3587 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3588 		return;
3589 
3590 	bio_reset(bio);
3591 	bio->bi_end_io = btrfs_end_empty_barrier;
3592 	bio_set_dev(bio, device->bdev);
3593 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3594 	init_completion(&device->flush_wait);
3595 	bio->bi_private = &device->flush_wait;
3596 
3597 	btrfsic_submit_bio(bio);
3598 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3599 }
3600 
3601 /*
3602  * If the flush bio has been submitted by write_dev_flush, wait for it.
3603  */
3604 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3605 {
3606 	struct bio *bio = device->flush_bio;
3607 
3608 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3609 		return BLK_STS_OK;
3610 
3611 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3612 	wait_for_completion_io(&device->flush_wait);
3613 
3614 	return bio->bi_status;
3615 }
3616 
3617 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3618 {
3619 	if (!btrfs_check_rw_degradable(fs_info, NULL))
3620 		return -EIO;
3621 	return 0;
3622 }
3623 
3624 /*
3625  * send an empty flush down to each device in parallel,
3626  * then wait for them
3627  */
3628 static int barrier_all_devices(struct btrfs_fs_info *info)
3629 {
3630 	struct list_head *head;
3631 	struct btrfs_device *dev;
3632 	int errors_wait = 0;
3633 	blk_status_t ret;
3634 
3635 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3636 	/* send down all the barriers */
3637 	head = &info->fs_devices->devices;
3638 	list_for_each_entry(dev, head, dev_list) {
3639 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3640 			continue;
3641 		if (!dev->bdev)
3642 			continue;
3643 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3644 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3645 			continue;
3646 
3647 		write_dev_flush(dev);
3648 		dev->last_flush_error = BLK_STS_OK;
3649 	}
3650 
3651 	/* wait for all the barriers */
3652 	list_for_each_entry(dev, head, dev_list) {
3653 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3654 			continue;
3655 		if (!dev->bdev) {
3656 			errors_wait++;
3657 			continue;
3658 		}
3659 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3660 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3661 			continue;
3662 
3663 		ret = wait_dev_flush(dev);
3664 		if (ret) {
3665 			dev->last_flush_error = ret;
3666 			btrfs_dev_stat_inc_and_print(dev,
3667 					BTRFS_DEV_STAT_FLUSH_ERRS);
3668 			errors_wait++;
3669 		}
3670 	}
3671 
3672 	if (errors_wait) {
3673 		/*
3674 		 * At some point we need the status of all disks
3675 		 * to arrive at the volume status. So error checking
3676 		 * is being pushed to a separate loop.
3677 		 */
3678 		return check_barrier_error(info);
3679 	}
3680 	return 0;
3681 }
3682 
3683 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3684 {
3685 	int raid_type;
3686 	int min_tolerated = INT_MAX;
3687 
3688 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3689 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3690 		min_tolerated = min(min_tolerated,
3691 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3692 				    tolerated_failures);
3693 
3694 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3695 		if (raid_type == BTRFS_RAID_SINGLE)
3696 			continue;
3697 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3698 			continue;
3699 		min_tolerated = min(min_tolerated,
3700 				    btrfs_raid_array[raid_type].
3701 				    tolerated_failures);
3702 	}
3703 
3704 	if (min_tolerated == INT_MAX) {
3705 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3706 		min_tolerated = 0;
3707 	}
3708 
3709 	return min_tolerated;
3710 }
3711 
3712 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3713 {
3714 	struct list_head *head;
3715 	struct btrfs_device *dev;
3716 	struct btrfs_super_block *sb;
3717 	struct btrfs_dev_item *dev_item;
3718 	int ret;
3719 	int do_barriers;
3720 	int max_errors;
3721 	int total_errors = 0;
3722 	u64 flags;
3723 
3724 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3725 
3726 	/*
3727 	 * max_mirrors == 0 indicates we're from commit_transaction,
3728 	 * not from fsync where the tree roots in fs_info have not
3729 	 * been consistent on disk.
3730 	 */
3731 	if (max_mirrors == 0)
3732 		backup_super_roots(fs_info);
3733 
3734 	sb = fs_info->super_for_commit;
3735 	dev_item = &sb->dev_item;
3736 
3737 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3738 	head = &fs_info->fs_devices->devices;
3739 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3740 
3741 	if (do_barriers) {
3742 		ret = barrier_all_devices(fs_info);
3743 		if (ret) {
3744 			mutex_unlock(
3745 				&fs_info->fs_devices->device_list_mutex);
3746 			btrfs_handle_fs_error(fs_info, ret,
3747 					      "errors while submitting device barriers.");
3748 			return ret;
3749 		}
3750 	}
3751 
3752 	list_for_each_entry(dev, head, dev_list) {
3753 		if (!dev->bdev) {
3754 			total_errors++;
3755 			continue;
3756 		}
3757 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3758 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3759 			continue;
3760 
3761 		btrfs_set_stack_device_generation(dev_item, 0);
3762 		btrfs_set_stack_device_type(dev_item, dev->type);
3763 		btrfs_set_stack_device_id(dev_item, dev->devid);
3764 		btrfs_set_stack_device_total_bytes(dev_item,
3765 						   dev->commit_total_bytes);
3766 		btrfs_set_stack_device_bytes_used(dev_item,
3767 						  dev->commit_bytes_used);
3768 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3769 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3770 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3771 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3772 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3773 		       BTRFS_FSID_SIZE);
3774 
3775 		flags = btrfs_super_flags(sb);
3776 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3777 
3778 		ret = btrfs_validate_write_super(fs_info, sb);
3779 		if (ret < 0) {
3780 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3781 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
3782 				"unexpected superblock corruption detected");
3783 			return -EUCLEAN;
3784 		}
3785 
3786 		ret = write_dev_supers(dev, sb, max_mirrors);
3787 		if (ret)
3788 			total_errors++;
3789 	}
3790 	if (total_errors > max_errors) {
3791 		btrfs_err(fs_info, "%d errors while writing supers",
3792 			  total_errors);
3793 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3794 
3795 		/* FUA is masked off if unsupported and can't be the reason */
3796 		btrfs_handle_fs_error(fs_info, -EIO,
3797 				      "%d errors while writing supers",
3798 				      total_errors);
3799 		return -EIO;
3800 	}
3801 
3802 	total_errors = 0;
3803 	list_for_each_entry(dev, head, dev_list) {
3804 		if (!dev->bdev)
3805 			continue;
3806 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3807 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3808 			continue;
3809 
3810 		ret = wait_dev_supers(dev, max_mirrors);
3811 		if (ret)
3812 			total_errors++;
3813 	}
3814 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3815 	if (total_errors > max_errors) {
3816 		btrfs_handle_fs_error(fs_info, -EIO,
3817 				      "%d errors while writing supers",
3818 				      total_errors);
3819 		return -EIO;
3820 	}
3821 	return 0;
3822 }
3823 
3824 /* Drop a fs root from the radix tree and free it. */
3825 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3826 				  struct btrfs_root *root)
3827 {
3828 	spin_lock(&fs_info->fs_roots_radix_lock);
3829 	radix_tree_delete(&fs_info->fs_roots_radix,
3830 			  (unsigned long)root->root_key.objectid);
3831 	spin_unlock(&fs_info->fs_roots_radix_lock);
3832 
3833 	if (btrfs_root_refs(&root->root_item) == 0)
3834 		synchronize_srcu(&fs_info->subvol_srcu);
3835 
3836 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3837 		btrfs_free_log(NULL, root);
3838 		if (root->reloc_root) {
3839 			free_extent_buffer(root->reloc_root->node);
3840 			free_extent_buffer(root->reloc_root->commit_root);
3841 			btrfs_put_fs_root(root->reloc_root);
3842 			root->reloc_root = NULL;
3843 		}
3844 	}
3845 
3846 	if (root->free_ino_pinned)
3847 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3848 	if (root->free_ino_ctl)
3849 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3850 	btrfs_free_fs_root(root);
3851 }
3852 
3853 void btrfs_free_fs_root(struct btrfs_root *root)
3854 {
3855 	iput(root->ino_cache_inode);
3856 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3857 	if (root->anon_dev)
3858 		free_anon_bdev(root->anon_dev);
3859 	if (root->subv_writers)
3860 		btrfs_free_subvolume_writers(root->subv_writers);
3861 	free_extent_buffer(root->node);
3862 	free_extent_buffer(root->commit_root);
3863 	kfree(root->free_ino_ctl);
3864 	kfree(root->free_ino_pinned);
3865 	btrfs_put_fs_root(root);
3866 }
3867 
3868 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3869 {
3870 	u64 root_objectid = 0;
3871 	struct btrfs_root *gang[8];
3872 	int i = 0;
3873 	int err = 0;
3874 	unsigned int ret = 0;
3875 	int index;
3876 
3877 	while (1) {
3878 		index = srcu_read_lock(&fs_info->subvol_srcu);
3879 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3880 					     (void **)gang, root_objectid,
3881 					     ARRAY_SIZE(gang));
3882 		if (!ret) {
3883 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3884 			break;
3885 		}
3886 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3887 
3888 		for (i = 0; i < ret; i++) {
3889 			/* Avoid to grab roots in dead_roots */
3890 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3891 				gang[i] = NULL;
3892 				continue;
3893 			}
3894 			/* grab all the search result for later use */
3895 			gang[i] = btrfs_grab_fs_root(gang[i]);
3896 		}
3897 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3898 
3899 		for (i = 0; i < ret; i++) {
3900 			if (!gang[i])
3901 				continue;
3902 			root_objectid = gang[i]->root_key.objectid;
3903 			err = btrfs_orphan_cleanup(gang[i]);
3904 			if (err)
3905 				break;
3906 			btrfs_put_fs_root(gang[i]);
3907 		}
3908 		root_objectid++;
3909 	}
3910 
3911 	/* release the uncleaned roots due to error */
3912 	for (; i < ret; i++) {
3913 		if (gang[i])
3914 			btrfs_put_fs_root(gang[i]);
3915 	}
3916 	return err;
3917 }
3918 
3919 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3920 {
3921 	struct btrfs_root *root = fs_info->tree_root;
3922 	struct btrfs_trans_handle *trans;
3923 
3924 	mutex_lock(&fs_info->cleaner_mutex);
3925 	btrfs_run_delayed_iputs(fs_info);
3926 	mutex_unlock(&fs_info->cleaner_mutex);
3927 	wake_up_process(fs_info->cleaner_kthread);
3928 
3929 	/* wait until ongoing cleanup work done */
3930 	down_write(&fs_info->cleanup_work_sem);
3931 	up_write(&fs_info->cleanup_work_sem);
3932 
3933 	trans = btrfs_join_transaction(root);
3934 	if (IS_ERR(trans))
3935 		return PTR_ERR(trans);
3936 	return btrfs_commit_transaction(trans);
3937 }
3938 
3939 void close_ctree(struct btrfs_fs_info *fs_info)
3940 {
3941 	int ret;
3942 
3943 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3944 	/*
3945 	 * We don't want the cleaner to start new transactions, add more delayed
3946 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3947 	 * because that frees the task_struct, and the transaction kthread might
3948 	 * still try to wake up the cleaner.
3949 	 */
3950 	kthread_park(fs_info->cleaner_kthread);
3951 
3952 	/* wait for the qgroup rescan worker to stop */
3953 	btrfs_qgroup_wait_for_completion(fs_info, false);
3954 
3955 	/* wait for the uuid_scan task to finish */
3956 	down(&fs_info->uuid_tree_rescan_sem);
3957 	/* avoid complains from lockdep et al., set sem back to initial state */
3958 	up(&fs_info->uuid_tree_rescan_sem);
3959 
3960 	/* pause restriper - we want to resume on mount */
3961 	btrfs_pause_balance(fs_info);
3962 
3963 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3964 
3965 	btrfs_scrub_cancel(fs_info);
3966 
3967 	/* wait for any defraggers to finish */
3968 	wait_event(fs_info->transaction_wait,
3969 		   (atomic_read(&fs_info->defrag_running) == 0));
3970 
3971 	/* clear out the rbtree of defraggable inodes */
3972 	btrfs_cleanup_defrag_inodes(fs_info);
3973 
3974 	cancel_work_sync(&fs_info->async_reclaim_work);
3975 
3976 	if (!sb_rdonly(fs_info->sb)) {
3977 		/*
3978 		 * The cleaner kthread is stopped, so do one final pass over
3979 		 * unused block groups.
3980 		 */
3981 		btrfs_delete_unused_bgs(fs_info);
3982 
3983 		ret = btrfs_commit_super(fs_info);
3984 		if (ret)
3985 			btrfs_err(fs_info, "commit super ret %d", ret);
3986 	}
3987 
3988 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3989 	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3990 		btrfs_error_commit_super(fs_info);
3991 
3992 	kthread_stop(fs_info->transaction_kthread);
3993 	kthread_stop(fs_info->cleaner_kthread);
3994 
3995 	ASSERT(list_empty(&fs_info->delayed_iputs));
3996 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3997 
3998 	btrfs_free_qgroup_config(fs_info);
3999 	ASSERT(list_empty(&fs_info->delalloc_roots));
4000 
4001 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4002 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4003 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4004 	}
4005 
4006 	btrfs_sysfs_remove_mounted(fs_info);
4007 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4008 
4009 	btrfs_free_fs_roots(fs_info);
4010 
4011 	btrfs_put_block_group_cache(fs_info);
4012 
4013 	/*
4014 	 * we must make sure there is not any read request to
4015 	 * submit after we stopping all workers.
4016 	 */
4017 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4018 	btrfs_stop_all_workers(fs_info);
4019 
4020 	btrfs_free_block_groups(fs_info);
4021 
4022 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4023 	free_root_pointers(fs_info, 1);
4024 
4025 	iput(fs_info->btree_inode);
4026 
4027 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4028 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4029 		btrfsic_unmount(fs_info->fs_devices);
4030 #endif
4031 
4032 	btrfs_close_devices(fs_info->fs_devices);
4033 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4034 
4035 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4036 	percpu_counter_destroy(&fs_info->delalloc_bytes);
4037 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4038 	cleanup_srcu_struct(&fs_info->subvol_srcu);
4039 
4040 	btrfs_free_stripe_hash_table(fs_info);
4041 	btrfs_free_ref_cache(fs_info);
4042 
4043 	while (!list_empty(&fs_info->pinned_chunks)) {
4044 		struct extent_map *em;
4045 
4046 		em = list_first_entry(&fs_info->pinned_chunks,
4047 				      struct extent_map, list);
4048 		list_del_init(&em->list);
4049 		free_extent_map(em);
4050 	}
4051 }
4052 
4053 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4054 			  int atomic)
4055 {
4056 	int ret;
4057 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4058 
4059 	ret = extent_buffer_uptodate(buf);
4060 	if (!ret)
4061 		return ret;
4062 
4063 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4064 				    parent_transid, atomic);
4065 	if (ret == -EAGAIN)
4066 		return ret;
4067 	return !ret;
4068 }
4069 
4070 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4071 {
4072 	struct btrfs_fs_info *fs_info;
4073 	struct btrfs_root *root;
4074 	u64 transid = btrfs_header_generation(buf);
4075 	int was_dirty;
4076 
4077 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4078 	/*
4079 	 * This is a fast path so only do this check if we have sanity tests
4080 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4081 	 * outside of the sanity tests.
4082 	 */
4083 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4084 		return;
4085 #endif
4086 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4087 	fs_info = root->fs_info;
4088 	btrfs_assert_tree_locked(buf);
4089 	if (transid != fs_info->generation)
4090 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4091 			buf->start, transid, fs_info->generation);
4092 	was_dirty = set_extent_buffer_dirty(buf);
4093 	if (!was_dirty)
4094 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4095 					 buf->len,
4096 					 fs_info->dirty_metadata_batch);
4097 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4098 	/*
4099 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4100 	 * but item data not updated.
4101 	 * So here we should only check item pointers, not item data.
4102 	 */
4103 	if (btrfs_header_level(buf) == 0 &&
4104 	    btrfs_check_leaf_relaxed(fs_info, buf)) {
4105 		btrfs_print_leaf(buf);
4106 		ASSERT(0);
4107 	}
4108 #endif
4109 }
4110 
4111 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4112 					int flush_delayed)
4113 {
4114 	/*
4115 	 * looks as though older kernels can get into trouble with
4116 	 * this code, they end up stuck in balance_dirty_pages forever
4117 	 */
4118 	int ret;
4119 
4120 	if (current->flags & PF_MEMALLOC)
4121 		return;
4122 
4123 	if (flush_delayed)
4124 		btrfs_balance_delayed_items(fs_info);
4125 
4126 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4127 				     BTRFS_DIRTY_METADATA_THRESH,
4128 				     fs_info->dirty_metadata_batch);
4129 	if (ret > 0) {
4130 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4131 	}
4132 }
4133 
4134 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4135 {
4136 	__btrfs_btree_balance_dirty(fs_info, 1);
4137 }
4138 
4139 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4140 {
4141 	__btrfs_btree_balance_dirty(fs_info, 0);
4142 }
4143 
4144 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4145 		      struct btrfs_key *first_key)
4146 {
4147 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4148 	struct btrfs_fs_info *fs_info = root->fs_info;
4149 
4150 	return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4151 					      level, first_key);
4152 }
4153 
4154 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4155 {
4156 	/* cleanup FS via transaction */
4157 	btrfs_cleanup_transaction(fs_info);
4158 
4159 	mutex_lock(&fs_info->cleaner_mutex);
4160 	btrfs_run_delayed_iputs(fs_info);
4161 	mutex_unlock(&fs_info->cleaner_mutex);
4162 
4163 	down_write(&fs_info->cleanup_work_sem);
4164 	up_write(&fs_info->cleanup_work_sem);
4165 }
4166 
4167 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4168 {
4169 	struct btrfs_ordered_extent *ordered;
4170 
4171 	spin_lock(&root->ordered_extent_lock);
4172 	/*
4173 	 * This will just short circuit the ordered completion stuff which will
4174 	 * make sure the ordered extent gets properly cleaned up.
4175 	 */
4176 	list_for_each_entry(ordered, &root->ordered_extents,
4177 			    root_extent_list)
4178 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4179 	spin_unlock(&root->ordered_extent_lock);
4180 }
4181 
4182 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4183 {
4184 	struct btrfs_root *root;
4185 	struct list_head splice;
4186 
4187 	INIT_LIST_HEAD(&splice);
4188 
4189 	spin_lock(&fs_info->ordered_root_lock);
4190 	list_splice_init(&fs_info->ordered_roots, &splice);
4191 	while (!list_empty(&splice)) {
4192 		root = list_first_entry(&splice, struct btrfs_root,
4193 					ordered_root);
4194 		list_move_tail(&root->ordered_root,
4195 			       &fs_info->ordered_roots);
4196 
4197 		spin_unlock(&fs_info->ordered_root_lock);
4198 		btrfs_destroy_ordered_extents(root);
4199 
4200 		cond_resched();
4201 		spin_lock(&fs_info->ordered_root_lock);
4202 	}
4203 	spin_unlock(&fs_info->ordered_root_lock);
4204 }
4205 
4206 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4207 				      struct btrfs_fs_info *fs_info)
4208 {
4209 	struct rb_node *node;
4210 	struct btrfs_delayed_ref_root *delayed_refs;
4211 	struct btrfs_delayed_ref_node *ref;
4212 	int ret = 0;
4213 
4214 	delayed_refs = &trans->delayed_refs;
4215 
4216 	spin_lock(&delayed_refs->lock);
4217 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4218 		spin_unlock(&delayed_refs->lock);
4219 		btrfs_info(fs_info, "delayed_refs has NO entry");
4220 		return ret;
4221 	}
4222 
4223 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4224 		struct btrfs_delayed_ref_head *head;
4225 		struct rb_node *n;
4226 		bool pin_bytes = false;
4227 
4228 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4229 				href_node);
4230 		if (!mutex_trylock(&head->mutex)) {
4231 			refcount_inc(&head->refs);
4232 			spin_unlock(&delayed_refs->lock);
4233 
4234 			mutex_lock(&head->mutex);
4235 			mutex_unlock(&head->mutex);
4236 			btrfs_put_delayed_ref_head(head);
4237 			spin_lock(&delayed_refs->lock);
4238 			continue;
4239 		}
4240 		spin_lock(&head->lock);
4241 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4242 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4243 				       ref_node);
4244 			ref->in_tree = 0;
4245 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4246 			RB_CLEAR_NODE(&ref->ref_node);
4247 			if (!list_empty(&ref->add_list))
4248 				list_del(&ref->add_list);
4249 			atomic_dec(&delayed_refs->num_entries);
4250 			btrfs_put_delayed_ref(ref);
4251 		}
4252 		if (head->must_insert_reserved)
4253 			pin_bytes = true;
4254 		btrfs_free_delayed_extent_op(head->extent_op);
4255 		delayed_refs->num_heads--;
4256 		if (head->processing == 0)
4257 			delayed_refs->num_heads_ready--;
4258 		atomic_dec(&delayed_refs->num_entries);
4259 		rb_erase_cached(&head->href_node, &delayed_refs->href_root);
4260 		RB_CLEAR_NODE(&head->href_node);
4261 		spin_unlock(&head->lock);
4262 		spin_unlock(&delayed_refs->lock);
4263 		mutex_unlock(&head->mutex);
4264 
4265 		if (pin_bytes)
4266 			btrfs_pin_extent(fs_info, head->bytenr,
4267 					 head->num_bytes, 1);
4268 		btrfs_put_delayed_ref_head(head);
4269 		cond_resched();
4270 		spin_lock(&delayed_refs->lock);
4271 	}
4272 
4273 	spin_unlock(&delayed_refs->lock);
4274 
4275 	return ret;
4276 }
4277 
4278 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4279 {
4280 	struct btrfs_inode *btrfs_inode;
4281 	struct list_head splice;
4282 
4283 	INIT_LIST_HEAD(&splice);
4284 
4285 	spin_lock(&root->delalloc_lock);
4286 	list_splice_init(&root->delalloc_inodes, &splice);
4287 
4288 	while (!list_empty(&splice)) {
4289 		struct inode *inode = NULL;
4290 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4291 					       delalloc_inodes);
4292 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4293 		spin_unlock(&root->delalloc_lock);
4294 
4295 		/*
4296 		 * Make sure we get a live inode and that it'll not disappear
4297 		 * meanwhile.
4298 		 */
4299 		inode = igrab(&btrfs_inode->vfs_inode);
4300 		if (inode) {
4301 			invalidate_inode_pages2(inode->i_mapping);
4302 			iput(inode);
4303 		}
4304 		spin_lock(&root->delalloc_lock);
4305 	}
4306 	spin_unlock(&root->delalloc_lock);
4307 }
4308 
4309 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4310 {
4311 	struct btrfs_root *root;
4312 	struct list_head splice;
4313 
4314 	INIT_LIST_HEAD(&splice);
4315 
4316 	spin_lock(&fs_info->delalloc_root_lock);
4317 	list_splice_init(&fs_info->delalloc_roots, &splice);
4318 	while (!list_empty(&splice)) {
4319 		root = list_first_entry(&splice, struct btrfs_root,
4320 					 delalloc_root);
4321 		root = btrfs_grab_fs_root(root);
4322 		BUG_ON(!root);
4323 		spin_unlock(&fs_info->delalloc_root_lock);
4324 
4325 		btrfs_destroy_delalloc_inodes(root);
4326 		btrfs_put_fs_root(root);
4327 
4328 		spin_lock(&fs_info->delalloc_root_lock);
4329 	}
4330 	spin_unlock(&fs_info->delalloc_root_lock);
4331 }
4332 
4333 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4334 					struct extent_io_tree *dirty_pages,
4335 					int mark)
4336 {
4337 	int ret;
4338 	struct extent_buffer *eb;
4339 	u64 start = 0;
4340 	u64 end;
4341 
4342 	while (1) {
4343 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4344 					    mark, NULL);
4345 		if (ret)
4346 			break;
4347 
4348 		clear_extent_bits(dirty_pages, start, end, mark);
4349 		while (start <= end) {
4350 			eb = find_extent_buffer(fs_info, start);
4351 			start += fs_info->nodesize;
4352 			if (!eb)
4353 				continue;
4354 			wait_on_extent_buffer_writeback(eb);
4355 
4356 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4357 					       &eb->bflags))
4358 				clear_extent_buffer_dirty(eb);
4359 			free_extent_buffer_stale(eb);
4360 		}
4361 	}
4362 
4363 	return ret;
4364 }
4365 
4366 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4367 				       struct extent_io_tree *pinned_extents)
4368 {
4369 	struct extent_io_tree *unpin;
4370 	u64 start;
4371 	u64 end;
4372 	int ret;
4373 	bool loop = true;
4374 
4375 	unpin = pinned_extents;
4376 again:
4377 	while (1) {
4378 		struct extent_state *cached_state = NULL;
4379 
4380 		/*
4381 		 * The btrfs_finish_extent_commit() may get the same range as
4382 		 * ours between find_first_extent_bit and clear_extent_dirty.
4383 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4384 		 * the same extent range.
4385 		 */
4386 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4387 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4388 					    EXTENT_DIRTY, &cached_state);
4389 		if (ret) {
4390 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4391 			break;
4392 		}
4393 
4394 		clear_extent_dirty(unpin, start, end, &cached_state);
4395 		free_extent_state(cached_state);
4396 		btrfs_error_unpin_extent_range(fs_info, start, end);
4397 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4398 		cond_resched();
4399 	}
4400 
4401 	if (loop) {
4402 		if (unpin == &fs_info->freed_extents[0])
4403 			unpin = &fs_info->freed_extents[1];
4404 		else
4405 			unpin = &fs_info->freed_extents[0];
4406 		loop = false;
4407 		goto again;
4408 	}
4409 
4410 	return 0;
4411 }
4412 
4413 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4414 {
4415 	struct inode *inode;
4416 
4417 	inode = cache->io_ctl.inode;
4418 	if (inode) {
4419 		invalidate_inode_pages2(inode->i_mapping);
4420 		BTRFS_I(inode)->generation = 0;
4421 		cache->io_ctl.inode = NULL;
4422 		iput(inode);
4423 	}
4424 	btrfs_put_block_group(cache);
4425 }
4426 
4427 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4428 			     struct btrfs_fs_info *fs_info)
4429 {
4430 	struct btrfs_block_group_cache *cache;
4431 
4432 	spin_lock(&cur_trans->dirty_bgs_lock);
4433 	while (!list_empty(&cur_trans->dirty_bgs)) {
4434 		cache = list_first_entry(&cur_trans->dirty_bgs,
4435 					 struct btrfs_block_group_cache,
4436 					 dirty_list);
4437 
4438 		if (!list_empty(&cache->io_list)) {
4439 			spin_unlock(&cur_trans->dirty_bgs_lock);
4440 			list_del_init(&cache->io_list);
4441 			btrfs_cleanup_bg_io(cache);
4442 			spin_lock(&cur_trans->dirty_bgs_lock);
4443 		}
4444 
4445 		list_del_init(&cache->dirty_list);
4446 		spin_lock(&cache->lock);
4447 		cache->disk_cache_state = BTRFS_DC_ERROR;
4448 		spin_unlock(&cache->lock);
4449 
4450 		spin_unlock(&cur_trans->dirty_bgs_lock);
4451 		btrfs_put_block_group(cache);
4452 		btrfs_delayed_refs_rsv_release(fs_info, 1);
4453 		spin_lock(&cur_trans->dirty_bgs_lock);
4454 	}
4455 	spin_unlock(&cur_trans->dirty_bgs_lock);
4456 
4457 	/*
4458 	 * Refer to the definition of io_bgs member for details why it's safe
4459 	 * to use it without any locking
4460 	 */
4461 	while (!list_empty(&cur_trans->io_bgs)) {
4462 		cache = list_first_entry(&cur_trans->io_bgs,
4463 					 struct btrfs_block_group_cache,
4464 					 io_list);
4465 
4466 		list_del_init(&cache->io_list);
4467 		spin_lock(&cache->lock);
4468 		cache->disk_cache_state = BTRFS_DC_ERROR;
4469 		spin_unlock(&cache->lock);
4470 		btrfs_cleanup_bg_io(cache);
4471 	}
4472 }
4473 
4474 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4475 				   struct btrfs_fs_info *fs_info)
4476 {
4477 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4478 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4479 	ASSERT(list_empty(&cur_trans->io_bgs));
4480 
4481 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4482 
4483 	cur_trans->state = TRANS_STATE_COMMIT_START;
4484 	wake_up(&fs_info->transaction_blocked_wait);
4485 
4486 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4487 	wake_up(&fs_info->transaction_wait);
4488 
4489 	btrfs_destroy_delayed_inodes(fs_info);
4490 	btrfs_assert_delayed_root_empty(fs_info);
4491 
4492 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4493 				     EXTENT_DIRTY);
4494 	btrfs_destroy_pinned_extent(fs_info,
4495 				    fs_info->pinned_extents);
4496 
4497 	cur_trans->state =TRANS_STATE_COMPLETED;
4498 	wake_up(&cur_trans->commit_wait);
4499 }
4500 
4501 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4502 {
4503 	struct btrfs_transaction *t;
4504 
4505 	mutex_lock(&fs_info->transaction_kthread_mutex);
4506 
4507 	spin_lock(&fs_info->trans_lock);
4508 	while (!list_empty(&fs_info->trans_list)) {
4509 		t = list_first_entry(&fs_info->trans_list,
4510 				     struct btrfs_transaction, list);
4511 		if (t->state >= TRANS_STATE_COMMIT_START) {
4512 			refcount_inc(&t->use_count);
4513 			spin_unlock(&fs_info->trans_lock);
4514 			btrfs_wait_for_commit(fs_info, t->transid);
4515 			btrfs_put_transaction(t);
4516 			spin_lock(&fs_info->trans_lock);
4517 			continue;
4518 		}
4519 		if (t == fs_info->running_transaction) {
4520 			t->state = TRANS_STATE_COMMIT_DOING;
4521 			spin_unlock(&fs_info->trans_lock);
4522 			/*
4523 			 * We wait for 0 num_writers since we don't hold a trans
4524 			 * handle open currently for this transaction.
4525 			 */
4526 			wait_event(t->writer_wait,
4527 				   atomic_read(&t->num_writers) == 0);
4528 		} else {
4529 			spin_unlock(&fs_info->trans_lock);
4530 		}
4531 		btrfs_cleanup_one_transaction(t, fs_info);
4532 
4533 		spin_lock(&fs_info->trans_lock);
4534 		if (t == fs_info->running_transaction)
4535 			fs_info->running_transaction = NULL;
4536 		list_del_init(&t->list);
4537 		spin_unlock(&fs_info->trans_lock);
4538 
4539 		btrfs_put_transaction(t);
4540 		trace_btrfs_transaction_commit(fs_info->tree_root);
4541 		spin_lock(&fs_info->trans_lock);
4542 	}
4543 	spin_unlock(&fs_info->trans_lock);
4544 	btrfs_destroy_all_ordered_extents(fs_info);
4545 	btrfs_destroy_delayed_inodes(fs_info);
4546 	btrfs_assert_delayed_root_empty(fs_info);
4547 	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4548 	btrfs_destroy_all_delalloc_inodes(fs_info);
4549 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4550 
4551 	return 0;
4552 }
4553 
4554 static const struct extent_io_ops btree_extent_io_ops = {
4555 	/* mandatory callbacks */
4556 	.submit_bio_hook = btree_submit_bio_hook,
4557 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4558 };
4559