xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 861e10be)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 
50 #ifdef CONFIG_X86
51 #include <asm/cpufeature.h>
52 #endif
53 
54 static struct extent_io_ops btree_extent_io_ops;
55 static void end_workqueue_fn(struct btrfs_work *work);
56 static void free_fs_root(struct btrfs_root *root);
57 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
58 				    int read_only);
59 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
60 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
61 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
62 				      struct btrfs_root *root);
63 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
64 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
65 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
66 					struct extent_io_tree *dirty_pages,
67 					int mark);
68 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
69 				       struct extent_io_tree *pinned_extents);
70 
71 /*
72  * end_io_wq structs are used to do processing in task context when an IO is
73  * complete.  This is used during reads to verify checksums, and it is used
74  * by writes to insert metadata for new file extents after IO is complete.
75  */
76 struct end_io_wq {
77 	struct bio *bio;
78 	bio_end_io_t *end_io;
79 	void *private;
80 	struct btrfs_fs_info *info;
81 	int error;
82 	int metadata;
83 	struct list_head list;
84 	struct btrfs_work work;
85 };
86 
87 /*
88  * async submit bios are used to offload expensive checksumming
89  * onto the worker threads.  They checksum file and metadata bios
90  * just before they are sent down the IO stack.
91  */
92 struct async_submit_bio {
93 	struct inode *inode;
94 	struct bio *bio;
95 	struct list_head list;
96 	extent_submit_bio_hook_t *submit_bio_start;
97 	extent_submit_bio_hook_t *submit_bio_done;
98 	int rw;
99 	int mirror_num;
100 	unsigned long bio_flags;
101 	/*
102 	 * bio_offset is optional, can be used if the pages in the bio
103 	 * can't tell us where in the file the bio should go
104 	 */
105 	u64 bio_offset;
106 	struct btrfs_work work;
107 	int error;
108 };
109 
110 /*
111  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
112  * eb, the lockdep key is determined by the btrfs_root it belongs to and
113  * the level the eb occupies in the tree.
114  *
115  * Different roots are used for different purposes and may nest inside each
116  * other and they require separate keysets.  As lockdep keys should be
117  * static, assign keysets according to the purpose of the root as indicated
118  * by btrfs_root->objectid.  This ensures that all special purpose roots
119  * have separate keysets.
120  *
121  * Lock-nesting across peer nodes is always done with the immediate parent
122  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
123  * subclass to avoid triggering lockdep warning in such cases.
124  *
125  * The key is set by the readpage_end_io_hook after the buffer has passed
126  * csum validation but before the pages are unlocked.  It is also set by
127  * btrfs_init_new_buffer on freshly allocated blocks.
128  *
129  * We also add a check to make sure the highest level of the tree is the
130  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
131  * needs update as well.
132  */
133 #ifdef CONFIG_DEBUG_LOCK_ALLOC
134 # if BTRFS_MAX_LEVEL != 8
135 #  error
136 # endif
137 
138 static struct btrfs_lockdep_keyset {
139 	u64			id;		/* root objectid */
140 	const char		*name_stem;	/* lock name stem */
141 	char			names[BTRFS_MAX_LEVEL + 1][20];
142 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
143 } btrfs_lockdep_keysets[] = {
144 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
145 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
146 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
147 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
148 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
149 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
150 	{ .id = BTRFS_ORPHAN_OBJECTID,		.name_stem = "orphan"	},
151 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
152 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
153 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
154 	{ .id = 0,				.name_stem = "tree"	},
155 };
156 
157 void __init btrfs_init_lockdep(void)
158 {
159 	int i, j;
160 
161 	/* initialize lockdep class names */
162 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
163 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
164 
165 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
166 			snprintf(ks->names[j], sizeof(ks->names[j]),
167 				 "btrfs-%s-%02d", ks->name_stem, j);
168 	}
169 }
170 
171 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
172 				    int level)
173 {
174 	struct btrfs_lockdep_keyset *ks;
175 
176 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
177 
178 	/* find the matching keyset, id 0 is the default entry */
179 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
180 		if (ks->id == objectid)
181 			break;
182 
183 	lockdep_set_class_and_name(&eb->lock,
184 				   &ks->keys[level], ks->names[level]);
185 }
186 
187 #endif
188 
189 /*
190  * extents on the btree inode are pretty simple, there's one extent
191  * that covers the entire device
192  */
193 static struct extent_map *btree_get_extent(struct inode *inode,
194 		struct page *page, size_t pg_offset, u64 start, u64 len,
195 		int create)
196 {
197 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
198 	struct extent_map *em;
199 	int ret;
200 
201 	read_lock(&em_tree->lock);
202 	em = lookup_extent_mapping(em_tree, start, len);
203 	if (em) {
204 		em->bdev =
205 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
206 		read_unlock(&em_tree->lock);
207 		goto out;
208 	}
209 	read_unlock(&em_tree->lock);
210 
211 	em = alloc_extent_map();
212 	if (!em) {
213 		em = ERR_PTR(-ENOMEM);
214 		goto out;
215 	}
216 	em->start = 0;
217 	em->len = (u64)-1;
218 	em->block_len = (u64)-1;
219 	em->block_start = 0;
220 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
221 
222 	write_lock(&em_tree->lock);
223 	ret = add_extent_mapping(em_tree, em);
224 	if (ret == -EEXIST) {
225 		free_extent_map(em);
226 		em = lookup_extent_mapping(em_tree, start, len);
227 		if (!em)
228 			em = ERR_PTR(-EIO);
229 	} else if (ret) {
230 		free_extent_map(em);
231 		em = ERR_PTR(ret);
232 	}
233 	write_unlock(&em_tree->lock);
234 
235 out:
236 	return em;
237 }
238 
239 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
240 {
241 	return crc32c(seed, data, len);
242 }
243 
244 void btrfs_csum_final(u32 crc, char *result)
245 {
246 	put_unaligned_le32(~crc, result);
247 }
248 
249 /*
250  * compute the csum for a btree block, and either verify it or write it
251  * into the csum field of the block.
252  */
253 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
254 			   int verify)
255 {
256 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
257 	char *result = NULL;
258 	unsigned long len;
259 	unsigned long cur_len;
260 	unsigned long offset = BTRFS_CSUM_SIZE;
261 	char *kaddr;
262 	unsigned long map_start;
263 	unsigned long map_len;
264 	int err;
265 	u32 crc = ~(u32)0;
266 	unsigned long inline_result;
267 
268 	len = buf->len - offset;
269 	while (len > 0) {
270 		err = map_private_extent_buffer(buf, offset, 32,
271 					&kaddr, &map_start, &map_len);
272 		if (err)
273 			return 1;
274 		cur_len = min(len, map_len - (offset - map_start));
275 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
276 				      crc, cur_len);
277 		len -= cur_len;
278 		offset += cur_len;
279 	}
280 	if (csum_size > sizeof(inline_result)) {
281 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
282 		if (!result)
283 			return 1;
284 	} else {
285 		result = (char *)&inline_result;
286 	}
287 
288 	btrfs_csum_final(crc, result);
289 
290 	if (verify) {
291 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
292 			u32 val;
293 			u32 found = 0;
294 			memcpy(&found, result, csum_size);
295 
296 			read_extent_buffer(buf, &val, 0, csum_size);
297 			printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
298 				       "failed on %llu wanted %X found %X "
299 				       "level %d\n",
300 				       root->fs_info->sb->s_id,
301 				       (unsigned long long)buf->start, val, found,
302 				       btrfs_header_level(buf));
303 			if (result != (char *)&inline_result)
304 				kfree(result);
305 			return 1;
306 		}
307 	} else {
308 		write_extent_buffer(buf, result, 0, csum_size);
309 	}
310 	if (result != (char *)&inline_result)
311 		kfree(result);
312 	return 0;
313 }
314 
315 /*
316  * we can't consider a given block up to date unless the transid of the
317  * block matches the transid in the parent node's pointer.  This is how we
318  * detect blocks that either didn't get written at all or got written
319  * in the wrong place.
320  */
321 static int verify_parent_transid(struct extent_io_tree *io_tree,
322 				 struct extent_buffer *eb, u64 parent_transid,
323 				 int atomic)
324 {
325 	struct extent_state *cached_state = NULL;
326 	int ret;
327 
328 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
329 		return 0;
330 
331 	if (atomic)
332 		return -EAGAIN;
333 
334 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335 			 0, &cached_state);
336 	if (extent_buffer_uptodate(eb) &&
337 	    btrfs_header_generation(eb) == parent_transid) {
338 		ret = 0;
339 		goto out;
340 	}
341 	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
342 		       "found %llu\n",
343 		       (unsigned long long)eb->start,
344 		       (unsigned long long)parent_transid,
345 		       (unsigned long long)btrfs_header_generation(eb));
346 	ret = 1;
347 	clear_extent_buffer_uptodate(eb);
348 out:
349 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350 			     &cached_state, GFP_NOFS);
351 	return ret;
352 }
353 
354 /*
355  * helper to read a given tree block, doing retries as required when
356  * the checksums don't match and we have alternate mirrors to try.
357  */
358 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359 					  struct extent_buffer *eb,
360 					  u64 start, u64 parent_transid)
361 {
362 	struct extent_io_tree *io_tree;
363 	int failed = 0;
364 	int ret;
365 	int num_copies = 0;
366 	int mirror_num = 0;
367 	int failed_mirror = 0;
368 
369 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
370 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
371 	while (1) {
372 		ret = read_extent_buffer_pages(io_tree, eb, start,
373 					       WAIT_COMPLETE,
374 					       btree_get_extent, mirror_num);
375 		if (!ret) {
376 			if (!verify_parent_transid(io_tree, eb,
377 						   parent_transid, 0))
378 				break;
379 			else
380 				ret = -EIO;
381 		}
382 
383 		/*
384 		 * This buffer's crc is fine, but its contents are corrupted, so
385 		 * there is no reason to read the other copies, they won't be
386 		 * any less wrong.
387 		 */
388 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
389 			break;
390 
391 		num_copies = btrfs_num_copies(root->fs_info,
392 					      eb->start, eb->len);
393 		if (num_copies == 1)
394 			break;
395 
396 		if (!failed_mirror) {
397 			failed = 1;
398 			failed_mirror = eb->read_mirror;
399 		}
400 
401 		mirror_num++;
402 		if (mirror_num == failed_mirror)
403 			mirror_num++;
404 
405 		if (mirror_num > num_copies)
406 			break;
407 	}
408 
409 	if (failed && !ret && failed_mirror)
410 		repair_eb_io_failure(root, eb, failed_mirror);
411 
412 	return ret;
413 }
414 
415 /*
416  * checksum a dirty tree block before IO.  This has extra checks to make sure
417  * we only fill in the checksum field in the first page of a multi-page block
418  */
419 
420 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
421 {
422 	struct extent_io_tree *tree;
423 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
424 	u64 found_start;
425 	struct extent_buffer *eb;
426 
427 	tree = &BTRFS_I(page->mapping->host)->io_tree;
428 
429 	eb = (struct extent_buffer *)page->private;
430 	if (page != eb->pages[0])
431 		return 0;
432 	found_start = btrfs_header_bytenr(eb);
433 	if (found_start != start) {
434 		WARN_ON(1);
435 		return 0;
436 	}
437 	if (!PageUptodate(page)) {
438 		WARN_ON(1);
439 		return 0;
440 	}
441 	csum_tree_block(root, eb, 0);
442 	return 0;
443 }
444 
445 static int check_tree_block_fsid(struct btrfs_root *root,
446 				 struct extent_buffer *eb)
447 {
448 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
449 	u8 fsid[BTRFS_UUID_SIZE];
450 	int ret = 1;
451 
452 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
453 			   BTRFS_FSID_SIZE);
454 	while (fs_devices) {
455 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
456 			ret = 0;
457 			break;
458 		}
459 		fs_devices = fs_devices->seed;
460 	}
461 	return ret;
462 }
463 
464 #define CORRUPT(reason, eb, root, slot)				\
465 	printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu,"	\
466 	       "root=%llu, slot=%d\n", reason,			\
467 	       (unsigned long long)btrfs_header_bytenr(eb),	\
468 	       (unsigned long long)root->objectid, slot)
469 
470 static noinline int check_leaf(struct btrfs_root *root,
471 			       struct extent_buffer *leaf)
472 {
473 	struct btrfs_key key;
474 	struct btrfs_key leaf_key;
475 	u32 nritems = btrfs_header_nritems(leaf);
476 	int slot;
477 
478 	if (nritems == 0)
479 		return 0;
480 
481 	/* Check the 0 item */
482 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
483 	    BTRFS_LEAF_DATA_SIZE(root)) {
484 		CORRUPT("invalid item offset size pair", leaf, root, 0);
485 		return -EIO;
486 	}
487 
488 	/*
489 	 * Check to make sure each items keys are in the correct order and their
490 	 * offsets make sense.  We only have to loop through nritems-1 because
491 	 * we check the current slot against the next slot, which verifies the
492 	 * next slot's offset+size makes sense and that the current's slot
493 	 * offset is correct.
494 	 */
495 	for (slot = 0; slot < nritems - 1; slot++) {
496 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
497 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
498 
499 		/* Make sure the keys are in the right order */
500 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
501 			CORRUPT("bad key order", leaf, root, slot);
502 			return -EIO;
503 		}
504 
505 		/*
506 		 * Make sure the offset and ends are right, remember that the
507 		 * item data starts at the end of the leaf and grows towards the
508 		 * front.
509 		 */
510 		if (btrfs_item_offset_nr(leaf, slot) !=
511 			btrfs_item_end_nr(leaf, slot + 1)) {
512 			CORRUPT("slot offset bad", leaf, root, slot);
513 			return -EIO;
514 		}
515 
516 		/*
517 		 * Check to make sure that we don't point outside of the leaf,
518 		 * just incase all the items are consistent to eachother, but
519 		 * all point outside of the leaf.
520 		 */
521 		if (btrfs_item_end_nr(leaf, slot) >
522 		    BTRFS_LEAF_DATA_SIZE(root)) {
523 			CORRUPT("slot end outside of leaf", leaf, root, slot);
524 			return -EIO;
525 		}
526 	}
527 
528 	return 0;
529 }
530 
531 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
532 				       struct page *page, int max_walk)
533 {
534 	struct extent_buffer *eb;
535 	u64 start = page_offset(page);
536 	u64 target = start;
537 	u64 min_start;
538 
539 	if (start < max_walk)
540 		min_start = 0;
541 	else
542 		min_start = start - max_walk;
543 
544 	while (start >= min_start) {
545 		eb = find_extent_buffer(tree, start, 0);
546 		if (eb) {
547 			/*
548 			 * we found an extent buffer and it contains our page
549 			 * horray!
550 			 */
551 			if (eb->start <= target &&
552 			    eb->start + eb->len > target)
553 				return eb;
554 
555 			/* we found an extent buffer that wasn't for us */
556 			free_extent_buffer(eb);
557 			return NULL;
558 		}
559 		if (start == 0)
560 			break;
561 		start -= PAGE_CACHE_SIZE;
562 	}
563 	return NULL;
564 }
565 
566 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
567 			       struct extent_state *state, int mirror)
568 {
569 	struct extent_io_tree *tree;
570 	u64 found_start;
571 	int found_level;
572 	struct extent_buffer *eb;
573 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
574 	int ret = 0;
575 	int reads_done;
576 
577 	if (!page->private)
578 		goto out;
579 
580 	tree = &BTRFS_I(page->mapping->host)->io_tree;
581 	eb = (struct extent_buffer *)page->private;
582 
583 	/* the pending IO might have been the only thing that kept this buffer
584 	 * in memory.  Make sure we have a ref for all this other checks
585 	 */
586 	extent_buffer_get(eb);
587 
588 	reads_done = atomic_dec_and_test(&eb->io_pages);
589 	if (!reads_done)
590 		goto err;
591 
592 	eb->read_mirror = mirror;
593 	if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
594 		ret = -EIO;
595 		goto err;
596 	}
597 
598 	found_start = btrfs_header_bytenr(eb);
599 	if (found_start != eb->start) {
600 		printk_ratelimited(KERN_INFO "btrfs bad tree block start "
601 			       "%llu %llu\n",
602 			       (unsigned long long)found_start,
603 			       (unsigned long long)eb->start);
604 		ret = -EIO;
605 		goto err;
606 	}
607 	if (check_tree_block_fsid(root, eb)) {
608 		printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
609 			       (unsigned long long)eb->start);
610 		ret = -EIO;
611 		goto err;
612 	}
613 	found_level = btrfs_header_level(eb);
614 
615 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
616 				       eb, found_level);
617 
618 	ret = csum_tree_block(root, eb, 1);
619 	if (ret) {
620 		ret = -EIO;
621 		goto err;
622 	}
623 
624 	/*
625 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
626 	 * that we don't try and read the other copies of this block, just
627 	 * return -EIO.
628 	 */
629 	if (found_level == 0 && check_leaf(root, eb)) {
630 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
631 		ret = -EIO;
632 	}
633 
634 	if (!ret)
635 		set_extent_buffer_uptodate(eb);
636 err:
637 	if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
638 		clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
639 		btree_readahead_hook(root, eb, eb->start, ret);
640 	}
641 
642 	if (ret)
643 		clear_extent_buffer_uptodate(eb);
644 	free_extent_buffer(eb);
645 out:
646 	return ret;
647 }
648 
649 static int btree_io_failed_hook(struct page *page, int failed_mirror)
650 {
651 	struct extent_buffer *eb;
652 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
653 
654 	eb = (struct extent_buffer *)page->private;
655 	set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
656 	eb->read_mirror = failed_mirror;
657 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
658 		btree_readahead_hook(root, eb, eb->start, -EIO);
659 	return -EIO;	/* we fixed nothing */
660 }
661 
662 static void end_workqueue_bio(struct bio *bio, int err)
663 {
664 	struct end_io_wq *end_io_wq = bio->bi_private;
665 	struct btrfs_fs_info *fs_info;
666 
667 	fs_info = end_io_wq->info;
668 	end_io_wq->error = err;
669 	end_io_wq->work.func = end_workqueue_fn;
670 	end_io_wq->work.flags = 0;
671 
672 	if (bio->bi_rw & REQ_WRITE) {
673 		if (end_io_wq->metadata == 1)
674 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
675 					   &end_io_wq->work);
676 		else if (end_io_wq->metadata == 2)
677 			btrfs_queue_worker(&fs_info->endio_freespace_worker,
678 					   &end_io_wq->work);
679 		else
680 			btrfs_queue_worker(&fs_info->endio_write_workers,
681 					   &end_io_wq->work);
682 	} else {
683 		if (end_io_wq->metadata)
684 			btrfs_queue_worker(&fs_info->endio_meta_workers,
685 					   &end_io_wq->work);
686 		else
687 			btrfs_queue_worker(&fs_info->endio_workers,
688 					   &end_io_wq->work);
689 	}
690 }
691 
692 /*
693  * For the metadata arg you want
694  *
695  * 0 - if data
696  * 1 - if normal metadta
697  * 2 - if writing to the free space cache area
698  */
699 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
700 			int metadata)
701 {
702 	struct end_io_wq *end_io_wq;
703 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
704 	if (!end_io_wq)
705 		return -ENOMEM;
706 
707 	end_io_wq->private = bio->bi_private;
708 	end_io_wq->end_io = bio->bi_end_io;
709 	end_io_wq->info = info;
710 	end_io_wq->error = 0;
711 	end_io_wq->bio = bio;
712 	end_io_wq->metadata = metadata;
713 
714 	bio->bi_private = end_io_wq;
715 	bio->bi_end_io = end_workqueue_bio;
716 	return 0;
717 }
718 
719 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
720 {
721 	unsigned long limit = min_t(unsigned long,
722 				    info->workers.max_workers,
723 				    info->fs_devices->open_devices);
724 	return 256 * limit;
725 }
726 
727 static void run_one_async_start(struct btrfs_work *work)
728 {
729 	struct async_submit_bio *async;
730 	int ret;
731 
732 	async = container_of(work, struct  async_submit_bio, work);
733 	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
734 				      async->mirror_num, async->bio_flags,
735 				      async->bio_offset);
736 	if (ret)
737 		async->error = ret;
738 }
739 
740 static void run_one_async_done(struct btrfs_work *work)
741 {
742 	struct btrfs_fs_info *fs_info;
743 	struct async_submit_bio *async;
744 	int limit;
745 
746 	async = container_of(work, struct  async_submit_bio, work);
747 	fs_info = BTRFS_I(async->inode)->root->fs_info;
748 
749 	limit = btrfs_async_submit_limit(fs_info);
750 	limit = limit * 2 / 3;
751 
752 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
753 	    waitqueue_active(&fs_info->async_submit_wait))
754 		wake_up(&fs_info->async_submit_wait);
755 
756 	/* If an error occured we just want to clean up the bio and move on */
757 	if (async->error) {
758 		bio_endio(async->bio, async->error);
759 		return;
760 	}
761 
762 	async->submit_bio_done(async->inode, async->rw, async->bio,
763 			       async->mirror_num, async->bio_flags,
764 			       async->bio_offset);
765 }
766 
767 static void run_one_async_free(struct btrfs_work *work)
768 {
769 	struct async_submit_bio *async;
770 
771 	async = container_of(work, struct  async_submit_bio, work);
772 	kfree(async);
773 }
774 
775 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
776 			int rw, struct bio *bio, int mirror_num,
777 			unsigned long bio_flags,
778 			u64 bio_offset,
779 			extent_submit_bio_hook_t *submit_bio_start,
780 			extent_submit_bio_hook_t *submit_bio_done)
781 {
782 	struct async_submit_bio *async;
783 
784 	async = kmalloc(sizeof(*async), GFP_NOFS);
785 	if (!async)
786 		return -ENOMEM;
787 
788 	async->inode = inode;
789 	async->rw = rw;
790 	async->bio = bio;
791 	async->mirror_num = mirror_num;
792 	async->submit_bio_start = submit_bio_start;
793 	async->submit_bio_done = submit_bio_done;
794 
795 	async->work.func = run_one_async_start;
796 	async->work.ordered_func = run_one_async_done;
797 	async->work.ordered_free = run_one_async_free;
798 
799 	async->work.flags = 0;
800 	async->bio_flags = bio_flags;
801 	async->bio_offset = bio_offset;
802 
803 	async->error = 0;
804 
805 	atomic_inc(&fs_info->nr_async_submits);
806 
807 	if (rw & REQ_SYNC)
808 		btrfs_set_work_high_prio(&async->work);
809 
810 	btrfs_queue_worker(&fs_info->workers, &async->work);
811 
812 	while (atomic_read(&fs_info->async_submit_draining) &&
813 	      atomic_read(&fs_info->nr_async_submits)) {
814 		wait_event(fs_info->async_submit_wait,
815 			   (atomic_read(&fs_info->nr_async_submits) == 0));
816 	}
817 
818 	return 0;
819 }
820 
821 static int btree_csum_one_bio(struct bio *bio)
822 {
823 	struct bio_vec *bvec = bio->bi_io_vec;
824 	int bio_index = 0;
825 	struct btrfs_root *root;
826 	int ret = 0;
827 
828 	WARN_ON(bio->bi_vcnt <= 0);
829 	while (bio_index < bio->bi_vcnt) {
830 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
831 		ret = csum_dirty_buffer(root, bvec->bv_page);
832 		if (ret)
833 			break;
834 		bio_index++;
835 		bvec++;
836 	}
837 	return ret;
838 }
839 
840 static int __btree_submit_bio_start(struct inode *inode, int rw,
841 				    struct bio *bio, int mirror_num,
842 				    unsigned long bio_flags,
843 				    u64 bio_offset)
844 {
845 	/*
846 	 * when we're called for a write, we're already in the async
847 	 * submission context.  Just jump into btrfs_map_bio
848 	 */
849 	return btree_csum_one_bio(bio);
850 }
851 
852 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
853 				 int mirror_num, unsigned long bio_flags,
854 				 u64 bio_offset)
855 {
856 	int ret;
857 
858 	/*
859 	 * when we're called for a write, we're already in the async
860 	 * submission context.  Just jump into btrfs_map_bio
861 	 */
862 	ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
863 	if (ret)
864 		bio_endio(bio, ret);
865 	return ret;
866 }
867 
868 static int check_async_write(struct inode *inode, unsigned long bio_flags)
869 {
870 	if (bio_flags & EXTENT_BIO_TREE_LOG)
871 		return 0;
872 #ifdef CONFIG_X86
873 	if (cpu_has_xmm4_2)
874 		return 0;
875 #endif
876 	return 1;
877 }
878 
879 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
880 				 int mirror_num, unsigned long bio_flags,
881 				 u64 bio_offset)
882 {
883 	int async = check_async_write(inode, bio_flags);
884 	int ret;
885 
886 	if (!(rw & REQ_WRITE)) {
887 		/*
888 		 * called for a read, do the setup so that checksum validation
889 		 * can happen in the async kernel threads
890 		 */
891 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
892 					  bio, 1);
893 		if (ret)
894 			goto out_w_error;
895 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
896 				    mirror_num, 0);
897 	} else if (!async) {
898 		ret = btree_csum_one_bio(bio);
899 		if (ret)
900 			goto out_w_error;
901 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
902 				    mirror_num, 0);
903 	} else {
904 		/*
905 		 * kthread helpers are used to submit writes so that
906 		 * checksumming can happen in parallel across all CPUs
907 		 */
908 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
909 					  inode, rw, bio, mirror_num, 0,
910 					  bio_offset,
911 					  __btree_submit_bio_start,
912 					  __btree_submit_bio_done);
913 	}
914 
915 	if (ret) {
916 out_w_error:
917 		bio_endio(bio, ret);
918 	}
919 	return ret;
920 }
921 
922 #ifdef CONFIG_MIGRATION
923 static int btree_migratepage(struct address_space *mapping,
924 			struct page *newpage, struct page *page,
925 			enum migrate_mode mode)
926 {
927 	/*
928 	 * we can't safely write a btree page from here,
929 	 * we haven't done the locking hook
930 	 */
931 	if (PageDirty(page))
932 		return -EAGAIN;
933 	/*
934 	 * Buffers may be managed in a filesystem specific way.
935 	 * We must have no buffers or drop them.
936 	 */
937 	if (page_has_private(page) &&
938 	    !try_to_release_page(page, GFP_KERNEL))
939 		return -EAGAIN;
940 	return migrate_page(mapping, newpage, page, mode);
941 }
942 #endif
943 
944 
945 static int btree_writepages(struct address_space *mapping,
946 			    struct writeback_control *wbc)
947 {
948 	struct extent_io_tree *tree;
949 	tree = &BTRFS_I(mapping->host)->io_tree;
950 	if (wbc->sync_mode == WB_SYNC_NONE) {
951 		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
952 		u64 num_dirty;
953 		unsigned long thresh = 32 * 1024 * 1024;
954 
955 		if (wbc->for_kupdate)
956 			return 0;
957 
958 		/* this is a bit racy, but that's ok */
959 		num_dirty = root->fs_info->dirty_metadata_bytes;
960 		if (num_dirty < thresh)
961 			return 0;
962 	}
963 	return btree_write_cache_pages(mapping, wbc);
964 }
965 
966 static int btree_readpage(struct file *file, struct page *page)
967 {
968 	struct extent_io_tree *tree;
969 	tree = &BTRFS_I(page->mapping->host)->io_tree;
970 	return extent_read_full_page(tree, page, btree_get_extent, 0);
971 }
972 
973 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
974 {
975 	if (PageWriteback(page) || PageDirty(page))
976 		return 0;
977 	/*
978 	 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
979 	 * slab allocation from alloc_extent_state down the callchain where
980 	 * it'd hit a BUG_ON as those flags are not allowed.
981 	 */
982 	gfp_flags &= ~GFP_SLAB_BUG_MASK;
983 
984 	return try_release_extent_buffer(page, gfp_flags);
985 }
986 
987 static void btree_invalidatepage(struct page *page, unsigned long offset)
988 {
989 	struct extent_io_tree *tree;
990 	tree = &BTRFS_I(page->mapping->host)->io_tree;
991 	extent_invalidatepage(tree, page, offset);
992 	btree_releasepage(page, GFP_NOFS);
993 	if (PagePrivate(page)) {
994 		printk(KERN_WARNING "btrfs warning page private not zero "
995 		       "on page %llu\n", (unsigned long long)page_offset(page));
996 		ClearPagePrivate(page);
997 		set_page_private(page, 0);
998 		page_cache_release(page);
999 	}
1000 }
1001 
1002 static int btree_set_page_dirty(struct page *page)
1003 {
1004 #ifdef DEBUG
1005 	struct extent_buffer *eb;
1006 
1007 	BUG_ON(!PagePrivate(page));
1008 	eb = (struct extent_buffer *)page->private;
1009 	BUG_ON(!eb);
1010 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1011 	BUG_ON(!atomic_read(&eb->refs));
1012 	btrfs_assert_tree_locked(eb);
1013 #endif
1014 	return __set_page_dirty_nobuffers(page);
1015 }
1016 
1017 static const struct address_space_operations btree_aops = {
1018 	.readpage	= btree_readpage,
1019 	.writepages	= btree_writepages,
1020 	.releasepage	= btree_releasepage,
1021 	.invalidatepage = btree_invalidatepage,
1022 #ifdef CONFIG_MIGRATION
1023 	.migratepage	= btree_migratepage,
1024 #endif
1025 	.set_page_dirty = btree_set_page_dirty,
1026 };
1027 
1028 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1029 			 u64 parent_transid)
1030 {
1031 	struct extent_buffer *buf = NULL;
1032 	struct inode *btree_inode = root->fs_info->btree_inode;
1033 	int ret = 0;
1034 
1035 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1036 	if (!buf)
1037 		return 0;
1038 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1039 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1040 	free_extent_buffer(buf);
1041 	return ret;
1042 }
1043 
1044 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1045 			 int mirror_num, struct extent_buffer **eb)
1046 {
1047 	struct extent_buffer *buf = NULL;
1048 	struct inode *btree_inode = root->fs_info->btree_inode;
1049 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1050 	int ret;
1051 
1052 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1053 	if (!buf)
1054 		return 0;
1055 
1056 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1057 
1058 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1059 				       btree_get_extent, mirror_num);
1060 	if (ret) {
1061 		free_extent_buffer(buf);
1062 		return ret;
1063 	}
1064 
1065 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1066 		free_extent_buffer(buf);
1067 		return -EIO;
1068 	} else if (extent_buffer_uptodate(buf)) {
1069 		*eb = buf;
1070 	} else {
1071 		free_extent_buffer(buf);
1072 	}
1073 	return 0;
1074 }
1075 
1076 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1077 					    u64 bytenr, u32 blocksize)
1078 {
1079 	struct inode *btree_inode = root->fs_info->btree_inode;
1080 	struct extent_buffer *eb;
1081 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1082 				bytenr, blocksize);
1083 	return eb;
1084 }
1085 
1086 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1087 						 u64 bytenr, u32 blocksize)
1088 {
1089 	struct inode *btree_inode = root->fs_info->btree_inode;
1090 	struct extent_buffer *eb;
1091 
1092 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1093 				 bytenr, blocksize);
1094 	return eb;
1095 }
1096 
1097 
1098 int btrfs_write_tree_block(struct extent_buffer *buf)
1099 {
1100 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1101 					buf->start + buf->len - 1);
1102 }
1103 
1104 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1105 {
1106 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1107 				       buf->start, buf->start + buf->len - 1);
1108 }
1109 
1110 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1111 				      u32 blocksize, u64 parent_transid)
1112 {
1113 	struct extent_buffer *buf = NULL;
1114 	int ret;
1115 
1116 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1117 	if (!buf)
1118 		return NULL;
1119 
1120 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1121 	return buf;
1122 
1123 }
1124 
1125 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1126 		      struct extent_buffer *buf)
1127 {
1128 	if (btrfs_header_generation(buf) ==
1129 	    root->fs_info->running_transaction->transid) {
1130 		btrfs_assert_tree_locked(buf);
1131 
1132 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1133 			spin_lock(&root->fs_info->delalloc_lock);
1134 			if (root->fs_info->dirty_metadata_bytes >= buf->len)
1135 				root->fs_info->dirty_metadata_bytes -= buf->len;
1136 			else {
1137 				spin_unlock(&root->fs_info->delalloc_lock);
1138 				btrfs_panic(root->fs_info, -EOVERFLOW,
1139 					  "Can't clear %lu bytes from "
1140 					  " dirty_mdatadata_bytes (%llu)",
1141 					  buf->len,
1142 					  root->fs_info->dirty_metadata_bytes);
1143 			}
1144 			spin_unlock(&root->fs_info->delalloc_lock);
1145 
1146 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1147 			btrfs_set_lock_blocking(buf);
1148 			clear_extent_buffer_dirty(buf);
1149 		}
1150 	}
1151 }
1152 
1153 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1154 			 u32 stripesize, struct btrfs_root *root,
1155 			 struct btrfs_fs_info *fs_info,
1156 			 u64 objectid)
1157 {
1158 	root->node = NULL;
1159 	root->commit_root = NULL;
1160 	root->sectorsize = sectorsize;
1161 	root->nodesize = nodesize;
1162 	root->leafsize = leafsize;
1163 	root->stripesize = stripesize;
1164 	root->ref_cows = 0;
1165 	root->track_dirty = 0;
1166 	root->in_radix = 0;
1167 	root->orphan_item_inserted = 0;
1168 	root->orphan_cleanup_state = 0;
1169 
1170 	root->objectid = objectid;
1171 	root->last_trans = 0;
1172 	root->highest_objectid = 0;
1173 	root->name = NULL;
1174 	root->inode_tree = RB_ROOT;
1175 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1176 	root->block_rsv = NULL;
1177 	root->orphan_block_rsv = NULL;
1178 
1179 	INIT_LIST_HEAD(&root->dirty_list);
1180 	INIT_LIST_HEAD(&root->root_list);
1181 	spin_lock_init(&root->orphan_lock);
1182 	spin_lock_init(&root->inode_lock);
1183 	spin_lock_init(&root->accounting_lock);
1184 	mutex_init(&root->objectid_mutex);
1185 	mutex_init(&root->log_mutex);
1186 	init_waitqueue_head(&root->log_writer_wait);
1187 	init_waitqueue_head(&root->log_commit_wait[0]);
1188 	init_waitqueue_head(&root->log_commit_wait[1]);
1189 	atomic_set(&root->log_commit[0], 0);
1190 	atomic_set(&root->log_commit[1], 0);
1191 	atomic_set(&root->log_writers, 0);
1192 	atomic_set(&root->log_batch, 0);
1193 	atomic_set(&root->orphan_inodes, 0);
1194 	root->log_transid = 0;
1195 	root->last_log_commit = 0;
1196 	extent_io_tree_init(&root->dirty_log_pages,
1197 			     fs_info->btree_inode->i_mapping);
1198 
1199 	memset(&root->root_key, 0, sizeof(root->root_key));
1200 	memset(&root->root_item, 0, sizeof(root->root_item));
1201 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1202 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1203 	root->defrag_trans_start = fs_info->generation;
1204 	init_completion(&root->kobj_unregister);
1205 	root->defrag_running = 0;
1206 	root->root_key.objectid = objectid;
1207 	root->anon_dev = 0;
1208 
1209 	spin_lock_init(&root->root_item_lock);
1210 }
1211 
1212 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1213 					    struct btrfs_fs_info *fs_info,
1214 					    u64 objectid,
1215 					    struct btrfs_root *root)
1216 {
1217 	int ret;
1218 	u32 blocksize;
1219 	u64 generation;
1220 
1221 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1222 		     tree_root->sectorsize, tree_root->stripesize,
1223 		     root, fs_info, objectid);
1224 	ret = btrfs_find_last_root(tree_root, objectid,
1225 				   &root->root_item, &root->root_key);
1226 	if (ret > 0)
1227 		return -ENOENT;
1228 	else if (ret < 0)
1229 		return ret;
1230 
1231 	generation = btrfs_root_generation(&root->root_item);
1232 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1233 	root->commit_root = NULL;
1234 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1235 				     blocksize, generation);
1236 	if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1237 		free_extent_buffer(root->node);
1238 		root->node = NULL;
1239 		return -EIO;
1240 	}
1241 	root->commit_root = btrfs_root_node(root);
1242 	return 0;
1243 }
1244 
1245 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1246 {
1247 	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1248 	if (root)
1249 		root->fs_info = fs_info;
1250 	return root;
1251 }
1252 
1253 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1254 				     struct btrfs_fs_info *fs_info,
1255 				     u64 objectid)
1256 {
1257 	struct extent_buffer *leaf;
1258 	struct btrfs_root *tree_root = fs_info->tree_root;
1259 	struct btrfs_root *root;
1260 	struct btrfs_key key;
1261 	int ret = 0;
1262 	u64 bytenr;
1263 
1264 	root = btrfs_alloc_root(fs_info);
1265 	if (!root)
1266 		return ERR_PTR(-ENOMEM);
1267 
1268 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1269 		     tree_root->sectorsize, tree_root->stripesize,
1270 		     root, fs_info, objectid);
1271 	root->root_key.objectid = objectid;
1272 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1273 	root->root_key.offset = 0;
1274 
1275 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1276 				      0, objectid, NULL, 0, 0, 0);
1277 	if (IS_ERR(leaf)) {
1278 		ret = PTR_ERR(leaf);
1279 		goto fail;
1280 	}
1281 
1282 	bytenr = leaf->start;
1283 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1284 	btrfs_set_header_bytenr(leaf, leaf->start);
1285 	btrfs_set_header_generation(leaf, trans->transid);
1286 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1287 	btrfs_set_header_owner(leaf, objectid);
1288 	root->node = leaf;
1289 
1290 	write_extent_buffer(leaf, fs_info->fsid,
1291 			    (unsigned long)btrfs_header_fsid(leaf),
1292 			    BTRFS_FSID_SIZE);
1293 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1294 			    (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1295 			    BTRFS_UUID_SIZE);
1296 	btrfs_mark_buffer_dirty(leaf);
1297 
1298 	root->commit_root = btrfs_root_node(root);
1299 	root->track_dirty = 1;
1300 
1301 
1302 	root->root_item.flags = 0;
1303 	root->root_item.byte_limit = 0;
1304 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1305 	btrfs_set_root_generation(&root->root_item, trans->transid);
1306 	btrfs_set_root_level(&root->root_item, 0);
1307 	btrfs_set_root_refs(&root->root_item, 1);
1308 	btrfs_set_root_used(&root->root_item, leaf->len);
1309 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1310 	btrfs_set_root_dirid(&root->root_item, 0);
1311 	root->root_item.drop_level = 0;
1312 
1313 	key.objectid = objectid;
1314 	key.type = BTRFS_ROOT_ITEM_KEY;
1315 	key.offset = 0;
1316 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1317 	if (ret)
1318 		goto fail;
1319 
1320 	btrfs_tree_unlock(leaf);
1321 
1322 fail:
1323 	if (ret)
1324 		return ERR_PTR(ret);
1325 
1326 	return root;
1327 }
1328 
1329 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1330 					 struct btrfs_fs_info *fs_info)
1331 {
1332 	struct btrfs_root *root;
1333 	struct btrfs_root *tree_root = fs_info->tree_root;
1334 	struct extent_buffer *leaf;
1335 
1336 	root = btrfs_alloc_root(fs_info);
1337 	if (!root)
1338 		return ERR_PTR(-ENOMEM);
1339 
1340 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1341 		     tree_root->sectorsize, tree_root->stripesize,
1342 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1343 
1344 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1345 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1346 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1347 	/*
1348 	 * log trees do not get reference counted because they go away
1349 	 * before a real commit is actually done.  They do store pointers
1350 	 * to file data extents, and those reference counts still get
1351 	 * updated (along with back refs to the log tree).
1352 	 */
1353 	root->ref_cows = 0;
1354 
1355 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1356 				      BTRFS_TREE_LOG_OBJECTID, NULL,
1357 				      0, 0, 0);
1358 	if (IS_ERR(leaf)) {
1359 		kfree(root);
1360 		return ERR_CAST(leaf);
1361 	}
1362 
1363 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1364 	btrfs_set_header_bytenr(leaf, leaf->start);
1365 	btrfs_set_header_generation(leaf, trans->transid);
1366 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1367 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1368 	root->node = leaf;
1369 
1370 	write_extent_buffer(root->node, root->fs_info->fsid,
1371 			    (unsigned long)btrfs_header_fsid(root->node),
1372 			    BTRFS_FSID_SIZE);
1373 	btrfs_mark_buffer_dirty(root->node);
1374 	btrfs_tree_unlock(root->node);
1375 	return root;
1376 }
1377 
1378 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1379 			     struct btrfs_fs_info *fs_info)
1380 {
1381 	struct btrfs_root *log_root;
1382 
1383 	log_root = alloc_log_tree(trans, fs_info);
1384 	if (IS_ERR(log_root))
1385 		return PTR_ERR(log_root);
1386 	WARN_ON(fs_info->log_root_tree);
1387 	fs_info->log_root_tree = log_root;
1388 	return 0;
1389 }
1390 
1391 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1392 		       struct btrfs_root *root)
1393 {
1394 	struct btrfs_root *log_root;
1395 	struct btrfs_inode_item *inode_item;
1396 
1397 	log_root = alloc_log_tree(trans, root->fs_info);
1398 	if (IS_ERR(log_root))
1399 		return PTR_ERR(log_root);
1400 
1401 	log_root->last_trans = trans->transid;
1402 	log_root->root_key.offset = root->root_key.objectid;
1403 
1404 	inode_item = &log_root->root_item.inode;
1405 	inode_item->generation = cpu_to_le64(1);
1406 	inode_item->size = cpu_to_le64(3);
1407 	inode_item->nlink = cpu_to_le32(1);
1408 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1409 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1410 
1411 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1412 
1413 	WARN_ON(root->log_root);
1414 	root->log_root = log_root;
1415 	root->log_transid = 0;
1416 	root->last_log_commit = 0;
1417 	return 0;
1418 }
1419 
1420 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1421 					       struct btrfs_key *location)
1422 {
1423 	struct btrfs_root *root;
1424 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1425 	struct btrfs_path *path;
1426 	struct extent_buffer *l;
1427 	u64 generation;
1428 	u32 blocksize;
1429 	int ret = 0;
1430 	int slot;
1431 
1432 	root = btrfs_alloc_root(fs_info);
1433 	if (!root)
1434 		return ERR_PTR(-ENOMEM);
1435 	if (location->offset == (u64)-1) {
1436 		ret = find_and_setup_root(tree_root, fs_info,
1437 					  location->objectid, root);
1438 		if (ret) {
1439 			kfree(root);
1440 			return ERR_PTR(ret);
1441 		}
1442 		goto out;
1443 	}
1444 
1445 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1446 		     tree_root->sectorsize, tree_root->stripesize,
1447 		     root, fs_info, location->objectid);
1448 
1449 	path = btrfs_alloc_path();
1450 	if (!path) {
1451 		kfree(root);
1452 		return ERR_PTR(-ENOMEM);
1453 	}
1454 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1455 	if (ret == 0) {
1456 		l = path->nodes[0];
1457 		slot = path->slots[0];
1458 		btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1459 		memcpy(&root->root_key, location, sizeof(*location));
1460 	}
1461 	btrfs_free_path(path);
1462 	if (ret) {
1463 		kfree(root);
1464 		if (ret > 0)
1465 			ret = -ENOENT;
1466 		return ERR_PTR(ret);
1467 	}
1468 
1469 	generation = btrfs_root_generation(&root->root_item);
1470 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1471 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1472 				     blocksize, generation);
1473 	root->commit_root = btrfs_root_node(root);
1474 	BUG_ON(!root->node); /* -ENOMEM */
1475 out:
1476 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1477 		root->ref_cows = 1;
1478 		btrfs_check_and_init_root_item(&root->root_item);
1479 	}
1480 
1481 	return root;
1482 }
1483 
1484 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1485 					      struct btrfs_key *location)
1486 {
1487 	struct btrfs_root *root;
1488 	int ret;
1489 
1490 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1491 		return fs_info->tree_root;
1492 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1493 		return fs_info->extent_root;
1494 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1495 		return fs_info->chunk_root;
1496 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1497 		return fs_info->dev_root;
1498 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1499 		return fs_info->csum_root;
1500 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1501 		return fs_info->quota_root ? fs_info->quota_root :
1502 					     ERR_PTR(-ENOENT);
1503 again:
1504 	spin_lock(&fs_info->fs_roots_radix_lock);
1505 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1506 				 (unsigned long)location->objectid);
1507 	spin_unlock(&fs_info->fs_roots_radix_lock);
1508 	if (root)
1509 		return root;
1510 
1511 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1512 	if (IS_ERR(root))
1513 		return root;
1514 
1515 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1516 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1517 					GFP_NOFS);
1518 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1519 		ret = -ENOMEM;
1520 		goto fail;
1521 	}
1522 
1523 	btrfs_init_free_ino_ctl(root);
1524 	mutex_init(&root->fs_commit_mutex);
1525 	spin_lock_init(&root->cache_lock);
1526 	init_waitqueue_head(&root->cache_wait);
1527 
1528 	ret = get_anon_bdev(&root->anon_dev);
1529 	if (ret)
1530 		goto fail;
1531 
1532 	if (btrfs_root_refs(&root->root_item) == 0) {
1533 		ret = -ENOENT;
1534 		goto fail;
1535 	}
1536 
1537 	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1538 	if (ret < 0)
1539 		goto fail;
1540 	if (ret == 0)
1541 		root->orphan_item_inserted = 1;
1542 
1543 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1544 	if (ret)
1545 		goto fail;
1546 
1547 	spin_lock(&fs_info->fs_roots_radix_lock);
1548 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1549 				(unsigned long)root->root_key.objectid,
1550 				root);
1551 	if (ret == 0)
1552 		root->in_radix = 1;
1553 
1554 	spin_unlock(&fs_info->fs_roots_radix_lock);
1555 	radix_tree_preload_end();
1556 	if (ret) {
1557 		if (ret == -EEXIST) {
1558 			free_fs_root(root);
1559 			goto again;
1560 		}
1561 		goto fail;
1562 	}
1563 
1564 	ret = btrfs_find_dead_roots(fs_info->tree_root,
1565 				    root->root_key.objectid);
1566 	WARN_ON(ret);
1567 	return root;
1568 fail:
1569 	free_fs_root(root);
1570 	return ERR_PTR(ret);
1571 }
1572 
1573 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1574 {
1575 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1576 	int ret = 0;
1577 	struct btrfs_device *device;
1578 	struct backing_dev_info *bdi;
1579 
1580 	rcu_read_lock();
1581 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1582 		if (!device->bdev)
1583 			continue;
1584 		bdi = blk_get_backing_dev_info(device->bdev);
1585 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1586 			ret = 1;
1587 			break;
1588 		}
1589 	}
1590 	rcu_read_unlock();
1591 	return ret;
1592 }
1593 
1594 /*
1595  * If this fails, caller must call bdi_destroy() to get rid of the
1596  * bdi again.
1597  */
1598 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1599 {
1600 	int err;
1601 
1602 	bdi->capabilities = BDI_CAP_MAP_COPY;
1603 	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1604 	if (err)
1605 		return err;
1606 
1607 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1608 	bdi->congested_fn	= btrfs_congested_fn;
1609 	bdi->congested_data	= info;
1610 	return 0;
1611 }
1612 
1613 /*
1614  * called by the kthread helper functions to finally call the bio end_io
1615  * functions.  This is where read checksum verification actually happens
1616  */
1617 static void end_workqueue_fn(struct btrfs_work *work)
1618 {
1619 	struct bio *bio;
1620 	struct end_io_wq *end_io_wq;
1621 	struct btrfs_fs_info *fs_info;
1622 	int error;
1623 
1624 	end_io_wq = container_of(work, struct end_io_wq, work);
1625 	bio = end_io_wq->bio;
1626 	fs_info = end_io_wq->info;
1627 
1628 	error = end_io_wq->error;
1629 	bio->bi_private = end_io_wq->private;
1630 	bio->bi_end_io = end_io_wq->end_io;
1631 	kfree(end_io_wq);
1632 	bio_endio(bio, error);
1633 }
1634 
1635 static int cleaner_kthread(void *arg)
1636 {
1637 	struct btrfs_root *root = arg;
1638 
1639 	do {
1640 		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1641 		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1642 			btrfs_run_delayed_iputs(root);
1643 			btrfs_clean_old_snapshots(root);
1644 			mutex_unlock(&root->fs_info->cleaner_mutex);
1645 			btrfs_run_defrag_inodes(root->fs_info);
1646 		}
1647 
1648 		if (!try_to_freeze()) {
1649 			set_current_state(TASK_INTERRUPTIBLE);
1650 			if (!kthread_should_stop())
1651 				schedule();
1652 			__set_current_state(TASK_RUNNING);
1653 		}
1654 	} while (!kthread_should_stop());
1655 	return 0;
1656 }
1657 
1658 static int transaction_kthread(void *arg)
1659 {
1660 	struct btrfs_root *root = arg;
1661 	struct btrfs_trans_handle *trans;
1662 	struct btrfs_transaction *cur;
1663 	u64 transid;
1664 	unsigned long now;
1665 	unsigned long delay;
1666 	bool cannot_commit;
1667 
1668 	do {
1669 		cannot_commit = false;
1670 		delay = HZ * 30;
1671 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1672 
1673 		spin_lock(&root->fs_info->trans_lock);
1674 		cur = root->fs_info->running_transaction;
1675 		if (!cur) {
1676 			spin_unlock(&root->fs_info->trans_lock);
1677 			goto sleep;
1678 		}
1679 
1680 		now = get_seconds();
1681 		if (!cur->blocked &&
1682 		    (now < cur->start_time || now - cur->start_time < 30)) {
1683 			spin_unlock(&root->fs_info->trans_lock);
1684 			delay = HZ * 5;
1685 			goto sleep;
1686 		}
1687 		transid = cur->transid;
1688 		spin_unlock(&root->fs_info->trans_lock);
1689 
1690 		/* If the file system is aborted, this will always fail. */
1691 		trans = btrfs_attach_transaction(root);
1692 		if (IS_ERR(trans)) {
1693 			if (PTR_ERR(trans) != -ENOENT)
1694 				cannot_commit = true;
1695 			goto sleep;
1696 		}
1697 		if (transid == trans->transid) {
1698 			btrfs_commit_transaction(trans, root);
1699 		} else {
1700 			btrfs_end_transaction(trans, root);
1701 		}
1702 sleep:
1703 		wake_up_process(root->fs_info->cleaner_kthread);
1704 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1705 
1706 		if (!try_to_freeze()) {
1707 			set_current_state(TASK_INTERRUPTIBLE);
1708 			if (!kthread_should_stop() &&
1709 			    (!btrfs_transaction_blocked(root->fs_info) ||
1710 			     cannot_commit))
1711 				schedule_timeout(delay);
1712 			__set_current_state(TASK_RUNNING);
1713 		}
1714 	} while (!kthread_should_stop());
1715 	return 0;
1716 }
1717 
1718 /*
1719  * this will find the highest generation in the array of
1720  * root backups.  The index of the highest array is returned,
1721  * or -1 if we can't find anything.
1722  *
1723  * We check to make sure the array is valid by comparing the
1724  * generation of the latest  root in the array with the generation
1725  * in the super block.  If they don't match we pitch it.
1726  */
1727 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1728 {
1729 	u64 cur;
1730 	int newest_index = -1;
1731 	struct btrfs_root_backup *root_backup;
1732 	int i;
1733 
1734 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1735 		root_backup = info->super_copy->super_roots + i;
1736 		cur = btrfs_backup_tree_root_gen(root_backup);
1737 		if (cur == newest_gen)
1738 			newest_index = i;
1739 	}
1740 
1741 	/* check to see if we actually wrapped around */
1742 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1743 		root_backup = info->super_copy->super_roots;
1744 		cur = btrfs_backup_tree_root_gen(root_backup);
1745 		if (cur == newest_gen)
1746 			newest_index = 0;
1747 	}
1748 	return newest_index;
1749 }
1750 
1751 
1752 /*
1753  * find the oldest backup so we know where to store new entries
1754  * in the backup array.  This will set the backup_root_index
1755  * field in the fs_info struct
1756  */
1757 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1758 				     u64 newest_gen)
1759 {
1760 	int newest_index = -1;
1761 
1762 	newest_index = find_newest_super_backup(info, newest_gen);
1763 	/* if there was garbage in there, just move along */
1764 	if (newest_index == -1) {
1765 		info->backup_root_index = 0;
1766 	} else {
1767 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1768 	}
1769 }
1770 
1771 /*
1772  * copy all the root pointers into the super backup array.
1773  * this will bump the backup pointer by one when it is
1774  * done
1775  */
1776 static void backup_super_roots(struct btrfs_fs_info *info)
1777 {
1778 	int next_backup;
1779 	struct btrfs_root_backup *root_backup;
1780 	int last_backup;
1781 
1782 	next_backup = info->backup_root_index;
1783 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1784 		BTRFS_NUM_BACKUP_ROOTS;
1785 
1786 	/*
1787 	 * just overwrite the last backup if we're at the same generation
1788 	 * this happens only at umount
1789 	 */
1790 	root_backup = info->super_for_commit->super_roots + last_backup;
1791 	if (btrfs_backup_tree_root_gen(root_backup) ==
1792 	    btrfs_header_generation(info->tree_root->node))
1793 		next_backup = last_backup;
1794 
1795 	root_backup = info->super_for_commit->super_roots + next_backup;
1796 
1797 	/*
1798 	 * make sure all of our padding and empty slots get zero filled
1799 	 * regardless of which ones we use today
1800 	 */
1801 	memset(root_backup, 0, sizeof(*root_backup));
1802 
1803 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1804 
1805 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1806 	btrfs_set_backup_tree_root_gen(root_backup,
1807 			       btrfs_header_generation(info->tree_root->node));
1808 
1809 	btrfs_set_backup_tree_root_level(root_backup,
1810 			       btrfs_header_level(info->tree_root->node));
1811 
1812 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1813 	btrfs_set_backup_chunk_root_gen(root_backup,
1814 			       btrfs_header_generation(info->chunk_root->node));
1815 	btrfs_set_backup_chunk_root_level(root_backup,
1816 			       btrfs_header_level(info->chunk_root->node));
1817 
1818 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1819 	btrfs_set_backup_extent_root_gen(root_backup,
1820 			       btrfs_header_generation(info->extent_root->node));
1821 	btrfs_set_backup_extent_root_level(root_backup,
1822 			       btrfs_header_level(info->extent_root->node));
1823 
1824 	/*
1825 	 * we might commit during log recovery, which happens before we set
1826 	 * the fs_root.  Make sure it is valid before we fill it in.
1827 	 */
1828 	if (info->fs_root && info->fs_root->node) {
1829 		btrfs_set_backup_fs_root(root_backup,
1830 					 info->fs_root->node->start);
1831 		btrfs_set_backup_fs_root_gen(root_backup,
1832 			       btrfs_header_generation(info->fs_root->node));
1833 		btrfs_set_backup_fs_root_level(root_backup,
1834 			       btrfs_header_level(info->fs_root->node));
1835 	}
1836 
1837 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1838 	btrfs_set_backup_dev_root_gen(root_backup,
1839 			       btrfs_header_generation(info->dev_root->node));
1840 	btrfs_set_backup_dev_root_level(root_backup,
1841 				       btrfs_header_level(info->dev_root->node));
1842 
1843 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1844 	btrfs_set_backup_csum_root_gen(root_backup,
1845 			       btrfs_header_generation(info->csum_root->node));
1846 	btrfs_set_backup_csum_root_level(root_backup,
1847 			       btrfs_header_level(info->csum_root->node));
1848 
1849 	btrfs_set_backup_total_bytes(root_backup,
1850 			     btrfs_super_total_bytes(info->super_copy));
1851 	btrfs_set_backup_bytes_used(root_backup,
1852 			     btrfs_super_bytes_used(info->super_copy));
1853 	btrfs_set_backup_num_devices(root_backup,
1854 			     btrfs_super_num_devices(info->super_copy));
1855 
1856 	/*
1857 	 * if we don't copy this out to the super_copy, it won't get remembered
1858 	 * for the next commit
1859 	 */
1860 	memcpy(&info->super_copy->super_roots,
1861 	       &info->super_for_commit->super_roots,
1862 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1863 }
1864 
1865 /*
1866  * this copies info out of the root backup array and back into
1867  * the in-memory super block.  It is meant to help iterate through
1868  * the array, so you send it the number of backups you've already
1869  * tried and the last backup index you used.
1870  *
1871  * this returns -1 when it has tried all the backups
1872  */
1873 static noinline int next_root_backup(struct btrfs_fs_info *info,
1874 				     struct btrfs_super_block *super,
1875 				     int *num_backups_tried, int *backup_index)
1876 {
1877 	struct btrfs_root_backup *root_backup;
1878 	int newest = *backup_index;
1879 
1880 	if (*num_backups_tried == 0) {
1881 		u64 gen = btrfs_super_generation(super);
1882 
1883 		newest = find_newest_super_backup(info, gen);
1884 		if (newest == -1)
1885 			return -1;
1886 
1887 		*backup_index = newest;
1888 		*num_backups_tried = 1;
1889 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1890 		/* we've tried all the backups, all done */
1891 		return -1;
1892 	} else {
1893 		/* jump to the next oldest backup */
1894 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1895 			BTRFS_NUM_BACKUP_ROOTS;
1896 		*backup_index = newest;
1897 		*num_backups_tried += 1;
1898 	}
1899 	root_backup = super->super_roots + newest;
1900 
1901 	btrfs_set_super_generation(super,
1902 				   btrfs_backup_tree_root_gen(root_backup));
1903 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1904 	btrfs_set_super_root_level(super,
1905 				   btrfs_backup_tree_root_level(root_backup));
1906 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1907 
1908 	/*
1909 	 * fixme: the total bytes and num_devices need to match or we should
1910 	 * need a fsck
1911 	 */
1912 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1913 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1914 	return 0;
1915 }
1916 
1917 /* helper to cleanup tree roots */
1918 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1919 {
1920 	free_extent_buffer(info->tree_root->node);
1921 	free_extent_buffer(info->tree_root->commit_root);
1922 	free_extent_buffer(info->dev_root->node);
1923 	free_extent_buffer(info->dev_root->commit_root);
1924 	free_extent_buffer(info->extent_root->node);
1925 	free_extent_buffer(info->extent_root->commit_root);
1926 	free_extent_buffer(info->csum_root->node);
1927 	free_extent_buffer(info->csum_root->commit_root);
1928 	if (info->quota_root) {
1929 		free_extent_buffer(info->quota_root->node);
1930 		free_extent_buffer(info->quota_root->commit_root);
1931 	}
1932 
1933 	info->tree_root->node = NULL;
1934 	info->tree_root->commit_root = NULL;
1935 	info->dev_root->node = NULL;
1936 	info->dev_root->commit_root = NULL;
1937 	info->extent_root->node = NULL;
1938 	info->extent_root->commit_root = NULL;
1939 	info->csum_root->node = NULL;
1940 	info->csum_root->commit_root = NULL;
1941 	if (info->quota_root) {
1942 		info->quota_root->node = NULL;
1943 		info->quota_root->commit_root = NULL;
1944 	}
1945 
1946 	if (chunk_root) {
1947 		free_extent_buffer(info->chunk_root->node);
1948 		free_extent_buffer(info->chunk_root->commit_root);
1949 		info->chunk_root->node = NULL;
1950 		info->chunk_root->commit_root = NULL;
1951 	}
1952 }
1953 
1954 
1955 int open_ctree(struct super_block *sb,
1956 	       struct btrfs_fs_devices *fs_devices,
1957 	       char *options)
1958 {
1959 	u32 sectorsize;
1960 	u32 nodesize;
1961 	u32 leafsize;
1962 	u32 blocksize;
1963 	u32 stripesize;
1964 	u64 generation;
1965 	u64 features;
1966 	struct btrfs_key location;
1967 	struct buffer_head *bh;
1968 	struct btrfs_super_block *disk_super;
1969 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1970 	struct btrfs_root *tree_root;
1971 	struct btrfs_root *extent_root;
1972 	struct btrfs_root *csum_root;
1973 	struct btrfs_root *chunk_root;
1974 	struct btrfs_root *dev_root;
1975 	struct btrfs_root *quota_root;
1976 	struct btrfs_root *log_tree_root;
1977 	int ret;
1978 	int err = -EINVAL;
1979 	int num_backups_tried = 0;
1980 	int backup_index = 0;
1981 
1982 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1983 	extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1984 	csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1985 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1986 	dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1987 	quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
1988 
1989 	if (!tree_root || !extent_root || !csum_root ||
1990 	    !chunk_root || !dev_root || !quota_root) {
1991 		err = -ENOMEM;
1992 		goto fail;
1993 	}
1994 
1995 	ret = init_srcu_struct(&fs_info->subvol_srcu);
1996 	if (ret) {
1997 		err = ret;
1998 		goto fail;
1999 	}
2000 
2001 	ret = setup_bdi(fs_info, &fs_info->bdi);
2002 	if (ret) {
2003 		err = ret;
2004 		goto fail_srcu;
2005 	}
2006 
2007 	fs_info->btree_inode = new_inode(sb);
2008 	if (!fs_info->btree_inode) {
2009 		err = -ENOMEM;
2010 		goto fail_bdi;
2011 	}
2012 
2013 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2014 
2015 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2016 	INIT_LIST_HEAD(&fs_info->trans_list);
2017 	INIT_LIST_HEAD(&fs_info->dead_roots);
2018 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2019 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2020 	INIT_LIST_HEAD(&fs_info->ordered_operations);
2021 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2022 	spin_lock_init(&fs_info->delalloc_lock);
2023 	spin_lock_init(&fs_info->trans_lock);
2024 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2025 	spin_lock_init(&fs_info->delayed_iput_lock);
2026 	spin_lock_init(&fs_info->defrag_inodes_lock);
2027 	spin_lock_init(&fs_info->free_chunk_lock);
2028 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2029 	rwlock_init(&fs_info->tree_mod_log_lock);
2030 	mutex_init(&fs_info->reloc_mutex);
2031 
2032 	init_completion(&fs_info->kobj_unregister);
2033 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2034 	INIT_LIST_HEAD(&fs_info->space_info);
2035 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2036 	btrfs_mapping_init(&fs_info->mapping_tree);
2037 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2038 			     BTRFS_BLOCK_RSV_GLOBAL);
2039 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2040 			     BTRFS_BLOCK_RSV_DELALLOC);
2041 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2042 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2043 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2044 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2045 			     BTRFS_BLOCK_RSV_DELOPS);
2046 	atomic_set(&fs_info->nr_async_submits, 0);
2047 	atomic_set(&fs_info->async_delalloc_pages, 0);
2048 	atomic_set(&fs_info->async_submit_draining, 0);
2049 	atomic_set(&fs_info->nr_async_bios, 0);
2050 	atomic_set(&fs_info->defrag_running, 0);
2051 	atomic_set(&fs_info->tree_mod_seq, 0);
2052 	fs_info->sb = sb;
2053 	fs_info->max_inline = 8192 * 1024;
2054 	fs_info->metadata_ratio = 0;
2055 	fs_info->defrag_inodes = RB_ROOT;
2056 	fs_info->trans_no_join = 0;
2057 	fs_info->free_chunk_space = 0;
2058 	fs_info->tree_mod_log = RB_ROOT;
2059 
2060 	/* readahead state */
2061 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2062 	spin_lock_init(&fs_info->reada_lock);
2063 
2064 	fs_info->thread_pool_size = min_t(unsigned long,
2065 					  num_online_cpus() + 2, 8);
2066 
2067 	INIT_LIST_HEAD(&fs_info->ordered_extents);
2068 	spin_lock_init(&fs_info->ordered_extent_lock);
2069 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2070 					GFP_NOFS);
2071 	if (!fs_info->delayed_root) {
2072 		err = -ENOMEM;
2073 		goto fail_iput;
2074 	}
2075 	btrfs_init_delayed_root(fs_info->delayed_root);
2076 
2077 	mutex_init(&fs_info->scrub_lock);
2078 	atomic_set(&fs_info->scrubs_running, 0);
2079 	atomic_set(&fs_info->scrub_pause_req, 0);
2080 	atomic_set(&fs_info->scrubs_paused, 0);
2081 	atomic_set(&fs_info->scrub_cancel_req, 0);
2082 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2083 	init_rwsem(&fs_info->scrub_super_lock);
2084 	fs_info->scrub_workers_refcnt = 0;
2085 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2086 	fs_info->check_integrity_print_mask = 0;
2087 #endif
2088 
2089 	spin_lock_init(&fs_info->balance_lock);
2090 	mutex_init(&fs_info->balance_mutex);
2091 	atomic_set(&fs_info->balance_running, 0);
2092 	atomic_set(&fs_info->balance_pause_req, 0);
2093 	atomic_set(&fs_info->balance_cancel_req, 0);
2094 	fs_info->balance_ctl = NULL;
2095 	init_waitqueue_head(&fs_info->balance_wait_q);
2096 
2097 	sb->s_blocksize = 4096;
2098 	sb->s_blocksize_bits = blksize_bits(4096);
2099 	sb->s_bdi = &fs_info->bdi;
2100 
2101 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2102 	set_nlink(fs_info->btree_inode, 1);
2103 	/*
2104 	 * we set the i_size on the btree inode to the max possible int.
2105 	 * the real end of the address space is determined by all of
2106 	 * the devices in the system
2107 	 */
2108 	fs_info->btree_inode->i_size = OFFSET_MAX;
2109 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2110 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2111 
2112 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2113 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2114 			     fs_info->btree_inode->i_mapping);
2115 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2116 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2117 
2118 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2119 
2120 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2121 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2122 	       sizeof(struct btrfs_key));
2123 	set_bit(BTRFS_INODE_DUMMY,
2124 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2125 	insert_inode_hash(fs_info->btree_inode);
2126 
2127 	spin_lock_init(&fs_info->block_group_cache_lock);
2128 	fs_info->block_group_cache_tree = RB_ROOT;
2129 
2130 	extent_io_tree_init(&fs_info->freed_extents[0],
2131 			     fs_info->btree_inode->i_mapping);
2132 	extent_io_tree_init(&fs_info->freed_extents[1],
2133 			     fs_info->btree_inode->i_mapping);
2134 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2135 	fs_info->do_barriers = 1;
2136 
2137 
2138 	mutex_init(&fs_info->ordered_operations_mutex);
2139 	mutex_init(&fs_info->tree_log_mutex);
2140 	mutex_init(&fs_info->chunk_mutex);
2141 	mutex_init(&fs_info->transaction_kthread_mutex);
2142 	mutex_init(&fs_info->cleaner_mutex);
2143 	mutex_init(&fs_info->volume_mutex);
2144 	init_rwsem(&fs_info->extent_commit_sem);
2145 	init_rwsem(&fs_info->cleanup_work_sem);
2146 	init_rwsem(&fs_info->subvol_sem);
2147 	fs_info->dev_replace.lock_owner = 0;
2148 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2149 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2150 	mutex_init(&fs_info->dev_replace.lock_management_lock);
2151 	mutex_init(&fs_info->dev_replace.lock);
2152 
2153 	spin_lock_init(&fs_info->qgroup_lock);
2154 	fs_info->qgroup_tree = RB_ROOT;
2155 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2156 	fs_info->qgroup_seq = 1;
2157 	fs_info->quota_enabled = 0;
2158 	fs_info->pending_quota_state = 0;
2159 
2160 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2161 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2162 
2163 	init_waitqueue_head(&fs_info->transaction_throttle);
2164 	init_waitqueue_head(&fs_info->transaction_wait);
2165 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2166 	init_waitqueue_head(&fs_info->async_submit_wait);
2167 
2168 	__setup_root(4096, 4096, 4096, 4096, tree_root,
2169 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2170 
2171 	invalidate_bdev(fs_devices->latest_bdev);
2172 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2173 	if (!bh) {
2174 		err = -EINVAL;
2175 		goto fail_alloc;
2176 	}
2177 
2178 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2179 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2180 	       sizeof(*fs_info->super_for_commit));
2181 	brelse(bh);
2182 
2183 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2184 
2185 	disk_super = fs_info->super_copy;
2186 	if (!btrfs_super_root(disk_super))
2187 		goto fail_alloc;
2188 
2189 	/* check FS state, whether FS is broken. */
2190 	fs_info->fs_state |= btrfs_super_flags(disk_super);
2191 
2192 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2193 	if (ret) {
2194 		printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2195 		err = ret;
2196 		goto fail_alloc;
2197 	}
2198 
2199 	/*
2200 	 * run through our array of backup supers and setup
2201 	 * our ring pointer to the oldest one
2202 	 */
2203 	generation = btrfs_super_generation(disk_super);
2204 	find_oldest_super_backup(fs_info, generation);
2205 
2206 	/*
2207 	 * In the long term, we'll store the compression type in the super
2208 	 * block, and it'll be used for per file compression control.
2209 	 */
2210 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2211 
2212 	ret = btrfs_parse_options(tree_root, options);
2213 	if (ret) {
2214 		err = ret;
2215 		goto fail_alloc;
2216 	}
2217 
2218 	features = btrfs_super_incompat_flags(disk_super) &
2219 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2220 	if (features) {
2221 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2222 		       "unsupported optional features (%Lx).\n",
2223 		       (unsigned long long)features);
2224 		err = -EINVAL;
2225 		goto fail_alloc;
2226 	}
2227 
2228 	if (btrfs_super_leafsize(disk_super) !=
2229 	    btrfs_super_nodesize(disk_super)) {
2230 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2231 		       "blocksizes don't match.  node %d leaf %d\n",
2232 		       btrfs_super_nodesize(disk_super),
2233 		       btrfs_super_leafsize(disk_super));
2234 		err = -EINVAL;
2235 		goto fail_alloc;
2236 	}
2237 	if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2238 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2239 		       "blocksize (%d) was too large\n",
2240 		       btrfs_super_leafsize(disk_super));
2241 		err = -EINVAL;
2242 		goto fail_alloc;
2243 	}
2244 
2245 	features = btrfs_super_incompat_flags(disk_super);
2246 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2247 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2248 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2249 
2250 	/*
2251 	 * flag our filesystem as having big metadata blocks if
2252 	 * they are bigger than the page size
2253 	 */
2254 	if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2255 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2256 			printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2257 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2258 	}
2259 
2260 	nodesize = btrfs_super_nodesize(disk_super);
2261 	leafsize = btrfs_super_leafsize(disk_super);
2262 	sectorsize = btrfs_super_sectorsize(disk_super);
2263 	stripesize = btrfs_super_stripesize(disk_super);
2264 
2265 	/*
2266 	 * mixed block groups end up with duplicate but slightly offset
2267 	 * extent buffers for the same range.  It leads to corruptions
2268 	 */
2269 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2270 	    (sectorsize != leafsize)) {
2271 		printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2272 				"are not allowed for mixed block groups on %s\n",
2273 				sb->s_id);
2274 		goto fail_alloc;
2275 	}
2276 
2277 	btrfs_set_super_incompat_flags(disk_super, features);
2278 
2279 	features = btrfs_super_compat_ro_flags(disk_super) &
2280 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2281 	if (!(sb->s_flags & MS_RDONLY) && features) {
2282 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2283 		       "unsupported option features (%Lx).\n",
2284 		       (unsigned long long)features);
2285 		err = -EINVAL;
2286 		goto fail_alloc;
2287 	}
2288 
2289 	btrfs_init_workers(&fs_info->generic_worker,
2290 			   "genwork", 1, NULL);
2291 
2292 	btrfs_init_workers(&fs_info->workers, "worker",
2293 			   fs_info->thread_pool_size,
2294 			   &fs_info->generic_worker);
2295 
2296 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2297 			   fs_info->thread_pool_size,
2298 			   &fs_info->generic_worker);
2299 
2300 	btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2301 			   fs_info->thread_pool_size,
2302 			   &fs_info->generic_worker);
2303 
2304 	btrfs_init_workers(&fs_info->submit_workers, "submit",
2305 			   min_t(u64, fs_devices->num_devices,
2306 			   fs_info->thread_pool_size),
2307 			   &fs_info->generic_worker);
2308 
2309 	btrfs_init_workers(&fs_info->caching_workers, "cache",
2310 			   2, &fs_info->generic_worker);
2311 
2312 	/* a higher idle thresh on the submit workers makes it much more
2313 	 * likely that bios will be send down in a sane order to the
2314 	 * devices
2315 	 */
2316 	fs_info->submit_workers.idle_thresh = 64;
2317 
2318 	fs_info->workers.idle_thresh = 16;
2319 	fs_info->workers.ordered = 1;
2320 
2321 	fs_info->delalloc_workers.idle_thresh = 2;
2322 	fs_info->delalloc_workers.ordered = 1;
2323 
2324 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2325 			   &fs_info->generic_worker);
2326 	btrfs_init_workers(&fs_info->endio_workers, "endio",
2327 			   fs_info->thread_pool_size,
2328 			   &fs_info->generic_worker);
2329 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2330 			   fs_info->thread_pool_size,
2331 			   &fs_info->generic_worker);
2332 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
2333 			   "endio-meta-write", fs_info->thread_pool_size,
2334 			   &fs_info->generic_worker);
2335 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2336 			   fs_info->thread_pool_size,
2337 			   &fs_info->generic_worker);
2338 	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2339 			   1, &fs_info->generic_worker);
2340 	btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2341 			   fs_info->thread_pool_size,
2342 			   &fs_info->generic_worker);
2343 	btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2344 			   fs_info->thread_pool_size,
2345 			   &fs_info->generic_worker);
2346 
2347 	/*
2348 	 * endios are largely parallel and should have a very
2349 	 * low idle thresh
2350 	 */
2351 	fs_info->endio_workers.idle_thresh = 4;
2352 	fs_info->endio_meta_workers.idle_thresh = 4;
2353 
2354 	fs_info->endio_write_workers.idle_thresh = 2;
2355 	fs_info->endio_meta_write_workers.idle_thresh = 2;
2356 	fs_info->readahead_workers.idle_thresh = 2;
2357 
2358 	/*
2359 	 * btrfs_start_workers can really only fail because of ENOMEM so just
2360 	 * return -ENOMEM if any of these fail.
2361 	 */
2362 	ret = btrfs_start_workers(&fs_info->workers);
2363 	ret |= btrfs_start_workers(&fs_info->generic_worker);
2364 	ret |= btrfs_start_workers(&fs_info->submit_workers);
2365 	ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2366 	ret |= btrfs_start_workers(&fs_info->fixup_workers);
2367 	ret |= btrfs_start_workers(&fs_info->endio_workers);
2368 	ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2369 	ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2370 	ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2371 	ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2372 	ret |= btrfs_start_workers(&fs_info->delayed_workers);
2373 	ret |= btrfs_start_workers(&fs_info->caching_workers);
2374 	ret |= btrfs_start_workers(&fs_info->readahead_workers);
2375 	ret |= btrfs_start_workers(&fs_info->flush_workers);
2376 	if (ret) {
2377 		err = -ENOMEM;
2378 		goto fail_sb_buffer;
2379 	}
2380 
2381 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2382 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2383 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2384 
2385 	tree_root->nodesize = nodesize;
2386 	tree_root->leafsize = leafsize;
2387 	tree_root->sectorsize = sectorsize;
2388 	tree_root->stripesize = stripesize;
2389 
2390 	sb->s_blocksize = sectorsize;
2391 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2392 
2393 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2394 		    sizeof(disk_super->magic))) {
2395 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2396 		goto fail_sb_buffer;
2397 	}
2398 
2399 	if (sectorsize != PAGE_SIZE) {
2400 		printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2401 		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2402 		goto fail_sb_buffer;
2403 	}
2404 
2405 	mutex_lock(&fs_info->chunk_mutex);
2406 	ret = btrfs_read_sys_array(tree_root);
2407 	mutex_unlock(&fs_info->chunk_mutex);
2408 	if (ret) {
2409 		printk(KERN_WARNING "btrfs: failed to read the system "
2410 		       "array on %s\n", sb->s_id);
2411 		goto fail_sb_buffer;
2412 	}
2413 
2414 	blocksize = btrfs_level_size(tree_root,
2415 				     btrfs_super_chunk_root_level(disk_super));
2416 	generation = btrfs_super_chunk_root_generation(disk_super);
2417 
2418 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
2419 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2420 
2421 	chunk_root->node = read_tree_block(chunk_root,
2422 					   btrfs_super_chunk_root(disk_super),
2423 					   blocksize, generation);
2424 	BUG_ON(!chunk_root->node); /* -ENOMEM */
2425 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2426 		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2427 		       sb->s_id);
2428 		goto fail_tree_roots;
2429 	}
2430 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2431 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2432 
2433 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2434 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2435 	   BTRFS_UUID_SIZE);
2436 
2437 	ret = btrfs_read_chunk_tree(chunk_root);
2438 	if (ret) {
2439 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2440 		       sb->s_id);
2441 		goto fail_tree_roots;
2442 	}
2443 
2444 	/*
2445 	 * keep the device that is marked to be the target device for the
2446 	 * dev_replace procedure
2447 	 */
2448 	btrfs_close_extra_devices(fs_info, fs_devices, 0);
2449 
2450 	if (!fs_devices->latest_bdev) {
2451 		printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2452 		       sb->s_id);
2453 		goto fail_tree_roots;
2454 	}
2455 
2456 retry_root_backup:
2457 	blocksize = btrfs_level_size(tree_root,
2458 				     btrfs_super_root_level(disk_super));
2459 	generation = btrfs_super_generation(disk_super);
2460 
2461 	tree_root->node = read_tree_block(tree_root,
2462 					  btrfs_super_root(disk_super),
2463 					  blocksize, generation);
2464 	if (!tree_root->node ||
2465 	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2466 		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2467 		       sb->s_id);
2468 
2469 		goto recovery_tree_root;
2470 	}
2471 
2472 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2473 	tree_root->commit_root = btrfs_root_node(tree_root);
2474 
2475 	ret = find_and_setup_root(tree_root, fs_info,
2476 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2477 	if (ret)
2478 		goto recovery_tree_root;
2479 	extent_root->track_dirty = 1;
2480 
2481 	ret = find_and_setup_root(tree_root, fs_info,
2482 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
2483 	if (ret)
2484 		goto recovery_tree_root;
2485 	dev_root->track_dirty = 1;
2486 
2487 	ret = find_and_setup_root(tree_root, fs_info,
2488 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
2489 	if (ret)
2490 		goto recovery_tree_root;
2491 	csum_root->track_dirty = 1;
2492 
2493 	ret = find_and_setup_root(tree_root, fs_info,
2494 				  BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2495 	if (ret) {
2496 		kfree(quota_root);
2497 		quota_root = fs_info->quota_root = NULL;
2498 	} else {
2499 		quota_root->track_dirty = 1;
2500 		fs_info->quota_enabled = 1;
2501 		fs_info->pending_quota_state = 1;
2502 	}
2503 
2504 	fs_info->generation = generation;
2505 	fs_info->last_trans_committed = generation;
2506 
2507 	ret = btrfs_recover_balance(fs_info);
2508 	if (ret) {
2509 		printk(KERN_WARNING "btrfs: failed to recover balance\n");
2510 		goto fail_block_groups;
2511 	}
2512 
2513 	ret = btrfs_init_dev_stats(fs_info);
2514 	if (ret) {
2515 		printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2516 		       ret);
2517 		goto fail_block_groups;
2518 	}
2519 
2520 	ret = btrfs_init_dev_replace(fs_info);
2521 	if (ret) {
2522 		pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2523 		goto fail_block_groups;
2524 	}
2525 
2526 	btrfs_close_extra_devices(fs_info, fs_devices, 1);
2527 
2528 	ret = btrfs_init_space_info(fs_info);
2529 	if (ret) {
2530 		printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2531 		goto fail_block_groups;
2532 	}
2533 
2534 	ret = btrfs_read_block_groups(extent_root);
2535 	if (ret) {
2536 		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2537 		goto fail_block_groups;
2538 	}
2539 	fs_info->num_tolerated_disk_barrier_failures =
2540 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2541 	if (fs_info->fs_devices->missing_devices >
2542 	     fs_info->num_tolerated_disk_barrier_failures &&
2543 	    !(sb->s_flags & MS_RDONLY)) {
2544 		printk(KERN_WARNING
2545 		       "Btrfs: too many missing devices, writeable mount is not allowed\n");
2546 		goto fail_block_groups;
2547 	}
2548 
2549 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2550 					       "btrfs-cleaner");
2551 	if (IS_ERR(fs_info->cleaner_kthread))
2552 		goto fail_block_groups;
2553 
2554 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2555 						   tree_root,
2556 						   "btrfs-transaction");
2557 	if (IS_ERR(fs_info->transaction_kthread))
2558 		goto fail_cleaner;
2559 
2560 	if (!btrfs_test_opt(tree_root, SSD) &&
2561 	    !btrfs_test_opt(tree_root, NOSSD) &&
2562 	    !fs_info->fs_devices->rotating) {
2563 		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2564 		       "mode\n");
2565 		btrfs_set_opt(fs_info->mount_opt, SSD);
2566 	}
2567 
2568 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2569 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2570 		ret = btrfsic_mount(tree_root, fs_devices,
2571 				    btrfs_test_opt(tree_root,
2572 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2573 				    1 : 0,
2574 				    fs_info->check_integrity_print_mask);
2575 		if (ret)
2576 			printk(KERN_WARNING "btrfs: failed to initialize"
2577 			       " integrity check module %s\n", sb->s_id);
2578 	}
2579 #endif
2580 	ret = btrfs_read_qgroup_config(fs_info);
2581 	if (ret)
2582 		goto fail_trans_kthread;
2583 
2584 	/* do not make disk changes in broken FS */
2585 	if (btrfs_super_log_root(disk_super) != 0) {
2586 		u64 bytenr = btrfs_super_log_root(disk_super);
2587 
2588 		if (fs_devices->rw_devices == 0) {
2589 			printk(KERN_WARNING "Btrfs log replay required "
2590 			       "on RO media\n");
2591 			err = -EIO;
2592 			goto fail_qgroup;
2593 		}
2594 		blocksize =
2595 		     btrfs_level_size(tree_root,
2596 				      btrfs_super_log_root_level(disk_super));
2597 
2598 		log_tree_root = btrfs_alloc_root(fs_info);
2599 		if (!log_tree_root) {
2600 			err = -ENOMEM;
2601 			goto fail_qgroup;
2602 		}
2603 
2604 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2605 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2606 
2607 		log_tree_root->node = read_tree_block(tree_root, bytenr,
2608 						      blocksize,
2609 						      generation + 1);
2610 		/* returns with log_tree_root freed on success */
2611 		ret = btrfs_recover_log_trees(log_tree_root);
2612 		if (ret) {
2613 			btrfs_error(tree_root->fs_info, ret,
2614 				    "Failed to recover log tree");
2615 			free_extent_buffer(log_tree_root->node);
2616 			kfree(log_tree_root);
2617 			goto fail_trans_kthread;
2618 		}
2619 
2620 		if (sb->s_flags & MS_RDONLY) {
2621 			ret = btrfs_commit_super(tree_root);
2622 			if (ret)
2623 				goto fail_trans_kthread;
2624 		}
2625 	}
2626 
2627 	ret = btrfs_find_orphan_roots(tree_root);
2628 	if (ret)
2629 		goto fail_trans_kthread;
2630 
2631 	if (!(sb->s_flags & MS_RDONLY)) {
2632 		ret = btrfs_cleanup_fs_roots(fs_info);
2633 		if (ret)
2634 			goto fail_trans_kthread;
2635 
2636 		ret = btrfs_recover_relocation(tree_root);
2637 		if (ret < 0) {
2638 			printk(KERN_WARNING
2639 			       "btrfs: failed to recover relocation\n");
2640 			err = -EINVAL;
2641 			goto fail_qgroup;
2642 		}
2643 	}
2644 
2645 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2646 	location.type = BTRFS_ROOT_ITEM_KEY;
2647 	location.offset = (u64)-1;
2648 
2649 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2650 	if (!fs_info->fs_root)
2651 		goto fail_qgroup;
2652 	if (IS_ERR(fs_info->fs_root)) {
2653 		err = PTR_ERR(fs_info->fs_root);
2654 		goto fail_qgroup;
2655 	}
2656 
2657 	if (sb->s_flags & MS_RDONLY)
2658 		return 0;
2659 
2660 	down_read(&fs_info->cleanup_work_sem);
2661 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2662 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2663 		up_read(&fs_info->cleanup_work_sem);
2664 		close_ctree(tree_root);
2665 		return ret;
2666 	}
2667 	up_read(&fs_info->cleanup_work_sem);
2668 
2669 	ret = btrfs_resume_balance_async(fs_info);
2670 	if (ret) {
2671 		printk(KERN_WARNING "btrfs: failed to resume balance\n");
2672 		close_ctree(tree_root);
2673 		return ret;
2674 	}
2675 
2676 	ret = btrfs_resume_dev_replace_async(fs_info);
2677 	if (ret) {
2678 		pr_warn("btrfs: failed to resume dev_replace\n");
2679 		close_ctree(tree_root);
2680 		return ret;
2681 	}
2682 
2683 	return 0;
2684 
2685 fail_qgroup:
2686 	btrfs_free_qgroup_config(fs_info);
2687 fail_trans_kthread:
2688 	kthread_stop(fs_info->transaction_kthread);
2689 fail_cleaner:
2690 	kthread_stop(fs_info->cleaner_kthread);
2691 
2692 	/*
2693 	 * make sure we're done with the btree inode before we stop our
2694 	 * kthreads
2695 	 */
2696 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2697 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2698 
2699 fail_block_groups:
2700 	btrfs_free_block_groups(fs_info);
2701 
2702 fail_tree_roots:
2703 	free_root_pointers(fs_info, 1);
2704 
2705 fail_sb_buffer:
2706 	btrfs_stop_workers(&fs_info->generic_worker);
2707 	btrfs_stop_workers(&fs_info->readahead_workers);
2708 	btrfs_stop_workers(&fs_info->fixup_workers);
2709 	btrfs_stop_workers(&fs_info->delalloc_workers);
2710 	btrfs_stop_workers(&fs_info->workers);
2711 	btrfs_stop_workers(&fs_info->endio_workers);
2712 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2713 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2714 	btrfs_stop_workers(&fs_info->endio_write_workers);
2715 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2716 	btrfs_stop_workers(&fs_info->submit_workers);
2717 	btrfs_stop_workers(&fs_info->delayed_workers);
2718 	btrfs_stop_workers(&fs_info->caching_workers);
2719 	btrfs_stop_workers(&fs_info->flush_workers);
2720 fail_alloc:
2721 fail_iput:
2722 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2723 
2724 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2725 	iput(fs_info->btree_inode);
2726 fail_bdi:
2727 	bdi_destroy(&fs_info->bdi);
2728 fail_srcu:
2729 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2730 fail:
2731 	btrfs_close_devices(fs_info->fs_devices);
2732 	return err;
2733 
2734 recovery_tree_root:
2735 	if (!btrfs_test_opt(tree_root, RECOVERY))
2736 		goto fail_tree_roots;
2737 
2738 	free_root_pointers(fs_info, 0);
2739 
2740 	/* don't use the log in recovery mode, it won't be valid */
2741 	btrfs_set_super_log_root(disk_super, 0);
2742 
2743 	/* we can't trust the free space cache either */
2744 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2745 
2746 	ret = next_root_backup(fs_info, fs_info->super_copy,
2747 			       &num_backups_tried, &backup_index);
2748 	if (ret == -1)
2749 		goto fail_block_groups;
2750 	goto retry_root_backup;
2751 }
2752 
2753 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2754 {
2755 	if (uptodate) {
2756 		set_buffer_uptodate(bh);
2757 	} else {
2758 		struct btrfs_device *device = (struct btrfs_device *)
2759 			bh->b_private;
2760 
2761 		printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2762 					  "I/O error on %s\n",
2763 					  rcu_str_deref(device->name));
2764 		/* note, we dont' set_buffer_write_io_error because we have
2765 		 * our own ways of dealing with the IO errors
2766 		 */
2767 		clear_buffer_uptodate(bh);
2768 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2769 	}
2770 	unlock_buffer(bh);
2771 	put_bh(bh);
2772 }
2773 
2774 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2775 {
2776 	struct buffer_head *bh;
2777 	struct buffer_head *latest = NULL;
2778 	struct btrfs_super_block *super;
2779 	int i;
2780 	u64 transid = 0;
2781 	u64 bytenr;
2782 
2783 	/* we would like to check all the supers, but that would make
2784 	 * a btrfs mount succeed after a mkfs from a different FS.
2785 	 * So, we need to add a special mount option to scan for
2786 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2787 	 */
2788 	for (i = 0; i < 1; i++) {
2789 		bytenr = btrfs_sb_offset(i);
2790 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2791 			break;
2792 		bh = __bread(bdev, bytenr / 4096, 4096);
2793 		if (!bh)
2794 			continue;
2795 
2796 		super = (struct btrfs_super_block *)bh->b_data;
2797 		if (btrfs_super_bytenr(super) != bytenr ||
2798 		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2799 			    sizeof(super->magic))) {
2800 			brelse(bh);
2801 			continue;
2802 		}
2803 
2804 		if (!latest || btrfs_super_generation(super) > transid) {
2805 			brelse(latest);
2806 			latest = bh;
2807 			transid = btrfs_super_generation(super);
2808 		} else {
2809 			brelse(bh);
2810 		}
2811 	}
2812 	return latest;
2813 }
2814 
2815 /*
2816  * this should be called twice, once with wait == 0 and
2817  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2818  * we write are pinned.
2819  *
2820  * They are released when wait == 1 is done.
2821  * max_mirrors must be the same for both runs, and it indicates how
2822  * many supers on this one device should be written.
2823  *
2824  * max_mirrors == 0 means to write them all.
2825  */
2826 static int write_dev_supers(struct btrfs_device *device,
2827 			    struct btrfs_super_block *sb,
2828 			    int do_barriers, int wait, int max_mirrors)
2829 {
2830 	struct buffer_head *bh;
2831 	int i;
2832 	int ret;
2833 	int errors = 0;
2834 	u32 crc;
2835 	u64 bytenr;
2836 
2837 	if (max_mirrors == 0)
2838 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2839 
2840 	for (i = 0; i < max_mirrors; i++) {
2841 		bytenr = btrfs_sb_offset(i);
2842 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2843 			break;
2844 
2845 		if (wait) {
2846 			bh = __find_get_block(device->bdev, bytenr / 4096,
2847 					      BTRFS_SUPER_INFO_SIZE);
2848 			BUG_ON(!bh);
2849 			wait_on_buffer(bh);
2850 			if (!buffer_uptodate(bh))
2851 				errors++;
2852 
2853 			/* drop our reference */
2854 			brelse(bh);
2855 
2856 			/* drop the reference from the wait == 0 run */
2857 			brelse(bh);
2858 			continue;
2859 		} else {
2860 			btrfs_set_super_bytenr(sb, bytenr);
2861 
2862 			crc = ~(u32)0;
2863 			crc = btrfs_csum_data(NULL, (char *)sb +
2864 					      BTRFS_CSUM_SIZE, crc,
2865 					      BTRFS_SUPER_INFO_SIZE -
2866 					      BTRFS_CSUM_SIZE);
2867 			btrfs_csum_final(crc, sb->csum);
2868 
2869 			/*
2870 			 * one reference for us, and we leave it for the
2871 			 * caller
2872 			 */
2873 			bh = __getblk(device->bdev, bytenr / 4096,
2874 				      BTRFS_SUPER_INFO_SIZE);
2875 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2876 
2877 			/* one reference for submit_bh */
2878 			get_bh(bh);
2879 
2880 			set_buffer_uptodate(bh);
2881 			lock_buffer(bh);
2882 			bh->b_end_io = btrfs_end_buffer_write_sync;
2883 			bh->b_private = device;
2884 		}
2885 
2886 		/*
2887 		 * we fua the first super.  The others we allow
2888 		 * to go down lazy.
2889 		 */
2890 		ret = btrfsic_submit_bh(WRITE_FUA, bh);
2891 		if (ret)
2892 			errors++;
2893 	}
2894 	return errors < i ? 0 : -1;
2895 }
2896 
2897 /*
2898  * endio for the write_dev_flush, this will wake anyone waiting
2899  * for the barrier when it is done
2900  */
2901 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2902 {
2903 	if (err) {
2904 		if (err == -EOPNOTSUPP)
2905 			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2906 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
2907 	}
2908 	if (bio->bi_private)
2909 		complete(bio->bi_private);
2910 	bio_put(bio);
2911 }
2912 
2913 /*
2914  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2915  * sent down.  With wait == 1, it waits for the previous flush.
2916  *
2917  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2918  * capable
2919  */
2920 static int write_dev_flush(struct btrfs_device *device, int wait)
2921 {
2922 	struct bio *bio;
2923 	int ret = 0;
2924 
2925 	if (device->nobarriers)
2926 		return 0;
2927 
2928 	if (wait) {
2929 		bio = device->flush_bio;
2930 		if (!bio)
2931 			return 0;
2932 
2933 		wait_for_completion(&device->flush_wait);
2934 
2935 		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2936 			printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2937 				      rcu_str_deref(device->name));
2938 			device->nobarriers = 1;
2939 		} else if (!bio_flagged(bio, BIO_UPTODATE)) {
2940 			ret = -EIO;
2941 			btrfs_dev_stat_inc_and_print(device,
2942 				BTRFS_DEV_STAT_FLUSH_ERRS);
2943 		}
2944 
2945 		/* drop the reference from the wait == 0 run */
2946 		bio_put(bio);
2947 		device->flush_bio = NULL;
2948 
2949 		return ret;
2950 	}
2951 
2952 	/*
2953 	 * one reference for us, and we leave it for the
2954 	 * caller
2955 	 */
2956 	device->flush_bio = NULL;
2957 	bio = bio_alloc(GFP_NOFS, 0);
2958 	if (!bio)
2959 		return -ENOMEM;
2960 
2961 	bio->bi_end_io = btrfs_end_empty_barrier;
2962 	bio->bi_bdev = device->bdev;
2963 	init_completion(&device->flush_wait);
2964 	bio->bi_private = &device->flush_wait;
2965 	device->flush_bio = bio;
2966 
2967 	bio_get(bio);
2968 	btrfsic_submit_bio(WRITE_FLUSH, bio);
2969 
2970 	return 0;
2971 }
2972 
2973 /*
2974  * send an empty flush down to each device in parallel,
2975  * then wait for them
2976  */
2977 static int barrier_all_devices(struct btrfs_fs_info *info)
2978 {
2979 	struct list_head *head;
2980 	struct btrfs_device *dev;
2981 	int errors_send = 0;
2982 	int errors_wait = 0;
2983 	int ret;
2984 
2985 	/* send down all the barriers */
2986 	head = &info->fs_devices->devices;
2987 	list_for_each_entry_rcu(dev, head, dev_list) {
2988 		if (!dev->bdev) {
2989 			errors_send++;
2990 			continue;
2991 		}
2992 		if (!dev->in_fs_metadata || !dev->writeable)
2993 			continue;
2994 
2995 		ret = write_dev_flush(dev, 0);
2996 		if (ret)
2997 			errors_send++;
2998 	}
2999 
3000 	/* wait for all the barriers */
3001 	list_for_each_entry_rcu(dev, head, dev_list) {
3002 		if (!dev->bdev) {
3003 			errors_wait++;
3004 			continue;
3005 		}
3006 		if (!dev->in_fs_metadata || !dev->writeable)
3007 			continue;
3008 
3009 		ret = write_dev_flush(dev, 1);
3010 		if (ret)
3011 			errors_wait++;
3012 	}
3013 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3014 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3015 		return -EIO;
3016 	return 0;
3017 }
3018 
3019 int btrfs_calc_num_tolerated_disk_barrier_failures(
3020 	struct btrfs_fs_info *fs_info)
3021 {
3022 	struct btrfs_ioctl_space_info space;
3023 	struct btrfs_space_info *sinfo;
3024 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3025 		       BTRFS_BLOCK_GROUP_SYSTEM,
3026 		       BTRFS_BLOCK_GROUP_METADATA,
3027 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3028 	int num_types = 4;
3029 	int i;
3030 	int c;
3031 	int num_tolerated_disk_barrier_failures =
3032 		(int)fs_info->fs_devices->num_devices;
3033 
3034 	for (i = 0; i < num_types; i++) {
3035 		struct btrfs_space_info *tmp;
3036 
3037 		sinfo = NULL;
3038 		rcu_read_lock();
3039 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3040 			if (tmp->flags == types[i]) {
3041 				sinfo = tmp;
3042 				break;
3043 			}
3044 		}
3045 		rcu_read_unlock();
3046 
3047 		if (!sinfo)
3048 			continue;
3049 
3050 		down_read(&sinfo->groups_sem);
3051 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3052 			if (!list_empty(&sinfo->block_groups[c])) {
3053 				u64 flags;
3054 
3055 				btrfs_get_block_group_info(
3056 					&sinfo->block_groups[c], &space);
3057 				if (space.total_bytes == 0 ||
3058 				    space.used_bytes == 0)
3059 					continue;
3060 				flags = space.flags;
3061 				/*
3062 				 * return
3063 				 * 0: if dup, single or RAID0 is configured for
3064 				 *    any of metadata, system or data, else
3065 				 * 1: if RAID5 is configured, or if RAID1 or
3066 				 *    RAID10 is configured and only two mirrors
3067 				 *    are used, else
3068 				 * 2: if RAID6 is configured, else
3069 				 * num_mirrors - 1: if RAID1 or RAID10 is
3070 				 *                  configured and more than
3071 				 *                  2 mirrors are used.
3072 				 */
3073 				if (num_tolerated_disk_barrier_failures > 0 &&
3074 				    ((flags & (BTRFS_BLOCK_GROUP_DUP |
3075 					       BTRFS_BLOCK_GROUP_RAID0)) ||
3076 				     ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3077 				      == 0)))
3078 					num_tolerated_disk_barrier_failures = 0;
3079 				else if (num_tolerated_disk_barrier_failures > 1
3080 					 &&
3081 					 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3082 						   BTRFS_BLOCK_GROUP_RAID10)))
3083 					num_tolerated_disk_barrier_failures = 1;
3084 			}
3085 		}
3086 		up_read(&sinfo->groups_sem);
3087 	}
3088 
3089 	return num_tolerated_disk_barrier_failures;
3090 }
3091 
3092 int write_all_supers(struct btrfs_root *root, int max_mirrors)
3093 {
3094 	struct list_head *head;
3095 	struct btrfs_device *dev;
3096 	struct btrfs_super_block *sb;
3097 	struct btrfs_dev_item *dev_item;
3098 	int ret;
3099 	int do_barriers;
3100 	int max_errors;
3101 	int total_errors = 0;
3102 	u64 flags;
3103 
3104 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3105 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3106 	backup_super_roots(root->fs_info);
3107 
3108 	sb = root->fs_info->super_for_commit;
3109 	dev_item = &sb->dev_item;
3110 
3111 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3112 	head = &root->fs_info->fs_devices->devices;
3113 
3114 	if (do_barriers) {
3115 		ret = barrier_all_devices(root->fs_info);
3116 		if (ret) {
3117 			mutex_unlock(
3118 				&root->fs_info->fs_devices->device_list_mutex);
3119 			btrfs_error(root->fs_info, ret,
3120 				    "errors while submitting device barriers.");
3121 			return ret;
3122 		}
3123 	}
3124 
3125 	list_for_each_entry_rcu(dev, head, dev_list) {
3126 		if (!dev->bdev) {
3127 			total_errors++;
3128 			continue;
3129 		}
3130 		if (!dev->in_fs_metadata || !dev->writeable)
3131 			continue;
3132 
3133 		btrfs_set_stack_device_generation(dev_item, 0);
3134 		btrfs_set_stack_device_type(dev_item, dev->type);
3135 		btrfs_set_stack_device_id(dev_item, dev->devid);
3136 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3137 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3138 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3139 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3140 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3141 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3142 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3143 
3144 		flags = btrfs_super_flags(sb);
3145 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3146 
3147 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3148 		if (ret)
3149 			total_errors++;
3150 	}
3151 	if (total_errors > max_errors) {
3152 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3153 		       total_errors);
3154 
3155 		/* This shouldn't happen. FUA is masked off if unsupported */
3156 		BUG();
3157 	}
3158 
3159 	total_errors = 0;
3160 	list_for_each_entry_rcu(dev, head, dev_list) {
3161 		if (!dev->bdev)
3162 			continue;
3163 		if (!dev->in_fs_metadata || !dev->writeable)
3164 			continue;
3165 
3166 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3167 		if (ret)
3168 			total_errors++;
3169 	}
3170 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3171 	if (total_errors > max_errors) {
3172 		btrfs_error(root->fs_info, -EIO,
3173 			    "%d errors while writing supers", total_errors);
3174 		return -EIO;
3175 	}
3176 	return 0;
3177 }
3178 
3179 int write_ctree_super(struct btrfs_trans_handle *trans,
3180 		      struct btrfs_root *root, int max_mirrors)
3181 {
3182 	int ret;
3183 
3184 	ret = write_all_supers(root, max_mirrors);
3185 	return ret;
3186 }
3187 
3188 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3189 {
3190 	spin_lock(&fs_info->fs_roots_radix_lock);
3191 	radix_tree_delete(&fs_info->fs_roots_radix,
3192 			  (unsigned long)root->root_key.objectid);
3193 	spin_unlock(&fs_info->fs_roots_radix_lock);
3194 
3195 	if (btrfs_root_refs(&root->root_item) == 0)
3196 		synchronize_srcu(&fs_info->subvol_srcu);
3197 
3198 	__btrfs_remove_free_space_cache(root->free_ino_pinned);
3199 	__btrfs_remove_free_space_cache(root->free_ino_ctl);
3200 	free_fs_root(root);
3201 }
3202 
3203 static void free_fs_root(struct btrfs_root *root)
3204 {
3205 	iput(root->cache_inode);
3206 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3207 	if (root->anon_dev)
3208 		free_anon_bdev(root->anon_dev);
3209 	free_extent_buffer(root->node);
3210 	free_extent_buffer(root->commit_root);
3211 	kfree(root->free_ino_ctl);
3212 	kfree(root->free_ino_pinned);
3213 	kfree(root->name);
3214 	kfree(root);
3215 }
3216 
3217 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3218 {
3219 	int ret;
3220 	struct btrfs_root *gang[8];
3221 	int i;
3222 
3223 	while (!list_empty(&fs_info->dead_roots)) {
3224 		gang[0] = list_entry(fs_info->dead_roots.next,
3225 				     struct btrfs_root, root_list);
3226 		list_del(&gang[0]->root_list);
3227 
3228 		if (gang[0]->in_radix) {
3229 			btrfs_free_fs_root(fs_info, gang[0]);
3230 		} else {
3231 			free_extent_buffer(gang[0]->node);
3232 			free_extent_buffer(gang[0]->commit_root);
3233 			kfree(gang[0]);
3234 		}
3235 	}
3236 
3237 	while (1) {
3238 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3239 					     (void **)gang, 0,
3240 					     ARRAY_SIZE(gang));
3241 		if (!ret)
3242 			break;
3243 		for (i = 0; i < ret; i++)
3244 			btrfs_free_fs_root(fs_info, gang[i]);
3245 	}
3246 }
3247 
3248 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3249 {
3250 	u64 root_objectid = 0;
3251 	struct btrfs_root *gang[8];
3252 	int i;
3253 	int ret;
3254 
3255 	while (1) {
3256 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3257 					     (void **)gang, root_objectid,
3258 					     ARRAY_SIZE(gang));
3259 		if (!ret)
3260 			break;
3261 
3262 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3263 		for (i = 0; i < ret; i++) {
3264 			int err;
3265 
3266 			root_objectid = gang[i]->root_key.objectid;
3267 			err = btrfs_orphan_cleanup(gang[i]);
3268 			if (err)
3269 				return err;
3270 		}
3271 		root_objectid++;
3272 	}
3273 	return 0;
3274 }
3275 
3276 int btrfs_commit_super(struct btrfs_root *root)
3277 {
3278 	struct btrfs_trans_handle *trans;
3279 	int ret;
3280 
3281 	mutex_lock(&root->fs_info->cleaner_mutex);
3282 	btrfs_run_delayed_iputs(root);
3283 	btrfs_clean_old_snapshots(root);
3284 	mutex_unlock(&root->fs_info->cleaner_mutex);
3285 
3286 	/* wait until ongoing cleanup work done */
3287 	down_write(&root->fs_info->cleanup_work_sem);
3288 	up_write(&root->fs_info->cleanup_work_sem);
3289 
3290 	trans = btrfs_join_transaction(root);
3291 	if (IS_ERR(trans))
3292 		return PTR_ERR(trans);
3293 	ret = btrfs_commit_transaction(trans, root);
3294 	if (ret)
3295 		return ret;
3296 	/* run commit again to drop the original snapshot */
3297 	trans = btrfs_join_transaction(root);
3298 	if (IS_ERR(trans))
3299 		return PTR_ERR(trans);
3300 	ret = btrfs_commit_transaction(trans, root);
3301 	if (ret)
3302 		return ret;
3303 	ret = btrfs_write_and_wait_transaction(NULL, root);
3304 	if (ret) {
3305 		btrfs_error(root->fs_info, ret,
3306 			    "Failed to sync btree inode to disk.");
3307 		return ret;
3308 	}
3309 
3310 	ret = write_ctree_super(NULL, root, 0);
3311 	return ret;
3312 }
3313 
3314 int close_ctree(struct btrfs_root *root)
3315 {
3316 	struct btrfs_fs_info *fs_info = root->fs_info;
3317 	int ret;
3318 
3319 	fs_info->closing = 1;
3320 	smp_mb();
3321 
3322 	/* pause restriper - we want to resume on mount */
3323 	btrfs_pause_balance(fs_info);
3324 
3325 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3326 
3327 	btrfs_scrub_cancel(fs_info);
3328 
3329 	/* wait for any defraggers to finish */
3330 	wait_event(fs_info->transaction_wait,
3331 		   (atomic_read(&fs_info->defrag_running) == 0));
3332 
3333 	/* clear out the rbtree of defraggable inodes */
3334 	btrfs_cleanup_defrag_inodes(fs_info);
3335 
3336 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3337 		ret = btrfs_commit_super(root);
3338 		if (ret)
3339 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3340 	}
3341 
3342 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3343 		btrfs_error_commit_super(root);
3344 
3345 	btrfs_put_block_group_cache(fs_info);
3346 
3347 	kthread_stop(fs_info->transaction_kthread);
3348 	kthread_stop(fs_info->cleaner_kthread);
3349 
3350 	fs_info->closing = 2;
3351 	smp_mb();
3352 
3353 	btrfs_free_qgroup_config(root->fs_info);
3354 
3355 	if (fs_info->delalloc_bytes) {
3356 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3357 		       (unsigned long long)fs_info->delalloc_bytes);
3358 	}
3359 
3360 	free_extent_buffer(fs_info->extent_root->node);
3361 	free_extent_buffer(fs_info->extent_root->commit_root);
3362 	free_extent_buffer(fs_info->tree_root->node);
3363 	free_extent_buffer(fs_info->tree_root->commit_root);
3364 	free_extent_buffer(fs_info->chunk_root->node);
3365 	free_extent_buffer(fs_info->chunk_root->commit_root);
3366 	free_extent_buffer(fs_info->dev_root->node);
3367 	free_extent_buffer(fs_info->dev_root->commit_root);
3368 	free_extent_buffer(fs_info->csum_root->node);
3369 	free_extent_buffer(fs_info->csum_root->commit_root);
3370 	if (fs_info->quota_root) {
3371 		free_extent_buffer(fs_info->quota_root->node);
3372 		free_extent_buffer(fs_info->quota_root->commit_root);
3373 	}
3374 
3375 	btrfs_free_block_groups(fs_info);
3376 
3377 	del_fs_roots(fs_info);
3378 
3379 	iput(fs_info->btree_inode);
3380 
3381 	btrfs_stop_workers(&fs_info->generic_worker);
3382 	btrfs_stop_workers(&fs_info->fixup_workers);
3383 	btrfs_stop_workers(&fs_info->delalloc_workers);
3384 	btrfs_stop_workers(&fs_info->workers);
3385 	btrfs_stop_workers(&fs_info->endio_workers);
3386 	btrfs_stop_workers(&fs_info->endio_meta_workers);
3387 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3388 	btrfs_stop_workers(&fs_info->endio_write_workers);
3389 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
3390 	btrfs_stop_workers(&fs_info->submit_workers);
3391 	btrfs_stop_workers(&fs_info->delayed_workers);
3392 	btrfs_stop_workers(&fs_info->caching_workers);
3393 	btrfs_stop_workers(&fs_info->readahead_workers);
3394 	btrfs_stop_workers(&fs_info->flush_workers);
3395 
3396 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3397 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3398 		btrfsic_unmount(root, fs_info->fs_devices);
3399 #endif
3400 
3401 	btrfs_close_devices(fs_info->fs_devices);
3402 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3403 
3404 	bdi_destroy(&fs_info->bdi);
3405 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3406 
3407 	return 0;
3408 }
3409 
3410 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3411 			  int atomic)
3412 {
3413 	int ret;
3414 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3415 
3416 	ret = extent_buffer_uptodate(buf);
3417 	if (!ret)
3418 		return ret;
3419 
3420 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3421 				    parent_transid, atomic);
3422 	if (ret == -EAGAIN)
3423 		return ret;
3424 	return !ret;
3425 }
3426 
3427 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3428 {
3429 	return set_extent_buffer_uptodate(buf);
3430 }
3431 
3432 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3433 {
3434 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3435 	u64 transid = btrfs_header_generation(buf);
3436 	int was_dirty;
3437 
3438 	btrfs_assert_tree_locked(buf);
3439 	if (transid != root->fs_info->generation)
3440 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3441 		       "found %llu running %llu\n",
3442 			(unsigned long long)buf->start,
3443 			(unsigned long long)transid,
3444 			(unsigned long long)root->fs_info->generation);
3445 	was_dirty = set_extent_buffer_dirty(buf);
3446 	if (!was_dirty) {
3447 		spin_lock(&root->fs_info->delalloc_lock);
3448 		root->fs_info->dirty_metadata_bytes += buf->len;
3449 		spin_unlock(&root->fs_info->delalloc_lock);
3450 	}
3451 }
3452 
3453 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3454 					int flush_delayed)
3455 {
3456 	/*
3457 	 * looks as though older kernels can get into trouble with
3458 	 * this code, they end up stuck in balance_dirty_pages forever
3459 	 */
3460 	u64 num_dirty;
3461 	unsigned long thresh = 32 * 1024 * 1024;
3462 
3463 	if (current->flags & PF_MEMALLOC)
3464 		return;
3465 
3466 	if (flush_delayed)
3467 		btrfs_balance_delayed_items(root);
3468 
3469 	num_dirty = root->fs_info->dirty_metadata_bytes;
3470 
3471 	if (num_dirty > thresh) {
3472 		balance_dirty_pages_ratelimited(
3473 				   root->fs_info->btree_inode->i_mapping);
3474 	}
3475 	return;
3476 }
3477 
3478 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3479 {
3480 	__btrfs_btree_balance_dirty(root, 1);
3481 }
3482 
3483 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3484 {
3485 	__btrfs_btree_balance_dirty(root, 0);
3486 }
3487 
3488 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3489 {
3490 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3491 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3492 }
3493 
3494 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3495 			      int read_only)
3496 {
3497 	if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3498 		printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3499 		return -EINVAL;
3500 	}
3501 
3502 	if (read_only)
3503 		return 0;
3504 
3505 	return 0;
3506 }
3507 
3508 void btrfs_error_commit_super(struct btrfs_root *root)
3509 {
3510 	mutex_lock(&root->fs_info->cleaner_mutex);
3511 	btrfs_run_delayed_iputs(root);
3512 	mutex_unlock(&root->fs_info->cleaner_mutex);
3513 
3514 	down_write(&root->fs_info->cleanup_work_sem);
3515 	up_write(&root->fs_info->cleanup_work_sem);
3516 
3517 	/* cleanup FS via transaction */
3518 	btrfs_cleanup_transaction(root);
3519 }
3520 
3521 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3522 {
3523 	struct btrfs_inode *btrfs_inode;
3524 	struct list_head splice;
3525 
3526 	INIT_LIST_HEAD(&splice);
3527 
3528 	mutex_lock(&root->fs_info->ordered_operations_mutex);
3529 	spin_lock(&root->fs_info->ordered_extent_lock);
3530 
3531 	list_splice_init(&root->fs_info->ordered_operations, &splice);
3532 	while (!list_empty(&splice)) {
3533 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3534 					 ordered_operations);
3535 
3536 		list_del_init(&btrfs_inode->ordered_operations);
3537 
3538 		btrfs_invalidate_inodes(btrfs_inode->root);
3539 	}
3540 
3541 	spin_unlock(&root->fs_info->ordered_extent_lock);
3542 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
3543 }
3544 
3545 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3546 {
3547 	struct list_head splice;
3548 	struct btrfs_ordered_extent *ordered;
3549 	struct inode *inode;
3550 
3551 	INIT_LIST_HEAD(&splice);
3552 
3553 	spin_lock(&root->fs_info->ordered_extent_lock);
3554 
3555 	list_splice_init(&root->fs_info->ordered_extents, &splice);
3556 	while (!list_empty(&splice)) {
3557 		ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3558 				     root_extent_list);
3559 
3560 		list_del_init(&ordered->root_extent_list);
3561 		atomic_inc(&ordered->refs);
3562 
3563 		/* the inode may be getting freed (in sys_unlink path). */
3564 		inode = igrab(ordered->inode);
3565 
3566 		spin_unlock(&root->fs_info->ordered_extent_lock);
3567 		if (inode)
3568 			iput(inode);
3569 
3570 		atomic_set(&ordered->refs, 1);
3571 		btrfs_put_ordered_extent(ordered);
3572 
3573 		spin_lock(&root->fs_info->ordered_extent_lock);
3574 	}
3575 
3576 	spin_unlock(&root->fs_info->ordered_extent_lock);
3577 }
3578 
3579 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3580 			       struct btrfs_root *root)
3581 {
3582 	struct rb_node *node;
3583 	struct btrfs_delayed_ref_root *delayed_refs;
3584 	struct btrfs_delayed_ref_node *ref;
3585 	int ret = 0;
3586 
3587 	delayed_refs = &trans->delayed_refs;
3588 
3589 	spin_lock(&delayed_refs->lock);
3590 	if (delayed_refs->num_entries == 0) {
3591 		spin_unlock(&delayed_refs->lock);
3592 		printk(KERN_INFO "delayed_refs has NO entry\n");
3593 		return ret;
3594 	}
3595 
3596 	while ((node = rb_first(&delayed_refs->root)) != NULL) {
3597 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3598 
3599 		atomic_set(&ref->refs, 1);
3600 		if (btrfs_delayed_ref_is_head(ref)) {
3601 			struct btrfs_delayed_ref_head *head;
3602 
3603 			head = btrfs_delayed_node_to_head(ref);
3604 			if (!mutex_trylock(&head->mutex)) {
3605 				atomic_inc(&ref->refs);
3606 				spin_unlock(&delayed_refs->lock);
3607 
3608 				/* Need to wait for the delayed ref to run */
3609 				mutex_lock(&head->mutex);
3610 				mutex_unlock(&head->mutex);
3611 				btrfs_put_delayed_ref(ref);
3612 
3613 				spin_lock(&delayed_refs->lock);
3614 				continue;
3615 			}
3616 
3617 			kfree(head->extent_op);
3618 			delayed_refs->num_heads--;
3619 			if (list_empty(&head->cluster))
3620 				delayed_refs->num_heads_ready--;
3621 			list_del_init(&head->cluster);
3622 		}
3623 		ref->in_tree = 0;
3624 		rb_erase(&ref->rb_node, &delayed_refs->root);
3625 		delayed_refs->num_entries--;
3626 
3627 		spin_unlock(&delayed_refs->lock);
3628 		btrfs_put_delayed_ref(ref);
3629 
3630 		cond_resched();
3631 		spin_lock(&delayed_refs->lock);
3632 	}
3633 
3634 	spin_unlock(&delayed_refs->lock);
3635 
3636 	return ret;
3637 }
3638 
3639 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3640 {
3641 	struct btrfs_pending_snapshot *snapshot;
3642 	struct list_head splice;
3643 
3644 	INIT_LIST_HEAD(&splice);
3645 
3646 	list_splice_init(&t->pending_snapshots, &splice);
3647 
3648 	while (!list_empty(&splice)) {
3649 		snapshot = list_entry(splice.next,
3650 				      struct btrfs_pending_snapshot,
3651 				      list);
3652 
3653 		list_del_init(&snapshot->list);
3654 
3655 		kfree(snapshot);
3656 	}
3657 }
3658 
3659 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3660 {
3661 	struct btrfs_inode *btrfs_inode;
3662 	struct list_head splice;
3663 
3664 	INIT_LIST_HEAD(&splice);
3665 
3666 	spin_lock(&root->fs_info->delalloc_lock);
3667 	list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3668 
3669 	while (!list_empty(&splice)) {
3670 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3671 				    delalloc_inodes);
3672 
3673 		list_del_init(&btrfs_inode->delalloc_inodes);
3674 
3675 		btrfs_invalidate_inodes(btrfs_inode->root);
3676 	}
3677 
3678 	spin_unlock(&root->fs_info->delalloc_lock);
3679 }
3680 
3681 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3682 					struct extent_io_tree *dirty_pages,
3683 					int mark)
3684 {
3685 	int ret;
3686 	struct page *page;
3687 	struct inode *btree_inode = root->fs_info->btree_inode;
3688 	struct extent_buffer *eb;
3689 	u64 start = 0;
3690 	u64 end;
3691 	u64 offset;
3692 	unsigned long index;
3693 
3694 	while (1) {
3695 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3696 					    mark, NULL);
3697 		if (ret)
3698 			break;
3699 
3700 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3701 		while (start <= end) {
3702 			index = start >> PAGE_CACHE_SHIFT;
3703 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3704 			page = find_get_page(btree_inode->i_mapping, index);
3705 			if (!page)
3706 				continue;
3707 			offset = page_offset(page);
3708 
3709 			spin_lock(&dirty_pages->buffer_lock);
3710 			eb = radix_tree_lookup(
3711 			     &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3712 					       offset >> PAGE_CACHE_SHIFT);
3713 			spin_unlock(&dirty_pages->buffer_lock);
3714 			if (eb)
3715 				ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3716 							 &eb->bflags);
3717 			if (PageWriteback(page))
3718 				end_page_writeback(page);
3719 
3720 			lock_page(page);
3721 			if (PageDirty(page)) {
3722 				clear_page_dirty_for_io(page);
3723 				spin_lock_irq(&page->mapping->tree_lock);
3724 				radix_tree_tag_clear(&page->mapping->page_tree,
3725 							page_index(page),
3726 							PAGECACHE_TAG_DIRTY);
3727 				spin_unlock_irq(&page->mapping->tree_lock);
3728 			}
3729 
3730 			unlock_page(page);
3731 			page_cache_release(page);
3732 		}
3733 	}
3734 
3735 	return ret;
3736 }
3737 
3738 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3739 				       struct extent_io_tree *pinned_extents)
3740 {
3741 	struct extent_io_tree *unpin;
3742 	u64 start;
3743 	u64 end;
3744 	int ret;
3745 	bool loop = true;
3746 
3747 	unpin = pinned_extents;
3748 again:
3749 	while (1) {
3750 		ret = find_first_extent_bit(unpin, 0, &start, &end,
3751 					    EXTENT_DIRTY, NULL);
3752 		if (ret)
3753 			break;
3754 
3755 		/* opt_discard */
3756 		if (btrfs_test_opt(root, DISCARD))
3757 			ret = btrfs_error_discard_extent(root, start,
3758 							 end + 1 - start,
3759 							 NULL);
3760 
3761 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
3762 		btrfs_error_unpin_extent_range(root, start, end);
3763 		cond_resched();
3764 	}
3765 
3766 	if (loop) {
3767 		if (unpin == &root->fs_info->freed_extents[0])
3768 			unpin = &root->fs_info->freed_extents[1];
3769 		else
3770 			unpin = &root->fs_info->freed_extents[0];
3771 		loop = false;
3772 		goto again;
3773 	}
3774 
3775 	return 0;
3776 }
3777 
3778 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3779 				   struct btrfs_root *root)
3780 {
3781 	btrfs_destroy_delayed_refs(cur_trans, root);
3782 	btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3783 				cur_trans->dirty_pages.dirty_bytes);
3784 
3785 	/* FIXME: cleanup wait for commit */
3786 	cur_trans->in_commit = 1;
3787 	cur_trans->blocked = 1;
3788 	wake_up(&root->fs_info->transaction_blocked_wait);
3789 
3790 	cur_trans->blocked = 0;
3791 	wake_up(&root->fs_info->transaction_wait);
3792 
3793 	cur_trans->commit_done = 1;
3794 	wake_up(&cur_trans->commit_wait);
3795 
3796 	btrfs_destroy_delayed_inodes(root);
3797 	btrfs_assert_delayed_root_empty(root);
3798 
3799 	btrfs_destroy_pending_snapshots(cur_trans);
3800 
3801 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3802 				     EXTENT_DIRTY);
3803 	btrfs_destroy_pinned_extent(root,
3804 				    root->fs_info->pinned_extents);
3805 
3806 	/*
3807 	memset(cur_trans, 0, sizeof(*cur_trans));
3808 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3809 	*/
3810 }
3811 
3812 int btrfs_cleanup_transaction(struct btrfs_root *root)
3813 {
3814 	struct btrfs_transaction *t;
3815 	LIST_HEAD(list);
3816 
3817 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
3818 
3819 	spin_lock(&root->fs_info->trans_lock);
3820 	list_splice_init(&root->fs_info->trans_list, &list);
3821 	root->fs_info->trans_no_join = 1;
3822 	spin_unlock(&root->fs_info->trans_lock);
3823 
3824 	while (!list_empty(&list)) {
3825 		t = list_entry(list.next, struct btrfs_transaction, list);
3826 		if (!t)
3827 			break;
3828 
3829 		btrfs_destroy_ordered_operations(root);
3830 
3831 		btrfs_destroy_ordered_extents(root);
3832 
3833 		btrfs_destroy_delayed_refs(t, root);
3834 
3835 		btrfs_block_rsv_release(root,
3836 					&root->fs_info->trans_block_rsv,
3837 					t->dirty_pages.dirty_bytes);
3838 
3839 		/* FIXME: cleanup wait for commit */
3840 		t->in_commit = 1;
3841 		t->blocked = 1;
3842 		smp_mb();
3843 		if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3844 			wake_up(&root->fs_info->transaction_blocked_wait);
3845 
3846 		t->blocked = 0;
3847 		smp_mb();
3848 		if (waitqueue_active(&root->fs_info->transaction_wait))
3849 			wake_up(&root->fs_info->transaction_wait);
3850 
3851 		t->commit_done = 1;
3852 		smp_mb();
3853 		if (waitqueue_active(&t->commit_wait))
3854 			wake_up(&t->commit_wait);
3855 
3856 		btrfs_destroy_delayed_inodes(root);
3857 		btrfs_assert_delayed_root_empty(root);
3858 
3859 		btrfs_destroy_pending_snapshots(t);
3860 
3861 		btrfs_destroy_delalloc_inodes(root);
3862 
3863 		spin_lock(&root->fs_info->trans_lock);
3864 		root->fs_info->running_transaction = NULL;
3865 		spin_unlock(&root->fs_info->trans_lock);
3866 
3867 		btrfs_destroy_marked_extents(root, &t->dirty_pages,
3868 					     EXTENT_DIRTY);
3869 
3870 		btrfs_destroy_pinned_extent(root,
3871 					    root->fs_info->pinned_extents);
3872 
3873 		atomic_set(&t->use_count, 0);
3874 		list_del_init(&t->list);
3875 		memset(t, 0, sizeof(*t));
3876 		kmem_cache_free(btrfs_transaction_cachep, t);
3877 	}
3878 
3879 	spin_lock(&root->fs_info->trans_lock);
3880 	root->fs_info->trans_no_join = 0;
3881 	spin_unlock(&root->fs_info->trans_lock);
3882 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3883 
3884 	return 0;
3885 }
3886 
3887 static struct extent_io_ops btree_extent_io_ops = {
3888 	.readpage_end_io_hook = btree_readpage_end_io_hook,
3889 	.readpage_io_failed_hook = btree_io_failed_hook,
3890 	.submit_bio_hook = btree_submit_bio_hook,
3891 	/* note we're sharing with inode.c for the merge bio hook */
3892 	.merge_bio_hook = btrfs_merge_bio_hook,
3893 };
3894