xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 7b73a9c8e26ce5769c41d4b787767c10fe7269db)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <linux/sched/mm.h>
21 #include <asm/unaligned.h>
22 #include <crypto/hash.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "print-tree.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "free-space-cache.h"
32 #include "free-space-tree.h"
33 #include "inode-map.h"
34 #include "check-integrity.h"
35 #include "rcu-string.h"
36 #include "dev-replace.h"
37 #include "raid56.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 #include "compression.h"
41 #include "tree-checker.h"
42 #include "ref-verify.h"
43 #include "block-group.h"
44 
45 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
46 				 BTRFS_HEADER_FLAG_RELOC |\
47 				 BTRFS_SUPER_FLAG_ERROR |\
48 				 BTRFS_SUPER_FLAG_SEEDING |\
49 				 BTRFS_SUPER_FLAG_METADUMP |\
50 				 BTRFS_SUPER_FLAG_METADUMP_V2)
51 
52 static const struct extent_io_ops btree_extent_io_ops;
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 				      struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59 					struct extent_io_tree *dirty_pages,
60 					int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62 				       struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65 
66 /*
67  * btrfs_end_io_wq structs are used to do processing in task context when an IO
68  * is complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct btrfs_end_io_wq {
72 	struct bio *bio;
73 	bio_end_io_t *end_io;
74 	void *private;
75 	struct btrfs_fs_info *info;
76 	blk_status_t status;
77 	enum btrfs_wq_endio_type metadata;
78 	struct btrfs_work work;
79 };
80 
81 static struct kmem_cache *btrfs_end_io_wq_cache;
82 
83 int __init btrfs_end_io_wq_init(void)
84 {
85 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 					sizeof(struct btrfs_end_io_wq),
87 					0,
88 					SLAB_MEM_SPREAD,
89 					NULL);
90 	if (!btrfs_end_io_wq_cache)
91 		return -ENOMEM;
92 	return 0;
93 }
94 
95 void __cold btrfs_end_io_wq_exit(void)
96 {
97 	kmem_cache_destroy(btrfs_end_io_wq_cache);
98 }
99 
100 /*
101  * async submit bios are used to offload expensive checksumming
102  * onto the worker threads.  They checksum file and metadata bios
103  * just before they are sent down the IO stack.
104  */
105 struct async_submit_bio {
106 	void *private_data;
107 	struct bio *bio;
108 	extent_submit_bio_start_t *submit_bio_start;
109 	int mirror_num;
110 	/*
111 	 * bio_offset is optional, can be used if the pages in the bio
112 	 * can't tell us where in the file the bio should go
113 	 */
114 	u64 bio_offset;
115 	struct btrfs_work work;
116 	blk_status_t status;
117 };
118 
119 /*
120  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
121  * eb, the lockdep key is determined by the btrfs_root it belongs to and
122  * the level the eb occupies in the tree.
123  *
124  * Different roots are used for different purposes and may nest inside each
125  * other and they require separate keysets.  As lockdep keys should be
126  * static, assign keysets according to the purpose of the root as indicated
127  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
128  * roots have separate keysets.
129  *
130  * Lock-nesting across peer nodes is always done with the immediate parent
131  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
132  * subclass to avoid triggering lockdep warning in such cases.
133  *
134  * The key is set by the readpage_end_io_hook after the buffer has passed
135  * csum validation but before the pages are unlocked.  It is also set by
136  * btrfs_init_new_buffer on freshly allocated blocks.
137  *
138  * We also add a check to make sure the highest level of the tree is the
139  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
140  * needs update as well.
141  */
142 #ifdef CONFIG_DEBUG_LOCK_ALLOC
143 # if BTRFS_MAX_LEVEL != 8
144 #  error
145 # endif
146 
147 static struct btrfs_lockdep_keyset {
148 	u64			id;		/* root objectid */
149 	const char		*name_stem;	/* lock name stem */
150 	char			names[BTRFS_MAX_LEVEL + 1][20];
151 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
152 } btrfs_lockdep_keysets[] = {
153 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
154 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
155 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
156 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
157 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
158 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
159 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
160 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
161 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
162 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
163 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
164 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
165 	{ .id = 0,				.name_stem = "tree"	},
166 };
167 
168 void __init btrfs_init_lockdep(void)
169 {
170 	int i, j;
171 
172 	/* initialize lockdep class names */
173 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
174 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
175 
176 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
177 			snprintf(ks->names[j], sizeof(ks->names[j]),
178 				 "btrfs-%s-%02d", ks->name_stem, j);
179 	}
180 }
181 
182 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
183 				    int level)
184 {
185 	struct btrfs_lockdep_keyset *ks;
186 
187 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
188 
189 	/* find the matching keyset, id 0 is the default entry */
190 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
191 		if (ks->id == objectid)
192 			break;
193 
194 	lockdep_set_class_and_name(&eb->lock,
195 				   &ks->keys[level], ks->names[level]);
196 }
197 
198 #endif
199 
200 /*
201  * extents on the btree inode are pretty simple, there's one extent
202  * that covers the entire device
203  */
204 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
205 		struct page *page, size_t pg_offset, u64 start, u64 len,
206 		int create)
207 {
208 	struct extent_map_tree *em_tree = &inode->extent_tree;
209 	struct extent_map *em;
210 	int ret;
211 
212 	read_lock(&em_tree->lock);
213 	em = lookup_extent_mapping(em_tree, start, len);
214 	if (em) {
215 		read_unlock(&em_tree->lock);
216 		goto out;
217 	}
218 	read_unlock(&em_tree->lock);
219 
220 	em = alloc_extent_map();
221 	if (!em) {
222 		em = ERR_PTR(-ENOMEM);
223 		goto out;
224 	}
225 	em->start = 0;
226 	em->len = (u64)-1;
227 	em->block_len = (u64)-1;
228 	em->block_start = 0;
229 
230 	write_lock(&em_tree->lock);
231 	ret = add_extent_mapping(em_tree, em, 0);
232 	if (ret == -EEXIST) {
233 		free_extent_map(em);
234 		em = lookup_extent_mapping(em_tree, start, len);
235 		if (!em)
236 			em = ERR_PTR(-EIO);
237 	} else if (ret) {
238 		free_extent_map(em);
239 		em = ERR_PTR(ret);
240 	}
241 	write_unlock(&em_tree->lock);
242 
243 out:
244 	return em;
245 }
246 
247 /*
248  * Compute the csum of a btree block and store the result to provided buffer.
249  *
250  * Returns error if the extent buffer cannot be mapped.
251  */
252 static int csum_tree_block(struct extent_buffer *buf, u8 *result)
253 {
254 	struct btrfs_fs_info *fs_info = buf->fs_info;
255 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
256 	unsigned long len;
257 	unsigned long cur_len;
258 	unsigned long offset = BTRFS_CSUM_SIZE;
259 	char *kaddr;
260 	unsigned long map_start;
261 	unsigned long map_len;
262 	int err;
263 
264 	shash->tfm = fs_info->csum_shash;
265 	crypto_shash_init(shash);
266 
267 	len = buf->len - offset;
268 
269 	while (len > 0) {
270 		/*
271 		 * Note: we don't need to check for the err == 1 case here, as
272 		 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
273 		 * and 'min_len = 32' and the currently implemented mapping
274 		 * algorithm we cannot cross a page boundary.
275 		 */
276 		err = map_private_extent_buffer(buf, offset, 32,
277 					&kaddr, &map_start, &map_len);
278 		if (WARN_ON(err))
279 			return err;
280 		cur_len = min(len, map_len - (offset - map_start));
281 		crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
282 		len -= cur_len;
283 		offset += cur_len;
284 	}
285 	memset(result, 0, BTRFS_CSUM_SIZE);
286 
287 	crypto_shash_final(shash, result);
288 
289 	return 0;
290 }
291 
292 /*
293  * we can't consider a given block up to date unless the transid of the
294  * block matches the transid in the parent node's pointer.  This is how we
295  * detect blocks that either didn't get written at all or got written
296  * in the wrong place.
297  */
298 static int verify_parent_transid(struct extent_io_tree *io_tree,
299 				 struct extent_buffer *eb, u64 parent_transid,
300 				 int atomic)
301 {
302 	struct extent_state *cached_state = NULL;
303 	int ret;
304 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
305 
306 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
307 		return 0;
308 
309 	if (atomic)
310 		return -EAGAIN;
311 
312 	if (need_lock) {
313 		btrfs_tree_read_lock(eb);
314 		btrfs_set_lock_blocking_read(eb);
315 	}
316 
317 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
318 			 &cached_state);
319 	if (extent_buffer_uptodate(eb) &&
320 	    btrfs_header_generation(eb) == parent_transid) {
321 		ret = 0;
322 		goto out;
323 	}
324 	btrfs_err_rl(eb->fs_info,
325 		"parent transid verify failed on %llu wanted %llu found %llu",
326 			eb->start,
327 			parent_transid, btrfs_header_generation(eb));
328 	ret = 1;
329 
330 	/*
331 	 * Things reading via commit roots that don't have normal protection,
332 	 * like send, can have a really old block in cache that may point at a
333 	 * block that has been freed and re-allocated.  So don't clear uptodate
334 	 * if we find an eb that is under IO (dirty/writeback) because we could
335 	 * end up reading in the stale data and then writing it back out and
336 	 * making everybody very sad.
337 	 */
338 	if (!extent_buffer_under_io(eb))
339 		clear_extent_buffer_uptodate(eb);
340 out:
341 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
342 			     &cached_state);
343 	if (need_lock)
344 		btrfs_tree_read_unlock_blocking(eb);
345 	return ret;
346 }
347 
348 static bool btrfs_supported_super_csum(u16 csum_type)
349 {
350 	switch (csum_type) {
351 	case BTRFS_CSUM_TYPE_CRC32:
352 	case BTRFS_CSUM_TYPE_XXHASH:
353 	case BTRFS_CSUM_TYPE_SHA256:
354 	case BTRFS_CSUM_TYPE_BLAKE2:
355 		return true;
356 	default:
357 		return false;
358 	}
359 }
360 
361 /*
362  * Return 0 if the superblock checksum type matches the checksum value of that
363  * algorithm. Pass the raw disk superblock data.
364  */
365 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
366 				  char *raw_disk_sb)
367 {
368 	struct btrfs_super_block *disk_sb =
369 		(struct btrfs_super_block *)raw_disk_sb;
370 	char result[BTRFS_CSUM_SIZE];
371 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
372 
373 	shash->tfm = fs_info->csum_shash;
374 	crypto_shash_init(shash);
375 
376 	/*
377 	 * The super_block structure does not span the whole
378 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
379 	 * filled with zeros and is included in the checksum.
380 	 */
381 	crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
382 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
383 	crypto_shash_final(shash, result);
384 
385 	if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
386 		return 1;
387 
388 	return 0;
389 }
390 
391 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
392 			   struct btrfs_key *first_key, u64 parent_transid)
393 {
394 	struct btrfs_fs_info *fs_info = eb->fs_info;
395 	int found_level;
396 	struct btrfs_key found_key;
397 	int ret;
398 
399 	found_level = btrfs_header_level(eb);
400 	if (found_level != level) {
401 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
402 		     KERN_ERR "BTRFS: tree level check failed\n");
403 		btrfs_err(fs_info,
404 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
405 			  eb->start, level, found_level);
406 		return -EIO;
407 	}
408 
409 	if (!first_key)
410 		return 0;
411 
412 	/*
413 	 * For live tree block (new tree blocks in current transaction),
414 	 * we need proper lock context to avoid race, which is impossible here.
415 	 * So we only checks tree blocks which is read from disk, whose
416 	 * generation <= fs_info->last_trans_committed.
417 	 */
418 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
419 		return 0;
420 
421 	/* We have @first_key, so this @eb must have at least one item */
422 	if (btrfs_header_nritems(eb) == 0) {
423 		btrfs_err(fs_info,
424 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
425 			  eb->start);
426 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
427 		return -EUCLEAN;
428 	}
429 
430 	if (found_level)
431 		btrfs_node_key_to_cpu(eb, &found_key, 0);
432 	else
433 		btrfs_item_key_to_cpu(eb, &found_key, 0);
434 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
435 
436 	if (ret) {
437 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
438 		     KERN_ERR "BTRFS: tree first key check failed\n");
439 		btrfs_err(fs_info,
440 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
441 			  eb->start, parent_transid, first_key->objectid,
442 			  first_key->type, first_key->offset,
443 			  found_key.objectid, found_key.type,
444 			  found_key.offset);
445 	}
446 	return ret;
447 }
448 
449 /*
450  * helper to read a given tree block, doing retries as required when
451  * the checksums don't match and we have alternate mirrors to try.
452  *
453  * @parent_transid:	expected transid, skip check if 0
454  * @level:		expected level, mandatory check
455  * @first_key:		expected key of first slot, skip check if NULL
456  */
457 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
458 					  u64 parent_transid, int level,
459 					  struct btrfs_key *first_key)
460 {
461 	struct btrfs_fs_info *fs_info = eb->fs_info;
462 	struct extent_io_tree *io_tree;
463 	int failed = 0;
464 	int ret;
465 	int num_copies = 0;
466 	int mirror_num = 0;
467 	int failed_mirror = 0;
468 
469 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
470 	while (1) {
471 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
472 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
473 		if (!ret) {
474 			if (verify_parent_transid(io_tree, eb,
475 						   parent_transid, 0))
476 				ret = -EIO;
477 			else if (btrfs_verify_level_key(eb, level,
478 						first_key, parent_transid))
479 				ret = -EUCLEAN;
480 			else
481 				break;
482 		}
483 
484 		num_copies = btrfs_num_copies(fs_info,
485 					      eb->start, eb->len);
486 		if (num_copies == 1)
487 			break;
488 
489 		if (!failed_mirror) {
490 			failed = 1;
491 			failed_mirror = eb->read_mirror;
492 		}
493 
494 		mirror_num++;
495 		if (mirror_num == failed_mirror)
496 			mirror_num++;
497 
498 		if (mirror_num > num_copies)
499 			break;
500 	}
501 
502 	if (failed && !ret && failed_mirror)
503 		btrfs_repair_eb_io_failure(eb, failed_mirror);
504 
505 	return ret;
506 }
507 
508 /*
509  * checksum a dirty tree block before IO.  This has extra checks to make sure
510  * we only fill in the checksum field in the first page of a multi-page block
511  */
512 
513 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
514 {
515 	u64 start = page_offset(page);
516 	u64 found_start;
517 	u8 result[BTRFS_CSUM_SIZE];
518 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
519 	struct extent_buffer *eb;
520 	int ret;
521 
522 	eb = (struct extent_buffer *)page->private;
523 	if (page != eb->pages[0])
524 		return 0;
525 
526 	found_start = btrfs_header_bytenr(eb);
527 	/*
528 	 * Please do not consolidate these warnings into a single if.
529 	 * It is useful to know what went wrong.
530 	 */
531 	if (WARN_ON(found_start != start))
532 		return -EUCLEAN;
533 	if (WARN_ON(!PageUptodate(page)))
534 		return -EUCLEAN;
535 
536 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
537 			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
538 
539 	if (csum_tree_block(eb, result))
540 		return -EINVAL;
541 
542 	if (btrfs_header_level(eb))
543 		ret = btrfs_check_node(eb);
544 	else
545 		ret = btrfs_check_leaf_full(eb);
546 
547 	if (ret < 0) {
548 		btrfs_print_tree(eb, 0);
549 		btrfs_err(fs_info,
550 		"block=%llu write time tree block corruption detected",
551 			  eb->start);
552 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
553 		return ret;
554 	}
555 	write_extent_buffer(eb, result, 0, csum_size);
556 
557 	return 0;
558 }
559 
560 static int check_tree_block_fsid(struct extent_buffer *eb)
561 {
562 	struct btrfs_fs_info *fs_info = eb->fs_info;
563 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
564 	u8 fsid[BTRFS_FSID_SIZE];
565 	int ret = 1;
566 
567 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
568 	while (fs_devices) {
569 		u8 *metadata_uuid;
570 
571 		/*
572 		 * Checking the incompat flag is only valid for the current
573 		 * fs. For seed devices it's forbidden to have their uuid
574 		 * changed so reading ->fsid in this case is fine
575 		 */
576 		if (fs_devices == fs_info->fs_devices &&
577 		    btrfs_fs_incompat(fs_info, METADATA_UUID))
578 			metadata_uuid = fs_devices->metadata_uuid;
579 		else
580 			metadata_uuid = fs_devices->fsid;
581 
582 		if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
583 			ret = 0;
584 			break;
585 		}
586 		fs_devices = fs_devices->seed;
587 	}
588 	return ret;
589 }
590 
591 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
592 				      u64 phy_offset, struct page *page,
593 				      u64 start, u64 end, int mirror)
594 {
595 	u64 found_start;
596 	int found_level;
597 	struct extent_buffer *eb;
598 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
599 	struct btrfs_fs_info *fs_info = root->fs_info;
600 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
601 	int ret = 0;
602 	u8 result[BTRFS_CSUM_SIZE];
603 	int reads_done;
604 
605 	if (!page->private)
606 		goto out;
607 
608 	eb = (struct extent_buffer *)page->private;
609 
610 	/* the pending IO might have been the only thing that kept this buffer
611 	 * in memory.  Make sure we have a ref for all this other checks
612 	 */
613 	atomic_inc(&eb->refs);
614 
615 	reads_done = atomic_dec_and_test(&eb->io_pages);
616 	if (!reads_done)
617 		goto err;
618 
619 	eb->read_mirror = mirror;
620 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
621 		ret = -EIO;
622 		goto err;
623 	}
624 
625 	found_start = btrfs_header_bytenr(eb);
626 	if (found_start != eb->start) {
627 		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
628 			     eb->start, found_start);
629 		ret = -EIO;
630 		goto err;
631 	}
632 	if (check_tree_block_fsid(eb)) {
633 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
634 			     eb->start);
635 		ret = -EIO;
636 		goto err;
637 	}
638 	found_level = btrfs_header_level(eb);
639 	if (found_level >= BTRFS_MAX_LEVEL) {
640 		btrfs_err(fs_info, "bad tree block level %d on %llu",
641 			  (int)btrfs_header_level(eb), eb->start);
642 		ret = -EIO;
643 		goto err;
644 	}
645 
646 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
647 				       eb, found_level);
648 
649 	ret = csum_tree_block(eb, result);
650 	if (ret)
651 		goto err;
652 
653 	if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
654 		u32 val;
655 		u32 found = 0;
656 
657 		memcpy(&found, result, csum_size);
658 
659 		read_extent_buffer(eb, &val, 0, csum_size);
660 		btrfs_warn_rl(fs_info,
661 		"%s checksum verify failed on %llu wanted %x found %x level %d",
662 			      fs_info->sb->s_id, eb->start,
663 			      val, found, btrfs_header_level(eb));
664 		ret = -EUCLEAN;
665 		goto err;
666 	}
667 
668 	/*
669 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
670 	 * that we don't try and read the other copies of this block, just
671 	 * return -EIO.
672 	 */
673 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
674 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
675 		ret = -EIO;
676 	}
677 
678 	if (found_level > 0 && btrfs_check_node(eb))
679 		ret = -EIO;
680 
681 	if (!ret)
682 		set_extent_buffer_uptodate(eb);
683 	else
684 		btrfs_err(fs_info,
685 			  "block=%llu read time tree block corruption detected",
686 			  eb->start);
687 err:
688 	if (reads_done &&
689 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
690 		btree_readahead_hook(eb, ret);
691 
692 	if (ret) {
693 		/*
694 		 * our io error hook is going to dec the io pages
695 		 * again, we have to make sure it has something
696 		 * to decrement
697 		 */
698 		atomic_inc(&eb->io_pages);
699 		clear_extent_buffer_uptodate(eb);
700 	}
701 	free_extent_buffer(eb);
702 out:
703 	return ret;
704 }
705 
706 static void end_workqueue_bio(struct bio *bio)
707 {
708 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
709 	struct btrfs_fs_info *fs_info;
710 	struct btrfs_workqueue *wq;
711 
712 	fs_info = end_io_wq->info;
713 	end_io_wq->status = bio->bi_status;
714 
715 	if (bio_op(bio) == REQ_OP_WRITE) {
716 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
717 			wq = fs_info->endio_meta_write_workers;
718 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
719 			wq = fs_info->endio_freespace_worker;
720 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
721 			wq = fs_info->endio_raid56_workers;
722 		else
723 			wq = fs_info->endio_write_workers;
724 	} else {
725 		if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
726 			wq = fs_info->endio_repair_workers;
727 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
728 			wq = fs_info->endio_raid56_workers;
729 		else if (end_io_wq->metadata)
730 			wq = fs_info->endio_meta_workers;
731 		else
732 			wq = fs_info->endio_workers;
733 	}
734 
735 	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
736 	btrfs_queue_work(wq, &end_io_wq->work);
737 }
738 
739 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
740 			enum btrfs_wq_endio_type metadata)
741 {
742 	struct btrfs_end_io_wq *end_io_wq;
743 
744 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
745 	if (!end_io_wq)
746 		return BLK_STS_RESOURCE;
747 
748 	end_io_wq->private = bio->bi_private;
749 	end_io_wq->end_io = bio->bi_end_io;
750 	end_io_wq->info = info;
751 	end_io_wq->status = 0;
752 	end_io_wq->bio = bio;
753 	end_io_wq->metadata = metadata;
754 
755 	bio->bi_private = end_io_wq;
756 	bio->bi_end_io = end_workqueue_bio;
757 	return 0;
758 }
759 
760 static void run_one_async_start(struct btrfs_work *work)
761 {
762 	struct async_submit_bio *async;
763 	blk_status_t ret;
764 
765 	async = container_of(work, struct  async_submit_bio, work);
766 	ret = async->submit_bio_start(async->private_data, async->bio,
767 				      async->bio_offset);
768 	if (ret)
769 		async->status = ret;
770 }
771 
772 /*
773  * In order to insert checksums into the metadata in large chunks, we wait
774  * until bio submission time.   All the pages in the bio are checksummed and
775  * sums are attached onto the ordered extent record.
776  *
777  * At IO completion time the csums attached on the ordered extent record are
778  * inserted into the tree.
779  */
780 static void run_one_async_done(struct btrfs_work *work)
781 {
782 	struct async_submit_bio *async;
783 	struct inode *inode;
784 	blk_status_t ret;
785 
786 	async = container_of(work, struct  async_submit_bio, work);
787 	inode = async->private_data;
788 
789 	/* If an error occurred we just want to clean up the bio and move on */
790 	if (async->status) {
791 		async->bio->bi_status = async->status;
792 		bio_endio(async->bio);
793 		return;
794 	}
795 
796 	/*
797 	 * All of the bios that pass through here are from async helpers.
798 	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
799 	 * This changes nothing when cgroups aren't in use.
800 	 */
801 	async->bio->bi_opf |= REQ_CGROUP_PUNT;
802 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
803 	if (ret) {
804 		async->bio->bi_status = ret;
805 		bio_endio(async->bio);
806 	}
807 }
808 
809 static void run_one_async_free(struct btrfs_work *work)
810 {
811 	struct async_submit_bio *async;
812 
813 	async = container_of(work, struct  async_submit_bio, work);
814 	kfree(async);
815 }
816 
817 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
818 				 int mirror_num, unsigned long bio_flags,
819 				 u64 bio_offset, void *private_data,
820 				 extent_submit_bio_start_t *submit_bio_start)
821 {
822 	struct async_submit_bio *async;
823 
824 	async = kmalloc(sizeof(*async), GFP_NOFS);
825 	if (!async)
826 		return BLK_STS_RESOURCE;
827 
828 	async->private_data = private_data;
829 	async->bio = bio;
830 	async->mirror_num = mirror_num;
831 	async->submit_bio_start = submit_bio_start;
832 
833 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
834 			run_one_async_free);
835 
836 	async->bio_offset = bio_offset;
837 
838 	async->status = 0;
839 
840 	if (op_is_sync(bio->bi_opf))
841 		btrfs_set_work_high_priority(&async->work);
842 
843 	btrfs_queue_work(fs_info->workers, &async->work);
844 	return 0;
845 }
846 
847 static blk_status_t btree_csum_one_bio(struct bio *bio)
848 {
849 	struct bio_vec *bvec;
850 	struct btrfs_root *root;
851 	int ret = 0;
852 	struct bvec_iter_all iter_all;
853 
854 	ASSERT(!bio_flagged(bio, BIO_CLONED));
855 	bio_for_each_segment_all(bvec, bio, iter_all) {
856 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
857 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
858 		if (ret)
859 			break;
860 	}
861 
862 	return errno_to_blk_status(ret);
863 }
864 
865 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
866 					     u64 bio_offset)
867 {
868 	/*
869 	 * when we're called for a write, we're already in the async
870 	 * submission context.  Just jump into btrfs_map_bio
871 	 */
872 	return btree_csum_one_bio(bio);
873 }
874 
875 static int check_async_write(struct btrfs_fs_info *fs_info,
876 			     struct btrfs_inode *bi)
877 {
878 	if (atomic_read(&bi->sync_writers))
879 		return 0;
880 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
881 		return 0;
882 	return 1;
883 }
884 
885 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
886 					  int mirror_num,
887 					  unsigned long bio_flags)
888 {
889 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
890 	int async = check_async_write(fs_info, BTRFS_I(inode));
891 	blk_status_t ret;
892 
893 	if (bio_op(bio) != REQ_OP_WRITE) {
894 		/*
895 		 * called for a read, do the setup so that checksum validation
896 		 * can happen in the async kernel threads
897 		 */
898 		ret = btrfs_bio_wq_end_io(fs_info, bio,
899 					  BTRFS_WQ_ENDIO_METADATA);
900 		if (ret)
901 			goto out_w_error;
902 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
903 	} else if (!async) {
904 		ret = btree_csum_one_bio(bio);
905 		if (ret)
906 			goto out_w_error;
907 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
908 	} else {
909 		/*
910 		 * kthread helpers are used to submit writes so that
911 		 * checksumming can happen in parallel across all CPUs
912 		 */
913 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
914 					  0, inode, btree_submit_bio_start);
915 	}
916 
917 	if (ret)
918 		goto out_w_error;
919 	return 0;
920 
921 out_w_error:
922 	bio->bi_status = ret;
923 	bio_endio(bio);
924 	return ret;
925 }
926 
927 #ifdef CONFIG_MIGRATION
928 static int btree_migratepage(struct address_space *mapping,
929 			struct page *newpage, struct page *page,
930 			enum migrate_mode mode)
931 {
932 	/*
933 	 * we can't safely write a btree page from here,
934 	 * we haven't done the locking hook
935 	 */
936 	if (PageDirty(page))
937 		return -EAGAIN;
938 	/*
939 	 * Buffers may be managed in a filesystem specific way.
940 	 * We must have no buffers or drop them.
941 	 */
942 	if (page_has_private(page) &&
943 	    !try_to_release_page(page, GFP_KERNEL))
944 		return -EAGAIN;
945 	return migrate_page(mapping, newpage, page, mode);
946 }
947 #endif
948 
949 
950 static int btree_writepages(struct address_space *mapping,
951 			    struct writeback_control *wbc)
952 {
953 	struct btrfs_fs_info *fs_info;
954 	int ret;
955 
956 	if (wbc->sync_mode == WB_SYNC_NONE) {
957 
958 		if (wbc->for_kupdate)
959 			return 0;
960 
961 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
962 		/* this is a bit racy, but that's ok */
963 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
964 					     BTRFS_DIRTY_METADATA_THRESH,
965 					     fs_info->dirty_metadata_batch);
966 		if (ret < 0)
967 			return 0;
968 	}
969 	return btree_write_cache_pages(mapping, wbc);
970 }
971 
972 static int btree_readpage(struct file *file, struct page *page)
973 {
974 	struct extent_io_tree *tree;
975 	tree = &BTRFS_I(page->mapping->host)->io_tree;
976 	return extent_read_full_page(tree, page, btree_get_extent, 0);
977 }
978 
979 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
980 {
981 	if (PageWriteback(page) || PageDirty(page))
982 		return 0;
983 
984 	return try_release_extent_buffer(page);
985 }
986 
987 static void btree_invalidatepage(struct page *page, unsigned int offset,
988 				 unsigned int length)
989 {
990 	struct extent_io_tree *tree;
991 	tree = &BTRFS_I(page->mapping->host)->io_tree;
992 	extent_invalidatepage(tree, page, offset);
993 	btree_releasepage(page, GFP_NOFS);
994 	if (PagePrivate(page)) {
995 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
996 			   "page private not zero on page %llu",
997 			   (unsigned long long)page_offset(page));
998 		ClearPagePrivate(page);
999 		set_page_private(page, 0);
1000 		put_page(page);
1001 	}
1002 }
1003 
1004 static int btree_set_page_dirty(struct page *page)
1005 {
1006 #ifdef DEBUG
1007 	struct extent_buffer *eb;
1008 
1009 	BUG_ON(!PagePrivate(page));
1010 	eb = (struct extent_buffer *)page->private;
1011 	BUG_ON(!eb);
1012 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1013 	BUG_ON(!atomic_read(&eb->refs));
1014 	btrfs_assert_tree_locked(eb);
1015 #endif
1016 	return __set_page_dirty_nobuffers(page);
1017 }
1018 
1019 static const struct address_space_operations btree_aops = {
1020 	.readpage	= btree_readpage,
1021 	.writepages	= btree_writepages,
1022 	.releasepage	= btree_releasepage,
1023 	.invalidatepage = btree_invalidatepage,
1024 #ifdef CONFIG_MIGRATION
1025 	.migratepage	= btree_migratepage,
1026 #endif
1027 	.set_page_dirty = btree_set_page_dirty,
1028 };
1029 
1030 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1031 {
1032 	struct extent_buffer *buf = NULL;
1033 	int ret;
1034 
1035 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1036 	if (IS_ERR(buf))
1037 		return;
1038 
1039 	ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1040 	if (ret < 0)
1041 		free_extent_buffer_stale(buf);
1042 	else
1043 		free_extent_buffer(buf);
1044 }
1045 
1046 struct extent_buffer *btrfs_find_create_tree_block(
1047 						struct btrfs_fs_info *fs_info,
1048 						u64 bytenr)
1049 {
1050 	if (btrfs_is_testing(fs_info))
1051 		return alloc_test_extent_buffer(fs_info, bytenr);
1052 	return alloc_extent_buffer(fs_info, bytenr);
1053 }
1054 
1055 /*
1056  * Read tree block at logical address @bytenr and do variant basic but critical
1057  * verification.
1058  *
1059  * @parent_transid:	expected transid of this tree block, skip check if 0
1060  * @level:		expected level, mandatory check
1061  * @first_key:		expected key in slot 0, skip check if NULL
1062  */
1063 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1064 				      u64 parent_transid, int level,
1065 				      struct btrfs_key *first_key)
1066 {
1067 	struct extent_buffer *buf = NULL;
1068 	int ret;
1069 
1070 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1071 	if (IS_ERR(buf))
1072 		return buf;
1073 
1074 	ret = btree_read_extent_buffer_pages(buf, parent_transid,
1075 					     level, first_key);
1076 	if (ret) {
1077 		free_extent_buffer_stale(buf);
1078 		return ERR_PTR(ret);
1079 	}
1080 	return buf;
1081 
1082 }
1083 
1084 void btrfs_clean_tree_block(struct extent_buffer *buf)
1085 {
1086 	struct btrfs_fs_info *fs_info = buf->fs_info;
1087 	if (btrfs_header_generation(buf) ==
1088 	    fs_info->running_transaction->transid) {
1089 		btrfs_assert_tree_locked(buf);
1090 
1091 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1092 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1093 						 -buf->len,
1094 						 fs_info->dirty_metadata_batch);
1095 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1096 			btrfs_set_lock_blocking_write(buf);
1097 			clear_extent_buffer_dirty(buf);
1098 		}
1099 	}
1100 }
1101 
1102 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1103 {
1104 	struct btrfs_subvolume_writers *writers;
1105 	int ret;
1106 
1107 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1108 	if (!writers)
1109 		return ERR_PTR(-ENOMEM);
1110 
1111 	ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1112 	if (ret < 0) {
1113 		kfree(writers);
1114 		return ERR_PTR(ret);
1115 	}
1116 
1117 	init_waitqueue_head(&writers->wait);
1118 	return writers;
1119 }
1120 
1121 static void
1122 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1123 {
1124 	percpu_counter_destroy(&writers->counter);
1125 	kfree(writers);
1126 }
1127 
1128 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1129 			 u64 objectid)
1130 {
1131 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1132 	root->node = NULL;
1133 	root->commit_root = NULL;
1134 	root->state = 0;
1135 	root->orphan_cleanup_state = 0;
1136 
1137 	root->last_trans = 0;
1138 	root->highest_objectid = 0;
1139 	root->nr_delalloc_inodes = 0;
1140 	root->nr_ordered_extents = 0;
1141 	root->inode_tree = RB_ROOT;
1142 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1143 	root->block_rsv = NULL;
1144 
1145 	INIT_LIST_HEAD(&root->dirty_list);
1146 	INIT_LIST_HEAD(&root->root_list);
1147 	INIT_LIST_HEAD(&root->delalloc_inodes);
1148 	INIT_LIST_HEAD(&root->delalloc_root);
1149 	INIT_LIST_HEAD(&root->ordered_extents);
1150 	INIT_LIST_HEAD(&root->ordered_root);
1151 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1152 	INIT_LIST_HEAD(&root->logged_list[0]);
1153 	INIT_LIST_HEAD(&root->logged_list[1]);
1154 	spin_lock_init(&root->inode_lock);
1155 	spin_lock_init(&root->delalloc_lock);
1156 	spin_lock_init(&root->ordered_extent_lock);
1157 	spin_lock_init(&root->accounting_lock);
1158 	spin_lock_init(&root->log_extents_lock[0]);
1159 	spin_lock_init(&root->log_extents_lock[1]);
1160 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1161 	mutex_init(&root->objectid_mutex);
1162 	mutex_init(&root->log_mutex);
1163 	mutex_init(&root->ordered_extent_mutex);
1164 	mutex_init(&root->delalloc_mutex);
1165 	init_waitqueue_head(&root->log_writer_wait);
1166 	init_waitqueue_head(&root->log_commit_wait[0]);
1167 	init_waitqueue_head(&root->log_commit_wait[1]);
1168 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1169 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1170 	atomic_set(&root->log_commit[0], 0);
1171 	atomic_set(&root->log_commit[1], 0);
1172 	atomic_set(&root->log_writers, 0);
1173 	atomic_set(&root->log_batch, 0);
1174 	refcount_set(&root->refs, 1);
1175 	atomic_set(&root->will_be_snapshotted, 0);
1176 	atomic_set(&root->snapshot_force_cow, 0);
1177 	atomic_set(&root->nr_swapfiles, 0);
1178 	root->log_transid = 0;
1179 	root->log_transid_committed = -1;
1180 	root->last_log_commit = 0;
1181 	if (!dummy)
1182 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1183 				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1184 
1185 	memset(&root->root_key, 0, sizeof(root->root_key));
1186 	memset(&root->root_item, 0, sizeof(root->root_item));
1187 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1188 	if (!dummy)
1189 		root->defrag_trans_start = fs_info->generation;
1190 	else
1191 		root->defrag_trans_start = 0;
1192 	root->root_key.objectid = objectid;
1193 	root->anon_dev = 0;
1194 
1195 	spin_lock_init(&root->root_item_lock);
1196 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1197 }
1198 
1199 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1200 		gfp_t flags)
1201 {
1202 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1203 	if (root)
1204 		root->fs_info = fs_info;
1205 	return root;
1206 }
1207 
1208 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1209 /* Should only be used by the testing infrastructure */
1210 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1211 {
1212 	struct btrfs_root *root;
1213 
1214 	if (!fs_info)
1215 		return ERR_PTR(-EINVAL);
1216 
1217 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1218 	if (!root)
1219 		return ERR_PTR(-ENOMEM);
1220 
1221 	/* We don't use the stripesize in selftest, set it as sectorsize */
1222 	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1223 	root->alloc_bytenr = 0;
1224 
1225 	return root;
1226 }
1227 #endif
1228 
1229 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1230 				     u64 objectid)
1231 {
1232 	struct btrfs_fs_info *fs_info = trans->fs_info;
1233 	struct extent_buffer *leaf;
1234 	struct btrfs_root *tree_root = fs_info->tree_root;
1235 	struct btrfs_root *root;
1236 	struct btrfs_key key;
1237 	unsigned int nofs_flag;
1238 	int ret = 0;
1239 	uuid_le uuid = NULL_UUID_LE;
1240 
1241 	/*
1242 	 * We're holding a transaction handle, so use a NOFS memory allocation
1243 	 * context to avoid deadlock if reclaim happens.
1244 	 */
1245 	nofs_flag = memalloc_nofs_save();
1246 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1247 	memalloc_nofs_restore(nofs_flag);
1248 	if (!root)
1249 		return ERR_PTR(-ENOMEM);
1250 
1251 	__setup_root(root, fs_info, objectid);
1252 	root->root_key.objectid = objectid;
1253 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1254 	root->root_key.offset = 0;
1255 
1256 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1257 	if (IS_ERR(leaf)) {
1258 		ret = PTR_ERR(leaf);
1259 		leaf = NULL;
1260 		goto fail;
1261 	}
1262 
1263 	root->node = leaf;
1264 	btrfs_mark_buffer_dirty(leaf);
1265 
1266 	root->commit_root = btrfs_root_node(root);
1267 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1268 
1269 	root->root_item.flags = 0;
1270 	root->root_item.byte_limit = 0;
1271 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1272 	btrfs_set_root_generation(&root->root_item, trans->transid);
1273 	btrfs_set_root_level(&root->root_item, 0);
1274 	btrfs_set_root_refs(&root->root_item, 1);
1275 	btrfs_set_root_used(&root->root_item, leaf->len);
1276 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1277 	btrfs_set_root_dirid(&root->root_item, 0);
1278 	if (is_fstree(objectid))
1279 		uuid_le_gen(&uuid);
1280 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1281 	root->root_item.drop_level = 0;
1282 
1283 	key.objectid = objectid;
1284 	key.type = BTRFS_ROOT_ITEM_KEY;
1285 	key.offset = 0;
1286 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1287 	if (ret)
1288 		goto fail;
1289 
1290 	btrfs_tree_unlock(leaf);
1291 
1292 	return root;
1293 
1294 fail:
1295 	if (leaf) {
1296 		btrfs_tree_unlock(leaf);
1297 		free_extent_buffer(root->commit_root);
1298 		free_extent_buffer(leaf);
1299 	}
1300 	kfree(root);
1301 
1302 	return ERR_PTR(ret);
1303 }
1304 
1305 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1306 					 struct btrfs_fs_info *fs_info)
1307 {
1308 	struct btrfs_root *root;
1309 	struct extent_buffer *leaf;
1310 
1311 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1312 	if (!root)
1313 		return ERR_PTR(-ENOMEM);
1314 
1315 	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1316 
1317 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1318 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1319 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1320 
1321 	/*
1322 	 * DON'T set REF_COWS for log trees
1323 	 *
1324 	 * log trees do not get reference counted because they go away
1325 	 * before a real commit is actually done.  They do store pointers
1326 	 * to file data extents, and those reference counts still get
1327 	 * updated (along with back refs to the log tree).
1328 	 */
1329 
1330 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1331 			NULL, 0, 0, 0);
1332 	if (IS_ERR(leaf)) {
1333 		kfree(root);
1334 		return ERR_CAST(leaf);
1335 	}
1336 
1337 	root->node = leaf;
1338 
1339 	btrfs_mark_buffer_dirty(root->node);
1340 	btrfs_tree_unlock(root->node);
1341 	return root;
1342 }
1343 
1344 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1345 			     struct btrfs_fs_info *fs_info)
1346 {
1347 	struct btrfs_root *log_root;
1348 
1349 	log_root = alloc_log_tree(trans, fs_info);
1350 	if (IS_ERR(log_root))
1351 		return PTR_ERR(log_root);
1352 	WARN_ON(fs_info->log_root_tree);
1353 	fs_info->log_root_tree = log_root;
1354 	return 0;
1355 }
1356 
1357 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1358 		       struct btrfs_root *root)
1359 {
1360 	struct btrfs_fs_info *fs_info = root->fs_info;
1361 	struct btrfs_root *log_root;
1362 	struct btrfs_inode_item *inode_item;
1363 
1364 	log_root = alloc_log_tree(trans, fs_info);
1365 	if (IS_ERR(log_root))
1366 		return PTR_ERR(log_root);
1367 
1368 	log_root->last_trans = trans->transid;
1369 	log_root->root_key.offset = root->root_key.objectid;
1370 
1371 	inode_item = &log_root->root_item.inode;
1372 	btrfs_set_stack_inode_generation(inode_item, 1);
1373 	btrfs_set_stack_inode_size(inode_item, 3);
1374 	btrfs_set_stack_inode_nlink(inode_item, 1);
1375 	btrfs_set_stack_inode_nbytes(inode_item,
1376 				     fs_info->nodesize);
1377 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1378 
1379 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1380 
1381 	WARN_ON(root->log_root);
1382 	root->log_root = log_root;
1383 	root->log_transid = 0;
1384 	root->log_transid_committed = -1;
1385 	root->last_log_commit = 0;
1386 	return 0;
1387 }
1388 
1389 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1390 					       struct btrfs_key *key)
1391 {
1392 	struct btrfs_root *root;
1393 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1394 	struct btrfs_path *path;
1395 	u64 generation;
1396 	int ret;
1397 	int level;
1398 
1399 	path = btrfs_alloc_path();
1400 	if (!path)
1401 		return ERR_PTR(-ENOMEM);
1402 
1403 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1404 	if (!root) {
1405 		ret = -ENOMEM;
1406 		goto alloc_fail;
1407 	}
1408 
1409 	__setup_root(root, fs_info, key->objectid);
1410 
1411 	ret = btrfs_find_root(tree_root, key, path,
1412 			      &root->root_item, &root->root_key);
1413 	if (ret) {
1414 		if (ret > 0)
1415 			ret = -ENOENT;
1416 		goto find_fail;
1417 	}
1418 
1419 	generation = btrfs_root_generation(&root->root_item);
1420 	level = btrfs_root_level(&root->root_item);
1421 	root->node = read_tree_block(fs_info,
1422 				     btrfs_root_bytenr(&root->root_item),
1423 				     generation, level, NULL);
1424 	if (IS_ERR(root->node)) {
1425 		ret = PTR_ERR(root->node);
1426 		goto find_fail;
1427 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1428 		ret = -EIO;
1429 		free_extent_buffer(root->node);
1430 		goto find_fail;
1431 	}
1432 	root->commit_root = btrfs_root_node(root);
1433 out:
1434 	btrfs_free_path(path);
1435 	return root;
1436 
1437 find_fail:
1438 	kfree(root);
1439 alloc_fail:
1440 	root = ERR_PTR(ret);
1441 	goto out;
1442 }
1443 
1444 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1445 				      struct btrfs_key *location)
1446 {
1447 	struct btrfs_root *root;
1448 
1449 	root = btrfs_read_tree_root(tree_root, location);
1450 	if (IS_ERR(root))
1451 		return root;
1452 
1453 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1454 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1455 		btrfs_check_and_init_root_item(&root->root_item);
1456 	}
1457 
1458 	return root;
1459 }
1460 
1461 int btrfs_init_fs_root(struct btrfs_root *root)
1462 {
1463 	int ret;
1464 	struct btrfs_subvolume_writers *writers;
1465 
1466 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1467 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1468 					GFP_NOFS);
1469 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1470 		ret = -ENOMEM;
1471 		goto fail;
1472 	}
1473 
1474 	writers = btrfs_alloc_subvolume_writers();
1475 	if (IS_ERR(writers)) {
1476 		ret = PTR_ERR(writers);
1477 		goto fail;
1478 	}
1479 	root->subv_writers = writers;
1480 
1481 	btrfs_init_free_ino_ctl(root);
1482 	spin_lock_init(&root->ino_cache_lock);
1483 	init_waitqueue_head(&root->ino_cache_wait);
1484 
1485 	ret = get_anon_bdev(&root->anon_dev);
1486 	if (ret)
1487 		goto fail;
1488 
1489 	mutex_lock(&root->objectid_mutex);
1490 	ret = btrfs_find_highest_objectid(root,
1491 					&root->highest_objectid);
1492 	if (ret) {
1493 		mutex_unlock(&root->objectid_mutex);
1494 		goto fail;
1495 	}
1496 
1497 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1498 
1499 	mutex_unlock(&root->objectid_mutex);
1500 
1501 	return 0;
1502 fail:
1503 	/* The caller is responsible to call btrfs_free_fs_root */
1504 	return ret;
1505 }
1506 
1507 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1508 					u64 root_id)
1509 {
1510 	struct btrfs_root *root;
1511 
1512 	spin_lock(&fs_info->fs_roots_radix_lock);
1513 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1514 				 (unsigned long)root_id);
1515 	spin_unlock(&fs_info->fs_roots_radix_lock);
1516 	return root;
1517 }
1518 
1519 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1520 			 struct btrfs_root *root)
1521 {
1522 	int ret;
1523 
1524 	ret = radix_tree_preload(GFP_NOFS);
1525 	if (ret)
1526 		return ret;
1527 
1528 	spin_lock(&fs_info->fs_roots_radix_lock);
1529 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1530 				(unsigned long)root->root_key.objectid,
1531 				root);
1532 	if (ret == 0)
1533 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1534 	spin_unlock(&fs_info->fs_roots_radix_lock);
1535 	radix_tree_preload_end();
1536 
1537 	return ret;
1538 }
1539 
1540 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1541 				     struct btrfs_key *location,
1542 				     bool check_ref)
1543 {
1544 	struct btrfs_root *root;
1545 	struct btrfs_path *path;
1546 	struct btrfs_key key;
1547 	int ret;
1548 
1549 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1550 		return fs_info->tree_root;
1551 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1552 		return fs_info->extent_root;
1553 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1554 		return fs_info->chunk_root;
1555 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1556 		return fs_info->dev_root;
1557 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1558 		return fs_info->csum_root;
1559 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1560 		return fs_info->quota_root ? fs_info->quota_root :
1561 					     ERR_PTR(-ENOENT);
1562 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1563 		return fs_info->uuid_root ? fs_info->uuid_root :
1564 					    ERR_PTR(-ENOENT);
1565 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1566 		return fs_info->free_space_root ? fs_info->free_space_root :
1567 						  ERR_PTR(-ENOENT);
1568 again:
1569 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1570 	if (root) {
1571 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1572 			return ERR_PTR(-ENOENT);
1573 		return root;
1574 	}
1575 
1576 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1577 	if (IS_ERR(root))
1578 		return root;
1579 
1580 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1581 		ret = -ENOENT;
1582 		goto fail;
1583 	}
1584 
1585 	ret = btrfs_init_fs_root(root);
1586 	if (ret)
1587 		goto fail;
1588 
1589 	path = btrfs_alloc_path();
1590 	if (!path) {
1591 		ret = -ENOMEM;
1592 		goto fail;
1593 	}
1594 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1595 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1596 	key.offset = location->objectid;
1597 
1598 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1599 	btrfs_free_path(path);
1600 	if (ret < 0)
1601 		goto fail;
1602 	if (ret == 0)
1603 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1604 
1605 	ret = btrfs_insert_fs_root(fs_info, root);
1606 	if (ret) {
1607 		if (ret == -EEXIST) {
1608 			btrfs_free_fs_root(root);
1609 			goto again;
1610 		}
1611 		goto fail;
1612 	}
1613 	return root;
1614 fail:
1615 	btrfs_free_fs_root(root);
1616 	return ERR_PTR(ret);
1617 }
1618 
1619 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1620 {
1621 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1622 	int ret = 0;
1623 	struct btrfs_device *device;
1624 	struct backing_dev_info *bdi;
1625 
1626 	rcu_read_lock();
1627 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1628 		if (!device->bdev)
1629 			continue;
1630 		bdi = device->bdev->bd_bdi;
1631 		if (bdi_congested(bdi, bdi_bits)) {
1632 			ret = 1;
1633 			break;
1634 		}
1635 	}
1636 	rcu_read_unlock();
1637 	return ret;
1638 }
1639 
1640 /*
1641  * called by the kthread helper functions to finally call the bio end_io
1642  * functions.  This is where read checksum verification actually happens
1643  */
1644 static void end_workqueue_fn(struct btrfs_work *work)
1645 {
1646 	struct bio *bio;
1647 	struct btrfs_end_io_wq *end_io_wq;
1648 
1649 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1650 	bio = end_io_wq->bio;
1651 
1652 	bio->bi_status = end_io_wq->status;
1653 	bio->bi_private = end_io_wq->private;
1654 	bio->bi_end_io = end_io_wq->end_io;
1655 	bio_endio(bio);
1656 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1657 }
1658 
1659 static int cleaner_kthread(void *arg)
1660 {
1661 	struct btrfs_root *root = arg;
1662 	struct btrfs_fs_info *fs_info = root->fs_info;
1663 	int again;
1664 
1665 	while (1) {
1666 		again = 0;
1667 
1668 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1669 
1670 		/* Make the cleaner go to sleep early. */
1671 		if (btrfs_need_cleaner_sleep(fs_info))
1672 			goto sleep;
1673 
1674 		/*
1675 		 * Do not do anything if we might cause open_ctree() to block
1676 		 * before we have finished mounting the filesystem.
1677 		 */
1678 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1679 			goto sleep;
1680 
1681 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1682 			goto sleep;
1683 
1684 		/*
1685 		 * Avoid the problem that we change the status of the fs
1686 		 * during the above check and trylock.
1687 		 */
1688 		if (btrfs_need_cleaner_sleep(fs_info)) {
1689 			mutex_unlock(&fs_info->cleaner_mutex);
1690 			goto sleep;
1691 		}
1692 
1693 		btrfs_run_delayed_iputs(fs_info);
1694 
1695 		again = btrfs_clean_one_deleted_snapshot(root);
1696 		mutex_unlock(&fs_info->cleaner_mutex);
1697 
1698 		/*
1699 		 * The defragger has dealt with the R/O remount and umount,
1700 		 * needn't do anything special here.
1701 		 */
1702 		btrfs_run_defrag_inodes(fs_info);
1703 
1704 		/*
1705 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1706 		 * with relocation (btrfs_relocate_chunk) and relocation
1707 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1708 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1709 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1710 		 * unused block groups.
1711 		 */
1712 		btrfs_delete_unused_bgs(fs_info);
1713 sleep:
1714 		clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1715 		if (kthread_should_park())
1716 			kthread_parkme();
1717 		if (kthread_should_stop())
1718 			return 0;
1719 		if (!again) {
1720 			set_current_state(TASK_INTERRUPTIBLE);
1721 			schedule();
1722 			__set_current_state(TASK_RUNNING);
1723 		}
1724 	}
1725 }
1726 
1727 static int transaction_kthread(void *arg)
1728 {
1729 	struct btrfs_root *root = arg;
1730 	struct btrfs_fs_info *fs_info = root->fs_info;
1731 	struct btrfs_trans_handle *trans;
1732 	struct btrfs_transaction *cur;
1733 	u64 transid;
1734 	time64_t now;
1735 	unsigned long delay;
1736 	bool cannot_commit;
1737 
1738 	do {
1739 		cannot_commit = false;
1740 		delay = HZ * fs_info->commit_interval;
1741 		mutex_lock(&fs_info->transaction_kthread_mutex);
1742 
1743 		spin_lock(&fs_info->trans_lock);
1744 		cur = fs_info->running_transaction;
1745 		if (!cur) {
1746 			spin_unlock(&fs_info->trans_lock);
1747 			goto sleep;
1748 		}
1749 
1750 		now = ktime_get_seconds();
1751 		if (cur->state < TRANS_STATE_COMMIT_START &&
1752 		    !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1753 		    (now < cur->start_time ||
1754 		     now - cur->start_time < fs_info->commit_interval)) {
1755 			spin_unlock(&fs_info->trans_lock);
1756 			delay = HZ * 5;
1757 			goto sleep;
1758 		}
1759 		transid = cur->transid;
1760 		spin_unlock(&fs_info->trans_lock);
1761 
1762 		/* If the file system is aborted, this will always fail. */
1763 		trans = btrfs_attach_transaction(root);
1764 		if (IS_ERR(trans)) {
1765 			if (PTR_ERR(trans) != -ENOENT)
1766 				cannot_commit = true;
1767 			goto sleep;
1768 		}
1769 		if (transid == trans->transid) {
1770 			btrfs_commit_transaction(trans);
1771 		} else {
1772 			btrfs_end_transaction(trans);
1773 		}
1774 sleep:
1775 		wake_up_process(fs_info->cleaner_kthread);
1776 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1777 
1778 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1779 				      &fs_info->fs_state)))
1780 			btrfs_cleanup_transaction(fs_info);
1781 		if (!kthread_should_stop() &&
1782 				(!btrfs_transaction_blocked(fs_info) ||
1783 				 cannot_commit))
1784 			schedule_timeout_interruptible(delay);
1785 	} while (!kthread_should_stop());
1786 	return 0;
1787 }
1788 
1789 /*
1790  * This will find the highest generation in the array of root backups.  The
1791  * index of the highest array is returned, or -EINVAL if we can't find
1792  * anything.
1793  *
1794  * We check to make sure the array is valid by comparing the
1795  * generation of the latest  root in the array with the generation
1796  * in the super block.  If they don't match we pitch it.
1797  */
1798 static int find_newest_super_backup(struct btrfs_fs_info *info)
1799 {
1800 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1801 	u64 cur;
1802 	struct btrfs_root_backup *root_backup;
1803 	int i;
1804 
1805 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1806 		root_backup = info->super_copy->super_roots + i;
1807 		cur = btrfs_backup_tree_root_gen(root_backup);
1808 		if (cur == newest_gen)
1809 			return i;
1810 	}
1811 
1812 	return -EINVAL;
1813 }
1814 
1815 /*
1816  * copy all the root pointers into the super backup array.
1817  * this will bump the backup pointer by one when it is
1818  * done
1819  */
1820 static void backup_super_roots(struct btrfs_fs_info *info)
1821 {
1822 	const int next_backup = info->backup_root_index;
1823 	struct btrfs_root_backup *root_backup;
1824 
1825 	root_backup = info->super_for_commit->super_roots + next_backup;
1826 
1827 	/*
1828 	 * make sure all of our padding and empty slots get zero filled
1829 	 * regardless of which ones we use today
1830 	 */
1831 	memset(root_backup, 0, sizeof(*root_backup));
1832 
1833 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1834 
1835 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1836 	btrfs_set_backup_tree_root_gen(root_backup,
1837 			       btrfs_header_generation(info->tree_root->node));
1838 
1839 	btrfs_set_backup_tree_root_level(root_backup,
1840 			       btrfs_header_level(info->tree_root->node));
1841 
1842 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1843 	btrfs_set_backup_chunk_root_gen(root_backup,
1844 			       btrfs_header_generation(info->chunk_root->node));
1845 	btrfs_set_backup_chunk_root_level(root_backup,
1846 			       btrfs_header_level(info->chunk_root->node));
1847 
1848 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1849 	btrfs_set_backup_extent_root_gen(root_backup,
1850 			       btrfs_header_generation(info->extent_root->node));
1851 	btrfs_set_backup_extent_root_level(root_backup,
1852 			       btrfs_header_level(info->extent_root->node));
1853 
1854 	/*
1855 	 * we might commit during log recovery, which happens before we set
1856 	 * the fs_root.  Make sure it is valid before we fill it in.
1857 	 */
1858 	if (info->fs_root && info->fs_root->node) {
1859 		btrfs_set_backup_fs_root(root_backup,
1860 					 info->fs_root->node->start);
1861 		btrfs_set_backup_fs_root_gen(root_backup,
1862 			       btrfs_header_generation(info->fs_root->node));
1863 		btrfs_set_backup_fs_root_level(root_backup,
1864 			       btrfs_header_level(info->fs_root->node));
1865 	}
1866 
1867 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1868 	btrfs_set_backup_dev_root_gen(root_backup,
1869 			       btrfs_header_generation(info->dev_root->node));
1870 	btrfs_set_backup_dev_root_level(root_backup,
1871 				       btrfs_header_level(info->dev_root->node));
1872 
1873 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1874 	btrfs_set_backup_csum_root_gen(root_backup,
1875 			       btrfs_header_generation(info->csum_root->node));
1876 	btrfs_set_backup_csum_root_level(root_backup,
1877 			       btrfs_header_level(info->csum_root->node));
1878 
1879 	btrfs_set_backup_total_bytes(root_backup,
1880 			     btrfs_super_total_bytes(info->super_copy));
1881 	btrfs_set_backup_bytes_used(root_backup,
1882 			     btrfs_super_bytes_used(info->super_copy));
1883 	btrfs_set_backup_num_devices(root_backup,
1884 			     btrfs_super_num_devices(info->super_copy));
1885 
1886 	/*
1887 	 * if we don't copy this out to the super_copy, it won't get remembered
1888 	 * for the next commit
1889 	 */
1890 	memcpy(&info->super_copy->super_roots,
1891 	       &info->super_for_commit->super_roots,
1892 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1893 }
1894 
1895 /*
1896  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1897  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1898  *
1899  * fs_info - filesystem whose backup roots need to be read
1900  * priority - priority of backup root required
1901  *
1902  * Returns backup root index on success and -EINVAL otherwise.
1903  */
1904 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1905 {
1906 	int backup_index = find_newest_super_backup(fs_info);
1907 	struct btrfs_super_block *super = fs_info->super_copy;
1908 	struct btrfs_root_backup *root_backup;
1909 
1910 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1911 		if (priority == 0)
1912 			return backup_index;
1913 
1914 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1915 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1916 	} else {
1917 		return -EINVAL;
1918 	}
1919 
1920 	root_backup = super->super_roots + backup_index;
1921 
1922 	btrfs_set_super_generation(super,
1923 				   btrfs_backup_tree_root_gen(root_backup));
1924 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1925 	btrfs_set_super_root_level(super,
1926 				   btrfs_backup_tree_root_level(root_backup));
1927 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1928 
1929 	/*
1930 	 * Fixme: the total bytes and num_devices need to match or we should
1931 	 * need a fsck
1932 	 */
1933 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1934 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1935 
1936 	return backup_index;
1937 }
1938 
1939 /* helper to cleanup workers */
1940 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1941 {
1942 	btrfs_destroy_workqueue(fs_info->fixup_workers);
1943 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1944 	btrfs_destroy_workqueue(fs_info->workers);
1945 	btrfs_destroy_workqueue(fs_info->endio_workers);
1946 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1947 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
1948 	btrfs_destroy_workqueue(fs_info->rmw_workers);
1949 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1950 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1951 	btrfs_destroy_workqueue(fs_info->delayed_workers);
1952 	btrfs_destroy_workqueue(fs_info->caching_workers);
1953 	btrfs_destroy_workqueue(fs_info->readahead_workers);
1954 	btrfs_destroy_workqueue(fs_info->flush_workers);
1955 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1956 	/*
1957 	 * Now that all other work queues are destroyed, we can safely destroy
1958 	 * the queues used for metadata I/O, since tasks from those other work
1959 	 * queues can do metadata I/O operations.
1960 	 */
1961 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1962 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
1963 }
1964 
1965 static void free_root_extent_buffers(struct btrfs_root *root)
1966 {
1967 	if (root) {
1968 		free_extent_buffer(root->node);
1969 		free_extent_buffer(root->commit_root);
1970 		root->node = NULL;
1971 		root->commit_root = NULL;
1972 	}
1973 }
1974 
1975 /* helper to cleanup tree roots */
1976 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1977 {
1978 	free_root_extent_buffers(info->tree_root);
1979 
1980 	free_root_extent_buffers(info->dev_root);
1981 	free_root_extent_buffers(info->extent_root);
1982 	free_root_extent_buffers(info->csum_root);
1983 	free_root_extent_buffers(info->quota_root);
1984 	free_root_extent_buffers(info->uuid_root);
1985 	if (free_chunk_root)
1986 		free_root_extent_buffers(info->chunk_root);
1987 	free_root_extent_buffers(info->free_space_root);
1988 }
1989 
1990 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1991 {
1992 	int ret;
1993 	struct btrfs_root *gang[8];
1994 	int i;
1995 
1996 	while (!list_empty(&fs_info->dead_roots)) {
1997 		gang[0] = list_entry(fs_info->dead_roots.next,
1998 				     struct btrfs_root, root_list);
1999 		list_del(&gang[0]->root_list);
2000 
2001 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2002 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2003 		} else {
2004 			free_extent_buffer(gang[0]->node);
2005 			free_extent_buffer(gang[0]->commit_root);
2006 			btrfs_put_fs_root(gang[0]);
2007 		}
2008 	}
2009 
2010 	while (1) {
2011 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2012 					     (void **)gang, 0,
2013 					     ARRAY_SIZE(gang));
2014 		if (!ret)
2015 			break;
2016 		for (i = 0; i < ret; i++)
2017 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2018 	}
2019 
2020 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2021 		btrfs_free_log_root_tree(NULL, fs_info);
2022 		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2023 	}
2024 }
2025 
2026 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2027 {
2028 	mutex_init(&fs_info->scrub_lock);
2029 	atomic_set(&fs_info->scrubs_running, 0);
2030 	atomic_set(&fs_info->scrub_pause_req, 0);
2031 	atomic_set(&fs_info->scrubs_paused, 0);
2032 	atomic_set(&fs_info->scrub_cancel_req, 0);
2033 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2034 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2035 }
2036 
2037 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2038 {
2039 	spin_lock_init(&fs_info->balance_lock);
2040 	mutex_init(&fs_info->balance_mutex);
2041 	atomic_set(&fs_info->balance_pause_req, 0);
2042 	atomic_set(&fs_info->balance_cancel_req, 0);
2043 	fs_info->balance_ctl = NULL;
2044 	init_waitqueue_head(&fs_info->balance_wait_q);
2045 }
2046 
2047 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2048 {
2049 	struct inode *inode = fs_info->btree_inode;
2050 
2051 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2052 	set_nlink(inode, 1);
2053 	/*
2054 	 * we set the i_size on the btree inode to the max possible int.
2055 	 * the real end of the address space is determined by all of
2056 	 * the devices in the system
2057 	 */
2058 	inode->i_size = OFFSET_MAX;
2059 	inode->i_mapping->a_ops = &btree_aops;
2060 
2061 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2062 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2063 			    IO_TREE_INODE_IO, inode);
2064 	BTRFS_I(inode)->io_tree.track_uptodate = false;
2065 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2066 
2067 	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2068 
2069 	BTRFS_I(inode)->root = fs_info->tree_root;
2070 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2071 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2072 	btrfs_insert_inode_hash(inode);
2073 }
2074 
2075 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2076 {
2077 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2078 	init_rwsem(&fs_info->dev_replace.rwsem);
2079 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2080 }
2081 
2082 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2083 {
2084 	spin_lock_init(&fs_info->qgroup_lock);
2085 	mutex_init(&fs_info->qgroup_ioctl_lock);
2086 	fs_info->qgroup_tree = RB_ROOT;
2087 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2088 	fs_info->qgroup_seq = 1;
2089 	fs_info->qgroup_ulist = NULL;
2090 	fs_info->qgroup_rescan_running = false;
2091 	mutex_init(&fs_info->qgroup_rescan_lock);
2092 }
2093 
2094 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2095 		struct btrfs_fs_devices *fs_devices)
2096 {
2097 	u32 max_active = fs_info->thread_pool_size;
2098 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2099 
2100 	fs_info->workers =
2101 		btrfs_alloc_workqueue(fs_info, "worker",
2102 				      flags | WQ_HIGHPRI, max_active, 16);
2103 
2104 	fs_info->delalloc_workers =
2105 		btrfs_alloc_workqueue(fs_info, "delalloc",
2106 				      flags, max_active, 2);
2107 
2108 	fs_info->flush_workers =
2109 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2110 				      flags, max_active, 0);
2111 
2112 	fs_info->caching_workers =
2113 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2114 
2115 	fs_info->fixup_workers =
2116 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2117 
2118 	/*
2119 	 * endios are largely parallel and should have a very
2120 	 * low idle thresh
2121 	 */
2122 	fs_info->endio_workers =
2123 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2124 	fs_info->endio_meta_workers =
2125 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2126 				      max_active, 4);
2127 	fs_info->endio_meta_write_workers =
2128 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2129 				      max_active, 2);
2130 	fs_info->endio_raid56_workers =
2131 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2132 				      max_active, 4);
2133 	fs_info->endio_repair_workers =
2134 		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2135 	fs_info->rmw_workers =
2136 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2137 	fs_info->endio_write_workers =
2138 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2139 				      max_active, 2);
2140 	fs_info->endio_freespace_worker =
2141 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2142 				      max_active, 0);
2143 	fs_info->delayed_workers =
2144 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2145 				      max_active, 0);
2146 	fs_info->readahead_workers =
2147 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2148 				      max_active, 2);
2149 	fs_info->qgroup_rescan_workers =
2150 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2151 
2152 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2153 	      fs_info->flush_workers &&
2154 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2155 	      fs_info->endio_meta_write_workers &&
2156 	      fs_info->endio_repair_workers &&
2157 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2158 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2159 	      fs_info->caching_workers && fs_info->readahead_workers &&
2160 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2161 	      fs_info->qgroup_rescan_workers)) {
2162 		return -ENOMEM;
2163 	}
2164 
2165 	return 0;
2166 }
2167 
2168 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2169 {
2170 	struct crypto_shash *csum_shash;
2171 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2172 
2173 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2174 
2175 	if (IS_ERR(csum_shash)) {
2176 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2177 			  csum_driver);
2178 		return PTR_ERR(csum_shash);
2179 	}
2180 
2181 	fs_info->csum_shash = csum_shash;
2182 
2183 	return 0;
2184 }
2185 
2186 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2187 {
2188 	crypto_free_shash(fs_info->csum_shash);
2189 }
2190 
2191 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2192 			    struct btrfs_fs_devices *fs_devices)
2193 {
2194 	int ret;
2195 	struct btrfs_root *log_tree_root;
2196 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2197 	u64 bytenr = btrfs_super_log_root(disk_super);
2198 	int level = btrfs_super_log_root_level(disk_super);
2199 
2200 	if (fs_devices->rw_devices == 0) {
2201 		btrfs_warn(fs_info, "log replay required on RO media");
2202 		return -EIO;
2203 	}
2204 
2205 	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2206 	if (!log_tree_root)
2207 		return -ENOMEM;
2208 
2209 	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2210 
2211 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2212 					      fs_info->generation + 1,
2213 					      level, NULL);
2214 	if (IS_ERR(log_tree_root->node)) {
2215 		btrfs_warn(fs_info, "failed to read log tree");
2216 		ret = PTR_ERR(log_tree_root->node);
2217 		kfree(log_tree_root);
2218 		return ret;
2219 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2220 		btrfs_err(fs_info, "failed to read log tree");
2221 		free_extent_buffer(log_tree_root->node);
2222 		kfree(log_tree_root);
2223 		return -EIO;
2224 	}
2225 	/* returns with log_tree_root freed on success */
2226 	ret = btrfs_recover_log_trees(log_tree_root);
2227 	if (ret) {
2228 		btrfs_handle_fs_error(fs_info, ret,
2229 				      "Failed to recover log tree");
2230 		free_extent_buffer(log_tree_root->node);
2231 		kfree(log_tree_root);
2232 		return ret;
2233 	}
2234 
2235 	if (sb_rdonly(fs_info->sb)) {
2236 		ret = btrfs_commit_super(fs_info);
2237 		if (ret)
2238 			return ret;
2239 	}
2240 
2241 	return 0;
2242 }
2243 
2244 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2245 {
2246 	struct btrfs_root *tree_root = fs_info->tree_root;
2247 	struct btrfs_root *root;
2248 	struct btrfs_key location;
2249 	int ret;
2250 
2251 	BUG_ON(!fs_info->tree_root);
2252 
2253 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2254 	location.type = BTRFS_ROOT_ITEM_KEY;
2255 	location.offset = 0;
2256 
2257 	root = btrfs_read_tree_root(tree_root, &location);
2258 	if (IS_ERR(root)) {
2259 		ret = PTR_ERR(root);
2260 		goto out;
2261 	}
2262 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2263 	fs_info->extent_root = root;
2264 
2265 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2266 	root = btrfs_read_tree_root(tree_root, &location);
2267 	if (IS_ERR(root)) {
2268 		ret = PTR_ERR(root);
2269 		goto out;
2270 	}
2271 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2272 	fs_info->dev_root = root;
2273 	btrfs_init_devices_late(fs_info);
2274 
2275 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2276 	root = btrfs_read_tree_root(tree_root, &location);
2277 	if (IS_ERR(root)) {
2278 		ret = PTR_ERR(root);
2279 		goto out;
2280 	}
2281 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2282 	fs_info->csum_root = root;
2283 
2284 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2285 	root = btrfs_read_tree_root(tree_root, &location);
2286 	if (!IS_ERR(root)) {
2287 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2288 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2289 		fs_info->quota_root = root;
2290 	}
2291 
2292 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2293 	root = btrfs_read_tree_root(tree_root, &location);
2294 	if (IS_ERR(root)) {
2295 		ret = PTR_ERR(root);
2296 		if (ret != -ENOENT)
2297 			goto out;
2298 	} else {
2299 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2300 		fs_info->uuid_root = root;
2301 	}
2302 
2303 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2304 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2305 		root = btrfs_read_tree_root(tree_root, &location);
2306 		if (IS_ERR(root)) {
2307 			ret = PTR_ERR(root);
2308 			goto out;
2309 		}
2310 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2311 		fs_info->free_space_root = root;
2312 	}
2313 
2314 	return 0;
2315 out:
2316 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2317 		   location.objectid, ret);
2318 	return ret;
2319 }
2320 
2321 /*
2322  * Real super block validation
2323  * NOTE: super csum type and incompat features will not be checked here.
2324  *
2325  * @sb:		super block to check
2326  * @mirror_num:	the super block number to check its bytenr:
2327  * 		0	the primary (1st) sb
2328  * 		1, 2	2nd and 3rd backup copy
2329  * 	       -1	skip bytenr check
2330  */
2331 static int validate_super(struct btrfs_fs_info *fs_info,
2332 			    struct btrfs_super_block *sb, int mirror_num)
2333 {
2334 	u64 nodesize = btrfs_super_nodesize(sb);
2335 	u64 sectorsize = btrfs_super_sectorsize(sb);
2336 	int ret = 0;
2337 
2338 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2339 		btrfs_err(fs_info, "no valid FS found");
2340 		ret = -EINVAL;
2341 	}
2342 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2343 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2344 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2345 		ret = -EINVAL;
2346 	}
2347 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2348 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2349 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2350 		ret = -EINVAL;
2351 	}
2352 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2353 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2354 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2355 		ret = -EINVAL;
2356 	}
2357 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2358 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2359 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2360 		ret = -EINVAL;
2361 	}
2362 
2363 	/*
2364 	 * Check sectorsize and nodesize first, other check will need it.
2365 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2366 	 */
2367 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2368 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2369 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2370 		ret = -EINVAL;
2371 	}
2372 	/* Only PAGE SIZE is supported yet */
2373 	if (sectorsize != PAGE_SIZE) {
2374 		btrfs_err(fs_info,
2375 			"sectorsize %llu not supported yet, only support %lu",
2376 			sectorsize, PAGE_SIZE);
2377 		ret = -EINVAL;
2378 	}
2379 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2380 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2381 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2382 		ret = -EINVAL;
2383 	}
2384 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2385 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2386 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2387 		ret = -EINVAL;
2388 	}
2389 
2390 	/* Root alignment check */
2391 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2392 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2393 			   btrfs_super_root(sb));
2394 		ret = -EINVAL;
2395 	}
2396 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2397 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2398 			   btrfs_super_chunk_root(sb));
2399 		ret = -EINVAL;
2400 	}
2401 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2402 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2403 			   btrfs_super_log_root(sb));
2404 		ret = -EINVAL;
2405 	}
2406 
2407 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2408 		   BTRFS_FSID_SIZE) != 0) {
2409 		btrfs_err(fs_info,
2410 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2411 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2412 		ret = -EINVAL;
2413 	}
2414 
2415 	/*
2416 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2417 	 * done later
2418 	 */
2419 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2420 		btrfs_err(fs_info, "bytes_used is too small %llu",
2421 			  btrfs_super_bytes_used(sb));
2422 		ret = -EINVAL;
2423 	}
2424 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2425 		btrfs_err(fs_info, "invalid stripesize %u",
2426 			  btrfs_super_stripesize(sb));
2427 		ret = -EINVAL;
2428 	}
2429 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2430 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2431 			   btrfs_super_num_devices(sb));
2432 	if (btrfs_super_num_devices(sb) == 0) {
2433 		btrfs_err(fs_info, "number of devices is 0");
2434 		ret = -EINVAL;
2435 	}
2436 
2437 	if (mirror_num >= 0 &&
2438 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2439 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2440 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2441 		ret = -EINVAL;
2442 	}
2443 
2444 	/*
2445 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2446 	 * and one chunk
2447 	 */
2448 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2449 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2450 			  btrfs_super_sys_array_size(sb),
2451 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2452 		ret = -EINVAL;
2453 	}
2454 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2455 			+ sizeof(struct btrfs_chunk)) {
2456 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2457 			  btrfs_super_sys_array_size(sb),
2458 			  sizeof(struct btrfs_disk_key)
2459 			  + sizeof(struct btrfs_chunk));
2460 		ret = -EINVAL;
2461 	}
2462 
2463 	/*
2464 	 * The generation is a global counter, we'll trust it more than the others
2465 	 * but it's still possible that it's the one that's wrong.
2466 	 */
2467 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2468 		btrfs_warn(fs_info,
2469 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2470 			btrfs_super_generation(sb),
2471 			btrfs_super_chunk_root_generation(sb));
2472 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2473 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2474 		btrfs_warn(fs_info,
2475 			"suspicious: generation < cache_generation: %llu < %llu",
2476 			btrfs_super_generation(sb),
2477 			btrfs_super_cache_generation(sb));
2478 
2479 	return ret;
2480 }
2481 
2482 /*
2483  * Validation of super block at mount time.
2484  * Some checks already done early at mount time, like csum type and incompat
2485  * flags will be skipped.
2486  */
2487 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2488 {
2489 	return validate_super(fs_info, fs_info->super_copy, 0);
2490 }
2491 
2492 /*
2493  * Validation of super block at write time.
2494  * Some checks like bytenr check will be skipped as their values will be
2495  * overwritten soon.
2496  * Extra checks like csum type and incompat flags will be done here.
2497  */
2498 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2499 				      struct btrfs_super_block *sb)
2500 {
2501 	int ret;
2502 
2503 	ret = validate_super(fs_info, sb, -1);
2504 	if (ret < 0)
2505 		goto out;
2506 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2507 		ret = -EUCLEAN;
2508 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2509 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2510 		goto out;
2511 	}
2512 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2513 		ret = -EUCLEAN;
2514 		btrfs_err(fs_info,
2515 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2516 			  btrfs_super_incompat_flags(sb),
2517 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2518 		goto out;
2519 	}
2520 out:
2521 	if (ret < 0)
2522 		btrfs_err(fs_info,
2523 		"super block corruption detected before writing it to disk");
2524 	return ret;
2525 }
2526 
2527 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2528 {
2529 	int backup_index = find_newest_super_backup(fs_info);
2530 	struct btrfs_super_block *sb = fs_info->super_copy;
2531 	struct btrfs_root *tree_root = fs_info->tree_root;
2532 	bool handle_error = false;
2533 	int ret = 0;
2534 	int i;
2535 
2536 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2537 		u64 generation;
2538 		int level;
2539 
2540 		if (handle_error) {
2541 			if (!IS_ERR(tree_root->node))
2542 				free_extent_buffer(tree_root->node);
2543 			tree_root->node = NULL;
2544 
2545 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2546 				break;
2547 
2548 			free_root_pointers(fs_info, 0);
2549 
2550 			/*
2551 			 * Don't use the log in recovery mode, it won't be
2552 			 * valid
2553 			 */
2554 			btrfs_set_super_log_root(sb, 0);
2555 
2556 			/* We can't trust the free space cache either */
2557 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2558 
2559 			ret = read_backup_root(fs_info, i);
2560 			backup_index = ret;
2561 			if (ret < 0)
2562 				return ret;
2563 		}
2564 		generation = btrfs_super_generation(sb);
2565 		level = btrfs_super_root_level(sb);
2566 		tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2567 						  generation, level, NULL);
2568 		if (IS_ERR(tree_root->node) ||
2569 		    !extent_buffer_uptodate(tree_root->node)) {
2570 			handle_error = true;
2571 
2572 			if (IS_ERR(tree_root->node))
2573 				ret = PTR_ERR(tree_root->node);
2574 			else if (!extent_buffer_uptodate(tree_root->node))
2575 				ret = -EUCLEAN;
2576 
2577 			btrfs_warn(fs_info, "failed to read tree root");
2578 			continue;
2579 		}
2580 
2581 		btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2582 		tree_root->commit_root = btrfs_root_node(tree_root);
2583 		btrfs_set_root_refs(&tree_root->root_item, 1);
2584 
2585 		/*
2586 		 * No need to hold btrfs_root::objectid_mutex since the fs
2587 		 * hasn't been fully initialised and we are the only user
2588 		 */
2589 		ret = btrfs_find_highest_objectid(tree_root,
2590 						&tree_root->highest_objectid);
2591 		if (ret < 0) {
2592 			handle_error = true;
2593 			continue;
2594 		}
2595 
2596 		ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2597 
2598 		ret = btrfs_read_roots(fs_info);
2599 		if (ret < 0) {
2600 			handle_error = true;
2601 			continue;
2602 		}
2603 
2604 		/* All successful */
2605 		fs_info->generation = generation;
2606 		fs_info->last_trans_committed = generation;
2607 
2608 		/* Always begin writing backup roots after the one being used */
2609 		if (backup_index < 0) {
2610 			fs_info->backup_root_index = 0;
2611 		} else {
2612 			fs_info->backup_root_index = backup_index + 1;
2613 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2614 		}
2615 		break;
2616 	}
2617 
2618 	return ret;
2619 }
2620 
2621 int __cold open_ctree(struct super_block *sb,
2622 	       struct btrfs_fs_devices *fs_devices,
2623 	       char *options)
2624 {
2625 	u32 sectorsize;
2626 	u32 nodesize;
2627 	u32 stripesize;
2628 	u64 generation;
2629 	u64 features;
2630 	u16 csum_type;
2631 	struct btrfs_key location;
2632 	struct buffer_head *bh;
2633 	struct btrfs_super_block *disk_super;
2634 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2635 	struct btrfs_root *tree_root;
2636 	struct btrfs_root *chunk_root;
2637 	int ret;
2638 	int err = -EINVAL;
2639 	int clear_free_space_tree = 0;
2640 	int level;
2641 
2642 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2643 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2644 	if (!tree_root || !chunk_root) {
2645 		err = -ENOMEM;
2646 		goto fail;
2647 	}
2648 
2649 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2650 	if (ret) {
2651 		err = ret;
2652 		goto fail;
2653 	}
2654 
2655 	ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2656 	if (ret) {
2657 		err = ret;
2658 		goto fail_srcu;
2659 	}
2660 
2661 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2662 	if (ret) {
2663 		err = ret;
2664 		goto fail_dio_bytes;
2665 	}
2666 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2667 					(1 + ilog2(nr_cpu_ids));
2668 
2669 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2670 	if (ret) {
2671 		err = ret;
2672 		goto fail_dirty_metadata_bytes;
2673 	}
2674 
2675 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2676 			GFP_KERNEL);
2677 	if (ret) {
2678 		err = ret;
2679 		goto fail_delalloc_bytes;
2680 	}
2681 
2682 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2683 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2684 	INIT_LIST_HEAD(&fs_info->trans_list);
2685 	INIT_LIST_HEAD(&fs_info->dead_roots);
2686 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2687 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2688 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2689 	spin_lock_init(&fs_info->delalloc_root_lock);
2690 	spin_lock_init(&fs_info->trans_lock);
2691 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2692 	spin_lock_init(&fs_info->delayed_iput_lock);
2693 	spin_lock_init(&fs_info->defrag_inodes_lock);
2694 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2695 	spin_lock_init(&fs_info->super_lock);
2696 	spin_lock_init(&fs_info->buffer_lock);
2697 	spin_lock_init(&fs_info->unused_bgs_lock);
2698 	rwlock_init(&fs_info->tree_mod_log_lock);
2699 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2700 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2701 	mutex_init(&fs_info->reloc_mutex);
2702 	mutex_init(&fs_info->delalloc_root_mutex);
2703 	seqlock_init(&fs_info->profiles_lock);
2704 
2705 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2706 	INIT_LIST_HEAD(&fs_info->space_info);
2707 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2708 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2709 	extent_map_tree_init(&fs_info->mapping_tree);
2710 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2711 			     BTRFS_BLOCK_RSV_GLOBAL);
2712 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2713 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2714 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2715 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2716 			     BTRFS_BLOCK_RSV_DELOPS);
2717 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2718 			     BTRFS_BLOCK_RSV_DELREFS);
2719 
2720 	atomic_set(&fs_info->async_delalloc_pages, 0);
2721 	atomic_set(&fs_info->defrag_running, 0);
2722 	atomic_set(&fs_info->reada_works_cnt, 0);
2723 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2724 	atomic64_set(&fs_info->tree_mod_seq, 0);
2725 	fs_info->sb = sb;
2726 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2727 	fs_info->metadata_ratio = 0;
2728 	fs_info->defrag_inodes = RB_ROOT;
2729 	atomic64_set(&fs_info->free_chunk_space, 0);
2730 	fs_info->tree_mod_log = RB_ROOT;
2731 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2732 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2733 	/* readahead state */
2734 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2735 	spin_lock_init(&fs_info->reada_lock);
2736 	btrfs_init_ref_verify(fs_info);
2737 
2738 	fs_info->thread_pool_size = min_t(unsigned long,
2739 					  num_online_cpus() + 2, 8);
2740 
2741 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2742 	spin_lock_init(&fs_info->ordered_root_lock);
2743 
2744 	fs_info->btree_inode = new_inode(sb);
2745 	if (!fs_info->btree_inode) {
2746 		err = -ENOMEM;
2747 		goto fail_bio_counter;
2748 	}
2749 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2750 
2751 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2752 					GFP_KERNEL);
2753 	if (!fs_info->delayed_root) {
2754 		err = -ENOMEM;
2755 		goto fail_iput;
2756 	}
2757 	btrfs_init_delayed_root(fs_info->delayed_root);
2758 
2759 	btrfs_init_scrub(fs_info);
2760 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2761 	fs_info->check_integrity_print_mask = 0;
2762 #endif
2763 	btrfs_init_balance(fs_info);
2764 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2765 
2766 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2767 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2768 
2769 	btrfs_init_btree_inode(fs_info);
2770 
2771 	spin_lock_init(&fs_info->block_group_cache_lock);
2772 	fs_info->block_group_cache_tree = RB_ROOT;
2773 	fs_info->first_logical_byte = (u64)-1;
2774 
2775 	extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2776 			    IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2777 	extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2778 			    IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
2779 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2780 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2781 
2782 	mutex_init(&fs_info->ordered_operations_mutex);
2783 	mutex_init(&fs_info->tree_log_mutex);
2784 	mutex_init(&fs_info->chunk_mutex);
2785 	mutex_init(&fs_info->transaction_kthread_mutex);
2786 	mutex_init(&fs_info->cleaner_mutex);
2787 	mutex_init(&fs_info->ro_block_group_mutex);
2788 	init_rwsem(&fs_info->commit_root_sem);
2789 	init_rwsem(&fs_info->cleanup_work_sem);
2790 	init_rwsem(&fs_info->subvol_sem);
2791 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2792 
2793 	btrfs_init_dev_replace_locks(fs_info);
2794 	btrfs_init_qgroup(fs_info);
2795 
2796 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2797 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2798 
2799 	init_waitqueue_head(&fs_info->transaction_throttle);
2800 	init_waitqueue_head(&fs_info->transaction_wait);
2801 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2802 	init_waitqueue_head(&fs_info->async_submit_wait);
2803 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2804 
2805 	/* Usable values until the real ones are cached from the superblock */
2806 	fs_info->nodesize = 4096;
2807 	fs_info->sectorsize = 4096;
2808 	fs_info->stripesize = 4096;
2809 
2810 	spin_lock_init(&fs_info->swapfile_pins_lock);
2811 	fs_info->swapfile_pins = RB_ROOT;
2812 
2813 	fs_info->send_in_progress = 0;
2814 
2815 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2816 	if (ret) {
2817 		err = ret;
2818 		goto fail_alloc;
2819 	}
2820 
2821 	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2822 
2823 	invalidate_bdev(fs_devices->latest_bdev);
2824 
2825 	/*
2826 	 * Read super block and check the signature bytes only
2827 	 */
2828 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2829 	if (IS_ERR(bh)) {
2830 		err = PTR_ERR(bh);
2831 		goto fail_alloc;
2832 	}
2833 
2834 	/*
2835 	 * Verify the type first, if that or the the checksum value are
2836 	 * corrupted, we'll find out
2837 	 */
2838 	csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2839 	if (!btrfs_supported_super_csum(csum_type)) {
2840 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2841 			  csum_type);
2842 		err = -EINVAL;
2843 		brelse(bh);
2844 		goto fail_alloc;
2845 	}
2846 
2847 	ret = btrfs_init_csum_hash(fs_info, csum_type);
2848 	if (ret) {
2849 		err = ret;
2850 		goto fail_alloc;
2851 	}
2852 
2853 	/*
2854 	 * We want to check superblock checksum, the type is stored inside.
2855 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2856 	 */
2857 	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2858 		btrfs_err(fs_info, "superblock checksum mismatch");
2859 		err = -EINVAL;
2860 		brelse(bh);
2861 		goto fail_csum;
2862 	}
2863 
2864 	/*
2865 	 * super_copy is zeroed at allocation time and we never touch the
2866 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2867 	 * the whole block of INFO_SIZE
2868 	 */
2869 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2870 	brelse(bh);
2871 
2872 	disk_super = fs_info->super_copy;
2873 
2874 	ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2875 		       BTRFS_FSID_SIZE));
2876 
2877 	if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2878 		ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2879 				fs_info->super_copy->metadata_uuid,
2880 				BTRFS_FSID_SIZE));
2881 	}
2882 
2883 	features = btrfs_super_flags(disk_super);
2884 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2885 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2886 		btrfs_set_super_flags(disk_super, features);
2887 		btrfs_info(fs_info,
2888 			"found metadata UUID change in progress flag, clearing");
2889 	}
2890 
2891 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2892 	       sizeof(*fs_info->super_for_commit));
2893 
2894 	ret = btrfs_validate_mount_super(fs_info);
2895 	if (ret) {
2896 		btrfs_err(fs_info, "superblock contains fatal errors");
2897 		err = -EINVAL;
2898 		goto fail_csum;
2899 	}
2900 
2901 	if (!btrfs_super_root(disk_super))
2902 		goto fail_csum;
2903 
2904 	/* check FS state, whether FS is broken. */
2905 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2906 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2907 
2908 	/*
2909 	 * In the long term, we'll store the compression type in the super
2910 	 * block, and it'll be used for per file compression control.
2911 	 */
2912 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2913 
2914 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2915 	if (ret) {
2916 		err = ret;
2917 		goto fail_csum;
2918 	}
2919 
2920 	features = btrfs_super_incompat_flags(disk_super) &
2921 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2922 	if (features) {
2923 		btrfs_err(fs_info,
2924 		    "cannot mount because of unsupported optional features (%llx)",
2925 		    features);
2926 		err = -EINVAL;
2927 		goto fail_csum;
2928 	}
2929 
2930 	features = btrfs_super_incompat_flags(disk_super);
2931 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2932 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2933 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2934 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2935 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2936 
2937 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2938 		btrfs_info(fs_info, "has skinny extents");
2939 
2940 	/*
2941 	 * flag our filesystem as having big metadata blocks if
2942 	 * they are bigger than the page size
2943 	 */
2944 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2945 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2946 			btrfs_info(fs_info,
2947 				"flagging fs with big metadata feature");
2948 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2949 	}
2950 
2951 	nodesize = btrfs_super_nodesize(disk_super);
2952 	sectorsize = btrfs_super_sectorsize(disk_super);
2953 	stripesize = sectorsize;
2954 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2955 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2956 
2957 	/* Cache block sizes */
2958 	fs_info->nodesize = nodesize;
2959 	fs_info->sectorsize = sectorsize;
2960 	fs_info->stripesize = stripesize;
2961 
2962 	/*
2963 	 * mixed block groups end up with duplicate but slightly offset
2964 	 * extent buffers for the same range.  It leads to corruptions
2965 	 */
2966 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2967 	    (sectorsize != nodesize)) {
2968 		btrfs_err(fs_info,
2969 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2970 			nodesize, sectorsize);
2971 		goto fail_csum;
2972 	}
2973 
2974 	/*
2975 	 * Needn't use the lock because there is no other task which will
2976 	 * update the flag.
2977 	 */
2978 	btrfs_set_super_incompat_flags(disk_super, features);
2979 
2980 	features = btrfs_super_compat_ro_flags(disk_super) &
2981 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2982 	if (!sb_rdonly(sb) && features) {
2983 		btrfs_err(fs_info,
2984 	"cannot mount read-write because of unsupported optional features (%llx)",
2985 		       features);
2986 		err = -EINVAL;
2987 		goto fail_csum;
2988 	}
2989 
2990 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2991 	if (ret) {
2992 		err = ret;
2993 		goto fail_sb_buffer;
2994 	}
2995 
2996 	sb->s_bdi->congested_fn = btrfs_congested_fn;
2997 	sb->s_bdi->congested_data = fs_info;
2998 	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2999 	sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3000 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3001 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3002 
3003 	sb->s_blocksize = sectorsize;
3004 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3005 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3006 
3007 	mutex_lock(&fs_info->chunk_mutex);
3008 	ret = btrfs_read_sys_array(fs_info);
3009 	mutex_unlock(&fs_info->chunk_mutex);
3010 	if (ret) {
3011 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3012 		goto fail_sb_buffer;
3013 	}
3014 
3015 	generation = btrfs_super_chunk_root_generation(disk_super);
3016 	level = btrfs_super_chunk_root_level(disk_super);
3017 
3018 	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
3019 
3020 	chunk_root->node = read_tree_block(fs_info,
3021 					   btrfs_super_chunk_root(disk_super),
3022 					   generation, level, NULL);
3023 	if (IS_ERR(chunk_root->node) ||
3024 	    !extent_buffer_uptodate(chunk_root->node)) {
3025 		btrfs_err(fs_info, "failed to read chunk root");
3026 		if (!IS_ERR(chunk_root->node))
3027 			free_extent_buffer(chunk_root->node);
3028 		chunk_root->node = NULL;
3029 		goto fail_tree_roots;
3030 	}
3031 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3032 	chunk_root->commit_root = btrfs_root_node(chunk_root);
3033 
3034 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3035 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3036 
3037 	ret = btrfs_read_chunk_tree(fs_info);
3038 	if (ret) {
3039 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3040 		goto fail_tree_roots;
3041 	}
3042 
3043 	/*
3044 	 * Keep the devid that is marked to be the target device for the
3045 	 * device replace procedure
3046 	 */
3047 	btrfs_free_extra_devids(fs_devices, 0);
3048 
3049 	if (!fs_devices->latest_bdev) {
3050 		btrfs_err(fs_info, "failed to read devices");
3051 		goto fail_tree_roots;
3052 	}
3053 
3054 	ret = init_tree_roots(fs_info);
3055 	if (ret)
3056 		goto fail_tree_roots;
3057 
3058 	ret = btrfs_verify_dev_extents(fs_info);
3059 	if (ret) {
3060 		btrfs_err(fs_info,
3061 			  "failed to verify dev extents against chunks: %d",
3062 			  ret);
3063 		goto fail_block_groups;
3064 	}
3065 	ret = btrfs_recover_balance(fs_info);
3066 	if (ret) {
3067 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3068 		goto fail_block_groups;
3069 	}
3070 
3071 	ret = btrfs_init_dev_stats(fs_info);
3072 	if (ret) {
3073 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3074 		goto fail_block_groups;
3075 	}
3076 
3077 	ret = btrfs_init_dev_replace(fs_info);
3078 	if (ret) {
3079 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3080 		goto fail_block_groups;
3081 	}
3082 
3083 	btrfs_free_extra_devids(fs_devices, 1);
3084 
3085 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3086 	if (ret) {
3087 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3088 				ret);
3089 		goto fail_block_groups;
3090 	}
3091 
3092 	ret = btrfs_sysfs_add_device(fs_devices);
3093 	if (ret) {
3094 		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3095 				ret);
3096 		goto fail_fsdev_sysfs;
3097 	}
3098 
3099 	ret = btrfs_sysfs_add_mounted(fs_info);
3100 	if (ret) {
3101 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3102 		goto fail_fsdev_sysfs;
3103 	}
3104 
3105 	ret = btrfs_init_space_info(fs_info);
3106 	if (ret) {
3107 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3108 		goto fail_sysfs;
3109 	}
3110 
3111 	ret = btrfs_read_block_groups(fs_info);
3112 	if (ret) {
3113 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3114 		goto fail_sysfs;
3115 	}
3116 
3117 	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3118 		btrfs_warn(fs_info,
3119 		"writable mount is not allowed due to too many missing devices");
3120 		goto fail_sysfs;
3121 	}
3122 
3123 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3124 					       "btrfs-cleaner");
3125 	if (IS_ERR(fs_info->cleaner_kthread))
3126 		goto fail_sysfs;
3127 
3128 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3129 						   tree_root,
3130 						   "btrfs-transaction");
3131 	if (IS_ERR(fs_info->transaction_kthread))
3132 		goto fail_cleaner;
3133 
3134 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3135 	    !fs_info->fs_devices->rotating) {
3136 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3137 	}
3138 
3139 	/*
3140 	 * Mount does not set all options immediately, we can do it now and do
3141 	 * not have to wait for transaction commit
3142 	 */
3143 	btrfs_apply_pending_changes(fs_info);
3144 
3145 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3146 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3147 		ret = btrfsic_mount(fs_info, fs_devices,
3148 				    btrfs_test_opt(fs_info,
3149 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3150 				    1 : 0,
3151 				    fs_info->check_integrity_print_mask);
3152 		if (ret)
3153 			btrfs_warn(fs_info,
3154 				"failed to initialize integrity check module: %d",
3155 				ret);
3156 	}
3157 #endif
3158 	ret = btrfs_read_qgroup_config(fs_info);
3159 	if (ret)
3160 		goto fail_trans_kthread;
3161 
3162 	if (btrfs_build_ref_tree(fs_info))
3163 		btrfs_err(fs_info, "couldn't build ref tree");
3164 
3165 	/* do not make disk changes in broken FS or nologreplay is given */
3166 	if (btrfs_super_log_root(disk_super) != 0 &&
3167 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3168 		ret = btrfs_replay_log(fs_info, fs_devices);
3169 		if (ret) {
3170 			err = ret;
3171 			goto fail_qgroup;
3172 		}
3173 	}
3174 
3175 	ret = btrfs_find_orphan_roots(fs_info);
3176 	if (ret)
3177 		goto fail_qgroup;
3178 
3179 	if (!sb_rdonly(sb)) {
3180 		ret = btrfs_cleanup_fs_roots(fs_info);
3181 		if (ret)
3182 			goto fail_qgroup;
3183 
3184 		mutex_lock(&fs_info->cleaner_mutex);
3185 		ret = btrfs_recover_relocation(tree_root);
3186 		mutex_unlock(&fs_info->cleaner_mutex);
3187 		if (ret < 0) {
3188 			btrfs_warn(fs_info, "failed to recover relocation: %d",
3189 					ret);
3190 			err = -EINVAL;
3191 			goto fail_qgroup;
3192 		}
3193 	}
3194 
3195 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3196 	location.type = BTRFS_ROOT_ITEM_KEY;
3197 	location.offset = 0;
3198 
3199 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3200 	if (IS_ERR(fs_info->fs_root)) {
3201 		err = PTR_ERR(fs_info->fs_root);
3202 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3203 		goto fail_qgroup;
3204 	}
3205 
3206 	if (sb_rdonly(sb))
3207 		return 0;
3208 
3209 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3210 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3211 		clear_free_space_tree = 1;
3212 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3213 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3214 		btrfs_warn(fs_info, "free space tree is invalid");
3215 		clear_free_space_tree = 1;
3216 	}
3217 
3218 	if (clear_free_space_tree) {
3219 		btrfs_info(fs_info, "clearing free space tree");
3220 		ret = btrfs_clear_free_space_tree(fs_info);
3221 		if (ret) {
3222 			btrfs_warn(fs_info,
3223 				   "failed to clear free space tree: %d", ret);
3224 			close_ctree(fs_info);
3225 			return ret;
3226 		}
3227 	}
3228 
3229 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3230 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3231 		btrfs_info(fs_info, "creating free space tree");
3232 		ret = btrfs_create_free_space_tree(fs_info);
3233 		if (ret) {
3234 			btrfs_warn(fs_info,
3235 				"failed to create free space tree: %d", ret);
3236 			close_ctree(fs_info);
3237 			return ret;
3238 		}
3239 	}
3240 
3241 	down_read(&fs_info->cleanup_work_sem);
3242 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3243 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3244 		up_read(&fs_info->cleanup_work_sem);
3245 		close_ctree(fs_info);
3246 		return ret;
3247 	}
3248 	up_read(&fs_info->cleanup_work_sem);
3249 
3250 	ret = btrfs_resume_balance_async(fs_info);
3251 	if (ret) {
3252 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3253 		close_ctree(fs_info);
3254 		return ret;
3255 	}
3256 
3257 	ret = btrfs_resume_dev_replace_async(fs_info);
3258 	if (ret) {
3259 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3260 		close_ctree(fs_info);
3261 		return ret;
3262 	}
3263 
3264 	btrfs_qgroup_rescan_resume(fs_info);
3265 
3266 	if (!fs_info->uuid_root) {
3267 		btrfs_info(fs_info, "creating UUID tree");
3268 		ret = btrfs_create_uuid_tree(fs_info);
3269 		if (ret) {
3270 			btrfs_warn(fs_info,
3271 				"failed to create the UUID tree: %d", ret);
3272 			close_ctree(fs_info);
3273 			return ret;
3274 		}
3275 	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3276 		   fs_info->generation !=
3277 				btrfs_super_uuid_tree_generation(disk_super)) {
3278 		btrfs_info(fs_info, "checking UUID tree");
3279 		ret = btrfs_check_uuid_tree(fs_info);
3280 		if (ret) {
3281 			btrfs_warn(fs_info,
3282 				"failed to check the UUID tree: %d", ret);
3283 			close_ctree(fs_info);
3284 			return ret;
3285 		}
3286 	} else {
3287 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3288 	}
3289 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3290 
3291 	/*
3292 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3293 	 * no need to keep the flag
3294 	 */
3295 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3296 
3297 	return 0;
3298 
3299 fail_qgroup:
3300 	btrfs_free_qgroup_config(fs_info);
3301 fail_trans_kthread:
3302 	kthread_stop(fs_info->transaction_kthread);
3303 	btrfs_cleanup_transaction(fs_info);
3304 	btrfs_free_fs_roots(fs_info);
3305 fail_cleaner:
3306 	kthread_stop(fs_info->cleaner_kthread);
3307 
3308 	/*
3309 	 * make sure we're done with the btree inode before we stop our
3310 	 * kthreads
3311 	 */
3312 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3313 
3314 fail_sysfs:
3315 	btrfs_sysfs_remove_mounted(fs_info);
3316 
3317 fail_fsdev_sysfs:
3318 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3319 
3320 fail_block_groups:
3321 	btrfs_put_block_group_cache(fs_info);
3322 
3323 fail_tree_roots:
3324 	free_root_pointers(fs_info, true);
3325 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3326 
3327 fail_sb_buffer:
3328 	btrfs_stop_all_workers(fs_info);
3329 	btrfs_free_block_groups(fs_info);
3330 fail_csum:
3331 	btrfs_free_csum_hash(fs_info);
3332 fail_alloc:
3333 fail_iput:
3334 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3335 
3336 	iput(fs_info->btree_inode);
3337 fail_bio_counter:
3338 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3339 fail_delalloc_bytes:
3340 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3341 fail_dirty_metadata_bytes:
3342 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3343 fail_dio_bytes:
3344 	percpu_counter_destroy(&fs_info->dio_bytes);
3345 fail_srcu:
3346 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3347 fail:
3348 	btrfs_free_stripe_hash_table(fs_info);
3349 	btrfs_close_devices(fs_info->fs_devices);
3350 	return err;
3351 }
3352 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3353 
3354 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3355 {
3356 	if (uptodate) {
3357 		set_buffer_uptodate(bh);
3358 	} else {
3359 		struct btrfs_device *device = (struct btrfs_device *)
3360 			bh->b_private;
3361 
3362 		btrfs_warn_rl_in_rcu(device->fs_info,
3363 				"lost page write due to IO error on %s",
3364 					  rcu_str_deref(device->name));
3365 		/* note, we don't set_buffer_write_io_error because we have
3366 		 * our own ways of dealing with the IO errors
3367 		 */
3368 		clear_buffer_uptodate(bh);
3369 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3370 	}
3371 	unlock_buffer(bh);
3372 	put_bh(bh);
3373 }
3374 
3375 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3376 			struct buffer_head **bh_ret)
3377 {
3378 	struct buffer_head *bh;
3379 	struct btrfs_super_block *super;
3380 	u64 bytenr;
3381 
3382 	bytenr = btrfs_sb_offset(copy_num);
3383 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3384 		return -EINVAL;
3385 
3386 	bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3387 	/*
3388 	 * If we fail to read from the underlying devices, as of now
3389 	 * the best option we have is to mark it EIO.
3390 	 */
3391 	if (!bh)
3392 		return -EIO;
3393 
3394 	super = (struct btrfs_super_block *)bh->b_data;
3395 	if (btrfs_super_bytenr(super) != bytenr ||
3396 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3397 		brelse(bh);
3398 		return -EINVAL;
3399 	}
3400 
3401 	*bh_ret = bh;
3402 	return 0;
3403 }
3404 
3405 
3406 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3407 {
3408 	struct buffer_head *bh;
3409 	struct buffer_head *latest = NULL;
3410 	struct btrfs_super_block *super;
3411 	int i;
3412 	u64 transid = 0;
3413 	int ret = -EINVAL;
3414 
3415 	/* we would like to check all the supers, but that would make
3416 	 * a btrfs mount succeed after a mkfs from a different FS.
3417 	 * So, we need to add a special mount option to scan for
3418 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3419 	 */
3420 	for (i = 0; i < 1; i++) {
3421 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3422 		if (ret)
3423 			continue;
3424 
3425 		super = (struct btrfs_super_block *)bh->b_data;
3426 
3427 		if (!latest || btrfs_super_generation(super) > transid) {
3428 			brelse(latest);
3429 			latest = bh;
3430 			transid = btrfs_super_generation(super);
3431 		} else {
3432 			brelse(bh);
3433 		}
3434 	}
3435 
3436 	if (!latest)
3437 		return ERR_PTR(ret);
3438 
3439 	return latest;
3440 }
3441 
3442 /*
3443  * Write superblock @sb to the @device. Do not wait for completion, all the
3444  * buffer heads we write are pinned.
3445  *
3446  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3447  * the expected device size at commit time. Note that max_mirrors must be
3448  * same for write and wait phases.
3449  *
3450  * Return number of errors when buffer head is not found or submission fails.
3451  */
3452 static int write_dev_supers(struct btrfs_device *device,
3453 			    struct btrfs_super_block *sb, int max_mirrors)
3454 {
3455 	struct btrfs_fs_info *fs_info = device->fs_info;
3456 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3457 	struct buffer_head *bh;
3458 	int i;
3459 	int ret;
3460 	int errors = 0;
3461 	u64 bytenr;
3462 	int op_flags;
3463 
3464 	if (max_mirrors == 0)
3465 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3466 
3467 	shash->tfm = fs_info->csum_shash;
3468 
3469 	for (i = 0; i < max_mirrors; i++) {
3470 		bytenr = btrfs_sb_offset(i);
3471 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3472 		    device->commit_total_bytes)
3473 			break;
3474 
3475 		btrfs_set_super_bytenr(sb, bytenr);
3476 
3477 		crypto_shash_init(shash);
3478 		crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3479 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3480 		crypto_shash_final(shash, sb->csum);
3481 
3482 		/* One reference for us, and we leave it for the caller */
3483 		bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3484 			      BTRFS_SUPER_INFO_SIZE);
3485 		if (!bh) {
3486 			btrfs_err(device->fs_info,
3487 			    "couldn't get super buffer head for bytenr %llu",
3488 			    bytenr);
3489 			errors++;
3490 			continue;
3491 		}
3492 
3493 		memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3494 
3495 		/* one reference for submit_bh */
3496 		get_bh(bh);
3497 
3498 		set_buffer_uptodate(bh);
3499 		lock_buffer(bh);
3500 		bh->b_end_io = btrfs_end_buffer_write_sync;
3501 		bh->b_private = device;
3502 
3503 		/*
3504 		 * we fua the first super.  The others we allow
3505 		 * to go down lazy.
3506 		 */
3507 		op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3508 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3509 			op_flags |= REQ_FUA;
3510 		ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3511 		if (ret)
3512 			errors++;
3513 	}
3514 	return errors < i ? 0 : -1;
3515 }
3516 
3517 /*
3518  * Wait for write completion of superblocks done by write_dev_supers,
3519  * @max_mirrors same for write and wait phases.
3520  *
3521  * Return number of errors when buffer head is not found or not marked up to
3522  * date.
3523  */
3524 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3525 {
3526 	struct buffer_head *bh;
3527 	int i;
3528 	int errors = 0;
3529 	bool primary_failed = false;
3530 	u64 bytenr;
3531 
3532 	if (max_mirrors == 0)
3533 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3534 
3535 	for (i = 0; i < max_mirrors; i++) {
3536 		bytenr = btrfs_sb_offset(i);
3537 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3538 		    device->commit_total_bytes)
3539 			break;
3540 
3541 		bh = __find_get_block(device->bdev,
3542 				      bytenr / BTRFS_BDEV_BLOCKSIZE,
3543 				      BTRFS_SUPER_INFO_SIZE);
3544 		if (!bh) {
3545 			errors++;
3546 			if (i == 0)
3547 				primary_failed = true;
3548 			continue;
3549 		}
3550 		wait_on_buffer(bh);
3551 		if (!buffer_uptodate(bh)) {
3552 			errors++;
3553 			if (i == 0)
3554 				primary_failed = true;
3555 		}
3556 
3557 		/* drop our reference */
3558 		brelse(bh);
3559 
3560 		/* drop the reference from the writing run */
3561 		brelse(bh);
3562 	}
3563 
3564 	/* log error, force error return */
3565 	if (primary_failed) {
3566 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3567 			  device->devid);
3568 		return -1;
3569 	}
3570 
3571 	return errors < i ? 0 : -1;
3572 }
3573 
3574 /*
3575  * endio for the write_dev_flush, this will wake anyone waiting
3576  * for the barrier when it is done
3577  */
3578 static void btrfs_end_empty_barrier(struct bio *bio)
3579 {
3580 	complete(bio->bi_private);
3581 }
3582 
3583 /*
3584  * Submit a flush request to the device if it supports it. Error handling is
3585  * done in the waiting counterpart.
3586  */
3587 static void write_dev_flush(struct btrfs_device *device)
3588 {
3589 	struct request_queue *q = bdev_get_queue(device->bdev);
3590 	struct bio *bio = device->flush_bio;
3591 
3592 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3593 		return;
3594 
3595 	bio_reset(bio);
3596 	bio->bi_end_io = btrfs_end_empty_barrier;
3597 	bio_set_dev(bio, device->bdev);
3598 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3599 	init_completion(&device->flush_wait);
3600 	bio->bi_private = &device->flush_wait;
3601 
3602 	btrfsic_submit_bio(bio);
3603 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3604 }
3605 
3606 /*
3607  * If the flush bio has been submitted by write_dev_flush, wait for it.
3608  */
3609 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3610 {
3611 	struct bio *bio = device->flush_bio;
3612 
3613 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3614 		return BLK_STS_OK;
3615 
3616 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3617 	wait_for_completion_io(&device->flush_wait);
3618 
3619 	return bio->bi_status;
3620 }
3621 
3622 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3623 {
3624 	if (!btrfs_check_rw_degradable(fs_info, NULL))
3625 		return -EIO;
3626 	return 0;
3627 }
3628 
3629 /*
3630  * send an empty flush down to each device in parallel,
3631  * then wait for them
3632  */
3633 static int barrier_all_devices(struct btrfs_fs_info *info)
3634 {
3635 	struct list_head *head;
3636 	struct btrfs_device *dev;
3637 	int errors_wait = 0;
3638 	blk_status_t ret;
3639 
3640 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3641 	/* send down all the barriers */
3642 	head = &info->fs_devices->devices;
3643 	list_for_each_entry(dev, head, dev_list) {
3644 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3645 			continue;
3646 		if (!dev->bdev)
3647 			continue;
3648 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3649 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3650 			continue;
3651 
3652 		write_dev_flush(dev);
3653 		dev->last_flush_error = BLK_STS_OK;
3654 	}
3655 
3656 	/* wait for all the barriers */
3657 	list_for_each_entry(dev, head, dev_list) {
3658 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3659 			continue;
3660 		if (!dev->bdev) {
3661 			errors_wait++;
3662 			continue;
3663 		}
3664 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3665 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3666 			continue;
3667 
3668 		ret = wait_dev_flush(dev);
3669 		if (ret) {
3670 			dev->last_flush_error = ret;
3671 			btrfs_dev_stat_inc_and_print(dev,
3672 					BTRFS_DEV_STAT_FLUSH_ERRS);
3673 			errors_wait++;
3674 		}
3675 	}
3676 
3677 	if (errors_wait) {
3678 		/*
3679 		 * At some point we need the status of all disks
3680 		 * to arrive at the volume status. So error checking
3681 		 * is being pushed to a separate loop.
3682 		 */
3683 		return check_barrier_error(info);
3684 	}
3685 	return 0;
3686 }
3687 
3688 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3689 {
3690 	int raid_type;
3691 	int min_tolerated = INT_MAX;
3692 
3693 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3694 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3695 		min_tolerated = min_t(int, min_tolerated,
3696 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3697 				    tolerated_failures);
3698 
3699 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3700 		if (raid_type == BTRFS_RAID_SINGLE)
3701 			continue;
3702 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3703 			continue;
3704 		min_tolerated = min_t(int, min_tolerated,
3705 				    btrfs_raid_array[raid_type].
3706 				    tolerated_failures);
3707 	}
3708 
3709 	if (min_tolerated == INT_MAX) {
3710 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3711 		min_tolerated = 0;
3712 	}
3713 
3714 	return min_tolerated;
3715 }
3716 
3717 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3718 {
3719 	struct list_head *head;
3720 	struct btrfs_device *dev;
3721 	struct btrfs_super_block *sb;
3722 	struct btrfs_dev_item *dev_item;
3723 	int ret;
3724 	int do_barriers;
3725 	int max_errors;
3726 	int total_errors = 0;
3727 	u64 flags;
3728 
3729 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3730 
3731 	/*
3732 	 * max_mirrors == 0 indicates we're from commit_transaction,
3733 	 * not from fsync where the tree roots in fs_info have not
3734 	 * been consistent on disk.
3735 	 */
3736 	if (max_mirrors == 0)
3737 		backup_super_roots(fs_info);
3738 
3739 	sb = fs_info->super_for_commit;
3740 	dev_item = &sb->dev_item;
3741 
3742 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3743 	head = &fs_info->fs_devices->devices;
3744 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3745 
3746 	if (do_barriers) {
3747 		ret = barrier_all_devices(fs_info);
3748 		if (ret) {
3749 			mutex_unlock(
3750 				&fs_info->fs_devices->device_list_mutex);
3751 			btrfs_handle_fs_error(fs_info, ret,
3752 					      "errors while submitting device barriers.");
3753 			return ret;
3754 		}
3755 	}
3756 
3757 	list_for_each_entry(dev, head, dev_list) {
3758 		if (!dev->bdev) {
3759 			total_errors++;
3760 			continue;
3761 		}
3762 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3763 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3764 			continue;
3765 
3766 		btrfs_set_stack_device_generation(dev_item, 0);
3767 		btrfs_set_stack_device_type(dev_item, dev->type);
3768 		btrfs_set_stack_device_id(dev_item, dev->devid);
3769 		btrfs_set_stack_device_total_bytes(dev_item,
3770 						   dev->commit_total_bytes);
3771 		btrfs_set_stack_device_bytes_used(dev_item,
3772 						  dev->commit_bytes_used);
3773 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3774 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3775 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3776 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3777 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3778 		       BTRFS_FSID_SIZE);
3779 
3780 		flags = btrfs_super_flags(sb);
3781 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3782 
3783 		ret = btrfs_validate_write_super(fs_info, sb);
3784 		if (ret < 0) {
3785 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3786 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
3787 				"unexpected superblock corruption detected");
3788 			return -EUCLEAN;
3789 		}
3790 
3791 		ret = write_dev_supers(dev, sb, max_mirrors);
3792 		if (ret)
3793 			total_errors++;
3794 	}
3795 	if (total_errors > max_errors) {
3796 		btrfs_err(fs_info, "%d errors while writing supers",
3797 			  total_errors);
3798 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3799 
3800 		/* FUA is masked off if unsupported and can't be the reason */
3801 		btrfs_handle_fs_error(fs_info, -EIO,
3802 				      "%d errors while writing supers",
3803 				      total_errors);
3804 		return -EIO;
3805 	}
3806 
3807 	total_errors = 0;
3808 	list_for_each_entry(dev, head, dev_list) {
3809 		if (!dev->bdev)
3810 			continue;
3811 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3812 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3813 			continue;
3814 
3815 		ret = wait_dev_supers(dev, max_mirrors);
3816 		if (ret)
3817 			total_errors++;
3818 	}
3819 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3820 	if (total_errors > max_errors) {
3821 		btrfs_handle_fs_error(fs_info, -EIO,
3822 				      "%d errors while writing supers",
3823 				      total_errors);
3824 		return -EIO;
3825 	}
3826 	return 0;
3827 }
3828 
3829 /* Drop a fs root from the radix tree and free it. */
3830 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3831 				  struct btrfs_root *root)
3832 {
3833 	spin_lock(&fs_info->fs_roots_radix_lock);
3834 	radix_tree_delete(&fs_info->fs_roots_radix,
3835 			  (unsigned long)root->root_key.objectid);
3836 	spin_unlock(&fs_info->fs_roots_radix_lock);
3837 
3838 	if (btrfs_root_refs(&root->root_item) == 0)
3839 		synchronize_srcu(&fs_info->subvol_srcu);
3840 
3841 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3842 		btrfs_free_log(NULL, root);
3843 		if (root->reloc_root) {
3844 			free_extent_buffer(root->reloc_root->node);
3845 			free_extent_buffer(root->reloc_root->commit_root);
3846 			btrfs_put_fs_root(root->reloc_root);
3847 			root->reloc_root = NULL;
3848 		}
3849 	}
3850 
3851 	if (root->free_ino_pinned)
3852 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3853 	if (root->free_ino_ctl)
3854 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3855 	btrfs_free_fs_root(root);
3856 }
3857 
3858 void btrfs_free_fs_root(struct btrfs_root *root)
3859 {
3860 	iput(root->ino_cache_inode);
3861 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3862 	if (root->anon_dev)
3863 		free_anon_bdev(root->anon_dev);
3864 	if (root->subv_writers)
3865 		btrfs_free_subvolume_writers(root->subv_writers);
3866 	free_extent_buffer(root->node);
3867 	free_extent_buffer(root->commit_root);
3868 	kfree(root->free_ino_ctl);
3869 	kfree(root->free_ino_pinned);
3870 	btrfs_put_fs_root(root);
3871 }
3872 
3873 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3874 {
3875 	u64 root_objectid = 0;
3876 	struct btrfs_root *gang[8];
3877 	int i = 0;
3878 	int err = 0;
3879 	unsigned int ret = 0;
3880 	int index;
3881 
3882 	while (1) {
3883 		index = srcu_read_lock(&fs_info->subvol_srcu);
3884 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3885 					     (void **)gang, root_objectid,
3886 					     ARRAY_SIZE(gang));
3887 		if (!ret) {
3888 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3889 			break;
3890 		}
3891 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3892 
3893 		for (i = 0; i < ret; i++) {
3894 			/* Avoid to grab roots in dead_roots */
3895 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3896 				gang[i] = NULL;
3897 				continue;
3898 			}
3899 			/* grab all the search result for later use */
3900 			gang[i] = btrfs_grab_fs_root(gang[i]);
3901 		}
3902 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3903 
3904 		for (i = 0; i < ret; i++) {
3905 			if (!gang[i])
3906 				continue;
3907 			root_objectid = gang[i]->root_key.objectid;
3908 			err = btrfs_orphan_cleanup(gang[i]);
3909 			if (err)
3910 				break;
3911 			btrfs_put_fs_root(gang[i]);
3912 		}
3913 		root_objectid++;
3914 	}
3915 
3916 	/* release the uncleaned roots due to error */
3917 	for (; i < ret; i++) {
3918 		if (gang[i])
3919 			btrfs_put_fs_root(gang[i]);
3920 	}
3921 	return err;
3922 }
3923 
3924 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3925 {
3926 	struct btrfs_root *root = fs_info->tree_root;
3927 	struct btrfs_trans_handle *trans;
3928 
3929 	mutex_lock(&fs_info->cleaner_mutex);
3930 	btrfs_run_delayed_iputs(fs_info);
3931 	mutex_unlock(&fs_info->cleaner_mutex);
3932 	wake_up_process(fs_info->cleaner_kthread);
3933 
3934 	/* wait until ongoing cleanup work done */
3935 	down_write(&fs_info->cleanup_work_sem);
3936 	up_write(&fs_info->cleanup_work_sem);
3937 
3938 	trans = btrfs_join_transaction(root);
3939 	if (IS_ERR(trans))
3940 		return PTR_ERR(trans);
3941 	return btrfs_commit_transaction(trans);
3942 }
3943 
3944 void __cold close_ctree(struct btrfs_fs_info *fs_info)
3945 {
3946 	int ret;
3947 
3948 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3949 	/*
3950 	 * We don't want the cleaner to start new transactions, add more delayed
3951 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3952 	 * because that frees the task_struct, and the transaction kthread might
3953 	 * still try to wake up the cleaner.
3954 	 */
3955 	kthread_park(fs_info->cleaner_kthread);
3956 
3957 	/* wait for the qgroup rescan worker to stop */
3958 	btrfs_qgroup_wait_for_completion(fs_info, false);
3959 
3960 	/* wait for the uuid_scan task to finish */
3961 	down(&fs_info->uuid_tree_rescan_sem);
3962 	/* avoid complains from lockdep et al., set sem back to initial state */
3963 	up(&fs_info->uuid_tree_rescan_sem);
3964 
3965 	/* pause restriper - we want to resume on mount */
3966 	btrfs_pause_balance(fs_info);
3967 
3968 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3969 
3970 	btrfs_scrub_cancel(fs_info);
3971 
3972 	/* wait for any defraggers to finish */
3973 	wait_event(fs_info->transaction_wait,
3974 		   (atomic_read(&fs_info->defrag_running) == 0));
3975 
3976 	/* clear out the rbtree of defraggable inodes */
3977 	btrfs_cleanup_defrag_inodes(fs_info);
3978 
3979 	cancel_work_sync(&fs_info->async_reclaim_work);
3980 
3981 	if (!sb_rdonly(fs_info->sb)) {
3982 		/*
3983 		 * The cleaner kthread is stopped, so do one final pass over
3984 		 * unused block groups.
3985 		 */
3986 		btrfs_delete_unused_bgs(fs_info);
3987 
3988 		ret = btrfs_commit_super(fs_info);
3989 		if (ret)
3990 			btrfs_err(fs_info, "commit super ret %d", ret);
3991 	}
3992 
3993 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3994 	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3995 		btrfs_error_commit_super(fs_info);
3996 
3997 	kthread_stop(fs_info->transaction_kthread);
3998 	kthread_stop(fs_info->cleaner_kthread);
3999 
4000 	ASSERT(list_empty(&fs_info->delayed_iputs));
4001 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4002 
4003 	btrfs_free_qgroup_config(fs_info);
4004 	ASSERT(list_empty(&fs_info->delalloc_roots));
4005 
4006 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4007 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4008 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4009 	}
4010 
4011 	if (percpu_counter_sum(&fs_info->dio_bytes))
4012 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4013 			   percpu_counter_sum(&fs_info->dio_bytes));
4014 
4015 	btrfs_sysfs_remove_mounted(fs_info);
4016 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4017 
4018 	btrfs_free_fs_roots(fs_info);
4019 
4020 	btrfs_put_block_group_cache(fs_info);
4021 
4022 	/*
4023 	 * we must make sure there is not any read request to
4024 	 * submit after we stopping all workers.
4025 	 */
4026 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4027 	btrfs_stop_all_workers(fs_info);
4028 
4029 	btrfs_free_block_groups(fs_info);
4030 
4031 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4032 	free_root_pointers(fs_info, true);
4033 
4034 	iput(fs_info->btree_inode);
4035 
4036 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4037 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4038 		btrfsic_unmount(fs_info->fs_devices);
4039 #endif
4040 
4041 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4042 	btrfs_close_devices(fs_info->fs_devices);
4043 
4044 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4045 	percpu_counter_destroy(&fs_info->delalloc_bytes);
4046 	percpu_counter_destroy(&fs_info->dio_bytes);
4047 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4048 	cleanup_srcu_struct(&fs_info->subvol_srcu);
4049 
4050 	btrfs_free_csum_hash(fs_info);
4051 	btrfs_free_stripe_hash_table(fs_info);
4052 	btrfs_free_ref_cache(fs_info);
4053 }
4054 
4055 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4056 			  int atomic)
4057 {
4058 	int ret;
4059 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4060 
4061 	ret = extent_buffer_uptodate(buf);
4062 	if (!ret)
4063 		return ret;
4064 
4065 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4066 				    parent_transid, atomic);
4067 	if (ret == -EAGAIN)
4068 		return ret;
4069 	return !ret;
4070 }
4071 
4072 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4073 {
4074 	struct btrfs_fs_info *fs_info;
4075 	struct btrfs_root *root;
4076 	u64 transid = btrfs_header_generation(buf);
4077 	int was_dirty;
4078 
4079 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4080 	/*
4081 	 * This is a fast path so only do this check if we have sanity tests
4082 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4083 	 * outside of the sanity tests.
4084 	 */
4085 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4086 		return;
4087 #endif
4088 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4089 	fs_info = root->fs_info;
4090 	btrfs_assert_tree_locked(buf);
4091 	if (transid != fs_info->generation)
4092 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4093 			buf->start, transid, fs_info->generation);
4094 	was_dirty = set_extent_buffer_dirty(buf);
4095 	if (!was_dirty)
4096 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4097 					 buf->len,
4098 					 fs_info->dirty_metadata_batch);
4099 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4100 	/*
4101 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4102 	 * but item data not updated.
4103 	 * So here we should only check item pointers, not item data.
4104 	 */
4105 	if (btrfs_header_level(buf) == 0 &&
4106 	    btrfs_check_leaf_relaxed(buf)) {
4107 		btrfs_print_leaf(buf);
4108 		ASSERT(0);
4109 	}
4110 #endif
4111 }
4112 
4113 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4114 					int flush_delayed)
4115 {
4116 	/*
4117 	 * looks as though older kernels can get into trouble with
4118 	 * this code, they end up stuck in balance_dirty_pages forever
4119 	 */
4120 	int ret;
4121 
4122 	if (current->flags & PF_MEMALLOC)
4123 		return;
4124 
4125 	if (flush_delayed)
4126 		btrfs_balance_delayed_items(fs_info);
4127 
4128 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4129 				     BTRFS_DIRTY_METADATA_THRESH,
4130 				     fs_info->dirty_metadata_batch);
4131 	if (ret > 0) {
4132 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4133 	}
4134 }
4135 
4136 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4137 {
4138 	__btrfs_btree_balance_dirty(fs_info, 1);
4139 }
4140 
4141 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4142 {
4143 	__btrfs_btree_balance_dirty(fs_info, 0);
4144 }
4145 
4146 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4147 		      struct btrfs_key *first_key)
4148 {
4149 	return btree_read_extent_buffer_pages(buf, parent_transid,
4150 					      level, first_key);
4151 }
4152 
4153 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4154 {
4155 	/* cleanup FS via transaction */
4156 	btrfs_cleanup_transaction(fs_info);
4157 
4158 	mutex_lock(&fs_info->cleaner_mutex);
4159 	btrfs_run_delayed_iputs(fs_info);
4160 	mutex_unlock(&fs_info->cleaner_mutex);
4161 
4162 	down_write(&fs_info->cleanup_work_sem);
4163 	up_write(&fs_info->cleanup_work_sem);
4164 }
4165 
4166 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4167 {
4168 	struct btrfs_ordered_extent *ordered;
4169 
4170 	spin_lock(&root->ordered_extent_lock);
4171 	/*
4172 	 * This will just short circuit the ordered completion stuff which will
4173 	 * make sure the ordered extent gets properly cleaned up.
4174 	 */
4175 	list_for_each_entry(ordered, &root->ordered_extents,
4176 			    root_extent_list)
4177 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4178 	spin_unlock(&root->ordered_extent_lock);
4179 }
4180 
4181 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4182 {
4183 	struct btrfs_root *root;
4184 	struct list_head splice;
4185 
4186 	INIT_LIST_HEAD(&splice);
4187 
4188 	spin_lock(&fs_info->ordered_root_lock);
4189 	list_splice_init(&fs_info->ordered_roots, &splice);
4190 	while (!list_empty(&splice)) {
4191 		root = list_first_entry(&splice, struct btrfs_root,
4192 					ordered_root);
4193 		list_move_tail(&root->ordered_root,
4194 			       &fs_info->ordered_roots);
4195 
4196 		spin_unlock(&fs_info->ordered_root_lock);
4197 		btrfs_destroy_ordered_extents(root);
4198 
4199 		cond_resched();
4200 		spin_lock(&fs_info->ordered_root_lock);
4201 	}
4202 	spin_unlock(&fs_info->ordered_root_lock);
4203 
4204 	/*
4205 	 * We need this here because if we've been flipped read-only we won't
4206 	 * get sync() from the umount, so we need to make sure any ordered
4207 	 * extents that haven't had their dirty pages IO start writeout yet
4208 	 * actually get run and error out properly.
4209 	 */
4210 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4211 }
4212 
4213 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4214 				      struct btrfs_fs_info *fs_info)
4215 {
4216 	struct rb_node *node;
4217 	struct btrfs_delayed_ref_root *delayed_refs;
4218 	struct btrfs_delayed_ref_node *ref;
4219 	int ret = 0;
4220 
4221 	delayed_refs = &trans->delayed_refs;
4222 
4223 	spin_lock(&delayed_refs->lock);
4224 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4225 		spin_unlock(&delayed_refs->lock);
4226 		btrfs_info(fs_info, "delayed_refs has NO entry");
4227 		return ret;
4228 	}
4229 
4230 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4231 		struct btrfs_delayed_ref_head *head;
4232 		struct rb_node *n;
4233 		bool pin_bytes = false;
4234 
4235 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4236 				href_node);
4237 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4238 			continue;
4239 
4240 		spin_lock(&head->lock);
4241 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4242 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4243 				       ref_node);
4244 			ref->in_tree = 0;
4245 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4246 			RB_CLEAR_NODE(&ref->ref_node);
4247 			if (!list_empty(&ref->add_list))
4248 				list_del(&ref->add_list);
4249 			atomic_dec(&delayed_refs->num_entries);
4250 			btrfs_put_delayed_ref(ref);
4251 		}
4252 		if (head->must_insert_reserved)
4253 			pin_bytes = true;
4254 		btrfs_free_delayed_extent_op(head->extent_op);
4255 		btrfs_delete_ref_head(delayed_refs, head);
4256 		spin_unlock(&head->lock);
4257 		spin_unlock(&delayed_refs->lock);
4258 		mutex_unlock(&head->mutex);
4259 
4260 		if (pin_bytes)
4261 			btrfs_pin_extent(fs_info, head->bytenr,
4262 					 head->num_bytes, 1);
4263 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4264 		btrfs_put_delayed_ref_head(head);
4265 		cond_resched();
4266 		spin_lock(&delayed_refs->lock);
4267 	}
4268 
4269 	spin_unlock(&delayed_refs->lock);
4270 
4271 	return ret;
4272 }
4273 
4274 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4275 {
4276 	struct btrfs_inode *btrfs_inode;
4277 	struct list_head splice;
4278 
4279 	INIT_LIST_HEAD(&splice);
4280 
4281 	spin_lock(&root->delalloc_lock);
4282 	list_splice_init(&root->delalloc_inodes, &splice);
4283 
4284 	while (!list_empty(&splice)) {
4285 		struct inode *inode = NULL;
4286 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4287 					       delalloc_inodes);
4288 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4289 		spin_unlock(&root->delalloc_lock);
4290 
4291 		/*
4292 		 * Make sure we get a live inode and that it'll not disappear
4293 		 * meanwhile.
4294 		 */
4295 		inode = igrab(&btrfs_inode->vfs_inode);
4296 		if (inode) {
4297 			invalidate_inode_pages2(inode->i_mapping);
4298 			iput(inode);
4299 		}
4300 		spin_lock(&root->delalloc_lock);
4301 	}
4302 	spin_unlock(&root->delalloc_lock);
4303 }
4304 
4305 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4306 {
4307 	struct btrfs_root *root;
4308 	struct list_head splice;
4309 
4310 	INIT_LIST_HEAD(&splice);
4311 
4312 	spin_lock(&fs_info->delalloc_root_lock);
4313 	list_splice_init(&fs_info->delalloc_roots, &splice);
4314 	while (!list_empty(&splice)) {
4315 		root = list_first_entry(&splice, struct btrfs_root,
4316 					 delalloc_root);
4317 		root = btrfs_grab_fs_root(root);
4318 		BUG_ON(!root);
4319 		spin_unlock(&fs_info->delalloc_root_lock);
4320 
4321 		btrfs_destroy_delalloc_inodes(root);
4322 		btrfs_put_fs_root(root);
4323 
4324 		spin_lock(&fs_info->delalloc_root_lock);
4325 	}
4326 	spin_unlock(&fs_info->delalloc_root_lock);
4327 }
4328 
4329 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4330 					struct extent_io_tree *dirty_pages,
4331 					int mark)
4332 {
4333 	int ret;
4334 	struct extent_buffer *eb;
4335 	u64 start = 0;
4336 	u64 end;
4337 
4338 	while (1) {
4339 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4340 					    mark, NULL);
4341 		if (ret)
4342 			break;
4343 
4344 		clear_extent_bits(dirty_pages, start, end, mark);
4345 		while (start <= end) {
4346 			eb = find_extent_buffer(fs_info, start);
4347 			start += fs_info->nodesize;
4348 			if (!eb)
4349 				continue;
4350 			wait_on_extent_buffer_writeback(eb);
4351 
4352 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4353 					       &eb->bflags))
4354 				clear_extent_buffer_dirty(eb);
4355 			free_extent_buffer_stale(eb);
4356 		}
4357 	}
4358 
4359 	return ret;
4360 }
4361 
4362 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4363 				       struct extent_io_tree *pinned_extents)
4364 {
4365 	struct extent_io_tree *unpin;
4366 	u64 start;
4367 	u64 end;
4368 	int ret;
4369 	bool loop = true;
4370 
4371 	unpin = pinned_extents;
4372 again:
4373 	while (1) {
4374 		struct extent_state *cached_state = NULL;
4375 
4376 		/*
4377 		 * The btrfs_finish_extent_commit() may get the same range as
4378 		 * ours between find_first_extent_bit and clear_extent_dirty.
4379 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4380 		 * the same extent range.
4381 		 */
4382 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4383 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4384 					    EXTENT_DIRTY, &cached_state);
4385 		if (ret) {
4386 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4387 			break;
4388 		}
4389 
4390 		clear_extent_dirty(unpin, start, end, &cached_state);
4391 		free_extent_state(cached_state);
4392 		btrfs_error_unpin_extent_range(fs_info, start, end);
4393 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4394 		cond_resched();
4395 	}
4396 
4397 	if (loop) {
4398 		if (unpin == &fs_info->freed_extents[0])
4399 			unpin = &fs_info->freed_extents[1];
4400 		else
4401 			unpin = &fs_info->freed_extents[0];
4402 		loop = false;
4403 		goto again;
4404 	}
4405 
4406 	return 0;
4407 }
4408 
4409 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4410 {
4411 	struct inode *inode;
4412 
4413 	inode = cache->io_ctl.inode;
4414 	if (inode) {
4415 		invalidate_inode_pages2(inode->i_mapping);
4416 		BTRFS_I(inode)->generation = 0;
4417 		cache->io_ctl.inode = NULL;
4418 		iput(inode);
4419 	}
4420 	btrfs_put_block_group(cache);
4421 }
4422 
4423 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4424 			     struct btrfs_fs_info *fs_info)
4425 {
4426 	struct btrfs_block_group *cache;
4427 
4428 	spin_lock(&cur_trans->dirty_bgs_lock);
4429 	while (!list_empty(&cur_trans->dirty_bgs)) {
4430 		cache = list_first_entry(&cur_trans->dirty_bgs,
4431 					 struct btrfs_block_group,
4432 					 dirty_list);
4433 
4434 		if (!list_empty(&cache->io_list)) {
4435 			spin_unlock(&cur_trans->dirty_bgs_lock);
4436 			list_del_init(&cache->io_list);
4437 			btrfs_cleanup_bg_io(cache);
4438 			spin_lock(&cur_trans->dirty_bgs_lock);
4439 		}
4440 
4441 		list_del_init(&cache->dirty_list);
4442 		spin_lock(&cache->lock);
4443 		cache->disk_cache_state = BTRFS_DC_ERROR;
4444 		spin_unlock(&cache->lock);
4445 
4446 		spin_unlock(&cur_trans->dirty_bgs_lock);
4447 		btrfs_put_block_group(cache);
4448 		btrfs_delayed_refs_rsv_release(fs_info, 1);
4449 		spin_lock(&cur_trans->dirty_bgs_lock);
4450 	}
4451 	spin_unlock(&cur_trans->dirty_bgs_lock);
4452 
4453 	/*
4454 	 * Refer to the definition of io_bgs member for details why it's safe
4455 	 * to use it without any locking
4456 	 */
4457 	while (!list_empty(&cur_trans->io_bgs)) {
4458 		cache = list_first_entry(&cur_trans->io_bgs,
4459 					 struct btrfs_block_group,
4460 					 io_list);
4461 
4462 		list_del_init(&cache->io_list);
4463 		spin_lock(&cache->lock);
4464 		cache->disk_cache_state = BTRFS_DC_ERROR;
4465 		spin_unlock(&cache->lock);
4466 		btrfs_cleanup_bg_io(cache);
4467 	}
4468 }
4469 
4470 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4471 				   struct btrfs_fs_info *fs_info)
4472 {
4473 	struct btrfs_device *dev, *tmp;
4474 
4475 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4476 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4477 	ASSERT(list_empty(&cur_trans->io_bgs));
4478 
4479 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4480 				 post_commit_list) {
4481 		list_del_init(&dev->post_commit_list);
4482 	}
4483 
4484 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4485 
4486 	cur_trans->state = TRANS_STATE_COMMIT_START;
4487 	wake_up(&fs_info->transaction_blocked_wait);
4488 
4489 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4490 	wake_up(&fs_info->transaction_wait);
4491 
4492 	btrfs_destroy_delayed_inodes(fs_info);
4493 	btrfs_assert_delayed_root_empty(fs_info);
4494 
4495 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4496 				     EXTENT_DIRTY);
4497 	btrfs_destroy_pinned_extent(fs_info,
4498 				    fs_info->pinned_extents);
4499 
4500 	cur_trans->state =TRANS_STATE_COMPLETED;
4501 	wake_up(&cur_trans->commit_wait);
4502 }
4503 
4504 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4505 {
4506 	struct btrfs_transaction *t;
4507 
4508 	mutex_lock(&fs_info->transaction_kthread_mutex);
4509 
4510 	spin_lock(&fs_info->trans_lock);
4511 	while (!list_empty(&fs_info->trans_list)) {
4512 		t = list_first_entry(&fs_info->trans_list,
4513 				     struct btrfs_transaction, list);
4514 		if (t->state >= TRANS_STATE_COMMIT_START) {
4515 			refcount_inc(&t->use_count);
4516 			spin_unlock(&fs_info->trans_lock);
4517 			btrfs_wait_for_commit(fs_info, t->transid);
4518 			btrfs_put_transaction(t);
4519 			spin_lock(&fs_info->trans_lock);
4520 			continue;
4521 		}
4522 		if (t == fs_info->running_transaction) {
4523 			t->state = TRANS_STATE_COMMIT_DOING;
4524 			spin_unlock(&fs_info->trans_lock);
4525 			/*
4526 			 * We wait for 0 num_writers since we don't hold a trans
4527 			 * handle open currently for this transaction.
4528 			 */
4529 			wait_event(t->writer_wait,
4530 				   atomic_read(&t->num_writers) == 0);
4531 		} else {
4532 			spin_unlock(&fs_info->trans_lock);
4533 		}
4534 		btrfs_cleanup_one_transaction(t, fs_info);
4535 
4536 		spin_lock(&fs_info->trans_lock);
4537 		if (t == fs_info->running_transaction)
4538 			fs_info->running_transaction = NULL;
4539 		list_del_init(&t->list);
4540 		spin_unlock(&fs_info->trans_lock);
4541 
4542 		btrfs_put_transaction(t);
4543 		trace_btrfs_transaction_commit(fs_info->tree_root);
4544 		spin_lock(&fs_info->trans_lock);
4545 	}
4546 	spin_unlock(&fs_info->trans_lock);
4547 	btrfs_destroy_all_ordered_extents(fs_info);
4548 	btrfs_destroy_delayed_inodes(fs_info);
4549 	btrfs_assert_delayed_root_empty(fs_info);
4550 	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4551 	btrfs_destroy_all_delalloc_inodes(fs_info);
4552 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4553 
4554 	return 0;
4555 }
4556 
4557 static const struct extent_io_ops btree_extent_io_ops = {
4558 	/* mandatory callbacks */
4559 	.submit_bio_hook = btree_submit_bio_hook,
4560 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4561 };
4562