xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 7af6fbdd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
43 #include "discard.h"
44 #include "space-info.h"
45 
46 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
47 				 BTRFS_HEADER_FLAG_RELOC |\
48 				 BTRFS_SUPER_FLAG_ERROR |\
49 				 BTRFS_SUPER_FLAG_SEEDING |\
50 				 BTRFS_SUPER_FLAG_METADUMP |\
51 				 BTRFS_SUPER_FLAG_METADUMP_V2)
52 
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 				      struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59 					struct extent_io_tree *dirty_pages,
60 					int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62 				       struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65 
66 /*
67  * btrfs_end_io_wq structs are used to do processing in task context when an IO
68  * is complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct btrfs_end_io_wq {
72 	struct bio *bio;
73 	bio_end_io_t *end_io;
74 	void *private;
75 	struct btrfs_fs_info *info;
76 	blk_status_t status;
77 	enum btrfs_wq_endio_type metadata;
78 	struct btrfs_work work;
79 };
80 
81 static struct kmem_cache *btrfs_end_io_wq_cache;
82 
83 int __init btrfs_end_io_wq_init(void)
84 {
85 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 					sizeof(struct btrfs_end_io_wq),
87 					0,
88 					SLAB_MEM_SPREAD,
89 					NULL);
90 	if (!btrfs_end_io_wq_cache)
91 		return -ENOMEM;
92 	return 0;
93 }
94 
95 void __cold btrfs_end_io_wq_exit(void)
96 {
97 	kmem_cache_destroy(btrfs_end_io_wq_cache);
98 }
99 
100 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101 {
102 	if (fs_info->csum_shash)
103 		crypto_free_shash(fs_info->csum_shash);
104 }
105 
106 /*
107  * async submit bios are used to offload expensive checksumming
108  * onto the worker threads.  They checksum file and metadata bios
109  * just before they are sent down the IO stack.
110  */
111 struct async_submit_bio {
112 	void *private_data;
113 	struct bio *bio;
114 	extent_submit_bio_start_t *submit_bio_start;
115 	int mirror_num;
116 	/*
117 	 * bio_offset is optional, can be used if the pages in the bio
118 	 * can't tell us where in the file the bio should go
119 	 */
120 	u64 bio_offset;
121 	struct btrfs_work work;
122 	blk_status_t status;
123 };
124 
125 /*
126  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
127  * eb, the lockdep key is determined by the btrfs_root it belongs to and
128  * the level the eb occupies in the tree.
129  *
130  * Different roots are used for different purposes and may nest inside each
131  * other and they require separate keysets.  As lockdep keys should be
132  * static, assign keysets according to the purpose of the root as indicated
133  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
134  * roots have separate keysets.
135  *
136  * Lock-nesting across peer nodes is always done with the immediate parent
137  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
138  * subclass to avoid triggering lockdep warning in such cases.
139  *
140  * The key is set by the readpage_end_io_hook after the buffer has passed
141  * csum validation but before the pages are unlocked.  It is also set by
142  * btrfs_init_new_buffer on freshly allocated blocks.
143  *
144  * We also add a check to make sure the highest level of the tree is the
145  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
146  * needs update as well.
147  */
148 #ifdef CONFIG_DEBUG_LOCK_ALLOC
149 # if BTRFS_MAX_LEVEL != 8
150 #  error
151 # endif
152 
153 static struct btrfs_lockdep_keyset {
154 	u64			id;		/* root objectid */
155 	const char		*name_stem;	/* lock name stem */
156 	char			names[BTRFS_MAX_LEVEL + 1][20];
157 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
158 } btrfs_lockdep_keysets[] = {
159 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
160 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
161 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
162 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
163 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
164 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
165 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
166 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
167 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
168 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
169 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
170 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
171 	{ .id = 0,				.name_stem = "tree"	},
172 };
173 
174 void __init btrfs_init_lockdep(void)
175 {
176 	int i, j;
177 
178 	/* initialize lockdep class names */
179 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
180 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
181 
182 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
183 			snprintf(ks->names[j], sizeof(ks->names[j]),
184 				 "btrfs-%s-%02d", ks->name_stem, j);
185 	}
186 }
187 
188 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189 				    int level)
190 {
191 	struct btrfs_lockdep_keyset *ks;
192 
193 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
194 
195 	/* find the matching keyset, id 0 is the default entry */
196 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197 		if (ks->id == objectid)
198 			break;
199 
200 	lockdep_set_class_and_name(&eb->lock,
201 				   &ks->keys[level], ks->names[level]);
202 }
203 
204 #endif
205 
206 /*
207  * Compute the csum of a btree block and store the result to provided buffer.
208  */
209 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
210 {
211 	struct btrfs_fs_info *fs_info = buf->fs_info;
212 	const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
213 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
214 	char *kaddr;
215 	int i;
216 
217 	shash->tfm = fs_info->csum_shash;
218 	crypto_shash_init(shash);
219 	kaddr = page_address(buf->pages[0]);
220 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
221 			    PAGE_SIZE - BTRFS_CSUM_SIZE);
222 
223 	for (i = 1; i < num_pages; i++) {
224 		kaddr = page_address(buf->pages[i]);
225 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
226 	}
227 	memset(result, 0, BTRFS_CSUM_SIZE);
228 	crypto_shash_final(shash, result);
229 }
230 
231 /*
232  * we can't consider a given block up to date unless the transid of the
233  * block matches the transid in the parent node's pointer.  This is how we
234  * detect blocks that either didn't get written at all or got written
235  * in the wrong place.
236  */
237 static int verify_parent_transid(struct extent_io_tree *io_tree,
238 				 struct extent_buffer *eb, u64 parent_transid,
239 				 int atomic)
240 {
241 	struct extent_state *cached_state = NULL;
242 	int ret;
243 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
244 
245 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246 		return 0;
247 
248 	if (atomic)
249 		return -EAGAIN;
250 
251 	if (need_lock) {
252 		btrfs_tree_read_lock(eb);
253 		btrfs_set_lock_blocking_read(eb);
254 	}
255 
256 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
257 			 &cached_state);
258 	if (extent_buffer_uptodate(eb) &&
259 	    btrfs_header_generation(eb) == parent_transid) {
260 		ret = 0;
261 		goto out;
262 	}
263 	btrfs_err_rl(eb->fs_info,
264 		"parent transid verify failed on %llu wanted %llu found %llu",
265 			eb->start,
266 			parent_transid, btrfs_header_generation(eb));
267 	ret = 1;
268 
269 	/*
270 	 * Things reading via commit roots that don't have normal protection,
271 	 * like send, can have a really old block in cache that may point at a
272 	 * block that has been freed and re-allocated.  So don't clear uptodate
273 	 * if we find an eb that is under IO (dirty/writeback) because we could
274 	 * end up reading in the stale data and then writing it back out and
275 	 * making everybody very sad.
276 	 */
277 	if (!extent_buffer_under_io(eb))
278 		clear_extent_buffer_uptodate(eb);
279 out:
280 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
281 			     &cached_state);
282 	if (need_lock)
283 		btrfs_tree_read_unlock_blocking(eb);
284 	return ret;
285 }
286 
287 static bool btrfs_supported_super_csum(u16 csum_type)
288 {
289 	switch (csum_type) {
290 	case BTRFS_CSUM_TYPE_CRC32:
291 	case BTRFS_CSUM_TYPE_XXHASH:
292 	case BTRFS_CSUM_TYPE_SHA256:
293 	case BTRFS_CSUM_TYPE_BLAKE2:
294 		return true;
295 	default:
296 		return false;
297 	}
298 }
299 
300 /*
301  * Return 0 if the superblock checksum type matches the checksum value of that
302  * algorithm. Pass the raw disk superblock data.
303  */
304 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
305 				  char *raw_disk_sb)
306 {
307 	struct btrfs_super_block *disk_sb =
308 		(struct btrfs_super_block *)raw_disk_sb;
309 	char result[BTRFS_CSUM_SIZE];
310 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
311 
312 	shash->tfm = fs_info->csum_shash;
313 
314 	/*
315 	 * The super_block structure does not span the whole
316 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
317 	 * filled with zeros and is included in the checksum.
318 	 */
319 	crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
320 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
321 
322 	if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
323 		return 1;
324 
325 	return 0;
326 }
327 
328 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
329 			   struct btrfs_key *first_key, u64 parent_transid)
330 {
331 	struct btrfs_fs_info *fs_info = eb->fs_info;
332 	int found_level;
333 	struct btrfs_key found_key;
334 	int ret;
335 
336 	found_level = btrfs_header_level(eb);
337 	if (found_level != level) {
338 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
339 		     KERN_ERR "BTRFS: tree level check failed\n");
340 		btrfs_err(fs_info,
341 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
342 			  eb->start, level, found_level);
343 		return -EIO;
344 	}
345 
346 	if (!first_key)
347 		return 0;
348 
349 	/*
350 	 * For live tree block (new tree blocks in current transaction),
351 	 * we need proper lock context to avoid race, which is impossible here.
352 	 * So we only checks tree blocks which is read from disk, whose
353 	 * generation <= fs_info->last_trans_committed.
354 	 */
355 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
356 		return 0;
357 
358 	/* We have @first_key, so this @eb must have at least one item */
359 	if (btrfs_header_nritems(eb) == 0) {
360 		btrfs_err(fs_info,
361 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
362 			  eb->start);
363 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
364 		return -EUCLEAN;
365 	}
366 
367 	if (found_level)
368 		btrfs_node_key_to_cpu(eb, &found_key, 0);
369 	else
370 		btrfs_item_key_to_cpu(eb, &found_key, 0);
371 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
372 
373 	if (ret) {
374 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
375 		     KERN_ERR "BTRFS: tree first key check failed\n");
376 		btrfs_err(fs_info,
377 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
378 			  eb->start, parent_transid, first_key->objectid,
379 			  first_key->type, first_key->offset,
380 			  found_key.objectid, found_key.type,
381 			  found_key.offset);
382 	}
383 	return ret;
384 }
385 
386 /*
387  * helper to read a given tree block, doing retries as required when
388  * the checksums don't match and we have alternate mirrors to try.
389  *
390  * @parent_transid:	expected transid, skip check if 0
391  * @level:		expected level, mandatory check
392  * @first_key:		expected key of first slot, skip check if NULL
393  */
394 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
395 					  u64 parent_transid, int level,
396 					  struct btrfs_key *first_key)
397 {
398 	struct btrfs_fs_info *fs_info = eb->fs_info;
399 	struct extent_io_tree *io_tree;
400 	int failed = 0;
401 	int ret;
402 	int num_copies = 0;
403 	int mirror_num = 0;
404 	int failed_mirror = 0;
405 
406 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
407 	while (1) {
408 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
409 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
410 		if (!ret) {
411 			if (verify_parent_transid(io_tree, eb,
412 						   parent_transid, 0))
413 				ret = -EIO;
414 			else if (btrfs_verify_level_key(eb, level,
415 						first_key, parent_transid))
416 				ret = -EUCLEAN;
417 			else
418 				break;
419 		}
420 
421 		num_copies = btrfs_num_copies(fs_info,
422 					      eb->start, eb->len);
423 		if (num_copies == 1)
424 			break;
425 
426 		if (!failed_mirror) {
427 			failed = 1;
428 			failed_mirror = eb->read_mirror;
429 		}
430 
431 		mirror_num++;
432 		if (mirror_num == failed_mirror)
433 			mirror_num++;
434 
435 		if (mirror_num > num_copies)
436 			break;
437 	}
438 
439 	if (failed && !ret && failed_mirror)
440 		btrfs_repair_eb_io_failure(eb, failed_mirror);
441 
442 	return ret;
443 }
444 
445 /*
446  * checksum a dirty tree block before IO.  This has extra checks to make sure
447  * we only fill in the checksum field in the first page of a multi-page block
448  */
449 
450 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
451 {
452 	u64 start = page_offset(page);
453 	u64 found_start;
454 	u8 result[BTRFS_CSUM_SIZE];
455 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
456 	struct extent_buffer *eb;
457 	int ret;
458 
459 	eb = (struct extent_buffer *)page->private;
460 	if (page != eb->pages[0])
461 		return 0;
462 
463 	found_start = btrfs_header_bytenr(eb);
464 	/*
465 	 * Please do not consolidate these warnings into a single if.
466 	 * It is useful to know what went wrong.
467 	 */
468 	if (WARN_ON(found_start != start))
469 		return -EUCLEAN;
470 	if (WARN_ON(!PageUptodate(page)))
471 		return -EUCLEAN;
472 
473 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
474 				    offsetof(struct btrfs_header, fsid),
475 				    BTRFS_FSID_SIZE) == 0);
476 
477 	csum_tree_block(eb, result);
478 
479 	if (btrfs_header_level(eb))
480 		ret = btrfs_check_node(eb);
481 	else
482 		ret = btrfs_check_leaf_full(eb);
483 
484 	if (ret < 0) {
485 		btrfs_print_tree(eb, 0);
486 		btrfs_err(fs_info,
487 		"block=%llu write time tree block corruption detected",
488 			  eb->start);
489 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
490 		return ret;
491 	}
492 	write_extent_buffer(eb, result, 0, csum_size);
493 
494 	return 0;
495 }
496 
497 static int check_tree_block_fsid(struct extent_buffer *eb)
498 {
499 	struct btrfs_fs_info *fs_info = eb->fs_info;
500 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
501 	u8 fsid[BTRFS_FSID_SIZE];
502 	u8 *metadata_uuid;
503 
504 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
505 			   BTRFS_FSID_SIZE);
506 	/*
507 	 * Checking the incompat flag is only valid for the current fs. For
508 	 * seed devices it's forbidden to have their uuid changed so reading
509 	 * ->fsid in this case is fine
510 	 */
511 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
512 		metadata_uuid = fs_devices->metadata_uuid;
513 	else
514 		metadata_uuid = fs_devices->fsid;
515 
516 	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
517 		return 0;
518 
519 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
520 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
521 			return 0;
522 
523 	return 1;
524 }
525 
526 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, u64 phy_offset,
527 				   struct page *page, u64 start, u64 end,
528 				   int mirror)
529 {
530 	u64 found_start;
531 	int found_level;
532 	struct extent_buffer *eb;
533 	struct btrfs_fs_info *fs_info;
534 	u16 csum_size;
535 	int ret = 0;
536 	u8 result[BTRFS_CSUM_SIZE];
537 	int reads_done;
538 
539 	if (!page->private)
540 		goto out;
541 
542 	eb = (struct extent_buffer *)page->private;
543 	fs_info = eb->fs_info;
544 	csum_size = btrfs_super_csum_size(fs_info->super_copy);
545 
546 	/* the pending IO might have been the only thing that kept this buffer
547 	 * in memory.  Make sure we have a ref for all this other checks
548 	 */
549 	atomic_inc(&eb->refs);
550 
551 	reads_done = atomic_dec_and_test(&eb->io_pages);
552 	if (!reads_done)
553 		goto err;
554 
555 	eb->read_mirror = mirror;
556 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
557 		ret = -EIO;
558 		goto err;
559 	}
560 
561 	found_start = btrfs_header_bytenr(eb);
562 	if (found_start != eb->start) {
563 		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
564 			     eb->start, found_start);
565 		ret = -EIO;
566 		goto err;
567 	}
568 	if (check_tree_block_fsid(eb)) {
569 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
570 			     eb->start);
571 		ret = -EIO;
572 		goto err;
573 	}
574 	found_level = btrfs_header_level(eb);
575 	if (found_level >= BTRFS_MAX_LEVEL) {
576 		btrfs_err(fs_info, "bad tree block level %d on %llu",
577 			  (int)btrfs_header_level(eb), eb->start);
578 		ret = -EIO;
579 		goto err;
580 	}
581 
582 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
583 				       eb, found_level);
584 
585 	csum_tree_block(eb, result);
586 
587 	if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
588 		u8 val[BTRFS_CSUM_SIZE] = { 0 };
589 
590 		read_extent_buffer(eb, &val, 0, csum_size);
591 		btrfs_warn_rl(fs_info,
592 	"%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
593 			      fs_info->sb->s_id, eb->start,
594 			      CSUM_FMT_VALUE(csum_size, val),
595 			      CSUM_FMT_VALUE(csum_size, result),
596 			      btrfs_header_level(eb));
597 		ret = -EUCLEAN;
598 		goto err;
599 	}
600 
601 	/*
602 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
603 	 * that we don't try and read the other copies of this block, just
604 	 * return -EIO.
605 	 */
606 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
607 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
608 		ret = -EIO;
609 	}
610 
611 	if (found_level > 0 && btrfs_check_node(eb))
612 		ret = -EIO;
613 
614 	if (!ret)
615 		set_extent_buffer_uptodate(eb);
616 	else
617 		btrfs_err(fs_info,
618 			  "block=%llu read time tree block corruption detected",
619 			  eb->start);
620 err:
621 	if (reads_done &&
622 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
623 		btree_readahead_hook(eb, ret);
624 
625 	if (ret) {
626 		/*
627 		 * our io error hook is going to dec the io pages
628 		 * again, we have to make sure it has something
629 		 * to decrement
630 		 */
631 		atomic_inc(&eb->io_pages);
632 		clear_extent_buffer_uptodate(eb);
633 	}
634 	free_extent_buffer(eb);
635 out:
636 	return ret;
637 }
638 
639 static void end_workqueue_bio(struct bio *bio)
640 {
641 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
642 	struct btrfs_fs_info *fs_info;
643 	struct btrfs_workqueue *wq;
644 
645 	fs_info = end_io_wq->info;
646 	end_io_wq->status = bio->bi_status;
647 
648 	if (bio_op(bio) == REQ_OP_WRITE) {
649 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
650 			wq = fs_info->endio_meta_write_workers;
651 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
652 			wq = fs_info->endio_freespace_worker;
653 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
654 			wq = fs_info->endio_raid56_workers;
655 		else
656 			wq = fs_info->endio_write_workers;
657 	} else {
658 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
659 			wq = fs_info->endio_raid56_workers;
660 		else if (end_io_wq->metadata)
661 			wq = fs_info->endio_meta_workers;
662 		else
663 			wq = fs_info->endio_workers;
664 	}
665 
666 	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
667 	btrfs_queue_work(wq, &end_io_wq->work);
668 }
669 
670 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
671 			enum btrfs_wq_endio_type metadata)
672 {
673 	struct btrfs_end_io_wq *end_io_wq;
674 
675 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
676 	if (!end_io_wq)
677 		return BLK_STS_RESOURCE;
678 
679 	end_io_wq->private = bio->bi_private;
680 	end_io_wq->end_io = bio->bi_end_io;
681 	end_io_wq->info = info;
682 	end_io_wq->status = 0;
683 	end_io_wq->bio = bio;
684 	end_io_wq->metadata = metadata;
685 
686 	bio->bi_private = end_io_wq;
687 	bio->bi_end_io = end_workqueue_bio;
688 	return 0;
689 }
690 
691 static void run_one_async_start(struct btrfs_work *work)
692 {
693 	struct async_submit_bio *async;
694 	blk_status_t ret;
695 
696 	async = container_of(work, struct  async_submit_bio, work);
697 	ret = async->submit_bio_start(async->private_data, async->bio,
698 				      async->bio_offset);
699 	if (ret)
700 		async->status = ret;
701 }
702 
703 /*
704  * In order to insert checksums into the metadata in large chunks, we wait
705  * until bio submission time.   All the pages in the bio are checksummed and
706  * sums are attached onto the ordered extent record.
707  *
708  * At IO completion time the csums attached on the ordered extent record are
709  * inserted into the tree.
710  */
711 static void run_one_async_done(struct btrfs_work *work)
712 {
713 	struct async_submit_bio *async;
714 	struct inode *inode;
715 	blk_status_t ret;
716 
717 	async = container_of(work, struct  async_submit_bio, work);
718 	inode = async->private_data;
719 
720 	/* If an error occurred we just want to clean up the bio and move on */
721 	if (async->status) {
722 		async->bio->bi_status = async->status;
723 		bio_endio(async->bio);
724 		return;
725 	}
726 
727 	/*
728 	 * All of the bios that pass through here are from async helpers.
729 	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
730 	 * This changes nothing when cgroups aren't in use.
731 	 */
732 	async->bio->bi_opf |= REQ_CGROUP_PUNT;
733 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
734 	if (ret) {
735 		async->bio->bi_status = ret;
736 		bio_endio(async->bio);
737 	}
738 }
739 
740 static void run_one_async_free(struct btrfs_work *work)
741 {
742 	struct async_submit_bio *async;
743 
744 	async = container_of(work, struct  async_submit_bio, work);
745 	kfree(async);
746 }
747 
748 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
749 				 int mirror_num, unsigned long bio_flags,
750 				 u64 bio_offset, void *private_data,
751 				 extent_submit_bio_start_t *submit_bio_start)
752 {
753 	struct async_submit_bio *async;
754 
755 	async = kmalloc(sizeof(*async), GFP_NOFS);
756 	if (!async)
757 		return BLK_STS_RESOURCE;
758 
759 	async->private_data = private_data;
760 	async->bio = bio;
761 	async->mirror_num = mirror_num;
762 	async->submit_bio_start = submit_bio_start;
763 
764 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
765 			run_one_async_free);
766 
767 	async->bio_offset = bio_offset;
768 
769 	async->status = 0;
770 
771 	if (op_is_sync(bio->bi_opf))
772 		btrfs_set_work_high_priority(&async->work);
773 
774 	btrfs_queue_work(fs_info->workers, &async->work);
775 	return 0;
776 }
777 
778 static blk_status_t btree_csum_one_bio(struct bio *bio)
779 {
780 	struct bio_vec *bvec;
781 	struct btrfs_root *root;
782 	int ret = 0;
783 	struct bvec_iter_all iter_all;
784 
785 	ASSERT(!bio_flagged(bio, BIO_CLONED));
786 	bio_for_each_segment_all(bvec, bio, iter_all) {
787 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
788 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
789 		if (ret)
790 			break;
791 	}
792 
793 	return errno_to_blk_status(ret);
794 }
795 
796 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
797 					     u64 bio_offset)
798 {
799 	/*
800 	 * when we're called for a write, we're already in the async
801 	 * submission context.  Just jump into btrfs_map_bio
802 	 */
803 	return btree_csum_one_bio(bio);
804 }
805 
806 static int check_async_write(struct btrfs_fs_info *fs_info,
807 			     struct btrfs_inode *bi)
808 {
809 	if (atomic_read(&bi->sync_writers))
810 		return 0;
811 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
812 		return 0;
813 	return 1;
814 }
815 
816 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
817 				       int mirror_num, unsigned long bio_flags)
818 {
819 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
820 	int async = check_async_write(fs_info, BTRFS_I(inode));
821 	blk_status_t ret;
822 
823 	if (bio_op(bio) != REQ_OP_WRITE) {
824 		/*
825 		 * called for a read, do the setup so that checksum validation
826 		 * can happen in the async kernel threads
827 		 */
828 		ret = btrfs_bio_wq_end_io(fs_info, bio,
829 					  BTRFS_WQ_ENDIO_METADATA);
830 		if (ret)
831 			goto out_w_error;
832 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
833 	} else if (!async) {
834 		ret = btree_csum_one_bio(bio);
835 		if (ret)
836 			goto out_w_error;
837 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
838 	} else {
839 		/*
840 		 * kthread helpers are used to submit writes so that
841 		 * checksumming can happen in parallel across all CPUs
842 		 */
843 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
844 					  0, inode, btree_submit_bio_start);
845 	}
846 
847 	if (ret)
848 		goto out_w_error;
849 	return 0;
850 
851 out_w_error:
852 	bio->bi_status = ret;
853 	bio_endio(bio);
854 	return ret;
855 }
856 
857 #ifdef CONFIG_MIGRATION
858 static int btree_migratepage(struct address_space *mapping,
859 			struct page *newpage, struct page *page,
860 			enum migrate_mode mode)
861 {
862 	/*
863 	 * we can't safely write a btree page from here,
864 	 * we haven't done the locking hook
865 	 */
866 	if (PageDirty(page))
867 		return -EAGAIN;
868 	/*
869 	 * Buffers may be managed in a filesystem specific way.
870 	 * We must have no buffers or drop them.
871 	 */
872 	if (page_has_private(page) &&
873 	    !try_to_release_page(page, GFP_KERNEL))
874 		return -EAGAIN;
875 	return migrate_page(mapping, newpage, page, mode);
876 }
877 #endif
878 
879 
880 static int btree_writepages(struct address_space *mapping,
881 			    struct writeback_control *wbc)
882 {
883 	struct btrfs_fs_info *fs_info;
884 	int ret;
885 
886 	if (wbc->sync_mode == WB_SYNC_NONE) {
887 
888 		if (wbc->for_kupdate)
889 			return 0;
890 
891 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
892 		/* this is a bit racy, but that's ok */
893 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
894 					     BTRFS_DIRTY_METADATA_THRESH,
895 					     fs_info->dirty_metadata_batch);
896 		if (ret < 0)
897 			return 0;
898 	}
899 	return btree_write_cache_pages(mapping, wbc);
900 }
901 
902 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
903 {
904 	if (PageWriteback(page) || PageDirty(page))
905 		return 0;
906 
907 	return try_release_extent_buffer(page);
908 }
909 
910 static void btree_invalidatepage(struct page *page, unsigned int offset,
911 				 unsigned int length)
912 {
913 	struct extent_io_tree *tree;
914 	tree = &BTRFS_I(page->mapping->host)->io_tree;
915 	extent_invalidatepage(tree, page, offset);
916 	btree_releasepage(page, GFP_NOFS);
917 	if (PagePrivate(page)) {
918 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
919 			   "page private not zero on page %llu",
920 			   (unsigned long long)page_offset(page));
921 		detach_page_private(page);
922 	}
923 }
924 
925 static int btree_set_page_dirty(struct page *page)
926 {
927 #ifdef DEBUG
928 	struct extent_buffer *eb;
929 
930 	BUG_ON(!PagePrivate(page));
931 	eb = (struct extent_buffer *)page->private;
932 	BUG_ON(!eb);
933 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
934 	BUG_ON(!atomic_read(&eb->refs));
935 	btrfs_assert_tree_locked(eb);
936 #endif
937 	return __set_page_dirty_nobuffers(page);
938 }
939 
940 static const struct address_space_operations btree_aops = {
941 	.writepages	= btree_writepages,
942 	.releasepage	= btree_releasepage,
943 	.invalidatepage = btree_invalidatepage,
944 #ifdef CONFIG_MIGRATION
945 	.migratepage	= btree_migratepage,
946 #endif
947 	.set_page_dirty = btree_set_page_dirty,
948 };
949 
950 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
951 {
952 	struct extent_buffer *buf = NULL;
953 	int ret;
954 
955 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
956 	if (IS_ERR(buf))
957 		return;
958 
959 	ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
960 	if (ret < 0)
961 		free_extent_buffer_stale(buf);
962 	else
963 		free_extent_buffer(buf);
964 }
965 
966 struct extent_buffer *btrfs_find_create_tree_block(
967 						struct btrfs_fs_info *fs_info,
968 						u64 bytenr)
969 {
970 	if (btrfs_is_testing(fs_info))
971 		return alloc_test_extent_buffer(fs_info, bytenr);
972 	return alloc_extent_buffer(fs_info, bytenr);
973 }
974 
975 /*
976  * Read tree block at logical address @bytenr and do variant basic but critical
977  * verification.
978  *
979  * @parent_transid:	expected transid of this tree block, skip check if 0
980  * @level:		expected level, mandatory check
981  * @first_key:		expected key in slot 0, skip check if NULL
982  */
983 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
984 				      u64 parent_transid, int level,
985 				      struct btrfs_key *first_key)
986 {
987 	struct extent_buffer *buf = NULL;
988 	int ret;
989 
990 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
991 	if (IS_ERR(buf))
992 		return buf;
993 
994 	ret = btree_read_extent_buffer_pages(buf, parent_transid,
995 					     level, first_key);
996 	if (ret) {
997 		free_extent_buffer_stale(buf);
998 		return ERR_PTR(ret);
999 	}
1000 	return buf;
1001 
1002 }
1003 
1004 void btrfs_clean_tree_block(struct extent_buffer *buf)
1005 {
1006 	struct btrfs_fs_info *fs_info = buf->fs_info;
1007 	if (btrfs_header_generation(buf) ==
1008 	    fs_info->running_transaction->transid) {
1009 		btrfs_assert_tree_locked(buf);
1010 
1011 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1012 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1013 						 -buf->len,
1014 						 fs_info->dirty_metadata_batch);
1015 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1016 			btrfs_set_lock_blocking_write(buf);
1017 			clear_extent_buffer_dirty(buf);
1018 		}
1019 	}
1020 }
1021 
1022 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1023 			 u64 objectid)
1024 {
1025 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1026 	root->fs_info = fs_info;
1027 	root->node = NULL;
1028 	root->commit_root = NULL;
1029 	root->state = 0;
1030 	root->orphan_cleanup_state = 0;
1031 
1032 	root->last_trans = 0;
1033 	root->highest_objectid = 0;
1034 	root->nr_delalloc_inodes = 0;
1035 	root->nr_ordered_extents = 0;
1036 	root->inode_tree = RB_ROOT;
1037 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1038 	root->block_rsv = NULL;
1039 
1040 	INIT_LIST_HEAD(&root->dirty_list);
1041 	INIT_LIST_HEAD(&root->root_list);
1042 	INIT_LIST_HEAD(&root->delalloc_inodes);
1043 	INIT_LIST_HEAD(&root->delalloc_root);
1044 	INIT_LIST_HEAD(&root->ordered_extents);
1045 	INIT_LIST_HEAD(&root->ordered_root);
1046 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1047 	INIT_LIST_HEAD(&root->logged_list[0]);
1048 	INIT_LIST_HEAD(&root->logged_list[1]);
1049 	spin_lock_init(&root->inode_lock);
1050 	spin_lock_init(&root->delalloc_lock);
1051 	spin_lock_init(&root->ordered_extent_lock);
1052 	spin_lock_init(&root->accounting_lock);
1053 	spin_lock_init(&root->log_extents_lock[0]);
1054 	spin_lock_init(&root->log_extents_lock[1]);
1055 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1056 	mutex_init(&root->objectid_mutex);
1057 	mutex_init(&root->log_mutex);
1058 	mutex_init(&root->ordered_extent_mutex);
1059 	mutex_init(&root->delalloc_mutex);
1060 	init_waitqueue_head(&root->qgroup_flush_wait);
1061 	init_waitqueue_head(&root->log_writer_wait);
1062 	init_waitqueue_head(&root->log_commit_wait[0]);
1063 	init_waitqueue_head(&root->log_commit_wait[1]);
1064 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1065 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1066 	atomic_set(&root->log_commit[0], 0);
1067 	atomic_set(&root->log_commit[1], 0);
1068 	atomic_set(&root->log_writers, 0);
1069 	atomic_set(&root->log_batch, 0);
1070 	refcount_set(&root->refs, 1);
1071 	atomic_set(&root->snapshot_force_cow, 0);
1072 	atomic_set(&root->nr_swapfiles, 0);
1073 	root->log_transid = 0;
1074 	root->log_transid_committed = -1;
1075 	root->last_log_commit = 0;
1076 	if (!dummy) {
1077 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1078 				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1079 		extent_io_tree_init(fs_info, &root->log_csum_range,
1080 				    IO_TREE_LOG_CSUM_RANGE, NULL);
1081 	}
1082 
1083 	memset(&root->root_key, 0, sizeof(root->root_key));
1084 	memset(&root->root_item, 0, sizeof(root->root_item));
1085 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1086 	root->root_key.objectid = objectid;
1087 	root->anon_dev = 0;
1088 
1089 	spin_lock_init(&root->root_item_lock);
1090 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1091 #ifdef CONFIG_BTRFS_DEBUG
1092 	INIT_LIST_HEAD(&root->leak_list);
1093 	spin_lock(&fs_info->fs_roots_radix_lock);
1094 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1095 	spin_unlock(&fs_info->fs_roots_radix_lock);
1096 #endif
1097 }
1098 
1099 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1100 					   u64 objectid, gfp_t flags)
1101 {
1102 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1103 	if (root)
1104 		__setup_root(root, fs_info, objectid);
1105 	return root;
1106 }
1107 
1108 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1109 /* Should only be used by the testing infrastructure */
1110 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1111 {
1112 	struct btrfs_root *root;
1113 
1114 	if (!fs_info)
1115 		return ERR_PTR(-EINVAL);
1116 
1117 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1118 	if (!root)
1119 		return ERR_PTR(-ENOMEM);
1120 
1121 	/* We don't use the stripesize in selftest, set it as sectorsize */
1122 	root->alloc_bytenr = 0;
1123 
1124 	return root;
1125 }
1126 #endif
1127 
1128 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1129 				     u64 objectid)
1130 {
1131 	struct btrfs_fs_info *fs_info = trans->fs_info;
1132 	struct extent_buffer *leaf;
1133 	struct btrfs_root *tree_root = fs_info->tree_root;
1134 	struct btrfs_root *root;
1135 	struct btrfs_key key;
1136 	unsigned int nofs_flag;
1137 	int ret = 0;
1138 
1139 	/*
1140 	 * We're holding a transaction handle, so use a NOFS memory allocation
1141 	 * context to avoid deadlock if reclaim happens.
1142 	 */
1143 	nofs_flag = memalloc_nofs_save();
1144 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1145 	memalloc_nofs_restore(nofs_flag);
1146 	if (!root)
1147 		return ERR_PTR(-ENOMEM);
1148 
1149 	root->root_key.objectid = objectid;
1150 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1151 	root->root_key.offset = 0;
1152 
1153 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1154 				      BTRFS_NESTING_NORMAL);
1155 	if (IS_ERR(leaf)) {
1156 		ret = PTR_ERR(leaf);
1157 		leaf = NULL;
1158 		goto fail;
1159 	}
1160 
1161 	root->node = leaf;
1162 	btrfs_mark_buffer_dirty(leaf);
1163 
1164 	root->commit_root = btrfs_root_node(root);
1165 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1166 
1167 	root->root_item.flags = 0;
1168 	root->root_item.byte_limit = 0;
1169 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1170 	btrfs_set_root_generation(&root->root_item, trans->transid);
1171 	btrfs_set_root_level(&root->root_item, 0);
1172 	btrfs_set_root_refs(&root->root_item, 1);
1173 	btrfs_set_root_used(&root->root_item, leaf->len);
1174 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1175 	btrfs_set_root_dirid(&root->root_item, 0);
1176 	if (is_fstree(objectid))
1177 		generate_random_guid(root->root_item.uuid);
1178 	else
1179 		export_guid(root->root_item.uuid, &guid_null);
1180 	root->root_item.drop_level = 0;
1181 
1182 	key.objectid = objectid;
1183 	key.type = BTRFS_ROOT_ITEM_KEY;
1184 	key.offset = 0;
1185 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1186 	if (ret)
1187 		goto fail;
1188 
1189 	btrfs_tree_unlock(leaf);
1190 
1191 	return root;
1192 
1193 fail:
1194 	if (leaf)
1195 		btrfs_tree_unlock(leaf);
1196 	btrfs_put_root(root);
1197 
1198 	return ERR_PTR(ret);
1199 }
1200 
1201 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1202 					 struct btrfs_fs_info *fs_info)
1203 {
1204 	struct btrfs_root *root;
1205 	struct extent_buffer *leaf;
1206 
1207 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1208 	if (!root)
1209 		return ERR_PTR(-ENOMEM);
1210 
1211 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1212 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1213 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1214 
1215 	/*
1216 	 * DON'T set SHAREABLE bit for log trees.
1217 	 *
1218 	 * Log trees are not exposed to user space thus can't be snapshotted,
1219 	 * and they go away before a real commit is actually done.
1220 	 *
1221 	 * They do store pointers to file data extents, and those reference
1222 	 * counts still get updated (along with back refs to the log tree).
1223 	 */
1224 
1225 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1226 			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1227 	if (IS_ERR(leaf)) {
1228 		btrfs_put_root(root);
1229 		return ERR_CAST(leaf);
1230 	}
1231 
1232 	root->node = leaf;
1233 
1234 	btrfs_mark_buffer_dirty(root->node);
1235 	btrfs_tree_unlock(root->node);
1236 	return root;
1237 }
1238 
1239 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1240 			     struct btrfs_fs_info *fs_info)
1241 {
1242 	struct btrfs_root *log_root;
1243 
1244 	log_root = alloc_log_tree(trans, fs_info);
1245 	if (IS_ERR(log_root))
1246 		return PTR_ERR(log_root);
1247 	WARN_ON(fs_info->log_root_tree);
1248 	fs_info->log_root_tree = log_root;
1249 	return 0;
1250 }
1251 
1252 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1253 		       struct btrfs_root *root)
1254 {
1255 	struct btrfs_fs_info *fs_info = root->fs_info;
1256 	struct btrfs_root *log_root;
1257 	struct btrfs_inode_item *inode_item;
1258 
1259 	log_root = alloc_log_tree(trans, fs_info);
1260 	if (IS_ERR(log_root))
1261 		return PTR_ERR(log_root);
1262 
1263 	log_root->last_trans = trans->transid;
1264 	log_root->root_key.offset = root->root_key.objectid;
1265 
1266 	inode_item = &log_root->root_item.inode;
1267 	btrfs_set_stack_inode_generation(inode_item, 1);
1268 	btrfs_set_stack_inode_size(inode_item, 3);
1269 	btrfs_set_stack_inode_nlink(inode_item, 1);
1270 	btrfs_set_stack_inode_nbytes(inode_item,
1271 				     fs_info->nodesize);
1272 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1273 
1274 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1275 
1276 	WARN_ON(root->log_root);
1277 	root->log_root = log_root;
1278 	root->log_transid = 0;
1279 	root->log_transid_committed = -1;
1280 	root->last_log_commit = 0;
1281 	return 0;
1282 }
1283 
1284 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1285 					struct btrfs_key *key)
1286 {
1287 	struct btrfs_root *root;
1288 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1289 	struct btrfs_path *path;
1290 	u64 generation;
1291 	int ret;
1292 	int level;
1293 
1294 	path = btrfs_alloc_path();
1295 	if (!path)
1296 		return ERR_PTR(-ENOMEM);
1297 
1298 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1299 	if (!root) {
1300 		ret = -ENOMEM;
1301 		goto alloc_fail;
1302 	}
1303 
1304 	ret = btrfs_find_root(tree_root, key, path,
1305 			      &root->root_item, &root->root_key);
1306 	if (ret) {
1307 		if (ret > 0)
1308 			ret = -ENOENT;
1309 		goto find_fail;
1310 	}
1311 
1312 	generation = btrfs_root_generation(&root->root_item);
1313 	level = btrfs_root_level(&root->root_item);
1314 	root->node = read_tree_block(fs_info,
1315 				     btrfs_root_bytenr(&root->root_item),
1316 				     generation, level, NULL);
1317 	if (IS_ERR(root->node)) {
1318 		ret = PTR_ERR(root->node);
1319 		root->node = NULL;
1320 		goto find_fail;
1321 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1322 		ret = -EIO;
1323 		goto find_fail;
1324 	}
1325 	root->commit_root = btrfs_root_node(root);
1326 out:
1327 	btrfs_free_path(path);
1328 	return root;
1329 
1330 find_fail:
1331 	btrfs_put_root(root);
1332 alloc_fail:
1333 	root = ERR_PTR(ret);
1334 	goto out;
1335 }
1336 
1337 /*
1338  * Initialize subvolume root in-memory structure
1339  *
1340  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1341  */
1342 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1343 {
1344 	int ret;
1345 	unsigned int nofs_flag;
1346 
1347 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1348 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1349 					GFP_NOFS);
1350 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1351 		ret = -ENOMEM;
1352 		goto fail;
1353 	}
1354 
1355 	/*
1356 	 * We might be called under a transaction (e.g. indirect backref
1357 	 * resolution) which could deadlock if it triggers memory reclaim
1358 	 */
1359 	nofs_flag = memalloc_nofs_save();
1360 	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1361 	memalloc_nofs_restore(nofs_flag);
1362 	if (ret)
1363 		goto fail;
1364 
1365 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1366 	    root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1367 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1368 		btrfs_check_and_init_root_item(&root->root_item);
1369 	}
1370 
1371 	btrfs_init_free_ino_ctl(root);
1372 	spin_lock_init(&root->ino_cache_lock);
1373 	init_waitqueue_head(&root->ino_cache_wait);
1374 
1375 	/*
1376 	 * Don't assign anonymous block device to roots that are not exposed to
1377 	 * userspace, the id pool is limited to 1M
1378 	 */
1379 	if (is_fstree(root->root_key.objectid) &&
1380 	    btrfs_root_refs(&root->root_item) > 0) {
1381 		if (!anon_dev) {
1382 			ret = get_anon_bdev(&root->anon_dev);
1383 			if (ret)
1384 				goto fail;
1385 		} else {
1386 			root->anon_dev = anon_dev;
1387 		}
1388 	}
1389 
1390 	mutex_lock(&root->objectid_mutex);
1391 	ret = btrfs_find_highest_objectid(root,
1392 					&root->highest_objectid);
1393 	if (ret) {
1394 		mutex_unlock(&root->objectid_mutex);
1395 		goto fail;
1396 	}
1397 
1398 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1399 
1400 	mutex_unlock(&root->objectid_mutex);
1401 
1402 	return 0;
1403 fail:
1404 	/* The caller is responsible to call btrfs_free_fs_root */
1405 	return ret;
1406 }
1407 
1408 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1409 					       u64 root_id)
1410 {
1411 	struct btrfs_root *root;
1412 
1413 	spin_lock(&fs_info->fs_roots_radix_lock);
1414 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1415 				 (unsigned long)root_id);
1416 	if (root)
1417 		root = btrfs_grab_root(root);
1418 	spin_unlock(&fs_info->fs_roots_radix_lock);
1419 	return root;
1420 }
1421 
1422 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1423 			 struct btrfs_root *root)
1424 {
1425 	int ret;
1426 
1427 	ret = radix_tree_preload(GFP_NOFS);
1428 	if (ret)
1429 		return ret;
1430 
1431 	spin_lock(&fs_info->fs_roots_radix_lock);
1432 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1433 				(unsigned long)root->root_key.objectid,
1434 				root);
1435 	if (ret == 0) {
1436 		btrfs_grab_root(root);
1437 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1438 	}
1439 	spin_unlock(&fs_info->fs_roots_radix_lock);
1440 	radix_tree_preload_end();
1441 
1442 	return ret;
1443 }
1444 
1445 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1446 {
1447 #ifdef CONFIG_BTRFS_DEBUG
1448 	struct btrfs_root *root;
1449 
1450 	while (!list_empty(&fs_info->allocated_roots)) {
1451 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1452 
1453 		root = list_first_entry(&fs_info->allocated_roots,
1454 					struct btrfs_root, leak_list);
1455 		btrfs_err(fs_info, "leaked root %s refcount %d",
1456 			  btrfs_root_name(root->root_key.objectid, buf),
1457 			  refcount_read(&root->refs));
1458 		while (refcount_read(&root->refs) > 1)
1459 			btrfs_put_root(root);
1460 		btrfs_put_root(root);
1461 	}
1462 #endif
1463 }
1464 
1465 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1466 {
1467 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1468 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1469 	percpu_counter_destroy(&fs_info->dio_bytes);
1470 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1471 	btrfs_free_csum_hash(fs_info);
1472 	btrfs_free_stripe_hash_table(fs_info);
1473 	btrfs_free_ref_cache(fs_info);
1474 	kfree(fs_info->balance_ctl);
1475 	kfree(fs_info->delayed_root);
1476 	btrfs_put_root(fs_info->extent_root);
1477 	btrfs_put_root(fs_info->tree_root);
1478 	btrfs_put_root(fs_info->chunk_root);
1479 	btrfs_put_root(fs_info->dev_root);
1480 	btrfs_put_root(fs_info->csum_root);
1481 	btrfs_put_root(fs_info->quota_root);
1482 	btrfs_put_root(fs_info->uuid_root);
1483 	btrfs_put_root(fs_info->free_space_root);
1484 	btrfs_put_root(fs_info->fs_root);
1485 	btrfs_put_root(fs_info->data_reloc_root);
1486 	btrfs_check_leaked_roots(fs_info);
1487 	btrfs_extent_buffer_leak_debug_check(fs_info);
1488 	kfree(fs_info->super_copy);
1489 	kfree(fs_info->super_for_commit);
1490 	kvfree(fs_info);
1491 }
1492 
1493 
1494 /*
1495  * Get an in-memory reference of a root structure.
1496  *
1497  * For essential trees like root/extent tree, we grab it from fs_info directly.
1498  * For subvolume trees, we check the cached filesystem roots first. If not
1499  * found, then read it from disk and add it to cached fs roots.
1500  *
1501  * Caller should release the root by calling btrfs_put_root() after the usage.
1502  *
1503  * NOTE: Reloc and log trees can't be read by this function as they share the
1504  *	 same root objectid.
1505  *
1506  * @objectid:	root id
1507  * @anon_dev:	preallocated anonymous block device number for new roots,
1508  * 		pass 0 for new allocation.
1509  * @check_ref:	whether to check root item references, If true, return -ENOENT
1510  *		for orphan roots
1511  */
1512 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1513 					     u64 objectid, dev_t anon_dev,
1514 					     bool check_ref)
1515 {
1516 	struct btrfs_root *root;
1517 	struct btrfs_path *path;
1518 	struct btrfs_key key;
1519 	int ret;
1520 
1521 	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1522 		return btrfs_grab_root(fs_info->tree_root);
1523 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1524 		return btrfs_grab_root(fs_info->extent_root);
1525 	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1526 		return btrfs_grab_root(fs_info->chunk_root);
1527 	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1528 		return btrfs_grab_root(fs_info->dev_root);
1529 	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1530 		return btrfs_grab_root(fs_info->csum_root);
1531 	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1532 		return btrfs_grab_root(fs_info->quota_root) ?
1533 			fs_info->quota_root : ERR_PTR(-ENOENT);
1534 	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1535 		return btrfs_grab_root(fs_info->uuid_root) ?
1536 			fs_info->uuid_root : ERR_PTR(-ENOENT);
1537 	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1538 		return btrfs_grab_root(fs_info->free_space_root) ?
1539 			fs_info->free_space_root : ERR_PTR(-ENOENT);
1540 again:
1541 	root = btrfs_lookup_fs_root(fs_info, objectid);
1542 	if (root) {
1543 		/* Shouldn't get preallocated anon_dev for cached roots */
1544 		ASSERT(!anon_dev);
1545 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1546 			btrfs_put_root(root);
1547 			return ERR_PTR(-ENOENT);
1548 		}
1549 		return root;
1550 	}
1551 
1552 	key.objectid = objectid;
1553 	key.type = BTRFS_ROOT_ITEM_KEY;
1554 	key.offset = (u64)-1;
1555 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1556 	if (IS_ERR(root))
1557 		return root;
1558 
1559 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1560 		ret = -ENOENT;
1561 		goto fail;
1562 	}
1563 
1564 	ret = btrfs_init_fs_root(root, anon_dev);
1565 	if (ret)
1566 		goto fail;
1567 
1568 	path = btrfs_alloc_path();
1569 	if (!path) {
1570 		ret = -ENOMEM;
1571 		goto fail;
1572 	}
1573 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1574 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1575 	key.offset = objectid;
1576 
1577 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1578 	btrfs_free_path(path);
1579 	if (ret < 0)
1580 		goto fail;
1581 	if (ret == 0)
1582 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1583 
1584 	ret = btrfs_insert_fs_root(fs_info, root);
1585 	if (ret) {
1586 		btrfs_put_root(root);
1587 		if (ret == -EEXIST)
1588 			goto again;
1589 		goto fail;
1590 	}
1591 	return root;
1592 fail:
1593 	btrfs_put_root(root);
1594 	return ERR_PTR(ret);
1595 }
1596 
1597 /*
1598  * Get in-memory reference of a root structure
1599  *
1600  * @objectid:	tree objectid
1601  * @check_ref:	if set, verify that the tree exists and the item has at least
1602  *		one reference
1603  */
1604 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1605 				     u64 objectid, bool check_ref)
1606 {
1607 	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1608 }
1609 
1610 /*
1611  * Get in-memory reference of a root structure, created as new, optionally pass
1612  * the anonymous block device id
1613  *
1614  * @objectid:	tree objectid
1615  * @anon_dev:	if zero, allocate a new anonymous block device or use the
1616  *		parameter value
1617  */
1618 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1619 					 u64 objectid, dev_t anon_dev)
1620 {
1621 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1622 }
1623 
1624 /*
1625  * called by the kthread helper functions to finally call the bio end_io
1626  * functions.  This is where read checksum verification actually happens
1627  */
1628 static void end_workqueue_fn(struct btrfs_work *work)
1629 {
1630 	struct bio *bio;
1631 	struct btrfs_end_io_wq *end_io_wq;
1632 
1633 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1634 	bio = end_io_wq->bio;
1635 
1636 	bio->bi_status = end_io_wq->status;
1637 	bio->bi_private = end_io_wq->private;
1638 	bio->bi_end_io = end_io_wq->end_io;
1639 	bio_endio(bio);
1640 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1641 }
1642 
1643 static int cleaner_kthread(void *arg)
1644 {
1645 	struct btrfs_root *root = arg;
1646 	struct btrfs_fs_info *fs_info = root->fs_info;
1647 	int again;
1648 
1649 	while (1) {
1650 		again = 0;
1651 
1652 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1653 
1654 		/* Make the cleaner go to sleep early. */
1655 		if (btrfs_need_cleaner_sleep(fs_info))
1656 			goto sleep;
1657 
1658 		/*
1659 		 * Do not do anything if we might cause open_ctree() to block
1660 		 * before we have finished mounting the filesystem.
1661 		 */
1662 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1663 			goto sleep;
1664 
1665 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1666 			goto sleep;
1667 
1668 		/*
1669 		 * Avoid the problem that we change the status of the fs
1670 		 * during the above check and trylock.
1671 		 */
1672 		if (btrfs_need_cleaner_sleep(fs_info)) {
1673 			mutex_unlock(&fs_info->cleaner_mutex);
1674 			goto sleep;
1675 		}
1676 
1677 		btrfs_run_delayed_iputs(fs_info);
1678 
1679 		again = btrfs_clean_one_deleted_snapshot(root);
1680 		mutex_unlock(&fs_info->cleaner_mutex);
1681 
1682 		/*
1683 		 * The defragger has dealt with the R/O remount and umount,
1684 		 * needn't do anything special here.
1685 		 */
1686 		btrfs_run_defrag_inodes(fs_info);
1687 
1688 		/*
1689 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1690 		 * with relocation (btrfs_relocate_chunk) and relocation
1691 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1692 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1693 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1694 		 * unused block groups.
1695 		 */
1696 		btrfs_delete_unused_bgs(fs_info);
1697 sleep:
1698 		clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1699 		if (kthread_should_park())
1700 			kthread_parkme();
1701 		if (kthread_should_stop())
1702 			return 0;
1703 		if (!again) {
1704 			set_current_state(TASK_INTERRUPTIBLE);
1705 			schedule();
1706 			__set_current_state(TASK_RUNNING);
1707 		}
1708 	}
1709 }
1710 
1711 static int transaction_kthread(void *arg)
1712 {
1713 	struct btrfs_root *root = arg;
1714 	struct btrfs_fs_info *fs_info = root->fs_info;
1715 	struct btrfs_trans_handle *trans;
1716 	struct btrfs_transaction *cur;
1717 	u64 transid;
1718 	time64_t now;
1719 	unsigned long delay;
1720 	bool cannot_commit;
1721 
1722 	do {
1723 		cannot_commit = false;
1724 		delay = HZ * fs_info->commit_interval;
1725 		mutex_lock(&fs_info->transaction_kthread_mutex);
1726 
1727 		spin_lock(&fs_info->trans_lock);
1728 		cur = fs_info->running_transaction;
1729 		if (!cur) {
1730 			spin_unlock(&fs_info->trans_lock);
1731 			goto sleep;
1732 		}
1733 
1734 		now = ktime_get_seconds();
1735 		if (cur->state < TRANS_STATE_COMMIT_START &&
1736 		    (now < cur->start_time ||
1737 		     now - cur->start_time < fs_info->commit_interval)) {
1738 			spin_unlock(&fs_info->trans_lock);
1739 			delay = HZ * 5;
1740 			goto sleep;
1741 		}
1742 		transid = cur->transid;
1743 		spin_unlock(&fs_info->trans_lock);
1744 
1745 		/* If the file system is aborted, this will always fail. */
1746 		trans = btrfs_attach_transaction(root);
1747 		if (IS_ERR(trans)) {
1748 			if (PTR_ERR(trans) != -ENOENT)
1749 				cannot_commit = true;
1750 			goto sleep;
1751 		}
1752 		if (transid == trans->transid) {
1753 			btrfs_commit_transaction(trans);
1754 		} else {
1755 			btrfs_end_transaction(trans);
1756 		}
1757 sleep:
1758 		wake_up_process(fs_info->cleaner_kthread);
1759 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1760 
1761 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1762 				      &fs_info->fs_state)))
1763 			btrfs_cleanup_transaction(fs_info);
1764 		if (!kthread_should_stop() &&
1765 				(!btrfs_transaction_blocked(fs_info) ||
1766 				 cannot_commit))
1767 			schedule_timeout_interruptible(delay);
1768 	} while (!kthread_should_stop());
1769 	return 0;
1770 }
1771 
1772 /*
1773  * This will find the highest generation in the array of root backups.  The
1774  * index of the highest array is returned, or -EINVAL if we can't find
1775  * anything.
1776  *
1777  * We check to make sure the array is valid by comparing the
1778  * generation of the latest  root in the array with the generation
1779  * in the super block.  If they don't match we pitch it.
1780  */
1781 static int find_newest_super_backup(struct btrfs_fs_info *info)
1782 {
1783 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1784 	u64 cur;
1785 	struct btrfs_root_backup *root_backup;
1786 	int i;
1787 
1788 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1789 		root_backup = info->super_copy->super_roots + i;
1790 		cur = btrfs_backup_tree_root_gen(root_backup);
1791 		if (cur == newest_gen)
1792 			return i;
1793 	}
1794 
1795 	return -EINVAL;
1796 }
1797 
1798 /*
1799  * copy all the root pointers into the super backup array.
1800  * this will bump the backup pointer by one when it is
1801  * done
1802  */
1803 static void backup_super_roots(struct btrfs_fs_info *info)
1804 {
1805 	const int next_backup = info->backup_root_index;
1806 	struct btrfs_root_backup *root_backup;
1807 
1808 	root_backup = info->super_for_commit->super_roots + next_backup;
1809 
1810 	/*
1811 	 * make sure all of our padding and empty slots get zero filled
1812 	 * regardless of which ones we use today
1813 	 */
1814 	memset(root_backup, 0, sizeof(*root_backup));
1815 
1816 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1817 
1818 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1819 	btrfs_set_backup_tree_root_gen(root_backup,
1820 			       btrfs_header_generation(info->tree_root->node));
1821 
1822 	btrfs_set_backup_tree_root_level(root_backup,
1823 			       btrfs_header_level(info->tree_root->node));
1824 
1825 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1826 	btrfs_set_backup_chunk_root_gen(root_backup,
1827 			       btrfs_header_generation(info->chunk_root->node));
1828 	btrfs_set_backup_chunk_root_level(root_backup,
1829 			       btrfs_header_level(info->chunk_root->node));
1830 
1831 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1832 	btrfs_set_backup_extent_root_gen(root_backup,
1833 			       btrfs_header_generation(info->extent_root->node));
1834 	btrfs_set_backup_extent_root_level(root_backup,
1835 			       btrfs_header_level(info->extent_root->node));
1836 
1837 	/*
1838 	 * we might commit during log recovery, which happens before we set
1839 	 * the fs_root.  Make sure it is valid before we fill it in.
1840 	 */
1841 	if (info->fs_root && info->fs_root->node) {
1842 		btrfs_set_backup_fs_root(root_backup,
1843 					 info->fs_root->node->start);
1844 		btrfs_set_backup_fs_root_gen(root_backup,
1845 			       btrfs_header_generation(info->fs_root->node));
1846 		btrfs_set_backup_fs_root_level(root_backup,
1847 			       btrfs_header_level(info->fs_root->node));
1848 	}
1849 
1850 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1851 	btrfs_set_backup_dev_root_gen(root_backup,
1852 			       btrfs_header_generation(info->dev_root->node));
1853 	btrfs_set_backup_dev_root_level(root_backup,
1854 				       btrfs_header_level(info->dev_root->node));
1855 
1856 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1857 	btrfs_set_backup_csum_root_gen(root_backup,
1858 			       btrfs_header_generation(info->csum_root->node));
1859 	btrfs_set_backup_csum_root_level(root_backup,
1860 			       btrfs_header_level(info->csum_root->node));
1861 
1862 	btrfs_set_backup_total_bytes(root_backup,
1863 			     btrfs_super_total_bytes(info->super_copy));
1864 	btrfs_set_backup_bytes_used(root_backup,
1865 			     btrfs_super_bytes_used(info->super_copy));
1866 	btrfs_set_backup_num_devices(root_backup,
1867 			     btrfs_super_num_devices(info->super_copy));
1868 
1869 	/*
1870 	 * if we don't copy this out to the super_copy, it won't get remembered
1871 	 * for the next commit
1872 	 */
1873 	memcpy(&info->super_copy->super_roots,
1874 	       &info->super_for_commit->super_roots,
1875 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1876 }
1877 
1878 /*
1879  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1880  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1881  *
1882  * fs_info - filesystem whose backup roots need to be read
1883  * priority - priority of backup root required
1884  *
1885  * Returns backup root index on success and -EINVAL otherwise.
1886  */
1887 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1888 {
1889 	int backup_index = find_newest_super_backup(fs_info);
1890 	struct btrfs_super_block *super = fs_info->super_copy;
1891 	struct btrfs_root_backup *root_backup;
1892 
1893 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1894 		if (priority == 0)
1895 			return backup_index;
1896 
1897 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1898 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1899 	} else {
1900 		return -EINVAL;
1901 	}
1902 
1903 	root_backup = super->super_roots + backup_index;
1904 
1905 	btrfs_set_super_generation(super,
1906 				   btrfs_backup_tree_root_gen(root_backup));
1907 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1908 	btrfs_set_super_root_level(super,
1909 				   btrfs_backup_tree_root_level(root_backup));
1910 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1911 
1912 	/*
1913 	 * Fixme: the total bytes and num_devices need to match or we should
1914 	 * need a fsck
1915 	 */
1916 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1917 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1918 
1919 	return backup_index;
1920 }
1921 
1922 /* helper to cleanup workers */
1923 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1924 {
1925 	btrfs_destroy_workqueue(fs_info->fixup_workers);
1926 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1927 	btrfs_destroy_workqueue(fs_info->workers);
1928 	btrfs_destroy_workqueue(fs_info->endio_workers);
1929 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1930 	btrfs_destroy_workqueue(fs_info->rmw_workers);
1931 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1932 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1933 	btrfs_destroy_workqueue(fs_info->delayed_workers);
1934 	btrfs_destroy_workqueue(fs_info->caching_workers);
1935 	btrfs_destroy_workqueue(fs_info->readahead_workers);
1936 	btrfs_destroy_workqueue(fs_info->flush_workers);
1937 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1938 	if (fs_info->discard_ctl.discard_workers)
1939 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1940 	/*
1941 	 * Now that all other work queues are destroyed, we can safely destroy
1942 	 * the queues used for metadata I/O, since tasks from those other work
1943 	 * queues can do metadata I/O operations.
1944 	 */
1945 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1946 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
1947 }
1948 
1949 static void free_root_extent_buffers(struct btrfs_root *root)
1950 {
1951 	if (root) {
1952 		free_extent_buffer(root->node);
1953 		free_extent_buffer(root->commit_root);
1954 		root->node = NULL;
1955 		root->commit_root = NULL;
1956 	}
1957 }
1958 
1959 /* helper to cleanup tree roots */
1960 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1961 {
1962 	free_root_extent_buffers(info->tree_root);
1963 
1964 	free_root_extent_buffers(info->dev_root);
1965 	free_root_extent_buffers(info->extent_root);
1966 	free_root_extent_buffers(info->csum_root);
1967 	free_root_extent_buffers(info->quota_root);
1968 	free_root_extent_buffers(info->uuid_root);
1969 	free_root_extent_buffers(info->fs_root);
1970 	free_root_extent_buffers(info->data_reloc_root);
1971 	if (free_chunk_root)
1972 		free_root_extent_buffers(info->chunk_root);
1973 	free_root_extent_buffers(info->free_space_root);
1974 }
1975 
1976 void btrfs_put_root(struct btrfs_root *root)
1977 {
1978 	if (!root)
1979 		return;
1980 
1981 	if (refcount_dec_and_test(&root->refs)) {
1982 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1983 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1984 		if (root->anon_dev)
1985 			free_anon_bdev(root->anon_dev);
1986 		btrfs_drew_lock_destroy(&root->snapshot_lock);
1987 		free_root_extent_buffers(root);
1988 		kfree(root->free_ino_ctl);
1989 		kfree(root->free_ino_pinned);
1990 #ifdef CONFIG_BTRFS_DEBUG
1991 		spin_lock(&root->fs_info->fs_roots_radix_lock);
1992 		list_del_init(&root->leak_list);
1993 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
1994 #endif
1995 		kfree(root);
1996 	}
1997 }
1998 
1999 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2000 {
2001 	int ret;
2002 	struct btrfs_root *gang[8];
2003 	int i;
2004 
2005 	while (!list_empty(&fs_info->dead_roots)) {
2006 		gang[0] = list_entry(fs_info->dead_roots.next,
2007 				     struct btrfs_root, root_list);
2008 		list_del(&gang[0]->root_list);
2009 
2010 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2011 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2012 		btrfs_put_root(gang[0]);
2013 	}
2014 
2015 	while (1) {
2016 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2017 					     (void **)gang, 0,
2018 					     ARRAY_SIZE(gang));
2019 		if (!ret)
2020 			break;
2021 		for (i = 0; i < ret; i++)
2022 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2023 	}
2024 }
2025 
2026 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2027 {
2028 	mutex_init(&fs_info->scrub_lock);
2029 	atomic_set(&fs_info->scrubs_running, 0);
2030 	atomic_set(&fs_info->scrub_pause_req, 0);
2031 	atomic_set(&fs_info->scrubs_paused, 0);
2032 	atomic_set(&fs_info->scrub_cancel_req, 0);
2033 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2034 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2035 }
2036 
2037 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2038 {
2039 	spin_lock_init(&fs_info->balance_lock);
2040 	mutex_init(&fs_info->balance_mutex);
2041 	atomic_set(&fs_info->balance_pause_req, 0);
2042 	atomic_set(&fs_info->balance_cancel_req, 0);
2043 	fs_info->balance_ctl = NULL;
2044 	init_waitqueue_head(&fs_info->balance_wait_q);
2045 }
2046 
2047 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2048 {
2049 	struct inode *inode = fs_info->btree_inode;
2050 
2051 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2052 	set_nlink(inode, 1);
2053 	/*
2054 	 * we set the i_size on the btree inode to the max possible int.
2055 	 * the real end of the address space is determined by all of
2056 	 * the devices in the system
2057 	 */
2058 	inode->i_size = OFFSET_MAX;
2059 	inode->i_mapping->a_ops = &btree_aops;
2060 
2061 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2062 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2063 			    IO_TREE_BTREE_INODE_IO, inode);
2064 	BTRFS_I(inode)->io_tree.track_uptodate = false;
2065 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2066 
2067 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2068 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2069 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2070 	btrfs_insert_inode_hash(inode);
2071 }
2072 
2073 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2074 {
2075 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2076 	init_rwsem(&fs_info->dev_replace.rwsem);
2077 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2078 }
2079 
2080 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2081 {
2082 	spin_lock_init(&fs_info->qgroup_lock);
2083 	mutex_init(&fs_info->qgroup_ioctl_lock);
2084 	fs_info->qgroup_tree = RB_ROOT;
2085 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2086 	fs_info->qgroup_seq = 1;
2087 	fs_info->qgroup_ulist = NULL;
2088 	fs_info->qgroup_rescan_running = false;
2089 	mutex_init(&fs_info->qgroup_rescan_lock);
2090 }
2091 
2092 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2093 		struct btrfs_fs_devices *fs_devices)
2094 {
2095 	u32 max_active = fs_info->thread_pool_size;
2096 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2097 
2098 	fs_info->workers =
2099 		btrfs_alloc_workqueue(fs_info, "worker",
2100 				      flags | WQ_HIGHPRI, max_active, 16);
2101 
2102 	fs_info->delalloc_workers =
2103 		btrfs_alloc_workqueue(fs_info, "delalloc",
2104 				      flags, max_active, 2);
2105 
2106 	fs_info->flush_workers =
2107 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2108 				      flags, max_active, 0);
2109 
2110 	fs_info->caching_workers =
2111 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2112 
2113 	fs_info->fixup_workers =
2114 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2115 
2116 	/*
2117 	 * endios are largely parallel and should have a very
2118 	 * low idle thresh
2119 	 */
2120 	fs_info->endio_workers =
2121 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2122 	fs_info->endio_meta_workers =
2123 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2124 				      max_active, 4);
2125 	fs_info->endio_meta_write_workers =
2126 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2127 				      max_active, 2);
2128 	fs_info->endio_raid56_workers =
2129 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2130 				      max_active, 4);
2131 	fs_info->rmw_workers =
2132 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2133 	fs_info->endio_write_workers =
2134 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2135 				      max_active, 2);
2136 	fs_info->endio_freespace_worker =
2137 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2138 				      max_active, 0);
2139 	fs_info->delayed_workers =
2140 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2141 				      max_active, 0);
2142 	fs_info->readahead_workers =
2143 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2144 				      max_active, 2);
2145 	fs_info->qgroup_rescan_workers =
2146 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2147 	fs_info->discard_ctl.discard_workers =
2148 		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2149 
2150 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2151 	      fs_info->flush_workers &&
2152 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2153 	      fs_info->endio_meta_write_workers &&
2154 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2155 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2156 	      fs_info->caching_workers && fs_info->readahead_workers &&
2157 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2158 	      fs_info->qgroup_rescan_workers &&
2159 	      fs_info->discard_ctl.discard_workers)) {
2160 		return -ENOMEM;
2161 	}
2162 
2163 	return 0;
2164 }
2165 
2166 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2167 {
2168 	struct crypto_shash *csum_shash;
2169 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2170 
2171 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2172 
2173 	if (IS_ERR(csum_shash)) {
2174 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2175 			  csum_driver);
2176 		return PTR_ERR(csum_shash);
2177 	}
2178 
2179 	fs_info->csum_shash = csum_shash;
2180 
2181 	return 0;
2182 }
2183 
2184 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2185 			    struct btrfs_fs_devices *fs_devices)
2186 {
2187 	int ret;
2188 	struct btrfs_root *log_tree_root;
2189 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2190 	u64 bytenr = btrfs_super_log_root(disk_super);
2191 	int level = btrfs_super_log_root_level(disk_super);
2192 
2193 	if (fs_devices->rw_devices == 0) {
2194 		btrfs_warn(fs_info, "log replay required on RO media");
2195 		return -EIO;
2196 	}
2197 
2198 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2199 					 GFP_KERNEL);
2200 	if (!log_tree_root)
2201 		return -ENOMEM;
2202 
2203 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2204 					      fs_info->generation + 1,
2205 					      level, NULL);
2206 	if (IS_ERR(log_tree_root->node)) {
2207 		btrfs_warn(fs_info, "failed to read log tree");
2208 		ret = PTR_ERR(log_tree_root->node);
2209 		log_tree_root->node = NULL;
2210 		btrfs_put_root(log_tree_root);
2211 		return ret;
2212 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2213 		btrfs_err(fs_info, "failed to read log tree");
2214 		btrfs_put_root(log_tree_root);
2215 		return -EIO;
2216 	}
2217 	/* returns with log_tree_root freed on success */
2218 	ret = btrfs_recover_log_trees(log_tree_root);
2219 	if (ret) {
2220 		btrfs_handle_fs_error(fs_info, ret,
2221 				      "Failed to recover log tree");
2222 		btrfs_put_root(log_tree_root);
2223 		return ret;
2224 	}
2225 
2226 	if (sb_rdonly(fs_info->sb)) {
2227 		ret = btrfs_commit_super(fs_info);
2228 		if (ret)
2229 			return ret;
2230 	}
2231 
2232 	return 0;
2233 }
2234 
2235 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2236 {
2237 	struct btrfs_root *tree_root = fs_info->tree_root;
2238 	struct btrfs_root *root;
2239 	struct btrfs_key location;
2240 	int ret;
2241 
2242 	BUG_ON(!fs_info->tree_root);
2243 
2244 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2245 	location.type = BTRFS_ROOT_ITEM_KEY;
2246 	location.offset = 0;
2247 
2248 	root = btrfs_read_tree_root(tree_root, &location);
2249 	if (IS_ERR(root)) {
2250 		ret = PTR_ERR(root);
2251 		goto out;
2252 	}
2253 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2254 	fs_info->extent_root = root;
2255 
2256 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2257 	root = btrfs_read_tree_root(tree_root, &location);
2258 	if (IS_ERR(root)) {
2259 		ret = PTR_ERR(root);
2260 		goto out;
2261 	}
2262 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2263 	fs_info->dev_root = root;
2264 	btrfs_init_devices_late(fs_info);
2265 
2266 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2267 	root = btrfs_read_tree_root(tree_root, &location);
2268 	if (IS_ERR(root)) {
2269 		ret = PTR_ERR(root);
2270 		goto out;
2271 	}
2272 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2273 	fs_info->csum_root = root;
2274 
2275 	/*
2276 	 * This tree can share blocks with some other fs tree during relocation
2277 	 * and we need a proper setup by btrfs_get_fs_root
2278 	 */
2279 	root = btrfs_get_fs_root(tree_root->fs_info,
2280 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2281 	if (IS_ERR(root)) {
2282 		ret = PTR_ERR(root);
2283 		goto out;
2284 	}
2285 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2286 	fs_info->data_reloc_root = root;
2287 
2288 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2289 	root = btrfs_read_tree_root(tree_root, &location);
2290 	if (!IS_ERR(root)) {
2291 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2292 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2293 		fs_info->quota_root = root;
2294 	}
2295 
2296 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2297 	root = btrfs_read_tree_root(tree_root, &location);
2298 	if (IS_ERR(root)) {
2299 		ret = PTR_ERR(root);
2300 		if (ret != -ENOENT)
2301 			goto out;
2302 	} else {
2303 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2304 		fs_info->uuid_root = root;
2305 	}
2306 
2307 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2308 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2309 		root = btrfs_read_tree_root(tree_root, &location);
2310 		if (IS_ERR(root)) {
2311 			ret = PTR_ERR(root);
2312 			goto out;
2313 		}
2314 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2315 		fs_info->free_space_root = root;
2316 	}
2317 
2318 	return 0;
2319 out:
2320 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2321 		   location.objectid, ret);
2322 	return ret;
2323 }
2324 
2325 /*
2326  * Real super block validation
2327  * NOTE: super csum type and incompat features will not be checked here.
2328  *
2329  * @sb:		super block to check
2330  * @mirror_num:	the super block number to check its bytenr:
2331  * 		0	the primary (1st) sb
2332  * 		1, 2	2nd and 3rd backup copy
2333  * 	       -1	skip bytenr check
2334  */
2335 static int validate_super(struct btrfs_fs_info *fs_info,
2336 			    struct btrfs_super_block *sb, int mirror_num)
2337 {
2338 	u64 nodesize = btrfs_super_nodesize(sb);
2339 	u64 sectorsize = btrfs_super_sectorsize(sb);
2340 	int ret = 0;
2341 
2342 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2343 		btrfs_err(fs_info, "no valid FS found");
2344 		ret = -EINVAL;
2345 	}
2346 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2347 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2348 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2349 		ret = -EINVAL;
2350 	}
2351 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2352 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2353 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2354 		ret = -EINVAL;
2355 	}
2356 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2357 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2358 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2359 		ret = -EINVAL;
2360 	}
2361 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2362 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2363 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2364 		ret = -EINVAL;
2365 	}
2366 
2367 	/*
2368 	 * Check sectorsize and nodesize first, other check will need it.
2369 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2370 	 */
2371 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2372 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2373 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2374 		ret = -EINVAL;
2375 	}
2376 	/* Only PAGE SIZE is supported yet */
2377 	if (sectorsize != PAGE_SIZE) {
2378 		btrfs_err(fs_info,
2379 			"sectorsize %llu not supported yet, only support %lu",
2380 			sectorsize, PAGE_SIZE);
2381 		ret = -EINVAL;
2382 	}
2383 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2384 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2385 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2386 		ret = -EINVAL;
2387 	}
2388 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2389 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2390 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2391 		ret = -EINVAL;
2392 	}
2393 
2394 	/* Root alignment check */
2395 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2396 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2397 			   btrfs_super_root(sb));
2398 		ret = -EINVAL;
2399 	}
2400 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2401 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2402 			   btrfs_super_chunk_root(sb));
2403 		ret = -EINVAL;
2404 	}
2405 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2406 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2407 			   btrfs_super_log_root(sb));
2408 		ret = -EINVAL;
2409 	}
2410 
2411 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2412 		   BTRFS_FSID_SIZE) != 0) {
2413 		btrfs_err(fs_info,
2414 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2415 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2416 		ret = -EINVAL;
2417 	}
2418 
2419 	/*
2420 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2421 	 * done later
2422 	 */
2423 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2424 		btrfs_err(fs_info, "bytes_used is too small %llu",
2425 			  btrfs_super_bytes_used(sb));
2426 		ret = -EINVAL;
2427 	}
2428 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2429 		btrfs_err(fs_info, "invalid stripesize %u",
2430 			  btrfs_super_stripesize(sb));
2431 		ret = -EINVAL;
2432 	}
2433 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2434 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2435 			   btrfs_super_num_devices(sb));
2436 	if (btrfs_super_num_devices(sb) == 0) {
2437 		btrfs_err(fs_info, "number of devices is 0");
2438 		ret = -EINVAL;
2439 	}
2440 
2441 	if (mirror_num >= 0 &&
2442 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2443 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2444 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2445 		ret = -EINVAL;
2446 	}
2447 
2448 	/*
2449 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2450 	 * and one chunk
2451 	 */
2452 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2453 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2454 			  btrfs_super_sys_array_size(sb),
2455 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2456 		ret = -EINVAL;
2457 	}
2458 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2459 			+ sizeof(struct btrfs_chunk)) {
2460 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2461 			  btrfs_super_sys_array_size(sb),
2462 			  sizeof(struct btrfs_disk_key)
2463 			  + sizeof(struct btrfs_chunk));
2464 		ret = -EINVAL;
2465 	}
2466 
2467 	/*
2468 	 * The generation is a global counter, we'll trust it more than the others
2469 	 * but it's still possible that it's the one that's wrong.
2470 	 */
2471 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2472 		btrfs_warn(fs_info,
2473 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2474 			btrfs_super_generation(sb),
2475 			btrfs_super_chunk_root_generation(sb));
2476 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2477 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2478 		btrfs_warn(fs_info,
2479 			"suspicious: generation < cache_generation: %llu < %llu",
2480 			btrfs_super_generation(sb),
2481 			btrfs_super_cache_generation(sb));
2482 
2483 	return ret;
2484 }
2485 
2486 /*
2487  * Validation of super block at mount time.
2488  * Some checks already done early at mount time, like csum type and incompat
2489  * flags will be skipped.
2490  */
2491 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2492 {
2493 	return validate_super(fs_info, fs_info->super_copy, 0);
2494 }
2495 
2496 /*
2497  * Validation of super block at write time.
2498  * Some checks like bytenr check will be skipped as their values will be
2499  * overwritten soon.
2500  * Extra checks like csum type and incompat flags will be done here.
2501  */
2502 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2503 				      struct btrfs_super_block *sb)
2504 {
2505 	int ret;
2506 
2507 	ret = validate_super(fs_info, sb, -1);
2508 	if (ret < 0)
2509 		goto out;
2510 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2511 		ret = -EUCLEAN;
2512 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2513 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2514 		goto out;
2515 	}
2516 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2517 		ret = -EUCLEAN;
2518 		btrfs_err(fs_info,
2519 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2520 			  btrfs_super_incompat_flags(sb),
2521 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2522 		goto out;
2523 	}
2524 out:
2525 	if (ret < 0)
2526 		btrfs_err(fs_info,
2527 		"super block corruption detected before writing it to disk");
2528 	return ret;
2529 }
2530 
2531 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2532 {
2533 	int backup_index = find_newest_super_backup(fs_info);
2534 	struct btrfs_super_block *sb = fs_info->super_copy;
2535 	struct btrfs_root *tree_root = fs_info->tree_root;
2536 	bool handle_error = false;
2537 	int ret = 0;
2538 	int i;
2539 
2540 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2541 		u64 generation;
2542 		int level;
2543 
2544 		if (handle_error) {
2545 			if (!IS_ERR(tree_root->node))
2546 				free_extent_buffer(tree_root->node);
2547 			tree_root->node = NULL;
2548 
2549 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2550 				break;
2551 
2552 			free_root_pointers(fs_info, 0);
2553 
2554 			/*
2555 			 * Don't use the log in recovery mode, it won't be
2556 			 * valid
2557 			 */
2558 			btrfs_set_super_log_root(sb, 0);
2559 
2560 			/* We can't trust the free space cache either */
2561 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2562 
2563 			ret = read_backup_root(fs_info, i);
2564 			backup_index = ret;
2565 			if (ret < 0)
2566 				return ret;
2567 		}
2568 		generation = btrfs_super_generation(sb);
2569 		level = btrfs_super_root_level(sb);
2570 		tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2571 						  generation, level, NULL);
2572 		if (IS_ERR(tree_root->node)) {
2573 			handle_error = true;
2574 			ret = PTR_ERR(tree_root->node);
2575 			tree_root->node = NULL;
2576 			btrfs_warn(fs_info, "couldn't read tree root");
2577 			continue;
2578 
2579 		} else if (!extent_buffer_uptodate(tree_root->node)) {
2580 			handle_error = true;
2581 			ret = -EIO;
2582 			btrfs_warn(fs_info, "error while reading tree root");
2583 			continue;
2584 		}
2585 
2586 		btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2587 		tree_root->commit_root = btrfs_root_node(tree_root);
2588 		btrfs_set_root_refs(&tree_root->root_item, 1);
2589 
2590 		/*
2591 		 * No need to hold btrfs_root::objectid_mutex since the fs
2592 		 * hasn't been fully initialised and we are the only user
2593 		 */
2594 		ret = btrfs_find_highest_objectid(tree_root,
2595 						&tree_root->highest_objectid);
2596 		if (ret < 0) {
2597 			handle_error = true;
2598 			continue;
2599 		}
2600 
2601 		ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2602 
2603 		ret = btrfs_read_roots(fs_info);
2604 		if (ret < 0) {
2605 			handle_error = true;
2606 			continue;
2607 		}
2608 
2609 		/* All successful */
2610 		fs_info->generation = generation;
2611 		fs_info->last_trans_committed = generation;
2612 
2613 		/* Always begin writing backup roots after the one being used */
2614 		if (backup_index < 0) {
2615 			fs_info->backup_root_index = 0;
2616 		} else {
2617 			fs_info->backup_root_index = backup_index + 1;
2618 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2619 		}
2620 		break;
2621 	}
2622 
2623 	return ret;
2624 }
2625 
2626 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2627 {
2628 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2629 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2630 	INIT_LIST_HEAD(&fs_info->trans_list);
2631 	INIT_LIST_HEAD(&fs_info->dead_roots);
2632 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2633 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2634 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2635 	spin_lock_init(&fs_info->delalloc_root_lock);
2636 	spin_lock_init(&fs_info->trans_lock);
2637 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2638 	spin_lock_init(&fs_info->delayed_iput_lock);
2639 	spin_lock_init(&fs_info->defrag_inodes_lock);
2640 	spin_lock_init(&fs_info->super_lock);
2641 	spin_lock_init(&fs_info->buffer_lock);
2642 	spin_lock_init(&fs_info->unused_bgs_lock);
2643 	rwlock_init(&fs_info->tree_mod_log_lock);
2644 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2645 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2646 	mutex_init(&fs_info->reloc_mutex);
2647 	mutex_init(&fs_info->delalloc_root_mutex);
2648 	seqlock_init(&fs_info->profiles_lock);
2649 
2650 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2651 	INIT_LIST_HEAD(&fs_info->space_info);
2652 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2653 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2654 #ifdef CONFIG_BTRFS_DEBUG
2655 	INIT_LIST_HEAD(&fs_info->allocated_roots);
2656 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2657 	spin_lock_init(&fs_info->eb_leak_lock);
2658 #endif
2659 	extent_map_tree_init(&fs_info->mapping_tree);
2660 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2661 			     BTRFS_BLOCK_RSV_GLOBAL);
2662 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2663 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2664 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2665 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2666 			     BTRFS_BLOCK_RSV_DELOPS);
2667 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2668 			     BTRFS_BLOCK_RSV_DELREFS);
2669 
2670 	atomic_set(&fs_info->async_delalloc_pages, 0);
2671 	atomic_set(&fs_info->defrag_running, 0);
2672 	atomic_set(&fs_info->reada_works_cnt, 0);
2673 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2674 	atomic64_set(&fs_info->tree_mod_seq, 0);
2675 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2676 	fs_info->metadata_ratio = 0;
2677 	fs_info->defrag_inodes = RB_ROOT;
2678 	atomic64_set(&fs_info->free_chunk_space, 0);
2679 	fs_info->tree_mod_log = RB_ROOT;
2680 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2681 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2682 	/* readahead state */
2683 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2684 	spin_lock_init(&fs_info->reada_lock);
2685 	btrfs_init_ref_verify(fs_info);
2686 
2687 	fs_info->thread_pool_size = min_t(unsigned long,
2688 					  num_online_cpus() + 2, 8);
2689 
2690 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2691 	spin_lock_init(&fs_info->ordered_root_lock);
2692 
2693 	btrfs_init_scrub(fs_info);
2694 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2695 	fs_info->check_integrity_print_mask = 0;
2696 #endif
2697 	btrfs_init_balance(fs_info);
2698 	btrfs_init_async_reclaim_work(fs_info);
2699 
2700 	spin_lock_init(&fs_info->block_group_cache_lock);
2701 	fs_info->block_group_cache_tree = RB_ROOT;
2702 	fs_info->first_logical_byte = (u64)-1;
2703 
2704 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2705 			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2706 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2707 
2708 	mutex_init(&fs_info->ordered_operations_mutex);
2709 	mutex_init(&fs_info->tree_log_mutex);
2710 	mutex_init(&fs_info->chunk_mutex);
2711 	mutex_init(&fs_info->transaction_kthread_mutex);
2712 	mutex_init(&fs_info->cleaner_mutex);
2713 	mutex_init(&fs_info->ro_block_group_mutex);
2714 	init_rwsem(&fs_info->commit_root_sem);
2715 	init_rwsem(&fs_info->cleanup_work_sem);
2716 	init_rwsem(&fs_info->subvol_sem);
2717 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2718 
2719 	btrfs_init_dev_replace_locks(fs_info);
2720 	btrfs_init_qgroup(fs_info);
2721 	btrfs_discard_init(fs_info);
2722 
2723 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2724 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2725 
2726 	init_waitqueue_head(&fs_info->transaction_throttle);
2727 	init_waitqueue_head(&fs_info->transaction_wait);
2728 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2729 	init_waitqueue_head(&fs_info->async_submit_wait);
2730 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2731 
2732 	/* Usable values until the real ones are cached from the superblock */
2733 	fs_info->nodesize = 4096;
2734 	fs_info->sectorsize = 4096;
2735 	fs_info->stripesize = 4096;
2736 
2737 	spin_lock_init(&fs_info->swapfile_pins_lock);
2738 	fs_info->swapfile_pins = RB_ROOT;
2739 
2740 	fs_info->send_in_progress = 0;
2741 }
2742 
2743 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2744 {
2745 	int ret;
2746 
2747 	fs_info->sb = sb;
2748 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2749 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2750 
2751 	ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2752 	if (ret)
2753 		return ret;
2754 
2755 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2756 	if (ret)
2757 		return ret;
2758 
2759 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2760 					(1 + ilog2(nr_cpu_ids));
2761 
2762 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2763 	if (ret)
2764 		return ret;
2765 
2766 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2767 			GFP_KERNEL);
2768 	if (ret)
2769 		return ret;
2770 
2771 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2772 					GFP_KERNEL);
2773 	if (!fs_info->delayed_root)
2774 		return -ENOMEM;
2775 	btrfs_init_delayed_root(fs_info->delayed_root);
2776 
2777 	return btrfs_alloc_stripe_hash_table(fs_info);
2778 }
2779 
2780 static int btrfs_uuid_rescan_kthread(void *data)
2781 {
2782 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2783 	int ret;
2784 
2785 	/*
2786 	 * 1st step is to iterate through the existing UUID tree and
2787 	 * to delete all entries that contain outdated data.
2788 	 * 2nd step is to add all missing entries to the UUID tree.
2789 	 */
2790 	ret = btrfs_uuid_tree_iterate(fs_info);
2791 	if (ret < 0) {
2792 		if (ret != -EINTR)
2793 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2794 				   ret);
2795 		up(&fs_info->uuid_tree_rescan_sem);
2796 		return ret;
2797 	}
2798 	return btrfs_uuid_scan_kthread(data);
2799 }
2800 
2801 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2802 {
2803 	struct task_struct *task;
2804 
2805 	down(&fs_info->uuid_tree_rescan_sem);
2806 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2807 	if (IS_ERR(task)) {
2808 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2809 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2810 		up(&fs_info->uuid_tree_rescan_sem);
2811 		return PTR_ERR(task);
2812 	}
2813 
2814 	return 0;
2815 }
2816 
2817 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2818 		      char *options)
2819 {
2820 	u32 sectorsize;
2821 	u32 nodesize;
2822 	u32 stripesize;
2823 	u64 generation;
2824 	u64 features;
2825 	u16 csum_type;
2826 	struct btrfs_super_block *disk_super;
2827 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2828 	struct btrfs_root *tree_root;
2829 	struct btrfs_root *chunk_root;
2830 	int ret;
2831 	int err = -EINVAL;
2832 	int clear_free_space_tree = 0;
2833 	int level;
2834 
2835 	ret = init_mount_fs_info(fs_info, sb);
2836 	if (ret) {
2837 		err = ret;
2838 		goto fail;
2839 	}
2840 
2841 	/* These need to be init'ed before we start creating inodes and such. */
2842 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2843 				     GFP_KERNEL);
2844 	fs_info->tree_root = tree_root;
2845 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2846 				      GFP_KERNEL);
2847 	fs_info->chunk_root = chunk_root;
2848 	if (!tree_root || !chunk_root) {
2849 		err = -ENOMEM;
2850 		goto fail;
2851 	}
2852 
2853 	fs_info->btree_inode = new_inode(sb);
2854 	if (!fs_info->btree_inode) {
2855 		err = -ENOMEM;
2856 		goto fail;
2857 	}
2858 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2859 	btrfs_init_btree_inode(fs_info);
2860 
2861 	invalidate_bdev(fs_devices->latest_bdev);
2862 
2863 	/*
2864 	 * Read super block and check the signature bytes only
2865 	 */
2866 	disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2867 	if (IS_ERR(disk_super)) {
2868 		err = PTR_ERR(disk_super);
2869 		goto fail_alloc;
2870 	}
2871 
2872 	/*
2873 	 * Verify the type first, if that or the checksum value are
2874 	 * corrupted, we'll find out
2875 	 */
2876 	csum_type = btrfs_super_csum_type(disk_super);
2877 	if (!btrfs_supported_super_csum(csum_type)) {
2878 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2879 			  csum_type);
2880 		err = -EINVAL;
2881 		btrfs_release_disk_super(disk_super);
2882 		goto fail_alloc;
2883 	}
2884 
2885 	ret = btrfs_init_csum_hash(fs_info, csum_type);
2886 	if (ret) {
2887 		err = ret;
2888 		btrfs_release_disk_super(disk_super);
2889 		goto fail_alloc;
2890 	}
2891 
2892 	/*
2893 	 * We want to check superblock checksum, the type is stored inside.
2894 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2895 	 */
2896 	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2897 		btrfs_err(fs_info, "superblock checksum mismatch");
2898 		err = -EINVAL;
2899 		btrfs_release_disk_super(disk_super);
2900 		goto fail_alloc;
2901 	}
2902 
2903 	/*
2904 	 * super_copy is zeroed at allocation time and we never touch the
2905 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2906 	 * the whole block of INFO_SIZE
2907 	 */
2908 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2909 	btrfs_release_disk_super(disk_super);
2910 
2911 	disk_super = fs_info->super_copy;
2912 
2913 	ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2914 		       BTRFS_FSID_SIZE));
2915 
2916 	if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2917 		ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2918 				fs_info->super_copy->metadata_uuid,
2919 				BTRFS_FSID_SIZE));
2920 	}
2921 
2922 	features = btrfs_super_flags(disk_super);
2923 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2924 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2925 		btrfs_set_super_flags(disk_super, features);
2926 		btrfs_info(fs_info,
2927 			"found metadata UUID change in progress flag, clearing");
2928 	}
2929 
2930 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2931 	       sizeof(*fs_info->super_for_commit));
2932 
2933 	ret = btrfs_validate_mount_super(fs_info);
2934 	if (ret) {
2935 		btrfs_err(fs_info, "superblock contains fatal errors");
2936 		err = -EINVAL;
2937 		goto fail_alloc;
2938 	}
2939 
2940 	if (!btrfs_super_root(disk_super))
2941 		goto fail_alloc;
2942 
2943 	/* check FS state, whether FS is broken. */
2944 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2945 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2946 
2947 	/*
2948 	 * In the long term, we'll store the compression type in the super
2949 	 * block, and it'll be used for per file compression control.
2950 	 */
2951 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2952 
2953 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2954 	if (ret) {
2955 		err = ret;
2956 		goto fail_alloc;
2957 	}
2958 
2959 	features = btrfs_super_incompat_flags(disk_super) &
2960 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2961 	if (features) {
2962 		btrfs_err(fs_info,
2963 		    "cannot mount because of unsupported optional features (%llx)",
2964 		    features);
2965 		err = -EINVAL;
2966 		goto fail_alloc;
2967 	}
2968 
2969 	features = btrfs_super_incompat_flags(disk_super);
2970 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2971 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2972 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2973 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2974 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2975 
2976 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2977 		btrfs_info(fs_info, "has skinny extents");
2978 
2979 	/*
2980 	 * flag our filesystem as having big metadata blocks if
2981 	 * they are bigger than the page size
2982 	 */
2983 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2984 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2985 			btrfs_info(fs_info,
2986 				"flagging fs with big metadata feature");
2987 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2988 	}
2989 
2990 	nodesize = btrfs_super_nodesize(disk_super);
2991 	sectorsize = btrfs_super_sectorsize(disk_super);
2992 	stripesize = sectorsize;
2993 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2994 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2995 
2996 	/* Cache block sizes */
2997 	fs_info->nodesize = nodesize;
2998 	fs_info->sectorsize = sectorsize;
2999 	fs_info->stripesize = stripesize;
3000 
3001 	/*
3002 	 * mixed block groups end up with duplicate but slightly offset
3003 	 * extent buffers for the same range.  It leads to corruptions
3004 	 */
3005 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3006 	    (sectorsize != nodesize)) {
3007 		btrfs_err(fs_info,
3008 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3009 			nodesize, sectorsize);
3010 		goto fail_alloc;
3011 	}
3012 
3013 	/*
3014 	 * Needn't use the lock because there is no other task which will
3015 	 * update the flag.
3016 	 */
3017 	btrfs_set_super_incompat_flags(disk_super, features);
3018 
3019 	features = btrfs_super_compat_ro_flags(disk_super) &
3020 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3021 	if (!sb_rdonly(sb) && features) {
3022 		btrfs_err(fs_info,
3023 	"cannot mount read-write because of unsupported optional features (%llx)",
3024 		       features);
3025 		err = -EINVAL;
3026 		goto fail_alloc;
3027 	}
3028 
3029 	ret = btrfs_init_workqueues(fs_info, fs_devices);
3030 	if (ret) {
3031 		err = ret;
3032 		goto fail_sb_buffer;
3033 	}
3034 
3035 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3036 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3037 
3038 	sb->s_blocksize = sectorsize;
3039 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3040 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3041 
3042 	mutex_lock(&fs_info->chunk_mutex);
3043 	ret = btrfs_read_sys_array(fs_info);
3044 	mutex_unlock(&fs_info->chunk_mutex);
3045 	if (ret) {
3046 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3047 		goto fail_sb_buffer;
3048 	}
3049 
3050 	generation = btrfs_super_chunk_root_generation(disk_super);
3051 	level = btrfs_super_chunk_root_level(disk_super);
3052 
3053 	chunk_root->node = read_tree_block(fs_info,
3054 					   btrfs_super_chunk_root(disk_super),
3055 					   generation, level, NULL);
3056 	if (IS_ERR(chunk_root->node) ||
3057 	    !extent_buffer_uptodate(chunk_root->node)) {
3058 		btrfs_err(fs_info, "failed to read chunk root");
3059 		if (!IS_ERR(chunk_root->node))
3060 			free_extent_buffer(chunk_root->node);
3061 		chunk_root->node = NULL;
3062 		goto fail_tree_roots;
3063 	}
3064 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3065 	chunk_root->commit_root = btrfs_root_node(chunk_root);
3066 
3067 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3068 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3069 			   BTRFS_UUID_SIZE);
3070 
3071 	ret = btrfs_read_chunk_tree(fs_info);
3072 	if (ret) {
3073 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3074 		goto fail_tree_roots;
3075 	}
3076 
3077 	/*
3078 	 * Keep the devid that is marked to be the target device for the
3079 	 * device replace procedure
3080 	 */
3081 	btrfs_free_extra_devids(fs_devices, 0);
3082 
3083 	if (!fs_devices->latest_bdev) {
3084 		btrfs_err(fs_info, "failed to read devices");
3085 		goto fail_tree_roots;
3086 	}
3087 
3088 	ret = init_tree_roots(fs_info);
3089 	if (ret)
3090 		goto fail_tree_roots;
3091 
3092 	/*
3093 	 * If we have a uuid root and we're not being told to rescan we need to
3094 	 * check the generation here so we can set the
3095 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3096 	 * transaction during a balance or the log replay without updating the
3097 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3098 	 * even though it was perfectly fine.
3099 	 */
3100 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3101 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3102 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3103 
3104 	ret = btrfs_verify_dev_extents(fs_info);
3105 	if (ret) {
3106 		btrfs_err(fs_info,
3107 			  "failed to verify dev extents against chunks: %d",
3108 			  ret);
3109 		goto fail_block_groups;
3110 	}
3111 	ret = btrfs_recover_balance(fs_info);
3112 	if (ret) {
3113 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3114 		goto fail_block_groups;
3115 	}
3116 
3117 	ret = btrfs_init_dev_stats(fs_info);
3118 	if (ret) {
3119 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3120 		goto fail_block_groups;
3121 	}
3122 
3123 	ret = btrfs_init_dev_replace(fs_info);
3124 	if (ret) {
3125 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3126 		goto fail_block_groups;
3127 	}
3128 
3129 	btrfs_free_extra_devids(fs_devices, 1);
3130 
3131 	ret = btrfs_sysfs_add_fsid(fs_devices);
3132 	if (ret) {
3133 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3134 				ret);
3135 		goto fail_block_groups;
3136 	}
3137 
3138 	ret = btrfs_sysfs_add_mounted(fs_info);
3139 	if (ret) {
3140 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3141 		goto fail_fsdev_sysfs;
3142 	}
3143 
3144 	ret = btrfs_init_space_info(fs_info);
3145 	if (ret) {
3146 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3147 		goto fail_sysfs;
3148 	}
3149 
3150 	ret = btrfs_read_block_groups(fs_info);
3151 	if (ret) {
3152 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3153 		goto fail_sysfs;
3154 	}
3155 
3156 	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3157 		btrfs_warn(fs_info,
3158 		"writable mount is not allowed due to too many missing devices");
3159 		goto fail_sysfs;
3160 	}
3161 
3162 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3163 					       "btrfs-cleaner");
3164 	if (IS_ERR(fs_info->cleaner_kthread))
3165 		goto fail_sysfs;
3166 
3167 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3168 						   tree_root,
3169 						   "btrfs-transaction");
3170 	if (IS_ERR(fs_info->transaction_kthread))
3171 		goto fail_cleaner;
3172 
3173 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3174 	    !fs_info->fs_devices->rotating) {
3175 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3176 	}
3177 
3178 	/*
3179 	 * Mount does not set all options immediately, we can do it now and do
3180 	 * not have to wait for transaction commit
3181 	 */
3182 	btrfs_apply_pending_changes(fs_info);
3183 
3184 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3185 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3186 		ret = btrfsic_mount(fs_info, fs_devices,
3187 				    btrfs_test_opt(fs_info,
3188 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3189 				    1 : 0,
3190 				    fs_info->check_integrity_print_mask);
3191 		if (ret)
3192 			btrfs_warn(fs_info,
3193 				"failed to initialize integrity check module: %d",
3194 				ret);
3195 	}
3196 #endif
3197 	ret = btrfs_read_qgroup_config(fs_info);
3198 	if (ret)
3199 		goto fail_trans_kthread;
3200 
3201 	if (btrfs_build_ref_tree(fs_info))
3202 		btrfs_err(fs_info, "couldn't build ref tree");
3203 
3204 	/* do not make disk changes in broken FS or nologreplay is given */
3205 	if (btrfs_super_log_root(disk_super) != 0 &&
3206 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3207 		btrfs_info(fs_info, "start tree-log replay");
3208 		ret = btrfs_replay_log(fs_info, fs_devices);
3209 		if (ret) {
3210 			err = ret;
3211 			goto fail_qgroup;
3212 		}
3213 	}
3214 
3215 	ret = btrfs_find_orphan_roots(fs_info);
3216 	if (ret)
3217 		goto fail_qgroup;
3218 
3219 	if (!sb_rdonly(sb)) {
3220 		ret = btrfs_cleanup_fs_roots(fs_info);
3221 		if (ret)
3222 			goto fail_qgroup;
3223 
3224 		mutex_lock(&fs_info->cleaner_mutex);
3225 		ret = btrfs_recover_relocation(tree_root);
3226 		mutex_unlock(&fs_info->cleaner_mutex);
3227 		if (ret < 0) {
3228 			btrfs_warn(fs_info, "failed to recover relocation: %d",
3229 					ret);
3230 			err = -EINVAL;
3231 			goto fail_qgroup;
3232 		}
3233 	}
3234 
3235 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3236 	if (IS_ERR(fs_info->fs_root)) {
3237 		err = PTR_ERR(fs_info->fs_root);
3238 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3239 		fs_info->fs_root = NULL;
3240 		goto fail_qgroup;
3241 	}
3242 
3243 	if (sb_rdonly(sb))
3244 		return 0;
3245 
3246 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3247 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3248 		clear_free_space_tree = 1;
3249 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3250 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3251 		btrfs_warn(fs_info, "free space tree is invalid");
3252 		clear_free_space_tree = 1;
3253 	}
3254 
3255 	if (clear_free_space_tree) {
3256 		btrfs_info(fs_info, "clearing free space tree");
3257 		ret = btrfs_clear_free_space_tree(fs_info);
3258 		if (ret) {
3259 			btrfs_warn(fs_info,
3260 				   "failed to clear free space tree: %d", ret);
3261 			close_ctree(fs_info);
3262 			return ret;
3263 		}
3264 	}
3265 
3266 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3267 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3268 		btrfs_info(fs_info, "creating free space tree");
3269 		ret = btrfs_create_free_space_tree(fs_info);
3270 		if (ret) {
3271 			btrfs_warn(fs_info,
3272 				"failed to create free space tree: %d", ret);
3273 			close_ctree(fs_info);
3274 			return ret;
3275 		}
3276 	}
3277 
3278 	down_read(&fs_info->cleanup_work_sem);
3279 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3280 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3281 		up_read(&fs_info->cleanup_work_sem);
3282 		close_ctree(fs_info);
3283 		return ret;
3284 	}
3285 	up_read(&fs_info->cleanup_work_sem);
3286 
3287 	ret = btrfs_resume_balance_async(fs_info);
3288 	if (ret) {
3289 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3290 		close_ctree(fs_info);
3291 		return ret;
3292 	}
3293 
3294 	ret = btrfs_resume_dev_replace_async(fs_info);
3295 	if (ret) {
3296 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3297 		close_ctree(fs_info);
3298 		return ret;
3299 	}
3300 
3301 	btrfs_qgroup_rescan_resume(fs_info);
3302 	btrfs_discard_resume(fs_info);
3303 
3304 	if (!fs_info->uuid_root) {
3305 		btrfs_info(fs_info, "creating UUID tree");
3306 		ret = btrfs_create_uuid_tree(fs_info);
3307 		if (ret) {
3308 			btrfs_warn(fs_info,
3309 				"failed to create the UUID tree: %d", ret);
3310 			close_ctree(fs_info);
3311 			return ret;
3312 		}
3313 	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3314 		   fs_info->generation !=
3315 				btrfs_super_uuid_tree_generation(disk_super)) {
3316 		btrfs_info(fs_info, "checking UUID tree");
3317 		ret = btrfs_check_uuid_tree(fs_info);
3318 		if (ret) {
3319 			btrfs_warn(fs_info,
3320 				"failed to check the UUID tree: %d", ret);
3321 			close_ctree(fs_info);
3322 			return ret;
3323 		}
3324 	}
3325 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3326 
3327 	/*
3328 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3329 	 * no need to keep the flag
3330 	 */
3331 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3332 
3333 	return 0;
3334 
3335 fail_qgroup:
3336 	btrfs_free_qgroup_config(fs_info);
3337 fail_trans_kthread:
3338 	kthread_stop(fs_info->transaction_kthread);
3339 	btrfs_cleanup_transaction(fs_info);
3340 	btrfs_free_fs_roots(fs_info);
3341 fail_cleaner:
3342 	kthread_stop(fs_info->cleaner_kthread);
3343 
3344 	/*
3345 	 * make sure we're done with the btree inode before we stop our
3346 	 * kthreads
3347 	 */
3348 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3349 
3350 fail_sysfs:
3351 	btrfs_sysfs_remove_mounted(fs_info);
3352 
3353 fail_fsdev_sysfs:
3354 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3355 
3356 fail_block_groups:
3357 	btrfs_put_block_group_cache(fs_info);
3358 
3359 fail_tree_roots:
3360 	if (fs_info->data_reloc_root)
3361 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3362 	free_root_pointers(fs_info, true);
3363 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3364 
3365 fail_sb_buffer:
3366 	btrfs_stop_all_workers(fs_info);
3367 	btrfs_free_block_groups(fs_info);
3368 fail_alloc:
3369 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3370 
3371 	iput(fs_info->btree_inode);
3372 fail:
3373 	btrfs_close_devices(fs_info->fs_devices);
3374 	return err;
3375 }
3376 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3377 
3378 static void btrfs_end_super_write(struct bio *bio)
3379 {
3380 	struct btrfs_device *device = bio->bi_private;
3381 	struct bio_vec *bvec;
3382 	struct bvec_iter_all iter_all;
3383 	struct page *page;
3384 
3385 	bio_for_each_segment_all(bvec, bio, iter_all) {
3386 		page = bvec->bv_page;
3387 
3388 		if (bio->bi_status) {
3389 			btrfs_warn_rl_in_rcu(device->fs_info,
3390 				"lost page write due to IO error on %s (%d)",
3391 				rcu_str_deref(device->name),
3392 				blk_status_to_errno(bio->bi_status));
3393 			ClearPageUptodate(page);
3394 			SetPageError(page);
3395 			btrfs_dev_stat_inc_and_print(device,
3396 						     BTRFS_DEV_STAT_WRITE_ERRS);
3397 		} else {
3398 			SetPageUptodate(page);
3399 		}
3400 
3401 		put_page(page);
3402 		unlock_page(page);
3403 	}
3404 
3405 	bio_put(bio);
3406 }
3407 
3408 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3409 						   int copy_num)
3410 {
3411 	struct btrfs_super_block *super;
3412 	struct page *page;
3413 	u64 bytenr;
3414 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3415 
3416 	bytenr = btrfs_sb_offset(copy_num);
3417 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3418 		return ERR_PTR(-EINVAL);
3419 
3420 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3421 	if (IS_ERR(page))
3422 		return ERR_CAST(page);
3423 
3424 	super = page_address(page);
3425 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3426 		btrfs_release_disk_super(super);
3427 		return ERR_PTR(-ENODATA);
3428 	}
3429 
3430 	if (btrfs_super_bytenr(super) != bytenr) {
3431 		btrfs_release_disk_super(super);
3432 		return ERR_PTR(-EINVAL);
3433 	}
3434 
3435 	return super;
3436 }
3437 
3438 
3439 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3440 {
3441 	struct btrfs_super_block *super, *latest = NULL;
3442 	int i;
3443 	u64 transid = 0;
3444 
3445 	/* we would like to check all the supers, but that would make
3446 	 * a btrfs mount succeed after a mkfs from a different FS.
3447 	 * So, we need to add a special mount option to scan for
3448 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3449 	 */
3450 	for (i = 0; i < 1; i++) {
3451 		super = btrfs_read_dev_one_super(bdev, i);
3452 		if (IS_ERR(super))
3453 			continue;
3454 
3455 		if (!latest || btrfs_super_generation(super) > transid) {
3456 			if (latest)
3457 				btrfs_release_disk_super(super);
3458 
3459 			latest = super;
3460 			transid = btrfs_super_generation(super);
3461 		}
3462 	}
3463 
3464 	return super;
3465 }
3466 
3467 /*
3468  * Write superblock @sb to the @device. Do not wait for completion, all the
3469  * pages we use for writing are locked.
3470  *
3471  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3472  * the expected device size at commit time. Note that max_mirrors must be
3473  * same for write and wait phases.
3474  *
3475  * Return number of errors when page is not found or submission fails.
3476  */
3477 static int write_dev_supers(struct btrfs_device *device,
3478 			    struct btrfs_super_block *sb, int max_mirrors)
3479 {
3480 	struct btrfs_fs_info *fs_info = device->fs_info;
3481 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3482 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3483 	int i;
3484 	int errors = 0;
3485 	u64 bytenr;
3486 
3487 	if (max_mirrors == 0)
3488 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3489 
3490 	shash->tfm = fs_info->csum_shash;
3491 
3492 	for (i = 0; i < max_mirrors; i++) {
3493 		struct page *page;
3494 		struct bio *bio;
3495 		struct btrfs_super_block *disk_super;
3496 
3497 		bytenr = btrfs_sb_offset(i);
3498 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3499 		    device->commit_total_bytes)
3500 			break;
3501 
3502 		btrfs_set_super_bytenr(sb, bytenr);
3503 
3504 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3505 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3506 				    sb->csum);
3507 
3508 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3509 					   GFP_NOFS);
3510 		if (!page) {
3511 			btrfs_err(device->fs_info,
3512 			    "couldn't get super block page for bytenr %llu",
3513 			    bytenr);
3514 			errors++;
3515 			continue;
3516 		}
3517 
3518 		/* Bump the refcount for wait_dev_supers() */
3519 		get_page(page);
3520 
3521 		disk_super = page_address(page);
3522 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3523 
3524 		/*
3525 		 * Directly use bios here instead of relying on the page cache
3526 		 * to do I/O, so we don't lose the ability to do integrity
3527 		 * checking.
3528 		 */
3529 		bio = bio_alloc(GFP_NOFS, 1);
3530 		bio_set_dev(bio, device->bdev);
3531 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3532 		bio->bi_private = device;
3533 		bio->bi_end_io = btrfs_end_super_write;
3534 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3535 			       offset_in_page(bytenr));
3536 
3537 		/*
3538 		 * We FUA only the first super block.  The others we allow to
3539 		 * go down lazy and there's a short window where the on-disk
3540 		 * copies might still contain the older version.
3541 		 */
3542 		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3543 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3544 			bio->bi_opf |= REQ_FUA;
3545 
3546 		btrfsic_submit_bio(bio);
3547 	}
3548 	return errors < i ? 0 : -1;
3549 }
3550 
3551 /*
3552  * Wait for write completion of superblocks done by write_dev_supers,
3553  * @max_mirrors same for write and wait phases.
3554  *
3555  * Return number of errors when page is not found or not marked up to
3556  * date.
3557  */
3558 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3559 {
3560 	int i;
3561 	int errors = 0;
3562 	bool primary_failed = false;
3563 	u64 bytenr;
3564 
3565 	if (max_mirrors == 0)
3566 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3567 
3568 	for (i = 0; i < max_mirrors; i++) {
3569 		struct page *page;
3570 
3571 		bytenr = btrfs_sb_offset(i);
3572 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3573 		    device->commit_total_bytes)
3574 			break;
3575 
3576 		page = find_get_page(device->bdev->bd_inode->i_mapping,
3577 				     bytenr >> PAGE_SHIFT);
3578 		if (!page) {
3579 			errors++;
3580 			if (i == 0)
3581 				primary_failed = true;
3582 			continue;
3583 		}
3584 		/* Page is submitted locked and unlocked once the IO completes */
3585 		wait_on_page_locked(page);
3586 		if (PageError(page)) {
3587 			errors++;
3588 			if (i == 0)
3589 				primary_failed = true;
3590 		}
3591 
3592 		/* Drop our reference */
3593 		put_page(page);
3594 
3595 		/* Drop the reference from the writing run */
3596 		put_page(page);
3597 	}
3598 
3599 	/* log error, force error return */
3600 	if (primary_failed) {
3601 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3602 			  device->devid);
3603 		return -1;
3604 	}
3605 
3606 	return errors < i ? 0 : -1;
3607 }
3608 
3609 /*
3610  * endio for the write_dev_flush, this will wake anyone waiting
3611  * for the barrier when it is done
3612  */
3613 static void btrfs_end_empty_barrier(struct bio *bio)
3614 {
3615 	complete(bio->bi_private);
3616 }
3617 
3618 /*
3619  * Submit a flush request to the device if it supports it. Error handling is
3620  * done in the waiting counterpart.
3621  */
3622 static void write_dev_flush(struct btrfs_device *device)
3623 {
3624 	struct request_queue *q = bdev_get_queue(device->bdev);
3625 	struct bio *bio = device->flush_bio;
3626 
3627 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3628 		return;
3629 
3630 	bio_reset(bio);
3631 	bio->bi_end_io = btrfs_end_empty_barrier;
3632 	bio_set_dev(bio, device->bdev);
3633 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3634 	init_completion(&device->flush_wait);
3635 	bio->bi_private = &device->flush_wait;
3636 
3637 	btrfsic_submit_bio(bio);
3638 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3639 }
3640 
3641 /*
3642  * If the flush bio has been submitted by write_dev_flush, wait for it.
3643  */
3644 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3645 {
3646 	struct bio *bio = device->flush_bio;
3647 
3648 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3649 		return BLK_STS_OK;
3650 
3651 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3652 	wait_for_completion_io(&device->flush_wait);
3653 
3654 	return bio->bi_status;
3655 }
3656 
3657 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3658 {
3659 	if (!btrfs_check_rw_degradable(fs_info, NULL))
3660 		return -EIO;
3661 	return 0;
3662 }
3663 
3664 /*
3665  * send an empty flush down to each device in parallel,
3666  * then wait for them
3667  */
3668 static int barrier_all_devices(struct btrfs_fs_info *info)
3669 {
3670 	struct list_head *head;
3671 	struct btrfs_device *dev;
3672 	int errors_wait = 0;
3673 	blk_status_t ret;
3674 
3675 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3676 	/* send down all the barriers */
3677 	head = &info->fs_devices->devices;
3678 	list_for_each_entry(dev, head, dev_list) {
3679 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3680 			continue;
3681 		if (!dev->bdev)
3682 			continue;
3683 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3684 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3685 			continue;
3686 
3687 		write_dev_flush(dev);
3688 		dev->last_flush_error = BLK_STS_OK;
3689 	}
3690 
3691 	/* wait for all the barriers */
3692 	list_for_each_entry(dev, head, dev_list) {
3693 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3694 			continue;
3695 		if (!dev->bdev) {
3696 			errors_wait++;
3697 			continue;
3698 		}
3699 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3700 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3701 			continue;
3702 
3703 		ret = wait_dev_flush(dev);
3704 		if (ret) {
3705 			dev->last_flush_error = ret;
3706 			btrfs_dev_stat_inc_and_print(dev,
3707 					BTRFS_DEV_STAT_FLUSH_ERRS);
3708 			errors_wait++;
3709 		}
3710 	}
3711 
3712 	if (errors_wait) {
3713 		/*
3714 		 * At some point we need the status of all disks
3715 		 * to arrive at the volume status. So error checking
3716 		 * is being pushed to a separate loop.
3717 		 */
3718 		return check_barrier_error(info);
3719 	}
3720 	return 0;
3721 }
3722 
3723 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3724 {
3725 	int raid_type;
3726 	int min_tolerated = INT_MAX;
3727 
3728 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3729 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3730 		min_tolerated = min_t(int, min_tolerated,
3731 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3732 				    tolerated_failures);
3733 
3734 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3735 		if (raid_type == BTRFS_RAID_SINGLE)
3736 			continue;
3737 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3738 			continue;
3739 		min_tolerated = min_t(int, min_tolerated,
3740 				    btrfs_raid_array[raid_type].
3741 				    tolerated_failures);
3742 	}
3743 
3744 	if (min_tolerated == INT_MAX) {
3745 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3746 		min_tolerated = 0;
3747 	}
3748 
3749 	return min_tolerated;
3750 }
3751 
3752 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3753 {
3754 	struct list_head *head;
3755 	struct btrfs_device *dev;
3756 	struct btrfs_super_block *sb;
3757 	struct btrfs_dev_item *dev_item;
3758 	int ret;
3759 	int do_barriers;
3760 	int max_errors;
3761 	int total_errors = 0;
3762 	u64 flags;
3763 
3764 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3765 
3766 	/*
3767 	 * max_mirrors == 0 indicates we're from commit_transaction,
3768 	 * not from fsync where the tree roots in fs_info have not
3769 	 * been consistent on disk.
3770 	 */
3771 	if (max_mirrors == 0)
3772 		backup_super_roots(fs_info);
3773 
3774 	sb = fs_info->super_for_commit;
3775 	dev_item = &sb->dev_item;
3776 
3777 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3778 	head = &fs_info->fs_devices->devices;
3779 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3780 
3781 	if (do_barriers) {
3782 		ret = barrier_all_devices(fs_info);
3783 		if (ret) {
3784 			mutex_unlock(
3785 				&fs_info->fs_devices->device_list_mutex);
3786 			btrfs_handle_fs_error(fs_info, ret,
3787 					      "errors while submitting device barriers.");
3788 			return ret;
3789 		}
3790 	}
3791 
3792 	list_for_each_entry(dev, head, dev_list) {
3793 		if (!dev->bdev) {
3794 			total_errors++;
3795 			continue;
3796 		}
3797 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3798 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3799 			continue;
3800 
3801 		btrfs_set_stack_device_generation(dev_item, 0);
3802 		btrfs_set_stack_device_type(dev_item, dev->type);
3803 		btrfs_set_stack_device_id(dev_item, dev->devid);
3804 		btrfs_set_stack_device_total_bytes(dev_item,
3805 						   dev->commit_total_bytes);
3806 		btrfs_set_stack_device_bytes_used(dev_item,
3807 						  dev->commit_bytes_used);
3808 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3809 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3810 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3811 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3812 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3813 		       BTRFS_FSID_SIZE);
3814 
3815 		flags = btrfs_super_flags(sb);
3816 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3817 
3818 		ret = btrfs_validate_write_super(fs_info, sb);
3819 		if (ret < 0) {
3820 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3821 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
3822 				"unexpected superblock corruption detected");
3823 			return -EUCLEAN;
3824 		}
3825 
3826 		ret = write_dev_supers(dev, sb, max_mirrors);
3827 		if (ret)
3828 			total_errors++;
3829 	}
3830 	if (total_errors > max_errors) {
3831 		btrfs_err(fs_info, "%d errors while writing supers",
3832 			  total_errors);
3833 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3834 
3835 		/* FUA is masked off if unsupported and can't be the reason */
3836 		btrfs_handle_fs_error(fs_info, -EIO,
3837 				      "%d errors while writing supers",
3838 				      total_errors);
3839 		return -EIO;
3840 	}
3841 
3842 	total_errors = 0;
3843 	list_for_each_entry(dev, head, dev_list) {
3844 		if (!dev->bdev)
3845 			continue;
3846 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3847 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3848 			continue;
3849 
3850 		ret = wait_dev_supers(dev, max_mirrors);
3851 		if (ret)
3852 			total_errors++;
3853 	}
3854 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3855 	if (total_errors > max_errors) {
3856 		btrfs_handle_fs_error(fs_info, -EIO,
3857 				      "%d errors while writing supers",
3858 				      total_errors);
3859 		return -EIO;
3860 	}
3861 	return 0;
3862 }
3863 
3864 /* Drop a fs root from the radix tree and free it. */
3865 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3866 				  struct btrfs_root *root)
3867 {
3868 	bool drop_ref = false;
3869 
3870 	spin_lock(&fs_info->fs_roots_radix_lock);
3871 	radix_tree_delete(&fs_info->fs_roots_radix,
3872 			  (unsigned long)root->root_key.objectid);
3873 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3874 		drop_ref = true;
3875 	spin_unlock(&fs_info->fs_roots_radix_lock);
3876 
3877 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3878 		ASSERT(root->log_root == NULL);
3879 		if (root->reloc_root) {
3880 			btrfs_put_root(root->reloc_root);
3881 			root->reloc_root = NULL;
3882 		}
3883 	}
3884 
3885 	if (root->free_ino_pinned)
3886 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3887 	if (root->free_ino_ctl)
3888 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3889 	if (root->ino_cache_inode) {
3890 		iput(root->ino_cache_inode);
3891 		root->ino_cache_inode = NULL;
3892 	}
3893 	if (drop_ref)
3894 		btrfs_put_root(root);
3895 }
3896 
3897 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3898 {
3899 	u64 root_objectid = 0;
3900 	struct btrfs_root *gang[8];
3901 	int i = 0;
3902 	int err = 0;
3903 	unsigned int ret = 0;
3904 
3905 	while (1) {
3906 		spin_lock(&fs_info->fs_roots_radix_lock);
3907 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3908 					     (void **)gang, root_objectid,
3909 					     ARRAY_SIZE(gang));
3910 		if (!ret) {
3911 			spin_unlock(&fs_info->fs_roots_radix_lock);
3912 			break;
3913 		}
3914 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3915 
3916 		for (i = 0; i < ret; i++) {
3917 			/* Avoid to grab roots in dead_roots */
3918 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3919 				gang[i] = NULL;
3920 				continue;
3921 			}
3922 			/* grab all the search result for later use */
3923 			gang[i] = btrfs_grab_root(gang[i]);
3924 		}
3925 		spin_unlock(&fs_info->fs_roots_radix_lock);
3926 
3927 		for (i = 0; i < ret; i++) {
3928 			if (!gang[i])
3929 				continue;
3930 			root_objectid = gang[i]->root_key.objectid;
3931 			err = btrfs_orphan_cleanup(gang[i]);
3932 			if (err)
3933 				break;
3934 			btrfs_put_root(gang[i]);
3935 		}
3936 		root_objectid++;
3937 	}
3938 
3939 	/* release the uncleaned roots due to error */
3940 	for (; i < ret; i++) {
3941 		if (gang[i])
3942 			btrfs_put_root(gang[i]);
3943 	}
3944 	return err;
3945 }
3946 
3947 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3948 {
3949 	struct btrfs_root *root = fs_info->tree_root;
3950 	struct btrfs_trans_handle *trans;
3951 
3952 	mutex_lock(&fs_info->cleaner_mutex);
3953 	btrfs_run_delayed_iputs(fs_info);
3954 	mutex_unlock(&fs_info->cleaner_mutex);
3955 	wake_up_process(fs_info->cleaner_kthread);
3956 
3957 	/* wait until ongoing cleanup work done */
3958 	down_write(&fs_info->cleanup_work_sem);
3959 	up_write(&fs_info->cleanup_work_sem);
3960 
3961 	trans = btrfs_join_transaction(root);
3962 	if (IS_ERR(trans))
3963 		return PTR_ERR(trans);
3964 	return btrfs_commit_transaction(trans);
3965 }
3966 
3967 void __cold close_ctree(struct btrfs_fs_info *fs_info)
3968 {
3969 	int ret;
3970 
3971 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3972 	/*
3973 	 * We don't want the cleaner to start new transactions, add more delayed
3974 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3975 	 * because that frees the task_struct, and the transaction kthread might
3976 	 * still try to wake up the cleaner.
3977 	 */
3978 	kthread_park(fs_info->cleaner_kthread);
3979 
3980 	/* wait for the qgroup rescan worker to stop */
3981 	btrfs_qgroup_wait_for_completion(fs_info, false);
3982 
3983 	/* wait for the uuid_scan task to finish */
3984 	down(&fs_info->uuid_tree_rescan_sem);
3985 	/* avoid complains from lockdep et al., set sem back to initial state */
3986 	up(&fs_info->uuid_tree_rescan_sem);
3987 
3988 	/* pause restriper - we want to resume on mount */
3989 	btrfs_pause_balance(fs_info);
3990 
3991 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3992 
3993 	btrfs_scrub_cancel(fs_info);
3994 
3995 	/* wait for any defraggers to finish */
3996 	wait_event(fs_info->transaction_wait,
3997 		   (atomic_read(&fs_info->defrag_running) == 0));
3998 
3999 	/* clear out the rbtree of defraggable inodes */
4000 	btrfs_cleanup_defrag_inodes(fs_info);
4001 
4002 	cancel_work_sync(&fs_info->async_reclaim_work);
4003 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4004 
4005 	/* Cancel or finish ongoing discard work */
4006 	btrfs_discard_cleanup(fs_info);
4007 
4008 	if (!sb_rdonly(fs_info->sb)) {
4009 		/*
4010 		 * The cleaner kthread is stopped, so do one final pass over
4011 		 * unused block groups.
4012 		 */
4013 		btrfs_delete_unused_bgs(fs_info);
4014 
4015 		/*
4016 		 * There might be existing delayed inode workers still running
4017 		 * and holding an empty delayed inode item. We must wait for
4018 		 * them to complete first because they can create a transaction.
4019 		 * This happens when someone calls btrfs_balance_delayed_items()
4020 		 * and then a transaction commit runs the same delayed nodes
4021 		 * before any delayed worker has done something with the nodes.
4022 		 * We must wait for any worker here and not at transaction
4023 		 * commit time since that could cause a deadlock.
4024 		 * This is a very rare case.
4025 		 */
4026 		btrfs_flush_workqueue(fs_info->delayed_workers);
4027 
4028 		ret = btrfs_commit_super(fs_info);
4029 		if (ret)
4030 			btrfs_err(fs_info, "commit super ret %d", ret);
4031 	}
4032 
4033 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4034 	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4035 		btrfs_error_commit_super(fs_info);
4036 
4037 	kthread_stop(fs_info->transaction_kthread);
4038 	kthread_stop(fs_info->cleaner_kthread);
4039 
4040 	ASSERT(list_empty(&fs_info->delayed_iputs));
4041 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4042 
4043 	if (btrfs_check_quota_leak(fs_info)) {
4044 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4045 		btrfs_err(fs_info, "qgroup reserved space leaked");
4046 	}
4047 
4048 	btrfs_free_qgroup_config(fs_info);
4049 	ASSERT(list_empty(&fs_info->delalloc_roots));
4050 
4051 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4052 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4053 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4054 	}
4055 
4056 	if (percpu_counter_sum(&fs_info->dio_bytes))
4057 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4058 			   percpu_counter_sum(&fs_info->dio_bytes));
4059 
4060 	btrfs_sysfs_remove_mounted(fs_info);
4061 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4062 
4063 	btrfs_put_block_group_cache(fs_info);
4064 
4065 	/*
4066 	 * we must make sure there is not any read request to
4067 	 * submit after we stopping all workers.
4068 	 */
4069 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4070 	btrfs_stop_all_workers(fs_info);
4071 
4072 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4073 	free_root_pointers(fs_info, true);
4074 	btrfs_free_fs_roots(fs_info);
4075 
4076 	/*
4077 	 * We must free the block groups after dropping the fs_roots as we could
4078 	 * have had an IO error and have left over tree log blocks that aren't
4079 	 * cleaned up until the fs roots are freed.  This makes the block group
4080 	 * accounting appear to be wrong because there's pending reserved bytes,
4081 	 * so make sure we do the block group cleanup afterwards.
4082 	 */
4083 	btrfs_free_block_groups(fs_info);
4084 
4085 	iput(fs_info->btree_inode);
4086 
4087 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4088 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4089 		btrfsic_unmount(fs_info->fs_devices);
4090 #endif
4091 
4092 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4093 	btrfs_close_devices(fs_info->fs_devices);
4094 }
4095 
4096 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4097 			  int atomic)
4098 {
4099 	int ret;
4100 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4101 
4102 	ret = extent_buffer_uptodate(buf);
4103 	if (!ret)
4104 		return ret;
4105 
4106 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4107 				    parent_transid, atomic);
4108 	if (ret == -EAGAIN)
4109 		return ret;
4110 	return !ret;
4111 }
4112 
4113 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4114 {
4115 	struct btrfs_fs_info *fs_info;
4116 	struct btrfs_root *root;
4117 	u64 transid = btrfs_header_generation(buf);
4118 	int was_dirty;
4119 
4120 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4121 	/*
4122 	 * This is a fast path so only do this check if we have sanity tests
4123 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4124 	 * outside of the sanity tests.
4125 	 */
4126 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4127 		return;
4128 #endif
4129 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4130 	fs_info = root->fs_info;
4131 	btrfs_assert_tree_locked(buf);
4132 	if (transid != fs_info->generation)
4133 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4134 			buf->start, transid, fs_info->generation);
4135 	was_dirty = set_extent_buffer_dirty(buf);
4136 	if (!was_dirty)
4137 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4138 					 buf->len,
4139 					 fs_info->dirty_metadata_batch);
4140 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4141 	/*
4142 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4143 	 * but item data not updated.
4144 	 * So here we should only check item pointers, not item data.
4145 	 */
4146 	if (btrfs_header_level(buf) == 0 &&
4147 	    btrfs_check_leaf_relaxed(buf)) {
4148 		btrfs_print_leaf(buf);
4149 		ASSERT(0);
4150 	}
4151 #endif
4152 }
4153 
4154 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4155 					int flush_delayed)
4156 {
4157 	/*
4158 	 * looks as though older kernels can get into trouble with
4159 	 * this code, they end up stuck in balance_dirty_pages forever
4160 	 */
4161 	int ret;
4162 
4163 	if (current->flags & PF_MEMALLOC)
4164 		return;
4165 
4166 	if (flush_delayed)
4167 		btrfs_balance_delayed_items(fs_info);
4168 
4169 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4170 				     BTRFS_DIRTY_METADATA_THRESH,
4171 				     fs_info->dirty_metadata_batch);
4172 	if (ret > 0) {
4173 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4174 	}
4175 }
4176 
4177 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4178 {
4179 	__btrfs_btree_balance_dirty(fs_info, 1);
4180 }
4181 
4182 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4183 {
4184 	__btrfs_btree_balance_dirty(fs_info, 0);
4185 }
4186 
4187 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4188 		      struct btrfs_key *first_key)
4189 {
4190 	return btree_read_extent_buffer_pages(buf, parent_transid,
4191 					      level, first_key);
4192 }
4193 
4194 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4195 {
4196 	/* cleanup FS via transaction */
4197 	btrfs_cleanup_transaction(fs_info);
4198 
4199 	mutex_lock(&fs_info->cleaner_mutex);
4200 	btrfs_run_delayed_iputs(fs_info);
4201 	mutex_unlock(&fs_info->cleaner_mutex);
4202 
4203 	down_write(&fs_info->cleanup_work_sem);
4204 	up_write(&fs_info->cleanup_work_sem);
4205 }
4206 
4207 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4208 {
4209 	struct btrfs_root *gang[8];
4210 	u64 root_objectid = 0;
4211 	int ret;
4212 
4213 	spin_lock(&fs_info->fs_roots_radix_lock);
4214 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4215 					     (void **)gang, root_objectid,
4216 					     ARRAY_SIZE(gang))) != 0) {
4217 		int i;
4218 
4219 		for (i = 0; i < ret; i++)
4220 			gang[i] = btrfs_grab_root(gang[i]);
4221 		spin_unlock(&fs_info->fs_roots_radix_lock);
4222 
4223 		for (i = 0; i < ret; i++) {
4224 			if (!gang[i])
4225 				continue;
4226 			root_objectid = gang[i]->root_key.objectid;
4227 			btrfs_free_log(NULL, gang[i]);
4228 			btrfs_put_root(gang[i]);
4229 		}
4230 		root_objectid++;
4231 		spin_lock(&fs_info->fs_roots_radix_lock);
4232 	}
4233 	spin_unlock(&fs_info->fs_roots_radix_lock);
4234 	btrfs_free_log_root_tree(NULL, fs_info);
4235 }
4236 
4237 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4238 {
4239 	struct btrfs_ordered_extent *ordered;
4240 
4241 	spin_lock(&root->ordered_extent_lock);
4242 	/*
4243 	 * This will just short circuit the ordered completion stuff which will
4244 	 * make sure the ordered extent gets properly cleaned up.
4245 	 */
4246 	list_for_each_entry(ordered, &root->ordered_extents,
4247 			    root_extent_list)
4248 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4249 	spin_unlock(&root->ordered_extent_lock);
4250 }
4251 
4252 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4253 {
4254 	struct btrfs_root *root;
4255 	struct list_head splice;
4256 
4257 	INIT_LIST_HEAD(&splice);
4258 
4259 	spin_lock(&fs_info->ordered_root_lock);
4260 	list_splice_init(&fs_info->ordered_roots, &splice);
4261 	while (!list_empty(&splice)) {
4262 		root = list_first_entry(&splice, struct btrfs_root,
4263 					ordered_root);
4264 		list_move_tail(&root->ordered_root,
4265 			       &fs_info->ordered_roots);
4266 
4267 		spin_unlock(&fs_info->ordered_root_lock);
4268 		btrfs_destroy_ordered_extents(root);
4269 
4270 		cond_resched();
4271 		spin_lock(&fs_info->ordered_root_lock);
4272 	}
4273 	spin_unlock(&fs_info->ordered_root_lock);
4274 
4275 	/*
4276 	 * We need this here because if we've been flipped read-only we won't
4277 	 * get sync() from the umount, so we need to make sure any ordered
4278 	 * extents that haven't had their dirty pages IO start writeout yet
4279 	 * actually get run and error out properly.
4280 	 */
4281 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4282 }
4283 
4284 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4285 				      struct btrfs_fs_info *fs_info)
4286 {
4287 	struct rb_node *node;
4288 	struct btrfs_delayed_ref_root *delayed_refs;
4289 	struct btrfs_delayed_ref_node *ref;
4290 	int ret = 0;
4291 
4292 	delayed_refs = &trans->delayed_refs;
4293 
4294 	spin_lock(&delayed_refs->lock);
4295 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4296 		spin_unlock(&delayed_refs->lock);
4297 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4298 		return ret;
4299 	}
4300 
4301 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4302 		struct btrfs_delayed_ref_head *head;
4303 		struct rb_node *n;
4304 		bool pin_bytes = false;
4305 
4306 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4307 				href_node);
4308 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4309 			continue;
4310 
4311 		spin_lock(&head->lock);
4312 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4313 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4314 				       ref_node);
4315 			ref->in_tree = 0;
4316 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4317 			RB_CLEAR_NODE(&ref->ref_node);
4318 			if (!list_empty(&ref->add_list))
4319 				list_del(&ref->add_list);
4320 			atomic_dec(&delayed_refs->num_entries);
4321 			btrfs_put_delayed_ref(ref);
4322 		}
4323 		if (head->must_insert_reserved)
4324 			pin_bytes = true;
4325 		btrfs_free_delayed_extent_op(head->extent_op);
4326 		btrfs_delete_ref_head(delayed_refs, head);
4327 		spin_unlock(&head->lock);
4328 		spin_unlock(&delayed_refs->lock);
4329 		mutex_unlock(&head->mutex);
4330 
4331 		if (pin_bytes) {
4332 			struct btrfs_block_group *cache;
4333 
4334 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4335 			BUG_ON(!cache);
4336 
4337 			spin_lock(&cache->space_info->lock);
4338 			spin_lock(&cache->lock);
4339 			cache->pinned += head->num_bytes;
4340 			btrfs_space_info_update_bytes_pinned(fs_info,
4341 				cache->space_info, head->num_bytes);
4342 			cache->reserved -= head->num_bytes;
4343 			cache->space_info->bytes_reserved -= head->num_bytes;
4344 			spin_unlock(&cache->lock);
4345 			spin_unlock(&cache->space_info->lock);
4346 			percpu_counter_add_batch(
4347 				&cache->space_info->total_bytes_pinned,
4348 				head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4349 
4350 			btrfs_put_block_group(cache);
4351 
4352 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4353 				head->bytenr + head->num_bytes - 1);
4354 		}
4355 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4356 		btrfs_put_delayed_ref_head(head);
4357 		cond_resched();
4358 		spin_lock(&delayed_refs->lock);
4359 	}
4360 	btrfs_qgroup_destroy_extent_records(trans);
4361 
4362 	spin_unlock(&delayed_refs->lock);
4363 
4364 	return ret;
4365 }
4366 
4367 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4368 {
4369 	struct btrfs_inode *btrfs_inode;
4370 	struct list_head splice;
4371 
4372 	INIT_LIST_HEAD(&splice);
4373 
4374 	spin_lock(&root->delalloc_lock);
4375 	list_splice_init(&root->delalloc_inodes, &splice);
4376 
4377 	while (!list_empty(&splice)) {
4378 		struct inode *inode = NULL;
4379 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4380 					       delalloc_inodes);
4381 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4382 		spin_unlock(&root->delalloc_lock);
4383 
4384 		/*
4385 		 * Make sure we get a live inode and that it'll not disappear
4386 		 * meanwhile.
4387 		 */
4388 		inode = igrab(&btrfs_inode->vfs_inode);
4389 		if (inode) {
4390 			invalidate_inode_pages2(inode->i_mapping);
4391 			iput(inode);
4392 		}
4393 		spin_lock(&root->delalloc_lock);
4394 	}
4395 	spin_unlock(&root->delalloc_lock);
4396 }
4397 
4398 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4399 {
4400 	struct btrfs_root *root;
4401 	struct list_head splice;
4402 
4403 	INIT_LIST_HEAD(&splice);
4404 
4405 	spin_lock(&fs_info->delalloc_root_lock);
4406 	list_splice_init(&fs_info->delalloc_roots, &splice);
4407 	while (!list_empty(&splice)) {
4408 		root = list_first_entry(&splice, struct btrfs_root,
4409 					 delalloc_root);
4410 		root = btrfs_grab_root(root);
4411 		BUG_ON(!root);
4412 		spin_unlock(&fs_info->delalloc_root_lock);
4413 
4414 		btrfs_destroy_delalloc_inodes(root);
4415 		btrfs_put_root(root);
4416 
4417 		spin_lock(&fs_info->delalloc_root_lock);
4418 	}
4419 	spin_unlock(&fs_info->delalloc_root_lock);
4420 }
4421 
4422 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4423 					struct extent_io_tree *dirty_pages,
4424 					int mark)
4425 {
4426 	int ret;
4427 	struct extent_buffer *eb;
4428 	u64 start = 0;
4429 	u64 end;
4430 
4431 	while (1) {
4432 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4433 					    mark, NULL);
4434 		if (ret)
4435 			break;
4436 
4437 		clear_extent_bits(dirty_pages, start, end, mark);
4438 		while (start <= end) {
4439 			eb = find_extent_buffer(fs_info, start);
4440 			start += fs_info->nodesize;
4441 			if (!eb)
4442 				continue;
4443 			wait_on_extent_buffer_writeback(eb);
4444 
4445 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4446 					       &eb->bflags))
4447 				clear_extent_buffer_dirty(eb);
4448 			free_extent_buffer_stale(eb);
4449 		}
4450 	}
4451 
4452 	return ret;
4453 }
4454 
4455 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4456 				       struct extent_io_tree *unpin)
4457 {
4458 	u64 start;
4459 	u64 end;
4460 	int ret;
4461 
4462 	while (1) {
4463 		struct extent_state *cached_state = NULL;
4464 
4465 		/*
4466 		 * The btrfs_finish_extent_commit() may get the same range as
4467 		 * ours between find_first_extent_bit and clear_extent_dirty.
4468 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4469 		 * the same extent range.
4470 		 */
4471 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4472 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4473 					    EXTENT_DIRTY, &cached_state);
4474 		if (ret) {
4475 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4476 			break;
4477 		}
4478 
4479 		clear_extent_dirty(unpin, start, end, &cached_state);
4480 		free_extent_state(cached_state);
4481 		btrfs_error_unpin_extent_range(fs_info, start, end);
4482 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4483 		cond_resched();
4484 	}
4485 
4486 	return 0;
4487 }
4488 
4489 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4490 {
4491 	struct inode *inode;
4492 
4493 	inode = cache->io_ctl.inode;
4494 	if (inode) {
4495 		invalidate_inode_pages2(inode->i_mapping);
4496 		BTRFS_I(inode)->generation = 0;
4497 		cache->io_ctl.inode = NULL;
4498 		iput(inode);
4499 	}
4500 	ASSERT(cache->io_ctl.pages == NULL);
4501 	btrfs_put_block_group(cache);
4502 }
4503 
4504 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4505 			     struct btrfs_fs_info *fs_info)
4506 {
4507 	struct btrfs_block_group *cache;
4508 
4509 	spin_lock(&cur_trans->dirty_bgs_lock);
4510 	while (!list_empty(&cur_trans->dirty_bgs)) {
4511 		cache = list_first_entry(&cur_trans->dirty_bgs,
4512 					 struct btrfs_block_group,
4513 					 dirty_list);
4514 
4515 		if (!list_empty(&cache->io_list)) {
4516 			spin_unlock(&cur_trans->dirty_bgs_lock);
4517 			list_del_init(&cache->io_list);
4518 			btrfs_cleanup_bg_io(cache);
4519 			spin_lock(&cur_trans->dirty_bgs_lock);
4520 		}
4521 
4522 		list_del_init(&cache->dirty_list);
4523 		spin_lock(&cache->lock);
4524 		cache->disk_cache_state = BTRFS_DC_ERROR;
4525 		spin_unlock(&cache->lock);
4526 
4527 		spin_unlock(&cur_trans->dirty_bgs_lock);
4528 		btrfs_put_block_group(cache);
4529 		btrfs_delayed_refs_rsv_release(fs_info, 1);
4530 		spin_lock(&cur_trans->dirty_bgs_lock);
4531 	}
4532 	spin_unlock(&cur_trans->dirty_bgs_lock);
4533 
4534 	/*
4535 	 * Refer to the definition of io_bgs member for details why it's safe
4536 	 * to use it without any locking
4537 	 */
4538 	while (!list_empty(&cur_trans->io_bgs)) {
4539 		cache = list_first_entry(&cur_trans->io_bgs,
4540 					 struct btrfs_block_group,
4541 					 io_list);
4542 
4543 		list_del_init(&cache->io_list);
4544 		spin_lock(&cache->lock);
4545 		cache->disk_cache_state = BTRFS_DC_ERROR;
4546 		spin_unlock(&cache->lock);
4547 		btrfs_cleanup_bg_io(cache);
4548 	}
4549 }
4550 
4551 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4552 				   struct btrfs_fs_info *fs_info)
4553 {
4554 	struct btrfs_device *dev, *tmp;
4555 
4556 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4557 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4558 	ASSERT(list_empty(&cur_trans->io_bgs));
4559 
4560 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4561 				 post_commit_list) {
4562 		list_del_init(&dev->post_commit_list);
4563 	}
4564 
4565 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4566 
4567 	cur_trans->state = TRANS_STATE_COMMIT_START;
4568 	wake_up(&fs_info->transaction_blocked_wait);
4569 
4570 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4571 	wake_up(&fs_info->transaction_wait);
4572 
4573 	btrfs_destroy_delayed_inodes(fs_info);
4574 
4575 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4576 				     EXTENT_DIRTY);
4577 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4578 
4579 	cur_trans->state =TRANS_STATE_COMPLETED;
4580 	wake_up(&cur_trans->commit_wait);
4581 }
4582 
4583 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4584 {
4585 	struct btrfs_transaction *t;
4586 
4587 	mutex_lock(&fs_info->transaction_kthread_mutex);
4588 
4589 	spin_lock(&fs_info->trans_lock);
4590 	while (!list_empty(&fs_info->trans_list)) {
4591 		t = list_first_entry(&fs_info->trans_list,
4592 				     struct btrfs_transaction, list);
4593 		if (t->state >= TRANS_STATE_COMMIT_START) {
4594 			refcount_inc(&t->use_count);
4595 			spin_unlock(&fs_info->trans_lock);
4596 			btrfs_wait_for_commit(fs_info, t->transid);
4597 			btrfs_put_transaction(t);
4598 			spin_lock(&fs_info->trans_lock);
4599 			continue;
4600 		}
4601 		if (t == fs_info->running_transaction) {
4602 			t->state = TRANS_STATE_COMMIT_DOING;
4603 			spin_unlock(&fs_info->trans_lock);
4604 			/*
4605 			 * We wait for 0 num_writers since we don't hold a trans
4606 			 * handle open currently for this transaction.
4607 			 */
4608 			wait_event(t->writer_wait,
4609 				   atomic_read(&t->num_writers) == 0);
4610 		} else {
4611 			spin_unlock(&fs_info->trans_lock);
4612 		}
4613 		btrfs_cleanup_one_transaction(t, fs_info);
4614 
4615 		spin_lock(&fs_info->trans_lock);
4616 		if (t == fs_info->running_transaction)
4617 			fs_info->running_transaction = NULL;
4618 		list_del_init(&t->list);
4619 		spin_unlock(&fs_info->trans_lock);
4620 
4621 		btrfs_put_transaction(t);
4622 		trace_btrfs_transaction_commit(fs_info->tree_root);
4623 		spin_lock(&fs_info->trans_lock);
4624 	}
4625 	spin_unlock(&fs_info->trans_lock);
4626 	btrfs_destroy_all_ordered_extents(fs_info);
4627 	btrfs_destroy_delayed_inodes(fs_info);
4628 	btrfs_assert_delayed_root_empty(fs_info);
4629 	btrfs_destroy_all_delalloc_inodes(fs_info);
4630 	btrfs_drop_all_logs(fs_info);
4631 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4632 
4633 	return 0;
4634 }
4635