1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include "compat.h" 30 #include "crc32c.h" 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "volumes.h" 36 #include "print-tree.h" 37 #include "async-thread.h" 38 #include "locking.h" 39 #include "ref-cache.h" 40 #include "tree-log.h" 41 #include "free-space-cache.h" 42 43 static struct extent_io_ops btree_extent_io_ops; 44 static void end_workqueue_fn(struct btrfs_work *work); 45 46 /* 47 * end_io_wq structs are used to do processing in task context when an IO is 48 * complete. This is used during reads to verify checksums, and it is used 49 * by writes to insert metadata for new file extents after IO is complete. 50 */ 51 struct end_io_wq { 52 struct bio *bio; 53 bio_end_io_t *end_io; 54 void *private; 55 struct btrfs_fs_info *info; 56 int error; 57 int metadata; 58 struct list_head list; 59 struct btrfs_work work; 60 }; 61 62 /* 63 * async submit bios are used to offload expensive checksumming 64 * onto the worker threads. They checksum file and metadata bios 65 * just before they are sent down the IO stack. 66 */ 67 struct async_submit_bio { 68 struct inode *inode; 69 struct bio *bio; 70 struct list_head list; 71 extent_submit_bio_hook_t *submit_bio_start; 72 extent_submit_bio_hook_t *submit_bio_done; 73 int rw; 74 int mirror_num; 75 unsigned long bio_flags; 76 struct btrfs_work work; 77 }; 78 79 /* These are used to set the lockdep class on the extent buffer locks. 80 * The class is set by the readpage_end_io_hook after the buffer has 81 * passed csum validation but before the pages are unlocked. 82 * 83 * The lockdep class is also set by btrfs_init_new_buffer on freshly 84 * allocated blocks. 85 * 86 * The class is based on the level in the tree block, which allows lockdep 87 * to know that lower nodes nest inside the locks of higher nodes. 88 * 89 * We also add a check to make sure the highest level of the tree is 90 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this 91 * code needs update as well. 92 */ 93 #ifdef CONFIG_DEBUG_LOCK_ALLOC 94 # if BTRFS_MAX_LEVEL != 8 95 # error 96 # endif 97 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1]; 98 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = { 99 /* leaf */ 100 "btrfs-extent-00", 101 "btrfs-extent-01", 102 "btrfs-extent-02", 103 "btrfs-extent-03", 104 "btrfs-extent-04", 105 "btrfs-extent-05", 106 "btrfs-extent-06", 107 "btrfs-extent-07", 108 /* highest possible level */ 109 "btrfs-extent-08", 110 }; 111 #endif 112 113 /* 114 * extents on the btree inode are pretty simple, there's one extent 115 * that covers the entire device 116 */ 117 static struct extent_map *btree_get_extent(struct inode *inode, 118 struct page *page, size_t page_offset, u64 start, u64 len, 119 int create) 120 { 121 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 122 struct extent_map *em; 123 int ret; 124 125 spin_lock(&em_tree->lock); 126 em = lookup_extent_mapping(em_tree, start, len); 127 if (em) { 128 em->bdev = 129 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 130 spin_unlock(&em_tree->lock); 131 goto out; 132 } 133 spin_unlock(&em_tree->lock); 134 135 em = alloc_extent_map(GFP_NOFS); 136 if (!em) { 137 em = ERR_PTR(-ENOMEM); 138 goto out; 139 } 140 em->start = 0; 141 em->len = (u64)-1; 142 em->block_len = (u64)-1; 143 em->block_start = 0; 144 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 145 146 spin_lock(&em_tree->lock); 147 ret = add_extent_mapping(em_tree, em); 148 if (ret == -EEXIST) { 149 u64 failed_start = em->start; 150 u64 failed_len = em->len; 151 152 free_extent_map(em); 153 em = lookup_extent_mapping(em_tree, start, len); 154 if (em) { 155 ret = 0; 156 } else { 157 em = lookup_extent_mapping(em_tree, failed_start, 158 failed_len); 159 ret = -EIO; 160 } 161 } else if (ret) { 162 free_extent_map(em); 163 em = NULL; 164 } 165 spin_unlock(&em_tree->lock); 166 167 if (ret) 168 em = ERR_PTR(ret); 169 out: 170 return em; 171 } 172 173 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 174 { 175 return btrfs_crc32c(seed, data, len); 176 } 177 178 void btrfs_csum_final(u32 crc, char *result) 179 { 180 *(__le32 *)result = ~cpu_to_le32(crc); 181 } 182 183 /* 184 * compute the csum for a btree block, and either verify it or write it 185 * into the csum field of the block. 186 */ 187 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 188 int verify) 189 { 190 u16 csum_size = 191 btrfs_super_csum_size(&root->fs_info->super_copy); 192 char *result = NULL; 193 unsigned long len; 194 unsigned long cur_len; 195 unsigned long offset = BTRFS_CSUM_SIZE; 196 char *map_token = NULL; 197 char *kaddr; 198 unsigned long map_start; 199 unsigned long map_len; 200 int err; 201 u32 crc = ~(u32)0; 202 unsigned long inline_result; 203 204 len = buf->len - offset; 205 while (len > 0) { 206 err = map_private_extent_buffer(buf, offset, 32, 207 &map_token, &kaddr, 208 &map_start, &map_len, KM_USER0); 209 if (err) 210 return 1; 211 cur_len = min(len, map_len - (offset - map_start)); 212 crc = btrfs_csum_data(root, kaddr + offset - map_start, 213 crc, cur_len); 214 len -= cur_len; 215 offset += cur_len; 216 unmap_extent_buffer(buf, map_token, KM_USER0); 217 } 218 if (csum_size > sizeof(inline_result)) { 219 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 220 if (!result) 221 return 1; 222 } else { 223 result = (char *)&inline_result; 224 } 225 226 btrfs_csum_final(crc, result); 227 228 if (verify) { 229 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 230 u32 val; 231 u32 found = 0; 232 memcpy(&found, result, csum_size); 233 234 read_extent_buffer(buf, &val, 0, csum_size); 235 if (printk_ratelimit()) { 236 printk(KERN_INFO "btrfs: %s checksum verify " 237 "failed on %llu wanted %X found %X " 238 "level %d\n", 239 root->fs_info->sb->s_id, 240 (unsigned long long)buf->start, val, found, 241 btrfs_header_level(buf)); 242 } 243 if (result != (char *)&inline_result) 244 kfree(result); 245 return 1; 246 } 247 } else { 248 write_extent_buffer(buf, result, 0, csum_size); 249 } 250 if (result != (char *)&inline_result) 251 kfree(result); 252 return 0; 253 } 254 255 /* 256 * we can't consider a given block up to date unless the transid of the 257 * block matches the transid in the parent node's pointer. This is how we 258 * detect blocks that either didn't get written at all or got written 259 * in the wrong place. 260 */ 261 static int verify_parent_transid(struct extent_io_tree *io_tree, 262 struct extent_buffer *eb, u64 parent_transid) 263 { 264 int ret; 265 266 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 267 return 0; 268 269 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS); 270 if (extent_buffer_uptodate(io_tree, eb) && 271 btrfs_header_generation(eb) == parent_transid) { 272 ret = 0; 273 goto out; 274 } 275 if (printk_ratelimit()) { 276 printk("parent transid verify failed on %llu wanted %llu " 277 "found %llu\n", 278 (unsigned long long)eb->start, 279 (unsigned long long)parent_transid, 280 (unsigned long long)btrfs_header_generation(eb)); 281 } 282 ret = 1; 283 clear_extent_buffer_uptodate(io_tree, eb); 284 out: 285 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 286 GFP_NOFS); 287 return ret; 288 } 289 290 /* 291 * helper to read a given tree block, doing retries as required when 292 * the checksums don't match and we have alternate mirrors to try. 293 */ 294 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 295 struct extent_buffer *eb, 296 u64 start, u64 parent_transid) 297 { 298 struct extent_io_tree *io_tree; 299 int ret; 300 int num_copies = 0; 301 int mirror_num = 0; 302 303 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 304 while (1) { 305 ret = read_extent_buffer_pages(io_tree, eb, start, 1, 306 btree_get_extent, mirror_num); 307 if (!ret && 308 !verify_parent_transid(io_tree, eb, parent_transid)) 309 return ret; 310 311 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 312 eb->start, eb->len); 313 if (num_copies == 1) 314 return ret; 315 316 mirror_num++; 317 if (mirror_num > num_copies) 318 return ret; 319 } 320 return -EIO; 321 } 322 323 /* 324 * checksum a dirty tree block before IO. This has extra checks to make sure 325 * we only fill in the checksum field in the first page of a multi-page block 326 */ 327 328 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 329 { 330 struct extent_io_tree *tree; 331 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 332 u64 found_start; 333 int found_level; 334 unsigned long len; 335 struct extent_buffer *eb; 336 int ret; 337 338 tree = &BTRFS_I(page->mapping->host)->io_tree; 339 340 if (page->private == EXTENT_PAGE_PRIVATE) 341 goto out; 342 if (!page->private) 343 goto out; 344 len = page->private >> 2; 345 WARN_ON(len == 0); 346 347 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 348 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE, 349 btrfs_header_generation(eb)); 350 BUG_ON(ret); 351 found_start = btrfs_header_bytenr(eb); 352 if (found_start != start) { 353 WARN_ON(1); 354 goto err; 355 } 356 if (eb->first_page != page) { 357 WARN_ON(1); 358 goto err; 359 } 360 if (!PageUptodate(page)) { 361 WARN_ON(1); 362 goto err; 363 } 364 found_level = btrfs_header_level(eb); 365 366 csum_tree_block(root, eb, 0); 367 err: 368 free_extent_buffer(eb); 369 out: 370 return 0; 371 } 372 373 static int check_tree_block_fsid(struct btrfs_root *root, 374 struct extent_buffer *eb) 375 { 376 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 377 u8 fsid[BTRFS_UUID_SIZE]; 378 int ret = 1; 379 380 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 381 BTRFS_FSID_SIZE); 382 while (fs_devices) { 383 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 384 ret = 0; 385 break; 386 } 387 fs_devices = fs_devices->seed; 388 } 389 return ret; 390 } 391 392 #ifdef CONFIG_DEBUG_LOCK_ALLOC 393 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level) 394 { 395 lockdep_set_class_and_name(&eb->lock, 396 &btrfs_eb_class[level], 397 btrfs_eb_name[level]); 398 } 399 #endif 400 401 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 402 struct extent_state *state) 403 { 404 struct extent_io_tree *tree; 405 u64 found_start; 406 int found_level; 407 unsigned long len; 408 struct extent_buffer *eb; 409 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 410 int ret = 0; 411 412 tree = &BTRFS_I(page->mapping->host)->io_tree; 413 if (page->private == EXTENT_PAGE_PRIVATE) 414 goto out; 415 if (!page->private) 416 goto out; 417 418 len = page->private >> 2; 419 WARN_ON(len == 0); 420 421 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 422 423 found_start = btrfs_header_bytenr(eb); 424 if (found_start != start) { 425 if (printk_ratelimit()) { 426 printk(KERN_INFO "btrfs bad tree block start " 427 "%llu %llu\n", 428 (unsigned long long)found_start, 429 (unsigned long long)eb->start); 430 } 431 ret = -EIO; 432 goto err; 433 } 434 if (eb->first_page != page) { 435 printk(KERN_INFO "btrfs bad first page %lu %lu\n", 436 eb->first_page->index, page->index); 437 WARN_ON(1); 438 ret = -EIO; 439 goto err; 440 } 441 if (check_tree_block_fsid(root, eb)) { 442 if (printk_ratelimit()) { 443 printk(KERN_INFO "btrfs bad fsid on block %llu\n", 444 (unsigned long long)eb->start); 445 } 446 ret = -EIO; 447 goto err; 448 } 449 found_level = btrfs_header_level(eb); 450 451 btrfs_set_buffer_lockdep_class(eb, found_level); 452 453 ret = csum_tree_block(root, eb, 1); 454 if (ret) 455 ret = -EIO; 456 457 end = min_t(u64, eb->len, PAGE_CACHE_SIZE); 458 end = eb->start + end - 1; 459 err: 460 free_extent_buffer(eb); 461 out: 462 return ret; 463 } 464 465 static void end_workqueue_bio(struct bio *bio, int err) 466 { 467 struct end_io_wq *end_io_wq = bio->bi_private; 468 struct btrfs_fs_info *fs_info; 469 470 fs_info = end_io_wq->info; 471 end_io_wq->error = err; 472 end_io_wq->work.func = end_workqueue_fn; 473 end_io_wq->work.flags = 0; 474 475 if (bio->bi_rw & (1 << BIO_RW)) { 476 if (end_io_wq->metadata) 477 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 478 &end_io_wq->work); 479 else 480 btrfs_queue_worker(&fs_info->endio_write_workers, 481 &end_io_wq->work); 482 } else { 483 if (end_io_wq->metadata) 484 btrfs_queue_worker(&fs_info->endio_meta_workers, 485 &end_io_wq->work); 486 else 487 btrfs_queue_worker(&fs_info->endio_workers, 488 &end_io_wq->work); 489 } 490 } 491 492 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 493 int metadata) 494 { 495 struct end_io_wq *end_io_wq; 496 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 497 if (!end_io_wq) 498 return -ENOMEM; 499 500 end_io_wq->private = bio->bi_private; 501 end_io_wq->end_io = bio->bi_end_io; 502 end_io_wq->info = info; 503 end_io_wq->error = 0; 504 end_io_wq->bio = bio; 505 end_io_wq->metadata = metadata; 506 507 bio->bi_private = end_io_wq; 508 bio->bi_end_io = end_workqueue_bio; 509 return 0; 510 } 511 512 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 513 { 514 unsigned long limit = min_t(unsigned long, 515 info->workers.max_workers, 516 info->fs_devices->open_devices); 517 return 256 * limit; 518 } 519 520 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone) 521 { 522 return atomic_read(&info->nr_async_bios) > 523 btrfs_async_submit_limit(info); 524 } 525 526 static void run_one_async_start(struct btrfs_work *work) 527 { 528 struct btrfs_fs_info *fs_info; 529 struct async_submit_bio *async; 530 531 async = container_of(work, struct async_submit_bio, work); 532 fs_info = BTRFS_I(async->inode)->root->fs_info; 533 async->submit_bio_start(async->inode, async->rw, async->bio, 534 async->mirror_num, async->bio_flags); 535 } 536 537 static void run_one_async_done(struct btrfs_work *work) 538 { 539 struct btrfs_fs_info *fs_info; 540 struct async_submit_bio *async; 541 int limit; 542 543 async = container_of(work, struct async_submit_bio, work); 544 fs_info = BTRFS_I(async->inode)->root->fs_info; 545 546 limit = btrfs_async_submit_limit(fs_info); 547 limit = limit * 2 / 3; 548 549 atomic_dec(&fs_info->nr_async_submits); 550 551 if (atomic_read(&fs_info->nr_async_submits) < limit && 552 waitqueue_active(&fs_info->async_submit_wait)) 553 wake_up(&fs_info->async_submit_wait); 554 555 async->submit_bio_done(async->inode, async->rw, async->bio, 556 async->mirror_num, async->bio_flags); 557 } 558 559 static void run_one_async_free(struct btrfs_work *work) 560 { 561 struct async_submit_bio *async; 562 563 async = container_of(work, struct async_submit_bio, work); 564 kfree(async); 565 } 566 567 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 568 int rw, struct bio *bio, int mirror_num, 569 unsigned long bio_flags, 570 extent_submit_bio_hook_t *submit_bio_start, 571 extent_submit_bio_hook_t *submit_bio_done) 572 { 573 struct async_submit_bio *async; 574 575 async = kmalloc(sizeof(*async), GFP_NOFS); 576 if (!async) 577 return -ENOMEM; 578 579 async->inode = inode; 580 async->rw = rw; 581 async->bio = bio; 582 async->mirror_num = mirror_num; 583 async->submit_bio_start = submit_bio_start; 584 async->submit_bio_done = submit_bio_done; 585 586 async->work.func = run_one_async_start; 587 async->work.ordered_func = run_one_async_done; 588 async->work.ordered_free = run_one_async_free; 589 590 async->work.flags = 0; 591 async->bio_flags = bio_flags; 592 593 atomic_inc(&fs_info->nr_async_submits); 594 595 if (rw & (1 << BIO_RW_SYNCIO)) 596 btrfs_set_work_high_prio(&async->work); 597 598 btrfs_queue_worker(&fs_info->workers, &async->work); 599 600 while (atomic_read(&fs_info->async_submit_draining) && 601 atomic_read(&fs_info->nr_async_submits)) { 602 wait_event(fs_info->async_submit_wait, 603 (atomic_read(&fs_info->nr_async_submits) == 0)); 604 } 605 606 return 0; 607 } 608 609 static int btree_csum_one_bio(struct bio *bio) 610 { 611 struct bio_vec *bvec = bio->bi_io_vec; 612 int bio_index = 0; 613 struct btrfs_root *root; 614 615 WARN_ON(bio->bi_vcnt <= 0); 616 while (bio_index < bio->bi_vcnt) { 617 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 618 csum_dirty_buffer(root, bvec->bv_page); 619 bio_index++; 620 bvec++; 621 } 622 return 0; 623 } 624 625 static int __btree_submit_bio_start(struct inode *inode, int rw, 626 struct bio *bio, int mirror_num, 627 unsigned long bio_flags) 628 { 629 /* 630 * when we're called for a write, we're already in the async 631 * submission context. Just jump into btrfs_map_bio 632 */ 633 btree_csum_one_bio(bio); 634 return 0; 635 } 636 637 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 638 int mirror_num, unsigned long bio_flags) 639 { 640 /* 641 * when we're called for a write, we're already in the async 642 * submission context. Just jump into btrfs_map_bio 643 */ 644 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 645 } 646 647 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 648 int mirror_num, unsigned long bio_flags) 649 { 650 int ret; 651 652 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 653 bio, 1); 654 BUG_ON(ret); 655 656 if (!(rw & (1 << BIO_RW))) { 657 /* 658 * called for a read, do the setup so that checksum validation 659 * can happen in the async kernel threads 660 */ 661 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 662 mirror_num, 0); 663 } 664 665 /* 666 * kthread helpers are used to submit writes so that checksumming 667 * can happen in parallel across all CPUs 668 */ 669 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 670 inode, rw, bio, mirror_num, 0, 671 __btree_submit_bio_start, 672 __btree_submit_bio_done); 673 } 674 675 static int btree_writepage(struct page *page, struct writeback_control *wbc) 676 { 677 struct extent_io_tree *tree; 678 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 679 struct extent_buffer *eb; 680 int was_dirty; 681 682 tree = &BTRFS_I(page->mapping->host)->io_tree; 683 if (!(current->flags & PF_MEMALLOC)) { 684 return extent_write_full_page(tree, page, 685 btree_get_extent, wbc); 686 } 687 688 redirty_page_for_writepage(wbc, page); 689 eb = btrfs_find_tree_block(root, page_offset(page), 690 PAGE_CACHE_SIZE); 691 WARN_ON(!eb); 692 693 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 694 if (!was_dirty) { 695 spin_lock(&root->fs_info->delalloc_lock); 696 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE; 697 spin_unlock(&root->fs_info->delalloc_lock); 698 } 699 free_extent_buffer(eb); 700 701 unlock_page(page); 702 return 0; 703 } 704 705 static int btree_writepages(struct address_space *mapping, 706 struct writeback_control *wbc) 707 { 708 struct extent_io_tree *tree; 709 tree = &BTRFS_I(mapping->host)->io_tree; 710 if (wbc->sync_mode == WB_SYNC_NONE) { 711 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 712 u64 num_dirty; 713 unsigned long thresh = 32 * 1024 * 1024; 714 715 if (wbc->for_kupdate) 716 return 0; 717 718 /* this is a bit racy, but that's ok */ 719 num_dirty = root->fs_info->dirty_metadata_bytes; 720 if (num_dirty < thresh) 721 return 0; 722 } 723 return extent_writepages(tree, mapping, btree_get_extent, wbc); 724 } 725 726 static int btree_readpage(struct file *file, struct page *page) 727 { 728 struct extent_io_tree *tree; 729 tree = &BTRFS_I(page->mapping->host)->io_tree; 730 return extent_read_full_page(tree, page, btree_get_extent); 731 } 732 733 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 734 { 735 struct extent_io_tree *tree; 736 struct extent_map_tree *map; 737 int ret; 738 739 if (PageWriteback(page) || PageDirty(page)) 740 return 0; 741 742 tree = &BTRFS_I(page->mapping->host)->io_tree; 743 map = &BTRFS_I(page->mapping->host)->extent_tree; 744 745 ret = try_release_extent_state(map, tree, page, gfp_flags); 746 if (!ret) 747 return 0; 748 749 ret = try_release_extent_buffer(tree, page); 750 if (ret == 1) { 751 ClearPagePrivate(page); 752 set_page_private(page, 0); 753 page_cache_release(page); 754 } 755 756 return ret; 757 } 758 759 static void btree_invalidatepage(struct page *page, unsigned long offset) 760 { 761 struct extent_io_tree *tree; 762 tree = &BTRFS_I(page->mapping->host)->io_tree; 763 extent_invalidatepage(tree, page, offset); 764 btree_releasepage(page, GFP_NOFS); 765 if (PagePrivate(page)) { 766 printk(KERN_WARNING "btrfs warning page private not zero " 767 "on page %llu\n", (unsigned long long)page_offset(page)); 768 ClearPagePrivate(page); 769 set_page_private(page, 0); 770 page_cache_release(page); 771 } 772 } 773 774 static struct address_space_operations btree_aops = { 775 .readpage = btree_readpage, 776 .writepage = btree_writepage, 777 .writepages = btree_writepages, 778 .releasepage = btree_releasepage, 779 .invalidatepage = btree_invalidatepage, 780 .sync_page = block_sync_page, 781 }; 782 783 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 784 u64 parent_transid) 785 { 786 struct extent_buffer *buf = NULL; 787 struct inode *btree_inode = root->fs_info->btree_inode; 788 int ret = 0; 789 790 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 791 if (!buf) 792 return 0; 793 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 794 buf, 0, 0, btree_get_extent, 0); 795 free_extent_buffer(buf); 796 return ret; 797 } 798 799 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 800 u64 bytenr, u32 blocksize) 801 { 802 struct inode *btree_inode = root->fs_info->btree_inode; 803 struct extent_buffer *eb; 804 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 805 bytenr, blocksize, GFP_NOFS); 806 return eb; 807 } 808 809 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 810 u64 bytenr, u32 blocksize) 811 { 812 struct inode *btree_inode = root->fs_info->btree_inode; 813 struct extent_buffer *eb; 814 815 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 816 bytenr, blocksize, NULL, GFP_NOFS); 817 return eb; 818 } 819 820 821 int btrfs_write_tree_block(struct extent_buffer *buf) 822 { 823 return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start, 824 buf->start + buf->len - 1, WB_SYNC_ALL); 825 } 826 827 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 828 { 829 return btrfs_wait_on_page_writeback_range(buf->first_page->mapping, 830 buf->start, buf->start + buf->len - 1); 831 } 832 833 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 834 u32 blocksize, u64 parent_transid) 835 { 836 struct extent_buffer *buf = NULL; 837 struct inode *btree_inode = root->fs_info->btree_inode; 838 struct extent_io_tree *io_tree; 839 int ret; 840 841 io_tree = &BTRFS_I(btree_inode)->io_tree; 842 843 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 844 if (!buf) 845 return NULL; 846 847 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 848 849 if (ret == 0) 850 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 851 return buf; 852 853 } 854 855 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 856 struct extent_buffer *buf) 857 { 858 struct inode *btree_inode = root->fs_info->btree_inode; 859 if (btrfs_header_generation(buf) == 860 root->fs_info->running_transaction->transid) { 861 btrfs_assert_tree_locked(buf); 862 863 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 864 spin_lock(&root->fs_info->delalloc_lock); 865 if (root->fs_info->dirty_metadata_bytes >= buf->len) 866 root->fs_info->dirty_metadata_bytes -= buf->len; 867 else 868 WARN_ON(1); 869 spin_unlock(&root->fs_info->delalloc_lock); 870 } 871 872 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 873 btrfs_set_lock_blocking(buf); 874 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 875 buf); 876 } 877 return 0; 878 } 879 880 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 881 u32 stripesize, struct btrfs_root *root, 882 struct btrfs_fs_info *fs_info, 883 u64 objectid) 884 { 885 root->node = NULL; 886 root->commit_root = NULL; 887 root->ref_tree = NULL; 888 root->sectorsize = sectorsize; 889 root->nodesize = nodesize; 890 root->leafsize = leafsize; 891 root->stripesize = stripesize; 892 root->ref_cows = 0; 893 root->track_dirty = 0; 894 895 root->fs_info = fs_info; 896 root->objectid = objectid; 897 root->last_trans = 0; 898 root->highest_inode = 0; 899 root->last_inode_alloc = 0; 900 root->name = NULL; 901 root->in_sysfs = 0; 902 903 INIT_LIST_HEAD(&root->dirty_list); 904 INIT_LIST_HEAD(&root->orphan_list); 905 INIT_LIST_HEAD(&root->dead_list); 906 spin_lock_init(&root->node_lock); 907 spin_lock_init(&root->list_lock); 908 mutex_init(&root->objectid_mutex); 909 mutex_init(&root->log_mutex); 910 init_waitqueue_head(&root->log_writer_wait); 911 init_waitqueue_head(&root->log_commit_wait[0]); 912 init_waitqueue_head(&root->log_commit_wait[1]); 913 atomic_set(&root->log_commit[0], 0); 914 atomic_set(&root->log_commit[1], 0); 915 atomic_set(&root->log_writers, 0); 916 root->log_batch = 0; 917 root->log_transid = 0; 918 extent_io_tree_init(&root->dirty_log_pages, 919 fs_info->btree_inode->i_mapping, GFP_NOFS); 920 921 btrfs_leaf_ref_tree_init(&root->ref_tree_struct); 922 root->ref_tree = &root->ref_tree_struct; 923 924 memset(&root->root_key, 0, sizeof(root->root_key)); 925 memset(&root->root_item, 0, sizeof(root->root_item)); 926 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 927 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 928 root->defrag_trans_start = fs_info->generation; 929 init_completion(&root->kobj_unregister); 930 root->defrag_running = 0; 931 root->defrag_level = 0; 932 root->root_key.objectid = objectid; 933 root->anon_super.s_root = NULL; 934 root->anon_super.s_dev = 0; 935 INIT_LIST_HEAD(&root->anon_super.s_list); 936 INIT_LIST_HEAD(&root->anon_super.s_instances); 937 init_rwsem(&root->anon_super.s_umount); 938 939 return 0; 940 } 941 942 static int find_and_setup_root(struct btrfs_root *tree_root, 943 struct btrfs_fs_info *fs_info, 944 u64 objectid, 945 struct btrfs_root *root) 946 { 947 int ret; 948 u32 blocksize; 949 u64 generation; 950 951 __setup_root(tree_root->nodesize, tree_root->leafsize, 952 tree_root->sectorsize, tree_root->stripesize, 953 root, fs_info, objectid); 954 ret = btrfs_find_last_root(tree_root, objectid, 955 &root->root_item, &root->root_key); 956 BUG_ON(ret); 957 958 generation = btrfs_root_generation(&root->root_item); 959 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 960 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 961 blocksize, generation); 962 BUG_ON(!root->node); 963 return 0; 964 } 965 966 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 967 struct btrfs_fs_info *fs_info) 968 { 969 struct extent_buffer *eb; 970 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 971 u64 start = 0; 972 u64 end = 0; 973 int ret; 974 975 if (!log_root_tree) 976 return 0; 977 978 while (1) { 979 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages, 980 0, &start, &end, EXTENT_DIRTY); 981 if (ret) 982 break; 983 984 clear_extent_dirty(&log_root_tree->dirty_log_pages, 985 start, end, GFP_NOFS); 986 } 987 eb = fs_info->log_root_tree->node; 988 989 WARN_ON(btrfs_header_level(eb) != 0); 990 WARN_ON(btrfs_header_nritems(eb) != 0); 991 992 ret = btrfs_free_reserved_extent(fs_info->tree_root, 993 eb->start, eb->len); 994 BUG_ON(ret); 995 996 free_extent_buffer(eb); 997 kfree(fs_info->log_root_tree); 998 fs_info->log_root_tree = NULL; 999 return 0; 1000 } 1001 1002 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1003 struct btrfs_fs_info *fs_info) 1004 { 1005 struct btrfs_root *root; 1006 struct btrfs_root *tree_root = fs_info->tree_root; 1007 struct extent_buffer *leaf; 1008 1009 root = kzalloc(sizeof(*root), GFP_NOFS); 1010 if (!root) 1011 return ERR_PTR(-ENOMEM); 1012 1013 __setup_root(tree_root->nodesize, tree_root->leafsize, 1014 tree_root->sectorsize, tree_root->stripesize, 1015 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1016 1017 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1018 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1019 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1020 /* 1021 * log trees do not get reference counted because they go away 1022 * before a real commit is actually done. They do store pointers 1023 * to file data extents, and those reference counts still get 1024 * updated (along with back refs to the log tree). 1025 */ 1026 root->ref_cows = 0; 1027 1028 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 1029 0, BTRFS_TREE_LOG_OBJECTID, 1030 trans->transid, 0, 0, 0); 1031 if (IS_ERR(leaf)) { 1032 kfree(root); 1033 return ERR_CAST(leaf); 1034 } 1035 1036 root->node = leaf; 1037 btrfs_set_header_nritems(root->node, 0); 1038 btrfs_set_header_level(root->node, 0); 1039 btrfs_set_header_bytenr(root->node, root->node->start); 1040 btrfs_set_header_generation(root->node, trans->transid); 1041 btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID); 1042 1043 write_extent_buffer(root->node, root->fs_info->fsid, 1044 (unsigned long)btrfs_header_fsid(root->node), 1045 BTRFS_FSID_SIZE); 1046 btrfs_mark_buffer_dirty(root->node); 1047 btrfs_tree_unlock(root->node); 1048 return root; 1049 } 1050 1051 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1052 struct btrfs_fs_info *fs_info) 1053 { 1054 struct btrfs_root *log_root; 1055 1056 log_root = alloc_log_tree(trans, fs_info); 1057 if (IS_ERR(log_root)) 1058 return PTR_ERR(log_root); 1059 WARN_ON(fs_info->log_root_tree); 1060 fs_info->log_root_tree = log_root; 1061 return 0; 1062 } 1063 1064 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1065 struct btrfs_root *root) 1066 { 1067 struct btrfs_root *log_root; 1068 struct btrfs_inode_item *inode_item; 1069 1070 log_root = alloc_log_tree(trans, root->fs_info); 1071 if (IS_ERR(log_root)) 1072 return PTR_ERR(log_root); 1073 1074 log_root->last_trans = trans->transid; 1075 log_root->root_key.offset = root->root_key.objectid; 1076 1077 inode_item = &log_root->root_item.inode; 1078 inode_item->generation = cpu_to_le64(1); 1079 inode_item->size = cpu_to_le64(3); 1080 inode_item->nlink = cpu_to_le32(1); 1081 inode_item->nbytes = cpu_to_le64(root->leafsize); 1082 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1083 1084 btrfs_set_root_bytenr(&log_root->root_item, log_root->node->start); 1085 btrfs_set_root_generation(&log_root->root_item, trans->transid); 1086 1087 WARN_ON(root->log_root); 1088 root->log_root = log_root; 1089 root->log_transid = 0; 1090 return 0; 1091 } 1092 1093 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1094 struct btrfs_key *location) 1095 { 1096 struct btrfs_root *root; 1097 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1098 struct btrfs_path *path; 1099 struct extent_buffer *l; 1100 u64 highest_inode; 1101 u64 generation; 1102 u32 blocksize; 1103 int ret = 0; 1104 1105 root = kzalloc(sizeof(*root), GFP_NOFS); 1106 if (!root) 1107 return ERR_PTR(-ENOMEM); 1108 if (location->offset == (u64)-1) { 1109 ret = find_and_setup_root(tree_root, fs_info, 1110 location->objectid, root); 1111 if (ret) { 1112 kfree(root); 1113 return ERR_PTR(ret); 1114 } 1115 goto insert; 1116 } 1117 1118 __setup_root(tree_root->nodesize, tree_root->leafsize, 1119 tree_root->sectorsize, tree_root->stripesize, 1120 root, fs_info, location->objectid); 1121 1122 path = btrfs_alloc_path(); 1123 BUG_ON(!path); 1124 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1125 if (ret != 0) { 1126 if (ret > 0) 1127 ret = -ENOENT; 1128 goto out; 1129 } 1130 l = path->nodes[0]; 1131 read_extent_buffer(l, &root->root_item, 1132 btrfs_item_ptr_offset(l, path->slots[0]), 1133 sizeof(root->root_item)); 1134 memcpy(&root->root_key, location, sizeof(*location)); 1135 ret = 0; 1136 out: 1137 btrfs_release_path(root, path); 1138 btrfs_free_path(path); 1139 if (ret) { 1140 kfree(root); 1141 return ERR_PTR(ret); 1142 } 1143 generation = btrfs_root_generation(&root->root_item); 1144 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1145 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1146 blocksize, generation); 1147 BUG_ON(!root->node); 1148 insert: 1149 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { 1150 root->ref_cows = 1; 1151 ret = btrfs_find_highest_inode(root, &highest_inode); 1152 if (ret == 0) { 1153 root->highest_inode = highest_inode; 1154 root->last_inode_alloc = highest_inode; 1155 } 1156 } 1157 return root; 1158 } 1159 1160 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1161 u64 root_objectid) 1162 { 1163 struct btrfs_root *root; 1164 1165 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID) 1166 return fs_info->tree_root; 1167 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID) 1168 return fs_info->extent_root; 1169 1170 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1171 (unsigned long)root_objectid); 1172 return root; 1173 } 1174 1175 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1176 struct btrfs_key *location) 1177 { 1178 struct btrfs_root *root; 1179 int ret; 1180 1181 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1182 return fs_info->tree_root; 1183 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1184 return fs_info->extent_root; 1185 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1186 return fs_info->chunk_root; 1187 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1188 return fs_info->dev_root; 1189 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1190 return fs_info->csum_root; 1191 1192 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1193 (unsigned long)location->objectid); 1194 if (root) 1195 return root; 1196 1197 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1198 if (IS_ERR(root)) 1199 return root; 1200 1201 set_anon_super(&root->anon_super, NULL); 1202 1203 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1204 (unsigned long)root->root_key.objectid, 1205 root); 1206 if (ret) { 1207 free_extent_buffer(root->node); 1208 kfree(root); 1209 return ERR_PTR(ret); 1210 } 1211 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 1212 ret = btrfs_find_dead_roots(fs_info->tree_root, 1213 root->root_key.objectid, root); 1214 BUG_ON(ret); 1215 btrfs_orphan_cleanup(root); 1216 } 1217 return root; 1218 } 1219 1220 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info, 1221 struct btrfs_key *location, 1222 const char *name, int namelen) 1223 { 1224 struct btrfs_root *root; 1225 int ret; 1226 1227 root = btrfs_read_fs_root_no_name(fs_info, location); 1228 if (!root) 1229 return NULL; 1230 1231 if (root->in_sysfs) 1232 return root; 1233 1234 ret = btrfs_set_root_name(root, name, namelen); 1235 if (ret) { 1236 free_extent_buffer(root->node); 1237 kfree(root); 1238 return ERR_PTR(ret); 1239 } 1240 #if 0 1241 ret = btrfs_sysfs_add_root(root); 1242 if (ret) { 1243 free_extent_buffer(root->node); 1244 kfree(root->name); 1245 kfree(root); 1246 return ERR_PTR(ret); 1247 } 1248 #endif 1249 root->in_sysfs = 1; 1250 return root; 1251 } 1252 1253 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1254 { 1255 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1256 int ret = 0; 1257 struct btrfs_device *device; 1258 struct backing_dev_info *bdi; 1259 1260 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1261 if (!device->bdev) 1262 continue; 1263 bdi = blk_get_backing_dev_info(device->bdev); 1264 if (bdi && bdi_congested(bdi, bdi_bits)) { 1265 ret = 1; 1266 break; 1267 } 1268 } 1269 return ret; 1270 } 1271 1272 /* 1273 * this unplugs every device on the box, and it is only used when page 1274 * is null 1275 */ 1276 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1277 { 1278 struct btrfs_device *device; 1279 struct btrfs_fs_info *info; 1280 1281 info = (struct btrfs_fs_info *)bdi->unplug_io_data; 1282 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1283 if (!device->bdev) 1284 continue; 1285 1286 bdi = blk_get_backing_dev_info(device->bdev); 1287 if (bdi->unplug_io_fn) 1288 bdi->unplug_io_fn(bdi, page); 1289 } 1290 } 1291 1292 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1293 { 1294 struct inode *inode; 1295 struct extent_map_tree *em_tree; 1296 struct extent_map *em; 1297 struct address_space *mapping; 1298 u64 offset; 1299 1300 /* the generic O_DIRECT read code does this */ 1301 if (1 || !page) { 1302 __unplug_io_fn(bdi, page); 1303 return; 1304 } 1305 1306 /* 1307 * page->mapping may change at any time. Get a consistent copy 1308 * and use that for everything below 1309 */ 1310 smp_mb(); 1311 mapping = page->mapping; 1312 if (!mapping) 1313 return; 1314 1315 inode = mapping->host; 1316 1317 /* 1318 * don't do the expensive searching for a small number of 1319 * devices 1320 */ 1321 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) { 1322 __unplug_io_fn(bdi, page); 1323 return; 1324 } 1325 1326 offset = page_offset(page); 1327 1328 em_tree = &BTRFS_I(inode)->extent_tree; 1329 spin_lock(&em_tree->lock); 1330 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 1331 spin_unlock(&em_tree->lock); 1332 if (!em) { 1333 __unplug_io_fn(bdi, page); 1334 return; 1335 } 1336 1337 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1338 free_extent_map(em); 1339 __unplug_io_fn(bdi, page); 1340 return; 1341 } 1342 offset = offset - em->start; 1343 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree, 1344 em->block_start + offset, page); 1345 free_extent_map(em); 1346 } 1347 1348 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1349 { 1350 bdi_init(bdi); 1351 bdi->ra_pages = default_backing_dev_info.ra_pages; 1352 bdi->state = 0; 1353 bdi->capabilities = default_backing_dev_info.capabilities; 1354 bdi->unplug_io_fn = btrfs_unplug_io_fn; 1355 bdi->unplug_io_data = info; 1356 bdi->congested_fn = btrfs_congested_fn; 1357 bdi->congested_data = info; 1358 return 0; 1359 } 1360 1361 static int bio_ready_for_csum(struct bio *bio) 1362 { 1363 u64 length = 0; 1364 u64 buf_len = 0; 1365 u64 start = 0; 1366 struct page *page; 1367 struct extent_io_tree *io_tree = NULL; 1368 struct btrfs_fs_info *info = NULL; 1369 struct bio_vec *bvec; 1370 int i; 1371 int ret; 1372 1373 bio_for_each_segment(bvec, bio, i) { 1374 page = bvec->bv_page; 1375 if (page->private == EXTENT_PAGE_PRIVATE) { 1376 length += bvec->bv_len; 1377 continue; 1378 } 1379 if (!page->private) { 1380 length += bvec->bv_len; 1381 continue; 1382 } 1383 length = bvec->bv_len; 1384 buf_len = page->private >> 2; 1385 start = page_offset(page) + bvec->bv_offset; 1386 io_tree = &BTRFS_I(page->mapping->host)->io_tree; 1387 info = BTRFS_I(page->mapping->host)->root->fs_info; 1388 } 1389 /* are we fully contained in this bio? */ 1390 if (buf_len <= length) 1391 return 1; 1392 1393 ret = extent_range_uptodate(io_tree, start + length, 1394 start + buf_len - 1); 1395 return ret; 1396 } 1397 1398 /* 1399 * called by the kthread helper functions to finally call the bio end_io 1400 * functions. This is where read checksum verification actually happens 1401 */ 1402 static void end_workqueue_fn(struct btrfs_work *work) 1403 { 1404 struct bio *bio; 1405 struct end_io_wq *end_io_wq; 1406 struct btrfs_fs_info *fs_info; 1407 int error; 1408 1409 end_io_wq = container_of(work, struct end_io_wq, work); 1410 bio = end_io_wq->bio; 1411 fs_info = end_io_wq->info; 1412 1413 /* metadata bio reads are special because the whole tree block must 1414 * be checksummed at once. This makes sure the entire block is in 1415 * ram and up to date before trying to verify things. For 1416 * blocksize <= pagesize, it is basically a noop 1417 */ 1418 if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata && 1419 !bio_ready_for_csum(bio)) { 1420 btrfs_queue_worker(&fs_info->endio_meta_workers, 1421 &end_io_wq->work); 1422 return; 1423 } 1424 error = end_io_wq->error; 1425 bio->bi_private = end_io_wq->private; 1426 bio->bi_end_io = end_io_wq->end_io; 1427 kfree(end_io_wq); 1428 bio_endio(bio, error); 1429 } 1430 1431 static int cleaner_kthread(void *arg) 1432 { 1433 struct btrfs_root *root = arg; 1434 1435 do { 1436 smp_mb(); 1437 if (root->fs_info->closing) 1438 break; 1439 1440 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1441 mutex_lock(&root->fs_info->cleaner_mutex); 1442 btrfs_clean_old_snapshots(root); 1443 mutex_unlock(&root->fs_info->cleaner_mutex); 1444 1445 if (freezing(current)) { 1446 refrigerator(); 1447 } else { 1448 smp_mb(); 1449 if (root->fs_info->closing) 1450 break; 1451 set_current_state(TASK_INTERRUPTIBLE); 1452 schedule(); 1453 __set_current_state(TASK_RUNNING); 1454 } 1455 } while (!kthread_should_stop()); 1456 return 0; 1457 } 1458 1459 static int transaction_kthread(void *arg) 1460 { 1461 struct btrfs_root *root = arg; 1462 struct btrfs_trans_handle *trans; 1463 struct btrfs_transaction *cur; 1464 unsigned long now; 1465 unsigned long delay; 1466 int ret; 1467 1468 do { 1469 smp_mb(); 1470 if (root->fs_info->closing) 1471 break; 1472 1473 delay = HZ * 30; 1474 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1475 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1476 1477 mutex_lock(&root->fs_info->trans_mutex); 1478 cur = root->fs_info->running_transaction; 1479 if (!cur) { 1480 mutex_unlock(&root->fs_info->trans_mutex); 1481 goto sleep; 1482 } 1483 1484 now = get_seconds(); 1485 if (now < cur->start_time || now - cur->start_time < 30) { 1486 mutex_unlock(&root->fs_info->trans_mutex); 1487 delay = HZ * 5; 1488 goto sleep; 1489 } 1490 mutex_unlock(&root->fs_info->trans_mutex); 1491 trans = btrfs_start_transaction(root, 1); 1492 ret = btrfs_commit_transaction(trans, root); 1493 1494 sleep: 1495 wake_up_process(root->fs_info->cleaner_kthread); 1496 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1497 1498 if (freezing(current)) { 1499 refrigerator(); 1500 } else { 1501 if (root->fs_info->closing) 1502 break; 1503 set_current_state(TASK_INTERRUPTIBLE); 1504 schedule_timeout(delay); 1505 __set_current_state(TASK_RUNNING); 1506 } 1507 } while (!kthread_should_stop()); 1508 return 0; 1509 } 1510 1511 struct btrfs_root *open_ctree(struct super_block *sb, 1512 struct btrfs_fs_devices *fs_devices, 1513 char *options) 1514 { 1515 u32 sectorsize; 1516 u32 nodesize; 1517 u32 leafsize; 1518 u32 blocksize; 1519 u32 stripesize; 1520 u64 generation; 1521 u64 features; 1522 struct btrfs_key location; 1523 struct buffer_head *bh; 1524 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root), 1525 GFP_NOFS); 1526 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root), 1527 GFP_NOFS); 1528 struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root), 1529 GFP_NOFS); 1530 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info), 1531 GFP_NOFS); 1532 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root), 1533 GFP_NOFS); 1534 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root), 1535 GFP_NOFS); 1536 struct btrfs_root *log_tree_root; 1537 1538 int ret; 1539 int err = -EINVAL; 1540 1541 struct btrfs_super_block *disk_super; 1542 1543 if (!extent_root || !tree_root || !fs_info || 1544 !chunk_root || !dev_root || !csum_root) { 1545 err = -ENOMEM; 1546 goto fail; 1547 } 1548 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS); 1549 INIT_LIST_HEAD(&fs_info->trans_list); 1550 INIT_LIST_HEAD(&fs_info->dead_roots); 1551 INIT_LIST_HEAD(&fs_info->hashers); 1552 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 1553 INIT_LIST_HEAD(&fs_info->ordered_operations); 1554 spin_lock_init(&fs_info->delalloc_lock); 1555 spin_lock_init(&fs_info->new_trans_lock); 1556 spin_lock_init(&fs_info->ref_cache_lock); 1557 1558 init_completion(&fs_info->kobj_unregister); 1559 fs_info->tree_root = tree_root; 1560 fs_info->extent_root = extent_root; 1561 fs_info->csum_root = csum_root; 1562 fs_info->chunk_root = chunk_root; 1563 fs_info->dev_root = dev_root; 1564 fs_info->fs_devices = fs_devices; 1565 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 1566 INIT_LIST_HEAD(&fs_info->space_info); 1567 btrfs_mapping_init(&fs_info->mapping_tree); 1568 atomic_set(&fs_info->nr_async_submits, 0); 1569 atomic_set(&fs_info->async_delalloc_pages, 0); 1570 atomic_set(&fs_info->async_submit_draining, 0); 1571 atomic_set(&fs_info->nr_async_bios, 0); 1572 atomic_set(&fs_info->throttles, 0); 1573 atomic_set(&fs_info->throttle_gen, 0); 1574 fs_info->sb = sb; 1575 fs_info->max_extent = (u64)-1; 1576 fs_info->max_inline = 8192 * 1024; 1577 setup_bdi(fs_info, &fs_info->bdi); 1578 fs_info->btree_inode = new_inode(sb); 1579 fs_info->btree_inode->i_ino = 1; 1580 fs_info->btree_inode->i_nlink = 1; 1581 fs_info->metadata_ratio = 8; 1582 1583 fs_info->thread_pool_size = min_t(unsigned long, 1584 num_online_cpus() + 2, 8); 1585 1586 INIT_LIST_HEAD(&fs_info->ordered_extents); 1587 spin_lock_init(&fs_info->ordered_extent_lock); 1588 1589 sb->s_blocksize = 4096; 1590 sb->s_blocksize_bits = blksize_bits(4096); 1591 1592 /* 1593 * we set the i_size on the btree inode to the max possible int. 1594 * the real end of the address space is determined by all of 1595 * the devices in the system 1596 */ 1597 fs_info->btree_inode->i_size = OFFSET_MAX; 1598 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 1599 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 1600 1601 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 1602 fs_info->btree_inode->i_mapping, 1603 GFP_NOFS); 1604 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree, 1605 GFP_NOFS); 1606 1607 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 1608 1609 spin_lock_init(&fs_info->block_group_cache_lock); 1610 fs_info->block_group_cache_tree.rb_node = NULL; 1611 1612 extent_io_tree_init(&fs_info->pinned_extents, 1613 fs_info->btree_inode->i_mapping, GFP_NOFS); 1614 fs_info->do_barriers = 1; 1615 1616 INIT_LIST_HEAD(&fs_info->dead_reloc_roots); 1617 btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree); 1618 btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree); 1619 1620 BTRFS_I(fs_info->btree_inode)->root = tree_root; 1621 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 1622 sizeof(struct btrfs_key)); 1623 insert_inode_hash(fs_info->btree_inode); 1624 1625 mutex_init(&fs_info->trans_mutex); 1626 mutex_init(&fs_info->ordered_operations_mutex); 1627 mutex_init(&fs_info->tree_log_mutex); 1628 mutex_init(&fs_info->drop_mutex); 1629 mutex_init(&fs_info->chunk_mutex); 1630 mutex_init(&fs_info->transaction_kthread_mutex); 1631 mutex_init(&fs_info->cleaner_mutex); 1632 mutex_init(&fs_info->volume_mutex); 1633 mutex_init(&fs_info->tree_reloc_mutex); 1634 1635 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 1636 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 1637 1638 init_waitqueue_head(&fs_info->transaction_throttle); 1639 init_waitqueue_head(&fs_info->transaction_wait); 1640 init_waitqueue_head(&fs_info->async_submit_wait); 1641 1642 __setup_root(4096, 4096, 4096, 4096, tree_root, 1643 fs_info, BTRFS_ROOT_TREE_OBJECTID); 1644 1645 1646 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 1647 if (!bh) 1648 goto fail_iput; 1649 1650 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy)); 1651 memcpy(&fs_info->super_for_commit, &fs_info->super_copy, 1652 sizeof(fs_info->super_for_commit)); 1653 brelse(bh); 1654 1655 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE); 1656 1657 disk_super = &fs_info->super_copy; 1658 if (!btrfs_super_root(disk_super)) 1659 goto fail_iput; 1660 1661 ret = btrfs_parse_options(tree_root, options); 1662 if (ret) { 1663 err = ret; 1664 goto fail_iput; 1665 } 1666 1667 features = btrfs_super_incompat_flags(disk_super) & 1668 ~BTRFS_FEATURE_INCOMPAT_SUPP; 1669 if (features) { 1670 printk(KERN_ERR "BTRFS: couldn't mount because of " 1671 "unsupported optional features (%Lx).\n", 1672 (unsigned long long)features); 1673 err = -EINVAL; 1674 goto fail_iput; 1675 } 1676 1677 features = btrfs_super_compat_ro_flags(disk_super) & 1678 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 1679 if (!(sb->s_flags & MS_RDONLY) && features) { 1680 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 1681 "unsupported option features (%Lx).\n", 1682 (unsigned long long)features); 1683 err = -EINVAL; 1684 goto fail_iput; 1685 } 1686 1687 /* 1688 * we need to start all the end_io workers up front because the 1689 * queue work function gets called at interrupt time, and so it 1690 * cannot dynamically grow. 1691 */ 1692 btrfs_init_workers(&fs_info->workers, "worker", 1693 fs_info->thread_pool_size); 1694 1695 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 1696 fs_info->thread_pool_size); 1697 1698 btrfs_init_workers(&fs_info->submit_workers, "submit", 1699 min_t(u64, fs_devices->num_devices, 1700 fs_info->thread_pool_size)); 1701 1702 /* a higher idle thresh on the submit workers makes it much more 1703 * likely that bios will be send down in a sane order to the 1704 * devices 1705 */ 1706 fs_info->submit_workers.idle_thresh = 64; 1707 1708 fs_info->workers.idle_thresh = 16; 1709 fs_info->workers.ordered = 1; 1710 1711 fs_info->delalloc_workers.idle_thresh = 2; 1712 fs_info->delalloc_workers.ordered = 1; 1713 1714 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1); 1715 btrfs_init_workers(&fs_info->endio_workers, "endio", 1716 fs_info->thread_pool_size); 1717 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 1718 fs_info->thread_pool_size); 1719 btrfs_init_workers(&fs_info->endio_meta_write_workers, 1720 "endio-meta-write", fs_info->thread_pool_size); 1721 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 1722 fs_info->thread_pool_size); 1723 1724 /* 1725 * endios are largely parallel and should have a very 1726 * low idle thresh 1727 */ 1728 fs_info->endio_workers.idle_thresh = 4; 1729 fs_info->endio_meta_workers.idle_thresh = 4; 1730 1731 fs_info->endio_write_workers.idle_thresh = 64; 1732 fs_info->endio_meta_write_workers.idle_thresh = 64; 1733 1734 btrfs_start_workers(&fs_info->workers, 1); 1735 btrfs_start_workers(&fs_info->submit_workers, 1); 1736 btrfs_start_workers(&fs_info->delalloc_workers, 1); 1737 btrfs_start_workers(&fs_info->fixup_workers, 1); 1738 btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size); 1739 btrfs_start_workers(&fs_info->endio_meta_workers, 1740 fs_info->thread_pool_size); 1741 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1742 fs_info->thread_pool_size); 1743 btrfs_start_workers(&fs_info->endio_write_workers, 1744 fs_info->thread_pool_size); 1745 1746 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 1747 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 1748 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 1749 1750 nodesize = btrfs_super_nodesize(disk_super); 1751 leafsize = btrfs_super_leafsize(disk_super); 1752 sectorsize = btrfs_super_sectorsize(disk_super); 1753 stripesize = btrfs_super_stripesize(disk_super); 1754 tree_root->nodesize = nodesize; 1755 tree_root->leafsize = leafsize; 1756 tree_root->sectorsize = sectorsize; 1757 tree_root->stripesize = stripesize; 1758 1759 sb->s_blocksize = sectorsize; 1760 sb->s_blocksize_bits = blksize_bits(sectorsize); 1761 1762 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 1763 sizeof(disk_super->magic))) { 1764 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 1765 goto fail_sb_buffer; 1766 } 1767 1768 mutex_lock(&fs_info->chunk_mutex); 1769 ret = btrfs_read_sys_array(tree_root); 1770 mutex_unlock(&fs_info->chunk_mutex); 1771 if (ret) { 1772 printk(KERN_WARNING "btrfs: failed to read the system " 1773 "array on %s\n", sb->s_id); 1774 goto fail_sys_array; 1775 } 1776 1777 blocksize = btrfs_level_size(tree_root, 1778 btrfs_super_chunk_root_level(disk_super)); 1779 generation = btrfs_super_chunk_root_generation(disk_super); 1780 1781 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1782 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 1783 1784 chunk_root->node = read_tree_block(chunk_root, 1785 btrfs_super_chunk_root(disk_super), 1786 blocksize, generation); 1787 BUG_ON(!chunk_root->node); 1788 1789 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 1790 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 1791 BTRFS_UUID_SIZE); 1792 1793 mutex_lock(&fs_info->chunk_mutex); 1794 ret = btrfs_read_chunk_tree(chunk_root); 1795 mutex_unlock(&fs_info->chunk_mutex); 1796 if (ret) { 1797 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 1798 sb->s_id); 1799 goto fail_chunk_root; 1800 } 1801 1802 btrfs_close_extra_devices(fs_devices); 1803 1804 blocksize = btrfs_level_size(tree_root, 1805 btrfs_super_root_level(disk_super)); 1806 generation = btrfs_super_generation(disk_super); 1807 1808 tree_root->node = read_tree_block(tree_root, 1809 btrfs_super_root(disk_super), 1810 blocksize, generation); 1811 if (!tree_root->node) 1812 goto fail_chunk_root; 1813 1814 1815 ret = find_and_setup_root(tree_root, fs_info, 1816 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 1817 if (ret) 1818 goto fail_tree_root; 1819 extent_root->track_dirty = 1; 1820 1821 ret = find_and_setup_root(tree_root, fs_info, 1822 BTRFS_DEV_TREE_OBJECTID, dev_root); 1823 dev_root->track_dirty = 1; 1824 if (ret) 1825 goto fail_extent_root; 1826 1827 ret = find_and_setup_root(tree_root, fs_info, 1828 BTRFS_CSUM_TREE_OBJECTID, csum_root); 1829 if (ret) 1830 goto fail_extent_root; 1831 1832 csum_root->track_dirty = 1; 1833 1834 btrfs_read_block_groups(extent_root); 1835 1836 fs_info->generation = generation; 1837 fs_info->last_trans_committed = generation; 1838 fs_info->data_alloc_profile = (u64)-1; 1839 fs_info->metadata_alloc_profile = (u64)-1; 1840 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile; 1841 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 1842 "btrfs-cleaner"); 1843 if (IS_ERR(fs_info->cleaner_kthread)) 1844 goto fail_csum_root; 1845 1846 fs_info->transaction_kthread = kthread_run(transaction_kthread, 1847 tree_root, 1848 "btrfs-transaction"); 1849 if (IS_ERR(fs_info->transaction_kthread)) 1850 goto fail_cleaner; 1851 1852 if (btrfs_super_log_root(disk_super) != 0) { 1853 u64 bytenr = btrfs_super_log_root(disk_super); 1854 1855 if (fs_devices->rw_devices == 0) { 1856 printk(KERN_WARNING "Btrfs log replay required " 1857 "on RO media\n"); 1858 err = -EIO; 1859 goto fail_trans_kthread; 1860 } 1861 blocksize = 1862 btrfs_level_size(tree_root, 1863 btrfs_super_log_root_level(disk_super)); 1864 1865 log_tree_root = kzalloc(sizeof(struct btrfs_root), 1866 GFP_NOFS); 1867 1868 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1869 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1870 1871 log_tree_root->node = read_tree_block(tree_root, bytenr, 1872 blocksize, 1873 generation + 1); 1874 ret = btrfs_recover_log_trees(log_tree_root); 1875 BUG_ON(ret); 1876 1877 if (sb->s_flags & MS_RDONLY) { 1878 ret = btrfs_commit_super(tree_root); 1879 BUG_ON(ret); 1880 } 1881 } 1882 1883 if (!(sb->s_flags & MS_RDONLY)) { 1884 ret = btrfs_cleanup_reloc_trees(tree_root); 1885 BUG_ON(ret); 1886 } 1887 1888 location.objectid = BTRFS_FS_TREE_OBJECTID; 1889 location.type = BTRFS_ROOT_ITEM_KEY; 1890 location.offset = (u64)-1; 1891 1892 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 1893 if (!fs_info->fs_root) 1894 goto fail_trans_kthread; 1895 return tree_root; 1896 1897 fail_trans_kthread: 1898 kthread_stop(fs_info->transaction_kthread); 1899 fail_cleaner: 1900 kthread_stop(fs_info->cleaner_kthread); 1901 1902 /* 1903 * make sure we're done with the btree inode before we stop our 1904 * kthreads 1905 */ 1906 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 1907 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 1908 1909 fail_csum_root: 1910 free_extent_buffer(csum_root->node); 1911 fail_extent_root: 1912 free_extent_buffer(extent_root->node); 1913 fail_tree_root: 1914 free_extent_buffer(tree_root->node); 1915 fail_chunk_root: 1916 free_extent_buffer(chunk_root->node); 1917 fail_sys_array: 1918 free_extent_buffer(dev_root->node); 1919 fail_sb_buffer: 1920 btrfs_stop_workers(&fs_info->fixup_workers); 1921 btrfs_stop_workers(&fs_info->delalloc_workers); 1922 btrfs_stop_workers(&fs_info->workers); 1923 btrfs_stop_workers(&fs_info->endio_workers); 1924 btrfs_stop_workers(&fs_info->endio_meta_workers); 1925 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 1926 btrfs_stop_workers(&fs_info->endio_write_workers); 1927 btrfs_stop_workers(&fs_info->submit_workers); 1928 fail_iput: 1929 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 1930 iput(fs_info->btree_inode); 1931 1932 btrfs_close_devices(fs_info->fs_devices); 1933 btrfs_mapping_tree_free(&fs_info->mapping_tree); 1934 bdi_destroy(&fs_info->bdi); 1935 1936 fail: 1937 kfree(extent_root); 1938 kfree(tree_root); 1939 kfree(fs_info); 1940 kfree(chunk_root); 1941 kfree(dev_root); 1942 kfree(csum_root); 1943 return ERR_PTR(err); 1944 } 1945 1946 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 1947 { 1948 char b[BDEVNAME_SIZE]; 1949 1950 if (uptodate) { 1951 set_buffer_uptodate(bh); 1952 } else { 1953 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { 1954 printk(KERN_WARNING "lost page write due to " 1955 "I/O error on %s\n", 1956 bdevname(bh->b_bdev, b)); 1957 } 1958 /* note, we dont' set_buffer_write_io_error because we have 1959 * our own ways of dealing with the IO errors 1960 */ 1961 clear_buffer_uptodate(bh); 1962 } 1963 unlock_buffer(bh); 1964 put_bh(bh); 1965 } 1966 1967 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 1968 { 1969 struct buffer_head *bh; 1970 struct buffer_head *latest = NULL; 1971 struct btrfs_super_block *super; 1972 int i; 1973 u64 transid = 0; 1974 u64 bytenr; 1975 1976 /* we would like to check all the supers, but that would make 1977 * a btrfs mount succeed after a mkfs from a different FS. 1978 * So, we need to add a special mount option to scan for 1979 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1980 */ 1981 for (i = 0; i < 1; i++) { 1982 bytenr = btrfs_sb_offset(i); 1983 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 1984 break; 1985 bh = __bread(bdev, bytenr / 4096, 4096); 1986 if (!bh) 1987 continue; 1988 1989 super = (struct btrfs_super_block *)bh->b_data; 1990 if (btrfs_super_bytenr(super) != bytenr || 1991 strncmp((char *)(&super->magic), BTRFS_MAGIC, 1992 sizeof(super->magic))) { 1993 brelse(bh); 1994 continue; 1995 } 1996 1997 if (!latest || btrfs_super_generation(super) > transid) { 1998 brelse(latest); 1999 latest = bh; 2000 transid = btrfs_super_generation(super); 2001 } else { 2002 brelse(bh); 2003 } 2004 } 2005 return latest; 2006 } 2007 2008 static int write_dev_supers(struct btrfs_device *device, 2009 struct btrfs_super_block *sb, 2010 int do_barriers, int wait, int max_mirrors) 2011 { 2012 struct buffer_head *bh; 2013 int i; 2014 int ret; 2015 int errors = 0; 2016 u32 crc; 2017 u64 bytenr; 2018 int last_barrier = 0; 2019 2020 if (max_mirrors == 0) 2021 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2022 2023 /* make sure only the last submit_bh does a barrier */ 2024 if (do_barriers) { 2025 for (i = 0; i < max_mirrors; i++) { 2026 bytenr = btrfs_sb_offset(i); 2027 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 2028 device->total_bytes) 2029 break; 2030 last_barrier = i; 2031 } 2032 } 2033 2034 for (i = 0; i < max_mirrors; i++) { 2035 bytenr = btrfs_sb_offset(i); 2036 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2037 break; 2038 2039 if (wait) { 2040 bh = __find_get_block(device->bdev, bytenr / 4096, 2041 BTRFS_SUPER_INFO_SIZE); 2042 BUG_ON(!bh); 2043 brelse(bh); 2044 wait_on_buffer(bh); 2045 if (buffer_uptodate(bh)) { 2046 brelse(bh); 2047 continue; 2048 } 2049 } else { 2050 btrfs_set_super_bytenr(sb, bytenr); 2051 2052 crc = ~(u32)0; 2053 crc = btrfs_csum_data(NULL, (char *)sb + 2054 BTRFS_CSUM_SIZE, crc, 2055 BTRFS_SUPER_INFO_SIZE - 2056 BTRFS_CSUM_SIZE); 2057 btrfs_csum_final(crc, sb->csum); 2058 2059 bh = __getblk(device->bdev, bytenr / 4096, 2060 BTRFS_SUPER_INFO_SIZE); 2061 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2062 2063 set_buffer_uptodate(bh); 2064 get_bh(bh); 2065 lock_buffer(bh); 2066 bh->b_end_io = btrfs_end_buffer_write_sync; 2067 } 2068 2069 if (i == last_barrier && do_barriers && device->barriers) { 2070 ret = submit_bh(WRITE_BARRIER, bh); 2071 if (ret == -EOPNOTSUPP) { 2072 printk("btrfs: disabling barriers on dev %s\n", 2073 device->name); 2074 set_buffer_uptodate(bh); 2075 device->barriers = 0; 2076 get_bh(bh); 2077 lock_buffer(bh); 2078 ret = submit_bh(WRITE_SYNC, bh); 2079 } 2080 } else { 2081 ret = submit_bh(WRITE_SYNC, bh); 2082 } 2083 2084 if (!ret && wait) { 2085 wait_on_buffer(bh); 2086 if (!buffer_uptodate(bh)) 2087 errors++; 2088 } else if (ret) { 2089 errors++; 2090 } 2091 if (wait) 2092 brelse(bh); 2093 } 2094 return errors < i ? 0 : -1; 2095 } 2096 2097 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2098 { 2099 struct list_head *head = &root->fs_info->fs_devices->devices; 2100 struct btrfs_device *dev; 2101 struct btrfs_super_block *sb; 2102 struct btrfs_dev_item *dev_item; 2103 int ret; 2104 int do_barriers; 2105 int max_errors; 2106 int total_errors = 0; 2107 u64 flags; 2108 2109 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; 2110 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2111 2112 sb = &root->fs_info->super_for_commit; 2113 dev_item = &sb->dev_item; 2114 list_for_each_entry(dev, head, dev_list) { 2115 if (!dev->bdev) { 2116 total_errors++; 2117 continue; 2118 } 2119 if (!dev->in_fs_metadata || !dev->writeable) 2120 continue; 2121 2122 btrfs_set_stack_device_generation(dev_item, 0); 2123 btrfs_set_stack_device_type(dev_item, dev->type); 2124 btrfs_set_stack_device_id(dev_item, dev->devid); 2125 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2126 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2127 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 2128 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 2129 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 2130 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 2131 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2132 2133 flags = btrfs_super_flags(sb); 2134 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 2135 2136 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 2137 if (ret) 2138 total_errors++; 2139 } 2140 if (total_errors > max_errors) { 2141 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2142 total_errors); 2143 BUG(); 2144 } 2145 2146 total_errors = 0; 2147 list_for_each_entry(dev, head, dev_list) { 2148 if (!dev->bdev) 2149 continue; 2150 if (!dev->in_fs_metadata || !dev->writeable) 2151 continue; 2152 2153 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 2154 if (ret) 2155 total_errors++; 2156 } 2157 if (total_errors > max_errors) { 2158 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2159 total_errors); 2160 BUG(); 2161 } 2162 return 0; 2163 } 2164 2165 int write_ctree_super(struct btrfs_trans_handle *trans, 2166 struct btrfs_root *root, int max_mirrors) 2167 { 2168 int ret; 2169 2170 ret = write_all_supers(root, max_mirrors); 2171 return ret; 2172 } 2173 2174 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2175 { 2176 radix_tree_delete(&fs_info->fs_roots_radix, 2177 (unsigned long)root->root_key.objectid); 2178 if (root->anon_super.s_dev) { 2179 down_write(&root->anon_super.s_umount); 2180 kill_anon_super(&root->anon_super); 2181 } 2182 if (root->node) 2183 free_extent_buffer(root->node); 2184 if (root->commit_root) 2185 free_extent_buffer(root->commit_root); 2186 kfree(root->name); 2187 kfree(root); 2188 return 0; 2189 } 2190 2191 static int del_fs_roots(struct btrfs_fs_info *fs_info) 2192 { 2193 int ret; 2194 struct btrfs_root *gang[8]; 2195 int i; 2196 2197 while (1) { 2198 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2199 (void **)gang, 0, 2200 ARRAY_SIZE(gang)); 2201 if (!ret) 2202 break; 2203 for (i = 0; i < ret; i++) 2204 btrfs_free_fs_root(fs_info, gang[i]); 2205 } 2206 return 0; 2207 } 2208 2209 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2210 { 2211 u64 root_objectid = 0; 2212 struct btrfs_root *gang[8]; 2213 int i; 2214 int ret; 2215 2216 while (1) { 2217 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2218 (void **)gang, root_objectid, 2219 ARRAY_SIZE(gang)); 2220 if (!ret) 2221 break; 2222 for (i = 0; i < ret; i++) { 2223 root_objectid = gang[i]->root_key.objectid; 2224 ret = btrfs_find_dead_roots(fs_info->tree_root, 2225 root_objectid, gang[i]); 2226 BUG_ON(ret); 2227 btrfs_orphan_cleanup(gang[i]); 2228 } 2229 root_objectid++; 2230 } 2231 return 0; 2232 } 2233 2234 int btrfs_commit_super(struct btrfs_root *root) 2235 { 2236 struct btrfs_trans_handle *trans; 2237 int ret; 2238 2239 mutex_lock(&root->fs_info->cleaner_mutex); 2240 btrfs_clean_old_snapshots(root); 2241 mutex_unlock(&root->fs_info->cleaner_mutex); 2242 trans = btrfs_start_transaction(root, 1); 2243 ret = btrfs_commit_transaction(trans, root); 2244 BUG_ON(ret); 2245 /* run commit again to drop the original snapshot */ 2246 trans = btrfs_start_transaction(root, 1); 2247 btrfs_commit_transaction(trans, root); 2248 ret = btrfs_write_and_wait_transaction(NULL, root); 2249 BUG_ON(ret); 2250 2251 ret = write_ctree_super(NULL, root, 0); 2252 return ret; 2253 } 2254 2255 int close_ctree(struct btrfs_root *root) 2256 { 2257 struct btrfs_fs_info *fs_info = root->fs_info; 2258 int ret; 2259 2260 fs_info->closing = 1; 2261 smp_mb(); 2262 2263 kthread_stop(root->fs_info->transaction_kthread); 2264 kthread_stop(root->fs_info->cleaner_kthread); 2265 2266 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 2267 ret = btrfs_commit_super(root); 2268 if (ret) 2269 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 2270 } 2271 2272 if (fs_info->delalloc_bytes) { 2273 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 2274 (unsigned long long)fs_info->delalloc_bytes); 2275 } 2276 if (fs_info->total_ref_cache_size) { 2277 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 2278 (unsigned long long)fs_info->total_ref_cache_size); 2279 } 2280 2281 if (fs_info->extent_root->node) 2282 free_extent_buffer(fs_info->extent_root->node); 2283 2284 if (fs_info->tree_root->node) 2285 free_extent_buffer(fs_info->tree_root->node); 2286 2287 if (root->fs_info->chunk_root->node) 2288 free_extent_buffer(root->fs_info->chunk_root->node); 2289 2290 if (root->fs_info->dev_root->node) 2291 free_extent_buffer(root->fs_info->dev_root->node); 2292 2293 if (root->fs_info->csum_root->node) 2294 free_extent_buffer(root->fs_info->csum_root->node); 2295 2296 btrfs_free_block_groups(root->fs_info); 2297 2298 del_fs_roots(fs_info); 2299 2300 iput(fs_info->btree_inode); 2301 2302 btrfs_stop_workers(&fs_info->fixup_workers); 2303 btrfs_stop_workers(&fs_info->delalloc_workers); 2304 btrfs_stop_workers(&fs_info->workers); 2305 btrfs_stop_workers(&fs_info->endio_workers); 2306 btrfs_stop_workers(&fs_info->endio_meta_workers); 2307 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2308 btrfs_stop_workers(&fs_info->endio_write_workers); 2309 btrfs_stop_workers(&fs_info->submit_workers); 2310 2311 btrfs_close_devices(fs_info->fs_devices); 2312 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2313 2314 bdi_destroy(&fs_info->bdi); 2315 2316 kfree(fs_info->extent_root); 2317 kfree(fs_info->tree_root); 2318 kfree(fs_info->chunk_root); 2319 kfree(fs_info->dev_root); 2320 kfree(fs_info->csum_root); 2321 return 0; 2322 } 2323 2324 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) 2325 { 2326 int ret; 2327 struct inode *btree_inode = buf->first_page->mapping->host; 2328 2329 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf); 2330 if (!ret) 2331 return ret; 2332 2333 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 2334 parent_transid); 2335 return !ret; 2336 } 2337 2338 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 2339 { 2340 struct inode *btree_inode = buf->first_page->mapping->host; 2341 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, 2342 buf); 2343 } 2344 2345 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 2346 { 2347 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2348 u64 transid = btrfs_header_generation(buf); 2349 struct inode *btree_inode = root->fs_info->btree_inode; 2350 int was_dirty; 2351 2352 btrfs_assert_tree_locked(buf); 2353 if (transid != root->fs_info->generation) { 2354 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 2355 "found %llu running %llu\n", 2356 (unsigned long long)buf->start, 2357 (unsigned long long)transid, 2358 (unsigned long long)root->fs_info->generation); 2359 WARN_ON(1); 2360 } 2361 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 2362 buf); 2363 if (!was_dirty) { 2364 spin_lock(&root->fs_info->delalloc_lock); 2365 root->fs_info->dirty_metadata_bytes += buf->len; 2366 spin_unlock(&root->fs_info->delalloc_lock); 2367 } 2368 } 2369 2370 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 2371 { 2372 /* 2373 * looks as though older kernels can get into trouble with 2374 * this code, they end up stuck in balance_dirty_pages forever 2375 */ 2376 struct extent_io_tree *tree; 2377 u64 num_dirty; 2378 u64 start = 0; 2379 unsigned long thresh = 32 * 1024 * 1024; 2380 tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 2381 2382 if (current->flags & PF_MEMALLOC) 2383 return; 2384 2385 num_dirty = count_range_bits(tree, &start, (u64)-1, 2386 thresh, EXTENT_DIRTY); 2387 if (num_dirty > thresh) { 2388 balance_dirty_pages_ratelimited_nr( 2389 root->fs_info->btree_inode->i_mapping, 1); 2390 } 2391 return; 2392 } 2393 2394 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 2395 { 2396 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2397 int ret; 2398 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 2399 if (ret == 0) 2400 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 2401 return ret; 2402 } 2403 2404 int btree_lock_page_hook(struct page *page) 2405 { 2406 struct inode *inode = page->mapping->host; 2407 struct btrfs_root *root = BTRFS_I(inode)->root; 2408 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2409 struct extent_buffer *eb; 2410 unsigned long len; 2411 u64 bytenr = page_offset(page); 2412 2413 if (page->private == EXTENT_PAGE_PRIVATE) 2414 goto out; 2415 2416 len = page->private >> 2; 2417 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS); 2418 if (!eb) 2419 goto out; 2420 2421 btrfs_tree_lock(eb); 2422 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 2423 2424 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 2425 spin_lock(&root->fs_info->delalloc_lock); 2426 if (root->fs_info->dirty_metadata_bytes >= eb->len) 2427 root->fs_info->dirty_metadata_bytes -= eb->len; 2428 else 2429 WARN_ON(1); 2430 spin_unlock(&root->fs_info->delalloc_lock); 2431 } 2432 2433 btrfs_tree_unlock(eb); 2434 free_extent_buffer(eb); 2435 out: 2436 lock_page(page); 2437 return 0; 2438 } 2439 2440 static struct extent_io_ops btree_extent_io_ops = { 2441 .write_cache_pages_lock_hook = btree_lock_page_hook, 2442 .readpage_end_io_hook = btree_readpage_end_io_hook, 2443 .submit_bio_hook = btree_submit_bio_hook, 2444 /* note we're sharing with inode.c for the merge bio hook */ 2445 .merge_bio_hook = btrfs_merge_bio_hook, 2446 }; 2447