xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 78c99ba1)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include "compat.h"
30 #include "crc32c.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "volumes.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
38 #include "locking.h"
39 #include "ref-cache.h"
40 #include "tree-log.h"
41 #include "free-space-cache.h"
42 
43 static struct extent_io_ops btree_extent_io_ops;
44 static void end_workqueue_fn(struct btrfs_work *work);
45 
46 /*
47  * end_io_wq structs are used to do processing in task context when an IO is
48  * complete.  This is used during reads to verify checksums, and it is used
49  * by writes to insert metadata for new file extents after IO is complete.
50  */
51 struct end_io_wq {
52 	struct bio *bio;
53 	bio_end_io_t *end_io;
54 	void *private;
55 	struct btrfs_fs_info *info;
56 	int error;
57 	int metadata;
58 	struct list_head list;
59 	struct btrfs_work work;
60 };
61 
62 /*
63  * async submit bios are used to offload expensive checksumming
64  * onto the worker threads.  They checksum file and metadata bios
65  * just before they are sent down the IO stack.
66  */
67 struct async_submit_bio {
68 	struct inode *inode;
69 	struct bio *bio;
70 	struct list_head list;
71 	extent_submit_bio_hook_t *submit_bio_start;
72 	extent_submit_bio_hook_t *submit_bio_done;
73 	int rw;
74 	int mirror_num;
75 	unsigned long bio_flags;
76 	struct btrfs_work work;
77 };
78 
79 /* These are used to set the lockdep class on the extent buffer locks.
80  * The class is set by the readpage_end_io_hook after the buffer has
81  * passed csum validation but before the pages are unlocked.
82  *
83  * The lockdep class is also set by btrfs_init_new_buffer on freshly
84  * allocated blocks.
85  *
86  * The class is based on the level in the tree block, which allows lockdep
87  * to know that lower nodes nest inside the locks of higher nodes.
88  *
89  * We also add a check to make sure the highest level of the tree is
90  * the same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this
91  * code needs update as well.
92  */
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 # if BTRFS_MAX_LEVEL != 8
95 #  error
96 # endif
97 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
98 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
99 	/* leaf */
100 	"btrfs-extent-00",
101 	"btrfs-extent-01",
102 	"btrfs-extent-02",
103 	"btrfs-extent-03",
104 	"btrfs-extent-04",
105 	"btrfs-extent-05",
106 	"btrfs-extent-06",
107 	"btrfs-extent-07",
108 	/* highest possible level */
109 	"btrfs-extent-08",
110 };
111 #endif
112 
113 /*
114  * extents on the btree inode are pretty simple, there's one extent
115  * that covers the entire device
116  */
117 static struct extent_map *btree_get_extent(struct inode *inode,
118 		struct page *page, size_t page_offset, u64 start, u64 len,
119 		int create)
120 {
121 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
122 	struct extent_map *em;
123 	int ret;
124 
125 	spin_lock(&em_tree->lock);
126 	em = lookup_extent_mapping(em_tree, start, len);
127 	if (em) {
128 		em->bdev =
129 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
130 		spin_unlock(&em_tree->lock);
131 		goto out;
132 	}
133 	spin_unlock(&em_tree->lock);
134 
135 	em = alloc_extent_map(GFP_NOFS);
136 	if (!em) {
137 		em = ERR_PTR(-ENOMEM);
138 		goto out;
139 	}
140 	em->start = 0;
141 	em->len = (u64)-1;
142 	em->block_len = (u64)-1;
143 	em->block_start = 0;
144 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
145 
146 	spin_lock(&em_tree->lock);
147 	ret = add_extent_mapping(em_tree, em);
148 	if (ret == -EEXIST) {
149 		u64 failed_start = em->start;
150 		u64 failed_len = em->len;
151 
152 		free_extent_map(em);
153 		em = lookup_extent_mapping(em_tree, start, len);
154 		if (em) {
155 			ret = 0;
156 		} else {
157 			em = lookup_extent_mapping(em_tree, failed_start,
158 						   failed_len);
159 			ret = -EIO;
160 		}
161 	} else if (ret) {
162 		free_extent_map(em);
163 		em = NULL;
164 	}
165 	spin_unlock(&em_tree->lock);
166 
167 	if (ret)
168 		em = ERR_PTR(ret);
169 out:
170 	return em;
171 }
172 
173 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
174 {
175 	return btrfs_crc32c(seed, data, len);
176 }
177 
178 void btrfs_csum_final(u32 crc, char *result)
179 {
180 	*(__le32 *)result = ~cpu_to_le32(crc);
181 }
182 
183 /*
184  * compute the csum for a btree block, and either verify it or write it
185  * into the csum field of the block.
186  */
187 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
188 			   int verify)
189 {
190 	u16 csum_size =
191 		btrfs_super_csum_size(&root->fs_info->super_copy);
192 	char *result = NULL;
193 	unsigned long len;
194 	unsigned long cur_len;
195 	unsigned long offset = BTRFS_CSUM_SIZE;
196 	char *map_token = NULL;
197 	char *kaddr;
198 	unsigned long map_start;
199 	unsigned long map_len;
200 	int err;
201 	u32 crc = ~(u32)0;
202 	unsigned long inline_result;
203 
204 	len = buf->len - offset;
205 	while (len > 0) {
206 		err = map_private_extent_buffer(buf, offset, 32,
207 					&map_token, &kaddr,
208 					&map_start, &map_len, KM_USER0);
209 		if (err)
210 			return 1;
211 		cur_len = min(len, map_len - (offset - map_start));
212 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
213 				      crc, cur_len);
214 		len -= cur_len;
215 		offset += cur_len;
216 		unmap_extent_buffer(buf, map_token, KM_USER0);
217 	}
218 	if (csum_size > sizeof(inline_result)) {
219 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
220 		if (!result)
221 			return 1;
222 	} else {
223 		result = (char *)&inline_result;
224 	}
225 
226 	btrfs_csum_final(crc, result);
227 
228 	if (verify) {
229 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
230 			u32 val;
231 			u32 found = 0;
232 			memcpy(&found, result, csum_size);
233 
234 			read_extent_buffer(buf, &val, 0, csum_size);
235 			if (printk_ratelimit()) {
236 				printk(KERN_INFO "btrfs: %s checksum verify "
237 				       "failed on %llu wanted %X found %X "
238 				       "level %d\n",
239 				       root->fs_info->sb->s_id,
240 				       (unsigned long long)buf->start, val, found,
241 				       btrfs_header_level(buf));
242 			}
243 			if (result != (char *)&inline_result)
244 				kfree(result);
245 			return 1;
246 		}
247 	} else {
248 		write_extent_buffer(buf, result, 0, csum_size);
249 	}
250 	if (result != (char *)&inline_result)
251 		kfree(result);
252 	return 0;
253 }
254 
255 /*
256  * we can't consider a given block up to date unless the transid of the
257  * block matches the transid in the parent node's pointer.  This is how we
258  * detect blocks that either didn't get written at all or got written
259  * in the wrong place.
260  */
261 static int verify_parent_transid(struct extent_io_tree *io_tree,
262 				 struct extent_buffer *eb, u64 parent_transid)
263 {
264 	int ret;
265 
266 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
267 		return 0;
268 
269 	lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
270 	if (extent_buffer_uptodate(io_tree, eb) &&
271 	    btrfs_header_generation(eb) == parent_transid) {
272 		ret = 0;
273 		goto out;
274 	}
275 	if (printk_ratelimit()) {
276 		printk("parent transid verify failed on %llu wanted %llu "
277 		       "found %llu\n",
278 		       (unsigned long long)eb->start,
279 		       (unsigned long long)parent_transid,
280 		       (unsigned long long)btrfs_header_generation(eb));
281 	}
282 	ret = 1;
283 	clear_extent_buffer_uptodate(io_tree, eb);
284 out:
285 	unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
286 		      GFP_NOFS);
287 	return ret;
288 }
289 
290 /*
291  * helper to read a given tree block, doing retries as required when
292  * the checksums don't match and we have alternate mirrors to try.
293  */
294 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
295 					  struct extent_buffer *eb,
296 					  u64 start, u64 parent_transid)
297 {
298 	struct extent_io_tree *io_tree;
299 	int ret;
300 	int num_copies = 0;
301 	int mirror_num = 0;
302 
303 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
304 	while (1) {
305 		ret = read_extent_buffer_pages(io_tree, eb, start, 1,
306 					       btree_get_extent, mirror_num);
307 		if (!ret &&
308 		    !verify_parent_transid(io_tree, eb, parent_transid))
309 			return ret;
310 
311 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
312 					      eb->start, eb->len);
313 		if (num_copies == 1)
314 			return ret;
315 
316 		mirror_num++;
317 		if (mirror_num > num_copies)
318 			return ret;
319 	}
320 	return -EIO;
321 }
322 
323 /*
324  * checksum a dirty tree block before IO.  This has extra checks to make sure
325  * we only fill in the checksum field in the first page of a multi-page block
326  */
327 
328 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
329 {
330 	struct extent_io_tree *tree;
331 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
332 	u64 found_start;
333 	int found_level;
334 	unsigned long len;
335 	struct extent_buffer *eb;
336 	int ret;
337 
338 	tree = &BTRFS_I(page->mapping->host)->io_tree;
339 
340 	if (page->private == EXTENT_PAGE_PRIVATE)
341 		goto out;
342 	if (!page->private)
343 		goto out;
344 	len = page->private >> 2;
345 	WARN_ON(len == 0);
346 
347 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
348 	ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
349 					     btrfs_header_generation(eb));
350 	BUG_ON(ret);
351 	found_start = btrfs_header_bytenr(eb);
352 	if (found_start != start) {
353 		WARN_ON(1);
354 		goto err;
355 	}
356 	if (eb->first_page != page) {
357 		WARN_ON(1);
358 		goto err;
359 	}
360 	if (!PageUptodate(page)) {
361 		WARN_ON(1);
362 		goto err;
363 	}
364 	found_level = btrfs_header_level(eb);
365 
366 	csum_tree_block(root, eb, 0);
367 err:
368 	free_extent_buffer(eb);
369 out:
370 	return 0;
371 }
372 
373 static int check_tree_block_fsid(struct btrfs_root *root,
374 				 struct extent_buffer *eb)
375 {
376 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
377 	u8 fsid[BTRFS_UUID_SIZE];
378 	int ret = 1;
379 
380 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
381 			   BTRFS_FSID_SIZE);
382 	while (fs_devices) {
383 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
384 			ret = 0;
385 			break;
386 		}
387 		fs_devices = fs_devices->seed;
388 	}
389 	return ret;
390 }
391 
392 #ifdef CONFIG_DEBUG_LOCK_ALLOC
393 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
394 {
395 	lockdep_set_class_and_name(&eb->lock,
396 			   &btrfs_eb_class[level],
397 			   btrfs_eb_name[level]);
398 }
399 #endif
400 
401 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
402 			       struct extent_state *state)
403 {
404 	struct extent_io_tree *tree;
405 	u64 found_start;
406 	int found_level;
407 	unsigned long len;
408 	struct extent_buffer *eb;
409 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
410 	int ret = 0;
411 
412 	tree = &BTRFS_I(page->mapping->host)->io_tree;
413 	if (page->private == EXTENT_PAGE_PRIVATE)
414 		goto out;
415 	if (!page->private)
416 		goto out;
417 
418 	len = page->private >> 2;
419 	WARN_ON(len == 0);
420 
421 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
422 
423 	found_start = btrfs_header_bytenr(eb);
424 	if (found_start != start) {
425 		if (printk_ratelimit()) {
426 			printk(KERN_INFO "btrfs bad tree block start "
427 			       "%llu %llu\n",
428 			       (unsigned long long)found_start,
429 			       (unsigned long long)eb->start);
430 		}
431 		ret = -EIO;
432 		goto err;
433 	}
434 	if (eb->first_page != page) {
435 		printk(KERN_INFO "btrfs bad first page %lu %lu\n",
436 		       eb->first_page->index, page->index);
437 		WARN_ON(1);
438 		ret = -EIO;
439 		goto err;
440 	}
441 	if (check_tree_block_fsid(root, eb)) {
442 		if (printk_ratelimit()) {
443 			printk(KERN_INFO "btrfs bad fsid on block %llu\n",
444 			       (unsigned long long)eb->start);
445 		}
446 		ret = -EIO;
447 		goto err;
448 	}
449 	found_level = btrfs_header_level(eb);
450 
451 	btrfs_set_buffer_lockdep_class(eb, found_level);
452 
453 	ret = csum_tree_block(root, eb, 1);
454 	if (ret)
455 		ret = -EIO;
456 
457 	end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
458 	end = eb->start + end - 1;
459 err:
460 	free_extent_buffer(eb);
461 out:
462 	return ret;
463 }
464 
465 static void end_workqueue_bio(struct bio *bio, int err)
466 {
467 	struct end_io_wq *end_io_wq = bio->bi_private;
468 	struct btrfs_fs_info *fs_info;
469 
470 	fs_info = end_io_wq->info;
471 	end_io_wq->error = err;
472 	end_io_wq->work.func = end_workqueue_fn;
473 	end_io_wq->work.flags = 0;
474 
475 	if (bio->bi_rw & (1 << BIO_RW)) {
476 		if (end_io_wq->metadata)
477 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
478 					   &end_io_wq->work);
479 		else
480 			btrfs_queue_worker(&fs_info->endio_write_workers,
481 					   &end_io_wq->work);
482 	} else {
483 		if (end_io_wq->metadata)
484 			btrfs_queue_worker(&fs_info->endio_meta_workers,
485 					   &end_io_wq->work);
486 		else
487 			btrfs_queue_worker(&fs_info->endio_workers,
488 					   &end_io_wq->work);
489 	}
490 }
491 
492 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
493 			int metadata)
494 {
495 	struct end_io_wq *end_io_wq;
496 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
497 	if (!end_io_wq)
498 		return -ENOMEM;
499 
500 	end_io_wq->private = bio->bi_private;
501 	end_io_wq->end_io = bio->bi_end_io;
502 	end_io_wq->info = info;
503 	end_io_wq->error = 0;
504 	end_io_wq->bio = bio;
505 	end_io_wq->metadata = metadata;
506 
507 	bio->bi_private = end_io_wq;
508 	bio->bi_end_io = end_workqueue_bio;
509 	return 0;
510 }
511 
512 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
513 {
514 	unsigned long limit = min_t(unsigned long,
515 				    info->workers.max_workers,
516 				    info->fs_devices->open_devices);
517 	return 256 * limit;
518 }
519 
520 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
521 {
522 	return atomic_read(&info->nr_async_bios) >
523 		btrfs_async_submit_limit(info);
524 }
525 
526 static void run_one_async_start(struct btrfs_work *work)
527 {
528 	struct btrfs_fs_info *fs_info;
529 	struct async_submit_bio *async;
530 
531 	async = container_of(work, struct  async_submit_bio, work);
532 	fs_info = BTRFS_I(async->inode)->root->fs_info;
533 	async->submit_bio_start(async->inode, async->rw, async->bio,
534 			       async->mirror_num, async->bio_flags);
535 }
536 
537 static void run_one_async_done(struct btrfs_work *work)
538 {
539 	struct btrfs_fs_info *fs_info;
540 	struct async_submit_bio *async;
541 	int limit;
542 
543 	async = container_of(work, struct  async_submit_bio, work);
544 	fs_info = BTRFS_I(async->inode)->root->fs_info;
545 
546 	limit = btrfs_async_submit_limit(fs_info);
547 	limit = limit * 2 / 3;
548 
549 	atomic_dec(&fs_info->nr_async_submits);
550 
551 	if (atomic_read(&fs_info->nr_async_submits) < limit &&
552 	    waitqueue_active(&fs_info->async_submit_wait))
553 		wake_up(&fs_info->async_submit_wait);
554 
555 	async->submit_bio_done(async->inode, async->rw, async->bio,
556 			       async->mirror_num, async->bio_flags);
557 }
558 
559 static void run_one_async_free(struct btrfs_work *work)
560 {
561 	struct async_submit_bio *async;
562 
563 	async = container_of(work, struct  async_submit_bio, work);
564 	kfree(async);
565 }
566 
567 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
568 			int rw, struct bio *bio, int mirror_num,
569 			unsigned long bio_flags,
570 			extent_submit_bio_hook_t *submit_bio_start,
571 			extent_submit_bio_hook_t *submit_bio_done)
572 {
573 	struct async_submit_bio *async;
574 
575 	async = kmalloc(sizeof(*async), GFP_NOFS);
576 	if (!async)
577 		return -ENOMEM;
578 
579 	async->inode = inode;
580 	async->rw = rw;
581 	async->bio = bio;
582 	async->mirror_num = mirror_num;
583 	async->submit_bio_start = submit_bio_start;
584 	async->submit_bio_done = submit_bio_done;
585 
586 	async->work.func = run_one_async_start;
587 	async->work.ordered_func = run_one_async_done;
588 	async->work.ordered_free = run_one_async_free;
589 
590 	async->work.flags = 0;
591 	async->bio_flags = bio_flags;
592 
593 	atomic_inc(&fs_info->nr_async_submits);
594 
595 	if (rw & (1 << BIO_RW_SYNCIO))
596 		btrfs_set_work_high_prio(&async->work);
597 
598 	btrfs_queue_worker(&fs_info->workers, &async->work);
599 
600 	while (atomic_read(&fs_info->async_submit_draining) &&
601 	      atomic_read(&fs_info->nr_async_submits)) {
602 		wait_event(fs_info->async_submit_wait,
603 			   (atomic_read(&fs_info->nr_async_submits) == 0));
604 	}
605 
606 	return 0;
607 }
608 
609 static int btree_csum_one_bio(struct bio *bio)
610 {
611 	struct bio_vec *bvec = bio->bi_io_vec;
612 	int bio_index = 0;
613 	struct btrfs_root *root;
614 
615 	WARN_ON(bio->bi_vcnt <= 0);
616 	while (bio_index < bio->bi_vcnt) {
617 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
618 		csum_dirty_buffer(root, bvec->bv_page);
619 		bio_index++;
620 		bvec++;
621 	}
622 	return 0;
623 }
624 
625 static int __btree_submit_bio_start(struct inode *inode, int rw,
626 				    struct bio *bio, int mirror_num,
627 				    unsigned long bio_flags)
628 {
629 	/*
630 	 * when we're called for a write, we're already in the async
631 	 * submission context.  Just jump into btrfs_map_bio
632 	 */
633 	btree_csum_one_bio(bio);
634 	return 0;
635 }
636 
637 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
638 				 int mirror_num, unsigned long bio_flags)
639 {
640 	/*
641 	 * when we're called for a write, we're already in the async
642 	 * submission context.  Just jump into btrfs_map_bio
643 	 */
644 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
645 }
646 
647 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
648 				 int mirror_num, unsigned long bio_flags)
649 {
650 	int ret;
651 
652 	ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
653 					  bio, 1);
654 	BUG_ON(ret);
655 
656 	if (!(rw & (1 << BIO_RW))) {
657 		/*
658 		 * called for a read, do the setup so that checksum validation
659 		 * can happen in the async kernel threads
660 		 */
661 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
662 				     mirror_num, 0);
663 	}
664 
665 	/*
666 	 * kthread helpers are used to submit writes so that checksumming
667 	 * can happen in parallel across all CPUs
668 	 */
669 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
670 				   inode, rw, bio, mirror_num, 0,
671 				   __btree_submit_bio_start,
672 				   __btree_submit_bio_done);
673 }
674 
675 static int btree_writepage(struct page *page, struct writeback_control *wbc)
676 {
677 	struct extent_io_tree *tree;
678 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
679 	struct extent_buffer *eb;
680 	int was_dirty;
681 
682 	tree = &BTRFS_I(page->mapping->host)->io_tree;
683 	if (!(current->flags & PF_MEMALLOC)) {
684 		return extent_write_full_page(tree, page,
685 					      btree_get_extent, wbc);
686 	}
687 
688 	redirty_page_for_writepage(wbc, page);
689 	eb = btrfs_find_tree_block(root, page_offset(page),
690 				      PAGE_CACHE_SIZE);
691 	WARN_ON(!eb);
692 
693 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
694 	if (!was_dirty) {
695 		spin_lock(&root->fs_info->delalloc_lock);
696 		root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
697 		spin_unlock(&root->fs_info->delalloc_lock);
698 	}
699 	free_extent_buffer(eb);
700 
701 	unlock_page(page);
702 	return 0;
703 }
704 
705 static int btree_writepages(struct address_space *mapping,
706 			    struct writeback_control *wbc)
707 {
708 	struct extent_io_tree *tree;
709 	tree = &BTRFS_I(mapping->host)->io_tree;
710 	if (wbc->sync_mode == WB_SYNC_NONE) {
711 		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
712 		u64 num_dirty;
713 		unsigned long thresh = 32 * 1024 * 1024;
714 
715 		if (wbc->for_kupdate)
716 			return 0;
717 
718 		/* this is a bit racy, but that's ok */
719 		num_dirty = root->fs_info->dirty_metadata_bytes;
720 		if (num_dirty < thresh)
721 			return 0;
722 	}
723 	return extent_writepages(tree, mapping, btree_get_extent, wbc);
724 }
725 
726 static int btree_readpage(struct file *file, struct page *page)
727 {
728 	struct extent_io_tree *tree;
729 	tree = &BTRFS_I(page->mapping->host)->io_tree;
730 	return extent_read_full_page(tree, page, btree_get_extent);
731 }
732 
733 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
734 {
735 	struct extent_io_tree *tree;
736 	struct extent_map_tree *map;
737 	int ret;
738 
739 	if (PageWriteback(page) || PageDirty(page))
740 		return 0;
741 
742 	tree = &BTRFS_I(page->mapping->host)->io_tree;
743 	map = &BTRFS_I(page->mapping->host)->extent_tree;
744 
745 	ret = try_release_extent_state(map, tree, page, gfp_flags);
746 	if (!ret)
747 		return 0;
748 
749 	ret = try_release_extent_buffer(tree, page);
750 	if (ret == 1) {
751 		ClearPagePrivate(page);
752 		set_page_private(page, 0);
753 		page_cache_release(page);
754 	}
755 
756 	return ret;
757 }
758 
759 static void btree_invalidatepage(struct page *page, unsigned long offset)
760 {
761 	struct extent_io_tree *tree;
762 	tree = &BTRFS_I(page->mapping->host)->io_tree;
763 	extent_invalidatepage(tree, page, offset);
764 	btree_releasepage(page, GFP_NOFS);
765 	if (PagePrivate(page)) {
766 		printk(KERN_WARNING "btrfs warning page private not zero "
767 		       "on page %llu\n", (unsigned long long)page_offset(page));
768 		ClearPagePrivate(page);
769 		set_page_private(page, 0);
770 		page_cache_release(page);
771 	}
772 }
773 
774 static struct address_space_operations btree_aops = {
775 	.readpage	= btree_readpage,
776 	.writepage	= btree_writepage,
777 	.writepages	= btree_writepages,
778 	.releasepage	= btree_releasepage,
779 	.invalidatepage = btree_invalidatepage,
780 	.sync_page	= block_sync_page,
781 };
782 
783 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
784 			 u64 parent_transid)
785 {
786 	struct extent_buffer *buf = NULL;
787 	struct inode *btree_inode = root->fs_info->btree_inode;
788 	int ret = 0;
789 
790 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
791 	if (!buf)
792 		return 0;
793 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
794 				 buf, 0, 0, btree_get_extent, 0);
795 	free_extent_buffer(buf);
796 	return ret;
797 }
798 
799 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
800 					    u64 bytenr, u32 blocksize)
801 {
802 	struct inode *btree_inode = root->fs_info->btree_inode;
803 	struct extent_buffer *eb;
804 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
805 				bytenr, blocksize, GFP_NOFS);
806 	return eb;
807 }
808 
809 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
810 						 u64 bytenr, u32 blocksize)
811 {
812 	struct inode *btree_inode = root->fs_info->btree_inode;
813 	struct extent_buffer *eb;
814 
815 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
816 				 bytenr, blocksize, NULL, GFP_NOFS);
817 	return eb;
818 }
819 
820 
821 int btrfs_write_tree_block(struct extent_buffer *buf)
822 {
823 	return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
824 				      buf->start + buf->len - 1, WB_SYNC_ALL);
825 }
826 
827 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
828 {
829 	return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
830 				  buf->start, buf->start + buf->len - 1);
831 }
832 
833 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
834 				      u32 blocksize, u64 parent_transid)
835 {
836 	struct extent_buffer *buf = NULL;
837 	struct inode *btree_inode = root->fs_info->btree_inode;
838 	struct extent_io_tree *io_tree;
839 	int ret;
840 
841 	io_tree = &BTRFS_I(btree_inode)->io_tree;
842 
843 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
844 	if (!buf)
845 		return NULL;
846 
847 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
848 
849 	if (ret == 0)
850 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
851 	return buf;
852 
853 }
854 
855 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
856 		     struct extent_buffer *buf)
857 {
858 	struct inode *btree_inode = root->fs_info->btree_inode;
859 	if (btrfs_header_generation(buf) ==
860 	    root->fs_info->running_transaction->transid) {
861 		btrfs_assert_tree_locked(buf);
862 
863 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
864 			spin_lock(&root->fs_info->delalloc_lock);
865 			if (root->fs_info->dirty_metadata_bytes >= buf->len)
866 				root->fs_info->dirty_metadata_bytes -= buf->len;
867 			else
868 				WARN_ON(1);
869 			spin_unlock(&root->fs_info->delalloc_lock);
870 		}
871 
872 		/* ugh, clear_extent_buffer_dirty needs to lock the page */
873 		btrfs_set_lock_blocking(buf);
874 		clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
875 					  buf);
876 	}
877 	return 0;
878 }
879 
880 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
881 			u32 stripesize, struct btrfs_root *root,
882 			struct btrfs_fs_info *fs_info,
883 			u64 objectid)
884 {
885 	root->node = NULL;
886 	root->commit_root = NULL;
887 	root->ref_tree = NULL;
888 	root->sectorsize = sectorsize;
889 	root->nodesize = nodesize;
890 	root->leafsize = leafsize;
891 	root->stripesize = stripesize;
892 	root->ref_cows = 0;
893 	root->track_dirty = 0;
894 
895 	root->fs_info = fs_info;
896 	root->objectid = objectid;
897 	root->last_trans = 0;
898 	root->highest_inode = 0;
899 	root->last_inode_alloc = 0;
900 	root->name = NULL;
901 	root->in_sysfs = 0;
902 
903 	INIT_LIST_HEAD(&root->dirty_list);
904 	INIT_LIST_HEAD(&root->orphan_list);
905 	INIT_LIST_HEAD(&root->dead_list);
906 	spin_lock_init(&root->node_lock);
907 	spin_lock_init(&root->list_lock);
908 	mutex_init(&root->objectid_mutex);
909 	mutex_init(&root->log_mutex);
910 	init_waitqueue_head(&root->log_writer_wait);
911 	init_waitqueue_head(&root->log_commit_wait[0]);
912 	init_waitqueue_head(&root->log_commit_wait[1]);
913 	atomic_set(&root->log_commit[0], 0);
914 	atomic_set(&root->log_commit[1], 0);
915 	atomic_set(&root->log_writers, 0);
916 	root->log_batch = 0;
917 	root->log_transid = 0;
918 	extent_io_tree_init(&root->dirty_log_pages,
919 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
920 
921 	btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
922 	root->ref_tree = &root->ref_tree_struct;
923 
924 	memset(&root->root_key, 0, sizeof(root->root_key));
925 	memset(&root->root_item, 0, sizeof(root->root_item));
926 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
927 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
928 	root->defrag_trans_start = fs_info->generation;
929 	init_completion(&root->kobj_unregister);
930 	root->defrag_running = 0;
931 	root->defrag_level = 0;
932 	root->root_key.objectid = objectid;
933 	root->anon_super.s_root = NULL;
934 	root->anon_super.s_dev = 0;
935 	INIT_LIST_HEAD(&root->anon_super.s_list);
936 	INIT_LIST_HEAD(&root->anon_super.s_instances);
937 	init_rwsem(&root->anon_super.s_umount);
938 
939 	return 0;
940 }
941 
942 static int find_and_setup_root(struct btrfs_root *tree_root,
943 			       struct btrfs_fs_info *fs_info,
944 			       u64 objectid,
945 			       struct btrfs_root *root)
946 {
947 	int ret;
948 	u32 blocksize;
949 	u64 generation;
950 
951 	__setup_root(tree_root->nodesize, tree_root->leafsize,
952 		     tree_root->sectorsize, tree_root->stripesize,
953 		     root, fs_info, objectid);
954 	ret = btrfs_find_last_root(tree_root, objectid,
955 				   &root->root_item, &root->root_key);
956 	BUG_ON(ret);
957 
958 	generation = btrfs_root_generation(&root->root_item);
959 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
960 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
961 				     blocksize, generation);
962 	BUG_ON(!root->node);
963 	return 0;
964 }
965 
966 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
967 			     struct btrfs_fs_info *fs_info)
968 {
969 	struct extent_buffer *eb;
970 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
971 	u64 start = 0;
972 	u64 end = 0;
973 	int ret;
974 
975 	if (!log_root_tree)
976 		return 0;
977 
978 	while (1) {
979 		ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
980 				    0, &start, &end, EXTENT_DIRTY);
981 		if (ret)
982 			break;
983 
984 		clear_extent_dirty(&log_root_tree->dirty_log_pages,
985 				   start, end, GFP_NOFS);
986 	}
987 	eb = fs_info->log_root_tree->node;
988 
989 	WARN_ON(btrfs_header_level(eb) != 0);
990 	WARN_ON(btrfs_header_nritems(eb) != 0);
991 
992 	ret = btrfs_free_reserved_extent(fs_info->tree_root,
993 				eb->start, eb->len);
994 	BUG_ON(ret);
995 
996 	free_extent_buffer(eb);
997 	kfree(fs_info->log_root_tree);
998 	fs_info->log_root_tree = NULL;
999 	return 0;
1000 }
1001 
1002 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1003 					 struct btrfs_fs_info *fs_info)
1004 {
1005 	struct btrfs_root *root;
1006 	struct btrfs_root *tree_root = fs_info->tree_root;
1007 	struct extent_buffer *leaf;
1008 
1009 	root = kzalloc(sizeof(*root), GFP_NOFS);
1010 	if (!root)
1011 		return ERR_PTR(-ENOMEM);
1012 
1013 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1014 		     tree_root->sectorsize, tree_root->stripesize,
1015 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1016 
1017 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1018 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1019 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1020 	/*
1021 	 * log trees do not get reference counted because they go away
1022 	 * before a real commit is actually done.  They do store pointers
1023 	 * to file data extents, and those reference counts still get
1024 	 * updated (along with back refs to the log tree).
1025 	 */
1026 	root->ref_cows = 0;
1027 
1028 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1029 				      0, BTRFS_TREE_LOG_OBJECTID,
1030 				      trans->transid, 0, 0, 0);
1031 	if (IS_ERR(leaf)) {
1032 		kfree(root);
1033 		return ERR_CAST(leaf);
1034 	}
1035 
1036 	root->node = leaf;
1037 	btrfs_set_header_nritems(root->node, 0);
1038 	btrfs_set_header_level(root->node, 0);
1039 	btrfs_set_header_bytenr(root->node, root->node->start);
1040 	btrfs_set_header_generation(root->node, trans->transid);
1041 	btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID);
1042 
1043 	write_extent_buffer(root->node, root->fs_info->fsid,
1044 			    (unsigned long)btrfs_header_fsid(root->node),
1045 			    BTRFS_FSID_SIZE);
1046 	btrfs_mark_buffer_dirty(root->node);
1047 	btrfs_tree_unlock(root->node);
1048 	return root;
1049 }
1050 
1051 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1052 			     struct btrfs_fs_info *fs_info)
1053 {
1054 	struct btrfs_root *log_root;
1055 
1056 	log_root = alloc_log_tree(trans, fs_info);
1057 	if (IS_ERR(log_root))
1058 		return PTR_ERR(log_root);
1059 	WARN_ON(fs_info->log_root_tree);
1060 	fs_info->log_root_tree = log_root;
1061 	return 0;
1062 }
1063 
1064 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1065 		       struct btrfs_root *root)
1066 {
1067 	struct btrfs_root *log_root;
1068 	struct btrfs_inode_item *inode_item;
1069 
1070 	log_root = alloc_log_tree(trans, root->fs_info);
1071 	if (IS_ERR(log_root))
1072 		return PTR_ERR(log_root);
1073 
1074 	log_root->last_trans = trans->transid;
1075 	log_root->root_key.offset = root->root_key.objectid;
1076 
1077 	inode_item = &log_root->root_item.inode;
1078 	inode_item->generation = cpu_to_le64(1);
1079 	inode_item->size = cpu_to_le64(3);
1080 	inode_item->nlink = cpu_to_le32(1);
1081 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1082 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1083 
1084 	btrfs_set_root_bytenr(&log_root->root_item, log_root->node->start);
1085 	btrfs_set_root_generation(&log_root->root_item, trans->transid);
1086 
1087 	WARN_ON(root->log_root);
1088 	root->log_root = log_root;
1089 	root->log_transid = 0;
1090 	return 0;
1091 }
1092 
1093 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1094 					       struct btrfs_key *location)
1095 {
1096 	struct btrfs_root *root;
1097 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1098 	struct btrfs_path *path;
1099 	struct extent_buffer *l;
1100 	u64 highest_inode;
1101 	u64 generation;
1102 	u32 blocksize;
1103 	int ret = 0;
1104 
1105 	root = kzalloc(sizeof(*root), GFP_NOFS);
1106 	if (!root)
1107 		return ERR_PTR(-ENOMEM);
1108 	if (location->offset == (u64)-1) {
1109 		ret = find_and_setup_root(tree_root, fs_info,
1110 					  location->objectid, root);
1111 		if (ret) {
1112 			kfree(root);
1113 			return ERR_PTR(ret);
1114 		}
1115 		goto insert;
1116 	}
1117 
1118 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1119 		     tree_root->sectorsize, tree_root->stripesize,
1120 		     root, fs_info, location->objectid);
1121 
1122 	path = btrfs_alloc_path();
1123 	BUG_ON(!path);
1124 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1125 	if (ret != 0) {
1126 		if (ret > 0)
1127 			ret = -ENOENT;
1128 		goto out;
1129 	}
1130 	l = path->nodes[0];
1131 	read_extent_buffer(l, &root->root_item,
1132 	       btrfs_item_ptr_offset(l, path->slots[0]),
1133 	       sizeof(root->root_item));
1134 	memcpy(&root->root_key, location, sizeof(*location));
1135 	ret = 0;
1136 out:
1137 	btrfs_release_path(root, path);
1138 	btrfs_free_path(path);
1139 	if (ret) {
1140 		kfree(root);
1141 		return ERR_PTR(ret);
1142 	}
1143 	generation = btrfs_root_generation(&root->root_item);
1144 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1145 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1146 				     blocksize, generation);
1147 	BUG_ON(!root->node);
1148 insert:
1149 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1150 		root->ref_cows = 1;
1151 		ret = btrfs_find_highest_inode(root, &highest_inode);
1152 		if (ret == 0) {
1153 			root->highest_inode = highest_inode;
1154 			root->last_inode_alloc = highest_inode;
1155 		}
1156 	}
1157 	return root;
1158 }
1159 
1160 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1161 					u64 root_objectid)
1162 {
1163 	struct btrfs_root *root;
1164 
1165 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1166 		return fs_info->tree_root;
1167 	if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1168 		return fs_info->extent_root;
1169 
1170 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1171 				 (unsigned long)root_objectid);
1172 	return root;
1173 }
1174 
1175 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1176 					      struct btrfs_key *location)
1177 {
1178 	struct btrfs_root *root;
1179 	int ret;
1180 
1181 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1182 		return fs_info->tree_root;
1183 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1184 		return fs_info->extent_root;
1185 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1186 		return fs_info->chunk_root;
1187 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1188 		return fs_info->dev_root;
1189 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1190 		return fs_info->csum_root;
1191 
1192 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1193 				 (unsigned long)location->objectid);
1194 	if (root)
1195 		return root;
1196 
1197 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1198 	if (IS_ERR(root))
1199 		return root;
1200 
1201 	set_anon_super(&root->anon_super, NULL);
1202 
1203 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1204 				(unsigned long)root->root_key.objectid,
1205 				root);
1206 	if (ret) {
1207 		free_extent_buffer(root->node);
1208 		kfree(root);
1209 		return ERR_PTR(ret);
1210 	}
1211 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
1212 		ret = btrfs_find_dead_roots(fs_info->tree_root,
1213 					    root->root_key.objectid, root);
1214 		BUG_ON(ret);
1215 		btrfs_orphan_cleanup(root);
1216 	}
1217 	return root;
1218 }
1219 
1220 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1221 				      struct btrfs_key *location,
1222 				      const char *name, int namelen)
1223 {
1224 	struct btrfs_root *root;
1225 	int ret;
1226 
1227 	root = btrfs_read_fs_root_no_name(fs_info, location);
1228 	if (!root)
1229 		return NULL;
1230 
1231 	if (root->in_sysfs)
1232 		return root;
1233 
1234 	ret = btrfs_set_root_name(root, name, namelen);
1235 	if (ret) {
1236 		free_extent_buffer(root->node);
1237 		kfree(root);
1238 		return ERR_PTR(ret);
1239 	}
1240 #if 0
1241 	ret = btrfs_sysfs_add_root(root);
1242 	if (ret) {
1243 		free_extent_buffer(root->node);
1244 		kfree(root->name);
1245 		kfree(root);
1246 		return ERR_PTR(ret);
1247 	}
1248 #endif
1249 	root->in_sysfs = 1;
1250 	return root;
1251 }
1252 
1253 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1254 {
1255 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1256 	int ret = 0;
1257 	struct btrfs_device *device;
1258 	struct backing_dev_info *bdi;
1259 
1260 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1261 		if (!device->bdev)
1262 			continue;
1263 		bdi = blk_get_backing_dev_info(device->bdev);
1264 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1265 			ret = 1;
1266 			break;
1267 		}
1268 	}
1269 	return ret;
1270 }
1271 
1272 /*
1273  * this unplugs every device on the box, and it is only used when page
1274  * is null
1275  */
1276 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1277 {
1278 	struct btrfs_device *device;
1279 	struct btrfs_fs_info *info;
1280 
1281 	info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1282 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1283 		if (!device->bdev)
1284 			continue;
1285 
1286 		bdi = blk_get_backing_dev_info(device->bdev);
1287 		if (bdi->unplug_io_fn)
1288 			bdi->unplug_io_fn(bdi, page);
1289 	}
1290 }
1291 
1292 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1293 {
1294 	struct inode *inode;
1295 	struct extent_map_tree *em_tree;
1296 	struct extent_map *em;
1297 	struct address_space *mapping;
1298 	u64 offset;
1299 
1300 	/* the generic O_DIRECT read code does this */
1301 	if (1 || !page) {
1302 		__unplug_io_fn(bdi, page);
1303 		return;
1304 	}
1305 
1306 	/*
1307 	 * page->mapping may change at any time.  Get a consistent copy
1308 	 * and use that for everything below
1309 	 */
1310 	smp_mb();
1311 	mapping = page->mapping;
1312 	if (!mapping)
1313 		return;
1314 
1315 	inode = mapping->host;
1316 
1317 	/*
1318 	 * don't do the expensive searching for a small number of
1319 	 * devices
1320 	 */
1321 	if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1322 		__unplug_io_fn(bdi, page);
1323 		return;
1324 	}
1325 
1326 	offset = page_offset(page);
1327 
1328 	em_tree = &BTRFS_I(inode)->extent_tree;
1329 	spin_lock(&em_tree->lock);
1330 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1331 	spin_unlock(&em_tree->lock);
1332 	if (!em) {
1333 		__unplug_io_fn(bdi, page);
1334 		return;
1335 	}
1336 
1337 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1338 		free_extent_map(em);
1339 		__unplug_io_fn(bdi, page);
1340 		return;
1341 	}
1342 	offset = offset - em->start;
1343 	btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1344 			  em->block_start + offset, page);
1345 	free_extent_map(em);
1346 }
1347 
1348 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1349 {
1350 	bdi_init(bdi);
1351 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1352 	bdi->state		= 0;
1353 	bdi->capabilities	= default_backing_dev_info.capabilities;
1354 	bdi->unplug_io_fn	= btrfs_unplug_io_fn;
1355 	bdi->unplug_io_data	= info;
1356 	bdi->congested_fn	= btrfs_congested_fn;
1357 	bdi->congested_data	= info;
1358 	return 0;
1359 }
1360 
1361 static int bio_ready_for_csum(struct bio *bio)
1362 {
1363 	u64 length = 0;
1364 	u64 buf_len = 0;
1365 	u64 start = 0;
1366 	struct page *page;
1367 	struct extent_io_tree *io_tree = NULL;
1368 	struct btrfs_fs_info *info = NULL;
1369 	struct bio_vec *bvec;
1370 	int i;
1371 	int ret;
1372 
1373 	bio_for_each_segment(bvec, bio, i) {
1374 		page = bvec->bv_page;
1375 		if (page->private == EXTENT_PAGE_PRIVATE) {
1376 			length += bvec->bv_len;
1377 			continue;
1378 		}
1379 		if (!page->private) {
1380 			length += bvec->bv_len;
1381 			continue;
1382 		}
1383 		length = bvec->bv_len;
1384 		buf_len = page->private >> 2;
1385 		start = page_offset(page) + bvec->bv_offset;
1386 		io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1387 		info = BTRFS_I(page->mapping->host)->root->fs_info;
1388 	}
1389 	/* are we fully contained in this bio? */
1390 	if (buf_len <= length)
1391 		return 1;
1392 
1393 	ret = extent_range_uptodate(io_tree, start + length,
1394 				    start + buf_len - 1);
1395 	return ret;
1396 }
1397 
1398 /*
1399  * called by the kthread helper functions to finally call the bio end_io
1400  * functions.  This is where read checksum verification actually happens
1401  */
1402 static void end_workqueue_fn(struct btrfs_work *work)
1403 {
1404 	struct bio *bio;
1405 	struct end_io_wq *end_io_wq;
1406 	struct btrfs_fs_info *fs_info;
1407 	int error;
1408 
1409 	end_io_wq = container_of(work, struct end_io_wq, work);
1410 	bio = end_io_wq->bio;
1411 	fs_info = end_io_wq->info;
1412 
1413 	/* metadata bio reads are special because the whole tree block must
1414 	 * be checksummed at once.  This makes sure the entire block is in
1415 	 * ram and up to date before trying to verify things.  For
1416 	 * blocksize <= pagesize, it is basically a noop
1417 	 */
1418 	if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1419 	    !bio_ready_for_csum(bio)) {
1420 		btrfs_queue_worker(&fs_info->endio_meta_workers,
1421 				   &end_io_wq->work);
1422 		return;
1423 	}
1424 	error = end_io_wq->error;
1425 	bio->bi_private = end_io_wq->private;
1426 	bio->bi_end_io = end_io_wq->end_io;
1427 	kfree(end_io_wq);
1428 	bio_endio(bio, error);
1429 }
1430 
1431 static int cleaner_kthread(void *arg)
1432 {
1433 	struct btrfs_root *root = arg;
1434 
1435 	do {
1436 		smp_mb();
1437 		if (root->fs_info->closing)
1438 			break;
1439 
1440 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1441 		mutex_lock(&root->fs_info->cleaner_mutex);
1442 		btrfs_clean_old_snapshots(root);
1443 		mutex_unlock(&root->fs_info->cleaner_mutex);
1444 
1445 		if (freezing(current)) {
1446 			refrigerator();
1447 		} else {
1448 			smp_mb();
1449 			if (root->fs_info->closing)
1450 				break;
1451 			set_current_state(TASK_INTERRUPTIBLE);
1452 			schedule();
1453 			__set_current_state(TASK_RUNNING);
1454 		}
1455 	} while (!kthread_should_stop());
1456 	return 0;
1457 }
1458 
1459 static int transaction_kthread(void *arg)
1460 {
1461 	struct btrfs_root *root = arg;
1462 	struct btrfs_trans_handle *trans;
1463 	struct btrfs_transaction *cur;
1464 	unsigned long now;
1465 	unsigned long delay;
1466 	int ret;
1467 
1468 	do {
1469 		smp_mb();
1470 		if (root->fs_info->closing)
1471 			break;
1472 
1473 		delay = HZ * 30;
1474 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1475 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1476 
1477 		mutex_lock(&root->fs_info->trans_mutex);
1478 		cur = root->fs_info->running_transaction;
1479 		if (!cur) {
1480 			mutex_unlock(&root->fs_info->trans_mutex);
1481 			goto sleep;
1482 		}
1483 
1484 		now = get_seconds();
1485 		if (now < cur->start_time || now - cur->start_time < 30) {
1486 			mutex_unlock(&root->fs_info->trans_mutex);
1487 			delay = HZ * 5;
1488 			goto sleep;
1489 		}
1490 		mutex_unlock(&root->fs_info->trans_mutex);
1491 		trans = btrfs_start_transaction(root, 1);
1492 		ret = btrfs_commit_transaction(trans, root);
1493 
1494 sleep:
1495 		wake_up_process(root->fs_info->cleaner_kthread);
1496 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1497 
1498 		if (freezing(current)) {
1499 			refrigerator();
1500 		} else {
1501 			if (root->fs_info->closing)
1502 				break;
1503 			set_current_state(TASK_INTERRUPTIBLE);
1504 			schedule_timeout(delay);
1505 			__set_current_state(TASK_RUNNING);
1506 		}
1507 	} while (!kthread_should_stop());
1508 	return 0;
1509 }
1510 
1511 struct btrfs_root *open_ctree(struct super_block *sb,
1512 			      struct btrfs_fs_devices *fs_devices,
1513 			      char *options)
1514 {
1515 	u32 sectorsize;
1516 	u32 nodesize;
1517 	u32 leafsize;
1518 	u32 blocksize;
1519 	u32 stripesize;
1520 	u64 generation;
1521 	u64 features;
1522 	struct btrfs_key location;
1523 	struct buffer_head *bh;
1524 	struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1525 						 GFP_NOFS);
1526 	struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1527 						 GFP_NOFS);
1528 	struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1529 					       GFP_NOFS);
1530 	struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1531 						GFP_NOFS);
1532 	struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1533 						GFP_NOFS);
1534 	struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1535 					      GFP_NOFS);
1536 	struct btrfs_root *log_tree_root;
1537 
1538 	int ret;
1539 	int err = -EINVAL;
1540 
1541 	struct btrfs_super_block *disk_super;
1542 
1543 	if (!extent_root || !tree_root || !fs_info ||
1544 	    !chunk_root || !dev_root || !csum_root) {
1545 		err = -ENOMEM;
1546 		goto fail;
1547 	}
1548 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1549 	INIT_LIST_HEAD(&fs_info->trans_list);
1550 	INIT_LIST_HEAD(&fs_info->dead_roots);
1551 	INIT_LIST_HEAD(&fs_info->hashers);
1552 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1553 	INIT_LIST_HEAD(&fs_info->ordered_operations);
1554 	spin_lock_init(&fs_info->delalloc_lock);
1555 	spin_lock_init(&fs_info->new_trans_lock);
1556 	spin_lock_init(&fs_info->ref_cache_lock);
1557 
1558 	init_completion(&fs_info->kobj_unregister);
1559 	fs_info->tree_root = tree_root;
1560 	fs_info->extent_root = extent_root;
1561 	fs_info->csum_root = csum_root;
1562 	fs_info->chunk_root = chunk_root;
1563 	fs_info->dev_root = dev_root;
1564 	fs_info->fs_devices = fs_devices;
1565 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1566 	INIT_LIST_HEAD(&fs_info->space_info);
1567 	btrfs_mapping_init(&fs_info->mapping_tree);
1568 	atomic_set(&fs_info->nr_async_submits, 0);
1569 	atomic_set(&fs_info->async_delalloc_pages, 0);
1570 	atomic_set(&fs_info->async_submit_draining, 0);
1571 	atomic_set(&fs_info->nr_async_bios, 0);
1572 	atomic_set(&fs_info->throttles, 0);
1573 	atomic_set(&fs_info->throttle_gen, 0);
1574 	fs_info->sb = sb;
1575 	fs_info->max_extent = (u64)-1;
1576 	fs_info->max_inline = 8192 * 1024;
1577 	setup_bdi(fs_info, &fs_info->bdi);
1578 	fs_info->btree_inode = new_inode(sb);
1579 	fs_info->btree_inode->i_ino = 1;
1580 	fs_info->btree_inode->i_nlink = 1;
1581 	fs_info->metadata_ratio = 8;
1582 
1583 	fs_info->thread_pool_size = min_t(unsigned long,
1584 					  num_online_cpus() + 2, 8);
1585 
1586 	INIT_LIST_HEAD(&fs_info->ordered_extents);
1587 	spin_lock_init(&fs_info->ordered_extent_lock);
1588 
1589 	sb->s_blocksize = 4096;
1590 	sb->s_blocksize_bits = blksize_bits(4096);
1591 
1592 	/*
1593 	 * we set the i_size on the btree inode to the max possible int.
1594 	 * the real end of the address space is determined by all of
1595 	 * the devices in the system
1596 	 */
1597 	fs_info->btree_inode->i_size = OFFSET_MAX;
1598 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1599 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1600 
1601 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1602 			     fs_info->btree_inode->i_mapping,
1603 			     GFP_NOFS);
1604 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1605 			     GFP_NOFS);
1606 
1607 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1608 
1609 	spin_lock_init(&fs_info->block_group_cache_lock);
1610 	fs_info->block_group_cache_tree.rb_node = NULL;
1611 
1612 	extent_io_tree_init(&fs_info->pinned_extents,
1613 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1614 	fs_info->do_barriers = 1;
1615 
1616 	INIT_LIST_HEAD(&fs_info->dead_reloc_roots);
1617 	btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree);
1618 	btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree);
1619 
1620 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
1621 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1622 	       sizeof(struct btrfs_key));
1623 	insert_inode_hash(fs_info->btree_inode);
1624 
1625 	mutex_init(&fs_info->trans_mutex);
1626 	mutex_init(&fs_info->ordered_operations_mutex);
1627 	mutex_init(&fs_info->tree_log_mutex);
1628 	mutex_init(&fs_info->drop_mutex);
1629 	mutex_init(&fs_info->chunk_mutex);
1630 	mutex_init(&fs_info->transaction_kthread_mutex);
1631 	mutex_init(&fs_info->cleaner_mutex);
1632 	mutex_init(&fs_info->volume_mutex);
1633 	mutex_init(&fs_info->tree_reloc_mutex);
1634 
1635 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1636 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1637 
1638 	init_waitqueue_head(&fs_info->transaction_throttle);
1639 	init_waitqueue_head(&fs_info->transaction_wait);
1640 	init_waitqueue_head(&fs_info->async_submit_wait);
1641 
1642 	__setup_root(4096, 4096, 4096, 4096, tree_root,
1643 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
1644 
1645 
1646 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1647 	if (!bh)
1648 		goto fail_iput;
1649 
1650 	memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1651 	memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1652 	       sizeof(fs_info->super_for_commit));
1653 	brelse(bh);
1654 
1655 	memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1656 
1657 	disk_super = &fs_info->super_copy;
1658 	if (!btrfs_super_root(disk_super))
1659 		goto fail_iput;
1660 
1661 	ret = btrfs_parse_options(tree_root, options);
1662 	if (ret) {
1663 		err = ret;
1664 		goto fail_iput;
1665 	}
1666 
1667 	features = btrfs_super_incompat_flags(disk_super) &
1668 		~BTRFS_FEATURE_INCOMPAT_SUPP;
1669 	if (features) {
1670 		printk(KERN_ERR "BTRFS: couldn't mount because of "
1671 		       "unsupported optional features (%Lx).\n",
1672 		       (unsigned long long)features);
1673 		err = -EINVAL;
1674 		goto fail_iput;
1675 	}
1676 
1677 	features = btrfs_super_compat_ro_flags(disk_super) &
1678 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
1679 	if (!(sb->s_flags & MS_RDONLY) && features) {
1680 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1681 		       "unsupported option features (%Lx).\n",
1682 		       (unsigned long long)features);
1683 		err = -EINVAL;
1684 		goto fail_iput;
1685 	}
1686 
1687 	/*
1688 	 * we need to start all the end_io workers up front because the
1689 	 * queue work function gets called at interrupt time, and so it
1690 	 * cannot dynamically grow.
1691 	 */
1692 	btrfs_init_workers(&fs_info->workers, "worker",
1693 			   fs_info->thread_pool_size);
1694 
1695 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1696 			   fs_info->thread_pool_size);
1697 
1698 	btrfs_init_workers(&fs_info->submit_workers, "submit",
1699 			   min_t(u64, fs_devices->num_devices,
1700 			   fs_info->thread_pool_size));
1701 
1702 	/* a higher idle thresh on the submit workers makes it much more
1703 	 * likely that bios will be send down in a sane order to the
1704 	 * devices
1705 	 */
1706 	fs_info->submit_workers.idle_thresh = 64;
1707 
1708 	fs_info->workers.idle_thresh = 16;
1709 	fs_info->workers.ordered = 1;
1710 
1711 	fs_info->delalloc_workers.idle_thresh = 2;
1712 	fs_info->delalloc_workers.ordered = 1;
1713 
1714 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
1715 	btrfs_init_workers(&fs_info->endio_workers, "endio",
1716 			   fs_info->thread_pool_size);
1717 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1718 			   fs_info->thread_pool_size);
1719 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
1720 			   "endio-meta-write", fs_info->thread_pool_size);
1721 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1722 			   fs_info->thread_pool_size);
1723 
1724 	/*
1725 	 * endios are largely parallel and should have a very
1726 	 * low idle thresh
1727 	 */
1728 	fs_info->endio_workers.idle_thresh = 4;
1729 	fs_info->endio_meta_workers.idle_thresh = 4;
1730 
1731 	fs_info->endio_write_workers.idle_thresh = 64;
1732 	fs_info->endio_meta_write_workers.idle_thresh = 64;
1733 
1734 	btrfs_start_workers(&fs_info->workers, 1);
1735 	btrfs_start_workers(&fs_info->submit_workers, 1);
1736 	btrfs_start_workers(&fs_info->delalloc_workers, 1);
1737 	btrfs_start_workers(&fs_info->fixup_workers, 1);
1738 	btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1739 	btrfs_start_workers(&fs_info->endio_meta_workers,
1740 			    fs_info->thread_pool_size);
1741 	btrfs_start_workers(&fs_info->endio_meta_write_workers,
1742 			    fs_info->thread_pool_size);
1743 	btrfs_start_workers(&fs_info->endio_write_workers,
1744 			    fs_info->thread_pool_size);
1745 
1746 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1747 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1748 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1749 
1750 	nodesize = btrfs_super_nodesize(disk_super);
1751 	leafsize = btrfs_super_leafsize(disk_super);
1752 	sectorsize = btrfs_super_sectorsize(disk_super);
1753 	stripesize = btrfs_super_stripesize(disk_super);
1754 	tree_root->nodesize = nodesize;
1755 	tree_root->leafsize = leafsize;
1756 	tree_root->sectorsize = sectorsize;
1757 	tree_root->stripesize = stripesize;
1758 
1759 	sb->s_blocksize = sectorsize;
1760 	sb->s_blocksize_bits = blksize_bits(sectorsize);
1761 
1762 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1763 		    sizeof(disk_super->magic))) {
1764 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1765 		goto fail_sb_buffer;
1766 	}
1767 
1768 	mutex_lock(&fs_info->chunk_mutex);
1769 	ret = btrfs_read_sys_array(tree_root);
1770 	mutex_unlock(&fs_info->chunk_mutex);
1771 	if (ret) {
1772 		printk(KERN_WARNING "btrfs: failed to read the system "
1773 		       "array on %s\n", sb->s_id);
1774 		goto fail_sys_array;
1775 	}
1776 
1777 	blocksize = btrfs_level_size(tree_root,
1778 				     btrfs_super_chunk_root_level(disk_super));
1779 	generation = btrfs_super_chunk_root_generation(disk_super);
1780 
1781 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
1782 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1783 
1784 	chunk_root->node = read_tree_block(chunk_root,
1785 					   btrfs_super_chunk_root(disk_super),
1786 					   blocksize, generation);
1787 	BUG_ON(!chunk_root->node);
1788 
1789 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1790 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1791 	   BTRFS_UUID_SIZE);
1792 
1793 	mutex_lock(&fs_info->chunk_mutex);
1794 	ret = btrfs_read_chunk_tree(chunk_root);
1795 	mutex_unlock(&fs_info->chunk_mutex);
1796 	if (ret) {
1797 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1798 		       sb->s_id);
1799 		goto fail_chunk_root;
1800 	}
1801 
1802 	btrfs_close_extra_devices(fs_devices);
1803 
1804 	blocksize = btrfs_level_size(tree_root,
1805 				     btrfs_super_root_level(disk_super));
1806 	generation = btrfs_super_generation(disk_super);
1807 
1808 	tree_root->node = read_tree_block(tree_root,
1809 					  btrfs_super_root(disk_super),
1810 					  blocksize, generation);
1811 	if (!tree_root->node)
1812 		goto fail_chunk_root;
1813 
1814 
1815 	ret = find_and_setup_root(tree_root, fs_info,
1816 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1817 	if (ret)
1818 		goto fail_tree_root;
1819 	extent_root->track_dirty = 1;
1820 
1821 	ret = find_and_setup_root(tree_root, fs_info,
1822 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
1823 	dev_root->track_dirty = 1;
1824 	if (ret)
1825 		goto fail_extent_root;
1826 
1827 	ret = find_and_setup_root(tree_root, fs_info,
1828 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
1829 	if (ret)
1830 		goto fail_extent_root;
1831 
1832 	csum_root->track_dirty = 1;
1833 
1834 	btrfs_read_block_groups(extent_root);
1835 
1836 	fs_info->generation = generation;
1837 	fs_info->last_trans_committed = generation;
1838 	fs_info->data_alloc_profile = (u64)-1;
1839 	fs_info->metadata_alloc_profile = (u64)-1;
1840 	fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1841 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1842 					       "btrfs-cleaner");
1843 	if (IS_ERR(fs_info->cleaner_kthread))
1844 		goto fail_csum_root;
1845 
1846 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
1847 						   tree_root,
1848 						   "btrfs-transaction");
1849 	if (IS_ERR(fs_info->transaction_kthread))
1850 		goto fail_cleaner;
1851 
1852 	if (btrfs_super_log_root(disk_super) != 0) {
1853 		u64 bytenr = btrfs_super_log_root(disk_super);
1854 
1855 		if (fs_devices->rw_devices == 0) {
1856 			printk(KERN_WARNING "Btrfs log replay required "
1857 			       "on RO media\n");
1858 			err = -EIO;
1859 			goto fail_trans_kthread;
1860 		}
1861 		blocksize =
1862 		     btrfs_level_size(tree_root,
1863 				      btrfs_super_log_root_level(disk_super));
1864 
1865 		log_tree_root = kzalloc(sizeof(struct btrfs_root),
1866 						      GFP_NOFS);
1867 
1868 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
1869 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1870 
1871 		log_tree_root->node = read_tree_block(tree_root, bytenr,
1872 						      blocksize,
1873 						      generation + 1);
1874 		ret = btrfs_recover_log_trees(log_tree_root);
1875 		BUG_ON(ret);
1876 
1877 		if (sb->s_flags & MS_RDONLY) {
1878 			ret =  btrfs_commit_super(tree_root);
1879 			BUG_ON(ret);
1880 		}
1881 	}
1882 
1883 	if (!(sb->s_flags & MS_RDONLY)) {
1884 		ret = btrfs_cleanup_reloc_trees(tree_root);
1885 		BUG_ON(ret);
1886 	}
1887 
1888 	location.objectid = BTRFS_FS_TREE_OBJECTID;
1889 	location.type = BTRFS_ROOT_ITEM_KEY;
1890 	location.offset = (u64)-1;
1891 
1892 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1893 	if (!fs_info->fs_root)
1894 		goto fail_trans_kthread;
1895 	return tree_root;
1896 
1897 fail_trans_kthread:
1898 	kthread_stop(fs_info->transaction_kthread);
1899 fail_cleaner:
1900 	kthread_stop(fs_info->cleaner_kthread);
1901 
1902 	/*
1903 	 * make sure we're done with the btree inode before we stop our
1904 	 * kthreads
1905 	 */
1906 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1907 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1908 
1909 fail_csum_root:
1910 	free_extent_buffer(csum_root->node);
1911 fail_extent_root:
1912 	free_extent_buffer(extent_root->node);
1913 fail_tree_root:
1914 	free_extent_buffer(tree_root->node);
1915 fail_chunk_root:
1916 	free_extent_buffer(chunk_root->node);
1917 fail_sys_array:
1918 	free_extent_buffer(dev_root->node);
1919 fail_sb_buffer:
1920 	btrfs_stop_workers(&fs_info->fixup_workers);
1921 	btrfs_stop_workers(&fs_info->delalloc_workers);
1922 	btrfs_stop_workers(&fs_info->workers);
1923 	btrfs_stop_workers(&fs_info->endio_workers);
1924 	btrfs_stop_workers(&fs_info->endio_meta_workers);
1925 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1926 	btrfs_stop_workers(&fs_info->endio_write_workers);
1927 	btrfs_stop_workers(&fs_info->submit_workers);
1928 fail_iput:
1929 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1930 	iput(fs_info->btree_inode);
1931 
1932 	btrfs_close_devices(fs_info->fs_devices);
1933 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
1934 	bdi_destroy(&fs_info->bdi);
1935 
1936 fail:
1937 	kfree(extent_root);
1938 	kfree(tree_root);
1939 	kfree(fs_info);
1940 	kfree(chunk_root);
1941 	kfree(dev_root);
1942 	kfree(csum_root);
1943 	return ERR_PTR(err);
1944 }
1945 
1946 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1947 {
1948 	char b[BDEVNAME_SIZE];
1949 
1950 	if (uptodate) {
1951 		set_buffer_uptodate(bh);
1952 	} else {
1953 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1954 			printk(KERN_WARNING "lost page write due to "
1955 					"I/O error on %s\n",
1956 				       bdevname(bh->b_bdev, b));
1957 		}
1958 		/* note, we dont' set_buffer_write_io_error because we have
1959 		 * our own ways of dealing with the IO errors
1960 		 */
1961 		clear_buffer_uptodate(bh);
1962 	}
1963 	unlock_buffer(bh);
1964 	put_bh(bh);
1965 }
1966 
1967 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
1968 {
1969 	struct buffer_head *bh;
1970 	struct buffer_head *latest = NULL;
1971 	struct btrfs_super_block *super;
1972 	int i;
1973 	u64 transid = 0;
1974 	u64 bytenr;
1975 
1976 	/* we would like to check all the supers, but that would make
1977 	 * a btrfs mount succeed after a mkfs from a different FS.
1978 	 * So, we need to add a special mount option to scan for
1979 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1980 	 */
1981 	for (i = 0; i < 1; i++) {
1982 		bytenr = btrfs_sb_offset(i);
1983 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
1984 			break;
1985 		bh = __bread(bdev, bytenr / 4096, 4096);
1986 		if (!bh)
1987 			continue;
1988 
1989 		super = (struct btrfs_super_block *)bh->b_data;
1990 		if (btrfs_super_bytenr(super) != bytenr ||
1991 		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
1992 			    sizeof(super->magic))) {
1993 			brelse(bh);
1994 			continue;
1995 		}
1996 
1997 		if (!latest || btrfs_super_generation(super) > transid) {
1998 			brelse(latest);
1999 			latest = bh;
2000 			transid = btrfs_super_generation(super);
2001 		} else {
2002 			brelse(bh);
2003 		}
2004 	}
2005 	return latest;
2006 }
2007 
2008 static int write_dev_supers(struct btrfs_device *device,
2009 			    struct btrfs_super_block *sb,
2010 			    int do_barriers, int wait, int max_mirrors)
2011 {
2012 	struct buffer_head *bh;
2013 	int i;
2014 	int ret;
2015 	int errors = 0;
2016 	u32 crc;
2017 	u64 bytenr;
2018 	int last_barrier = 0;
2019 
2020 	if (max_mirrors == 0)
2021 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2022 
2023 	/* make sure only the last submit_bh does a barrier */
2024 	if (do_barriers) {
2025 		for (i = 0; i < max_mirrors; i++) {
2026 			bytenr = btrfs_sb_offset(i);
2027 			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2028 			    device->total_bytes)
2029 				break;
2030 			last_barrier = i;
2031 		}
2032 	}
2033 
2034 	for (i = 0; i < max_mirrors; i++) {
2035 		bytenr = btrfs_sb_offset(i);
2036 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2037 			break;
2038 
2039 		if (wait) {
2040 			bh = __find_get_block(device->bdev, bytenr / 4096,
2041 					      BTRFS_SUPER_INFO_SIZE);
2042 			BUG_ON(!bh);
2043 			brelse(bh);
2044 			wait_on_buffer(bh);
2045 			if (buffer_uptodate(bh)) {
2046 				brelse(bh);
2047 				continue;
2048 			}
2049 		} else {
2050 			btrfs_set_super_bytenr(sb, bytenr);
2051 
2052 			crc = ~(u32)0;
2053 			crc = btrfs_csum_data(NULL, (char *)sb +
2054 					      BTRFS_CSUM_SIZE, crc,
2055 					      BTRFS_SUPER_INFO_SIZE -
2056 					      BTRFS_CSUM_SIZE);
2057 			btrfs_csum_final(crc, sb->csum);
2058 
2059 			bh = __getblk(device->bdev, bytenr / 4096,
2060 				      BTRFS_SUPER_INFO_SIZE);
2061 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2062 
2063 			set_buffer_uptodate(bh);
2064 			get_bh(bh);
2065 			lock_buffer(bh);
2066 			bh->b_end_io = btrfs_end_buffer_write_sync;
2067 		}
2068 
2069 		if (i == last_barrier && do_barriers && device->barriers) {
2070 			ret = submit_bh(WRITE_BARRIER, bh);
2071 			if (ret == -EOPNOTSUPP) {
2072 				printk("btrfs: disabling barriers on dev %s\n",
2073 				       device->name);
2074 				set_buffer_uptodate(bh);
2075 				device->barriers = 0;
2076 				get_bh(bh);
2077 				lock_buffer(bh);
2078 				ret = submit_bh(WRITE_SYNC, bh);
2079 			}
2080 		} else {
2081 			ret = submit_bh(WRITE_SYNC, bh);
2082 		}
2083 
2084 		if (!ret && wait) {
2085 			wait_on_buffer(bh);
2086 			if (!buffer_uptodate(bh))
2087 				errors++;
2088 		} else if (ret) {
2089 			errors++;
2090 		}
2091 		if (wait)
2092 			brelse(bh);
2093 	}
2094 	return errors < i ? 0 : -1;
2095 }
2096 
2097 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2098 {
2099 	struct list_head *head = &root->fs_info->fs_devices->devices;
2100 	struct btrfs_device *dev;
2101 	struct btrfs_super_block *sb;
2102 	struct btrfs_dev_item *dev_item;
2103 	int ret;
2104 	int do_barriers;
2105 	int max_errors;
2106 	int total_errors = 0;
2107 	u64 flags;
2108 
2109 	max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2110 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2111 
2112 	sb = &root->fs_info->super_for_commit;
2113 	dev_item = &sb->dev_item;
2114 	list_for_each_entry(dev, head, dev_list) {
2115 		if (!dev->bdev) {
2116 			total_errors++;
2117 			continue;
2118 		}
2119 		if (!dev->in_fs_metadata || !dev->writeable)
2120 			continue;
2121 
2122 		btrfs_set_stack_device_generation(dev_item, 0);
2123 		btrfs_set_stack_device_type(dev_item, dev->type);
2124 		btrfs_set_stack_device_id(dev_item, dev->devid);
2125 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2126 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2127 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2128 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2129 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2130 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2131 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2132 
2133 		flags = btrfs_super_flags(sb);
2134 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2135 
2136 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2137 		if (ret)
2138 			total_errors++;
2139 	}
2140 	if (total_errors > max_errors) {
2141 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2142 		       total_errors);
2143 		BUG();
2144 	}
2145 
2146 	total_errors = 0;
2147 	list_for_each_entry(dev, head, dev_list) {
2148 		if (!dev->bdev)
2149 			continue;
2150 		if (!dev->in_fs_metadata || !dev->writeable)
2151 			continue;
2152 
2153 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2154 		if (ret)
2155 			total_errors++;
2156 	}
2157 	if (total_errors > max_errors) {
2158 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2159 		       total_errors);
2160 		BUG();
2161 	}
2162 	return 0;
2163 }
2164 
2165 int write_ctree_super(struct btrfs_trans_handle *trans,
2166 		      struct btrfs_root *root, int max_mirrors)
2167 {
2168 	int ret;
2169 
2170 	ret = write_all_supers(root, max_mirrors);
2171 	return ret;
2172 }
2173 
2174 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2175 {
2176 	radix_tree_delete(&fs_info->fs_roots_radix,
2177 			  (unsigned long)root->root_key.objectid);
2178 	if (root->anon_super.s_dev) {
2179 		down_write(&root->anon_super.s_umount);
2180 		kill_anon_super(&root->anon_super);
2181 	}
2182 	if (root->node)
2183 		free_extent_buffer(root->node);
2184 	if (root->commit_root)
2185 		free_extent_buffer(root->commit_root);
2186 	kfree(root->name);
2187 	kfree(root);
2188 	return 0;
2189 }
2190 
2191 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2192 {
2193 	int ret;
2194 	struct btrfs_root *gang[8];
2195 	int i;
2196 
2197 	while (1) {
2198 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2199 					     (void **)gang, 0,
2200 					     ARRAY_SIZE(gang));
2201 		if (!ret)
2202 			break;
2203 		for (i = 0; i < ret; i++)
2204 			btrfs_free_fs_root(fs_info, gang[i]);
2205 	}
2206 	return 0;
2207 }
2208 
2209 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2210 {
2211 	u64 root_objectid = 0;
2212 	struct btrfs_root *gang[8];
2213 	int i;
2214 	int ret;
2215 
2216 	while (1) {
2217 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2218 					     (void **)gang, root_objectid,
2219 					     ARRAY_SIZE(gang));
2220 		if (!ret)
2221 			break;
2222 		for (i = 0; i < ret; i++) {
2223 			root_objectid = gang[i]->root_key.objectid;
2224 			ret = btrfs_find_dead_roots(fs_info->tree_root,
2225 						    root_objectid, gang[i]);
2226 			BUG_ON(ret);
2227 			btrfs_orphan_cleanup(gang[i]);
2228 		}
2229 		root_objectid++;
2230 	}
2231 	return 0;
2232 }
2233 
2234 int btrfs_commit_super(struct btrfs_root *root)
2235 {
2236 	struct btrfs_trans_handle *trans;
2237 	int ret;
2238 
2239 	mutex_lock(&root->fs_info->cleaner_mutex);
2240 	btrfs_clean_old_snapshots(root);
2241 	mutex_unlock(&root->fs_info->cleaner_mutex);
2242 	trans = btrfs_start_transaction(root, 1);
2243 	ret = btrfs_commit_transaction(trans, root);
2244 	BUG_ON(ret);
2245 	/* run commit again to drop the original snapshot */
2246 	trans = btrfs_start_transaction(root, 1);
2247 	btrfs_commit_transaction(trans, root);
2248 	ret = btrfs_write_and_wait_transaction(NULL, root);
2249 	BUG_ON(ret);
2250 
2251 	ret = write_ctree_super(NULL, root, 0);
2252 	return ret;
2253 }
2254 
2255 int close_ctree(struct btrfs_root *root)
2256 {
2257 	struct btrfs_fs_info *fs_info = root->fs_info;
2258 	int ret;
2259 
2260 	fs_info->closing = 1;
2261 	smp_mb();
2262 
2263 	kthread_stop(root->fs_info->transaction_kthread);
2264 	kthread_stop(root->fs_info->cleaner_kthread);
2265 
2266 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2267 		ret =  btrfs_commit_super(root);
2268 		if (ret)
2269 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2270 	}
2271 
2272 	if (fs_info->delalloc_bytes) {
2273 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2274 		       (unsigned long long)fs_info->delalloc_bytes);
2275 	}
2276 	if (fs_info->total_ref_cache_size) {
2277 		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2278 		       (unsigned long long)fs_info->total_ref_cache_size);
2279 	}
2280 
2281 	if (fs_info->extent_root->node)
2282 		free_extent_buffer(fs_info->extent_root->node);
2283 
2284 	if (fs_info->tree_root->node)
2285 		free_extent_buffer(fs_info->tree_root->node);
2286 
2287 	if (root->fs_info->chunk_root->node)
2288 		free_extent_buffer(root->fs_info->chunk_root->node);
2289 
2290 	if (root->fs_info->dev_root->node)
2291 		free_extent_buffer(root->fs_info->dev_root->node);
2292 
2293 	if (root->fs_info->csum_root->node)
2294 		free_extent_buffer(root->fs_info->csum_root->node);
2295 
2296 	btrfs_free_block_groups(root->fs_info);
2297 
2298 	del_fs_roots(fs_info);
2299 
2300 	iput(fs_info->btree_inode);
2301 
2302 	btrfs_stop_workers(&fs_info->fixup_workers);
2303 	btrfs_stop_workers(&fs_info->delalloc_workers);
2304 	btrfs_stop_workers(&fs_info->workers);
2305 	btrfs_stop_workers(&fs_info->endio_workers);
2306 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2307 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2308 	btrfs_stop_workers(&fs_info->endio_write_workers);
2309 	btrfs_stop_workers(&fs_info->submit_workers);
2310 
2311 	btrfs_close_devices(fs_info->fs_devices);
2312 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2313 
2314 	bdi_destroy(&fs_info->bdi);
2315 
2316 	kfree(fs_info->extent_root);
2317 	kfree(fs_info->tree_root);
2318 	kfree(fs_info->chunk_root);
2319 	kfree(fs_info->dev_root);
2320 	kfree(fs_info->csum_root);
2321 	return 0;
2322 }
2323 
2324 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2325 {
2326 	int ret;
2327 	struct inode *btree_inode = buf->first_page->mapping->host;
2328 
2329 	ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2330 	if (!ret)
2331 		return ret;
2332 
2333 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2334 				    parent_transid);
2335 	return !ret;
2336 }
2337 
2338 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2339 {
2340 	struct inode *btree_inode = buf->first_page->mapping->host;
2341 	return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2342 					  buf);
2343 }
2344 
2345 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2346 {
2347 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2348 	u64 transid = btrfs_header_generation(buf);
2349 	struct inode *btree_inode = root->fs_info->btree_inode;
2350 	int was_dirty;
2351 
2352 	btrfs_assert_tree_locked(buf);
2353 	if (transid != root->fs_info->generation) {
2354 		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2355 		       "found %llu running %llu\n",
2356 			(unsigned long long)buf->start,
2357 			(unsigned long long)transid,
2358 			(unsigned long long)root->fs_info->generation);
2359 		WARN_ON(1);
2360 	}
2361 	was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2362 					    buf);
2363 	if (!was_dirty) {
2364 		spin_lock(&root->fs_info->delalloc_lock);
2365 		root->fs_info->dirty_metadata_bytes += buf->len;
2366 		spin_unlock(&root->fs_info->delalloc_lock);
2367 	}
2368 }
2369 
2370 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2371 {
2372 	/*
2373 	 * looks as though older kernels can get into trouble with
2374 	 * this code, they end up stuck in balance_dirty_pages forever
2375 	 */
2376 	struct extent_io_tree *tree;
2377 	u64 num_dirty;
2378 	u64 start = 0;
2379 	unsigned long thresh = 32 * 1024 * 1024;
2380 	tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
2381 
2382 	if (current->flags & PF_MEMALLOC)
2383 		return;
2384 
2385 	num_dirty = count_range_bits(tree, &start, (u64)-1,
2386 				     thresh, EXTENT_DIRTY);
2387 	if (num_dirty > thresh) {
2388 		balance_dirty_pages_ratelimited_nr(
2389 				   root->fs_info->btree_inode->i_mapping, 1);
2390 	}
2391 	return;
2392 }
2393 
2394 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2395 {
2396 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2397 	int ret;
2398 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2399 	if (ret == 0)
2400 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2401 	return ret;
2402 }
2403 
2404 int btree_lock_page_hook(struct page *page)
2405 {
2406 	struct inode *inode = page->mapping->host;
2407 	struct btrfs_root *root = BTRFS_I(inode)->root;
2408 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2409 	struct extent_buffer *eb;
2410 	unsigned long len;
2411 	u64 bytenr = page_offset(page);
2412 
2413 	if (page->private == EXTENT_PAGE_PRIVATE)
2414 		goto out;
2415 
2416 	len = page->private >> 2;
2417 	eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2418 	if (!eb)
2419 		goto out;
2420 
2421 	btrfs_tree_lock(eb);
2422 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2423 
2424 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2425 		spin_lock(&root->fs_info->delalloc_lock);
2426 		if (root->fs_info->dirty_metadata_bytes >= eb->len)
2427 			root->fs_info->dirty_metadata_bytes -= eb->len;
2428 		else
2429 			WARN_ON(1);
2430 		spin_unlock(&root->fs_info->delalloc_lock);
2431 	}
2432 
2433 	btrfs_tree_unlock(eb);
2434 	free_extent_buffer(eb);
2435 out:
2436 	lock_page(page);
2437 	return 0;
2438 }
2439 
2440 static struct extent_io_ops btree_extent_io_ops = {
2441 	.write_cache_pages_lock_hook = btree_lock_page_hook,
2442 	.readpage_end_io_hook = btree_readpage_end_io_hook,
2443 	.submit_bio_hook = btree_submit_bio_hook,
2444 	/* note we're sharing with inode.c for the merge bio hook */
2445 	.merge_bio_hook = btrfs_merge_bio_hook,
2446 };
2447