1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "inode-map.h" 33 #include "check-integrity.h" 34 #include "rcu-string.h" 35 #include "dev-replace.h" 36 #include "raid56.h" 37 #include "sysfs.h" 38 #include "qgroup.h" 39 #include "compression.h" 40 #include "tree-checker.h" 41 #include "ref-verify.h" 42 #include "block-group.h" 43 #include "discard.h" 44 #include "space-info.h" 45 46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 47 BTRFS_HEADER_FLAG_RELOC |\ 48 BTRFS_SUPER_FLAG_ERROR |\ 49 BTRFS_SUPER_FLAG_SEEDING |\ 50 BTRFS_SUPER_FLAG_METADUMP |\ 51 BTRFS_SUPER_FLAG_METADUMP_V2) 52 53 static const struct extent_io_ops btree_extent_io_ops; 54 static void end_workqueue_fn(struct btrfs_work *work); 55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 57 struct btrfs_fs_info *fs_info); 58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 60 struct extent_io_tree *dirty_pages, 61 int mark); 62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 63 struct extent_io_tree *pinned_extents); 64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 66 67 /* 68 * btrfs_end_io_wq structs are used to do processing in task context when an IO 69 * is complete. This is used during reads to verify checksums, and it is used 70 * by writes to insert metadata for new file extents after IO is complete. 71 */ 72 struct btrfs_end_io_wq { 73 struct bio *bio; 74 bio_end_io_t *end_io; 75 void *private; 76 struct btrfs_fs_info *info; 77 blk_status_t status; 78 enum btrfs_wq_endio_type metadata; 79 struct btrfs_work work; 80 }; 81 82 static struct kmem_cache *btrfs_end_io_wq_cache; 83 84 int __init btrfs_end_io_wq_init(void) 85 { 86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 87 sizeof(struct btrfs_end_io_wq), 88 0, 89 SLAB_MEM_SPREAD, 90 NULL); 91 if (!btrfs_end_io_wq_cache) 92 return -ENOMEM; 93 return 0; 94 } 95 96 void __cold btrfs_end_io_wq_exit(void) 97 { 98 kmem_cache_destroy(btrfs_end_io_wq_cache); 99 } 100 101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 102 { 103 if (fs_info->csum_shash) 104 crypto_free_shash(fs_info->csum_shash); 105 } 106 107 /* 108 * async submit bios are used to offload expensive checksumming 109 * onto the worker threads. They checksum file and metadata bios 110 * just before they are sent down the IO stack. 111 */ 112 struct async_submit_bio { 113 void *private_data; 114 struct bio *bio; 115 extent_submit_bio_start_t *submit_bio_start; 116 int mirror_num; 117 /* 118 * bio_offset is optional, can be used if the pages in the bio 119 * can't tell us where in the file the bio should go 120 */ 121 u64 bio_offset; 122 struct btrfs_work work; 123 blk_status_t status; 124 }; 125 126 /* 127 * Lockdep class keys for extent_buffer->lock's in this root. For a given 128 * eb, the lockdep key is determined by the btrfs_root it belongs to and 129 * the level the eb occupies in the tree. 130 * 131 * Different roots are used for different purposes and may nest inside each 132 * other and they require separate keysets. As lockdep keys should be 133 * static, assign keysets according to the purpose of the root as indicated 134 * by btrfs_root->root_key.objectid. This ensures that all special purpose 135 * roots have separate keysets. 136 * 137 * Lock-nesting across peer nodes is always done with the immediate parent 138 * node locked thus preventing deadlock. As lockdep doesn't know this, use 139 * subclass to avoid triggering lockdep warning in such cases. 140 * 141 * The key is set by the readpage_end_io_hook after the buffer has passed 142 * csum validation but before the pages are unlocked. It is also set by 143 * btrfs_init_new_buffer on freshly allocated blocks. 144 * 145 * We also add a check to make sure the highest level of the tree is the 146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 147 * needs update as well. 148 */ 149 #ifdef CONFIG_DEBUG_LOCK_ALLOC 150 # if BTRFS_MAX_LEVEL != 8 151 # error 152 # endif 153 154 static struct btrfs_lockdep_keyset { 155 u64 id; /* root objectid */ 156 const char *name_stem; /* lock name stem */ 157 char names[BTRFS_MAX_LEVEL + 1][20]; 158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 159 } btrfs_lockdep_keysets[] = { 160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 172 { .id = 0, .name_stem = "tree" }, 173 }; 174 175 void __init btrfs_init_lockdep(void) 176 { 177 int i, j; 178 179 /* initialize lockdep class names */ 180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 182 183 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 184 snprintf(ks->names[j], sizeof(ks->names[j]), 185 "btrfs-%s-%02d", ks->name_stem, j); 186 } 187 } 188 189 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 190 int level) 191 { 192 struct btrfs_lockdep_keyset *ks; 193 194 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 195 196 /* find the matching keyset, id 0 is the default entry */ 197 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 198 if (ks->id == objectid) 199 break; 200 201 lockdep_set_class_and_name(&eb->lock, 202 &ks->keys[level], ks->names[level]); 203 } 204 205 #endif 206 207 /* 208 * extents on the btree inode are pretty simple, there's one extent 209 * that covers the entire device 210 */ 211 struct extent_map *btree_get_extent(struct btrfs_inode *inode, 212 struct page *page, size_t pg_offset, 213 u64 start, u64 len) 214 { 215 struct extent_map_tree *em_tree = &inode->extent_tree; 216 struct extent_map *em; 217 int ret; 218 219 read_lock(&em_tree->lock); 220 em = lookup_extent_mapping(em_tree, start, len); 221 if (em) { 222 read_unlock(&em_tree->lock); 223 goto out; 224 } 225 read_unlock(&em_tree->lock); 226 227 em = alloc_extent_map(); 228 if (!em) { 229 em = ERR_PTR(-ENOMEM); 230 goto out; 231 } 232 em->start = 0; 233 em->len = (u64)-1; 234 em->block_len = (u64)-1; 235 em->block_start = 0; 236 237 write_lock(&em_tree->lock); 238 ret = add_extent_mapping(em_tree, em, 0); 239 if (ret == -EEXIST) { 240 free_extent_map(em); 241 em = lookup_extent_mapping(em_tree, start, len); 242 if (!em) 243 em = ERR_PTR(-EIO); 244 } else if (ret) { 245 free_extent_map(em); 246 em = ERR_PTR(ret); 247 } 248 write_unlock(&em_tree->lock); 249 250 out: 251 return em; 252 } 253 254 /* 255 * Compute the csum of a btree block and store the result to provided buffer. 256 */ 257 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 258 { 259 struct btrfs_fs_info *fs_info = buf->fs_info; 260 const int num_pages = fs_info->nodesize >> PAGE_SHIFT; 261 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 262 char *kaddr; 263 int i; 264 265 shash->tfm = fs_info->csum_shash; 266 crypto_shash_init(shash); 267 kaddr = page_address(buf->pages[0]); 268 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 269 PAGE_SIZE - BTRFS_CSUM_SIZE); 270 271 for (i = 1; i < num_pages; i++) { 272 kaddr = page_address(buf->pages[i]); 273 crypto_shash_update(shash, kaddr, PAGE_SIZE); 274 } 275 memset(result, 0, BTRFS_CSUM_SIZE); 276 crypto_shash_final(shash, result); 277 } 278 279 /* 280 * we can't consider a given block up to date unless the transid of the 281 * block matches the transid in the parent node's pointer. This is how we 282 * detect blocks that either didn't get written at all or got written 283 * in the wrong place. 284 */ 285 static int verify_parent_transid(struct extent_io_tree *io_tree, 286 struct extent_buffer *eb, u64 parent_transid, 287 int atomic) 288 { 289 struct extent_state *cached_state = NULL; 290 int ret; 291 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 292 293 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 294 return 0; 295 296 if (atomic) 297 return -EAGAIN; 298 299 if (need_lock) { 300 btrfs_tree_read_lock(eb); 301 btrfs_set_lock_blocking_read(eb); 302 } 303 304 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 305 &cached_state); 306 if (extent_buffer_uptodate(eb) && 307 btrfs_header_generation(eb) == parent_transid) { 308 ret = 0; 309 goto out; 310 } 311 btrfs_err_rl(eb->fs_info, 312 "parent transid verify failed on %llu wanted %llu found %llu", 313 eb->start, 314 parent_transid, btrfs_header_generation(eb)); 315 ret = 1; 316 317 /* 318 * Things reading via commit roots that don't have normal protection, 319 * like send, can have a really old block in cache that may point at a 320 * block that has been freed and re-allocated. So don't clear uptodate 321 * if we find an eb that is under IO (dirty/writeback) because we could 322 * end up reading in the stale data and then writing it back out and 323 * making everybody very sad. 324 */ 325 if (!extent_buffer_under_io(eb)) 326 clear_extent_buffer_uptodate(eb); 327 out: 328 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 329 &cached_state); 330 if (need_lock) 331 btrfs_tree_read_unlock_blocking(eb); 332 return ret; 333 } 334 335 static bool btrfs_supported_super_csum(u16 csum_type) 336 { 337 switch (csum_type) { 338 case BTRFS_CSUM_TYPE_CRC32: 339 case BTRFS_CSUM_TYPE_XXHASH: 340 case BTRFS_CSUM_TYPE_SHA256: 341 case BTRFS_CSUM_TYPE_BLAKE2: 342 return true; 343 default: 344 return false; 345 } 346 } 347 348 /* 349 * Return 0 if the superblock checksum type matches the checksum value of that 350 * algorithm. Pass the raw disk superblock data. 351 */ 352 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 353 char *raw_disk_sb) 354 { 355 struct btrfs_super_block *disk_sb = 356 (struct btrfs_super_block *)raw_disk_sb; 357 char result[BTRFS_CSUM_SIZE]; 358 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 359 360 shash->tfm = fs_info->csum_shash; 361 crypto_shash_init(shash); 362 363 /* 364 * The super_block structure does not span the whole 365 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 366 * filled with zeros and is included in the checksum. 367 */ 368 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE, 369 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 370 crypto_shash_final(shash, result); 371 372 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb))) 373 return 1; 374 375 return 0; 376 } 377 378 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 379 struct btrfs_key *first_key, u64 parent_transid) 380 { 381 struct btrfs_fs_info *fs_info = eb->fs_info; 382 int found_level; 383 struct btrfs_key found_key; 384 int ret; 385 386 found_level = btrfs_header_level(eb); 387 if (found_level != level) { 388 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 389 KERN_ERR "BTRFS: tree level check failed\n"); 390 btrfs_err(fs_info, 391 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 392 eb->start, level, found_level); 393 return -EIO; 394 } 395 396 if (!first_key) 397 return 0; 398 399 /* 400 * For live tree block (new tree blocks in current transaction), 401 * we need proper lock context to avoid race, which is impossible here. 402 * So we only checks tree blocks which is read from disk, whose 403 * generation <= fs_info->last_trans_committed. 404 */ 405 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 406 return 0; 407 408 /* We have @first_key, so this @eb must have at least one item */ 409 if (btrfs_header_nritems(eb) == 0) { 410 btrfs_err(fs_info, 411 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 412 eb->start); 413 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 414 return -EUCLEAN; 415 } 416 417 if (found_level) 418 btrfs_node_key_to_cpu(eb, &found_key, 0); 419 else 420 btrfs_item_key_to_cpu(eb, &found_key, 0); 421 ret = btrfs_comp_cpu_keys(first_key, &found_key); 422 423 if (ret) { 424 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 425 KERN_ERR "BTRFS: tree first key check failed\n"); 426 btrfs_err(fs_info, 427 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 428 eb->start, parent_transid, first_key->objectid, 429 first_key->type, first_key->offset, 430 found_key.objectid, found_key.type, 431 found_key.offset); 432 } 433 return ret; 434 } 435 436 /* 437 * helper to read a given tree block, doing retries as required when 438 * the checksums don't match and we have alternate mirrors to try. 439 * 440 * @parent_transid: expected transid, skip check if 0 441 * @level: expected level, mandatory check 442 * @first_key: expected key of first slot, skip check if NULL 443 */ 444 static int btree_read_extent_buffer_pages(struct extent_buffer *eb, 445 u64 parent_transid, int level, 446 struct btrfs_key *first_key) 447 { 448 struct btrfs_fs_info *fs_info = eb->fs_info; 449 struct extent_io_tree *io_tree; 450 int failed = 0; 451 int ret; 452 int num_copies = 0; 453 int mirror_num = 0; 454 int failed_mirror = 0; 455 456 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 457 while (1) { 458 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 459 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num); 460 if (!ret) { 461 if (verify_parent_transid(io_tree, eb, 462 parent_transid, 0)) 463 ret = -EIO; 464 else if (btrfs_verify_level_key(eb, level, 465 first_key, parent_transid)) 466 ret = -EUCLEAN; 467 else 468 break; 469 } 470 471 num_copies = btrfs_num_copies(fs_info, 472 eb->start, eb->len); 473 if (num_copies == 1) 474 break; 475 476 if (!failed_mirror) { 477 failed = 1; 478 failed_mirror = eb->read_mirror; 479 } 480 481 mirror_num++; 482 if (mirror_num == failed_mirror) 483 mirror_num++; 484 485 if (mirror_num > num_copies) 486 break; 487 } 488 489 if (failed && !ret && failed_mirror) 490 btrfs_repair_eb_io_failure(eb, failed_mirror); 491 492 return ret; 493 } 494 495 /* 496 * checksum a dirty tree block before IO. This has extra checks to make sure 497 * we only fill in the checksum field in the first page of a multi-page block 498 */ 499 500 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 501 { 502 u64 start = page_offset(page); 503 u64 found_start; 504 u8 result[BTRFS_CSUM_SIZE]; 505 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 506 struct extent_buffer *eb; 507 int ret; 508 509 eb = (struct extent_buffer *)page->private; 510 if (page != eb->pages[0]) 511 return 0; 512 513 found_start = btrfs_header_bytenr(eb); 514 /* 515 * Please do not consolidate these warnings into a single if. 516 * It is useful to know what went wrong. 517 */ 518 if (WARN_ON(found_start != start)) 519 return -EUCLEAN; 520 if (WARN_ON(!PageUptodate(page))) 521 return -EUCLEAN; 522 523 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 524 offsetof(struct btrfs_header, fsid), 525 BTRFS_FSID_SIZE) == 0); 526 527 csum_tree_block(eb, result); 528 529 if (btrfs_header_level(eb)) 530 ret = btrfs_check_node(eb); 531 else 532 ret = btrfs_check_leaf_full(eb); 533 534 if (ret < 0) { 535 btrfs_print_tree(eb, 0); 536 btrfs_err(fs_info, 537 "block=%llu write time tree block corruption detected", 538 eb->start); 539 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 540 return ret; 541 } 542 write_extent_buffer(eb, result, 0, csum_size); 543 544 return 0; 545 } 546 547 static int check_tree_block_fsid(struct extent_buffer *eb) 548 { 549 struct btrfs_fs_info *fs_info = eb->fs_info; 550 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 551 u8 fsid[BTRFS_FSID_SIZE]; 552 int ret = 1; 553 554 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 555 BTRFS_FSID_SIZE); 556 while (fs_devices) { 557 u8 *metadata_uuid; 558 559 /* 560 * Checking the incompat flag is only valid for the current 561 * fs. For seed devices it's forbidden to have their uuid 562 * changed so reading ->fsid in this case is fine 563 */ 564 if (fs_devices == fs_info->fs_devices && 565 btrfs_fs_incompat(fs_info, METADATA_UUID)) 566 metadata_uuid = fs_devices->metadata_uuid; 567 else 568 metadata_uuid = fs_devices->fsid; 569 570 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) { 571 ret = 0; 572 break; 573 } 574 fs_devices = fs_devices->seed; 575 } 576 return ret; 577 } 578 579 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 580 u64 phy_offset, struct page *page, 581 u64 start, u64 end, int mirror) 582 { 583 u64 found_start; 584 int found_level; 585 struct extent_buffer *eb; 586 struct btrfs_fs_info *fs_info; 587 u16 csum_size; 588 int ret = 0; 589 u8 result[BTRFS_CSUM_SIZE]; 590 int reads_done; 591 592 if (!page->private) 593 goto out; 594 595 eb = (struct extent_buffer *)page->private; 596 fs_info = eb->fs_info; 597 csum_size = btrfs_super_csum_size(fs_info->super_copy); 598 599 /* the pending IO might have been the only thing that kept this buffer 600 * in memory. Make sure we have a ref for all this other checks 601 */ 602 atomic_inc(&eb->refs); 603 604 reads_done = atomic_dec_and_test(&eb->io_pages); 605 if (!reads_done) 606 goto err; 607 608 eb->read_mirror = mirror; 609 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 610 ret = -EIO; 611 goto err; 612 } 613 614 found_start = btrfs_header_bytenr(eb); 615 if (found_start != eb->start) { 616 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 617 eb->start, found_start); 618 ret = -EIO; 619 goto err; 620 } 621 if (check_tree_block_fsid(eb)) { 622 btrfs_err_rl(fs_info, "bad fsid on block %llu", 623 eb->start); 624 ret = -EIO; 625 goto err; 626 } 627 found_level = btrfs_header_level(eb); 628 if (found_level >= BTRFS_MAX_LEVEL) { 629 btrfs_err(fs_info, "bad tree block level %d on %llu", 630 (int)btrfs_header_level(eb), eb->start); 631 ret = -EIO; 632 goto err; 633 } 634 635 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 636 eb, found_level); 637 638 csum_tree_block(eb, result); 639 640 if (memcmp_extent_buffer(eb, result, 0, csum_size)) { 641 u32 val; 642 u32 found = 0; 643 644 memcpy(&found, result, csum_size); 645 646 read_extent_buffer(eb, &val, 0, csum_size); 647 btrfs_warn_rl(fs_info, 648 "%s checksum verify failed on %llu wanted %x found %x level %d", 649 fs_info->sb->s_id, eb->start, 650 val, found, btrfs_header_level(eb)); 651 ret = -EUCLEAN; 652 goto err; 653 } 654 655 /* 656 * If this is a leaf block and it is corrupt, set the corrupt bit so 657 * that we don't try and read the other copies of this block, just 658 * return -EIO. 659 */ 660 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 661 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 662 ret = -EIO; 663 } 664 665 if (found_level > 0 && btrfs_check_node(eb)) 666 ret = -EIO; 667 668 if (!ret) 669 set_extent_buffer_uptodate(eb); 670 else 671 btrfs_err(fs_info, 672 "block=%llu read time tree block corruption detected", 673 eb->start); 674 err: 675 if (reads_done && 676 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 677 btree_readahead_hook(eb, ret); 678 679 if (ret) { 680 /* 681 * our io error hook is going to dec the io pages 682 * again, we have to make sure it has something 683 * to decrement 684 */ 685 atomic_inc(&eb->io_pages); 686 clear_extent_buffer_uptodate(eb); 687 } 688 free_extent_buffer(eb); 689 out: 690 return ret; 691 } 692 693 static void end_workqueue_bio(struct bio *bio) 694 { 695 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 696 struct btrfs_fs_info *fs_info; 697 struct btrfs_workqueue *wq; 698 699 fs_info = end_io_wq->info; 700 end_io_wq->status = bio->bi_status; 701 702 if (bio_op(bio) == REQ_OP_WRITE) { 703 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) 704 wq = fs_info->endio_meta_write_workers; 705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) 706 wq = fs_info->endio_freespace_worker; 707 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 708 wq = fs_info->endio_raid56_workers; 709 else 710 wq = fs_info->endio_write_workers; 711 } else { 712 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR)) 713 wq = fs_info->endio_repair_workers; 714 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 715 wq = fs_info->endio_raid56_workers; 716 else if (end_io_wq->metadata) 717 wq = fs_info->endio_meta_workers; 718 else 719 wq = fs_info->endio_workers; 720 } 721 722 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL); 723 btrfs_queue_work(wq, &end_io_wq->work); 724 } 725 726 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 727 enum btrfs_wq_endio_type metadata) 728 { 729 struct btrfs_end_io_wq *end_io_wq; 730 731 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 732 if (!end_io_wq) 733 return BLK_STS_RESOURCE; 734 735 end_io_wq->private = bio->bi_private; 736 end_io_wq->end_io = bio->bi_end_io; 737 end_io_wq->info = info; 738 end_io_wq->status = 0; 739 end_io_wq->bio = bio; 740 end_io_wq->metadata = metadata; 741 742 bio->bi_private = end_io_wq; 743 bio->bi_end_io = end_workqueue_bio; 744 return 0; 745 } 746 747 static void run_one_async_start(struct btrfs_work *work) 748 { 749 struct async_submit_bio *async; 750 blk_status_t ret; 751 752 async = container_of(work, struct async_submit_bio, work); 753 ret = async->submit_bio_start(async->private_data, async->bio, 754 async->bio_offset); 755 if (ret) 756 async->status = ret; 757 } 758 759 /* 760 * In order to insert checksums into the metadata in large chunks, we wait 761 * until bio submission time. All the pages in the bio are checksummed and 762 * sums are attached onto the ordered extent record. 763 * 764 * At IO completion time the csums attached on the ordered extent record are 765 * inserted into the tree. 766 */ 767 static void run_one_async_done(struct btrfs_work *work) 768 { 769 struct async_submit_bio *async; 770 struct inode *inode; 771 blk_status_t ret; 772 773 async = container_of(work, struct async_submit_bio, work); 774 inode = async->private_data; 775 776 /* If an error occurred we just want to clean up the bio and move on */ 777 if (async->status) { 778 async->bio->bi_status = async->status; 779 bio_endio(async->bio); 780 return; 781 } 782 783 /* 784 * All of the bios that pass through here are from async helpers. 785 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context. 786 * This changes nothing when cgroups aren't in use. 787 */ 788 async->bio->bi_opf |= REQ_CGROUP_PUNT; 789 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num); 790 if (ret) { 791 async->bio->bi_status = ret; 792 bio_endio(async->bio); 793 } 794 } 795 796 static void run_one_async_free(struct btrfs_work *work) 797 { 798 struct async_submit_bio *async; 799 800 async = container_of(work, struct async_submit_bio, work); 801 kfree(async); 802 } 803 804 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 805 int mirror_num, unsigned long bio_flags, 806 u64 bio_offset, void *private_data, 807 extent_submit_bio_start_t *submit_bio_start) 808 { 809 struct async_submit_bio *async; 810 811 async = kmalloc(sizeof(*async), GFP_NOFS); 812 if (!async) 813 return BLK_STS_RESOURCE; 814 815 async->private_data = private_data; 816 async->bio = bio; 817 async->mirror_num = mirror_num; 818 async->submit_bio_start = submit_bio_start; 819 820 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, 821 run_one_async_free); 822 823 async->bio_offset = bio_offset; 824 825 async->status = 0; 826 827 if (op_is_sync(bio->bi_opf)) 828 btrfs_set_work_high_priority(&async->work); 829 830 btrfs_queue_work(fs_info->workers, &async->work); 831 return 0; 832 } 833 834 static blk_status_t btree_csum_one_bio(struct bio *bio) 835 { 836 struct bio_vec *bvec; 837 struct btrfs_root *root; 838 int ret = 0; 839 struct bvec_iter_all iter_all; 840 841 ASSERT(!bio_flagged(bio, BIO_CLONED)); 842 bio_for_each_segment_all(bvec, bio, iter_all) { 843 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 844 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 845 if (ret) 846 break; 847 } 848 849 return errno_to_blk_status(ret); 850 } 851 852 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, 853 u64 bio_offset) 854 { 855 /* 856 * when we're called for a write, we're already in the async 857 * submission context. Just jump into btrfs_map_bio 858 */ 859 return btree_csum_one_bio(bio); 860 } 861 862 static int check_async_write(struct btrfs_fs_info *fs_info, 863 struct btrfs_inode *bi) 864 { 865 if (atomic_read(&bi->sync_writers)) 866 return 0; 867 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 868 return 0; 869 return 1; 870 } 871 872 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio, 873 int mirror_num, 874 unsigned long bio_flags) 875 { 876 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 877 int async = check_async_write(fs_info, BTRFS_I(inode)); 878 blk_status_t ret; 879 880 if (bio_op(bio) != REQ_OP_WRITE) { 881 /* 882 * called for a read, do the setup so that checksum validation 883 * can happen in the async kernel threads 884 */ 885 ret = btrfs_bio_wq_end_io(fs_info, bio, 886 BTRFS_WQ_ENDIO_METADATA); 887 if (ret) 888 goto out_w_error; 889 ret = btrfs_map_bio(fs_info, bio, mirror_num); 890 } else if (!async) { 891 ret = btree_csum_one_bio(bio); 892 if (ret) 893 goto out_w_error; 894 ret = btrfs_map_bio(fs_info, bio, mirror_num); 895 } else { 896 /* 897 * kthread helpers are used to submit writes so that 898 * checksumming can happen in parallel across all CPUs 899 */ 900 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 901 0, inode, btree_submit_bio_start); 902 } 903 904 if (ret) 905 goto out_w_error; 906 return 0; 907 908 out_w_error: 909 bio->bi_status = ret; 910 bio_endio(bio); 911 return ret; 912 } 913 914 #ifdef CONFIG_MIGRATION 915 static int btree_migratepage(struct address_space *mapping, 916 struct page *newpage, struct page *page, 917 enum migrate_mode mode) 918 { 919 /* 920 * we can't safely write a btree page from here, 921 * we haven't done the locking hook 922 */ 923 if (PageDirty(page)) 924 return -EAGAIN; 925 /* 926 * Buffers may be managed in a filesystem specific way. 927 * We must have no buffers or drop them. 928 */ 929 if (page_has_private(page) && 930 !try_to_release_page(page, GFP_KERNEL)) 931 return -EAGAIN; 932 return migrate_page(mapping, newpage, page, mode); 933 } 934 #endif 935 936 937 static int btree_writepages(struct address_space *mapping, 938 struct writeback_control *wbc) 939 { 940 struct btrfs_fs_info *fs_info; 941 int ret; 942 943 if (wbc->sync_mode == WB_SYNC_NONE) { 944 945 if (wbc->for_kupdate) 946 return 0; 947 948 fs_info = BTRFS_I(mapping->host)->root->fs_info; 949 /* this is a bit racy, but that's ok */ 950 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 951 BTRFS_DIRTY_METADATA_THRESH, 952 fs_info->dirty_metadata_batch); 953 if (ret < 0) 954 return 0; 955 } 956 return btree_write_cache_pages(mapping, wbc); 957 } 958 959 static int btree_readpage(struct file *file, struct page *page) 960 { 961 return extent_read_full_page(page, btree_get_extent, 0); 962 } 963 964 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 965 { 966 if (PageWriteback(page) || PageDirty(page)) 967 return 0; 968 969 return try_release_extent_buffer(page); 970 } 971 972 static void btree_invalidatepage(struct page *page, unsigned int offset, 973 unsigned int length) 974 { 975 struct extent_io_tree *tree; 976 tree = &BTRFS_I(page->mapping->host)->io_tree; 977 extent_invalidatepage(tree, page, offset); 978 btree_releasepage(page, GFP_NOFS); 979 if (PagePrivate(page)) { 980 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 981 "page private not zero on page %llu", 982 (unsigned long long)page_offset(page)); 983 detach_page_private(page); 984 } 985 } 986 987 static int btree_set_page_dirty(struct page *page) 988 { 989 #ifdef DEBUG 990 struct extent_buffer *eb; 991 992 BUG_ON(!PagePrivate(page)); 993 eb = (struct extent_buffer *)page->private; 994 BUG_ON(!eb); 995 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 996 BUG_ON(!atomic_read(&eb->refs)); 997 btrfs_assert_tree_locked(eb); 998 #endif 999 return __set_page_dirty_nobuffers(page); 1000 } 1001 1002 static const struct address_space_operations btree_aops = { 1003 .readpage = btree_readpage, 1004 .writepages = btree_writepages, 1005 .releasepage = btree_releasepage, 1006 .invalidatepage = btree_invalidatepage, 1007 #ifdef CONFIG_MIGRATION 1008 .migratepage = btree_migratepage, 1009 #endif 1010 .set_page_dirty = btree_set_page_dirty, 1011 }; 1012 1013 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1014 { 1015 struct extent_buffer *buf = NULL; 1016 int ret; 1017 1018 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1019 if (IS_ERR(buf)) 1020 return; 1021 1022 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0); 1023 if (ret < 0) 1024 free_extent_buffer_stale(buf); 1025 else 1026 free_extent_buffer(buf); 1027 } 1028 1029 struct extent_buffer *btrfs_find_create_tree_block( 1030 struct btrfs_fs_info *fs_info, 1031 u64 bytenr) 1032 { 1033 if (btrfs_is_testing(fs_info)) 1034 return alloc_test_extent_buffer(fs_info, bytenr); 1035 return alloc_extent_buffer(fs_info, bytenr); 1036 } 1037 1038 /* 1039 * Read tree block at logical address @bytenr and do variant basic but critical 1040 * verification. 1041 * 1042 * @parent_transid: expected transid of this tree block, skip check if 0 1043 * @level: expected level, mandatory check 1044 * @first_key: expected key in slot 0, skip check if NULL 1045 */ 1046 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1047 u64 parent_transid, int level, 1048 struct btrfs_key *first_key) 1049 { 1050 struct extent_buffer *buf = NULL; 1051 int ret; 1052 1053 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1054 if (IS_ERR(buf)) 1055 return buf; 1056 1057 ret = btree_read_extent_buffer_pages(buf, parent_transid, 1058 level, first_key); 1059 if (ret) { 1060 free_extent_buffer_stale(buf); 1061 return ERR_PTR(ret); 1062 } 1063 return buf; 1064 1065 } 1066 1067 void btrfs_clean_tree_block(struct extent_buffer *buf) 1068 { 1069 struct btrfs_fs_info *fs_info = buf->fs_info; 1070 if (btrfs_header_generation(buf) == 1071 fs_info->running_transaction->transid) { 1072 btrfs_assert_tree_locked(buf); 1073 1074 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1075 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1076 -buf->len, 1077 fs_info->dirty_metadata_batch); 1078 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1079 btrfs_set_lock_blocking_write(buf); 1080 clear_extent_buffer_dirty(buf); 1081 } 1082 } 1083 } 1084 1085 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1086 u64 objectid) 1087 { 1088 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1089 root->fs_info = fs_info; 1090 root->node = NULL; 1091 root->commit_root = NULL; 1092 root->state = 0; 1093 root->orphan_cleanup_state = 0; 1094 1095 root->last_trans = 0; 1096 root->highest_objectid = 0; 1097 root->nr_delalloc_inodes = 0; 1098 root->nr_ordered_extents = 0; 1099 root->inode_tree = RB_ROOT; 1100 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1101 root->block_rsv = NULL; 1102 1103 INIT_LIST_HEAD(&root->dirty_list); 1104 INIT_LIST_HEAD(&root->root_list); 1105 INIT_LIST_HEAD(&root->delalloc_inodes); 1106 INIT_LIST_HEAD(&root->delalloc_root); 1107 INIT_LIST_HEAD(&root->ordered_extents); 1108 INIT_LIST_HEAD(&root->ordered_root); 1109 INIT_LIST_HEAD(&root->reloc_dirty_list); 1110 INIT_LIST_HEAD(&root->logged_list[0]); 1111 INIT_LIST_HEAD(&root->logged_list[1]); 1112 spin_lock_init(&root->inode_lock); 1113 spin_lock_init(&root->delalloc_lock); 1114 spin_lock_init(&root->ordered_extent_lock); 1115 spin_lock_init(&root->accounting_lock); 1116 spin_lock_init(&root->log_extents_lock[0]); 1117 spin_lock_init(&root->log_extents_lock[1]); 1118 spin_lock_init(&root->qgroup_meta_rsv_lock); 1119 mutex_init(&root->objectid_mutex); 1120 mutex_init(&root->log_mutex); 1121 mutex_init(&root->ordered_extent_mutex); 1122 mutex_init(&root->delalloc_mutex); 1123 init_waitqueue_head(&root->log_writer_wait); 1124 init_waitqueue_head(&root->log_commit_wait[0]); 1125 init_waitqueue_head(&root->log_commit_wait[1]); 1126 INIT_LIST_HEAD(&root->log_ctxs[0]); 1127 INIT_LIST_HEAD(&root->log_ctxs[1]); 1128 atomic_set(&root->log_commit[0], 0); 1129 atomic_set(&root->log_commit[1], 0); 1130 atomic_set(&root->log_writers, 0); 1131 atomic_set(&root->log_batch, 0); 1132 refcount_set(&root->refs, 1); 1133 atomic_set(&root->snapshot_force_cow, 0); 1134 atomic_set(&root->nr_swapfiles, 0); 1135 root->log_transid = 0; 1136 root->log_transid_committed = -1; 1137 root->last_log_commit = 0; 1138 if (!dummy) 1139 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1140 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL); 1141 1142 memset(&root->root_key, 0, sizeof(root->root_key)); 1143 memset(&root->root_item, 0, sizeof(root->root_item)); 1144 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1145 if (!dummy) 1146 root->defrag_trans_start = fs_info->generation; 1147 else 1148 root->defrag_trans_start = 0; 1149 root->root_key.objectid = objectid; 1150 root->anon_dev = 0; 1151 1152 spin_lock_init(&root->root_item_lock); 1153 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1154 #ifdef CONFIG_BTRFS_DEBUG 1155 INIT_LIST_HEAD(&root->leak_list); 1156 spin_lock(&fs_info->fs_roots_radix_lock); 1157 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 1158 spin_unlock(&fs_info->fs_roots_radix_lock); 1159 #endif 1160 } 1161 1162 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1163 u64 objectid, gfp_t flags) 1164 { 1165 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1166 if (root) 1167 __setup_root(root, fs_info, objectid); 1168 return root; 1169 } 1170 1171 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1172 /* Should only be used by the testing infrastructure */ 1173 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1174 { 1175 struct btrfs_root *root; 1176 1177 if (!fs_info) 1178 return ERR_PTR(-EINVAL); 1179 1180 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 1181 if (!root) 1182 return ERR_PTR(-ENOMEM); 1183 1184 /* We don't use the stripesize in selftest, set it as sectorsize */ 1185 root->alloc_bytenr = 0; 1186 1187 return root; 1188 } 1189 #endif 1190 1191 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1192 u64 objectid) 1193 { 1194 struct btrfs_fs_info *fs_info = trans->fs_info; 1195 struct extent_buffer *leaf; 1196 struct btrfs_root *tree_root = fs_info->tree_root; 1197 struct btrfs_root *root; 1198 struct btrfs_key key; 1199 unsigned int nofs_flag; 1200 int ret = 0; 1201 1202 /* 1203 * We're holding a transaction handle, so use a NOFS memory allocation 1204 * context to avoid deadlock if reclaim happens. 1205 */ 1206 nofs_flag = memalloc_nofs_save(); 1207 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1208 memalloc_nofs_restore(nofs_flag); 1209 if (!root) 1210 return ERR_PTR(-ENOMEM); 1211 1212 root->root_key.objectid = objectid; 1213 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1214 root->root_key.offset = 0; 1215 1216 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1217 if (IS_ERR(leaf)) { 1218 ret = PTR_ERR(leaf); 1219 leaf = NULL; 1220 goto fail; 1221 } 1222 1223 root->node = leaf; 1224 btrfs_mark_buffer_dirty(leaf); 1225 1226 root->commit_root = btrfs_root_node(root); 1227 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1228 1229 root->root_item.flags = 0; 1230 root->root_item.byte_limit = 0; 1231 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1232 btrfs_set_root_generation(&root->root_item, trans->transid); 1233 btrfs_set_root_level(&root->root_item, 0); 1234 btrfs_set_root_refs(&root->root_item, 1); 1235 btrfs_set_root_used(&root->root_item, leaf->len); 1236 btrfs_set_root_last_snapshot(&root->root_item, 0); 1237 btrfs_set_root_dirid(&root->root_item, 0); 1238 if (is_fstree(objectid)) 1239 generate_random_guid(root->root_item.uuid); 1240 else 1241 export_guid(root->root_item.uuid, &guid_null); 1242 root->root_item.drop_level = 0; 1243 1244 key.objectid = objectid; 1245 key.type = BTRFS_ROOT_ITEM_KEY; 1246 key.offset = 0; 1247 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1248 if (ret) 1249 goto fail; 1250 1251 btrfs_tree_unlock(leaf); 1252 1253 return root; 1254 1255 fail: 1256 if (leaf) 1257 btrfs_tree_unlock(leaf); 1258 btrfs_put_root(root); 1259 1260 return ERR_PTR(ret); 1261 } 1262 1263 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1264 struct btrfs_fs_info *fs_info) 1265 { 1266 struct btrfs_root *root; 1267 struct extent_buffer *leaf; 1268 1269 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1270 if (!root) 1271 return ERR_PTR(-ENOMEM); 1272 1273 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1274 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1275 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1276 1277 /* 1278 * DON'T set REF_COWS for log trees 1279 * 1280 * log trees do not get reference counted because they go away 1281 * before a real commit is actually done. They do store pointers 1282 * to file data extents, and those reference counts still get 1283 * updated (along with back refs to the log tree). 1284 */ 1285 1286 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1287 NULL, 0, 0, 0); 1288 if (IS_ERR(leaf)) { 1289 btrfs_put_root(root); 1290 return ERR_CAST(leaf); 1291 } 1292 1293 root->node = leaf; 1294 1295 btrfs_mark_buffer_dirty(root->node); 1296 btrfs_tree_unlock(root->node); 1297 return root; 1298 } 1299 1300 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1301 struct btrfs_fs_info *fs_info) 1302 { 1303 struct btrfs_root *log_root; 1304 1305 log_root = alloc_log_tree(trans, fs_info); 1306 if (IS_ERR(log_root)) 1307 return PTR_ERR(log_root); 1308 WARN_ON(fs_info->log_root_tree); 1309 fs_info->log_root_tree = log_root; 1310 return 0; 1311 } 1312 1313 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1314 struct btrfs_root *root) 1315 { 1316 struct btrfs_fs_info *fs_info = root->fs_info; 1317 struct btrfs_root *log_root; 1318 struct btrfs_inode_item *inode_item; 1319 1320 log_root = alloc_log_tree(trans, fs_info); 1321 if (IS_ERR(log_root)) 1322 return PTR_ERR(log_root); 1323 1324 log_root->last_trans = trans->transid; 1325 log_root->root_key.offset = root->root_key.objectid; 1326 1327 inode_item = &log_root->root_item.inode; 1328 btrfs_set_stack_inode_generation(inode_item, 1); 1329 btrfs_set_stack_inode_size(inode_item, 3); 1330 btrfs_set_stack_inode_nlink(inode_item, 1); 1331 btrfs_set_stack_inode_nbytes(inode_item, 1332 fs_info->nodesize); 1333 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1334 1335 btrfs_set_root_node(&log_root->root_item, log_root->node); 1336 1337 WARN_ON(root->log_root); 1338 root->log_root = log_root; 1339 root->log_transid = 0; 1340 root->log_transid_committed = -1; 1341 root->last_log_commit = 0; 1342 return 0; 1343 } 1344 1345 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1346 struct btrfs_key *key) 1347 { 1348 struct btrfs_root *root; 1349 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1350 struct btrfs_path *path; 1351 u64 generation; 1352 int ret; 1353 int level; 1354 1355 path = btrfs_alloc_path(); 1356 if (!path) 1357 return ERR_PTR(-ENOMEM); 1358 1359 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1360 if (!root) { 1361 ret = -ENOMEM; 1362 goto alloc_fail; 1363 } 1364 1365 ret = btrfs_find_root(tree_root, key, path, 1366 &root->root_item, &root->root_key); 1367 if (ret) { 1368 if (ret > 0) 1369 ret = -ENOENT; 1370 goto find_fail; 1371 } 1372 1373 generation = btrfs_root_generation(&root->root_item); 1374 level = btrfs_root_level(&root->root_item); 1375 root->node = read_tree_block(fs_info, 1376 btrfs_root_bytenr(&root->root_item), 1377 generation, level, NULL); 1378 if (IS_ERR(root->node)) { 1379 ret = PTR_ERR(root->node); 1380 root->node = NULL; 1381 goto find_fail; 1382 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1383 ret = -EIO; 1384 goto find_fail; 1385 } 1386 root->commit_root = btrfs_root_node(root); 1387 out: 1388 btrfs_free_path(path); 1389 return root; 1390 1391 find_fail: 1392 btrfs_put_root(root); 1393 alloc_fail: 1394 root = ERR_PTR(ret); 1395 goto out; 1396 } 1397 1398 static int btrfs_init_fs_root(struct btrfs_root *root) 1399 { 1400 int ret; 1401 unsigned int nofs_flag; 1402 1403 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1404 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1405 GFP_NOFS); 1406 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1407 ret = -ENOMEM; 1408 goto fail; 1409 } 1410 1411 /* 1412 * We might be called under a transaction (e.g. indirect backref 1413 * resolution) which could deadlock if it triggers memory reclaim 1414 */ 1415 nofs_flag = memalloc_nofs_save(); 1416 ret = btrfs_drew_lock_init(&root->snapshot_lock); 1417 memalloc_nofs_restore(nofs_flag); 1418 if (ret) 1419 goto fail; 1420 1421 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1422 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1423 btrfs_check_and_init_root_item(&root->root_item); 1424 } 1425 1426 btrfs_init_free_ino_ctl(root); 1427 spin_lock_init(&root->ino_cache_lock); 1428 init_waitqueue_head(&root->ino_cache_wait); 1429 1430 ret = get_anon_bdev(&root->anon_dev); 1431 if (ret) 1432 goto fail; 1433 1434 mutex_lock(&root->objectid_mutex); 1435 ret = btrfs_find_highest_objectid(root, 1436 &root->highest_objectid); 1437 if (ret) { 1438 mutex_unlock(&root->objectid_mutex); 1439 goto fail; 1440 } 1441 1442 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1443 1444 mutex_unlock(&root->objectid_mutex); 1445 1446 return 0; 1447 fail: 1448 /* The caller is responsible to call btrfs_free_fs_root */ 1449 return ret; 1450 } 1451 1452 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1453 u64 root_id) 1454 { 1455 struct btrfs_root *root; 1456 1457 spin_lock(&fs_info->fs_roots_radix_lock); 1458 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1459 (unsigned long)root_id); 1460 if (root) 1461 root = btrfs_grab_root(root); 1462 spin_unlock(&fs_info->fs_roots_radix_lock); 1463 return root; 1464 } 1465 1466 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1467 struct btrfs_root *root) 1468 { 1469 int ret; 1470 1471 ret = radix_tree_preload(GFP_NOFS); 1472 if (ret) 1473 return ret; 1474 1475 spin_lock(&fs_info->fs_roots_radix_lock); 1476 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1477 (unsigned long)root->root_key.objectid, 1478 root); 1479 if (ret == 0) { 1480 btrfs_grab_root(root); 1481 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1482 } 1483 spin_unlock(&fs_info->fs_roots_radix_lock); 1484 radix_tree_preload_end(); 1485 1486 return ret; 1487 } 1488 1489 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1490 { 1491 #ifdef CONFIG_BTRFS_DEBUG 1492 struct btrfs_root *root; 1493 1494 while (!list_empty(&fs_info->allocated_roots)) { 1495 root = list_first_entry(&fs_info->allocated_roots, 1496 struct btrfs_root, leak_list); 1497 btrfs_err(fs_info, "leaked root %llu-%llu refcount %d", 1498 root->root_key.objectid, root->root_key.offset, 1499 refcount_read(&root->refs)); 1500 while (refcount_read(&root->refs) > 1) 1501 btrfs_put_root(root); 1502 btrfs_put_root(root); 1503 } 1504 #endif 1505 } 1506 1507 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1508 { 1509 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1510 percpu_counter_destroy(&fs_info->delalloc_bytes); 1511 percpu_counter_destroy(&fs_info->dio_bytes); 1512 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1513 btrfs_free_csum_hash(fs_info); 1514 btrfs_free_stripe_hash_table(fs_info); 1515 btrfs_free_ref_cache(fs_info); 1516 kfree(fs_info->balance_ctl); 1517 kfree(fs_info->delayed_root); 1518 btrfs_put_root(fs_info->extent_root); 1519 btrfs_put_root(fs_info->tree_root); 1520 btrfs_put_root(fs_info->chunk_root); 1521 btrfs_put_root(fs_info->dev_root); 1522 btrfs_put_root(fs_info->csum_root); 1523 btrfs_put_root(fs_info->quota_root); 1524 btrfs_put_root(fs_info->uuid_root); 1525 btrfs_put_root(fs_info->free_space_root); 1526 btrfs_put_root(fs_info->fs_root); 1527 btrfs_check_leaked_roots(fs_info); 1528 btrfs_extent_buffer_leak_debug_check(fs_info); 1529 kfree(fs_info->super_copy); 1530 kfree(fs_info->super_for_commit); 1531 kvfree(fs_info); 1532 } 1533 1534 1535 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1536 struct btrfs_key *location, 1537 bool check_ref) 1538 { 1539 struct btrfs_root *root; 1540 struct btrfs_path *path; 1541 struct btrfs_key key; 1542 int ret; 1543 1544 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1545 return btrfs_grab_root(fs_info->tree_root); 1546 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1547 return btrfs_grab_root(fs_info->extent_root); 1548 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1549 return btrfs_grab_root(fs_info->chunk_root); 1550 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1551 return btrfs_grab_root(fs_info->dev_root); 1552 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1553 return btrfs_grab_root(fs_info->csum_root); 1554 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1555 return btrfs_grab_root(fs_info->quota_root) ? 1556 fs_info->quota_root : ERR_PTR(-ENOENT); 1557 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1558 return btrfs_grab_root(fs_info->uuid_root) ? 1559 fs_info->uuid_root : ERR_PTR(-ENOENT); 1560 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1561 return btrfs_grab_root(fs_info->free_space_root) ? 1562 fs_info->free_space_root : ERR_PTR(-ENOENT); 1563 again: 1564 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1565 if (root) { 1566 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1567 btrfs_put_root(root); 1568 return ERR_PTR(-ENOENT); 1569 } 1570 return root; 1571 } 1572 1573 root = btrfs_read_tree_root(fs_info->tree_root, location); 1574 if (IS_ERR(root)) 1575 return root; 1576 1577 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1578 ret = -ENOENT; 1579 goto fail; 1580 } 1581 1582 ret = btrfs_init_fs_root(root); 1583 if (ret) 1584 goto fail; 1585 1586 path = btrfs_alloc_path(); 1587 if (!path) { 1588 ret = -ENOMEM; 1589 goto fail; 1590 } 1591 key.objectid = BTRFS_ORPHAN_OBJECTID; 1592 key.type = BTRFS_ORPHAN_ITEM_KEY; 1593 key.offset = location->objectid; 1594 1595 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1596 btrfs_free_path(path); 1597 if (ret < 0) 1598 goto fail; 1599 if (ret == 0) 1600 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1601 1602 ret = btrfs_insert_fs_root(fs_info, root); 1603 if (ret) { 1604 btrfs_put_root(root); 1605 if (ret == -EEXIST) 1606 goto again; 1607 goto fail; 1608 } 1609 return root; 1610 fail: 1611 btrfs_put_root(root); 1612 return ERR_PTR(ret); 1613 } 1614 1615 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1616 { 1617 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1618 int ret = 0; 1619 struct btrfs_device *device; 1620 struct backing_dev_info *bdi; 1621 1622 rcu_read_lock(); 1623 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1624 if (!device->bdev) 1625 continue; 1626 bdi = device->bdev->bd_bdi; 1627 if (bdi_congested(bdi, bdi_bits)) { 1628 ret = 1; 1629 break; 1630 } 1631 } 1632 rcu_read_unlock(); 1633 return ret; 1634 } 1635 1636 /* 1637 * called by the kthread helper functions to finally call the bio end_io 1638 * functions. This is where read checksum verification actually happens 1639 */ 1640 static void end_workqueue_fn(struct btrfs_work *work) 1641 { 1642 struct bio *bio; 1643 struct btrfs_end_io_wq *end_io_wq; 1644 1645 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1646 bio = end_io_wq->bio; 1647 1648 bio->bi_status = end_io_wq->status; 1649 bio->bi_private = end_io_wq->private; 1650 bio->bi_end_io = end_io_wq->end_io; 1651 bio_endio(bio); 1652 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1653 } 1654 1655 static int cleaner_kthread(void *arg) 1656 { 1657 struct btrfs_root *root = arg; 1658 struct btrfs_fs_info *fs_info = root->fs_info; 1659 int again; 1660 1661 while (1) { 1662 again = 0; 1663 1664 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1665 1666 /* Make the cleaner go to sleep early. */ 1667 if (btrfs_need_cleaner_sleep(fs_info)) 1668 goto sleep; 1669 1670 /* 1671 * Do not do anything if we might cause open_ctree() to block 1672 * before we have finished mounting the filesystem. 1673 */ 1674 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1675 goto sleep; 1676 1677 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1678 goto sleep; 1679 1680 /* 1681 * Avoid the problem that we change the status of the fs 1682 * during the above check and trylock. 1683 */ 1684 if (btrfs_need_cleaner_sleep(fs_info)) { 1685 mutex_unlock(&fs_info->cleaner_mutex); 1686 goto sleep; 1687 } 1688 1689 btrfs_run_delayed_iputs(fs_info); 1690 1691 again = btrfs_clean_one_deleted_snapshot(root); 1692 mutex_unlock(&fs_info->cleaner_mutex); 1693 1694 /* 1695 * The defragger has dealt with the R/O remount and umount, 1696 * needn't do anything special here. 1697 */ 1698 btrfs_run_defrag_inodes(fs_info); 1699 1700 /* 1701 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1702 * with relocation (btrfs_relocate_chunk) and relocation 1703 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1704 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1705 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1706 * unused block groups. 1707 */ 1708 btrfs_delete_unused_bgs(fs_info); 1709 sleep: 1710 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1711 if (kthread_should_park()) 1712 kthread_parkme(); 1713 if (kthread_should_stop()) 1714 return 0; 1715 if (!again) { 1716 set_current_state(TASK_INTERRUPTIBLE); 1717 schedule(); 1718 __set_current_state(TASK_RUNNING); 1719 } 1720 } 1721 } 1722 1723 static int transaction_kthread(void *arg) 1724 { 1725 struct btrfs_root *root = arg; 1726 struct btrfs_fs_info *fs_info = root->fs_info; 1727 struct btrfs_trans_handle *trans; 1728 struct btrfs_transaction *cur; 1729 u64 transid; 1730 time64_t now; 1731 unsigned long delay; 1732 bool cannot_commit; 1733 1734 do { 1735 cannot_commit = false; 1736 delay = HZ * fs_info->commit_interval; 1737 mutex_lock(&fs_info->transaction_kthread_mutex); 1738 1739 spin_lock(&fs_info->trans_lock); 1740 cur = fs_info->running_transaction; 1741 if (!cur) { 1742 spin_unlock(&fs_info->trans_lock); 1743 goto sleep; 1744 } 1745 1746 now = ktime_get_seconds(); 1747 if (cur->state < TRANS_STATE_COMMIT_START && 1748 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) && 1749 (now < cur->start_time || 1750 now - cur->start_time < fs_info->commit_interval)) { 1751 spin_unlock(&fs_info->trans_lock); 1752 delay = HZ * 5; 1753 goto sleep; 1754 } 1755 transid = cur->transid; 1756 spin_unlock(&fs_info->trans_lock); 1757 1758 /* If the file system is aborted, this will always fail. */ 1759 trans = btrfs_attach_transaction(root); 1760 if (IS_ERR(trans)) { 1761 if (PTR_ERR(trans) != -ENOENT) 1762 cannot_commit = true; 1763 goto sleep; 1764 } 1765 if (transid == trans->transid) { 1766 btrfs_commit_transaction(trans); 1767 } else { 1768 btrfs_end_transaction(trans); 1769 } 1770 sleep: 1771 wake_up_process(fs_info->cleaner_kthread); 1772 mutex_unlock(&fs_info->transaction_kthread_mutex); 1773 1774 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1775 &fs_info->fs_state))) 1776 btrfs_cleanup_transaction(fs_info); 1777 if (!kthread_should_stop() && 1778 (!btrfs_transaction_blocked(fs_info) || 1779 cannot_commit)) 1780 schedule_timeout_interruptible(delay); 1781 } while (!kthread_should_stop()); 1782 return 0; 1783 } 1784 1785 /* 1786 * This will find the highest generation in the array of root backups. The 1787 * index of the highest array is returned, or -EINVAL if we can't find 1788 * anything. 1789 * 1790 * We check to make sure the array is valid by comparing the 1791 * generation of the latest root in the array with the generation 1792 * in the super block. If they don't match we pitch it. 1793 */ 1794 static int find_newest_super_backup(struct btrfs_fs_info *info) 1795 { 1796 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1797 u64 cur; 1798 struct btrfs_root_backup *root_backup; 1799 int i; 1800 1801 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1802 root_backup = info->super_copy->super_roots + i; 1803 cur = btrfs_backup_tree_root_gen(root_backup); 1804 if (cur == newest_gen) 1805 return i; 1806 } 1807 1808 return -EINVAL; 1809 } 1810 1811 /* 1812 * copy all the root pointers into the super backup array. 1813 * this will bump the backup pointer by one when it is 1814 * done 1815 */ 1816 static void backup_super_roots(struct btrfs_fs_info *info) 1817 { 1818 const int next_backup = info->backup_root_index; 1819 struct btrfs_root_backup *root_backup; 1820 1821 root_backup = info->super_for_commit->super_roots + next_backup; 1822 1823 /* 1824 * make sure all of our padding and empty slots get zero filled 1825 * regardless of which ones we use today 1826 */ 1827 memset(root_backup, 0, sizeof(*root_backup)); 1828 1829 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1830 1831 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1832 btrfs_set_backup_tree_root_gen(root_backup, 1833 btrfs_header_generation(info->tree_root->node)); 1834 1835 btrfs_set_backup_tree_root_level(root_backup, 1836 btrfs_header_level(info->tree_root->node)); 1837 1838 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1839 btrfs_set_backup_chunk_root_gen(root_backup, 1840 btrfs_header_generation(info->chunk_root->node)); 1841 btrfs_set_backup_chunk_root_level(root_backup, 1842 btrfs_header_level(info->chunk_root->node)); 1843 1844 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1845 btrfs_set_backup_extent_root_gen(root_backup, 1846 btrfs_header_generation(info->extent_root->node)); 1847 btrfs_set_backup_extent_root_level(root_backup, 1848 btrfs_header_level(info->extent_root->node)); 1849 1850 /* 1851 * we might commit during log recovery, which happens before we set 1852 * the fs_root. Make sure it is valid before we fill it in. 1853 */ 1854 if (info->fs_root && info->fs_root->node) { 1855 btrfs_set_backup_fs_root(root_backup, 1856 info->fs_root->node->start); 1857 btrfs_set_backup_fs_root_gen(root_backup, 1858 btrfs_header_generation(info->fs_root->node)); 1859 btrfs_set_backup_fs_root_level(root_backup, 1860 btrfs_header_level(info->fs_root->node)); 1861 } 1862 1863 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1864 btrfs_set_backup_dev_root_gen(root_backup, 1865 btrfs_header_generation(info->dev_root->node)); 1866 btrfs_set_backup_dev_root_level(root_backup, 1867 btrfs_header_level(info->dev_root->node)); 1868 1869 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1870 btrfs_set_backup_csum_root_gen(root_backup, 1871 btrfs_header_generation(info->csum_root->node)); 1872 btrfs_set_backup_csum_root_level(root_backup, 1873 btrfs_header_level(info->csum_root->node)); 1874 1875 btrfs_set_backup_total_bytes(root_backup, 1876 btrfs_super_total_bytes(info->super_copy)); 1877 btrfs_set_backup_bytes_used(root_backup, 1878 btrfs_super_bytes_used(info->super_copy)); 1879 btrfs_set_backup_num_devices(root_backup, 1880 btrfs_super_num_devices(info->super_copy)); 1881 1882 /* 1883 * if we don't copy this out to the super_copy, it won't get remembered 1884 * for the next commit 1885 */ 1886 memcpy(&info->super_copy->super_roots, 1887 &info->super_for_commit->super_roots, 1888 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1889 } 1890 1891 /* 1892 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 1893 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1894 * 1895 * fs_info - filesystem whose backup roots need to be read 1896 * priority - priority of backup root required 1897 * 1898 * Returns backup root index on success and -EINVAL otherwise. 1899 */ 1900 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1901 { 1902 int backup_index = find_newest_super_backup(fs_info); 1903 struct btrfs_super_block *super = fs_info->super_copy; 1904 struct btrfs_root_backup *root_backup; 1905 1906 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1907 if (priority == 0) 1908 return backup_index; 1909 1910 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1911 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1912 } else { 1913 return -EINVAL; 1914 } 1915 1916 root_backup = super->super_roots + backup_index; 1917 1918 btrfs_set_super_generation(super, 1919 btrfs_backup_tree_root_gen(root_backup)); 1920 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1921 btrfs_set_super_root_level(super, 1922 btrfs_backup_tree_root_level(root_backup)); 1923 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1924 1925 /* 1926 * Fixme: the total bytes and num_devices need to match or we should 1927 * need a fsck 1928 */ 1929 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1930 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1931 1932 return backup_index; 1933 } 1934 1935 /* helper to cleanup workers */ 1936 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1937 { 1938 btrfs_destroy_workqueue(fs_info->fixup_workers); 1939 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1940 btrfs_destroy_workqueue(fs_info->workers); 1941 btrfs_destroy_workqueue(fs_info->endio_workers); 1942 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 1943 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 1944 btrfs_destroy_workqueue(fs_info->rmw_workers); 1945 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1946 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1947 btrfs_destroy_workqueue(fs_info->delayed_workers); 1948 btrfs_destroy_workqueue(fs_info->caching_workers); 1949 btrfs_destroy_workqueue(fs_info->readahead_workers); 1950 btrfs_destroy_workqueue(fs_info->flush_workers); 1951 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1952 if (fs_info->discard_ctl.discard_workers) 1953 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1954 /* 1955 * Now that all other work queues are destroyed, we can safely destroy 1956 * the queues used for metadata I/O, since tasks from those other work 1957 * queues can do metadata I/O operations. 1958 */ 1959 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 1960 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 1961 } 1962 1963 static void free_root_extent_buffers(struct btrfs_root *root) 1964 { 1965 if (root) { 1966 free_extent_buffer(root->node); 1967 free_extent_buffer(root->commit_root); 1968 root->node = NULL; 1969 root->commit_root = NULL; 1970 } 1971 } 1972 1973 /* helper to cleanup tree roots */ 1974 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1975 { 1976 free_root_extent_buffers(info->tree_root); 1977 1978 free_root_extent_buffers(info->dev_root); 1979 free_root_extent_buffers(info->extent_root); 1980 free_root_extent_buffers(info->csum_root); 1981 free_root_extent_buffers(info->quota_root); 1982 free_root_extent_buffers(info->uuid_root); 1983 free_root_extent_buffers(info->fs_root); 1984 if (free_chunk_root) 1985 free_root_extent_buffers(info->chunk_root); 1986 free_root_extent_buffers(info->free_space_root); 1987 } 1988 1989 void btrfs_put_root(struct btrfs_root *root) 1990 { 1991 if (!root) 1992 return; 1993 1994 if (refcount_dec_and_test(&root->refs)) { 1995 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 1996 if (root->anon_dev) 1997 free_anon_bdev(root->anon_dev); 1998 btrfs_drew_lock_destroy(&root->snapshot_lock); 1999 free_extent_buffer(root->node); 2000 free_extent_buffer(root->commit_root); 2001 kfree(root->free_ino_ctl); 2002 kfree(root->free_ino_pinned); 2003 #ifdef CONFIG_BTRFS_DEBUG 2004 spin_lock(&root->fs_info->fs_roots_radix_lock); 2005 list_del_init(&root->leak_list); 2006 spin_unlock(&root->fs_info->fs_roots_radix_lock); 2007 #endif 2008 kfree(root); 2009 } 2010 } 2011 2012 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2013 { 2014 int ret; 2015 struct btrfs_root *gang[8]; 2016 int i; 2017 2018 while (!list_empty(&fs_info->dead_roots)) { 2019 gang[0] = list_entry(fs_info->dead_roots.next, 2020 struct btrfs_root, root_list); 2021 list_del(&gang[0]->root_list); 2022 2023 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2024 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2025 btrfs_put_root(gang[0]); 2026 } 2027 2028 while (1) { 2029 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2030 (void **)gang, 0, 2031 ARRAY_SIZE(gang)); 2032 if (!ret) 2033 break; 2034 for (i = 0; i < ret; i++) 2035 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2036 } 2037 } 2038 2039 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2040 { 2041 mutex_init(&fs_info->scrub_lock); 2042 atomic_set(&fs_info->scrubs_running, 0); 2043 atomic_set(&fs_info->scrub_pause_req, 0); 2044 atomic_set(&fs_info->scrubs_paused, 0); 2045 atomic_set(&fs_info->scrub_cancel_req, 0); 2046 init_waitqueue_head(&fs_info->scrub_pause_wait); 2047 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2048 } 2049 2050 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2051 { 2052 spin_lock_init(&fs_info->balance_lock); 2053 mutex_init(&fs_info->balance_mutex); 2054 atomic_set(&fs_info->balance_pause_req, 0); 2055 atomic_set(&fs_info->balance_cancel_req, 0); 2056 fs_info->balance_ctl = NULL; 2057 init_waitqueue_head(&fs_info->balance_wait_q); 2058 } 2059 2060 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2061 { 2062 struct inode *inode = fs_info->btree_inode; 2063 2064 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2065 set_nlink(inode, 1); 2066 /* 2067 * we set the i_size on the btree inode to the max possible int. 2068 * the real end of the address space is determined by all of 2069 * the devices in the system 2070 */ 2071 inode->i_size = OFFSET_MAX; 2072 inode->i_mapping->a_ops = &btree_aops; 2073 2074 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2075 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2076 IO_TREE_INODE_IO, inode); 2077 BTRFS_I(inode)->io_tree.track_uptodate = false; 2078 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2079 2080 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2081 2082 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2083 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2084 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2085 btrfs_insert_inode_hash(inode); 2086 } 2087 2088 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2089 { 2090 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2091 init_rwsem(&fs_info->dev_replace.rwsem); 2092 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2093 } 2094 2095 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2096 { 2097 spin_lock_init(&fs_info->qgroup_lock); 2098 mutex_init(&fs_info->qgroup_ioctl_lock); 2099 fs_info->qgroup_tree = RB_ROOT; 2100 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2101 fs_info->qgroup_seq = 1; 2102 fs_info->qgroup_ulist = NULL; 2103 fs_info->qgroup_rescan_running = false; 2104 mutex_init(&fs_info->qgroup_rescan_lock); 2105 } 2106 2107 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2108 struct btrfs_fs_devices *fs_devices) 2109 { 2110 u32 max_active = fs_info->thread_pool_size; 2111 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2112 2113 fs_info->workers = 2114 btrfs_alloc_workqueue(fs_info, "worker", 2115 flags | WQ_HIGHPRI, max_active, 16); 2116 2117 fs_info->delalloc_workers = 2118 btrfs_alloc_workqueue(fs_info, "delalloc", 2119 flags, max_active, 2); 2120 2121 fs_info->flush_workers = 2122 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2123 flags, max_active, 0); 2124 2125 fs_info->caching_workers = 2126 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2127 2128 fs_info->fixup_workers = 2129 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2130 2131 /* 2132 * endios are largely parallel and should have a very 2133 * low idle thresh 2134 */ 2135 fs_info->endio_workers = 2136 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2137 fs_info->endio_meta_workers = 2138 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2139 max_active, 4); 2140 fs_info->endio_meta_write_workers = 2141 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2142 max_active, 2); 2143 fs_info->endio_raid56_workers = 2144 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2145 max_active, 4); 2146 fs_info->endio_repair_workers = 2147 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2148 fs_info->rmw_workers = 2149 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2150 fs_info->endio_write_workers = 2151 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2152 max_active, 2); 2153 fs_info->endio_freespace_worker = 2154 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2155 max_active, 0); 2156 fs_info->delayed_workers = 2157 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2158 max_active, 0); 2159 fs_info->readahead_workers = 2160 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2161 max_active, 2); 2162 fs_info->qgroup_rescan_workers = 2163 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2164 fs_info->discard_ctl.discard_workers = 2165 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2166 2167 if (!(fs_info->workers && fs_info->delalloc_workers && 2168 fs_info->flush_workers && 2169 fs_info->endio_workers && fs_info->endio_meta_workers && 2170 fs_info->endio_meta_write_workers && 2171 fs_info->endio_repair_workers && 2172 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2173 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2174 fs_info->caching_workers && fs_info->readahead_workers && 2175 fs_info->fixup_workers && fs_info->delayed_workers && 2176 fs_info->qgroup_rescan_workers && 2177 fs_info->discard_ctl.discard_workers)) { 2178 return -ENOMEM; 2179 } 2180 2181 return 0; 2182 } 2183 2184 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2185 { 2186 struct crypto_shash *csum_shash; 2187 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2188 2189 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2190 2191 if (IS_ERR(csum_shash)) { 2192 btrfs_err(fs_info, "error allocating %s hash for checksum", 2193 csum_driver); 2194 return PTR_ERR(csum_shash); 2195 } 2196 2197 fs_info->csum_shash = csum_shash; 2198 2199 return 0; 2200 } 2201 2202 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2203 struct btrfs_fs_devices *fs_devices) 2204 { 2205 int ret; 2206 struct btrfs_root *log_tree_root; 2207 struct btrfs_super_block *disk_super = fs_info->super_copy; 2208 u64 bytenr = btrfs_super_log_root(disk_super); 2209 int level = btrfs_super_log_root_level(disk_super); 2210 2211 if (fs_devices->rw_devices == 0) { 2212 btrfs_warn(fs_info, "log replay required on RO media"); 2213 return -EIO; 2214 } 2215 2216 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2217 GFP_KERNEL); 2218 if (!log_tree_root) 2219 return -ENOMEM; 2220 2221 log_tree_root->node = read_tree_block(fs_info, bytenr, 2222 fs_info->generation + 1, 2223 level, NULL); 2224 if (IS_ERR(log_tree_root->node)) { 2225 btrfs_warn(fs_info, "failed to read log tree"); 2226 ret = PTR_ERR(log_tree_root->node); 2227 log_tree_root->node = NULL; 2228 btrfs_put_root(log_tree_root); 2229 return ret; 2230 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2231 btrfs_err(fs_info, "failed to read log tree"); 2232 btrfs_put_root(log_tree_root); 2233 return -EIO; 2234 } 2235 /* returns with log_tree_root freed on success */ 2236 ret = btrfs_recover_log_trees(log_tree_root); 2237 if (ret) { 2238 btrfs_handle_fs_error(fs_info, ret, 2239 "Failed to recover log tree"); 2240 btrfs_put_root(log_tree_root); 2241 return ret; 2242 } 2243 2244 if (sb_rdonly(fs_info->sb)) { 2245 ret = btrfs_commit_super(fs_info); 2246 if (ret) 2247 return ret; 2248 } 2249 2250 return 0; 2251 } 2252 2253 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2254 { 2255 struct btrfs_root *tree_root = fs_info->tree_root; 2256 struct btrfs_root *root; 2257 struct btrfs_key location; 2258 int ret; 2259 2260 BUG_ON(!fs_info->tree_root); 2261 2262 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2263 location.type = BTRFS_ROOT_ITEM_KEY; 2264 location.offset = 0; 2265 2266 root = btrfs_read_tree_root(tree_root, &location); 2267 if (IS_ERR(root)) { 2268 ret = PTR_ERR(root); 2269 goto out; 2270 } 2271 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2272 fs_info->extent_root = root; 2273 2274 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2275 root = btrfs_read_tree_root(tree_root, &location); 2276 if (IS_ERR(root)) { 2277 ret = PTR_ERR(root); 2278 goto out; 2279 } 2280 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2281 fs_info->dev_root = root; 2282 btrfs_init_devices_late(fs_info); 2283 2284 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2285 root = btrfs_read_tree_root(tree_root, &location); 2286 if (IS_ERR(root)) { 2287 ret = PTR_ERR(root); 2288 goto out; 2289 } 2290 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2291 fs_info->csum_root = root; 2292 2293 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2294 root = btrfs_read_tree_root(tree_root, &location); 2295 if (!IS_ERR(root)) { 2296 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2297 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2298 fs_info->quota_root = root; 2299 } 2300 2301 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2302 root = btrfs_read_tree_root(tree_root, &location); 2303 if (IS_ERR(root)) { 2304 ret = PTR_ERR(root); 2305 if (ret != -ENOENT) 2306 goto out; 2307 } else { 2308 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2309 fs_info->uuid_root = root; 2310 } 2311 2312 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2313 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2314 root = btrfs_read_tree_root(tree_root, &location); 2315 if (IS_ERR(root)) { 2316 ret = PTR_ERR(root); 2317 goto out; 2318 } 2319 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2320 fs_info->free_space_root = root; 2321 } 2322 2323 return 0; 2324 out: 2325 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2326 location.objectid, ret); 2327 return ret; 2328 } 2329 2330 /* 2331 * Real super block validation 2332 * NOTE: super csum type and incompat features will not be checked here. 2333 * 2334 * @sb: super block to check 2335 * @mirror_num: the super block number to check its bytenr: 2336 * 0 the primary (1st) sb 2337 * 1, 2 2nd and 3rd backup copy 2338 * -1 skip bytenr check 2339 */ 2340 static int validate_super(struct btrfs_fs_info *fs_info, 2341 struct btrfs_super_block *sb, int mirror_num) 2342 { 2343 u64 nodesize = btrfs_super_nodesize(sb); 2344 u64 sectorsize = btrfs_super_sectorsize(sb); 2345 int ret = 0; 2346 2347 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2348 btrfs_err(fs_info, "no valid FS found"); 2349 ret = -EINVAL; 2350 } 2351 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2352 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2353 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2354 ret = -EINVAL; 2355 } 2356 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2357 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2358 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2359 ret = -EINVAL; 2360 } 2361 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2362 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2363 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2364 ret = -EINVAL; 2365 } 2366 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2367 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2368 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2369 ret = -EINVAL; 2370 } 2371 2372 /* 2373 * Check sectorsize and nodesize first, other check will need it. 2374 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2375 */ 2376 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2377 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2378 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2379 ret = -EINVAL; 2380 } 2381 /* Only PAGE SIZE is supported yet */ 2382 if (sectorsize != PAGE_SIZE) { 2383 btrfs_err(fs_info, 2384 "sectorsize %llu not supported yet, only support %lu", 2385 sectorsize, PAGE_SIZE); 2386 ret = -EINVAL; 2387 } 2388 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2389 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2390 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2391 ret = -EINVAL; 2392 } 2393 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2394 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2395 le32_to_cpu(sb->__unused_leafsize), nodesize); 2396 ret = -EINVAL; 2397 } 2398 2399 /* Root alignment check */ 2400 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2401 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2402 btrfs_super_root(sb)); 2403 ret = -EINVAL; 2404 } 2405 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2406 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2407 btrfs_super_chunk_root(sb)); 2408 ret = -EINVAL; 2409 } 2410 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2411 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2412 btrfs_super_log_root(sb)); 2413 ret = -EINVAL; 2414 } 2415 2416 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2417 BTRFS_FSID_SIZE) != 0) { 2418 btrfs_err(fs_info, 2419 "dev_item UUID does not match metadata fsid: %pU != %pU", 2420 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2421 ret = -EINVAL; 2422 } 2423 2424 /* 2425 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2426 * done later 2427 */ 2428 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2429 btrfs_err(fs_info, "bytes_used is too small %llu", 2430 btrfs_super_bytes_used(sb)); 2431 ret = -EINVAL; 2432 } 2433 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2434 btrfs_err(fs_info, "invalid stripesize %u", 2435 btrfs_super_stripesize(sb)); 2436 ret = -EINVAL; 2437 } 2438 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2439 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2440 btrfs_super_num_devices(sb)); 2441 if (btrfs_super_num_devices(sb) == 0) { 2442 btrfs_err(fs_info, "number of devices is 0"); 2443 ret = -EINVAL; 2444 } 2445 2446 if (mirror_num >= 0 && 2447 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2448 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2449 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2450 ret = -EINVAL; 2451 } 2452 2453 /* 2454 * Obvious sys_chunk_array corruptions, it must hold at least one key 2455 * and one chunk 2456 */ 2457 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2458 btrfs_err(fs_info, "system chunk array too big %u > %u", 2459 btrfs_super_sys_array_size(sb), 2460 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2461 ret = -EINVAL; 2462 } 2463 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2464 + sizeof(struct btrfs_chunk)) { 2465 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2466 btrfs_super_sys_array_size(sb), 2467 sizeof(struct btrfs_disk_key) 2468 + sizeof(struct btrfs_chunk)); 2469 ret = -EINVAL; 2470 } 2471 2472 /* 2473 * The generation is a global counter, we'll trust it more than the others 2474 * but it's still possible that it's the one that's wrong. 2475 */ 2476 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2477 btrfs_warn(fs_info, 2478 "suspicious: generation < chunk_root_generation: %llu < %llu", 2479 btrfs_super_generation(sb), 2480 btrfs_super_chunk_root_generation(sb)); 2481 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2482 && btrfs_super_cache_generation(sb) != (u64)-1) 2483 btrfs_warn(fs_info, 2484 "suspicious: generation < cache_generation: %llu < %llu", 2485 btrfs_super_generation(sb), 2486 btrfs_super_cache_generation(sb)); 2487 2488 return ret; 2489 } 2490 2491 /* 2492 * Validation of super block at mount time. 2493 * Some checks already done early at mount time, like csum type and incompat 2494 * flags will be skipped. 2495 */ 2496 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2497 { 2498 return validate_super(fs_info, fs_info->super_copy, 0); 2499 } 2500 2501 /* 2502 * Validation of super block at write time. 2503 * Some checks like bytenr check will be skipped as their values will be 2504 * overwritten soon. 2505 * Extra checks like csum type and incompat flags will be done here. 2506 */ 2507 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2508 struct btrfs_super_block *sb) 2509 { 2510 int ret; 2511 2512 ret = validate_super(fs_info, sb, -1); 2513 if (ret < 0) 2514 goto out; 2515 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2516 ret = -EUCLEAN; 2517 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2518 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2519 goto out; 2520 } 2521 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2522 ret = -EUCLEAN; 2523 btrfs_err(fs_info, 2524 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2525 btrfs_super_incompat_flags(sb), 2526 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2527 goto out; 2528 } 2529 out: 2530 if (ret < 0) 2531 btrfs_err(fs_info, 2532 "super block corruption detected before writing it to disk"); 2533 return ret; 2534 } 2535 2536 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2537 { 2538 int backup_index = find_newest_super_backup(fs_info); 2539 struct btrfs_super_block *sb = fs_info->super_copy; 2540 struct btrfs_root *tree_root = fs_info->tree_root; 2541 bool handle_error = false; 2542 int ret = 0; 2543 int i; 2544 2545 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2546 u64 generation; 2547 int level; 2548 2549 if (handle_error) { 2550 if (!IS_ERR(tree_root->node)) 2551 free_extent_buffer(tree_root->node); 2552 tree_root->node = NULL; 2553 2554 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2555 break; 2556 2557 free_root_pointers(fs_info, 0); 2558 2559 /* 2560 * Don't use the log in recovery mode, it won't be 2561 * valid 2562 */ 2563 btrfs_set_super_log_root(sb, 0); 2564 2565 /* We can't trust the free space cache either */ 2566 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2567 2568 ret = read_backup_root(fs_info, i); 2569 backup_index = ret; 2570 if (ret < 0) 2571 return ret; 2572 } 2573 generation = btrfs_super_generation(sb); 2574 level = btrfs_super_root_level(sb); 2575 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb), 2576 generation, level, NULL); 2577 if (IS_ERR(tree_root->node) || 2578 !extent_buffer_uptodate(tree_root->node)) { 2579 handle_error = true; 2580 2581 if (IS_ERR(tree_root->node)) 2582 ret = PTR_ERR(tree_root->node); 2583 else if (!extent_buffer_uptodate(tree_root->node)) 2584 ret = -EUCLEAN; 2585 2586 btrfs_warn(fs_info, "failed to read tree root"); 2587 continue; 2588 } 2589 2590 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2591 tree_root->commit_root = btrfs_root_node(tree_root); 2592 btrfs_set_root_refs(&tree_root->root_item, 1); 2593 2594 /* 2595 * No need to hold btrfs_root::objectid_mutex since the fs 2596 * hasn't been fully initialised and we are the only user 2597 */ 2598 ret = btrfs_find_highest_objectid(tree_root, 2599 &tree_root->highest_objectid); 2600 if (ret < 0) { 2601 handle_error = true; 2602 continue; 2603 } 2604 2605 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2606 2607 ret = btrfs_read_roots(fs_info); 2608 if (ret < 0) { 2609 handle_error = true; 2610 continue; 2611 } 2612 2613 /* All successful */ 2614 fs_info->generation = generation; 2615 fs_info->last_trans_committed = generation; 2616 2617 /* Always begin writing backup roots after the one being used */ 2618 if (backup_index < 0) { 2619 fs_info->backup_root_index = 0; 2620 } else { 2621 fs_info->backup_root_index = backup_index + 1; 2622 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2623 } 2624 break; 2625 } 2626 2627 return ret; 2628 } 2629 2630 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2631 { 2632 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2633 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2634 INIT_LIST_HEAD(&fs_info->trans_list); 2635 INIT_LIST_HEAD(&fs_info->dead_roots); 2636 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2637 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2638 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2639 spin_lock_init(&fs_info->delalloc_root_lock); 2640 spin_lock_init(&fs_info->trans_lock); 2641 spin_lock_init(&fs_info->fs_roots_radix_lock); 2642 spin_lock_init(&fs_info->delayed_iput_lock); 2643 spin_lock_init(&fs_info->defrag_inodes_lock); 2644 spin_lock_init(&fs_info->super_lock); 2645 spin_lock_init(&fs_info->buffer_lock); 2646 spin_lock_init(&fs_info->unused_bgs_lock); 2647 rwlock_init(&fs_info->tree_mod_log_lock); 2648 mutex_init(&fs_info->unused_bg_unpin_mutex); 2649 mutex_init(&fs_info->delete_unused_bgs_mutex); 2650 mutex_init(&fs_info->reloc_mutex); 2651 mutex_init(&fs_info->delalloc_root_mutex); 2652 seqlock_init(&fs_info->profiles_lock); 2653 2654 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2655 INIT_LIST_HEAD(&fs_info->space_info); 2656 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2657 INIT_LIST_HEAD(&fs_info->unused_bgs); 2658 #ifdef CONFIG_BTRFS_DEBUG 2659 INIT_LIST_HEAD(&fs_info->allocated_roots); 2660 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2661 spin_lock_init(&fs_info->eb_leak_lock); 2662 #endif 2663 extent_map_tree_init(&fs_info->mapping_tree); 2664 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2665 BTRFS_BLOCK_RSV_GLOBAL); 2666 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2667 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2668 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2669 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2670 BTRFS_BLOCK_RSV_DELOPS); 2671 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2672 BTRFS_BLOCK_RSV_DELREFS); 2673 2674 atomic_set(&fs_info->async_delalloc_pages, 0); 2675 atomic_set(&fs_info->defrag_running, 0); 2676 atomic_set(&fs_info->reada_works_cnt, 0); 2677 atomic_set(&fs_info->nr_delayed_iputs, 0); 2678 atomic64_set(&fs_info->tree_mod_seq, 0); 2679 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2680 fs_info->metadata_ratio = 0; 2681 fs_info->defrag_inodes = RB_ROOT; 2682 atomic64_set(&fs_info->free_chunk_space, 0); 2683 fs_info->tree_mod_log = RB_ROOT; 2684 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2685 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2686 /* readahead state */ 2687 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2688 spin_lock_init(&fs_info->reada_lock); 2689 btrfs_init_ref_verify(fs_info); 2690 2691 fs_info->thread_pool_size = min_t(unsigned long, 2692 num_online_cpus() + 2, 8); 2693 2694 INIT_LIST_HEAD(&fs_info->ordered_roots); 2695 spin_lock_init(&fs_info->ordered_root_lock); 2696 2697 btrfs_init_scrub(fs_info); 2698 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2699 fs_info->check_integrity_print_mask = 0; 2700 #endif 2701 btrfs_init_balance(fs_info); 2702 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2703 2704 spin_lock_init(&fs_info->block_group_cache_lock); 2705 fs_info->block_group_cache_tree = RB_ROOT; 2706 fs_info->first_logical_byte = (u64)-1; 2707 2708 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2709 IO_TREE_FS_EXCLUDED_EXTENTS, NULL); 2710 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2711 2712 mutex_init(&fs_info->ordered_operations_mutex); 2713 mutex_init(&fs_info->tree_log_mutex); 2714 mutex_init(&fs_info->chunk_mutex); 2715 mutex_init(&fs_info->transaction_kthread_mutex); 2716 mutex_init(&fs_info->cleaner_mutex); 2717 mutex_init(&fs_info->ro_block_group_mutex); 2718 init_rwsem(&fs_info->commit_root_sem); 2719 init_rwsem(&fs_info->cleanup_work_sem); 2720 init_rwsem(&fs_info->subvol_sem); 2721 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2722 2723 btrfs_init_dev_replace_locks(fs_info); 2724 btrfs_init_qgroup(fs_info); 2725 btrfs_discard_init(fs_info); 2726 2727 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2728 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2729 2730 init_waitqueue_head(&fs_info->transaction_throttle); 2731 init_waitqueue_head(&fs_info->transaction_wait); 2732 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2733 init_waitqueue_head(&fs_info->async_submit_wait); 2734 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2735 2736 /* Usable values until the real ones are cached from the superblock */ 2737 fs_info->nodesize = 4096; 2738 fs_info->sectorsize = 4096; 2739 fs_info->stripesize = 4096; 2740 2741 spin_lock_init(&fs_info->swapfile_pins_lock); 2742 fs_info->swapfile_pins = RB_ROOT; 2743 2744 fs_info->send_in_progress = 0; 2745 } 2746 2747 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2748 { 2749 int ret; 2750 2751 fs_info->sb = sb; 2752 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2753 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2754 2755 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL); 2756 if (ret) 2757 return ret; 2758 2759 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2760 if (ret) 2761 return ret; 2762 2763 fs_info->dirty_metadata_batch = PAGE_SIZE * 2764 (1 + ilog2(nr_cpu_ids)); 2765 2766 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2767 if (ret) 2768 return ret; 2769 2770 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2771 GFP_KERNEL); 2772 if (ret) 2773 return ret; 2774 2775 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2776 GFP_KERNEL); 2777 if (!fs_info->delayed_root) 2778 return -ENOMEM; 2779 btrfs_init_delayed_root(fs_info->delayed_root); 2780 2781 return btrfs_alloc_stripe_hash_table(fs_info); 2782 } 2783 2784 static int btrfs_uuid_rescan_kthread(void *data) 2785 { 2786 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 2787 int ret; 2788 2789 /* 2790 * 1st step is to iterate through the existing UUID tree and 2791 * to delete all entries that contain outdated data. 2792 * 2nd step is to add all missing entries to the UUID tree. 2793 */ 2794 ret = btrfs_uuid_tree_iterate(fs_info); 2795 if (ret < 0) { 2796 if (ret != -EINTR) 2797 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2798 ret); 2799 up(&fs_info->uuid_tree_rescan_sem); 2800 return ret; 2801 } 2802 return btrfs_uuid_scan_kthread(data); 2803 } 2804 2805 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2806 { 2807 struct task_struct *task; 2808 2809 down(&fs_info->uuid_tree_rescan_sem); 2810 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2811 if (IS_ERR(task)) { 2812 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2813 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2814 up(&fs_info->uuid_tree_rescan_sem); 2815 return PTR_ERR(task); 2816 } 2817 2818 return 0; 2819 } 2820 2821 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 2822 char *options) 2823 { 2824 u32 sectorsize; 2825 u32 nodesize; 2826 u32 stripesize; 2827 u64 generation; 2828 u64 features; 2829 u16 csum_type; 2830 struct btrfs_key location; 2831 struct btrfs_super_block *disk_super; 2832 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2833 struct btrfs_root *tree_root; 2834 struct btrfs_root *chunk_root; 2835 int ret; 2836 int err = -EINVAL; 2837 int clear_free_space_tree = 0; 2838 int level; 2839 2840 ret = init_mount_fs_info(fs_info, sb); 2841 if (ret) { 2842 err = ret; 2843 goto fail; 2844 } 2845 2846 /* These need to be init'ed before we start creating inodes and such. */ 2847 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 2848 GFP_KERNEL); 2849 fs_info->tree_root = tree_root; 2850 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 2851 GFP_KERNEL); 2852 fs_info->chunk_root = chunk_root; 2853 if (!tree_root || !chunk_root) { 2854 err = -ENOMEM; 2855 goto fail; 2856 } 2857 2858 fs_info->btree_inode = new_inode(sb); 2859 if (!fs_info->btree_inode) { 2860 err = -ENOMEM; 2861 goto fail; 2862 } 2863 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2864 btrfs_init_btree_inode(fs_info); 2865 2866 invalidate_bdev(fs_devices->latest_bdev); 2867 2868 /* 2869 * Read super block and check the signature bytes only 2870 */ 2871 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev); 2872 if (IS_ERR(disk_super)) { 2873 err = PTR_ERR(disk_super); 2874 goto fail_alloc; 2875 } 2876 2877 /* 2878 * Verify the type first, if that or the the checksum value are 2879 * corrupted, we'll find out 2880 */ 2881 csum_type = btrfs_super_csum_type(disk_super); 2882 if (!btrfs_supported_super_csum(csum_type)) { 2883 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 2884 csum_type); 2885 err = -EINVAL; 2886 btrfs_release_disk_super(disk_super); 2887 goto fail_alloc; 2888 } 2889 2890 ret = btrfs_init_csum_hash(fs_info, csum_type); 2891 if (ret) { 2892 err = ret; 2893 btrfs_release_disk_super(disk_super); 2894 goto fail_alloc; 2895 } 2896 2897 /* 2898 * We want to check superblock checksum, the type is stored inside. 2899 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2900 */ 2901 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) { 2902 btrfs_err(fs_info, "superblock checksum mismatch"); 2903 err = -EINVAL; 2904 btrfs_release_disk_super(disk_super); 2905 goto fail_alloc; 2906 } 2907 2908 /* 2909 * super_copy is zeroed at allocation time and we never touch the 2910 * following bytes up to INFO_SIZE, the checksum is calculated from 2911 * the whole block of INFO_SIZE 2912 */ 2913 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 2914 btrfs_release_disk_super(disk_super); 2915 2916 disk_super = fs_info->super_copy; 2917 2918 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2919 BTRFS_FSID_SIZE)); 2920 2921 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) { 2922 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid, 2923 fs_info->super_copy->metadata_uuid, 2924 BTRFS_FSID_SIZE)); 2925 } 2926 2927 features = btrfs_super_flags(disk_super); 2928 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 2929 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 2930 btrfs_set_super_flags(disk_super, features); 2931 btrfs_info(fs_info, 2932 "found metadata UUID change in progress flag, clearing"); 2933 } 2934 2935 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2936 sizeof(*fs_info->super_for_commit)); 2937 2938 ret = btrfs_validate_mount_super(fs_info); 2939 if (ret) { 2940 btrfs_err(fs_info, "superblock contains fatal errors"); 2941 err = -EINVAL; 2942 goto fail_alloc; 2943 } 2944 2945 if (!btrfs_super_root(disk_super)) 2946 goto fail_alloc; 2947 2948 /* check FS state, whether FS is broken. */ 2949 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2950 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2951 2952 /* 2953 * In the long term, we'll store the compression type in the super 2954 * block, and it'll be used for per file compression control. 2955 */ 2956 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2957 2958 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2959 if (ret) { 2960 err = ret; 2961 goto fail_alloc; 2962 } 2963 2964 features = btrfs_super_incompat_flags(disk_super) & 2965 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2966 if (features) { 2967 btrfs_err(fs_info, 2968 "cannot mount because of unsupported optional features (%llx)", 2969 features); 2970 err = -EINVAL; 2971 goto fail_alloc; 2972 } 2973 2974 features = btrfs_super_incompat_flags(disk_super); 2975 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2976 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2977 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2978 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 2979 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 2980 2981 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2982 btrfs_info(fs_info, "has skinny extents"); 2983 2984 /* 2985 * flag our filesystem as having big metadata blocks if 2986 * they are bigger than the page size 2987 */ 2988 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2989 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2990 btrfs_info(fs_info, 2991 "flagging fs with big metadata feature"); 2992 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2993 } 2994 2995 nodesize = btrfs_super_nodesize(disk_super); 2996 sectorsize = btrfs_super_sectorsize(disk_super); 2997 stripesize = sectorsize; 2998 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2999 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3000 3001 /* Cache block sizes */ 3002 fs_info->nodesize = nodesize; 3003 fs_info->sectorsize = sectorsize; 3004 fs_info->stripesize = stripesize; 3005 3006 /* 3007 * mixed block groups end up with duplicate but slightly offset 3008 * extent buffers for the same range. It leads to corruptions 3009 */ 3010 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3011 (sectorsize != nodesize)) { 3012 btrfs_err(fs_info, 3013 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3014 nodesize, sectorsize); 3015 goto fail_alloc; 3016 } 3017 3018 /* 3019 * Needn't use the lock because there is no other task which will 3020 * update the flag. 3021 */ 3022 btrfs_set_super_incompat_flags(disk_super, features); 3023 3024 features = btrfs_super_compat_ro_flags(disk_super) & 3025 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 3026 if (!sb_rdonly(sb) && features) { 3027 btrfs_err(fs_info, 3028 "cannot mount read-write because of unsupported optional features (%llx)", 3029 features); 3030 err = -EINVAL; 3031 goto fail_alloc; 3032 } 3033 3034 ret = btrfs_init_workqueues(fs_info, fs_devices); 3035 if (ret) { 3036 err = ret; 3037 goto fail_sb_buffer; 3038 } 3039 3040 sb->s_bdi->congested_fn = btrfs_congested_fn; 3041 sb->s_bdi->congested_data = fs_info; 3042 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 3043 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES; 3044 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3045 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3046 3047 sb->s_blocksize = sectorsize; 3048 sb->s_blocksize_bits = blksize_bits(sectorsize); 3049 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3050 3051 mutex_lock(&fs_info->chunk_mutex); 3052 ret = btrfs_read_sys_array(fs_info); 3053 mutex_unlock(&fs_info->chunk_mutex); 3054 if (ret) { 3055 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3056 goto fail_sb_buffer; 3057 } 3058 3059 generation = btrfs_super_chunk_root_generation(disk_super); 3060 level = btrfs_super_chunk_root_level(disk_super); 3061 3062 chunk_root->node = read_tree_block(fs_info, 3063 btrfs_super_chunk_root(disk_super), 3064 generation, level, NULL); 3065 if (IS_ERR(chunk_root->node) || 3066 !extent_buffer_uptodate(chunk_root->node)) { 3067 btrfs_err(fs_info, "failed to read chunk root"); 3068 if (!IS_ERR(chunk_root->node)) 3069 free_extent_buffer(chunk_root->node); 3070 chunk_root->node = NULL; 3071 goto fail_tree_roots; 3072 } 3073 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 3074 chunk_root->commit_root = btrfs_root_node(chunk_root); 3075 3076 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3077 offsetof(struct btrfs_header, chunk_tree_uuid), 3078 BTRFS_UUID_SIZE); 3079 3080 ret = btrfs_read_chunk_tree(fs_info); 3081 if (ret) { 3082 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3083 goto fail_tree_roots; 3084 } 3085 3086 /* 3087 * Keep the devid that is marked to be the target device for the 3088 * device replace procedure 3089 */ 3090 btrfs_free_extra_devids(fs_devices, 0); 3091 3092 if (!fs_devices->latest_bdev) { 3093 btrfs_err(fs_info, "failed to read devices"); 3094 goto fail_tree_roots; 3095 } 3096 3097 ret = init_tree_roots(fs_info); 3098 if (ret) 3099 goto fail_tree_roots; 3100 3101 /* 3102 * If we have a uuid root and we're not being told to rescan we need to 3103 * check the generation here so we can set the 3104 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3105 * transaction during a balance or the log replay without updating the 3106 * uuid generation, and then if we crash we would rescan the uuid tree, 3107 * even though it was perfectly fine. 3108 */ 3109 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3110 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3111 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3112 3113 ret = btrfs_verify_dev_extents(fs_info); 3114 if (ret) { 3115 btrfs_err(fs_info, 3116 "failed to verify dev extents against chunks: %d", 3117 ret); 3118 goto fail_block_groups; 3119 } 3120 ret = btrfs_recover_balance(fs_info); 3121 if (ret) { 3122 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3123 goto fail_block_groups; 3124 } 3125 3126 ret = btrfs_init_dev_stats(fs_info); 3127 if (ret) { 3128 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3129 goto fail_block_groups; 3130 } 3131 3132 ret = btrfs_init_dev_replace(fs_info); 3133 if (ret) { 3134 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3135 goto fail_block_groups; 3136 } 3137 3138 btrfs_free_extra_devids(fs_devices, 1); 3139 3140 ret = btrfs_sysfs_add_fsid(fs_devices); 3141 if (ret) { 3142 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3143 ret); 3144 goto fail_block_groups; 3145 } 3146 3147 ret = btrfs_sysfs_add_mounted(fs_info); 3148 if (ret) { 3149 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3150 goto fail_fsdev_sysfs; 3151 } 3152 3153 ret = btrfs_init_space_info(fs_info); 3154 if (ret) { 3155 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3156 goto fail_sysfs; 3157 } 3158 3159 ret = btrfs_read_block_groups(fs_info); 3160 if (ret) { 3161 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3162 goto fail_sysfs; 3163 } 3164 3165 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 3166 btrfs_warn(fs_info, 3167 "writable mount is not allowed due to too many missing devices"); 3168 goto fail_sysfs; 3169 } 3170 3171 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3172 "btrfs-cleaner"); 3173 if (IS_ERR(fs_info->cleaner_kthread)) 3174 goto fail_sysfs; 3175 3176 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3177 tree_root, 3178 "btrfs-transaction"); 3179 if (IS_ERR(fs_info->transaction_kthread)) 3180 goto fail_cleaner; 3181 3182 if (!btrfs_test_opt(fs_info, NOSSD) && 3183 !fs_info->fs_devices->rotating) { 3184 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3185 } 3186 3187 /* 3188 * Mount does not set all options immediately, we can do it now and do 3189 * not have to wait for transaction commit 3190 */ 3191 btrfs_apply_pending_changes(fs_info); 3192 3193 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3194 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3195 ret = btrfsic_mount(fs_info, fs_devices, 3196 btrfs_test_opt(fs_info, 3197 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3198 1 : 0, 3199 fs_info->check_integrity_print_mask); 3200 if (ret) 3201 btrfs_warn(fs_info, 3202 "failed to initialize integrity check module: %d", 3203 ret); 3204 } 3205 #endif 3206 ret = btrfs_read_qgroup_config(fs_info); 3207 if (ret) 3208 goto fail_trans_kthread; 3209 3210 if (btrfs_build_ref_tree(fs_info)) 3211 btrfs_err(fs_info, "couldn't build ref tree"); 3212 3213 /* do not make disk changes in broken FS or nologreplay is given */ 3214 if (btrfs_super_log_root(disk_super) != 0 && 3215 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3216 btrfs_info(fs_info, "start tree-log replay"); 3217 ret = btrfs_replay_log(fs_info, fs_devices); 3218 if (ret) { 3219 err = ret; 3220 goto fail_qgroup; 3221 } 3222 } 3223 3224 ret = btrfs_find_orphan_roots(fs_info); 3225 if (ret) 3226 goto fail_qgroup; 3227 3228 if (!sb_rdonly(sb)) { 3229 ret = btrfs_cleanup_fs_roots(fs_info); 3230 if (ret) 3231 goto fail_qgroup; 3232 3233 mutex_lock(&fs_info->cleaner_mutex); 3234 ret = btrfs_recover_relocation(tree_root); 3235 mutex_unlock(&fs_info->cleaner_mutex); 3236 if (ret < 0) { 3237 btrfs_warn(fs_info, "failed to recover relocation: %d", 3238 ret); 3239 err = -EINVAL; 3240 goto fail_qgroup; 3241 } 3242 } 3243 3244 location.objectid = BTRFS_FS_TREE_OBJECTID; 3245 location.type = BTRFS_ROOT_ITEM_KEY; 3246 location.offset = 0; 3247 3248 fs_info->fs_root = btrfs_get_fs_root(fs_info, &location, true); 3249 if (IS_ERR(fs_info->fs_root)) { 3250 err = PTR_ERR(fs_info->fs_root); 3251 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3252 fs_info->fs_root = NULL; 3253 goto fail_qgroup; 3254 } 3255 3256 if (sb_rdonly(sb)) 3257 return 0; 3258 3259 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3260 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3261 clear_free_space_tree = 1; 3262 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3263 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3264 btrfs_warn(fs_info, "free space tree is invalid"); 3265 clear_free_space_tree = 1; 3266 } 3267 3268 if (clear_free_space_tree) { 3269 btrfs_info(fs_info, "clearing free space tree"); 3270 ret = btrfs_clear_free_space_tree(fs_info); 3271 if (ret) { 3272 btrfs_warn(fs_info, 3273 "failed to clear free space tree: %d", ret); 3274 close_ctree(fs_info); 3275 return ret; 3276 } 3277 } 3278 3279 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3280 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3281 btrfs_info(fs_info, "creating free space tree"); 3282 ret = btrfs_create_free_space_tree(fs_info); 3283 if (ret) { 3284 btrfs_warn(fs_info, 3285 "failed to create free space tree: %d", ret); 3286 close_ctree(fs_info); 3287 return ret; 3288 } 3289 } 3290 3291 down_read(&fs_info->cleanup_work_sem); 3292 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3293 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3294 up_read(&fs_info->cleanup_work_sem); 3295 close_ctree(fs_info); 3296 return ret; 3297 } 3298 up_read(&fs_info->cleanup_work_sem); 3299 3300 ret = btrfs_resume_balance_async(fs_info); 3301 if (ret) { 3302 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3303 close_ctree(fs_info); 3304 return ret; 3305 } 3306 3307 ret = btrfs_resume_dev_replace_async(fs_info); 3308 if (ret) { 3309 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3310 close_ctree(fs_info); 3311 return ret; 3312 } 3313 3314 btrfs_qgroup_rescan_resume(fs_info); 3315 btrfs_discard_resume(fs_info); 3316 3317 if (!fs_info->uuid_root) { 3318 btrfs_info(fs_info, "creating UUID tree"); 3319 ret = btrfs_create_uuid_tree(fs_info); 3320 if (ret) { 3321 btrfs_warn(fs_info, 3322 "failed to create the UUID tree: %d", ret); 3323 close_ctree(fs_info); 3324 return ret; 3325 } 3326 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3327 fs_info->generation != 3328 btrfs_super_uuid_tree_generation(disk_super)) { 3329 btrfs_info(fs_info, "checking UUID tree"); 3330 ret = btrfs_check_uuid_tree(fs_info); 3331 if (ret) { 3332 btrfs_warn(fs_info, 3333 "failed to check the UUID tree: %d", ret); 3334 close_ctree(fs_info); 3335 return ret; 3336 } 3337 } 3338 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3339 3340 /* 3341 * backuproot only affect mount behavior, and if open_ctree succeeded, 3342 * no need to keep the flag 3343 */ 3344 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3345 3346 return 0; 3347 3348 fail_qgroup: 3349 btrfs_free_qgroup_config(fs_info); 3350 fail_trans_kthread: 3351 kthread_stop(fs_info->transaction_kthread); 3352 btrfs_cleanup_transaction(fs_info); 3353 btrfs_free_fs_roots(fs_info); 3354 fail_cleaner: 3355 kthread_stop(fs_info->cleaner_kthread); 3356 3357 /* 3358 * make sure we're done with the btree inode before we stop our 3359 * kthreads 3360 */ 3361 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3362 3363 fail_sysfs: 3364 btrfs_sysfs_remove_mounted(fs_info); 3365 3366 fail_fsdev_sysfs: 3367 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3368 3369 fail_block_groups: 3370 btrfs_put_block_group_cache(fs_info); 3371 3372 fail_tree_roots: 3373 free_root_pointers(fs_info, true); 3374 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3375 3376 fail_sb_buffer: 3377 btrfs_stop_all_workers(fs_info); 3378 btrfs_free_block_groups(fs_info); 3379 fail_alloc: 3380 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3381 3382 iput(fs_info->btree_inode); 3383 fail: 3384 btrfs_close_devices(fs_info->fs_devices); 3385 return err; 3386 } 3387 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3388 3389 static void btrfs_end_super_write(struct bio *bio) 3390 { 3391 struct btrfs_device *device = bio->bi_private; 3392 struct bio_vec *bvec; 3393 struct bvec_iter_all iter_all; 3394 struct page *page; 3395 3396 bio_for_each_segment_all(bvec, bio, iter_all) { 3397 page = bvec->bv_page; 3398 3399 if (bio->bi_status) { 3400 btrfs_warn_rl_in_rcu(device->fs_info, 3401 "lost page write due to IO error on %s (%d)", 3402 rcu_str_deref(device->name), 3403 blk_status_to_errno(bio->bi_status)); 3404 ClearPageUptodate(page); 3405 SetPageError(page); 3406 btrfs_dev_stat_inc_and_print(device, 3407 BTRFS_DEV_STAT_WRITE_ERRS); 3408 } else { 3409 SetPageUptodate(page); 3410 } 3411 3412 put_page(page); 3413 unlock_page(page); 3414 } 3415 3416 bio_put(bio); 3417 } 3418 3419 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3420 int copy_num) 3421 { 3422 struct btrfs_super_block *super; 3423 struct page *page; 3424 u64 bytenr; 3425 struct address_space *mapping = bdev->bd_inode->i_mapping; 3426 3427 bytenr = btrfs_sb_offset(copy_num); 3428 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3429 return ERR_PTR(-EINVAL); 3430 3431 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3432 if (IS_ERR(page)) 3433 return ERR_CAST(page); 3434 3435 super = page_address(page); 3436 if (btrfs_super_bytenr(super) != bytenr || 3437 btrfs_super_magic(super) != BTRFS_MAGIC) { 3438 btrfs_release_disk_super(super); 3439 return ERR_PTR(-EINVAL); 3440 } 3441 3442 return super; 3443 } 3444 3445 3446 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3447 { 3448 struct btrfs_super_block *super, *latest = NULL; 3449 int i; 3450 u64 transid = 0; 3451 3452 /* we would like to check all the supers, but that would make 3453 * a btrfs mount succeed after a mkfs from a different FS. 3454 * So, we need to add a special mount option to scan for 3455 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3456 */ 3457 for (i = 0; i < 1; i++) { 3458 super = btrfs_read_dev_one_super(bdev, i); 3459 if (IS_ERR(super)) 3460 continue; 3461 3462 if (!latest || btrfs_super_generation(super) > transid) { 3463 if (latest) 3464 btrfs_release_disk_super(super); 3465 3466 latest = super; 3467 transid = btrfs_super_generation(super); 3468 } 3469 } 3470 3471 return super; 3472 } 3473 3474 /* 3475 * Write superblock @sb to the @device. Do not wait for completion, all the 3476 * pages we use for writing are locked. 3477 * 3478 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3479 * the expected device size at commit time. Note that max_mirrors must be 3480 * same for write and wait phases. 3481 * 3482 * Return number of errors when page is not found or submission fails. 3483 */ 3484 static int write_dev_supers(struct btrfs_device *device, 3485 struct btrfs_super_block *sb, int max_mirrors) 3486 { 3487 struct btrfs_fs_info *fs_info = device->fs_info; 3488 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3489 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3490 int i; 3491 int errors = 0; 3492 u64 bytenr; 3493 3494 if (max_mirrors == 0) 3495 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3496 3497 shash->tfm = fs_info->csum_shash; 3498 3499 for (i = 0; i < max_mirrors; i++) { 3500 struct page *page; 3501 struct bio *bio; 3502 struct btrfs_super_block *disk_super; 3503 3504 bytenr = btrfs_sb_offset(i); 3505 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3506 device->commit_total_bytes) 3507 break; 3508 3509 btrfs_set_super_bytenr(sb, bytenr); 3510 3511 crypto_shash_init(shash); 3512 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3513 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 3514 crypto_shash_final(shash, sb->csum); 3515 3516 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3517 GFP_NOFS); 3518 if (!page) { 3519 btrfs_err(device->fs_info, 3520 "couldn't get super block page for bytenr %llu", 3521 bytenr); 3522 errors++; 3523 continue; 3524 } 3525 3526 /* Bump the refcount for wait_dev_supers() */ 3527 get_page(page); 3528 3529 disk_super = page_address(page); 3530 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3531 3532 /* 3533 * Directly use bios here instead of relying on the page cache 3534 * to do I/O, so we don't lose the ability to do integrity 3535 * checking. 3536 */ 3537 bio = bio_alloc(GFP_NOFS, 1); 3538 bio_set_dev(bio, device->bdev); 3539 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3540 bio->bi_private = device; 3541 bio->bi_end_io = btrfs_end_super_write; 3542 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 3543 offset_in_page(bytenr)); 3544 3545 /* 3546 * We FUA only the first super block. The others we allow to 3547 * go down lazy and there's a short window where the on-disk 3548 * copies might still contain the older version. 3549 */ 3550 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO; 3551 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3552 bio->bi_opf |= REQ_FUA; 3553 3554 btrfsic_submit_bio(bio); 3555 } 3556 return errors < i ? 0 : -1; 3557 } 3558 3559 /* 3560 * Wait for write completion of superblocks done by write_dev_supers, 3561 * @max_mirrors same for write and wait phases. 3562 * 3563 * Return number of errors when page is not found or not marked up to 3564 * date. 3565 */ 3566 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3567 { 3568 int i; 3569 int errors = 0; 3570 bool primary_failed = false; 3571 u64 bytenr; 3572 3573 if (max_mirrors == 0) 3574 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3575 3576 for (i = 0; i < max_mirrors; i++) { 3577 struct page *page; 3578 3579 bytenr = btrfs_sb_offset(i); 3580 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3581 device->commit_total_bytes) 3582 break; 3583 3584 page = find_get_page(device->bdev->bd_inode->i_mapping, 3585 bytenr >> PAGE_SHIFT); 3586 if (!page) { 3587 errors++; 3588 if (i == 0) 3589 primary_failed = true; 3590 continue; 3591 } 3592 /* Page is submitted locked and unlocked once the IO completes */ 3593 wait_on_page_locked(page); 3594 if (PageError(page)) { 3595 errors++; 3596 if (i == 0) 3597 primary_failed = true; 3598 } 3599 3600 /* Drop our reference */ 3601 put_page(page); 3602 3603 /* Drop the reference from the writing run */ 3604 put_page(page); 3605 } 3606 3607 /* log error, force error return */ 3608 if (primary_failed) { 3609 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3610 device->devid); 3611 return -1; 3612 } 3613 3614 return errors < i ? 0 : -1; 3615 } 3616 3617 /* 3618 * endio for the write_dev_flush, this will wake anyone waiting 3619 * for the barrier when it is done 3620 */ 3621 static void btrfs_end_empty_barrier(struct bio *bio) 3622 { 3623 complete(bio->bi_private); 3624 } 3625 3626 /* 3627 * Submit a flush request to the device if it supports it. Error handling is 3628 * done in the waiting counterpart. 3629 */ 3630 static void write_dev_flush(struct btrfs_device *device) 3631 { 3632 struct request_queue *q = bdev_get_queue(device->bdev); 3633 struct bio *bio = device->flush_bio; 3634 3635 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3636 return; 3637 3638 bio_reset(bio); 3639 bio->bi_end_io = btrfs_end_empty_barrier; 3640 bio_set_dev(bio, device->bdev); 3641 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3642 init_completion(&device->flush_wait); 3643 bio->bi_private = &device->flush_wait; 3644 3645 btrfsic_submit_bio(bio); 3646 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3647 } 3648 3649 /* 3650 * If the flush bio has been submitted by write_dev_flush, wait for it. 3651 */ 3652 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3653 { 3654 struct bio *bio = device->flush_bio; 3655 3656 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3657 return BLK_STS_OK; 3658 3659 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3660 wait_for_completion_io(&device->flush_wait); 3661 3662 return bio->bi_status; 3663 } 3664 3665 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3666 { 3667 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3668 return -EIO; 3669 return 0; 3670 } 3671 3672 /* 3673 * send an empty flush down to each device in parallel, 3674 * then wait for them 3675 */ 3676 static int barrier_all_devices(struct btrfs_fs_info *info) 3677 { 3678 struct list_head *head; 3679 struct btrfs_device *dev; 3680 int errors_wait = 0; 3681 blk_status_t ret; 3682 3683 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3684 /* send down all the barriers */ 3685 head = &info->fs_devices->devices; 3686 list_for_each_entry(dev, head, dev_list) { 3687 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3688 continue; 3689 if (!dev->bdev) 3690 continue; 3691 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3692 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3693 continue; 3694 3695 write_dev_flush(dev); 3696 dev->last_flush_error = BLK_STS_OK; 3697 } 3698 3699 /* wait for all the barriers */ 3700 list_for_each_entry(dev, head, dev_list) { 3701 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3702 continue; 3703 if (!dev->bdev) { 3704 errors_wait++; 3705 continue; 3706 } 3707 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3708 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3709 continue; 3710 3711 ret = wait_dev_flush(dev); 3712 if (ret) { 3713 dev->last_flush_error = ret; 3714 btrfs_dev_stat_inc_and_print(dev, 3715 BTRFS_DEV_STAT_FLUSH_ERRS); 3716 errors_wait++; 3717 } 3718 } 3719 3720 if (errors_wait) { 3721 /* 3722 * At some point we need the status of all disks 3723 * to arrive at the volume status. So error checking 3724 * is being pushed to a separate loop. 3725 */ 3726 return check_barrier_error(info); 3727 } 3728 return 0; 3729 } 3730 3731 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3732 { 3733 int raid_type; 3734 int min_tolerated = INT_MAX; 3735 3736 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3737 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3738 min_tolerated = min_t(int, min_tolerated, 3739 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3740 tolerated_failures); 3741 3742 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3743 if (raid_type == BTRFS_RAID_SINGLE) 3744 continue; 3745 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3746 continue; 3747 min_tolerated = min_t(int, min_tolerated, 3748 btrfs_raid_array[raid_type]. 3749 tolerated_failures); 3750 } 3751 3752 if (min_tolerated == INT_MAX) { 3753 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3754 min_tolerated = 0; 3755 } 3756 3757 return min_tolerated; 3758 } 3759 3760 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3761 { 3762 struct list_head *head; 3763 struct btrfs_device *dev; 3764 struct btrfs_super_block *sb; 3765 struct btrfs_dev_item *dev_item; 3766 int ret; 3767 int do_barriers; 3768 int max_errors; 3769 int total_errors = 0; 3770 u64 flags; 3771 3772 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3773 3774 /* 3775 * max_mirrors == 0 indicates we're from commit_transaction, 3776 * not from fsync where the tree roots in fs_info have not 3777 * been consistent on disk. 3778 */ 3779 if (max_mirrors == 0) 3780 backup_super_roots(fs_info); 3781 3782 sb = fs_info->super_for_commit; 3783 dev_item = &sb->dev_item; 3784 3785 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3786 head = &fs_info->fs_devices->devices; 3787 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3788 3789 if (do_barriers) { 3790 ret = barrier_all_devices(fs_info); 3791 if (ret) { 3792 mutex_unlock( 3793 &fs_info->fs_devices->device_list_mutex); 3794 btrfs_handle_fs_error(fs_info, ret, 3795 "errors while submitting device barriers."); 3796 return ret; 3797 } 3798 } 3799 3800 list_for_each_entry(dev, head, dev_list) { 3801 if (!dev->bdev) { 3802 total_errors++; 3803 continue; 3804 } 3805 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3806 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3807 continue; 3808 3809 btrfs_set_stack_device_generation(dev_item, 0); 3810 btrfs_set_stack_device_type(dev_item, dev->type); 3811 btrfs_set_stack_device_id(dev_item, dev->devid); 3812 btrfs_set_stack_device_total_bytes(dev_item, 3813 dev->commit_total_bytes); 3814 btrfs_set_stack_device_bytes_used(dev_item, 3815 dev->commit_bytes_used); 3816 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3817 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3818 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3819 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3820 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 3821 BTRFS_FSID_SIZE); 3822 3823 flags = btrfs_super_flags(sb); 3824 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3825 3826 ret = btrfs_validate_write_super(fs_info, sb); 3827 if (ret < 0) { 3828 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3829 btrfs_handle_fs_error(fs_info, -EUCLEAN, 3830 "unexpected superblock corruption detected"); 3831 return -EUCLEAN; 3832 } 3833 3834 ret = write_dev_supers(dev, sb, max_mirrors); 3835 if (ret) 3836 total_errors++; 3837 } 3838 if (total_errors > max_errors) { 3839 btrfs_err(fs_info, "%d errors while writing supers", 3840 total_errors); 3841 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3842 3843 /* FUA is masked off if unsupported and can't be the reason */ 3844 btrfs_handle_fs_error(fs_info, -EIO, 3845 "%d errors while writing supers", 3846 total_errors); 3847 return -EIO; 3848 } 3849 3850 total_errors = 0; 3851 list_for_each_entry(dev, head, dev_list) { 3852 if (!dev->bdev) 3853 continue; 3854 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3855 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3856 continue; 3857 3858 ret = wait_dev_supers(dev, max_mirrors); 3859 if (ret) 3860 total_errors++; 3861 } 3862 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3863 if (total_errors > max_errors) { 3864 btrfs_handle_fs_error(fs_info, -EIO, 3865 "%d errors while writing supers", 3866 total_errors); 3867 return -EIO; 3868 } 3869 return 0; 3870 } 3871 3872 /* Drop a fs root from the radix tree and free it. */ 3873 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3874 struct btrfs_root *root) 3875 { 3876 bool drop_ref = false; 3877 3878 spin_lock(&fs_info->fs_roots_radix_lock); 3879 radix_tree_delete(&fs_info->fs_roots_radix, 3880 (unsigned long)root->root_key.objectid); 3881 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 3882 drop_ref = true; 3883 spin_unlock(&fs_info->fs_roots_radix_lock); 3884 3885 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3886 ASSERT(root->log_root == NULL); 3887 if (root->reloc_root) { 3888 btrfs_put_root(root->reloc_root); 3889 root->reloc_root = NULL; 3890 } 3891 } 3892 3893 if (root->free_ino_pinned) 3894 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3895 if (root->free_ino_ctl) 3896 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3897 if (root->ino_cache_inode) { 3898 iput(root->ino_cache_inode); 3899 root->ino_cache_inode = NULL; 3900 } 3901 if (drop_ref) 3902 btrfs_put_root(root); 3903 } 3904 3905 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3906 { 3907 u64 root_objectid = 0; 3908 struct btrfs_root *gang[8]; 3909 int i = 0; 3910 int err = 0; 3911 unsigned int ret = 0; 3912 3913 while (1) { 3914 spin_lock(&fs_info->fs_roots_radix_lock); 3915 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3916 (void **)gang, root_objectid, 3917 ARRAY_SIZE(gang)); 3918 if (!ret) { 3919 spin_unlock(&fs_info->fs_roots_radix_lock); 3920 break; 3921 } 3922 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3923 3924 for (i = 0; i < ret; i++) { 3925 /* Avoid to grab roots in dead_roots */ 3926 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3927 gang[i] = NULL; 3928 continue; 3929 } 3930 /* grab all the search result for later use */ 3931 gang[i] = btrfs_grab_root(gang[i]); 3932 } 3933 spin_unlock(&fs_info->fs_roots_radix_lock); 3934 3935 for (i = 0; i < ret; i++) { 3936 if (!gang[i]) 3937 continue; 3938 root_objectid = gang[i]->root_key.objectid; 3939 err = btrfs_orphan_cleanup(gang[i]); 3940 if (err) 3941 break; 3942 btrfs_put_root(gang[i]); 3943 } 3944 root_objectid++; 3945 } 3946 3947 /* release the uncleaned roots due to error */ 3948 for (; i < ret; i++) { 3949 if (gang[i]) 3950 btrfs_put_root(gang[i]); 3951 } 3952 return err; 3953 } 3954 3955 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3956 { 3957 struct btrfs_root *root = fs_info->tree_root; 3958 struct btrfs_trans_handle *trans; 3959 3960 mutex_lock(&fs_info->cleaner_mutex); 3961 btrfs_run_delayed_iputs(fs_info); 3962 mutex_unlock(&fs_info->cleaner_mutex); 3963 wake_up_process(fs_info->cleaner_kthread); 3964 3965 /* wait until ongoing cleanup work done */ 3966 down_write(&fs_info->cleanup_work_sem); 3967 up_write(&fs_info->cleanup_work_sem); 3968 3969 trans = btrfs_join_transaction(root); 3970 if (IS_ERR(trans)) 3971 return PTR_ERR(trans); 3972 return btrfs_commit_transaction(trans); 3973 } 3974 3975 void __cold close_ctree(struct btrfs_fs_info *fs_info) 3976 { 3977 int ret; 3978 3979 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3980 /* 3981 * We don't want the cleaner to start new transactions, add more delayed 3982 * iputs, etc. while we're closing. We can't use kthread_stop() yet 3983 * because that frees the task_struct, and the transaction kthread might 3984 * still try to wake up the cleaner. 3985 */ 3986 kthread_park(fs_info->cleaner_kthread); 3987 3988 /* wait for the qgroup rescan worker to stop */ 3989 btrfs_qgroup_wait_for_completion(fs_info, false); 3990 3991 /* wait for the uuid_scan task to finish */ 3992 down(&fs_info->uuid_tree_rescan_sem); 3993 /* avoid complains from lockdep et al., set sem back to initial state */ 3994 up(&fs_info->uuid_tree_rescan_sem); 3995 3996 /* pause restriper - we want to resume on mount */ 3997 btrfs_pause_balance(fs_info); 3998 3999 btrfs_dev_replace_suspend_for_unmount(fs_info); 4000 4001 btrfs_scrub_cancel(fs_info); 4002 4003 /* wait for any defraggers to finish */ 4004 wait_event(fs_info->transaction_wait, 4005 (atomic_read(&fs_info->defrag_running) == 0)); 4006 4007 /* clear out the rbtree of defraggable inodes */ 4008 btrfs_cleanup_defrag_inodes(fs_info); 4009 4010 cancel_work_sync(&fs_info->async_reclaim_work); 4011 4012 /* Cancel or finish ongoing discard work */ 4013 btrfs_discard_cleanup(fs_info); 4014 4015 if (!sb_rdonly(fs_info->sb)) { 4016 /* 4017 * The cleaner kthread is stopped, so do one final pass over 4018 * unused block groups. 4019 */ 4020 btrfs_delete_unused_bgs(fs_info); 4021 4022 /* 4023 * There might be existing delayed inode workers still running 4024 * and holding an empty delayed inode item. We must wait for 4025 * them to complete first because they can create a transaction. 4026 * This happens when someone calls btrfs_balance_delayed_items() 4027 * and then a transaction commit runs the same delayed nodes 4028 * before any delayed worker has done something with the nodes. 4029 * We must wait for any worker here and not at transaction 4030 * commit time since that could cause a deadlock. 4031 * This is a very rare case. 4032 */ 4033 btrfs_flush_workqueue(fs_info->delayed_workers); 4034 4035 ret = btrfs_commit_super(fs_info); 4036 if (ret) 4037 btrfs_err(fs_info, "commit super ret %d", ret); 4038 } 4039 4040 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 4041 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 4042 btrfs_error_commit_super(fs_info); 4043 4044 kthread_stop(fs_info->transaction_kthread); 4045 kthread_stop(fs_info->cleaner_kthread); 4046 4047 ASSERT(list_empty(&fs_info->delayed_iputs)); 4048 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4049 4050 btrfs_free_qgroup_config(fs_info); 4051 ASSERT(list_empty(&fs_info->delalloc_roots)); 4052 4053 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4054 btrfs_info(fs_info, "at unmount delalloc count %lld", 4055 percpu_counter_sum(&fs_info->delalloc_bytes)); 4056 } 4057 4058 if (percpu_counter_sum(&fs_info->dio_bytes)) 4059 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4060 percpu_counter_sum(&fs_info->dio_bytes)); 4061 4062 btrfs_sysfs_remove_mounted(fs_info); 4063 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4064 4065 btrfs_put_block_group_cache(fs_info); 4066 4067 /* 4068 * we must make sure there is not any read request to 4069 * submit after we stopping all workers. 4070 */ 4071 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4072 btrfs_stop_all_workers(fs_info); 4073 4074 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4075 free_root_pointers(fs_info, true); 4076 btrfs_free_fs_roots(fs_info); 4077 4078 /* 4079 * We must free the block groups after dropping the fs_roots as we could 4080 * have had an IO error and have left over tree log blocks that aren't 4081 * cleaned up until the fs roots are freed. This makes the block group 4082 * accounting appear to be wrong because there's pending reserved bytes, 4083 * so make sure we do the block group cleanup afterwards. 4084 */ 4085 btrfs_free_block_groups(fs_info); 4086 4087 iput(fs_info->btree_inode); 4088 4089 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4090 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4091 btrfsic_unmount(fs_info->fs_devices); 4092 #endif 4093 4094 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4095 btrfs_close_devices(fs_info->fs_devices); 4096 } 4097 4098 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4099 int atomic) 4100 { 4101 int ret; 4102 struct inode *btree_inode = buf->pages[0]->mapping->host; 4103 4104 ret = extent_buffer_uptodate(buf); 4105 if (!ret) 4106 return ret; 4107 4108 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4109 parent_transid, atomic); 4110 if (ret == -EAGAIN) 4111 return ret; 4112 return !ret; 4113 } 4114 4115 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4116 { 4117 struct btrfs_fs_info *fs_info; 4118 struct btrfs_root *root; 4119 u64 transid = btrfs_header_generation(buf); 4120 int was_dirty; 4121 4122 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4123 /* 4124 * This is a fast path so only do this check if we have sanity tests 4125 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4126 * outside of the sanity tests. 4127 */ 4128 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4129 return; 4130 #endif 4131 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4132 fs_info = root->fs_info; 4133 btrfs_assert_tree_locked(buf); 4134 if (transid != fs_info->generation) 4135 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4136 buf->start, transid, fs_info->generation); 4137 was_dirty = set_extent_buffer_dirty(buf); 4138 if (!was_dirty) 4139 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4140 buf->len, 4141 fs_info->dirty_metadata_batch); 4142 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4143 /* 4144 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4145 * but item data not updated. 4146 * So here we should only check item pointers, not item data. 4147 */ 4148 if (btrfs_header_level(buf) == 0 && 4149 btrfs_check_leaf_relaxed(buf)) { 4150 btrfs_print_leaf(buf); 4151 ASSERT(0); 4152 } 4153 #endif 4154 } 4155 4156 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4157 int flush_delayed) 4158 { 4159 /* 4160 * looks as though older kernels can get into trouble with 4161 * this code, they end up stuck in balance_dirty_pages forever 4162 */ 4163 int ret; 4164 4165 if (current->flags & PF_MEMALLOC) 4166 return; 4167 4168 if (flush_delayed) 4169 btrfs_balance_delayed_items(fs_info); 4170 4171 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4172 BTRFS_DIRTY_METADATA_THRESH, 4173 fs_info->dirty_metadata_batch); 4174 if (ret > 0) { 4175 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4176 } 4177 } 4178 4179 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4180 { 4181 __btrfs_btree_balance_dirty(fs_info, 1); 4182 } 4183 4184 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4185 { 4186 __btrfs_btree_balance_dirty(fs_info, 0); 4187 } 4188 4189 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4190 struct btrfs_key *first_key) 4191 { 4192 return btree_read_extent_buffer_pages(buf, parent_transid, 4193 level, first_key); 4194 } 4195 4196 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4197 { 4198 /* cleanup FS via transaction */ 4199 btrfs_cleanup_transaction(fs_info); 4200 4201 mutex_lock(&fs_info->cleaner_mutex); 4202 btrfs_run_delayed_iputs(fs_info); 4203 mutex_unlock(&fs_info->cleaner_mutex); 4204 4205 down_write(&fs_info->cleanup_work_sem); 4206 up_write(&fs_info->cleanup_work_sem); 4207 } 4208 4209 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4210 { 4211 struct btrfs_root *gang[8]; 4212 u64 root_objectid = 0; 4213 int ret; 4214 4215 spin_lock(&fs_info->fs_roots_radix_lock); 4216 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4217 (void **)gang, root_objectid, 4218 ARRAY_SIZE(gang))) != 0) { 4219 int i; 4220 4221 for (i = 0; i < ret; i++) 4222 gang[i] = btrfs_grab_root(gang[i]); 4223 spin_unlock(&fs_info->fs_roots_radix_lock); 4224 4225 for (i = 0; i < ret; i++) { 4226 if (!gang[i]) 4227 continue; 4228 root_objectid = gang[i]->root_key.objectid; 4229 btrfs_free_log(NULL, gang[i]); 4230 btrfs_put_root(gang[i]); 4231 } 4232 root_objectid++; 4233 spin_lock(&fs_info->fs_roots_radix_lock); 4234 } 4235 spin_unlock(&fs_info->fs_roots_radix_lock); 4236 btrfs_free_log_root_tree(NULL, fs_info); 4237 } 4238 4239 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4240 { 4241 struct btrfs_ordered_extent *ordered; 4242 4243 spin_lock(&root->ordered_extent_lock); 4244 /* 4245 * This will just short circuit the ordered completion stuff which will 4246 * make sure the ordered extent gets properly cleaned up. 4247 */ 4248 list_for_each_entry(ordered, &root->ordered_extents, 4249 root_extent_list) 4250 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4251 spin_unlock(&root->ordered_extent_lock); 4252 } 4253 4254 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4255 { 4256 struct btrfs_root *root; 4257 struct list_head splice; 4258 4259 INIT_LIST_HEAD(&splice); 4260 4261 spin_lock(&fs_info->ordered_root_lock); 4262 list_splice_init(&fs_info->ordered_roots, &splice); 4263 while (!list_empty(&splice)) { 4264 root = list_first_entry(&splice, struct btrfs_root, 4265 ordered_root); 4266 list_move_tail(&root->ordered_root, 4267 &fs_info->ordered_roots); 4268 4269 spin_unlock(&fs_info->ordered_root_lock); 4270 btrfs_destroy_ordered_extents(root); 4271 4272 cond_resched(); 4273 spin_lock(&fs_info->ordered_root_lock); 4274 } 4275 spin_unlock(&fs_info->ordered_root_lock); 4276 4277 /* 4278 * We need this here because if we've been flipped read-only we won't 4279 * get sync() from the umount, so we need to make sure any ordered 4280 * extents that haven't had their dirty pages IO start writeout yet 4281 * actually get run and error out properly. 4282 */ 4283 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4284 } 4285 4286 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4287 struct btrfs_fs_info *fs_info) 4288 { 4289 struct rb_node *node; 4290 struct btrfs_delayed_ref_root *delayed_refs; 4291 struct btrfs_delayed_ref_node *ref; 4292 int ret = 0; 4293 4294 delayed_refs = &trans->delayed_refs; 4295 4296 spin_lock(&delayed_refs->lock); 4297 if (atomic_read(&delayed_refs->num_entries) == 0) { 4298 spin_unlock(&delayed_refs->lock); 4299 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4300 return ret; 4301 } 4302 4303 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4304 struct btrfs_delayed_ref_head *head; 4305 struct rb_node *n; 4306 bool pin_bytes = false; 4307 4308 head = rb_entry(node, struct btrfs_delayed_ref_head, 4309 href_node); 4310 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4311 continue; 4312 4313 spin_lock(&head->lock); 4314 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4315 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4316 ref_node); 4317 ref->in_tree = 0; 4318 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4319 RB_CLEAR_NODE(&ref->ref_node); 4320 if (!list_empty(&ref->add_list)) 4321 list_del(&ref->add_list); 4322 atomic_dec(&delayed_refs->num_entries); 4323 btrfs_put_delayed_ref(ref); 4324 } 4325 if (head->must_insert_reserved) 4326 pin_bytes = true; 4327 btrfs_free_delayed_extent_op(head->extent_op); 4328 btrfs_delete_ref_head(delayed_refs, head); 4329 spin_unlock(&head->lock); 4330 spin_unlock(&delayed_refs->lock); 4331 mutex_unlock(&head->mutex); 4332 4333 if (pin_bytes) { 4334 struct btrfs_block_group *cache; 4335 4336 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4337 BUG_ON(!cache); 4338 4339 spin_lock(&cache->space_info->lock); 4340 spin_lock(&cache->lock); 4341 cache->pinned += head->num_bytes; 4342 btrfs_space_info_update_bytes_pinned(fs_info, 4343 cache->space_info, head->num_bytes); 4344 cache->reserved -= head->num_bytes; 4345 cache->space_info->bytes_reserved -= head->num_bytes; 4346 spin_unlock(&cache->lock); 4347 spin_unlock(&cache->space_info->lock); 4348 percpu_counter_add_batch( 4349 &cache->space_info->total_bytes_pinned, 4350 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); 4351 4352 btrfs_put_block_group(cache); 4353 4354 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4355 head->bytenr + head->num_bytes - 1); 4356 } 4357 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4358 btrfs_put_delayed_ref_head(head); 4359 cond_resched(); 4360 spin_lock(&delayed_refs->lock); 4361 } 4362 btrfs_qgroup_destroy_extent_records(trans); 4363 4364 spin_unlock(&delayed_refs->lock); 4365 4366 return ret; 4367 } 4368 4369 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4370 { 4371 struct btrfs_inode *btrfs_inode; 4372 struct list_head splice; 4373 4374 INIT_LIST_HEAD(&splice); 4375 4376 spin_lock(&root->delalloc_lock); 4377 list_splice_init(&root->delalloc_inodes, &splice); 4378 4379 while (!list_empty(&splice)) { 4380 struct inode *inode = NULL; 4381 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4382 delalloc_inodes); 4383 __btrfs_del_delalloc_inode(root, btrfs_inode); 4384 spin_unlock(&root->delalloc_lock); 4385 4386 /* 4387 * Make sure we get a live inode and that it'll not disappear 4388 * meanwhile. 4389 */ 4390 inode = igrab(&btrfs_inode->vfs_inode); 4391 if (inode) { 4392 invalidate_inode_pages2(inode->i_mapping); 4393 iput(inode); 4394 } 4395 spin_lock(&root->delalloc_lock); 4396 } 4397 spin_unlock(&root->delalloc_lock); 4398 } 4399 4400 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4401 { 4402 struct btrfs_root *root; 4403 struct list_head splice; 4404 4405 INIT_LIST_HEAD(&splice); 4406 4407 spin_lock(&fs_info->delalloc_root_lock); 4408 list_splice_init(&fs_info->delalloc_roots, &splice); 4409 while (!list_empty(&splice)) { 4410 root = list_first_entry(&splice, struct btrfs_root, 4411 delalloc_root); 4412 root = btrfs_grab_root(root); 4413 BUG_ON(!root); 4414 spin_unlock(&fs_info->delalloc_root_lock); 4415 4416 btrfs_destroy_delalloc_inodes(root); 4417 btrfs_put_root(root); 4418 4419 spin_lock(&fs_info->delalloc_root_lock); 4420 } 4421 spin_unlock(&fs_info->delalloc_root_lock); 4422 } 4423 4424 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4425 struct extent_io_tree *dirty_pages, 4426 int mark) 4427 { 4428 int ret; 4429 struct extent_buffer *eb; 4430 u64 start = 0; 4431 u64 end; 4432 4433 while (1) { 4434 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4435 mark, NULL); 4436 if (ret) 4437 break; 4438 4439 clear_extent_bits(dirty_pages, start, end, mark); 4440 while (start <= end) { 4441 eb = find_extent_buffer(fs_info, start); 4442 start += fs_info->nodesize; 4443 if (!eb) 4444 continue; 4445 wait_on_extent_buffer_writeback(eb); 4446 4447 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4448 &eb->bflags)) 4449 clear_extent_buffer_dirty(eb); 4450 free_extent_buffer_stale(eb); 4451 } 4452 } 4453 4454 return ret; 4455 } 4456 4457 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4458 struct extent_io_tree *unpin) 4459 { 4460 u64 start; 4461 u64 end; 4462 int ret; 4463 4464 while (1) { 4465 struct extent_state *cached_state = NULL; 4466 4467 /* 4468 * The btrfs_finish_extent_commit() may get the same range as 4469 * ours between find_first_extent_bit and clear_extent_dirty. 4470 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4471 * the same extent range. 4472 */ 4473 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4474 ret = find_first_extent_bit(unpin, 0, &start, &end, 4475 EXTENT_DIRTY, &cached_state); 4476 if (ret) { 4477 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4478 break; 4479 } 4480 4481 clear_extent_dirty(unpin, start, end, &cached_state); 4482 free_extent_state(cached_state); 4483 btrfs_error_unpin_extent_range(fs_info, start, end); 4484 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4485 cond_resched(); 4486 } 4487 4488 return 0; 4489 } 4490 4491 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4492 { 4493 struct inode *inode; 4494 4495 inode = cache->io_ctl.inode; 4496 if (inode) { 4497 invalidate_inode_pages2(inode->i_mapping); 4498 BTRFS_I(inode)->generation = 0; 4499 cache->io_ctl.inode = NULL; 4500 iput(inode); 4501 } 4502 btrfs_put_block_group(cache); 4503 } 4504 4505 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4506 struct btrfs_fs_info *fs_info) 4507 { 4508 struct btrfs_block_group *cache; 4509 4510 spin_lock(&cur_trans->dirty_bgs_lock); 4511 while (!list_empty(&cur_trans->dirty_bgs)) { 4512 cache = list_first_entry(&cur_trans->dirty_bgs, 4513 struct btrfs_block_group, 4514 dirty_list); 4515 4516 if (!list_empty(&cache->io_list)) { 4517 spin_unlock(&cur_trans->dirty_bgs_lock); 4518 list_del_init(&cache->io_list); 4519 btrfs_cleanup_bg_io(cache); 4520 spin_lock(&cur_trans->dirty_bgs_lock); 4521 } 4522 4523 list_del_init(&cache->dirty_list); 4524 spin_lock(&cache->lock); 4525 cache->disk_cache_state = BTRFS_DC_ERROR; 4526 spin_unlock(&cache->lock); 4527 4528 spin_unlock(&cur_trans->dirty_bgs_lock); 4529 btrfs_put_block_group(cache); 4530 btrfs_delayed_refs_rsv_release(fs_info, 1); 4531 spin_lock(&cur_trans->dirty_bgs_lock); 4532 } 4533 spin_unlock(&cur_trans->dirty_bgs_lock); 4534 4535 /* 4536 * Refer to the definition of io_bgs member for details why it's safe 4537 * to use it without any locking 4538 */ 4539 while (!list_empty(&cur_trans->io_bgs)) { 4540 cache = list_first_entry(&cur_trans->io_bgs, 4541 struct btrfs_block_group, 4542 io_list); 4543 4544 list_del_init(&cache->io_list); 4545 spin_lock(&cache->lock); 4546 cache->disk_cache_state = BTRFS_DC_ERROR; 4547 spin_unlock(&cache->lock); 4548 btrfs_cleanup_bg_io(cache); 4549 } 4550 } 4551 4552 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4553 struct btrfs_fs_info *fs_info) 4554 { 4555 struct btrfs_device *dev, *tmp; 4556 4557 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4558 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4559 ASSERT(list_empty(&cur_trans->io_bgs)); 4560 4561 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4562 post_commit_list) { 4563 list_del_init(&dev->post_commit_list); 4564 } 4565 4566 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4567 4568 cur_trans->state = TRANS_STATE_COMMIT_START; 4569 wake_up(&fs_info->transaction_blocked_wait); 4570 4571 cur_trans->state = TRANS_STATE_UNBLOCKED; 4572 wake_up(&fs_info->transaction_wait); 4573 4574 btrfs_destroy_delayed_inodes(fs_info); 4575 4576 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4577 EXTENT_DIRTY); 4578 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4579 4580 cur_trans->state =TRANS_STATE_COMPLETED; 4581 wake_up(&cur_trans->commit_wait); 4582 } 4583 4584 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4585 { 4586 struct btrfs_transaction *t; 4587 4588 mutex_lock(&fs_info->transaction_kthread_mutex); 4589 4590 spin_lock(&fs_info->trans_lock); 4591 while (!list_empty(&fs_info->trans_list)) { 4592 t = list_first_entry(&fs_info->trans_list, 4593 struct btrfs_transaction, list); 4594 if (t->state >= TRANS_STATE_COMMIT_START) { 4595 refcount_inc(&t->use_count); 4596 spin_unlock(&fs_info->trans_lock); 4597 btrfs_wait_for_commit(fs_info, t->transid); 4598 btrfs_put_transaction(t); 4599 spin_lock(&fs_info->trans_lock); 4600 continue; 4601 } 4602 if (t == fs_info->running_transaction) { 4603 t->state = TRANS_STATE_COMMIT_DOING; 4604 spin_unlock(&fs_info->trans_lock); 4605 /* 4606 * We wait for 0 num_writers since we don't hold a trans 4607 * handle open currently for this transaction. 4608 */ 4609 wait_event(t->writer_wait, 4610 atomic_read(&t->num_writers) == 0); 4611 } else { 4612 spin_unlock(&fs_info->trans_lock); 4613 } 4614 btrfs_cleanup_one_transaction(t, fs_info); 4615 4616 spin_lock(&fs_info->trans_lock); 4617 if (t == fs_info->running_transaction) 4618 fs_info->running_transaction = NULL; 4619 list_del_init(&t->list); 4620 spin_unlock(&fs_info->trans_lock); 4621 4622 btrfs_put_transaction(t); 4623 trace_btrfs_transaction_commit(fs_info->tree_root); 4624 spin_lock(&fs_info->trans_lock); 4625 } 4626 spin_unlock(&fs_info->trans_lock); 4627 btrfs_destroy_all_ordered_extents(fs_info); 4628 btrfs_destroy_delayed_inodes(fs_info); 4629 btrfs_assert_delayed_root_empty(fs_info); 4630 btrfs_destroy_all_delalloc_inodes(fs_info); 4631 btrfs_drop_all_logs(fs_info); 4632 mutex_unlock(&fs_info->transaction_kthread_mutex); 4633 4634 return 0; 4635 } 4636 4637 static const struct extent_io_ops btree_extent_io_ops = { 4638 /* mandatory callbacks */ 4639 .submit_bio_hook = btree_submit_bio_hook, 4640 .readpage_end_io_hook = btree_readpage_end_io_hook, 4641 }; 4642