xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 75f25bd3)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 
47 static struct extent_io_ops btree_extent_io_ops;
48 static void end_workqueue_fn(struct btrfs_work *work);
49 static void free_fs_root(struct btrfs_root *root);
50 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
51 				    int read_only);
52 static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
53 static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
54 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
55 				      struct btrfs_root *root);
56 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
57 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
59 					struct extent_io_tree *dirty_pages,
60 					int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
62 				       struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_root *root);
64 
65 /*
66  * end_io_wq structs are used to do processing in task context when an IO is
67  * complete.  This is used during reads to verify checksums, and it is used
68  * by writes to insert metadata for new file extents after IO is complete.
69  */
70 struct end_io_wq {
71 	struct bio *bio;
72 	bio_end_io_t *end_io;
73 	void *private;
74 	struct btrfs_fs_info *info;
75 	int error;
76 	int metadata;
77 	struct list_head list;
78 	struct btrfs_work work;
79 };
80 
81 /*
82  * async submit bios are used to offload expensive checksumming
83  * onto the worker threads.  They checksum file and metadata bios
84  * just before they are sent down the IO stack.
85  */
86 struct async_submit_bio {
87 	struct inode *inode;
88 	struct bio *bio;
89 	struct list_head list;
90 	extent_submit_bio_hook_t *submit_bio_start;
91 	extent_submit_bio_hook_t *submit_bio_done;
92 	int rw;
93 	int mirror_num;
94 	unsigned long bio_flags;
95 	/*
96 	 * bio_offset is optional, can be used if the pages in the bio
97 	 * can't tell us where in the file the bio should go
98 	 */
99 	u64 bio_offset;
100 	struct btrfs_work work;
101 };
102 
103 /*
104  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
105  * eb, the lockdep key is determined by the btrfs_root it belongs to and
106  * the level the eb occupies in the tree.
107  *
108  * Different roots are used for different purposes and may nest inside each
109  * other and they require separate keysets.  As lockdep keys should be
110  * static, assign keysets according to the purpose of the root as indicated
111  * by btrfs_root->objectid.  This ensures that all special purpose roots
112  * have separate keysets.
113  *
114  * Lock-nesting across peer nodes is always done with the immediate parent
115  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
116  * subclass to avoid triggering lockdep warning in such cases.
117  *
118  * The key is set by the readpage_end_io_hook after the buffer has passed
119  * csum validation but before the pages are unlocked.  It is also set by
120  * btrfs_init_new_buffer on freshly allocated blocks.
121  *
122  * We also add a check to make sure the highest level of the tree is the
123  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
124  * needs update as well.
125  */
126 #ifdef CONFIG_DEBUG_LOCK_ALLOC
127 # if BTRFS_MAX_LEVEL != 8
128 #  error
129 # endif
130 
131 static struct btrfs_lockdep_keyset {
132 	u64			id;		/* root objectid */
133 	const char		*name_stem;	/* lock name stem */
134 	char			names[BTRFS_MAX_LEVEL + 1][20];
135 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
136 } btrfs_lockdep_keysets[] = {
137 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
138 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
139 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
140 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
141 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
142 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
143 	{ .id = BTRFS_ORPHAN_OBJECTID,		.name_stem = "orphan"	},
144 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
145 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
146 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
147 	{ .id = 0,				.name_stem = "tree"	},
148 };
149 
150 void __init btrfs_init_lockdep(void)
151 {
152 	int i, j;
153 
154 	/* initialize lockdep class names */
155 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
156 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
157 
158 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
159 			snprintf(ks->names[j], sizeof(ks->names[j]),
160 				 "btrfs-%s-%02d", ks->name_stem, j);
161 	}
162 }
163 
164 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
165 				    int level)
166 {
167 	struct btrfs_lockdep_keyset *ks;
168 
169 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
170 
171 	/* find the matching keyset, id 0 is the default entry */
172 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
173 		if (ks->id == objectid)
174 			break;
175 
176 	lockdep_set_class_and_name(&eb->lock,
177 				   &ks->keys[level], ks->names[level]);
178 }
179 
180 #endif
181 
182 /*
183  * extents on the btree inode are pretty simple, there's one extent
184  * that covers the entire device
185  */
186 static struct extent_map *btree_get_extent(struct inode *inode,
187 		struct page *page, size_t pg_offset, u64 start, u64 len,
188 		int create)
189 {
190 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
191 	struct extent_map *em;
192 	int ret;
193 
194 	read_lock(&em_tree->lock);
195 	em = lookup_extent_mapping(em_tree, start, len);
196 	if (em) {
197 		em->bdev =
198 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
199 		read_unlock(&em_tree->lock);
200 		goto out;
201 	}
202 	read_unlock(&em_tree->lock);
203 
204 	em = alloc_extent_map();
205 	if (!em) {
206 		em = ERR_PTR(-ENOMEM);
207 		goto out;
208 	}
209 	em->start = 0;
210 	em->len = (u64)-1;
211 	em->block_len = (u64)-1;
212 	em->block_start = 0;
213 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
214 
215 	write_lock(&em_tree->lock);
216 	ret = add_extent_mapping(em_tree, em);
217 	if (ret == -EEXIST) {
218 		u64 failed_start = em->start;
219 		u64 failed_len = em->len;
220 
221 		free_extent_map(em);
222 		em = lookup_extent_mapping(em_tree, start, len);
223 		if (em) {
224 			ret = 0;
225 		} else {
226 			em = lookup_extent_mapping(em_tree, failed_start,
227 						   failed_len);
228 			ret = -EIO;
229 		}
230 	} else if (ret) {
231 		free_extent_map(em);
232 		em = NULL;
233 	}
234 	write_unlock(&em_tree->lock);
235 
236 	if (ret)
237 		em = ERR_PTR(ret);
238 out:
239 	return em;
240 }
241 
242 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
243 {
244 	return crc32c(seed, data, len);
245 }
246 
247 void btrfs_csum_final(u32 crc, char *result)
248 {
249 	put_unaligned_le32(~crc, result);
250 }
251 
252 /*
253  * compute the csum for a btree block, and either verify it or write it
254  * into the csum field of the block.
255  */
256 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
257 			   int verify)
258 {
259 	u16 csum_size =
260 		btrfs_super_csum_size(&root->fs_info->super_copy);
261 	char *result = NULL;
262 	unsigned long len;
263 	unsigned long cur_len;
264 	unsigned long offset = BTRFS_CSUM_SIZE;
265 	char *kaddr;
266 	unsigned long map_start;
267 	unsigned long map_len;
268 	int err;
269 	u32 crc = ~(u32)0;
270 	unsigned long inline_result;
271 
272 	len = buf->len - offset;
273 	while (len > 0) {
274 		err = map_private_extent_buffer(buf, offset, 32,
275 					&kaddr, &map_start, &map_len);
276 		if (err)
277 			return 1;
278 		cur_len = min(len, map_len - (offset - map_start));
279 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
280 				      crc, cur_len);
281 		len -= cur_len;
282 		offset += cur_len;
283 	}
284 	if (csum_size > sizeof(inline_result)) {
285 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286 		if (!result)
287 			return 1;
288 	} else {
289 		result = (char *)&inline_result;
290 	}
291 
292 	btrfs_csum_final(crc, result);
293 
294 	if (verify) {
295 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
296 			u32 val;
297 			u32 found = 0;
298 			memcpy(&found, result, csum_size);
299 
300 			read_extent_buffer(buf, &val, 0, csum_size);
301 			printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
302 				       "failed on %llu wanted %X found %X "
303 				       "level %d\n",
304 				       root->fs_info->sb->s_id,
305 				       (unsigned long long)buf->start, val, found,
306 				       btrfs_header_level(buf));
307 			if (result != (char *)&inline_result)
308 				kfree(result);
309 			return 1;
310 		}
311 	} else {
312 		write_extent_buffer(buf, result, 0, csum_size);
313 	}
314 	if (result != (char *)&inline_result)
315 		kfree(result);
316 	return 0;
317 }
318 
319 /*
320  * we can't consider a given block up to date unless the transid of the
321  * block matches the transid in the parent node's pointer.  This is how we
322  * detect blocks that either didn't get written at all or got written
323  * in the wrong place.
324  */
325 static int verify_parent_transid(struct extent_io_tree *io_tree,
326 				 struct extent_buffer *eb, u64 parent_transid)
327 {
328 	struct extent_state *cached_state = NULL;
329 	int ret;
330 
331 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332 		return 0;
333 
334 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335 			 0, &cached_state, GFP_NOFS);
336 	if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
337 	    btrfs_header_generation(eb) == parent_transid) {
338 		ret = 0;
339 		goto out;
340 	}
341 	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
342 		       "found %llu\n",
343 		       (unsigned long long)eb->start,
344 		       (unsigned long long)parent_transid,
345 		       (unsigned long long)btrfs_header_generation(eb));
346 	ret = 1;
347 	clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
348 out:
349 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350 			     &cached_state, GFP_NOFS);
351 	return ret;
352 }
353 
354 /*
355  * helper to read a given tree block, doing retries as required when
356  * the checksums don't match and we have alternate mirrors to try.
357  */
358 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359 					  struct extent_buffer *eb,
360 					  u64 start, u64 parent_transid)
361 {
362 	struct extent_io_tree *io_tree;
363 	int ret;
364 	int num_copies = 0;
365 	int mirror_num = 0;
366 
367 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
368 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
369 	while (1) {
370 		ret = read_extent_buffer_pages(io_tree, eb, start, 1,
371 					       btree_get_extent, mirror_num);
372 		if (!ret &&
373 		    !verify_parent_transid(io_tree, eb, parent_transid))
374 			return ret;
375 
376 		/*
377 		 * This buffer's crc is fine, but its contents are corrupted, so
378 		 * there is no reason to read the other copies, they won't be
379 		 * any less wrong.
380 		 */
381 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
382 			return ret;
383 
384 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
385 					      eb->start, eb->len);
386 		if (num_copies == 1)
387 			return ret;
388 
389 		mirror_num++;
390 		if (mirror_num > num_copies)
391 			return ret;
392 	}
393 	return -EIO;
394 }
395 
396 /*
397  * checksum a dirty tree block before IO.  This has extra checks to make sure
398  * we only fill in the checksum field in the first page of a multi-page block
399  */
400 
401 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
402 {
403 	struct extent_io_tree *tree;
404 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
405 	u64 found_start;
406 	unsigned long len;
407 	struct extent_buffer *eb;
408 	int ret;
409 
410 	tree = &BTRFS_I(page->mapping->host)->io_tree;
411 
412 	if (page->private == EXTENT_PAGE_PRIVATE) {
413 		WARN_ON(1);
414 		goto out;
415 	}
416 	if (!page->private) {
417 		WARN_ON(1);
418 		goto out;
419 	}
420 	len = page->private >> 2;
421 	WARN_ON(len == 0);
422 
423 	eb = alloc_extent_buffer(tree, start, len, page);
424 	if (eb == NULL) {
425 		WARN_ON(1);
426 		goto out;
427 	}
428 	ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
429 					     btrfs_header_generation(eb));
430 	BUG_ON(ret);
431 	WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
432 
433 	found_start = btrfs_header_bytenr(eb);
434 	if (found_start != start) {
435 		WARN_ON(1);
436 		goto err;
437 	}
438 	if (eb->first_page != page) {
439 		WARN_ON(1);
440 		goto err;
441 	}
442 	if (!PageUptodate(page)) {
443 		WARN_ON(1);
444 		goto err;
445 	}
446 	csum_tree_block(root, eb, 0);
447 err:
448 	free_extent_buffer(eb);
449 out:
450 	return 0;
451 }
452 
453 static int check_tree_block_fsid(struct btrfs_root *root,
454 				 struct extent_buffer *eb)
455 {
456 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
457 	u8 fsid[BTRFS_UUID_SIZE];
458 	int ret = 1;
459 
460 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
461 			   BTRFS_FSID_SIZE);
462 	while (fs_devices) {
463 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
464 			ret = 0;
465 			break;
466 		}
467 		fs_devices = fs_devices->seed;
468 	}
469 	return ret;
470 }
471 
472 #define CORRUPT(reason, eb, root, slot)				\
473 	printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu,"	\
474 	       "root=%llu, slot=%d\n", reason,			\
475 	       (unsigned long long)btrfs_header_bytenr(eb),	\
476 	       (unsigned long long)root->objectid, slot)
477 
478 static noinline int check_leaf(struct btrfs_root *root,
479 			       struct extent_buffer *leaf)
480 {
481 	struct btrfs_key key;
482 	struct btrfs_key leaf_key;
483 	u32 nritems = btrfs_header_nritems(leaf);
484 	int slot;
485 
486 	if (nritems == 0)
487 		return 0;
488 
489 	/* Check the 0 item */
490 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
491 	    BTRFS_LEAF_DATA_SIZE(root)) {
492 		CORRUPT("invalid item offset size pair", leaf, root, 0);
493 		return -EIO;
494 	}
495 
496 	/*
497 	 * Check to make sure each items keys are in the correct order and their
498 	 * offsets make sense.  We only have to loop through nritems-1 because
499 	 * we check the current slot against the next slot, which verifies the
500 	 * next slot's offset+size makes sense and that the current's slot
501 	 * offset is correct.
502 	 */
503 	for (slot = 0; slot < nritems - 1; slot++) {
504 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
505 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
506 
507 		/* Make sure the keys are in the right order */
508 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
509 			CORRUPT("bad key order", leaf, root, slot);
510 			return -EIO;
511 		}
512 
513 		/*
514 		 * Make sure the offset and ends are right, remember that the
515 		 * item data starts at the end of the leaf and grows towards the
516 		 * front.
517 		 */
518 		if (btrfs_item_offset_nr(leaf, slot) !=
519 			btrfs_item_end_nr(leaf, slot + 1)) {
520 			CORRUPT("slot offset bad", leaf, root, slot);
521 			return -EIO;
522 		}
523 
524 		/*
525 		 * Check to make sure that we don't point outside of the leaf,
526 		 * just incase all the items are consistent to eachother, but
527 		 * all point outside of the leaf.
528 		 */
529 		if (btrfs_item_end_nr(leaf, slot) >
530 		    BTRFS_LEAF_DATA_SIZE(root)) {
531 			CORRUPT("slot end outside of leaf", leaf, root, slot);
532 			return -EIO;
533 		}
534 	}
535 
536 	return 0;
537 }
538 
539 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
540 			       struct extent_state *state)
541 {
542 	struct extent_io_tree *tree;
543 	u64 found_start;
544 	int found_level;
545 	unsigned long len;
546 	struct extent_buffer *eb;
547 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
548 	int ret = 0;
549 
550 	tree = &BTRFS_I(page->mapping->host)->io_tree;
551 	if (page->private == EXTENT_PAGE_PRIVATE)
552 		goto out;
553 	if (!page->private)
554 		goto out;
555 
556 	len = page->private >> 2;
557 	WARN_ON(len == 0);
558 
559 	eb = alloc_extent_buffer(tree, start, len, page);
560 	if (eb == NULL) {
561 		ret = -EIO;
562 		goto out;
563 	}
564 
565 	found_start = btrfs_header_bytenr(eb);
566 	if (found_start != start) {
567 		printk_ratelimited(KERN_INFO "btrfs bad tree block start "
568 			       "%llu %llu\n",
569 			       (unsigned long long)found_start,
570 			       (unsigned long long)eb->start);
571 		ret = -EIO;
572 		goto err;
573 	}
574 	if (eb->first_page != page) {
575 		printk(KERN_INFO "btrfs bad first page %lu %lu\n",
576 		       eb->first_page->index, page->index);
577 		WARN_ON(1);
578 		ret = -EIO;
579 		goto err;
580 	}
581 	if (check_tree_block_fsid(root, eb)) {
582 		printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
583 			       (unsigned long long)eb->start);
584 		ret = -EIO;
585 		goto err;
586 	}
587 	found_level = btrfs_header_level(eb);
588 
589 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
590 				       eb, found_level);
591 
592 	ret = csum_tree_block(root, eb, 1);
593 	if (ret) {
594 		ret = -EIO;
595 		goto err;
596 	}
597 
598 	/*
599 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
600 	 * that we don't try and read the other copies of this block, just
601 	 * return -EIO.
602 	 */
603 	if (found_level == 0 && check_leaf(root, eb)) {
604 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
605 		ret = -EIO;
606 	}
607 
608 	end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
609 	end = eb->start + end - 1;
610 err:
611 	free_extent_buffer(eb);
612 out:
613 	return ret;
614 }
615 
616 static void end_workqueue_bio(struct bio *bio, int err)
617 {
618 	struct end_io_wq *end_io_wq = bio->bi_private;
619 	struct btrfs_fs_info *fs_info;
620 
621 	fs_info = end_io_wq->info;
622 	end_io_wq->error = err;
623 	end_io_wq->work.func = end_workqueue_fn;
624 	end_io_wq->work.flags = 0;
625 
626 	if (bio->bi_rw & REQ_WRITE) {
627 		if (end_io_wq->metadata == 1)
628 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
629 					   &end_io_wq->work);
630 		else if (end_io_wq->metadata == 2)
631 			btrfs_queue_worker(&fs_info->endio_freespace_worker,
632 					   &end_io_wq->work);
633 		else
634 			btrfs_queue_worker(&fs_info->endio_write_workers,
635 					   &end_io_wq->work);
636 	} else {
637 		if (end_io_wq->metadata)
638 			btrfs_queue_worker(&fs_info->endio_meta_workers,
639 					   &end_io_wq->work);
640 		else
641 			btrfs_queue_worker(&fs_info->endio_workers,
642 					   &end_io_wq->work);
643 	}
644 }
645 
646 /*
647  * For the metadata arg you want
648  *
649  * 0 - if data
650  * 1 - if normal metadta
651  * 2 - if writing to the free space cache area
652  */
653 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
654 			int metadata)
655 {
656 	struct end_io_wq *end_io_wq;
657 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
658 	if (!end_io_wq)
659 		return -ENOMEM;
660 
661 	end_io_wq->private = bio->bi_private;
662 	end_io_wq->end_io = bio->bi_end_io;
663 	end_io_wq->info = info;
664 	end_io_wq->error = 0;
665 	end_io_wq->bio = bio;
666 	end_io_wq->metadata = metadata;
667 
668 	bio->bi_private = end_io_wq;
669 	bio->bi_end_io = end_workqueue_bio;
670 	return 0;
671 }
672 
673 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
674 {
675 	unsigned long limit = min_t(unsigned long,
676 				    info->workers.max_workers,
677 				    info->fs_devices->open_devices);
678 	return 256 * limit;
679 }
680 
681 static void run_one_async_start(struct btrfs_work *work)
682 {
683 	struct async_submit_bio *async;
684 
685 	async = container_of(work, struct  async_submit_bio, work);
686 	async->submit_bio_start(async->inode, async->rw, async->bio,
687 			       async->mirror_num, async->bio_flags,
688 			       async->bio_offset);
689 }
690 
691 static void run_one_async_done(struct btrfs_work *work)
692 {
693 	struct btrfs_fs_info *fs_info;
694 	struct async_submit_bio *async;
695 	int limit;
696 
697 	async = container_of(work, struct  async_submit_bio, work);
698 	fs_info = BTRFS_I(async->inode)->root->fs_info;
699 
700 	limit = btrfs_async_submit_limit(fs_info);
701 	limit = limit * 2 / 3;
702 
703 	atomic_dec(&fs_info->nr_async_submits);
704 
705 	if (atomic_read(&fs_info->nr_async_submits) < limit &&
706 	    waitqueue_active(&fs_info->async_submit_wait))
707 		wake_up(&fs_info->async_submit_wait);
708 
709 	async->submit_bio_done(async->inode, async->rw, async->bio,
710 			       async->mirror_num, async->bio_flags,
711 			       async->bio_offset);
712 }
713 
714 static void run_one_async_free(struct btrfs_work *work)
715 {
716 	struct async_submit_bio *async;
717 
718 	async = container_of(work, struct  async_submit_bio, work);
719 	kfree(async);
720 }
721 
722 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
723 			int rw, struct bio *bio, int mirror_num,
724 			unsigned long bio_flags,
725 			u64 bio_offset,
726 			extent_submit_bio_hook_t *submit_bio_start,
727 			extent_submit_bio_hook_t *submit_bio_done)
728 {
729 	struct async_submit_bio *async;
730 
731 	async = kmalloc(sizeof(*async), GFP_NOFS);
732 	if (!async)
733 		return -ENOMEM;
734 
735 	async->inode = inode;
736 	async->rw = rw;
737 	async->bio = bio;
738 	async->mirror_num = mirror_num;
739 	async->submit_bio_start = submit_bio_start;
740 	async->submit_bio_done = submit_bio_done;
741 
742 	async->work.func = run_one_async_start;
743 	async->work.ordered_func = run_one_async_done;
744 	async->work.ordered_free = run_one_async_free;
745 
746 	async->work.flags = 0;
747 	async->bio_flags = bio_flags;
748 	async->bio_offset = bio_offset;
749 
750 	atomic_inc(&fs_info->nr_async_submits);
751 
752 	if (rw & REQ_SYNC)
753 		btrfs_set_work_high_prio(&async->work);
754 
755 	btrfs_queue_worker(&fs_info->workers, &async->work);
756 
757 	while (atomic_read(&fs_info->async_submit_draining) &&
758 	      atomic_read(&fs_info->nr_async_submits)) {
759 		wait_event(fs_info->async_submit_wait,
760 			   (atomic_read(&fs_info->nr_async_submits) == 0));
761 	}
762 
763 	return 0;
764 }
765 
766 static int btree_csum_one_bio(struct bio *bio)
767 {
768 	struct bio_vec *bvec = bio->bi_io_vec;
769 	int bio_index = 0;
770 	struct btrfs_root *root;
771 
772 	WARN_ON(bio->bi_vcnt <= 0);
773 	while (bio_index < bio->bi_vcnt) {
774 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
775 		csum_dirty_buffer(root, bvec->bv_page);
776 		bio_index++;
777 		bvec++;
778 	}
779 	return 0;
780 }
781 
782 static int __btree_submit_bio_start(struct inode *inode, int rw,
783 				    struct bio *bio, int mirror_num,
784 				    unsigned long bio_flags,
785 				    u64 bio_offset)
786 {
787 	/*
788 	 * when we're called for a write, we're already in the async
789 	 * submission context.  Just jump into btrfs_map_bio
790 	 */
791 	btree_csum_one_bio(bio);
792 	return 0;
793 }
794 
795 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
796 				 int mirror_num, unsigned long bio_flags,
797 				 u64 bio_offset)
798 {
799 	/*
800 	 * when we're called for a write, we're already in the async
801 	 * submission context.  Just jump into btrfs_map_bio
802 	 */
803 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
804 }
805 
806 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
807 				 int mirror_num, unsigned long bio_flags,
808 				 u64 bio_offset)
809 {
810 	int ret;
811 
812 	ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
813 					  bio, 1);
814 	BUG_ON(ret);
815 
816 	if (!(rw & REQ_WRITE)) {
817 		/*
818 		 * called for a read, do the setup so that checksum validation
819 		 * can happen in the async kernel threads
820 		 */
821 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
822 				     mirror_num, 0);
823 	}
824 
825 	/*
826 	 * kthread helpers are used to submit writes so that checksumming
827 	 * can happen in parallel across all CPUs
828 	 */
829 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
830 				   inode, rw, bio, mirror_num, 0,
831 				   bio_offset,
832 				   __btree_submit_bio_start,
833 				   __btree_submit_bio_done);
834 }
835 
836 #ifdef CONFIG_MIGRATION
837 static int btree_migratepage(struct address_space *mapping,
838 			struct page *newpage, struct page *page)
839 {
840 	/*
841 	 * we can't safely write a btree page from here,
842 	 * we haven't done the locking hook
843 	 */
844 	if (PageDirty(page))
845 		return -EAGAIN;
846 	/*
847 	 * Buffers may be managed in a filesystem specific way.
848 	 * We must have no buffers or drop them.
849 	 */
850 	if (page_has_private(page) &&
851 	    !try_to_release_page(page, GFP_KERNEL))
852 		return -EAGAIN;
853 	return migrate_page(mapping, newpage, page);
854 }
855 #endif
856 
857 static int btree_writepage(struct page *page, struct writeback_control *wbc)
858 {
859 	struct extent_io_tree *tree;
860 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
861 	struct extent_buffer *eb;
862 	int was_dirty;
863 
864 	tree = &BTRFS_I(page->mapping->host)->io_tree;
865 	if (!(current->flags & PF_MEMALLOC)) {
866 		return extent_write_full_page(tree, page,
867 					      btree_get_extent, wbc);
868 	}
869 
870 	redirty_page_for_writepage(wbc, page);
871 	eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
872 	WARN_ON(!eb);
873 
874 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
875 	if (!was_dirty) {
876 		spin_lock(&root->fs_info->delalloc_lock);
877 		root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
878 		spin_unlock(&root->fs_info->delalloc_lock);
879 	}
880 	free_extent_buffer(eb);
881 
882 	unlock_page(page);
883 	return 0;
884 }
885 
886 static int btree_writepages(struct address_space *mapping,
887 			    struct writeback_control *wbc)
888 {
889 	struct extent_io_tree *tree;
890 	tree = &BTRFS_I(mapping->host)->io_tree;
891 	if (wbc->sync_mode == WB_SYNC_NONE) {
892 		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
893 		u64 num_dirty;
894 		unsigned long thresh = 32 * 1024 * 1024;
895 
896 		if (wbc->for_kupdate)
897 			return 0;
898 
899 		/* this is a bit racy, but that's ok */
900 		num_dirty = root->fs_info->dirty_metadata_bytes;
901 		if (num_dirty < thresh)
902 			return 0;
903 	}
904 	return extent_writepages(tree, mapping, btree_get_extent, wbc);
905 }
906 
907 static int btree_readpage(struct file *file, struct page *page)
908 {
909 	struct extent_io_tree *tree;
910 	tree = &BTRFS_I(page->mapping->host)->io_tree;
911 	return extent_read_full_page(tree, page, btree_get_extent);
912 }
913 
914 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
915 {
916 	struct extent_io_tree *tree;
917 	struct extent_map_tree *map;
918 	int ret;
919 
920 	if (PageWriteback(page) || PageDirty(page))
921 		return 0;
922 
923 	tree = &BTRFS_I(page->mapping->host)->io_tree;
924 	map = &BTRFS_I(page->mapping->host)->extent_tree;
925 
926 	ret = try_release_extent_state(map, tree, page, gfp_flags);
927 	if (!ret)
928 		return 0;
929 
930 	ret = try_release_extent_buffer(tree, page);
931 	if (ret == 1) {
932 		ClearPagePrivate(page);
933 		set_page_private(page, 0);
934 		page_cache_release(page);
935 	}
936 
937 	return ret;
938 }
939 
940 static void btree_invalidatepage(struct page *page, unsigned long offset)
941 {
942 	struct extent_io_tree *tree;
943 	tree = &BTRFS_I(page->mapping->host)->io_tree;
944 	extent_invalidatepage(tree, page, offset);
945 	btree_releasepage(page, GFP_NOFS);
946 	if (PagePrivate(page)) {
947 		printk(KERN_WARNING "btrfs warning page private not zero "
948 		       "on page %llu\n", (unsigned long long)page_offset(page));
949 		ClearPagePrivate(page);
950 		set_page_private(page, 0);
951 		page_cache_release(page);
952 	}
953 }
954 
955 static const struct address_space_operations btree_aops = {
956 	.readpage	= btree_readpage,
957 	.writepage	= btree_writepage,
958 	.writepages	= btree_writepages,
959 	.releasepage	= btree_releasepage,
960 	.invalidatepage = btree_invalidatepage,
961 #ifdef CONFIG_MIGRATION
962 	.migratepage	= btree_migratepage,
963 #endif
964 };
965 
966 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
967 			 u64 parent_transid)
968 {
969 	struct extent_buffer *buf = NULL;
970 	struct inode *btree_inode = root->fs_info->btree_inode;
971 	int ret = 0;
972 
973 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
974 	if (!buf)
975 		return 0;
976 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
977 				 buf, 0, 0, btree_get_extent, 0);
978 	free_extent_buffer(buf);
979 	return ret;
980 }
981 
982 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
983 					    u64 bytenr, u32 blocksize)
984 {
985 	struct inode *btree_inode = root->fs_info->btree_inode;
986 	struct extent_buffer *eb;
987 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
988 				bytenr, blocksize);
989 	return eb;
990 }
991 
992 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
993 						 u64 bytenr, u32 blocksize)
994 {
995 	struct inode *btree_inode = root->fs_info->btree_inode;
996 	struct extent_buffer *eb;
997 
998 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
999 				 bytenr, blocksize, NULL);
1000 	return eb;
1001 }
1002 
1003 
1004 int btrfs_write_tree_block(struct extent_buffer *buf)
1005 {
1006 	return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
1007 					buf->start + buf->len - 1);
1008 }
1009 
1010 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1011 {
1012 	return filemap_fdatawait_range(buf->first_page->mapping,
1013 				       buf->start, buf->start + buf->len - 1);
1014 }
1015 
1016 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1017 				      u32 blocksize, u64 parent_transid)
1018 {
1019 	struct extent_buffer *buf = NULL;
1020 	int ret;
1021 
1022 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1023 	if (!buf)
1024 		return NULL;
1025 
1026 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1027 
1028 	if (ret == 0)
1029 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
1030 	return buf;
1031 
1032 }
1033 
1034 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1035 		     struct extent_buffer *buf)
1036 {
1037 	struct inode *btree_inode = root->fs_info->btree_inode;
1038 	if (btrfs_header_generation(buf) ==
1039 	    root->fs_info->running_transaction->transid) {
1040 		btrfs_assert_tree_locked(buf);
1041 
1042 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1043 			spin_lock(&root->fs_info->delalloc_lock);
1044 			if (root->fs_info->dirty_metadata_bytes >= buf->len)
1045 				root->fs_info->dirty_metadata_bytes -= buf->len;
1046 			else
1047 				WARN_ON(1);
1048 			spin_unlock(&root->fs_info->delalloc_lock);
1049 		}
1050 
1051 		/* ugh, clear_extent_buffer_dirty needs to lock the page */
1052 		btrfs_set_lock_blocking(buf);
1053 		clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
1054 					  buf);
1055 	}
1056 	return 0;
1057 }
1058 
1059 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1060 			u32 stripesize, struct btrfs_root *root,
1061 			struct btrfs_fs_info *fs_info,
1062 			u64 objectid)
1063 {
1064 	root->node = NULL;
1065 	root->commit_root = NULL;
1066 	root->sectorsize = sectorsize;
1067 	root->nodesize = nodesize;
1068 	root->leafsize = leafsize;
1069 	root->stripesize = stripesize;
1070 	root->ref_cows = 0;
1071 	root->track_dirty = 0;
1072 	root->in_radix = 0;
1073 	root->orphan_item_inserted = 0;
1074 	root->orphan_cleanup_state = 0;
1075 
1076 	root->fs_info = fs_info;
1077 	root->objectid = objectid;
1078 	root->last_trans = 0;
1079 	root->highest_objectid = 0;
1080 	root->name = NULL;
1081 	root->inode_tree = RB_ROOT;
1082 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1083 	root->block_rsv = NULL;
1084 	root->orphan_block_rsv = NULL;
1085 
1086 	INIT_LIST_HEAD(&root->dirty_list);
1087 	INIT_LIST_HEAD(&root->orphan_list);
1088 	INIT_LIST_HEAD(&root->root_list);
1089 	spin_lock_init(&root->orphan_lock);
1090 	spin_lock_init(&root->inode_lock);
1091 	spin_lock_init(&root->accounting_lock);
1092 	mutex_init(&root->objectid_mutex);
1093 	mutex_init(&root->log_mutex);
1094 	init_waitqueue_head(&root->log_writer_wait);
1095 	init_waitqueue_head(&root->log_commit_wait[0]);
1096 	init_waitqueue_head(&root->log_commit_wait[1]);
1097 	atomic_set(&root->log_commit[0], 0);
1098 	atomic_set(&root->log_commit[1], 0);
1099 	atomic_set(&root->log_writers, 0);
1100 	root->log_batch = 0;
1101 	root->log_transid = 0;
1102 	root->last_log_commit = 0;
1103 	extent_io_tree_init(&root->dirty_log_pages,
1104 			     fs_info->btree_inode->i_mapping);
1105 
1106 	memset(&root->root_key, 0, sizeof(root->root_key));
1107 	memset(&root->root_item, 0, sizeof(root->root_item));
1108 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1109 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1110 	root->defrag_trans_start = fs_info->generation;
1111 	init_completion(&root->kobj_unregister);
1112 	root->defrag_running = 0;
1113 	root->root_key.objectid = objectid;
1114 	root->anon_dev = 0;
1115 	return 0;
1116 }
1117 
1118 static int find_and_setup_root(struct btrfs_root *tree_root,
1119 			       struct btrfs_fs_info *fs_info,
1120 			       u64 objectid,
1121 			       struct btrfs_root *root)
1122 {
1123 	int ret;
1124 	u32 blocksize;
1125 	u64 generation;
1126 
1127 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1128 		     tree_root->sectorsize, tree_root->stripesize,
1129 		     root, fs_info, objectid);
1130 	ret = btrfs_find_last_root(tree_root, objectid,
1131 				   &root->root_item, &root->root_key);
1132 	if (ret > 0)
1133 		return -ENOENT;
1134 	BUG_ON(ret);
1135 
1136 	generation = btrfs_root_generation(&root->root_item);
1137 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1138 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1139 				     blocksize, generation);
1140 	if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1141 		free_extent_buffer(root->node);
1142 		return -EIO;
1143 	}
1144 	root->commit_root = btrfs_root_node(root);
1145 	return 0;
1146 }
1147 
1148 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1149 					 struct btrfs_fs_info *fs_info)
1150 {
1151 	struct btrfs_root *root;
1152 	struct btrfs_root *tree_root = fs_info->tree_root;
1153 	struct extent_buffer *leaf;
1154 
1155 	root = kzalloc(sizeof(*root), GFP_NOFS);
1156 	if (!root)
1157 		return ERR_PTR(-ENOMEM);
1158 
1159 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1160 		     tree_root->sectorsize, tree_root->stripesize,
1161 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1162 
1163 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1164 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1165 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1166 	/*
1167 	 * log trees do not get reference counted because they go away
1168 	 * before a real commit is actually done.  They do store pointers
1169 	 * to file data extents, and those reference counts still get
1170 	 * updated (along with back refs to the log tree).
1171 	 */
1172 	root->ref_cows = 0;
1173 
1174 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1175 				      BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1176 	if (IS_ERR(leaf)) {
1177 		kfree(root);
1178 		return ERR_CAST(leaf);
1179 	}
1180 
1181 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1182 	btrfs_set_header_bytenr(leaf, leaf->start);
1183 	btrfs_set_header_generation(leaf, trans->transid);
1184 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1185 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1186 	root->node = leaf;
1187 
1188 	write_extent_buffer(root->node, root->fs_info->fsid,
1189 			    (unsigned long)btrfs_header_fsid(root->node),
1190 			    BTRFS_FSID_SIZE);
1191 	btrfs_mark_buffer_dirty(root->node);
1192 	btrfs_tree_unlock(root->node);
1193 	return root;
1194 }
1195 
1196 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1197 			     struct btrfs_fs_info *fs_info)
1198 {
1199 	struct btrfs_root *log_root;
1200 
1201 	log_root = alloc_log_tree(trans, fs_info);
1202 	if (IS_ERR(log_root))
1203 		return PTR_ERR(log_root);
1204 	WARN_ON(fs_info->log_root_tree);
1205 	fs_info->log_root_tree = log_root;
1206 	return 0;
1207 }
1208 
1209 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1210 		       struct btrfs_root *root)
1211 {
1212 	struct btrfs_root *log_root;
1213 	struct btrfs_inode_item *inode_item;
1214 
1215 	log_root = alloc_log_tree(trans, root->fs_info);
1216 	if (IS_ERR(log_root))
1217 		return PTR_ERR(log_root);
1218 
1219 	log_root->last_trans = trans->transid;
1220 	log_root->root_key.offset = root->root_key.objectid;
1221 
1222 	inode_item = &log_root->root_item.inode;
1223 	inode_item->generation = cpu_to_le64(1);
1224 	inode_item->size = cpu_to_le64(3);
1225 	inode_item->nlink = cpu_to_le32(1);
1226 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1227 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1228 
1229 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1230 
1231 	WARN_ON(root->log_root);
1232 	root->log_root = log_root;
1233 	root->log_transid = 0;
1234 	root->last_log_commit = 0;
1235 	return 0;
1236 }
1237 
1238 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1239 					       struct btrfs_key *location)
1240 {
1241 	struct btrfs_root *root;
1242 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1243 	struct btrfs_path *path;
1244 	struct extent_buffer *l;
1245 	u64 generation;
1246 	u32 blocksize;
1247 	int ret = 0;
1248 
1249 	root = kzalloc(sizeof(*root), GFP_NOFS);
1250 	if (!root)
1251 		return ERR_PTR(-ENOMEM);
1252 	if (location->offset == (u64)-1) {
1253 		ret = find_and_setup_root(tree_root, fs_info,
1254 					  location->objectid, root);
1255 		if (ret) {
1256 			kfree(root);
1257 			return ERR_PTR(ret);
1258 		}
1259 		goto out;
1260 	}
1261 
1262 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1263 		     tree_root->sectorsize, tree_root->stripesize,
1264 		     root, fs_info, location->objectid);
1265 
1266 	path = btrfs_alloc_path();
1267 	if (!path) {
1268 		kfree(root);
1269 		return ERR_PTR(-ENOMEM);
1270 	}
1271 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1272 	if (ret == 0) {
1273 		l = path->nodes[0];
1274 		read_extent_buffer(l, &root->root_item,
1275 				btrfs_item_ptr_offset(l, path->slots[0]),
1276 				sizeof(root->root_item));
1277 		memcpy(&root->root_key, location, sizeof(*location));
1278 	}
1279 	btrfs_free_path(path);
1280 	if (ret) {
1281 		kfree(root);
1282 		if (ret > 0)
1283 			ret = -ENOENT;
1284 		return ERR_PTR(ret);
1285 	}
1286 
1287 	generation = btrfs_root_generation(&root->root_item);
1288 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1289 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1290 				     blocksize, generation);
1291 	root->commit_root = btrfs_root_node(root);
1292 	BUG_ON(!root->node);
1293 out:
1294 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1295 		root->ref_cows = 1;
1296 		btrfs_check_and_init_root_item(&root->root_item);
1297 	}
1298 
1299 	return root;
1300 }
1301 
1302 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1303 					      struct btrfs_key *location)
1304 {
1305 	struct btrfs_root *root;
1306 	int ret;
1307 
1308 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1309 		return fs_info->tree_root;
1310 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1311 		return fs_info->extent_root;
1312 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1313 		return fs_info->chunk_root;
1314 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1315 		return fs_info->dev_root;
1316 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1317 		return fs_info->csum_root;
1318 again:
1319 	spin_lock(&fs_info->fs_roots_radix_lock);
1320 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1321 				 (unsigned long)location->objectid);
1322 	spin_unlock(&fs_info->fs_roots_radix_lock);
1323 	if (root)
1324 		return root;
1325 
1326 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1327 	if (IS_ERR(root))
1328 		return root;
1329 
1330 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1331 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1332 					GFP_NOFS);
1333 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1334 		ret = -ENOMEM;
1335 		goto fail;
1336 	}
1337 
1338 	btrfs_init_free_ino_ctl(root);
1339 	mutex_init(&root->fs_commit_mutex);
1340 	spin_lock_init(&root->cache_lock);
1341 	init_waitqueue_head(&root->cache_wait);
1342 
1343 	ret = get_anon_bdev(&root->anon_dev);
1344 	if (ret)
1345 		goto fail;
1346 
1347 	if (btrfs_root_refs(&root->root_item) == 0) {
1348 		ret = -ENOENT;
1349 		goto fail;
1350 	}
1351 
1352 	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1353 	if (ret < 0)
1354 		goto fail;
1355 	if (ret == 0)
1356 		root->orphan_item_inserted = 1;
1357 
1358 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1359 	if (ret)
1360 		goto fail;
1361 
1362 	spin_lock(&fs_info->fs_roots_radix_lock);
1363 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1364 				(unsigned long)root->root_key.objectid,
1365 				root);
1366 	if (ret == 0)
1367 		root->in_radix = 1;
1368 
1369 	spin_unlock(&fs_info->fs_roots_radix_lock);
1370 	radix_tree_preload_end();
1371 	if (ret) {
1372 		if (ret == -EEXIST) {
1373 			free_fs_root(root);
1374 			goto again;
1375 		}
1376 		goto fail;
1377 	}
1378 
1379 	ret = btrfs_find_dead_roots(fs_info->tree_root,
1380 				    root->root_key.objectid);
1381 	WARN_ON(ret);
1382 	return root;
1383 fail:
1384 	free_fs_root(root);
1385 	return ERR_PTR(ret);
1386 }
1387 
1388 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1389 {
1390 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1391 	int ret = 0;
1392 	struct btrfs_device *device;
1393 	struct backing_dev_info *bdi;
1394 
1395 	rcu_read_lock();
1396 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1397 		if (!device->bdev)
1398 			continue;
1399 		bdi = blk_get_backing_dev_info(device->bdev);
1400 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1401 			ret = 1;
1402 			break;
1403 		}
1404 	}
1405 	rcu_read_unlock();
1406 	return ret;
1407 }
1408 
1409 /*
1410  * If this fails, caller must call bdi_destroy() to get rid of the
1411  * bdi again.
1412  */
1413 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1414 {
1415 	int err;
1416 
1417 	bdi->capabilities = BDI_CAP_MAP_COPY;
1418 	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1419 	if (err)
1420 		return err;
1421 
1422 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1423 	bdi->congested_fn	= btrfs_congested_fn;
1424 	bdi->congested_data	= info;
1425 	return 0;
1426 }
1427 
1428 static int bio_ready_for_csum(struct bio *bio)
1429 {
1430 	u64 length = 0;
1431 	u64 buf_len = 0;
1432 	u64 start = 0;
1433 	struct page *page;
1434 	struct extent_io_tree *io_tree = NULL;
1435 	struct bio_vec *bvec;
1436 	int i;
1437 	int ret;
1438 
1439 	bio_for_each_segment(bvec, bio, i) {
1440 		page = bvec->bv_page;
1441 		if (page->private == EXTENT_PAGE_PRIVATE) {
1442 			length += bvec->bv_len;
1443 			continue;
1444 		}
1445 		if (!page->private) {
1446 			length += bvec->bv_len;
1447 			continue;
1448 		}
1449 		length = bvec->bv_len;
1450 		buf_len = page->private >> 2;
1451 		start = page_offset(page) + bvec->bv_offset;
1452 		io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1453 	}
1454 	/* are we fully contained in this bio? */
1455 	if (buf_len <= length)
1456 		return 1;
1457 
1458 	ret = extent_range_uptodate(io_tree, start + length,
1459 				    start + buf_len - 1);
1460 	return ret;
1461 }
1462 
1463 /*
1464  * called by the kthread helper functions to finally call the bio end_io
1465  * functions.  This is where read checksum verification actually happens
1466  */
1467 static void end_workqueue_fn(struct btrfs_work *work)
1468 {
1469 	struct bio *bio;
1470 	struct end_io_wq *end_io_wq;
1471 	struct btrfs_fs_info *fs_info;
1472 	int error;
1473 
1474 	end_io_wq = container_of(work, struct end_io_wq, work);
1475 	bio = end_io_wq->bio;
1476 	fs_info = end_io_wq->info;
1477 
1478 	/* metadata bio reads are special because the whole tree block must
1479 	 * be checksummed at once.  This makes sure the entire block is in
1480 	 * ram and up to date before trying to verify things.  For
1481 	 * blocksize <= pagesize, it is basically a noop
1482 	 */
1483 	if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
1484 	    !bio_ready_for_csum(bio)) {
1485 		btrfs_queue_worker(&fs_info->endio_meta_workers,
1486 				   &end_io_wq->work);
1487 		return;
1488 	}
1489 	error = end_io_wq->error;
1490 	bio->bi_private = end_io_wq->private;
1491 	bio->bi_end_io = end_io_wq->end_io;
1492 	kfree(end_io_wq);
1493 	bio_endio(bio, error);
1494 }
1495 
1496 static int cleaner_kthread(void *arg)
1497 {
1498 	struct btrfs_root *root = arg;
1499 
1500 	do {
1501 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1502 
1503 		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1504 		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1505 			btrfs_run_delayed_iputs(root);
1506 			btrfs_clean_old_snapshots(root);
1507 			mutex_unlock(&root->fs_info->cleaner_mutex);
1508 			btrfs_run_defrag_inodes(root->fs_info);
1509 		}
1510 
1511 		if (freezing(current)) {
1512 			refrigerator();
1513 		} else {
1514 			set_current_state(TASK_INTERRUPTIBLE);
1515 			if (!kthread_should_stop())
1516 				schedule();
1517 			__set_current_state(TASK_RUNNING);
1518 		}
1519 	} while (!kthread_should_stop());
1520 	return 0;
1521 }
1522 
1523 static int transaction_kthread(void *arg)
1524 {
1525 	struct btrfs_root *root = arg;
1526 	struct btrfs_trans_handle *trans;
1527 	struct btrfs_transaction *cur;
1528 	u64 transid;
1529 	unsigned long now;
1530 	unsigned long delay;
1531 	int ret;
1532 
1533 	do {
1534 		delay = HZ * 30;
1535 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1536 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1537 
1538 		spin_lock(&root->fs_info->trans_lock);
1539 		cur = root->fs_info->running_transaction;
1540 		if (!cur) {
1541 			spin_unlock(&root->fs_info->trans_lock);
1542 			goto sleep;
1543 		}
1544 
1545 		now = get_seconds();
1546 		if (!cur->blocked &&
1547 		    (now < cur->start_time || now - cur->start_time < 30)) {
1548 			spin_unlock(&root->fs_info->trans_lock);
1549 			delay = HZ * 5;
1550 			goto sleep;
1551 		}
1552 		transid = cur->transid;
1553 		spin_unlock(&root->fs_info->trans_lock);
1554 
1555 		trans = btrfs_join_transaction(root);
1556 		BUG_ON(IS_ERR(trans));
1557 		if (transid == trans->transid) {
1558 			ret = btrfs_commit_transaction(trans, root);
1559 			BUG_ON(ret);
1560 		} else {
1561 			btrfs_end_transaction(trans, root);
1562 		}
1563 sleep:
1564 		wake_up_process(root->fs_info->cleaner_kthread);
1565 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1566 
1567 		if (freezing(current)) {
1568 			refrigerator();
1569 		} else {
1570 			set_current_state(TASK_INTERRUPTIBLE);
1571 			if (!kthread_should_stop() &&
1572 			    !btrfs_transaction_blocked(root->fs_info))
1573 				schedule_timeout(delay);
1574 			__set_current_state(TASK_RUNNING);
1575 		}
1576 	} while (!kthread_should_stop());
1577 	return 0;
1578 }
1579 
1580 struct btrfs_root *open_ctree(struct super_block *sb,
1581 			      struct btrfs_fs_devices *fs_devices,
1582 			      char *options)
1583 {
1584 	u32 sectorsize;
1585 	u32 nodesize;
1586 	u32 leafsize;
1587 	u32 blocksize;
1588 	u32 stripesize;
1589 	u64 generation;
1590 	u64 features;
1591 	struct btrfs_key location;
1592 	struct buffer_head *bh;
1593 	struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1594 						 GFP_NOFS);
1595 	struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1596 						 GFP_NOFS);
1597 	struct btrfs_root *tree_root = btrfs_sb(sb);
1598 	struct btrfs_fs_info *fs_info = NULL;
1599 	struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1600 						GFP_NOFS);
1601 	struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1602 					      GFP_NOFS);
1603 	struct btrfs_root *log_tree_root;
1604 
1605 	int ret;
1606 	int err = -EINVAL;
1607 
1608 	struct btrfs_super_block *disk_super;
1609 
1610 	if (!extent_root || !tree_root || !tree_root->fs_info ||
1611 	    !chunk_root || !dev_root || !csum_root) {
1612 		err = -ENOMEM;
1613 		goto fail;
1614 	}
1615 	fs_info = tree_root->fs_info;
1616 
1617 	ret = init_srcu_struct(&fs_info->subvol_srcu);
1618 	if (ret) {
1619 		err = ret;
1620 		goto fail;
1621 	}
1622 
1623 	ret = setup_bdi(fs_info, &fs_info->bdi);
1624 	if (ret) {
1625 		err = ret;
1626 		goto fail_srcu;
1627 	}
1628 
1629 	fs_info->btree_inode = new_inode(sb);
1630 	if (!fs_info->btree_inode) {
1631 		err = -ENOMEM;
1632 		goto fail_bdi;
1633 	}
1634 
1635 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1636 
1637 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1638 	INIT_LIST_HEAD(&fs_info->trans_list);
1639 	INIT_LIST_HEAD(&fs_info->dead_roots);
1640 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
1641 	INIT_LIST_HEAD(&fs_info->hashers);
1642 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1643 	INIT_LIST_HEAD(&fs_info->ordered_operations);
1644 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
1645 	spin_lock_init(&fs_info->delalloc_lock);
1646 	spin_lock_init(&fs_info->trans_lock);
1647 	spin_lock_init(&fs_info->ref_cache_lock);
1648 	spin_lock_init(&fs_info->fs_roots_radix_lock);
1649 	spin_lock_init(&fs_info->delayed_iput_lock);
1650 	spin_lock_init(&fs_info->defrag_inodes_lock);
1651 	mutex_init(&fs_info->reloc_mutex);
1652 
1653 	init_completion(&fs_info->kobj_unregister);
1654 	fs_info->tree_root = tree_root;
1655 	fs_info->extent_root = extent_root;
1656 	fs_info->csum_root = csum_root;
1657 	fs_info->chunk_root = chunk_root;
1658 	fs_info->dev_root = dev_root;
1659 	fs_info->fs_devices = fs_devices;
1660 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1661 	INIT_LIST_HEAD(&fs_info->space_info);
1662 	btrfs_mapping_init(&fs_info->mapping_tree);
1663 	btrfs_init_block_rsv(&fs_info->global_block_rsv);
1664 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1665 	btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1666 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1667 	btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1668 	INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
1669 	mutex_init(&fs_info->durable_block_rsv_mutex);
1670 	atomic_set(&fs_info->nr_async_submits, 0);
1671 	atomic_set(&fs_info->async_delalloc_pages, 0);
1672 	atomic_set(&fs_info->async_submit_draining, 0);
1673 	atomic_set(&fs_info->nr_async_bios, 0);
1674 	atomic_set(&fs_info->defrag_running, 0);
1675 	fs_info->sb = sb;
1676 	fs_info->max_inline = 8192 * 1024;
1677 	fs_info->metadata_ratio = 0;
1678 	fs_info->defrag_inodes = RB_ROOT;
1679 	fs_info->trans_no_join = 0;
1680 
1681 	fs_info->thread_pool_size = min_t(unsigned long,
1682 					  num_online_cpus() + 2, 8);
1683 
1684 	INIT_LIST_HEAD(&fs_info->ordered_extents);
1685 	spin_lock_init(&fs_info->ordered_extent_lock);
1686 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1687 					GFP_NOFS);
1688 	if (!fs_info->delayed_root) {
1689 		err = -ENOMEM;
1690 		goto fail_iput;
1691 	}
1692 	btrfs_init_delayed_root(fs_info->delayed_root);
1693 
1694 	mutex_init(&fs_info->scrub_lock);
1695 	atomic_set(&fs_info->scrubs_running, 0);
1696 	atomic_set(&fs_info->scrub_pause_req, 0);
1697 	atomic_set(&fs_info->scrubs_paused, 0);
1698 	atomic_set(&fs_info->scrub_cancel_req, 0);
1699 	init_waitqueue_head(&fs_info->scrub_pause_wait);
1700 	init_rwsem(&fs_info->scrub_super_lock);
1701 	fs_info->scrub_workers_refcnt = 0;
1702 
1703 	sb->s_blocksize = 4096;
1704 	sb->s_blocksize_bits = blksize_bits(4096);
1705 	sb->s_bdi = &fs_info->bdi;
1706 
1707 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1708 	fs_info->btree_inode->i_nlink = 1;
1709 	/*
1710 	 * we set the i_size on the btree inode to the max possible int.
1711 	 * the real end of the address space is determined by all of
1712 	 * the devices in the system
1713 	 */
1714 	fs_info->btree_inode->i_size = OFFSET_MAX;
1715 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1716 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1717 
1718 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1719 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1720 			     fs_info->btree_inode->i_mapping);
1721 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
1722 
1723 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1724 
1725 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
1726 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1727 	       sizeof(struct btrfs_key));
1728 	BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1729 	insert_inode_hash(fs_info->btree_inode);
1730 
1731 	spin_lock_init(&fs_info->block_group_cache_lock);
1732 	fs_info->block_group_cache_tree = RB_ROOT;
1733 
1734 	extent_io_tree_init(&fs_info->freed_extents[0],
1735 			     fs_info->btree_inode->i_mapping);
1736 	extent_io_tree_init(&fs_info->freed_extents[1],
1737 			     fs_info->btree_inode->i_mapping);
1738 	fs_info->pinned_extents = &fs_info->freed_extents[0];
1739 	fs_info->do_barriers = 1;
1740 
1741 
1742 	mutex_init(&fs_info->ordered_operations_mutex);
1743 	mutex_init(&fs_info->tree_log_mutex);
1744 	mutex_init(&fs_info->chunk_mutex);
1745 	mutex_init(&fs_info->transaction_kthread_mutex);
1746 	mutex_init(&fs_info->cleaner_mutex);
1747 	mutex_init(&fs_info->volume_mutex);
1748 	init_rwsem(&fs_info->extent_commit_sem);
1749 	init_rwsem(&fs_info->cleanup_work_sem);
1750 	init_rwsem(&fs_info->subvol_sem);
1751 
1752 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1753 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1754 
1755 	init_waitqueue_head(&fs_info->transaction_throttle);
1756 	init_waitqueue_head(&fs_info->transaction_wait);
1757 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
1758 	init_waitqueue_head(&fs_info->async_submit_wait);
1759 
1760 	__setup_root(4096, 4096, 4096, 4096, tree_root,
1761 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
1762 
1763 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1764 	if (!bh) {
1765 		err = -EINVAL;
1766 		goto fail_alloc;
1767 	}
1768 
1769 	memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1770 	memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1771 	       sizeof(fs_info->super_for_commit));
1772 	brelse(bh);
1773 
1774 	memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1775 
1776 	disk_super = &fs_info->super_copy;
1777 	if (!btrfs_super_root(disk_super))
1778 		goto fail_alloc;
1779 
1780 	/* check FS state, whether FS is broken. */
1781 	fs_info->fs_state |= btrfs_super_flags(disk_super);
1782 
1783 	btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
1784 
1785 	/*
1786 	 * In the long term, we'll store the compression type in the super
1787 	 * block, and it'll be used for per file compression control.
1788 	 */
1789 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
1790 
1791 	ret = btrfs_parse_options(tree_root, options);
1792 	if (ret) {
1793 		err = ret;
1794 		goto fail_alloc;
1795 	}
1796 
1797 	features = btrfs_super_incompat_flags(disk_super) &
1798 		~BTRFS_FEATURE_INCOMPAT_SUPP;
1799 	if (features) {
1800 		printk(KERN_ERR "BTRFS: couldn't mount because of "
1801 		       "unsupported optional features (%Lx).\n",
1802 		       (unsigned long long)features);
1803 		err = -EINVAL;
1804 		goto fail_alloc;
1805 	}
1806 
1807 	features = btrfs_super_incompat_flags(disk_super);
1808 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1809 	if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
1810 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1811 	btrfs_set_super_incompat_flags(disk_super, features);
1812 
1813 	features = btrfs_super_compat_ro_flags(disk_super) &
1814 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
1815 	if (!(sb->s_flags & MS_RDONLY) && features) {
1816 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1817 		       "unsupported option features (%Lx).\n",
1818 		       (unsigned long long)features);
1819 		err = -EINVAL;
1820 		goto fail_alloc;
1821 	}
1822 
1823 	btrfs_init_workers(&fs_info->generic_worker,
1824 			   "genwork", 1, NULL);
1825 
1826 	btrfs_init_workers(&fs_info->workers, "worker",
1827 			   fs_info->thread_pool_size,
1828 			   &fs_info->generic_worker);
1829 
1830 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1831 			   fs_info->thread_pool_size,
1832 			   &fs_info->generic_worker);
1833 
1834 	btrfs_init_workers(&fs_info->submit_workers, "submit",
1835 			   min_t(u64, fs_devices->num_devices,
1836 			   fs_info->thread_pool_size),
1837 			   &fs_info->generic_worker);
1838 
1839 	btrfs_init_workers(&fs_info->caching_workers, "cache",
1840 			   2, &fs_info->generic_worker);
1841 
1842 	/* a higher idle thresh on the submit workers makes it much more
1843 	 * likely that bios will be send down in a sane order to the
1844 	 * devices
1845 	 */
1846 	fs_info->submit_workers.idle_thresh = 64;
1847 
1848 	fs_info->workers.idle_thresh = 16;
1849 	fs_info->workers.ordered = 1;
1850 
1851 	fs_info->delalloc_workers.idle_thresh = 2;
1852 	fs_info->delalloc_workers.ordered = 1;
1853 
1854 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1855 			   &fs_info->generic_worker);
1856 	btrfs_init_workers(&fs_info->endio_workers, "endio",
1857 			   fs_info->thread_pool_size,
1858 			   &fs_info->generic_worker);
1859 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1860 			   fs_info->thread_pool_size,
1861 			   &fs_info->generic_worker);
1862 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
1863 			   "endio-meta-write", fs_info->thread_pool_size,
1864 			   &fs_info->generic_worker);
1865 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1866 			   fs_info->thread_pool_size,
1867 			   &fs_info->generic_worker);
1868 	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
1869 			   1, &fs_info->generic_worker);
1870 	btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
1871 			   fs_info->thread_pool_size,
1872 			   &fs_info->generic_worker);
1873 
1874 	/*
1875 	 * endios are largely parallel and should have a very
1876 	 * low idle thresh
1877 	 */
1878 	fs_info->endio_workers.idle_thresh = 4;
1879 	fs_info->endio_meta_workers.idle_thresh = 4;
1880 
1881 	fs_info->endio_write_workers.idle_thresh = 2;
1882 	fs_info->endio_meta_write_workers.idle_thresh = 2;
1883 
1884 	btrfs_start_workers(&fs_info->workers, 1);
1885 	btrfs_start_workers(&fs_info->generic_worker, 1);
1886 	btrfs_start_workers(&fs_info->submit_workers, 1);
1887 	btrfs_start_workers(&fs_info->delalloc_workers, 1);
1888 	btrfs_start_workers(&fs_info->fixup_workers, 1);
1889 	btrfs_start_workers(&fs_info->endio_workers, 1);
1890 	btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1891 	btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1892 	btrfs_start_workers(&fs_info->endio_write_workers, 1);
1893 	btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
1894 	btrfs_start_workers(&fs_info->delayed_workers, 1);
1895 	btrfs_start_workers(&fs_info->caching_workers, 1);
1896 
1897 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1898 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1899 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1900 
1901 	nodesize = btrfs_super_nodesize(disk_super);
1902 	leafsize = btrfs_super_leafsize(disk_super);
1903 	sectorsize = btrfs_super_sectorsize(disk_super);
1904 	stripesize = btrfs_super_stripesize(disk_super);
1905 	tree_root->nodesize = nodesize;
1906 	tree_root->leafsize = leafsize;
1907 	tree_root->sectorsize = sectorsize;
1908 	tree_root->stripesize = stripesize;
1909 
1910 	sb->s_blocksize = sectorsize;
1911 	sb->s_blocksize_bits = blksize_bits(sectorsize);
1912 
1913 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1914 		    sizeof(disk_super->magic))) {
1915 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1916 		goto fail_sb_buffer;
1917 	}
1918 
1919 	mutex_lock(&fs_info->chunk_mutex);
1920 	ret = btrfs_read_sys_array(tree_root);
1921 	mutex_unlock(&fs_info->chunk_mutex);
1922 	if (ret) {
1923 		printk(KERN_WARNING "btrfs: failed to read the system "
1924 		       "array on %s\n", sb->s_id);
1925 		goto fail_sb_buffer;
1926 	}
1927 
1928 	blocksize = btrfs_level_size(tree_root,
1929 				     btrfs_super_chunk_root_level(disk_super));
1930 	generation = btrfs_super_chunk_root_generation(disk_super);
1931 
1932 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
1933 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1934 
1935 	chunk_root->node = read_tree_block(chunk_root,
1936 					   btrfs_super_chunk_root(disk_super),
1937 					   blocksize, generation);
1938 	BUG_ON(!chunk_root->node);
1939 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1940 		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1941 		       sb->s_id);
1942 		goto fail_chunk_root;
1943 	}
1944 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1945 	chunk_root->commit_root = btrfs_root_node(chunk_root);
1946 
1947 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1948 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1949 	   BTRFS_UUID_SIZE);
1950 
1951 	mutex_lock(&fs_info->chunk_mutex);
1952 	ret = btrfs_read_chunk_tree(chunk_root);
1953 	mutex_unlock(&fs_info->chunk_mutex);
1954 	if (ret) {
1955 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1956 		       sb->s_id);
1957 		goto fail_chunk_root;
1958 	}
1959 
1960 	btrfs_close_extra_devices(fs_devices);
1961 
1962 	blocksize = btrfs_level_size(tree_root,
1963 				     btrfs_super_root_level(disk_super));
1964 	generation = btrfs_super_generation(disk_super);
1965 
1966 	tree_root->node = read_tree_block(tree_root,
1967 					  btrfs_super_root(disk_super),
1968 					  blocksize, generation);
1969 	if (!tree_root->node)
1970 		goto fail_chunk_root;
1971 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1972 		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1973 		       sb->s_id);
1974 		goto fail_tree_root;
1975 	}
1976 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1977 	tree_root->commit_root = btrfs_root_node(tree_root);
1978 
1979 	ret = find_and_setup_root(tree_root, fs_info,
1980 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1981 	if (ret)
1982 		goto fail_tree_root;
1983 	extent_root->track_dirty = 1;
1984 
1985 	ret = find_and_setup_root(tree_root, fs_info,
1986 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
1987 	if (ret)
1988 		goto fail_extent_root;
1989 	dev_root->track_dirty = 1;
1990 
1991 	ret = find_and_setup_root(tree_root, fs_info,
1992 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
1993 	if (ret)
1994 		goto fail_dev_root;
1995 
1996 	csum_root->track_dirty = 1;
1997 
1998 	fs_info->generation = generation;
1999 	fs_info->last_trans_committed = generation;
2000 	fs_info->data_alloc_profile = (u64)-1;
2001 	fs_info->metadata_alloc_profile = (u64)-1;
2002 	fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
2003 
2004 	ret = btrfs_init_space_info(fs_info);
2005 	if (ret) {
2006 		printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2007 		goto fail_block_groups;
2008 	}
2009 
2010 	ret = btrfs_read_block_groups(extent_root);
2011 	if (ret) {
2012 		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2013 		goto fail_block_groups;
2014 	}
2015 
2016 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2017 					       "btrfs-cleaner");
2018 	if (IS_ERR(fs_info->cleaner_kthread))
2019 		goto fail_block_groups;
2020 
2021 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2022 						   tree_root,
2023 						   "btrfs-transaction");
2024 	if (IS_ERR(fs_info->transaction_kthread))
2025 		goto fail_cleaner;
2026 
2027 	if (!btrfs_test_opt(tree_root, SSD) &&
2028 	    !btrfs_test_opt(tree_root, NOSSD) &&
2029 	    !fs_info->fs_devices->rotating) {
2030 		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2031 		       "mode\n");
2032 		btrfs_set_opt(fs_info->mount_opt, SSD);
2033 	}
2034 
2035 	/* do not make disk changes in broken FS */
2036 	if (btrfs_super_log_root(disk_super) != 0 &&
2037 	    !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2038 		u64 bytenr = btrfs_super_log_root(disk_super);
2039 
2040 		if (fs_devices->rw_devices == 0) {
2041 			printk(KERN_WARNING "Btrfs log replay required "
2042 			       "on RO media\n");
2043 			err = -EIO;
2044 			goto fail_trans_kthread;
2045 		}
2046 		blocksize =
2047 		     btrfs_level_size(tree_root,
2048 				      btrfs_super_log_root_level(disk_super));
2049 
2050 		log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
2051 		if (!log_tree_root) {
2052 			err = -ENOMEM;
2053 			goto fail_trans_kthread;
2054 		}
2055 
2056 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2057 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2058 
2059 		log_tree_root->node = read_tree_block(tree_root, bytenr,
2060 						      blocksize,
2061 						      generation + 1);
2062 		ret = btrfs_recover_log_trees(log_tree_root);
2063 		BUG_ON(ret);
2064 
2065 		if (sb->s_flags & MS_RDONLY) {
2066 			ret =  btrfs_commit_super(tree_root);
2067 			BUG_ON(ret);
2068 		}
2069 	}
2070 
2071 	ret = btrfs_find_orphan_roots(tree_root);
2072 	BUG_ON(ret);
2073 
2074 	if (!(sb->s_flags & MS_RDONLY)) {
2075 		ret = btrfs_cleanup_fs_roots(fs_info);
2076 		BUG_ON(ret);
2077 
2078 		ret = btrfs_recover_relocation(tree_root);
2079 		if (ret < 0) {
2080 			printk(KERN_WARNING
2081 			       "btrfs: failed to recover relocation\n");
2082 			err = -EINVAL;
2083 			goto fail_trans_kthread;
2084 		}
2085 	}
2086 
2087 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2088 	location.type = BTRFS_ROOT_ITEM_KEY;
2089 	location.offset = (u64)-1;
2090 
2091 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2092 	if (!fs_info->fs_root)
2093 		goto fail_trans_kthread;
2094 	if (IS_ERR(fs_info->fs_root)) {
2095 		err = PTR_ERR(fs_info->fs_root);
2096 		goto fail_trans_kthread;
2097 	}
2098 
2099 	if (!(sb->s_flags & MS_RDONLY)) {
2100 		down_read(&fs_info->cleanup_work_sem);
2101 		err = btrfs_orphan_cleanup(fs_info->fs_root);
2102 		if (!err)
2103 			err = btrfs_orphan_cleanup(fs_info->tree_root);
2104 		up_read(&fs_info->cleanup_work_sem);
2105 		if (err) {
2106 			close_ctree(tree_root);
2107 			return ERR_PTR(err);
2108 		}
2109 	}
2110 
2111 	return tree_root;
2112 
2113 fail_trans_kthread:
2114 	kthread_stop(fs_info->transaction_kthread);
2115 fail_cleaner:
2116 	kthread_stop(fs_info->cleaner_kthread);
2117 
2118 	/*
2119 	 * make sure we're done with the btree inode before we stop our
2120 	 * kthreads
2121 	 */
2122 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2123 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2124 
2125 fail_block_groups:
2126 	btrfs_free_block_groups(fs_info);
2127 	free_extent_buffer(csum_root->node);
2128 	free_extent_buffer(csum_root->commit_root);
2129 fail_dev_root:
2130 	free_extent_buffer(dev_root->node);
2131 	free_extent_buffer(dev_root->commit_root);
2132 fail_extent_root:
2133 	free_extent_buffer(extent_root->node);
2134 	free_extent_buffer(extent_root->commit_root);
2135 fail_tree_root:
2136 	free_extent_buffer(tree_root->node);
2137 	free_extent_buffer(tree_root->commit_root);
2138 fail_chunk_root:
2139 	free_extent_buffer(chunk_root->node);
2140 	free_extent_buffer(chunk_root->commit_root);
2141 fail_sb_buffer:
2142 	btrfs_stop_workers(&fs_info->generic_worker);
2143 	btrfs_stop_workers(&fs_info->fixup_workers);
2144 	btrfs_stop_workers(&fs_info->delalloc_workers);
2145 	btrfs_stop_workers(&fs_info->workers);
2146 	btrfs_stop_workers(&fs_info->endio_workers);
2147 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2148 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2149 	btrfs_stop_workers(&fs_info->endio_write_workers);
2150 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2151 	btrfs_stop_workers(&fs_info->submit_workers);
2152 	btrfs_stop_workers(&fs_info->delayed_workers);
2153 	btrfs_stop_workers(&fs_info->caching_workers);
2154 fail_alloc:
2155 	kfree(fs_info->delayed_root);
2156 fail_iput:
2157 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2158 	iput(fs_info->btree_inode);
2159 
2160 	btrfs_close_devices(fs_info->fs_devices);
2161 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2162 fail_bdi:
2163 	bdi_destroy(&fs_info->bdi);
2164 fail_srcu:
2165 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2166 fail:
2167 	kfree(extent_root);
2168 	kfree(tree_root);
2169 	kfree(fs_info);
2170 	kfree(chunk_root);
2171 	kfree(dev_root);
2172 	kfree(csum_root);
2173 	return ERR_PTR(err);
2174 }
2175 
2176 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2177 {
2178 	char b[BDEVNAME_SIZE];
2179 
2180 	if (uptodate) {
2181 		set_buffer_uptodate(bh);
2182 	} else {
2183 		printk_ratelimited(KERN_WARNING "lost page write due to "
2184 					"I/O error on %s\n",
2185 				       bdevname(bh->b_bdev, b));
2186 		/* note, we dont' set_buffer_write_io_error because we have
2187 		 * our own ways of dealing with the IO errors
2188 		 */
2189 		clear_buffer_uptodate(bh);
2190 	}
2191 	unlock_buffer(bh);
2192 	put_bh(bh);
2193 }
2194 
2195 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2196 {
2197 	struct buffer_head *bh;
2198 	struct buffer_head *latest = NULL;
2199 	struct btrfs_super_block *super;
2200 	int i;
2201 	u64 transid = 0;
2202 	u64 bytenr;
2203 
2204 	/* we would like to check all the supers, but that would make
2205 	 * a btrfs mount succeed after a mkfs from a different FS.
2206 	 * So, we need to add a special mount option to scan for
2207 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2208 	 */
2209 	for (i = 0; i < 1; i++) {
2210 		bytenr = btrfs_sb_offset(i);
2211 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2212 			break;
2213 		bh = __bread(bdev, bytenr / 4096, 4096);
2214 		if (!bh)
2215 			continue;
2216 
2217 		super = (struct btrfs_super_block *)bh->b_data;
2218 		if (btrfs_super_bytenr(super) != bytenr ||
2219 		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2220 			    sizeof(super->magic))) {
2221 			brelse(bh);
2222 			continue;
2223 		}
2224 
2225 		if (!latest || btrfs_super_generation(super) > transid) {
2226 			brelse(latest);
2227 			latest = bh;
2228 			transid = btrfs_super_generation(super);
2229 		} else {
2230 			brelse(bh);
2231 		}
2232 	}
2233 	return latest;
2234 }
2235 
2236 /*
2237  * this should be called twice, once with wait == 0 and
2238  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2239  * we write are pinned.
2240  *
2241  * They are released when wait == 1 is done.
2242  * max_mirrors must be the same for both runs, and it indicates how
2243  * many supers on this one device should be written.
2244  *
2245  * max_mirrors == 0 means to write them all.
2246  */
2247 static int write_dev_supers(struct btrfs_device *device,
2248 			    struct btrfs_super_block *sb,
2249 			    int do_barriers, int wait, int max_mirrors)
2250 {
2251 	struct buffer_head *bh;
2252 	int i;
2253 	int ret;
2254 	int errors = 0;
2255 	u32 crc;
2256 	u64 bytenr;
2257 	int last_barrier = 0;
2258 
2259 	if (max_mirrors == 0)
2260 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2261 
2262 	/* make sure only the last submit_bh does a barrier */
2263 	if (do_barriers) {
2264 		for (i = 0; i < max_mirrors; i++) {
2265 			bytenr = btrfs_sb_offset(i);
2266 			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2267 			    device->total_bytes)
2268 				break;
2269 			last_barrier = i;
2270 		}
2271 	}
2272 
2273 	for (i = 0; i < max_mirrors; i++) {
2274 		bytenr = btrfs_sb_offset(i);
2275 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2276 			break;
2277 
2278 		if (wait) {
2279 			bh = __find_get_block(device->bdev, bytenr / 4096,
2280 					      BTRFS_SUPER_INFO_SIZE);
2281 			BUG_ON(!bh);
2282 			wait_on_buffer(bh);
2283 			if (!buffer_uptodate(bh))
2284 				errors++;
2285 
2286 			/* drop our reference */
2287 			brelse(bh);
2288 
2289 			/* drop the reference from the wait == 0 run */
2290 			brelse(bh);
2291 			continue;
2292 		} else {
2293 			btrfs_set_super_bytenr(sb, bytenr);
2294 
2295 			crc = ~(u32)0;
2296 			crc = btrfs_csum_data(NULL, (char *)sb +
2297 					      BTRFS_CSUM_SIZE, crc,
2298 					      BTRFS_SUPER_INFO_SIZE -
2299 					      BTRFS_CSUM_SIZE);
2300 			btrfs_csum_final(crc, sb->csum);
2301 
2302 			/*
2303 			 * one reference for us, and we leave it for the
2304 			 * caller
2305 			 */
2306 			bh = __getblk(device->bdev, bytenr / 4096,
2307 				      BTRFS_SUPER_INFO_SIZE);
2308 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2309 
2310 			/* one reference for submit_bh */
2311 			get_bh(bh);
2312 
2313 			set_buffer_uptodate(bh);
2314 			lock_buffer(bh);
2315 			bh->b_end_io = btrfs_end_buffer_write_sync;
2316 		}
2317 
2318 		if (i == last_barrier && do_barriers)
2319 			ret = submit_bh(WRITE_FLUSH_FUA, bh);
2320 		else
2321 			ret = submit_bh(WRITE_SYNC, bh);
2322 
2323 		if (ret)
2324 			errors++;
2325 	}
2326 	return errors < i ? 0 : -1;
2327 }
2328 
2329 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2330 {
2331 	struct list_head *head;
2332 	struct btrfs_device *dev;
2333 	struct btrfs_super_block *sb;
2334 	struct btrfs_dev_item *dev_item;
2335 	int ret;
2336 	int do_barriers;
2337 	int max_errors;
2338 	int total_errors = 0;
2339 	u64 flags;
2340 
2341 	max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2342 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2343 
2344 	sb = &root->fs_info->super_for_commit;
2345 	dev_item = &sb->dev_item;
2346 
2347 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2348 	head = &root->fs_info->fs_devices->devices;
2349 	list_for_each_entry_rcu(dev, head, dev_list) {
2350 		if (!dev->bdev) {
2351 			total_errors++;
2352 			continue;
2353 		}
2354 		if (!dev->in_fs_metadata || !dev->writeable)
2355 			continue;
2356 
2357 		btrfs_set_stack_device_generation(dev_item, 0);
2358 		btrfs_set_stack_device_type(dev_item, dev->type);
2359 		btrfs_set_stack_device_id(dev_item, dev->devid);
2360 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2361 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2362 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2363 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2364 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2365 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2366 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2367 
2368 		flags = btrfs_super_flags(sb);
2369 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2370 
2371 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2372 		if (ret)
2373 			total_errors++;
2374 	}
2375 	if (total_errors > max_errors) {
2376 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2377 		       total_errors);
2378 		BUG();
2379 	}
2380 
2381 	total_errors = 0;
2382 	list_for_each_entry_rcu(dev, head, dev_list) {
2383 		if (!dev->bdev)
2384 			continue;
2385 		if (!dev->in_fs_metadata || !dev->writeable)
2386 			continue;
2387 
2388 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2389 		if (ret)
2390 			total_errors++;
2391 	}
2392 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2393 	if (total_errors > max_errors) {
2394 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2395 		       total_errors);
2396 		BUG();
2397 	}
2398 	return 0;
2399 }
2400 
2401 int write_ctree_super(struct btrfs_trans_handle *trans,
2402 		      struct btrfs_root *root, int max_mirrors)
2403 {
2404 	int ret;
2405 
2406 	ret = write_all_supers(root, max_mirrors);
2407 	return ret;
2408 }
2409 
2410 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2411 {
2412 	spin_lock(&fs_info->fs_roots_radix_lock);
2413 	radix_tree_delete(&fs_info->fs_roots_radix,
2414 			  (unsigned long)root->root_key.objectid);
2415 	spin_unlock(&fs_info->fs_roots_radix_lock);
2416 
2417 	if (btrfs_root_refs(&root->root_item) == 0)
2418 		synchronize_srcu(&fs_info->subvol_srcu);
2419 
2420 	__btrfs_remove_free_space_cache(root->free_ino_pinned);
2421 	__btrfs_remove_free_space_cache(root->free_ino_ctl);
2422 	free_fs_root(root);
2423 	return 0;
2424 }
2425 
2426 static void free_fs_root(struct btrfs_root *root)
2427 {
2428 	iput(root->cache_inode);
2429 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2430 	if (root->anon_dev)
2431 		free_anon_bdev(root->anon_dev);
2432 	free_extent_buffer(root->node);
2433 	free_extent_buffer(root->commit_root);
2434 	kfree(root->free_ino_ctl);
2435 	kfree(root->free_ino_pinned);
2436 	kfree(root->name);
2437 	kfree(root);
2438 }
2439 
2440 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2441 {
2442 	int ret;
2443 	struct btrfs_root *gang[8];
2444 	int i;
2445 
2446 	while (!list_empty(&fs_info->dead_roots)) {
2447 		gang[0] = list_entry(fs_info->dead_roots.next,
2448 				     struct btrfs_root, root_list);
2449 		list_del(&gang[0]->root_list);
2450 
2451 		if (gang[0]->in_radix) {
2452 			btrfs_free_fs_root(fs_info, gang[0]);
2453 		} else {
2454 			free_extent_buffer(gang[0]->node);
2455 			free_extent_buffer(gang[0]->commit_root);
2456 			kfree(gang[0]);
2457 		}
2458 	}
2459 
2460 	while (1) {
2461 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2462 					     (void **)gang, 0,
2463 					     ARRAY_SIZE(gang));
2464 		if (!ret)
2465 			break;
2466 		for (i = 0; i < ret; i++)
2467 			btrfs_free_fs_root(fs_info, gang[i]);
2468 	}
2469 	return 0;
2470 }
2471 
2472 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2473 {
2474 	u64 root_objectid = 0;
2475 	struct btrfs_root *gang[8];
2476 	int i;
2477 	int ret;
2478 
2479 	while (1) {
2480 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2481 					     (void **)gang, root_objectid,
2482 					     ARRAY_SIZE(gang));
2483 		if (!ret)
2484 			break;
2485 
2486 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
2487 		for (i = 0; i < ret; i++) {
2488 			int err;
2489 
2490 			root_objectid = gang[i]->root_key.objectid;
2491 			err = btrfs_orphan_cleanup(gang[i]);
2492 			if (err)
2493 				return err;
2494 		}
2495 		root_objectid++;
2496 	}
2497 	return 0;
2498 }
2499 
2500 int btrfs_commit_super(struct btrfs_root *root)
2501 {
2502 	struct btrfs_trans_handle *trans;
2503 	int ret;
2504 
2505 	mutex_lock(&root->fs_info->cleaner_mutex);
2506 	btrfs_run_delayed_iputs(root);
2507 	btrfs_clean_old_snapshots(root);
2508 	mutex_unlock(&root->fs_info->cleaner_mutex);
2509 
2510 	/* wait until ongoing cleanup work done */
2511 	down_write(&root->fs_info->cleanup_work_sem);
2512 	up_write(&root->fs_info->cleanup_work_sem);
2513 
2514 	trans = btrfs_join_transaction(root);
2515 	if (IS_ERR(trans))
2516 		return PTR_ERR(trans);
2517 	ret = btrfs_commit_transaction(trans, root);
2518 	BUG_ON(ret);
2519 	/* run commit again to drop the original snapshot */
2520 	trans = btrfs_join_transaction(root);
2521 	if (IS_ERR(trans))
2522 		return PTR_ERR(trans);
2523 	btrfs_commit_transaction(trans, root);
2524 	ret = btrfs_write_and_wait_transaction(NULL, root);
2525 	BUG_ON(ret);
2526 
2527 	ret = write_ctree_super(NULL, root, 0);
2528 	return ret;
2529 }
2530 
2531 int close_ctree(struct btrfs_root *root)
2532 {
2533 	struct btrfs_fs_info *fs_info = root->fs_info;
2534 	int ret;
2535 
2536 	fs_info->closing = 1;
2537 	smp_mb();
2538 
2539 	btrfs_scrub_cancel(root);
2540 
2541 	/* wait for any defraggers to finish */
2542 	wait_event(fs_info->transaction_wait,
2543 		   (atomic_read(&fs_info->defrag_running) == 0));
2544 
2545 	/* clear out the rbtree of defraggable inodes */
2546 	btrfs_run_defrag_inodes(root->fs_info);
2547 
2548 	btrfs_put_block_group_cache(fs_info);
2549 
2550 	/*
2551 	 * Here come 2 situations when btrfs is broken to flip readonly:
2552 	 *
2553 	 * 1. when btrfs flips readonly somewhere else before
2554 	 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2555 	 * and btrfs will skip to write sb directly to keep
2556 	 * ERROR state on disk.
2557 	 *
2558 	 * 2. when btrfs flips readonly just in btrfs_commit_super,
2559 	 * and in such case, btrfs cannot write sb via btrfs_commit_super,
2560 	 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2561 	 * btrfs will cleanup all FS resources first and write sb then.
2562 	 */
2563 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2564 		ret = btrfs_commit_super(root);
2565 		if (ret)
2566 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2567 	}
2568 
2569 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
2570 		ret = btrfs_error_commit_super(root);
2571 		if (ret)
2572 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2573 	}
2574 
2575 	kthread_stop(root->fs_info->transaction_kthread);
2576 	kthread_stop(root->fs_info->cleaner_kthread);
2577 
2578 	fs_info->closing = 2;
2579 	smp_mb();
2580 
2581 	if (fs_info->delalloc_bytes) {
2582 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2583 		       (unsigned long long)fs_info->delalloc_bytes);
2584 	}
2585 	if (fs_info->total_ref_cache_size) {
2586 		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2587 		       (unsigned long long)fs_info->total_ref_cache_size);
2588 	}
2589 
2590 	free_extent_buffer(fs_info->extent_root->node);
2591 	free_extent_buffer(fs_info->extent_root->commit_root);
2592 	free_extent_buffer(fs_info->tree_root->node);
2593 	free_extent_buffer(fs_info->tree_root->commit_root);
2594 	free_extent_buffer(root->fs_info->chunk_root->node);
2595 	free_extent_buffer(root->fs_info->chunk_root->commit_root);
2596 	free_extent_buffer(root->fs_info->dev_root->node);
2597 	free_extent_buffer(root->fs_info->dev_root->commit_root);
2598 	free_extent_buffer(root->fs_info->csum_root->node);
2599 	free_extent_buffer(root->fs_info->csum_root->commit_root);
2600 
2601 	btrfs_free_block_groups(root->fs_info);
2602 
2603 	del_fs_roots(fs_info);
2604 
2605 	iput(fs_info->btree_inode);
2606 	kfree(fs_info->delayed_root);
2607 
2608 	btrfs_stop_workers(&fs_info->generic_worker);
2609 	btrfs_stop_workers(&fs_info->fixup_workers);
2610 	btrfs_stop_workers(&fs_info->delalloc_workers);
2611 	btrfs_stop_workers(&fs_info->workers);
2612 	btrfs_stop_workers(&fs_info->endio_workers);
2613 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2614 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2615 	btrfs_stop_workers(&fs_info->endio_write_workers);
2616 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2617 	btrfs_stop_workers(&fs_info->submit_workers);
2618 	btrfs_stop_workers(&fs_info->delayed_workers);
2619 	btrfs_stop_workers(&fs_info->caching_workers);
2620 
2621 	btrfs_close_devices(fs_info->fs_devices);
2622 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2623 
2624 	bdi_destroy(&fs_info->bdi);
2625 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2626 
2627 	kfree(fs_info->extent_root);
2628 	kfree(fs_info->tree_root);
2629 	kfree(fs_info->chunk_root);
2630 	kfree(fs_info->dev_root);
2631 	kfree(fs_info->csum_root);
2632 	kfree(fs_info);
2633 
2634 	return 0;
2635 }
2636 
2637 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2638 {
2639 	int ret;
2640 	struct inode *btree_inode = buf->first_page->mapping->host;
2641 
2642 	ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2643 				     NULL);
2644 	if (!ret)
2645 		return ret;
2646 
2647 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2648 				    parent_transid);
2649 	return !ret;
2650 }
2651 
2652 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2653 {
2654 	struct inode *btree_inode = buf->first_page->mapping->host;
2655 	return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2656 					  buf);
2657 }
2658 
2659 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2660 {
2661 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2662 	u64 transid = btrfs_header_generation(buf);
2663 	struct inode *btree_inode = root->fs_info->btree_inode;
2664 	int was_dirty;
2665 
2666 	btrfs_assert_tree_locked(buf);
2667 	if (transid != root->fs_info->generation) {
2668 		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2669 		       "found %llu running %llu\n",
2670 			(unsigned long long)buf->start,
2671 			(unsigned long long)transid,
2672 			(unsigned long long)root->fs_info->generation);
2673 		WARN_ON(1);
2674 	}
2675 	was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2676 					    buf);
2677 	if (!was_dirty) {
2678 		spin_lock(&root->fs_info->delalloc_lock);
2679 		root->fs_info->dirty_metadata_bytes += buf->len;
2680 		spin_unlock(&root->fs_info->delalloc_lock);
2681 	}
2682 }
2683 
2684 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2685 {
2686 	/*
2687 	 * looks as though older kernels can get into trouble with
2688 	 * this code, they end up stuck in balance_dirty_pages forever
2689 	 */
2690 	u64 num_dirty;
2691 	unsigned long thresh = 32 * 1024 * 1024;
2692 
2693 	if (current->flags & PF_MEMALLOC)
2694 		return;
2695 
2696 	btrfs_balance_delayed_items(root);
2697 
2698 	num_dirty = root->fs_info->dirty_metadata_bytes;
2699 
2700 	if (num_dirty > thresh) {
2701 		balance_dirty_pages_ratelimited_nr(
2702 				   root->fs_info->btree_inode->i_mapping, 1);
2703 	}
2704 	return;
2705 }
2706 
2707 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2708 {
2709 	/*
2710 	 * looks as though older kernels can get into trouble with
2711 	 * this code, they end up stuck in balance_dirty_pages forever
2712 	 */
2713 	u64 num_dirty;
2714 	unsigned long thresh = 32 * 1024 * 1024;
2715 
2716 	if (current->flags & PF_MEMALLOC)
2717 		return;
2718 
2719 	num_dirty = root->fs_info->dirty_metadata_bytes;
2720 
2721 	if (num_dirty > thresh) {
2722 		balance_dirty_pages_ratelimited_nr(
2723 				   root->fs_info->btree_inode->i_mapping, 1);
2724 	}
2725 	return;
2726 }
2727 
2728 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2729 {
2730 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2731 	int ret;
2732 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2733 	if (ret == 0)
2734 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2735 	return ret;
2736 }
2737 
2738 int btree_lock_page_hook(struct page *page)
2739 {
2740 	struct inode *inode = page->mapping->host;
2741 	struct btrfs_root *root = BTRFS_I(inode)->root;
2742 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2743 	struct extent_buffer *eb;
2744 	unsigned long len;
2745 	u64 bytenr = page_offset(page);
2746 
2747 	if (page->private == EXTENT_PAGE_PRIVATE)
2748 		goto out;
2749 
2750 	len = page->private >> 2;
2751 	eb = find_extent_buffer(io_tree, bytenr, len);
2752 	if (!eb)
2753 		goto out;
2754 
2755 	btrfs_tree_lock(eb);
2756 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2757 
2758 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2759 		spin_lock(&root->fs_info->delalloc_lock);
2760 		if (root->fs_info->dirty_metadata_bytes >= eb->len)
2761 			root->fs_info->dirty_metadata_bytes -= eb->len;
2762 		else
2763 			WARN_ON(1);
2764 		spin_unlock(&root->fs_info->delalloc_lock);
2765 	}
2766 
2767 	btrfs_tree_unlock(eb);
2768 	free_extent_buffer(eb);
2769 out:
2770 	lock_page(page);
2771 	return 0;
2772 }
2773 
2774 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
2775 			      int read_only)
2776 {
2777 	if (read_only)
2778 		return;
2779 
2780 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2781 		printk(KERN_WARNING "warning: mount fs with errors, "
2782 		       "running btrfsck is recommended\n");
2783 }
2784 
2785 int btrfs_error_commit_super(struct btrfs_root *root)
2786 {
2787 	int ret;
2788 
2789 	mutex_lock(&root->fs_info->cleaner_mutex);
2790 	btrfs_run_delayed_iputs(root);
2791 	mutex_unlock(&root->fs_info->cleaner_mutex);
2792 
2793 	down_write(&root->fs_info->cleanup_work_sem);
2794 	up_write(&root->fs_info->cleanup_work_sem);
2795 
2796 	/* cleanup FS via transaction */
2797 	btrfs_cleanup_transaction(root);
2798 
2799 	ret = write_ctree_super(NULL, root, 0);
2800 
2801 	return ret;
2802 }
2803 
2804 static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
2805 {
2806 	struct btrfs_inode *btrfs_inode;
2807 	struct list_head splice;
2808 
2809 	INIT_LIST_HEAD(&splice);
2810 
2811 	mutex_lock(&root->fs_info->ordered_operations_mutex);
2812 	spin_lock(&root->fs_info->ordered_extent_lock);
2813 
2814 	list_splice_init(&root->fs_info->ordered_operations, &splice);
2815 	while (!list_empty(&splice)) {
2816 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2817 					 ordered_operations);
2818 
2819 		list_del_init(&btrfs_inode->ordered_operations);
2820 
2821 		btrfs_invalidate_inodes(btrfs_inode->root);
2822 	}
2823 
2824 	spin_unlock(&root->fs_info->ordered_extent_lock);
2825 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
2826 
2827 	return 0;
2828 }
2829 
2830 static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
2831 {
2832 	struct list_head splice;
2833 	struct btrfs_ordered_extent *ordered;
2834 	struct inode *inode;
2835 
2836 	INIT_LIST_HEAD(&splice);
2837 
2838 	spin_lock(&root->fs_info->ordered_extent_lock);
2839 
2840 	list_splice_init(&root->fs_info->ordered_extents, &splice);
2841 	while (!list_empty(&splice)) {
2842 		ordered = list_entry(splice.next, struct btrfs_ordered_extent,
2843 				     root_extent_list);
2844 
2845 		list_del_init(&ordered->root_extent_list);
2846 		atomic_inc(&ordered->refs);
2847 
2848 		/* the inode may be getting freed (in sys_unlink path). */
2849 		inode = igrab(ordered->inode);
2850 
2851 		spin_unlock(&root->fs_info->ordered_extent_lock);
2852 		if (inode)
2853 			iput(inode);
2854 
2855 		atomic_set(&ordered->refs, 1);
2856 		btrfs_put_ordered_extent(ordered);
2857 
2858 		spin_lock(&root->fs_info->ordered_extent_lock);
2859 	}
2860 
2861 	spin_unlock(&root->fs_info->ordered_extent_lock);
2862 
2863 	return 0;
2864 }
2865 
2866 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2867 				      struct btrfs_root *root)
2868 {
2869 	struct rb_node *node;
2870 	struct btrfs_delayed_ref_root *delayed_refs;
2871 	struct btrfs_delayed_ref_node *ref;
2872 	int ret = 0;
2873 
2874 	delayed_refs = &trans->delayed_refs;
2875 
2876 	spin_lock(&delayed_refs->lock);
2877 	if (delayed_refs->num_entries == 0) {
2878 		spin_unlock(&delayed_refs->lock);
2879 		printk(KERN_INFO "delayed_refs has NO entry\n");
2880 		return ret;
2881 	}
2882 
2883 	node = rb_first(&delayed_refs->root);
2884 	while (node) {
2885 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2886 		node = rb_next(node);
2887 
2888 		ref->in_tree = 0;
2889 		rb_erase(&ref->rb_node, &delayed_refs->root);
2890 		delayed_refs->num_entries--;
2891 
2892 		atomic_set(&ref->refs, 1);
2893 		if (btrfs_delayed_ref_is_head(ref)) {
2894 			struct btrfs_delayed_ref_head *head;
2895 
2896 			head = btrfs_delayed_node_to_head(ref);
2897 			mutex_lock(&head->mutex);
2898 			kfree(head->extent_op);
2899 			delayed_refs->num_heads--;
2900 			if (list_empty(&head->cluster))
2901 				delayed_refs->num_heads_ready--;
2902 			list_del_init(&head->cluster);
2903 			mutex_unlock(&head->mutex);
2904 		}
2905 
2906 		spin_unlock(&delayed_refs->lock);
2907 		btrfs_put_delayed_ref(ref);
2908 
2909 		cond_resched();
2910 		spin_lock(&delayed_refs->lock);
2911 	}
2912 
2913 	spin_unlock(&delayed_refs->lock);
2914 
2915 	return ret;
2916 }
2917 
2918 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
2919 {
2920 	struct btrfs_pending_snapshot *snapshot;
2921 	struct list_head splice;
2922 
2923 	INIT_LIST_HEAD(&splice);
2924 
2925 	list_splice_init(&t->pending_snapshots, &splice);
2926 
2927 	while (!list_empty(&splice)) {
2928 		snapshot = list_entry(splice.next,
2929 				      struct btrfs_pending_snapshot,
2930 				      list);
2931 
2932 		list_del_init(&snapshot->list);
2933 
2934 		kfree(snapshot);
2935 	}
2936 
2937 	return 0;
2938 }
2939 
2940 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
2941 {
2942 	struct btrfs_inode *btrfs_inode;
2943 	struct list_head splice;
2944 
2945 	INIT_LIST_HEAD(&splice);
2946 
2947 	spin_lock(&root->fs_info->delalloc_lock);
2948 	list_splice_init(&root->fs_info->delalloc_inodes, &splice);
2949 
2950 	while (!list_empty(&splice)) {
2951 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2952 				    delalloc_inodes);
2953 
2954 		list_del_init(&btrfs_inode->delalloc_inodes);
2955 
2956 		btrfs_invalidate_inodes(btrfs_inode->root);
2957 	}
2958 
2959 	spin_unlock(&root->fs_info->delalloc_lock);
2960 
2961 	return 0;
2962 }
2963 
2964 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
2965 					struct extent_io_tree *dirty_pages,
2966 					int mark)
2967 {
2968 	int ret;
2969 	struct page *page;
2970 	struct inode *btree_inode = root->fs_info->btree_inode;
2971 	struct extent_buffer *eb;
2972 	u64 start = 0;
2973 	u64 end;
2974 	u64 offset;
2975 	unsigned long index;
2976 
2977 	while (1) {
2978 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
2979 					    mark);
2980 		if (ret)
2981 			break;
2982 
2983 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
2984 		while (start <= end) {
2985 			index = start >> PAGE_CACHE_SHIFT;
2986 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
2987 			page = find_get_page(btree_inode->i_mapping, index);
2988 			if (!page)
2989 				continue;
2990 			offset = page_offset(page);
2991 
2992 			spin_lock(&dirty_pages->buffer_lock);
2993 			eb = radix_tree_lookup(
2994 			     &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
2995 					       offset >> PAGE_CACHE_SHIFT);
2996 			spin_unlock(&dirty_pages->buffer_lock);
2997 			if (eb) {
2998 				ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
2999 							 &eb->bflags);
3000 				atomic_set(&eb->refs, 1);
3001 			}
3002 			if (PageWriteback(page))
3003 				end_page_writeback(page);
3004 
3005 			lock_page(page);
3006 			if (PageDirty(page)) {
3007 				clear_page_dirty_for_io(page);
3008 				spin_lock_irq(&page->mapping->tree_lock);
3009 				radix_tree_tag_clear(&page->mapping->page_tree,
3010 							page_index(page),
3011 							PAGECACHE_TAG_DIRTY);
3012 				spin_unlock_irq(&page->mapping->tree_lock);
3013 			}
3014 
3015 			page->mapping->a_ops->invalidatepage(page, 0);
3016 			unlock_page(page);
3017 		}
3018 	}
3019 
3020 	return ret;
3021 }
3022 
3023 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3024 				       struct extent_io_tree *pinned_extents)
3025 {
3026 	struct extent_io_tree *unpin;
3027 	u64 start;
3028 	u64 end;
3029 	int ret;
3030 
3031 	unpin = pinned_extents;
3032 	while (1) {
3033 		ret = find_first_extent_bit(unpin, 0, &start, &end,
3034 					    EXTENT_DIRTY);
3035 		if (ret)
3036 			break;
3037 
3038 		/* opt_discard */
3039 		if (btrfs_test_opt(root, DISCARD))
3040 			ret = btrfs_error_discard_extent(root, start,
3041 							 end + 1 - start,
3042 							 NULL);
3043 
3044 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
3045 		btrfs_error_unpin_extent_range(root, start, end);
3046 		cond_resched();
3047 	}
3048 
3049 	return 0;
3050 }
3051 
3052 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3053 {
3054 	struct btrfs_transaction *t;
3055 	LIST_HEAD(list);
3056 
3057 	WARN_ON(1);
3058 
3059 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
3060 
3061 	spin_lock(&root->fs_info->trans_lock);
3062 	list_splice_init(&root->fs_info->trans_list, &list);
3063 	root->fs_info->trans_no_join = 1;
3064 	spin_unlock(&root->fs_info->trans_lock);
3065 
3066 	while (!list_empty(&list)) {
3067 		t = list_entry(list.next, struct btrfs_transaction, list);
3068 		if (!t)
3069 			break;
3070 
3071 		btrfs_destroy_ordered_operations(root);
3072 
3073 		btrfs_destroy_ordered_extents(root);
3074 
3075 		btrfs_destroy_delayed_refs(t, root);
3076 
3077 		btrfs_block_rsv_release(root,
3078 					&root->fs_info->trans_block_rsv,
3079 					t->dirty_pages.dirty_bytes);
3080 
3081 		/* FIXME: cleanup wait for commit */
3082 		t->in_commit = 1;
3083 		t->blocked = 1;
3084 		if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3085 			wake_up(&root->fs_info->transaction_blocked_wait);
3086 
3087 		t->blocked = 0;
3088 		if (waitqueue_active(&root->fs_info->transaction_wait))
3089 			wake_up(&root->fs_info->transaction_wait);
3090 
3091 		t->commit_done = 1;
3092 		if (waitqueue_active(&t->commit_wait))
3093 			wake_up(&t->commit_wait);
3094 
3095 		btrfs_destroy_pending_snapshots(t);
3096 
3097 		btrfs_destroy_delalloc_inodes(root);
3098 
3099 		spin_lock(&root->fs_info->trans_lock);
3100 		root->fs_info->running_transaction = NULL;
3101 		spin_unlock(&root->fs_info->trans_lock);
3102 
3103 		btrfs_destroy_marked_extents(root, &t->dirty_pages,
3104 					     EXTENT_DIRTY);
3105 
3106 		btrfs_destroy_pinned_extent(root,
3107 					    root->fs_info->pinned_extents);
3108 
3109 		atomic_set(&t->use_count, 0);
3110 		list_del_init(&t->list);
3111 		memset(t, 0, sizeof(*t));
3112 		kmem_cache_free(btrfs_transaction_cachep, t);
3113 	}
3114 
3115 	spin_lock(&root->fs_info->trans_lock);
3116 	root->fs_info->trans_no_join = 0;
3117 	spin_unlock(&root->fs_info->trans_lock);
3118 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3119 
3120 	return 0;
3121 }
3122 
3123 static struct extent_io_ops btree_extent_io_ops = {
3124 	.write_cache_pages_lock_hook = btree_lock_page_hook,
3125 	.readpage_end_io_hook = btree_readpage_end_io_hook,
3126 	.submit_bio_hook = btree_submit_bio_hook,
3127 	/* note we're sharing with inode.c for the merge bio hook */
3128 	.merge_bio_hook = btrfs_merge_bio_hook,
3129 };
3130