1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "inode-map.h" 33 #include "check-integrity.h" 34 #include "rcu-string.h" 35 #include "dev-replace.h" 36 #include "raid56.h" 37 #include "sysfs.h" 38 #include "qgroup.h" 39 #include "compression.h" 40 #include "tree-checker.h" 41 #include "ref-verify.h" 42 #include "block-group.h" 43 #include "discard.h" 44 #include "space-info.h" 45 46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 47 BTRFS_HEADER_FLAG_RELOC |\ 48 BTRFS_SUPER_FLAG_ERROR |\ 49 BTRFS_SUPER_FLAG_SEEDING |\ 50 BTRFS_SUPER_FLAG_METADUMP |\ 51 BTRFS_SUPER_FLAG_METADUMP_V2) 52 53 static void end_workqueue_fn(struct btrfs_work *work); 54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 56 struct btrfs_fs_info *fs_info); 57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 59 struct extent_io_tree *dirty_pages, 60 int mark); 61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 62 struct extent_io_tree *pinned_extents); 63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 65 66 /* 67 * btrfs_end_io_wq structs are used to do processing in task context when an IO 68 * is complete. This is used during reads to verify checksums, and it is used 69 * by writes to insert metadata for new file extents after IO is complete. 70 */ 71 struct btrfs_end_io_wq { 72 struct bio *bio; 73 bio_end_io_t *end_io; 74 void *private; 75 struct btrfs_fs_info *info; 76 blk_status_t status; 77 enum btrfs_wq_endio_type metadata; 78 struct btrfs_work work; 79 }; 80 81 static struct kmem_cache *btrfs_end_io_wq_cache; 82 83 int __init btrfs_end_io_wq_init(void) 84 { 85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 86 sizeof(struct btrfs_end_io_wq), 87 0, 88 SLAB_MEM_SPREAD, 89 NULL); 90 if (!btrfs_end_io_wq_cache) 91 return -ENOMEM; 92 return 0; 93 } 94 95 void __cold btrfs_end_io_wq_exit(void) 96 { 97 kmem_cache_destroy(btrfs_end_io_wq_cache); 98 } 99 100 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 101 { 102 if (fs_info->csum_shash) 103 crypto_free_shash(fs_info->csum_shash); 104 } 105 106 /* 107 * async submit bios are used to offload expensive checksumming 108 * onto the worker threads. They checksum file and metadata bios 109 * just before they are sent down the IO stack. 110 */ 111 struct async_submit_bio { 112 void *private_data; 113 struct bio *bio; 114 extent_submit_bio_start_t *submit_bio_start; 115 int mirror_num; 116 /* 117 * bio_offset is optional, can be used if the pages in the bio 118 * can't tell us where in the file the bio should go 119 */ 120 u64 bio_offset; 121 struct btrfs_work work; 122 blk_status_t status; 123 }; 124 125 /* 126 * Lockdep class keys for extent_buffer->lock's in this root. For a given 127 * eb, the lockdep key is determined by the btrfs_root it belongs to and 128 * the level the eb occupies in the tree. 129 * 130 * Different roots are used for different purposes and may nest inside each 131 * other and they require separate keysets. As lockdep keys should be 132 * static, assign keysets according to the purpose of the root as indicated 133 * by btrfs_root->root_key.objectid. This ensures that all special purpose 134 * roots have separate keysets. 135 * 136 * Lock-nesting across peer nodes is always done with the immediate parent 137 * node locked thus preventing deadlock. As lockdep doesn't know this, use 138 * subclass to avoid triggering lockdep warning in such cases. 139 * 140 * The key is set by the readpage_end_io_hook after the buffer has passed 141 * csum validation but before the pages are unlocked. It is also set by 142 * btrfs_init_new_buffer on freshly allocated blocks. 143 * 144 * We also add a check to make sure the highest level of the tree is the 145 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 146 * needs update as well. 147 */ 148 #ifdef CONFIG_DEBUG_LOCK_ALLOC 149 # if BTRFS_MAX_LEVEL != 8 150 # error 151 # endif 152 153 static struct btrfs_lockdep_keyset { 154 u64 id; /* root objectid */ 155 const char *name_stem; /* lock name stem */ 156 char names[BTRFS_MAX_LEVEL + 1][20]; 157 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 158 } btrfs_lockdep_keysets[] = { 159 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 160 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 161 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 162 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 163 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 164 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 165 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 166 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 167 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 168 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 169 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 170 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 171 { .id = 0, .name_stem = "tree" }, 172 }; 173 174 void __init btrfs_init_lockdep(void) 175 { 176 int i, j; 177 178 /* initialize lockdep class names */ 179 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 180 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 181 182 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 183 snprintf(ks->names[j], sizeof(ks->names[j]), 184 "btrfs-%s-%02d", ks->name_stem, j); 185 } 186 } 187 188 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 189 int level) 190 { 191 struct btrfs_lockdep_keyset *ks; 192 193 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 194 195 /* find the matching keyset, id 0 is the default entry */ 196 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 197 if (ks->id == objectid) 198 break; 199 200 lockdep_set_class_and_name(&eb->lock, 201 &ks->keys[level], ks->names[level]); 202 } 203 204 #endif 205 206 /* 207 * Compute the csum of a btree block and store the result to provided buffer. 208 */ 209 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 210 { 211 struct btrfs_fs_info *fs_info = buf->fs_info; 212 const int num_pages = fs_info->nodesize >> PAGE_SHIFT; 213 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 214 char *kaddr; 215 int i; 216 217 shash->tfm = fs_info->csum_shash; 218 crypto_shash_init(shash); 219 kaddr = page_address(buf->pages[0]); 220 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 221 PAGE_SIZE - BTRFS_CSUM_SIZE); 222 223 for (i = 1; i < num_pages; i++) { 224 kaddr = page_address(buf->pages[i]); 225 crypto_shash_update(shash, kaddr, PAGE_SIZE); 226 } 227 memset(result, 0, BTRFS_CSUM_SIZE); 228 crypto_shash_final(shash, result); 229 } 230 231 /* 232 * we can't consider a given block up to date unless the transid of the 233 * block matches the transid in the parent node's pointer. This is how we 234 * detect blocks that either didn't get written at all or got written 235 * in the wrong place. 236 */ 237 static int verify_parent_transid(struct extent_io_tree *io_tree, 238 struct extent_buffer *eb, u64 parent_transid, 239 int atomic) 240 { 241 struct extent_state *cached_state = NULL; 242 int ret; 243 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 244 245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 246 return 0; 247 248 if (atomic) 249 return -EAGAIN; 250 251 if (need_lock) { 252 btrfs_tree_read_lock(eb); 253 btrfs_set_lock_blocking_read(eb); 254 } 255 256 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 257 &cached_state); 258 if (extent_buffer_uptodate(eb) && 259 btrfs_header_generation(eb) == parent_transid) { 260 ret = 0; 261 goto out; 262 } 263 btrfs_err_rl(eb->fs_info, 264 "parent transid verify failed on %llu wanted %llu found %llu", 265 eb->start, 266 parent_transid, btrfs_header_generation(eb)); 267 ret = 1; 268 269 /* 270 * Things reading via commit roots that don't have normal protection, 271 * like send, can have a really old block in cache that may point at a 272 * block that has been freed and re-allocated. So don't clear uptodate 273 * if we find an eb that is under IO (dirty/writeback) because we could 274 * end up reading in the stale data and then writing it back out and 275 * making everybody very sad. 276 */ 277 if (!extent_buffer_under_io(eb)) 278 clear_extent_buffer_uptodate(eb); 279 out: 280 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 281 &cached_state); 282 if (need_lock) 283 btrfs_tree_read_unlock_blocking(eb); 284 return ret; 285 } 286 287 static bool btrfs_supported_super_csum(u16 csum_type) 288 { 289 switch (csum_type) { 290 case BTRFS_CSUM_TYPE_CRC32: 291 case BTRFS_CSUM_TYPE_XXHASH: 292 case BTRFS_CSUM_TYPE_SHA256: 293 case BTRFS_CSUM_TYPE_BLAKE2: 294 return true; 295 default: 296 return false; 297 } 298 } 299 300 /* 301 * Return 0 if the superblock checksum type matches the checksum value of that 302 * algorithm. Pass the raw disk superblock data. 303 */ 304 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 305 char *raw_disk_sb) 306 { 307 struct btrfs_super_block *disk_sb = 308 (struct btrfs_super_block *)raw_disk_sb; 309 char result[BTRFS_CSUM_SIZE]; 310 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 311 312 shash->tfm = fs_info->csum_shash; 313 314 /* 315 * The super_block structure does not span the whole 316 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 317 * filled with zeros and is included in the checksum. 318 */ 319 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE, 320 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 321 322 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb))) 323 return 1; 324 325 return 0; 326 } 327 328 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 329 struct btrfs_key *first_key, u64 parent_transid) 330 { 331 struct btrfs_fs_info *fs_info = eb->fs_info; 332 int found_level; 333 struct btrfs_key found_key; 334 int ret; 335 336 found_level = btrfs_header_level(eb); 337 if (found_level != level) { 338 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 339 KERN_ERR "BTRFS: tree level check failed\n"); 340 btrfs_err(fs_info, 341 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 342 eb->start, level, found_level); 343 return -EIO; 344 } 345 346 if (!first_key) 347 return 0; 348 349 /* 350 * For live tree block (new tree blocks in current transaction), 351 * we need proper lock context to avoid race, which is impossible here. 352 * So we only checks tree blocks which is read from disk, whose 353 * generation <= fs_info->last_trans_committed. 354 */ 355 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 356 return 0; 357 358 /* We have @first_key, so this @eb must have at least one item */ 359 if (btrfs_header_nritems(eb) == 0) { 360 btrfs_err(fs_info, 361 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 362 eb->start); 363 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 364 return -EUCLEAN; 365 } 366 367 if (found_level) 368 btrfs_node_key_to_cpu(eb, &found_key, 0); 369 else 370 btrfs_item_key_to_cpu(eb, &found_key, 0); 371 ret = btrfs_comp_cpu_keys(first_key, &found_key); 372 373 if (ret) { 374 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 375 KERN_ERR "BTRFS: tree first key check failed\n"); 376 btrfs_err(fs_info, 377 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 378 eb->start, parent_transid, first_key->objectid, 379 first_key->type, first_key->offset, 380 found_key.objectid, found_key.type, 381 found_key.offset); 382 } 383 return ret; 384 } 385 386 /* 387 * helper to read a given tree block, doing retries as required when 388 * the checksums don't match and we have alternate mirrors to try. 389 * 390 * @parent_transid: expected transid, skip check if 0 391 * @level: expected level, mandatory check 392 * @first_key: expected key of first slot, skip check if NULL 393 */ 394 static int btree_read_extent_buffer_pages(struct extent_buffer *eb, 395 u64 parent_transid, int level, 396 struct btrfs_key *first_key) 397 { 398 struct btrfs_fs_info *fs_info = eb->fs_info; 399 struct extent_io_tree *io_tree; 400 int failed = 0; 401 int ret; 402 int num_copies = 0; 403 int mirror_num = 0; 404 int failed_mirror = 0; 405 406 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 407 while (1) { 408 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 409 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num); 410 if (!ret) { 411 if (verify_parent_transid(io_tree, eb, 412 parent_transid, 0)) 413 ret = -EIO; 414 else if (btrfs_verify_level_key(eb, level, 415 first_key, parent_transid)) 416 ret = -EUCLEAN; 417 else 418 break; 419 } 420 421 num_copies = btrfs_num_copies(fs_info, 422 eb->start, eb->len); 423 if (num_copies == 1) 424 break; 425 426 if (!failed_mirror) { 427 failed = 1; 428 failed_mirror = eb->read_mirror; 429 } 430 431 mirror_num++; 432 if (mirror_num == failed_mirror) 433 mirror_num++; 434 435 if (mirror_num > num_copies) 436 break; 437 } 438 439 if (failed && !ret && failed_mirror) 440 btrfs_repair_eb_io_failure(eb, failed_mirror); 441 442 return ret; 443 } 444 445 /* 446 * checksum a dirty tree block before IO. This has extra checks to make sure 447 * we only fill in the checksum field in the first page of a multi-page block 448 */ 449 450 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 451 { 452 u64 start = page_offset(page); 453 u64 found_start; 454 u8 result[BTRFS_CSUM_SIZE]; 455 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 456 struct extent_buffer *eb; 457 int ret; 458 459 eb = (struct extent_buffer *)page->private; 460 if (page != eb->pages[0]) 461 return 0; 462 463 found_start = btrfs_header_bytenr(eb); 464 /* 465 * Please do not consolidate these warnings into a single if. 466 * It is useful to know what went wrong. 467 */ 468 if (WARN_ON(found_start != start)) 469 return -EUCLEAN; 470 if (WARN_ON(!PageUptodate(page))) 471 return -EUCLEAN; 472 473 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 474 offsetof(struct btrfs_header, fsid), 475 BTRFS_FSID_SIZE) == 0); 476 477 csum_tree_block(eb, result); 478 479 if (btrfs_header_level(eb)) 480 ret = btrfs_check_node(eb); 481 else 482 ret = btrfs_check_leaf_full(eb); 483 484 if (ret < 0) { 485 btrfs_print_tree(eb, 0); 486 btrfs_err(fs_info, 487 "block=%llu write time tree block corruption detected", 488 eb->start); 489 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 490 return ret; 491 } 492 write_extent_buffer(eb, result, 0, csum_size); 493 494 return 0; 495 } 496 497 static int check_tree_block_fsid(struct extent_buffer *eb) 498 { 499 struct btrfs_fs_info *fs_info = eb->fs_info; 500 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 501 u8 fsid[BTRFS_FSID_SIZE]; 502 u8 *metadata_uuid; 503 504 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 505 BTRFS_FSID_SIZE); 506 /* 507 * Checking the incompat flag is only valid for the current fs. For 508 * seed devices it's forbidden to have their uuid changed so reading 509 * ->fsid in this case is fine 510 */ 511 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 512 metadata_uuid = fs_devices->metadata_uuid; 513 else 514 metadata_uuid = fs_devices->fsid; 515 516 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) 517 return 0; 518 519 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 520 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 521 return 0; 522 523 return 1; 524 } 525 526 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, u64 phy_offset, 527 struct page *page, u64 start, u64 end, 528 int mirror) 529 { 530 u64 found_start; 531 int found_level; 532 struct extent_buffer *eb; 533 struct btrfs_fs_info *fs_info; 534 u16 csum_size; 535 int ret = 0; 536 u8 result[BTRFS_CSUM_SIZE]; 537 int reads_done; 538 539 if (!page->private) 540 goto out; 541 542 eb = (struct extent_buffer *)page->private; 543 fs_info = eb->fs_info; 544 csum_size = btrfs_super_csum_size(fs_info->super_copy); 545 546 /* the pending IO might have been the only thing that kept this buffer 547 * in memory. Make sure we have a ref for all this other checks 548 */ 549 atomic_inc(&eb->refs); 550 551 reads_done = atomic_dec_and_test(&eb->io_pages); 552 if (!reads_done) 553 goto err; 554 555 eb->read_mirror = mirror; 556 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 557 ret = -EIO; 558 goto err; 559 } 560 561 found_start = btrfs_header_bytenr(eb); 562 if (found_start != eb->start) { 563 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 564 eb->start, found_start); 565 ret = -EIO; 566 goto err; 567 } 568 if (check_tree_block_fsid(eb)) { 569 btrfs_err_rl(fs_info, "bad fsid on block %llu", 570 eb->start); 571 ret = -EIO; 572 goto err; 573 } 574 found_level = btrfs_header_level(eb); 575 if (found_level >= BTRFS_MAX_LEVEL) { 576 btrfs_err(fs_info, "bad tree block level %d on %llu", 577 (int)btrfs_header_level(eb), eb->start); 578 ret = -EIO; 579 goto err; 580 } 581 582 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 583 eb, found_level); 584 585 csum_tree_block(eb, result); 586 587 if (memcmp_extent_buffer(eb, result, 0, csum_size)) { 588 u8 val[BTRFS_CSUM_SIZE] = { 0 }; 589 590 read_extent_buffer(eb, &val, 0, csum_size); 591 btrfs_warn_rl(fs_info, 592 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d", 593 fs_info->sb->s_id, eb->start, 594 CSUM_FMT_VALUE(csum_size, val), 595 CSUM_FMT_VALUE(csum_size, result), 596 btrfs_header_level(eb)); 597 ret = -EUCLEAN; 598 goto err; 599 } 600 601 /* 602 * If this is a leaf block and it is corrupt, set the corrupt bit so 603 * that we don't try and read the other copies of this block, just 604 * return -EIO. 605 */ 606 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 607 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 608 ret = -EIO; 609 } 610 611 if (found_level > 0 && btrfs_check_node(eb)) 612 ret = -EIO; 613 614 if (!ret) 615 set_extent_buffer_uptodate(eb); 616 else 617 btrfs_err(fs_info, 618 "block=%llu read time tree block corruption detected", 619 eb->start); 620 err: 621 if (reads_done && 622 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 623 btree_readahead_hook(eb, ret); 624 625 if (ret) { 626 /* 627 * our io error hook is going to dec the io pages 628 * again, we have to make sure it has something 629 * to decrement 630 */ 631 atomic_inc(&eb->io_pages); 632 clear_extent_buffer_uptodate(eb); 633 } 634 free_extent_buffer(eb); 635 out: 636 return ret; 637 } 638 639 static void end_workqueue_bio(struct bio *bio) 640 { 641 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 642 struct btrfs_fs_info *fs_info; 643 struct btrfs_workqueue *wq; 644 645 fs_info = end_io_wq->info; 646 end_io_wq->status = bio->bi_status; 647 648 if (bio_op(bio) == REQ_OP_WRITE) { 649 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) 650 wq = fs_info->endio_meta_write_workers; 651 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) 652 wq = fs_info->endio_freespace_worker; 653 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 654 wq = fs_info->endio_raid56_workers; 655 else 656 wq = fs_info->endio_write_workers; 657 } else { 658 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 659 wq = fs_info->endio_raid56_workers; 660 else if (end_io_wq->metadata) 661 wq = fs_info->endio_meta_workers; 662 else 663 wq = fs_info->endio_workers; 664 } 665 666 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL); 667 btrfs_queue_work(wq, &end_io_wq->work); 668 } 669 670 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 671 enum btrfs_wq_endio_type metadata) 672 { 673 struct btrfs_end_io_wq *end_io_wq; 674 675 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 676 if (!end_io_wq) 677 return BLK_STS_RESOURCE; 678 679 end_io_wq->private = bio->bi_private; 680 end_io_wq->end_io = bio->bi_end_io; 681 end_io_wq->info = info; 682 end_io_wq->status = 0; 683 end_io_wq->bio = bio; 684 end_io_wq->metadata = metadata; 685 686 bio->bi_private = end_io_wq; 687 bio->bi_end_io = end_workqueue_bio; 688 return 0; 689 } 690 691 static void run_one_async_start(struct btrfs_work *work) 692 { 693 struct async_submit_bio *async; 694 blk_status_t ret; 695 696 async = container_of(work, struct async_submit_bio, work); 697 ret = async->submit_bio_start(async->private_data, async->bio, 698 async->bio_offset); 699 if (ret) 700 async->status = ret; 701 } 702 703 /* 704 * In order to insert checksums into the metadata in large chunks, we wait 705 * until bio submission time. All the pages in the bio are checksummed and 706 * sums are attached onto the ordered extent record. 707 * 708 * At IO completion time the csums attached on the ordered extent record are 709 * inserted into the tree. 710 */ 711 static void run_one_async_done(struct btrfs_work *work) 712 { 713 struct async_submit_bio *async; 714 struct inode *inode; 715 blk_status_t ret; 716 717 async = container_of(work, struct async_submit_bio, work); 718 inode = async->private_data; 719 720 /* If an error occurred we just want to clean up the bio and move on */ 721 if (async->status) { 722 async->bio->bi_status = async->status; 723 bio_endio(async->bio); 724 return; 725 } 726 727 /* 728 * All of the bios that pass through here are from async helpers. 729 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context. 730 * This changes nothing when cgroups aren't in use. 731 */ 732 async->bio->bi_opf |= REQ_CGROUP_PUNT; 733 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num); 734 if (ret) { 735 async->bio->bi_status = ret; 736 bio_endio(async->bio); 737 } 738 } 739 740 static void run_one_async_free(struct btrfs_work *work) 741 { 742 struct async_submit_bio *async; 743 744 async = container_of(work, struct async_submit_bio, work); 745 kfree(async); 746 } 747 748 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 749 int mirror_num, unsigned long bio_flags, 750 u64 bio_offset, void *private_data, 751 extent_submit_bio_start_t *submit_bio_start) 752 { 753 struct async_submit_bio *async; 754 755 async = kmalloc(sizeof(*async), GFP_NOFS); 756 if (!async) 757 return BLK_STS_RESOURCE; 758 759 async->private_data = private_data; 760 async->bio = bio; 761 async->mirror_num = mirror_num; 762 async->submit_bio_start = submit_bio_start; 763 764 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, 765 run_one_async_free); 766 767 async->bio_offset = bio_offset; 768 769 async->status = 0; 770 771 if (op_is_sync(bio->bi_opf)) 772 btrfs_set_work_high_priority(&async->work); 773 774 btrfs_queue_work(fs_info->workers, &async->work); 775 return 0; 776 } 777 778 static blk_status_t btree_csum_one_bio(struct bio *bio) 779 { 780 struct bio_vec *bvec; 781 struct btrfs_root *root; 782 int ret = 0; 783 struct bvec_iter_all iter_all; 784 785 ASSERT(!bio_flagged(bio, BIO_CLONED)); 786 bio_for_each_segment_all(bvec, bio, iter_all) { 787 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 788 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 789 if (ret) 790 break; 791 } 792 793 return errno_to_blk_status(ret); 794 } 795 796 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, 797 u64 bio_offset) 798 { 799 /* 800 * when we're called for a write, we're already in the async 801 * submission context. Just jump into btrfs_map_bio 802 */ 803 return btree_csum_one_bio(bio); 804 } 805 806 static int check_async_write(struct btrfs_fs_info *fs_info, 807 struct btrfs_inode *bi) 808 { 809 if (atomic_read(&bi->sync_writers)) 810 return 0; 811 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 812 return 0; 813 return 1; 814 } 815 816 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, 817 int mirror_num, unsigned long bio_flags) 818 { 819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 820 int async = check_async_write(fs_info, BTRFS_I(inode)); 821 blk_status_t ret; 822 823 if (bio_op(bio) != REQ_OP_WRITE) { 824 /* 825 * called for a read, do the setup so that checksum validation 826 * can happen in the async kernel threads 827 */ 828 ret = btrfs_bio_wq_end_io(fs_info, bio, 829 BTRFS_WQ_ENDIO_METADATA); 830 if (ret) 831 goto out_w_error; 832 ret = btrfs_map_bio(fs_info, bio, mirror_num); 833 } else if (!async) { 834 ret = btree_csum_one_bio(bio); 835 if (ret) 836 goto out_w_error; 837 ret = btrfs_map_bio(fs_info, bio, mirror_num); 838 } else { 839 /* 840 * kthread helpers are used to submit writes so that 841 * checksumming can happen in parallel across all CPUs 842 */ 843 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 844 0, inode, btree_submit_bio_start); 845 } 846 847 if (ret) 848 goto out_w_error; 849 return 0; 850 851 out_w_error: 852 bio->bi_status = ret; 853 bio_endio(bio); 854 return ret; 855 } 856 857 #ifdef CONFIG_MIGRATION 858 static int btree_migratepage(struct address_space *mapping, 859 struct page *newpage, struct page *page, 860 enum migrate_mode mode) 861 { 862 /* 863 * we can't safely write a btree page from here, 864 * we haven't done the locking hook 865 */ 866 if (PageDirty(page)) 867 return -EAGAIN; 868 /* 869 * Buffers may be managed in a filesystem specific way. 870 * We must have no buffers or drop them. 871 */ 872 if (page_has_private(page) && 873 !try_to_release_page(page, GFP_KERNEL)) 874 return -EAGAIN; 875 return migrate_page(mapping, newpage, page, mode); 876 } 877 #endif 878 879 880 static int btree_writepages(struct address_space *mapping, 881 struct writeback_control *wbc) 882 { 883 struct btrfs_fs_info *fs_info; 884 int ret; 885 886 if (wbc->sync_mode == WB_SYNC_NONE) { 887 888 if (wbc->for_kupdate) 889 return 0; 890 891 fs_info = BTRFS_I(mapping->host)->root->fs_info; 892 /* this is a bit racy, but that's ok */ 893 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 894 BTRFS_DIRTY_METADATA_THRESH, 895 fs_info->dirty_metadata_batch); 896 if (ret < 0) 897 return 0; 898 } 899 return btree_write_cache_pages(mapping, wbc); 900 } 901 902 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 903 { 904 if (PageWriteback(page) || PageDirty(page)) 905 return 0; 906 907 return try_release_extent_buffer(page); 908 } 909 910 static void btree_invalidatepage(struct page *page, unsigned int offset, 911 unsigned int length) 912 { 913 struct extent_io_tree *tree; 914 tree = &BTRFS_I(page->mapping->host)->io_tree; 915 extent_invalidatepage(tree, page, offset); 916 btree_releasepage(page, GFP_NOFS); 917 if (PagePrivate(page)) { 918 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 919 "page private not zero on page %llu", 920 (unsigned long long)page_offset(page)); 921 detach_page_private(page); 922 } 923 } 924 925 static int btree_set_page_dirty(struct page *page) 926 { 927 #ifdef DEBUG 928 struct extent_buffer *eb; 929 930 BUG_ON(!PagePrivate(page)); 931 eb = (struct extent_buffer *)page->private; 932 BUG_ON(!eb); 933 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 934 BUG_ON(!atomic_read(&eb->refs)); 935 btrfs_assert_tree_locked(eb); 936 #endif 937 return __set_page_dirty_nobuffers(page); 938 } 939 940 static const struct address_space_operations btree_aops = { 941 .writepages = btree_writepages, 942 .releasepage = btree_releasepage, 943 .invalidatepage = btree_invalidatepage, 944 #ifdef CONFIG_MIGRATION 945 .migratepage = btree_migratepage, 946 #endif 947 .set_page_dirty = btree_set_page_dirty, 948 }; 949 950 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 951 { 952 struct extent_buffer *buf = NULL; 953 int ret; 954 955 buf = btrfs_find_create_tree_block(fs_info, bytenr); 956 if (IS_ERR(buf)) 957 return; 958 959 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0); 960 if (ret < 0) 961 free_extent_buffer_stale(buf); 962 else 963 free_extent_buffer(buf); 964 } 965 966 struct extent_buffer *btrfs_find_create_tree_block( 967 struct btrfs_fs_info *fs_info, 968 u64 bytenr) 969 { 970 if (btrfs_is_testing(fs_info)) 971 return alloc_test_extent_buffer(fs_info, bytenr); 972 return alloc_extent_buffer(fs_info, bytenr); 973 } 974 975 /* 976 * Read tree block at logical address @bytenr and do variant basic but critical 977 * verification. 978 * 979 * @parent_transid: expected transid of this tree block, skip check if 0 980 * @level: expected level, mandatory check 981 * @first_key: expected key in slot 0, skip check if NULL 982 */ 983 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 984 u64 parent_transid, int level, 985 struct btrfs_key *first_key) 986 { 987 struct extent_buffer *buf = NULL; 988 int ret; 989 990 buf = btrfs_find_create_tree_block(fs_info, bytenr); 991 if (IS_ERR(buf)) 992 return buf; 993 994 ret = btree_read_extent_buffer_pages(buf, parent_transid, 995 level, first_key); 996 if (ret) { 997 free_extent_buffer_stale(buf); 998 return ERR_PTR(ret); 999 } 1000 return buf; 1001 1002 } 1003 1004 void btrfs_clean_tree_block(struct extent_buffer *buf) 1005 { 1006 struct btrfs_fs_info *fs_info = buf->fs_info; 1007 if (btrfs_header_generation(buf) == 1008 fs_info->running_transaction->transid) { 1009 btrfs_assert_tree_locked(buf); 1010 1011 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1012 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1013 -buf->len, 1014 fs_info->dirty_metadata_batch); 1015 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1016 btrfs_set_lock_blocking_write(buf); 1017 clear_extent_buffer_dirty(buf); 1018 } 1019 } 1020 } 1021 1022 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1023 u64 objectid) 1024 { 1025 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1026 root->fs_info = fs_info; 1027 root->node = NULL; 1028 root->commit_root = NULL; 1029 root->state = 0; 1030 root->orphan_cleanup_state = 0; 1031 1032 root->last_trans = 0; 1033 root->highest_objectid = 0; 1034 root->nr_delalloc_inodes = 0; 1035 root->nr_ordered_extents = 0; 1036 root->inode_tree = RB_ROOT; 1037 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1038 root->block_rsv = NULL; 1039 1040 INIT_LIST_HEAD(&root->dirty_list); 1041 INIT_LIST_HEAD(&root->root_list); 1042 INIT_LIST_HEAD(&root->delalloc_inodes); 1043 INIT_LIST_HEAD(&root->delalloc_root); 1044 INIT_LIST_HEAD(&root->ordered_extents); 1045 INIT_LIST_HEAD(&root->ordered_root); 1046 INIT_LIST_HEAD(&root->reloc_dirty_list); 1047 INIT_LIST_HEAD(&root->logged_list[0]); 1048 INIT_LIST_HEAD(&root->logged_list[1]); 1049 spin_lock_init(&root->inode_lock); 1050 spin_lock_init(&root->delalloc_lock); 1051 spin_lock_init(&root->ordered_extent_lock); 1052 spin_lock_init(&root->accounting_lock); 1053 spin_lock_init(&root->log_extents_lock[0]); 1054 spin_lock_init(&root->log_extents_lock[1]); 1055 spin_lock_init(&root->qgroup_meta_rsv_lock); 1056 mutex_init(&root->objectid_mutex); 1057 mutex_init(&root->log_mutex); 1058 mutex_init(&root->ordered_extent_mutex); 1059 mutex_init(&root->delalloc_mutex); 1060 init_waitqueue_head(&root->qgroup_flush_wait); 1061 init_waitqueue_head(&root->log_writer_wait); 1062 init_waitqueue_head(&root->log_commit_wait[0]); 1063 init_waitqueue_head(&root->log_commit_wait[1]); 1064 INIT_LIST_HEAD(&root->log_ctxs[0]); 1065 INIT_LIST_HEAD(&root->log_ctxs[1]); 1066 atomic_set(&root->log_commit[0], 0); 1067 atomic_set(&root->log_commit[1], 0); 1068 atomic_set(&root->log_writers, 0); 1069 atomic_set(&root->log_batch, 0); 1070 refcount_set(&root->refs, 1); 1071 atomic_set(&root->snapshot_force_cow, 0); 1072 atomic_set(&root->nr_swapfiles, 0); 1073 root->log_transid = 0; 1074 root->log_transid_committed = -1; 1075 root->last_log_commit = 0; 1076 if (!dummy) { 1077 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1078 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL); 1079 extent_io_tree_init(fs_info, &root->log_csum_range, 1080 IO_TREE_LOG_CSUM_RANGE, NULL); 1081 } 1082 1083 memset(&root->root_key, 0, sizeof(root->root_key)); 1084 memset(&root->root_item, 0, sizeof(root->root_item)); 1085 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1086 root->root_key.objectid = objectid; 1087 root->anon_dev = 0; 1088 1089 spin_lock_init(&root->root_item_lock); 1090 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1091 #ifdef CONFIG_BTRFS_DEBUG 1092 INIT_LIST_HEAD(&root->leak_list); 1093 spin_lock(&fs_info->fs_roots_radix_lock); 1094 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 1095 spin_unlock(&fs_info->fs_roots_radix_lock); 1096 #endif 1097 } 1098 1099 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1100 u64 objectid, gfp_t flags) 1101 { 1102 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1103 if (root) 1104 __setup_root(root, fs_info, objectid); 1105 return root; 1106 } 1107 1108 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1109 /* Should only be used by the testing infrastructure */ 1110 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1111 { 1112 struct btrfs_root *root; 1113 1114 if (!fs_info) 1115 return ERR_PTR(-EINVAL); 1116 1117 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 1118 if (!root) 1119 return ERR_PTR(-ENOMEM); 1120 1121 /* We don't use the stripesize in selftest, set it as sectorsize */ 1122 root->alloc_bytenr = 0; 1123 1124 return root; 1125 } 1126 #endif 1127 1128 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1129 u64 objectid) 1130 { 1131 struct btrfs_fs_info *fs_info = trans->fs_info; 1132 struct extent_buffer *leaf; 1133 struct btrfs_root *tree_root = fs_info->tree_root; 1134 struct btrfs_root *root; 1135 struct btrfs_key key; 1136 unsigned int nofs_flag; 1137 int ret = 0; 1138 1139 /* 1140 * We're holding a transaction handle, so use a NOFS memory allocation 1141 * context to avoid deadlock if reclaim happens. 1142 */ 1143 nofs_flag = memalloc_nofs_save(); 1144 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1145 memalloc_nofs_restore(nofs_flag); 1146 if (!root) 1147 return ERR_PTR(-ENOMEM); 1148 1149 root->root_key.objectid = objectid; 1150 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1151 root->root_key.offset = 0; 1152 1153 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 1154 BTRFS_NESTING_NORMAL); 1155 if (IS_ERR(leaf)) { 1156 ret = PTR_ERR(leaf); 1157 leaf = NULL; 1158 goto fail; 1159 } 1160 1161 root->node = leaf; 1162 btrfs_mark_buffer_dirty(leaf); 1163 1164 root->commit_root = btrfs_root_node(root); 1165 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1166 1167 root->root_item.flags = 0; 1168 root->root_item.byte_limit = 0; 1169 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1170 btrfs_set_root_generation(&root->root_item, trans->transid); 1171 btrfs_set_root_level(&root->root_item, 0); 1172 btrfs_set_root_refs(&root->root_item, 1); 1173 btrfs_set_root_used(&root->root_item, leaf->len); 1174 btrfs_set_root_last_snapshot(&root->root_item, 0); 1175 btrfs_set_root_dirid(&root->root_item, 0); 1176 if (is_fstree(objectid)) 1177 generate_random_guid(root->root_item.uuid); 1178 else 1179 export_guid(root->root_item.uuid, &guid_null); 1180 root->root_item.drop_level = 0; 1181 1182 key.objectid = objectid; 1183 key.type = BTRFS_ROOT_ITEM_KEY; 1184 key.offset = 0; 1185 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1186 if (ret) 1187 goto fail; 1188 1189 btrfs_tree_unlock(leaf); 1190 1191 return root; 1192 1193 fail: 1194 if (leaf) 1195 btrfs_tree_unlock(leaf); 1196 btrfs_put_root(root); 1197 1198 return ERR_PTR(ret); 1199 } 1200 1201 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1202 struct btrfs_fs_info *fs_info) 1203 { 1204 struct btrfs_root *root; 1205 struct extent_buffer *leaf; 1206 1207 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1208 if (!root) 1209 return ERR_PTR(-ENOMEM); 1210 1211 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1212 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1213 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1214 1215 /* 1216 * DON'T set SHAREABLE bit for log trees. 1217 * 1218 * Log trees are not exposed to user space thus can't be snapshotted, 1219 * and they go away before a real commit is actually done. 1220 * 1221 * They do store pointers to file data extents, and those reference 1222 * counts still get updated (along with back refs to the log tree). 1223 */ 1224 1225 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1226 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); 1227 if (IS_ERR(leaf)) { 1228 btrfs_put_root(root); 1229 return ERR_CAST(leaf); 1230 } 1231 1232 root->node = leaf; 1233 1234 btrfs_mark_buffer_dirty(root->node); 1235 btrfs_tree_unlock(root->node); 1236 return root; 1237 } 1238 1239 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1240 struct btrfs_fs_info *fs_info) 1241 { 1242 struct btrfs_root *log_root; 1243 1244 log_root = alloc_log_tree(trans, fs_info); 1245 if (IS_ERR(log_root)) 1246 return PTR_ERR(log_root); 1247 WARN_ON(fs_info->log_root_tree); 1248 fs_info->log_root_tree = log_root; 1249 return 0; 1250 } 1251 1252 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1253 struct btrfs_root *root) 1254 { 1255 struct btrfs_fs_info *fs_info = root->fs_info; 1256 struct btrfs_root *log_root; 1257 struct btrfs_inode_item *inode_item; 1258 1259 log_root = alloc_log_tree(trans, fs_info); 1260 if (IS_ERR(log_root)) 1261 return PTR_ERR(log_root); 1262 1263 log_root->last_trans = trans->transid; 1264 log_root->root_key.offset = root->root_key.objectid; 1265 1266 inode_item = &log_root->root_item.inode; 1267 btrfs_set_stack_inode_generation(inode_item, 1); 1268 btrfs_set_stack_inode_size(inode_item, 3); 1269 btrfs_set_stack_inode_nlink(inode_item, 1); 1270 btrfs_set_stack_inode_nbytes(inode_item, 1271 fs_info->nodesize); 1272 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1273 1274 btrfs_set_root_node(&log_root->root_item, log_root->node); 1275 1276 WARN_ON(root->log_root); 1277 root->log_root = log_root; 1278 root->log_transid = 0; 1279 root->log_transid_committed = -1; 1280 root->last_log_commit = 0; 1281 return 0; 1282 } 1283 1284 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1285 struct btrfs_key *key) 1286 { 1287 struct btrfs_root *root; 1288 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1289 struct btrfs_path *path; 1290 u64 generation; 1291 int ret; 1292 int level; 1293 1294 path = btrfs_alloc_path(); 1295 if (!path) 1296 return ERR_PTR(-ENOMEM); 1297 1298 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1299 if (!root) { 1300 ret = -ENOMEM; 1301 goto alloc_fail; 1302 } 1303 1304 ret = btrfs_find_root(tree_root, key, path, 1305 &root->root_item, &root->root_key); 1306 if (ret) { 1307 if (ret > 0) 1308 ret = -ENOENT; 1309 goto find_fail; 1310 } 1311 1312 generation = btrfs_root_generation(&root->root_item); 1313 level = btrfs_root_level(&root->root_item); 1314 root->node = read_tree_block(fs_info, 1315 btrfs_root_bytenr(&root->root_item), 1316 generation, level, NULL); 1317 if (IS_ERR(root->node)) { 1318 ret = PTR_ERR(root->node); 1319 root->node = NULL; 1320 goto find_fail; 1321 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1322 ret = -EIO; 1323 goto find_fail; 1324 } 1325 root->commit_root = btrfs_root_node(root); 1326 out: 1327 btrfs_free_path(path); 1328 return root; 1329 1330 find_fail: 1331 btrfs_put_root(root); 1332 alloc_fail: 1333 root = ERR_PTR(ret); 1334 goto out; 1335 } 1336 1337 /* 1338 * Initialize subvolume root in-memory structure 1339 * 1340 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1341 */ 1342 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1343 { 1344 int ret; 1345 unsigned int nofs_flag; 1346 1347 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1348 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1349 GFP_NOFS); 1350 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1351 ret = -ENOMEM; 1352 goto fail; 1353 } 1354 1355 /* 1356 * We might be called under a transaction (e.g. indirect backref 1357 * resolution) which could deadlock if it triggers memory reclaim 1358 */ 1359 nofs_flag = memalloc_nofs_save(); 1360 ret = btrfs_drew_lock_init(&root->snapshot_lock); 1361 memalloc_nofs_restore(nofs_flag); 1362 if (ret) 1363 goto fail; 1364 1365 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1366 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 1367 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1368 btrfs_check_and_init_root_item(&root->root_item); 1369 } 1370 1371 btrfs_init_free_ino_ctl(root); 1372 spin_lock_init(&root->ino_cache_lock); 1373 init_waitqueue_head(&root->ino_cache_wait); 1374 1375 /* 1376 * Don't assign anonymous block device to roots that are not exposed to 1377 * userspace, the id pool is limited to 1M 1378 */ 1379 if (is_fstree(root->root_key.objectid) && 1380 btrfs_root_refs(&root->root_item) > 0) { 1381 if (!anon_dev) { 1382 ret = get_anon_bdev(&root->anon_dev); 1383 if (ret) 1384 goto fail; 1385 } else { 1386 root->anon_dev = anon_dev; 1387 } 1388 } 1389 1390 mutex_lock(&root->objectid_mutex); 1391 ret = btrfs_find_highest_objectid(root, 1392 &root->highest_objectid); 1393 if (ret) { 1394 mutex_unlock(&root->objectid_mutex); 1395 goto fail; 1396 } 1397 1398 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1399 1400 mutex_unlock(&root->objectid_mutex); 1401 1402 return 0; 1403 fail: 1404 /* The caller is responsible to call btrfs_free_fs_root */ 1405 return ret; 1406 } 1407 1408 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1409 u64 root_id) 1410 { 1411 struct btrfs_root *root; 1412 1413 spin_lock(&fs_info->fs_roots_radix_lock); 1414 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1415 (unsigned long)root_id); 1416 if (root) 1417 root = btrfs_grab_root(root); 1418 spin_unlock(&fs_info->fs_roots_radix_lock); 1419 return root; 1420 } 1421 1422 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1423 struct btrfs_root *root) 1424 { 1425 int ret; 1426 1427 ret = radix_tree_preload(GFP_NOFS); 1428 if (ret) 1429 return ret; 1430 1431 spin_lock(&fs_info->fs_roots_radix_lock); 1432 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1433 (unsigned long)root->root_key.objectid, 1434 root); 1435 if (ret == 0) { 1436 btrfs_grab_root(root); 1437 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1438 } 1439 spin_unlock(&fs_info->fs_roots_radix_lock); 1440 radix_tree_preload_end(); 1441 1442 return ret; 1443 } 1444 1445 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1446 { 1447 #ifdef CONFIG_BTRFS_DEBUG 1448 struct btrfs_root *root; 1449 1450 while (!list_empty(&fs_info->allocated_roots)) { 1451 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1452 1453 root = list_first_entry(&fs_info->allocated_roots, 1454 struct btrfs_root, leak_list); 1455 btrfs_err(fs_info, "leaked root %s refcount %d", 1456 btrfs_root_name(root->root_key.objectid, buf), 1457 refcount_read(&root->refs)); 1458 while (refcount_read(&root->refs) > 1) 1459 btrfs_put_root(root); 1460 btrfs_put_root(root); 1461 } 1462 #endif 1463 } 1464 1465 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1466 { 1467 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1468 percpu_counter_destroy(&fs_info->delalloc_bytes); 1469 percpu_counter_destroy(&fs_info->dio_bytes); 1470 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1471 btrfs_free_csum_hash(fs_info); 1472 btrfs_free_stripe_hash_table(fs_info); 1473 btrfs_free_ref_cache(fs_info); 1474 kfree(fs_info->balance_ctl); 1475 kfree(fs_info->delayed_root); 1476 btrfs_put_root(fs_info->extent_root); 1477 btrfs_put_root(fs_info->tree_root); 1478 btrfs_put_root(fs_info->chunk_root); 1479 btrfs_put_root(fs_info->dev_root); 1480 btrfs_put_root(fs_info->csum_root); 1481 btrfs_put_root(fs_info->quota_root); 1482 btrfs_put_root(fs_info->uuid_root); 1483 btrfs_put_root(fs_info->free_space_root); 1484 btrfs_put_root(fs_info->fs_root); 1485 btrfs_put_root(fs_info->data_reloc_root); 1486 btrfs_check_leaked_roots(fs_info); 1487 btrfs_extent_buffer_leak_debug_check(fs_info); 1488 kfree(fs_info->super_copy); 1489 kfree(fs_info->super_for_commit); 1490 kvfree(fs_info); 1491 } 1492 1493 1494 /* 1495 * Get an in-memory reference of a root structure. 1496 * 1497 * For essential trees like root/extent tree, we grab it from fs_info directly. 1498 * For subvolume trees, we check the cached filesystem roots first. If not 1499 * found, then read it from disk and add it to cached fs roots. 1500 * 1501 * Caller should release the root by calling btrfs_put_root() after the usage. 1502 * 1503 * NOTE: Reloc and log trees can't be read by this function as they share the 1504 * same root objectid. 1505 * 1506 * @objectid: root id 1507 * @anon_dev: preallocated anonymous block device number for new roots, 1508 * pass 0 for new allocation. 1509 * @check_ref: whether to check root item references, If true, return -ENOENT 1510 * for orphan roots 1511 */ 1512 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1513 u64 objectid, dev_t anon_dev, 1514 bool check_ref) 1515 { 1516 struct btrfs_root *root; 1517 struct btrfs_path *path; 1518 struct btrfs_key key; 1519 int ret; 1520 1521 if (objectid == BTRFS_ROOT_TREE_OBJECTID) 1522 return btrfs_grab_root(fs_info->tree_root); 1523 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 1524 return btrfs_grab_root(fs_info->extent_root); 1525 if (objectid == BTRFS_CHUNK_TREE_OBJECTID) 1526 return btrfs_grab_root(fs_info->chunk_root); 1527 if (objectid == BTRFS_DEV_TREE_OBJECTID) 1528 return btrfs_grab_root(fs_info->dev_root); 1529 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 1530 return btrfs_grab_root(fs_info->csum_root); 1531 if (objectid == BTRFS_QUOTA_TREE_OBJECTID) 1532 return btrfs_grab_root(fs_info->quota_root) ? 1533 fs_info->quota_root : ERR_PTR(-ENOENT); 1534 if (objectid == BTRFS_UUID_TREE_OBJECTID) 1535 return btrfs_grab_root(fs_info->uuid_root) ? 1536 fs_info->uuid_root : ERR_PTR(-ENOENT); 1537 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1538 return btrfs_grab_root(fs_info->free_space_root) ? 1539 fs_info->free_space_root : ERR_PTR(-ENOENT); 1540 again: 1541 root = btrfs_lookup_fs_root(fs_info, objectid); 1542 if (root) { 1543 /* Shouldn't get preallocated anon_dev for cached roots */ 1544 ASSERT(!anon_dev); 1545 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1546 btrfs_put_root(root); 1547 return ERR_PTR(-ENOENT); 1548 } 1549 return root; 1550 } 1551 1552 key.objectid = objectid; 1553 key.type = BTRFS_ROOT_ITEM_KEY; 1554 key.offset = (u64)-1; 1555 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1556 if (IS_ERR(root)) 1557 return root; 1558 1559 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1560 ret = -ENOENT; 1561 goto fail; 1562 } 1563 1564 ret = btrfs_init_fs_root(root, anon_dev); 1565 if (ret) 1566 goto fail; 1567 1568 path = btrfs_alloc_path(); 1569 if (!path) { 1570 ret = -ENOMEM; 1571 goto fail; 1572 } 1573 key.objectid = BTRFS_ORPHAN_OBJECTID; 1574 key.type = BTRFS_ORPHAN_ITEM_KEY; 1575 key.offset = objectid; 1576 1577 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1578 btrfs_free_path(path); 1579 if (ret < 0) 1580 goto fail; 1581 if (ret == 0) 1582 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1583 1584 ret = btrfs_insert_fs_root(fs_info, root); 1585 if (ret) { 1586 btrfs_put_root(root); 1587 if (ret == -EEXIST) 1588 goto again; 1589 goto fail; 1590 } 1591 return root; 1592 fail: 1593 btrfs_put_root(root); 1594 return ERR_PTR(ret); 1595 } 1596 1597 /* 1598 * Get in-memory reference of a root structure 1599 * 1600 * @objectid: tree objectid 1601 * @check_ref: if set, verify that the tree exists and the item has at least 1602 * one reference 1603 */ 1604 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1605 u64 objectid, bool check_ref) 1606 { 1607 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1608 } 1609 1610 /* 1611 * Get in-memory reference of a root structure, created as new, optionally pass 1612 * the anonymous block device id 1613 * 1614 * @objectid: tree objectid 1615 * @anon_dev: if zero, allocate a new anonymous block device or use the 1616 * parameter value 1617 */ 1618 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1619 u64 objectid, dev_t anon_dev) 1620 { 1621 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1622 } 1623 1624 /* 1625 * called by the kthread helper functions to finally call the bio end_io 1626 * functions. This is where read checksum verification actually happens 1627 */ 1628 static void end_workqueue_fn(struct btrfs_work *work) 1629 { 1630 struct bio *bio; 1631 struct btrfs_end_io_wq *end_io_wq; 1632 1633 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1634 bio = end_io_wq->bio; 1635 1636 bio->bi_status = end_io_wq->status; 1637 bio->bi_private = end_io_wq->private; 1638 bio->bi_end_io = end_io_wq->end_io; 1639 bio_endio(bio); 1640 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1641 } 1642 1643 static int cleaner_kthread(void *arg) 1644 { 1645 struct btrfs_root *root = arg; 1646 struct btrfs_fs_info *fs_info = root->fs_info; 1647 int again; 1648 1649 while (1) { 1650 again = 0; 1651 1652 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1653 1654 /* Make the cleaner go to sleep early. */ 1655 if (btrfs_need_cleaner_sleep(fs_info)) 1656 goto sleep; 1657 1658 /* 1659 * Do not do anything if we might cause open_ctree() to block 1660 * before we have finished mounting the filesystem. 1661 */ 1662 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1663 goto sleep; 1664 1665 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1666 goto sleep; 1667 1668 /* 1669 * Avoid the problem that we change the status of the fs 1670 * during the above check and trylock. 1671 */ 1672 if (btrfs_need_cleaner_sleep(fs_info)) { 1673 mutex_unlock(&fs_info->cleaner_mutex); 1674 goto sleep; 1675 } 1676 1677 btrfs_run_delayed_iputs(fs_info); 1678 1679 again = btrfs_clean_one_deleted_snapshot(root); 1680 mutex_unlock(&fs_info->cleaner_mutex); 1681 1682 /* 1683 * The defragger has dealt with the R/O remount and umount, 1684 * needn't do anything special here. 1685 */ 1686 btrfs_run_defrag_inodes(fs_info); 1687 1688 /* 1689 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1690 * with relocation (btrfs_relocate_chunk) and relocation 1691 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1692 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1693 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1694 * unused block groups. 1695 */ 1696 btrfs_delete_unused_bgs(fs_info); 1697 sleep: 1698 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1699 if (kthread_should_park()) 1700 kthread_parkme(); 1701 if (kthread_should_stop()) 1702 return 0; 1703 if (!again) { 1704 set_current_state(TASK_INTERRUPTIBLE); 1705 schedule(); 1706 __set_current_state(TASK_RUNNING); 1707 } 1708 } 1709 } 1710 1711 static int transaction_kthread(void *arg) 1712 { 1713 struct btrfs_root *root = arg; 1714 struct btrfs_fs_info *fs_info = root->fs_info; 1715 struct btrfs_trans_handle *trans; 1716 struct btrfs_transaction *cur; 1717 u64 transid; 1718 time64_t now; 1719 unsigned long delay; 1720 bool cannot_commit; 1721 1722 do { 1723 cannot_commit = false; 1724 delay = HZ * fs_info->commit_interval; 1725 mutex_lock(&fs_info->transaction_kthread_mutex); 1726 1727 spin_lock(&fs_info->trans_lock); 1728 cur = fs_info->running_transaction; 1729 if (!cur) { 1730 spin_unlock(&fs_info->trans_lock); 1731 goto sleep; 1732 } 1733 1734 now = ktime_get_seconds(); 1735 if (cur->state < TRANS_STATE_COMMIT_START && 1736 (now < cur->start_time || 1737 now - cur->start_time < fs_info->commit_interval)) { 1738 spin_unlock(&fs_info->trans_lock); 1739 delay = HZ * 5; 1740 goto sleep; 1741 } 1742 transid = cur->transid; 1743 spin_unlock(&fs_info->trans_lock); 1744 1745 /* If the file system is aborted, this will always fail. */ 1746 trans = btrfs_attach_transaction(root); 1747 if (IS_ERR(trans)) { 1748 if (PTR_ERR(trans) != -ENOENT) 1749 cannot_commit = true; 1750 goto sleep; 1751 } 1752 if (transid == trans->transid) { 1753 btrfs_commit_transaction(trans); 1754 } else { 1755 btrfs_end_transaction(trans); 1756 } 1757 sleep: 1758 wake_up_process(fs_info->cleaner_kthread); 1759 mutex_unlock(&fs_info->transaction_kthread_mutex); 1760 1761 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1762 &fs_info->fs_state))) 1763 btrfs_cleanup_transaction(fs_info); 1764 if (!kthread_should_stop() && 1765 (!btrfs_transaction_blocked(fs_info) || 1766 cannot_commit)) 1767 schedule_timeout_interruptible(delay); 1768 } while (!kthread_should_stop()); 1769 return 0; 1770 } 1771 1772 /* 1773 * This will find the highest generation in the array of root backups. The 1774 * index of the highest array is returned, or -EINVAL if we can't find 1775 * anything. 1776 * 1777 * We check to make sure the array is valid by comparing the 1778 * generation of the latest root in the array with the generation 1779 * in the super block. If they don't match we pitch it. 1780 */ 1781 static int find_newest_super_backup(struct btrfs_fs_info *info) 1782 { 1783 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1784 u64 cur; 1785 struct btrfs_root_backup *root_backup; 1786 int i; 1787 1788 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1789 root_backup = info->super_copy->super_roots + i; 1790 cur = btrfs_backup_tree_root_gen(root_backup); 1791 if (cur == newest_gen) 1792 return i; 1793 } 1794 1795 return -EINVAL; 1796 } 1797 1798 /* 1799 * copy all the root pointers into the super backup array. 1800 * this will bump the backup pointer by one when it is 1801 * done 1802 */ 1803 static void backup_super_roots(struct btrfs_fs_info *info) 1804 { 1805 const int next_backup = info->backup_root_index; 1806 struct btrfs_root_backup *root_backup; 1807 1808 root_backup = info->super_for_commit->super_roots + next_backup; 1809 1810 /* 1811 * make sure all of our padding and empty slots get zero filled 1812 * regardless of which ones we use today 1813 */ 1814 memset(root_backup, 0, sizeof(*root_backup)); 1815 1816 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1817 1818 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1819 btrfs_set_backup_tree_root_gen(root_backup, 1820 btrfs_header_generation(info->tree_root->node)); 1821 1822 btrfs_set_backup_tree_root_level(root_backup, 1823 btrfs_header_level(info->tree_root->node)); 1824 1825 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1826 btrfs_set_backup_chunk_root_gen(root_backup, 1827 btrfs_header_generation(info->chunk_root->node)); 1828 btrfs_set_backup_chunk_root_level(root_backup, 1829 btrfs_header_level(info->chunk_root->node)); 1830 1831 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1832 btrfs_set_backup_extent_root_gen(root_backup, 1833 btrfs_header_generation(info->extent_root->node)); 1834 btrfs_set_backup_extent_root_level(root_backup, 1835 btrfs_header_level(info->extent_root->node)); 1836 1837 /* 1838 * we might commit during log recovery, which happens before we set 1839 * the fs_root. Make sure it is valid before we fill it in. 1840 */ 1841 if (info->fs_root && info->fs_root->node) { 1842 btrfs_set_backup_fs_root(root_backup, 1843 info->fs_root->node->start); 1844 btrfs_set_backup_fs_root_gen(root_backup, 1845 btrfs_header_generation(info->fs_root->node)); 1846 btrfs_set_backup_fs_root_level(root_backup, 1847 btrfs_header_level(info->fs_root->node)); 1848 } 1849 1850 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1851 btrfs_set_backup_dev_root_gen(root_backup, 1852 btrfs_header_generation(info->dev_root->node)); 1853 btrfs_set_backup_dev_root_level(root_backup, 1854 btrfs_header_level(info->dev_root->node)); 1855 1856 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1857 btrfs_set_backup_csum_root_gen(root_backup, 1858 btrfs_header_generation(info->csum_root->node)); 1859 btrfs_set_backup_csum_root_level(root_backup, 1860 btrfs_header_level(info->csum_root->node)); 1861 1862 btrfs_set_backup_total_bytes(root_backup, 1863 btrfs_super_total_bytes(info->super_copy)); 1864 btrfs_set_backup_bytes_used(root_backup, 1865 btrfs_super_bytes_used(info->super_copy)); 1866 btrfs_set_backup_num_devices(root_backup, 1867 btrfs_super_num_devices(info->super_copy)); 1868 1869 /* 1870 * if we don't copy this out to the super_copy, it won't get remembered 1871 * for the next commit 1872 */ 1873 memcpy(&info->super_copy->super_roots, 1874 &info->super_for_commit->super_roots, 1875 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1876 } 1877 1878 /* 1879 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 1880 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1881 * 1882 * fs_info - filesystem whose backup roots need to be read 1883 * priority - priority of backup root required 1884 * 1885 * Returns backup root index on success and -EINVAL otherwise. 1886 */ 1887 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1888 { 1889 int backup_index = find_newest_super_backup(fs_info); 1890 struct btrfs_super_block *super = fs_info->super_copy; 1891 struct btrfs_root_backup *root_backup; 1892 1893 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1894 if (priority == 0) 1895 return backup_index; 1896 1897 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1898 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1899 } else { 1900 return -EINVAL; 1901 } 1902 1903 root_backup = super->super_roots + backup_index; 1904 1905 btrfs_set_super_generation(super, 1906 btrfs_backup_tree_root_gen(root_backup)); 1907 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1908 btrfs_set_super_root_level(super, 1909 btrfs_backup_tree_root_level(root_backup)); 1910 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1911 1912 /* 1913 * Fixme: the total bytes and num_devices need to match or we should 1914 * need a fsck 1915 */ 1916 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1917 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1918 1919 return backup_index; 1920 } 1921 1922 /* helper to cleanup workers */ 1923 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1924 { 1925 btrfs_destroy_workqueue(fs_info->fixup_workers); 1926 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1927 btrfs_destroy_workqueue(fs_info->workers); 1928 btrfs_destroy_workqueue(fs_info->endio_workers); 1929 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 1930 btrfs_destroy_workqueue(fs_info->rmw_workers); 1931 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1932 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1933 btrfs_destroy_workqueue(fs_info->delayed_workers); 1934 btrfs_destroy_workqueue(fs_info->caching_workers); 1935 btrfs_destroy_workqueue(fs_info->readahead_workers); 1936 btrfs_destroy_workqueue(fs_info->flush_workers); 1937 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1938 if (fs_info->discard_ctl.discard_workers) 1939 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1940 /* 1941 * Now that all other work queues are destroyed, we can safely destroy 1942 * the queues used for metadata I/O, since tasks from those other work 1943 * queues can do metadata I/O operations. 1944 */ 1945 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 1946 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 1947 } 1948 1949 static void free_root_extent_buffers(struct btrfs_root *root) 1950 { 1951 if (root) { 1952 free_extent_buffer(root->node); 1953 free_extent_buffer(root->commit_root); 1954 root->node = NULL; 1955 root->commit_root = NULL; 1956 } 1957 } 1958 1959 /* helper to cleanup tree roots */ 1960 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1961 { 1962 free_root_extent_buffers(info->tree_root); 1963 1964 free_root_extent_buffers(info->dev_root); 1965 free_root_extent_buffers(info->extent_root); 1966 free_root_extent_buffers(info->csum_root); 1967 free_root_extent_buffers(info->quota_root); 1968 free_root_extent_buffers(info->uuid_root); 1969 free_root_extent_buffers(info->fs_root); 1970 free_root_extent_buffers(info->data_reloc_root); 1971 if (free_chunk_root) 1972 free_root_extent_buffers(info->chunk_root); 1973 free_root_extent_buffers(info->free_space_root); 1974 } 1975 1976 void btrfs_put_root(struct btrfs_root *root) 1977 { 1978 if (!root) 1979 return; 1980 1981 if (refcount_dec_and_test(&root->refs)) { 1982 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 1983 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 1984 if (root->anon_dev) 1985 free_anon_bdev(root->anon_dev); 1986 btrfs_drew_lock_destroy(&root->snapshot_lock); 1987 free_root_extent_buffers(root); 1988 kfree(root->free_ino_ctl); 1989 kfree(root->free_ino_pinned); 1990 #ifdef CONFIG_BTRFS_DEBUG 1991 spin_lock(&root->fs_info->fs_roots_radix_lock); 1992 list_del_init(&root->leak_list); 1993 spin_unlock(&root->fs_info->fs_roots_radix_lock); 1994 #endif 1995 kfree(root); 1996 } 1997 } 1998 1999 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2000 { 2001 int ret; 2002 struct btrfs_root *gang[8]; 2003 int i; 2004 2005 while (!list_empty(&fs_info->dead_roots)) { 2006 gang[0] = list_entry(fs_info->dead_roots.next, 2007 struct btrfs_root, root_list); 2008 list_del(&gang[0]->root_list); 2009 2010 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2011 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2012 btrfs_put_root(gang[0]); 2013 } 2014 2015 while (1) { 2016 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2017 (void **)gang, 0, 2018 ARRAY_SIZE(gang)); 2019 if (!ret) 2020 break; 2021 for (i = 0; i < ret; i++) 2022 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2023 } 2024 } 2025 2026 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2027 { 2028 mutex_init(&fs_info->scrub_lock); 2029 atomic_set(&fs_info->scrubs_running, 0); 2030 atomic_set(&fs_info->scrub_pause_req, 0); 2031 atomic_set(&fs_info->scrubs_paused, 0); 2032 atomic_set(&fs_info->scrub_cancel_req, 0); 2033 init_waitqueue_head(&fs_info->scrub_pause_wait); 2034 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2035 } 2036 2037 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2038 { 2039 spin_lock_init(&fs_info->balance_lock); 2040 mutex_init(&fs_info->balance_mutex); 2041 atomic_set(&fs_info->balance_pause_req, 0); 2042 atomic_set(&fs_info->balance_cancel_req, 0); 2043 fs_info->balance_ctl = NULL; 2044 init_waitqueue_head(&fs_info->balance_wait_q); 2045 } 2046 2047 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2048 { 2049 struct inode *inode = fs_info->btree_inode; 2050 2051 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2052 set_nlink(inode, 1); 2053 /* 2054 * we set the i_size on the btree inode to the max possible int. 2055 * the real end of the address space is determined by all of 2056 * the devices in the system 2057 */ 2058 inode->i_size = OFFSET_MAX; 2059 inode->i_mapping->a_ops = &btree_aops; 2060 2061 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2062 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2063 IO_TREE_BTREE_INODE_IO, inode); 2064 BTRFS_I(inode)->io_tree.track_uptodate = false; 2065 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2066 2067 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2068 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2069 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2070 btrfs_insert_inode_hash(inode); 2071 } 2072 2073 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2074 { 2075 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2076 init_rwsem(&fs_info->dev_replace.rwsem); 2077 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2078 } 2079 2080 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2081 { 2082 spin_lock_init(&fs_info->qgroup_lock); 2083 mutex_init(&fs_info->qgroup_ioctl_lock); 2084 fs_info->qgroup_tree = RB_ROOT; 2085 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2086 fs_info->qgroup_seq = 1; 2087 fs_info->qgroup_ulist = NULL; 2088 fs_info->qgroup_rescan_running = false; 2089 mutex_init(&fs_info->qgroup_rescan_lock); 2090 } 2091 2092 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2093 struct btrfs_fs_devices *fs_devices) 2094 { 2095 u32 max_active = fs_info->thread_pool_size; 2096 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2097 2098 fs_info->workers = 2099 btrfs_alloc_workqueue(fs_info, "worker", 2100 flags | WQ_HIGHPRI, max_active, 16); 2101 2102 fs_info->delalloc_workers = 2103 btrfs_alloc_workqueue(fs_info, "delalloc", 2104 flags, max_active, 2); 2105 2106 fs_info->flush_workers = 2107 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2108 flags, max_active, 0); 2109 2110 fs_info->caching_workers = 2111 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2112 2113 fs_info->fixup_workers = 2114 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2115 2116 /* 2117 * endios are largely parallel and should have a very 2118 * low idle thresh 2119 */ 2120 fs_info->endio_workers = 2121 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2122 fs_info->endio_meta_workers = 2123 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2124 max_active, 4); 2125 fs_info->endio_meta_write_workers = 2126 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2127 max_active, 2); 2128 fs_info->endio_raid56_workers = 2129 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2130 max_active, 4); 2131 fs_info->rmw_workers = 2132 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2133 fs_info->endio_write_workers = 2134 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2135 max_active, 2); 2136 fs_info->endio_freespace_worker = 2137 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2138 max_active, 0); 2139 fs_info->delayed_workers = 2140 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2141 max_active, 0); 2142 fs_info->readahead_workers = 2143 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2144 max_active, 2); 2145 fs_info->qgroup_rescan_workers = 2146 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2147 fs_info->discard_ctl.discard_workers = 2148 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2149 2150 if (!(fs_info->workers && fs_info->delalloc_workers && 2151 fs_info->flush_workers && 2152 fs_info->endio_workers && fs_info->endio_meta_workers && 2153 fs_info->endio_meta_write_workers && 2154 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2155 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2156 fs_info->caching_workers && fs_info->readahead_workers && 2157 fs_info->fixup_workers && fs_info->delayed_workers && 2158 fs_info->qgroup_rescan_workers && 2159 fs_info->discard_ctl.discard_workers)) { 2160 return -ENOMEM; 2161 } 2162 2163 return 0; 2164 } 2165 2166 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2167 { 2168 struct crypto_shash *csum_shash; 2169 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2170 2171 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2172 2173 if (IS_ERR(csum_shash)) { 2174 btrfs_err(fs_info, "error allocating %s hash for checksum", 2175 csum_driver); 2176 return PTR_ERR(csum_shash); 2177 } 2178 2179 fs_info->csum_shash = csum_shash; 2180 2181 return 0; 2182 } 2183 2184 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2185 struct btrfs_fs_devices *fs_devices) 2186 { 2187 int ret; 2188 struct btrfs_root *log_tree_root; 2189 struct btrfs_super_block *disk_super = fs_info->super_copy; 2190 u64 bytenr = btrfs_super_log_root(disk_super); 2191 int level = btrfs_super_log_root_level(disk_super); 2192 2193 if (fs_devices->rw_devices == 0) { 2194 btrfs_warn(fs_info, "log replay required on RO media"); 2195 return -EIO; 2196 } 2197 2198 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2199 GFP_KERNEL); 2200 if (!log_tree_root) 2201 return -ENOMEM; 2202 2203 log_tree_root->node = read_tree_block(fs_info, bytenr, 2204 fs_info->generation + 1, 2205 level, NULL); 2206 if (IS_ERR(log_tree_root->node)) { 2207 btrfs_warn(fs_info, "failed to read log tree"); 2208 ret = PTR_ERR(log_tree_root->node); 2209 log_tree_root->node = NULL; 2210 btrfs_put_root(log_tree_root); 2211 return ret; 2212 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2213 btrfs_err(fs_info, "failed to read log tree"); 2214 btrfs_put_root(log_tree_root); 2215 return -EIO; 2216 } 2217 /* returns with log_tree_root freed on success */ 2218 ret = btrfs_recover_log_trees(log_tree_root); 2219 if (ret) { 2220 btrfs_handle_fs_error(fs_info, ret, 2221 "Failed to recover log tree"); 2222 btrfs_put_root(log_tree_root); 2223 return ret; 2224 } 2225 2226 if (sb_rdonly(fs_info->sb)) { 2227 ret = btrfs_commit_super(fs_info); 2228 if (ret) 2229 return ret; 2230 } 2231 2232 return 0; 2233 } 2234 2235 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2236 { 2237 struct btrfs_root *tree_root = fs_info->tree_root; 2238 struct btrfs_root *root; 2239 struct btrfs_key location; 2240 int ret; 2241 2242 BUG_ON(!fs_info->tree_root); 2243 2244 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2245 location.type = BTRFS_ROOT_ITEM_KEY; 2246 location.offset = 0; 2247 2248 root = btrfs_read_tree_root(tree_root, &location); 2249 if (IS_ERR(root)) { 2250 ret = PTR_ERR(root); 2251 goto out; 2252 } 2253 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2254 fs_info->extent_root = root; 2255 2256 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2257 root = btrfs_read_tree_root(tree_root, &location); 2258 if (IS_ERR(root)) { 2259 ret = PTR_ERR(root); 2260 goto out; 2261 } 2262 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2263 fs_info->dev_root = root; 2264 btrfs_init_devices_late(fs_info); 2265 2266 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2267 root = btrfs_read_tree_root(tree_root, &location); 2268 if (IS_ERR(root)) { 2269 ret = PTR_ERR(root); 2270 goto out; 2271 } 2272 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2273 fs_info->csum_root = root; 2274 2275 /* 2276 * This tree can share blocks with some other fs tree during relocation 2277 * and we need a proper setup by btrfs_get_fs_root 2278 */ 2279 root = btrfs_get_fs_root(tree_root->fs_info, 2280 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2281 if (IS_ERR(root)) { 2282 ret = PTR_ERR(root); 2283 goto out; 2284 } 2285 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2286 fs_info->data_reloc_root = root; 2287 2288 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2289 root = btrfs_read_tree_root(tree_root, &location); 2290 if (!IS_ERR(root)) { 2291 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2292 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2293 fs_info->quota_root = root; 2294 } 2295 2296 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2297 root = btrfs_read_tree_root(tree_root, &location); 2298 if (IS_ERR(root)) { 2299 ret = PTR_ERR(root); 2300 if (ret != -ENOENT) 2301 goto out; 2302 } else { 2303 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2304 fs_info->uuid_root = root; 2305 } 2306 2307 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2308 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2309 root = btrfs_read_tree_root(tree_root, &location); 2310 if (IS_ERR(root)) { 2311 ret = PTR_ERR(root); 2312 goto out; 2313 } 2314 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2315 fs_info->free_space_root = root; 2316 } 2317 2318 return 0; 2319 out: 2320 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2321 location.objectid, ret); 2322 return ret; 2323 } 2324 2325 /* 2326 * Real super block validation 2327 * NOTE: super csum type and incompat features will not be checked here. 2328 * 2329 * @sb: super block to check 2330 * @mirror_num: the super block number to check its bytenr: 2331 * 0 the primary (1st) sb 2332 * 1, 2 2nd and 3rd backup copy 2333 * -1 skip bytenr check 2334 */ 2335 static int validate_super(struct btrfs_fs_info *fs_info, 2336 struct btrfs_super_block *sb, int mirror_num) 2337 { 2338 u64 nodesize = btrfs_super_nodesize(sb); 2339 u64 sectorsize = btrfs_super_sectorsize(sb); 2340 int ret = 0; 2341 2342 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2343 btrfs_err(fs_info, "no valid FS found"); 2344 ret = -EINVAL; 2345 } 2346 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2347 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2348 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2349 ret = -EINVAL; 2350 } 2351 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2352 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2353 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2354 ret = -EINVAL; 2355 } 2356 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2357 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2358 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2359 ret = -EINVAL; 2360 } 2361 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2362 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2363 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2364 ret = -EINVAL; 2365 } 2366 2367 /* 2368 * Check sectorsize and nodesize first, other check will need it. 2369 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2370 */ 2371 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2372 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2373 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2374 ret = -EINVAL; 2375 } 2376 /* Only PAGE SIZE is supported yet */ 2377 if (sectorsize != PAGE_SIZE) { 2378 btrfs_err(fs_info, 2379 "sectorsize %llu not supported yet, only support %lu", 2380 sectorsize, PAGE_SIZE); 2381 ret = -EINVAL; 2382 } 2383 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2384 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2385 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2386 ret = -EINVAL; 2387 } 2388 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2389 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2390 le32_to_cpu(sb->__unused_leafsize), nodesize); 2391 ret = -EINVAL; 2392 } 2393 2394 /* Root alignment check */ 2395 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2396 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2397 btrfs_super_root(sb)); 2398 ret = -EINVAL; 2399 } 2400 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2401 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2402 btrfs_super_chunk_root(sb)); 2403 ret = -EINVAL; 2404 } 2405 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2406 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2407 btrfs_super_log_root(sb)); 2408 ret = -EINVAL; 2409 } 2410 2411 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2412 BTRFS_FSID_SIZE) != 0) { 2413 btrfs_err(fs_info, 2414 "dev_item UUID does not match metadata fsid: %pU != %pU", 2415 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2416 ret = -EINVAL; 2417 } 2418 2419 /* 2420 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2421 * done later 2422 */ 2423 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2424 btrfs_err(fs_info, "bytes_used is too small %llu", 2425 btrfs_super_bytes_used(sb)); 2426 ret = -EINVAL; 2427 } 2428 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2429 btrfs_err(fs_info, "invalid stripesize %u", 2430 btrfs_super_stripesize(sb)); 2431 ret = -EINVAL; 2432 } 2433 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2434 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2435 btrfs_super_num_devices(sb)); 2436 if (btrfs_super_num_devices(sb) == 0) { 2437 btrfs_err(fs_info, "number of devices is 0"); 2438 ret = -EINVAL; 2439 } 2440 2441 if (mirror_num >= 0 && 2442 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2443 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2444 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2445 ret = -EINVAL; 2446 } 2447 2448 /* 2449 * Obvious sys_chunk_array corruptions, it must hold at least one key 2450 * and one chunk 2451 */ 2452 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2453 btrfs_err(fs_info, "system chunk array too big %u > %u", 2454 btrfs_super_sys_array_size(sb), 2455 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2456 ret = -EINVAL; 2457 } 2458 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2459 + sizeof(struct btrfs_chunk)) { 2460 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2461 btrfs_super_sys_array_size(sb), 2462 sizeof(struct btrfs_disk_key) 2463 + sizeof(struct btrfs_chunk)); 2464 ret = -EINVAL; 2465 } 2466 2467 /* 2468 * The generation is a global counter, we'll trust it more than the others 2469 * but it's still possible that it's the one that's wrong. 2470 */ 2471 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2472 btrfs_warn(fs_info, 2473 "suspicious: generation < chunk_root_generation: %llu < %llu", 2474 btrfs_super_generation(sb), 2475 btrfs_super_chunk_root_generation(sb)); 2476 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2477 && btrfs_super_cache_generation(sb) != (u64)-1) 2478 btrfs_warn(fs_info, 2479 "suspicious: generation < cache_generation: %llu < %llu", 2480 btrfs_super_generation(sb), 2481 btrfs_super_cache_generation(sb)); 2482 2483 return ret; 2484 } 2485 2486 /* 2487 * Validation of super block at mount time. 2488 * Some checks already done early at mount time, like csum type and incompat 2489 * flags will be skipped. 2490 */ 2491 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2492 { 2493 return validate_super(fs_info, fs_info->super_copy, 0); 2494 } 2495 2496 /* 2497 * Validation of super block at write time. 2498 * Some checks like bytenr check will be skipped as their values will be 2499 * overwritten soon. 2500 * Extra checks like csum type and incompat flags will be done here. 2501 */ 2502 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2503 struct btrfs_super_block *sb) 2504 { 2505 int ret; 2506 2507 ret = validate_super(fs_info, sb, -1); 2508 if (ret < 0) 2509 goto out; 2510 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2511 ret = -EUCLEAN; 2512 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2513 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2514 goto out; 2515 } 2516 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2517 ret = -EUCLEAN; 2518 btrfs_err(fs_info, 2519 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2520 btrfs_super_incompat_flags(sb), 2521 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2522 goto out; 2523 } 2524 out: 2525 if (ret < 0) 2526 btrfs_err(fs_info, 2527 "super block corruption detected before writing it to disk"); 2528 return ret; 2529 } 2530 2531 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2532 { 2533 int backup_index = find_newest_super_backup(fs_info); 2534 struct btrfs_super_block *sb = fs_info->super_copy; 2535 struct btrfs_root *tree_root = fs_info->tree_root; 2536 bool handle_error = false; 2537 int ret = 0; 2538 int i; 2539 2540 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2541 u64 generation; 2542 int level; 2543 2544 if (handle_error) { 2545 if (!IS_ERR(tree_root->node)) 2546 free_extent_buffer(tree_root->node); 2547 tree_root->node = NULL; 2548 2549 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2550 break; 2551 2552 free_root_pointers(fs_info, 0); 2553 2554 /* 2555 * Don't use the log in recovery mode, it won't be 2556 * valid 2557 */ 2558 btrfs_set_super_log_root(sb, 0); 2559 2560 /* We can't trust the free space cache either */ 2561 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2562 2563 ret = read_backup_root(fs_info, i); 2564 backup_index = ret; 2565 if (ret < 0) 2566 return ret; 2567 } 2568 generation = btrfs_super_generation(sb); 2569 level = btrfs_super_root_level(sb); 2570 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb), 2571 generation, level, NULL); 2572 if (IS_ERR(tree_root->node)) { 2573 handle_error = true; 2574 ret = PTR_ERR(tree_root->node); 2575 tree_root->node = NULL; 2576 btrfs_warn(fs_info, "couldn't read tree root"); 2577 continue; 2578 2579 } else if (!extent_buffer_uptodate(tree_root->node)) { 2580 handle_error = true; 2581 ret = -EIO; 2582 btrfs_warn(fs_info, "error while reading tree root"); 2583 continue; 2584 } 2585 2586 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2587 tree_root->commit_root = btrfs_root_node(tree_root); 2588 btrfs_set_root_refs(&tree_root->root_item, 1); 2589 2590 /* 2591 * No need to hold btrfs_root::objectid_mutex since the fs 2592 * hasn't been fully initialised and we are the only user 2593 */ 2594 ret = btrfs_find_highest_objectid(tree_root, 2595 &tree_root->highest_objectid); 2596 if (ret < 0) { 2597 handle_error = true; 2598 continue; 2599 } 2600 2601 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2602 2603 ret = btrfs_read_roots(fs_info); 2604 if (ret < 0) { 2605 handle_error = true; 2606 continue; 2607 } 2608 2609 /* All successful */ 2610 fs_info->generation = generation; 2611 fs_info->last_trans_committed = generation; 2612 2613 /* Always begin writing backup roots after the one being used */ 2614 if (backup_index < 0) { 2615 fs_info->backup_root_index = 0; 2616 } else { 2617 fs_info->backup_root_index = backup_index + 1; 2618 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2619 } 2620 break; 2621 } 2622 2623 return ret; 2624 } 2625 2626 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2627 { 2628 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2629 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2630 INIT_LIST_HEAD(&fs_info->trans_list); 2631 INIT_LIST_HEAD(&fs_info->dead_roots); 2632 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2633 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2634 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2635 spin_lock_init(&fs_info->delalloc_root_lock); 2636 spin_lock_init(&fs_info->trans_lock); 2637 spin_lock_init(&fs_info->fs_roots_radix_lock); 2638 spin_lock_init(&fs_info->delayed_iput_lock); 2639 spin_lock_init(&fs_info->defrag_inodes_lock); 2640 spin_lock_init(&fs_info->super_lock); 2641 spin_lock_init(&fs_info->buffer_lock); 2642 spin_lock_init(&fs_info->unused_bgs_lock); 2643 rwlock_init(&fs_info->tree_mod_log_lock); 2644 mutex_init(&fs_info->unused_bg_unpin_mutex); 2645 mutex_init(&fs_info->delete_unused_bgs_mutex); 2646 mutex_init(&fs_info->reloc_mutex); 2647 mutex_init(&fs_info->delalloc_root_mutex); 2648 seqlock_init(&fs_info->profiles_lock); 2649 2650 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2651 INIT_LIST_HEAD(&fs_info->space_info); 2652 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2653 INIT_LIST_HEAD(&fs_info->unused_bgs); 2654 #ifdef CONFIG_BTRFS_DEBUG 2655 INIT_LIST_HEAD(&fs_info->allocated_roots); 2656 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2657 spin_lock_init(&fs_info->eb_leak_lock); 2658 #endif 2659 extent_map_tree_init(&fs_info->mapping_tree); 2660 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2661 BTRFS_BLOCK_RSV_GLOBAL); 2662 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2663 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2664 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2665 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2666 BTRFS_BLOCK_RSV_DELOPS); 2667 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2668 BTRFS_BLOCK_RSV_DELREFS); 2669 2670 atomic_set(&fs_info->async_delalloc_pages, 0); 2671 atomic_set(&fs_info->defrag_running, 0); 2672 atomic_set(&fs_info->reada_works_cnt, 0); 2673 atomic_set(&fs_info->nr_delayed_iputs, 0); 2674 atomic64_set(&fs_info->tree_mod_seq, 0); 2675 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2676 fs_info->metadata_ratio = 0; 2677 fs_info->defrag_inodes = RB_ROOT; 2678 atomic64_set(&fs_info->free_chunk_space, 0); 2679 fs_info->tree_mod_log = RB_ROOT; 2680 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2681 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2682 /* readahead state */ 2683 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2684 spin_lock_init(&fs_info->reada_lock); 2685 btrfs_init_ref_verify(fs_info); 2686 2687 fs_info->thread_pool_size = min_t(unsigned long, 2688 num_online_cpus() + 2, 8); 2689 2690 INIT_LIST_HEAD(&fs_info->ordered_roots); 2691 spin_lock_init(&fs_info->ordered_root_lock); 2692 2693 btrfs_init_scrub(fs_info); 2694 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2695 fs_info->check_integrity_print_mask = 0; 2696 #endif 2697 btrfs_init_balance(fs_info); 2698 btrfs_init_async_reclaim_work(fs_info); 2699 2700 spin_lock_init(&fs_info->block_group_cache_lock); 2701 fs_info->block_group_cache_tree = RB_ROOT; 2702 fs_info->first_logical_byte = (u64)-1; 2703 2704 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2705 IO_TREE_FS_EXCLUDED_EXTENTS, NULL); 2706 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2707 2708 mutex_init(&fs_info->ordered_operations_mutex); 2709 mutex_init(&fs_info->tree_log_mutex); 2710 mutex_init(&fs_info->chunk_mutex); 2711 mutex_init(&fs_info->transaction_kthread_mutex); 2712 mutex_init(&fs_info->cleaner_mutex); 2713 mutex_init(&fs_info->ro_block_group_mutex); 2714 init_rwsem(&fs_info->commit_root_sem); 2715 init_rwsem(&fs_info->cleanup_work_sem); 2716 init_rwsem(&fs_info->subvol_sem); 2717 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2718 2719 btrfs_init_dev_replace_locks(fs_info); 2720 btrfs_init_qgroup(fs_info); 2721 btrfs_discard_init(fs_info); 2722 2723 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2724 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2725 2726 init_waitqueue_head(&fs_info->transaction_throttle); 2727 init_waitqueue_head(&fs_info->transaction_wait); 2728 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2729 init_waitqueue_head(&fs_info->async_submit_wait); 2730 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2731 2732 /* Usable values until the real ones are cached from the superblock */ 2733 fs_info->nodesize = 4096; 2734 fs_info->sectorsize = 4096; 2735 fs_info->stripesize = 4096; 2736 2737 spin_lock_init(&fs_info->swapfile_pins_lock); 2738 fs_info->swapfile_pins = RB_ROOT; 2739 2740 fs_info->send_in_progress = 0; 2741 } 2742 2743 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2744 { 2745 int ret; 2746 2747 fs_info->sb = sb; 2748 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2749 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2750 2751 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL); 2752 if (ret) 2753 return ret; 2754 2755 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2756 if (ret) 2757 return ret; 2758 2759 fs_info->dirty_metadata_batch = PAGE_SIZE * 2760 (1 + ilog2(nr_cpu_ids)); 2761 2762 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2763 if (ret) 2764 return ret; 2765 2766 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2767 GFP_KERNEL); 2768 if (ret) 2769 return ret; 2770 2771 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2772 GFP_KERNEL); 2773 if (!fs_info->delayed_root) 2774 return -ENOMEM; 2775 btrfs_init_delayed_root(fs_info->delayed_root); 2776 2777 return btrfs_alloc_stripe_hash_table(fs_info); 2778 } 2779 2780 static int btrfs_uuid_rescan_kthread(void *data) 2781 { 2782 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 2783 int ret; 2784 2785 /* 2786 * 1st step is to iterate through the existing UUID tree and 2787 * to delete all entries that contain outdated data. 2788 * 2nd step is to add all missing entries to the UUID tree. 2789 */ 2790 ret = btrfs_uuid_tree_iterate(fs_info); 2791 if (ret < 0) { 2792 if (ret != -EINTR) 2793 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2794 ret); 2795 up(&fs_info->uuid_tree_rescan_sem); 2796 return ret; 2797 } 2798 return btrfs_uuid_scan_kthread(data); 2799 } 2800 2801 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2802 { 2803 struct task_struct *task; 2804 2805 down(&fs_info->uuid_tree_rescan_sem); 2806 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2807 if (IS_ERR(task)) { 2808 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2809 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2810 up(&fs_info->uuid_tree_rescan_sem); 2811 return PTR_ERR(task); 2812 } 2813 2814 return 0; 2815 } 2816 2817 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 2818 char *options) 2819 { 2820 u32 sectorsize; 2821 u32 nodesize; 2822 u32 stripesize; 2823 u64 generation; 2824 u64 features; 2825 u16 csum_type; 2826 struct btrfs_super_block *disk_super; 2827 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2828 struct btrfs_root *tree_root; 2829 struct btrfs_root *chunk_root; 2830 int ret; 2831 int err = -EINVAL; 2832 int clear_free_space_tree = 0; 2833 int level; 2834 2835 ret = init_mount_fs_info(fs_info, sb); 2836 if (ret) { 2837 err = ret; 2838 goto fail; 2839 } 2840 2841 /* These need to be init'ed before we start creating inodes and such. */ 2842 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 2843 GFP_KERNEL); 2844 fs_info->tree_root = tree_root; 2845 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 2846 GFP_KERNEL); 2847 fs_info->chunk_root = chunk_root; 2848 if (!tree_root || !chunk_root) { 2849 err = -ENOMEM; 2850 goto fail; 2851 } 2852 2853 fs_info->btree_inode = new_inode(sb); 2854 if (!fs_info->btree_inode) { 2855 err = -ENOMEM; 2856 goto fail; 2857 } 2858 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2859 btrfs_init_btree_inode(fs_info); 2860 2861 invalidate_bdev(fs_devices->latest_bdev); 2862 2863 /* 2864 * Read super block and check the signature bytes only 2865 */ 2866 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev); 2867 if (IS_ERR(disk_super)) { 2868 err = PTR_ERR(disk_super); 2869 goto fail_alloc; 2870 } 2871 2872 /* 2873 * Verify the type first, if that or the checksum value are 2874 * corrupted, we'll find out 2875 */ 2876 csum_type = btrfs_super_csum_type(disk_super); 2877 if (!btrfs_supported_super_csum(csum_type)) { 2878 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 2879 csum_type); 2880 err = -EINVAL; 2881 btrfs_release_disk_super(disk_super); 2882 goto fail_alloc; 2883 } 2884 2885 ret = btrfs_init_csum_hash(fs_info, csum_type); 2886 if (ret) { 2887 err = ret; 2888 btrfs_release_disk_super(disk_super); 2889 goto fail_alloc; 2890 } 2891 2892 /* 2893 * We want to check superblock checksum, the type is stored inside. 2894 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2895 */ 2896 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) { 2897 btrfs_err(fs_info, "superblock checksum mismatch"); 2898 err = -EINVAL; 2899 btrfs_release_disk_super(disk_super); 2900 goto fail_alloc; 2901 } 2902 2903 /* 2904 * super_copy is zeroed at allocation time and we never touch the 2905 * following bytes up to INFO_SIZE, the checksum is calculated from 2906 * the whole block of INFO_SIZE 2907 */ 2908 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 2909 btrfs_release_disk_super(disk_super); 2910 2911 disk_super = fs_info->super_copy; 2912 2913 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2914 BTRFS_FSID_SIZE)); 2915 2916 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) { 2917 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid, 2918 fs_info->super_copy->metadata_uuid, 2919 BTRFS_FSID_SIZE)); 2920 } 2921 2922 features = btrfs_super_flags(disk_super); 2923 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 2924 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 2925 btrfs_set_super_flags(disk_super, features); 2926 btrfs_info(fs_info, 2927 "found metadata UUID change in progress flag, clearing"); 2928 } 2929 2930 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2931 sizeof(*fs_info->super_for_commit)); 2932 2933 ret = btrfs_validate_mount_super(fs_info); 2934 if (ret) { 2935 btrfs_err(fs_info, "superblock contains fatal errors"); 2936 err = -EINVAL; 2937 goto fail_alloc; 2938 } 2939 2940 if (!btrfs_super_root(disk_super)) 2941 goto fail_alloc; 2942 2943 /* check FS state, whether FS is broken. */ 2944 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2945 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2946 2947 /* 2948 * In the long term, we'll store the compression type in the super 2949 * block, and it'll be used for per file compression control. 2950 */ 2951 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2952 2953 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2954 if (ret) { 2955 err = ret; 2956 goto fail_alloc; 2957 } 2958 2959 features = btrfs_super_incompat_flags(disk_super) & 2960 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2961 if (features) { 2962 btrfs_err(fs_info, 2963 "cannot mount because of unsupported optional features (%llx)", 2964 features); 2965 err = -EINVAL; 2966 goto fail_alloc; 2967 } 2968 2969 features = btrfs_super_incompat_flags(disk_super); 2970 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2971 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2972 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2973 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 2974 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 2975 2976 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2977 btrfs_info(fs_info, "has skinny extents"); 2978 2979 /* 2980 * flag our filesystem as having big metadata blocks if 2981 * they are bigger than the page size 2982 */ 2983 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2984 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2985 btrfs_info(fs_info, 2986 "flagging fs with big metadata feature"); 2987 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2988 } 2989 2990 nodesize = btrfs_super_nodesize(disk_super); 2991 sectorsize = btrfs_super_sectorsize(disk_super); 2992 stripesize = sectorsize; 2993 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2994 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2995 2996 /* Cache block sizes */ 2997 fs_info->nodesize = nodesize; 2998 fs_info->sectorsize = sectorsize; 2999 fs_info->stripesize = stripesize; 3000 3001 /* 3002 * mixed block groups end up with duplicate but slightly offset 3003 * extent buffers for the same range. It leads to corruptions 3004 */ 3005 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3006 (sectorsize != nodesize)) { 3007 btrfs_err(fs_info, 3008 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3009 nodesize, sectorsize); 3010 goto fail_alloc; 3011 } 3012 3013 /* 3014 * Needn't use the lock because there is no other task which will 3015 * update the flag. 3016 */ 3017 btrfs_set_super_incompat_flags(disk_super, features); 3018 3019 features = btrfs_super_compat_ro_flags(disk_super) & 3020 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 3021 if (!sb_rdonly(sb) && features) { 3022 btrfs_err(fs_info, 3023 "cannot mount read-write because of unsupported optional features (%llx)", 3024 features); 3025 err = -EINVAL; 3026 goto fail_alloc; 3027 } 3028 3029 ret = btrfs_init_workqueues(fs_info, fs_devices); 3030 if (ret) { 3031 err = ret; 3032 goto fail_sb_buffer; 3033 } 3034 3035 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3036 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3037 3038 sb->s_blocksize = sectorsize; 3039 sb->s_blocksize_bits = blksize_bits(sectorsize); 3040 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3041 3042 mutex_lock(&fs_info->chunk_mutex); 3043 ret = btrfs_read_sys_array(fs_info); 3044 mutex_unlock(&fs_info->chunk_mutex); 3045 if (ret) { 3046 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3047 goto fail_sb_buffer; 3048 } 3049 3050 generation = btrfs_super_chunk_root_generation(disk_super); 3051 level = btrfs_super_chunk_root_level(disk_super); 3052 3053 chunk_root->node = read_tree_block(fs_info, 3054 btrfs_super_chunk_root(disk_super), 3055 generation, level, NULL); 3056 if (IS_ERR(chunk_root->node) || 3057 !extent_buffer_uptodate(chunk_root->node)) { 3058 btrfs_err(fs_info, "failed to read chunk root"); 3059 if (!IS_ERR(chunk_root->node)) 3060 free_extent_buffer(chunk_root->node); 3061 chunk_root->node = NULL; 3062 goto fail_tree_roots; 3063 } 3064 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 3065 chunk_root->commit_root = btrfs_root_node(chunk_root); 3066 3067 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3068 offsetof(struct btrfs_header, chunk_tree_uuid), 3069 BTRFS_UUID_SIZE); 3070 3071 ret = btrfs_read_chunk_tree(fs_info); 3072 if (ret) { 3073 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3074 goto fail_tree_roots; 3075 } 3076 3077 /* 3078 * Keep the devid that is marked to be the target device for the 3079 * device replace procedure 3080 */ 3081 btrfs_free_extra_devids(fs_devices, 0); 3082 3083 if (!fs_devices->latest_bdev) { 3084 btrfs_err(fs_info, "failed to read devices"); 3085 goto fail_tree_roots; 3086 } 3087 3088 ret = init_tree_roots(fs_info); 3089 if (ret) 3090 goto fail_tree_roots; 3091 3092 /* 3093 * If we have a uuid root and we're not being told to rescan we need to 3094 * check the generation here so we can set the 3095 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3096 * transaction during a balance or the log replay without updating the 3097 * uuid generation, and then if we crash we would rescan the uuid tree, 3098 * even though it was perfectly fine. 3099 */ 3100 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3101 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3102 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3103 3104 ret = btrfs_verify_dev_extents(fs_info); 3105 if (ret) { 3106 btrfs_err(fs_info, 3107 "failed to verify dev extents against chunks: %d", 3108 ret); 3109 goto fail_block_groups; 3110 } 3111 ret = btrfs_recover_balance(fs_info); 3112 if (ret) { 3113 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3114 goto fail_block_groups; 3115 } 3116 3117 ret = btrfs_init_dev_stats(fs_info); 3118 if (ret) { 3119 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3120 goto fail_block_groups; 3121 } 3122 3123 ret = btrfs_init_dev_replace(fs_info); 3124 if (ret) { 3125 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3126 goto fail_block_groups; 3127 } 3128 3129 btrfs_free_extra_devids(fs_devices, 1); 3130 3131 ret = btrfs_sysfs_add_fsid(fs_devices); 3132 if (ret) { 3133 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3134 ret); 3135 goto fail_block_groups; 3136 } 3137 3138 ret = btrfs_sysfs_add_mounted(fs_info); 3139 if (ret) { 3140 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3141 goto fail_fsdev_sysfs; 3142 } 3143 3144 ret = btrfs_init_space_info(fs_info); 3145 if (ret) { 3146 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3147 goto fail_sysfs; 3148 } 3149 3150 ret = btrfs_read_block_groups(fs_info); 3151 if (ret) { 3152 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3153 goto fail_sysfs; 3154 } 3155 3156 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 3157 btrfs_warn(fs_info, 3158 "writable mount is not allowed due to too many missing devices"); 3159 goto fail_sysfs; 3160 } 3161 3162 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3163 "btrfs-cleaner"); 3164 if (IS_ERR(fs_info->cleaner_kthread)) 3165 goto fail_sysfs; 3166 3167 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3168 tree_root, 3169 "btrfs-transaction"); 3170 if (IS_ERR(fs_info->transaction_kthread)) 3171 goto fail_cleaner; 3172 3173 if (!btrfs_test_opt(fs_info, NOSSD) && 3174 !fs_info->fs_devices->rotating) { 3175 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3176 } 3177 3178 /* 3179 * Mount does not set all options immediately, we can do it now and do 3180 * not have to wait for transaction commit 3181 */ 3182 btrfs_apply_pending_changes(fs_info); 3183 3184 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3185 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3186 ret = btrfsic_mount(fs_info, fs_devices, 3187 btrfs_test_opt(fs_info, 3188 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3189 1 : 0, 3190 fs_info->check_integrity_print_mask); 3191 if (ret) 3192 btrfs_warn(fs_info, 3193 "failed to initialize integrity check module: %d", 3194 ret); 3195 } 3196 #endif 3197 ret = btrfs_read_qgroup_config(fs_info); 3198 if (ret) 3199 goto fail_trans_kthread; 3200 3201 if (btrfs_build_ref_tree(fs_info)) 3202 btrfs_err(fs_info, "couldn't build ref tree"); 3203 3204 /* do not make disk changes in broken FS or nologreplay is given */ 3205 if (btrfs_super_log_root(disk_super) != 0 && 3206 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3207 btrfs_info(fs_info, "start tree-log replay"); 3208 ret = btrfs_replay_log(fs_info, fs_devices); 3209 if (ret) { 3210 err = ret; 3211 goto fail_qgroup; 3212 } 3213 } 3214 3215 ret = btrfs_find_orphan_roots(fs_info); 3216 if (ret) 3217 goto fail_qgroup; 3218 3219 if (!sb_rdonly(sb)) { 3220 ret = btrfs_cleanup_fs_roots(fs_info); 3221 if (ret) 3222 goto fail_qgroup; 3223 3224 mutex_lock(&fs_info->cleaner_mutex); 3225 ret = btrfs_recover_relocation(tree_root); 3226 mutex_unlock(&fs_info->cleaner_mutex); 3227 if (ret < 0) { 3228 btrfs_warn(fs_info, "failed to recover relocation: %d", 3229 ret); 3230 err = -EINVAL; 3231 goto fail_qgroup; 3232 } 3233 } 3234 3235 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3236 if (IS_ERR(fs_info->fs_root)) { 3237 err = PTR_ERR(fs_info->fs_root); 3238 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3239 fs_info->fs_root = NULL; 3240 goto fail_qgroup; 3241 } 3242 3243 if (sb_rdonly(sb)) 3244 return 0; 3245 3246 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3247 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3248 clear_free_space_tree = 1; 3249 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3250 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3251 btrfs_warn(fs_info, "free space tree is invalid"); 3252 clear_free_space_tree = 1; 3253 } 3254 3255 if (clear_free_space_tree) { 3256 btrfs_info(fs_info, "clearing free space tree"); 3257 ret = btrfs_clear_free_space_tree(fs_info); 3258 if (ret) { 3259 btrfs_warn(fs_info, 3260 "failed to clear free space tree: %d", ret); 3261 close_ctree(fs_info); 3262 return ret; 3263 } 3264 } 3265 3266 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3267 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3268 btrfs_info(fs_info, "creating free space tree"); 3269 ret = btrfs_create_free_space_tree(fs_info); 3270 if (ret) { 3271 btrfs_warn(fs_info, 3272 "failed to create free space tree: %d", ret); 3273 close_ctree(fs_info); 3274 return ret; 3275 } 3276 } 3277 3278 down_read(&fs_info->cleanup_work_sem); 3279 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3280 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3281 up_read(&fs_info->cleanup_work_sem); 3282 close_ctree(fs_info); 3283 return ret; 3284 } 3285 up_read(&fs_info->cleanup_work_sem); 3286 3287 ret = btrfs_resume_balance_async(fs_info); 3288 if (ret) { 3289 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3290 close_ctree(fs_info); 3291 return ret; 3292 } 3293 3294 ret = btrfs_resume_dev_replace_async(fs_info); 3295 if (ret) { 3296 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3297 close_ctree(fs_info); 3298 return ret; 3299 } 3300 3301 btrfs_qgroup_rescan_resume(fs_info); 3302 btrfs_discard_resume(fs_info); 3303 3304 if (!fs_info->uuid_root) { 3305 btrfs_info(fs_info, "creating UUID tree"); 3306 ret = btrfs_create_uuid_tree(fs_info); 3307 if (ret) { 3308 btrfs_warn(fs_info, 3309 "failed to create the UUID tree: %d", ret); 3310 close_ctree(fs_info); 3311 return ret; 3312 } 3313 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3314 fs_info->generation != 3315 btrfs_super_uuid_tree_generation(disk_super)) { 3316 btrfs_info(fs_info, "checking UUID tree"); 3317 ret = btrfs_check_uuid_tree(fs_info); 3318 if (ret) { 3319 btrfs_warn(fs_info, 3320 "failed to check the UUID tree: %d", ret); 3321 close_ctree(fs_info); 3322 return ret; 3323 } 3324 } 3325 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3326 3327 /* 3328 * backuproot only affect mount behavior, and if open_ctree succeeded, 3329 * no need to keep the flag 3330 */ 3331 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3332 3333 return 0; 3334 3335 fail_qgroup: 3336 btrfs_free_qgroup_config(fs_info); 3337 fail_trans_kthread: 3338 kthread_stop(fs_info->transaction_kthread); 3339 btrfs_cleanup_transaction(fs_info); 3340 btrfs_free_fs_roots(fs_info); 3341 fail_cleaner: 3342 kthread_stop(fs_info->cleaner_kthread); 3343 3344 /* 3345 * make sure we're done with the btree inode before we stop our 3346 * kthreads 3347 */ 3348 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3349 3350 fail_sysfs: 3351 btrfs_sysfs_remove_mounted(fs_info); 3352 3353 fail_fsdev_sysfs: 3354 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3355 3356 fail_block_groups: 3357 btrfs_put_block_group_cache(fs_info); 3358 3359 fail_tree_roots: 3360 if (fs_info->data_reloc_root) 3361 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3362 free_root_pointers(fs_info, true); 3363 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3364 3365 fail_sb_buffer: 3366 btrfs_stop_all_workers(fs_info); 3367 btrfs_free_block_groups(fs_info); 3368 fail_alloc: 3369 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3370 3371 iput(fs_info->btree_inode); 3372 fail: 3373 btrfs_close_devices(fs_info->fs_devices); 3374 return err; 3375 } 3376 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3377 3378 static void btrfs_end_super_write(struct bio *bio) 3379 { 3380 struct btrfs_device *device = bio->bi_private; 3381 struct bio_vec *bvec; 3382 struct bvec_iter_all iter_all; 3383 struct page *page; 3384 3385 bio_for_each_segment_all(bvec, bio, iter_all) { 3386 page = bvec->bv_page; 3387 3388 if (bio->bi_status) { 3389 btrfs_warn_rl_in_rcu(device->fs_info, 3390 "lost page write due to IO error on %s (%d)", 3391 rcu_str_deref(device->name), 3392 blk_status_to_errno(bio->bi_status)); 3393 ClearPageUptodate(page); 3394 SetPageError(page); 3395 btrfs_dev_stat_inc_and_print(device, 3396 BTRFS_DEV_STAT_WRITE_ERRS); 3397 } else { 3398 SetPageUptodate(page); 3399 } 3400 3401 put_page(page); 3402 unlock_page(page); 3403 } 3404 3405 bio_put(bio); 3406 } 3407 3408 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3409 int copy_num) 3410 { 3411 struct btrfs_super_block *super; 3412 struct page *page; 3413 u64 bytenr; 3414 struct address_space *mapping = bdev->bd_inode->i_mapping; 3415 3416 bytenr = btrfs_sb_offset(copy_num); 3417 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3418 return ERR_PTR(-EINVAL); 3419 3420 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3421 if (IS_ERR(page)) 3422 return ERR_CAST(page); 3423 3424 super = page_address(page); 3425 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3426 btrfs_release_disk_super(super); 3427 return ERR_PTR(-ENODATA); 3428 } 3429 3430 if (btrfs_super_bytenr(super) != bytenr) { 3431 btrfs_release_disk_super(super); 3432 return ERR_PTR(-EINVAL); 3433 } 3434 3435 return super; 3436 } 3437 3438 3439 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3440 { 3441 struct btrfs_super_block *super, *latest = NULL; 3442 int i; 3443 u64 transid = 0; 3444 3445 /* we would like to check all the supers, but that would make 3446 * a btrfs mount succeed after a mkfs from a different FS. 3447 * So, we need to add a special mount option to scan for 3448 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3449 */ 3450 for (i = 0; i < 1; i++) { 3451 super = btrfs_read_dev_one_super(bdev, i); 3452 if (IS_ERR(super)) 3453 continue; 3454 3455 if (!latest || btrfs_super_generation(super) > transid) { 3456 if (latest) 3457 btrfs_release_disk_super(super); 3458 3459 latest = super; 3460 transid = btrfs_super_generation(super); 3461 } 3462 } 3463 3464 return super; 3465 } 3466 3467 /* 3468 * Write superblock @sb to the @device. Do not wait for completion, all the 3469 * pages we use for writing are locked. 3470 * 3471 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3472 * the expected device size at commit time. Note that max_mirrors must be 3473 * same for write and wait phases. 3474 * 3475 * Return number of errors when page is not found or submission fails. 3476 */ 3477 static int write_dev_supers(struct btrfs_device *device, 3478 struct btrfs_super_block *sb, int max_mirrors) 3479 { 3480 struct btrfs_fs_info *fs_info = device->fs_info; 3481 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3482 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3483 int i; 3484 int errors = 0; 3485 u64 bytenr; 3486 3487 if (max_mirrors == 0) 3488 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3489 3490 shash->tfm = fs_info->csum_shash; 3491 3492 for (i = 0; i < max_mirrors; i++) { 3493 struct page *page; 3494 struct bio *bio; 3495 struct btrfs_super_block *disk_super; 3496 3497 bytenr = btrfs_sb_offset(i); 3498 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3499 device->commit_total_bytes) 3500 break; 3501 3502 btrfs_set_super_bytenr(sb, bytenr); 3503 3504 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3505 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3506 sb->csum); 3507 3508 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3509 GFP_NOFS); 3510 if (!page) { 3511 btrfs_err(device->fs_info, 3512 "couldn't get super block page for bytenr %llu", 3513 bytenr); 3514 errors++; 3515 continue; 3516 } 3517 3518 /* Bump the refcount for wait_dev_supers() */ 3519 get_page(page); 3520 3521 disk_super = page_address(page); 3522 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3523 3524 /* 3525 * Directly use bios here instead of relying on the page cache 3526 * to do I/O, so we don't lose the ability to do integrity 3527 * checking. 3528 */ 3529 bio = bio_alloc(GFP_NOFS, 1); 3530 bio_set_dev(bio, device->bdev); 3531 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3532 bio->bi_private = device; 3533 bio->bi_end_io = btrfs_end_super_write; 3534 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 3535 offset_in_page(bytenr)); 3536 3537 /* 3538 * We FUA only the first super block. The others we allow to 3539 * go down lazy and there's a short window where the on-disk 3540 * copies might still contain the older version. 3541 */ 3542 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO; 3543 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3544 bio->bi_opf |= REQ_FUA; 3545 3546 btrfsic_submit_bio(bio); 3547 } 3548 return errors < i ? 0 : -1; 3549 } 3550 3551 /* 3552 * Wait for write completion of superblocks done by write_dev_supers, 3553 * @max_mirrors same for write and wait phases. 3554 * 3555 * Return number of errors when page is not found or not marked up to 3556 * date. 3557 */ 3558 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3559 { 3560 int i; 3561 int errors = 0; 3562 bool primary_failed = false; 3563 u64 bytenr; 3564 3565 if (max_mirrors == 0) 3566 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3567 3568 for (i = 0; i < max_mirrors; i++) { 3569 struct page *page; 3570 3571 bytenr = btrfs_sb_offset(i); 3572 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3573 device->commit_total_bytes) 3574 break; 3575 3576 page = find_get_page(device->bdev->bd_inode->i_mapping, 3577 bytenr >> PAGE_SHIFT); 3578 if (!page) { 3579 errors++; 3580 if (i == 0) 3581 primary_failed = true; 3582 continue; 3583 } 3584 /* Page is submitted locked and unlocked once the IO completes */ 3585 wait_on_page_locked(page); 3586 if (PageError(page)) { 3587 errors++; 3588 if (i == 0) 3589 primary_failed = true; 3590 } 3591 3592 /* Drop our reference */ 3593 put_page(page); 3594 3595 /* Drop the reference from the writing run */ 3596 put_page(page); 3597 } 3598 3599 /* log error, force error return */ 3600 if (primary_failed) { 3601 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3602 device->devid); 3603 return -1; 3604 } 3605 3606 return errors < i ? 0 : -1; 3607 } 3608 3609 /* 3610 * endio for the write_dev_flush, this will wake anyone waiting 3611 * for the barrier when it is done 3612 */ 3613 static void btrfs_end_empty_barrier(struct bio *bio) 3614 { 3615 complete(bio->bi_private); 3616 } 3617 3618 /* 3619 * Submit a flush request to the device if it supports it. Error handling is 3620 * done in the waiting counterpart. 3621 */ 3622 static void write_dev_flush(struct btrfs_device *device) 3623 { 3624 struct request_queue *q = bdev_get_queue(device->bdev); 3625 struct bio *bio = device->flush_bio; 3626 3627 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3628 return; 3629 3630 bio_reset(bio); 3631 bio->bi_end_io = btrfs_end_empty_barrier; 3632 bio_set_dev(bio, device->bdev); 3633 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3634 init_completion(&device->flush_wait); 3635 bio->bi_private = &device->flush_wait; 3636 3637 btrfsic_submit_bio(bio); 3638 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3639 } 3640 3641 /* 3642 * If the flush bio has been submitted by write_dev_flush, wait for it. 3643 */ 3644 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3645 { 3646 struct bio *bio = device->flush_bio; 3647 3648 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3649 return BLK_STS_OK; 3650 3651 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3652 wait_for_completion_io(&device->flush_wait); 3653 3654 return bio->bi_status; 3655 } 3656 3657 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3658 { 3659 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3660 return -EIO; 3661 return 0; 3662 } 3663 3664 /* 3665 * send an empty flush down to each device in parallel, 3666 * then wait for them 3667 */ 3668 static int barrier_all_devices(struct btrfs_fs_info *info) 3669 { 3670 struct list_head *head; 3671 struct btrfs_device *dev; 3672 int errors_wait = 0; 3673 blk_status_t ret; 3674 3675 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3676 /* send down all the barriers */ 3677 head = &info->fs_devices->devices; 3678 list_for_each_entry(dev, head, dev_list) { 3679 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3680 continue; 3681 if (!dev->bdev) 3682 continue; 3683 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3684 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3685 continue; 3686 3687 write_dev_flush(dev); 3688 dev->last_flush_error = BLK_STS_OK; 3689 } 3690 3691 /* wait for all the barriers */ 3692 list_for_each_entry(dev, head, dev_list) { 3693 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3694 continue; 3695 if (!dev->bdev) { 3696 errors_wait++; 3697 continue; 3698 } 3699 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3700 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3701 continue; 3702 3703 ret = wait_dev_flush(dev); 3704 if (ret) { 3705 dev->last_flush_error = ret; 3706 btrfs_dev_stat_inc_and_print(dev, 3707 BTRFS_DEV_STAT_FLUSH_ERRS); 3708 errors_wait++; 3709 } 3710 } 3711 3712 if (errors_wait) { 3713 /* 3714 * At some point we need the status of all disks 3715 * to arrive at the volume status. So error checking 3716 * is being pushed to a separate loop. 3717 */ 3718 return check_barrier_error(info); 3719 } 3720 return 0; 3721 } 3722 3723 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3724 { 3725 int raid_type; 3726 int min_tolerated = INT_MAX; 3727 3728 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3729 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3730 min_tolerated = min_t(int, min_tolerated, 3731 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3732 tolerated_failures); 3733 3734 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3735 if (raid_type == BTRFS_RAID_SINGLE) 3736 continue; 3737 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3738 continue; 3739 min_tolerated = min_t(int, min_tolerated, 3740 btrfs_raid_array[raid_type]. 3741 tolerated_failures); 3742 } 3743 3744 if (min_tolerated == INT_MAX) { 3745 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3746 min_tolerated = 0; 3747 } 3748 3749 return min_tolerated; 3750 } 3751 3752 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3753 { 3754 struct list_head *head; 3755 struct btrfs_device *dev; 3756 struct btrfs_super_block *sb; 3757 struct btrfs_dev_item *dev_item; 3758 int ret; 3759 int do_barriers; 3760 int max_errors; 3761 int total_errors = 0; 3762 u64 flags; 3763 3764 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3765 3766 /* 3767 * max_mirrors == 0 indicates we're from commit_transaction, 3768 * not from fsync where the tree roots in fs_info have not 3769 * been consistent on disk. 3770 */ 3771 if (max_mirrors == 0) 3772 backup_super_roots(fs_info); 3773 3774 sb = fs_info->super_for_commit; 3775 dev_item = &sb->dev_item; 3776 3777 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3778 head = &fs_info->fs_devices->devices; 3779 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3780 3781 if (do_barriers) { 3782 ret = barrier_all_devices(fs_info); 3783 if (ret) { 3784 mutex_unlock( 3785 &fs_info->fs_devices->device_list_mutex); 3786 btrfs_handle_fs_error(fs_info, ret, 3787 "errors while submitting device barriers."); 3788 return ret; 3789 } 3790 } 3791 3792 list_for_each_entry(dev, head, dev_list) { 3793 if (!dev->bdev) { 3794 total_errors++; 3795 continue; 3796 } 3797 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3798 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3799 continue; 3800 3801 btrfs_set_stack_device_generation(dev_item, 0); 3802 btrfs_set_stack_device_type(dev_item, dev->type); 3803 btrfs_set_stack_device_id(dev_item, dev->devid); 3804 btrfs_set_stack_device_total_bytes(dev_item, 3805 dev->commit_total_bytes); 3806 btrfs_set_stack_device_bytes_used(dev_item, 3807 dev->commit_bytes_used); 3808 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3809 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3810 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3811 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3812 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 3813 BTRFS_FSID_SIZE); 3814 3815 flags = btrfs_super_flags(sb); 3816 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3817 3818 ret = btrfs_validate_write_super(fs_info, sb); 3819 if (ret < 0) { 3820 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3821 btrfs_handle_fs_error(fs_info, -EUCLEAN, 3822 "unexpected superblock corruption detected"); 3823 return -EUCLEAN; 3824 } 3825 3826 ret = write_dev_supers(dev, sb, max_mirrors); 3827 if (ret) 3828 total_errors++; 3829 } 3830 if (total_errors > max_errors) { 3831 btrfs_err(fs_info, "%d errors while writing supers", 3832 total_errors); 3833 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3834 3835 /* FUA is masked off if unsupported and can't be the reason */ 3836 btrfs_handle_fs_error(fs_info, -EIO, 3837 "%d errors while writing supers", 3838 total_errors); 3839 return -EIO; 3840 } 3841 3842 total_errors = 0; 3843 list_for_each_entry(dev, head, dev_list) { 3844 if (!dev->bdev) 3845 continue; 3846 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3847 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3848 continue; 3849 3850 ret = wait_dev_supers(dev, max_mirrors); 3851 if (ret) 3852 total_errors++; 3853 } 3854 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3855 if (total_errors > max_errors) { 3856 btrfs_handle_fs_error(fs_info, -EIO, 3857 "%d errors while writing supers", 3858 total_errors); 3859 return -EIO; 3860 } 3861 return 0; 3862 } 3863 3864 /* Drop a fs root from the radix tree and free it. */ 3865 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3866 struct btrfs_root *root) 3867 { 3868 bool drop_ref = false; 3869 3870 spin_lock(&fs_info->fs_roots_radix_lock); 3871 radix_tree_delete(&fs_info->fs_roots_radix, 3872 (unsigned long)root->root_key.objectid); 3873 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 3874 drop_ref = true; 3875 spin_unlock(&fs_info->fs_roots_radix_lock); 3876 3877 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3878 ASSERT(root->log_root == NULL); 3879 if (root->reloc_root) { 3880 btrfs_put_root(root->reloc_root); 3881 root->reloc_root = NULL; 3882 } 3883 } 3884 3885 if (root->free_ino_pinned) 3886 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3887 if (root->free_ino_ctl) 3888 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3889 if (root->ino_cache_inode) { 3890 iput(root->ino_cache_inode); 3891 root->ino_cache_inode = NULL; 3892 } 3893 if (drop_ref) 3894 btrfs_put_root(root); 3895 } 3896 3897 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3898 { 3899 u64 root_objectid = 0; 3900 struct btrfs_root *gang[8]; 3901 int i = 0; 3902 int err = 0; 3903 unsigned int ret = 0; 3904 3905 while (1) { 3906 spin_lock(&fs_info->fs_roots_radix_lock); 3907 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3908 (void **)gang, root_objectid, 3909 ARRAY_SIZE(gang)); 3910 if (!ret) { 3911 spin_unlock(&fs_info->fs_roots_radix_lock); 3912 break; 3913 } 3914 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3915 3916 for (i = 0; i < ret; i++) { 3917 /* Avoid to grab roots in dead_roots */ 3918 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3919 gang[i] = NULL; 3920 continue; 3921 } 3922 /* grab all the search result for later use */ 3923 gang[i] = btrfs_grab_root(gang[i]); 3924 } 3925 spin_unlock(&fs_info->fs_roots_radix_lock); 3926 3927 for (i = 0; i < ret; i++) { 3928 if (!gang[i]) 3929 continue; 3930 root_objectid = gang[i]->root_key.objectid; 3931 err = btrfs_orphan_cleanup(gang[i]); 3932 if (err) 3933 break; 3934 btrfs_put_root(gang[i]); 3935 } 3936 root_objectid++; 3937 } 3938 3939 /* release the uncleaned roots due to error */ 3940 for (; i < ret; i++) { 3941 if (gang[i]) 3942 btrfs_put_root(gang[i]); 3943 } 3944 return err; 3945 } 3946 3947 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3948 { 3949 struct btrfs_root *root = fs_info->tree_root; 3950 struct btrfs_trans_handle *trans; 3951 3952 mutex_lock(&fs_info->cleaner_mutex); 3953 btrfs_run_delayed_iputs(fs_info); 3954 mutex_unlock(&fs_info->cleaner_mutex); 3955 wake_up_process(fs_info->cleaner_kthread); 3956 3957 /* wait until ongoing cleanup work done */ 3958 down_write(&fs_info->cleanup_work_sem); 3959 up_write(&fs_info->cleanup_work_sem); 3960 3961 trans = btrfs_join_transaction(root); 3962 if (IS_ERR(trans)) 3963 return PTR_ERR(trans); 3964 return btrfs_commit_transaction(trans); 3965 } 3966 3967 void __cold close_ctree(struct btrfs_fs_info *fs_info) 3968 { 3969 int ret; 3970 3971 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3972 /* 3973 * We don't want the cleaner to start new transactions, add more delayed 3974 * iputs, etc. while we're closing. We can't use kthread_stop() yet 3975 * because that frees the task_struct, and the transaction kthread might 3976 * still try to wake up the cleaner. 3977 */ 3978 kthread_park(fs_info->cleaner_kthread); 3979 3980 /* wait for the qgroup rescan worker to stop */ 3981 btrfs_qgroup_wait_for_completion(fs_info, false); 3982 3983 /* wait for the uuid_scan task to finish */ 3984 down(&fs_info->uuid_tree_rescan_sem); 3985 /* avoid complains from lockdep et al., set sem back to initial state */ 3986 up(&fs_info->uuid_tree_rescan_sem); 3987 3988 /* pause restriper - we want to resume on mount */ 3989 btrfs_pause_balance(fs_info); 3990 3991 btrfs_dev_replace_suspend_for_unmount(fs_info); 3992 3993 btrfs_scrub_cancel(fs_info); 3994 3995 /* wait for any defraggers to finish */ 3996 wait_event(fs_info->transaction_wait, 3997 (atomic_read(&fs_info->defrag_running) == 0)); 3998 3999 /* clear out the rbtree of defraggable inodes */ 4000 btrfs_cleanup_defrag_inodes(fs_info); 4001 4002 cancel_work_sync(&fs_info->async_reclaim_work); 4003 cancel_work_sync(&fs_info->async_data_reclaim_work); 4004 4005 /* Cancel or finish ongoing discard work */ 4006 btrfs_discard_cleanup(fs_info); 4007 4008 if (!sb_rdonly(fs_info->sb)) { 4009 /* 4010 * The cleaner kthread is stopped, so do one final pass over 4011 * unused block groups. 4012 */ 4013 btrfs_delete_unused_bgs(fs_info); 4014 4015 /* 4016 * There might be existing delayed inode workers still running 4017 * and holding an empty delayed inode item. We must wait for 4018 * them to complete first because they can create a transaction. 4019 * This happens when someone calls btrfs_balance_delayed_items() 4020 * and then a transaction commit runs the same delayed nodes 4021 * before any delayed worker has done something with the nodes. 4022 * We must wait for any worker here and not at transaction 4023 * commit time since that could cause a deadlock. 4024 * This is a very rare case. 4025 */ 4026 btrfs_flush_workqueue(fs_info->delayed_workers); 4027 4028 ret = btrfs_commit_super(fs_info); 4029 if (ret) 4030 btrfs_err(fs_info, "commit super ret %d", ret); 4031 } 4032 4033 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 4034 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 4035 btrfs_error_commit_super(fs_info); 4036 4037 kthread_stop(fs_info->transaction_kthread); 4038 kthread_stop(fs_info->cleaner_kthread); 4039 4040 ASSERT(list_empty(&fs_info->delayed_iputs)); 4041 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4042 4043 if (btrfs_check_quota_leak(fs_info)) { 4044 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4045 btrfs_err(fs_info, "qgroup reserved space leaked"); 4046 } 4047 4048 btrfs_free_qgroup_config(fs_info); 4049 ASSERT(list_empty(&fs_info->delalloc_roots)); 4050 4051 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4052 btrfs_info(fs_info, "at unmount delalloc count %lld", 4053 percpu_counter_sum(&fs_info->delalloc_bytes)); 4054 } 4055 4056 if (percpu_counter_sum(&fs_info->dio_bytes)) 4057 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4058 percpu_counter_sum(&fs_info->dio_bytes)); 4059 4060 btrfs_sysfs_remove_mounted(fs_info); 4061 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4062 4063 btrfs_put_block_group_cache(fs_info); 4064 4065 /* 4066 * we must make sure there is not any read request to 4067 * submit after we stopping all workers. 4068 */ 4069 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4070 btrfs_stop_all_workers(fs_info); 4071 4072 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4073 free_root_pointers(fs_info, true); 4074 btrfs_free_fs_roots(fs_info); 4075 4076 /* 4077 * We must free the block groups after dropping the fs_roots as we could 4078 * have had an IO error and have left over tree log blocks that aren't 4079 * cleaned up until the fs roots are freed. This makes the block group 4080 * accounting appear to be wrong because there's pending reserved bytes, 4081 * so make sure we do the block group cleanup afterwards. 4082 */ 4083 btrfs_free_block_groups(fs_info); 4084 4085 iput(fs_info->btree_inode); 4086 4087 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4088 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4089 btrfsic_unmount(fs_info->fs_devices); 4090 #endif 4091 4092 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4093 btrfs_close_devices(fs_info->fs_devices); 4094 } 4095 4096 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4097 int atomic) 4098 { 4099 int ret; 4100 struct inode *btree_inode = buf->pages[0]->mapping->host; 4101 4102 ret = extent_buffer_uptodate(buf); 4103 if (!ret) 4104 return ret; 4105 4106 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4107 parent_transid, atomic); 4108 if (ret == -EAGAIN) 4109 return ret; 4110 return !ret; 4111 } 4112 4113 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4114 { 4115 struct btrfs_fs_info *fs_info; 4116 struct btrfs_root *root; 4117 u64 transid = btrfs_header_generation(buf); 4118 int was_dirty; 4119 4120 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4121 /* 4122 * This is a fast path so only do this check if we have sanity tests 4123 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4124 * outside of the sanity tests. 4125 */ 4126 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4127 return; 4128 #endif 4129 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4130 fs_info = root->fs_info; 4131 btrfs_assert_tree_locked(buf); 4132 if (transid != fs_info->generation) 4133 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4134 buf->start, transid, fs_info->generation); 4135 was_dirty = set_extent_buffer_dirty(buf); 4136 if (!was_dirty) 4137 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4138 buf->len, 4139 fs_info->dirty_metadata_batch); 4140 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4141 /* 4142 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4143 * but item data not updated. 4144 * So here we should only check item pointers, not item data. 4145 */ 4146 if (btrfs_header_level(buf) == 0 && 4147 btrfs_check_leaf_relaxed(buf)) { 4148 btrfs_print_leaf(buf); 4149 ASSERT(0); 4150 } 4151 #endif 4152 } 4153 4154 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4155 int flush_delayed) 4156 { 4157 /* 4158 * looks as though older kernels can get into trouble with 4159 * this code, they end up stuck in balance_dirty_pages forever 4160 */ 4161 int ret; 4162 4163 if (current->flags & PF_MEMALLOC) 4164 return; 4165 4166 if (flush_delayed) 4167 btrfs_balance_delayed_items(fs_info); 4168 4169 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4170 BTRFS_DIRTY_METADATA_THRESH, 4171 fs_info->dirty_metadata_batch); 4172 if (ret > 0) { 4173 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4174 } 4175 } 4176 4177 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4178 { 4179 __btrfs_btree_balance_dirty(fs_info, 1); 4180 } 4181 4182 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4183 { 4184 __btrfs_btree_balance_dirty(fs_info, 0); 4185 } 4186 4187 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4188 struct btrfs_key *first_key) 4189 { 4190 return btree_read_extent_buffer_pages(buf, parent_transid, 4191 level, first_key); 4192 } 4193 4194 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4195 { 4196 /* cleanup FS via transaction */ 4197 btrfs_cleanup_transaction(fs_info); 4198 4199 mutex_lock(&fs_info->cleaner_mutex); 4200 btrfs_run_delayed_iputs(fs_info); 4201 mutex_unlock(&fs_info->cleaner_mutex); 4202 4203 down_write(&fs_info->cleanup_work_sem); 4204 up_write(&fs_info->cleanup_work_sem); 4205 } 4206 4207 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4208 { 4209 struct btrfs_root *gang[8]; 4210 u64 root_objectid = 0; 4211 int ret; 4212 4213 spin_lock(&fs_info->fs_roots_radix_lock); 4214 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4215 (void **)gang, root_objectid, 4216 ARRAY_SIZE(gang))) != 0) { 4217 int i; 4218 4219 for (i = 0; i < ret; i++) 4220 gang[i] = btrfs_grab_root(gang[i]); 4221 spin_unlock(&fs_info->fs_roots_radix_lock); 4222 4223 for (i = 0; i < ret; i++) { 4224 if (!gang[i]) 4225 continue; 4226 root_objectid = gang[i]->root_key.objectid; 4227 btrfs_free_log(NULL, gang[i]); 4228 btrfs_put_root(gang[i]); 4229 } 4230 root_objectid++; 4231 spin_lock(&fs_info->fs_roots_radix_lock); 4232 } 4233 spin_unlock(&fs_info->fs_roots_radix_lock); 4234 btrfs_free_log_root_tree(NULL, fs_info); 4235 } 4236 4237 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4238 { 4239 struct btrfs_ordered_extent *ordered; 4240 4241 spin_lock(&root->ordered_extent_lock); 4242 /* 4243 * This will just short circuit the ordered completion stuff which will 4244 * make sure the ordered extent gets properly cleaned up. 4245 */ 4246 list_for_each_entry(ordered, &root->ordered_extents, 4247 root_extent_list) 4248 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4249 spin_unlock(&root->ordered_extent_lock); 4250 } 4251 4252 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4253 { 4254 struct btrfs_root *root; 4255 struct list_head splice; 4256 4257 INIT_LIST_HEAD(&splice); 4258 4259 spin_lock(&fs_info->ordered_root_lock); 4260 list_splice_init(&fs_info->ordered_roots, &splice); 4261 while (!list_empty(&splice)) { 4262 root = list_first_entry(&splice, struct btrfs_root, 4263 ordered_root); 4264 list_move_tail(&root->ordered_root, 4265 &fs_info->ordered_roots); 4266 4267 spin_unlock(&fs_info->ordered_root_lock); 4268 btrfs_destroy_ordered_extents(root); 4269 4270 cond_resched(); 4271 spin_lock(&fs_info->ordered_root_lock); 4272 } 4273 spin_unlock(&fs_info->ordered_root_lock); 4274 4275 /* 4276 * We need this here because if we've been flipped read-only we won't 4277 * get sync() from the umount, so we need to make sure any ordered 4278 * extents that haven't had their dirty pages IO start writeout yet 4279 * actually get run and error out properly. 4280 */ 4281 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4282 } 4283 4284 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4285 struct btrfs_fs_info *fs_info) 4286 { 4287 struct rb_node *node; 4288 struct btrfs_delayed_ref_root *delayed_refs; 4289 struct btrfs_delayed_ref_node *ref; 4290 int ret = 0; 4291 4292 delayed_refs = &trans->delayed_refs; 4293 4294 spin_lock(&delayed_refs->lock); 4295 if (atomic_read(&delayed_refs->num_entries) == 0) { 4296 spin_unlock(&delayed_refs->lock); 4297 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4298 return ret; 4299 } 4300 4301 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4302 struct btrfs_delayed_ref_head *head; 4303 struct rb_node *n; 4304 bool pin_bytes = false; 4305 4306 head = rb_entry(node, struct btrfs_delayed_ref_head, 4307 href_node); 4308 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4309 continue; 4310 4311 spin_lock(&head->lock); 4312 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4313 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4314 ref_node); 4315 ref->in_tree = 0; 4316 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4317 RB_CLEAR_NODE(&ref->ref_node); 4318 if (!list_empty(&ref->add_list)) 4319 list_del(&ref->add_list); 4320 atomic_dec(&delayed_refs->num_entries); 4321 btrfs_put_delayed_ref(ref); 4322 } 4323 if (head->must_insert_reserved) 4324 pin_bytes = true; 4325 btrfs_free_delayed_extent_op(head->extent_op); 4326 btrfs_delete_ref_head(delayed_refs, head); 4327 spin_unlock(&head->lock); 4328 spin_unlock(&delayed_refs->lock); 4329 mutex_unlock(&head->mutex); 4330 4331 if (pin_bytes) { 4332 struct btrfs_block_group *cache; 4333 4334 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4335 BUG_ON(!cache); 4336 4337 spin_lock(&cache->space_info->lock); 4338 spin_lock(&cache->lock); 4339 cache->pinned += head->num_bytes; 4340 btrfs_space_info_update_bytes_pinned(fs_info, 4341 cache->space_info, head->num_bytes); 4342 cache->reserved -= head->num_bytes; 4343 cache->space_info->bytes_reserved -= head->num_bytes; 4344 spin_unlock(&cache->lock); 4345 spin_unlock(&cache->space_info->lock); 4346 percpu_counter_add_batch( 4347 &cache->space_info->total_bytes_pinned, 4348 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); 4349 4350 btrfs_put_block_group(cache); 4351 4352 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4353 head->bytenr + head->num_bytes - 1); 4354 } 4355 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4356 btrfs_put_delayed_ref_head(head); 4357 cond_resched(); 4358 spin_lock(&delayed_refs->lock); 4359 } 4360 btrfs_qgroup_destroy_extent_records(trans); 4361 4362 spin_unlock(&delayed_refs->lock); 4363 4364 return ret; 4365 } 4366 4367 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4368 { 4369 struct btrfs_inode *btrfs_inode; 4370 struct list_head splice; 4371 4372 INIT_LIST_HEAD(&splice); 4373 4374 spin_lock(&root->delalloc_lock); 4375 list_splice_init(&root->delalloc_inodes, &splice); 4376 4377 while (!list_empty(&splice)) { 4378 struct inode *inode = NULL; 4379 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4380 delalloc_inodes); 4381 __btrfs_del_delalloc_inode(root, btrfs_inode); 4382 spin_unlock(&root->delalloc_lock); 4383 4384 /* 4385 * Make sure we get a live inode and that it'll not disappear 4386 * meanwhile. 4387 */ 4388 inode = igrab(&btrfs_inode->vfs_inode); 4389 if (inode) { 4390 invalidate_inode_pages2(inode->i_mapping); 4391 iput(inode); 4392 } 4393 spin_lock(&root->delalloc_lock); 4394 } 4395 spin_unlock(&root->delalloc_lock); 4396 } 4397 4398 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4399 { 4400 struct btrfs_root *root; 4401 struct list_head splice; 4402 4403 INIT_LIST_HEAD(&splice); 4404 4405 spin_lock(&fs_info->delalloc_root_lock); 4406 list_splice_init(&fs_info->delalloc_roots, &splice); 4407 while (!list_empty(&splice)) { 4408 root = list_first_entry(&splice, struct btrfs_root, 4409 delalloc_root); 4410 root = btrfs_grab_root(root); 4411 BUG_ON(!root); 4412 spin_unlock(&fs_info->delalloc_root_lock); 4413 4414 btrfs_destroy_delalloc_inodes(root); 4415 btrfs_put_root(root); 4416 4417 spin_lock(&fs_info->delalloc_root_lock); 4418 } 4419 spin_unlock(&fs_info->delalloc_root_lock); 4420 } 4421 4422 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4423 struct extent_io_tree *dirty_pages, 4424 int mark) 4425 { 4426 int ret; 4427 struct extent_buffer *eb; 4428 u64 start = 0; 4429 u64 end; 4430 4431 while (1) { 4432 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4433 mark, NULL); 4434 if (ret) 4435 break; 4436 4437 clear_extent_bits(dirty_pages, start, end, mark); 4438 while (start <= end) { 4439 eb = find_extent_buffer(fs_info, start); 4440 start += fs_info->nodesize; 4441 if (!eb) 4442 continue; 4443 wait_on_extent_buffer_writeback(eb); 4444 4445 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4446 &eb->bflags)) 4447 clear_extent_buffer_dirty(eb); 4448 free_extent_buffer_stale(eb); 4449 } 4450 } 4451 4452 return ret; 4453 } 4454 4455 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4456 struct extent_io_tree *unpin) 4457 { 4458 u64 start; 4459 u64 end; 4460 int ret; 4461 4462 while (1) { 4463 struct extent_state *cached_state = NULL; 4464 4465 /* 4466 * The btrfs_finish_extent_commit() may get the same range as 4467 * ours between find_first_extent_bit and clear_extent_dirty. 4468 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4469 * the same extent range. 4470 */ 4471 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4472 ret = find_first_extent_bit(unpin, 0, &start, &end, 4473 EXTENT_DIRTY, &cached_state); 4474 if (ret) { 4475 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4476 break; 4477 } 4478 4479 clear_extent_dirty(unpin, start, end, &cached_state); 4480 free_extent_state(cached_state); 4481 btrfs_error_unpin_extent_range(fs_info, start, end); 4482 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4483 cond_resched(); 4484 } 4485 4486 return 0; 4487 } 4488 4489 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4490 { 4491 struct inode *inode; 4492 4493 inode = cache->io_ctl.inode; 4494 if (inode) { 4495 invalidate_inode_pages2(inode->i_mapping); 4496 BTRFS_I(inode)->generation = 0; 4497 cache->io_ctl.inode = NULL; 4498 iput(inode); 4499 } 4500 ASSERT(cache->io_ctl.pages == NULL); 4501 btrfs_put_block_group(cache); 4502 } 4503 4504 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4505 struct btrfs_fs_info *fs_info) 4506 { 4507 struct btrfs_block_group *cache; 4508 4509 spin_lock(&cur_trans->dirty_bgs_lock); 4510 while (!list_empty(&cur_trans->dirty_bgs)) { 4511 cache = list_first_entry(&cur_trans->dirty_bgs, 4512 struct btrfs_block_group, 4513 dirty_list); 4514 4515 if (!list_empty(&cache->io_list)) { 4516 spin_unlock(&cur_trans->dirty_bgs_lock); 4517 list_del_init(&cache->io_list); 4518 btrfs_cleanup_bg_io(cache); 4519 spin_lock(&cur_trans->dirty_bgs_lock); 4520 } 4521 4522 list_del_init(&cache->dirty_list); 4523 spin_lock(&cache->lock); 4524 cache->disk_cache_state = BTRFS_DC_ERROR; 4525 spin_unlock(&cache->lock); 4526 4527 spin_unlock(&cur_trans->dirty_bgs_lock); 4528 btrfs_put_block_group(cache); 4529 btrfs_delayed_refs_rsv_release(fs_info, 1); 4530 spin_lock(&cur_trans->dirty_bgs_lock); 4531 } 4532 spin_unlock(&cur_trans->dirty_bgs_lock); 4533 4534 /* 4535 * Refer to the definition of io_bgs member for details why it's safe 4536 * to use it without any locking 4537 */ 4538 while (!list_empty(&cur_trans->io_bgs)) { 4539 cache = list_first_entry(&cur_trans->io_bgs, 4540 struct btrfs_block_group, 4541 io_list); 4542 4543 list_del_init(&cache->io_list); 4544 spin_lock(&cache->lock); 4545 cache->disk_cache_state = BTRFS_DC_ERROR; 4546 spin_unlock(&cache->lock); 4547 btrfs_cleanup_bg_io(cache); 4548 } 4549 } 4550 4551 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4552 struct btrfs_fs_info *fs_info) 4553 { 4554 struct btrfs_device *dev, *tmp; 4555 4556 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4557 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4558 ASSERT(list_empty(&cur_trans->io_bgs)); 4559 4560 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4561 post_commit_list) { 4562 list_del_init(&dev->post_commit_list); 4563 } 4564 4565 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4566 4567 cur_trans->state = TRANS_STATE_COMMIT_START; 4568 wake_up(&fs_info->transaction_blocked_wait); 4569 4570 cur_trans->state = TRANS_STATE_UNBLOCKED; 4571 wake_up(&fs_info->transaction_wait); 4572 4573 btrfs_destroy_delayed_inodes(fs_info); 4574 4575 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4576 EXTENT_DIRTY); 4577 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4578 4579 cur_trans->state =TRANS_STATE_COMPLETED; 4580 wake_up(&cur_trans->commit_wait); 4581 } 4582 4583 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4584 { 4585 struct btrfs_transaction *t; 4586 4587 mutex_lock(&fs_info->transaction_kthread_mutex); 4588 4589 spin_lock(&fs_info->trans_lock); 4590 while (!list_empty(&fs_info->trans_list)) { 4591 t = list_first_entry(&fs_info->trans_list, 4592 struct btrfs_transaction, list); 4593 if (t->state >= TRANS_STATE_COMMIT_START) { 4594 refcount_inc(&t->use_count); 4595 spin_unlock(&fs_info->trans_lock); 4596 btrfs_wait_for_commit(fs_info, t->transid); 4597 btrfs_put_transaction(t); 4598 spin_lock(&fs_info->trans_lock); 4599 continue; 4600 } 4601 if (t == fs_info->running_transaction) { 4602 t->state = TRANS_STATE_COMMIT_DOING; 4603 spin_unlock(&fs_info->trans_lock); 4604 /* 4605 * We wait for 0 num_writers since we don't hold a trans 4606 * handle open currently for this transaction. 4607 */ 4608 wait_event(t->writer_wait, 4609 atomic_read(&t->num_writers) == 0); 4610 } else { 4611 spin_unlock(&fs_info->trans_lock); 4612 } 4613 btrfs_cleanup_one_transaction(t, fs_info); 4614 4615 spin_lock(&fs_info->trans_lock); 4616 if (t == fs_info->running_transaction) 4617 fs_info->running_transaction = NULL; 4618 list_del_init(&t->list); 4619 spin_unlock(&fs_info->trans_lock); 4620 4621 btrfs_put_transaction(t); 4622 trace_btrfs_transaction_commit(fs_info->tree_root); 4623 spin_lock(&fs_info->trans_lock); 4624 } 4625 spin_unlock(&fs_info->trans_lock); 4626 btrfs_destroy_all_ordered_extents(fs_info); 4627 btrfs_destroy_delayed_inodes(fs_info); 4628 btrfs_assert_delayed_root_empty(fs_info); 4629 btrfs_destroy_all_delalloc_inodes(fs_info); 4630 btrfs_drop_all_logs(fs_info); 4631 mutex_unlock(&fs_info->transaction_kthread_mutex); 4632 4633 return 0; 4634 } 4635