xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 6c870213d6f3a25981c10728f46294a3bed1703f)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52 
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56 
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 				    int read_only);
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63 					     struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66 				      struct btrfs_root *root);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 					struct extent_io_tree *dirty_pages,
70 					int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 				       struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75 
76 /*
77  * end_io_wq structs are used to do processing in task context when an IO is
78  * complete.  This is used during reads to verify checksums, and it is used
79  * by writes to insert metadata for new file extents after IO is complete.
80  */
81 struct end_io_wq {
82 	struct bio *bio;
83 	bio_end_io_t *end_io;
84 	void *private;
85 	struct btrfs_fs_info *info;
86 	int error;
87 	int metadata;
88 	struct list_head list;
89 	struct btrfs_work work;
90 };
91 
92 /*
93  * async submit bios are used to offload expensive checksumming
94  * onto the worker threads.  They checksum file and metadata bios
95  * just before they are sent down the IO stack.
96  */
97 struct async_submit_bio {
98 	struct inode *inode;
99 	struct bio *bio;
100 	struct list_head list;
101 	extent_submit_bio_hook_t *submit_bio_start;
102 	extent_submit_bio_hook_t *submit_bio_done;
103 	int rw;
104 	int mirror_num;
105 	unsigned long bio_flags;
106 	/*
107 	 * bio_offset is optional, can be used if the pages in the bio
108 	 * can't tell us where in the file the bio should go
109 	 */
110 	u64 bio_offset;
111 	struct btrfs_work work;
112 	int error;
113 };
114 
115 /*
116  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
117  * eb, the lockdep key is determined by the btrfs_root it belongs to and
118  * the level the eb occupies in the tree.
119  *
120  * Different roots are used for different purposes and may nest inside each
121  * other and they require separate keysets.  As lockdep keys should be
122  * static, assign keysets according to the purpose of the root as indicated
123  * by btrfs_root->objectid.  This ensures that all special purpose roots
124  * have separate keysets.
125  *
126  * Lock-nesting across peer nodes is always done with the immediate parent
127  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
128  * subclass to avoid triggering lockdep warning in such cases.
129  *
130  * The key is set by the readpage_end_io_hook after the buffer has passed
131  * csum validation but before the pages are unlocked.  It is also set by
132  * btrfs_init_new_buffer on freshly allocated blocks.
133  *
134  * We also add a check to make sure the highest level of the tree is the
135  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
136  * needs update as well.
137  */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 #  error
141 # endif
142 
143 static struct btrfs_lockdep_keyset {
144 	u64			id;		/* root objectid */
145 	const char		*name_stem;	/* lock name stem */
146 	char			names[BTRFS_MAX_LEVEL + 1][20];
147 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
150 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
151 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
152 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
153 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
154 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
155 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
156 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
157 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
158 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
159 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
160 	{ .id = 0,				.name_stem = "tree"	},
161 };
162 
163 void __init btrfs_init_lockdep(void)
164 {
165 	int i, j;
166 
167 	/* initialize lockdep class names */
168 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170 
171 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172 			snprintf(ks->names[j], sizeof(ks->names[j]),
173 				 "btrfs-%s-%02d", ks->name_stem, j);
174 	}
175 }
176 
177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178 				    int level)
179 {
180 	struct btrfs_lockdep_keyset *ks;
181 
182 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
183 
184 	/* find the matching keyset, id 0 is the default entry */
185 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186 		if (ks->id == objectid)
187 			break;
188 
189 	lockdep_set_class_and_name(&eb->lock,
190 				   &ks->keys[level], ks->names[level]);
191 }
192 
193 #endif
194 
195 /*
196  * extents on the btree inode are pretty simple, there's one extent
197  * that covers the entire device
198  */
199 static struct extent_map *btree_get_extent(struct inode *inode,
200 		struct page *page, size_t pg_offset, u64 start, u64 len,
201 		int create)
202 {
203 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204 	struct extent_map *em;
205 	int ret;
206 
207 	read_lock(&em_tree->lock);
208 	em = lookup_extent_mapping(em_tree, start, len);
209 	if (em) {
210 		em->bdev =
211 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
212 		read_unlock(&em_tree->lock);
213 		goto out;
214 	}
215 	read_unlock(&em_tree->lock);
216 
217 	em = alloc_extent_map();
218 	if (!em) {
219 		em = ERR_PTR(-ENOMEM);
220 		goto out;
221 	}
222 	em->start = 0;
223 	em->len = (u64)-1;
224 	em->block_len = (u64)-1;
225 	em->block_start = 0;
226 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
227 
228 	write_lock(&em_tree->lock);
229 	ret = add_extent_mapping(em_tree, em, 0);
230 	if (ret == -EEXIST) {
231 		free_extent_map(em);
232 		em = lookup_extent_mapping(em_tree, start, len);
233 		if (!em)
234 			em = ERR_PTR(-EIO);
235 	} else if (ret) {
236 		free_extent_map(em);
237 		em = ERR_PTR(ret);
238 	}
239 	write_unlock(&em_tree->lock);
240 
241 out:
242 	return em;
243 }
244 
245 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
246 {
247 	return btrfs_crc32c(seed, data, len);
248 }
249 
250 void btrfs_csum_final(u32 crc, char *result)
251 {
252 	put_unaligned_le32(~crc, result);
253 }
254 
255 /*
256  * compute the csum for a btree block, and either verify it or write it
257  * into the csum field of the block.
258  */
259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260 			   int verify)
261 {
262 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
263 	char *result = NULL;
264 	unsigned long len;
265 	unsigned long cur_len;
266 	unsigned long offset = BTRFS_CSUM_SIZE;
267 	char *kaddr;
268 	unsigned long map_start;
269 	unsigned long map_len;
270 	int err;
271 	u32 crc = ~(u32)0;
272 	unsigned long inline_result;
273 
274 	len = buf->len - offset;
275 	while (len > 0) {
276 		err = map_private_extent_buffer(buf, offset, 32,
277 					&kaddr, &map_start, &map_len);
278 		if (err)
279 			return 1;
280 		cur_len = min(len, map_len - (offset - map_start));
281 		crc = btrfs_csum_data(kaddr + offset - map_start,
282 				      crc, cur_len);
283 		len -= cur_len;
284 		offset += cur_len;
285 	}
286 	if (csum_size > sizeof(inline_result)) {
287 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288 		if (!result)
289 			return 1;
290 	} else {
291 		result = (char *)&inline_result;
292 	}
293 
294 	btrfs_csum_final(crc, result);
295 
296 	if (verify) {
297 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298 			u32 val;
299 			u32 found = 0;
300 			memcpy(&found, result, csum_size);
301 
302 			read_extent_buffer(buf, &val, 0, csum_size);
303 			printk_ratelimited(KERN_INFO
304 				"BTRFS: %s checksum verify failed on %llu wanted %X found %X "
305 				"level %d\n",
306 				root->fs_info->sb->s_id, buf->start,
307 				val, found, btrfs_header_level(buf));
308 			if (result != (char *)&inline_result)
309 				kfree(result);
310 			return 1;
311 		}
312 	} else {
313 		write_extent_buffer(buf, result, 0, csum_size);
314 	}
315 	if (result != (char *)&inline_result)
316 		kfree(result);
317 	return 0;
318 }
319 
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 				 struct extent_buffer *eb, u64 parent_transid,
328 				 int atomic)
329 {
330 	struct extent_state *cached_state = NULL;
331 	int ret;
332 	bool need_lock = (current->journal_info ==
333 			  (void *)BTRFS_SEND_TRANS_STUB);
334 
335 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
336 		return 0;
337 
338 	if (atomic)
339 		return -EAGAIN;
340 
341 	if (need_lock) {
342 		btrfs_tree_read_lock(eb);
343 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
344 	}
345 
346 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
347 			 0, &cached_state);
348 	if (extent_buffer_uptodate(eb) &&
349 	    btrfs_header_generation(eb) == parent_transid) {
350 		ret = 0;
351 		goto out;
352 	}
353 	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
354 		       "found %llu\n",
355 		       eb->start, parent_transid, btrfs_header_generation(eb));
356 	ret = 1;
357 
358 	/*
359 	 * Things reading via commit roots that don't have normal protection,
360 	 * like send, can have a really old block in cache that may point at a
361 	 * block that has been free'd and re-allocated.  So don't clear uptodate
362 	 * if we find an eb that is under IO (dirty/writeback) because we could
363 	 * end up reading in the stale data and then writing it back out and
364 	 * making everybody very sad.
365 	 */
366 	if (!extent_buffer_under_io(eb))
367 		clear_extent_buffer_uptodate(eb);
368 out:
369 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
370 			     &cached_state, GFP_NOFS);
371 	btrfs_tree_read_unlock_blocking(eb);
372 	return ret;
373 }
374 
375 /*
376  * Return 0 if the superblock checksum type matches the checksum value of that
377  * algorithm. Pass the raw disk superblock data.
378  */
379 static int btrfs_check_super_csum(char *raw_disk_sb)
380 {
381 	struct btrfs_super_block *disk_sb =
382 		(struct btrfs_super_block *)raw_disk_sb;
383 	u16 csum_type = btrfs_super_csum_type(disk_sb);
384 	int ret = 0;
385 
386 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
387 		u32 crc = ~(u32)0;
388 		const int csum_size = sizeof(crc);
389 		char result[csum_size];
390 
391 		/*
392 		 * The super_block structure does not span the whole
393 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
394 		 * is filled with zeros and is included in the checkum.
395 		 */
396 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
397 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
398 		btrfs_csum_final(crc, result);
399 
400 		if (memcmp(raw_disk_sb, result, csum_size))
401 			ret = 1;
402 
403 		if (ret && btrfs_super_generation(disk_sb) < 10) {
404 			printk(KERN_WARNING
405 				"BTRFS: super block crcs don't match, older mkfs detected\n");
406 			ret = 0;
407 		}
408 	}
409 
410 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
411 		printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
412 				csum_type);
413 		ret = 1;
414 	}
415 
416 	return ret;
417 }
418 
419 /*
420  * helper to read a given tree block, doing retries as required when
421  * the checksums don't match and we have alternate mirrors to try.
422  */
423 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
424 					  struct extent_buffer *eb,
425 					  u64 start, u64 parent_transid)
426 {
427 	struct extent_io_tree *io_tree;
428 	int failed = 0;
429 	int ret;
430 	int num_copies = 0;
431 	int mirror_num = 0;
432 	int failed_mirror = 0;
433 
434 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
435 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
436 	while (1) {
437 		ret = read_extent_buffer_pages(io_tree, eb, start,
438 					       WAIT_COMPLETE,
439 					       btree_get_extent, mirror_num);
440 		if (!ret) {
441 			if (!verify_parent_transid(io_tree, eb,
442 						   parent_transid, 0))
443 				break;
444 			else
445 				ret = -EIO;
446 		}
447 
448 		/*
449 		 * This buffer's crc is fine, but its contents are corrupted, so
450 		 * there is no reason to read the other copies, they won't be
451 		 * any less wrong.
452 		 */
453 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
454 			break;
455 
456 		num_copies = btrfs_num_copies(root->fs_info,
457 					      eb->start, eb->len);
458 		if (num_copies == 1)
459 			break;
460 
461 		if (!failed_mirror) {
462 			failed = 1;
463 			failed_mirror = eb->read_mirror;
464 		}
465 
466 		mirror_num++;
467 		if (mirror_num == failed_mirror)
468 			mirror_num++;
469 
470 		if (mirror_num > num_copies)
471 			break;
472 	}
473 
474 	if (failed && !ret && failed_mirror)
475 		repair_eb_io_failure(root, eb, failed_mirror);
476 
477 	return ret;
478 }
479 
480 /*
481  * checksum a dirty tree block before IO.  This has extra checks to make sure
482  * we only fill in the checksum field in the first page of a multi-page block
483  */
484 
485 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
486 {
487 	u64 start = page_offset(page);
488 	u64 found_start;
489 	struct extent_buffer *eb;
490 
491 	eb = (struct extent_buffer *)page->private;
492 	if (page != eb->pages[0])
493 		return 0;
494 	found_start = btrfs_header_bytenr(eb);
495 	if (WARN_ON(found_start != start || !PageUptodate(page)))
496 		return 0;
497 	csum_tree_block(root, eb, 0);
498 	return 0;
499 }
500 
501 static int check_tree_block_fsid(struct btrfs_root *root,
502 				 struct extent_buffer *eb)
503 {
504 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
505 	u8 fsid[BTRFS_UUID_SIZE];
506 	int ret = 1;
507 
508 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
509 	while (fs_devices) {
510 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
511 			ret = 0;
512 			break;
513 		}
514 		fs_devices = fs_devices->seed;
515 	}
516 	return ret;
517 }
518 
519 #define CORRUPT(reason, eb, root, slot)				\
520 	btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"	\
521 		   "root=%llu, slot=%d", reason,			\
522 	       btrfs_header_bytenr(eb),	root->objectid, slot)
523 
524 static noinline int check_leaf(struct btrfs_root *root,
525 			       struct extent_buffer *leaf)
526 {
527 	struct btrfs_key key;
528 	struct btrfs_key leaf_key;
529 	u32 nritems = btrfs_header_nritems(leaf);
530 	int slot;
531 
532 	if (nritems == 0)
533 		return 0;
534 
535 	/* Check the 0 item */
536 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
537 	    BTRFS_LEAF_DATA_SIZE(root)) {
538 		CORRUPT("invalid item offset size pair", leaf, root, 0);
539 		return -EIO;
540 	}
541 
542 	/*
543 	 * Check to make sure each items keys are in the correct order and their
544 	 * offsets make sense.  We only have to loop through nritems-1 because
545 	 * we check the current slot against the next slot, which verifies the
546 	 * next slot's offset+size makes sense and that the current's slot
547 	 * offset is correct.
548 	 */
549 	for (slot = 0; slot < nritems - 1; slot++) {
550 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
551 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
552 
553 		/* Make sure the keys are in the right order */
554 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
555 			CORRUPT("bad key order", leaf, root, slot);
556 			return -EIO;
557 		}
558 
559 		/*
560 		 * Make sure the offset and ends are right, remember that the
561 		 * item data starts at the end of the leaf and grows towards the
562 		 * front.
563 		 */
564 		if (btrfs_item_offset_nr(leaf, slot) !=
565 			btrfs_item_end_nr(leaf, slot + 1)) {
566 			CORRUPT("slot offset bad", leaf, root, slot);
567 			return -EIO;
568 		}
569 
570 		/*
571 		 * Check to make sure that we don't point outside of the leaf,
572 		 * just incase all the items are consistent to eachother, but
573 		 * all point outside of the leaf.
574 		 */
575 		if (btrfs_item_end_nr(leaf, slot) >
576 		    BTRFS_LEAF_DATA_SIZE(root)) {
577 			CORRUPT("slot end outside of leaf", leaf, root, slot);
578 			return -EIO;
579 		}
580 	}
581 
582 	return 0;
583 }
584 
585 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
586 				      u64 phy_offset, struct page *page,
587 				      u64 start, u64 end, int mirror)
588 {
589 	u64 found_start;
590 	int found_level;
591 	struct extent_buffer *eb;
592 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
593 	int ret = 0;
594 	int reads_done;
595 
596 	if (!page->private)
597 		goto out;
598 
599 	eb = (struct extent_buffer *)page->private;
600 
601 	/* the pending IO might have been the only thing that kept this buffer
602 	 * in memory.  Make sure we have a ref for all this other checks
603 	 */
604 	extent_buffer_get(eb);
605 
606 	reads_done = atomic_dec_and_test(&eb->io_pages);
607 	if (!reads_done)
608 		goto err;
609 
610 	eb->read_mirror = mirror;
611 	if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
612 		ret = -EIO;
613 		goto err;
614 	}
615 
616 	found_start = btrfs_header_bytenr(eb);
617 	if (found_start != eb->start) {
618 		printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
619 			       "%llu %llu\n",
620 			       found_start, eb->start);
621 		ret = -EIO;
622 		goto err;
623 	}
624 	if (check_tree_block_fsid(root, eb)) {
625 		printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
626 			       eb->start);
627 		ret = -EIO;
628 		goto err;
629 	}
630 	found_level = btrfs_header_level(eb);
631 	if (found_level >= BTRFS_MAX_LEVEL) {
632 		btrfs_info(root->fs_info, "bad tree block level %d",
633 			   (int)btrfs_header_level(eb));
634 		ret = -EIO;
635 		goto err;
636 	}
637 
638 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
639 				       eb, found_level);
640 
641 	ret = csum_tree_block(root, eb, 1);
642 	if (ret) {
643 		ret = -EIO;
644 		goto err;
645 	}
646 
647 	/*
648 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
649 	 * that we don't try and read the other copies of this block, just
650 	 * return -EIO.
651 	 */
652 	if (found_level == 0 && check_leaf(root, eb)) {
653 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
654 		ret = -EIO;
655 	}
656 
657 	if (!ret)
658 		set_extent_buffer_uptodate(eb);
659 err:
660 	if (reads_done &&
661 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
662 		btree_readahead_hook(root, eb, eb->start, ret);
663 
664 	if (ret) {
665 		/*
666 		 * our io error hook is going to dec the io pages
667 		 * again, we have to make sure it has something
668 		 * to decrement
669 		 */
670 		atomic_inc(&eb->io_pages);
671 		clear_extent_buffer_uptodate(eb);
672 	}
673 	free_extent_buffer(eb);
674 out:
675 	return ret;
676 }
677 
678 static int btree_io_failed_hook(struct page *page, int failed_mirror)
679 {
680 	struct extent_buffer *eb;
681 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
682 
683 	eb = (struct extent_buffer *)page->private;
684 	set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
685 	eb->read_mirror = failed_mirror;
686 	atomic_dec(&eb->io_pages);
687 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
688 		btree_readahead_hook(root, eb, eb->start, -EIO);
689 	return -EIO;	/* we fixed nothing */
690 }
691 
692 static void end_workqueue_bio(struct bio *bio, int err)
693 {
694 	struct end_io_wq *end_io_wq = bio->bi_private;
695 	struct btrfs_fs_info *fs_info;
696 
697 	fs_info = end_io_wq->info;
698 	end_io_wq->error = err;
699 	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
700 
701 	if (bio->bi_rw & REQ_WRITE) {
702 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
703 			btrfs_queue_work(fs_info->endio_meta_write_workers,
704 					 &end_io_wq->work);
705 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
706 			btrfs_queue_work(fs_info->endio_freespace_worker,
707 					 &end_io_wq->work);
708 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
709 			btrfs_queue_work(fs_info->endio_raid56_workers,
710 					 &end_io_wq->work);
711 		else
712 			btrfs_queue_work(fs_info->endio_write_workers,
713 					 &end_io_wq->work);
714 	} else {
715 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
716 			btrfs_queue_work(fs_info->endio_raid56_workers,
717 					 &end_io_wq->work);
718 		else if (end_io_wq->metadata)
719 			btrfs_queue_work(fs_info->endio_meta_workers,
720 					 &end_io_wq->work);
721 		else
722 			btrfs_queue_work(fs_info->endio_workers,
723 					 &end_io_wq->work);
724 	}
725 }
726 
727 /*
728  * For the metadata arg you want
729  *
730  * 0 - if data
731  * 1 - if normal metadta
732  * 2 - if writing to the free space cache area
733  * 3 - raid parity work
734  */
735 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
736 			int metadata)
737 {
738 	struct end_io_wq *end_io_wq;
739 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
740 	if (!end_io_wq)
741 		return -ENOMEM;
742 
743 	end_io_wq->private = bio->bi_private;
744 	end_io_wq->end_io = bio->bi_end_io;
745 	end_io_wq->info = info;
746 	end_io_wq->error = 0;
747 	end_io_wq->bio = bio;
748 	end_io_wq->metadata = metadata;
749 
750 	bio->bi_private = end_io_wq;
751 	bio->bi_end_io = end_workqueue_bio;
752 	return 0;
753 }
754 
755 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
756 {
757 	unsigned long limit = min_t(unsigned long,
758 				    info->thread_pool_size,
759 				    info->fs_devices->open_devices);
760 	return 256 * limit;
761 }
762 
763 static void run_one_async_start(struct btrfs_work *work)
764 {
765 	struct async_submit_bio *async;
766 	int ret;
767 
768 	async = container_of(work, struct  async_submit_bio, work);
769 	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
770 				      async->mirror_num, async->bio_flags,
771 				      async->bio_offset);
772 	if (ret)
773 		async->error = ret;
774 }
775 
776 static void run_one_async_done(struct btrfs_work *work)
777 {
778 	struct btrfs_fs_info *fs_info;
779 	struct async_submit_bio *async;
780 	int limit;
781 
782 	async = container_of(work, struct  async_submit_bio, work);
783 	fs_info = BTRFS_I(async->inode)->root->fs_info;
784 
785 	limit = btrfs_async_submit_limit(fs_info);
786 	limit = limit * 2 / 3;
787 
788 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
789 	    waitqueue_active(&fs_info->async_submit_wait))
790 		wake_up(&fs_info->async_submit_wait);
791 
792 	/* If an error occured we just want to clean up the bio and move on */
793 	if (async->error) {
794 		bio_endio(async->bio, async->error);
795 		return;
796 	}
797 
798 	async->submit_bio_done(async->inode, async->rw, async->bio,
799 			       async->mirror_num, async->bio_flags,
800 			       async->bio_offset);
801 }
802 
803 static void run_one_async_free(struct btrfs_work *work)
804 {
805 	struct async_submit_bio *async;
806 
807 	async = container_of(work, struct  async_submit_bio, work);
808 	kfree(async);
809 }
810 
811 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
812 			int rw, struct bio *bio, int mirror_num,
813 			unsigned long bio_flags,
814 			u64 bio_offset,
815 			extent_submit_bio_hook_t *submit_bio_start,
816 			extent_submit_bio_hook_t *submit_bio_done)
817 {
818 	struct async_submit_bio *async;
819 
820 	async = kmalloc(sizeof(*async), GFP_NOFS);
821 	if (!async)
822 		return -ENOMEM;
823 
824 	async->inode = inode;
825 	async->rw = rw;
826 	async->bio = bio;
827 	async->mirror_num = mirror_num;
828 	async->submit_bio_start = submit_bio_start;
829 	async->submit_bio_done = submit_bio_done;
830 
831 	btrfs_init_work(&async->work, run_one_async_start,
832 			run_one_async_done, run_one_async_free);
833 
834 	async->bio_flags = bio_flags;
835 	async->bio_offset = bio_offset;
836 
837 	async->error = 0;
838 
839 	atomic_inc(&fs_info->nr_async_submits);
840 
841 	if (rw & REQ_SYNC)
842 		btrfs_set_work_high_priority(&async->work);
843 
844 	btrfs_queue_work(fs_info->workers, &async->work);
845 
846 	while (atomic_read(&fs_info->async_submit_draining) &&
847 	      atomic_read(&fs_info->nr_async_submits)) {
848 		wait_event(fs_info->async_submit_wait,
849 			   (atomic_read(&fs_info->nr_async_submits) == 0));
850 	}
851 
852 	return 0;
853 }
854 
855 static int btree_csum_one_bio(struct bio *bio)
856 {
857 	struct bio_vec *bvec;
858 	struct btrfs_root *root;
859 	int i, ret = 0;
860 
861 	bio_for_each_segment_all(bvec, bio, i) {
862 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
863 		ret = csum_dirty_buffer(root, bvec->bv_page);
864 		if (ret)
865 			break;
866 	}
867 
868 	return ret;
869 }
870 
871 static int __btree_submit_bio_start(struct inode *inode, int rw,
872 				    struct bio *bio, int mirror_num,
873 				    unsigned long bio_flags,
874 				    u64 bio_offset)
875 {
876 	/*
877 	 * when we're called for a write, we're already in the async
878 	 * submission context.  Just jump into btrfs_map_bio
879 	 */
880 	return btree_csum_one_bio(bio);
881 }
882 
883 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
884 				 int mirror_num, unsigned long bio_flags,
885 				 u64 bio_offset)
886 {
887 	int ret;
888 
889 	/*
890 	 * when we're called for a write, we're already in the async
891 	 * submission context.  Just jump into btrfs_map_bio
892 	 */
893 	ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
894 	if (ret)
895 		bio_endio(bio, ret);
896 	return ret;
897 }
898 
899 static int check_async_write(struct inode *inode, unsigned long bio_flags)
900 {
901 	if (bio_flags & EXTENT_BIO_TREE_LOG)
902 		return 0;
903 #ifdef CONFIG_X86
904 	if (cpu_has_xmm4_2)
905 		return 0;
906 #endif
907 	return 1;
908 }
909 
910 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
911 				 int mirror_num, unsigned long bio_flags,
912 				 u64 bio_offset)
913 {
914 	int async = check_async_write(inode, bio_flags);
915 	int ret;
916 
917 	if (!(rw & REQ_WRITE)) {
918 		/*
919 		 * called for a read, do the setup so that checksum validation
920 		 * can happen in the async kernel threads
921 		 */
922 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
923 					  bio, 1);
924 		if (ret)
925 			goto out_w_error;
926 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
927 				    mirror_num, 0);
928 	} else if (!async) {
929 		ret = btree_csum_one_bio(bio);
930 		if (ret)
931 			goto out_w_error;
932 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
933 				    mirror_num, 0);
934 	} else {
935 		/*
936 		 * kthread helpers are used to submit writes so that
937 		 * checksumming can happen in parallel across all CPUs
938 		 */
939 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
940 					  inode, rw, bio, mirror_num, 0,
941 					  bio_offset,
942 					  __btree_submit_bio_start,
943 					  __btree_submit_bio_done);
944 	}
945 
946 	if (ret) {
947 out_w_error:
948 		bio_endio(bio, ret);
949 	}
950 	return ret;
951 }
952 
953 #ifdef CONFIG_MIGRATION
954 static int btree_migratepage(struct address_space *mapping,
955 			struct page *newpage, struct page *page,
956 			enum migrate_mode mode)
957 {
958 	/*
959 	 * we can't safely write a btree page from here,
960 	 * we haven't done the locking hook
961 	 */
962 	if (PageDirty(page))
963 		return -EAGAIN;
964 	/*
965 	 * Buffers may be managed in a filesystem specific way.
966 	 * We must have no buffers or drop them.
967 	 */
968 	if (page_has_private(page) &&
969 	    !try_to_release_page(page, GFP_KERNEL))
970 		return -EAGAIN;
971 	return migrate_page(mapping, newpage, page, mode);
972 }
973 #endif
974 
975 
976 static int btree_writepages(struct address_space *mapping,
977 			    struct writeback_control *wbc)
978 {
979 	struct btrfs_fs_info *fs_info;
980 	int ret;
981 
982 	if (wbc->sync_mode == WB_SYNC_NONE) {
983 
984 		if (wbc->for_kupdate)
985 			return 0;
986 
987 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
988 		/* this is a bit racy, but that's ok */
989 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
990 					     BTRFS_DIRTY_METADATA_THRESH);
991 		if (ret < 0)
992 			return 0;
993 	}
994 	return btree_write_cache_pages(mapping, wbc);
995 }
996 
997 static int btree_readpage(struct file *file, struct page *page)
998 {
999 	struct extent_io_tree *tree;
1000 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1001 	return extent_read_full_page(tree, page, btree_get_extent, 0);
1002 }
1003 
1004 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1005 {
1006 	if (PageWriteback(page) || PageDirty(page))
1007 		return 0;
1008 
1009 	return try_release_extent_buffer(page);
1010 }
1011 
1012 static void btree_invalidatepage(struct page *page, unsigned int offset,
1013 				 unsigned int length)
1014 {
1015 	struct extent_io_tree *tree;
1016 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1017 	extent_invalidatepage(tree, page, offset);
1018 	btree_releasepage(page, GFP_NOFS);
1019 	if (PagePrivate(page)) {
1020 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1021 			   "page private not zero on page %llu",
1022 			   (unsigned long long)page_offset(page));
1023 		ClearPagePrivate(page);
1024 		set_page_private(page, 0);
1025 		page_cache_release(page);
1026 	}
1027 }
1028 
1029 static int btree_set_page_dirty(struct page *page)
1030 {
1031 #ifdef DEBUG
1032 	struct extent_buffer *eb;
1033 
1034 	BUG_ON(!PagePrivate(page));
1035 	eb = (struct extent_buffer *)page->private;
1036 	BUG_ON(!eb);
1037 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1038 	BUG_ON(!atomic_read(&eb->refs));
1039 	btrfs_assert_tree_locked(eb);
1040 #endif
1041 	return __set_page_dirty_nobuffers(page);
1042 }
1043 
1044 static const struct address_space_operations btree_aops = {
1045 	.readpage	= btree_readpage,
1046 	.writepages	= btree_writepages,
1047 	.releasepage	= btree_releasepage,
1048 	.invalidatepage = btree_invalidatepage,
1049 #ifdef CONFIG_MIGRATION
1050 	.migratepage	= btree_migratepage,
1051 #endif
1052 	.set_page_dirty = btree_set_page_dirty,
1053 };
1054 
1055 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1056 			 u64 parent_transid)
1057 {
1058 	struct extent_buffer *buf = NULL;
1059 	struct inode *btree_inode = root->fs_info->btree_inode;
1060 	int ret = 0;
1061 
1062 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1063 	if (!buf)
1064 		return 0;
1065 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1066 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1067 	free_extent_buffer(buf);
1068 	return ret;
1069 }
1070 
1071 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1072 			 int mirror_num, struct extent_buffer **eb)
1073 {
1074 	struct extent_buffer *buf = NULL;
1075 	struct inode *btree_inode = root->fs_info->btree_inode;
1076 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1077 	int ret;
1078 
1079 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1080 	if (!buf)
1081 		return 0;
1082 
1083 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1084 
1085 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1086 				       btree_get_extent, mirror_num);
1087 	if (ret) {
1088 		free_extent_buffer(buf);
1089 		return ret;
1090 	}
1091 
1092 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1093 		free_extent_buffer(buf);
1094 		return -EIO;
1095 	} else if (extent_buffer_uptodate(buf)) {
1096 		*eb = buf;
1097 	} else {
1098 		free_extent_buffer(buf);
1099 	}
1100 	return 0;
1101 }
1102 
1103 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1104 					    u64 bytenr, u32 blocksize)
1105 {
1106 	return find_extent_buffer(root->fs_info, bytenr);
1107 }
1108 
1109 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1110 						 u64 bytenr, u32 blocksize)
1111 {
1112 	return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1113 }
1114 
1115 
1116 int btrfs_write_tree_block(struct extent_buffer *buf)
1117 {
1118 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1119 					buf->start + buf->len - 1);
1120 }
1121 
1122 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1123 {
1124 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1125 				       buf->start, buf->start + buf->len - 1);
1126 }
1127 
1128 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1129 				      u32 blocksize, u64 parent_transid)
1130 {
1131 	struct extent_buffer *buf = NULL;
1132 	int ret;
1133 
1134 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1135 	if (!buf)
1136 		return NULL;
1137 
1138 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1139 	if (ret) {
1140 		free_extent_buffer(buf);
1141 		return NULL;
1142 	}
1143 	return buf;
1144 
1145 }
1146 
1147 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1148 		      struct extent_buffer *buf)
1149 {
1150 	struct btrfs_fs_info *fs_info = root->fs_info;
1151 
1152 	if (btrfs_header_generation(buf) ==
1153 	    fs_info->running_transaction->transid) {
1154 		btrfs_assert_tree_locked(buf);
1155 
1156 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1157 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1158 					     -buf->len,
1159 					     fs_info->dirty_metadata_batch);
1160 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1161 			btrfs_set_lock_blocking(buf);
1162 			clear_extent_buffer_dirty(buf);
1163 		}
1164 	}
1165 }
1166 
1167 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1168 {
1169 	struct btrfs_subvolume_writers *writers;
1170 	int ret;
1171 
1172 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1173 	if (!writers)
1174 		return ERR_PTR(-ENOMEM);
1175 
1176 	ret = percpu_counter_init(&writers->counter, 0);
1177 	if (ret < 0) {
1178 		kfree(writers);
1179 		return ERR_PTR(ret);
1180 	}
1181 
1182 	init_waitqueue_head(&writers->wait);
1183 	return writers;
1184 }
1185 
1186 static void
1187 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1188 {
1189 	percpu_counter_destroy(&writers->counter);
1190 	kfree(writers);
1191 }
1192 
1193 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1194 			 u32 stripesize, struct btrfs_root *root,
1195 			 struct btrfs_fs_info *fs_info,
1196 			 u64 objectid)
1197 {
1198 	root->node = NULL;
1199 	root->commit_root = NULL;
1200 	root->sectorsize = sectorsize;
1201 	root->nodesize = nodesize;
1202 	root->leafsize = leafsize;
1203 	root->stripesize = stripesize;
1204 	root->ref_cows = 0;
1205 	root->track_dirty = 0;
1206 	root->in_radix = 0;
1207 	root->orphan_item_inserted = 0;
1208 	root->orphan_cleanup_state = 0;
1209 
1210 	root->objectid = objectid;
1211 	root->last_trans = 0;
1212 	root->highest_objectid = 0;
1213 	root->nr_delalloc_inodes = 0;
1214 	root->nr_ordered_extents = 0;
1215 	root->name = NULL;
1216 	root->inode_tree = RB_ROOT;
1217 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1218 	root->block_rsv = NULL;
1219 	root->orphan_block_rsv = NULL;
1220 
1221 	INIT_LIST_HEAD(&root->dirty_list);
1222 	INIT_LIST_HEAD(&root->root_list);
1223 	INIT_LIST_HEAD(&root->delalloc_inodes);
1224 	INIT_LIST_HEAD(&root->delalloc_root);
1225 	INIT_LIST_HEAD(&root->ordered_extents);
1226 	INIT_LIST_HEAD(&root->ordered_root);
1227 	INIT_LIST_HEAD(&root->logged_list[0]);
1228 	INIT_LIST_HEAD(&root->logged_list[1]);
1229 	spin_lock_init(&root->orphan_lock);
1230 	spin_lock_init(&root->inode_lock);
1231 	spin_lock_init(&root->delalloc_lock);
1232 	spin_lock_init(&root->ordered_extent_lock);
1233 	spin_lock_init(&root->accounting_lock);
1234 	spin_lock_init(&root->log_extents_lock[0]);
1235 	spin_lock_init(&root->log_extents_lock[1]);
1236 	mutex_init(&root->objectid_mutex);
1237 	mutex_init(&root->log_mutex);
1238 	mutex_init(&root->ordered_extent_mutex);
1239 	mutex_init(&root->delalloc_mutex);
1240 	init_waitqueue_head(&root->log_writer_wait);
1241 	init_waitqueue_head(&root->log_commit_wait[0]);
1242 	init_waitqueue_head(&root->log_commit_wait[1]);
1243 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1244 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1245 	atomic_set(&root->log_commit[0], 0);
1246 	atomic_set(&root->log_commit[1], 0);
1247 	atomic_set(&root->log_writers, 0);
1248 	atomic_set(&root->log_batch, 0);
1249 	atomic_set(&root->orphan_inodes, 0);
1250 	atomic_set(&root->refs, 1);
1251 	atomic_set(&root->will_be_snapshoted, 0);
1252 	root->log_transid = 0;
1253 	root->log_transid_committed = -1;
1254 	root->last_log_commit = 0;
1255 	if (fs_info)
1256 		extent_io_tree_init(&root->dirty_log_pages,
1257 				     fs_info->btree_inode->i_mapping);
1258 
1259 	memset(&root->root_key, 0, sizeof(root->root_key));
1260 	memset(&root->root_item, 0, sizeof(root->root_item));
1261 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1262 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1263 	if (fs_info)
1264 		root->defrag_trans_start = fs_info->generation;
1265 	else
1266 		root->defrag_trans_start = 0;
1267 	init_completion(&root->kobj_unregister);
1268 	root->defrag_running = 0;
1269 	root->root_key.objectid = objectid;
1270 	root->anon_dev = 0;
1271 
1272 	spin_lock_init(&root->root_item_lock);
1273 }
1274 
1275 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1276 {
1277 	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1278 	if (root)
1279 		root->fs_info = fs_info;
1280 	return root;
1281 }
1282 
1283 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1284 /* Should only be used by the testing infrastructure */
1285 struct btrfs_root *btrfs_alloc_dummy_root(void)
1286 {
1287 	struct btrfs_root *root;
1288 
1289 	root = btrfs_alloc_root(NULL);
1290 	if (!root)
1291 		return ERR_PTR(-ENOMEM);
1292 	__setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1293 	root->dummy_root = 1;
1294 
1295 	return root;
1296 }
1297 #endif
1298 
1299 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1300 				     struct btrfs_fs_info *fs_info,
1301 				     u64 objectid)
1302 {
1303 	struct extent_buffer *leaf;
1304 	struct btrfs_root *tree_root = fs_info->tree_root;
1305 	struct btrfs_root *root;
1306 	struct btrfs_key key;
1307 	int ret = 0;
1308 	uuid_le uuid;
1309 
1310 	root = btrfs_alloc_root(fs_info);
1311 	if (!root)
1312 		return ERR_PTR(-ENOMEM);
1313 
1314 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1315 		     tree_root->sectorsize, tree_root->stripesize,
1316 		     root, fs_info, objectid);
1317 	root->root_key.objectid = objectid;
1318 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1319 	root->root_key.offset = 0;
1320 
1321 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1322 				      0, objectid, NULL, 0, 0, 0);
1323 	if (IS_ERR(leaf)) {
1324 		ret = PTR_ERR(leaf);
1325 		leaf = NULL;
1326 		goto fail;
1327 	}
1328 
1329 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1330 	btrfs_set_header_bytenr(leaf, leaf->start);
1331 	btrfs_set_header_generation(leaf, trans->transid);
1332 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1333 	btrfs_set_header_owner(leaf, objectid);
1334 	root->node = leaf;
1335 
1336 	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1337 			    BTRFS_FSID_SIZE);
1338 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1339 			    btrfs_header_chunk_tree_uuid(leaf),
1340 			    BTRFS_UUID_SIZE);
1341 	btrfs_mark_buffer_dirty(leaf);
1342 
1343 	root->commit_root = btrfs_root_node(root);
1344 	root->track_dirty = 1;
1345 
1346 
1347 	root->root_item.flags = 0;
1348 	root->root_item.byte_limit = 0;
1349 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1350 	btrfs_set_root_generation(&root->root_item, trans->transid);
1351 	btrfs_set_root_level(&root->root_item, 0);
1352 	btrfs_set_root_refs(&root->root_item, 1);
1353 	btrfs_set_root_used(&root->root_item, leaf->len);
1354 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1355 	btrfs_set_root_dirid(&root->root_item, 0);
1356 	uuid_le_gen(&uuid);
1357 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1358 	root->root_item.drop_level = 0;
1359 
1360 	key.objectid = objectid;
1361 	key.type = BTRFS_ROOT_ITEM_KEY;
1362 	key.offset = 0;
1363 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1364 	if (ret)
1365 		goto fail;
1366 
1367 	btrfs_tree_unlock(leaf);
1368 
1369 	return root;
1370 
1371 fail:
1372 	if (leaf) {
1373 		btrfs_tree_unlock(leaf);
1374 		free_extent_buffer(leaf);
1375 	}
1376 	kfree(root);
1377 
1378 	return ERR_PTR(ret);
1379 }
1380 
1381 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1382 					 struct btrfs_fs_info *fs_info)
1383 {
1384 	struct btrfs_root *root;
1385 	struct btrfs_root *tree_root = fs_info->tree_root;
1386 	struct extent_buffer *leaf;
1387 
1388 	root = btrfs_alloc_root(fs_info);
1389 	if (!root)
1390 		return ERR_PTR(-ENOMEM);
1391 
1392 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1393 		     tree_root->sectorsize, tree_root->stripesize,
1394 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1395 
1396 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1397 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1398 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1399 	/*
1400 	 * log trees do not get reference counted because they go away
1401 	 * before a real commit is actually done.  They do store pointers
1402 	 * to file data extents, and those reference counts still get
1403 	 * updated (along with back refs to the log tree).
1404 	 */
1405 	root->ref_cows = 0;
1406 
1407 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1408 				      BTRFS_TREE_LOG_OBJECTID, NULL,
1409 				      0, 0, 0);
1410 	if (IS_ERR(leaf)) {
1411 		kfree(root);
1412 		return ERR_CAST(leaf);
1413 	}
1414 
1415 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1416 	btrfs_set_header_bytenr(leaf, leaf->start);
1417 	btrfs_set_header_generation(leaf, trans->transid);
1418 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1419 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1420 	root->node = leaf;
1421 
1422 	write_extent_buffer(root->node, root->fs_info->fsid,
1423 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
1424 	btrfs_mark_buffer_dirty(root->node);
1425 	btrfs_tree_unlock(root->node);
1426 	return root;
1427 }
1428 
1429 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1430 			     struct btrfs_fs_info *fs_info)
1431 {
1432 	struct btrfs_root *log_root;
1433 
1434 	log_root = alloc_log_tree(trans, fs_info);
1435 	if (IS_ERR(log_root))
1436 		return PTR_ERR(log_root);
1437 	WARN_ON(fs_info->log_root_tree);
1438 	fs_info->log_root_tree = log_root;
1439 	return 0;
1440 }
1441 
1442 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1443 		       struct btrfs_root *root)
1444 {
1445 	struct btrfs_root *log_root;
1446 	struct btrfs_inode_item *inode_item;
1447 
1448 	log_root = alloc_log_tree(trans, root->fs_info);
1449 	if (IS_ERR(log_root))
1450 		return PTR_ERR(log_root);
1451 
1452 	log_root->last_trans = trans->transid;
1453 	log_root->root_key.offset = root->root_key.objectid;
1454 
1455 	inode_item = &log_root->root_item.inode;
1456 	btrfs_set_stack_inode_generation(inode_item, 1);
1457 	btrfs_set_stack_inode_size(inode_item, 3);
1458 	btrfs_set_stack_inode_nlink(inode_item, 1);
1459 	btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1460 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1461 
1462 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1463 
1464 	WARN_ON(root->log_root);
1465 	root->log_root = log_root;
1466 	root->log_transid = 0;
1467 	root->log_transid_committed = -1;
1468 	root->last_log_commit = 0;
1469 	return 0;
1470 }
1471 
1472 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1473 					       struct btrfs_key *key)
1474 {
1475 	struct btrfs_root *root;
1476 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1477 	struct btrfs_path *path;
1478 	u64 generation;
1479 	u32 blocksize;
1480 	int ret;
1481 
1482 	path = btrfs_alloc_path();
1483 	if (!path)
1484 		return ERR_PTR(-ENOMEM);
1485 
1486 	root = btrfs_alloc_root(fs_info);
1487 	if (!root) {
1488 		ret = -ENOMEM;
1489 		goto alloc_fail;
1490 	}
1491 
1492 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1493 		     tree_root->sectorsize, tree_root->stripesize,
1494 		     root, fs_info, key->objectid);
1495 
1496 	ret = btrfs_find_root(tree_root, key, path,
1497 			      &root->root_item, &root->root_key);
1498 	if (ret) {
1499 		if (ret > 0)
1500 			ret = -ENOENT;
1501 		goto find_fail;
1502 	}
1503 
1504 	generation = btrfs_root_generation(&root->root_item);
1505 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1506 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1507 				     blocksize, generation);
1508 	if (!root->node) {
1509 		ret = -ENOMEM;
1510 		goto find_fail;
1511 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1512 		ret = -EIO;
1513 		goto read_fail;
1514 	}
1515 	root->commit_root = btrfs_root_node(root);
1516 out:
1517 	btrfs_free_path(path);
1518 	return root;
1519 
1520 read_fail:
1521 	free_extent_buffer(root->node);
1522 find_fail:
1523 	kfree(root);
1524 alloc_fail:
1525 	root = ERR_PTR(ret);
1526 	goto out;
1527 }
1528 
1529 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1530 				      struct btrfs_key *location)
1531 {
1532 	struct btrfs_root *root;
1533 
1534 	root = btrfs_read_tree_root(tree_root, location);
1535 	if (IS_ERR(root))
1536 		return root;
1537 
1538 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1539 		root->ref_cows = 1;
1540 		btrfs_check_and_init_root_item(&root->root_item);
1541 	}
1542 
1543 	return root;
1544 }
1545 
1546 int btrfs_init_fs_root(struct btrfs_root *root)
1547 {
1548 	int ret;
1549 	struct btrfs_subvolume_writers *writers;
1550 
1551 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1552 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1553 					GFP_NOFS);
1554 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1555 		ret = -ENOMEM;
1556 		goto fail;
1557 	}
1558 
1559 	writers = btrfs_alloc_subvolume_writers();
1560 	if (IS_ERR(writers)) {
1561 		ret = PTR_ERR(writers);
1562 		goto fail;
1563 	}
1564 	root->subv_writers = writers;
1565 
1566 	btrfs_init_free_ino_ctl(root);
1567 	spin_lock_init(&root->cache_lock);
1568 	init_waitqueue_head(&root->cache_wait);
1569 
1570 	ret = get_anon_bdev(&root->anon_dev);
1571 	if (ret)
1572 		goto free_writers;
1573 	return 0;
1574 
1575 free_writers:
1576 	btrfs_free_subvolume_writers(root->subv_writers);
1577 fail:
1578 	kfree(root->free_ino_ctl);
1579 	kfree(root->free_ino_pinned);
1580 	return ret;
1581 }
1582 
1583 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1584 					       u64 root_id)
1585 {
1586 	struct btrfs_root *root;
1587 
1588 	spin_lock(&fs_info->fs_roots_radix_lock);
1589 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1590 				 (unsigned long)root_id);
1591 	spin_unlock(&fs_info->fs_roots_radix_lock);
1592 	return root;
1593 }
1594 
1595 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1596 			 struct btrfs_root *root)
1597 {
1598 	int ret;
1599 
1600 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1601 	if (ret)
1602 		return ret;
1603 
1604 	spin_lock(&fs_info->fs_roots_radix_lock);
1605 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1606 				(unsigned long)root->root_key.objectid,
1607 				root);
1608 	if (ret == 0)
1609 		root->in_radix = 1;
1610 	spin_unlock(&fs_info->fs_roots_radix_lock);
1611 	radix_tree_preload_end();
1612 
1613 	return ret;
1614 }
1615 
1616 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1617 				     struct btrfs_key *location,
1618 				     bool check_ref)
1619 {
1620 	struct btrfs_root *root;
1621 	int ret;
1622 
1623 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1624 		return fs_info->tree_root;
1625 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1626 		return fs_info->extent_root;
1627 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1628 		return fs_info->chunk_root;
1629 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1630 		return fs_info->dev_root;
1631 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1632 		return fs_info->csum_root;
1633 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1634 		return fs_info->quota_root ? fs_info->quota_root :
1635 					     ERR_PTR(-ENOENT);
1636 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1637 		return fs_info->uuid_root ? fs_info->uuid_root :
1638 					    ERR_PTR(-ENOENT);
1639 again:
1640 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1641 	if (root) {
1642 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1643 			return ERR_PTR(-ENOENT);
1644 		return root;
1645 	}
1646 
1647 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1648 	if (IS_ERR(root))
1649 		return root;
1650 
1651 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1652 		ret = -ENOENT;
1653 		goto fail;
1654 	}
1655 
1656 	ret = btrfs_init_fs_root(root);
1657 	if (ret)
1658 		goto fail;
1659 
1660 	ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1661 			location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1662 	if (ret < 0)
1663 		goto fail;
1664 	if (ret == 0)
1665 		root->orphan_item_inserted = 1;
1666 
1667 	ret = btrfs_insert_fs_root(fs_info, root);
1668 	if (ret) {
1669 		if (ret == -EEXIST) {
1670 			free_fs_root(root);
1671 			goto again;
1672 		}
1673 		goto fail;
1674 	}
1675 	return root;
1676 fail:
1677 	free_fs_root(root);
1678 	return ERR_PTR(ret);
1679 }
1680 
1681 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1682 {
1683 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1684 	int ret = 0;
1685 	struct btrfs_device *device;
1686 	struct backing_dev_info *bdi;
1687 
1688 	rcu_read_lock();
1689 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1690 		if (!device->bdev)
1691 			continue;
1692 		bdi = blk_get_backing_dev_info(device->bdev);
1693 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1694 			ret = 1;
1695 			break;
1696 		}
1697 	}
1698 	rcu_read_unlock();
1699 	return ret;
1700 }
1701 
1702 /*
1703  * If this fails, caller must call bdi_destroy() to get rid of the
1704  * bdi again.
1705  */
1706 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1707 {
1708 	int err;
1709 
1710 	bdi->capabilities = BDI_CAP_MAP_COPY;
1711 	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1712 	if (err)
1713 		return err;
1714 
1715 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1716 	bdi->congested_fn	= btrfs_congested_fn;
1717 	bdi->congested_data	= info;
1718 	return 0;
1719 }
1720 
1721 /*
1722  * called by the kthread helper functions to finally call the bio end_io
1723  * functions.  This is where read checksum verification actually happens
1724  */
1725 static void end_workqueue_fn(struct btrfs_work *work)
1726 {
1727 	struct bio *bio;
1728 	struct end_io_wq *end_io_wq;
1729 	int error;
1730 
1731 	end_io_wq = container_of(work, struct end_io_wq, work);
1732 	bio = end_io_wq->bio;
1733 
1734 	error = end_io_wq->error;
1735 	bio->bi_private = end_io_wq->private;
1736 	bio->bi_end_io = end_io_wq->end_io;
1737 	kfree(end_io_wq);
1738 	bio_endio_nodec(bio, error);
1739 }
1740 
1741 static int cleaner_kthread(void *arg)
1742 {
1743 	struct btrfs_root *root = arg;
1744 	int again;
1745 
1746 	do {
1747 		again = 0;
1748 
1749 		/* Make the cleaner go to sleep early. */
1750 		if (btrfs_need_cleaner_sleep(root))
1751 			goto sleep;
1752 
1753 		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1754 			goto sleep;
1755 
1756 		/*
1757 		 * Avoid the problem that we change the status of the fs
1758 		 * during the above check and trylock.
1759 		 */
1760 		if (btrfs_need_cleaner_sleep(root)) {
1761 			mutex_unlock(&root->fs_info->cleaner_mutex);
1762 			goto sleep;
1763 		}
1764 
1765 		btrfs_run_delayed_iputs(root);
1766 		again = btrfs_clean_one_deleted_snapshot(root);
1767 		mutex_unlock(&root->fs_info->cleaner_mutex);
1768 
1769 		/*
1770 		 * The defragger has dealt with the R/O remount and umount,
1771 		 * needn't do anything special here.
1772 		 */
1773 		btrfs_run_defrag_inodes(root->fs_info);
1774 sleep:
1775 		if (!try_to_freeze() && !again) {
1776 			set_current_state(TASK_INTERRUPTIBLE);
1777 			if (!kthread_should_stop())
1778 				schedule();
1779 			__set_current_state(TASK_RUNNING);
1780 		}
1781 	} while (!kthread_should_stop());
1782 	return 0;
1783 }
1784 
1785 static int transaction_kthread(void *arg)
1786 {
1787 	struct btrfs_root *root = arg;
1788 	struct btrfs_trans_handle *trans;
1789 	struct btrfs_transaction *cur;
1790 	u64 transid;
1791 	unsigned long now;
1792 	unsigned long delay;
1793 	bool cannot_commit;
1794 
1795 	do {
1796 		cannot_commit = false;
1797 		delay = HZ * root->fs_info->commit_interval;
1798 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1799 
1800 		spin_lock(&root->fs_info->trans_lock);
1801 		cur = root->fs_info->running_transaction;
1802 		if (!cur) {
1803 			spin_unlock(&root->fs_info->trans_lock);
1804 			goto sleep;
1805 		}
1806 
1807 		now = get_seconds();
1808 		if (cur->state < TRANS_STATE_BLOCKED &&
1809 		    (now < cur->start_time ||
1810 		     now - cur->start_time < root->fs_info->commit_interval)) {
1811 			spin_unlock(&root->fs_info->trans_lock);
1812 			delay = HZ * 5;
1813 			goto sleep;
1814 		}
1815 		transid = cur->transid;
1816 		spin_unlock(&root->fs_info->trans_lock);
1817 
1818 		/* If the file system is aborted, this will always fail. */
1819 		trans = btrfs_attach_transaction(root);
1820 		if (IS_ERR(trans)) {
1821 			if (PTR_ERR(trans) != -ENOENT)
1822 				cannot_commit = true;
1823 			goto sleep;
1824 		}
1825 		if (transid == trans->transid) {
1826 			btrfs_commit_transaction(trans, root);
1827 		} else {
1828 			btrfs_end_transaction(trans, root);
1829 		}
1830 sleep:
1831 		wake_up_process(root->fs_info->cleaner_kthread);
1832 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1833 
1834 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1835 				      &root->fs_info->fs_state)))
1836 			btrfs_cleanup_transaction(root);
1837 		if (!try_to_freeze()) {
1838 			set_current_state(TASK_INTERRUPTIBLE);
1839 			if (!kthread_should_stop() &&
1840 			    (!btrfs_transaction_blocked(root->fs_info) ||
1841 			     cannot_commit))
1842 				schedule_timeout(delay);
1843 			__set_current_state(TASK_RUNNING);
1844 		}
1845 	} while (!kthread_should_stop());
1846 	return 0;
1847 }
1848 
1849 /*
1850  * this will find the highest generation in the array of
1851  * root backups.  The index of the highest array is returned,
1852  * or -1 if we can't find anything.
1853  *
1854  * We check to make sure the array is valid by comparing the
1855  * generation of the latest  root in the array with the generation
1856  * in the super block.  If they don't match we pitch it.
1857  */
1858 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1859 {
1860 	u64 cur;
1861 	int newest_index = -1;
1862 	struct btrfs_root_backup *root_backup;
1863 	int i;
1864 
1865 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1866 		root_backup = info->super_copy->super_roots + i;
1867 		cur = btrfs_backup_tree_root_gen(root_backup);
1868 		if (cur == newest_gen)
1869 			newest_index = i;
1870 	}
1871 
1872 	/* check to see if we actually wrapped around */
1873 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1874 		root_backup = info->super_copy->super_roots;
1875 		cur = btrfs_backup_tree_root_gen(root_backup);
1876 		if (cur == newest_gen)
1877 			newest_index = 0;
1878 	}
1879 	return newest_index;
1880 }
1881 
1882 
1883 /*
1884  * find the oldest backup so we know where to store new entries
1885  * in the backup array.  This will set the backup_root_index
1886  * field in the fs_info struct
1887  */
1888 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1889 				     u64 newest_gen)
1890 {
1891 	int newest_index = -1;
1892 
1893 	newest_index = find_newest_super_backup(info, newest_gen);
1894 	/* if there was garbage in there, just move along */
1895 	if (newest_index == -1) {
1896 		info->backup_root_index = 0;
1897 	} else {
1898 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1899 	}
1900 }
1901 
1902 /*
1903  * copy all the root pointers into the super backup array.
1904  * this will bump the backup pointer by one when it is
1905  * done
1906  */
1907 static void backup_super_roots(struct btrfs_fs_info *info)
1908 {
1909 	int next_backup;
1910 	struct btrfs_root_backup *root_backup;
1911 	int last_backup;
1912 
1913 	next_backup = info->backup_root_index;
1914 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1915 		BTRFS_NUM_BACKUP_ROOTS;
1916 
1917 	/*
1918 	 * just overwrite the last backup if we're at the same generation
1919 	 * this happens only at umount
1920 	 */
1921 	root_backup = info->super_for_commit->super_roots + last_backup;
1922 	if (btrfs_backup_tree_root_gen(root_backup) ==
1923 	    btrfs_header_generation(info->tree_root->node))
1924 		next_backup = last_backup;
1925 
1926 	root_backup = info->super_for_commit->super_roots + next_backup;
1927 
1928 	/*
1929 	 * make sure all of our padding and empty slots get zero filled
1930 	 * regardless of which ones we use today
1931 	 */
1932 	memset(root_backup, 0, sizeof(*root_backup));
1933 
1934 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1935 
1936 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1937 	btrfs_set_backup_tree_root_gen(root_backup,
1938 			       btrfs_header_generation(info->tree_root->node));
1939 
1940 	btrfs_set_backup_tree_root_level(root_backup,
1941 			       btrfs_header_level(info->tree_root->node));
1942 
1943 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1944 	btrfs_set_backup_chunk_root_gen(root_backup,
1945 			       btrfs_header_generation(info->chunk_root->node));
1946 	btrfs_set_backup_chunk_root_level(root_backup,
1947 			       btrfs_header_level(info->chunk_root->node));
1948 
1949 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1950 	btrfs_set_backup_extent_root_gen(root_backup,
1951 			       btrfs_header_generation(info->extent_root->node));
1952 	btrfs_set_backup_extent_root_level(root_backup,
1953 			       btrfs_header_level(info->extent_root->node));
1954 
1955 	/*
1956 	 * we might commit during log recovery, which happens before we set
1957 	 * the fs_root.  Make sure it is valid before we fill it in.
1958 	 */
1959 	if (info->fs_root && info->fs_root->node) {
1960 		btrfs_set_backup_fs_root(root_backup,
1961 					 info->fs_root->node->start);
1962 		btrfs_set_backup_fs_root_gen(root_backup,
1963 			       btrfs_header_generation(info->fs_root->node));
1964 		btrfs_set_backup_fs_root_level(root_backup,
1965 			       btrfs_header_level(info->fs_root->node));
1966 	}
1967 
1968 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1969 	btrfs_set_backup_dev_root_gen(root_backup,
1970 			       btrfs_header_generation(info->dev_root->node));
1971 	btrfs_set_backup_dev_root_level(root_backup,
1972 				       btrfs_header_level(info->dev_root->node));
1973 
1974 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1975 	btrfs_set_backup_csum_root_gen(root_backup,
1976 			       btrfs_header_generation(info->csum_root->node));
1977 	btrfs_set_backup_csum_root_level(root_backup,
1978 			       btrfs_header_level(info->csum_root->node));
1979 
1980 	btrfs_set_backup_total_bytes(root_backup,
1981 			     btrfs_super_total_bytes(info->super_copy));
1982 	btrfs_set_backup_bytes_used(root_backup,
1983 			     btrfs_super_bytes_used(info->super_copy));
1984 	btrfs_set_backup_num_devices(root_backup,
1985 			     btrfs_super_num_devices(info->super_copy));
1986 
1987 	/*
1988 	 * if we don't copy this out to the super_copy, it won't get remembered
1989 	 * for the next commit
1990 	 */
1991 	memcpy(&info->super_copy->super_roots,
1992 	       &info->super_for_commit->super_roots,
1993 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1994 }
1995 
1996 /*
1997  * this copies info out of the root backup array and back into
1998  * the in-memory super block.  It is meant to help iterate through
1999  * the array, so you send it the number of backups you've already
2000  * tried and the last backup index you used.
2001  *
2002  * this returns -1 when it has tried all the backups
2003  */
2004 static noinline int next_root_backup(struct btrfs_fs_info *info,
2005 				     struct btrfs_super_block *super,
2006 				     int *num_backups_tried, int *backup_index)
2007 {
2008 	struct btrfs_root_backup *root_backup;
2009 	int newest = *backup_index;
2010 
2011 	if (*num_backups_tried == 0) {
2012 		u64 gen = btrfs_super_generation(super);
2013 
2014 		newest = find_newest_super_backup(info, gen);
2015 		if (newest == -1)
2016 			return -1;
2017 
2018 		*backup_index = newest;
2019 		*num_backups_tried = 1;
2020 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2021 		/* we've tried all the backups, all done */
2022 		return -1;
2023 	} else {
2024 		/* jump to the next oldest backup */
2025 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2026 			BTRFS_NUM_BACKUP_ROOTS;
2027 		*backup_index = newest;
2028 		*num_backups_tried += 1;
2029 	}
2030 	root_backup = super->super_roots + newest;
2031 
2032 	btrfs_set_super_generation(super,
2033 				   btrfs_backup_tree_root_gen(root_backup));
2034 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2035 	btrfs_set_super_root_level(super,
2036 				   btrfs_backup_tree_root_level(root_backup));
2037 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2038 
2039 	/*
2040 	 * fixme: the total bytes and num_devices need to match or we should
2041 	 * need a fsck
2042 	 */
2043 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2044 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2045 	return 0;
2046 }
2047 
2048 /* helper to cleanup workers */
2049 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2050 {
2051 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2052 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2053 	btrfs_destroy_workqueue(fs_info->workers);
2054 	btrfs_destroy_workqueue(fs_info->endio_workers);
2055 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2056 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2057 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2058 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2059 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2060 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2061 	btrfs_destroy_workqueue(fs_info->submit_workers);
2062 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2063 	btrfs_destroy_workqueue(fs_info->caching_workers);
2064 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2065 	btrfs_destroy_workqueue(fs_info->flush_workers);
2066 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2067 }
2068 
2069 static void free_root_extent_buffers(struct btrfs_root *root)
2070 {
2071 	if (root) {
2072 		free_extent_buffer(root->node);
2073 		free_extent_buffer(root->commit_root);
2074 		root->node = NULL;
2075 		root->commit_root = NULL;
2076 	}
2077 }
2078 
2079 /* helper to cleanup tree roots */
2080 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2081 {
2082 	free_root_extent_buffers(info->tree_root);
2083 
2084 	free_root_extent_buffers(info->dev_root);
2085 	free_root_extent_buffers(info->extent_root);
2086 	free_root_extent_buffers(info->csum_root);
2087 	free_root_extent_buffers(info->quota_root);
2088 	free_root_extent_buffers(info->uuid_root);
2089 	if (chunk_root)
2090 		free_root_extent_buffers(info->chunk_root);
2091 }
2092 
2093 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2094 {
2095 	int ret;
2096 	struct btrfs_root *gang[8];
2097 	int i;
2098 
2099 	while (!list_empty(&fs_info->dead_roots)) {
2100 		gang[0] = list_entry(fs_info->dead_roots.next,
2101 				     struct btrfs_root, root_list);
2102 		list_del(&gang[0]->root_list);
2103 
2104 		if (gang[0]->in_radix) {
2105 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2106 		} else {
2107 			free_extent_buffer(gang[0]->node);
2108 			free_extent_buffer(gang[0]->commit_root);
2109 			btrfs_put_fs_root(gang[0]);
2110 		}
2111 	}
2112 
2113 	while (1) {
2114 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2115 					     (void **)gang, 0,
2116 					     ARRAY_SIZE(gang));
2117 		if (!ret)
2118 			break;
2119 		for (i = 0; i < ret; i++)
2120 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2121 	}
2122 
2123 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2124 		btrfs_free_log_root_tree(NULL, fs_info);
2125 		btrfs_destroy_pinned_extent(fs_info->tree_root,
2126 					    fs_info->pinned_extents);
2127 	}
2128 }
2129 
2130 int open_ctree(struct super_block *sb,
2131 	       struct btrfs_fs_devices *fs_devices,
2132 	       char *options)
2133 {
2134 	u32 sectorsize;
2135 	u32 nodesize;
2136 	u32 leafsize;
2137 	u32 blocksize;
2138 	u32 stripesize;
2139 	u64 generation;
2140 	u64 features;
2141 	struct btrfs_key location;
2142 	struct buffer_head *bh;
2143 	struct btrfs_super_block *disk_super;
2144 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2145 	struct btrfs_root *tree_root;
2146 	struct btrfs_root *extent_root;
2147 	struct btrfs_root *csum_root;
2148 	struct btrfs_root *chunk_root;
2149 	struct btrfs_root *dev_root;
2150 	struct btrfs_root *quota_root;
2151 	struct btrfs_root *uuid_root;
2152 	struct btrfs_root *log_tree_root;
2153 	int ret;
2154 	int err = -EINVAL;
2155 	int num_backups_tried = 0;
2156 	int backup_index = 0;
2157 	int max_active;
2158 	int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2159 	bool create_uuid_tree;
2160 	bool check_uuid_tree;
2161 
2162 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2163 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2164 	if (!tree_root || !chunk_root) {
2165 		err = -ENOMEM;
2166 		goto fail;
2167 	}
2168 
2169 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2170 	if (ret) {
2171 		err = ret;
2172 		goto fail;
2173 	}
2174 
2175 	ret = setup_bdi(fs_info, &fs_info->bdi);
2176 	if (ret) {
2177 		err = ret;
2178 		goto fail_srcu;
2179 	}
2180 
2181 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2182 	if (ret) {
2183 		err = ret;
2184 		goto fail_bdi;
2185 	}
2186 	fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2187 					(1 + ilog2(nr_cpu_ids));
2188 
2189 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2190 	if (ret) {
2191 		err = ret;
2192 		goto fail_dirty_metadata_bytes;
2193 	}
2194 
2195 	ret = percpu_counter_init(&fs_info->bio_counter, 0);
2196 	if (ret) {
2197 		err = ret;
2198 		goto fail_delalloc_bytes;
2199 	}
2200 
2201 	fs_info->btree_inode = new_inode(sb);
2202 	if (!fs_info->btree_inode) {
2203 		err = -ENOMEM;
2204 		goto fail_bio_counter;
2205 	}
2206 
2207 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2208 
2209 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2210 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2211 	INIT_LIST_HEAD(&fs_info->trans_list);
2212 	INIT_LIST_HEAD(&fs_info->dead_roots);
2213 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2214 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2215 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2216 	spin_lock_init(&fs_info->delalloc_root_lock);
2217 	spin_lock_init(&fs_info->trans_lock);
2218 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2219 	spin_lock_init(&fs_info->delayed_iput_lock);
2220 	spin_lock_init(&fs_info->defrag_inodes_lock);
2221 	spin_lock_init(&fs_info->free_chunk_lock);
2222 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2223 	spin_lock_init(&fs_info->super_lock);
2224 	spin_lock_init(&fs_info->buffer_lock);
2225 	rwlock_init(&fs_info->tree_mod_log_lock);
2226 	mutex_init(&fs_info->reloc_mutex);
2227 	mutex_init(&fs_info->delalloc_root_mutex);
2228 	seqlock_init(&fs_info->profiles_lock);
2229 
2230 	init_completion(&fs_info->kobj_unregister);
2231 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2232 	INIT_LIST_HEAD(&fs_info->space_info);
2233 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2234 	btrfs_mapping_init(&fs_info->mapping_tree);
2235 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2236 			     BTRFS_BLOCK_RSV_GLOBAL);
2237 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2238 			     BTRFS_BLOCK_RSV_DELALLOC);
2239 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2240 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2241 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2242 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2243 			     BTRFS_BLOCK_RSV_DELOPS);
2244 	atomic_set(&fs_info->nr_async_submits, 0);
2245 	atomic_set(&fs_info->async_delalloc_pages, 0);
2246 	atomic_set(&fs_info->async_submit_draining, 0);
2247 	atomic_set(&fs_info->nr_async_bios, 0);
2248 	atomic_set(&fs_info->defrag_running, 0);
2249 	atomic64_set(&fs_info->tree_mod_seq, 0);
2250 	fs_info->sb = sb;
2251 	fs_info->max_inline = 8192 * 1024;
2252 	fs_info->metadata_ratio = 0;
2253 	fs_info->defrag_inodes = RB_ROOT;
2254 	fs_info->free_chunk_space = 0;
2255 	fs_info->tree_mod_log = RB_ROOT;
2256 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2257 	fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2258 	/* readahead state */
2259 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2260 	spin_lock_init(&fs_info->reada_lock);
2261 
2262 	fs_info->thread_pool_size = min_t(unsigned long,
2263 					  num_online_cpus() + 2, 8);
2264 
2265 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2266 	spin_lock_init(&fs_info->ordered_root_lock);
2267 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2268 					GFP_NOFS);
2269 	if (!fs_info->delayed_root) {
2270 		err = -ENOMEM;
2271 		goto fail_iput;
2272 	}
2273 	btrfs_init_delayed_root(fs_info->delayed_root);
2274 
2275 	mutex_init(&fs_info->scrub_lock);
2276 	atomic_set(&fs_info->scrubs_running, 0);
2277 	atomic_set(&fs_info->scrub_pause_req, 0);
2278 	atomic_set(&fs_info->scrubs_paused, 0);
2279 	atomic_set(&fs_info->scrub_cancel_req, 0);
2280 	init_waitqueue_head(&fs_info->replace_wait);
2281 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2282 	fs_info->scrub_workers_refcnt = 0;
2283 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2284 	fs_info->check_integrity_print_mask = 0;
2285 #endif
2286 
2287 	spin_lock_init(&fs_info->balance_lock);
2288 	mutex_init(&fs_info->balance_mutex);
2289 	atomic_set(&fs_info->balance_running, 0);
2290 	atomic_set(&fs_info->balance_pause_req, 0);
2291 	atomic_set(&fs_info->balance_cancel_req, 0);
2292 	fs_info->balance_ctl = NULL;
2293 	init_waitqueue_head(&fs_info->balance_wait_q);
2294 
2295 	sb->s_blocksize = 4096;
2296 	sb->s_blocksize_bits = blksize_bits(4096);
2297 	sb->s_bdi = &fs_info->bdi;
2298 
2299 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2300 	set_nlink(fs_info->btree_inode, 1);
2301 	/*
2302 	 * we set the i_size on the btree inode to the max possible int.
2303 	 * the real end of the address space is determined by all of
2304 	 * the devices in the system
2305 	 */
2306 	fs_info->btree_inode->i_size = OFFSET_MAX;
2307 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2308 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2309 
2310 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2311 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2312 			     fs_info->btree_inode->i_mapping);
2313 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2314 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2315 
2316 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2317 
2318 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2319 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2320 	       sizeof(struct btrfs_key));
2321 	set_bit(BTRFS_INODE_DUMMY,
2322 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2323 	btrfs_insert_inode_hash(fs_info->btree_inode);
2324 
2325 	spin_lock_init(&fs_info->block_group_cache_lock);
2326 	fs_info->block_group_cache_tree = RB_ROOT;
2327 	fs_info->first_logical_byte = (u64)-1;
2328 
2329 	extent_io_tree_init(&fs_info->freed_extents[0],
2330 			     fs_info->btree_inode->i_mapping);
2331 	extent_io_tree_init(&fs_info->freed_extents[1],
2332 			     fs_info->btree_inode->i_mapping);
2333 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2334 	fs_info->do_barriers = 1;
2335 
2336 
2337 	mutex_init(&fs_info->ordered_operations_mutex);
2338 	mutex_init(&fs_info->ordered_extent_flush_mutex);
2339 	mutex_init(&fs_info->tree_log_mutex);
2340 	mutex_init(&fs_info->chunk_mutex);
2341 	mutex_init(&fs_info->transaction_kthread_mutex);
2342 	mutex_init(&fs_info->cleaner_mutex);
2343 	mutex_init(&fs_info->volume_mutex);
2344 	init_rwsem(&fs_info->commit_root_sem);
2345 	init_rwsem(&fs_info->cleanup_work_sem);
2346 	init_rwsem(&fs_info->subvol_sem);
2347 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2348 	fs_info->dev_replace.lock_owner = 0;
2349 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2350 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2351 	mutex_init(&fs_info->dev_replace.lock_management_lock);
2352 	mutex_init(&fs_info->dev_replace.lock);
2353 
2354 	spin_lock_init(&fs_info->qgroup_lock);
2355 	mutex_init(&fs_info->qgroup_ioctl_lock);
2356 	fs_info->qgroup_tree = RB_ROOT;
2357 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2358 	fs_info->qgroup_seq = 1;
2359 	fs_info->quota_enabled = 0;
2360 	fs_info->pending_quota_state = 0;
2361 	fs_info->qgroup_ulist = NULL;
2362 	mutex_init(&fs_info->qgroup_rescan_lock);
2363 
2364 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2365 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2366 
2367 	init_waitqueue_head(&fs_info->transaction_throttle);
2368 	init_waitqueue_head(&fs_info->transaction_wait);
2369 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2370 	init_waitqueue_head(&fs_info->async_submit_wait);
2371 
2372 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2373 	if (ret) {
2374 		err = ret;
2375 		goto fail_alloc;
2376 	}
2377 
2378 	__setup_root(4096, 4096, 4096, 4096, tree_root,
2379 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2380 
2381 	invalidate_bdev(fs_devices->latest_bdev);
2382 
2383 	/*
2384 	 * Read super block and check the signature bytes only
2385 	 */
2386 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2387 	if (!bh) {
2388 		err = -EINVAL;
2389 		goto fail_alloc;
2390 	}
2391 
2392 	/*
2393 	 * We want to check superblock checksum, the type is stored inside.
2394 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2395 	 */
2396 	if (btrfs_check_super_csum(bh->b_data)) {
2397 		printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2398 		err = -EINVAL;
2399 		goto fail_alloc;
2400 	}
2401 
2402 	/*
2403 	 * super_copy is zeroed at allocation time and we never touch the
2404 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2405 	 * the whole block of INFO_SIZE
2406 	 */
2407 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2408 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2409 	       sizeof(*fs_info->super_for_commit));
2410 	brelse(bh);
2411 
2412 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2413 
2414 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2415 	if (ret) {
2416 		printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2417 		err = -EINVAL;
2418 		goto fail_alloc;
2419 	}
2420 
2421 	disk_super = fs_info->super_copy;
2422 	if (!btrfs_super_root(disk_super))
2423 		goto fail_alloc;
2424 
2425 	/* check FS state, whether FS is broken. */
2426 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2427 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2428 
2429 	/*
2430 	 * run through our array of backup supers and setup
2431 	 * our ring pointer to the oldest one
2432 	 */
2433 	generation = btrfs_super_generation(disk_super);
2434 	find_oldest_super_backup(fs_info, generation);
2435 
2436 	/*
2437 	 * In the long term, we'll store the compression type in the super
2438 	 * block, and it'll be used for per file compression control.
2439 	 */
2440 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2441 
2442 	ret = btrfs_parse_options(tree_root, options);
2443 	if (ret) {
2444 		err = ret;
2445 		goto fail_alloc;
2446 	}
2447 
2448 	features = btrfs_super_incompat_flags(disk_super) &
2449 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2450 	if (features) {
2451 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2452 		       "unsupported optional features (%Lx).\n",
2453 		       features);
2454 		err = -EINVAL;
2455 		goto fail_alloc;
2456 	}
2457 
2458 	if (btrfs_super_leafsize(disk_super) !=
2459 	    btrfs_super_nodesize(disk_super)) {
2460 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2461 		       "blocksizes don't match.  node %d leaf %d\n",
2462 		       btrfs_super_nodesize(disk_super),
2463 		       btrfs_super_leafsize(disk_super));
2464 		err = -EINVAL;
2465 		goto fail_alloc;
2466 	}
2467 	if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2468 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2469 		       "blocksize (%d) was too large\n",
2470 		       btrfs_super_leafsize(disk_super));
2471 		err = -EINVAL;
2472 		goto fail_alloc;
2473 	}
2474 
2475 	features = btrfs_super_incompat_flags(disk_super);
2476 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2477 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2478 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2479 
2480 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2481 		printk(KERN_ERR "BTRFS: has skinny extents\n");
2482 
2483 	/*
2484 	 * flag our filesystem as having big metadata blocks if
2485 	 * they are bigger than the page size
2486 	 */
2487 	if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2488 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2489 			printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2490 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2491 	}
2492 
2493 	nodesize = btrfs_super_nodesize(disk_super);
2494 	leafsize = btrfs_super_leafsize(disk_super);
2495 	sectorsize = btrfs_super_sectorsize(disk_super);
2496 	stripesize = btrfs_super_stripesize(disk_super);
2497 	fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2498 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2499 
2500 	/*
2501 	 * mixed block groups end up with duplicate but slightly offset
2502 	 * extent buffers for the same range.  It leads to corruptions
2503 	 */
2504 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2505 	    (sectorsize != leafsize)) {
2506 		printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2507 				"are not allowed for mixed block groups on %s\n",
2508 				sb->s_id);
2509 		goto fail_alloc;
2510 	}
2511 
2512 	/*
2513 	 * Needn't use the lock because there is no other task which will
2514 	 * update the flag.
2515 	 */
2516 	btrfs_set_super_incompat_flags(disk_super, features);
2517 
2518 	features = btrfs_super_compat_ro_flags(disk_super) &
2519 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2520 	if (!(sb->s_flags & MS_RDONLY) && features) {
2521 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2522 		       "unsupported option features (%Lx).\n",
2523 		       features);
2524 		err = -EINVAL;
2525 		goto fail_alloc;
2526 	}
2527 
2528 	max_active = fs_info->thread_pool_size;
2529 
2530 	fs_info->workers =
2531 		btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2532 				      max_active, 16);
2533 
2534 	fs_info->delalloc_workers =
2535 		btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2536 
2537 	fs_info->flush_workers =
2538 		btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2539 
2540 	fs_info->caching_workers =
2541 		btrfs_alloc_workqueue("cache", flags, max_active, 0);
2542 
2543 	/*
2544 	 * a higher idle thresh on the submit workers makes it much more
2545 	 * likely that bios will be send down in a sane order to the
2546 	 * devices
2547 	 */
2548 	fs_info->submit_workers =
2549 		btrfs_alloc_workqueue("submit", flags,
2550 				      min_t(u64, fs_devices->num_devices,
2551 					    max_active), 64);
2552 
2553 	fs_info->fixup_workers =
2554 		btrfs_alloc_workqueue("fixup", flags, 1, 0);
2555 
2556 	/*
2557 	 * endios are largely parallel and should have a very
2558 	 * low idle thresh
2559 	 */
2560 	fs_info->endio_workers =
2561 		btrfs_alloc_workqueue("endio", flags, max_active, 4);
2562 	fs_info->endio_meta_workers =
2563 		btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2564 	fs_info->endio_meta_write_workers =
2565 		btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2566 	fs_info->endio_raid56_workers =
2567 		btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2568 	fs_info->rmw_workers =
2569 		btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2570 	fs_info->endio_write_workers =
2571 		btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2572 	fs_info->endio_freespace_worker =
2573 		btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2574 	fs_info->delayed_workers =
2575 		btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2576 	fs_info->readahead_workers =
2577 		btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2578 	fs_info->qgroup_rescan_workers =
2579 		btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2580 
2581 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2582 	      fs_info->submit_workers && fs_info->flush_workers &&
2583 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2584 	      fs_info->endio_meta_write_workers &&
2585 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2586 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2587 	      fs_info->caching_workers && fs_info->readahead_workers &&
2588 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2589 	      fs_info->qgroup_rescan_workers)) {
2590 		err = -ENOMEM;
2591 		goto fail_sb_buffer;
2592 	}
2593 
2594 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2595 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2596 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2597 
2598 	tree_root->nodesize = nodesize;
2599 	tree_root->leafsize = leafsize;
2600 	tree_root->sectorsize = sectorsize;
2601 	tree_root->stripesize = stripesize;
2602 
2603 	sb->s_blocksize = sectorsize;
2604 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2605 
2606 	if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2607 		printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2608 		goto fail_sb_buffer;
2609 	}
2610 
2611 	if (sectorsize != PAGE_SIZE) {
2612 		printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2613 		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2614 		goto fail_sb_buffer;
2615 	}
2616 
2617 	mutex_lock(&fs_info->chunk_mutex);
2618 	ret = btrfs_read_sys_array(tree_root);
2619 	mutex_unlock(&fs_info->chunk_mutex);
2620 	if (ret) {
2621 		printk(KERN_WARNING "BTRFS: failed to read the system "
2622 		       "array on %s\n", sb->s_id);
2623 		goto fail_sb_buffer;
2624 	}
2625 
2626 	blocksize = btrfs_level_size(tree_root,
2627 				     btrfs_super_chunk_root_level(disk_super));
2628 	generation = btrfs_super_chunk_root_generation(disk_super);
2629 
2630 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
2631 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2632 
2633 	chunk_root->node = read_tree_block(chunk_root,
2634 					   btrfs_super_chunk_root(disk_super),
2635 					   blocksize, generation);
2636 	if (!chunk_root->node ||
2637 	    !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2638 		printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2639 		       sb->s_id);
2640 		goto fail_tree_roots;
2641 	}
2642 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2643 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2644 
2645 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2646 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2647 
2648 	ret = btrfs_read_chunk_tree(chunk_root);
2649 	if (ret) {
2650 		printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2651 		       sb->s_id);
2652 		goto fail_tree_roots;
2653 	}
2654 
2655 	/*
2656 	 * keep the device that is marked to be the target device for the
2657 	 * dev_replace procedure
2658 	 */
2659 	btrfs_close_extra_devices(fs_info, fs_devices, 0);
2660 
2661 	if (!fs_devices->latest_bdev) {
2662 		printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2663 		       sb->s_id);
2664 		goto fail_tree_roots;
2665 	}
2666 
2667 retry_root_backup:
2668 	blocksize = btrfs_level_size(tree_root,
2669 				     btrfs_super_root_level(disk_super));
2670 	generation = btrfs_super_generation(disk_super);
2671 
2672 	tree_root->node = read_tree_block(tree_root,
2673 					  btrfs_super_root(disk_super),
2674 					  blocksize, generation);
2675 	if (!tree_root->node ||
2676 	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2677 		printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2678 		       sb->s_id);
2679 
2680 		goto recovery_tree_root;
2681 	}
2682 
2683 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2684 	tree_root->commit_root = btrfs_root_node(tree_root);
2685 	btrfs_set_root_refs(&tree_root->root_item, 1);
2686 
2687 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2688 	location.type = BTRFS_ROOT_ITEM_KEY;
2689 	location.offset = 0;
2690 
2691 	extent_root = btrfs_read_tree_root(tree_root, &location);
2692 	if (IS_ERR(extent_root)) {
2693 		ret = PTR_ERR(extent_root);
2694 		goto recovery_tree_root;
2695 	}
2696 	extent_root->track_dirty = 1;
2697 	fs_info->extent_root = extent_root;
2698 
2699 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2700 	dev_root = btrfs_read_tree_root(tree_root, &location);
2701 	if (IS_ERR(dev_root)) {
2702 		ret = PTR_ERR(dev_root);
2703 		goto recovery_tree_root;
2704 	}
2705 	dev_root->track_dirty = 1;
2706 	fs_info->dev_root = dev_root;
2707 	btrfs_init_devices_late(fs_info);
2708 
2709 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2710 	csum_root = btrfs_read_tree_root(tree_root, &location);
2711 	if (IS_ERR(csum_root)) {
2712 		ret = PTR_ERR(csum_root);
2713 		goto recovery_tree_root;
2714 	}
2715 	csum_root->track_dirty = 1;
2716 	fs_info->csum_root = csum_root;
2717 
2718 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2719 	quota_root = btrfs_read_tree_root(tree_root, &location);
2720 	if (!IS_ERR(quota_root)) {
2721 		quota_root->track_dirty = 1;
2722 		fs_info->quota_enabled = 1;
2723 		fs_info->pending_quota_state = 1;
2724 		fs_info->quota_root = quota_root;
2725 	}
2726 
2727 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2728 	uuid_root = btrfs_read_tree_root(tree_root, &location);
2729 	if (IS_ERR(uuid_root)) {
2730 		ret = PTR_ERR(uuid_root);
2731 		if (ret != -ENOENT)
2732 			goto recovery_tree_root;
2733 		create_uuid_tree = true;
2734 		check_uuid_tree = false;
2735 	} else {
2736 		uuid_root->track_dirty = 1;
2737 		fs_info->uuid_root = uuid_root;
2738 		create_uuid_tree = false;
2739 		check_uuid_tree =
2740 		    generation != btrfs_super_uuid_tree_generation(disk_super);
2741 	}
2742 
2743 	fs_info->generation = generation;
2744 	fs_info->last_trans_committed = generation;
2745 
2746 	ret = btrfs_recover_balance(fs_info);
2747 	if (ret) {
2748 		printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2749 		goto fail_block_groups;
2750 	}
2751 
2752 	ret = btrfs_init_dev_stats(fs_info);
2753 	if (ret) {
2754 		printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2755 		       ret);
2756 		goto fail_block_groups;
2757 	}
2758 
2759 	ret = btrfs_init_dev_replace(fs_info);
2760 	if (ret) {
2761 		pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2762 		goto fail_block_groups;
2763 	}
2764 
2765 	btrfs_close_extra_devices(fs_info, fs_devices, 1);
2766 
2767 	ret = btrfs_sysfs_add_one(fs_info);
2768 	if (ret) {
2769 		pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2770 		goto fail_block_groups;
2771 	}
2772 
2773 	ret = btrfs_init_space_info(fs_info);
2774 	if (ret) {
2775 		printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2776 		goto fail_sysfs;
2777 	}
2778 
2779 	ret = btrfs_read_block_groups(extent_root);
2780 	if (ret) {
2781 		printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2782 		goto fail_sysfs;
2783 	}
2784 	fs_info->num_tolerated_disk_barrier_failures =
2785 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2786 	if (fs_info->fs_devices->missing_devices >
2787 	     fs_info->num_tolerated_disk_barrier_failures &&
2788 	    !(sb->s_flags & MS_RDONLY)) {
2789 		printk(KERN_WARNING "BTRFS: "
2790 			"too many missing devices, writeable mount is not allowed\n");
2791 		goto fail_sysfs;
2792 	}
2793 
2794 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2795 					       "btrfs-cleaner");
2796 	if (IS_ERR(fs_info->cleaner_kthread))
2797 		goto fail_sysfs;
2798 
2799 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2800 						   tree_root,
2801 						   "btrfs-transaction");
2802 	if (IS_ERR(fs_info->transaction_kthread))
2803 		goto fail_cleaner;
2804 
2805 	if (!btrfs_test_opt(tree_root, SSD) &&
2806 	    !btrfs_test_opt(tree_root, NOSSD) &&
2807 	    !fs_info->fs_devices->rotating) {
2808 		printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2809 		       "mode\n");
2810 		btrfs_set_opt(fs_info->mount_opt, SSD);
2811 	}
2812 
2813 	/* Set the real inode map cache flag */
2814 	if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2815 		btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2816 
2817 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2818 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2819 		ret = btrfsic_mount(tree_root, fs_devices,
2820 				    btrfs_test_opt(tree_root,
2821 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2822 				    1 : 0,
2823 				    fs_info->check_integrity_print_mask);
2824 		if (ret)
2825 			printk(KERN_WARNING "BTRFS: failed to initialize"
2826 			       " integrity check module %s\n", sb->s_id);
2827 	}
2828 #endif
2829 	ret = btrfs_read_qgroup_config(fs_info);
2830 	if (ret)
2831 		goto fail_trans_kthread;
2832 
2833 	/* do not make disk changes in broken FS */
2834 	if (btrfs_super_log_root(disk_super) != 0) {
2835 		u64 bytenr = btrfs_super_log_root(disk_super);
2836 
2837 		if (fs_devices->rw_devices == 0) {
2838 			printk(KERN_WARNING "BTRFS: log replay required "
2839 			       "on RO media\n");
2840 			err = -EIO;
2841 			goto fail_qgroup;
2842 		}
2843 		blocksize =
2844 		     btrfs_level_size(tree_root,
2845 				      btrfs_super_log_root_level(disk_super));
2846 
2847 		log_tree_root = btrfs_alloc_root(fs_info);
2848 		if (!log_tree_root) {
2849 			err = -ENOMEM;
2850 			goto fail_qgroup;
2851 		}
2852 
2853 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2854 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2855 
2856 		log_tree_root->node = read_tree_block(tree_root, bytenr,
2857 						      blocksize,
2858 						      generation + 1);
2859 		if (!log_tree_root->node ||
2860 		    !extent_buffer_uptodate(log_tree_root->node)) {
2861 			printk(KERN_ERR "BTRFS: failed to read log tree\n");
2862 			free_extent_buffer(log_tree_root->node);
2863 			kfree(log_tree_root);
2864 			goto fail_trans_kthread;
2865 		}
2866 		/* returns with log_tree_root freed on success */
2867 		ret = btrfs_recover_log_trees(log_tree_root);
2868 		if (ret) {
2869 			btrfs_error(tree_root->fs_info, ret,
2870 				    "Failed to recover log tree");
2871 			free_extent_buffer(log_tree_root->node);
2872 			kfree(log_tree_root);
2873 			goto fail_trans_kthread;
2874 		}
2875 
2876 		if (sb->s_flags & MS_RDONLY) {
2877 			ret = btrfs_commit_super(tree_root);
2878 			if (ret)
2879 				goto fail_trans_kthread;
2880 		}
2881 	}
2882 
2883 	ret = btrfs_find_orphan_roots(tree_root);
2884 	if (ret)
2885 		goto fail_trans_kthread;
2886 
2887 	if (!(sb->s_flags & MS_RDONLY)) {
2888 		ret = btrfs_cleanup_fs_roots(fs_info);
2889 		if (ret)
2890 			goto fail_trans_kthread;
2891 
2892 		ret = btrfs_recover_relocation(tree_root);
2893 		if (ret < 0) {
2894 			printk(KERN_WARNING
2895 			       "BTRFS: failed to recover relocation\n");
2896 			err = -EINVAL;
2897 			goto fail_qgroup;
2898 		}
2899 	}
2900 
2901 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2902 	location.type = BTRFS_ROOT_ITEM_KEY;
2903 	location.offset = 0;
2904 
2905 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2906 	if (IS_ERR(fs_info->fs_root)) {
2907 		err = PTR_ERR(fs_info->fs_root);
2908 		goto fail_qgroup;
2909 	}
2910 
2911 	if (sb->s_flags & MS_RDONLY)
2912 		return 0;
2913 
2914 	down_read(&fs_info->cleanup_work_sem);
2915 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2916 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2917 		up_read(&fs_info->cleanup_work_sem);
2918 		close_ctree(tree_root);
2919 		return ret;
2920 	}
2921 	up_read(&fs_info->cleanup_work_sem);
2922 
2923 	ret = btrfs_resume_balance_async(fs_info);
2924 	if (ret) {
2925 		printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2926 		close_ctree(tree_root);
2927 		return ret;
2928 	}
2929 
2930 	ret = btrfs_resume_dev_replace_async(fs_info);
2931 	if (ret) {
2932 		pr_warn("BTRFS: failed to resume dev_replace\n");
2933 		close_ctree(tree_root);
2934 		return ret;
2935 	}
2936 
2937 	btrfs_qgroup_rescan_resume(fs_info);
2938 
2939 	if (create_uuid_tree) {
2940 		pr_info("BTRFS: creating UUID tree\n");
2941 		ret = btrfs_create_uuid_tree(fs_info);
2942 		if (ret) {
2943 			pr_warn("BTRFS: failed to create the UUID tree %d\n",
2944 				ret);
2945 			close_ctree(tree_root);
2946 			return ret;
2947 		}
2948 	} else if (check_uuid_tree ||
2949 		   btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2950 		pr_info("BTRFS: checking UUID tree\n");
2951 		ret = btrfs_check_uuid_tree(fs_info);
2952 		if (ret) {
2953 			pr_warn("BTRFS: failed to check the UUID tree %d\n",
2954 				ret);
2955 			close_ctree(tree_root);
2956 			return ret;
2957 		}
2958 	} else {
2959 		fs_info->update_uuid_tree_gen = 1;
2960 	}
2961 
2962 	return 0;
2963 
2964 fail_qgroup:
2965 	btrfs_free_qgroup_config(fs_info);
2966 fail_trans_kthread:
2967 	kthread_stop(fs_info->transaction_kthread);
2968 	btrfs_cleanup_transaction(fs_info->tree_root);
2969 	del_fs_roots(fs_info);
2970 fail_cleaner:
2971 	kthread_stop(fs_info->cleaner_kthread);
2972 
2973 	/*
2974 	 * make sure we're done with the btree inode before we stop our
2975 	 * kthreads
2976 	 */
2977 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2978 
2979 fail_sysfs:
2980 	btrfs_sysfs_remove_one(fs_info);
2981 
2982 fail_block_groups:
2983 	btrfs_put_block_group_cache(fs_info);
2984 	btrfs_free_block_groups(fs_info);
2985 
2986 fail_tree_roots:
2987 	free_root_pointers(fs_info, 1);
2988 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2989 
2990 fail_sb_buffer:
2991 	btrfs_stop_all_workers(fs_info);
2992 fail_alloc:
2993 fail_iput:
2994 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2995 
2996 	iput(fs_info->btree_inode);
2997 fail_bio_counter:
2998 	percpu_counter_destroy(&fs_info->bio_counter);
2999 fail_delalloc_bytes:
3000 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3001 fail_dirty_metadata_bytes:
3002 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3003 fail_bdi:
3004 	bdi_destroy(&fs_info->bdi);
3005 fail_srcu:
3006 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3007 fail:
3008 	btrfs_free_stripe_hash_table(fs_info);
3009 	btrfs_close_devices(fs_info->fs_devices);
3010 	return err;
3011 
3012 recovery_tree_root:
3013 	if (!btrfs_test_opt(tree_root, RECOVERY))
3014 		goto fail_tree_roots;
3015 
3016 	free_root_pointers(fs_info, 0);
3017 
3018 	/* don't use the log in recovery mode, it won't be valid */
3019 	btrfs_set_super_log_root(disk_super, 0);
3020 
3021 	/* we can't trust the free space cache either */
3022 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3023 
3024 	ret = next_root_backup(fs_info, fs_info->super_copy,
3025 			       &num_backups_tried, &backup_index);
3026 	if (ret == -1)
3027 		goto fail_block_groups;
3028 	goto retry_root_backup;
3029 }
3030 
3031 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3032 {
3033 	if (uptodate) {
3034 		set_buffer_uptodate(bh);
3035 	} else {
3036 		struct btrfs_device *device = (struct btrfs_device *)
3037 			bh->b_private;
3038 
3039 		printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3040 					  "I/O error on %s\n",
3041 					  rcu_str_deref(device->name));
3042 		/* note, we dont' set_buffer_write_io_error because we have
3043 		 * our own ways of dealing with the IO errors
3044 		 */
3045 		clear_buffer_uptodate(bh);
3046 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3047 	}
3048 	unlock_buffer(bh);
3049 	put_bh(bh);
3050 }
3051 
3052 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3053 {
3054 	struct buffer_head *bh;
3055 	struct buffer_head *latest = NULL;
3056 	struct btrfs_super_block *super;
3057 	int i;
3058 	u64 transid = 0;
3059 	u64 bytenr;
3060 
3061 	/* we would like to check all the supers, but that would make
3062 	 * a btrfs mount succeed after a mkfs from a different FS.
3063 	 * So, we need to add a special mount option to scan for
3064 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3065 	 */
3066 	for (i = 0; i < 1; i++) {
3067 		bytenr = btrfs_sb_offset(i);
3068 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3069 					i_size_read(bdev->bd_inode))
3070 			break;
3071 		bh = __bread(bdev, bytenr / 4096,
3072 					BTRFS_SUPER_INFO_SIZE);
3073 		if (!bh)
3074 			continue;
3075 
3076 		super = (struct btrfs_super_block *)bh->b_data;
3077 		if (btrfs_super_bytenr(super) != bytenr ||
3078 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3079 			brelse(bh);
3080 			continue;
3081 		}
3082 
3083 		if (!latest || btrfs_super_generation(super) > transid) {
3084 			brelse(latest);
3085 			latest = bh;
3086 			transid = btrfs_super_generation(super);
3087 		} else {
3088 			brelse(bh);
3089 		}
3090 	}
3091 	return latest;
3092 }
3093 
3094 /*
3095  * this should be called twice, once with wait == 0 and
3096  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3097  * we write are pinned.
3098  *
3099  * They are released when wait == 1 is done.
3100  * max_mirrors must be the same for both runs, and it indicates how
3101  * many supers on this one device should be written.
3102  *
3103  * max_mirrors == 0 means to write them all.
3104  */
3105 static int write_dev_supers(struct btrfs_device *device,
3106 			    struct btrfs_super_block *sb,
3107 			    int do_barriers, int wait, int max_mirrors)
3108 {
3109 	struct buffer_head *bh;
3110 	int i;
3111 	int ret;
3112 	int errors = 0;
3113 	u32 crc;
3114 	u64 bytenr;
3115 
3116 	if (max_mirrors == 0)
3117 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3118 
3119 	for (i = 0; i < max_mirrors; i++) {
3120 		bytenr = btrfs_sb_offset(i);
3121 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3122 			break;
3123 
3124 		if (wait) {
3125 			bh = __find_get_block(device->bdev, bytenr / 4096,
3126 					      BTRFS_SUPER_INFO_SIZE);
3127 			if (!bh) {
3128 				errors++;
3129 				continue;
3130 			}
3131 			wait_on_buffer(bh);
3132 			if (!buffer_uptodate(bh))
3133 				errors++;
3134 
3135 			/* drop our reference */
3136 			brelse(bh);
3137 
3138 			/* drop the reference from the wait == 0 run */
3139 			brelse(bh);
3140 			continue;
3141 		} else {
3142 			btrfs_set_super_bytenr(sb, bytenr);
3143 
3144 			crc = ~(u32)0;
3145 			crc = btrfs_csum_data((char *)sb +
3146 					      BTRFS_CSUM_SIZE, crc,
3147 					      BTRFS_SUPER_INFO_SIZE -
3148 					      BTRFS_CSUM_SIZE);
3149 			btrfs_csum_final(crc, sb->csum);
3150 
3151 			/*
3152 			 * one reference for us, and we leave it for the
3153 			 * caller
3154 			 */
3155 			bh = __getblk(device->bdev, bytenr / 4096,
3156 				      BTRFS_SUPER_INFO_SIZE);
3157 			if (!bh) {
3158 				printk(KERN_ERR "BTRFS: couldn't get super "
3159 				       "buffer head for bytenr %Lu\n", bytenr);
3160 				errors++;
3161 				continue;
3162 			}
3163 
3164 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3165 
3166 			/* one reference for submit_bh */
3167 			get_bh(bh);
3168 
3169 			set_buffer_uptodate(bh);
3170 			lock_buffer(bh);
3171 			bh->b_end_io = btrfs_end_buffer_write_sync;
3172 			bh->b_private = device;
3173 		}
3174 
3175 		/*
3176 		 * we fua the first super.  The others we allow
3177 		 * to go down lazy.
3178 		 */
3179 		if (i == 0)
3180 			ret = btrfsic_submit_bh(WRITE_FUA, bh);
3181 		else
3182 			ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3183 		if (ret)
3184 			errors++;
3185 	}
3186 	return errors < i ? 0 : -1;
3187 }
3188 
3189 /*
3190  * endio for the write_dev_flush, this will wake anyone waiting
3191  * for the barrier when it is done
3192  */
3193 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3194 {
3195 	if (err) {
3196 		if (err == -EOPNOTSUPP)
3197 			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3198 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
3199 	}
3200 	if (bio->bi_private)
3201 		complete(bio->bi_private);
3202 	bio_put(bio);
3203 }
3204 
3205 /*
3206  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3207  * sent down.  With wait == 1, it waits for the previous flush.
3208  *
3209  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3210  * capable
3211  */
3212 static int write_dev_flush(struct btrfs_device *device, int wait)
3213 {
3214 	struct bio *bio;
3215 	int ret = 0;
3216 
3217 	if (device->nobarriers)
3218 		return 0;
3219 
3220 	if (wait) {
3221 		bio = device->flush_bio;
3222 		if (!bio)
3223 			return 0;
3224 
3225 		wait_for_completion(&device->flush_wait);
3226 
3227 		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3228 			printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3229 				      rcu_str_deref(device->name));
3230 			device->nobarriers = 1;
3231 		} else if (!bio_flagged(bio, BIO_UPTODATE)) {
3232 			ret = -EIO;
3233 			btrfs_dev_stat_inc_and_print(device,
3234 				BTRFS_DEV_STAT_FLUSH_ERRS);
3235 		}
3236 
3237 		/* drop the reference from the wait == 0 run */
3238 		bio_put(bio);
3239 		device->flush_bio = NULL;
3240 
3241 		return ret;
3242 	}
3243 
3244 	/*
3245 	 * one reference for us, and we leave it for the
3246 	 * caller
3247 	 */
3248 	device->flush_bio = NULL;
3249 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3250 	if (!bio)
3251 		return -ENOMEM;
3252 
3253 	bio->bi_end_io = btrfs_end_empty_barrier;
3254 	bio->bi_bdev = device->bdev;
3255 	init_completion(&device->flush_wait);
3256 	bio->bi_private = &device->flush_wait;
3257 	device->flush_bio = bio;
3258 
3259 	bio_get(bio);
3260 	btrfsic_submit_bio(WRITE_FLUSH, bio);
3261 
3262 	return 0;
3263 }
3264 
3265 /*
3266  * send an empty flush down to each device in parallel,
3267  * then wait for them
3268  */
3269 static int barrier_all_devices(struct btrfs_fs_info *info)
3270 {
3271 	struct list_head *head;
3272 	struct btrfs_device *dev;
3273 	int errors_send = 0;
3274 	int errors_wait = 0;
3275 	int ret;
3276 
3277 	/* send down all the barriers */
3278 	head = &info->fs_devices->devices;
3279 	list_for_each_entry_rcu(dev, head, dev_list) {
3280 		if (dev->missing)
3281 			continue;
3282 		if (!dev->bdev) {
3283 			errors_send++;
3284 			continue;
3285 		}
3286 		if (!dev->in_fs_metadata || !dev->writeable)
3287 			continue;
3288 
3289 		ret = write_dev_flush(dev, 0);
3290 		if (ret)
3291 			errors_send++;
3292 	}
3293 
3294 	/* wait for all the barriers */
3295 	list_for_each_entry_rcu(dev, head, dev_list) {
3296 		if (dev->missing)
3297 			continue;
3298 		if (!dev->bdev) {
3299 			errors_wait++;
3300 			continue;
3301 		}
3302 		if (!dev->in_fs_metadata || !dev->writeable)
3303 			continue;
3304 
3305 		ret = write_dev_flush(dev, 1);
3306 		if (ret)
3307 			errors_wait++;
3308 	}
3309 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3310 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3311 		return -EIO;
3312 	return 0;
3313 }
3314 
3315 int btrfs_calc_num_tolerated_disk_barrier_failures(
3316 	struct btrfs_fs_info *fs_info)
3317 {
3318 	struct btrfs_ioctl_space_info space;
3319 	struct btrfs_space_info *sinfo;
3320 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3321 		       BTRFS_BLOCK_GROUP_SYSTEM,
3322 		       BTRFS_BLOCK_GROUP_METADATA,
3323 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3324 	int num_types = 4;
3325 	int i;
3326 	int c;
3327 	int num_tolerated_disk_barrier_failures =
3328 		(int)fs_info->fs_devices->num_devices;
3329 
3330 	for (i = 0; i < num_types; i++) {
3331 		struct btrfs_space_info *tmp;
3332 
3333 		sinfo = NULL;
3334 		rcu_read_lock();
3335 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3336 			if (tmp->flags == types[i]) {
3337 				sinfo = tmp;
3338 				break;
3339 			}
3340 		}
3341 		rcu_read_unlock();
3342 
3343 		if (!sinfo)
3344 			continue;
3345 
3346 		down_read(&sinfo->groups_sem);
3347 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3348 			if (!list_empty(&sinfo->block_groups[c])) {
3349 				u64 flags;
3350 
3351 				btrfs_get_block_group_info(
3352 					&sinfo->block_groups[c], &space);
3353 				if (space.total_bytes == 0 ||
3354 				    space.used_bytes == 0)
3355 					continue;
3356 				flags = space.flags;
3357 				/*
3358 				 * return
3359 				 * 0: if dup, single or RAID0 is configured for
3360 				 *    any of metadata, system or data, else
3361 				 * 1: if RAID5 is configured, or if RAID1 or
3362 				 *    RAID10 is configured and only two mirrors
3363 				 *    are used, else
3364 				 * 2: if RAID6 is configured, else
3365 				 * num_mirrors - 1: if RAID1 or RAID10 is
3366 				 *                  configured and more than
3367 				 *                  2 mirrors are used.
3368 				 */
3369 				if (num_tolerated_disk_barrier_failures > 0 &&
3370 				    ((flags & (BTRFS_BLOCK_GROUP_DUP |
3371 					       BTRFS_BLOCK_GROUP_RAID0)) ||
3372 				     ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3373 				      == 0)))
3374 					num_tolerated_disk_barrier_failures = 0;
3375 				else if (num_tolerated_disk_barrier_failures > 1) {
3376 					if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3377 					    BTRFS_BLOCK_GROUP_RAID5 |
3378 					    BTRFS_BLOCK_GROUP_RAID10)) {
3379 						num_tolerated_disk_barrier_failures = 1;
3380 					} else if (flags &
3381 						   BTRFS_BLOCK_GROUP_RAID6) {
3382 						num_tolerated_disk_barrier_failures = 2;
3383 					}
3384 				}
3385 			}
3386 		}
3387 		up_read(&sinfo->groups_sem);
3388 	}
3389 
3390 	return num_tolerated_disk_barrier_failures;
3391 }
3392 
3393 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3394 {
3395 	struct list_head *head;
3396 	struct btrfs_device *dev;
3397 	struct btrfs_super_block *sb;
3398 	struct btrfs_dev_item *dev_item;
3399 	int ret;
3400 	int do_barriers;
3401 	int max_errors;
3402 	int total_errors = 0;
3403 	u64 flags;
3404 
3405 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3406 	backup_super_roots(root->fs_info);
3407 
3408 	sb = root->fs_info->super_for_commit;
3409 	dev_item = &sb->dev_item;
3410 
3411 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3412 	head = &root->fs_info->fs_devices->devices;
3413 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3414 
3415 	if (do_barriers) {
3416 		ret = barrier_all_devices(root->fs_info);
3417 		if (ret) {
3418 			mutex_unlock(
3419 				&root->fs_info->fs_devices->device_list_mutex);
3420 			btrfs_error(root->fs_info, ret,
3421 				    "errors while submitting device barriers.");
3422 			return ret;
3423 		}
3424 	}
3425 
3426 	list_for_each_entry_rcu(dev, head, dev_list) {
3427 		if (!dev->bdev) {
3428 			total_errors++;
3429 			continue;
3430 		}
3431 		if (!dev->in_fs_metadata || !dev->writeable)
3432 			continue;
3433 
3434 		btrfs_set_stack_device_generation(dev_item, 0);
3435 		btrfs_set_stack_device_type(dev_item, dev->type);
3436 		btrfs_set_stack_device_id(dev_item, dev->devid);
3437 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3438 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3439 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3440 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3441 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3442 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3443 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3444 
3445 		flags = btrfs_super_flags(sb);
3446 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3447 
3448 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3449 		if (ret)
3450 			total_errors++;
3451 	}
3452 	if (total_errors > max_errors) {
3453 		btrfs_err(root->fs_info, "%d errors while writing supers",
3454 		       total_errors);
3455 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3456 
3457 		/* FUA is masked off if unsupported and can't be the reason */
3458 		btrfs_error(root->fs_info, -EIO,
3459 			    "%d errors while writing supers", total_errors);
3460 		return -EIO;
3461 	}
3462 
3463 	total_errors = 0;
3464 	list_for_each_entry_rcu(dev, head, dev_list) {
3465 		if (!dev->bdev)
3466 			continue;
3467 		if (!dev->in_fs_metadata || !dev->writeable)
3468 			continue;
3469 
3470 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3471 		if (ret)
3472 			total_errors++;
3473 	}
3474 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3475 	if (total_errors > max_errors) {
3476 		btrfs_error(root->fs_info, -EIO,
3477 			    "%d errors while writing supers", total_errors);
3478 		return -EIO;
3479 	}
3480 	return 0;
3481 }
3482 
3483 int write_ctree_super(struct btrfs_trans_handle *trans,
3484 		      struct btrfs_root *root, int max_mirrors)
3485 {
3486 	return write_all_supers(root, max_mirrors);
3487 }
3488 
3489 /* Drop a fs root from the radix tree and free it. */
3490 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3491 				  struct btrfs_root *root)
3492 {
3493 	spin_lock(&fs_info->fs_roots_radix_lock);
3494 	radix_tree_delete(&fs_info->fs_roots_radix,
3495 			  (unsigned long)root->root_key.objectid);
3496 	spin_unlock(&fs_info->fs_roots_radix_lock);
3497 
3498 	if (btrfs_root_refs(&root->root_item) == 0)
3499 		synchronize_srcu(&fs_info->subvol_srcu);
3500 
3501 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3502 		btrfs_free_log(NULL, root);
3503 
3504 	__btrfs_remove_free_space_cache(root->free_ino_pinned);
3505 	__btrfs_remove_free_space_cache(root->free_ino_ctl);
3506 	free_fs_root(root);
3507 }
3508 
3509 static void free_fs_root(struct btrfs_root *root)
3510 {
3511 	iput(root->cache_inode);
3512 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3513 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3514 	root->orphan_block_rsv = NULL;
3515 	if (root->anon_dev)
3516 		free_anon_bdev(root->anon_dev);
3517 	if (root->subv_writers)
3518 		btrfs_free_subvolume_writers(root->subv_writers);
3519 	free_extent_buffer(root->node);
3520 	free_extent_buffer(root->commit_root);
3521 	kfree(root->free_ino_ctl);
3522 	kfree(root->free_ino_pinned);
3523 	kfree(root->name);
3524 	btrfs_put_fs_root(root);
3525 }
3526 
3527 void btrfs_free_fs_root(struct btrfs_root *root)
3528 {
3529 	free_fs_root(root);
3530 }
3531 
3532 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3533 {
3534 	u64 root_objectid = 0;
3535 	struct btrfs_root *gang[8];
3536 	int i;
3537 	int ret;
3538 
3539 	while (1) {
3540 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3541 					     (void **)gang, root_objectid,
3542 					     ARRAY_SIZE(gang));
3543 		if (!ret)
3544 			break;
3545 
3546 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3547 		for (i = 0; i < ret; i++) {
3548 			int err;
3549 
3550 			root_objectid = gang[i]->root_key.objectid;
3551 			err = btrfs_orphan_cleanup(gang[i]);
3552 			if (err)
3553 				return err;
3554 		}
3555 		root_objectid++;
3556 	}
3557 	return 0;
3558 }
3559 
3560 int btrfs_commit_super(struct btrfs_root *root)
3561 {
3562 	struct btrfs_trans_handle *trans;
3563 
3564 	mutex_lock(&root->fs_info->cleaner_mutex);
3565 	btrfs_run_delayed_iputs(root);
3566 	mutex_unlock(&root->fs_info->cleaner_mutex);
3567 	wake_up_process(root->fs_info->cleaner_kthread);
3568 
3569 	/* wait until ongoing cleanup work done */
3570 	down_write(&root->fs_info->cleanup_work_sem);
3571 	up_write(&root->fs_info->cleanup_work_sem);
3572 
3573 	trans = btrfs_join_transaction(root);
3574 	if (IS_ERR(trans))
3575 		return PTR_ERR(trans);
3576 	return btrfs_commit_transaction(trans, root);
3577 }
3578 
3579 int close_ctree(struct btrfs_root *root)
3580 {
3581 	struct btrfs_fs_info *fs_info = root->fs_info;
3582 	int ret;
3583 
3584 	fs_info->closing = 1;
3585 	smp_mb();
3586 
3587 	/* wait for the uuid_scan task to finish */
3588 	down(&fs_info->uuid_tree_rescan_sem);
3589 	/* avoid complains from lockdep et al., set sem back to initial state */
3590 	up(&fs_info->uuid_tree_rescan_sem);
3591 
3592 	/* pause restriper - we want to resume on mount */
3593 	btrfs_pause_balance(fs_info);
3594 
3595 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3596 
3597 	btrfs_scrub_cancel(fs_info);
3598 
3599 	/* wait for any defraggers to finish */
3600 	wait_event(fs_info->transaction_wait,
3601 		   (atomic_read(&fs_info->defrag_running) == 0));
3602 
3603 	/* clear out the rbtree of defraggable inodes */
3604 	btrfs_cleanup_defrag_inodes(fs_info);
3605 
3606 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3607 		ret = btrfs_commit_super(root);
3608 		if (ret)
3609 			btrfs_err(root->fs_info, "commit super ret %d", ret);
3610 	}
3611 
3612 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3613 		btrfs_error_commit_super(root);
3614 
3615 	kthread_stop(fs_info->transaction_kthread);
3616 	kthread_stop(fs_info->cleaner_kthread);
3617 
3618 	fs_info->closing = 2;
3619 	smp_mb();
3620 
3621 	btrfs_free_qgroup_config(root->fs_info);
3622 
3623 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3624 		btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3625 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3626 	}
3627 
3628 	btrfs_sysfs_remove_one(fs_info);
3629 
3630 	del_fs_roots(fs_info);
3631 
3632 	btrfs_put_block_group_cache(fs_info);
3633 
3634 	btrfs_free_block_groups(fs_info);
3635 
3636 	btrfs_stop_all_workers(fs_info);
3637 
3638 	free_root_pointers(fs_info, 1);
3639 
3640 	iput(fs_info->btree_inode);
3641 
3642 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3643 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3644 		btrfsic_unmount(root, fs_info->fs_devices);
3645 #endif
3646 
3647 	btrfs_close_devices(fs_info->fs_devices);
3648 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3649 
3650 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3651 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3652 	percpu_counter_destroy(&fs_info->bio_counter);
3653 	bdi_destroy(&fs_info->bdi);
3654 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3655 
3656 	btrfs_free_stripe_hash_table(fs_info);
3657 
3658 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3659 	root->orphan_block_rsv = NULL;
3660 
3661 	return 0;
3662 }
3663 
3664 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3665 			  int atomic)
3666 {
3667 	int ret;
3668 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3669 
3670 	ret = extent_buffer_uptodate(buf);
3671 	if (!ret)
3672 		return ret;
3673 
3674 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3675 				    parent_transid, atomic);
3676 	if (ret == -EAGAIN)
3677 		return ret;
3678 	return !ret;
3679 }
3680 
3681 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3682 {
3683 	return set_extent_buffer_uptodate(buf);
3684 }
3685 
3686 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3687 {
3688 	struct btrfs_root *root;
3689 	u64 transid = btrfs_header_generation(buf);
3690 	int was_dirty;
3691 
3692 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3693 	/*
3694 	 * This is a fast path so only do this check if we have sanity tests
3695 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3696 	 * outside of the sanity tests.
3697 	 */
3698 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3699 		return;
3700 #endif
3701 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3702 	btrfs_assert_tree_locked(buf);
3703 	if (transid != root->fs_info->generation)
3704 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3705 		       "found %llu running %llu\n",
3706 			buf->start, transid, root->fs_info->generation);
3707 	was_dirty = set_extent_buffer_dirty(buf);
3708 	if (!was_dirty)
3709 		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3710 				     buf->len,
3711 				     root->fs_info->dirty_metadata_batch);
3712 }
3713 
3714 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3715 					int flush_delayed)
3716 {
3717 	/*
3718 	 * looks as though older kernels can get into trouble with
3719 	 * this code, they end up stuck in balance_dirty_pages forever
3720 	 */
3721 	int ret;
3722 
3723 	if (current->flags & PF_MEMALLOC)
3724 		return;
3725 
3726 	if (flush_delayed)
3727 		btrfs_balance_delayed_items(root);
3728 
3729 	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3730 				     BTRFS_DIRTY_METADATA_THRESH);
3731 	if (ret > 0) {
3732 		balance_dirty_pages_ratelimited(
3733 				   root->fs_info->btree_inode->i_mapping);
3734 	}
3735 	return;
3736 }
3737 
3738 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3739 {
3740 	__btrfs_btree_balance_dirty(root, 1);
3741 }
3742 
3743 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3744 {
3745 	__btrfs_btree_balance_dirty(root, 0);
3746 }
3747 
3748 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3749 {
3750 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3751 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3752 }
3753 
3754 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3755 			      int read_only)
3756 {
3757 	/*
3758 	 * Placeholder for checks
3759 	 */
3760 	return 0;
3761 }
3762 
3763 static void btrfs_error_commit_super(struct btrfs_root *root)
3764 {
3765 	mutex_lock(&root->fs_info->cleaner_mutex);
3766 	btrfs_run_delayed_iputs(root);
3767 	mutex_unlock(&root->fs_info->cleaner_mutex);
3768 
3769 	down_write(&root->fs_info->cleanup_work_sem);
3770 	up_write(&root->fs_info->cleanup_work_sem);
3771 
3772 	/* cleanup FS via transaction */
3773 	btrfs_cleanup_transaction(root);
3774 }
3775 
3776 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3777 					     struct btrfs_root *root)
3778 {
3779 	struct btrfs_inode *btrfs_inode;
3780 	struct list_head splice;
3781 
3782 	INIT_LIST_HEAD(&splice);
3783 
3784 	mutex_lock(&root->fs_info->ordered_operations_mutex);
3785 	spin_lock(&root->fs_info->ordered_root_lock);
3786 
3787 	list_splice_init(&t->ordered_operations, &splice);
3788 	while (!list_empty(&splice)) {
3789 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3790 					 ordered_operations);
3791 
3792 		list_del_init(&btrfs_inode->ordered_operations);
3793 		spin_unlock(&root->fs_info->ordered_root_lock);
3794 
3795 		btrfs_invalidate_inodes(btrfs_inode->root);
3796 
3797 		spin_lock(&root->fs_info->ordered_root_lock);
3798 	}
3799 
3800 	spin_unlock(&root->fs_info->ordered_root_lock);
3801 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
3802 }
3803 
3804 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3805 {
3806 	struct btrfs_ordered_extent *ordered;
3807 
3808 	spin_lock(&root->ordered_extent_lock);
3809 	/*
3810 	 * This will just short circuit the ordered completion stuff which will
3811 	 * make sure the ordered extent gets properly cleaned up.
3812 	 */
3813 	list_for_each_entry(ordered, &root->ordered_extents,
3814 			    root_extent_list)
3815 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3816 	spin_unlock(&root->ordered_extent_lock);
3817 }
3818 
3819 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3820 {
3821 	struct btrfs_root *root;
3822 	struct list_head splice;
3823 
3824 	INIT_LIST_HEAD(&splice);
3825 
3826 	spin_lock(&fs_info->ordered_root_lock);
3827 	list_splice_init(&fs_info->ordered_roots, &splice);
3828 	while (!list_empty(&splice)) {
3829 		root = list_first_entry(&splice, struct btrfs_root,
3830 					ordered_root);
3831 		list_move_tail(&root->ordered_root,
3832 			       &fs_info->ordered_roots);
3833 
3834 		spin_unlock(&fs_info->ordered_root_lock);
3835 		btrfs_destroy_ordered_extents(root);
3836 
3837 		cond_resched();
3838 		spin_lock(&fs_info->ordered_root_lock);
3839 	}
3840 	spin_unlock(&fs_info->ordered_root_lock);
3841 }
3842 
3843 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3844 				      struct btrfs_root *root)
3845 {
3846 	struct rb_node *node;
3847 	struct btrfs_delayed_ref_root *delayed_refs;
3848 	struct btrfs_delayed_ref_node *ref;
3849 	int ret = 0;
3850 
3851 	delayed_refs = &trans->delayed_refs;
3852 
3853 	spin_lock(&delayed_refs->lock);
3854 	if (atomic_read(&delayed_refs->num_entries) == 0) {
3855 		spin_unlock(&delayed_refs->lock);
3856 		btrfs_info(root->fs_info, "delayed_refs has NO entry");
3857 		return ret;
3858 	}
3859 
3860 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3861 		struct btrfs_delayed_ref_head *head;
3862 		bool pin_bytes = false;
3863 
3864 		head = rb_entry(node, struct btrfs_delayed_ref_head,
3865 				href_node);
3866 		if (!mutex_trylock(&head->mutex)) {
3867 			atomic_inc(&head->node.refs);
3868 			spin_unlock(&delayed_refs->lock);
3869 
3870 			mutex_lock(&head->mutex);
3871 			mutex_unlock(&head->mutex);
3872 			btrfs_put_delayed_ref(&head->node);
3873 			spin_lock(&delayed_refs->lock);
3874 			continue;
3875 		}
3876 		spin_lock(&head->lock);
3877 		while ((node = rb_first(&head->ref_root)) != NULL) {
3878 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
3879 				       rb_node);
3880 			ref->in_tree = 0;
3881 			rb_erase(&ref->rb_node, &head->ref_root);
3882 			atomic_dec(&delayed_refs->num_entries);
3883 			btrfs_put_delayed_ref(ref);
3884 		}
3885 		if (head->must_insert_reserved)
3886 			pin_bytes = true;
3887 		btrfs_free_delayed_extent_op(head->extent_op);
3888 		delayed_refs->num_heads--;
3889 		if (head->processing == 0)
3890 			delayed_refs->num_heads_ready--;
3891 		atomic_dec(&delayed_refs->num_entries);
3892 		head->node.in_tree = 0;
3893 		rb_erase(&head->href_node, &delayed_refs->href_root);
3894 		spin_unlock(&head->lock);
3895 		spin_unlock(&delayed_refs->lock);
3896 		mutex_unlock(&head->mutex);
3897 
3898 		if (pin_bytes)
3899 			btrfs_pin_extent(root, head->node.bytenr,
3900 					 head->node.num_bytes, 1);
3901 		btrfs_put_delayed_ref(&head->node);
3902 		cond_resched();
3903 		spin_lock(&delayed_refs->lock);
3904 	}
3905 
3906 	spin_unlock(&delayed_refs->lock);
3907 
3908 	return ret;
3909 }
3910 
3911 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3912 {
3913 	struct btrfs_inode *btrfs_inode;
3914 	struct list_head splice;
3915 
3916 	INIT_LIST_HEAD(&splice);
3917 
3918 	spin_lock(&root->delalloc_lock);
3919 	list_splice_init(&root->delalloc_inodes, &splice);
3920 
3921 	while (!list_empty(&splice)) {
3922 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3923 					       delalloc_inodes);
3924 
3925 		list_del_init(&btrfs_inode->delalloc_inodes);
3926 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3927 			  &btrfs_inode->runtime_flags);
3928 		spin_unlock(&root->delalloc_lock);
3929 
3930 		btrfs_invalidate_inodes(btrfs_inode->root);
3931 
3932 		spin_lock(&root->delalloc_lock);
3933 	}
3934 
3935 	spin_unlock(&root->delalloc_lock);
3936 }
3937 
3938 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3939 {
3940 	struct btrfs_root *root;
3941 	struct list_head splice;
3942 
3943 	INIT_LIST_HEAD(&splice);
3944 
3945 	spin_lock(&fs_info->delalloc_root_lock);
3946 	list_splice_init(&fs_info->delalloc_roots, &splice);
3947 	while (!list_empty(&splice)) {
3948 		root = list_first_entry(&splice, struct btrfs_root,
3949 					 delalloc_root);
3950 		list_del_init(&root->delalloc_root);
3951 		root = btrfs_grab_fs_root(root);
3952 		BUG_ON(!root);
3953 		spin_unlock(&fs_info->delalloc_root_lock);
3954 
3955 		btrfs_destroy_delalloc_inodes(root);
3956 		btrfs_put_fs_root(root);
3957 
3958 		spin_lock(&fs_info->delalloc_root_lock);
3959 	}
3960 	spin_unlock(&fs_info->delalloc_root_lock);
3961 }
3962 
3963 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3964 					struct extent_io_tree *dirty_pages,
3965 					int mark)
3966 {
3967 	int ret;
3968 	struct extent_buffer *eb;
3969 	u64 start = 0;
3970 	u64 end;
3971 
3972 	while (1) {
3973 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3974 					    mark, NULL);
3975 		if (ret)
3976 			break;
3977 
3978 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3979 		while (start <= end) {
3980 			eb = btrfs_find_tree_block(root, start,
3981 						   root->leafsize);
3982 			start += root->leafsize;
3983 			if (!eb)
3984 				continue;
3985 			wait_on_extent_buffer_writeback(eb);
3986 
3987 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3988 					       &eb->bflags))
3989 				clear_extent_buffer_dirty(eb);
3990 			free_extent_buffer_stale(eb);
3991 		}
3992 	}
3993 
3994 	return ret;
3995 }
3996 
3997 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3998 				       struct extent_io_tree *pinned_extents)
3999 {
4000 	struct extent_io_tree *unpin;
4001 	u64 start;
4002 	u64 end;
4003 	int ret;
4004 	bool loop = true;
4005 
4006 	unpin = pinned_extents;
4007 again:
4008 	while (1) {
4009 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4010 					    EXTENT_DIRTY, NULL);
4011 		if (ret)
4012 			break;
4013 
4014 		/* opt_discard */
4015 		if (btrfs_test_opt(root, DISCARD))
4016 			ret = btrfs_error_discard_extent(root, start,
4017 							 end + 1 - start,
4018 							 NULL);
4019 
4020 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4021 		btrfs_error_unpin_extent_range(root, start, end);
4022 		cond_resched();
4023 	}
4024 
4025 	if (loop) {
4026 		if (unpin == &root->fs_info->freed_extents[0])
4027 			unpin = &root->fs_info->freed_extents[1];
4028 		else
4029 			unpin = &root->fs_info->freed_extents[0];
4030 		loop = false;
4031 		goto again;
4032 	}
4033 
4034 	return 0;
4035 }
4036 
4037 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4038 				   struct btrfs_root *root)
4039 {
4040 	btrfs_destroy_ordered_operations(cur_trans, root);
4041 
4042 	btrfs_destroy_delayed_refs(cur_trans, root);
4043 
4044 	cur_trans->state = TRANS_STATE_COMMIT_START;
4045 	wake_up(&root->fs_info->transaction_blocked_wait);
4046 
4047 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4048 	wake_up(&root->fs_info->transaction_wait);
4049 
4050 	btrfs_destroy_delayed_inodes(root);
4051 	btrfs_assert_delayed_root_empty(root);
4052 
4053 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4054 				     EXTENT_DIRTY);
4055 	btrfs_destroy_pinned_extent(root,
4056 				    root->fs_info->pinned_extents);
4057 
4058 	cur_trans->state =TRANS_STATE_COMPLETED;
4059 	wake_up(&cur_trans->commit_wait);
4060 
4061 	/*
4062 	memset(cur_trans, 0, sizeof(*cur_trans));
4063 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4064 	*/
4065 }
4066 
4067 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4068 {
4069 	struct btrfs_transaction *t;
4070 
4071 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
4072 
4073 	spin_lock(&root->fs_info->trans_lock);
4074 	while (!list_empty(&root->fs_info->trans_list)) {
4075 		t = list_first_entry(&root->fs_info->trans_list,
4076 				     struct btrfs_transaction, list);
4077 		if (t->state >= TRANS_STATE_COMMIT_START) {
4078 			atomic_inc(&t->use_count);
4079 			spin_unlock(&root->fs_info->trans_lock);
4080 			btrfs_wait_for_commit(root, t->transid);
4081 			btrfs_put_transaction(t);
4082 			spin_lock(&root->fs_info->trans_lock);
4083 			continue;
4084 		}
4085 		if (t == root->fs_info->running_transaction) {
4086 			t->state = TRANS_STATE_COMMIT_DOING;
4087 			spin_unlock(&root->fs_info->trans_lock);
4088 			/*
4089 			 * We wait for 0 num_writers since we don't hold a trans
4090 			 * handle open currently for this transaction.
4091 			 */
4092 			wait_event(t->writer_wait,
4093 				   atomic_read(&t->num_writers) == 0);
4094 		} else {
4095 			spin_unlock(&root->fs_info->trans_lock);
4096 		}
4097 		btrfs_cleanup_one_transaction(t, root);
4098 
4099 		spin_lock(&root->fs_info->trans_lock);
4100 		if (t == root->fs_info->running_transaction)
4101 			root->fs_info->running_transaction = NULL;
4102 		list_del_init(&t->list);
4103 		spin_unlock(&root->fs_info->trans_lock);
4104 
4105 		btrfs_put_transaction(t);
4106 		trace_btrfs_transaction_commit(root);
4107 		spin_lock(&root->fs_info->trans_lock);
4108 	}
4109 	spin_unlock(&root->fs_info->trans_lock);
4110 	btrfs_destroy_all_ordered_extents(root->fs_info);
4111 	btrfs_destroy_delayed_inodes(root);
4112 	btrfs_assert_delayed_root_empty(root);
4113 	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4114 	btrfs_destroy_all_delalloc_inodes(root->fs_info);
4115 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4116 
4117 	return 0;
4118 }
4119 
4120 static struct extent_io_ops btree_extent_io_ops = {
4121 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4122 	.readpage_io_failed_hook = btree_io_failed_hook,
4123 	.submit_bio_hook = btree_submit_bio_hook,
4124 	/* note we're sharing with inode.c for the merge bio hook */
4125 	.merge_bio_hook = btrfs_merge_bio_hook,
4126 };
4127