1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/slab.h> 30 #include <linux/migrate.h> 31 #include <linux/ratelimit.h> 32 #include <linux/uuid.h> 33 #include <linux/semaphore.h> 34 #include <asm/unaligned.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "hash.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "volumes.h" 41 #include "print-tree.h" 42 #include "async-thread.h" 43 #include "locking.h" 44 #include "tree-log.h" 45 #include "free-space-cache.h" 46 #include "inode-map.h" 47 #include "check-integrity.h" 48 #include "rcu-string.h" 49 #include "dev-replace.h" 50 #include "raid56.h" 51 #include "sysfs.h" 52 53 #ifdef CONFIG_X86 54 #include <asm/cpufeature.h> 55 #endif 56 57 static struct extent_io_ops btree_extent_io_ops; 58 static void end_workqueue_fn(struct btrfs_work *work); 59 static void free_fs_root(struct btrfs_root *root); 60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 61 int read_only); 62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t, 63 struct btrfs_root *root); 64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 66 struct btrfs_root *root); 67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 68 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 69 struct extent_io_tree *dirty_pages, 70 int mark); 71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 72 struct extent_io_tree *pinned_extents); 73 static int btrfs_cleanup_transaction(struct btrfs_root *root); 74 static void btrfs_error_commit_super(struct btrfs_root *root); 75 76 /* 77 * end_io_wq structs are used to do processing in task context when an IO is 78 * complete. This is used during reads to verify checksums, and it is used 79 * by writes to insert metadata for new file extents after IO is complete. 80 */ 81 struct end_io_wq { 82 struct bio *bio; 83 bio_end_io_t *end_io; 84 void *private; 85 struct btrfs_fs_info *info; 86 int error; 87 int metadata; 88 struct list_head list; 89 struct btrfs_work work; 90 }; 91 92 /* 93 * async submit bios are used to offload expensive checksumming 94 * onto the worker threads. They checksum file and metadata bios 95 * just before they are sent down the IO stack. 96 */ 97 struct async_submit_bio { 98 struct inode *inode; 99 struct bio *bio; 100 struct list_head list; 101 extent_submit_bio_hook_t *submit_bio_start; 102 extent_submit_bio_hook_t *submit_bio_done; 103 int rw; 104 int mirror_num; 105 unsigned long bio_flags; 106 /* 107 * bio_offset is optional, can be used if the pages in the bio 108 * can't tell us where in the file the bio should go 109 */ 110 u64 bio_offset; 111 struct btrfs_work work; 112 int error; 113 }; 114 115 /* 116 * Lockdep class keys for extent_buffer->lock's in this root. For a given 117 * eb, the lockdep key is determined by the btrfs_root it belongs to and 118 * the level the eb occupies in the tree. 119 * 120 * Different roots are used for different purposes and may nest inside each 121 * other and they require separate keysets. As lockdep keys should be 122 * static, assign keysets according to the purpose of the root as indicated 123 * by btrfs_root->objectid. This ensures that all special purpose roots 124 * have separate keysets. 125 * 126 * Lock-nesting across peer nodes is always done with the immediate parent 127 * node locked thus preventing deadlock. As lockdep doesn't know this, use 128 * subclass to avoid triggering lockdep warning in such cases. 129 * 130 * The key is set by the readpage_end_io_hook after the buffer has passed 131 * csum validation but before the pages are unlocked. It is also set by 132 * btrfs_init_new_buffer on freshly allocated blocks. 133 * 134 * We also add a check to make sure the highest level of the tree is the 135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 136 * needs update as well. 137 */ 138 #ifdef CONFIG_DEBUG_LOCK_ALLOC 139 # if BTRFS_MAX_LEVEL != 8 140 # error 141 # endif 142 143 static struct btrfs_lockdep_keyset { 144 u64 id; /* root objectid */ 145 const char *name_stem; /* lock name stem */ 146 char names[BTRFS_MAX_LEVEL + 1][20]; 147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 148 } btrfs_lockdep_keysets[] = { 149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 159 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 160 { .id = 0, .name_stem = "tree" }, 161 }; 162 163 void __init btrfs_init_lockdep(void) 164 { 165 int i, j; 166 167 /* initialize lockdep class names */ 168 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 169 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 170 171 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 172 snprintf(ks->names[j], sizeof(ks->names[j]), 173 "btrfs-%s-%02d", ks->name_stem, j); 174 } 175 } 176 177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 178 int level) 179 { 180 struct btrfs_lockdep_keyset *ks; 181 182 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 183 184 /* find the matching keyset, id 0 is the default entry */ 185 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 186 if (ks->id == objectid) 187 break; 188 189 lockdep_set_class_and_name(&eb->lock, 190 &ks->keys[level], ks->names[level]); 191 } 192 193 #endif 194 195 /* 196 * extents on the btree inode are pretty simple, there's one extent 197 * that covers the entire device 198 */ 199 static struct extent_map *btree_get_extent(struct inode *inode, 200 struct page *page, size_t pg_offset, u64 start, u64 len, 201 int create) 202 { 203 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 204 struct extent_map *em; 205 int ret; 206 207 read_lock(&em_tree->lock); 208 em = lookup_extent_mapping(em_tree, start, len); 209 if (em) { 210 em->bdev = 211 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 212 read_unlock(&em_tree->lock); 213 goto out; 214 } 215 read_unlock(&em_tree->lock); 216 217 em = alloc_extent_map(); 218 if (!em) { 219 em = ERR_PTR(-ENOMEM); 220 goto out; 221 } 222 em->start = 0; 223 em->len = (u64)-1; 224 em->block_len = (u64)-1; 225 em->block_start = 0; 226 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 227 228 write_lock(&em_tree->lock); 229 ret = add_extent_mapping(em_tree, em, 0); 230 if (ret == -EEXIST) { 231 free_extent_map(em); 232 em = lookup_extent_mapping(em_tree, start, len); 233 if (!em) 234 em = ERR_PTR(-EIO); 235 } else if (ret) { 236 free_extent_map(em); 237 em = ERR_PTR(ret); 238 } 239 write_unlock(&em_tree->lock); 240 241 out: 242 return em; 243 } 244 245 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 246 { 247 return btrfs_crc32c(seed, data, len); 248 } 249 250 void btrfs_csum_final(u32 crc, char *result) 251 { 252 put_unaligned_le32(~crc, result); 253 } 254 255 /* 256 * compute the csum for a btree block, and either verify it or write it 257 * into the csum field of the block. 258 */ 259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 260 int verify) 261 { 262 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 263 char *result = NULL; 264 unsigned long len; 265 unsigned long cur_len; 266 unsigned long offset = BTRFS_CSUM_SIZE; 267 char *kaddr; 268 unsigned long map_start; 269 unsigned long map_len; 270 int err; 271 u32 crc = ~(u32)0; 272 unsigned long inline_result; 273 274 len = buf->len - offset; 275 while (len > 0) { 276 err = map_private_extent_buffer(buf, offset, 32, 277 &kaddr, &map_start, &map_len); 278 if (err) 279 return 1; 280 cur_len = min(len, map_len - (offset - map_start)); 281 crc = btrfs_csum_data(kaddr + offset - map_start, 282 crc, cur_len); 283 len -= cur_len; 284 offset += cur_len; 285 } 286 if (csum_size > sizeof(inline_result)) { 287 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 288 if (!result) 289 return 1; 290 } else { 291 result = (char *)&inline_result; 292 } 293 294 btrfs_csum_final(crc, result); 295 296 if (verify) { 297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 298 u32 val; 299 u32 found = 0; 300 memcpy(&found, result, csum_size); 301 302 read_extent_buffer(buf, &val, 0, csum_size); 303 printk_ratelimited(KERN_INFO 304 "BTRFS: %s checksum verify failed on %llu wanted %X found %X " 305 "level %d\n", 306 root->fs_info->sb->s_id, buf->start, 307 val, found, btrfs_header_level(buf)); 308 if (result != (char *)&inline_result) 309 kfree(result); 310 return 1; 311 } 312 } else { 313 write_extent_buffer(buf, result, 0, csum_size); 314 } 315 if (result != (char *)&inline_result) 316 kfree(result); 317 return 0; 318 } 319 320 /* 321 * we can't consider a given block up to date unless the transid of the 322 * block matches the transid in the parent node's pointer. This is how we 323 * detect blocks that either didn't get written at all or got written 324 * in the wrong place. 325 */ 326 static int verify_parent_transid(struct extent_io_tree *io_tree, 327 struct extent_buffer *eb, u64 parent_transid, 328 int atomic) 329 { 330 struct extent_state *cached_state = NULL; 331 int ret; 332 bool need_lock = (current->journal_info == 333 (void *)BTRFS_SEND_TRANS_STUB); 334 335 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 336 return 0; 337 338 if (atomic) 339 return -EAGAIN; 340 341 if (need_lock) { 342 btrfs_tree_read_lock(eb); 343 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 344 } 345 346 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 347 0, &cached_state); 348 if (extent_buffer_uptodate(eb) && 349 btrfs_header_generation(eb) == parent_transid) { 350 ret = 0; 351 goto out; 352 } 353 printk_ratelimited("parent transid verify failed on %llu wanted %llu " 354 "found %llu\n", 355 eb->start, parent_transid, btrfs_header_generation(eb)); 356 ret = 1; 357 358 /* 359 * Things reading via commit roots that don't have normal protection, 360 * like send, can have a really old block in cache that may point at a 361 * block that has been free'd and re-allocated. So don't clear uptodate 362 * if we find an eb that is under IO (dirty/writeback) because we could 363 * end up reading in the stale data and then writing it back out and 364 * making everybody very sad. 365 */ 366 if (!extent_buffer_under_io(eb)) 367 clear_extent_buffer_uptodate(eb); 368 out: 369 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 370 &cached_state, GFP_NOFS); 371 btrfs_tree_read_unlock_blocking(eb); 372 return ret; 373 } 374 375 /* 376 * Return 0 if the superblock checksum type matches the checksum value of that 377 * algorithm. Pass the raw disk superblock data. 378 */ 379 static int btrfs_check_super_csum(char *raw_disk_sb) 380 { 381 struct btrfs_super_block *disk_sb = 382 (struct btrfs_super_block *)raw_disk_sb; 383 u16 csum_type = btrfs_super_csum_type(disk_sb); 384 int ret = 0; 385 386 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 387 u32 crc = ~(u32)0; 388 const int csum_size = sizeof(crc); 389 char result[csum_size]; 390 391 /* 392 * The super_block structure does not span the whole 393 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 394 * is filled with zeros and is included in the checkum. 395 */ 396 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 397 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 398 btrfs_csum_final(crc, result); 399 400 if (memcmp(raw_disk_sb, result, csum_size)) 401 ret = 1; 402 403 if (ret && btrfs_super_generation(disk_sb) < 10) { 404 printk(KERN_WARNING 405 "BTRFS: super block crcs don't match, older mkfs detected\n"); 406 ret = 0; 407 } 408 } 409 410 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 411 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n", 412 csum_type); 413 ret = 1; 414 } 415 416 return ret; 417 } 418 419 /* 420 * helper to read a given tree block, doing retries as required when 421 * the checksums don't match and we have alternate mirrors to try. 422 */ 423 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 424 struct extent_buffer *eb, 425 u64 start, u64 parent_transid) 426 { 427 struct extent_io_tree *io_tree; 428 int failed = 0; 429 int ret; 430 int num_copies = 0; 431 int mirror_num = 0; 432 int failed_mirror = 0; 433 434 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 435 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 436 while (1) { 437 ret = read_extent_buffer_pages(io_tree, eb, start, 438 WAIT_COMPLETE, 439 btree_get_extent, mirror_num); 440 if (!ret) { 441 if (!verify_parent_transid(io_tree, eb, 442 parent_transid, 0)) 443 break; 444 else 445 ret = -EIO; 446 } 447 448 /* 449 * This buffer's crc is fine, but its contents are corrupted, so 450 * there is no reason to read the other copies, they won't be 451 * any less wrong. 452 */ 453 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 454 break; 455 456 num_copies = btrfs_num_copies(root->fs_info, 457 eb->start, eb->len); 458 if (num_copies == 1) 459 break; 460 461 if (!failed_mirror) { 462 failed = 1; 463 failed_mirror = eb->read_mirror; 464 } 465 466 mirror_num++; 467 if (mirror_num == failed_mirror) 468 mirror_num++; 469 470 if (mirror_num > num_copies) 471 break; 472 } 473 474 if (failed && !ret && failed_mirror) 475 repair_eb_io_failure(root, eb, failed_mirror); 476 477 return ret; 478 } 479 480 /* 481 * checksum a dirty tree block before IO. This has extra checks to make sure 482 * we only fill in the checksum field in the first page of a multi-page block 483 */ 484 485 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 486 { 487 u64 start = page_offset(page); 488 u64 found_start; 489 struct extent_buffer *eb; 490 491 eb = (struct extent_buffer *)page->private; 492 if (page != eb->pages[0]) 493 return 0; 494 found_start = btrfs_header_bytenr(eb); 495 if (WARN_ON(found_start != start || !PageUptodate(page))) 496 return 0; 497 csum_tree_block(root, eb, 0); 498 return 0; 499 } 500 501 static int check_tree_block_fsid(struct btrfs_root *root, 502 struct extent_buffer *eb) 503 { 504 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 505 u8 fsid[BTRFS_UUID_SIZE]; 506 int ret = 1; 507 508 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 509 while (fs_devices) { 510 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 511 ret = 0; 512 break; 513 } 514 fs_devices = fs_devices->seed; 515 } 516 return ret; 517 } 518 519 #define CORRUPT(reason, eb, root, slot) \ 520 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \ 521 "root=%llu, slot=%d", reason, \ 522 btrfs_header_bytenr(eb), root->objectid, slot) 523 524 static noinline int check_leaf(struct btrfs_root *root, 525 struct extent_buffer *leaf) 526 { 527 struct btrfs_key key; 528 struct btrfs_key leaf_key; 529 u32 nritems = btrfs_header_nritems(leaf); 530 int slot; 531 532 if (nritems == 0) 533 return 0; 534 535 /* Check the 0 item */ 536 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 537 BTRFS_LEAF_DATA_SIZE(root)) { 538 CORRUPT("invalid item offset size pair", leaf, root, 0); 539 return -EIO; 540 } 541 542 /* 543 * Check to make sure each items keys are in the correct order and their 544 * offsets make sense. We only have to loop through nritems-1 because 545 * we check the current slot against the next slot, which verifies the 546 * next slot's offset+size makes sense and that the current's slot 547 * offset is correct. 548 */ 549 for (slot = 0; slot < nritems - 1; slot++) { 550 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 551 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 552 553 /* Make sure the keys are in the right order */ 554 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 555 CORRUPT("bad key order", leaf, root, slot); 556 return -EIO; 557 } 558 559 /* 560 * Make sure the offset and ends are right, remember that the 561 * item data starts at the end of the leaf and grows towards the 562 * front. 563 */ 564 if (btrfs_item_offset_nr(leaf, slot) != 565 btrfs_item_end_nr(leaf, slot + 1)) { 566 CORRUPT("slot offset bad", leaf, root, slot); 567 return -EIO; 568 } 569 570 /* 571 * Check to make sure that we don't point outside of the leaf, 572 * just incase all the items are consistent to eachother, but 573 * all point outside of the leaf. 574 */ 575 if (btrfs_item_end_nr(leaf, slot) > 576 BTRFS_LEAF_DATA_SIZE(root)) { 577 CORRUPT("slot end outside of leaf", leaf, root, slot); 578 return -EIO; 579 } 580 } 581 582 return 0; 583 } 584 585 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 586 u64 phy_offset, struct page *page, 587 u64 start, u64 end, int mirror) 588 { 589 u64 found_start; 590 int found_level; 591 struct extent_buffer *eb; 592 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 593 int ret = 0; 594 int reads_done; 595 596 if (!page->private) 597 goto out; 598 599 eb = (struct extent_buffer *)page->private; 600 601 /* the pending IO might have been the only thing that kept this buffer 602 * in memory. Make sure we have a ref for all this other checks 603 */ 604 extent_buffer_get(eb); 605 606 reads_done = atomic_dec_and_test(&eb->io_pages); 607 if (!reads_done) 608 goto err; 609 610 eb->read_mirror = mirror; 611 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 612 ret = -EIO; 613 goto err; 614 } 615 616 found_start = btrfs_header_bytenr(eb); 617 if (found_start != eb->start) { 618 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start " 619 "%llu %llu\n", 620 found_start, eb->start); 621 ret = -EIO; 622 goto err; 623 } 624 if (check_tree_block_fsid(root, eb)) { 625 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n", 626 eb->start); 627 ret = -EIO; 628 goto err; 629 } 630 found_level = btrfs_header_level(eb); 631 if (found_level >= BTRFS_MAX_LEVEL) { 632 btrfs_info(root->fs_info, "bad tree block level %d", 633 (int)btrfs_header_level(eb)); 634 ret = -EIO; 635 goto err; 636 } 637 638 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 639 eb, found_level); 640 641 ret = csum_tree_block(root, eb, 1); 642 if (ret) { 643 ret = -EIO; 644 goto err; 645 } 646 647 /* 648 * If this is a leaf block and it is corrupt, set the corrupt bit so 649 * that we don't try and read the other copies of this block, just 650 * return -EIO. 651 */ 652 if (found_level == 0 && check_leaf(root, eb)) { 653 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 654 ret = -EIO; 655 } 656 657 if (!ret) 658 set_extent_buffer_uptodate(eb); 659 err: 660 if (reads_done && 661 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 662 btree_readahead_hook(root, eb, eb->start, ret); 663 664 if (ret) { 665 /* 666 * our io error hook is going to dec the io pages 667 * again, we have to make sure it has something 668 * to decrement 669 */ 670 atomic_inc(&eb->io_pages); 671 clear_extent_buffer_uptodate(eb); 672 } 673 free_extent_buffer(eb); 674 out: 675 return ret; 676 } 677 678 static int btree_io_failed_hook(struct page *page, int failed_mirror) 679 { 680 struct extent_buffer *eb; 681 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 682 683 eb = (struct extent_buffer *)page->private; 684 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 685 eb->read_mirror = failed_mirror; 686 atomic_dec(&eb->io_pages); 687 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 688 btree_readahead_hook(root, eb, eb->start, -EIO); 689 return -EIO; /* we fixed nothing */ 690 } 691 692 static void end_workqueue_bio(struct bio *bio, int err) 693 { 694 struct end_io_wq *end_io_wq = bio->bi_private; 695 struct btrfs_fs_info *fs_info; 696 697 fs_info = end_io_wq->info; 698 end_io_wq->error = err; 699 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL); 700 701 if (bio->bi_rw & REQ_WRITE) { 702 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) 703 btrfs_queue_work(fs_info->endio_meta_write_workers, 704 &end_io_wq->work); 705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) 706 btrfs_queue_work(fs_info->endio_freespace_worker, 707 &end_io_wq->work); 708 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 709 btrfs_queue_work(fs_info->endio_raid56_workers, 710 &end_io_wq->work); 711 else 712 btrfs_queue_work(fs_info->endio_write_workers, 713 &end_io_wq->work); 714 } else { 715 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 716 btrfs_queue_work(fs_info->endio_raid56_workers, 717 &end_io_wq->work); 718 else if (end_io_wq->metadata) 719 btrfs_queue_work(fs_info->endio_meta_workers, 720 &end_io_wq->work); 721 else 722 btrfs_queue_work(fs_info->endio_workers, 723 &end_io_wq->work); 724 } 725 } 726 727 /* 728 * For the metadata arg you want 729 * 730 * 0 - if data 731 * 1 - if normal metadta 732 * 2 - if writing to the free space cache area 733 * 3 - raid parity work 734 */ 735 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 736 int metadata) 737 { 738 struct end_io_wq *end_io_wq; 739 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 740 if (!end_io_wq) 741 return -ENOMEM; 742 743 end_io_wq->private = bio->bi_private; 744 end_io_wq->end_io = bio->bi_end_io; 745 end_io_wq->info = info; 746 end_io_wq->error = 0; 747 end_io_wq->bio = bio; 748 end_io_wq->metadata = metadata; 749 750 bio->bi_private = end_io_wq; 751 bio->bi_end_io = end_workqueue_bio; 752 return 0; 753 } 754 755 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 756 { 757 unsigned long limit = min_t(unsigned long, 758 info->thread_pool_size, 759 info->fs_devices->open_devices); 760 return 256 * limit; 761 } 762 763 static void run_one_async_start(struct btrfs_work *work) 764 { 765 struct async_submit_bio *async; 766 int ret; 767 768 async = container_of(work, struct async_submit_bio, work); 769 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 770 async->mirror_num, async->bio_flags, 771 async->bio_offset); 772 if (ret) 773 async->error = ret; 774 } 775 776 static void run_one_async_done(struct btrfs_work *work) 777 { 778 struct btrfs_fs_info *fs_info; 779 struct async_submit_bio *async; 780 int limit; 781 782 async = container_of(work, struct async_submit_bio, work); 783 fs_info = BTRFS_I(async->inode)->root->fs_info; 784 785 limit = btrfs_async_submit_limit(fs_info); 786 limit = limit * 2 / 3; 787 788 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 789 waitqueue_active(&fs_info->async_submit_wait)) 790 wake_up(&fs_info->async_submit_wait); 791 792 /* If an error occured we just want to clean up the bio and move on */ 793 if (async->error) { 794 bio_endio(async->bio, async->error); 795 return; 796 } 797 798 async->submit_bio_done(async->inode, async->rw, async->bio, 799 async->mirror_num, async->bio_flags, 800 async->bio_offset); 801 } 802 803 static void run_one_async_free(struct btrfs_work *work) 804 { 805 struct async_submit_bio *async; 806 807 async = container_of(work, struct async_submit_bio, work); 808 kfree(async); 809 } 810 811 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 812 int rw, struct bio *bio, int mirror_num, 813 unsigned long bio_flags, 814 u64 bio_offset, 815 extent_submit_bio_hook_t *submit_bio_start, 816 extent_submit_bio_hook_t *submit_bio_done) 817 { 818 struct async_submit_bio *async; 819 820 async = kmalloc(sizeof(*async), GFP_NOFS); 821 if (!async) 822 return -ENOMEM; 823 824 async->inode = inode; 825 async->rw = rw; 826 async->bio = bio; 827 async->mirror_num = mirror_num; 828 async->submit_bio_start = submit_bio_start; 829 async->submit_bio_done = submit_bio_done; 830 831 btrfs_init_work(&async->work, run_one_async_start, 832 run_one_async_done, run_one_async_free); 833 834 async->bio_flags = bio_flags; 835 async->bio_offset = bio_offset; 836 837 async->error = 0; 838 839 atomic_inc(&fs_info->nr_async_submits); 840 841 if (rw & REQ_SYNC) 842 btrfs_set_work_high_priority(&async->work); 843 844 btrfs_queue_work(fs_info->workers, &async->work); 845 846 while (atomic_read(&fs_info->async_submit_draining) && 847 atomic_read(&fs_info->nr_async_submits)) { 848 wait_event(fs_info->async_submit_wait, 849 (atomic_read(&fs_info->nr_async_submits) == 0)); 850 } 851 852 return 0; 853 } 854 855 static int btree_csum_one_bio(struct bio *bio) 856 { 857 struct bio_vec *bvec; 858 struct btrfs_root *root; 859 int i, ret = 0; 860 861 bio_for_each_segment_all(bvec, bio, i) { 862 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 863 ret = csum_dirty_buffer(root, bvec->bv_page); 864 if (ret) 865 break; 866 } 867 868 return ret; 869 } 870 871 static int __btree_submit_bio_start(struct inode *inode, int rw, 872 struct bio *bio, int mirror_num, 873 unsigned long bio_flags, 874 u64 bio_offset) 875 { 876 /* 877 * when we're called for a write, we're already in the async 878 * submission context. Just jump into btrfs_map_bio 879 */ 880 return btree_csum_one_bio(bio); 881 } 882 883 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 884 int mirror_num, unsigned long bio_flags, 885 u64 bio_offset) 886 { 887 int ret; 888 889 /* 890 * when we're called for a write, we're already in the async 891 * submission context. Just jump into btrfs_map_bio 892 */ 893 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 894 if (ret) 895 bio_endio(bio, ret); 896 return ret; 897 } 898 899 static int check_async_write(struct inode *inode, unsigned long bio_flags) 900 { 901 if (bio_flags & EXTENT_BIO_TREE_LOG) 902 return 0; 903 #ifdef CONFIG_X86 904 if (cpu_has_xmm4_2) 905 return 0; 906 #endif 907 return 1; 908 } 909 910 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 911 int mirror_num, unsigned long bio_flags, 912 u64 bio_offset) 913 { 914 int async = check_async_write(inode, bio_flags); 915 int ret; 916 917 if (!(rw & REQ_WRITE)) { 918 /* 919 * called for a read, do the setup so that checksum validation 920 * can happen in the async kernel threads 921 */ 922 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 923 bio, 1); 924 if (ret) 925 goto out_w_error; 926 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 927 mirror_num, 0); 928 } else if (!async) { 929 ret = btree_csum_one_bio(bio); 930 if (ret) 931 goto out_w_error; 932 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 933 mirror_num, 0); 934 } else { 935 /* 936 * kthread helpers are used to submit writes so that 937 * checksumming can happen in parallel across all CPUs 938 */ 939 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 940 inode, rw, bio, mirror_num, 0, 941 bio_offset, 942 __btree_submit_bio_start, 943 __btree_submit_bio_done); 944 } 945 946 if (ret) { 947 out_w_error: 948 bio_endio(bio, ret); 949 } 950 return ret; 951 } 952 953 #ifdef CONFIG_MIGRATION 954 static int btree_migratepage(struct address_space *mapping, 955 struct page *newpage, struct page *page, 956 enum migrate_mode mode) 957 { 958 /* 959 * we can't safely write a btree page from here, 960 * we haven't done the locking hook 961 */ 962 if (PageDirty(page)) 963 return -EAGAIN; 964 /* 965 * Buffers may be managed in a filesystem specific way. 966 * We must have no buffers or drop them. 967 */ 968 if (page_has_private(page) && 969 !try_to_release_page(page, GFP_KERNEL)) 970 return -EAGAIN; 971 return migrate_page(mapping, newpage, page, mode); 972 } 973 #endif 974 975 976 static int btree_writepages(struct address_space *mapping, 977 struct writeback_control *wbc) 978 { 979 struct btrfs_fs_info *fs_info; 980 int ret; 981 982 if (wbc->sync_mode == WB_SYNC_NONE) { 983 984 if (wbc->for_kupdate) 985 return 0; 986 987 fs_info = BTRFS_I(mapping->host)->root->fs_info; 988 /* this is a bit racy, but that's ok */ 989 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 990 BTRFS_DIRTY_METADATA_THRESH); 991 if (ret < 0) 992 return 0; 993 } 994 return btree_write_cache_pages(mapping, wbc); 995 } 996 997 static int btree_readpage(struct file *file, struct page *page) 998 { 999 struct extent_io_tree *tree; 1000 tree = &BTRFS_I(page->mapping->host)->io_tree; 1001 return extent_read_full_page(tree, page, btree_get_extent, 0); 1002 } 1003 1004 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1005 { 1006 if (PageWriteback(page) || PageDirty(page)) 1007 return 0; 1008 1009 return try_release_extent_buffer(page); 1010 } 1011 1012 static void btree_invalidatepage(struct page *page, unsigned int offset, 1013 unsigned int length) 1014 { 1015 struct extent_io_tree *tree; 1016 tree = &BTRFS_I(page->mapping->host)->io_tree; 1017 extent_invalidatepage(tree, page, offset); 1018 btree_releasepage(page, GFP_NOFS); 1019 if (PagePrivate(page)) { 1020 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1021 "page private not zero on page %llu", 1022 (unsigned long long)page_offset(page)); 1023 ClearPagePrivate(page); 1024 set_page_private(page, 0); 1025 page_cache_release(page); 1026 } 1027 } 1028 1029 static int btree_set_page_dirty(struct page *page) 1030 { 1031 #ifdef DEBUG 1032 struct extent_buffer *eb; 1033 1034 BUG_ON(!PagePrivate(page)); 1035 eb = (struct extent_buffer *)page->private; 1036 BUG_ON(!eb); 1037 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1038 BUG_ON(!atomic_read(&eb->refs)); 1039 btrfs_assert_tree_locked(eb); 1040 #endif 1041 return __set_page_dirty_nobuffers(page); 1042 } 1043 1044 static const struct address_space_operations btree_aops = { 1045 .readpage = btree_readpage, 1046 .writepages = btree_writepages, 1047 .releasepage = btree_releasepage, 1048 .invalidatepage = btree_invalidatepage, 1049 #ifdef CONFIG_MIGRATION 1050 .migratepage = btree_migratepage, 1051 #endif 1052 .set_page_dirty = btree_set_page_dirty, 1053 }; 1054 1055 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1056 u64 parent_transid) 1057 { 1058 struct extent_buffer *buf = NULL; 1059 struct inode *btree_inode = root->fs_info->btree_inode; 1060 int ret = 0; 1061 1062 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1063 if (!buf) 1064 return 0; 1065 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1066 buf, 0, WAIT_NONE, btree_get_extent, 0); 1067 free_extent_buffer(buf); 1068 return ret; 1069 } 1070 1071 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1072 int mirror_num, struct extent_buffer **eb) 1073 { 1074 struct extent_buffer *buf = NULL; 1075 struct inode *btree_inode = root->fs_info->btree_inode; 1076 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1077 int ret; 1078 1079 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1080 if (!buf) 1081 return 0; 1082 1083 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1084 1085 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1086 btree_get_extent, mirror_num); 1087 if (ret) { 1088 free_extent_buffer(buf); 1089 return ret; 1090 } 1091 1092 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1093 free_extent_buffer(buf); 1094 return -EIO; 1095 } else if (extent_buffer_uptodate(buf)) { 1096 *eb = buf; 1097 } else { 1098 free_extent_buffer(buf); 1099 } 1100 return 0; 1101 } 1102 1103 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 1104 u64 bytenr, u32 blocksize) 1105 { 1106 return find_extent_buffer(root->fs_info, bytenr); 1107 } 1108 1109 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1110 u64 bytenr, u32 blocksize) 1111 { 1112 return alloc_extent_buffer(root->fs_info, bytenr, blocksize); 1113 } 1114 1115 1116 int btrfs_write_tree_block(struct extent_buffer *buf) 1117 { 1118 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1119 buf->start + buf->len - 1); 1120 } 1121 1122 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1123 { 1124 return filemap_fdatawait_range(buf->pages[0]->mapping, 1125 buf->start, buf->start + buf->len - 1); 1126 } 1127 1128 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1129 u32 blocksize, u64 parent_transid) 1130 { 1131 struct extent_buffer *buf = NULL; 1132 int ret; 1133 1134 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1135 if (!buf) 1136 return NULL; 1137 1138 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1139 if (ret) { 1140 free_extent_buffer(buf); 1141 return NULL; 1142 } 1143 return buf; 1144 1145 } 1146 1147 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1148 struct extent_buffer *buf) 1149 { 1150 struct btrfs_fs_info *fs_info = root->fs_info; 1151 1152 if (btrfs_header_generation(buf) == 1153 fs_info->running_transaction->transid) { 1154 btrfs_assert_tree_locked(buf); 1155 1156 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1157 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1158 -buf->len, 1159 fs_info->dirty_metadata_batch); 1160 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1161 btrfs_set_lock_blocking(buf); 1162 clear_extent_buffer_dirty(buf); 1163 } 1164 } 1165 } 1166 1167 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1168 { 1169 struct btrfs_subvolume_writers *writers; 1170 int ret; 1171 1172 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1173 if (!writers) 1174 return ERR_PTR(-ENOMEM); 1175 1176 ret = percpu_counter_init(&writers->counter, 0); 1177 if (ret < 0) { 1178 kfree(writers); 1179 return ERR_PTR(ret); 1180 } 1181 1182 init_waitqueue_head(&writers->wait); 1183 return writers; 1184 } 1185 1186 static void 1187 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1188 { 1189 percpu_counter_destroy(&writers->counter); 1190 kfree(writers); 1191 } 1192 1193 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 1194 u32 stripesize, struct btrfs_root *root, 1195 struct btrfs_fs_info *fs_info, 1196 u64 objectid) 1197 { 1198 root->node = NULL; 1199 root->commit_root = NULL; 1200 root->sectorsize = sectorsize; 1201 root->nodesize = nodesize; 1202 root->leafsize = leafsize; 1203 root->stripesize = stripesize; 1204 root->ref_cows = 0; 1205 root->track_dirty = 0; 1206 root->in_radix = 0; 1207 root->orphan_item_inserted = 0; 1208 root->orphan_cleanup_state = 0; 1209 1210 root->objectid = objectid; 1211 root->last_trans = 0; 1212 root->highest_objectid = 0; 1213 root->nr_delalloc_inodes = 0; 1214 root->nr_ordered_extents = 0; 1215 root->name = NULL; 1216 root->inode_tree = RB_ROOT; 1217 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1218 root->block_rsv = NULL; 1219 root->orphan_block_rsv = NULL; 1220 1221 INIT_LIST_HEAD(&root->dirty_list); 1222 INIT_LIST_HEAD(&root->root_list); 1223 INIT_LIST_HEAD(&root->delalloc_inodes); 1224 INIT_LIST_HEAD(&root->delalloc_root); 1225 INIT_LIST_HEAD(&root->ordered_extents); 1226 INIT_LIST_HEAD(&root->ordered_root); 1227 INIT_LIST_HEAD(&root->logged_list[0]); 1228 INIT_LIST_HEAD(&root->logged_list[1]); 1229 spin_lock_init(&root->orphan_lock); 1230 spin_lock_init(&root->inode_lock); 1231 spin_lock_init(&root->delalloc_lock); 1232 spin_lock_init(&root->ordered_extent_lock); 1233 spin_lock_init(&root->accounting_lock); 1234 spin_lock_init(&root->log_extents_lock[0]); 1235 spin_lock_init(&root->log_extents_lock[1]); 1236 mutex_init(&root->objectid_mutex); 1237 mutex_init(&root->log_mutex); 1238 mutex_init(&root->ordered_extent_mutex); 1239 mutex_init(&root->delalloc_mutex); 1240 init_waitqueue_head(&root->log_writer_wait); 1241 init_waitqueue_head(&root->log_commit_wait[0]); 1242 init_waitqueue_head(&root->log_commit_wait[1]); 1243 INIT_LIST_HEAD(&root->log_ctxs[0]); 1244 INIT_LIST_HEAD(&root->log_ctxs[1]); 1245 atomic_set(&root->log_commit[0], 0); 1246 atomic_set(&root->log_commit[1], 0); 1247 atomic_set(&root->log_writers, 0); 1248 atomic_set(&root->log_batch, 0); 1249 atomic_set(&root->orphan_inodes, 0); 1250 atomic_set(&root->refs, 1); 1251 atomic_set(&root->will_be_snapshoted, 0); 1252 root->log_transid = 0; 1253 root->log_transid_committed = -1; 1254 root->last_log_commit = 0; 1255 if (fs_info) 1256 extent_io_tree_init(&root->dirty_log_pages, 1257 fs_info->btree_inode->i_mapping); 1258 1259 memset(&root->root_key, 0, sizeof(root->root_key)); 1260 memset(&root->root_item, 0, sizeof(root->root_item)); 1261 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1262 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1263 if (fs_info) 1264 root->defrag_trans_start = fs_info->generation; 1265 else 1266 root->defrag_trans_start = 0; 1267 init_completion(&root->kobj_unregister); 1268 root->defrag_running = 0; 1269 root->root_key.objectid = objectid; 1270 root->anon_dev = 0; 1271 1272 spin_lock_init(&root->root_item_lock); 1273 } 1274 1275 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1276 { 1277 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1278 if (root) 1279 root->fs_info = fs_info; 1280 return root; 1281 } 1282 1283 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1284 /* Should only be used by the testing infrastructure */ 1285 struct btrfs_root *btrfs_alloc_dummy_root(void) 1286 { 1287 struct btrfs_root *root; 1288 1289 root = btrfs_alloc_root(NULL); 1290 if (!root) 1291 return ERR_PTR(-ENOMEM); 1292 __setup_root(4096, 4096, 4096, 4096, root, NULL, 1); 1293 root->dummy_root = 1; 1294 1295 return root; 1296 } 1297 #endif 1298 1299 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1300 struct btrfs_fs_info *fs_info, 1301 u64 objectid) 1302 { 1303 struct extent_buffer *leaf; 1304 struct btrfs_root *tree_root = fs_info->tree_root; 1305 struct btrfs_root *root; 1306 struct btrfs_key key; 1307 int ret = 0; 1308 uuid_le uuid; 1309 1310 root = btrfs_alloc_root(fs_info); 1311 if (!root) 1312 return ERR_PTR(-ENOMEM); 1313 1314 __setup_root(tree_root->nodesize, tree_root->leafsize, 1315 tree_root->sectorsize, tree_root->stripesize, 1316 root, fs_info, objectid); 1317 root->root_key.objectid = objectid; 1318 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1319 root->root_key.offset = 0; 1320 1321 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 1322 0, objectid, NULL, 0, 0, 0); 1323 if (IS_ERR(leaf)) { 1324 ret = PTR_ERR(leaf); 1325 leaf = NULL; 1326 goto fail; 1327 } 1328 1329 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1330 btrfs_set_header_bytenr(leaf, leaf->start); 1331 btrfs_set_header_generation(leaf, trans->transid); 1332 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1333 btrfs_set_header_owner(leaf, objectid); 1334 root->node = leaf; 1335 1336 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(), 1337 BTRFS_FSID_SIZE); 1338 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1339 btrfs_header_chunk_tree_uuid(leaf), 1340 BTRFS_UUID_SIZE); 1341 btrfs_mark_buffer_dirty(leaf); 1342 1343 root->commit_root = btrfs_root_node(root); 1344 root->track_dirty = 1; 1345 1346 1347 root->root_item.flags = 0; 1348 root->root_item.byte_limit = 0; 1349 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1350 btrfs_set_root_generation(&root->root_item, trans->transid); 1351 btrfs_set_root_level(&root->root_item, 0); 1352 btrfs_set_root_refs(&root->root_item, 1); 1353 btrfs_set_root_used(&root->root_item, leaf->len); 1354 btrfs_set_root_last_snapshot(&root->root_item, 0); 1355 btrfs_set_root_dirid(&root->root_item, 0); 1356 uuid_le_gen(&uuid); 1357 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1358 root->root_item.drop_level = 0; 1359 1360 key.objectid = objectid; 1361 key.type = BTRFS_ROOT_ITEM_KEY; 1362 key.offset = 0; 1363 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1364 if (ret) 1365 goto fail; 1366 1367 btrfs_tree_unlock(leaf); 1368 1369 return root; 1370 1371 fail: 1372 if (leaf) { 1373 btrfs_tree_unlock(leaf); 1374 free_extent_buffer(leaf); 1375 } 1376 kfree(root); 1377 1378 return ERR_PTR(ret); 1379 } 1380 1381 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1382 struct btrfs_fs_info *fs_info) 1383 { 1384 struct btrfs_root *root; 1385 struct btrfs_root *tree_root = fs_info->tree_root; 1386 struct extent_buffer *leaf; 1387 1388 root = btrfs_alloc_root(fs_info); 1389 if (!root) 1390 return ERR_PTR(-ENOMEM); 1391 1392 __setup_root(tree_root->nodesize, tree_root->leafsize, 1393 tree_root->sectorsize, tree_root->stripesize, 1394 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1395 1396 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1397 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1398 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1399 /* 1400 * log trees do not get reference counted because they go away 1401 * before a real commit is actually done. They do store pointers 1402 * to file data extents, and those reference counts still get 1403 * updated (along with back refs to the log tree). 1404 */ 1405 root->ref_cows = 0; 1406 1407 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1408 BTRFS_TREE_LOG_OBJECTID, NULL, 1409 0, 0, 0); 1410 if (IS_ERR(leaf)) { 1411 kfree(root); 1412 return ERR_CAST(leaf); 1413 } 1414 1415 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1416 btrfs_set_header_bytenr(leaf, leaf->start); 1417 btrfs_set_header_generation(leaf, trans->transid); 1418 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1419 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1420 root->node = leaf; 1421 1422 write_extent_buffer(root->node, root->fs_info->fsid, 1423 btrfs_header_fsid(), BTRFS_FSID_SIZE); 1424 btrfs_mark_buffer_dirty(root->node); 1425 btrfs_tree_unlock(root->node); 1426 return root; 1427 } 1428 1429 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1430 struct btrfs_fs_info *fs_info) 1431 { 1432 struct btrfs_root *log_root; 1433 1434 log_root = alloc_log_tree(trans, fs_info); 1435 if (IS_ERR(log_root)) 1436 return PTR_ERR(log_root); 1437 WARN_ON(fs_info->log_root_tree); 1438 fs_info->log_root_tree = log_root; 1439 return 0; 1440 } 1441 1442 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1443 struct btrfs_root *root) 1444 { 1445 struct btrfs_root *log_root; 1446 struct btrfs_inode_item *inode_item; 1447 1448 log_root = alloc_log_tree(trans, root->fs_info); 1449 if (IS_ERR(log_root)) 1450 return PTR_ERR(log_root); 1451 1452 log_root->last_trans = trans->transid; 1453 log_root->root_key.offset = root->root_key.objectid; 1454 1455 inode_item = &log_root->root_item.inode; 1456 btrfs_set_stack_inode_generation(inode_item, 1); 1457 btrfs_set_stack_inode_size(inode_item, 3); 1458 btrfs_set_stack_inode_nlink(inode_item, 1); 1459 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize); 1460 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1461 1462 btrfs_set_root_node(&log_root->root_item, log_root->node); 1463 1464 WARN_ON(root->log_root); 1465 root->log_root = log_root; 1466 root->log_transid = 0; 1467 root->log_transid_committed = -1; 1468 root->last_log_commit = 0; 1469 return 0; 1470 } 1471 1472 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1473 struct btrfs_key *key) 1474 { 1475 struct btrfs_root *root; 1476 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1477 struct btrfs_path *path; 1478 u64 generation; 1479 u32 blocksize; 1480 int ret; 1481 1482 path = btrfs_alloc_path(); 1483 if (!path) 1484 return ERR_PTR(-ENOMEM); 1485 1486 root = btrfs_alloc_root(fs_info); 1487 if (!root) { 1488 ret = -ENOMEM; 1489 goto alloc_fail; 1490 } 1491 1492 __setup_root(tree_root->nodesize, tree_root->leafsize, 1493 tree_root->sectorsize, tree_root->stripesize, 1494 root, fs_info, key->objectid); 1495 1496 ret = btrfs_find_root(tree_root, key, path, 1497 &root->root_item, &root->root_key); 1498 if (ret) { 1499 if (ret > 0) 1500 ret = -ENOENT; 1501 goto find_fail; 1502 } 1503 1504 generation = btrfs_root_generation(&root->root_item); 1505 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1506 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1507 blocksize, generation); 1508 if (!root->node) { 1509 ret = -ENOMEM; 1510 goto find_fail; 1511 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1512 ret = -EIO; 1513 goto read_fail; 1514 } 1515 root->commit_root = btrfs_root_node(root); 1516 out: 1517 btrfs_free_path(path); 1518 return root; 1519 1520 read_fail: 1521 free_extent_buffer(root->node); 1522 find_fail: 1523 kfree(root); 1524 alloc_fail: 1525 root = ERR_PTR(ret); 1526 goto out; 1527 } 1528 1529 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1530 struct btrfs_key *location) 1531 { 1532 struct btrfs_root *root; 1533 1534 root = btrfs_read_tree_root(tree_root, location); 1535 if (IS_ERR(root)) 1536 return root; 1537 1538 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1539 root->ref_cows = 1; 1540 btrfs_check_and_init_root_item(&root->root_item); 1541 } 1542 1543 return root; 1544 } 1545 1546 int btrfs_init_fs_root(struct btrfs_root *root) 1547 { 1548 int ret; 1549 struct btrfs_subvolume_writers *writers; 1550 1551 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1552 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1553 GFP_NOFS); 1554 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1555 ret = -ENOMEM; 1556 goto fail; 1557 } 1558 1559 writers = btrfs_alloc_subvolume_writers(); 1560 if (IS_ERR(writers)) { 1561 ret = PTR_ERR(writers); 1562 goto fail; 1563 } 1564 root->subv_writers = writers; 1565 1566 btrfs_init_free_ino_ctl(root); 1567 spin_lock_init(&root->cache_lock); 1568 init_waitqueue_head(&root->cache_wait); 1569 1570 ret = get_anon_bdev(&root->anon_dev); 1571 if (ret) 1572 goto free_writers; 1573 return 0; 1574 1575 free_writers: 1576 btrfs_free_subvolume_writers(root->subv_writers); 1577 fail: 1578 kfree(root->free_ino_ctl); 1579 kfree(root->free_ino_pinned); 1580 return ret; 1581 } 1582 1583 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1584 u64 root_id) 1585 { 1586 struct btrfs_root *root; 1587 1588 spin_lock(&fs_info->fs_roots_radix_lock); 1589 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1590 (unsigned long)root_id); 1591 spin_unlock(&fs_info->fs_roots_radix_lock); 1592 return root; 1593 } 1594 1595 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1596 struct btrfs_root *root) 1597 { 1598 int ret; 1599 1600 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1601 if (ret) 1602 return ret; 1603 1604 spin_lock(&fs_info->fs_roots_radix_lock); 1605 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1606 (unsigned long)root->root_key.objectid, 1607 root); 1608 if (ret == 0) 1609 root->in_radix = 1; 1610 spin_unlock(&fs_info->fs_roots_radix_lock); 1611 radix_tree_preload_end(); 1612 1613 return ret; 1614 } 1615 1616 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1617 struct btrfs_key *location, 1618 bool check_ref) 1619 { 1620 struct btrfs_root *root; 1621 int ret; 1622 1623 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1624 return fs_info->tree_root; 1625 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1626 return fs_info->extent_root; 1627 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1628 return fs_info->chunk_root; 1629 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1630 return fs_info->dev_root; 1631 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1632 return fs_info->csum_root; 1633 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1634 return fs_info->quota_root ? fs_info->quota_root : 1635 ERR_PTR(-ENOENT); 1636 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1637 return fs_info->uuid_root ? fs_info->uuid_root : 1638 ERR_PTR(-ENOENT); 1639 again: 1640 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1641 if (root) { 1642 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1643 return ERR_PTR(-ENOENT); 1644 return root; 1645 } 1646 1647 root = btrfs_read_fs_root(fs_info->tree_root, location); 1648 if (IS_ERR(root)) 1649 return root; 1650 1651 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1652 ret = -ENOENT; 1653 goto fail; 1654 } 1655 1656 ret = btrfs_init_fs_root(root); 1657 if (ret) 1658 goto fail; 1659 1660 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID, 1661 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL); 1662 if (ret < 0) 1663 goto fail; 1664 if (ret == 0) 1665 root->orphan_item_inserted = 1; 1666 1667 ret = btrfs_insert_fs_root(fs_info, root); 1668 if (ret) { 1669 if (ret == -EEXIST) { 1670 free_fs_root(root); 1671 goto again; 1672 } 1673 goto fail; 1674 } 1675 return root; 1676 fail: 1677 free_fs_root(root); 1678 return ERR_PTR(ret); 1679 } 1680 1681 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1682 { 1683 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1684 int ret = 0; 1685 struct btrfs_device *device; 1686 struct backing_dev_info *bdi; 1687 1688 rcu_read_lock(); 1689 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1690 if (!device->bdev) 1691 continue; 1692 bdi = blk_get_backing_dev_info(device->bdev); 1693 if (bdi && bdi_congested(bdi, bdi_bits)) { 1694 ret = 1; 1695 break; 1696 } 1697 } 1698 rcu_read_unlock(); 1699 return ret; 1700 } 1701 1702 /* 1703 * If this fails, caller must call bdi_destroy() to get rid of the 1704 * bdi again. 1705 */ 1706 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1707 { 1708 int err; 1709 1710 bdi->capabilities = BDI_CAP_MAP_COPY; 1711 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1712 if (err) 1713 return err; 1714 1715 bdi->ra_pages = default_backing_dev_info.ra_pages; 1716 bdi->congested_fn = btrfs_congested_fn; 1717 bdi->congested_data = info; 1718 return 0; 1719 } 1720 1721 /* 1722 * called by the kthread helper functions to finally call the bio end_io 1723 * functions. This is where read checksum verification actually happens 1724 */ 1725 static void end_workqueue_fn(struct btrfs_work *work) 1726 { 1727 struct bio *bio; 1728 struct end_io_wq *end_io_wq; 1729 int error; 1730 1731 end_io_wq = container_of(work, struct end_io_wq, work); 1732 bio = end_io_wq->bio; 1733 1734 error = end_io_wq->error; 1735 bio->bi_private = end_io_wq->private; 1736 bio->bi_end_io = end_io_wq->end_io; 1737 kfree(end_io_wq); 1738 bio_endio_nodec(bio, error); 1739 } 1740 1741 static int cleaner_kthread(void *arg) 1742 { 1743 struct btrfs_root *root = arg; 1744 int again; 1745 1746 do { 1747 again = 0; 1748 1749 /* Make the cleaner go to sleep early. */ 1750 if (btrfs_need_cleaner_sleep(root)) 1751 goto sleep; 1752 1753 if (!mutex_trylock(&root->fs_info->cleaner_mutex)) 1754 goto sleep; 1755 1756 /* 1757 * Avoid the problem that we change the status of the fs 1758 * during the above check and trylock. 1759 */ 1760 if (btrfs_need_cleaner_sleep(root)) { 1761 mutex_unlock(&root->fs_info->cleaner_mutex); 1762 goto sleep; 1763 } 1764 1765 btrfs_run_delayed_iputs(root); 1766 again = btrfs_clean_one_deleted_snapshot(root); 1767 mutex_unlock(&root->fs_info->cleaner_mutex); 1768 1769 /* 1770 * The defragger has dealt with the R/O remount and umount, 1771 * needn't do anything special here. 1772 */ 1773 btrfs_run_defrag_inodes(root->fs_info); 1774 sleep: 1775 if (!try_to_freeze() && !again) { 1776 set_current_state(TASK_INTERRUPTIBLE); 1777 if (!kthread_should_stop()) 1778 schedule(); 1779 __set_current_state(TASK_RUNNING); 1780 } 1781 } while (!kthread_should_stop()); 1782 return 0; 1783 } 1784 1785 static int transaction_kthread(void *arg) 1786 { 1787 struct btrfs_root *root = arg; 1788 struct btrfs_trans_handle *trans; 1789 struct btrfs_transaction *cur; 1790 u64 transid; 1791 unsigned long now; 1792 unsigned long delay; 1793 bool cannot_commit; 1794 1795 do { 1796 cannot_commit = false; 1797 delay = HZ * root->fs_info->commit_interval; 1798 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1799 1800 spin_lock(&root->fs_info->trans_lock); 1801 cur = root->fs_info->running_transaction; 1802 if (!cur) { 1803 spin_unlock(&root->fs_info->trans_lock); 1804 goto sleep; 1805 } 1806 1807 now = get_seconds(); 1808 if (cur->state < TRANS_STATE_BLOCKED && 1809 (now < cur->start_time || 1810 now - cur->start_time < root->fs_info->commit_interval)) { 1811 spin_unlock(&root->fs_info->trans_lock); 1812 delay = HZ * 5; 1813 goto sleep; 1814 } 1815 transid = cur->transid; 1816 spin_unlock(&root->fs_info->trans_lock); 1817 1818 /* If the file system is aborted, this will always fail. */ 1819 trans = btrfs_attach_transaction(root); 1820 if (IS_ERR(trans)) { 1821 if (PTR_ERR(trans) != -ENOENT) 1822 cannot_commit = true; 1823 goto sleep; 1824 } 1825 if (transid == trans->transid) { 1826 btrfs_commit_transaction(trans, root); 1827 } else { 1828 btrfs_end_transaction(trans, root); 1829 } 1830 sleep: 1831 wake_up_process(root->fs_info->cleaner_kthread); 1832 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1833 1834 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1835 &root->fs_info->fs_state))) 1836 btrfs_cleanup_transaction(root); 1837 if (!try_to_freeze()) { 1838 set_current_state(TASK_INTERRUPTIBLE); 1839 if (!kthread_should_stop() && 1840 (!btrfs_transaction_blocked(root->fs_info) || 1841 cannot_commit)) 1842 schedule_timeout(delay); 1843 __set_current_state(TASK_RUNNING); 1844 } 1845 } while (!kthread_should_stop()); 1846 return 0; 1847 } 1848 1849 /* 1850 * this will find the highest generation in the array of 1851 * root backups. The index of the highest array is returned, 1852 * or -1 if we can't find anything. 1853 * 1854 * We check to make sure the array is valid by comparing the 1855 * generation of the latest root in the array with the generation 1856 * in the super block. If they don't match we pitch it. 1857 */ 1858 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1859 { 1860 u64 cur; 1861 int newest_index = -1; 1862 struct btrfs_root_backup *root_backup; 1863 int i; 1864 1865 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1866 root_backup = info->super_copy->super_roots + i; 1867 cur = btrfs_backup_tree_root_gen(root_backup); 1868 if (cur == newest_gen) 1869 newest_index = i; 1870 } 1871 1872 /* check to see if we actually wrapped around */ 1873 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1874 root_backup = info->super_copy->super_roots; 1875 cur = btrfs_backup_tree_root_gen(root_backup); 1876 if (cur == newest_gen) 1877 newest_index = 0; 1878 } 1879 return newest_index; 1880 } 1881 1882 1883 /* 1884 * find the oldest backup so we know where to store new entries 1885 * in the backup array. This will set the backup_root_index 1886 * field in the fs_info struct 1887 */ 1888 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1889 u64 newest_gen) 1890 { 1891 int newest_index = -1; 1892 1893 newest_index = find_newest_super_backup(info, newest_gen); 1894 /* if there was garbage in there, just move along */ 1895 if (newest_index == -1) { 1896 info->backup_root_index = 0; 1897 } else { 1898 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1899 } 1900 } 1901 1902 /* 1903 * copy all the root pointers into the super backup array. 1904 * this will bump the backup pointer by one when it is 1905 * done 1906 */ 1907 static void backup_super_roots(struct btrfs_fs_info *info) 1908 { 1909 int next_backup; 1910 struct btrfs_root_backup *root_backup; 1911 int last_backup; 1912 1913 next_backup = info->backup_root_index; 1914 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1915 BTRFS_NUM_BACKUP_ROOTS; 1916 1917 /* 1918 * just overwrite the last backup if we're at the same generation 1919 * this happens only at umount 1920 */ 1921 root_backup = info->super_for_commit->super_roots + last_backup; 1922 if (btrfs_backup_tree_root_gen(root_backup) == 1923 btrfs_header_generation(info->tree_root->node)) 1924 next_backup = last_backup; 1925 1926 root_backup = info->super_for_commit->super_roots + next_backup; 1927 1928 /* 1929 * make sure all of our padding and empty slots get zero filled 1930 * regardless of which ones we use today 1931 */ 1932 memset(root_backup, 0, sizeof(*root_backup)); 1933 1934 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1935 1936 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1937 btrfs_set_backup_tree_root_gen(root_backup, 1938 btrfs_header_generation(info->tree_root->node)); 1939 1940 btrfs_set_backup_tree_root_level(root_backup, 1941 btrfs_header_level(info->tree_root->node)); 1942 1943 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1944 btrfs_set_backup_chunk_root_gen(root_backup, 1945 btrfs_header_generation(info->chunk_root->node)); 1946 btrfs_set_backup_chunk_root_level(root_backup, 1947 btrfs_header_level(info->chunk_root->node)); 1948 1949 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1950 btrfs_set_backup_extent_root_gen(root_backup, 1951 btrfs_header_generation(info->extent_root->node)); 1952 btrfs_set_backup_extent_root_level(root_backup, 1953 btrfs_header_level(info->extent_root->node)); 1954 1955 /* 1956 * we might commit during log recovery, which happens before we set 1957 * the fs_root. Make sure it is valid before we fill it in. 1958 */ 1959 if (info->fs_root && info->fs_root->node) { 1960 btrfs_set_backup_fs_root(root_backup, 1961 info->fs_root->node->start); 1962 btrfs_set_backup_fs_root_gen(root_backup, 1963 btrfs_header_generation(info->fs_root->node)); 1964 btrfs_set_backup_fs_root_level(root_backup, 1965 btrfs_header_level(info->fs_root->node)); 1966 } 1967 1968 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1969 btrfs_set_backup_dev_root_gen(root_backup, 1970 btrfs_header_generation(info->dev_root->node)); 1971 btrfs_set_backup_dev_root_level(root_backup, 1972 btrfs_header_level(info->dev_root->node)); 1973 1974 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1975 btrfs_set_backup_csum_root_gen(root_backup, 1976 btrfs_header_generation(info->csum_root->node)); 1977 btrfs_set_backup_csum_root_level(root_backup, 1978 btrfs_header_level(info->csum_root->node)); 1979 1980 btrfs_set_backup_total_bytes(root_backup, 1981 btrfs_super_total_bytes(info->super_copy)); 1982 btrfs_set_backup_bytes_used(root_backup, 1983 btrfs_super_bytes_used(info->super_copy)); 1984 btrfs_set_backup_num_devices(root_backup, 1985 btrfs_super_num_devices(info->super_copy)); 1986 1987 /* 1988 * if we don't copy this out to the super_copy, it won't get remembered 1989 * for the next commit 1990 */ 1991 memcpy(&info->super_copy->super_roots, 1992 &info->super_for_commit->super_roots, 1993 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1994 } 1995 1996 /* 1997 * this copies info out of the root backup array and back into 1998 * the in-memory super block. It is meant to help iterate through 1999 * the array, so you send it the number of backups you've already 2000 * tried and the last backup index you used. 2001 * 2002 * this returns -1 when it has tried all the backups 2003 */ 2004 static noinline int next_root_backup(struct btrfs_fs_info *info, 2005 struct btrfs_super_block *super, 2006 int *num_backups_tried, int *backup_index) 2007 { 2008 struct btrfs_root_backup *root_backup; 2009 int newest = *backup_index; 2010 2011 if (*num_backups_tried == 0) { 2012 u64 gen = btrfs_super_generation(super); 2013 2014 newest = find_newest_super_backup(info, gen); 2015 if (newest == -1) 2016 return -1; 2017 2018 *backup_index = newest; 2019 *num_backups_tried = 1; 2020 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2021 /* we've tried all the backups, all done */ 2022 return -1; 2023 } else { 2024 /* jump to the next oldest backup */ 2025 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2026 BTRFS_NUM_BACKUP_ROOTS; 2027 *backup_index = newest; 2028 *num_backups_tried += 1; 2029 } 2030 root_backup = super->super_roots + newest; 2031 2032 btrfs_set_super_generation(super, 2033 btrfs_backup_tree_root_gen(root_backup)); 2034 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2035 btrfs_set_super_root_level(super, 2036 btrfs_backup_tree_root_level(root_backup)); 2037 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2038 2039 /* 2040 * fixme: the total bytes and num_devices need to match or we should 2041 * need a fsck 2042 */ 2043 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2044 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2045 return 0; 2046 } 2047 2048 /* helper to cleanup workers */ 2049 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2050 { 2051 btrfs_destroy_workqueue(fs_info->fixup_workers); 2052 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2053 btrfs_destroy_workqueue(fs_info->workers); 2054 btrfs_destroy_workqueue(fs_info->endio_workers); 2055 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2056 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2057 btrfs_destroy_workqueue(fs_info->rmw_workers); 2058 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2059 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2060 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2061 btrfs_destroy_workqueue(fs_info->submit_workers); 2062 btrfs_destroy_workqueue(fs_info->delayed_workers); 2063 btrfs_destroy_workqueue(fs_info->caching_workers); 2064 btrfs_destroy_workqueue(fs_info->readahead_workers); 2065 btrfs_destroy_workqueue(fs_info->flush_workers); 2066 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2067 } 2068 2069 static void free_root_extent_buffers(struct btrfs_root *root) 2070 { 2071 if (root) { 2072 free_extent_buffer(root->node); 2073 free_extent_buffer(root->commit_root); 2074 root->node = NULL; 2075 root->commit_root = NULL; 2076 } 2077 } 2078 2079 /* helper to cleanup tree roots */ 2080 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2081 { 2082 free_root_extent_buffers(info->tree_root); 2083 2084 free_root_extent_buffers(info->dev_root); 2085 free_root_extent_buffers(info->extent_root); 2086 free_root_extent_buffers(info->csum_root); 2087 free_root_extent_buffers(info->quota_root); 2088 free_root_extent_buffers(info->uuid_root); 2089 if (chunk_root) 2090 free_root_extent_buffers(info->chunk_root); 2091 } 2092 2093 static void del_fs_roots(struct btrfs_fs_info *fs_info) 2094 { 2095 int ret; 2096 struct btrfs_root *gang[8]; 2097 int i; 2098 2099 while (!list_empty(&fs_info->dead_roots)) { 2100 gang[0] = list_entry(fs_info->dead_roots.next, 2101 struct btrfs_root, root_list); 2102 list_del(&gang[0]->root_list); 2103 2104 if (gang[0]->in_radix) { 2105 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2106 } else { 2107 free_extent_buffer(gang[0]->node); 2108 free_extent_buffer(gang[0]->commit_root); 2109 btrfs_put_fs_root(gang[0]); 2110 } 2111 } 2112 2113 while (1) { 2114 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2115 (void **)gang, 0, 2116 ARRAY_SIZE(gang)); 2117 if (!ret) 2118 break; 2119 for (i = 0; i < ret; i++) 2120 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2121 } 2122 2123 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2124 btrfs_free_log_root_tree(NULL, fs_info); 2125 btrfs_destroy_pinned_extent(fs_info->tree_root, 2126 fs_info->pinned_extents); 2127 } 2128 } 2129 2130 int open_ctree(struct super_block *sb, 2131 struct btrfs_fs_devices *fs_devices, 2132 char *options) 2133 { 2134 u32 sectorsize; 2135 u32 nodesize; 2136 u32 leafsize; 2137 u32 blocksize; 2138 u32 stripesize; 2139 u64 generation; 2140 u64 features; 2141 struct btrfs_key location; 2142 struct buffer_head *bh; 2143 struct btrfs_super_block *disk_super; 2144 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2145 struct btrfs_root *tree_root; 2146 struct btrfs_root *extent_root; 2147 struct btrfs_root *csum_root; 2148 struct btrfs_root *chunk_root; 2149 struct btrfs_root *dev_root; 2150 struct btrfs_root *quota_root; 2151 struct btrfs_root *uuid_root; 2152 struct btrfs_root *log_tree_root; 2153 int ret; 2154 int err = -EINVAL; 2155 int num_backups_tried = 0; 2156 int backup_index = 0; 2157 int max_active; 2158 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2159 bool create_uuid_tree; 2160 bool check_uuid_tree; 2161 2162 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 2163 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 2164 if (!tree_root || !chunk_root) { 2165 err = -ENOMEM; 2166 goto fail; 2167 } 2168 2169 ret = init_srcu_struct(&fs_info->subvol_srcu); 2170 if (ret) { 2171 err = ret; 2172 goto fail; 2173 } 2174 2175 ret = setup_bdi(fs_info, &fs_info->bdi); 2176 if (ret) { 2177 err = ret; 2178 goto fail_srcu; 2179 } 2180 2181 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0); 2182 if (ret) { 2183 err = ret; 2184 goto fail_bdi; 2185 } 2186 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE * 2187 (1 + ilog2(nr_cpu_ids)); 2188 2189 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0); 2190 if (ret) { 2191 err = ret; 2192 goto fail_dirty_metadata_bytes; 2193 } 2194 2195 ret = percpu_counter_init(&fs_info->bio_counter, 0); 2196 if (ret) { 2197 err = ret; 2198 goto fail_delalloc_bytes; 2199 } 2200 2201 fs_info->btree_inode = new_inode(sb); 2202 if (!fs_info->btree_inode) { 2203 err = -ENOMEM; 2204 goto fail_bio_counter; 2205 } 2206 2207 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2208 2209 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2210 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2211 INIT_LIST_HEAD(&fs_info->trans_list); 2212 INIT_LIST_HEAD(&fs_info->dead_roots); 2213 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2214 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2215 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2216 spin_lock_init(&fs_info->delalloc_root_lock); 2217 spin_lock_init(&fs_info->trans_lock); 2218 spin_lock_init(&fs_info->fs_roots_radix_lock); 2219 spin_lock_init(&fs_info->delayed_iput_lock); 2220 spin_lock_init(&fs_info->defrag_inodes_lock); 2221 spin_lock_init(&fs_info->free_chunk_lock); 2222 spin_lock_init(&fs_info->tree_mod_seq_lock); 2223 spin_lock_init(&fs_info->super_lock); 2224 spin_lock_init(&fs_info->buffer_lock); 2225 rwlock_init(&fs_info->tree_mod_log_lock); 2226 mutex_init(&fs_info->reloc_mutex); 2227 mutex_init(&fs_info->delalloc_root_mutex); 2228 seqlock_init(&fs_info->profiles_lock); 2229 2230 init_completion(&fs_info->kobj_unregister); 2231 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2232 INIT_LIST_HEAD(&fs_info->space_info); 2233 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2234 btrfs_mapping_init(&fs_info->mapping_tree); 2235 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2236 BTRFS_BLOCK_RSV_GLOBAL); 2237 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2238 BTRFS_BLOCK_RSV_DELALLOC); 2239 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2240 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2241 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2242 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2243 BTRFS_BLOCK_RSV_DELOPS); 2244 atomic_set(&fs_info->nr_async_submits, 0); 2245 atomic_set(&fs_info->async_delalloc_pages, 0); 2246 atomic_set(&fs_info->async_submit_draining, 0); 2247 atomic_set(&fs_info->nr_async_bios, 0); 2248 atomic_set(&fs_info->defrag_running, 0); 2249 atomic64_set(&fs_info->tree_mod_seq, 0); 2250 fs_info->sb = sb; 2251 fs_info->max_inline = 8192 * 1024; 2252 fs_info->metadata_ratio = 0; 2253 fs_info->defrag_inodes = RB_ROOT; 2254 fs_info->free_chunk_space = 0; 2255 fs_info->tree_mod_log = RB_ROOT; 2256 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2257 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64); 2258 /* readahead state */ 2259 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 2260 spin_lock_init(&fs_info->reada_lock); 2261 2262 fs_info->thread_pool_size = min_t(unsigned long, 2263 num_online_cpus() + 2, 8); 2264 2265 INIT_LIST_HEAD(&fs_info->ordered_roots); 2266 spin_lock_init(&fs_info->ordered_root_lock); 2267 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2268 GFP_NOFS); 2269 if (!fs_info->delayed_root) { 2270 err = -ENOMEM; 2271 goto fail_iput; 2272 } 2273 btrfs_init_delayed_root(fs_info->delayed_root); 2274 2275 mutex_init(&fs_info->scrub_lock); 2276 atomic_set(&fs_info->scrubs_running, 0); 2277 atomic_set(&fs_info->scrub_pause_req, 0); 2278 atomic_set(&fs_info->scrubs_paused, 0); 2279 atomic_set(&fs_info->scrub_cancel_req, 0); 2280 init_waitqueue_head(&fs_info->replace_wait); 2281 init_waitqueue_head(&fs_info->scrub_pause_wait); 2282 fs_info->scrub_workers_refcnt = 0; 2283 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2284 fs_info->check_integrity_print_mask = 0; 2285 #endif 2286 2287 spin_lock_init(&fs_info->balance_lock); 2288 mutex_init(&fs_info->balance_mutex); 2289 atomic_set(&fs_info->balance_running, 0); 2290 atomic_set(&fs_info->balance_pause_req, 0); 2291 atomic_set(&fs_info->balance_cancel_req, 0); 2292 fs_info->balance_ctl = NULL; 2293 init_waitqueue_head(&fs_info->balance_wait_q); 2294 2295 sb->s_blocksize = 4096; 2296 sb->s_blocksize_bits = blksize_bits(4096); 2297 sb->s_bdi = &fs_info->bdi; 2298 2299 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2300 set_nlink(fs_info->btree_inode, 1); 2301 /* 2302 * we set the i_size on the btree inode to the max possible int. 2303 * the real end of the address space is determined by all of 2304 * the devices in the system 2305 */ 2306 fs_info->btree_inode->i_size = OFFSET_MAX; 2307 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2308 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 2309 2310 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2311 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2312 fs_info->btree_inode->i_mapping); 2313 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2314 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2315 2316 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2317 2318 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2319 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2320 sizeof(struct btrfs_key)); 2321 set_bit(BTRFS_INODE_DUMMY, 2322 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2323 btrfs_insert_inode_hash(fs_info->btree_inode); 2324 2325 spin_lock_init(&fs_info->block_group_cache_lock); 2326 fs_info->block_group_cache_tree = RB_ROOT; 2327 fs_info->first_logical_byte = (u64)-1; 2328 2329 extent_io_tree_init(&fs_info->freed_extents[0], 2330 fs_info->btree_inode->i_mapping); 2331 extent_io_tree_init(&fs_info->freed_extents[1], 2332 fs_info->btree_inode->i_mapping); 2333 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2334 fs_info->do_barriers = 1; 2335 2336 2337 mutex_init(&fs_info->ordered_operations_mutex); 2338 mutex_init(&fs_info->ordered_extent_flush_mutex); 2339 mutex_init(&fs_info->tree_log_mutex); 2340 mutex_init(&fs_info->chunk_mutex); 2341 mutex_init(&fs_info->transaction_kthread_mutex); 2342 mutex_init(&fs_info->cleaner_mutex); 2343 mutex_init(&fs_info->volume_mutex); 2344 init_rwsem(&fs_info->commit_root_sem); 2345 init_rwsem(&fs_info->cleanup_work_sem); 2346 init_rwsem(&fs_info->subvol_sem); 2347 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2348 fs_info->dev_replace.lock_owner = 0; 2349 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2350 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2351 mutex_init(&fs_info->dev_replace.lock_management_lock); 2352 mutex_init(&fs_info->dev_replace.lock); 2353 2354 spin_lock_init(&fs_info->qgroup_lock); 2355 mutex_init(&fs_info->qgroup_ioctl_lock); 2356 fs_info->qgroup_tree = RB_ROOT; 2357 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2358 fs_info->qgroup_seq = 1; 2359 fs_info->quota_enabled = 0; 2360 fs_info->pending_quota_state = 0; 2361 fs_info->qgroup_ulist = NULL; 2362 mutex_init(&fs_info->qgroup_rescan_lock); 2363 2364 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2365 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2366 2367 init_waitqueue_head(&fs_info->transaction_throttle); 2368 init_waitqueue_head(&fs_info->transaction_wait); 2369 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2370 init_waitqueue_head(&fs_info->async_submit_wait); 2371 2372 ret = btrfs_alloc_stripe_hash_table(fs_info); 2373 if (ret) { 2374 err = ret; 2375 goto fail_alloc; 2376 } 2377 2378 __setup_root(4096, 4096, 4096, 4096, tree_root, 2379 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2380 2381 invalidate_bdev(fs_devices->latest_bdev); 2382 2383 /* 2384 * Read super block and check the signature bytes only 2385 */ 2386 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2387 if (!bh) { 2388 err = -EINVAL; 2389 goto fail_alloc; 2390 } 2391 2392 /* 2393 * We want to check superblock checksum, the type is stored inside. 2394 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2395 */ 2396 if (btrfs_check_super_csum(bh->b_data)) { 2397 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n"); 2398 err = -EINVAL; 2399 goto fail_alloc; 2400 } 2401 2402 /* 2403 * super_copy is zeroed at allocation time and we never touch the 2404 * following bytes up to INFO_SIZE, the checksum is calculated from 2405 * the whole block of INFO_SIZE 2406 */ 2407 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2408 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2409 sizeof(*fs_info->super_for_commit)); 2410 brelse(bh); 2411 2412 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2413 2414 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2415 if (ret) { 2416 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n"); 2417 err = -EINVAL; 2418 goto fail_alloc; 2419 } 2420 2421 disk_super = fs_info->super_copy; 2422 if (!btrfs_super_root(disk_super)) 2423 goto fail_alloc; 2424 2425 /* check FS state, whether FS is broken. */ 2426 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2427 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2428 2429 /* 2430 * run through our array of backup supers and setup 2431 * our ring pointer to the oldest one 2432 */ 2433 generation = btrfs_super_generation(disk_super); 2434 find_oldest_super_backup(fs_info, generation); 2435 2436 /* 2437 * In the long term, we'll store the compression type in the super 2438 * block, and it'll be used for per file compression control. 2439 */ 2440 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2441 2442 ret = btrfs_parse_options(tree_root, options); 2443 if (ret) { 2444 err = ret; 2445 goto fail_alloc; 2446 } 2447 2448 features = btrfs_super_incompat_flags(disk_super) & 2449 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2450 if (features) { 2451 printk(KERN_ERR "BTRFS: couldn't mount because of " 2452 "unsupported optional features (%Lx).\n", 2453 features); 2454 err = -EINVAL; 2455 goto fail_alloc; 2456 } 2457 2458 if (btrfs_super_leafsize(disk_super) != 2459 btrfs_super_nodesize(disk_super)) { 2460 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2461 "blocksizes don't match. node %d leaf %d\n", 2462 btrfs_super_nodesize(disk_super), 2463 btrfs_super_leafsize(disk_super)); 2464 err = -EINVAL; 2465 goto fail_alloc; 2466 } 2467 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2468 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2469 "blocksize (%d) was too large\n", 2470 btrfs_super_leafsize(disk_super)); 2471 err = -EINVAL; 2472 goto fail_alloc; 2473 } 2474 2475 features = btrfs_super_incompat_flags(disk_super); 2476 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2477 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2478 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2479 2480 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2481 printk(KERN_ERR "BTRFS: has skinny extents\n"); 2482 2483 /* 2484 * flag our filesystem as having big metadata blocks if 2485 * they are bigger than the page size 2486 */ 2487 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) { 2488 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2489 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n"); 2490 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2491 } 2492 2493 nodesize = btrfs_super_nodesize(disk_super); 2494 leafsize = btrfs_super_leafsize(disk_super); 2495 sectorsize = btrfs_super_sectorsize(disk_super); 2496 stripesize = btrfs_super_stripesize(disk_super); 2497 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids)); 2498 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2499 2500 /* 2501 * mixed block groups end up with duplicate but slightly offset 2502 * extent buffers for the same range. It leads to corruptions 2503 */ 2504 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2505 (sectorsize != leafsize)) { 2506 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes " 2507 "are not allowed for mixed block groups on %s\n", 2508 sb->s_id); 2509 goto fail_alloc; 2510 } 2511 2512 /* 2513 * Needn't use the lock because there is no other task which will 2514 * update the flag. 2515 */ 2516 btrfs_set_super_incompat_flags(disk_super, features); 2517 2518 features = btrfs_super_compat_ro_flags(disk_super) & 2519 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2520 if (!(sb->s_flags & MS_RDONLY) && features) { 2521 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2522 "unsupported option features (%Lx).\n", 2523 features); 2524 err = -EINVAL; 2525 goto fail_alloc; 2526 } 2527 2528 max_active = fs_info->thread_pool_size; 2529 2530 fs_info->workers = 2531 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI, 2532 max_active, 16); 2533 2534 fs_info->delalloc_workers = 2535 btrfs_alloc_workqueue("delalloc", flags, max_active, 2); 2536 2537 fs_info->flush_workers = 2538 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0); 2539 2540 fs_info->caching_workers = 2541 btrfs_alloc_workqueue("cache", flags, max_active, 0); 2542 2543 /* 2544 * a higher idle thresh on the submit workers makes it much more 2545 * likely that bios will be send down in a sane order to the 2546 * devices 2547 */ 2548 fs_info->submit_workers = 2549 btrfs_alloc_workqueue("submit", flags, 2550 min_t(u64, fs_devices->num_devices, 2551 max_active), 64); 2552 2553 fs_info->fixup_workers = 2554 btrfs_alloc_workqueue("fixup", flags, 1, 0); 2555 2556 /* 2557 * endios are largely parallel and should have a very 2558 * low idle thresh 2559 */ 2560 fs_info->endio_workers = 2561 btrfs_alloc_workqueue("endio", flags, max_active, 4); 2562 fs_info->endio_meta_workers = 2563 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4); 2564 fs_info->endio_meta_write_workers = 2565 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2); 2566 fs_info->endio_raid56_workers = 2567 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4); 2568 fs_info->rmw_workers = 2569 btrfs_alloc_workqueue("rmw", flags, max_active, 2); 2570 fs_info->endio_write_workers = 2571 btrfs_alloc_workqueue("endio-write", flags, max_active, 2); 2572 fs_info->endio_freespace_worker = 2573 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0); 2574 fs_info->delayed_workers = 2575 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0); 2576 fs_info->readahead_workers = 2577 btrfs_alloc_workqueue("readahead", flags, max_active, 2); 2578 fs_info->qgroup_rescan_workers = 2579 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0); 2580 2581 if (!(fs_info->workers && fs_info->delalloc_workers && 2582 fs_info->submit_workers && fs_info->flush_workers && 2583 fs_info->endio_workers && fs_info->endio_meta_workers && 2584 fs_info->endio_meta_write_workers && 2585 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2586 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2587 fs_info->caching_workers && fs_info->readahead_workers && 2588 fs_info->fixup_workers && fs_info->delayed_workers && 2589 fs_info->qgroup_rescan_workers)) { 2590 err = -ENOMEM; 2591 goto fail_sb_buffer; 2592 } 2593 2594 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2595 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2596 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2597 2598 tree_root->nodesize = nodesize; 2599 tree_root->leafsize = leafsize; 2600 tree_root->sectorsize = sectorsize; 2601 tree_root->stripesize = stripesize; 2602 2603 sb->s_blocksize = sectorsize; 2604 sb->s_blocksize_bits = blksize_bits(sectorsize); 2605 2606 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 2607 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id); 2608 goto fail_sb_buffer; 2609 } 2610 2611 if (sectorsize != PAGE_SIZE) { 2612 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) " 2613 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2614 goto fail_sb_buffer; 2615 } 2616 2617 mutex_lock(&fs_info->chunk_mutex); 2618 ret = btrfs_read_sys_array(tree_root); 2619 mutex_unlock(&fs_info->chunk_mutex); 2620 if (ret) { 2621 printk(KERN_WARNING "BTRFS: failed to read the system " 2622 "array on %s\n", sb->s_id); 2623 goto fail_sb_buffer; 2624 } 2625 2626 blocksize = btrfs_level_size(tree_root, 2627 btrfs_super_chunk_root_level(disk_super)); 2628 generation = btrfs_super_chunk_root_generation(disk_super); 2629 2630 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2631 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2632 2633 chunk_root->node = read_tree_block(chunk_root, 2634 btrfs_super_chunk_root(disk_super), 2635 blocksize, generation); 2636 if (!chunk_root->node || 2637 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2638 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n", 2639 sb->s_id); 2640 goto fail_tree_roots; 2641 } 2642 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2643 chunk_root->commit_root = btrfs_root_node(chunk_root); 2644 2645 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2646 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2647 2648 ret = btrfs_read_chunk_tree(chunk_root); 2649 if (ret) { 2650 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n", 2651 sb->s_id); 2652 goto fail_tree_roots; 2653 } 2654 2655 /* 2656 * keep the device that is marked to be the target device for the 2657 * dev_replace procedure 2658 */ 2659 btrfs_close_extra_devices(fs_info, fs_devices, 0); 2660 2661 if (!fs_devices->latest_bdev) { 2662 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n", 2663 sb->s_id); 2664 goto fail_tree_roots; 2665 } 2666 2667 retry_root_backup: 2668 blocksize = btrfs_level_size(tree_root, 2669 btrfs_super_root_level(disk_super)); 2670 generation = btrfs_super_generation(disk_super); 2671 2672 tree_root->node = read_tree_block(tree_root, 2673 btrfs_super_root(disk_super), 2674 blocksize, generation); 2675 if (!tree_root->node || 2676 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2677 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n", 2678 sb->s_id); 2679 2680 goto recovery_tree_root; 2681 } 2682 2683 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2684 tree_root->commit_root = btrfs_root_node(tree_root); 2685 btrfs_set_root_refs(&tree_root->root_item, 1); 2686 2687 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2688 location.type = BTRFS_ROOT_ITEM_KEY; 2689 location.offset = 0; 2690 2691 extent_root = btrfs_read_tree_root(tree_root, &location); 2692 if (IS_ERR(extent_root)) { 2693 ret = PTR_ERR(extent_root); 2694 goto recovery_tree_root; 2695 } 2696 extent_root->track_dirty = 1; 2697 fs_info->extent_root = extent_root; 2698 2699 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2700 dev_root = btrfs_read_tree_root(tree_root, &location); 2701 if (IS_ERR(dev_root)) { 2702 ret = PTR_ERR(dev_root); 2703 goto recovery_tree_root; 2704 } 2705 dev_root->track_dirty = 1; 2706 fs_info->dev_root = dev_root; 2707 btrfs_init_devices_late(fs_info); 2708 2709 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2710 csum_root = btrfs_read_tree_root(tree_root, &location); 2711 if (IS_ERR(csum_root)) { 2712 ret = PTR_ERR(csum_root); 2713 goto recovery_tree_root; 2714 } 2715 csum_root->track_dirty = 1; 2716 fs_info->csum_root = csum_root; 2717 2718 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2719 quota_root = btrfs_read_tree_root(tree_root, &location); 2720 if (!IS_ERR(quota_root)) { 2721 quota_root->track_dirty = 1; 2722 fs_info->quota_enabled = 1; 2723 fs_info->pending_quota_state = 1; 2724 fs_info->quota_root = quota_root; 2725 } 2726 2727 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2728 uuid_root = btrfs_read_tree_root(tree_root, &location); 2729 if (IS_ERR(uuid_root)) { 2730 ret = PTR_ERR(uuid_root); 2731 if (ret != -ENOENT) 2732 goto recovery_tree_root; 2733 create_uuid_tree = true; 2734 check_uuid_tree = false; 2735 } else { 2736 uuid_root->track_dirty = 1; 2737 fs_info->uuid_root = uuid_root; 2738 create_uuid_tree = false; 2739 check_uuid_tree = 2740 generation != btrfs_super_uuid_tree_generation(disk_super); 2741 } 2742 2743 fs_info->generation = generation; 2744 fs_info->last_trans_committed = generation; 2745 2746 ret = btrfs_recover_balance(fs_info); 2747 if (ret) { 2748 printk(KERN_WARNING "BTRFS: failed to recover balance\n"); 2749 goto fail_block_groups; 2750 } 2751 2752 ret = btrfs_init_dev_stats(fs_info); 2753 if (ret) { 2754 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n", 2755 ret); 2756 goto fail_block_groups; 2757 } 2758 2759 ret = btrfs_init_dev_replace(fs_info); 2760 if (ret) { 2761 pr_err("BTRFS: failed to init dev_replace: %d\n", ret); 2762 goto fail_block_groups; 2763 } 2764 2765 btrfs_close_extra_devices(fs_info, fs_devices, 1); 2766 2767 ret = btrfs_sysfs_add_one(fs_info); 2768 if (ret) { 2769 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret); 2770 goto fail_block_groups; 2771 } 2772 2773 ret = btrfs_init_space_info(fs_info); 2774 if (ret) { 2775 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret); 2776 goto fail_sysfs; 2777 } 2778 2779 ret = btrfs_read_block_groups(extent_root); 2780 if (ret) { 2781 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret); 2782 goto fail_sysfs; 2783 } 2784 fs_info->num_tolerated_disk_barrier_failures = 2785 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2786 if (fs_info->fs_devices->missing_devices > 2787 fs_info->num_tolerated_disk_barrier_failures && 2788 !(sb->s_flags & MS_RDONLY)) { 2789 printk(KERN_WARNING "BTRFS: " 2790 "too many missing devices, writeable mount is not allowed\n"); 2791 goto fail_sysfs; 2792 } 2793 2794 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2795 "btrfs-cleaner"); 2796 if (IS_ERR(fs_info->cleaner_kthread)) 2797 goto fail_sysfs; 2798 2799 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2800 tree_root, 2801 "btrfs-transaction"); 2802 if (IS_ERR(fs_info->transaction_kthread)) 2803 goto fail_cleaner; 2804 2805 if (!btrfs_test_opt(tree_root, SSD) && 2806 !btrfs_test_opt(tree_root, NOSSD) && 2807 !fs_info->fs_devices->rotating) { 2808 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD " 2809 "mode\n"); 2810 btrfs_set_opt(fs_info->mount_opt, SSD); 2811 } 2812 2813 /* Set the real inode map cache flag */ 2814 if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE)) 2815 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE); 2816 2817 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2818 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2819 ret = btrfsic_mount(tree_root, fs_devices, 2820 btrfs_test_opt(tree_root, 2821 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2822 1 : 0, 2823 fs_info->check_integrity_print_mask); 2824 if (ret) 2825 printk(KERN_WARNING "BTRFS: failed to initialize" 2826 " integrity check module %s\n", sb->s_id); 2827 } 2828 #endif 2829 ret = btrfs_read_qgroup_config(fs_info); 2830 if (ret) 2831 goto fail_trans_kthread; 2832 2833 /* do not make disk changes in broken FS */ 2834 if (btrfs_super_log_root(disk_super) != 0) { 2835 u64 bytenr = btrfs_super_log_root(disk_super); 2836 2837 if (fs_devices->rw_devices == 0) { 2838 printk(KERN_WARNING "BTRFS: log replay required " 2839 "on RO media\n"); 2840 err = -EIO; 2841 goto fail_qgroup; 2842 } 2843 blocksize = 2844 btrfs_level_size(tree_root, 2845 btrfs_super_log_root_level(disk_super)); 2846 2847 log_tree_root = btrfs_alloc_root(fs_info); 2848 if (!log_tree_root) { 2849 err = -ENOMEM; 2850 goto fail_qgroup; 2851 } 2852 2853 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2854 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2855 2856 log_tree_root->node = read_tree_block(tree_root, bytenr, 2857 blocksize, 2858 generation + 1); 2859 if (!log_tree_root->node || 2860 !extent_buffer_uptodate(log_tree_root->node)) { 2861 printk(KERN_ERR "BTRFS: failed to read log tree\n"); 2862 free_extent_buffer(log_tree_root->node); 2863 kfree(log_tree_root); 2864 goto fail_trans_kthread; 2865 } 2866 /* returns with log_tree_root freed on success */ 2867 ret = btrfs_recover_log_trees(log_tree_root); 2868 if (ret) { 2869 btrfs_error(tree_root->fs_info, ret, 2870 "Failed to recover log tree"); 2871 free_extent_buffer(log_tree_root->node); 2872 kfree(log_tree_root); 2873 goto fail_trans_kthread; 2874 } 2875 2876 if (sb->s_flags & MS_RDONLY) { 2877 ret = btrfs_commit_super(tree_root); 2878 if (ret) 2879 goto fail_trans_kthread; 2880 } 2881 } 2882 2883 ret = btrfs_find_orphan_roots(tree_root); 2884 if (ret) 2885 goto fail_trans_kthread; 2886 2887 if (!(sb->s_flags & MS_RDONLY)) { 2888 ret = btrfs_cleanup_fs_roots(fs_info); 2889 if (ret) 2890 goto fail_trans_kthread; 2891 2892 ret = btrfs_recover_relocation(tree_root); 2893 if (ret < 0) { 2894 printk(KERN_WARNING 2895 "BTRFS: failed to recover relocation\n"); 2896 err = -EINVAL; 2897 goto fail_qgroup; 2898 } 2899 } 2900 2901 location.objectid = BTRFS_FS_TREE_OBJECTID; 2902 location.type = BTRFS_ROOT_ITEM_KEY; 2903 location.offset = 0; 2904 2905 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2906 if (IS_ERR(fs_info->fs_root)) { 2907 err = PTR_ERR(fs_info->fs_root); 2908 goto fail_qgroup; 2909 } 2910 2911 if (sb->s_flags & MS_RDONLY) 2912 return 0; 2913 2914 down_read(&fs_info->cleanup_work_sem); 2915 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2916 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2917 up_read(&fs_info->cleanup_work_sem); 2918 close_ctree(tree_root); 2919 return ret; 2920 } 2921 up_read(&fs_info->cleanup_work_sem); 2922 2923 ret = btrfs_resume_balance_async(fs_info); 2924 if (ret) { 2925 printk(KERN_WARNING "BTRFS: failed to resume balance\n"); 2926 close_ctree(tree_root); 2927 return ret; 2928 } 2929 2930 ret = btrfs_resume_dev_replace_async(fs_info); 2931 if (ret) { 2932 pr_warn("BTRFS: failed to resume dev_replace\n"); 2933 close_ctree(tree_root); 2934 return ret; 2935 } 2936 2937 btrfs_qgroup_rescan_resume(fs_info); 2938 2939 if (create_uuid_tree) { 2940 pr_info("BTRFS: creating UUID tree\n"); 2941 ret = btrfs_create_uuid_tree(fs_info); 2942 if (ret) { 2943 pr_warn("BTRFS: failed to create the UUID tree %d\n", 2944 ret); 2945 close_ctree(tree_root); 2946 return ret; 2947 } 2948 } else if (check_uuid_tree || 2949 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) { 2950 pr_info("BTRFS: checking UUID tree\n"); 2951 ret = btrfs_check_uuid_tree(fs_info); 2952 if (ret) { 2953 pr_warn("BTRFS: failed to check the UUID tree %d\n", 2954 ret); 2955 close_ctree(tree_root); 2956 return ret; 2957 } 2958 } else { 2959 fs_info->update_uuid_tree_gen = 1; 2960 } 2961 2962 return 0; 2963 2964 fail_qgroup: 2965 btrfs_free_qgroup_config(fs_info); 2966 fail_trans_kthread: 2967 kthread_stop(fs_info->transaction_kthread); 2968 btrfs_cleanup_transaction(fs_info->tree_root); 2969 del_fs_roots(fs_info); 2970 fail_cleaner: 2971 kthread_stop(fs_info->cleaner_kthread); 2972 2973 /* 2974 * make sure we're done with the btree inode before we stop our 2975 * kthreads 2976 */ 2977 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2978 2979 fail_sysfs: 2980 btrfs_sysfs_remove_one(fs_info); 2981 2982 fail_block_groups: 2983 btrfs_put_block_group_cache(fs_info); 2984 btrfs_free_block_groups(fs_info); 2985 2986 fail_tree_roots: 2987 free_root_pointers(fs_info, 1); 2988 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2989 2990 fail_sb_buffer: 2991 btrfs_stop_all_workers(fs_info); 2992 fail_alloc: 2993 fail_iput: 2994 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2995 2996 iput(fs_info->btree_inode); 2997 fail_bio_counter: 2998 percpu_counter_destroy(&fs_info->bio_counter); 2999 fail_delalloc_bytes: 3000 percpu_counter_destroy(&fs_info->delalloc_bytes); 3001 fail_dirty_metadata_bytes: 3002 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3003 fail_bdi: 3004 bdi_destroy(&fs_info->bdi); 3005 fail_srcu: 3006 cleanup_srcu_struct(&fs_info->subvol_srcu); 3007 fail: 3008 btrfs_free_stripe_hash_table(fs_info); 3009 btrfs_close_devices(fs_info->fs_devices); 3010 return err; 3011 3012 recovery_tree_root: 3013 if (!btrfs_test_opt(tree_root, RECOVERY)) 3014 goto fail_tree_roots; 3015 3016 free_root_pointers(fs_info, 0); 3017 3018 /* don't use the log in recovery mode, it won't be valid */ 3019 btrfs_set_super_log_root(disk_super, 0); 3020 3021 /* we can't trust the free space cache either */ 3022 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3023 3024 ret = next_root_backup(fs_info, fs_info->super_copy, 3025 &num_backups_tried, &backup_index); 3026 if (ret == -1) 3027 goto fail_block_groups; 3028 goto retry_root_backup; 3029 } 3030 3031 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3032 { 3033 if (uptodate) { 3034 set_buffer_uptodate(bh); 3035 } else { 3036 struct btrfs_device *device = (struct btrfs_device *) 3037 bh->b_private; 3038 3039 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to " 3040 "I/O error on %s\n", 3041 rcu_str_deref(device->name)); 3042 /* note, we dont' set_buffer_write_io_error because we have 3043 * our own ways of dealing with the IO errors 3044 */ 3045 clear_buffer_uptodate(bh); 3046 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3047 } 3048 unlock_buffer(bh); 3049 put_bh(bh); 3050 } 3051 3052 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3053 { 3054 struct buffer_head *bh; 3055 struct buffer_head *latest = NULL; 3056 struct btrfs_super_block *super; 3057 int i; 3058 u64 transid = 0; 3059 u64 bytenr; 3060 3061 /* we would like to check all the supers, but that would make 3062 * a btrfs mount succeed after a mkfs from a different FS. 3063 * So, we need to add a special mount option to scan for 3064 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3065 */ 3066 for (i = 0; i < 1; i++) { 3067 bytenr = btrfs_sb_offset(i); 3068 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3069 i_size_read(bdev->bd_inode)) 3070 break; 3071 bh = __bread(bdev, bytenr / 4096, 3072 BTRFS_SUPER_INFO_SIZE); 3073 if (!bh) 3074 continue; 3075 3076 super = (struct btrfs_super_block *)bh->b_data; 3077 if (btrfs_super_bytenr(super) != bytenr || 3078 btrfs_super_magic(super) != BTRFS_MAGIC) { 3079 brelse(bh); 3080 continue; 3081 } 3082 3083 if (!latest || btrfs_super_generation(super) > transid) { 3084 brelse(latest); 3085 latest = bh; 3086 transid = btrfs_super_generation(super); 3087 } else { 3088 brelse(bh); 3089 } 3090 } 3091 return latest; 3092 } 3093 3094 /* 3095 * this should be called twice, once with wait == 0 and 3096 * once with wait == 1. When wait == 0 is done, all the buffer heads 3097 * we write are pinned. 3098 * 3099 * They are released when wait == 1 is done. 3100 * max_mirrors must be the same for both runs, and it indicates how 3101 * many supers on this one device should be written. 3102 * 3103 * max_mirrors == 0 means to write them all. 3104 */ 3105 static int write_dev_supers(struct btrfs_device *device, 3106 struct btrfs_super_block *sb, 3107 int do_barriers, int wait, int max_mirrors) 3108 { 3109 struct buffer_head *bh; 3110 int i; 3111 int ret; 3112 int errors = 0; 3113 u32 crc; 3114 u64 bytenr; 3115 3116 if (max_mirrors == 0) 3117 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3118 3119 for (i = 0; i < max_mirrors; i++) { 3120 bytenr = btrfs_sb_offset(i); 3121 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 3122 break; 3123 3124 if (wait) { 3125 bh = __find_get_block(device->bdev, bytenr / 4096, 3126 BTRFS_SUPER_INFO_SIZE); 3127 if (!bh) { 3128 errors++; 3129 continue; 3130 } 3131 wait_on_buffer(bh); 3132 if (!buffer_uptodate(bh)) 3133 errors++; 3134 3135 /* drop our reference */ 3136 brelse(bh); 3137 3138 /* drop the reference from the wait == 0 run */ 3139 brelse(bh); 3140 continue; 3141 } else { 3142 btrfs_set_super_bytenr(sb, bytenr); 3143 3144 crc = ~(u32)0; 3145 crc = btrfs_csum_data((char *)sb + 3146 BTRFS_CSUM_SIZE, crc, 3147 BTRFS_SUPER_INFO_SIZE - 3148 BTRFS_CSUM_SIZE); 3149 btrfs_csum_final(crc, sb->csum); 3150 3151 /* 3152 * one reference for us, and we leave it for the 3153 * caller 3154 */ 3155 bh = __getblk(device->bdev, bytenr / 4096, 3156 BTRFS_SUPER_INFO_SIZE); 3157 if (!bh) { 3158 printk(KERN_ERR "BTRFS: couldn't get super " 3159 "buffer head for bytenr %Lu\n", bytenr); 3160 errors++; 3161 continue; 3162 } 3163 3164 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3165 3166 /* one reference for submit_bh */ 3167 get_bh(bh); 3168 3169 set_buffer_uptodate(bh); 3170 lock_buffer(bh); 3171 bh->b_end_io = btrfs_end_buffer_write_sync; 3172 bh->b_private = device; 3173 } 3174 3175 /* 3176 * we fua the first super. The others we allow 3177 * to go down lazy. 3178 */ 3179 if (i == 0) 3180 ret = btrfsic_submit_bh(WRITE_FUA, bh); 3181 else 3182 ret = btrfsic_submit_bh(WRITE_SYNC, bh); 3183 if (ret) 3184 errors++; 3185 } 3186 return errors < i ? 0 : -1; 3187 } 3188 3189 /* 3190 * endio for the write_dev_flush, this will wake anyone waiting 3191 * for the barrier when it is done 3192 */ 3193 static void btrfs_end_empty_barrier(struct bio *bio, int err) 3194 { 3195 if (err) { 3196 if (err == -EOPNOTSUPP) 3197 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 3198 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3199 } 3200 if (bio->bi_private) 3201 complete(bio->bi_private); 3202 bio_put(bio); 3203 } 3204 3205 /* 3206 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3207 * sent down. With wait == 1, it waits for the previous flush. 3208 * 3209 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3210 * capable 3211 */ 3212 static int write_dev_flush(struct btrfs_device *device, int wait) 3213 { 3214 struct bio *bio; 3215 int ret = 0; 3216 3217 if (device->nobarriers) 3218 return 0; 3219 3220 if (wait) { 3221 bio = device->flush_bio; 3222 if (!bio) 3223 return 0; 3224 3225 wait_for_completion(&device->flush_wait); 3226 3227 if (bio_flagged(bio, BIO_EOPNOTSUPP)) { 3228 printk_in_rcu("BTRFS: disabling barriers on dev %s\n", 3229 rcu_str_deref(device->name)); 3230 device->nobarriers = 1; 3231 } else if (!bio_flagged(bio, BIO_UPTODATE)) { 3232 ret = -EIO; 3233 btrfs_dev_stat_inc_and_print(device, 3234 BTRFS_DEV_STAT_FLUSH_ERRS); 3235 } 3236 3237 /* drop the reference from the wait == 0 run */ 3238 bio_put(bio); 3239 device->flush_bio = NULL; 3240 3241 return ret; 3242 } 3243 3244 /* 3245 * one reference for us, and we leave it for the 3246 * caller 3247 */ 3248 device->flush_bio = NULL; 3249 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3250 if (!bio) 3251 return -ENOMEM; 3252 3253 bio->bi_end_io = btrfs_end_empty_barrier; 3254 bio->bi_bdev = device->bdev; 3255 init_completion(&device->flush_wait); 3256 bio->bi_private = &device->flush_wait; 3257 device->flush_bio = bio; 3258 3259 bio_get(bio); 3260 btrfsic_submit_bio(WRITE_FLUSH, bio); 3261 3262 return 0; 3263 } 3264 3265 /* 3266 * send an empty flush down to each device in parallel, 3267 * then wait for them 3268 */ 3269 static int barrier_all_devices(struct btrfs_fs_info *info) 3270 { 3271 struct list_head *head; 3272 struct btrfs_device *dev; 3273 int errors_send = 0; 3274 int errors_wait = 0; 3275 int ret; 3276 3277 /* send down all the barriers */ 3278 head = &info->fs_devices->devices; 3279 list_for_each_entry_rcu(dev, head, dev_list) { 3280 if (dev->missing) 3281 continue; 3282 if (!dev->bdev) { 3283 errors_send++; 3284 continue; 3285 } 3286 if (!dev->in_fs_metadata || !dev->writeable) 3287 continue; 3288 3289 ret = write_dev_flush(dev, 0); 3290 if (ret) 3291 errors_send++; 3292 } 3293 3294 /* wait for all the barriers */ 3295 list_for_each_entry_rcu(dev, head, dev_list) { 3296 if (dev->missing) 3297 continue; 3298 if (!dev->bdev) { 3299 errors_wait++; 3300 continue; 3301 } 3302 if (!dev->in_fs_metadata || !dev->writeable) 3303 continue; 3304 3305 ret = write_dev_flush(dev, 1); 3306 if (ret) 3307 errors_wait++; 3308 } 3309 if (errors_send > info->num_tolerated_disk_barrier_failures || 3310 errors_wait > info->num_tolerated_disk_barrier_failures) 3311 return -EIO; 3312 return 0; 3313 } 3314 3315 int btrfs_calc_num_tolerated_disk_barrier_failures( 3316 struct btrfs_fs_info *fs_info) 3317 { 3318 struct btrfs_ioctl_space_info space; 3319 struct btrfs_space_info *sinfo; 3320 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3321 BTRFS_BLOCK_GROUP_SYSTEM, 3322 BTRFS_BLOCK_GROUP_METADATA, 3323 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3324 int num_types = 4; 3325 int i; 3326 int c; 3327 int num_tolerated_disk_barrier_failures = 3328 (int)fs_info->fs_devices->num_devices; 3329 3330 for (i = 0; i < num_types; i++) { 3331 struct btrfs_space_info *tmp; 3332 3333 sinfo = NULL; 3334 rcu_read_lock(); 3335 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3336 if (tmp->flags == types[i]) { 3337 sinfo = tmp; 3338 break; 3339 } 3340 } 3341 rcu_read_unlock(); 3342 3343 if (!sinfo) 3344 continue; 3345 3346 down_read(&sinfo->groups_sem); 3347 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3348 if (!list_empty(&sinfo->block_groups[c])) { 3349 u64 flags; 3350 3351 btrfs_get_block_group_info( 3352 &sinfo->block_groups[c], &space); 3353 if (space.total_bytes == 0 || 3354 space.used_bytes == 0) 3355 continue; 3356 flags = space.flags; 3357 /* 3358 * return 3359 * 0: if dup, single or RAID0 is configured for 3360 * any of metadata, system or data, else 3361 * 1: if RAID5 is configured, or if RAID1 or 3362 * RAID10 is configured and only two mirrors 3363 * are used, else 3364 * 2: if RAID6 is configured, else 3365 * num_mirrors - 1: if RAID1 or RAID10 is 3366 * configured and more than 3367 * 2 mirrors are used. 3368 */ 3369 if (num_tolerated_disk_barrier_failures > 0 && 3370 ((flags & (BTRFS_BLOCK_GROUP_DUP | 3371 BTRFS_BLOCK_GROUP_RAID0)) || 3372 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) 3373 == 0))) 3374 num_tolerated_disk_barrier_failures = 0; 3375 else if (num_tolerated_disk_barrier_failures > 1) { 3376 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3377 BTRFS_BLOCK_GROUP_RAID5 | 3378 BTRFS_BLOCK_GROUP_RAID10)) { 3379 num_tolerated_disk_barrier_failures = 1; 3380 } else if (flags & 3381 BTRFS_BLOCK_GROUP_RAID6) { 3382 num_tolerated_disk_barrier_failures = 2; 3383 } 3384 } 3385 } 3386 } 3387 up_read(&sinfo->groups_sem); 3388 } 3389 3390 return num_tolerated_disk_barrier_failures; 3391 } 3392 3393 static int write_all_supers(struct btrfs_root *root, int max_mirrors) 3394 { 3395 struct list_head *head; 3396 struct btrfs_device *dev; 3397 struct btrfs_super_block *sb; 3398 struct btrfs_dev_item *dev_item; 3399 int ret; 3400 int do_barriers; 3401 int max_errors; 3402 int total_errors = 0; 3403 u64 flags; 3404 3405 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3406 backup_super_roots(root->fs_info); 3407 3408 sb = root->fs_info->super_for_commit; 3409 dev_item = &sb->dev_item; 3410 3411 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3412 head = &root->fs_info->fs_devices->devices; 3413 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3414 3415 if (do_barriers) { 3416 ret = barrier_all_devices(root->fs_info); 3417 if (ret) { 3418 mutex_unlock( 3419 &root->fs_info->fs_devices->device_list_mutex); 3420 btrfs_error(root->fs_info, ret, 3421 "errors while submitting device barriers."); 3422 return ret; 3423 } 3424 } 3425 3426 list_for_each_entry_rcu(dev, head, dev_list) { 3427 if (!dev->bdev) { 3428 total_errors++; 3429 continue; 3430 } 3431 if (!dev->in_fs_metadata || !dev->writeable) 3432 continue; 3433 3434 btrfs_set_stack_device_generation(dev_item, 0); 3435 btrfs_set_stack_device_type(dev_item, dev->type); 3436 btrfs_set_stack_device_id(dev_item, dev->devid); 3437 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 3438 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 3439 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3440 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3441 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3442 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3443 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3444 3445 flags = btrfs_super_flags(sb); 3446 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3447 3448 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3449 if (ret) 3450 total_errors++; 3451 } 3452 if (total_errors > max_errors) { 3453 btrfs_err(root->fs_info, "%d errors while writing supers", 3454 total_errors); 3455 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3456 3457 /* FUA is masked off if unsupported and can't be the reason */ 3458 btrfs_error(root->fs_info, -EIO, 3459 "%d errors while writing supers", total_errors); 3460 return -EIO; 3461 } 3462 3463 total_errors = 0; 3464 list_for_each_entry_rcu(dev, head, dev_list) { 3465 if (!dev->bdev) 3466 continue; 3467 if (!dev->in_fs_metadata || !dev->writeable) 3468 continue; 3469 3470 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3471 if (ret) 3472 total_errors++; 3473 } 3474 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3475 if (total_errors > max_errors) { 3476 btrfs_error(root->fs_info, -EIO, 3477 "%d errors while writing supers", total_errors); 3478 return -EIO; 3479 } 3480 return 0; 3481 } 3482 3483 int write_ctree_super(struct btrfs_trans_handle *trans, 3484 struct btrfs_root *root, int max_mirrors) 3485 { 3486 return write_all_supers(root, max_mirrors); 3487 } 3488 3489 /* Drop a fs root from the radix tree and free it. */ 3490 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3491 struct btrfs_root *root) 3492 { 3493 spin_lock(&fs_info->fs_roots_radix_lock); 3494 radix_tree_delete(&fs_info->fs_roots_radix, 3495 (unsigned long)root->root_key.objectid); 3496 spin_unlock(&fs_info->fs_roots_radix_lock); 3497 3498 if (btrfs_root_refs(&root->root_item) == 0) 3499 synchronize_srcu(&fs_info->subvol_srcu); 3500 3501 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3502 btrfs_free_log(NULL, root); 3503 3504 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3505 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3506 free_fs_root(root); 3507 } 3508 3509 static void free_fs_root(struct btrfs_root *root) 3510 { 3511 iput(root->cache_inode); 3512 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3513 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3514 root->orphan_block_rsv = NULL; 3515 if (root->anon_dev) 3516 free_anon_bdev(root->anon_dev); 3517 if (root->subv_writers) 3518 btrfs_free_subvolume_writers(root->subv_writers); 3519 free_extent_buffer(root->node); 3520 free_extent_buffer(root->commit_root); 3521 kfree(root->free_ino_ctl); 3522 kfree(root->free_ino_pinned); 3523 kfree(root->name); 3524 btrfs_put_fs_root(root); 3525 } 3526 3527 void btrfs_free_fs_root(struct btrfs_root *root) 3528 { 3529 free_fs_root(root); 3530 } 3531 3532 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3533 { 3534 u64 root_objectid = 0; 3535 struct btrfs_root *gang[8]; 3536 int i; 3537 int ret; 3538 3539 while (1) { 3540 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3541 (void **)gang, root_objectid, 3542 ARRAY_SIZE(gang)); 3543 if (!ret) 3544 break; 3545 3546 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3547 for (i = 0; i < ret; i++) { 3548 int err; 3549 3550 root_objectid = gang[i]->root_key.objectid; 3551 err = btrfs_orphan_cleanup(gang[i]); 3552 if (err) 3553 return err; 3554 } 3555 root_objectid++; 3556 } 3557 return 0; 3558 } 3559 3560 int btrfs_commit_super(struct btrfs_root *root) 3561 { 3562 struct btrfs_trans_handle *trans; 3563 3564 mutex_lock(&root->fs_info->cleaner_mutex); 3565 btrfs_run_delayed_iputs(root); 3566 mutex_unlock(&root->fs_info->cleaner_mutex); 3567 wake_up_process(root->fs_info->cleaner_kthread); 3568 3569 /* wait until ongoing cleanup work done */ 3570 down_write(&root->fs_info->cleanup_work_sem); 3571 up_write(&root->fs_info->cleanup_work_sem); 3572 3573 trans = btrfs_join_transaction(root); 3574 if (IS_ERR(trans)) 3575 return PTR_ERR(trans); 3576 return btrfs_commit_transaction(trans, root); 3577 } 3578 3579 int close_ctree(struct btrfs_root *root) 3580 { 3581 struct btrfs_fs_info *fs_info = root->fs_info; 3582 int ret; 3583 3584 fs_info->closing = 1; 3585 smp_mb(); 3586 3587 /* wait for the uuid_scan task to finish */ 3588 down(&fs_info->uuid_tree_rescan_sem); 3589 /* avoid complains from lockdep et al., set sem back to initial state */ 3590 up(&fs_info->uuid_tree_rescan_sem); 3591 3592 /* pause restriper - we want to resume on mount */ 3593 btrfs_pause_balance(fs_info); 3594 3595 btrfs_dev_replace_suspend_for_unmount(fs_info); 3596 3597 btrfs_scrub_cancel(fs_info); 3598 3599 /* wait for any defraggers to finish */ 3600 wait_event(fs_info->transaction_wait, 3601 (atomic_read(&fs_info->defrag_running) == 0)); 3602 3603 /* clear out the rbtree of defraggable inodes */ 3604 btrfs_cleanup_defrag_inodes(fs_info); 3605 3606 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3607 ret = btrfs_commit_super(root); 3608 if (ret) 3609 btrfs_err(root->fs_info, "commit super ret %d", ret); 3610 } 3611 3612 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3613 btrfs_error_commit_super(root); 3614 3615 kthread_stop(fs_info->transaction_kthread); 3616 kthread_stop(fs_info->cleaner_kthread); 3617 3618 fs_info->closing = 2; 3619 smp_mb(); 3620 3621 btrfs_free_qgroup_config(root->fs_info); 3622 3623 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3624 btrfs_info(root->fs_info, "at unmount delalloc count %lld", 3625 percpu_counter_sum(&fs_info->delalloc_bytes)); 3626 } 3627 3628 btrfs_sysfs_remove_one(fs_info); 3629 3630 del_fs_roots(fs_info); 3631 3632 btrfs_put_block_group_cache(fs_info); 3633 3634 btrfs_free_block_groups(fs_info); 3635 3636 btrfs_stop_all_workers(fs_info); 3637 3638 free_root_pointers(fs_info, 1); 3639 3640 iput(fs_info->btree_inode); 3641 3642 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3643 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3644 btrfsic_unmount(root, fs_info->fs_devices); 3645 #endif 3646 3647 btrfs_close_devices(fs_info->fs_devices); 3648 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3649 3650 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3651 percpu_counter_destroy(&fs_info->delalloc_bytes); 3652 percpu_counter_destroy(&fs_info->bio_counter); 3653 bdi_destroy(&fs_info->bdi); 3654 cleanup_srcu_struct(&fs_info->subvol_srcu); 3655 3656 btrfs_free_stripe_hash_table(fs_info); 3657 3658 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3659 root->orphan_block_rsv = NULL; 3660 3661 return 0; 3662 } 3663 3664 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3665 int atomic) 3666 { 3667 int ret; 3668 struct inode *btree_inode = buf->pages[0]->mapping->host; 3669 3670 ret = extent_buffer_uptodate(buf); 3671 if (!ret) 3672 return ret; 3673 3674 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3675 parent_transid, atomic); 3676 if (ret == -EAGAIN) 3677 return ret; 3678 return !ret; 3679 } 3680 3681 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3682 { 3683 return set_extent_buffer_uptodate(buf); 3684 } 3685 3686 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3687 { 3688 struct btrfs_root *root; 3689 u64 transid = btrfs_header_generation(buf); 3690 int was_dirty; 3691 3692 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3693 /* 3694 * This is a fast path so only do this check if we have sanity tests 3695 * enabled. Normal people shouldn't be marking dummy buffers as dirty 3696 * outside of the sanity tests. 3697 */ 3698 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 3699 return; 3700 #endif 3701 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3702 btrfs_assert_tree_locked(buf); 3703 if (transid != root->fs_info->generation) 3704 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 3705 "found %llu running %llu\n", 3706 buf->start, transid, root->fs_info->generation); 3707 was_dirty = set_extent_buffer_dirty(buf); 3708 if (!was_dirty) 3709 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 3710 buf->len, 3711 root->fs_info->dirty_metadata_batch); 3712 } 3713 3714 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 3715 int flush_delayed) 3716 { 3717 /* 3718 * looks as though older kernels can get into trouble with 3719 * this code, they end up stuck in balance_dirty_pages forever 3720 */ 3721 int ret; 3722 3723 if (current->flags & PF_MEMALLOC) 3724 return; 3725 3726 if (flush_delayed) 3727 btrfs_balance_delayed_items(root); 3728 3729 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 3730 BTRFS_DIRTY_METADATA_THRESH); 3731 if (ret > 0) { 3732 balance_dirty_pages_ratelimited( 3733 root->fs_info->btree_inode->i_mapping); 3734 } 3735 return; 3736 } 3737 3738 void btrfs_btree_balance_dirty(struct btrfs_root *root) 3739 { 3740 __btrfs_btree_balance_dirty(root, 1); 3741 } 3742 3743 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 3744 { 3745 __btrfs_btree_balance_dirty(root, 0); 3746 } 3747 3748 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3749 { 3750 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3751 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3752 } 3753 3754 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3755 int read_only) 3756 { 3757 /* 3758 * Placeholder for checks 3759 */ 3760 return 0; 3761 } 3762 3763 static void btrfs_error_commit_super(struct btrfs_root *root) 3764 { 3765 mutex_lock(&root->fs_info->cleaner_mutex); 3766 btrfs_run_delayed_iputs(root); 3767 mutex_unlock(&root->fs_info->cleaner_mutex); 3768 3769 down_write(&root->fs_info->cleanup_work_sem); 3770 up_write(&root->fs_info->cleanup_work_sem); 3771 3772 /* cleanup FS via transaction */ 3773 btrfs_cleanup_transaction(root); 3774 } 3775 3776 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t, 3777 struct btrfs_root *root) 3778 { 3779 struct btrfs_inode *btrfs_inode; 3780 struct list_head splice; 3781 3782 INIT_LIST_HEAD(&splice); 3783 3784 mutex_lock(&root->fs_info->ordered_operations_mutex); 3785 spin_lock(&root->fs_info->ordered_root_lock); 3786 3787 list_splice_init(&t->ordered_operations, &splice); 3788 while (!list_empty(&splice)) { 3789 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3790 ordered_operations); 3791 3792 list_del_init(&btrfs_inode->ordered_operations); 3793 spin_unlock(&root->fs_info->ordered_root_lock); 3794 3795 btrfs_invalidate_inodes(btrfs_inode->root); 3796 3797 spin_lock(&root->fs_info->ordered_root_lock); 3798 } 3799 3800 spin_unlock(&root->fs_info->ordered_root_lock); 3801 mutex_unlock(&root->fs_info->ordered_operations_mutex); 3802 } 3803 3804 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 3805 { 3806 struct btrfs_ordered_extent *ordered; 3807 3808 spin_lock(&root->ordered_extent_lock); 3809 /* 3810 * This will just short circuit the ordered completion stuff which will 3811 * make sure the ordered extent gets properly cleaned up. 3812 */ 3813 list_for_each_entry(ordered, &root->ordered_extents, 3814 root_extent_list) 3815 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 3816 spin_unlock(&root->ordered_extent_lock); 3817 } 3818 3819 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 3820 { 3821 struct btrfs_root *root; 3822 struct list_head splice; 3823 3824 INIT_LIST_HEAD(&splice); 3825 3826 spin_lock(&fs_info->ordered_root_lock); 3827 list_splice_init(&fs_info->ordered_roots, &splice); 3828 while (!list_empty(&splice)) { 3829 root = list_first_entry(&splice, struct btrfs_root, 3830 ordered_root); 3831 list_move_tail(&root->ordered_root, 3832 &fs_info->ordered_roots); 3833 3834 spin_unlock(&fs_info->ordered_root_lock); 3835 btrfs_destroy_ordered_extents(root); 3836 3837 cond_resched(); 3838 spin_lock(&fs_info->ordered_root_lock); 3839 } 3840 spin_unlock(&fs_info->ordered_root_lock); 3841 } 3842 3843 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 3844 struct btrfs_root *root) 3845 { 3846 struct rb_node *node; 3847 struct btrfs_delayed_ref_root *delayed_refs; 3848 struct btrfs_delayed_ref_node *ref; 3849 int ret = 0; 3850 3851 delayed_refs = &trans->delayed_refs; 3852 3853 spin_lock(&delayed_refs->lock); 3854 if (atomic_read(&delayed_refs->num_entries) == 0) { 3855 spin_unlock(&delayed_refs->lock); 3856 btrfs_info(root->fs_info, "delayed_refs has NO entry"); 3857 return ret; 3858 } 3859 3860 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 3861 struct btrfs_delayed_ref_head *head; 3862 bool pin_bytes = false; 3863 3864 head = rb_entry(node, struct btrfs_delayed_ref_head, 3865 href_node); 3866 if (!mutex_trylock(&head->mutex)) { 3867 atomic_inc(&head->node.refs); 3868 spin_unlock(&delayed_refs->lock); 3869 3870 mutex_lock(&head->mutex); 3871 mutex_unlock(&head->mutex); 3872 btrfs_put_delayed_ref(&head->node); 3873 spin_lock(&delayed_refs->lock); 3874 continue; 3875 } 3876 spin_lock(&head->lock); 3877 while ((node = rb_first(&head->ref_root)) != NULL) { 3878 ref = rb_entry(node, struct btrfs_delayed_ref_node, 3879 rb_node); 3880 ref->in_tree = 0; 3881 rb_erase(&ref->rb_node, &head->ref_root); 3882 atomic_dec(&delayed_refs->num_entries); 3883 btrfs_put_delayed_ref(ref); 3884 } 3885 if (head->must_insert_reserved) 3886 pin_bytes = true; 3887 btrfs_free_delayed_extent_op(head->extent_op); 3888 delayed_refs->num_heads--; 3889 if (head->processing == 0) 3890 delayed_refs->num_heads_ready--; 3891 atomic_dec(&delayed_refs->num_entries); 3892 head->node.in_tree = 0; 3893 rb_erase(&head->href_node, &delayed_refs->href_root); 3894 spin_unlock(&head->lock); 3895 spin_unlock(&delayed_refs->lock); 3896 mutex_unlock(&head->mutex); 3897 3898 if (pin_bytes) 3899 btrfs_pin_extent(root, head->node.bytenr, 3900 head->node.num_bytes, 1); 3901 btrfs_put_delayed_ref(&head->node); 3902 cond_resched(); 3903 spin_lock(&delayed_refs->lock); 3904 } 3905 3906 spin_unlock(&delayed_refs->lock); 3907 3908 return ret; 3909 } 3910 3911 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 3912 { 3913 struct btrfs_inode *btrfs_inode; 3914 struct list_head splice; 3915 3916 INIT_LIST_HEAD(&splice); 3917 3918 spin_lock(&root->delalloc_lock); 3919 list_splice_init(&root->delalloc_inodes, &splice); 3920 3921 while (!list_empty(&splice)) { 3922 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 3923 delalloc_inodes); 3924 3925 list_del_init(&btrfs_inode->delalloc_inodes); 3926 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 3927 &btrfs_inode->runtime_flags); 3928 spin_unlock(&root->delalloc_lock); 3929 3930 btrfs_invalidate_inodes(btrfs_inode->root); 3931 3932 spin_lock(&root->delalloc_lock); 3933 } 3934 3935 spin_unlock(&root->delalloc_lock); 3936 } 3937 3938 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 3939 { 3940 struct btrfs_root *root; 3941 struct list_head splice; 3942 3943 INIT_LIST_HEAD(&splice); 3944 3945 spin_lock(&fs_info->delalloc_root_lock); 3946 list_splice_init(&fs_info->delalloc_roots, &splice); 3947 while (!list_empty(&splice)) { 3948 root = list_first_entry(&splice, struct btrfs_root, 3949 delalloc_root); 3950 list_del_init(&root->delalloc_root); 3951 root = btrfs_grab_fs_root(root); 3952 BUG_ON(!root); 3953 spin_unlock(&fs_info->delalloc_root_lock); 3954 3955 btrfs_destroy_delalloc_inodes(root); 3956 btrfs_put_fs_root(root); 3957 3958 spin_lock(&fs_info->delalloc_root_lock); 3959 } 3960 spin_unlock(&fs_info->delalloc_root_lock); 3961 } 3962 3963 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 3964 struct extent_io_tree *dirty_pages, 3965 int mark) 3966 { 3967 int ret; 3968 struct extent_buffer *eb; 3969 u64 start = 0; 3970 u64 end; 3971 3972 while (1) { 3973 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 3974 mark, NULL); 3975 if (ret) 3976 break; 3977 3978 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 3979 while (start <= end) { 3980 eb = btrfs_find_tree_block(root, start, 3981 root->leafsize); 3982 start += root->leafsize; 3983 if (!eb) 3984 continue; 3985 wait_on_extent_buffer_writeback(eb); 3986 3987 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 3988 &eb->bflags)) 3989 clear_extent_buffer_dirty(eb); 3990 free_extent_buffer_stale(eb); 3991 } 3992 } 3993 3994 return ret; 3995 } 3996 3997 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 3998 struct extent_io_tree *pinned_extents) 3999 { 4000 struct extent_io_tree *unpin; 4001 u64 start; 4002 u64 end; 4003 int ret; 4004 bool loop = true; 4005 4006 unpin = pinned_extents; 4007 again: 4008 while (1) { 4009 ret = find_first_extent_bit(unpin, 0, &start, &end, 4010 EXTENT_DIRTY, NULL); 4011 if (ret) 4012 break; 4013 4014 /* opt_discard */ 4015 if (btrfs_test_opt(root, DISCARD)) 4016 ret = btrfs_error_discard_extent(root, start, 4017 end + 1 - start, 4018 NULL); 4019 4020 clear_extent_dirty(unpin, start, end, GFP_NOFS); 4021 btrfs_error_unpin_extent_range(root, start, end); 4022 cond_resched(); 4023 } 4024 4025 if (loop) { 4026 if (unpin == &root->fs_info->freed_extents[0]) 4027 unpin = &root->fs_info->freed_extents[1]; 4028 else 4029 unpin = &root->fs_info->freed_extents[0]; 4030 loop = false; 4031 goto again; 4032 } 4033 4034 return 0; 4035 } 4036 4037 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4038 struct btrfs_root *root) 4039 { 4040 btrfs_destroy_ordered_operations(cur_trans, root); 4041 4042 btrfs_destroy_delayed_refs(cur_trans, root); 4043 4044 cur_trans->state = TRANS_STATE_COMMIT_START; 4045 wake_up(&root->fs_info->transaction_blocked_wait); 4046 4047 cur_trans->state = TRANS_STATE_UNBLOCKED; 4048 wake_up(&root->fs_info->transaction_wait); 4049 4050 btrfs_destroy_delayed_inodes(root); 4051 btrfs_assert_delayed_root_empty(root); 4052 4053 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 4054 EXTENT_DIRTY); 4055 btrfs_destroy_pinned_extent(root, 4056 root->fs_info->pinned_extents); 4057 4058 cur_trans->state =TRANS_STATE_COMPLETED; 4059 wake_up(&cur_trans->commit_wait); 4060 4061 /* 4062 memset(cur_trans, 0, sizeof(*cur_trans)); 4063 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4064 */ 4065 } 4066 4067 static int btrfs_cleanup_transaction(struct btrfs_root *root) 4068 { 4069 struct btrfs_transaction *t; 4070 4071 mutex_lock(&root->fs_info->transaction_kthread_mutex); 4072 4073 spin_lock(&root->fs_info->trans_lock); 4074 while (!list_empty(&root->fs_info->trans_list)) { 4075 t = list_first_entry(&root->fs_info->trans_list, 4076 struct btrfs_transaction, list); 4077 if (t->state >= TRANS_STATE_COMMIT_START) { 4078 atomic_inc(&t->use_count); 4079 spin_unlock(&root->fs_info->trans_lock); 4080 btrfs_wait_for_commit(root, t->transid); 4081 btrfs_put_transaction(t); 4082 spin_lock(&root->fs_info->trans_lock); 4083 continue; 4084 } 4085 if (t == root->fs_info->running_transaction) { 4086 t->state = TRANS_STATE_COMMIT_DOING; 4087 spin_unlock(&root->fs_info->trans_lock); 4088 /* 4089 * We wait for 0 num_writers since we don't hold a trans 4090 * handle open currently for this transaction. 4091 */ 4092 wait_event(t->writer_wait, 4093 atomic_read(&t->num_writers) == 0); 4094 } else { 4095 spin_unlock(&root->fs_info->trans_lock); 4096 } 4097 btrfs_cleanup_one_transaction(t, root); 4098 4099 spin_lock(&root->fs_info->trans_lock); 4100 if (t == root->fs_info->running_transaction) 4101 root->fs_info->running_transaction = NULL; 4102 list_del_init(&t->list); 4103 spin_unlock(&root->fs_info->trans_lock); 4104 4105 btrfs_put_transaction(t); 4106 trace_btrfs_transaction_commit(root); 4107 spin_lock(&root->fs_info->trans_lock); 4108 } 4109 spin_unlock(&root->fs_info->trans_lock); 4110 btrfs_destroy_all_ordered_extents(root->fs_info); 4111 btrfs_destroy_delayed_inodes(root); 4112 btrfs_assert_delayed_root_empty(root); 4113 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents); 4114 btrfs_destroy_all_delalloc_inodes(root->fs_info); 4115 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 4116 4117 return 0; 4118 } 4119 4120 static struct extent_io_ops btree_extent_io_ops = { 4121 .readpage_end_io_hook = btree_readpage_end_io_hook, 4122 .readpage_io_failed_hook = btree_io_failed_hook, 4123 .submit_bio_hook = btree_submit_bio_hook, 4124 /* note we're sharing with inode.c for the merge bio hook */ 4125 .merge_bio_hook = btrfs_merge_bio_hook, 4126 }; 4127