xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 6bfe3959)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46 #include "fs.h"
47 #include "accessors.h"
48 #include "extent-tree.h"
49 #include "root-tree.h"
50 #include "defrag.h"
51 #include "uuid-tree.h"
52 #include "relocation.h"
53 #include "scrub.h"
54 #include "super.h"
55 
56 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
57 				 BTRFS_HEADER_FLAG_RELOC |\
58 				 BTRFS_SUPER_FLAG_ERROR |\
59 				 BTRFS_SUPER_FLAG_SEEDING |\
60 				 BTRFS_SUPER_FLAG_METADUMP |\
61 				 BTRFS_SUPER_FLAG_METADUMP_V2)
62 
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65 
66 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
67 {
68 	if (fs_info->csum_shash)
69 		crypto_free_shash(fs_info->csum_shash);
70 }
71 
72 /*
73  * Compute the csum of a btree block and store the result to provided buffer.
74  */
75 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
76 {
77 	struct btrfs_fs_info *fs_info = buf->fs_info;
78 	const int num_pages = num_extent_pages(buf);
79 	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
80 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
81 	char *kaddr;
82 	int i;
83 
84 	shash->tfm = fs_info->csum_shash;
85 	crypto_shash_init(shash);
86 	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
87 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
88 			    first_page_part - BTRFS_CSUM_SIZE);
89 
90 	for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
91 		kaddr = page_address(buf->pages[i]);
92 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
93 	}
94 	memset(result, 0, BTRFS_CSUM_SIZE);
95 	crypto_shash_final(shash, result);
96 }
97 
98 /*
99  * we can't consider a given block up to date unless the transid of the
100  * block matches the transid in the parent node's pointer.  This is how we
101  * detect blocks that either didn't get written at all or got written
102  * in the wrong place.
103  */
104 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
105 {
106 	if (!extent_buffer_uptodate(eb))
107 		return 0;
108 
109 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
110 		return 1;
111 
112 	if (atomic)
113 		return -EAGAIN;
114 
115 	if (!extent_buffer_uptodate(eb) ||
116 	    btrfs_header_generation(eb) != parent_transid) {
117 		btrfs_err_rl(eb->fs_info,
118 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
119 			eb->start, eb->read_mirror,
120 			parent_transid, btrfs_header_generation(eb));
121 		clear_extent_buffer_uptodate(eb);
122 		return 0;
123 	}
124 	return 1;
125 }
126 
127 static bool btrfs_supported_super_csum(u16 csum_type)
128 {
129 	switch (csum_type) {
130 	case BTRFS_CSUM_TYPE_CRC32:
131 	case BTRFS_CSUM_TYPE_XXHASH:
132 	case BTRFS_CSUM_TYPE_SHA256:
133 	case BTRFS_CSUM_TYPE_BLAKE2:
134 		return true;
135 	default:
136 		return false;
137 	}
138 }
139 
140 /*
141  * Return 0 if the superblock checksum type matches the checksum value of that
142  * algorithm. Pass the raw disk superblock data.
143  */
144 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
145 			   const struct btrfs_super_block *disk_sb)
146 {
147 	char result[BTRFS_CSUM_SIZE];
148 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
149 
150 	shash->tfm = fs_info->csum_shash;
151 
152 	/*
153 	 * The super_block structure does not span the whole
154 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
155 	 * filled with zeros and is included in the checksum.
156 	 */
157 	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
158 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
159 
160 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
161 		return 1;
162 
163 	return 0;
164 }
165 
166 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
167 				      int mirror_num)
168 {
169 	struct btrfs_fs_info *fs_info = eb->fs_info;
170 	int i, num_pages = num_extent_pages(eb);
171 	int ret = 0;
172 
173 	if (sb_rdonly(fs_info->sb))
174 		return -EROFS;
175 
176 	for (i = 0; i < num_pages; i++) {
177 		struct page *p = eb->pages[i];
178 		u64 start = max_t(u64, eb->start, page_offset(p));
179 		u64 end = min_t(u64, eb->start + eb->len, page_offset(p) + PAGE_SIZE);
180 		u32 len = end - start;
181 
182 		ret = btrfs_repair_io_failure(fs_info, 0, start, len,
183 				start, p, offset_in_page(start), mirror_num);
184 		if (ret)
185 			break;
186 	}
187 
188 	return ret;
189 }
190 
191 /*
192  * helper to read a given tree block, doing retries as required when
193  * the checksums don't match and we have alternate mirrors to try.
194  *
195  * @check:		expected tree parentness check, see the comments of the
196  *			structure for details.
197  */
198 int btrfs_read_extent_buffer(struct extent_buffer *eb,
199 			     struct btrfs_tree_parent_check *check)
200 {
201 	struct btrfs_fs_info *fs_info = eb->fs_info;
202 	int failed = 0;
203 	int ret;
204 	int num_copies = 0;
205 	int mirror_num = 0;
206 	int failed_mirror = 0;
207 
208 	ASSERT(check);
209 
210 	while (1) {
211 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
212 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
213 		if (!ret)
214 			break;
215 
216 		num_copies = btrfs_num_copies(fs_info,
217 					      eb->start, eb->len);
218 		if (num_copies == 1)
219 			break;
220 
221 		if (!failed_mirror) {
222 			failed = 1;
223 			failed_mirror = eb->read_mirror;
224 		}
225 
226 		mirror_num++;
227 		if (mirror_num == failed_mirror)
228 			mirror_num++;
229 
230 		if (mirror_num > num_copies)
231 			break;
232 	}
233 
234 	if (failed && !ret && failed_mirror)
235 		btrfs_repair_eb_io_failure(eb, failed_mirror);
236 
237 	return ret;
238 }
239 
240 /*
241  * Checksum a dirty tree block before IO.
242  */
243 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
244 {
245 	struct extent_buffer *eb = bbio->private;
246 	struct btrfs_fs_info *fs_info = eb->fs_info;
247 	u64 found_start = btrfs_header_bytenr(eb);
248 	u8 result[BTRFS_CSUM_SIZE];
249 	int ret;
250 
251 	/* Btree blocks are always contiguous on disk. */
252 	if (WARN_ON_ONCE(bbio->file_offset != eb->start))
253 		return BLK_STS_IOERR;
254 	if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
255 		return BLK_STS_IOERR;
256 
257 	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
258 		WARN_ON_ONCE(found_start != 0);
259 		return BLK_STS_OK;
260 	}
261 
262 	if (WARN_ON_ONCE(found_start != eb->start))
263 		return BLK_STS_IOERR;
264 	if (WARN_ON(!btrfs_page_test_uptodate(fs_info, eb->pages[0], eb->start,
265 					      eb->len)))
266 		return BLK_STS_IOERR;
267 
268 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
269 				    offsetof(struct btrfs_header, fsid),
270 				    BTRFS_FSID_SIZE) == 0);
271 	csum_tree_block(eb, result);
272 
273 	if (btrfs_header_level(eb))
274 		ret = btrfs_check_node(eb);
275 	else
276 		ret = btrfs_check_leaf(eb);
277 
278 	if (ret < 0)
279 		goto error;
280 
281 	/*
282 	 * Also check the generation, the eb reached here must be newer than
283 	 * last committed. Or something seriously wrong happened.
284 	 */
285 	if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
286 		ret = -EUCLEAN;
287 		btrfs_err(fs_info,
288 			"block=%llu bad generation, have %llu expect > %llu",
289 			  eb->start, btrfs_header_generation(eb),
290 			  fs_info->last_trans_committed);
291 		goto error;
292 	}
293 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
294 	return BLK_STS_OK;
295 
296 error:
297 	btrfs_print_tree(eb, 0);
298 	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
299 		  eb->start);
300 	/*
301 	 * Be noisy if this is an extent buffer from a log tree. We don't abort
302 	 * a transaction in case there's a bad log tree extent buffer, we just
303 	 * fallback to a transaction commit. Still we want to know when there is
304 	 * a bad log tree extent buffer, as that may signal a bug somewhere.
305 	 */
306 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
307 		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
308 	return errno_to_blk_status(ret);
309 }
310 
311 static bool check_tree_block_fsid(struct extent_buffer *eb)
312 {
313 	struct btrfs_fs_info *fs_info = eb->fs_info;
314 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
315 	u8 fsid[BTRFS_FSID_SIZE];
316 	u8 *metadata_uuid;
317 
318 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
319 			   BTRFS_FSID_SIZE);
320 	/*
321 	 * Checking the incompat flag is only valid for the current fs. For
322 	 * seed devices it's forbidden to have their uuid changed so reading
323 	 * ->fsid in this case is fine
324 	 */
325 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
326 		metadata_uuid = fs_devices->metadata_uuid;
327 	else
328 		metadata_uuid = fs_devices->fsid;
329 
330 	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
331 		return false;
332 
333 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
334 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
335 			return false;
336 
337 	return true;
338 }
339 
340 /* Do basic extent buffer checks at read time */
341 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
342 				 struct btrfs_tree_parent_check *check)
343 {
344 	struct btrfs_fs_info *fs_info = eb->fs_info;
345 	u64 found_start;
346 	const u32 csum_size = fs_info->csum_size;
347 	u8 found_level;
348 	u8 result[BTRFS_CSUM_SIZE];
349 	const u8 *header_csum;
350 	int ret = 0;
351 
352 	ASSERT(check);
353 
354 	found_start = btrfs_header_bytenr(eb);
355 	if (found_start != eb->start) {
356 		btrfs_err_rl(fs_info,
357 			"bad tree block start, mirror %u want %llu have %llu",
358 			     eb->read_mirror, eb->start, found_start);
359 		ret = -EIO;
360 		goto out;
361 	}
362 	if (check_tree_block_fsid(eb)) {
363 		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
364 			     eb->start, eb->read_mirror);
365 		ret = -EIO;
366 		goto out;
367 	}
368 	found_level = btrfs_header_level(eb);
369 	if (found_level >= BTRFS_MAX_LEVEL) {
370 		btrfs_err(fs_info,
371 			"bad tree block level, mirror %u level %d on logical %llu",
372 			eb->read_mirror, btrfs_header_level(eb), eb->start);
373 		ret = -EIO;
374 		goto out;
375 	}
376 
377 	csum_tree_block(eb, result);
378 	header_csum = page_address(eb->pages[0]) +
379 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
380 
381 	if (memcmp(result, header_csum, csum_size) != 0) {
382 		btrfs_warn_rl(fs_info,
383 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
384 			      eb->start, eb->read_mirror,
385 			      CSUM_FMT_VALUE(csum_size, header_csum),
386 			      CSUM_FMT_VALUE(csum_size, result),
387 			      btrfs_header_level(eb));
388 		ret = -EUCLEAN;
389 		goto out;
390 	}
391 
392 	if (found_level != check->level) {
393 		btrfs_err(fs_info,
394 		"level verify failed on logical %llu mirror %u wanted %u found %u",
395 			  eb->start, eb->read_mirror, check->level, found_level);
396 		ret = -EIO;
397 		goto out;
398 	}
399 	if (unlikely(check->transid &&
400 		     btrfs_header_generation(eb) != check->transid)) {
401 		btrfs_err_rl(eb->fs_info,
402 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
403 				eb->start, eb->read_mirror, check->transid,
404 				btrfs_header_generation(eb));
405 		ret = -EIO;
406 		goto out;
407 	}
408 	if (check->has_first_key) {
409 		struct btrfs_key *expect_key = &check->first_key;
410 		struct btrfs_key found_key;
411 
412 		if (found_level)
413 			btrfs_node_key_to_cpu(eb, &found_key, 0);
414 		else
415 			btrfs_item_key_to_cpu(eb, &found_key, 0);
416 		if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
417 			btrfs_err(fs_info,
418 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
419 				  eb->start, check->transid,
420 				  expect_key->objectid,
421 				  expect_key->type, expect_key->offset,
422 				  found_key.objectid, found_key.type,
423 				  found_key.offset);
424 			ret = -EUCLEAN;
425 			goto out;
426 		}
427 	}
428 	if (check->owner_root) {
429 		ret = btrfs_check_eb_owner(eb, check->owner_root);
430 		if (ret < 0)
431 			goto out;
432 	}
433 
434 	/*
435 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
436 	 * that we don't try and read the other copies of this block, just
437 	 * return -EIO.
438 	 */
439 	if (found_level == 0 && btrfs_check_leaf(eb)) {
440 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
441 		ret = -EIO;
442 	}
443 
444 	if (found_level > 0 && btrfs_check_node(eb))
445 		ret = -EIO;
446 
447 	if (ret)
448 		btrfs_err(fs_info,
449 		"read time tree block corruption detected on logical %llu mirror %u",
450 			  eb->start, eb->read_mirror);
451 out:
452 	return ret;
453 }
454 
455 #ifdef CONFIG_MIGRATION
456 static int btree_migrate_folio(struct address_space *mapping,
457 		struct folio *dst, struct folio *src, enum migrate_mode mode)
458 {
459 	/*
460 	 * we can't safely write a btree page from here,
461 	 * we haven't done the locking hook
462 	 */
463 	if (folio_test_dirty(src))
464 		return -EAGAIN;
465 	/*
466 	 * Buffers may be managed in a filesystem specific way.
467 	 * We must have no buffers or drop them.
468 	 */
469 	if (folio_get_private(src) &&
470 	    !filemap_release_folio(src, GFP_KERNEL))
471 		return -EAGAIN;
472 	return migrate_folio(mapping, dst, src, mode);
473 }
474 #else
475 #define btree_migrate_folio NULL
476 #endif
477 
478 static int btree_writepages(struct address_space *mapping,
479 			    struct writeback_control *wbc)
480 {
481 	struct btrfs_fs_info *fs_info;
482 	int ret;
483 
484 	if (wbc->sync_mode == WB_SYNC_NONE) {
485 
486 		if (wbc->for_kupdate)
487 			return 0;
488 
489 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
490 		/* this is a bit racy, but that's ok */
491 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
492 					     BTRFS_DIRTY_METADATA_THRESH,
493 					     fs_info->dirty_metadata_batch);
494 		if (ret < 0)
495 			return 0;
496 	}
497 	return btree_write_cache_pages(mapping, wbc);
498 }
499 
500 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
501 {
502 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
503 		return false;
504 
505 	return try_release_extent_buffer(&folio->page);
506 }
507 
508 static void btree_invalidate_folio(struct folio *folio, size_t offset,
509 				 size_t length)
510 {
511 	struct extent_io_tree *tree;
512 	tree = &BTRFS_I(folio->mapping->host)->io_tree;
513 	extent_invalidate_folio(tree, folio, offset);
514 	btree_release_folio(folio, GFP_NOFS);
515 	if (folio_get_private(folio)) {
516 		btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
517 			   "folio private not zero on folio %llu",
518 			   (unsigned long long)folio_pos(folio));
519 		folio_detach_private(folio);
520 	}
521 }
522 
523 #ifdef DEBUG
524 static bool btree_dirty_folio(struct address_space *mapping,
525 		struct folio *folio)
526 {
527 	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
528 	struct btrfs_subpage *subpage;
529 	struct extent_buffer *eb;
530 	int cur_bit = 0;
531 	u64 page_start = folio_pos(folio);
532 
533 	if (fs_info->sectorsize == PAGE_SIZE) {
534 		eb = folio_get_private(folio);
535 		BUG_ON(!eb);
536 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
537 		BUG_ON(!atomic_read(&eb->refs));
538 		btrfs_assert_tree_write_locked(eb);
539 		return filemap_dirty_folio(mapping, folio);
540 	}
541 	subpage = folio_get_private(folio);
542 
543 	ASSERT(subpage->dirty_bitmap);
544 	while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
545 		unsigned long flags;
546 		u64 cur;
547 		u16 tmp = (1 << cur_bit);
548 
549 		spin_lock_irqsave(&subpage->lock, flags);
550 		if (!(tmp & subpage->dirty_bitmap)) {
551 			spin_unlock_irqrestore(&subpage->lock, flags);
552 			cur_bit++;
553 			continue;
554 		}
555 		spin_unlock_irqrestore(&subpage->lock, flags);
556 		cur = page_start + cur_bit * fs_info->sectorsize;
557 
558 		eb = find_extent_buffer(fs_info, cur);
559 		ASSERT(eb);
560 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
561 		ASSERT(atomic_read(&eb->refs));
562 		btrfs_assert_tree_write_locked(eb);
563 		free_extent_buffer(eb);
564 
565 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
566 	}
567 	return filemap_dirty_folio(mapping, folio);
568 }
569 #else
570 #define btree_dirty_folio filemap_dirty_folio
571 #endif
572 
573 static const struct address_space_operations btree_aops = {
574 	.writepages	= btree_writepages,
575 	.release_folio	= btree_release_folio,
576 	.invalidate_folio = btree_invalidate_folio,
577 	.migrate_folio	= btree_migrate_folio,
578 	.dirty_folio	= btree_dirty_folio,
579 };
580 
581 struct extent_buffer *btrfs_find_create_tree_block(
582 						struct btrfs_fs_info *fs_info,
583 						u64 bytenr, u64 owner_root,
584 						int level)
585 {
586 	if (btrfs_is_testing(fs_info))
587 		return alloc_test_extent_buffer(fs_info, bytenr);
588 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
589 }
590 
591 /*
592  * Read tree block at logical address @bytenr and do variant basic but critical
593  * verification.
594  *
595  * @check:		expected tree parentness check, see comments of the
596  *			structure for details.
597  */
598 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
599 				      struct btrfs_tree_parent_check *check)
600 {
601 	struct extent_buffer *buf = NULL;
602 	int ret;
603 
604 	ASSERT(check);
605 
606 	buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
607 					   check->level);
608 	if (IS_ERR(buf))
609 		return buf;
610 
611 	ret = btrfs_read_extent_buffer(buf, check);
612 	if (ret) {
613 		free_extent_buffer_stale(buf);
614 		return ERR_PTR(ret);
615 	}
616 	if (btrfs_check_eb_owner(buf, check->owner_root)) {
617 		free_extent_buffer_stale(buf);
618 		return ERR_PTR(-EUCLEAN);
619 	}
620 	return buf;
621 
622 }
623 
624 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
625 			 u64 objectid)
626 {
627 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
628 
629 	memset(&root->root_key, 0, sizeof(root->root_key));
630 	memset(&root->root_item, 0, sizeof(root->root_item));
631 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
632 	root->fs_info = fs_info;
633 	root->root_key.objectid = objectid;
634 	root->node = NULL;
635 	root->commit_root = NULL;
636 	root->state = 0;
637 	RB_CLEAR_NODE(&root->rb_node);
638 
639 	root->last_trans = 0;
640 	root->free_objectid = 0;
641 	root->nr_delalloc_inodes = 0;
642 	root->nr_ordered_extents = 0;
643 	root->inode_tree = RB_ROOT;
644 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
645 
646 	btrfs_init_root_block_rsv(root);
647 
648 	INIT_LIST_HEAD(&root->dirty_list);
649 	INIT_LIST_HEAD(&root->root_list);
650 	INIT_LIST_HEAD(&root->delalloc_inodes);
651 	INIT_LIST_HEAD(&root->delalloc_root);
652 	INIT_LIST_HEAD(&root->ordered_extents);
653 	INIT_LIST_HEAD(&root->ordered_root);
654 	INIT_LIST_HEAD(&root->reloc_dirty_list);
655 	INIT_LIST_HEAD(&root->logged_list[0]);
656 	INIT_LIST_HEAD(&root->logged_list[1]);
657 	spin_lock_init(&root->inode_lock);
658 	spin_lock_init(&root->delalloc_lock);
659 	spin_lock_init(&root->ordered_extent_lock);
660 	spin_lock_init(&root->accounting_lock);
661 	spin_lock_init(&root->log_extents_lock[0]);
662 	spin_lock_init(&root->log_extents_lock[1]);
663 	spin_lock_init(&root->qgroup_meta_rsv_lock);
664 	mutex_init(&root->objectid_mutex);
665 	mutex_init(&root->log_mutex);
666 	mutex_init(&root->ordered_extent_mutex);
667 	mutex_init(&root->delalloc_mutex);
668 	init_waitqueue_head(&root->qgroup_flush_wait);
669 	init_waitqueue_head(&root->log_writer_wait);
670 	init_waitqueue_head(&root->log_commit_wait[0]);
671 	init_waitqueue_head(&root->log_commit_wait[1]);
672 	INIT_LIST_HEAD(&root->log_ctxs[0]);
673 	INIT_LIST_HEAD(&root->log_ctxs[1]);
674 	atomic_set(&root->log_commit[0], 0);
675 	atomic_set(&root->log_commit[1], 0);
676 	atomic_set(&root->log_writers, 0);
677 	atomic_set(&root->log_batch, 0);
678 	refcount_set(&root->refs, 1);
679 	atomic_set(&root->snapshot_force_cow, 0);
680 	atomic_set(&root->nr_swapfiles, 0);
681 	root->log_transid = 0;
682 	root->log_transid_committed = -1;
683 	root->last_log_commit = 0;
684 	root->anon_dev = 0;
685 	if (!dummy) {
686 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
687 				    IO_TREE_ROOT_DIRTY_LOG_PAGES);
688 		extent_io_tree_init(fs_info, &root->log_csum_range,
689 				    IO_TREE_LOG_CSUM_RANGE);
690 	}
691 
692 	spin_lock_init(&root->root_item_lock);
693 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
694 #ifdef CONFIG_BTRFS_DEBUG
695 	INIT_LIST_HEAD(&root->leak_list);
696 	spin_lock(&fs_info->fs_roots_radix_lock);
697 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
698 	spin_unlock(&fs_info->fs_roots_radix_lock);
699 #endif
700 }
701 
702 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
703 					   u64 objectid, gfp_t flags)
704 {
705 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
706 	if (root)
707 		__setup_root(root, fs_info, objectid);
708 	return root;
709 }
710 
711 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
712 /* Should only be used by the testing infrastructure */
713 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
714 {
715 	struct btrfs_root *root;
716 
717 	if (!fs_info)
718 		return ERR_PTR(-EINVAL);
719 
720 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
721 	if (!root)
722 		return ERR_PTR(-ENOMEM);
723 
724 	/* We don't use the stripesize in selftest, set it as sectorsize */
725 	root->alloc_bytenr = 0;
726 
727 	return root;
728 }
729 #endif
730 
731 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
732 {
733 	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
734 	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
735 
736 	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
737 }
738 
739 static int global_root_key_cmp(const void *k, const struct rb_node *node)
740 {
741 	const struct btrfs_key *key = k;
742 	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
743 
744 	return btrfs_comp_cpu_keys(key, &root->root_key);
745 }
746 
747 int btrfs_global_root_insert(struct btrfs_root *root)
748 {
749 	struct btrfs_fs_info *fs_info = root->fs_info;
750 	struct rb_node *tmp;
751 	int ret = 0;
752 
753 	write_lock(&fs_info->global_root_lock);
754 	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
755 	write_unlock(&fs_info->global_root_lock);
756 
757 	if (tmp) {
758 		ret = -EEXIST;
759 		btrfs_warn(fs_info, "global root %llu %llu already exists",
760 				root->root_key.objectid, root->root_key.offset);
761 	}
762 	return ret;
763 }
764 
765 void btrfs_global_root_delete(struct btrfs_root *root)
766 {
767 	struct btrfs_fs_info *fs_info = root->fs_info;
768 
769 	write_lock(&fs_info->global_root_lock);
770 	rb_erase(&root->rb_node, &fs_info->global_root_tree);
771 	write_unlock(&fs_info->global_root_lock);
772 }
773 
774 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
775 				     struct btrfs_key *key)
776 {
777 	struct rb_node *node;
778 	struct btrfs_root *root = NULL;
779 
780 	read_lock(&fs_info->global_root_lock);
781 	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
782 	if (node)
783 		root = container_of(node, struct btrfs_root, rb_node);
784 	read_unlock(&fs_info->global_root_lock);
785 
786 	return root;
787 }
788 
789 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
790 {
791 	struct btrfs_block_group *block_group;
792 	u64 ret;
793 
794 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
795 		return 0;
796 
797 	if (bytenr)
798 		block_group = btrfs_lookup_block_group(fs_info, bytenr);
799 	else
800 		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
801 	ASSERT(block_group);
802 	if (!block_group)
803 		return 0;
804 	ret = block_group->global_root_id;
805 	btrfs_put_block_group(block_group);
806 
807 	return ret;
808 }
809 
810 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
811 {
812 	struct btrfs_key key = {
813 		.objectid = BTRFS_CSUM_TREE_OBJECTID,
814 		.type = BTRFS_ROOT_ITEM_KEY,
815 		.offset = btrfs_global_root_id(fs_info, bytenr),
816 	};
817 
818 	return btrfs_global_root(fs_info, &key);
819 }
820 
821 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
822 {
823 	struct btrfs_key key = {
824 		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
825 		.type = BTRFS_ROOT_ITEM_KEY,
826 		.offset = btrfs_global_root_id(fs_info, bytenr),
827 	};
828 
829 	return btrfs_global_root(fs_info, &key);
830 }
831 
832 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
833 {
834 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
835 		return fs_info->block_group_root;
836 	return btrfs_extent_root(fs_info, 0);
837 }
838 
839 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
840 				     u64 objectid)
841 {
842 	struct btrfs_fs_info *fs_info = trans->fs_info;
843 	struct extent_buffer *leaf;
844 	struct btrfs_root *tree_root = fs_info->tree_root;
845 	struct btrfs_root *root;
846 	struct btrfs_key key;
847 	unsigned int nofs_flag;
848 	int ret = 0;
849 
850 	/*
851 	 * We're holding a transaction handle, so use a NOFS memory allocation
852 	 * context to avoid deadlock if reclaim happens.
853 	 */
854 	nofs_flag = memalloc_nofs_save();
855 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
856 	memalloc_nofs_restore(nofs_flag);
857 	if (!root)
858 		return ERR_PTR(-ENOMEM);
859 
860 	root->root_key.objectid = objectid;
861 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
862 	root->root_key.offset = 0;
863 
864 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
865 				      BTRFS_NESTING_NORMAL);
866 	if (IS_ERR(leaf)) {
867 		ret = PTR_ERR(leaf);
868 		leaf = NULL;
869 		goto fail;
870 	}
871 
872 	root->node = leaf;
873 	btrfs_mark_buffer_dirty(leaf);
874 
875 	root->commit_root = btrfs_root_node(root);
876 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
877 
878 	btrfs_set_root_flags(&root->root_item, 0);
879 	btrfs_set_root_limit(&root->root_item, 0);
880 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
881 	btrfs_set_root_generation(&root->root_item, trans->transid);
882 	btrfs_set_root_level(&root->root_item, 0);
883 	btrfs_set_root_refs(&root->root_item, 1);
884 	btrfs_set_root_used(&root->root_item, leaf->len);
885 	btrfs_set_root_last_snapshot(&root->root_item, 0);
886 	btrfs_set_root_dirid(&root->root_item, 0);
887 	if (is_fstree(objectid))
888 		generate_random_guid(root->root_item.uuid);
889 	else
890 		export_guid(root->root_item.uuid, &guid_null);
891 	btrfs_set_root_drop_level(&root->root_item, 0);
892 
893 	btrfs_tree_unlock(leaf);
894 
895 	key.objectid = objectid;
896 	key.type = BTRFS_ROOT_ITEM_KEY;
897 	key.offset = 0;
898 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
899 	if (ret)
900 		goto fail;
901 
902 	return root;
903 
904 fail:
905 	btrfs_put_root(root);
906 
907 	return ERR_PTR(ret);
908 }
909 
910 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
911 					 struct btrfs_fs_info *fs_info)
912 {
913 	struct btrfs_root *root;
914 
915 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
916 	if (!root)
917 		return ERR_PTR(-ENOMEM);
918 
919 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
920 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
921 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
922 
923 	return root;
924 }
925 
926 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
927 			      struct btrfs_root *root)
928 {
929 	struct extent_buffer *leaf;
930 
931 	/*
932 	 * DON'T set SHAREABLE bit for log trees.
933 	 *
934 	 * Log trees are not exposed to user space thus can't be snapshotted,
935 	 * and they go away before a real commit is actually done.
936 	 *
937 	 * They do store pointers to file data extents, and those reference
938 	 * counts still get updated (along with back refs to the log tree).
939 	 */
940 
941 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
942 			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
943 	if (IS_ERR(leaf))
944 		return PTR_ERR(leaf);
945 
946 	root->node = leaf;
947 
948 	btrfs_mark_buffer_dirty(root->node);
949 	btrfs_tree_unlock(root->node);
950 
951 	return 0;
952 }
953 
954 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
955 			     struct btrfs_fs_info *fs_info)
956 {
957 	struct btrfs_root *log_root;
958 
959 	log_root = alloc_log_tree(trans, fs_info);
960 	if (IS_ERR(log_root))
961 		return PTR_ERR(log_root);
962 
963 	if (!btrfs_is_zoned(fs_info)) {
964 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
965 
966 		if (ret) {
967 			btrfs_put_root(log_root);
968 			return ret;
969 		}
970 	}
971 
972 	WARN_ON(fs_info->log_root_tree);
973 	fs_info->log_root_tree = log_root;
974 	return 0;
975 }
976 
977 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
978 		       struct btrfs_root *root)
979 {
980 	struct btrfs_fs_info *fs_info = root->fs_info;
981 	struct btrfs_root *log_root;
982 	struct btrfs_inode_item *inode_item;
983 	int ret;
984 
985 	log_root = alloc_log_tree(trans, fs_info);
986 	if (IS_ERR(log_root))
987 		return PTR_ERR(log_root);
988 
989 	ret = btrfs_alloc_log_tree_node(trans, log_root);
990 	if (ret) {
991 		btrfs_put_root(log_root);
992 		return ret;
993 	}
994 
995 	log_root->last_trans = trans->transid;
996 	log_root->root_key.offset = root->root_key.objectid;
997 
998 	inode_item = &log_root->root_item.inode;
999 	btrfs_set_stack_inode_generation(inode_item, 1);
1000 	btrfs_set_stack_inode_size(inode_item, 3);
1001 	btrfs_set_stack_inode_nlink(inode_item, 1);
1002 	btrfs_set_stack_inode_nbytes(inode_item,
1003 				     fs_info->nodesize);
1004 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1005 
1006 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1007 
1008 	WARN_ON(root->log_root);
1009 	root->log_root = log_root;
1010 	root->log_transid = 0;
1011 	root->log_transid_committed = -1;
1012 	root->last_log_commit = 0;
1013 	return 0;
1014 }
1015 
1016 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1017 					      struct btrfs_path *path,
1018 					      struct btrfs_key *key)
1019 {
1020 	struct btrfs_root *root;
1021 	struct btrfs_tree_parent_check check = { 0 };
1022 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1023 	u64 generation;
1024 	int ret;
1025 	int level;
1026 
1027 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1028 	if (!root)
1029 		return ERR_PTR(-ENOMEM);
1030 
1031 	ret = btrfs_find_root(tree_root, key, path,
1032 			      &root->root_item, &root->root_key);
1033 	if (ret) {
1034 		if (ret > 0)
1035 			ret = -ENOENT;
1036 		goto fail;
1037 	}
1038 
1039 	generation = btrfs_root_generation(&root->root_item);
1040 	level = btrfs_root_level(&root->root_item);
1041 	check.level = level;
1042 	check.transid = generation;
1043 	check.owner_root = key->objectid;
1044 	root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1045 				     &check);
1046 	if (IS_ERR(root->node)) {
1047 		ret = PTR_ERR(root->node);
1048 		root->node = NULL;
1049 		goto fail;
1050 	}
1051 	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1052 		ret = -EIO;
1053 		goto fail;
1054 	}
1055 
1056 	/*
1057 	 * For real fs, and not log/reloc trees, root owner must
1058 	 * match its root node owner
1059 	 */
1060 	if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1061 	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1062 	    root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1063 	    root->root_key.objectid != btrfs_header_owner(root->node)) {
1064 		btrfs_crit(fs_info,
1065 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1066 			   root->root_key.objectid, root->node->start,
1067 			   btrfs_header_owner(root->node),
1068 			   root->root_key.objectid);
1069 		ret = -EUCLEAN;
1070 		goto fail;
1071 	}
1072 	root->commit_root = btrfs_root_node(root);
1073 	return root;
1074 fail:
1075 	btrfs_put_root(root);
1076 	return ERR_PTR(ret);
1077 }
1078 
1079 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1080 					struct btrfs_key *key)
1081 {
1082 	struct btrfs_root *root;
1083 	struct btrfs_path *path;
1084 
1085 	path = btrfs_alloc_path();
1086 	if (!path)
1087 		return ERR_PTR(-ENOMEM);
1088 	root = read_tree_root_path(tree_root, path, key);
1089 	btrfs_free_path(path);
1090 
1091 	return root;
1092 }
1093 
1094 /*
1095  * Initialize subvolume root in-memory structure
1096  *
1097  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1098  */
1099 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1100 {
1101 	int ret;
1102 
1103 	btrfs_drew_lock_init(&root->snapshot_lock);
1104 
1105 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1106 	    !btrfs_is_data_reloc_root(root) &&
1107 	    is_fstree(root->root_key.objectid)) {
1108 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1109 		btrfs_check_and_init_root_item(&root->root_item);
1110 	}
1111 
1112 	/*
1113 	 * Don't assign anonymous block device to roots that are not exposed to
1114 	 * userspace, the id pool is limited to 1M
1115 	 */
1116 	if (is_fstree(root->root_key.objectid) &&
1117 	    btrfs_root_refs(&root->root_item) > 0) {
1118 		if (!anon_dev) {
1119 			ret = get_anon_bdev(&root->anon_dev);
1120 			if (ret)
1121 				goto fail;
1122 		} else {
1123 			root->anon_dev = anon_dev;
1124 		}
1125 	}
1126 
1127 	mutex_lock(&root->objectid_mutex);
1128 	ret = btrfs_init_root_free_objectid(root);
1129 	if (ret) {
1130 		mutex_unlock(&root->objectid_mutex);
1131 		goto fail;
1132 	}
1133 
1134 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1135 
1136 	mutex_unlock(&root->objectid_mutex);
1137 
1138 	return 0;
1139 fail:
1140 	/* The caller is responsible to call btrfs_free_fs_root */
1141 	return ret;
1142 }
1143 
1144 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1145 					       u64 root_id)
1146 {
1147 	struct btrfs_root *root;
1148 
1149 	spin_lock(&fs_info->fs_roots_radix_lock);
1150 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1151 				 (unsigned long)root_id);
1152 	root = btrfs_grab_root(root);
1153 	spin_unlock(&fs_info->fs_roots_radix_lock);
1154 	return root;
1155 }
1156 
1157 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1158 						u64 objectid)
1159 {
1160 	struct btrfs_key key = {
1161 		.objectid = objectid,
1162 		.type = BTRFS_ROOT_ITEM_KEY,
1163 		.offset = 0,
1164 	};
1165 
1166 	switch (objectid) {
1167 	case BTRFS_ROOT_TREE_OBJECTID:
1168 		return btrfs_grab_root(fs_info->tree_root);
1169 	case BTRFS_EXTENT_TREE_OBJECTID:
1170 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1171 	case BTRFS_CHUNK_TREE_OBJECTID:
1172 		return btrfs_grab_root(fs_info->chunk_root);
1173 	case BTRFS_DEV_TREE_OBJECTID:
1174 		return btrfs_grab_root(fs_info->dev_root);
1175 	case BTRFS_CSUM_TREE_OBJECTID:
1176 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1177 	case BTRFS_QUOTA_TREE_OBJECTID:
1178 		return btrfs_grab_root(fs_info->quota_root);
1179 	case BTRFS_UUID_TREE_OBJECTID:
1180 		return btrfs_grab_root(fs_info->uuid_root);
1181 	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1182 		return btrfs_grab_root(fs_info->block_group_root);
1183 	case BTRFS_FREE_SPACE_TREE_OBJECTID:
1184 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1185 	default:
1186 		return NULL;
1187 	}
1188 }
1189 
1190 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1191 			 struct btrfs_root *root)
1192 {
1193 	int ret;
1194 
1195 	ret = radix_tree_preload(GFP_NOFS);
1196 	if (ret)
1197 		return ret;
1198 
1199 	spin_lock(&fs_info->fs_roots_radix_lock);
1200 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1201 				(unsigned long)root->root_key.objectid,
1202 				root);
1203 	if (ret == 0) {
1204 		btrfs_grab_root(root);
1205 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1206 	}
1207 	spin_unlock(&fs_info->fs_roots_radix_lock);
1208 	radix_tree_preload_end();
1209 
1210 	return ret;
1211 }
1212 
1213 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1214 {
1215 #ifdef CONFIG_BTRFS_DEBUG
1216 	struct btrfs_root *root;
1217 
1218 	while (!list_empty(&fs_info->allocated_roots)) {
1219 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1220 
1221 		root = list_first_entry(&fs_info->allocated_roots,
1222 					struct btrfs_root, leak_list);
1223 		btrfs_err(fs_info, "leaked root %s refcount %d",
1224 			  btrfs_root_name(&root->root_key, buf),
1225 			  refcount_read(&root->refs));
1226 		while (refcount_read(&root->refs) > 1)
1227 			btrfs_put_root(root);
1228 		btrfs_put_root(root);
1229 	}
1230 #endif
1231 }
1232 
1233 static void free_global_roots(struct btrfs_fs_info *fs_info)
1234 {
1235 	struct btrfs_root *root;
1236 	struct rb_node *node;
1237 
1238 	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1239 		root = rb_entry(node, struct btrfs_root, rb_node);
1240 		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1241 		btrfs_put_root(root);
1242 	}
1243 }
1244 
1245 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1246 {
1247 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1248 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1249 	percpu_counter_destroy(&fs_info->ordered_bytes);
1250 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1251 	btrfs_free_csum_hash(fs_info);
1252 	btrfs_free_stripe_hash_table(fs_info);
1253 	btrfs_free_ref_cache(fs_info);
1254 	kfree(fs_info->balance_ctl);
1255 	kfree(fs_info->delayed_root);
1256 	free_global_roots(fs_info);
1257 	btrfs_put_root(fs_info->tree_root);
1258 	btrfs_put_root(fs_info->chunk_root);
1259 	btrfs_put_root(fs_info->dev_root);
1260 	btrfs_put_root(fs_info->quota_root);
1261 	btrfs_put_root(fs_info->uuid_root);
1262 	btrfs_put_root(fs_info->fs_root);
1263 	btrfs_put_root(fs_info->data_reloc_root);
1264 	btrfs_put_root(fs_info->block_group_root);
1265 	btrfs_check_leaked_roots(fs_info);
1266 	btrfs_extent_buffer_leak_debug_check(fs_info);
1267 	kfree(fs_info->super_copy);
1268 	kfree(fs_info->super_for_commit);
1269 	kfree(fs_info->subpage_info);
1270 	kvfree(fs_info);
1271 }
1272 
1273 
1274 /*
1275  * Get an in-memory reference of a root structure.
1276  *
1277  * For essential trees like root/extent tree, we grab it from fs_info directly.
1278  * For subvolume trees, we check the cached filesystem roots first. If not
1279  * found, then read it from disk and add it to cached fs roots.
1280  *
1281  * Caller should release the root by calling btrfs_put_root() after the usage.
1282  *
1283  * NOTE: Reloc and log trees can't be read by this function as they share the
1284  *	 same root objectid.
1285  *
1286  * @objectid:	root id
1287  * @anon_dev:	preallocated anonymous block device number for new roots,
1288  * 		pass 0 for new allocation.
1289  * @check_ref:	whether to check root item references, If true, return -ENOENT
1290  *		for orphan roots
1291  */
1292 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1293 					     u64 objectid, dev_t anon_dev,
1294 					     bool check_ref)
1295 {
1296 	struct btrfs_root *root;
1297 	struct btrfs_path *path;
1298 	struct btrfs_key key;
1299 	int ret;
1300 
1301 	root = btrfs_get_global_root(fs_info, objectid);
1302 	if (root)
1303 		return root;
1304 
1305 	/*
1306 	 * If we're called for non-subvolume trees, and above function didn't
1307 	 * find one, do not try to read it from disk.
1308 	 *
1309 	 * This is namely for free-space-tree and quota tree, which can change
1310 	 * at runtime and should only be grabbed from fs_info.
1311 	 */
1312 	if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1313 		return ERR_PTR(-ENOENT);
1314 again:
1315 	root = btrfs_lookup_fs_root(fs_info, objectid);
1316 	if (root) {
1317 		/* Shouldn't get preallocated anon_dev for cached roots */
1318 		ASSERT(!anon_dev);
1319 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1320 			btrfs_put_root(root);
1321 			return ERR_PTR(-ENOENT);
1322 		}
1323 		return root;
1324 	}
1325 
1326 	key.objectid = objectid;
1327 	key.type = BTRFS_ROOT_ITEM_KEY;
1328 	key.offset = (u64)-1;
1329 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1330 	if (IS_ERR(root))
1331 		return root;
1332 
1333 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1334 		ret = -ENOENT;
1335 		goto fail;
1336 	}
1337 
1338 	ret = btrfs_init_fs_root(root, anon_dev);
1339 	if (ret)
1340 		goto fail;
1341 
1342 	path = btrfs_alloc_path();
1343 	if (!path) {
1344 		ret = -ENOMEM;
1345 		goto fail;
1346 	}
1347 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1348 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1349 	key.offset = objectid;
1350 
1351 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1352 	btrfs_free_path(path);
1353 	if (ret < 0)
1354 		goto fail;
1355 	if (ret == 0)
1356 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1357 
1358 	ret = btrfs_insert_fs_root(fs_info, root);
1359 	if (ret) {
1360 		if (ret == -EEXIST) {
1361 			btrfs_put_root(root);
1362 			goto again;
1363 		}
1364 		goto fail;
1365 	}
1366 	return root;
1367 fail:
1368 	/*
1369 	 * If our caller provided us an anonymous device, then it's his
1370 	 * responsibility to free it in case we fail. So we have to set our
1371 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1372 	 * and once again by our caller.
1373 	 */
1374 	if (anon_dev)
1375 		root->anon_dev = 0;
1376 	btrfs_put_root(root);
1377 	return ERR_PTR(ret);
1378 }
1379 
1380 /*
1381  * Get in-memory reference of a root structure
1382  *
1383  * @objectid:	tree objectid
1384  * @check_ref:	if set, verify that the tree exists and the item has at least
1385  *		one reference
1386  */
1387 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1388 				     u64 objectid, bool check_ref)
1389 {
1390 	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1391 }
1392 
1393 /*
1394  * Get in-memory reference of a root structure, created as new, optionally pass
1395  * the anonymous block device id
1396  *
1397  * @objectid:	tree objectid
1398  * @anon_dev:	if zero, allocate a new anonymous block device or use the
1399  *		parameter value
1400  */
1401 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1402 					 u64 objectid, dev_t anon_dev)
1403 {
1404 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1405 }
1406 
1407 /*
1408  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1409  * @fs_info:	the fs_info
1410  * @objectid:	the objectid we need to lookup
1411  *
1412  * This is exclusively used for backref walking, and exists specifically because
1413  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1414  * creation time, which means we may have to read the tree_root in order to look
1415  * up a fs root that is not in memory.  If the root is not in memory we will
1416  * read the tree root commit root and look up the fs root from there.  This is a
1417  * temporary root, it will not be inserted into the radix tree as it doesn't
1418  * have the most uptodate information, it'll simply be discarded once the
1419  * backref code is finished using the root.
1420  */
1421 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1422 						 struct btrfs_path *path,
1423 						 u64 objectid)
1424 {
1425 	struct btrfs_root *root;
1426 	struct btrfs_key key;
1427 
1428 	ASSERT(path->search_commit_root && path->skip_locking);
1429 
1430 	/*
1431 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1432 	 * since this is called via the backref walking code we won't be looking
1433 	 * up a root that doesn't exist, unless there's corruption.  So if root
1434 	 * != NULL just return it.
1435 	 */
1436 	root = btrfs_get_global_root(fs_info, objectid);
1437 	if (root)
1438 		return root;
1439 
1440 	root = btrfs_lookup_fs_root(fs_info, objectid);
1441 	if (root)
1442 		return root;
1443 
1444 	key.objectid = objectid;
1445 	key.type = BTRFS_ROOT_ITEM_KEY;
1446 	key.offset = (u64)-1;
1447 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1448 	btrfs_release_path(path);
1449 
1450 	return root;
1451 }
1452 
1453 static int cleaner_kthread(void *arg)
1454 {
1455 	struct btrfs_fs_info *fs_info = arg;
1456 	int again;
1457 
1458 	while (1) {
1459 		again = 0;
1460 
1461 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1462 
1463 		/* Make the cleaner go to sleep early. */
1464 		if (btrfs_need_cleaner_sleep(fs_info))
1465 			goto sleep;
1466 
1467 		/*
1468 		 * Do not do anything if we might cause open_ctree() to block
1469 		 * before we have finished mounting the filesystem.
1470 		 */
1471 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1472 			goto sleep;
1473 
1474 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1475 			goto sleep;
1476 
1477 		/*
1478 		 * Avoid the problem that we change the status of the fs
1479 		 * during the above check and trylock.
1480 		 */
1481 		if (btrfs_need_cleaner_sleep(fs_info)) {
1482 			mutex_unlock(&fs_info->cleaner_mutex);
1483 			goto sleep;
1484 		}
1485 
1486 		if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1487 			btrfs_sysfs_feature_update(fs_info);
1488 
1489 		btrfs_run_delayed_iputs(fs_info);
1490 
1491 		again = btrfs_clean_one_deleted_snapshot(fs_info);
1492 		mutex_unlock(&fs_info->cleaner_mutex);
1493 
1494 		/*
1495 		 * The defragger has dealt with the R/O remount and umount,
1496 		 * needn't do anything special here.
1497 		 */
1498 		btrfs_run_defrag_inodes(fs_info);
1499 
1500 		/*
1501 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1502 		 * with relocation (btrfs_relocate_chunk) and relocation
1503 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1504 		 * after acquiring fs_info->reclaim_bgs_lock. So we
1505 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1506 		 * unused block groups.
1507 		 */
1508 		btrfs_delete_unused_bgs(fs_info);
1509 
1510 		/*
1511 		 * Reclaim block groups in the reclaim_bgs list after we deleted
1512 		 * all unused block_groups. This possibly gives us some more free
1513 		 * space.
1514 		 */
1515 		btrfs_reclaim_bgs(fs_info);
1516 sleep:
1517 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1518 		if (kthread_should_park())
1519 			kthread_parkme();
1520 		if (kthread_should_stop())
1521 			return 0;
1522 		if (!again) {
1523 			set_current_state(TASK_INTERRUPTIBLE);
1524 			schedule();
1525 			__set_current_state(TASK_RUNNING);
1526 		}
1527 	}
1528 }
1529 
1530 static int transaction_kthread(void *arg)
1531 {
1532 	struct btrfs_root *root = arg;
1533 	struct btrfs_fs_info *fs_info = root->fs_info;
1534 	struct btrfs_trans_handle *trans;
1535 	struct btrfs_transaction *cur;
1536 	u64 transid;
1537 	time64_t delta;
1538 	unsigned long delay;
1539 	bool cannot_commit;
1540 
1541 	do {
1542 		cannot_commit = false;
1543 		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1544 		mutex_lock(&fs_info->transaction_kthread_mutex);
1545 
1546 		spin_lock(&fs_info->trans_lock);
1547 		cur = fs_info->running_transaction;
1548 		if (!cur) {
1549 			spin_unlock(&fs_info->trans_lock);
1550 			goto sleep;
1551 		}
1552 
1553 		delta = ktime_get_seconds() - cur->start_time;
1554 		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1555 		    cur->state < TRANS_STATE_COMMIT_START &&
1556 		    delta < fs_info->commit_interval) {
1557 			spin_unlock(&fs_info->trans_lock);
1558 			delay -= msecs_to_jiffies((delta - 1) * 1000);
1559 			delay = min(delay,
1560 				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1561 			goto sleep;
1562 		}
1563 		transid = cur->transid;
1564 		spin_unlock(&fs_info->trans_lock);
1565 
1566 		/* If the file system is aborted, this will always fail. */
1567 		trans = btrfs_attach_transaction(root);
1568 		if (IS_ERR(trans)) {
1569 			if (PTR_ERR(trans) != -ENOENT)
1570 				cannot_commit = true;
1571 			goto sleep;
1572 		}
1573 		if (transid == trans->transid) {
1574 			btrfs_commit_transaction(trans);
1575 		} else {
1576 			btrfs_end_transaction(trans);
1577 		}
1578 sleep:
1579 		wake_up_process(fs_info->cleaner_kthread);
1580 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1581 
1582 		if (BTRFS_FS_ERROR(fs_info))
1583 			btrfs_cleanup_transaction(fs_info);
1584 		if (!kthread_should_stop() &&
1585 				(!btrfs_transaction_blocked(fs_info) ||
1586 				 cannot_commit))
1587 			schedule_timeout_interruptible(delay);
1588 	} while (!kthread_should_stop());
1589 	return 0;
1590 }
1591 
1592 /*
1593  * This will find the highest generation in the array of root backups.  The
1594  * index of the highest array is returned, or -EINVAL if we can't find
1595  * anything.
1596  *
1597  * We check to make sure the array is valid by comparing the
1598  * generation of the latest  root in the array with the generation
1599  * in the super block.  If they don't match we pitch it.
1600  */
1601 static int find_newest_super_backup(struct btrfs_fs_info *info)
1602 {
1603 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1604 	u64 cur;
1605 	struct btrfs_root_backup *root_backup;
1606 	int i;
1607 
1608 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1609 		root_backup = info->super_copy->super_roots + i;
1610 		cur = btrfs_backup_tree_root_gen(root_backup);
1611 		if (cur == newest_gen)
1612 			return i;
1613 	}
1614 
1615 	return -EINVAL;
1616 }
1617 
1618 /*
1619  * copy all the root pointers into the super backup array.
1620  * this will bump the backup pointer by one when it is
1621  * done
1622  */
1623 static void backup_super_roots(struct btrfs_fs_info *info)
1624 {
1625 	const int next_backup = info->backup_root_index;
1626 	struct btrfs_root_backup *root_backup;
1627 
1628 	root_backup = info->super_for_commit->super_roots + next_backup;
1629 
1630 	/*
1631 	 * make sure all of our padding and empty slots get zero filled
1632 	 * regardless of which ones we use today
1633 	 */
1634 	memset(root_backup, 0, sizeof(*root_backup));
1635 
1636 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1637 
1638 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1639 	btrfs_set_backup_tree_root_gen(root_backup,
1640 			       btrfs_header_generation(info->tree_root->node));
1641 
1642 	btrfs_set_backup_tree_root_level(root_backup,
1643 			       btrfs_header_level(info->tree_root->node));
1644 
1645 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1646 	btrfs_set_backup_chunk_root_gen(root_backup,
1647 			       btrfs_header_generation(info->chunk_root->node));
1648 	btrfs_set_backup_chunk_root_level(root_backup,
1649 			       btrfs_header_level(info->chunk_root->node));
1650 
1651 	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1652 		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1653 		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1654 
1655 		btrfs_set_backup_extent_root(root_backup,
1656 					     extent_root->node->start);
1657 		btrfs_set_backup_extent_root_gen(root_backup,
1658 				btrfs_header_generation(extent_root->node));
1659 		btrfs_set_backup_extent_root_level(root_backup,
1660 					btrfs_header_level(extent_root->node));
1661 
1662 		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1663 		btrfs_set_backup_csum_root_gen(root_backup,
1664 					       btrfs_header_generation(csum_root->node));
1665 		btrfs_set_backup_csum_root_level(root_backup,
1666 						 btrfs_header_level(csum_root->node));
1667 	}
1668 
1669 	/*
1670 	 * we might commit during log recovery, which happens before we set
1671 	 * the fs_root.  Make sure it is valid before we fill it in.
1672 	 */
1673 	if (info->fs_root && info->fs_root->node) {
1674 		btrfs_set_backup_fs_root(root_backup,
1675 					 info->fs_root->node->start);
1676 		btrfs_set_backup_fs_root_gen(root_backup,
1677 			       btrfs_header_generation(info->fs_root->node));
1678 		btrfs_set_backup_fs_root_level(root_backup,
1679 			       btrfs_header_level(info->fs_root->node));
1680 	}
1681 
1682 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1683 	btrfs_set_backup_dev_root_gen(root_backup,
1684 			       btrfs_header_generation(info->dev_root->node));
1685 	btrfs_set_backup_dev_root_level(root_backup,
1686 				       btrfs_header_level(info->dev_root->node));
1687 
1688 	btrfs_set_backup_total_bytes(root_backup,
1689 			     btrfs_super_total_bytes(info->super_copy));
1690 	btrfs_set_backup_bytes_used(root_backup,
1691 			     btrfs_super_bytes_used(info->super_copy));
1692 	btrfs_set_backup_num_devices(root_backup,
1693 			     btrfs_super_num_devices(info->super_copy));
1694 
1695 	/*
1696 	 * if we don't copy this out to the super_copy, it won't get remembered
1697 	 * for the next commit
1698 	 */
1699 	memcpy(&info->super_copy->super_roots,
1700 	       &info->super_for_commit->super_roots,
1701 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1702 }
1703 
1704 /*
1705  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1706  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1707  *
1708  * fs_info - filesystem whose backup roots need to be read
1709  * priority - priority of backup root required
1710  *
1711  * Returns backup root index on success and -EINVAL otherwise.
1712  */
1713 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1714 {
1715 	int backup_index = find_newest_super_backup(fs_info);
1716 	struct btrfs_super_block *super = fs_info->super_copy;
1717 	struct btrfs_root_backup *root_backup;
1718 
1719 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1720 		if (priority == 0)
1721 			return backup_index;
1722 
1723 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1724 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1725 	} else {
1726 		return -EINVAL;
1727 	}
1728 
1729 	root_backup = super->super_roots + backup_index;
1730 
1731 	btrfs_set_super_generation(super,
1732 				   btrfs_backup_tree_root_gen(root_backup));
1733 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1734 	btrfs_set_super_root_level(super,
1735 				   btrfs_backup_tree_root_level(root_backup));
1736 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1737 
1738 	/*
1739 	 * Fixme: the total bytes and num_devices need to match or we should
1740 	 * need a fsck
1741 	 */
1742 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1743 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1744 
1745 	return backup_index;
1746 }
1747 
1748 /* helper to cleanup workers */
1749 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1750 {
1751 	btrfs_destroy_workqueue(fs_info->fixup_workers);
1752 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1753 	btrfs_destroy_workqueue(fs_info->workers);
1754 	if (fs_info->endio_workers)
1755 		destroy_workqueue(fs_info->endio_workers);
1756 	if (fs_info->rmw_workers)
1757 		destroy_workqueue(fs_info->rmw_workers);
1758 	if (fs_info->compressed_write_workers)
1759 		destroy_workqueue(fs_info->compressed_write_workers);
1760 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1761 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1762 	btrfs_destroy_workqueue(fs_info->delayed_workers);
1763 	btrfs_destroy_workqueue(fs_info->caching_workers);
1764 	btrfs_destroy_workqueue(fs_info->flush_workers);
1765 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1766 	if (fs_info->discard_ctl.discard_workers)
1767 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1768 	/*
1769 	 * Now that all other work queues are destroyed, we can safely destroy
1770 	 * the queues used for metadata I/O, since tasks from those other work
1771 	 * queues can do metadata I/O operations.
1772 	 */
1773 	if (fs_info->endio_meta_workers)
1774 		destroy_workqueue(fs_info->endio_meta_workers);
1775 }
1776 
1777 static void free_root_extent_buffers(struct btrfs_root *root)
1778 {
1779 	if (root) {
1780 		free_extent_buffer(root->node);
1781 		free_extent_buffer(root->commit_root);
1782 		root->node = NULL;
1783 		root->commit_root = NULL;
1784 	}
1785 }
1786 
1787 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1788 {
1789 	struct btrfs_root *root, *tmp;
1790 
1791 	rbtree_postorder_for_each_entry_safe(root, tmp,
1792 					     &fs_info->global_root_tree,
1793 					     rb_node)
1794 		free_root_extent_buffers(root);
1795 }
1796 
1797 /* helper to cleanup tree roots */
1798 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1799 {
1800 	free_root_extent_buffers(info->tree_root);
1801 
1802 	free_global_root_pointers(info);
1803 	free_root_extent_buffers(info->dev_root);
1804 	free_root_extent_buffers(info->quota_root);
1805 	free_root_extent_buffers(info->uuid_root);
1806 	free_root_extent_buffers(info->fs_root);
1807 	free_root_extent_buffers(info->data_reloc_root);
1808 	free_root_extent_buffers(info->block_group_root);
1809 	if (free_chunk_root)
1810 		free_root_extent_buffers(info->chunk_root);
1811 }
1812 
1813 void btrfs_put_root(struct btrfs_root *root)
1814 {
1815 	if (!root)
1816 		return;
1817 
1818 	if (refcount_dec_and_test(&root->refs)) {
1819 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1820 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1821 		if (root->anon_dev)
1822 			free_anon_bdev(root->anon_dev);
1823 		free_root_extent_buffers(root);
1824 #ifdef CONFIG_BTRFS_DEBUG
1825 		spin_lock(&root->fs_info->fs_roots_radix_lock);
1826 		list_del_init(&root->leak_list);
1827 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
1828 #endif
1829 		kfree(root);
1830 	}
1831 }
1832 
1833 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1834 {
1835 	int ret;
1836 	struct btrfs_root *gang[8];
1837 	int i;
1838 
1839 	while (!list_empty(&fs_info->dead_roots)) {
1840 		gang[0] = list_entry(fs_info->dead_roots.next,
1841 				     struct btrfs_root, root_list);
1842 		list_del(&gang[0]->root_list);
1843 
1844 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1845 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1846 		btrfs_put_root(gang[0]);
1847 	}
1848 
1849 	while (1) {
1850 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1851 					     (void **)gang, 0,
1852 					     ARRAY_SIZE(gang));
1853 		if (!ret)
1854 			break;
1855 		for (i = 0; i < ret; i++)
1856 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1857 	}
1858 }
1859 
1860 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1861 {
1862 	mutex_init(&fs_info->scrub_lock);
1863 	atomic_set(&fs_info->scrubs_running, 0);
1864 	atomic_set(&fs_info->scrub_pause_req, 0);
1865 	atomic_set(&fs_info->scrubs_paused, 0);
1866 	atomic_set(&fs_info->scrub_cancel_req, 0);
1867 	init_waitqueue_head(&fs_info->scrub_pause_wait);
1868 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
1869 }
1870 
1871 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1872 {
1873 	spin_lock_init(&fs_info->balance_lock);
1874 	mutex_init(&fs_info->balance_mutex);
1875 	atomic_set(&fs_info->balance_pause_req, 0);
1876 	atomic_set(&fs_info->balance_cancel_req, 0);
1877 	fs_info->balance_ctl = NULL;
1878 	init_waitqueue_head(&fs_info->balance_wait_q);
1879 	atomic_set(&fs_info->reloc_cancel_req, 0);
1880 }
1881 
1882 static int btrfs_init_btree_inode(struct super_block *sb)
1883 {
1884 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1885 	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1886 					      fs_info->tree_root);
1887 	struct inode *inode;
1888 
1889 	inode = new_inode(sb);
1890 	if (!inode)
1891 		return -ENOMEM;
1892 
1893 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1894 	set_nlink(inode, 1);
1895 	/*
1896 	 * we set the i_size on the btree inode to the max possible int.
1897 	 * the real end of the address space is determined by all of
1898 	 * the devices in the system
1899 	 */
1900 	inode->i_size = OFFSET_MAX;
1901 	inode->i_mapping->a_ops = &btree_aops;
1902 	mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1903 
1904 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
1905 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1906 			    IO_TREE_BTREE_INODE_IO);
1907 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1908 
1909 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1910 	BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1911 	BTRFS_I(inode)->location.type = 0;
1912 	BTRFS_I(inode)->location.offset = 0;
1913 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1914 	__insert_inode_hash(inode, hash);
1915 	fs_info->btree_inode = inode;
1916 
1917 	return 0;
1918 }
1919 
1920 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1921 {
1922 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1923 	init_rwsem(&fs_info->dev_replace.rwsem);
1924 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1925 }
1926 
1927 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1928 {
1929 	spin_lock_init(&fs_info->qgroup_lock);
1930 	mutex_init(&fs_info->qgroup_ioctl_lock);
1931 	fs_info->qgroup_tree = RB_ROOT;
1932 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1933 	fs_info->qgroup_seq = 1;
1934 	fs_info->qgroup_ulist = NULL;
1935 	fs_info->qgroup_rescan_running = false;
1936 	fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
1937 	mutex_init(&fs_info->qgroup_rescan_lock);
1938 }
1939 
1940 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1941 {
1942 	u32 max_active = fs_info->thread_pool_size;
1943 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1944 	unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1945 
1946 	fs_info->workers =
1947 		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1948 
1949 	fs_info->delalloc_workers =
1950 		btrfs_alloc_workqueue(fs_info, "delalloc",
1951 				      flags, max_active, 2);
1952 
1953 	fs_info->flush_workers =
1954 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1955 				      flags, max_active, 0);
1956 
1957 	fs_info->caching_workers =
1958 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1959 
1960 	fs_info->fixup_workers =
1961 		btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1962 
1963 	fs_info->endio_workers =
1964 		alloc_workqueue("btrfs-endio", flags, max_active);
1965 	fs_info->endio_meta_workers =
1966 		alloc_workqueue("btrfs-endio-meta", flags, max_active);
1967 	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
1968 	fs_info->endio_write_workers =
1969 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1970 				      max_active, 2);
1971 	fs_info->compressed_write_workers =
1972 		alloc_workqueue("btrfs-compressed-write", flags, max_active);
1973 	fs_info->endio_freespace_worker =
1974 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
1975 				      max_active, 0);
1976 	fs_info->delayed_workers =
1977 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
1978 				      max_active, 0);
1979 	fs_info->qgroup_rescan_workers =
1980 		btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
1981 					      ordered_flags);
1982 	fs_info->discard_ctl.discard_workers =
1983 		alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
1984 
1985 	if (!(fs_info->workers &&
1986 	      fs_info->delalloc_workers && fs_info->flush_workers &&
1987 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
1988 	      fs_info->compressed_write_workers &&
1989 	      fs_info->endio_write_workers &&
1990 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
1991 	      fs_info->caching_workers && fs_info->fixup_workers &&
1992 	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
1993 	      fs_info->discard_ctl.discard_workers)) {
1994 		return -ENOMEM;
1995 	}
1996 
1997 	return 0;
1998 }
1999 
2000 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2001 {
2002 	struct crypto_shash *csum_shash;
2003 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2004 
2005 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2006 
2007 	if (IS_ERR(csum_shash)) {
2008 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2009 			  csum_driver);
2010 		return PTR_ERR(csum_shash);
2011 	}
2012 
2013 	fs_info->csum_shash = csum_shash;
2014 
2015 	/*
2016 	 * Check if the checksum implementation is a fast accelerated one.
2017 	 * As-is this is a bit of a hack and should be replaced once the csum
2018 	 * implementations provide that information themselves.
2019 	 */
2020 	switch (csum_type) {
2021 	case BTRFS_CSUM_TYPE_CRC32:
2022 		if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2023 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2024 		break;
2025 	case BTRFS_CSUM_TYPE_XXHASH:
2026 		set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2027 		break;
2028 	default:
2029 		break;
2030 	}
2031 
2032 	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2033 			btrfs_super_csum_name(csum_type),
2034 			crypto_shash_driver_name(csum_shash));
2035 	return 0;
2036 }
2037 
2038 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2039 			    struct btrfs_fs_devices *fs_devices)
2040 {
2041 	int ret;
2042 	struct btrfs_tree_parent_check check = { 0 };
2043 	struct btrfs_root *log_tree_root;
2044 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2045 	u64 bytenr = btrfs_super_log_root(disk_super);
2046 	int level = btrfs_super_log_root_level(disk_super);
2047 
2048 	if (fs_devices->rw_devices == 0) {
2049 		btrfs_warn(fs_info, "log replay required on RO media");
2050 		return -EIO;
2051 	}
2052 
2053 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2054 					 GFP_KERNEL);
2055 	if (!log_tree_root)
2056 		return -ENOMEM;
2057 
2058 	check.level = level;
2059 	check.transid = fs_info->generation + 1;
2060 	check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2061 	log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2062 	if (IS_ERR(log_tree_root->node)) {
2063 		btrfs_warn(fs_info, "failed to read log tree");
2064 		ret = PTR_ERR(log_tree_root->node);
2065 		log_tree_root->node = NULL;
2066 		btrfs_put_root(log_tree_root);
2067 		return ret;
2068 	}
2069 	if (!extent_buffer_uptodate(log_tree_root->node)) {
2070 		btrfs_err(fs_info, "failed to read log tree");
2071 		btrfs_put_root(log_tree_root);
2072 		return -EIO;
2073 	}
2074 
2075 	/* returns with log_tree_root freed on success */
2076 	ret = btrfs_recover_log_trees(log_tree_root);
2077 	if (ret) {
2078 		btrfs_handle_fs_error(fs_info, ret,
2079 				      "Failed to recover log tree");
2080 		btrfs_put_root(log_tree_root);
2081 		return ret;
2082 	}
2083 
2084 	if (sb_rdonly(fs_info->sb)) {
2085 		ret = btrfs_commit_super(fs_info);
2086 		if (ret)
2087 			return ret;
2088 	}
2089 
2090 	return 0;
2091 }
2092 
2093 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2094 				      struct btrfs_path *path, u64 objectid,
2095 				      const char *name)
2096 {
2097 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2098 	struct btrfs_root *root;
2099 	u64 max_global_id = 0;
2100 	int ret;
2101 	struct btrfs_key key = {
2102 		.objectid = objectid,
2103 		.type = BTRFS_ROOT_ITEM_KEY,
2104 		.offset = 0,
2105 	};
2106 	bool found = false;
2107 
2108 	/* If we have IGNOREDATACSUMS skip loading these roots. */
2109 	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2110 	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2111 		set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2112 		return 0;
2113 	}
2114 
2115 	while (1) {
2116 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2117 		if (ret < 0)
2118 			break;
2119 
2120 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2121 			ret = btrfs_next_leaf(tree_root, path);
2122 			if (ret) {
2123 				if (ret > 0)
2124 					ret = 0;
2125 				break;
2126 			}
2127 		}
2128 		ret = 0;
2129 
2130 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2131 		if (key.objectid != objectid)
2132 			break;
2133 		btrfs_release_path(path);
2134 
2135 		/*
2136 		 * Just worry about this for extent tree, it'll be the same for
2137 		 * everybody.
2138 		 */
2139 		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2140 			max_global_id = max(max_global_id, key.offset);
2141 
2142 		found = true;
2143 		root = read_tree_root_path(tree_root, path, &key);
2144 		if (IS_ERR(root)) {
2145 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2146 				ret = PTR_ERR(root);
2147 			break;
2148 		}
2149 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2150 		ret = btrfs_global_root_insert(root);
2151 		if (ret) {
2152 			btrfs_put_root(root);
2153 			break;
2154 		}
2155 		key.offset++;
2156 	}
2157 	btrfs_release_path(path);
2158 
2159 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2160 		fs_info->nr_global_roots = max_global_id + 1;
2161 
2162 	if (!found || ret) {
2163 		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2164 			set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2165 
2166 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2167 			ret = ret ? ret : -ENOENT;
2168 		else
2169 			ret = 0;
2170 		btrfs_err(fs_info, "failed to load root %s", name);
2171 	}
2172 	return ret;
2173 }
2174 
2175 static int load_global_roots(struct btrfs_root *tree_root)
2176 {
2177 	struct btrfs_path *path;
2178 	int ret = 0;
2179 
2180 	path = btrfs_alloc_path();
2181 	if (!path)
2182 		return -ENOMEM;
2183 
2184 	ret = load_global_roots_objectid(tree_root, path,
2185 					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2186 	if (ret)
2187 		goto out;
2188 	ret = load_global_roots_objectid(tree_root, path,
2189 					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2190 	if (ret)
2191 		goto out;
2192 	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2193 		goto out;
2194 	ret = load_global_roots_objectid(tree_root, path,
2195 					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2196 					 "free space");
2197 out:
2198 	btrfs_free_path(path);
2199 	return ret;
2200 }
2201 
2202 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2203 {
2204 	struct btrfs_root *tree_root = fs_info->tree_root;
2205 	struct btrfs_root *root;
2206 	struct btrfs_key location;
2207 	int ret;
2208 
2209 	BUG_ON(!fs_info->tree_root);
2210 
2211 	ret = load_global_roots(tree_root);
2212 	if (ret)
2213 		return ret;
2214 
2215 	location.type = BTRFS_ROOT_ITEM_KEY;
2216 	location.offset = 0;
2217 
2218 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2219 		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2220 		root = btrfs_read_tree_root(tree_root, &location);
2221 		if (IS_ERR(root)) {
2222 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2223 				ret = PTR_ERR(root);
2224 				goto out;
2225 			}
2226 		} else {
2227 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2228 			fs_info->block_group_root = root;
2229 		}
2230 	}
2231 
2232 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2233 	root = btrfs_read_tree_root(tree_root, &location);
2234 	if (IS_ERR(root)) {
2235 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2236 			ret = PTR_ERR(root);
2237 			goto out;
2238 		}
2239 	} else {
2240 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2241 		fs_info->dev_root = root;
2242 	}
2243 	/* Initialize fs_info for all devices in any case */
2244 	ret = btrfs_init_devices_late(fs_info);
2245 	if (ret)
2246 		goto out;
2247 
2248 	/*
2249 	 * This tree can share blocks with some other fs tree during relocation
2250 	 * and we need a proper setup by btrfs_get_fs_root
2251 	 */
2252 	root = btrfs_get_fs_root(tree_root->fs_info,
2253 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2254 	if (IS_ERR(root)) {
2255 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2256 			ret = PTR_ERR(root);
2257 			goto out;
2258 		}
2259 	} else {
2260 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2261 		fs_info->data_reloc_root = root;
2262 	}
2263 
2264 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2265 	root = btrfs_read_tree_root(tree_root, &location);
2266 	if (!IS_ERR(root)) {
2267 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2268 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2269 		fs_info->quota_root = root;
2270 	}
2271 
2272 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2273 	root = btrfs_read_tree_root(tree_root, &location);
2274 	if (IS_ERR(root)) {
2275 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2276 			ret = PTR_ERR(root);
2277 			if (ret != -ENOENT)
2278 				goto out;
2279 		}
2280 	} else {
2281 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2282 		fs_info->uuid_root = root;
2283 	}
2284 
2285 	return 0;
2286 out:
2287 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2288 		   location.objectid, ret);
2289 	return ret;
2290 }
2291 
2292 /*
2293  * Real super block validation
2294  * NOTE: super csum type and incompat features will not be checked here.
2295  *
2296  * @sb:		super block to check
2297  * @mirror_num:	the super block number to check its bytenr:
2298  * 		0	the primary (1st) sb
2299  * 		1, 2	2nd and 3rd backup copy
2300  * 	       -1	skip bytenr check
2301  */
2302 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2303 			 struct btrfs_super_block *sb, int mirror_num)
2304 {
2305 	u64 nodesize = btrfs_super_nodesize(sb);
2306 	u64 sectorsize = btrfs_super_sectorsize(sb);
2307 	int ret = 0;
2308 
2309 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2310 		btrfs_err(fs_info, "no valid FS found");
2311 		ret = -EINVAL;
2312 	}
2313 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2314 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2315 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2316 		ret = -EINVAL;
2317 	}
2318 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2319 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2320 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2321 		ret = -EINVAL;
2322 	}
2323 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2324 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2325 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2326 		ret = -EINVAL;
2327 	}
2328 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2329 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2330 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2331 		ret = -EINVAL;
2332 	}
2333 
2334 	/*
2335 	 * Check sectorsize and nodesize first, other check will need it.
2336 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2337 	 */
2338 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2339 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2340 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2341 		ret = -EINVAL;
2342 	}
2343 
2344 	/*
2345 	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2346 	 *
2347 	 * We can support 16K sectorsize with 64K page size without problem,
2348 	 * but such sectorsize/pagesize combination doesn't make much sense.
2349 	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2350 	 * beginning.
2351 	 */
2352 	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2353 		btrfs_err(fs_info,
2354 			"sectorsize %llu not yet supported for page size %lu",
2355 			sectorsize, PAGE_SIZE);
2356 		ret = -EINVAL;
2357 	}
2358 
2359 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2360 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2361 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2362 		ret = -EINVAL;
2363 	}
2364 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2365 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2366 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2367 		ret = -EINVAL;
2368 	}
2369 
2370 	/* Root alignment check */
2371 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2372 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2373 			   btrfs_super_root(sb));
2374 		ret = -EINVAL;
2375 	}
2376 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2377 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2378 			   btrfs_super_chunk_root(sb));
2379 		ret = -EINVAL;
2380 	}
2381 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2382 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2383 			   btrfs_super_log_root(sb));
2384 		ret = -EINVAL;
2385 	}
2386 
2387 	if (memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2388 		btrfs_err(fs_info,
2389 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2390 			  sb->fsid, fs_info->fs_devices->fsid);
2391 		ret = -EINVAL;
2392 	}
2393 
2394 	if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2395 		   BTRFS_FSID_SIZE) != 0) {
2396 		btrfs_err(fs_info,
2397 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2398 			  btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2399 		ret = -EINVAL;
2400 	}
2401 
2402 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2403 		   BTRFS_FSID_SIZE) != 0) {
2404 		btrfs_err(fs_info,
2405 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2406 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2407 		ret = -EINVAL;
2408 	}
2409 
2410 	/*
2411 	 * Artificial requirement for block-group-tree to force newer features
2412 	 * (free-space-tree, no-holes) so the test matrix is smaller.
2413 	 */
2414 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2415 	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2416 	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2417 		btrfs_err(fs_info,
2418 		"block-group-tree feature requires fres-space-tree and no-holes");
2419 		ret = -EINVAL;
2420 	}
2421 
2422 	/*
2423 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2424 	 * done later
2425 	 */
2426 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2427 		btrfs_err(fs_info, "bytes_used is too small %llu",
2428 			  btrfs_super_bytes_used(sb));
2429 		ret = -EINVAL;
2430 	}
2431 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2432 		btrfs_err(fs_info, "invalid stripesize %u",
2433 			  btrfs_super_stripesize(sb));
2434 		ret = -EINVAL;
2435 	}
2436 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2437 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2438 			   btrfs_super_num_devices(sb));
2439 	if (btrfs_super_num_devices(sb) == 0) {
2440 		btrfs_err(fs_info, "number of devices is 0");
2441 		ret = -EINVAL;
2442 	}
2443 
2444 	if (mirror_num >= 0 &&
2445 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2446 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2447 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2448 		ret = -EINVAL;
2449 	}
2450 
2451 	/*
2452 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2453 	 * and one chunk
2454 	 */
2455 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2456 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2457 			  btrfs_super_sys_array_size(sb),
2458 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2459 		ret = -EINVAL;
2460 	}
2461 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2462 			+ sizeof(struct btrfs_chunk)) {
2463 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2464 			  btrfs_super_sys_array_size(sb),
2465 			  sizeof(struct btrfs_disk_key)
2466 			  + sizeof(struct btrfs_chunk));
2467 		ret = -EINVAL;
2468 	}
2469 
2470 	/*
2471 	 * The generation is a global counter, we'll trust it more than the others
2472 	 * but it's still possible that it's the one that's wrong.
2473 	 */
2474 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2475 		btrfs_warn(fs_info,
2476 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2477 			btrfs_super_generation(sb),
2478 			btrfs_super_chunk_root_generation(sb));
2479 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2480 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2481 		btrfs_warn(fs_info,
2482 			"suspicious: generation < cache_generation: %llu < %llu",
2483 			btrfs_super_generation(sb),
2484 			btrfs_super_cache_generation(sb));
2485 
2486 	return ret;
2487 }
2488 
2489 /*
2490  * Validation of super block at mount time.
2491  * Some checks already done early at mount time, like csum type and incompat
2492  * flags will be skipped.
2493  */
2494 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2495 {
2496 	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2497 }
2498 
2499 /*
2500  * Validation of super block at write time.
2501  * Some checks like bytenr check will be skipped as their values will be
2502  * overwritten soon.
2503  * Extra checks like csum type and incompat flags will be done here.
2504  */
2505 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2506 				      struct btrfs_super_block *sb)
2507 {
2508 	int ret;
2509 
2510 	ret = btrfs_validate_super(fs_info, sb, -1);
2511 	if (ret < 0)
2512 		goto out;
2513 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2514 		ret = -EUCLEAN;
2515 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2516 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2517 		goto out;
2518 	}
2519 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2520 		ret = -EUCLEAN;
2521 		btrfs_err(fs_info,
2522 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2523 			  btrfs_super_incompat_flags(sb),
2524 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2525 		goto out;
2526 	}
2527 out:
2528 	if (ret < 0)
2529 		btrfs_err(fs_info,
2530 		"super block corruption detected before writing it to disk");
2531 	return ret;
2532 }
2533 
2534 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2535 {
2536 	struct btrfs_tree_parent_check check = {
2537 		.level = level,
2538 		.transid = gen,
2539 		.owner_root = root->root_key.objectid
2540 	};
2541 	int ret = 0;
2542 
2543 	root->node = read_tree_block(root->fs_info, bytenr, &check);
2544 	if (IS_ERR(root->node)) {
2545 		ret = PTR_ERR(root->node);
2546 		root->node = NULL;
2547 		return ret;
2548 	}
2549 	if (!extent_buffer_uptodate(root->node)) {
2550 		free_extent_buffer(root->node);
2551 		root->node = NULL;
2552 		return -EIO;
2553 	}
2554 
2555 	btrfs_set_root_node(&root->root_item, root->node);
2556 	root->commit_root = btrfs_root_node(root);
2557 	btrfs_set_root_refs(&root->root_item, 1);
2558 	return ret;
2559 }
2560 
2561 static int load_important_roots(struct btrfs_fs_info *fs_info)
2562 {
2563 	struct btrfs_super_block *sb = fs_info->super_copy;
2564 	u64 gen, bytenr;
2565 	int level, ret;
2566 
2567 	bytenr = btrfs_super_root(sb);
2568 	gen = btrfs_super_generation(sb);
2569 	level = btrfs_super_root_level(sb);
2570 	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2571 	if (ret) {
2572 		btrfs_warn(fs_info, "couldn't read tree root");
2573 		return ret;
2574 	}
2575 	return 0;
2576 }
2577 
2578 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2579 {
2580 	int backup_index = find_newest_super_backup(fs_info);
2581 	struct btrfs_super_block *sb = fs_info->super_copy;
2582 	struct btrfs_root *tree_root = fs_info->tree_root;
2583 	bool handle_error = false;
2584 	int ret = 0;
2585 	int i;
2586 
2587 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2588 		if (handle_error) {
2589 			if (!IS_ERR(tree_root->node))
2590 				free_extent_buffer(tree_root->node);
2591 			tree_root->node = NULL;
2592 
2593 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2594 				break;
2595 
2596 			free_root_pointers(fs_info, 0);
2597 
2598 			/*
2599 			 * Don't use the log in recovery mode, it won't be
2600 			 * valid
2601 			 */
2602 			btrfs_set_super_log_root(sb, 0);
2603 
2604 			/* We can't trust the free space cache either */
2605 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2606 
2607 			btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2608 			ret = read_backup_root(fs_info, i);
2609 			backup_index = ret;
2610 			if (ret < 0)
2611 				return ret;
2612 		}
2613 
2614 		ret = load_important_roots(fs_info);
2615 		if (ret) {
2616 			handle_error = true;
2617 			continue;
2618 		}
2619 
2620 		/*
2621 		 * No need to hold btrfs_root::objectid_mutex since the fs
2622 		 * hasn't been fully initialised and we are the only user
2623 		 */
2624 		ret = btrfs_init_root_free_objectid(tree_root);
2625 		if (ret < 0) {
2626 			handle_error = true;
2627 			continue;
2628 		}
2629 
2630 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2631 
2632 		ret = btrfs_read_roots(fs_info);
2633 		if (ret < 0) {
2634 			handle_error = true;
2635 			continue;
2636 		}
2637 
2638 		/* All successful */
2639 		fs_info->generation = btrfs_header_generation(tree_root->node);
2640 		fs_info->last_trans_committed = fs_info->generation;
2641 		fs_info->last_reloc_trans = 0;
2642 
2643 		/* Always begin writing backup roots after the one being used */
2644 		if (backup_index < 0) {
2645 			fs_info->backup_root_index = 0;
2646 		} else {
2647 			fs_info->backup_root_index = backup_index + 1;
2648 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2649 		}
2650 		break;
2651 	}
2652 
2653 	return ret;
2654 }
2655 
2656 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2657 {
2658 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2659 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2660 	INIT_LIST_HEAD(&fs_info->trans_list);
2661 	INIT_LIST_HEAD(&fs_info->dead_roots);
2662 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2663 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2664 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2665 	spin_lock_init(&fs_info->delalloc_root_lock);
2666 	spin_lock_init(&fs_info->trans_lock);
2667 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2668 	spin_lock_init(&fs_info->delayed_iput_lock);
2669 	spin_lock_init(&fs_info->defrag_inodes_lock);
2670 	spin_lock_init(&fs_info->super_lock);
2671 	spin_lock_init(&fs_info->buffer_lock);
2672 	spin_lock_init(&fs_info->unused_bgs_lock);
2673 	spin_lock_init(&fs_info->treelog_bg_lock);
2674 	spin_lock_init(&fs_info->zone_active_bgs_lock);
2675 	spin_lock_init(&fs_info->relocation_bg_lock);
2676 	rwlock_init(&fs_info->tree_mod_log_lock);
2677 	rwlock_init(&fs_info->global_root_lock);
2678 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2679 	mutex_init(&fs_info->reclaim_bgs_lock);
2680 	mutex_init(&fs_info->reloc_mutex);
2681 	mutex_init(&fs_info->delalloc_root_mutex);
2682 	mutex_init(&fs_info->zoned_meta_io_lock);
2683 	mutex_init(&fs_info->zoned_data_reloc_io_lock);
2684 	seqlock_init(&fs_info->profiles_lock);
2685 
2686 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2687 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2688 	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2689 	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2690 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
2691 				     BTRFS_LOCKDEP_TRANS_COMMIT_START);
2692 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2693 				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2694 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2695 				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2696 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2697 				     BTRFS_LOCKDEP_TRANS_COMPLETED);
2698 
2699 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2700 	INIT_LIST_HEAD(&fs_info->space_info);
2701 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2702 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2703 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2704 	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2705 #ifdef CONFIG_BTRFS_DEBUG
2706 	INIT_LIST_HEAD(&fs_info->allocated_roots);
2707 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2708 	spin_lock_init(&fs_info->eb_leak_lock);
2709 #endif
2710 	extent_map_tree_init(&fs_info->mapping_tree);
2711 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2712 			     BTRFS_BLOCK_RSV_GLOBAL);
2713 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2714 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2715 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2716 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2717 			     BTRFS_BLOCK_RSV_DELOPS);
2718 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2719 			     BTRFS_BLOCK_RSV_DELREFS);
2720 
2721 	atomic_set(&fs_info->async_delalloc_pages, 0);
2722 	atomic_set(&fs_info->defrag_running, 0);
2723 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2724 	atomic64_set(&fs_info->tree_mod_seq, 0);
2725 	fs_info->global_root_tree = RB_ROOT;
2726 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2727 	fs_info->metadata_ratio = 0;
2728 	fs_info->defrag_inodes = RB_ROOT;
2729 	atomic64_set(&fs_info->free_chunk_space, 0);
2730 	fs_info->tree_mod_log = RB_ROOT;
2731 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2732 	btrfs_init_ref_verify(fs_info);
2733 
2734 	fs_info->thread_pool_size = min_t(unsigned long,
2735 					  num_online_cpus() + 2, 8);
2736 
2737 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2738 	spin_lock_init(&fs_info->ordered_root_lock);
2739 
2740 	btrfs_init_scrub(fs_info);
2741 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2742 	fs_info->check_integrity_print_mask = 0;
2743 #endif
2744 	btrfs_init_balance(fs_info);
2745 	btrfs_init_async_reclaim_work(fs_info);
2746 
2747 	rwlock_init(&fs_info->block_group_cache_lock);
2748 	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2749 
2750 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2751 			    IO_TREE_FS_EXCLUDED_EXTENTS);
2752 
2753 	mutex_init(&fs_info->ordered_operations_mutex);
2754 	mutex_init(&fs_info->tree_log_mutex);
2755 	mutex_init(&fs_info->chunk_mutex);
2756 	mutex_init(&fs_info->transaction_kthread_mutex);
2757 	mutex_init(&fs_info->cleaner_mutex);
2758 	mutex_init(&fs_info->ro_block_group_mutex);
2759 	init_rwsem(&fs_info->commit_root_sem);
2760 	init_rwsem(&fs_info->cleanup_work_sem);
2761 	init_rwsem(&fs_info->subvol_sem);
2762 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2763 
2764 	btrfs_init_dev_replace_locks(fs_info);
2765 	btrfs_init_qgroup(fs_info);
2766 	btrfs_discard_init(fs_info);
2767 
2768 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2769 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2770 
2771 	init_waitqueue_head(&fs_info->transaction_throttle);
2772 	init_waitqueue_head(&fs_info->transaction_wait);
2773 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2774 	init_waitqueue_head(&fs_info->async_submit_wait);
2775 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2776 
2777 	/* Usable values until the real ones are cached from the superblock */
2778 	fs_info->nodesize = 4096;
2779 	fs_info->sectorsize = 4096;
2780 	fs_info->sectorsize_bits = ilog2(4096);
2781 	fs_info->stripesize = 4096;
2782 
2783 	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2784 
2785 	spin_lock_init(&fs_info->swapfile_pins_lock);
2786 	fs_info->swapfile_pins = RB_ROOT;
2787 
2788 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2789 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2790 }
2791 
2792 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2793 {
2794 	int ret;
2795 
2796 	fs_info->sb = sb;
2797 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2798 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2799 
2800 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2801 	if (ret)
2802 		return ret;
2803 
2804 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2805 	if (ret)
2806 		return ret;
2807 
2808 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2809 					(1 + ilog2(nr_cpu_ids));
2810 
2811 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2812 	if (ret)
2813 		return ret;
2814 
2815 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2816 			GFP_KERNEL);
2817 	if (ret)
2818 		return ret;
2819 
2820 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2821 					GFP_KERNEL);
2822 	if (!fs_info->delayed_root)
2823 		return -ENOMEM;
2824 	btrfs_init_delayed_root(fs_info->delayed_root);
2825 
2826 	if (sb_rdonly(sb))
2827 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2828 
2829 	return btrfs_alloc_stripe_hash_table(fs_info);
2830 }
2831 
2832 static int btrfs_uuid_rescan_kthread(void *data)
2833 {
2834 	struct btrfs_fs_info *fs_info = data;
2835 	int ret;
2836 
2837 	/*
2838 	 * 1st step is to iterate through the existing UUID tree and
2839 	 * to delete all entries that contain outdated data.
2840 	 * 2nd step is to add all missing entries to the UUID tree.
2841 	 */
2842 	ret = btrfs_uuid_tree_iterate(fs_info);
2843 	if (ret < 0) {
2844 		if (ret != -EINTR)
2845 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2846 				   ret);
2847 		up(&fs_info->uuid_tree_rescan_sem);
2848 		return ret;
2849 	}
2850 	return btrfs_uuid_scan_kthread(data);
2851 }
2852 
2853 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2854 {
2855 	struct task_struct *task;
2856 
2857 	down(&fs_info->uuid_tree_rescan_sem);
2858 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2859 	if (IS_ERR(task)) {
2860 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2861 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2862 		up(&fs_info->uuid_tree_rescan_sem);
2863 		return PTR_ERR(task);
2864 	}
2865 
2866 	return 0;
2867 }
2868 
2869 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2870 {
2871 	u64 root_objectid = 0;
2872 	struct btrfs_root *gang[8];
2873 	int i = 0;
2874 	int err = 0;
2875 	unsigned int ret = 0;
2876 
2877 	while (1) {
2878 		spin_lock(&fs_info->fs_roots_radix_lock);
2879 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2880 					     (void **)gang, root_objectid,
2881 					     ARRAY_SIZE(gang));
2882 		if (!ret) {
2883 			spin_unlock(&fs_info->fs_roots_radix_lock);
2884 			break;
2885 		}
2886 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
2887 
2888 		for (i = 0; i < ret; i++) {
2889 			/* Avoid to grab roots in dead_roots. */
2890 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2891 				gang[i] = NULL;
2892 				continue;
2893 			}
2894 			/* Grab all the search result for later use. */
2895 			gang[i] = btrfs_grab_root(gang[i]);
2896 		}
2897 		spin_unlock(&fs_info->fs_roots_radix_lock);
2898 
2899 		for (i = 0; i < ret; i++) {
2900 			if (!gang[i])
2901 				continue;
2902 			root_objectid = gang[i]->root_key.objectid;
2903 			err = btrfs_orphan_cleanup(gang[i]);
2904 			if (err)
2905 				goto out;
2906 			btrfs_put_root(gang[i]);
2907 		}
2908 		root_objectid++;
2909 	}
2910 out:
2911 	/* Release the uncleaned roots due to error. */
2912 	for (; i < ret; i++) {
2913 		if (gang[i])
2914 			btrfs_put_root(gang[i]);
2915 	}
2916 	return err;
2917 }
2918 
2919 /*
2920  * Some options only have meaning at mount time and shouldn't persist across
2921  * remounts, or be displayed. Clear these at the end of mount and remount
2922  * code paths.
2923  */
2924 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
2925 {
2926 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
2927 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
2928 }
2929 
2930 /*
2931  * Mounting logic specific to read-write file systems. Shared by open_ctree
2932  * and btrfs_remount when remounting from read-only to read-write.
2933  */
2934 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2935 {
2936 	int ret;
2937 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2938 	bool rebuild_free_space_tree = false;
2939 
2940 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2941 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2942 		rebuild_free_space_tree = true;
2943 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2944 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2945 		btrfs_warn(fs_info, "free space tree is invalid");
2946 		rebuild_free_space_tree = true;
2947 	}
2948 
2949 	if (rebuild_free_space_tree) {
2950 		btrfs_info(fs_info, "rebuilding free space tree");
2951 		ret = btrfs_rebuild_free_space_tree(fs_info);
2952 		if (ret) {
2953 			btrfs_warn(fs_info,
2954 				   "failed to rebuild free space tree: %d", ret);
2955 			goto out;
2956 		}
2957 	}
2958 
2959 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2960 	    !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
2961 		btrfs_info(fs_info, "disabling free space tree");
2962 		ret = btrfs_delete_free_space_tree(fs_info);
2963 		if (ret) {
2964 			btrfs_warn(fs_info,
2965 				   "failed to disable free space tree: %d", ret);
2966 			goto out;
2967 		}
2968 	}
2969 
2970 	/*
2971 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
2972 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
2973 	 * them into the fs_info->fs_roots_radix tree. This must be done before
2974 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
2975 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
2976 	 * item before the root's tree is deleted - this means that if we unmount
2977 	 * or crash before the deletion completes, on the next mount we will not
2978 	 * delete what remains of the tree because the orphan item does not
2979 	 * exists anymore, which is what tells us we have a pending deletion.
2980 	 */
2981 	ret = btrfs_find_orphan_roots(fs_info);
2982 	if (ret)
2983 		goto out;
2984 
2985 	ret = btrfs_cleanup_fs_roots(fs_info);
2986 	if (ret)
2987 		goto out;
2988 
2989 	down_read(&fs_info->cleanup_work_sem);
2990 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2991 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2992 		up_read(&fs_info->cleanup_work_sem);
2993 		goto out;
2994 	}
2995 	up_read(&fs_info->cleanup_work_sem);
2996 
2997 	mutex_lock(&fs_info->cleaner_mutex);
2998 	ret = btrfs_recover_relocation(fs_info);
2999 	mutex_unlock(&fs_info->cleaner_mutex);
3000 	if (ret < 0) {
3001 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3002 		goto out;
3003 	}
3004 
3005 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3006 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3007 		btrfs_info(fs_info, "creating free space tree");
3008 		ret = btrfs_create_free_space_tree(fs_info);
3009 		if (ret) {
3010 			btrfs_warn(fs_info,
3011 				"failed to create free space tree: %d", ret);
3012 			goto out;
3013 		}
3014 	}
3015 
3016 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3017 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3018 		if (ret)
3019 			goto out;
3020 	}
3021 
3022 	ret = btrfs_resume_balance_async(fs_info);
3023 	if (ret)
3024 		goto out;
3025 
3026 	ret = btrfs_resume_dev_replace_async(fs_info);
3027 	if (ret) {
3028 		btrfs_warn(fs_info, "failed to resume dev_replace");
3029 		goto out;
3030 	}
3031 
3032 	btrfs_qgroup_rescan_resume(fs_info);
3033 
3034 	if (!fs_info->uuid_root) {
3035 		btrfs_info(fs_info, "creating UUID tree");
3036 		ret = btrfs_create_uuid_tree(fs_info);
3037 		if (ret) {
3038 			btrfs_warn(fs_info,
3039 				   "failed to create the UUID tree %d", ret);
3040 			goto out;
3041 		}
3042 	}
3043 
3044 out:
3045 	return ret;
3046 }
3047 
3048 /*
3049  * Do various sanity and dependency checks of different features.
3050  *
3051  * @is_rw_mount:	If the mount is read-write.
3052  *
3053  * This is the place for less strict checks (like for subpage or artificial
3054  * feature dependencies).
3055  *
3056  * For strict checks or possible corruption detection, see
3057  * btrfs_validate_super().
3058  *
3059  * This should be called after btrfs_parse_options(), as some mount options
3060  * (space cache related) can modify on-disk format like free space tree and
3061  * screw up certain feature dependencies.
3062  */
3063 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3064 {
3065 	struct btrfs_super_block *disk_super = fs_info->super_copy;
3066 	u64 incompat = btrfs_super_incompat_flags(disk_super);
3067 	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3068 	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3069 
3070 	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3071 		btrfs_err(fs_info,
3072 		"cannot mount because of unknown incompat features (0x%llx)",
3073 		    incompat);
3074 		return -EINVAL;
3075 	}
3076 
3077 	/* Runtime limitation for mixed block groups. */
3078 	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3079 	    (fs_info->sectorsize != fs_info->nodesize)) {
3080 		btrfs_err(fs_info,
3081 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3082 			fs_info->nodesize, fs_info->sectorsize);
3083 		return -EINVAL;
3084 	}
3085 
3086 	/* Mixed backref is an always-enabled feature. */
3087 	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3088 
3089 	/* Set compression related flags just in case. */
3090 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3091 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3092 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3093 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3094 
3095 	/*
3096 	 * An ancient flag, which should really be marked deprecated.
3097 	 * Such runtime limitation doesn't really need a incompat flag.
3098 	 */
3099 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3100 		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3101 
3102 	if (compat_ro_unsupp && is_rw_mount) {
3103 		btrfs_err(fs_info,
3104 	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3105 		       compat_ro);
3106 		return -EINVAL;
3107 	}
3108 
3109 	/*
3110 	 * We have unsupported RO compat features, although RO mounted, we
3111 	 * should not cause any metadata writes, including log replay.
3112 	 * Or we could screw up whatever the new feature requires.
3113 	 */
3114 	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3115 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3116 		btrfs_err(fs_info,
3117 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3118 			  compat_ro);
3119 		return -EINVAL;
3120 	}
3121 
3122 	/*
3123 	 * Artificial limitations for block group tree, to force
3124 	 * block-group-tree to rely on no-holes and free-space-tree.
3125 	 */
3126 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3127 	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3128 	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3129 		btrfs_err(fs_info,
3130 "block-group-tree feature requires no-holes and free-space-tree features");
3131 		return -EINVAL;
3132 	}
3133 
3134 	/*
3135 	 * Subpage runtime limitation on v1 cache.
3136 	 *
3137 	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3138 	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3139 	 * going to be deprecated anyway.
3140 	 */
3141 	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3142 		btrfs_warn(fs_info,
3143 	"v1 space cache is not supported for page size %lu with sectorsize %u",
3144 			   PAGE_SIZE, fs_info->sectorsize);
3145 		return -EINVAL;
3146 	}
3147 
3148 	/* This can be called by remount, we need to protect the super block. */
3149 	spin_lock(&fs_info->super_lock);
3150 	btrfs_set_super_incompat_flags(disk_super, incompat);
3151 	spin_unlock(&fs_info->super_lock);
3152 
3153 	return 0;
3154 }
3155 
3156 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3157 		      char *options)
3158 {
3159 	u32 sectorsize;
3160 	u32 nodesize;
3161 	u32 stripesize;
3162 	u64 generation;
3163 	u64 features;
3164 	u16 csum_type;
3165 	struct btrfs_super_block *disk_super;
3166 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3167 	struct btrfs_root *tree_root;
3168 	struct btrfs_root *chunk_root;
3169 	int ret;
3170 	int level;
3171 
3172 	ret = init_mount_fs_info(fs_info, sb);
3173 	if (ret)
3174 		goto fail;
3175 
3176 	/* These need to be init'ed before we start creating inodes and such. */
3177 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3178 				     GFP_KERNEL);
3179 	fs_info->tree_root = tree_root;
3180 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3181 				      GFP_KERNEL);
3182 	fs_info->chunk_root = chunk_root;
3183 	if (!tree_root || !chunk_root) {
3184 		ret = -ENOMEM;
3185 		goto fail;
3186 	}
3187 
3188 	ret = btrfs_init_btree_inode(sb);
3189 	if (ret)
3190 		goto fail;
3191 
3192 	invalidate_bdev(fs_devices->latest_dev->bdev);
3193 
3194 	/*
3195 	 * Read super block and check the signature bytes only
3196 	 */
3197 	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3198 	if (IS_ERR(disk_super)) {
3199 		ret = PTR_ERR(disk_super);
3200 		goto fail_alloc;
3201 	}
3202 
3203 	/*
3204 	 * Verify the type first, if that or the checksum value are
3205 	 * corrupted, we'll find out
3206 	 */
3207 	csum_type = btrfs_super_csum_type(disk_super);
3208 	if (!btrfs_supported_super_csum(csum_type)) {
3209 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3210 			  csum_type);
3211 		ret = -EINVAL;
3212 		btrfs_release_disk_super(disk_super);
3213 		goto fail_alloc;
3214 	}
3215 
3216 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3217 
3218 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3219 	if (ret) {
3220 		btrfs_release_disk_super(disk_super);
3221 		goto fail_alloc;
3222 	}
3223 
3224 	/*
3225 	 * We want to check superblock checksum, the type is stored inside.
3226 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3227 	 */
3228 	if (btrfs_check_super_csum(fs_info, disk_super)) {
3229 		btrfs_err(fs_info, "superblock checksum mismatch");
3230 		ret = -EINVAL;
3231 		btrfs_release_disk_super(disk_super);
3232 		goto fail_alloc;
3233 	}
3234 
3235 	/*
3236 	 * super_copy is zeroed at allocation time and we never touch the
3237 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3238 	 * the whole block of INFO_SIZE
3239 	 */
3240 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3241 	btrfs_release_disk_super(disk_super);
3242 
3243 	disk_super = fs_info->super_copy;
3244 
3245 
3246 	features = btrfs_super_flags(disk_super);
3247 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3248 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3249 		btrfs_set_super_flags(disk_super, features);
3250 		btrfs_info(fs_info,
3251 			"found metadata UUID change in progress flag, clearing");
3252 	}
3253 
3254 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3255 	       sizeof(*fs_info->super_for_commit));
3256 
3257 	ret = btrfs_validate_mount_super(fs_info);
3258 	if (ret) {
3259 		btrfs_err(fs_info, "superblock contains fatal errors");
3260 		ret = -EINVAL;
3261 		goto fail_alloc;
3262 	}
3263 
3264 	if (!btrfs_super_root(disk_super)) {
3265 		btrfs_err(fs_info, "invalid superblock tree root bytenr");
3266 		ret = -EINVAL;
3267 		goto fail_alloc;
3268 	}
3269 
3270 	/* check FS state, whether FS is broken. */
3271 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3272 		WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3273 
3274 	/*
3275 	 * In the long term, we'll store the compression type in the super
3276 	 * block, and it'll be used for per file compression control.
3277 	 */
3278 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3279 
3280 
3281 	/* Set up fs_info before parsing mount options */
3282 	nodesize = btrfs_super_nodesize(disk_super);
3283 	sectorsize = btrfs_super_sectorsize(disk_super);
3284 	stripesize = sectorsize;
3285 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3286 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3287 
3288 	fs_info->nodesize = nodesize;
3289 	fs_info->sectorsize = sectorsize;
3290 	fs_info->sectorsize_bits = ilog2(sectorsize);
3291 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3292 	fs_info->stripesize = stripesize;
3293 
3294 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3295 	if (ret)
3296 		goto fail_alloc;
3297 
3298 	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3299 	if (ret < 0)
3300 		goto fail_alloc;
3301 
3302 	if (sectorsize < PAGE_SIZE) {
3303 		struct btrfs_subpage_info *subpage_info;
3304 
3305 		/*
3306 		 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3307 		 * going to be deprecated.
3308 		 *
3309 		 * Force to use v2 cache for subpage case.
3310 		 */
3311 		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3312 		btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3313 			"forcing free space tree for sector size %u with page size %lu",
3314 			sectorsize, PAGE_SIZE);
3315 
3316 		btrfs_warn(fs_info,
3317 		"read-write for sector size %u with page size %lu is experimental",
3318 			   sectorsize, PAGE_SIZE);
3319 		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3320 		if (!subpage_info) {
3321 			ret = -ENOMEM;
3322 			goto fail_alloc;
3323 		}
3324 		btrfs_init_subpage_info(subpage_info, sectorsize);
3325 		fs_info->subpage_info = subpage_info;
3326 	}
3327 
3328 	ret = btrfs_init_workqueues(fs_info);
3329 	if (ret)
3330 		goto fail_sb_buffer;
3331 
3332 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3333 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3334 
3335 	sb->s_blocksize = sectorsize;
3336 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3337 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3338 
3339 	mutex_lock(&fs_info->chunk_mutex);
3340 	ret = btrfs_read_sys_array(fs_info);
3341 	mutex_unlock(&fs_info->chunk_mutex);
3342 	if (ret) {
3343 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3344 		goto fail_sb_buffer;
3345 	}
3346 
3347 	generation = btrfs_super_chunk_root_generation(disk_super);
3348 	level = btrfs_super_chunk_root_level(disk_super);
3349 	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3350 			      generation, level);
3351 	if (ret) {
3352 		btrfs_err(fs_info, "failed to read chunk root");
3353 		goto fail_tree_roots;
3354 	}
3355 
3356 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3357 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3358 			   BTRFS_UUID_SIZE);
3359 
3360 	ret = btrfs_read_chunk_tree(fs_info);
3361 	if (ret) {
3362 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3363 		goto fail_tree_roots;
3364 	}
3365 
3366 	/*
3367 	 * At this point we know all the devices that make this filesystem,
3368 	 * including the seed devices but we don't know yet if the replace
3369 	 * target is required. So free devices that are not part of this
3370 	 * filesystem but skip the replace target device which is checked
3371 	 * below in btrfs_init_dev_replace().
3372 	 */
3373 	btrfs_free_extra_devids(fs_devices);
3374 	if (!fs_devices->latest_dev->bdev) {
3375 		btrfs_err(fs_info, "failed to read devices");
3376 		ret = -EIO;
3377 		goto fail_tree_roots;
3378 	}
3379 
3380 	ret = init_tree_roots(fs_info);
3381 	if (ret)
3382 		goto fail_tree_roots;
3383 
3384 	/*
3385 	 * Get zone type information of zoned block devices. This will also
3386 	 * handle emulation of a zoned filesystem if a regular device has the
3387 	 * zoned incompat feature flag set.
3388 	 */
3389 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3390 	if (ret) {
3391 		btrfs_err(fs_info,
3392 			  "zoned: failed to read device zone info: %d", ret);
3393 		goto fail_block_groups;
3394 	}
3395 
3396 	/*
3397 	 * If we have a uuid root and we're not being told to rescan we need to
3398 	 * check the generation here so we can set the
3399 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3400 	 * transaction during a balance or the log replay without updating the
3401 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3402 	 * even though it was perfectly fine.
3403 	 */
3404 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3405 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3406 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3407 
3408 	ret = btrfs_verify_dev_extents(fs_info);
3409 	if (ret) {
3410 		btrfs_err(fs_info,
3411 			  "failed to verify dev extents against chunks: %d",
3412 			  ret);
3413 		goto fail_block_groups;
3414 	}
3415 	ret = btrfs_recover_balance(fs_info);
3416 	if (ret) {
3417 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3418 		goto fail_block_groups;
3419 	}
3420 
3421 	ret = btrfs_init_dev_stats(fs_info);
3422 	if (ret) {
3423 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3424 		goto fail_block_groups;
3425 	}
3426 
3427 	ret = btrfs_init_dev_replace(fs_info);
3428 	if (ret) {
3429 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3430 		goto fail_block_groups;
3431 	}
3432 
3433 	ret = btrfs_check_zoned_mode(fs_info);
3434 	if (ret) {
3435 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3436 			  ret);
3437 		goto fail_block_groups;
3438 	}
3439 
3440 	ret = btrfs_sysfs_add_fsid(fs_devices);
3441 	if (ret) {
3442 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3443 				ret);
3444 		goto fail_block_groups;
3445 	}
3446 
3447 	ret = btrfs_sysfs_add_mounted(fs_info);
3448 	if (ret) {
3449 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3450 		goto fail_fsdev_sysfs;
3451 	}
3452 
3453 	ret = btrfs_init_space_info(fs_info);
3454 	if (ret) {
3455 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3456 		goto fail_sysfs;
3457 	}
3458 
3459 	ret = btrfs_read_block_groups(fs_info);
3460 	if (ret) {
3461 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3462 		goto fail_sysfs;
3463 	}
3464 
3465 	btrfs_free_zone_cache(fs_info);
3466 
3467 	btrfs_check_active_zone_reservation(fs_info);
3468 
3469 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3470 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3471 		btrfs_warn(fs_info,
3472 		"writable mount is not allowed due to too many missing devices");
3473 		ret = -EINVAL;
3474 		goto fail_sysfs;
3475 	}
3476 
3477 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3478 					       "btrfs-cleaner");
3479 	if (IS_ERR(fs_info->cleaner_kthread)) {
3480 		ret = PTR_ERR(fs_info->cleaner_kthread);
3481 		goto fail_sysfs;
3482 	}
3483 
3484 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3485 						   tree_root,
3486 						   "btrfs-transaction");
3487 	if (IS_ERR(fs_info->transaction_kthread)) {
3488 		ret = PTR_ERR(fs_info->transaction_kthread);
3489 		goto fail_cleaner;
3490 	}
3491 
3492 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3493 	    !fs_info->fs_devices->rotating) {
3494 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3495 	}
3496 
3497 	/*
3498 	 * For devices supporting discard turn on discard=async automatically,
3499 	 * unless it's already set or disabled. This could be turned off by
3500 	 * nodiscard for the same mount.
3501 	 *
3502 	 * The zoned mode piggy backs on the discard functionality for
3503 	 * resetting a zone. There is no reason to delay the zone reset as it is
3504 	 * fast enough. So, do not enable async discard for zoned mode.
3505 	 */
3506 	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
3507 	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
3508 	      btrfs_test_opt(fs_info, NODISCARD)) &&
3509 	    fs_info->fs_devices->discardable &&
3510 	    !btrfs_is_zoned(fs_info)) {
3511 		btrfs_set_and_info(fs_info, DISCARD_ASYNC,
3512 				   "auto enabling async discard");
3513 	}
3514 
3515 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3516 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3517 		ret = btrfsic_mount(fs_info, fs_devices,
3518 				    btrfs_test_opt(fs_info,
3519 					CHECK_INTEGRITY_DATA) ? 1 : 0,
3520 				    fs_info->check_integrity_print_mask);
3521 		if (ret)
3522 			btrfs_warn(fs_info,
3523 				"failed to initialize integrity check module: %d",
3524 				ret);
3525 	}
3526 #endif
3527 	ret = btrfs_read_qgroup_config(fs_info);
3528 	if (ret)
3529 		goto fail_trans_kthread;
3530 
3531 	if (btrfs_build_ref_tree(fs_info))
3532 		btrfs_err(fs_info, "couldn't build ref tree");
3533 
3534 	/* do not make disk changes in broken FS or nologreplay is given */
3535 	if (btrfs_super_log_root(disk_super) != 0 &&
3536 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3537 		btrfs_info(fs_info, "start tree-log replay");
3538 		ret = btrfs_replay_log(fs_info, fs_devices);
3539 		if (ret)
3540 			goto fail_qgroup;
3541 	}
3542 
3543 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3544 	if (IS_ERR(fs_info->fs_root)) {
3545 		ret = PTR_ERR(fs_info->fs_root);
3546 		btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3547 		fs_info->fs_root = NULL;
3548 		goto fail_qgroup;
3549 	}
3550 
3551 	if (sb_rdonly(sb))
3552 		goto clear_oneshot;
3553 
3554 	ret = btrfs_start_pre_rw_mount(fs_info);
3555 	if (ret) {
3556 		close_ctree(fs_info);
3557 		return ret;
3558 	}
3559 	btrfs_discard_resume(fs_info);
3560 
3561 	if (fs_info->uuid_root &&
3562 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3563 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3564 		btrfs_info(fs_info, "checking UUID tree");
3565 		ret = btrfs_check_uuid_tree(fs_info);
3566 		if (ret) {
3567 			btrfs_warn(fs_info,
3568 				"failed to check the UUID tree: %d", ret);
3569 			close_ctree(fs_info);
3570 			return ret;
3571 		}
3572 	}
3573 
3574 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3575 
3576 	/* Kick the cleaner thread so it'll start deleting snapshots. */
3577 	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3578 		wake_up_process(fs_info->cleaner_kthread);
3579 
3580 clear_oneshot:
3581 	btrfs_clear_oneshot_options(fs_info);
3582 	return 0;
3583 
3584 fail_qgroup:
3585 	btrfs_free_qgroup_config(fs_info);
3586 fail_trans_kthread:
3587 	kthread_stop(fs_info->transaction_kthread);
3588 	btrfs_cleanup_transaction(fs_info);
3589 	btrfs_free_fs_roots(fs_info);
3590 fail_cleaner:
3591 	kthread_stop(fs_info->cleaner_kthread);
3592 
3593 	/*
3594 	 * make sure we're done with the btree inode before we stop our
3595 	 * kthreads
3596 	 */
3597 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3598 
3599 fail_sysfs:
3600 	btrfs_sysfs_remove_mounted(fs_info);
3601 
3602 fail_fsdev_sysfs:
3603 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3604 
3605 fail_block_groups:
3606 	btrfs_put_block_group_cache(fs_info);
3607 
3608 fail_tree_roots:
3609 	if (fs_info->data_reloc_root)
3610 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3611 	free_root_pointers(fs_info, true);
3612 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3613 
3614 fail_sb_buffer:
3615 	btrfs_stop_all_workers(fs_info);
3616 	btrfs_free_block_groups(fs_info);
3617 fail_alloc:
3618 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3619 
3620 	iput(fs_info->btree_inode);
3621 fail:
3622 	btrfs_close_devices(fs_info->fs_devices);
3623 	ASSERT(ret < 0);
3624 	return ret;
3625 }
3626 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3627 
3628 static void btrfs_end_super_write(struct bio *bio)
3629 {
3630 	struct btrfs_device *device = bio->bi_private;
3631 	struct bio_vec *bvec;
3632 	struct bvec_iter_all iter_all;
3633 	struct page *page;
3634 
3635 	bio_for_each_segment_all(bvec, bio, iter_all) {
3636 		page = bvec->bv_page;
3637 
3638 		if (bio->bi_status) {
3639 			btrfs_warn_rl_in_rcu(device->fs_info,
3640 				"lost page write due to IO error on %s (%d)",
3641 				btrfs_dev_name(device),
3642 				blk_status_to_errno(bio->bi_status));
3643 			ClearPageUptodate(page);
3644 			SetPageError(page);
3645 			btrfs_dev_stat_inc_and_print(device,
3646 						     BTRFS_DEV_STAT_WRITE_ERRS);
3647 		} else {
3648 			SetPageUptodate(page);
3649 		}
3650 
3651 		put_page(page);
3652 		unlock_page(page);
3653 	}
3654 
3655 	bio_put(bio);
3656 }
3657 
3658 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3659 						   int copy_num, bool drop_cache)
3660 {
3661 	struct btrfs_super_block *super;
3662 	struct page *page;
3663 	u64 bytenr, bytenr_orig;
3664 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3665 	int ret;
3666 
3667 	bytenr_orig = btrfs_sb_offset(copy_num);
3668 	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3669 	if (ret == -ENOENT)
3670 		return ERR_PTR(-EINVAL);
3671 	else if (ret)
3672 		return ERR_PTR(ret);
3673 
3674 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3675 		return ERR_PTR(-EINVAL);
3676 
3677 	if (drop_cache) {
3678 		/* This should only be called with the primary sb. */
3679 		ASSERT(copy_num == 0);
3680 
3681 		/*
3682 		 * Drop the page of the primary superblock, so later read will
3683 		 * always read from the device.
3684 		 */
3685 		invalidate_inode_pages2_range(mapping,
3686 				bytenr >> PAGE_SHIFT,
3687 				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3688 	}
3689 
3690 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3691 	if (IS_ERR(page))
3692 		return ERR_CAST(page);
3693 
3694 	super = page_address(page);
3695 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3696 		btrfs_release_disk_super(super);
3697 		return ERR_PTR(-ENODATA);
3698 	}
3699 
3700 	if (btrfs_super_bytenr(super) != bytenr_orig) {
3701 		btrfs_release_disk_super(super);
3702 		return ERR_PTR(-EINVAL);
3703 	}
3704 
3705 	return super;
3706 }
3707 
3708 
3709 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3710 {
3711 	struct btrfs_super_block *super, *latest = NULL;
3712 	int i;
3713 	u64 transid = 0;
3714 
3715 	/* we would like to check all the supers, but that would make
3716 	 * a btrfs mount succeed after a mkfs from a different FS.
3717 	 * So, we need to add a special mount option to scan for
3718 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3719 	 */
3720 	for (i = 0; i < 1; i++) {
3721 		super = btrfs_read_dev_one_super(bdev, i, false);
3722 		if (IS_ERR(super))
3723 			continue;
3724 
3725 		if (!latest || btrfs_super_generation(super) > transid) {
3726 			if (latest)
3727 				btrfs_release_disk_super(super);
3728 
3729 			latest = super;
3730 			transid = btrfs_super_generation(super);
3731 		}
3732 	}
3733 
3734 	return super;
3735 }
3736 
3737 /*
3738  * Write superblock @sb to the @device. Do not wait for completion, all the
3739  * pages we use for writing are locked.
3740  *
3741  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3742  * the expected device size at commit time. Note that max_mirrors must be
3743  * same for write and wait phases.
3744  *
3745  * Return number of errors when page is not found or submission fails.
3746  */
3747 static int write_dev_supers(struct btrfs_device *device,
3748 			    struct btrfs_super_block *sb, int max_mirrors)
3749 {
3750 	struct btrfs_fs_info *fs_info = device->fs_info;
3751 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3752 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3753 	int i;
3754 	int errors = 0;
3755 	int ret;
3756 	u64 bytenr, bytenr_orig;
3757 
3758 	if (max_mirrors == 0)
3759 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3760 
3761 	shash->tfm = fs_info->csum_shash;
3762 
3763 	for (i = 0; i < max_mirrors; i++) {
3764 		struct page *page;
3765 		struct bio *bio;
3766 		struct btrfs_super_block *disk_super;
3767 
3768 		bytenr_orig = btrfs_sb_offset(i);
3769 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3770 		if (ret == -ENOENT) {
3771 			continue;
3772 		} else if (ret < 0) {
3773 			btrfs_err(device->fs_info,
3774 				"couldn't get super block location for mirror %d",
3775 				i);
3776 			errors++;
3777 			continue;
3778 		}
3779 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3780 		    device->commit_total_bytes)
3781 			break;
3782 
3783 		btrfs_set_super_bytenr(sb, bytenr_orig);
3784 
3785 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3786 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3787 				    sb->csum);
3788 
3789 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3790 					   GFP_NOFS);
3791 		if (!page) {
3792 			btrfs_err(device->fs_info,
3793 			    "couldn't get super block page for bytenr %llu",
3794 			    bytenr);
3795 			errors++;
3796 			continue;
3797 		}
3798 
3799 		/* Bump the refcount for wait_dev_supers() */
3800 		get_page(page);
3801 
3802 		disk_super = page_address(page);
3803 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3804 
3805 		/*
3806 		 * Directly use bios here instead of relying on the page cache
3807 		 * to do I/O, so we don't lose the ability to do integrity
3808 		 * checking.
3809 		 */
3810 		bio = bio_alloc(device->bdev, 1,
3811 				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3812 				GFP_NOFS);
3813 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3814 		bio->bi_private = device;
3815 		bio->bi_end_io = btrfs_end_super_write;
3816 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3817 			       offset_in_page(bytenr));
3818 
3819 		/*
3820 		 * We FUA only the first super block.  The others we allow to
3821 		 * go down lazy and there's a short window where the on-disk
3822 		 * copies might still contain the older version.
3823 		 */
3824 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3825 			bio->bi_opf |= REQ_FUA;
3826 
3827 		btrfsic_check_bio(bio);
3828 		submit_bio(bio);
3829 
3830 		if (btrfs_advance_sb_log(device, i))
3831 			errors++;
3832 	}
3833 	return errors < i ? 0 : -1;
3834 }
3835 
3836 /*
3837  * Wait for write completion of superblocks done by write_dev_supers,
3838  * @max_mirrors same for write and wait phases.
3839  *
3840  * Return number of errors when page is not found or not marked up to
3841  * date.
3842  */
3843 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3844 {
3845 	int i;
3846 	int errors = 0;
3847 	bool primary_failed = false;
3848 	int ret;
3849 	u64 bytenr;
3850 
3851 	if (max_mirrors == 0)
3852 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3853 
3854 	for (i = 0; i < max_mirrors; i++) {
3855 		struct page *page;
3856 
3857 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3858 		if (ret == -ENOENT) {
3859 			break;
3860 		} else if (ret < 0) {
3861 			errors++;
3862 			if (i == 0)
3863 				primary_failed = true;
3864 			continue;
3865 		}
3866 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3867 		    device->commit_total_bytes)
3868 			break;
3869 
3870 		page = find_get_page(device->bdev->bd_inode->i_mapping,
3871 				     bytenr >> PAGE_SHIFT);
3872 		if (!page) {
3873 			errors++;
3874 			if (i == 0)
3875 				primary_failed = true;
3876 			continue;
3877 		}
3878 		/* Page is submitted locked and unlocked once the IO completes */
3879 		wait_on_page_locked(page);
3880 		if (PageError(page)) {
3881 			errors++;
3882 			if (i == 0)
3883 				primary_failed = true;
3884 		}
3885 
3886 		/* Drop our reference */
3887 		put_page(page);
3888 
3889 		/* Drop the reference from the writing run */
3890 		put_page(page);
3891 	}
3892 
3893 	/* log error, force error return */
3894 	if (primary_failed) {
3895 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3896 			  device->devid);
3897 		return -1;
3898 	}
3899 
3900 	return errors < i ? 0 : -1;
3901 }
3902 
3903 /*
3904  * endio for the write_dev_flush, this will wake anyone waiting
3905  * for the barrier when it is done
3906  */
3907 static void btrfs_end_empty_barrier(struct bio *bio)
3908 {
3909 	bio_uninit(bio);
3910 	complete(bio->bi_private);
3911 }
3912 
3913 /*
3914  * Submit a flush request to the device if it supports it. Error handling is
3915  * done in the waiting counterpart.
3916  */
3917 static void write_dev_flush(struct btrfs_device *device)
3918 {
3919 	struct bio *bio = &device->flush_bio;
3920 
3921 	device->last_flush_error = BLK_STS_OK;
3922 
3923 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3924 	/*
3925 	 * When a disk has write caching disabled, we skip submission of a bio
3926 	 * with flush and sync requests before writing the superblock, since
3927 	 * it's not needed. However when the integrity checker is enabled, this
3928 	 * results in reports that there are metadata blocks referred by a
3929 	 * superblock that were not properly flushed. So don't skip the bio
3930 	 * submission only when the integrity checker is enabled for the sake
3931 	 * of simplicity, since this is a debug tool and not meant for use in
3932 	 * non-debug builds.
3933 	 */
3934 	if (!bdev_write_cache(device->bdev))
3935 		return;
3936 #endif
3937 
3938 	bio_init(bio, device->bdev, NULL, 0,
3939 		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3940 	bio->bi_end_io = btrfs_end_empty_barrier;
3941 	init_completion(&device->flush_wait);
3942 	bio->bi_private = &device->flush_wait;
3943 
3944 	btrfsic_check_bio(bio);
3945 	submit_bio(bio);
3946 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3947 }
3948 
3949 /*
3950  * If the flush bio has been submitted by write_dev_flush, wait for it.
3951  * Return true for any error, and false otherwise.
3952  */
3953 static bool wait_dev_flush(struct btrfs_device *device)
3954 {
3955 	struct bio *bio = &device->flush_bio;
3956 
3957 	if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3958 		return false;
3959 
3960 	wait_for_completion_io(&device->flush_wait);
3961 
3962 	if (bio->bi_status) {
3963 		device->last_flush_error = bio->bi_status;
3964 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3965 		return true;
3966 	}
3967 
3968 	return false;
3969 }
3970 
3971 /*
3972  * send an empty flush down to each device in parallel,
3973  * then wait for them
3974  */
3975 static int barrier_all_devices(struct btrfs_fs_info *info)
3976 {
3977 	struct list_head *head;
3978 	struct btrfs_device *dev;
3979 	int errors_wait = 0;
3980 
3981 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3982 	/* send down all the barriers */
3983 	head = &info->fs_devices->devices;
3984 	list_for_each_entry(dev, head, dev_list) {
3985 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3986 			continue;
3987 		if (!dev->bdev)
3988 			continue;
3989 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3990 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3991 			continue;
3992 
3993 		write_dev_flush(dev);
3994 	}
3995 
3996 	/* wait for all the barriers */
3997 	list_for_each_entry(dev, head, dev_list) {
3998 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3999 			continue;
4000 		if (!dev->bdev) {
4001 			errors_wait++;
4002 			continue;
4003 		}
4004 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4005 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4006 			continue;
4007 
4008 		if (wait_dev_flush(dev))
4009 			errors_wait++;
4010 	}
4011 
4012 	/*
4013 	 * Checks last_flush_error of disks in order to determine the device
4014 	 * state.
4015 	 */
4016 	if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
4017 		return -EIO;
4018 
4019 	return 0;
4020 }
4021 
4022 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4023 {
4024 	int raid_type;
4025 	int min_tolerated = INT_MAX;
4026 
4027 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4028 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4029 		min_tolerated = min_t(int, min_tolerated,
4030 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4031 				    tolerated_failures);
4032 
4033 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4034 		if (raid_type == BTRFS_RAID_SINGLE)
4035 			continue;
4036 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4037 			continue;
4038 		min_tolerated = min_t(int, min_tolerated,
4039 				    btrfs_raid_array[raid_type].
4040 				    tolerated_failures);
4041 	}
4042 
4043 	if (min_tolerated == INT_MAX) {
4044 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4045 		min_tolerated = 0;
4046 	}
4047 
4048 	return min_tolerated;
4049 }
4050 
4051 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4052 {
4053 	struct list_head *head;
4054 	struct btrfs_device *dev;
4055 	struct btrfs_super_block *sb;
4056 	struct btrfs_dev_item *dev_item;
4057 	int ret;
4058 	int do_barriers;
4059 	int max_errors;
4060 	int total_errors = 0;
4061 	u64 flags;
4062 
4063 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4064 
4065 	/*
4066 	 * max_mirrors == 0 indicates we're from commit_transaction,
4067 	 * not from fsync where the tree roots in fs_info have not
4068 	 * been consistent on disk.
4069 	 */
4070 	if (max_mirrors == 0)
4071 		backup_super_roots(fs_info);
4072 
4073 	sb = fs_info->super_for_commit;
4074 	dev_item = &sb->dev_item;
4075 
4076 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4077 	head = &fs_info->fs_devices->devices;
4078 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4079 
4080 	if (do_barriers) {
4081 		ret = barrier_all_devices(fs_info);
4082 		if (ret) {
4083 			mutex_unlock(
4084 				&fs_info->fs_devices->device_list_mutex);
4085 			btrfs_handle_fs_error(fs_info, ret,
4086 					      "errors while submitting device barriers.");
4087 			return ret;
4088 		}
4089 	}
4090 
4091 	list_for_each_entry(dev, head, dev_list) {
4092 		if (!dev->bdev) {
4093 			total_errors++;
4094 			continue;
4095 		}
4096 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4097 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4098 			continue;
4099 
4100 		btrfs_set_stack_device_generation(dev_item, 0);
4101 		btrfs_set_stack_device_type(dev_item, dev->type);
4102 		btrfs_set_stack_device_id(dev_item, dev->devid);
4103 		btrfs_set_stack_device_total_bytes(dev_item,
4104 						   dev->commit_total_bytes);
4105 		btrfs_set_stack_device_bytes_used(dev_item,
4106 						  dev->commit_bytes_used);
4107 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4108 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4109 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4110 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4111 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4112 		       BTRFS_FSID_SIZE);
4113 
4114 		flags = btrfs_super_flags(sb);
4115 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4116 
4117 		ret = btrfs_validate_write_super(fs_info, sb);
4118 		if (ret < 0) {
4119 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4120 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4121 				"unexpected superblock corruption detected");
4122 			return -EUCLEAN;
4123 		}
4124 
4125 		ret = write_dev_supers(dev, sb, max_mirrors);
4126 		if (ret)
4127 			total_errors++;
4128 	}
4129 	if (total_errors > max_errors) {
4130 		btrfs_err(fs_info, "%d errors while writing supers",
4131 			  total_errors);
4132 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4133 
4134 		/* FUA is masked off if unsupported and can't be the reason */
4135 		btrfs_handle_fs_error(fs_info, -EIO,
4136 				      "%d errors while writing supers",
4137 				      total_errors);
4138 		return -EIO;
4139 	}
4140 
4141 	total_errors = 0;
4142 	list_for_each_entry(dev, head, dev_list) {
4143 		if (!dev->bdev)
4144 			continue;
4145 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4146 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4147 			continue;
4148 
4149 		ret = wait_dev_supers(dev, max_mirrors);
4150 		if (ret)
4151 			total_errors++;
4152 	}
4153 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4154 	if (total_errors > max_errors) {
4155 		btrfs_handle_fs_error(fs_info, -EIO,
4156 				      "%d errors while writing supers",
4157 				      total_errors);
4158 		return -EIO;
4159 	}
4160 	return 0;
4161 }
4162 
4163 /* Drop a fs root from the radix tree and free it. */
4164 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4165 				  struct btrfs_root *root)
4166 {
4167 	bool drop_ref = false;
4168 
4169 	spin_lock(&fs_info->fs_roots_radix_lock);
4170 	radix_tree_delete(&fs_info->fs_roots_radix,
4171 			  (unsigned long)root->root_key.objectid);
4172 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4173 		drop_ref = true;
4174 	spin_unlock(&fs_info->fs_roots_radix_lock);
4175 
4176 	if (BTRFS_FS_ERROR(fs_info)) {
4177 		ASSERT(root->log_root == NULL);
4178 		if (root->reloc_root) {
4179 			btrfs_put_root(root->reloc_root);
4180 			root->reloc_root = NULL;
4181 		}
4182 	}
4183 
4184 	if (drop_ref)
4185 		btrfs_put_root(root);
4186 }
4187 
4188 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4189 {
4190 	struct btrfs_root *root = fs_info->tree_root;
4191 	struct btrfs_trans_handle *trans;
4192 
4193 	mutex_lock(&fs_info->cleaner_mutex);
4194 	btrfs_run_delayed_iputs(fs_info);
4195 	mutex_unlock(&fs_info->cleaner_mutex);
4196 	wake_up_process(fs_info->cleaner_kthread);
4197 
4198 	/* wait until ongoing cleanup work done */
4199 	down_write(&fs_info->cleanup_work_sem);
4200 	up_write(&fs_info->cleanup_work_sem);
4201 
4202 	trans = btrfs_join_transaction(root);
4203 	if (IS_ERR(trans))
4204 		return PTR_ERR(trans);
4205 	return btrfs_commit_transaction(trans);
4206 }
4207 
4208 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4209 {
4210 	struct btrfs_transaction *trans;
4211 	struct btrfs_transaction *tmp;
4212 	bool found = false;
4213 
4214 	if (list_empty(&fs_info->trans_list))
4215 		return;
4216 
4217 	/*
4218 	 * This function is only called at the very end of close_ctree(),
4219 	 * thus no other running transaction, no need to take trans_lock.
4220 	 */
4221 	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4222 	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4223 		struct extent_state *cached = NULL;
4224 		u64 dirty_bytes = 0;
4225 		u64 cur = 0;
4226 		u64 found_start;
4227 		u64 found_end;
4228 
4229 		found = true;
4230 		while (find_first_extent_bit(&trans->dirty_pages, cur,
4231 			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4232 			dirty_bytes += found_end + 1 - found_start;
4233 			cur = found_end + 1;
4234 		}
4235 		btrfs_warn(fs_info,
4236 	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4237 			   trans->transid, dirty_bytes);
4238 		btrfs_cleanup_one_transaction(trans, fs_info);
4239 
4240 		if (trans == fs_info->running_transaction)
4241 			fs_info->running_transaction = NULL;
4242 		list_del_init(&trans->list);
4243 
4244 		btrfs_put_transaction(trans);
4245 		trace_btrfs_transaction_commit(fs_info);
4246 	}
4247 	ASSERT(!found);
4248 }
4249 
4250 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4251 {
4252 	int ret;
4253 
4254 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4255 
4256 	/*
4257 	 * If we had UNFINISHED_DROPS we could still be processing them, so
4258 	 * clear that bit and wake up relocation so it can stop.
4259 	 * We must do this before stopping the block group reclaim task, because
4260 	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4261 	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4262 	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4263 	 * return 1.
4264 	 */
4265 	btrfs_wake_unfinished_drop(fs_info);
4266 
4267 	/*
4268 	 * We may have the reclaim task running and relocating a data block group,
4269 	 * in which case it may create delayed iputs. So stop it before we park
4270 	 * the cleaner kthread otherwise we can get new delayed iputs after
4271 	 * parking the cleaner, and that can make the async reclaim task to hang
4272 	 * if it's waiting for delayed iputs to complete, since the cleaner is
4273 	 * parked and can not run delayed iputs - this will make us hang when
4274 	 * trying to stop the async reclaim task.
4275 	 */
4276 	cancel_work_sync(&fs_info->reclaim_bgs_work);
4277 	/*
4278 	 * We don't want the cleaner to start new transactions, add more delayed
4279 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4280 	 * because that frees the task_struct, and the transaction kthread might
4281 	 * still try to wake up the cleaner.
4282 	 */
4283 	kthread_park(fs_info->cleaner_kthread);
4284 
4285 	/* wait for the qgroup rescan worker to stop */
4286 	btrfs_qgroup_wait_for_completion(fs_info, false);
4287 
4288 	/* wait for the uuid_scan task to finish */
4289 	down(&fs_info->uuid_tree_rescan_sem);
4290 	/* avoid complains from lockdep et al., set sem back to initial state */
4291 	up(&fs_info->uuid_tree_rescan_sem);
4292 
4293 	/* pause restriper - we want to resume on mount */
4294 	btrfs_pause_balance(fs_info);
4295 
4296 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4297 
4298 	btrfs_scrub_cancel(fs_info);
4299 
4300 	/* wait for any defraggers to finish */
4301 	wait_event(fs_info->transaction_wait,
4302 		   (atomic_read(&fs_info->defrag_running) == 0));
4303 
4304 	/* clear out the rbtree of defraggable inodes */
4305 	btrfs_cleanup_defrag_inodes(fs_info);
4306 
4307 	/*
4308 	 * After we parked the cleaner kthread, ordered extents may have
4309 	 * completed and created new delayed iputs. If one of the async reclaim
4310 	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4311 	 * can hang forever trying to stop it, because if a delayed iput is
4312 	 * added after it ran btrfs_run_delayed_iputs() and before it called
4313 	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4314 	 * no one else to run iputs.
4315 	 *
4316 	 * So wait for all ongoing ordered extents to complete and then run
4317 	 * delayed iputs. This works because once we reach this point no one
4318 	 * can either create new ordered extents nor create delayed iputs
4319 	 * through some other means.
4320 	 *
4321 	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4322 	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4323 	 * but the delayed iput for the respective inode is made only when doing
4324 	 * the final btrfs_put_ordered_extent() (which must happen at
4325 	 * btrfs_finish_ordered_io() when we are unmounting).
4326 	 */
4327 	btrfs_flush_workqueue(fs_info->endio_write_workers);
4328 	/* Ordered extents for free space inodes. */
4329 	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4330 	btrfs_run_delayed_iputs(fs_info);
4331 
4332 	cancel_work_sync(&fs_info->async_reclaim_work);
4333 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4334 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4335 
4336 	/* Cancel or finish ongoing discard work */
4337 	btrfs_discard_cleanup(fs_info);
4338 
4339 	if (!sb_rdonly(fs_info->sb)) {
4340 		/*
4341 		 * The cleaner kthread is stopped, so do one final pass over
4342 		 * unused block groups.
4343 		 */
4344 		btrfs_delete_unused_bgs(fs_info);
4345 
4346 		/*
4347 		 * There might be existing delayed inode workers still running
4348 		 * and holding an empty delayed inode item. We must wait for
4349 		 * them to complete first because they can create a transaction.
4350 		 * This happens when someone calls btrfs_balance_delayed_items()
4351 		 * and then a transaction commit runs the same delayed nodes
4352 		 * before any delayed worker has done something with the nodes.
4353 		 * We must wait for any worker here and not at transaction
4354 		 * commit time since that could cause a deadlock.
4355 		 * This is a very rare case.
4356 		 */
4357 		btrfs_flush_workqueue(fs_info->delayed_workers);
4358 
4359 		ret = btrfs_commit_super(fs_info);
4360 		if (ret)
4361 			btrfs_err(fs_info, "commit super ret %d", ret);
4362 	}
4363 
4364 	if (BTRFS_FS_ERROR(fs_info))
4365 		btrfs_error_commit_super(fs_info);
4366 
4367 	kthread_stop(fs_info->transaction_kthread);
4368 	kthread_stop(fs_info->cleaner_kthread);
4369 
4370 	ASSERT(list_empty(&fs_info->delayed_iputs));
4371 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4372 
4373 	if (btrfs_check_quota_leak(fs_info)) {
4374 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4375 		btrfs_err(fs_info, "qgroup reserved space leaked");
4376 	}
4377 
4378 	btrfs_free_qgroup_config(fs_info);
4379 	ASSERT(list_empty(&fs_info->delalloc_roots));
4380 
4381 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4382 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4383 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4384 	}
4385 
4386 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4387 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4388 			   percpu_counter_sum(&fs_info->ordered_bytes));
4389 
4390 	btrfs_sysfs_remove_mounted(fs_info);
4391 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4392 
4393 	btrfs_put_block_group_cache(fs_info);
4394 
4395 	/*
4396 	 * we must make sure there is not any read request to
4397 	 * submit after we stopping all workers.
4398 	 */
4399 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4400 	btrfs_stop_all_workers(fs_info);
4401 
4402 	/* We shouldn't have any transaction open at this point */
4403 	warn_about_uncommitted_trans(fs_info);
4404 
4405 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4406 	free_root_pointers(fs_info, true);
4407 	btrfs_free_fs_roots(fs_info);
4408 
4409 	/*
4410 	 * We must free the block groups after dropping the fs_roots as we could
4411 	 * have had an IO error and have left over tree log blocks that aren't
4412 	 * cleaned up until the fs roots are freed.  This makes the block group
4413 	 * accounting appear to be wrong because there's pending reserved bytes,
4414 	 * so make sure we do the block group cleanup afterwards.
4415 	 */
4416 	btrfs_free_block_groups(fs_info);
4417 
4418 	iput(fs_info->btree_inode);
4419 
4420 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4421 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4422 		btrfsic_unmount(fs_info->fs_devices);
4423 #endif
4424 
4425 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4426 	btrfs_close_devices(fs_info->fs_devices);
4427 }
4428 
4429 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4430 {
4431 	struct btrfs_fs_info *fs_info = buf->fs_info;
4432 	u64 transid = btrfs_header_generation(buf);
4433 
4434 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4435 	/*
4436 	 * This is a fast path so only do this check if we have sanity tests
4437 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4438 	 * outside of the sanity tests.
4439 	 */
4440 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4441 		return;
4442 #endif
4443 	btrfs_assert_tree_write_locked(buf);
4444 	if (transid != fs_info->generation)
4445 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4446 			buf->start, transid, fs_info->generation);
4447 	set_extent_buffer_dirty(buf);
4448 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4449 	/*
4450 	 * btrfs_check_leaf() won't check item data if we don't have WRITTEN
4451 	 * set, so this will only validate the basic structure of the items.
4452 	 */
4453 	if (btrfs_header_level(buf) == 0 && btrfs_check_leaf(buf)) {
4454 		btrfs_print_leaf(buf);
4455 		ASSERT(0);
4456 	}
4457 #endif
4458 }
4459 
4460 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4461 					int flush_delayed)
4462 {
4463 	/*
4464 	 * looks as though older kernels can get into trouble with
4465 	 * this code, they end up stuck in balance_dirty_pages forever
4466 	 */
4467 	int ret;
4468 
4469 	if (current->flags & PF_MEMALLOC)
4470 		return;
4471 
4472 	if (flush_delayed)
4473 		btrfs_balance_delayed_items(fs_info);
4474 
4475 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4476 				     BTRFS_DIRTY_METADATA_THRESH,
4477 				     fs_info->dirty_metadata_batch);
4478 	if (ret > 0) {
4479 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4480 	}
4481 }
4482 
4483 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4484 {
4485 	__btrfs_btree_balance_dirty(fs_info, 1);
4486 }
4487 
4488 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4489 {
4490 	__btrfs_btree_balance_dirty(fs_info, 0);
4491 }
4492 
4493 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4494 {
4495 	/* cleanup FS via transaction */
4496 	btrfs_cleanup_transaction(fs_info);
4497 
4498 	mutex_lock(&fs_info->cleaner_mutex);
4499 	btrfs_run_delayed_iputs(fs_info);
4500 	mutex_unlock(&fs_info->cleaner_mutex);
4501 
4502 	down_write(&fs_info->cleanup_work_sem);
4503 	up_write(&fs_info->cleanup_work_sem);
4504 }
4505 
4506 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4507 {
4508 	struct btrfs_root *gang[8];
4509 	u64 root_objectid = 0;
4510 	int ret;
4511 
4512 	spin_lock(&fs_info->fs_roots_radix_lock);
4513 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4514 					     (void **)gang, root_objectid,
4515 					     ARRAY_SIZE(gang))) != 0) {
4516 		int i;
4517 
4518 		for (i = 0; i < ret; i++)
4519 			gang[i] = btrfs_grab_root(gang[i]);
4520 		spin_unlock(&fs_info->fs_roots_radix_lock);
4521 
4522 		for (i = 0; i < ret; i++) {
4523 			if (!gang[i])
4524 				continue;
4525 			root_objectid = gang[i]->root_key.objectid;
4526 			btrfs_free_log(NULL, gang[i]);
4527 			btrfs_put_root(gang[i]);
4528 		}
4529 		root_objectid++;
4530 		spin_lock(&fs_info->fs_roots_radix_lock);
4531 	}
4532 	spin_unlock(&fs_info->fs_roots_radix_lock);
4533 	btrfs_free_log_root_tree(NULL, fs_info);
4534 }
4535 
4536 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4537 {
4538 	struct btrfs_ordered_extent *ordered;
4539 
4540 	spin_lock(&root->ordered_extent_lock);
4541 	/*
4542 	 * This will just short circuit the ordered completion stuff which will
4543 	 * make sure the ordered extent gets properly cleaned up.
4544 	 */
4545 	list_for_each_entry(ordered, &root->ordered_extents,
4546 			    root_extent_list)
4547 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4548 	spin_unlock(&root->ordered_extent_lock);
4549 }
4550 
4551 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4552 {
4553 	struct btrfs_root *root;
4554 	LIST_HEAD(splice);
4555 
4556 	spin_lock(&fs_info->ordered_root_lock);
4557 	list_splice_init(&fs_info->ordered_roots, &splice);
4558 	while (!list_empty(&splice)) {
4559 		root = list_first_entry(&splice, struct btrfs_root,
4560 					ordered_root);
4561 		list_move_tail(&root->ordered_root,
4562 			       &fs_info->ordered_roots);
4563 
4564 		spin_unlock(&fs_info->ordered_root_lock);
4565 		btrfs_destroy_ordered_extents(root);
4566 
4567 		cond_resched();
4568 		spin_lock(&fs_info->ordered_root_lock);
4569 	}
4570 	spin_unlock(&fs_info->ordered_root_lock);
4571 
4572 	/*
4573 	 * We need this here because if we've been flipped read-only we won't
4574 	 * get sync() from the umount, so we need to make sure any ordered
4575 	 * extents that haven't had their dirty pages IO start writeout yet
4576 	 * actually get run and error out properly.
4577 	 */
4578 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4579 }
4580 
4581 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4582 				       struct btrfs_fs_info *fs_info)
4583 {
4584 	struct rb_node *node;
4585 	struct btrfs_delayed_ref_root *delayed_refs;
4586 	struct btrfs_delayed_ref_node *ref;
4587 
4588 	delayed_refs = &trans->delayed_refs;
4589 
4590 	spin_lock(&delayed_refs->lock);
4591 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4592 		spin_unlock(&delayed_refs->lock);
4593 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4594 		return;
4595 	}
4596 
4597 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4598 		struct btrfs_delayed_ref_head *head;
4599 		struct rb_node *n;
4600 		bool pin_bytes = false;
4601 
4602 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4603 				href_node);
4604 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4605 			continue;
4606 
4607 		spin_lock(&head->lock);
4608 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4609 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4610 				       ref_node);
4611 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4612 			RB_CLEAR_NODE(&ref->ref_node);
4613 			if (!list_empty(&ref->add_list))
4614 				list_del(&ref->add_list);
4615 			atomic_dec(&delayed_refs->num_entries);
4616 			btrfs_put_delayed_ref(ref);
4617 		}
4618 		if (head->must_insert_reserved)
4619 			pin_bytes = true;
4620 		btrfs_free_delayed_extent_op(head->extent_op);
4621 		btrfs_delete_ref_head(delayed_refs, head);
4622 		spin_unlock(&head->lock);
4623 		spin_unlock(&delayed_refs->lock);
4624 		mutex_unlock(&head->mutex);
4625 
4626 		if (pin_bytes) {
4627 			struct btrfs_block_group *cache;
4628 
4629 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4630 			BUG_ON(!cache);
4631 
4632 			spin_lock(&cache->space_info->lock);
4633 			spin_lock(&cache->lock);
4634 			cache->pinned += head->num_bytes;
4635 			btrfs_space_info_update_bytes_pinned(fs_info,
4636 				cache->space_info, head->num_bytes);
4637 			cache->reserved -= head->num_bytes;
4638 			cache->space_info->bytes_reserved -= head->num_bytes;
4639 			spin_unlock(&cache->lock);
4640 			spin_unlock(&cache->space_info->lock);
4641 
4642 			btrfs_put_block_group(cache);
4643 
4644 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4645 				head->bytenr + head->num_bytes - 1);
4646 		}
4647 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4648 		btrfs_put_delayed_ref_head(head);
4649 		cond_resched();
4650 		spin_lock(&delayed_refs->lock);
4651 	}
4652 	btrfs_qgroup_destroy_extent_records(trans);
4653 
4654 	spin_unlock(&delayed_refs->lock);
4655 }
4656 
4657 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4658 {
4659 	struct btrfs_inode *btrfs_inode;
4660 	LIST_HEAD(splice);
4661 
4662 	spin_lock(&root->delalloc_lock);
4663 	list_splice_init(&root->delalloc_inodes, &splice);
4664 
4665 	while (!list_empty(&splice)) {
4666 		struct inode *inode = NULL;
4667 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4668 					       delalloc_inodes);
4669 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4670 		spin_unlock(&root->delalloc_lock);
4671 
4672 		/*
4673 		 * Make sure we get a live inode and that it'll not disappear
4674 		 * meanwhile.
4675 		 */
4676 		inode = igrab(&btrfs_inode->vfs_inode);
4677 		if (inode) {
4678 			unsigned int nofs_flag;
4679 
4680 			nofs_flag = memalloc_nofs_save();
4681 			invalidate_inode_pages2(inode->i_mapping);
4682 			memalloc_nofs_restore(nofs_flag);
4683 			iput(inode);
4684 		}
4685 		spin_lock(&root->delalloc_lock);
4686 	}
4687 	spin_unlock(&root->delalloc_lock);
4688 }
4689 
4690 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4691 {
4692 	struct btrfs_root *root;
4693 	LIST_HEAD(splice);
4694 
4695 	spin_lock(&fs_info->delalloc_root_lock);
4696 	list_splice_init(&fs_info->delalloc_roots, &splice);
4697 	while (!list_empty(&splice)) {
4698 		root = list_first_entry(&splice, struct btrfs_root,
4699 					 delalloc_root);
4700 		root = btrfs_grab_root(root);
4701 		BUG_ON(!root);
4702 		spin_unlock(&fs_info->delalloc_root_lock);
4703 
4704 		btrfs_destroy_delalloc_inodes(root);
4705 		btrfs_put_root(root);
4706 
4707 		spin_lock(&fs_info->delalloc_root_lock);
4708 	}
4709 	spin_unlock(&fs_info->delalloc_root_lock);
4710 }
4711 
4712 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4713 					 struct extent_io_tree *dirty_pages,
4714 					 int mark)
4715 {
4716 	struct extent_buffer *eb;
4717 	u64 start = 0;
4718 	u64 end;
4719 
4720 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
4721 				     mark, NULL)) {
4722 		clear_extent_bits(dirty_pages, start, end, mark);
4723 		while (start <= end) {
4724 			eb = find_extent_buffer(fs_info, start);
4725 			start += fs_info->nodesize;
4726 			if (!eb)
4727 				continue;
4728 
4729 			btrfs_tree_lock(eb);
4730 			wait_on_extent_buffer_writeback(eb);
4731 			btrfs_clear_buffer_dirty(NULL, eb);
4732 			btrfs_tree_unlock(eb);
4733 
4734 			free_extent_buffer_stale(eb);
4735 		}
4736 	}
4737 }
4738 
4739 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4740 					struct extent_io_tree *unpin)
4741 {
4742 	u64 start;
4743 	u64 end;
4744 
4745 	while (1) {
4746 		struct extent_state *cached_state = NULL;
4747 
4748 		/*
4749 		 * The btrfs_finish_extent_commit() may get the same range as
4750 		 * ours between find_first_extent_bit and clear_extent_dirty.
4751 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4752 		 * the same extent range.
4753 		 */
4754 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4755 		if (!find_first_extent_bit(unpin, 0, &start, &end,
4756 					   EXTENT_DIRTY, &cached_state)) {
4757 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4758 			break;
4759 		}
4760 
4761 		clear_extent_dirty(unpin, start, end, &cached_state);
4762 		free_extent_state(cached_state);
4763 		btrfs_error_unpin_extent_range(fs_info, start, end);
4764 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4765 		cond_resched();
4766 	}
4767 }
4768 
4769 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4770 {
4771 	struct inode *inode;
4772 
4773 	inode = cache->io_ctl.inode;
4774 	if (inode) {
4775 		unsigned int nofs_flag;
4776 
4777 		nofs_flag = memalloc_nofs_save();
4778 		invalidate_inode_pages2(inode->i_mapping);
4779 		memalloc_nofs_restore(nofs_flag);
4780 
4781 		BTRFS_I(inode)->generation = 0;
4782 		cache->io_ctl.inode = NULL;
4783 		iput(inode);
4784 	}
4785 	ASSERT(cache->io_ctl.pages == NULL);
4786 	btrfs_put_block_group(cache);
4787 }
4788 
4789 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4790 			     struct btrfs_fs_info *fs_info)
4791 {
4792 	struct btrfs_block_group *cache;
4793 
4794 	spin_lock(&cur_trans->dirty_bgs_lock);
4795 	while (!list_empty(&cur_trans->dirty_bgs)) {
4796 		cache = list_first_entry(&cur_trans->dirty_bgs,
4797 					 struct btrfs_block_group,
4798 					 dirty_list);
4799 
4800 		if (!list_empty(&cache->io_list)) {
4801 			spin_unlock(&cur_trans->dirty_bgs_lock);
4802 			list_del_init(&cache->io_list);
4803 			btrfs_cleanup_bg_io(cache);
4804 			spin_lock(&cur_trans->dirty_bgs_lock);
4805 		}
4806 
4807 		list_del_init(&cache->dirty_list);
4808 		spin_lock(&cache->lock);
4809 		cache->disk_cache_state = BTRFS_DC_ERROR;
4810 		spin_unlock(&cache->lock);
4811 
4812 		spin_unlock(&cur_trans->dirty_bgs_lock);
4813 		btrfs_put_block_group(cache);
4814 		btrfs_delayed_refs_rsv_release(fs_info, 1);
4815 		spin_lock(&cur_trans->dirty_bgs_lock);
4816 	}
4817 	spin_unlock(&cur_trans->dirty_bgs_lock);
4818 
4819 	/*
4820 	 * Refer to the definition of io_bgs member for details why it's safe
4821 	 * to use it without any locking
4822 	 */
4823 	while (!list_empty(&cur_trans->io_bgs)) {
4824 		cache = list_first_entry(&cur_trans->io_bgs,
4825 					 struct btrfs_block_group,
4826 					 io_list);
4827 
4828 		list_del_init(&cache->io_list);
4829 		spin_lock(&cache->lock);
4830 		cache->disk_cache_state = BTRFS_DC_ERROR;
4831 		spin_unlock(&cache->lock);
4832 		btrfs_cleanup_bg_io(cache);
4833 	}
4834 }
4835 
4836 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4837 				   struct btrfs_fs_info *fs_info)
4838 {
4839 	struct btrfs_device *dev, *tmp;
4840 
4841 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4842 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4843 	ASSERT(list_empty(&cur_trans->io_bgs));
4844 
4845 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4846 				 post_commit_list) {
4847 		list_del_init(&dev->post_commit_list);
4848 	}
4849 
4850 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4851 
4852 	cur_trans->state = TRANS_STATE_COMMIT_START;
4853 	wake_up(&fs_info->transaction_blocked_wait);
4854 
4855 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4856 	wake_up(&fs_info->transaction_wait);
4857 
4858 	btrfs_destroy_delayed_inodes(fs_info);
4859 
4860 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4861 				     EXTENT_DIRTY);
4862 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4863 
4864 	cur_trans->state =TRANS_STATE_COMPLETED;
4865 	wake_up(&cur_trans->commit_wait);
4866 }
4867 
4868 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4869 {
4870 	struct btrfs_transaction *t;
4871 
4872 	mutex_lock(&fs_info->transaction_kthread_mutex);
4873 
4874 	spin_lock(&fs_info->trans_lock);
4875 	while (!list_empty(&fs_info->trans_list)) {
4876 		t = list_first_entry(&fs_info->trans_list,
4877 				     struct btrfs_transaction, list);
4878 		if (t->state >= TRANS_STATE_COMMIT_START) {
4879 			refcount_inc(&t->use_count);
4880 			spin_unlock(&fs_info->trans_lock);
4881 			btrfs_wait_for_commit(fs_info, t->transid);
4882 			btrfs_put_transaction(t);
4883 			spin_lock(&fs_info->trans_lock);
4884 			continue;
4885 		}
4886 		if (t == fs_info->running_transaction) {
4887 			t->state = TRANS_STATE_COMMIT_DOING;
4888 			spin_unlock(&fs_info->trans_lock);
4889 			/*
4890 			 * We wait for 0 num_writers since we don't hold a trans
4891 			 * handle open currently for this transaction.
4892 			 */
4893 			wait_event(t->writer_wait,
4894 				   atomic_read(&t->num_writers) == 0);
4895 		} else {
4896 			spin_unlock(&fs_info->trans_lock);
4897 		}
4898 		btrfs_cleanup_one_transaction(t, fs_info);
4899 
4900 		spin_lock(&fs_info->trans_lock);
4901 		if (t == fs_info->running_transaction)
4902 			fs_info->running_transaction = NULL;
4903 		list_del_init(&t->list);
4904 		spin_unlock(&fs_info->trans_lock);
4905 
4906 		btrfs_put_transaction(t);
4907 		trace_btrfs_transaction_commit(fs_info);
4908 		spin_lock(&fs_info->trans_lock);
4909 	}
4910 	spin_unlock(&fs_info->trans_lock);
4911 	btrfs_destroy_all_ordered_extents(fs_info);
4912 	btrfs_destroy_delayed_inodes(fs_info);
4913 	btrfs_assert_delayed_root_empty(fs_info);
4914 	btrfs_destroy_all_delalloc_inodes(fs_info);
4915 	btrfs_drop_all_logs(fs_info);
4916 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4917 
4918 	return 0;
4919 }
4920 
4921 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4922 {
4923 	struct btrfs_path *path;
4924 	int ret;
4925 	struct extent_buffer *l;
4926 	struct btrfs_key search_key;
4927 	struct btrfs_key found_key;
4928 	int slot;
4929 
4930 	path = btrfs_alloc_path();
4931 	if (!path)
4932 		return -ENOMEM;
4933 
4934 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4935 	search_key.type = -1;
4936 	search_key.offset = (u64)-1;
4937 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4938 	if (ret < 0)
4939 		goto error;
4940 	BUG_ON(ret == 0); /* Corruption */
4941 	if (path->slots[0] > 0) {
4942 		slot = path->slots[0] - 1;
4943 		l = path->nodes[0];
4944 		btrfs_item_key_to_cpu(l, &found_key, slot);
4945 		root->free_objectid = max_t(u64, found_key.objectid + 1,
4946 					    BTRFS_FIRST_FREE_OBJECTID);
4947 	} else {
4948 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4949 	}
4950 	ret = 0;
4951 error:
4952 	btrfs_free_path(path);
4953 	return ret;
4954 }
4955 
4956 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4957 {
4958 	int ret;
4959 	mutex_lock(&root->objectid_mutex);
4960 
4961 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4962 		btrfs_warn(root->fs_info,
4963 			   "the objectid of root %llu reaches its highest value",
4964 			   root->root_key.objectid);
4965 		ret = -ENOSPC;
4966 		goto out;
4967 	}
4968 
4969 	*objectid = root->free_objectid++;
4970 	ret = 0;
4971 out:
4972 	mutex_unlock(&root->objectid_mutex);
4973 	return ret;
4974 }
4975