1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 #include "block-group.h" 42 #include "discard.h" 43 #include "space-info.h" 44 #include "zoned.h" 45 #include "subpage.h" 46 47 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 48 BTRFS_HEADER_FLAG_RELOC |\ 49 BTRFS_SUPER_FLAG_ERROR |\ 50 BTRFS_SUPER_FLAG_SEEDING |\ 51 BTRFS_SUPER_FLAG_METADUMP |\ 52 BTRFS_SUPER_FLAG_METADUMP_V2) 53 54 static void end_workqueue_fn(struct btrfs_work *work); 55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 57 struct btrfs_fs_info *fs_info); 58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 60 struct extent_io_tree *dirty_pages, 61 int mark); 62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 63 struct extent_io_tree *pinned_extents); 64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 66 67 /* 68 * btrfs_end_io_wq structs are used to do processing in task context when an IO 69 * is complete. This is used during reads to verify checksums, and it is used 70 * by writes to insert metadata for new file extents after IO is complete. 71 */ 72 struct btrfs_end_io_wq { 73 struct bio *bio; 74 bio_end_io_t *end_io; 75 void *private; 76 struct btrfs_fs_info *info; 77 blk_status_t status; 78 enum btrfs_wq_endio_type metadata; 79 struct btrfs_work work; 80 }; 81 82 static struct kmem_cache *btrfs_end_io_wq_cache; 83 84 int __init btrfs_end_io_wq_init(void) 85 { 86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 87 sizeof(struct btrfs_end_io_wq), 88 0, 89 SLAB_MEM_SPREAD, 90 NULL); 91 if (!btrfs_end_io_wq_cache) 92 return -ENOMEM; 93 return 0; 94 } 95 96 void __cold btrfs_end_io_wq_exit(void) 97 { 98 kmem_cache_destroy(btrfs_end_io_wq_cache); 99 } 100 101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 102 { 103 if (fs_info->csum_shash) 104 crypto_free_shash(fs_info->csum_shash); 105 } 106 107 /* 108 * async submit bios are used to offload expensive checksumming 109 * onto the worker threads. They checksum file and metadata bios 110 * just before they are sent down the IO stack. 111 */ 112 struct async_submit_bio { 113 struct inode *inode; 114 struct bio *bio; 115 extent_submit_bio_start_t *submit_bio_start; 116 int mirror_num; 117 118 /* Optional parameter for submit_bio_start used by direct io */ 119 u64 dio_file_offset; 120 struct btrfs_work work; 121 blk_status_t status; 122 }; 123 124 /* 125 * Lockdep class keys for extent_buffer->lock's in this root. For a given 126 * eb, the lockdep key is determined by the btrfs_root it belongs to and 127 * the level the eb occupies in the tree. 128 * 129 * Different roots are used for different purposes and may nest inside each 130 * other and they require separate keysets. As lockdep keys should be 131 * static, assign keysets according to the purpose of the root as indicated 132 * by btrfs_root->root_key.objectid. This ensures that all special purpose 133 * roots have separate keysets. 134 * 135 * Lock-nesting across peer nodes is always done with the immediate parent 136 * node locked thus preventing deadlock. As lockdep doesn't know this, use 137 * subclass to avoid triggering lockdep warning in such cases. 138 * 139 * The key is set by the readpage_end_io_hook after the buffer has passed 140 * csum validation but before the pages are unlocked. It is also set by 141 * btrfs_init_new_buffer on freshly allocated blocks. 142 * 143 * We also add a check to make sure the highest level of the tree is the 144 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 145 * needs update as well. 146 */ 147 #ifdef CONFIG_DEBUG_LOCK_ALLOC 148 # if BTRFS_MAX_LEVEL != 8 149 # error 150 # endif 151 152 #define DEFINE_LEVEL(stem, level) \ 153 .names[level] = "btrfs-" stem "-0" #level, 154 155 #define DEFINE_NAME(stem) \ 156 DEFINE_LEVEL(stem, 0) \ 157 DEFINE_LEVEL(stem, 1) \ 158 DEFINE_LEVEL(stem, 2) \ 159 DEFINE_LEVEL(stem, 3) \ 160 DEFINE_LEVEL(stem, 4) \ 161 DEFINE_LEVEL(stem, 5) \ 162 DEFINE_LEVEL(stem, 6) \ 163 DEFINE_LEVEL(stem, 7) 164 165 static struct btrfs_lockdep_keyset { 166 u64 id; /* root objectid */ 167 /* Longest entry: btrfs-free-space-00 */ 168 char names[BTRFS_MAX_LEVEL][20]; 169 struct lock_class_key keys[BTRFS_MAX_LEVEL]; 170 } btrfs_lockdep_keysets[] = { 171 { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") }, 172 { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") }, 173 { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") }, 174 { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") }, 175 { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") }, 176 { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") }, 177 { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") }, 178 { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") }, 179 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") }, 180 { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") }, 181 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") }, 182 { .id = 0, DEFINE_NAME("tree") }, 183 }; 184 185 #undef DEFINE_LEVEL 186 #undef DEFINE_NAME 187 188 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 189 int level) 190 { 191 struct btrfs_lockdep_keyset *ks; 192 193 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 194 195 /* find the matching keyset, id 0 is the default entry */ 196 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 197 if (ks->id == objectid) 198 break; 199 200 lockdep_set_class_and_name(&eb->lock, 201 &ks->keys[level], ks->names[level]); 202 } 203 204 #endif 205 206 /* 207 * Compute the csum of a btree block and store the result to provided buffer. 208 */ 209 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 210 { 211 struct btrfs_fs_info *fs_info = buf->fs_info; 212 const int num_pages = num_extent_pages(buf); 213 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 214 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 215 char *kaddr; 216 int i; 217 218 shash->tfm = fs_info->csum_shash; 219 crypto_shash_init(shash); 220 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start); 221 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 222 first_page_part - BTRFS_CSUM_SIZE); 223 224 for (i = 1; i < num_pages; i++) { 225 kaddr = page_address(buf->pages[i]); 226 crypto_shash_update(shash, kaddr, PAGE_SIZE); 227 } 228 memset(result, 0, BTRFS_CSUM_SIZE); 229 crypto_shash_final(shash, result); 230 } 231 232 /* 233 * we can't consider a given block up to date unless the transid of the 234 * block matches the transid in the parent node's pointer. This is how we 235 * detect blocks that either didn't get written at all or got written 236 * in the wrong place. 237 */ 238 static int verify_parent_transid(struct extent_io_tree *io_tree, 239 struct extent_buffer *eb, u64 parent_transid, 240 int atomic) 241 { 242 struct extent_state *cached_state = NULL; 243 int ret; 244 245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 246 return 0; 247 248 if (atomic) 249 return -EAGAIN; 250 251 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 252 &cached_state); 253 if (extent_buffer_uptodate(eb) && 254 btrfs_header_generation(eb) == parent_transid) { 255 ret = 0; 256 goto out; 257 } 258 btrfs_err_rl(eb->fs_info, 259 "parent transid verify failed on %llu wanted %llu found %llu", 260 eb->start, 261 parent_transid, btrfs_header_generation(eb)); 262 ret = 1; 263 clear_extent_buffer_uptodate(eb); 264 out: 265 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 266 &cached_state); 267 return ret; 268 } 269 270 static bool btrfs_supported_super_csum(u16 csum_type) 271 { 272 switch (csum_type) { 273 case BTRFS_CSUM_TYPE_CRC32: 274 case BTRFS_CSUM_TYPE_XXHASH: 275 case BTRFS_CSUM_TYPE_SHA256: 276 case BTRFS_CSUM_TYPE_BLAKE2: 277 return true; 278 default: 279 return false; 280 } 281 } 282 283 /* 284 * Return 0 if the superblock checksum type matches the checksum value of that 285 * algorithm. Pass the raw disk superblock data. 286 */ 287 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 288 char *raw_disk_sb) 289 { 290 struct btrfs_super_block *disk_sb = 291 (struct btrfs_super_block *)raw_disk_sb; 292 char result[BTRFS_CSUM_SIZE]; 293 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 294 295 shash->tfm = fs_info->csum_shash; 296 297 /* 298 * The super_block structure does not span the whole 299 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 300 * filled with zeros and is included in the checksum. 301 */ 302 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE, 303 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 304 305 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 306 return 1; 307 308 return 0; 309 } 310 311 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 312 struct btrfs_key *first_key, u64 parent_transid) 313 { 314 struct btrfs_fs_info *fs_info = eb->fs_info; 315 int found_level; 316 struct btrfs_key found_key; 317 int ret; 318 319 found_level = btrfs_header_level(eb); 320 if (found_level != level) { 321 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 322 KERN_ERR "BTRFS: tree level check failed\n"); 323 btrfs_err(fs_info, 324 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 325 eb->start, level, found_level); 326 return -EIO; 327 } 328 329 if (!first_key) 330 return 0; 331 332 /* 333 * For live tree block (new tree blocks in current transaction), 334 * we need proper lock context to avoid race, which is impossible here. 335 * So we only checks tree blocks which is read from disk, whose 336 * generation <= fs_info->last_trans_committed. 337 */ 338 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 339 return 0; 340 341 /* We have @first_key, so this @eb must have at least one item */ 342 if (btrfs_header_nritems(eb) == 0) { 343 btrfs_err(fs_info, 344 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 345 eb->start); 346 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 347 return -EUCLEAN; 348 } 349 350 if (found_level) 351 btrfs_node_key_to_cpu(eb, &found_key, 0); 352 else 353 btrfs_item_key_to_cpu(eb, &found_key, 0); 354 ret = btrfs_comp_cpu_keys(first_key, &found_key); 355 356 if (ret) { 357 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 358 KERN_ERR "BTRFS: tree first key check failed\n"); 359 btrfs_err(fs_info, 360 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 361 eb->start, parent_transid, first_key->objectid, 362 first_key->type, first_key->offset, 363 found_key.objectid, found_key.type, 364 found_key.offset); 365 } 366 return ret; 367 } 368 369 /* 370 * helper to read a given tree block, doing retries as required when 371 * the checksums don't match and we have alternate mirrors to try. 372 * 373 * @parent_transid: expected transid, skip check if 0 374 * @level: expected level, mandatory check 375 * @first_key: expected key of first slot, skip check if NULL 376 */ 377 static int btree_read_extent_buffer_pages(struct extent_buffer *eb, 378 u64 parent_transid, int level, 379 struct btrfs_key *first_key) 380 { 381 struct btrfs_fs_info *fs_info = eb->fs_info; 382 struct extent_io_tree *io_tree; 383 int failed = 0; 384 int ret; 385 int num_copies = 0; 386 int mirror_num = 0; 387 int failed_mirror = 0; 388 389 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 390 while (1) { 391 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 392 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num); 393 if (!ret) { 394 if (verify_parent_transid(io_tree, eb, 395 parent_transid, 0)) 396 ret = -EIO; 397 else if (btrfs_verify_level_key(eb, level, 398 first_key, parent_transid)) 399 ret = -EUCLEAN; 400 else 401 break; 402 } 403 404 num_copies = btrfs_num_copies(fs_info, 405 eb->start, eb->len); 406 if (num_copies == 1) 407 break; 408 409 if (!failed_mirror) { 410 failed = 1; 411 failed_mirror = eb->read_mirror; 412 } 413 414 mirror_num++; 415 if (mirror_num == failed_mirror) 416 mirror_num++; 417 418 if (mirror_num > num_copies) 419 break; 420 } 421 422 if (failed && !ret && failed_mirror) 423 btrfs_repair_eb_io_failure(eb, failed_mirror); 424 425 return ret; 426 } 427 428 static int csum_one_extent_buffer(struct extent_buffer *eb) 429 { 430 struct btrfs_fs_info *fs_info = eb->fs_info; 431 u8 result[BTRFS_CSUM_SIZE]; 432 int ret; 433 434 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 435 offsetof(struct btrfs_header, fsid), 436 BTRFS_FSID_SIZE) == 0); 437 csum_tree_block(eb, result); 438 439 if (btrfs_header_level(eb)) 440 ret = btrfs_check_node(eb); 441 else 442 ret = btrfs_check_leaf_full(eb); 443 444 if (ret < 0) { 445 btrfs_print_tree(eb, 0); 446 btrfs_err(fs_info, 447 "block=%llu write time tree block corruption detected", 448 eb->start); 449 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 450 return ret; 451 } 452 write_extent_buffer(eb, result, 0, fs_info->csum_size); 453 454 return 0; 455 } 456 457 /* Checksum all dirty extent buffers in one bio_vec */ 458 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info, 459 struct bio_vec *bvec) 460 { 461 struct page *page = bvec->bv_page; 462 u64 bvec_start = page_offset(page) + bvec->bv_offset; 463 u64 cur; 464 int ret = 0; 465 466 for (cur = bvec_start; cur < bvec_start + bvec->bv_len; 467 cur += fs_info->nodesize) { 468 struct extent_buffer *eb; 469 bool uptodate; 470 471 eb = find_extent_buffer(fs_info, cur); 472 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur, 473 fs_info->nodesize); 474 475 /* A dirty eb shouldn't disappear from buffer_radix */ 476 if (WARN_ON(!eb)) 477 return -EUCLEAN; 478 479 if (WARN_ON(cur != btrfs_header_bytenr(eb))) { 480 free_extent_buffer(eb); 481 return -EUCLEAN; 482 } 483 if (WARN_ON(!uptodate)) { 484 free_extent_buffer(eb); 485 return -EUCLEAN; 486 } 487 488 ret = csum_one_extent_buffer(eb); 489 free_extent_buffer(eb); 490 if (ret < 0) 491 return ret; 492 } 493 return ret; 494 } 495 496 /* 497 * Checksum a dirty tree block before IO. This has extra checks to make sure 498 * we only fill in the checksum field in the first page of a multi-page block. 499 * For subpage extent buffers we need bvec to also read the offset in the page. 500 */ 501 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec) 502 { 503 struct page *page = bvec->bv_page; 504 u64 start = page_offset(page); 505 u64 found_start; 506 struct extent_buffer *eb; 507 508 if (fs_info->sectorsize < PAGE_SIZE) 509 return csum_dirty_subpage_buffers(fs_info, bvec); 510 511 eb = (struct extent_buffer *)page->private; 512 if (page != eb->pages[0]) 513 return 0; 514 515 found_start = btrfs_header_bytenr(eb); 516 517 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) { 518 WARN_ON(found_start != 0); 519 return 0; 520 } 521 522 /* 523 * Please do not consolidate these warnings into a single if. 524 * It is useful to know what went wrong. 525 */ 526 if (WARN_ON(found_start != start)) 527 return -EUCLEAN; 528 if (WARN_ON(!PageUptodate(page))) 529 return -EUCLEAN; 530 531 return csum_one_extent_buffer(eb); 532 } 533 534 static int check_tree_block_fsid(struct extent_buffer *eb) 535 { 536 struct btrfs_fs_info *fs_info = eb->fs_info; 537 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 538 u8 fsid[BTRFS_FSID_SIZE]; 539 u8 *metadata_uuid; 540 541 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 542 BTRFS_FSID_SIZE); 543 /* 544 * Checking the incompat flag is only valid for the current fs. For 545 * seed devices it's forbidden to have their uuid changed so reading 546 * ->fsid in this case is fine 547 */ 548 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 549 metadata_uuid = fs_devices->metadata_uuid; 550 else 551 metadata_uuid = fs_devices->fsid; 552 553 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) 554 return 0; 555 556 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 557 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 558 return 0; 559 560 return 1; 561 } 562 563 /* Do basic extent buffer checks at read time */ 564 static int validate_extent_buffer(struct extent_buffer *eb) 565 { 566 struct btrfs_fs_info *fs_info = eb->fs_info; 567 u64 found_start; 568 const u32 csum_size = fs_info->csum_size; 569 u8 found_level; 570 u8 result[BTRFS_CSUM_SIZE]; 571 const u8 *header_csum; 572 int ret = 0; 573 574 found_start = btrfs_header_bytenr(eb); 575 if (found_start != eb->start) { 576 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 577 eb->start, found_start); 578 ret = -EIO; 579 goto out; 580 } 581 if (check_tree_block_fsid(eb)) { 582 btrfs_err_rl(fs_info, "bad fsid on block %llu", 583 eb->start); 584 ret = -EIO; 585 goto out; 586 } 587 found_level = btrfs_header_level(eb); 588 if (found_level >= BTRFS_MAX_LEVEL) { 589 btrfs_err(fs_info, "bad tree block level %d on %llu", 590 (int)btrfs_header_level(eb), eb->start); 591 ret = -EIO; 592 goto out; 593 } 594 595 csum_tree_block(eb, result); 596 header_csum = page_address(eb->pages[0]) + 597 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum)); 598 599 if (memcmp(result, header_csum, csum_size) != 0) { 600 btrfs_warn_rl(fs_info, 601 "checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d", 602 eb->start, 603 CSUM_FMT_VALUE(csum_size, header_csum), 604 CSUM_FMT_VALUE(csum_size, result), 605 btrfs_header_level(eb)); 606 ret = -EUCLEAN; 607 goto out; 608 } 609 610 /* 611 * If this is a leaf block and it is corrupt, set the corrupt bit so 612 * that we don't try and read the other copies of this block, just 613 * return -EIO. 614 */ 615 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 616 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 617 ret = -EIO; 618 } 619 620 if (found_level > 0 && btrfs_check_node(eb)) 621 ret = -EIO; 622 623 if (!ret) 624 set_extent_buffer_uptodate(eb); 625 else 626 btrfs_err(fs_info, 627 "block=%llu read time tree block corruption detected", 628 eb->start); 629 out: 630 return ret; 631 } 632 633 static int validate_subpage_buffer(struct page *page, u64 start, u64 end, 634 int mirror) 635 { 636 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 637 struct extent_buffer *eb; 638 bool reads_done; 639 int ret = 0; 640 641 /* 642 * We don't allow bio merge for subpage metadata read, so we should 643 * only get one eb for each endio hook. 644 */ 645 ASSERT(end == start + fs_info->nodesize - 1); 646 ASSERT(PagePrivate(page)); 647 648 eb = find_extent_buffer(fs_info, start); 649 /* 650 * When we are reading one tree block, eb must have been inserted into 651 * the radix tree. If not, something is wrong. 652 */ 653 ASSERT(eb); 654 655 reads_done = atomic_dec_and_test(&eb->io_pages); 656 /* Subpage read must finish in page read */ 657 ASSERT(reads_done); 658 659 eb->read_mirror = mirror; 660 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 661 ret = -EIO; 662 goto err; 663 } 664 ret = validate_extent_buffer(eb); 665 if (ret < 0) 666 goto err; 667 668 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 669 btree_readahead_hook(eb, ret); 670 671 set_extent_buffer_uptodate(eb); 672 673 free_extent_buffer(eb); 674 return ret; 675 err: 676 /* 677 * end_bio_extent_readpage decrements io_pages in case of error, 678 * make sure it has something to decrement. 679 */ 680 atomic_inc(&eb->io_pages); 681 clear_extent_buffer_uptodate(eb); 682 free_extent_buffer(eb); 683 return ret; 684 } 685 686 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio, 687 struct page *page, u64 start, u64 end, 688 int mirror) 689 { 690 struct extent_buffer *eb; 691 int ret = 0; 692 int reads_done; 693 694 ASSERT(page->private); 695 696 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE) 697 return validate_subpage_buffer(page, start, end, mirror); 698 699 eb = (struct extent_buffer *)page->private; 700 701 /* 702 * The pending IO might have been the only thing that kept this buffer 703 * in memory. Make sure we have a ref for all this other checks 704 */ 705 atomic_inc(&eb->refs); 706 707 reads_done = atomic_dec_and_test(&eb->io_pages); 708 if (!reads_done) 709 goto err; 710 711 eb->read_mirror = mirror; 712 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 713 ret = -EIO; 714 goto err; 715 } 716 ret = validate_extent_buffer(eb); 717 err: 718 if (reads_done && 719 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 720 btree_readahead_hook(eb, ret); 721 722 if (ret) { 723 /* 724 * our io error hook is going to dec the io pages 725 * again, we have to make sure it has something 726 * to decrement 727 */ 728 atomic_inc(&eb->io_pages); 729 clear_extent_buffer_uptodate(eb); 730 } 731 free_extent_buffer(eb); 732 733 return ret; 734 } 735 736 static void end_workqueue_bio(struct bio *bio) 737 { 738 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 739 struct btrfs_fs_info *fs_info; 740 struct btrfs_workqueue *wq; 741 742 fs_info = end_io_wq->info; 743 end_io_wq->status = bio->bi_status; 744 745 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 746 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) 747 wq = fs_info->endio_meta_write_workers; 748 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) 749 wq = fs_info->endio_freespace_worker; 750 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 751 wq = fs_info->endio_raid56_workers; 752 else 753 wq = fs_info->endio_write_workers; 754 } else { 755 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 756 wq = fs_info->endio_raid56_workers; 757 else if (end_io_wq->metadata) 758 wq = fs_info->endio_meta_workers; 759 else 760 wq = fs_info->endio_workers; 761 } 762 763 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL); 764 btrfs_queue_work(wq, &end_io_wq->work); 765 } 766 767 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 768 enum btrfs_wq_endio_type metadata) 769 { 770 struct btrfs_end_io_wq *end_io_wq; 771 772 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 773 if (!end_io_wq) 774 return BLK_STS_RESOURCE; 775 776 end_io_wq->private = bio->bi_private; 777 end_io_wq->end_io = bio->bi_end_io; 778 end_io_wq->info = info; 779 end_io_wq->status = 0; 780 end_io_wq->bio = bio; 781 end_io_wq->metadata = metadata; 782 783 bio->bi_private = end_io_wq; 784 bio->bi_end_io = end_workqueue_bio; 785 return 0; 786 } 787 788 static void run_one_async_start(struct btrfs_work *work) 789 { 790 struct async_submit_bio *async; 791 blk_status_t ret; 792 793 async = container_of(work, struct async_submit_bio, work); 794 ret = async->submit_bio_start(async->inode, async->bio, 795 async->dio_file_offset); 796 if (ret) 797 async->status = ret; 798 } 799 800 /* 801 * In order to insert checksums into the metadata in large chunks, we wait 802 * until bio submission time. All the pages in the bio are checksummed and 803 * sums are attached onto the ordered extent record. 804 * 805 * At IO completion time the csums attached on the ordered extent record are 806 * inserted into the tree. 807 */ 808 static void run_one_async_done(struct btrfs_work *work) 809 { 810 struct async_submit_bio *async; 811 struct inode *inode; 812 blk_status_t ret; 813 814 async = container_of(work, struct async_submit_bio, work); 815 inode = async->inode; 816 817 /* If an error occurred we just want to clean up the bio and move on */ 818 if (async->status) { 819 async->bio->bi_status = async->status; 820 bio_endio(async->bio); 821 return; 822 } 823 824 /* 825 * All of the bios that pass through here are from async helpers. 826 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context. 827 * This changes nothing when cgroups aren't in use. 828 */ 829 async->bio->bi_opf |= REQ_CGROUP_PUNT; 830 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num); 831 if (ret) { 832 async->bio->bi_status = ret; 833 bio_endio(async->bio); 834 } 835 } 836 837 static void run_one_async_free(struct btrfs_work *work) 838 { 839 struct async_submit_bio *async; 840 841 async = container_of(work, struct async_submit_bio, work); 842 kfree(async); 843 } 844 845 blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio, 846 int mirror_num, unsigned long bio_flags, 847 u64 dio_file_offset, 848 extent_submit_bio_start_t *submit_bio_start) 849 { 850 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 851 struct async_submit_bio *async; 852 853 async = kmalloc(sizeof(*async), GFP_NOFS); 854 if (!async) 855 return BLK_STS_RESOURCE; 856 857 async->inode = inode; 858 async->bio = bio; 859 async->mirror_num = mirror_num; 860 async->submit_bio_start = submit_bio_start; 861 862 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, 863 run_one_async_free); 864 865 async->dio_file_offset = dio_file_offset; 866 867 async->status = 0; 868 869 if (op_is_sync(bio->bi_opf)) 870 btrfs_set_work_high_priority(&async->work); 871 872 btrfs_queue_work(fs_info->workers, &async->work); 873 return 0; 874 } 875 876 static blk_status_t btree_csum_one_bio(struct bio *bio) 877 { 878 struct bio_vec *bvec; 879 struct btrfs_root *root; 880 int ret = 0; 881 struct bvec_iter_all iter_all; 882 883 ASSERT(!bio_flagged(bio, BIO_CLONED)); 884 bio_for_each_segment_all(bvec, bio, iter_all) { 885 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 886 ret = csum_dirty_buffer(root->fs_info, bvec); 887 if (ret) 888 break; 889 } 890 891 return errno_to_blk_status(ret); 892 } 893 894 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio, 895 u64 dio_file_offset) 896 { 897 /* 898 * when we're called for a write, we're already in the async 899 * submission context. Just jump into btrfs_map_bio 900 */ 901 return btree_csum_one_bio(bio); 902 } 903 904 static bool should_async_write(struct btrfs_fs_info *fs_info, 905 struct btrfs_inode *bi) 906 { 907 if (btrfs_is_zoned(fs_info)) 908 return false; 909 if (atomic_read(&bi->sync_writers)) 910 return false; 911 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 912 return false; 913 return true; 914 } 915 916 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, 917 int mirror_num, unsigned long bio_flags) 918 { 919 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 920 blk_status_t ret; 921 922 if (btrfs_op(bio) != BTRFS_MAP_WRITE) { 923 /* 924 * called for a read, do the setup so that checksum validation 925 * can happen in the async kernel threads 926 */ 927 ret = btrfs_bio_wq_end_io(fs_info, bio, 928 BTRFS_WQ_ENDIO_METADATA); 929 if (ret) 930 goto out_w_error; 931 ret = btrfs_map_bio(fs_info, bio, mirror_num); 932 } else if (!should_async_write(fs_info, BTRFS_I(inode))) { 933 ret = btree_csum_one_bio(bio); 934 if (ret) 935 goto out_w_error; 936 ret = btrfs_map_bio(fs_info, bio, mirror_num); 937 } else { 938 /* 939 * kthread helpers are used to submit writes so that 940 * checksumming can happen in parallel across all CPUs 941 */ 942 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0, 943 0, btree_submit_bio_start); 944 } 945 946 if (ret) 947 goto out_w_error; 948 return 0; 949 950 out_w_error: 951 bio->bi_status = ret; 952 bio_endio(bio); 953 return ret; 954 } 955 956 #ifdef CONFIG_MIGRATION 957 static int btree_migratepage(struct address_space *mapping, 958 struct page *newpage, struct page *page, 959 enum migrate_mode mode) 960 { 961 /* 962 * we can't safely write a btree page from here, 963 * we haven't done the locking hook 964 */ 965 if (PageDirty(page)) 966 return -EAGAIN; 967 /* 968 * Buffers may be managed in a filesystem specific way. 969 * We must have no buffers or drop them. 970 */ 971 if (page_has_private(page) && 972 !try_to_release_page(page, GFP_KERNEL)) 973 return -EAGAIN; 974 return migrate_page(mapping, newpage, page, mode); 975 } 976 #endif 977 978 979 static int btree_writepages(struct address_space *mapping, 980 struct writeback_control *wbc) 981 { 982 struct btrfs_fs_info *fs_info; 983 int ret; 984 985 if (wbc->sync_mode == WB_SYNC_NONE) { 986 987 if (wbc->for_kupdate) 988 return 0; 989 990 fs_info = BTRFS_I(mapping->host)->root->fs_info; 991 /* this is a bit racy, but that's ok */ 992 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 993 BTRFS_DIRTY_METADATA_THRESH, 994 fs_info->dirty_metadata_batch); 995 if (ret < 0) 996 return 0; 997 } 998 return btree_write_cache_pages(mapping, wbc); 999 } 1000 1001 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1002 { 1003 if (PageWriteback(page) || PageDirty(page)) 1004 return 0; 1005 1006 return try_release_extent_buffer(page); 1007 } 1008 1009 static void btree_invalidatepage(struct page *page, unsigned int offset, 1010 unsigned int length) 1011 { 1012 struct extent_io_tree *tree; 1013 tree = &BTRFS_I(page->mapping->host)->io_tree; 1014 extent_invalidatepage(tree, page, offset); 1015 btree_releasepage(page, GFP_NOFS); 1016 if (PagePrivate(page)) { 1017 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1018 "page private not zero on page %llu", 1019 (unsigned long long)page_offset(page)); 1020 detach_page_private(page); 1021 } 1022 } 1023 1024 static int btree_set_page_dirty(struct page *page) 1025 { 1026 #ifdef DEBUG 1027 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 1028 struct btrfs_subpage *subpage; 1029 struct extent_buffer *eb; 1030 int cur_bit = 0; 1031 u64 page_start = page_offset(page); 1032 1033 if (fs_info->sectorsize == PAGE_SIZE) { 1034 BUG_ON(!PagePrivate(page)); 1035 eb = (struct extent_buffer *)page->private; 1036 BUG_ON(!eb); 1037 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1038 BUG_ON(!atomic_read(&eb->refs)); 1039 btrfs_assert_tree_write_locked(eb); 1040 return __set_page_dirty_nobuffers(page); 1041 } 1042 ASSERT(PagePrivate(page) && page->private); 1043 subpage = (struct btrfs_subpage *)page->private; 1044 1045 ASSERT(subpage->dirty_bitmap); 1046 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) { 1047 unsigned long flags; 1048 u64 cur; 1049 u16 tmp = (1 << cur_bit); 1050 1051 spin_lock_irqsave(&subpage->lock, flags); 1052 if (!(tmp & subpage->dirty_bitmap)) { 1053 spin_unlock_irqrestore(&subpage->lock, flags); 1054 cur_bit++; 1055 continue; 1056 } 1057 spin_unlock_irqrestore(&subpage->lock, flags); 1058 cur = page_start + cur_bit * fs_info->sectorsize; 1059 1060 eb = find_extent_buffer(fs_info, cur); 1061 ASSERT(eb); 1062 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1063 ASSERT(atomic_read(&eb->refs)); 1064 btrfs_assert_tree_write_locked(eb); 1065 free_extent_buffer(eb); 1066 1067 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits); 1068 } 1069 #endif 1070 return __set_page_dirty_nobuffers(page); 1071 } 1072 1073 static const struct address_space_operations btree_aops = { 1074 .writepages = btree_writepages, 1075 .releasepage = btree_releasepage, 1076 .invalidatepage = btree_invalidatepage, 1077 #ifdef CONFIG_MIGRATION 1078 .migratepage = btree_migratepage, 1079 #endif 1080 .set_page_dirty = btree_set_page_dirty, 1081 }; 1082 1083 struct extent_buffer *btrfs_find_create_tree_block( 1084 struct btrfs_fs_info *fs_info, 1085 u64 bytenr, u64 owner_root, 1086 int level) 1087 { 1088 if (btrfs_is_testing(fs_info)) 1089 return alloc_test_extent_buffer(fs_info, bytenr); 1090 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 1091 } 1092 1093 /* 1094 * Read tree block at logical address @bytenr and do variant basic but critical 1095 * verification. 1096 * 1097 * @owner_root: the objectid of the root owner for this block. 1098 * @parent_transid: expected transid of this tree block, skip check if 0 1099 * @level: expected level, mandatory check 1100 * @first_key: expected key in slot 0, skip check if NULL 1101 */ 1102 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1103 u64 owner_root, u64 parent_transid, 1104 int level, struct btrfs_key *first_key) 1105 { 1106 struct extent_buffer *buf = NULL; 1107 int ret; 1108 1109 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 1110 if (IS_ERR(buf)) 1111 return buf; 1112 1113 ret = btree_read_extent_buffer_pages(buf, parent_transid, 1114 level, first_key); 1115 if (ret) { 1116 free_extent_buffer_stale(buf); 1117 return ERR_PTR(ret); 1118 } 1119 return buf; 1120 1121 } 1122 1123 void btrfs_clean_tree_block(struct extent_buffer *buf) 1124 { 1125 struct btrfs_fs_info *fs_info = buf->fs_info; 1126 if (btrfs_header_generation(buf) == 1127 fs_info->running_transaction->transid) { 1128 btrfs_assert_tree_write_locked(buf); 1129 1130 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1131 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1132 -buf->len, 1133 fs_info->dirty_metadata_batch); 1134 clear_extent_buffer_dirty(buf); 1135 } 1136 } 1137 } 1138 1139 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1140 u64 objectid) 1141 { 1142 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1143 root->fs_info = fs_info; 1144 root->node = NULL; 1145 root->commit_root = NULL; 1146 root->state = 0; 1147 root->orphan_cleanup_state = 0; 1148 1149 root->last_trans = 0; 1150 root->free_objectid = 0; 1151 root->nr_delalloc_inodes = 0; 1152 root->nr_ordered_extents = 0; 1153 root->inode_tree = RB_ROOT; 1154 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1155 root->block_rsv = NULL; 1156 1157 INIT_LIST_HEAD(&root->dirty_list); 1158 INIT_LIST_HEAD(&root->root_list); 1159 INIT_LIST_HEAD(&root->delalloc_inodes); 1160 INIT_LIST_HEAD(&root->delalloc_root); 1161 INIT_LIST_HEAD(&root->ordered_extents); 1162 INIT_LIST_HEAD(&root->ordered_root); 1163 INIT_LIST_HEAD(&root->reloc_dirty_list); 1164 INIT_LIST_HEAD(&root->logged_list[0]); 1165 INIT_LIST_HEAD(&root->logged_list[1]); 1166 spin_lock_init(&root->inode_lock); 1167 spin_lock_init(&root->delalloc_lock); 1168 spin_lock_init(&root->ordered_extent_lock); 1169 spin_lock_init(&root->accounting_lock); 1170 spin_lock_init(&root->log_extents_lock[0]); 1171 spin_lock_init(&root->log_extents_lock[1]); 1172 spin_lock_init(&root->qgroup_meta_rsv_lock); 1173 mutex_init(&root->objectid_mutex); 1174 mutex_init(&root->log_mutex); 1175 mutex_init(&root->ordered_extent_mutex); 1176 mutex_init(&root->delalloc_mutex); 1177 init_waitqueue_head(&root->qgroup_flush_wait); 1178 init_waitqueue_head(&root->log_writer_wait); 1179 init_waitqueue_head(&root->log_commit_wait[0]); 1180 init_waitqueue_head(&root->log_commit_wait[1]); 1181 INIT_LIST_HEAD(&root->log_ctxs[0]); 1182 INIT_LIST_HEAD(&root->log_ctxs[1]); 1183 atomic_set(&root->log_commit[0], 0); 1184 atomic_set(&root->log_commit[1], 0); 1185 atomic_set(&root->log_writers, 0); 1186 atomic_set(&root->log_batch, 0); 1187 refcount_set(&root->refs, 1); 1188 atomic_set(&root->snapshot_force_cow, 0); 1189 atomic_set(&root->nr_swapfiles, 0); 1190 root->log_transid = 0; 1191 root->log_transid_committed = -1; 1192 root->last_log_commit = 0; 1193 if (!dummy) { 1194 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1195 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL); 1196 extent_io_tree_init(fs_info, &root->log_csum_range, 1197 IO_TREE_LOG_CSUM_RANGE, NULL); 1198 } 1199 1200 memset(&root->root_key, 0, sizeof(root->root_key)); 1201 memset(&root->root_item, 0, sizeof(root->root_item)); 1202 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1203 root->root_key.objectid = objectid; 1204 root->anon_dev = 0; 1205 1206 spin_lock_init(&root->root_item_lock); 1207 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1208 #ifdef CONFIG_BTRFS_DEBUG 1209 INIT_LIST_HEAD(&root->leak_list); 1210 spin_lock(&fs_info->fs_roots_radix_lock); 1211 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 1212 spin_unlock(&fs_info->fs_roots_radix_lock); 1213 #endif 1214 } 1215 1216 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1217 u64 objectid, gfp_t flags) 1218 { 1219 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1220 if (root) 1221 __setup_root(root, fs_info, objectid); 1222 return root; 1223 } 1224 1225 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1226 /* Should only be used by the testing infrastructure */ 1227 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1228 { 1229 struct btrfs_root *root; 1230 1231 if (!fs_info) 1232 return ERR_PTR(-EINVAL); 1233 1234 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 1235 if (!root) 1236 return ERR_PTR(-ENOMEM); 1237 1238 /* We don't use the stripesize in selftest, set it as sectorsize */ 1239 root->alloc_bytenr = 0; 1240 1241 return root; 1242 } 1243 #endif 1244 1245 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1246 u64 objectid) 1247 { 1248 struct btrfs_fs_info *fs_info = trans->fs_info; 1249 struct extent_buffer *leaf; 1250 struct btrfs_root *tree_root = fs_info->tree_root; 1251 struct btrfs_root *root; 1252 struct btrfs_key key; 1253 unsigned int nofs_flag; 1254 int ret = 0; 1255 1256 /* 1257 * We're holding a transaction handle, so use a NOFS memory allocation 1258 * context to avoid deadlock if reclaim happens. 1259 */ 1260 nofs_flag = memalloc_nofs_save(); 1261 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1262 memalloc_nofs_restore(nofs_flag); 1263 if (!root) 1264 return ERR_PTR(-ENOMEM); 1265 1266 root->root_key.objectid = objectid; 1267 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1268 root->root_key.offset = 0; 1269 1270 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 1271 BTRFS_NESTING_NORMAL); 1272 if (IS_ERR(leaf)) { 1273 ret = PTR_ERR(leaf); 1274 leaf = NULL; 1275 goto fail_unlock; 1276 } 1277 1278 root->node = leaf; 1279 btrfs_mark_buffer_dirty(leaf); 1280 1281 root->commit_root = btrfs_root_node(root); 1282 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1283 1284 btrfs_set_root_flags(&root->root_item, 0); 1285 btrfs_set_root_limit(&root->root_item, 0); 1286 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1287 btrfs_set_root_generation(&root->root_item, trans->transid); 1288 btrfs_set_root_level(&root->root_item, 0); 1289 btrfs_set_root_refs(&root->root_item, 1); 1290 btrfs_set_root_used(&root->root_item, leaf->len); 1291 btrfs_set_root_last_snapshot(&root->root_item, 0); 1292 btrfs_set_root_dirid(&root->root_item, 0); 1293 if (is_fstree(objectid)) 1294 generate_random_guid(root->root_item.uuid); 1295 else 1296 export_guid(root->root_item.uuid, &guid_null); 1297 btrfs_set_root_drop_level(&root->root_item, 0); 1298 1299 btrfs_tree_unlock(leaf); 1300 1301 key.objectid = objectid; 1302 key.type = BTRFS_ROOT_ITEM_KEY; 1303 key.offset = 0; 1304 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1305 if (ret) 1306 goto fail; 1307 1308 return root; 1309 1310 fail_unlock: 1311 if (leaf) 1312 btrfs_tree_unlock(leaf); 1313 fail: 1314 btrfs_put_root(root); 1315 1316 return ERR_PTR(ret); 1317 } 1318 1319 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1320 struct btrfs_fs_info *fs_info) 1321 { 1322 struct btrfs_root *root; 1323 1324 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1325 if (!root) 1326 return ERR_PTR(-ENOMEM); 1327 1328 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1329 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1330 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1331 1332 return root; 1333 } 1334 1335 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 1336 struct btrfs_root *root) 1337 { 1338 struct extent_buffer *leaf; 1339 1340 /* 1341 * DON'T set SHAREABLE bit for log trees. 1342 * 1343 * Log trees are not exposed to user space thus can't be snapshotted, 1344 * and they go away before a real commit is actually done. 1345 * 1346 * They do store pointers to file data extents, and those reference 1347 * counts still get updated (along with back refs to the log tree). 1348 */ 1349 1350 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1351 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); 1352 if (IS_ERR(leaf)) 1353 return PTR_ERR(leaf); 1354 1355 root->node = leaf; 1356 1357 btrfs_mark_buffer_dirty(root->node); 1358 btrfs_tree_unlock(root->node); 1359 1360 return 0; 1361 } 1362 1363 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1364 struct btrfs_fs_info *fs_info) 1365 { 1366 struct btrfs_root *log_root; 1367 1368 log_root = alloc_log_tree(trans, fs_info); 1369 if (IS_ERR(log_root)) 1370 return PTR_ERR(log_root); 1371 1372 if (!btrfs_is_zoned(fs_info)) { 1373 int ret = btrfs_alloc_log_tree_node(trans, log_root); 1374 1375 if (ret) { 1376 btrfs_put_root(log_root); 1377 return ret; 1378 } 1379 } 1380 1381 WARN_ON(fs_info->log_root_tree); 1382 fs_info->log_root_tree = log_root; 1383 return 0; 1384 } 1385 1386 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1387 struct btrfs_root *root) 1388 { 1389 struct btrfs_fs_info *fs_info = root->fs_info; 1390 struct btrfs_root *log_root; 1391 struct btrfs_inode_item *inode_item; 1392 int ret; 1393 1394 log_root = alloc_log_tree(trans, fs_info); 1395 if (IS_ERR(log_root)) 1396 return PTR_ERR(log_root); 1397 1398 ret = btrfs_alloc_log_tree_node(trans, log_root); 1399 if (ret) { 1400 btrfs_put_root(log_root); 1401 return ret; 1402 } 1403 1404 log_root->last_trans = trans->transid; 1405 log_root->root_key.offset = root->root_key.objectid; 1406 1407 inode_item = &log_root->root_item.inode; 1408 btrfs_set_stack_inode_generation(inode_item, 1); 1409 btrfs_set_stack_inode_size(inode_item, 3); 1410 btrfs_set_stack_inode_nlink(inode_item, 1); 1411 btrfs_set_stack_inode_nbytes(inode_item, 1412 fs_info->nodesize); 1413 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1414 1415 btrfs_set_root_node(&log_root->root_item, log_root->node); 1416 1417 WARN_ON(root->log_root); 1418 root->log_root = log_root; 1419 root->log_transid = 0; 1420 root->log_transid_committed = -1; 1421 root->last_log_commit = 0; 1422 return 0; 1423 } 1424 1425 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1426 struct btrfs_path *path, 1427 struct btrfs_key *key) 1428 { 1429 struct btrfs_root *root; 1430 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1431 u64 generation; 1432 int ret; 1433 int level; 1434 1435 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1436 if (!root) 1437 return ERR_PTR(-ENOMEM); 1438 1439 ret = btrfs_find_root(tree_root, key, path, 1440 &root->root_item, &root->root_key); 1441 if (ret) { 1442 if (ret > 0) 1443 ret = -ENOENT; 1444 goto fail; 1445 } 1446 1447 generation = btrfs_root_generation(&root->root_item); 1448 level = btrfs_root_level(&root->root_item); 1449 root->node = read_tree_block(fs_info, 1450 btrfs_root_bytenr(&root->root_item), 1451 key->objectid, generation, level, NULL); 1452 if (IS_ERR(root->node)) { 1453 ret = PTR_ERR(root->node); 1454 root->node = NULL; 1455 goto fail; 1456 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1457 ret = -EIO; 1458 goto fail; 1459 } 1460 root->commit_root = btrfs_root_node(root); 1461 return root; 1462 fail: 1463 btrfs_put_root(root); 1464 return ERR_PTR(ret); 1465 } 1466 1467 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1468 struct btrfs_key *key) 1469 { 1470 struct btrfs_root *root; 1471 struct btrfs_path *path; 1472 1473 path = btrfs_alloc_path(); 1474 if (!path) 1475 return ERR_PTR(-ENOMEM); 1476 root = read_tree_root_path(tree_root, path, key); 1477 btrfs_free_path(path); 1478 1479 return root; 1480 } 1481 1482 /* 1483 * Initialize subvolume root in-memory structure 1484 * 1485 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1486 */ 1487 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1488 { 1489 int ret; 1490 unsigned int nofs_flag; 1491 1492 /* 1493 * We might be called under a transaction (e.g. indirect backref 1494 * resolution) which could deadlock if it triggers memory reclaim 1495 */ 1496 nofs_flag = memalloc_nofs_save(); 1497 ret = btrfs_drew_lock_init(&root->snapshot_lock); 1498 memalloc_nofs_restore(nofs_flag); 1499 if (ret) 1500 goto fail; 1501 1502 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1503 !btrfs_is_data_reloc_root(root)) { 1504 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1505 btrfs_check_and_init_root_item(&root->root_item); 1506 } 1507 1508 /* 1509 * Don't assign anonymous block device to roots that are not exposed to 1510 * userspace, the id pool is limited to 1M 1511 */ 1512 if (is_fstree(root->root_key.objectid) && 1513 btrfs_root_refs(&root->root_item) > 0) { 1514 if (!anon_dev) { 1515 ret = get_anon_bdev(&root->anon_dev); 1516 if (ret) 1517 goto fail; 1518 } else { 1519 root->anon_dev = anon_dev; 1520 } 1521 } 1522 1523 mutex_lock(&root->objectid_mutex); 1524 ret = btrfs_init_root_free_objectid(root); 1525 if (ret) { 1526 mutex_unlock(&root->objectid_mutex); 1527 goto fail; 1528 } 1529 1530 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1531 1532 mutex_unlock(&root->objectid_mutex); 1533 1534 return 0; 1535 fail: 1536 /* The caller is responsible to call btrfs_free_fs_root */ 1537 return ret; 1538 } 1539 1540 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1541 u64 root_id) 1542 { 1543 struct btrfs_root *root; 1544 1545 spin_lock(&fs_info->fs_roots_radix_lock); 1546 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1547 (unsigned long)root_id); 1548 if (root) 1549 root = btrfs_grab_root(root); 1550 spin_unlock(&fs_info->fs_roots_radix_lock); 1551 return root; 1552 } 1553 1554 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1555 u64 objectid) 1556 { 1557 if (objectid == BTRFS_ROOT_TREE_OBJECTID) 1558 return btrfs_grab_root(fs_info->tree_root); 1559 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 1560 return btrfs_grab_root(fs_info->extent_root); 1561 if (objectid == BTRFS_CHUNK_TREE_OBJECTID) 1562 return btrfs_grab_root(fs_info->chunk_root); 1563 if (objectid == BTRFS_DEV_TREE_OBJECTID) 1564 return btrfs_grab_root(fs_info->dev_root); 1565 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 1566 return btrfs_grab_root(fs_info->csum_root); 1567 if (objectid == BTRFS_QUOTA_TREE_OBJECTID) 1568 return btrfs_grab_root(fs_info->quota_root) ? 1569 fs_info->quota_root : ERR_PTR(-ENOENT); 1570 if (objectid == BTRFS_UUID_TREE_OBJECTID) 1571 return btrfs_grab_root(fs_info->uuid_root) ? 1572 fs_info->uuid_root : ERR_PTR(-ENOENT); 1573 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1574 return btrfs_grab_root(fs_info->free_space_root) ? 1575 fs_info->free_space_root : ERR_PTR(-ENOENT); 1576 return NULL; 1577 } 1578 1579 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1580 struct btrfs_root *root) 1581 { 1582 int ret; 1583 1584 ret = radix_tree_preload(GFP_NOFS); 1585 if (ret) 1586 return ret; 1587 1588 spin_lock(&fs_info->fs_roots_radix_lock); 1589 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1590 (unsigned long)root->root_key.objectid, 1591 root); 1592 if (ret == 0) { 1593 btrfs_grab_root(root); 1594 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1595 } 1596 spin_unlock(&fs_info->fs_roots_radix_lock); 1597 radix_tree_preload_end(); 1598 1599 return ret; 1600 } 1601 1602 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1603 { 1604 #ifdef CONFIG_BTRFS_DEBUG 1605 struct btrfs_root *root; 1606 1607 while (!list_empty(&fs_info->allocated_roots)) { 1608 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1609 1610 root = list_first_entry(&fs_info->allocated_roots, 1611 struct btrfs_root, leak_list); 1612 btrfs_err(fs_info, "leaked root %s refcount %d", 1613 btrfs_root_name(&root->root_key, buf), 1614 refcount_read(&root->refs)); 1615 while (refcount_read(&root->refs) > 1) 1616 btrfs_put_root(root); 1617 btrfs_put_root(root); 1618 } 1619 #endif 1620 } 1621 1622 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1623 { 1624 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1625 percpu_counter_destroy(&fs_info->delalloc_bytes); 1626 percpu_counter_destroy(&fs_info->ordered_bytes); 1627 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1628 btrfs_free_csum_hash(fs_info); 1629 btrfs_free_stripe_hash_table(fs_info); 1630 btrfs_free_ref_cache(fs_info); 1631 kfree(fs_info->balance_ctl); 1632 kfree(fs_info->delayed_root); 1633 btrfs_put_root(fs_info->extent_root); 1634 btrfs_put_root(fs_info->tree_root); 1635 btrfs_put_root(fs_info->chunk_root); 1636 btrfs_put_root(fs_info->dev_root); 1637 btrfs_put_root(fs_info->csum_root); 1638 btrfs_put_root(fs_info->quota_root); 1639 btrfs_put_root(fs_info->uuid_root); 1640 btrfs_put_root(fs_info->free_space_root); 1641 btrfs_put_root(fs_info->fs_root); 1642 btrfs_put_root(fs_info->data_reloc_root); 1643 btrfs_check_leaked_roots(fs_info); 1644 btrfs_extent_buffer_leak_debug_check(fs_info); 1645 kfree(fs_info->super_copy); 1646 kfree(fs_info->super_for_commit); 1647 kfree(fs_info->subpage_info); 1648 kvfree(fs_info); 1649 } 1650 1651 1652 /* 1653 * Get an in-memory reference of a root structure. 1654 * 1655 * For essential trees like root/extent tree, we grab it from fs_info directly. 1656 * For subvolume trees, we check the cached filesystem roots first. If not 1657 * found, then read it from disk and add it to cached fs roots. 1658 * 1659 * Caller should release the root by calling btrfs_put_root() after the usage. 1660 * 1661 * NOTE: Reloc and log trees can't be read by this function as they share the 1662 * same root objectid. 1663 * 1664 * @objectid: root id 1665 * @anon_dev: preallocated anonymous block device number for new roots, 1666 * pass 0 for new allocation. 1667 * @check_ref: whether to check root item references, If true, return -ENOENT 1668 * for orphan roots 1669 */ 1670 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1671 u64 objectid, dev_t anon_dev, 1672 bool check_ref) 1673 { 1674 struct btrfs_root *root; 1675 struct btrfs_path *path; 1676 struct btrfs_key key; 1677 int ret; 1678 1679 root = btrfs_get_global_root(fs_info, objectid); 1680 if (root) 1681 return root; 1682 again: 1683 root = btrfs_lookup_fs_root(fs_info, objectid); 1684 if (root) { 1685 /* Shouldn't get preallocated anon_dev for cached roots */ 1686 ASSERT(!anon_dev); 1687 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1688 btrfs_put_root(root); 1689 return ERR_PTR(-ENOENT); 1690 } 1691 return root; 1692 } 1693 1694 key.objectid = objectid; 1695 key.type = BTRFS_ROOT_ITEM_KEY; 1696 key.offset = (u64)-1; 1697 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1698 if (IS_ERR(root)) 1699 return root; 1700 1701 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1702 ret = -ENOENT; 1703 goto fail; 1704 } 1705 1706 ret = btrfs_init_fs_root(root, anon_dev); 1707 if (ret) 1708 goto fail; 1709 1710 path = btrfs_alloc_path(); 1711 if (!path) { 1712 ret = -ENOMEM; 1713 goto fail; 1714 } 1715 key.objectid = BTRFS_ORPHAN_OBJECTID; 1716 key.type = BTRFS_ORPHAN_ITEM_KEY; 1717 key.offset = objectid; 1718 1719 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1720 btrfs_free_path(path); 1721 if (ret < 0) 1722 goto fail; 1723 if (ret == 0) 1724 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1725 1726 ret = btrfs_insert_fs_root(fs_info, root); 1727 if (ret) { 1728 btrfs_put_root(root); 1729 if (ret == -EEXIST) 1730 goto again; 1731 goto fail; 1732 } 1733 return root; 1734 fail: 1735 btrfs_put_root(root); 1736 return ERR_PTR(ret); 1737 } 1738 1739 /* 1740 * Get in-memory reference of a root structure 1741 * 1742 * @objectid: tree objectid 1743 * @check_ref: if set, verify that the tree exists and the item has at least 1744 * one reference 1745 */ 1746 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1747 u64 objectid, bool check_ref) 1748 { 1749 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1750 } 1751 1752 /* 1753 * Get in-memory reference of a root structure, created as new, optionally pass 1754 * the anonymous block device id 1755 * 1756 * @objectid: tree objectid 1757 * @anon_dev: if zero, allocate a new anonymous block device or use the 1758 * parameter value 1759 */ 1760 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1761 u64 objectid, dev_t anon_dev) 1762 { 1763 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1764 } 1765 1766 /* 1767 * btrfs_get_fs_root_commit_root - return a root for the given objectid 1768 * @fs_info: the fs_info 1769 * @objectid: the objectid we need to lookup 1770 * 1771 * This is exclusively used for backref walking, and exists specifically because 1772 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1773 * creation time, which means we may have to read the tree_root in order to look 1774 * up a fs root that is not in memory. If the root is not in memory we will 1775 * read the tree root commit root and look up the fs root from there. This is a 1776 * temporary root, it will not be inserted into the radix tree as it doesn't 1777 * have the most uptodate information, it'll simply be discarded once the 1778 * backref code is finished using the root. 1779 */ 1780 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1781 struct btrfs_path *path, 1782 u64 objectid) 1783 { 1784 struct btrfs_root *root; 1785 struct btrfs_key key; 1786 1787 ASSERT(path->search_commit_root && path->skip_locking); 1788 1789 /* 1790 * This can return -ENOENT if we ask for a root that doesn't exist, but 1791 * since this is called via the backref walking code we won't be looking 1792 * up a root that doesn't exist, unless there's corruption. So if root 1793 * != NULL just return it. 1794 */ 1795 root = btrfs_get_global_root(fs_info, objectid); 1796 if (root) 1797 return root; 1798 1799 root = btrfs_lookup_fs_root(fs_info, objectid); 1800 if (root) 1801 return root; 1802 1803 key.objectid = objectid; 1804 key.type = BTRFS_ROOT_ITEM_KEY; 1805 key.offset = (u64)-1; 1806 root = read_tree_root_path(fs_info->tree_root, path, &key); 1807 btrfs_release_path(path); 1808 1809 return root; 1810 } 1811 1812 /* 1813 * called by the kthread helper functions to finally call the bio end_io 1814 * functions. This is where read checksum verification actually happens 1815 */ 1816 static void end_workqueue_fn(struct btrfs_work *work) 1817 { 1818 struct bio *bio; 1819 struct btrfs_end_io_wq *end_io_wq; 1820 1821 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1822 bio = end_io_wq->bio; 1823 1824 bio->bi_status = end_io_wq->status; 1825 bio->bi_private = end_io_wq->private; 1826 bio->bi_end_io = end_io_wq->end_io; 1827 bio_endio(bio); 1828 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1829 } 1830 1831 static int cleaner_kthread(void *arg) 1832 { 1833 struct btrfs_root *root = arg; 1834 struct btrfs_fs_info *fs_info = root->fs_info; 1835 int again; 1836 1837 while (1) { 1838 again = 0; 1839 1840 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1841 1842 /* Make the cleaner go to sleep early. */ 1843 if (btrfs_need_cleaner_sleep(fs_info)) 1844 goto sleep; 1845 1846 /* 1847 * Do not do anything if we might cause open_ctree() to block 1848 * before we have finished mounting the filesystem. 1849 */ 1850 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1851 goto sleep; 1852 1853 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1854 goto sleep; 1855 1856 /* 1857 * Avoid the problem that we change the status of the fs 1858 * during the above check and trylock. 1859 */ 1860 if (btrfs_need_cleaner_sleep(fs_info)) { 1861 mutex_unlock(&fs_info->cleaner_mutex); 1862 goto sleep; 1863 } 1864 1865 btrfs_run_delayed_iputs(fs_info); 1866 1867 again = btrfs_clean_one_deleted_snapshot(root); 1868 mutex_unlock(&fs_info->cleaner_mutex); 1869 1870 /* 1871 * The defragger has dealt with the R/O remount and umount, 1872 * needn't do anything special here. 1873 */ 1874 btrfs_run_defrag_inodes(fs_info); 1875 1876 /* 1877 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1878 * with relocation (btrfs_relocate_chunk) and relocation 1879 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1880 * after acquiring fs_info->reclaim_bgs_lock. So we 1881 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1882 * unused block groups. 1883 */ 1884 btrfs_delete_unused_bgs(fs_info); 1885 1886 /* 1887 * Reclaim block groups in the reclaim_bgs list after we deleted 1888 * all unused block_groups. This possibly gives us some more free 1889 * space. 1890 */ 1891 btrfs_reclaim_bgs(fs_info); 1892 sleep: 1893 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1894 if (kthread_should_park()) 1895 kthread_parkme(); 1896 if (kthread_should_stop()) 1897 return 0; 1898 if (!again) { 1899 set_current_state(TASK_INTERRUPTIBLE); 1900 schedule(); 1901 __set_current_state(TASK_RUNNING); 1902 } 1903 } 1904 } 1905 1906 static int transaction_kthread(void *arg) 1907 { 1908 struct btrfs_root *root = arg; 1909 struct btrfs_fs_info *fs_info = root->fs_info; 1910 struct btrfs_trans_handle *trans; 1911 struct btrfs_transaction *cur; 1912 u64 transid; 1913 time64_t delta; 1914 unsigned long delay; 1915 bool cannot_commit; 1916 1917 do { 1918 cannot_commit = false; 1919 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1920 mutex_lock(&fs_info->transaction_kthread_mutex); 1921 1922 spin_lock(&fs_info->trans_lock); 1923 cur = fs_info->running_transaction; 1924 if (!cur) { 1925 spin_unlock(&fs_info->trans_lock); 1926 goto sleep; 1927 } 1928 1929 delta = ktime_get_seconds() - cur->start_time; 1930 if (cur->state < TRANS_STATE_COMMIT_START && 1931 delta < fs_info->commit_interval) { 1932 spin_unlock(&fs_info->trans_lock); 1933 delay -= msecs_to_jiffies((delta - 1) * 1000); 1934 delay = min(delay, 1935 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1936 goto sleep; 1937 } 1938 transid = cur->transid; 1939 spin_unlock(&fs_info->trans_lock); 1940 1941 /* If the file system is aborted, this will always fail. */ 1942 trans = btrfs_attach_transaction(root); 1943 if (IS_ERR(trans)) { 1944 if (PTR_ERR(trans) != -ENOENT) 1945 cannot_commit = true; 1946 goto sleep; 1947 } 1948 if (transid == trans->transid) { 1949 btrfs_commit_transaction(trans); 1950 } else { 1951 btrfs_end_transaction(trans); 1952 } 1953 sleep: 1954 wake_up_process(fs_info->cleaner_kthread); 1955 mutex_unlock(&fs_info->transaction_kthread_mutex); 1956 1957 if (BTRFS_FS_ERROR(fs_info)) 1958 btrfs_cleanup_transaction(fs_info); 1959 if (!kthread_should_stop() && 1960 (!btrfs_transaction_blocked(fs_info) || 1961 cannot_commit)) 1962 schedule_timeout_interruptible(delay); 1963 } while (!kthread_should_stop()); 1964 return 0; 1965 } 1966 1967 /* 1968 * This will find the highest generation in the array of root backups. The 1969 * index of the highest array is returned, or -EINVAL if we can't find 1970 * anything. 1971 * 1972 * We check to make sure the array is valid by comparing the 1973 * generation of the latest root in the array with the generation 1974 * in the super block. If they don't match we pitch it. 1975 */ 1976 static int find_newest_super_backup(struct btrfs_fs_info *info) 1977 { 1978 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1979 u64 cur; 1980 struct btrfs_root_backup *root_backup; 1981 int i; 1982 1983 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1984 root_backup = info->super_copy->super_roots + i; 1985 cur = btrfs_backup_tree_root_gen(root_backup); 1986 if (cur == newest_gen) 1987 return i; 1988 } 1989 1990 return -EINVAL; 1991 } 1992 1993 /* 1994 * copy all the root pointers into the super backup array. 1995 * this will bump the backup pointer by one when it is 1996 * done 1997 */ 1998 static void backup_super_roots(struct btrfs_fs_info *info) 1999 { 2000 const int next_backup = info->backup_root_index; 2001 struct btrfs_root_backup *root_backup; 2002 2003 root_backup = info->super_for_commit->super_roots + next_backup; 2004 2005 /* 2006 * make sure all of our padding and empty slots get zero filled 2007 * regardless of which ones we use today 2008 */ 2009 memset(root_backup, 0, sizeof(*root_backup)); 2010 2011 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 2012 2013 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 2014 btrfs_set_backup_tree_root_gen(root_backup, 2015 btrfs_header_generation(info->tree_root->node)); 2016 2017 btrfs_set_backup_tree_root_level(root_backup, 2018 btrfs_header_level(info->tree_root->node)); 2019 2020 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 2021 btrfs_set_backup_chunk_root_gen(root_backup, 2022 btrfs_header_generation(info->chunk_root->node)); 2023 btrfs_set_backup_chunk_root_level(root_backup, 2024 btrfs_header_level(info->chunk_root->node)); 2025 2026 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 2027 btrfs_set_backup_extent_root_gen(root_backup, 2028 btrfs_header_generation(info->extent_root->node)); 2029 btrfs_set_backup_extent_root_level(root_backup, 2030 btrfs_header_level(info->extent_root->node)); 2031 2032 /* 2033 * we might commit during log recovery, which happens before we set 2034 * the fs_root. Make sure it is valid before we fill it in. 2035 */ 2036 if (info->fs_root && info->fs_root->node) { 2037 btrfs_set_backup_fs_root(root_backup, 2038 info->fs_root->node->start); 2039 btrfs_set_backup_fs_root_gen(root_backup, 2040 btrfs_header_generation(info->fs_root->node)); 2041 btrfs_set_backup_fs_root_level(root_backup, 2042 btrfs_header_level(info->fs_root->node)); 2043 } 2044 2045 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2046 btrfs_set_backup_dev_root_gen(root_backup, 2047 btrfs_header_generation(info->dev_root->node)); 2048 btrfs_set_backup_dev_root_level(root_backup, 2049 btrfs_header_level(info->dev_root->node)); 2050 2051 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 2052 btrfs_set_backup_csum_root_gen(root_backup, 2053 btrfs_header_generation(info->csum_root->node)); 2054 btrfs_set_backup_csum_root_level(root_backup, 2055 btrfs_header_level(info->csum_root->node)); 2056 2057 btrfs_set_backup_total_bytes(root_backup, 2058 btrfs_super_total_bytes(info->super_copy)); 2059 btrfs_set_backup_bytes_used(root_backup, 2060 btrfs_super_bytes_used(info->super_copy)); 2061 btrfs_set_backup_num_devices(root_backup, 2062 btrfs_super_num_devices(info->super_copy)); 2063 2064 /* 2065 * if we don't copy this out to the super_copy, it won't get remembered 2066 * for the next commit 2067 */ 2068 memcpy(&info->super_copy->super_roots, 2069 &info->super_for_commit->super_roots, 2070 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2071 } 2072 2073 /* 2074 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 2075 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 2076 * 2077 * fs_info - filesystem whose backup roots need to be read 2078 * priority - priority of backup root required 2079 * 2080 * Returns backup root index on success and -EINVAL otherwise. 2081 */ 2082 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 2083 { 2084 int backup_index = find_newest_super_backup(fs_info); 2085 struct btrfs_super_block *super = fs_info->super_copy; 2086 struct btrfs_root_backup *root_backup; 2087 2088 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 2089 if (priority == 0) 2090 return backup_index; 2091 2092 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 2093 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 2094 } else { 2095 return -EINVAL; 2096 } 2097 2098 root_backup = super->super_roots + backup_index; 2099 2100 btrfs_set_super_generation(super, 2101 btrfs_backup_tree_root_gen(root_backup)); 2102 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2103 btrfs_set_super_root_level(super, 2104 btrfs_backup_tree_root_level(root_backup)); 2105 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2106 2107 /* 2108 * Fixme: the total bytes and num_devices need to match or we should 2109 * need a fsck 2110 */ 2111 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2112 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2113 2114 return backup_index; 2115 } 2116 2117 /* helper to cleanup workers */ 2118 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2119 { 2120 btrfs_destroy_workqueue(fs_info->fixup_workers); 2121 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2122 btrfs_destroy_workqueue(fs_info->workers); 2123 btrfs_destroy_workqueue(fs_info->endio_workers); 2124 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2125 btrfs_destroy_workqueue(fs_info->rmw_workers); 2126 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2127 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2128 btrfs_destroy_workqueue(fs_info->delayed_workers); 2129 btrfs_destroy_workqueue(fs_info->caching_workers); 2130 btrfs_destroy_workqueue(fs_info->readahead_workers); 2131 btrfs_destroy_workqueue(fs_info->flush_workers); 2132 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2133 if (fs_info->discard_ctl.discard_workers) 2134 destroy_workqueue(fs_info->discard_ctl.discard_workers); 2135 /* 2136 * Now that all other work queues are destroyed, we can safely destroy 2137 * the queues used for metadata I/O, since tasks from those other work 2138 * queues can do metadata I/O operations. 2139 */ 2140 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2141 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2142 } 2143 2144 static void free_root_extent_buffers(struct btrfs_root *root) 2145 { 2146 if (root) { 2147 free_extent_buffer(root->node); 2148 free_extent_buffer(root->commit_root); 2149 root->node = NULL; 2150 root->commit_root = NULL; 2151 } 2152 } 2153 2154 /* helper to cleanup tree roots */ 2155 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 2156 { 2157 free_root_extent_buffers(info->tree_root); 2158 2159 free_root_extent_buffers(info->dev_root); 2160 free_root_extent_buffers(info->extent_root); 2161 free_root_extent_buffers(info->csum_root); 2162 free_root_extent_buffers(info->quota_root); 2163 free_root_extent_buffers(info->uuid_root); 2164 free_root_extent_buffers(info->fs_root); 2165 free_root_extent_buffers(info->data_reloc_root); 2166 if (free_chunk_root) 2167 free_root_extent_buffers(info->chunk_root); 2168 free_root_extent_buffers(info->free_space_root); 2169 } 2170 2171 void btrfs_put_root(struct btrfs_root *root) 2172 { 2173 if (!root) 2174 return; 2175 2176 if (refcount_dec_and_test(&root->refs)) { 2177 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2178 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 2179 if (root->anon_dev) 2180 free_anon_bdev(root->anon_dev); 2181 btrfs_drew_lock_destroy(&root->snapshot_lock); 2182 free_root_extent_buffers(root); 2183 #ifdef CONFIG_BTRFS_DEBUG 2184 spin_lock(&root->fs_info->fs_roots_radix_lock); 2185 list_del_init(&root->leak_list); 2186 spin_unlock(&root->fs_info->fs_roots_radix_lock); 2187 #endif 2188 kfree(root); 2189 } 2190 } 2191 2192 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2193 { 2194 int ret; 2195 struct btrfs_root *gang[8]; 2196 int i; 2197 2198 while (!list_empty(&fs_info->dead_roots)) { 2199 gang[0] = list_entry(fs_info->dead_roots.next, 2200 struct btrfs_root, root_list); 2201 list_del(&gang[0]->root_list); 2202 2203 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2204 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2205 btrfs_put_root(gang[0]); 2206 } 2207 2208 while (1) { 2209 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2210 (void **)gang, 0, 2211 ARRAY_SIZE(gang)); 2212 if (!ret) 2213 break; 2214 for (i = 0; i < ret; i++) 2215 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2216 } 2217 } 2218 2219 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2220 { 2221 mutex_init(&fs_info->scrub_lock); 2222 atomic_set(&fs_info->scrubs_running, 0); 2223 atomic_set(&fs_info->scrub_pause_req, 0); 2224 atomic_set(&fs_info->scrubs_paused, 0); 2225 atomic_set(&fs_info->scrub_cancel_req, 0); 2226 init_waitqueue_head(&fs_info->scrub_pause_wait); 2227 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2228 } 2229 2230 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2231 { 2232 spin_lock_init(&fs_info->balance_lock); 2233 mutex_init(&fs_info->balance_mutex); 2234 atomic_set(&fs_info->balance_pause_req, 0); 2235 atomic_set(&fs_info->balance_cancel_req, 0); 2236 fs_info->balance_ctl = NULL; 2237 init_waitqueue_head(&fs_info->balance_wait_q); 2238 atomic_set(&fs_info->reloc_cancel_req, 0); 2239 } 2240 2241 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2242 { 2243 struct inode *inode = fs_info->btree_inode; 2244 2245 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2246 set_nlink(inode, 1); 2247 /* 2248 * we set the i_size on the btree inode to the max possible int. 2249 * the real end of the address space is determined by all of 2250 * the devices in the system 2251 */ 2252 inode->i_size = OFFSET_MAX; 2253 inode->i_mapping->a_ops = &btree_aops; 2254 2255 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2256 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2257 IO_TREE_BTREE_INODE_IO, inode); 2258 BTRFS_I(inode)->io_tree.track_uptodate = false; 2259 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2260 2261 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2262 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2263 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2264 btrfs_insert_inode_hash(inode); 2265 } 2266 2267 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2268 { 2269 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2270 init_rwsem(&fs_info->dev_replace.rwsem); 2271 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2272 } 2273 2274 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2275 { 2276 spin_lock_init(&fs_info->qgroup_lock); 2277 mutex_init(&fs_info->qgroup_ioctl_lock); 2278 fs_info->qgroup_tree = RB_ROOT; 2279 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2280 fs_info->qgroup_seq = 1; 2281 fs_info->qgroup_ulist = NULL; 2282 fs_info->qgroup_rescan_running = false; 2283 mutex_init(&fs_info->qgroup_rescan_lock); 2284 } 2285 2286 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2287 struct btrfs_fs_devices *fs_devices) 2288 { 2289 u32 max_active = fs_info->thread_pool_size; 2290 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2291 2292 fs_info->workers = 2293 btrfs_alloc_workqueue(fs_info, "worker", 2294 flags | WQ_HIGHPRI, max_active, 16); 2295 2296 fs_info->delalloc_workers = 2297 btrfs_alloc_workqueue(fs_info, "delalloc", 2298 flags, max_active, 2); 2299 2300 fs_info->flush_workers = 2301 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2302 flags, max_active, 0); 2303 2304 fs_info->caching_workers = 2305 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2306 2307 fs_info->fixup_workers = 2308 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2309 2310 /* 2311 * endios are largely parallel and should have a very 2312 * low idle thresh 2313 */ 2314 fs_info->endio_workers = 2315 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2316 fs_info->endio_meta_workers = 2317 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2318 max_active, 4); 2319 fs_info->endio_meta_write_workers = 2320 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2321 max_active, 2); 2322 fs_info->endio_raid56_workers = 2323 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2324 max_active, 4); 2325 fs_info->rmw_workers = 2326 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2327 fs_info->endio_write_workers = 2328 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2329 max_active, 2); 2330 fs_info->endio_freespace_worker = 2331 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2332 max_active, 0); 2333 fs_info->delayed_workers = 2334 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2335 max_active, 0); 2336 fs_info->readahead_workers = 2337 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2338 max_active, 2); 2339 fs_info->qgroup_rescan_workers = 2340 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2341 fs_info->discard_ctl.discard_workers = 2342 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2343 2344 if (!(fs_info->workers && fs_info->delalloc_workers && 2345 fs_info->flush_workers && 2346 fs_info->endio_workers && fs_info->endio_meta_workers && 2347 fs_info->endio_meta_write_workers && 2348 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2349 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2350 fs_info->caching_workers && fs_info->readahead_workers && 2351 fs_info->fixup_workers && fs_info->delayed_workers && 2352 fs_info->qgroup_rescan_workers && 2353 fs_info->discard_ctl.discard_workers)) { 2354 return -ENOMEM; 2355 } 2356 2357 return 0; 2358 } 2359 2360 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2361 { 2362 struct crypto_shash *csum_shash; 2363 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2364 2365 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2366 2367 if (IS_ERR(csum_shash)) { 2368 btrfs_err(fs_info, "error allocating %s hash for checksum", 2369 csum_driver); 2370 return PTR_ERR(csum_shash); 2371 } 2372 2373 fs_info->csum_shash = csum_shash; 2374 2375 return 0; 2376 } 2377 2378 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2379 struct btrfs_fs_devices *fs_devices) 2380 { 2381 int ret; 2382 struct btrfs_root *log_tree_root; 2383 struct btrfs_super_block *disk_super = fs_info->super_copy; 2384 u64 bytenr = btrfs_super_log_root(disk_super); 2385 int level = btrfs_super_log_root_level(disk_super); 2386 2387 if (fs_devices->rw_devices == 0) { 2388 btrfs_warn(fs_info, "log replay required on RO media"); 2389 return -EIO; 2390 } 2391 2392 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2393 GFP_KERNEL); 2394 if (!log_tree_root) 2395 return -ENOMEM; 2396 2397 log_tree_root->node = read_tree_block(fs_info, bytenr, 2398 BTRFS_TREE_LOG_OBJECTID, 2399 fs_info->generation + 1, level, 2400 NULL); 2401 if (IS_ERR(log_tree_root->node)) { 2402 btrfs_warn(fs_info, "failed to read log tree"); 2403 ret = PTR_ERR(log_tree_root->node); 2404 log_tree_root->node = NULL; 2405 btrfs_put_root(log_tree_root); 2406 return ret; 2407 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2408 btrfs_err(fs_info, "failed to read log tree"); 2409 btrfs_put_root(log_tree_root); 2410 return -EIO; 2411 } 2412 /* returns with log_tree_root freed on success */ 2413 ret = btrfs_recover_log_trees(log_tree_root); 2414 if (ret) { 2415 btrfs_handle_fs_error(fs_info, ret, 2416 "Failed to recover log tree"); 2417 btrfs_put_root(log_tree_root); 2418 return ret; 2419 } 2420 2421 if (sb_rdonly(fs_info->sb)) { 2422 ret = btrfs_commit_super(fs_info); 2423 if (ret) 2424 return ret; 2425 } 2426 2427 return 0; 2428 } 2429 2430 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2431 { 2432 struct btrfs_root *tree_root = fs_info->tree_root; 2433 struct btrfs_root *root; 2434 struct btrfs_key location; 2435 int ret; 2436 2437 BUG_ON(!fs_info->tree_root); 2438 2439 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2440 location.type = BTRFS_ROOT_ITEM_KEY; 2441 location.offset = 0; 2442 2443 root = btrfs_read_tree_root(tree_root, &location); 2444 if (IS_ERR(root)) { 2445 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2446 ret = PTR_ERR(root); 2447 goto out; 2448 } 2449 } else { 2450 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2451 fs_info->extent_root = root; 2452 } 2453 2454 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2455 root = btrfs_read_tree_root(tree_root, &location); 2456 if (IS_ERR(root)) { 2457 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2458 ret = PTR_ERR(root); 2459 goto out; 2460 } 2461 } else { 2462 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2463 fs_info->dev_root = root; 2464 } 2465 /* Initialize fs_info for all devices in any case */ 2466 btrfs_init_devices_late(fs_info); 2467 2468 /* If IGNOREDATACSUMS is set don't bother reading the csum root. */ 2469 if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2470 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2471 root = btrfs_read_tree_root(tree_root, &location); 2472 if (IS_ERR(root)) { 2473 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2474 ret = PTR_ERR(root); 2475 goto out; 2476 } 2477 } else { 2478 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2479 fs_info->csum_root = root; 2480 } 2481 } 2482 2483 /* 2484 * This tree can share blocks with some other fs tree during relocation 2485 * and we need a proper setup by btrfs_get_fs_root 2486 */ 2487 root = btrfs_get_fs_root(tree_root->fs_info, 2488 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2489 if (IS_ERR(root)) { 2490 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2491 ret = PTR_ERR(root); 2492 goto out; 2493 } 2494 } else { 2495 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2496 fs_info->data_reloc_root = root; 2497 } 2498 2499 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2500 root = btrfs_read_tree_root(tree_root, &location); 2501 if (!IS_ERR(root)) { 2502 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2503 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2504 fs_info->quota_root = root; 2505 } 2506 2507 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2508 root = btrfs_read_tree_root(tree_root, &location); 2509 if (IS_ERR(root)) { 2510 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2511 ret = PTR_ERR(root); 2512 if (ret != -ENOENT) 2513 goto out; 2514 } 2515 } else { 2516 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2517 fs_info->uuid_root = root; 2518 } 2519 2520 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2521 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2522 root = btrfs_read_tree_root(tree_root, &location); 2523 if (IS_ERR(root)) { 2524 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2525 ret = PTR_ERR(root); 2526 goto out; 2527 } 2528 } else { 2529 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2530 fs_info->free_space_root = root; 2531 } 2532 } 2533 2534 return 0; 2535 out: 2536 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2537 location.objectid, ret); 2538 return ret; 2539 } 2540 2541 /* 2542 * Real super block validation 2543 * NOTE: super csum type and incompat features will not be checked here. 2544 * 2545 * @sb: super block to check 2546 * @mirror_num: the super block number to check its bytenr: 2547 * 0 the primary (1st) sb 2548 * 1, 2 2nd and 3rd backup copy 2549 * -1 skip bytenr check 2550 */ 2551 static int validate_super(struct btrfs_fs_info *fs_info, 2552 struct btrfs_super_block *sb, int mirror_num) 2553 { 2554 u64 nodesize = btrfs_super_nodesize(sb); 2555 u64 sectorsize = btrfs_super_sectorsize(sb); 2556 int ret = 0; 2557 2558 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2559 btrfs_err(fs_info, "no valid FS found"); 2560 ret = -EINVAL; 2561 } 2562 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2563 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2564 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2565 ret = -EINVAL; 2566 } 2567 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2568 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2569 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2570 ret = -EINVAL; 2571 } 2572 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2573 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2574 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2575 ret = -EINVAL; 2576 } 2577 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2578 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2579 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2580 ret = -EINVAL; 2581 } 2582 2583 /* 2584 * Check sectorsize and nodesize first, other check will need it. 2585 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2586 */ 2587 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2588 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2589 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2590 ret = -EINVAL; 2591 } 2592 2593 /* 2594 * For 4K page size, we only support 4K sector size. 2595 * For 64K page size, we support 64K and 4K sector sizes. 2596 */ 2597 if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) || 2598 (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K && 2599 sectorsize != SZ_64K))) { 2600 btrfs_err(fs_info, 2601 "sectorsize %llu not yet supported for page size %lu", 2602 sectorsize, PAGE_SIZE); 2603 ret = -EINVAL; 2604 } 2605 2606 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2607 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2608 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2609 ret = -EINVAL; 2610 } 2611 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2612 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2613 le32_to_cpu(sb->__unused_leafsize), nodesize); 2614 ret = -EINVAL; 2615 } 2616 2617 /* Root alignment check */ 2618 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2619 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2620 btrfs_super_root(sb)); 2621 ret = -EINVAL; 2622 } 2623 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2624 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2625 btrfs_super_chunk_root(sb)); 2626 ret = -EINVAL; 2627 } 2628 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2629 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2630 btrfs_super_log_root(sb)); 2631 ret = -EINVAL; 2632 } 2633 2634 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2635 BTRFS_FSID_SIZE)) { 2636 btrfs_err(fs_info, 2637 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2638 fs_info->super_copy->fsid, fs_info->fs_devices->fsid); 2639 ret = -EINVAL; 2640 } 2641 2642 if (btrfs_fs_incompat(fs_info, METADATA_UUID) && 2643 memcmp(fs_info->fs_devices->metadata_uuid, 2644 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) { 2645 btrfs_err(fs_info, 2646 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2647 fs_info->super_copy->metadata_uuid, 2648 fs_info->fs_devices->metadata_uuid); 2649 ret = -EINVAL; 2650 } 2651 2652 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2653 BTRFS_FSID_SIZE) != 0) { 2654 btrfs_err(fs_info, 2655 "dev_item UUID does not match metadata fsid: %pU != %pU", 2656 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2657 ret = -EINVAL; 2658 } 2659 2660 /* 2661 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2662 * done later 2663 */ 2664 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2665 btrfs_err(fs_info, "bytes_used is too small %llu", 2666 btrfs_super_bytes_used(sb)); 2667 ret = -EINVAL; 2668 } 2669 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2670 btrfs_err(fs_info, "invalid stripesize %u", 2671 btrfs_super_stripesize(sb)); 2672 ret = -EINVAL; 2673 } 2674 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2675 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2676 btrfs_super_num_devices(sb)); 2677 if (btrfs_super_num_devices(sb) == 0) { 2678 btrfs_err(fs_info, "number of devices is 0"); 2679 ret = -EINVAL; 2680 } 2681 2682 if (mirror_num >= 0 && 2683 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2684 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2685 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2686 ret = -EINVAL; 2687 } 2688 2689 /* 2690 * Obvious sys_chunk_array corruptions, it must hold at least one key 2691 * and one chunk 2692 */ 2693 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2694 btrfs_err(fs_info, "system chunk array too big %u > %u", 2695 btrfs_super_sys_array_size(sb), 2696 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2697 ret = -EINVAL; 2698 } 2699 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2700 + sizeof(struct btrfs_chunk)) { 2701 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2702 btrfs_super_sys_array_size(sb), 2703 sizeof(struct btrfs_disk_key) 2704 + sizeof(struct btrfs_chunk)); 2705 ret = -EINVAL; 2706 } 2707 2708 /* 2709 * The generation is a global counter, we'll trust it more than the others 2710 * but it's still possible that it's the one that's wrong. 2711 */ 2712 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2713 btrfs_warn(fs_info, 2714 "suspicious: generation < chunk_root_generation: %llu < %llu", 2715 btrfs_super_generation(sb), 2716 btrfs_super_chunk_root_generation(sb)); 2717 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2718 && btrfs_super_cache_generation(sb) != (u64)-1) 2719 btrfs_warn(fs_info, 2720 "suspicious: generation < cache_generation: %llu < %llu", 2721 btrfs_super_generation(sb), 2722 btrfs_super_cache_generation(sb)); 2723 2724 return ret; 2725 } 2726 2727 /* 2728 * Validation of super block at mount time. 2729 * Some checks already done early at mount time, like csum type and incompat 2730 * flags will be skipped. 2731 */ 2732 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2733 { 2734 return validate_super(fs_info, fs_info->super_copy, 0); 2735 } 2736 2737 /* 2738 * Validation of super block at write time. 2739 * Some checks like bytenr check will be skipped as their values will be 2740 * overwritten soon. 2741 * Extra checks like csum type and incompat flags will be done here. 2742 */ 2743 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2744 struct btrfs_super_block *sb) 2745 { 2746 int ret; 2747 2748 ret = validate_super(fs_info, sb, -1); 2749 if (ret < 0) 2750 goto out; 2751 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2752 ret = -EUCLEAN; 2753 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2754 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2755 goto out; 2756 } 2757 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2758 ret = -EUCLEAN; 2759 btrfs_err(fs_info, 2760 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2761 btrfs_super_incompat_flags(sb), 2762 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2763 goto out; 2764 } 2765 out: 2766 if (ret < 0) 2767 btrfs_err(fs_info, 2768 "super block corruption detected before writing it to disk"); 2769 return ret; 2770 } 2771 2772 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2773 { 2774 int backup_index = find_newest_super_backup(fs_info); 2775 struct btrfs_super_block *sb = fs_info->super_copy; 2776 struct btrfs_root *tree_root = fs_info->tree_root; 2777 bool handle_error = false; 2778 int ret = 0; 2779 int i; 2780 2781 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2782 u64 generation; 2783 int level; 2784 2785 if (handle_error) { 2786 if (!IS_ERR(tree_root->node)) 2787 free_extent_buffer(tree_root->node); 2788 tree_root->node = NULL; 2789 2790 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2791 break; 2792 2793 free_root_pointers(fs_info, 0); 2794 2795 /* 2796 * Don't use the log in recovery mode, it won't be 2797 * valid 2798 */ 2799 btrfs_set_super_log_root(sb, 0); 2800 2801 /* We can't trust the free space cache either */ 2802 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2803 2804 ret = read_backup_root(fs_info, i); 2805 backup_index = ret; 2806 if (ret < 0) 2807 return ret; 2808 } 2809 generation = btrfs_super_generation(sb); 2810 level = btrfs_super_root_level(sb); 2811 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb), 2812 BTRFS_ROOT_TREE_OBJECTID, 2813 generation, level, NULL); 2814 if (IS_ERR(tree_root->node)) { 2815 handle_error = true; 2816 ret = PTR_ERR(tree_root->node); 2817 tree_root->node = NULL; 2818 btrfs_warn(fs_info, "couldn't read tree root"); 2819 continue; 2820 2821 } else if (!extent_buffer_uptodate(tree_root->node)) { 2822 handle_error = true; 2823 ret = -EIO; 2824 btrfs_warn(fs_info, "error while reading tree root"); 2825 continue; 2826 } 2827 2828 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2829 tree_root->commit_root = btrfs_root_node(tree_root); 2830 btrfs_set_root_refs(&tree_root->root_item, 1); 2831 2832 /* 2833 * No need to hold btrfs_root::objectid_mutex since the fs 2834 * hasn't been fully initialised and we are the only user 2835 */ 2836 ret = btrfs_init_root_free_objectid(tree_root); 2837 if (ret < 0) { 2838 handle_error = true; 2839 continue; 2840 } 2841 2842 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2843 2844 ret = btrfs_read_roots(fs_info); 2845 if (ret < 0) { 2846 handle_error = true; 2847 continue; 2848 } 2849 2850 /* All successful */ 2851 fs_info->generation = generation; 2852 fs_info->last_trans_committed = generation; 2853 2854 /* Always begin writing backup roots after the one being used */ 2855 if (backup_index < 0) { 2856 fs_info->backup_root_index = 0; 2857 } else { 2858 fs_info->backup_root_index = backup_index + 1; 2859 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2860 } 2861 break; 2862 } 2863 2864 return ret; 2865 } 2866 2867 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2868 { 2869 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2870 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2871 INIT_LIST_HEAD(&fs_info->trans_list); 2872 INIT_LIST_HEAD(&fs_info->dead_roots); 2873 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2874 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2875 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2876 spin_lock_init(&fs_info->delalloc_root_lock); 2877 spin_lock_init(&fs_info->trans_lock); 2878 spin_lock_init(&fs_info->fs_roots_radix_lock); 2879 spin_lock_init(&fs_info->delayed_iput_lock); 2880 spin_lock_init(&fs_info->defrag_inodes_lock); 2881 spin_lock_init(&fs_info->super_lock); 2882 spin_lock_init(&fs_info->buffer_lock); 2883 spin_lock_init(&fs_info->unused_bgs_lock); 2884 spin_lock_init(&fs_info->treelog_bg_lock); 2885 spin_lock_init(&fs_info->zone_active_bgs_lock); 2886 spin_lock_init(&fs_info->relocation_bg_lock); 2887 rwlock_init(&fs_info->tree_mod_log_lock); 2888 mutex_init(&fs_info->unused_bg_unpin_mutex); 2889 mutex_init(&fs_info->reclaim_bgs_lock); 2890 mutex_init(&fs_info->reloc_mutex); 2891 mutex_init(&fs_info->delalloc_root_mutex); 2892 mutex_init(&fs_info->zoned_meta_io_lock); 2893 seqlock_init(&fs_info->profiles_lock); 2894 2895 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2896 INIT_LIST_HEAD(&fs_info->space_info); 2897 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2898 INIT_LIST_HEAD(&fs_info->unused_bgs); 2899 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2900 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2901 #ifdef CONFIG_BTRFS_DEBUG 2902 INIT_LIST_HEAD(&fs_info->allocated_roots); 2903 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2904 spin_lock_init(&fs_info->eb_leak_lock); 2905 #endif 2906 extent_map_tree_init(&fs_info->mapping_tree); 2907 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2908 BTRFS_BLOCK_RSV_GLOBAL); 2909 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2910 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2911 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2912 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2913 BTRFS_BLOCK_RSV_DELOPS); 2914 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2915 BTRFS_BLOCK_RSV_DELREFS); 2916 2917 atomic_set(&fs_info->async_delalloc_pages, 0); 2918 atomic_set(&fs_info->defrag_running, 0); 2919 atomic_set(&fs_info->reada_works_cnt, 0); 2920 atomic_set(&fs_info->nr_delayed_iputs, 0); 2921 atomic64_set(&fs_info->tree_mod_seq, 0); 2922 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2923 fs_info->metadata_ratio = 0; 2924 fs_info->defrag_inodes = RB_ROOT; 2925 atomic64_set(&fs_info->free_chunk_space, 0); 2926 fs_info->tree_mod_log = RB_ROOT; 2927 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2928 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2929 /* readahead state */ 2930 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2931 spin_lock_init(&fs_info->reada_lock); 2932 btrfs_init_ref_verify(fs_info); 2933 2934 fs_info->thread_pool_size = min_t(unsigned long, 2935 num_online_cpus() + 2, 8); 2936 2937 INIT_LIST_HEAD(&fs_info->ordered_roots); 2938 spin_lock_init(&fs_info->ordered_root_lock); 2939 2940 btrfs_init_scrub(fs_info); 2941 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2942 fs_info->check_integrity_print_mask = 0; 2943 #endif 2944 btrfs_init_balance(fs_info); 2945 btrfs_init_async_reclaim_work(fs_info); 2946 2947 spin_lock_init(&fs_info->block_group_cache_lock); 2948 fs_info->block_group_cache_tree = RB_ROOT; 2949 fs_info->first_logical_byte = (u64)-1; 2950 2951 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2952 IO_TREE_FS_EXCLUDED_EXTENTS, NULL); 2953 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2954 2955 mutex_init(&fs_info->ordered_operations_mutex); 2956 mutex_init(&fs_info->tree_log_mutex); 2957 mutex_init(&fs_info->chunk_mutex); 2958 mutex_init(&fs_info->transaction_kthread_mutex); 2959 mutex_init(&fs_info->cleaner_mutex); 2960 mutex_init(&fs_info->ro_block_group_mutex); 2961 init_rwsem(&fs_info->commit_root_sem); 2962 init_rwsem(&fs_info->cleanup_work_sem); 2963 init_rwsem(&fs_info->subvol_sem); 2964 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2965 2966 btrfs_init_dev_replace_locks(fs_info); 2967 btrfs_init_qgroup(fs_info); 2968 btrfs_discard_init(fs_info); 2969 2970 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2971 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2972 2973 init_waitqueue_head(&fs_info->transaction_throttle); 2974 init_waitqueue_head(&fs_info->transaction_wait); 2975 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2976 init_waitqueue_head(&fs_info->async_submit_wait); 2977 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2978 2979 /* Usable values until the real ones are cached from the superblock */ 2980 fs_info->nodesize = 4096; 2981 fs_info->sectorsize = 4096; 2982 fs_info->sectorsize_bits = ilog2(4096); 2983 fs_info->stripesize = 4096; 2984 2985 spin_lock_init(&fs_info->swapfile_pins_lock); 2986 fs_info->swapfile_pins = RB_ROOT; 2987 2988 spin_lock_init(&fs_info->send_reloc_lock); 2989 fs_info->send_in_progress = 0; 2990 2991 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 2992 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 2993 } 2994 2995 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2996 { 2997 int ret; 2998 2999 fs_info->sb = sb; 3000 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 3001 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 3002 3003 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 3004 if (ret) 3005 return ret; 3006 3007 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 3008 if (ret) 3009 return ret; 3010 3011 fs_info->dirty_metadata_batch = PAGE_SIZE * 3012 (1 + ilog2(nr_cpu_ids)); 3013 3014 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 3015 if (ret) 3016 return ret; 3017 3018 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 3019 GFP_KERNEL); 3020 if (ret) 3021 return ret; 3022 3023 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 3024 GFP_KERNEL); 3025 if (!fs_info->delayed_root) 3026 return -ENOMEM; 3027 btrfs_init_delayed_root(fs_info->delayed_root); 3028 3029 if (sb_rdonly(sb)) 3030 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 3031 3032 return btrfs_alloc_stripe_hash_table(fs_info); 3033 } 3034 3035 static int btrfs_uuid_rescan_kthread(void *data) 3036 { 3037 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 3038 int ret; 3039 3040 /* 3041 * 1st step is to iterate through the existing UUID tree and 3042 * to delete all entries that contain outdated data. 3043 * 2nd step is to add all missing entries to the UUID tree. 3044 */ 3045 ret = btrfs_uuid_tree_iterate(fs_info); 3046 if (ret < 0) { 3047 if (ret != -EINTR) 3048 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 3049 ret); 3050 up(&fs_info->uuid_tree_rescan_sem); 3051 return ret; 3052 } 3053 return btrfs_uuid_scan_kthread(data); 3054 } 3055 3056 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 3057 { 3058 struct task_struct *task; 3059 3060 down(&fs_info->uuid_tree_rescan_sem); 3061 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 3062 if (IS_ERR(task)) { 3063 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3064 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 3065 up(&fs_info->uuid_tree_rescan_sem); 3066 return PTR_ERR(task); 3067 } 3068 3069 return 0; 3070 } 3071 3072 /* 3073 * Some options only have meaning at mount time and shouldn't persist across 3074 * remounts, or be displayed. Clear these at the end of mount and remount 3075 * code paths. 3076 */ 3077 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 3078 { 3079 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3080 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 3081 } 3082 3083 /* 3084 * Mounting logic specific to read-write file systems. Shared by open_ctree 3085 * and btrfs_remount when remounting from read-only to read-write. 3086 */ 3087 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 3088 { 3089 int ret; 3090 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 3091 bool clear_free_space_tree = false; 3092 3093 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3094 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3095 clear_free_space_tree = true; 3096 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3097 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3098 btrfs_warn(fs_info, "free space tree is invalid"); 3099 clear_free_space_tree = true; 3100 } 3101 3102 if (clear_free_space_tree) { 3103 btrfs_info(fs_info, "clearing free space tree"); 3104 ret = btrfs_clear_free_space_tree(fs_info); 3105 if (ret) { 3106 btrfs_warn(fs_info, 3107 "failed to clear free space tree: %d", ret); 3108 goto out; 3109 } 3110 } 3111 3112 /* 3113 * btrfs_find_orphan_roots() is responsible for finding all the dead 3114 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3115 * them into the fs_info->fs_roots_radix tree. This must be done before 3116 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3117 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3118 * item before the root's tree is deleted - this means that if we unmount 3119 * or crash before the deletion completes, on the next mount we will not 3120 * delete what remains of the tree because the orphan item does not 3121 * exists anymore, which is what tells us we have a pending deletion. 3122 */ 3123 ret = btrfs_find_orphan_roots(fs_info); 3124 if (ret) 3125 goto out; 3126 3127 ret = btrfs_cleanup_fs_roots(fs_info); 3128 if (ret) 3129 goto out; 3130 3131 down_read(&fs_info->cleanup_work_sem); 3132 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3133 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3134 up_read(&fs_info->cleanup_work_sem); 3135 goto out; 3136 } 3137 up_read(&fs_info->cleanup_work_sem); 3138 3139 mutex_lock(&fs_info->cleaner_mutex); 3140 ret = btrfs_recover_relocation(fs_info->tree_root); 3141 mutex_unlock(&fs_info->cleaner_mutex); 3142 if (ret < 0) { 3143 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3144 goto out; 3145 } 3146 3147 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3148 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3149 btrfs_info(fs_info, "creating free space tree"); 3150 ret = btrfs_create_free_space_tree(fs_info); 3151 if (ret) { 3152 btrfs_warn(fs_info, 3153 "failed to create free space tree: %d", ret); 3154 goto out; 3155 } 3156 } 3157 3158 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3159 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3160 if (ret) 3161 goto out; 3162 } 3163 3164 ret = btrfs_resume_balance_async(fs_info); 3165 if (ret) 3166 goto out; 3167 3168 ret = btrfs_resume_dev_replace_async(fs_info); 3169 if (ret) { 3170 btrfs_warn(fs_info, "failed to resume dev_replace"); 3171 goto out; 3172 } 3173 3174 btrfs_qgroup_rescan_resume(fs_info); 3175 3176 if (!fs_info->uuid_root) { 3177 btrfs_info(fs_info, "creating UUID tree"); 3178 ret = btrfs_create_uuid_tree(fs_info); 3179 if (ret) { 3180 btrfs_warn(fs_info, 3181 "failed to create the UUID tree %d", ret); 3182 goto out; 3183 } 3184 } 3185 3186 out: 3187 return ret; 3188 } 3189 3190 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3191 char *options) 3192 { 3193 u32 sectorsize; 3194 u32 nodesize; 3195 u32 stripesize; 3196 u64 generation; 3197 u64 features; 3198 u16 csum_type; 3199 struct btrfs_super_block *disk_super; 3200 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3201 struct btrfs_root *tree_root; 3202 struct btrfs_root *chunk_root; 3203 int ret; 3204 int err = -EINVAL; 3205 int level; 3206 3207 ret = init_mount_fs_info(fs_info, sb); 3208 if (ret) { 3209 err = ret; 3210 goto fail; 3211 } 3212 3213 /* These need to be init'ed before we start creating inodes and such. */ 3214 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3215 GFP_KERNEL); 3216 fs_info->tree_root = tree_root; 3217 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3218 GFP_KERNEL); 3219 fs_info->chunk_root = chunk_root; 3220 if (!tree_root || !chunk_root) { 3221 err = -ENOMEM; 3222 goto fail; 3223 } 3224 3225 fs_info->btree_inode = new_inode(sb); 3226 if (!fs_info->btree_inode) { 3227 err = -ENOMEM; 3228 goto fail; 3229 } 3230 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 3231 btrfs_init_btree_inode(fs_info); 3232 3233 invalidate_bdev(fs_devices->latest_dev->bdev); 3234 3235 /* 3236 * Read super block and check the signature bytes only 3237 */ 3238 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3239 if (IS_ERR(disk_super)) { 3240 err = PTR_ERR(disk_super); 3241 goto fail_alloc; 3242 } 3243 3244 /* 3245 * Verify the type first, if that or the checksum value are 3246 * corrupted, we'll find out 3247 */ 3248 csum_type = btrfs_super_csum_type(disk_super); 3249 if (!btrfs_supported_super_csum(csum_type)) { 3250 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3251 csum_type); 3252 err = -EINVAL; 3253 btrfs_release_disk_super(disk_super); 3254 goto fail_alloc; 3255 } 3256 3257 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3258 3259 ret = btrfs_init_csum_hash(fs_info, csum_type); 3260 if (ret) { 3261 err = ret; 3262 btrfs_release_disk_super(disk_super); 3263 goto fail_alloc; 3264 } 3265 3266 /* 3267 * We want to check superblock checksum, the type is stored inside. 3268 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3269 */ 3270 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) { 3271 btrfs_err(fs_info, "superblock checksum mismatch"); 3272 err = -EINVAL; 3273 btrfs_release_disk_super(disk_super); 3274 goto fail_alloc; 3275 } 3276 3277 /* 3278 * super_copy is zeroed at allocation time and we never touch the 3279 * following bytes up to INFO_SIZE, the checksum is calculated from 3280 * the whole block of INFO_SIZE 3281 */ 3282 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3283 btrfs_release_disk_super(disk_super); 3284 3285 disk_super = fs_info->super_copy; 3286 3287 3288 features = btrfs_super_flags(disk_super); 3289 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 3290 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 3291 btrfs_set_super_flags(disk_super, features); 3292 btrfs_info(fs_info, 3293 "found metadata UUID change in progress flag, clearing"); 3294 } 3295 3296 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3297 sizeof(*fs_info->super_for_commit)); 3298 3299 ret = btrfs_validate_mount_super(fs_info); 3300 if (ret) { 3301 btrfs_err(fs_info, "superblock contains fatal errors"); 3302 err = -EINVAL; 3303 goto fail_alloc; 3304 } 3305 3306 if (!btrfs_super_root(disk_super)) 3307 goto fail_alloc; 3308 3309 /* check FS state, whether FS is broken. */ 3310 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3311 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 3312 3313 /* 3314 * In the long term, we'll store the compression type in the super 3315 * block, and it'll be used for per file compression control. 3316 */ 3317 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3318 3319 /* 3320 * Flag our filesystem as having big metadata blocks if they are bigger 3321 * than the page size. 3322 */ 3323 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 3324 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 3325 btrfs_info(fs_info, 3326 "flagging fs with big metadata feature"); 3327 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3328 } 3329 3330 /* Set up fs_info before parsing mount options */ 3331 nodesize = btrfs_super_nodesize(disk_super); 3332 sectorsize = btrfs_super_sectorsize(disk_super); 3333 stripesize = sectorsize; 3334 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3335 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3336 3337 fs_info->nodesize = nodesize; 3338 fs_info->sectorsize = sectorsize; 3339 fs_info->sectorsize_bits = ilog2(sectorsize); 3340 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3341 fs_info->stripesize = stripesize; 3342 3343 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3344 if (ret) { 3345 err = ret; 3346 goto fail_alloc; 3347 } 3348 3349 features = btrfs_super_incompat_flags(disk_super) & 3350 ~BTRFS_FEATURE_INCOMPAT_SUPP; 3351 if (features) { 3352 btrfs_err(fs_info, 3353 "cannot mount because of unsupported optional features (%llx)", 3354 features); 3355 err = -EINVAL; 3356 goto fail_alloc; 3357 } 3358 3359 features = btrfs_super_incompat_flags(disk_super); 3360 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3361 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3362 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3363 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3364 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3365 3366 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 3367 btrfs_info(fs_info, "has skinny extents"); 3368 3369 /* 3370 * mixed block groups end up with duplicate but slightly offset 3371 * extent buffers for the same range. It leads to corruptions 3372 */ 3373 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3374 (sectorsize != nodesize)) { 3375 btrfs_err(fs_info, 3376 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3377 nodesize, sectorsize); 3378 goto fail_alloc; 3379 } 3380 3381 /* 3382 * Needn't use the lock because there is no other task which will 3383 * update the flag. 3384 */ 3385 btrfs_set_super_incompat_flags(disk_super, features); 3386 3387 features = btrfs_super_compat_ro_flags(disk_super) & 3388 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 3389 if (!sb_rdonly(sb) && features) { 3390 btrfs_err(fs_info, 3391 "cannot mount read-write because of unsupported optional features (%llx)", 3392 features); 3393 err = -EINVAL; 3394 goto fail_alloc; 3395 } 3396 3397 if (sectorsize < PAGE_SIZE) { 3398 struct btrfs_subpage_info *subpage_info; 3399 3400 btrfs_warn(fs_info, 3401 "read-write for sector size %u with page size %lu is experimental", 3402 sectorsize, PAGE_SIZE); 3403 if (btrfs_super_incompat_flags(fs_info->super_copy) & 3404 BTRFS_FEATURE_INCOMPAT_RAID56) { 3405 btrfs_err(fs_info, 3406 "RAID56 is not yet supported for sector size %u with page size %lu", 3407 sectorsize, PAGE_SIZE); 3408 err = -EINVAL; 3409 goto fail_alloc; 3410 } 3411 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL); 3412 if (!subpage_info) 3413 goto fail_alloc; 3414 btrfs_init_subpage_info(subpage_info, sectorsize); 3415 fs_info->subpage_info = subpage_info; 3416 } 3417 3418 ret = btrfs_init_workqueues(fs_info, fs_devices); 3419 if (ret) { 3420 err = ret; 3421 goto fail_sb_buffer; 3422 } 3423 3424 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3425 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3426 3427 sb->s_blocksize = sectorsize; 3428 sb->s_blocksize_bits = blksize_bits(sectorsize); 3429 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3430 3431 mutex_lock(&fs_info->chunk_mutex); 3432 ret = btrfs_read_sys_array(fs_info); 3433 mutex_unlock(&fs_info->chunk_mutex); 3434 if (ret) { 3435 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3436 goto fail_sb_buffer; 3437 } 3438 3439 generation = btrfs_super_chunk_root_generation(disk_super); 3440 level = btrfs_super_chunk_root_level(disk_super); 3441 3442 chunk_root->node = read_tree_block(fs_info, 3443 btrfs_super_chunk_root(disk_super), 3444 BTRFS_CHUNK_TREE_OBJECTID, 3445 generation, level, NULL); 3446 if (IS_ERR(chunk_root->node) || 3447 !extent_buffer_uptodate(chunk_root->node)) { 3448 btrfs_err(fs_info, "failed to read chunk root"); 3449 if (!IS_ERR(chunk_root->node)) 3450 free_extent_buffer(chunk_root->node); 3451 chunk_root->node = NULL; 3452 goto fail_tree_roots; 3453 } 3454 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 3455 chunk_root->commit_root = btrfs_root_node(chunk_root); 3456 3457 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3458 offsetof(struct btrfs_header, chunk_tree_uuid), 3459 BTRFS_UUID_SIZE); 3460 3461 ret = btrfs_read_chunk_tree(fs_info); 3462 if (ret) { 3463 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3464 goto fail_tree_roots; 3465 } 3466 3467 /* 3468 * At this point we know all the devices that make this filesystem, 3469 * including the seed devices but we don't know yet if the replace 3470 * target is required. So free devices that are not part of this 3471 * filesystem but skip the replace target device which is checked 3472 * below in btrfs_init_dev_replace(). 3473 */ 3474 btrfs_free_extra_devids(fs_devices); 3475 if (!fs_devices->latest_dev->bdev) { 3476 btrfs_err(fs_info, "failed to read devices"); 3477 goto fail_tree_roots; 3478 } 3479 3480 ret = init_tree_roots(fs_info); 3481 if (ret) 3482 goto fail_tree_roots; 3483 3484 /* 3485 * Get zone type information of zoned block devices. This will also 3486 * handle emulation of a zoned filesystem if a regular device has the 3487 * zoned incompat feature flag set. 3488 */ 3489 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3490 if (ret) { 3491 btrfs_err(fs_info, 3492 "zoned: failed to read device zone info: %d", 3493 ret); 3494 goto fail_block_groups; 3495 } 3496 3497 /* 3498 * If we have a uuid root and we're not being told to rescan we need to 3499 * check the generation here so we can set the 3500 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3501 * transaction during a balance or the log replay without updating the 3502 * uuid generation, and then if we crash we would rescan the uuid tree, 3503 * even though it was perfectly fine. 3504 */ 3505 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3506 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3507 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3508 3509 ret = btrfs_verify_dev_extents(fs_info); 3510 if (ret) { 3511 btrfs_err(fs_info, 3512 "failed to verify dev extents against chunks: %d", 3513 ret); 3514 goto fail_block_groups; 3515 } 3516 ret = btrfs_recover_balance(fs_info); 3517 if (ret) { 3518 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3519 goto fail_block_groups; 3520 } 3521 3522 ret = btrfs_init_dev_stats(fs_info); 3523 if (ret) { 3524 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3525 goto fail_block_groups; 3526 } 3527 3528 ret = btrfs_init_dev_replace(fs_info); 3529 if (ret) { 3530 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3531 goto fail_block_groups; 3532 } 3533 3534 ret = btrfs_check_zoned_mode(fs_info); 3535 if (ret) { 3536 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3537 ret); 3538 goto fail_block_groups; 3539 } 3540 3541 ret = btrfs_sysfs_add_fsid(fs_devices); 3542 if (ret) { 3543 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3544 ret); 3545 goto fail_block_groups; 3546 } 3547 3548 ret = btrfs_sysfs_add_mounted(fs_info); 3549 if (ret) { 3550 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3551 goto fail_fsdev_sysfs; 3552 } 3553 3554 ret = btrfs_init_space_info(fs_info); 3555 if (ret) { 3556 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3557 goto fail_sysfs; 3558 } 3559 3560 ret = btrfs_read_block_groups(fs_info); 3561 if (ret) { 3562 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3563 goto fail_sysfs; 3564 } 3565 3566 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3567 !btrfs_check_rw_degradable(fs_info, NULL)) { 3568 btrfs_warn(fs_info, 3569 "writable mount is not allowed due to too many missing devices"); 3570 goto fail_sysfs; 3571 } 3572 3573 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3574 "btrfs-cleaner"); 3575 if (IS_ERR(fs_info->cleaner_kthread)) 3576 goto fail_sysfs; 3577 3578 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3579 tree_root, 3580 "btrfs-transaction"); 3581 if (IS_ERR(fs_info->transaction_kthread)) 3582 goto fail_cleaner; 3583 3584 if (!btrfs_test_opt(fs_info, NOSSD) && 3585 !fs_info->fs_devices->rotating) { 3586 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3587 } 3588 3589 /* 3590 * Mount does not set all options immediately, we can do it now and do 3591 * not have to wait for transaction commit 3592 */ 3593 btrfs_apply_pending_changes(fs_info); 3594 3595 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3596 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3597 ret = btrfsic_mount(fs_info, fs_devices, 3598 btrfs_test_opt(fs_info, 3599 CHECK_INTEGRITY_DATA) ? 1 : 0, 3600 fs_info->check_integrity_print_mask); 3601 if (ret) 3602 btrfs_warn(fs_info, 3603 "failed to initialize integrity check module: %d", 3604 ret); 3605 } 3606 #endif 3607 ret = btrfs_read_qgroup_config(fs_info); 3608 if (ret) 3609 goto fail_trans_kthread; 3610 3611 if (btrfs_build_ref_tree(fs_info)) 3612 btrfs_err(fs_info, "couldn't build ref tree"); 3613 3614 /* do not make disk changes in broken FS or nologreplay is given */ 3615 if (btrfs_super_log_root(disk_super) != 0 && 3616 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3617 btrfs_info(fs_info, "start tree-log replay"); 3618 ret = btrfs_replay_log(fs_info, fs_devices); 3619 if (ret) { 3620 err = ret; 3621 goto fail_qgroup; 3622 } 3623 } 3624 3625 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3626 if (IS_ERR(fs_info->fs_root)) { 3627 err = PTR_ERR(fs_info->fs_root); 3628 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3629 fs_info->fs_root = NULL; 3630 goto fail_qgroup; 3631 } 3632 3633 if (sb_rdonly(sb)) 3634 goto clear_oneshot; 3635 3636 ret = btrfs_start_pre_rw_mount(fs_info); 3637 if (ret) { 3638 close_ctree(fs_info); 3639 return ret; 3640 } 3641 btrfs_discard_resume(fs_info); 3642 3643 if (fs_info->uuid_root && 3644 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3645 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3646 btrfs_info(fs_info, "checking UUID tree"); 3647 ret = btrfs_check_uuid_tree(fs_info); 3648 if (ret) { 3649 btrfs_warn(fs_info, 3650 "failed to check the UUID tree: %d", ret); 3651 close_ctree(fs_info); 3652 return ret; 3653 } 3654 } 3655 3656 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3657 3658 clear_oneshot: 3659 btrfs_clear_oneshot_options(fs_info); 3660 return 0; 3661 3662 fail_qgroup: 3663 btrfs_free_qgroup_config(fs_info); 3664 fail_trans_kthread: 3665 kthread_stop(fs_info->transaction_kthread); 3666 btrfs_cleanup_transaction(fs_info); 3667 btrfs_free_fs_roots(fs_info); 3668 fail_cleaner: 3669 kthread_stop(fs_info->cleaner_kthread); 3670 3671 /* 3672 * make sure we're done with the btree inode before we stop our 3673 * kthreads 3674 */ 3675 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3676 3677 fail_sysfs: 3678 btrfs_sysfs_remove_mounted(fs_info); 3679 3680 fail_fsdev_sysfs: 3681 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3682 3683 fail_block_groups: 3684 btrfs_put_block_group_cache(fs_info); 3685 3686 fail_tree_roots: 3687 if (fs_info->data_reloc_root) 3688 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3689 free_root_pointers(fs_info, true); 3690 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3691 3692 fail_sb_buffer: 3693 btrfs_stop_all_workers(fs_info); 3694 btrfs_free_block_groups(fs_info); 3695 fail_alloc: 3696 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3697 3698 iput(fs_info->btree_inode); 3699 fail: 3700 btrfs_close_devices(fs_info->fs_devices); 3701 return err; 3702 } 3703 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3704 3705 static void btrfs_end_super_write(struct bio *bio) 3706 { 3707 struct btrfs_device *device = bio->bi_private; 3708 struct bio_vec *bvec; 3709 struct bvec_iter_all iter_all; 3710 struct page *page; 3711 3712 bio_for_each_segment_all(bvec, bio, iter_all) { 3713 page = bvec->bv_page; 3714 3715 if (bio->bi_status) { 3716 btrfs_warn_rl_in_rcu(device->fs_info, 3717 "lost page write due to IO error on %s (%d)", 3718 rcu_str_deref(device->name), 3719 blk_status_to_errno(bio->bi_status)); 3720 ClearPageUptodate(page); 3721 SetPageError(page); 3722 btrfs_dev_stat_inc_and_print(device, 3723 BTRFS_DEV_STAT_WRITE_ERRS); 3724 } else { 3725 SetPageUptodate(page); 3726 } 3727 3728 put_page(page); 3729 unlock_page(page); 3730 } 3731 3732 bio_put(bio); 3733 } 3734 3735 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3736 int copy_num) 3737 { 3738 struct btrfs_super_block *super; 3739 struct page *page; 3740 u64 bytenr, bytenr_orig; 3741 struct address_space *mapping = bdev->bd_inode->i_mapping; 3742 int ret; 3743 3744 bytenr_orig = btrfs_sb_offset(copy_num); 3745 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3746 if (ret == -ENOENT) 3747 return ERR_PTR(-EINVAL); 3748 else if (ret) 3749 return ERR_PTR(ret); 3750 3751 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 3752 return ERR_PTR(-EINVAL); 3753 3754 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3755 if (IS_ERR(page)) 3756 return ERR_CAST(page); 3757 3758 super = page_address(page); 3759 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3760 btrfs_release_disk_super(super); 3761 return ERR_PTR(-ENODATA); 3762 } 3763 3764 if (btrfs_super_bytenr(super) != bytenr_orig) { 3765 btrfs_release_disk_super(super); 3766 return ERR_PTR(-EINVAL); 3767 } 3768 3769 return super; 3770 } 3771 3772 3773 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3774 { 3775 struct btrfs_super_block *super, *latest = NULL; 3776 int i; 3777 u64 transid = 0; 3778 3779 /* we would like to check all the supers, but that would make 3780 * a btrfs mount succeed after a mkfs from a different FS. 3781 * So, we need to add a special mount option to scan for 3782 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3783 */ 3784 for (i = 0; i < 1; i++) { 3785 super = btrfs_read_dev_one_super(bdev, i); 3786 if (IS_ERR(super)) 3787 continue; 3788 3789 if (!latest || btrfs_super_generation(super) > transid) { 3790 if (latest) 3791 btrfs_release_disk_super(super); 3792 3793 latest = super; 3794 transid = btrfs_super_generation(super); 3795 } 3796 } 3797 3798 return super; 3799 } 3800 3801 /* 3802 * Write superblock @sb to the @device. Do not wait for completion, all the 3803 * pages we use for writing are locked. 3804 * 3805 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3806 * the expected device size at commit time. Note that max_mirrors must be 3807 * same for write and wait phases. 3808 * 3809 * Return number of errors when page is not found or submission fails. 3810 */ 3811 static int write_dev_supers(struct btrfs_device *device, 3812 struct btrfs_super_block *sb, int max_mirrors) 3813 { 3814 struct btrfs_fs_info *fs_info = device->fs_info; 3815 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3816 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3817 int i; 3818 int errors = 0; 3819 int ret; 3820 u64 bytenr, bytenr_orig; 3821 3822 if (max_mirrors == 0) 3823 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3824 3825 shash->tfm = fs_info->csum_shash; 3826 3827 for (i = 0; i < max_mirrors; i++) { 3828 struct page *page; 3829 struct bio *bio; 3830 struct btrfs_super_block *disk_super; 3831 3832 bytenr_orig = btrfs_sb_offset(i); 3833 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3834 if (ret == -ENOENT) { 3835 continue; 3836 } else if (ret < 0) { 3837 btrfs_err(device->fs_info, 3838 "couldn't get super block location for mirror %d", 3839 i); 3840 errors++; 3841 continue; 3842 } 3843 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3844 device->commit_total_bytes) 3845 break; 3846 3847 btrfs_set_super_bytenr(sb, bytenr_orig); 3848 3849 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3850 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3851 sb->csum); 3852 3853 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3854 GFP_NOFS); 3855 if (!page) { 3856 btrfs_err(device->fs_info, 3857 "couldn't get super block page for bytenr %llu", 3858 bytenr); 3859 errors++; 3860 continue; 3861 } 3862 3863 /* Bump the refcount for wait_dev_supers() */ 3864 get_page(page); 3865 3866 disk_super = page_address(page); 3867 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3868 3869 /* 3870 * Directly use bios here instead of relying on the page cache 3871 * to do I/O, so we don't lose the ability to do integrity 3872 * checking. 3873 */ 3874 bio = bio_alloc(GFP_NOFS, 1); 3875 bio_set_dev(bio, device->bdev); 3876 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3877 bio->bi_private = device; 3878 bio->bi_end_io = btrfs_end_super_write; 3879 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 3880 offset_in_page(bytenr)); 3881 3882 /* 3883 * We FUA only the first super block. The others we allow to 3884 * go down lazy and there's a short window where the on-disk 3885 * copies might still contain the older version. 3886 */ 3887 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO; 3888 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3889 bio->bi_opf |= REQ_FUA; 3890 3891 btrfsic_submit_bio(bio); 3892 3893 if (btrfs_advance_sb_log(device, i)) 3894 errors++; 3895 } 3896 return errors < i ? 0 : -1; 3897 } 3898 3899 /* 3900 * Wait for write completion of superblocks done by write_dev_supers, 3901 * @max_mirrors same for write and wait phases. 3902 * 3903 * Return number of errors when page is not found or not marked up to 3904 * date. 3905 */ 3906 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3907 { 3908 int i; 3909 int errors = 0; 3910 bool primary_failed = false; 3911 int ret; 3912 u64 bytenr; 3913 3914 if (max_mirrors == 0) 3915 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3916 3917 for (i = 0; i < max_mirrors; i++) { 3918 struct page *page; 3919 3920 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 3921 if (ret == -ENOENT) { 3922 break; 3923 } else if (ret < 0) { 3924 errors++; 3925 if (i == 0) 3926 primary_failed = true; 3927 continue; 3928 } 3929 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3930 device->commit_total_bytes) 3931 break; 3932 3933 page = find_get_page(device->bdev->bd_inode->i_mapping, 3934 bytenr >> PAGE_SHIFT); 3935 if (!page) { 3936 errors++; 3937 if (i == 0) 3938 primary_failed = true; 3939 continue; 3940 } 3941 /* Page is submitted locked and unlocked once the IO completes */ 3942 wait_on_page_locked(page); 3943 if (PageError(page)) { 3944 errors++; 3945 if (i == 0) 3946 primary_failed = true; 3947 } 3948 3949 /* Drop our reference */ 3950 put_page(page); 3951 3952 /* Drop the reference from the writing run */ 3953 put_page(page); 3954 } 3955 3956 /* log error, force error return */ 3957 if (primary_failed) { 3958 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3959 device->devid); 3960 return -1; 3961 } 3962 3963 return errors < i ? 0 : -1; 3964 } 3965 3966 /* 3967 * endio for the write_dev_flush, this will wake anyone waiting 3968 * for the barrier when it is done 3969 */ 3970 static void btrfs_end_empty_barrier(struct bio *bio) 3971 { 3972 complete(bio->bi_private); 3973 } 3974 3975 /* 3976 * Submit a flush request to the device if it supports it. Error handling is 3977 * done in the waiting counterpart. 3978 */ 3979 static void write_dev_flush(struct btrfs_device *device) 3980 { 3981 struct bio *bio = device->flush_bio; 3982 3983 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3984 /* 3985 * When a disk has write caching disabled, we skip submission of a bio 3986 * with flush and sync requests before writing the superblock, since 3987 * it's not needed. However when the integrity checker is enabled, this 3988 * results in reports that there are metadata blocks referred by a 3989 * superblock that were not properly flushed. So don't skip the bio 3990 * submission only when the integrity checker is enabled for the sake 3991 * of simplicity, since this is a debug tool and not meant for use in 3992 * non-debug builds. 3993 */ 3994 struct request_queue *q = bdev_get_queue(device->bdev); 3995 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3996 return; 3997 #endif 3998 3999 bio_reset(bio); 4000 bio->bi_end_io = btrfs_end_empty_barrier; 4001 bio_set_dev(bio, device->bdev); 4002 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 4003 init_completion(&device->flush_wait); 4004 bio->bi_private = &device->flush_wait; 4005 4006 btrfsic_submit_bio(bio); 4007 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 4008 } 4009 4010 /* 4011 * If the flush bio has been submitted by write_dev_flush, wait for it. 4012 */ 4013 static blk_status_t wait_dev_flush(struct btrfs_device *device) 4014 { 4015 struct bio *bio = device->flush_bio; 4016 4017 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 4018 return BLK_STS_OK; 4019 4020 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 4021 wait_for_completion_io(&device->flush_wait); 4022 4023 return bio->bi_status; 4024 } 4025 4026 static int check_barrier_error(struct btrfs_fs_info *fs_info) 4027 { 4028 if (!btrfs_check_rw_degradable(fs_info, NULL)) 4029 return -EIO; 4030 return 0; 4031 } 4032 4033 /* 4034 * send an empty flush down to each device in parallel, 4035 * then wait for them 4036 */ 4037 static int barrier_all_devices(struct btrfs_fs_info *info) 4038 { 4039 struct list_head *head; 4040 struct btrfs_device *dev; 4041 int errors_wait = 0; 4042 blk_status_t ret; 4043 4044 lockdep_assert_held(&info->fs_devices->device_list_mutex); 4045 /* send down all the barriers */ 4046 head = &info->fs_devices->devices; 4047 list_for_each_entry(dev, head, dev_list) { 4048 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4049 continue; 4050 if (!dev->bdev) 4051 continue; 4052 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4053 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4054 continue; 4055 4056 write_dev_flush(dev); 4057 dev->last_flush_error = BLK_STS_OK; 4058 } 4059 4060 /* wait for all the barriers */ 4061 list_for_each_entry(dev, head, dev_list) { 4062 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4063 continue; 4064 if (!dev->bdev) { 4065 errors_wait++; 4066 continue; 4067 } 4068 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4069 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4070 continue; 4071 4072 ret = wait_dev_flush(dev); 4073 if (ret) { 4074 dev->last_flush_error = ret; 4075 btrfs_dev_stat_inc_and_print(dev, 4076 BTRFS_DEV_STAT_FLUSH_ERRS); 4077 errors_wait++; 4078 } 4079 } 4080 4081 if (errors_wait) { 4082 /* 4083 * At some point we need the status of all disks 4084 * to arrive at the volume status. So error checking 4085 * is being pushed to a separate loop. 4086 */ 4087 return check_barrier_error(info); 4088 } 4089 return 0; 4090 } 4091 4092 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 4093 { 4094 int raid_type; 4095 int min_tolerated = INT_MAX; 4096 4097 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 4098 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 4099 min_tolerated = min_t(int, min_tolerated, 4100 btrfs_raid_array[BTRFS_RAID_SINGLE]. 4101 tolerated_failures); 4102 4103 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4104 if (raid_type == BTRFS_RAID_SINGLE) 4105 continue; 4106 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 4107 continue; 4108 min_tolerated = min_t(int, min_tolerated, 4109 btrfs_raid_array[raid_type]. 4110 tolerated_failures); 4111 } 4112 4113 if (min_tolerated == INT_MAX) { 4114 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4115 min_tolerated = 0; 4116 } 4117 4118 return min_tolerated; 4119 } 4120 4121 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4122 { 4123 struct list_head *head; 4124 struct btrfs_device *dev; 4125 struct btrfs_super_block *sb; 4126 struct btrfs_dev_item *dev_item; 4127 int ret; 4128 int do_barriers; 4129 int max_errors; 4130 int total_errors = 0; 4131 u64 flags; 4132 4133 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4134 4135 /* 4136 * max_mirrors == 0 indicates we're from commit_transaction, 4137 * not from fsync where the tree roots in fs_info have not 4138 * been consistent on disk. 4139 */ 4140 if (max_mirrors == 0) 4141 backup_super_roots(fs_info); 4142 4143 sb = fs_info->super_for_commit; 4144 dev_item = &sb->dev_item; 4145 4146 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4147 head = &fs_info->fs_devices->devices; 4148 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4149 4150 if (do_barriers) { 4151 ret = barrier_all_devices(fs_info); 4152 if (ret) { 4153 mutex_unlock( 4154 &fs_info->fs_devices->device_list_mutex); 4155 btrfs_handle_fs_error(fs_info, ret, 4156 "errors while submitting device barriers."); 4157 return ret; 4158 } 4159 } 4160 4161 list_for_each_entry(dev, head, dev_list) { 4162 if (!dev->bdev) { 4163 total_errors++; 4164 continue; 4165 } 4166 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4167 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4168 continue; 4169 4170 btrfs_set_stack_device_generation(dev_item, 0); 4171 btrfs_set_stack_device_type(dev_item, dev->type); 4172 btrfs_set_stack_device_id(dev_item, dev->devid); 4173 btrfs_set_stack_device_total_bytes(dev_item, 4174 dev->commit_total_bytes); 4175 btrfs_set_stack_device_bytes_used(dev_item, 4176 dev->commit_bytes_used); 4177 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4178 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4179 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4180 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4181 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4182 BTRFS_FSID_SIZE); 4183 4184 flags = btrfs_super_flags(sb); 4185 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4186 4187 ret = btrfs_validate_write_super(fs_info, sb); 4188 if (ret < 0) { 4189 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4190 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4191 "unexpected superblock corruption detected"); 4192 return -EUCLEAN; 4193 } 4194 4195 ret = write_dev_supers(dev, sb, max_mirrors); 4196 if (ret) 4197 total_errors++; 4198 } 4199 if (total_errors > max_errors) { 4200 btrfs_err(fs_info, "%d errors while writing supers", 4201 total_errors); 4202 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4203 4204 /* FUA is masked off if unsupported and can't be the reason */ 4205 btrfs_handle_fs_error(fs_info, -EIO, 4206 "%d errors while writing supers", 4207 total_errors); 4208 return -EIO; 4209 } 4210 4211 total_errors = 0; 4212 list_for_each_entry(dev, head, dev_list) { 4213 if (!dev->bdev) 4214 continue; 4215 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4216 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4217 continue; 4218 4219 ret = wait_dev_supers(dev, max_mirrors); 4220 if (ret) 4221 total_errors++; 4222 } 4223 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4224 if (total_errors > max_errors) { 4225 btrfs_handle_fs_error(fs_info, -EIO, 4226 "%d errors while writing supers", 4227 total_errors); 4228 return -EIO; 4229 } 4230 return 0; 4231 } 4232 4233 /* Drop a fs root from the radix tree and free it. */ 4234 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4235 struct btrfs_root *root) 4236 { 4237 bool drop_ref = false; 4238 4239 spin_lock(&fs_info->fs_roots_radix_lock); 4240 radix_tree_delete(&fs_info->fs_roots_radix, 4241 (unsigned long)root->root_key.objectid); 4242 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4243 drop_ref = true; 4244 spin_unlock(&fs_info->fs_roots_radix_lock); 4245 4246 if (BTRFS_FS_ERROR(fs_info)) { 4247 ASSERT(root->log_root == NULL); 4248 if (root->reloc_root) { 4249 btrfs_put_root(root->reloc_root); 4250 root->reloc_root = NULL; 4251 } 4252 } 4253 4254 if (drop_ref) 4255 btrfs_put_root(root); 4256 } 4257 4258 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 4259 { 4260 u64 root_objectid = 0; 4261 struct btrfs_root *gang[8]; 4262 int i = 0; 4263 int err = 0; 4264 unsigned int ret = 0; 4265 4266 while (1) { 4267 spin_lock(&fs_info->fs_roots_radix_lock); 4268 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4269 (void **)gang, root_objectid, 4270 ARRAY_SIZE(gang)); 4271 if (!ret) { 4272 spin_unlock(&fs_info->fs_roots_radix_lock); 4273 break; 4274 } 4275 root_objectid = gang[ret - 1]->root_key.objectid + 1; 4276 4277 for (i = 0; i < ret; i++) { 4278 /* Avoid to grab roots in dead_roots */ 4279 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 4280 gang[i] = NULL; 4281 continue; 4282 } 4283 /* grab all the search result for later use */ 4284 gang[i] = btrfs_grab_root(gang[i]); 4285 } 4286 spin_unlock(&fs_info->fs_roots_radix_lock); 4287 4288 for (i = 0; i < ret; i++) { 4289 if (!gang[i]) 4290 continue; 4291 root_objectid = gang[i]->root_key.objectid; 4292 err = btrfs_orphan_cleanup(gang[i]); 4293 if (err) 4294 break; 4295 btrfs_put_root(gang[i]); 4296 } 4297 root_objectid++; 4298 } 4299 4300 /* release the uncleaned roots due to error */ 4301 for (; i < ret; i++) { 4302 if (gang[i]) 4303 btrfs_put_root(gang[i]); 4304 } 4305 return err; 4306 } 4307 4308 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4309 { 4310 struct btrfs_root *root = fs_info->tree_root; 4311 struct btrfs_trans_handle *trans; 4312 4313 mutex_lock(&fs_info->cleaner_mutex); 4314 btrfs_run_delayed_iputs(fs_info); 4315 mutex_unlock(&fs_info->cleaner_mutex); 4316 wake_up_process(fs_info->cleaner_kthread); 4317 4318 /* wait until ongoing cleanup work done */ 4319 down_write(&fs_info->cleanup_work_sem); 4320 up_write(&fs_info->cleanup_work_sem); 4321 4322 trans = btrfs_join_transaction(root); 4323 if (IS_ERR(trans)) 4324 return PTR_ERR(trans); 4325 return btrfs_commit_transaction(trans); 4326 } 4327 4328 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4329 { 4330 int ret; 4331 4332 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4333 /* 4334 * We don't want the cleaner to start new transactions, add more delayed 4335 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4336 * because that frees the task_struct, and the transaction kthread might 4337 * still try to wake up the cleaner. 4338 */ 4339 kthread_park(fs_info->cleaner_kthread); 4340 4341 /* wait for the qgroup rescan worker to stop */ 4342 btrfs_qgroup_wait_for_completion(fs_info, false); 4343 4344 /* wait for the uuid_scan task to finish */ 4345 down(&fs_info->uuid_tree_rescan_sem); 4346 /* avoid complains from lockdep et al., set sem back to initial state */ 4347 up(&fs_info->uuid_tree_rescan_sem); 4348 4349 /* pause restriper - we want to resume on mount */ 4350 btrfs_pause_balance(fs_info); 4351 4352 btrfs_dev_replace_suspend_for_unmount(fs_info); 4353 4354 btrfs_scrub_cancel(fs_info); 4355 4356 /* wait for any defraggers to finish */ 4357 wait_event(fs_info->transaction_wait, 4358 (atomic_read(&fs_info->defrag_running) == 0)); 4359 4360 /* clear out the rbtree of defraggable inodes */ 4361 btrfs_cleanup_defrag_inodes(fs_info); 4362 4363 cancel_work_sync(&fs_info->async_reclaim_work); 4364 cancel_work_sync(&fs_info->async_data_reclaim_work); 4365 cancel_work_sync(&fs_info->preempt_reclaim_work); 4366 4367 cancel_work_sync(&fs_info->reclaim_bgs_work); 4368 4369 /* Cancel or finish ongoing discard work */ 4370 btrfs_discard_cleanup(fs_info); 4371 4372 if (!sb_rdonly(fs_info->sb)) { 4373 /* 4374 * The cleaner kthread is stopped, so do one final pass over 4375 * unused block groups. 4376 */ 4377 btrfs_delete_unused_bgs(fs_info); 4378 4379 /* 4380 * There might be existing delayed inode workers still running 4381 * and holding an empty delayed inode item. We must wait for 4382 * them to complete first because they can create a transaction. 4383 * This happens when someone calls btrfs_balance_delayed_items() 4384 * and then a transaction commit runs the same delayed nodes 4385 * before any delayed worker has done something with the nodes. 4386 * We must wait for any worker here and not at transaction 4387 * commit time since that could cause a deadlock. 4388 * This is a very rare case. 4389 */ 4390 btrfs_flush_workqueue(fs_info->delayed_workers); 4391 4392 ret = btrfs_commit_super(fs_info); 4393 if (ret) 4394 btrfs_err(fs_info, "commit super ret %d", ret); 4395 } 4396 4397 if (BTRFS_FS_ERROR(fs_info)) 4398 btrfs_error_commit_super(fs_info); 4399 4400 kthread_stop(fs_info->transaction_kthread); 4401 kthread_stop(fs_info->cleaner_kthread); 4402 4403 ASSERT(list_empty(&fs_info->delayed_iputs)); 4404 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4405 4406 if (btrfs_check_quota_leak(fs_info)) { 4407 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4408 btrfs_err(fs_info, "qgroup reserved space leaked"); 4409 } 4410 4411 btrfs_free_qgroup_config(fs_info); 4412 ASSERT(list_empty(&fs_info->delalloc_roots)); 4413 4414 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4415 btrfs_info(fs_info, "at unmount delalloc count %lld", 4416 percpu_counter_sum(&fs_info->delalloc_bytes)); 4417 } 4418 4419 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4420 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4421 percpu_counter_sum(&fs_info->ordered_bytes)); 4422 4423 btrfs_sysfs_remove_mounted(fs_info); 4424 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4425 4426 btrfs_put_block_group_cache(fs_info); 4427 4428 /* 4429 * we must make sure there is not any read request to 4430 * submit after we stopping all workers. 4431 */ 4432 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4433 btrfs_stop_all_workers(fs_info); 4434 4435 /* We shouldn't have any transaction open at this point */ 4436 ASSERT(list_empty(&fs_info->trans_list)); 4437 4438 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4439 free_root_pointers(fs_info, true); 4440 btrfs_free_fs_roots(fs_info); 4441 4442 /* 4443 * We must free the block groups after dropping the fs_roots as we could 4444 * have had an IO error and have left over tree log blocks that aren't 4445 * cleaned up until the fs roots are freed. This makes the block group 4446 * accounting appear to be wrong because there's pending reserved bytes, 4447 * so make sure we do the block group cleanup afterwards. 4448 */ 4449 btrfs_free_block_groups(fs_info); 4450 4451 iput(fs_info->btree_inode); 4452 4453 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4454 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4455 btrfsic_unmount(fs_info->fs_devices); 4456 #endif 4457 4458 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4459 btrfs_close_devices(fs_info->fs_devices); 4460 } 4461 4462 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4463 int atomic) 4464 { 4465 int ret; 4466 struct inode *btree_inode = buf->pages[0]->mapping->host; 4467 4468 ret = extent_buffer_uptodate(buf); 4469 if (!ret) 4470 return ret; 4471 4472 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4473 parent_transid, atomic); 4474 if (ret == -EAGAIN) 4475 return ret; 4476 return !ret; 4477 } 4478 4479 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4480 { 4481 struct btrfs_fs_info *fs_info = buf->fs_info; 4482 u64 transid = btrfs_header_generation(buf); 4483 int was_dirty; 4484 4485 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4486 /* 4487 * This is a fast path so only do this check if we have sanity tests 4488 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4489 * outside of the sanity tests. 4490 */ 4491 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4492 return; 4493 #endif 4494 btrfs_assert_tree_write_locked(buf); 4495 if (transid != fs_info->generation) 4496 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4497 buf->start, transid, fs_info->generation); 4498 was_dirty = set_extent_buffer_dirty(buf); 4499 if (!was_dirty) 4500 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4501 buf->len, 4502 fs_info->dirty_metadata_batch); 4503 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4504 /* 4505 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4506 * but item data not updated. 4507 * So here we should only check item pointers, not item data. 4508 */ 4509 if (btrfs_header_level(buf) == 0 && 4510 btrfs_check_leaf_relaxed(buf)) { 4511 btrfs_print_leaf(buf); 4512 ASSERT(0); 4513 } 4514 #endif 4515 } 4516 4517 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4518 int flush_delayed) 4519 { 4520 /* 4521 * looks as though older kernels can get into trouble with 4522 * this code, they end up stuck in balance_dirty_pages forever 4523 */ 4524 int ret; 4525 4526 if (current->flags & PF_MEMALLOC) 4527 return; 4528 4529 if (flush_delayed) 4530 btrfs_balance_delayed_items(fs_info); 4531 4532 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4533 BTRFS_DIRTY_METADATA_THRESH, 4534 fs_info->dirty_metadata_batch); 4535 if (ret > 0) { 4536 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4537 } 4538 } 4539 4540 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4541 { 4542 __btrfs_btree_balance_dirty(fs_info, 1); 4543 } 4544 4545 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4546 { 4547 __btrfs_btree_balance_dirty(fs_info, 0); 4548 } 4549 4550 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4551 struct btrfs_key *first_key) 4552 { 4553 return btree_read_extent_buffer_pages(buf, parent_transid, 4554 level, first_key); 4555 } 4556 4557 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4558 { 4559 /* cleanup FS via transaction */ 4560 btrfs_cleanup_transaction(fs_info); 4561 4562 mutex_lock(&fs_info->cleaner_mutex); 4563 btrfs_run_delayed_iputs(fs_info); 4564 mutex_unlock(&fs_info->cleaner_mutex); 4565 4566 down_write(&fs_info->cleanup_work_sem); 4567 up_write(&fs_info->cleanup_work_sem); 4568 } 4569 4570 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4571 { 4572 struct btrfs_root *gang[8]; 4573 u64 root_objectid = 0; 4574 int ret; 4575 4576 spin_lock(&fs_info->fs_roots_radix_lock); 4577 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4578 (void **)gang, root_objectid, 4579 ARRAY_SIZE(gang))) != 0) { 4580 int i; 4581 4582 for (i = 0; i < ret; i++) 4583 gang[i] = btrfs_grab_root(gang[i]); 4584 spin_unlock(&fs_info->fs_roots_radix_lock); 4585 4586 for (i = 0; i < ret; i++) { 4587 if (!gang[i]) 4588 continue; 4589 root_objectid = gang[i]->root_key.objectid; 4590 btrfs_free_log(NULL, gang[i]); 4591 btrfs_put_root(gang[i]); 4592 } 4593 root_objectid++; 4594 spin_lock(&fs_info->fs_roots_radix_lock); 4595 } 4596 spin_unlock(&fs_info->fs_roots_radix_lock); 4597 btrfs_free_log_root_tree(NULL, fs_info); 4598 } 4599 4600 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4601 { 4602 struct btrfs_ordered_extent *ordered; 4603 4604 spin_lock(&root->ordered_extent_lock); 4605 /* 4606 * This will just short circuit the ordered completion stuff which will 4607 * make sure the ordered extent gets properly cleaned up. 4608 */ 4609 list_for_each_entry(ordered, &root->ordered_extents, 4610 root_extent_list) 4611 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4612 spin_unlock(&root->ordered_extent_lock); 4613 } 4614 4615 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4616 { 4617 struct btrfs_root *root; 4618 struct list_head splice; 4619 4620 INIT_LIST_HEAD(&splice); 4621 4622 spin_lock(&fs_info->ordered_root_lock); 4623 list_splice_init(&fs_info->ordered_roots, &splice); 4624 while (!list_empty(&splice)) { 4625 root = list_first_entry(&splice, struct btrfs_root, 4626 ordered_root); 4627 list_move_tail(&root->ordered_root, 4628 &fs_info->ordered_roots); 4629 4630 spin_unlock(&fs_info->ordered_root_lock); 4631 btrfs_destroy_ordered_extents(root); 4632 4633 cond_resched(); 4634 spin_lock(&fs_info->ordered_root_lock); 4635 } 4636 spin_unlock(&fs_info->ordered_root_lock); 4637 4638 /* 4639 * We need this here because if we've been flipped read-only we won't 4640 * get sync() from the umount, so we need to make sure any ordered 4641 * extents that haven't had their dirty pages IO start writeout yet 4642 * actually get run and error out properly. 4643 */ 4644 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4645 } 4646 4647 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4648 struct btrfs_fs_info *fs_info) 4649 { 4650 struct rb_node *node; 4651 struct btrfs_delayed_ref_root *delayed_refs; 4652 struct btrfs_delayed_ref_node *ref; 4653 int ret = 0; 4654 4655 delayed_refs = &trans->delayed_refs; 4656 4657 spin_lock(&delayed_refs->lock); 4658 if (atomic_read(&delayed_refs->num_entries) == 0) { 4659 spin_unlock(&delayed_refs->lock); 4660 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4661 return ret; 4662 } 4663 4664 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4665 struct btrfs_delayed_ref_head *head; 4666 struct rb_node *n; 4667 bool pin_bytes = false; 4668 4669 head = rb_entry(node, struct btrfs_delayed_ref_head, 4670 href_node); 4671 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4672 continue; 4673 4674 spin_lock(&head->lock); 4675 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4676 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4677 ref_node); 4678 ref->in_tree = 0; 4679 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4680 RB_CLEAR_NODE(&ref->ref_node); 4681 if (!list_empty(&ref->add_list)) 4682 list_del(&ref->add_list); 4683 atomic_dec(&delayed_refs->num_entries); 4684 btrfs_put_delayed_ref(ref); 4685 } 4686 if (head->must_insert_reserved) 4687 pin_bytes = true; 4688 btrfs_free_delayed_extent_op(head->extent_op); 4689 btrfs_delete_ref_head(delayed_refs, head); 4690 spin_unlock(&head->lock); 4691 spin_unlock(&delayed_refs->lock); 4692 mutex_unlock(&head->mutex); 4693 4694 if (pin_bytes) { 4695 struct btrfs_block_group *cache; 4696 4697 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4698 BUG_ON(!cache); 4699 4700 spin_lock(&cache->space_info->lock); 4701 spin_lock(&cache->lock); 4702 cache->pinned += head->num_bytes; 4703 btrfs_space_info_update_bytes_pinned(fs_info, 4704 cache->space_info, head->num_bytes); 4705 cache->reserved -= head->num_bytes; 4706 cache->space_info->bytes_reserved -= head->num_bytes; 4707 spin_unlock(&cache->lock); 4708 spin_unlock(&cache->space_info->lock); 4709 4710 btrfs_put_block_group(cache); 4711 4712 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4713 head->bytenr + head->num_bytes - 1); 4714 } 4715 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4716 btrfs_put_delayed_ref_head(head); 4717 cond_resched(); 4718 spin_lock(&delayed_refs->lock); 4719 } 4720 btrfs_qgroup_destroy_extent_records(trans); 4721 4722 spin_unlock(&delayed_refs->lock); 4723 4724 return ret; 4725 } 4726 4727 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4728 { 4729 struct btrfs_inode *btrfs_inode; 4730 struct list_head splice; 4731 4732 INIT_LIST_HEAD(&splice); 4733 4734 spin_lock(&root->delalloc_lock); 4735 list_splice_init(&root->delalloc_inodes, &splice); 4736 4737 while (!list_empty(&splice)) { 4738 struct inode *inode = NULL; 4739 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4740 delalloc_inodes); 4741 __btrfs_del_delalloc_inode(root, btrfs_inode); 4742 spin_unlock(&root->delalloc_lock); 4743 4744 /* 4745 * Make sure we get a live inode and that it'll not disappear 4746 * meanwhile. 4747 */ 4748 inode = igrab(&btrfs_inode->vfs_inode); 4749 if (inode) { 4750 invalidate_inode_pages2(inode->i_mapping); 4751 iput(inode); 4752 } 4753 spin_lock(&root->delalloc_lock); 4754 } 4755 spin_unlock(&root->delalloc_lock); 4756 } 4757 4758 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4759 { 4760 struct btrfs_root *root; 4761 struct list_head splice; 4762 4763 INIT_LIST_HEAD(&splice); 4764 4765 spin_lock(&fs_info->delalloc_root_lock); 4766 list_splice_init(&fs_info->delalloc_roots, &splice); 4767 while (!list_empty(&splice)) { 4768 root = list_first_entry(&splice, struct btrfs_root, 4769 delalloc_root); 4770 root = btrfs_grab_root(root); 4771 BUG_ON(!root); 4772 spin_unlock(&fs_info->delalloc_root_lock); 4773 4774 btrfs_destroy_delalloc_inodes(root); 4775 btrfs_put_root(root); 4776 4777 spin_lock(&fs_info->delalloc_root_lock); 4778 } 4779 spin_unlock(&fs_info->delalloc_root_lock); 4780 } 4781 4782 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4783 struct extent_io_tree *dirty_pages, 4784 int mark) 4785 { 4786 int ret; 4787 struct extent_buffer *eb; 4788 u64 start = 0; 4789 u64 end; 4790 4791 while (1) { 4792 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4793 mark, NULL); 4794 if (ret) 4795 break; 4796 4797 clear_extent_bits(dirty_pages, start, end, mark); 4798 while (start <= end) { 4799 eb = find_extent_buffer(fs_info, start); 4800 start += fs_info->nodesize; 4801 if (!eb) 4802 continue; 4803 wait_on_extent_buffer_writeback(eb); 4804 4805 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4806 &eb->bflags)) 4807 clear_extent_buffer_dirty(eb); 4808 free_extent_buffer_stale(eb); 4809 } 4810 } 4811 4812 return ret; 4813 } 4814 4815 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4816 struct extent_io_tree *unpin) 4817 { 4818 u64 start; 4819 u64 end; 4820 int ret; 4821 4822 while (1) { 4823 struct extent_state *cached_state = NULL; 4824 4825 /* 4826 * The btrfs_finish_extent_commit() may get the same range as 4827 * ours between find_first_extent_bit and clear_extent_dirty. 4828 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4829 * the same extent range. 4830 */ 4831 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4832 ret = find_first_extent_bit(unpin, 0, &start, &end, 4833 EXTENT_DIRTY, &cached_state); 4834 if (ret) { 4835 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4836 break; 4837 } 4838 4839 clear_extent_dirty(unpin, start, end, &cached_state); 4840 free_extent_state(cached_state); 4841 btrfs_error_unpin_extent_range(fs_info, start, end); 4842 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4843 cond_resched(); 4844 } 4845 4846 return 0; 4847 } 4848 4849 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4850 { 4851 struct inode *inode; 4852 4853 inode = cache->io_ctl.inode; 4854 if (inode) { 4855 invalidate_inode_pages2(inode->i_mapping); 4856 BTRFS_I(inode)->generation = 0; 4857 cache->io_ctl.inode = NULL; 4858 iput(inode); 4859 } 4860 ASSERT(cache->io_ctl.pages == NULL); 4861 btrfs_put_block_group(cache); 4862 } 4863 4864 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4865 struct btrfs_fs_info *fs_info) 4866 { 4867 struct btrfs_block_group *cache; 4868 4869 spin_lock(&cur_trans->dirty_bgs_lock); 4870 while (!list_empty(&cur_trans->dirty_bgs)) { 4871 cache = list_first_entry(&cur_trans->dirty_bgs, 4872 struct btrfs_block_group, 4873 dirty_list); 4874 4875 if (!list_empty(&cache->io_list)) { 4876 spin_unlock(&cur_trans->dirty_bgs_lock); 4877 list_del_init(&cache->io_list); 4878 btrfs_cleanup_bg_io(cache); 4879 spin_lock(&cur_trans->dirty_bgs_lock); 4880 } 4881 4882 list_del_init(&cache->dirty_list); 4883 spin_lock(&cache->lock); 4884 cache->disk_cache_state = BTRFS_DC_ERROR; 4885 spin_unlock(&cache->lock); 4886 4887 spin_unlock(&cur_trans->dirty_bgs_lock); 4888 btrfs_put_block_group(cache); 4889 btrfs_delayed_refs_rsv_release(fs_info, 1); 4890 spin_lock(&cur_trans->dirty_bgs_lock); 4891 } 4892 spin_unlock(&cur_trans->dirty_bgs_lock); 4893 4894 /* 4895 * Refer to the definition of io_bgs member for details why it's safe 4896 * to use it without any locking 4897 */ 4898 while (!list_empty(&cur_trans->io_bgs)) { 4899 cache = list_first_entry(&cur_trans->io_bgs, 4900 struct btrfs_block_group, 4901 io_list); 4902 4903 list_del_init(&cache->io_list); 4904 spin_lock(&cache->lock); 4905 cache->disk_cache_state = BTRFS_DC_ERROR; 4906 spin_unlock(&cache->lock); 4907 btrfs_cleanup_bg_io(cache); 4908 } 4909 } 4910 4911 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4912 struct btrfs_fs_info *fs_info) 4913 { 4914 struct btrfs_device *dev, *tmp; 4915 4916 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4917 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4918 ASSERT(list_empty(&cur_trans->io_bgs)); 4919 4920 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4921 post_commit_list) { 4922 list_del_init(&dev->post_commit_list); 4923 } 4924 4925 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4926 4927 cur_trans->state = TRANS_STATE_COMMIT_START; 4928 wake_up(&fs_info->transaction_blocked_wait); 4929 4930 cur_trans->state = TRANS_STATE_UNBLOCKED; 4931 wake_up(&fs_info->transaction_wait); 4932 4933 btrfs_destroy_delayed_inodes(fs_info); 4934 4935 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4936 EXTENT_DIRTY); 4937 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4938 4939 btrfs_free_redirty_list(cur_trans); 4940 4941 cur_trans->state =TRANS_STATE_COMPLETED; 4942 wake_up(&cur_trans->commit_wait); 4943 } 4944 4945 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4946 { 4947 struct btrfs_transaction *t; 4948 4949 mutex_lock(&fs_info->transaction_kthread_mutex); 4950 4951 spin_lock(&fs_info->trans_lock); 4952 while (!list_empty(&fs_info->trans_list)) { 4953 t = list_first_entry(&fs_info->trans_list, 4954 struct btrfs_transaction, list); 4955 if (t->state >= TRANS_STATE_COMMIT_START) { 4956 refcount_inc(&t->use_count); 4957 spin_unlock(&fs_info->trans_lock); 4958 btrfs_wait_for_commit(fs_info, t->transid); 4959 btrfs_put_transaction(t); 4960 spin_lock(&fs_info->trans_lock); 4961 continue; 4962 } 4963 if (t == fs_info->running_transaction) { 4964 t->state = TRANS_STATE_COMMIT_DOING; 4965 spin_unlock(&fs_info->trans_lock); 4966 /* 4967 * We wait for 0 num_writers since we don't hold a trans 4968 * handle open currently for this transaction. 4969 */ 4970 wait_event(t->writer_wait, 4971 atomic_read(&t->num_writers) == 0); 4972 } else { 4973 spin_unlock(&fs_info->trans_lock); 4974 } 4975 btrfs_cleanup_one_transaction(t, fs_info); 4976 4977 spin_lock(&fs_info->trans_lock); 4978 if (t == fs_info->running_transaction) 4979 fs_info->running_transaction = NULL; 4980 list_del_init(&t->list); 4981 spin_unlock(&fs_info->trans_lock); 4982 4983 btrfs_put_transaction(t); 4984 trace_btrfs_transaction_commit(fs_info->tree_root); 4985 spin_lock(&fs_info->trans_lock); 4986 } 4987 spin_unlock(&fs_info->trans_lock); 4988 btrfs_destroy_all_ordered_extents(fs_info); 4989 btrfs_destroy_delayed_inodes(fs_info); 4990 btrfs_assert_delayed_root_empty(fs_info); 4991 btrfs_destroy_all_delalloc_inodes(fs_info); 4992 btrfs_drop_all_logs(fs_info); 4993 mutex_unlock(&fs_info->transaction_kthread_mutex); 4994 4995 return 0; 4996 } 4997 4998 int btrfs_init_root_free_objectid(struct btrfs_root *root) 4999 { 5000 struct btrfs_path *path; 5001 int ret; 5002 struct extent_buffer *l; 5003 struct btrfs_key search_key; 5004 struct btrfs_key found_key; 5005 int slot; 5006 5007 path = btrfs_alloc_path(); 5008 if (!path) 5009 return -ENOMEM; 5010 5011 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 5012 search_key.type = -1; 5013 search_key.offset = (u64)-1; 5014 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5015 if (ret < 0) 5016 goto error; 5017 BUG_ON(ret == 0); /* Corruption */ 5018 if (path->slots[0] > 0) { 5019 slot = path->slots[0] - 1; 5020 l = path->nodes[0]; 5021 btrfs_item_key_to_cpu(l, &found_key, slot); 5022 root->free_objectid = max_t(u64, found_key.objectid + 1, 5023 BTRFS_FIRST_FREE_OBJECTID); 5024 } else { 5025 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 5026 } 5027 ret = 0; 5028 error: 5029 btrfs_free_path(path); 5030 return ret; 5031 } 5032 5033 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 5034 { 5035 int ret; 5036 mutex_lock(&root->objectid_mutex); 5037 5038 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 5039 btrfs_warn(root->fs_info, 5040 "the objectid of root %llu reaches its highest value", 5041 root->root_key.objectid); 5042 ret = -ENOSPC; 5043 goto out; 5044 } 5045 5046 *objectid = root->free_objectid++; 5047 ret = 0; 5048 out: 5049 mutex_unlock(&root->objectid_mutex); 5050 return ret; 5051 } 5052