1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/slab.h> 30 #include <linux/migrate.h> 31 #include <linux/ratelimit.h> 32 #include <linux/uuid.h> 33 #include <linux/semaphore.h> 34 #include <asm/unaligned.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "hash.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "volumes.h" 41 #include "print-tree.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 #include "dev-replace.h" 49 #include "raid56.h" 50 #include "sysfs.h" 51 #include "qgroup.h" 52 53 #ifdef CONFIG_X86 54 #include <asm/cpufeature.h> 55 #endif 56 57 static struct extent_io_ops btree_extent_io_ops; 58 static void end_workqueue_fn(struct btrfs_work *work); 59 static void free_fs_root(struct btrfs_root *root); 60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 61 int read_only); 62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 64 struct btrfs_root *root); 65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 66 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 67 struct extent_io_tree *dirty_pages, 68 int mark); 69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 70 struct extent_io_tree *pinned_extents); 71 static int btrfs_cleanup_transaction(struct btrfs_root *root); 72 static void btrfs_error_commit_super(struct btrfs_root *root); 73 74 /* 75 * btrfs_end_io_wq structs are used to do processing in task context when an IO 76 * is complete. This is used during reads to verify checksums, and it is used 77 * by writes to insert metadata for new file extents after IO is complete. 78 */ 79 struct btrfs_end_io_wq { 80 struct bio *bio; 81 bio_end_io_t *end_io; 82 void *private; 83 struct btrfs_fs_info *info; 84 int error; 85 enum btrfs_wq_endio_type metadata; 86 struct list_head list; 87 struct btrfs_work work; 88 }; 89 90 static struct kmem_cache *btrfs_end_io_wq_cache; 91 92 int __init btrfs_end_io_wq_init(void) 93 { 94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 95 sizeof(struct btrfs_end_io_wq), 96 0, 97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 98 NULL); 99 if (!btrfs_end_io_wq_cache) 100 return -ENOMEM; 101 return 0; 102 } 103 104 void btrfs_end_io_wq_exit(void) 105 { 106 if (btrfs_end_io_wq_cache) 107 kmem_cache_destroy(btrfs_end_io_wq_cache); 108 } 109 110 /* 111 * async submit bios are used to offload expensive checksumming 112 * onto the worker threads. They checksum file and metadata bios 113 * just before they are sent down the IO stack. 114 */ 115 struct async_submit_bio { 116 struct inode *inode; 117 struct bio *bio; 118 struct list_head list; 119 extent_submit_bio_hook_t *submit_bio_start; 120 extent_submit_bio_hook_t *submit_bio_done; 121 int rw; 122 int mirror_num; 123 unsigned long bio_flags; 124 /* 125 * bio_offset is optional, can be used if the pages in the bio 126 * can't tell us where in the file the bio should go 127 */ 128 u64 bio_offset; 129 struct btrfs_work work; 130 int error; 131 }; 132 133 /* 134 * Lockdep class keys for extent_buffer->lock's in this root. For a given 135 * eb, the lockdep key is determined by the btrfs_root it belongs to and 136 * the level the eb occupies in the tree. 137 * 138 * Different roots are used for different purposes and may nest inside each 139 * other and they require separate keysets. As lockdep keys should be 140 * static, assign keysets according to the purpose of the root as indicated 141 * by btrfs_root->objectid. This ensures that all special purpose roots 142 * have separate keysets. 143 * 144 * Lock-nesting across peer nodes is always done with the immediate parent 145 * node locked thus preventing deadlock. As lockdep doesn't know this, use 146 * subclass to avoid triggering lockdep warning in such cases. 147 * 148 * The key is set by the readpage_end_io_hook after the buffer has passed 149 * csum validation but before the pages are unlocked. It is also set by 150 * btrfs_init_new_buffer on freshly allocated blocks. 151 * 152 * We also add a check to make sure the highest level of the tree is the 153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 154 * needs update as well. 155 */ 156 #ifdef CONFIG_DEBUG_LOCK_ALLOC 157 # if BTRFS_MAX_LEVEL != 8 158 # error 159 # endif 160 161 static struct btrfs_lockdep_keyset { 162 u64 id; /* root objectid */ 163 const char *name_stem; /* lock name stem */ 164 char names[BTRFS_MAX_LEVEL + 1][20]; 165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 166 } btrfs_lockdep_keysets[] = { 167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 178 { .id = 0, .name_stem = "tree" }, 179 }; 180 181 void __init btrfs_init_lockdep(void) 182 { 183 int i, j; 184 185 /* initialize lockdep class names */ 186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 188 189 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 190 snprintf(ks->names[j], sizeof(ks->names[j]), 191 "btrfs-%s-%02d", ks->name_stem, j); 192 } 193 } 194 195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 196 int level) 197 { 198 struct btrfs_lockdep_keyset *ks; 199 200 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 201 202 /* find the matching keyset, id 0 is the default entry */ 203 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 204 if (ks->id == objectid) 205 break; 206 207 lockdep_set_class_and_name(&eb->lock, 208 &ks->keys[level], ks->names[level]); 209 } 210 211 #endif 212 213 /* 214 * extents on the btree inode are pretty simple, there's one extent 215 * that covers the entire device 216 */ 217 static struct extent_map *btree_get_extent(struct inode *inode, 218 struct page *page, size_t pg_offset, u64 start, u64 len, 219 int create) 220 { 221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 222 struct extent_map *em; 223 int ret; 224 225 read_lock(&em_tree->lock); 226 em = lookup_extent_mapping(em_tree, start, len); 227 if (em) { 228 em->bdev = 229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 230 read_unlock(&em_tree->lock); 231 goto out; 232 } 233 read_unlock(&em_tree->lock); 234 235 em = alloc_extent_map(); 236 if (!em) { 237 em = ERR_PTR(-ENOMEM); 238 goto out; 239 } 240 em->start = 0; 241 em->len = (u64)-1; 242 em->block_len = (u64)-1; 243 em->block_start = 0; 244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 245 246 write_lock(&em_tree->lock); 247 ret = add_extent_mapping(em_tree, em, 0); 248 if (ret == -EEXIST) { 249 free_extent_map(em); 250 em = lookup_extent_mapping(em_tree, start, len); 251 if (!em) 252 em = ERR_PTR(-EIO); 253 } else if (ret) { 254 free_extent_map(em); 255 em = ERR_PTR(ret); 256 } 257 write_unlock(&em_tree->lock); 258 259 out: 260 return em; 261 } 262 263 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 264 { 265 return btrfs_crc32c(seed, data, len); 266 } 267 268 void btrfs_csum_final(u32 crc, char *result) 269 { 270 put_unaligned_le32(~crc, result); 271 } 272 273 /* 274 * compute the csum for a btree block, and either verify it or write it 275 * into the csum field of the block. 276 */ 277 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 278 int verify) 279 { 280 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 281 char *result = NULL; 282 unsigned long len; 283 unsigned long cur_len; 284 unsigned long offset = BTRFS_CSUM_SIZE; 285 char *kaddr; 286 unsigned long map_start; 287 unsigned long map_len; 288 int err; 289 u32 crc = ~(u32)0; 290 unsigned long inline_result; 291 292 len = buf->len - offset; 293 while (len > 0) { 294 err = map_private_extent_buffer(buf, offset, 32, 295 &kaddr, &map_start, &map_len); 296 if (err) 297 return 1; 298 cur_len = min(len, map_len - (offset - map_start)); 299 crc = btrfs_csum_data(kaddr + offset - map_start, 300 crc, cur_len); 301 len -= cur_len; 302 offset += cur_len; 303 } 304 if (csum_size > sizeof(inline_result)) { 305 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 306 if (!result) 307 return 1; 308 } else { 309 result = (char *)&inline_result; 310 } 311 312 btrfs_csum_final(crc, result); 313 314 if (verify) { 315 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 316 u32 val; 317 u32 found = 0; 318 memcpy(&found, result, csum_size); 319 320 read_extent_buffer(buf, &val, 0, csum_size); 321 printk_ratelimited(KERN_INFO 322 "BTRFS: %s checksum verify failed on %llu wanted %X found %X " 323 "level %d\n", 324 root->fs_info->sb->s_id, buf->start, 325 val, found, btrfs_header_level(buf)); 326 if (result != (char *)&inline_result) 327 kfree(result); 328 return 1; 329 } 330 } else { 331 write_extent_buffer(buf, result, 0, csum_size); 332 } 333 if (result != (char *)&inline_result) 334 kfree(result); 335 return 0; 336 } 337 338 /* 339 * we can't consider a given block up to date unless the transid of the 340 * block matches the transid in the parent node's pointer. This is how we 341 * detect blocks that either didn't get written at all or got written 342 * in the wrong place. 343 */ 344 static int verify_parent_transid(struct extent_io_tree *io_tree, 345 struct extent_buffer *eb, u64 parent_transid, 346 int atomic) 347 { 348 struct extent_state *cached_state = NULL; 349 int ret; 350 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 351 352 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 353 return 0; 354 355 if (atomic) 356 return -EAGAIN; 357 358 if (need_lock) { 359 btrfs_tree_read_lock(eb); 360 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 361 } 362 363 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 364 0, &cached_state); 365 if (extent_buffer_uptodate(eb) && 366 btrfs_header_generation(eb) == parent_transid) { 367 ret = 0; 368 goto out; 369 } 370 printk_ratelimited(KERN_INFO "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n", 371 eb->fs_info->sb->s_id, eb->start, 372 parent_transid, btrfs_header_generation(eb)); 373 ret = 1; 374 375 /* 376 * Things reading via commit roots that don't have normal protection, 377 * like send, can have a really old block in cache that may point at a 378 * block that has been free'd and re-allocated. So don't clear uptodate 379 * if we find an eb that is under IO (dirty/writeback) because we could 380 * end up reading in the stale data and then writing it back out and 381 * making everybody very sad. 382 */ 383 if (!extent_buffer_under_io(eb)) 384 clear_extent_buffer_uptodate(eb); 385 out: 386 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 387 &cached_state, GFP_NOFS); 388 if (need_lock) 389 btrfs_tree_read_unlock_blocking(eb); 390 return ret; 391 } 392 393 /* 394 * Return 0 if the superblock checksum type matches the checksum value of that 395 * algorithm. Pass the raw disk superblock data. 396 */ 397 static int btrfs_check_super_csum(char *raw_disk_sb) 398 { 399 struct btrfs_super_block *disk_sb = 400 (struct btrfs_super_block *)raw_disk_sb; 401 u16 csum_type = btrfs_super_csum_type(disk_sb); 402 int ret = 0; 403 404 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 405 u32 crc = ~(u32)0; 406 const int csum_size = sizeof(crc); 407 char result[csum_size]; 408 409 /* 410 * The super_block structure does not span the whole 411 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 412 * is filled with zeros and is included in the checkum. 413 */ 414 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 415 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 416 btrfs_csum_final(crc, result); 417 418 if (memcmp(raw_disk_sb, result, csum_size)) 419 ret = 1; 420 421 if (ret && btrfs_super_generation(disk_sb) < 10) { 422 printk(KERN_WARNING 423 "BTRFS: super block crcs don't match, older mkfs detected\n"); 424 ret = 0; 425 } 426 } 427 428 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 429 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n", 430 csum_type); 431 ret = 1; 432 } 433 434 return ret; 435 } 436 437 /* 438 * helper to read a given tree block, doing retries as required when 439 * the checksums don't match and we have alternate mirrors to try. 440 */ 441 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 442 struct extent_buffer *eb, 443 u64 start, u64 parent_transid) 444 { 445 struct extent_io_tree *io_tree; 446 int failed = 0; 447 int ret; 448 int num_copies = 0; 449 int mirror_num = 0; 450 int failed_mirror = 0; 451 452 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 453 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 454 while (1) { 455 ret = read_extent_buffer_pages(io_tree, eb, start, 456 WAIT_COMPLETE, 457 btree_get_extent, mirror_num); 458 if (!ret) { 459 if (!verify_parent_transid(io_tree, eb, 460 parent_transid, 0)) 461 break; 462 else 463 ret = -EIO; 464 } 465 466 /* 467 * This buffer's crc is fine, but its contents are corrupted, so 468 * there is no reason to read the other copies, they won't be 469 * any less wrong. 470 */ 471 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 472 break; 473 474 num_copies = btrfs_num_copies(root->fs_info, 475 eb->start, eb->len); 476 if (num_copies == 1) 477 break; 478 479 if (!failed_mirror) { 480 failed = 1; 481 failed_mirror = eb->read_mirror; 482 } 483 484 mirror_num++; 485 if (mirror_num == failed_mirror) 486 mirror_num++; 487 488 if (mirror_num > num_copies) 489 break; 490 } 491 492 if (failed && !ret && failed_mirror) 493 repair_eb_io_failure(root, eb, failed_mirror); 494 495 return ret; 496 } 497 498 /* 499 * checksum a dirty tree block before IO. This has extra checks to make sure 500 * we only fill in the checksum field in the first page of a multi-page block 501 */ 502 503 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 504 { 505 u64 start = page_offset(page); 506 u64 found_start; 507 struct extent_buffer *eb; 508 509 eb = (struct extent_buffer *)page->private; 510 if (page != eb->pages[0]) 511 return 0; 512 found_start = btrfs_header_bytenr(eb); 513 if (WARN_ON(found_start != start || !PageUptodate(page))) 514 return 0; 515 csum_tree_block(root, eb, 0); 516 return 0; 517 } 518 519 static int check_tree_block_fsid(struct btrfs_root *root, 520 struct extent_buffer *eb) 521 { 522 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 523 u8 fsid[BTRFS_UUID_SIZE]; 524 int ret = 1; 525 526 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 527 while (fs_devices) { 528 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 529 ret = 0; 530 break; 531 } 532 fs_devices = fs_devices->seed; 533 } 534 return ret; 535 } 536 537 #define CORRUPT(reason, eb, root, slot) \ 538 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \ 539 "root=%llu, slot=%d", reason, \ 540 btrfs_header_bytenr(eb), root->objectid, slot) 541 542 static noinline int check_leaf(struct btrfs_root *root, 543 struct extent_buffer *leaf) 544 { 545 struct btrfs_key key; 546 struct btrfs_key leaf_key; 547 u32 nritems = btrfs_header_nritems(leaf); 548 int slot; 549 550 if (nritems == 0) 551 return 0; 552 553 /* Check the 0 item */ 554 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 555 BTRFS_LEAF_DATA_SIZE(root)) { 556 CORRUPT("invalid item offset size pair", leaf, root, 0); 557 return -EIO; 558 } 559 560 /* 561 * Check to make sure each items keys are in the correct order and their 562 * offsets make sense. We only have to loop through nritems-1 because 563 * we check the current slot against the next slot, which verifies the 564 * next slot's offset+size makes sense and that the current's slot 565 * offset is correct. 566 */ 567 for (slot = 0; slot < nritems - 1; slot++) { 568 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 569 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 570 571 /* Make sure the keys are in the right order */ 572 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 573 CORRUPT("bad key order", leaf, root, slot); 574 return -EIO; 575 } 576 577 /* 578 * Make sure the offset and ends are right, remember that the 579 * item data starts at the end of the leaf and grows towards the 580 * front. 581 */ 582 if (btrfs_item_offset_nr(leaf, slot) != 583 btrfs_item_end_nr(leaf, slot + 1)) { 584 CORRUPT("slot offset bad", leaf, root, slot); 585 return -EIO; 586 } 587 588 /* 589 * Check to make sure that we don't point outside of the leaf, 590 * just incase all the items are consistent to eachother, but 591 * all point outside of the leaf. 592 */ 593 if (btrfs_item_end_nr(leaf, slot) > 594 BTRFS_LEAF_DATA_SIZE(root)) { 595 CORRUPT("slot end outside of leaf", leaf, root, slot); 596 return -EIO; 597 } 598 } 599 600 return 0; 601 } 602 603 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 604 u64 phy_offset, struct page *page, 605 u64 start, u64 end, int mirror) 606 { 607 u64 found_start; 608 int found_level; 609 struct extent_buffer *eb; 610 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 611 int ret = 0; 612 int reads_done; 613 614 if (!page->private) 615 goto out; 616 617 eb = (struct extent_buffer *)page->private; 618 619 /* the pending IO might have been the only thing that kept this buffer 620 * in memory. Make sure we have a ref for all this other checks 621 */ 622 extent_buffer_get(eb); 623 624 reads_done = atomic_dec_and_test(&eb->io_pages); 625 if (!reads_done) 626 goto err; 627 628 eb->read_mirror = mirror; 629 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 630 ret = -EIO; 631 goto err; 632 } 633 634 found_start = btrfs_header_bytenr(eb); 635 if (found_start != eb->start) { 636 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad tree block start " 637 "%llu %llu\n", 638 eb->fs_info->sb->s_id, found_start, eb->start); 639 ret = -EIO; 640 goto err; 641 } 642 if (check_tree_block_fsid(root, eb)) { 643 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad fsid on block %llu\n", 644 eb->fs_info->sb->s_id, eb->start); 645 ret = -EIO; 646 goto err; 647 } 648 found_level = btrfs_header_level(eb); 649 if (found_level >= BTRFS_MAX_LEVEL) { 650 btrfs_info(root->fs_info, "bad tree block level %d", 651 (int)btrfs_header_level(eb)); 652 ret = -EIO; 653 goto err; 654 } 655 656 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 657 eb, found_level); 658 659 ret = csum_tree_block(root, eb, 1); 660 if (ret) { 661 ret = -EIO; 662 goto err; 663 } 664 665 /* 666 * If this is a leaf block and it is corrupt, set the corrupt bit so 667 * that we don't try and read the other copies of this block, just 668 * return -EIO. 669 */ 670 if (found_level == 0 && check_leaf(root, eb)) { 671 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 672 ret = -EIO; 673 } 674 675 if (!ret) 676 set_extent_buffer_uptodate(eb); 677 err: 678 if (reads_done && 679 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 680 btree_readahead_hook(root, eb, eb->start, ret); 681 682 if (ret) { 683 /* 684 * our io error hook is going to dec the io pages 685 * again, we have to make sure it has something 686 * to decrement 687 */ 688 atomic_inc(&eb->io_pages); 689 clear_extent_buffer_uptodate(eb); 690 } 691 free_extent_buffer(eb); 692 out: 693 return ret; 694 } 695 696 static int btree_io_failed_hook(struct page *page, int failed_mirror) 697 { 698 struct extent_buffer *eb; 699 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 700 701 eb = (struct extent_buffer *)page->private; 702 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 703 eb->read_mirror = failed_mirror; 704 atomic_dec(&eb->io_pages); 705 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 706 btree_readahead_hook(root, eb, eb->start, -EIO); 707 return -EIO; /* we fixed nothing */ 708 } 709 710 static void end_workqueue_bio(struct bio *bio, int err) 711 { 712 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 713 struct btrfs_fs_info *fs_info; 714 struct btrfs_workqueue *wq; 715 btrfs_work_func_t func; 716 717 fs_info = end_io_wq->info; 718 end_io_wq->error = err; 719 720 if (bio->bi_rw & REQ_WRITE) { 721 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 722 wq = fs_info->endio_meta_write_workers; 723 func = btrfs_endio_meta_write_helper; 724 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 725 wq = fs_info->endio_freespace_worker; 726 func = btrfs_freespace_write_helper; 727 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 728 wq = fs_info->endio_raid56_workers; 729 func = btrfs_endio_raid56_helper; 730 } else { 731 wq = fs_info->endio_write_workers; 732 func = btrfs_endio_write_helper; 733 } 734 } else { 735 if (unlikely(end_io_wq->metadata == 736 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 737 wq = fs_info->endio_repair_workers; 738 func = btrfs_endio_repair_helper; 739 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 740 wq = fs_info->endio_raid56_workers; 741 func = btrfs_endio_raid56_helper; 742 } else if (end_io_wq->metadata) { 743 wq = fs_info->endio_meta_workers; 744 func = btrfs_endio_meta_helper; 745 } else { 746 wq = fs_info->endio_workers; 747 func = btrfs_endio_helper; 748 } 749 } 750 751 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 752 btrfs_queue_work(wq, &end_io_wq->work); 753 } 754 755 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 756 enum btrfs_wq_endio_type metadata) 757 { 758 struct btrfs_end_io_wq *end_io_wq; 759 760 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 761 if (!end_io_wq) 762 return -ENOMEM; 763 764 end_io_wq->private = bio->bi_private; 765 end_io_wq->end_io = bio->bi_end_io; 766 end_io_wq->info = info; 767 end_io_wq->error = 0; 768 end_io_wq->bio = bio; 769 end_io_wq->metadata = metadata; 770 771 bio->bi_private = end_io_wq; 772 bio->bi_end_io = end_workqueue_bio; 773 return 0; 774 } 775 776 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 777 { 778 unsigned long limit = min_t(unsigned long, 779 info->thread_pool_size, 780 info->fs_devices->open_devices); 781 return 256 * limit; 782 } 783 784 static void run_one_async_start(struct btrfs_work *work) 785 { 786 struct async_submit_bio *async; 787 int ret; 788 789 async = container_of(work, struct async_submit_bio, work); 790 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 791 async->mirror_num, async->bio_flags, 792 async->bio_offset); 793 if (ret) 794 async->error = ret; 795 } 796 797 static void run_one_async_done(struct btrfs_work *work) 798 { 799 struct btrfs_fs_info *fs_info; 800 struct async_submit_bio *async; 801 int limit; 802 803 async = container_of(work, struct async_submit_bio, work); 804 fs_info = BTRFS_I(async->inode)->root->fs_info; 805 806 limit = btrfs_async_submit_limit(fs_info); 807 limit = limit * 2 / 3; 808 809 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 810 waitqueue_active(&fs_info->async_submit_wait)) 811 wake_up(&fs_info->async_submit_wait); 812 813 /* If an error occured we just want to clean up the bio and move on */ 814 if (async->error) { 815 bio_endio(async->bio, async->error); 816 return; 817 } 818 819 async->submit_bio_done(async->inode, async->rw, async->bio, 820 async->mirror_num, async->bio_flags, 821 async->bio_offset); 822 } 823 824 static void run_one_async_free(struct btrfs_work *work) 825 { 826 struct async_submit_bio *async; 827 828 async = container_of(work, struct async_submit_bio, work); 829 kfree(async); 830 } 831 832 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 833 int rw, struct bio *bio, int mirror_num, 834 unsigned long bio_flags, 835 u64 bio_offset, 836 extent_submit_bio_hook_t *submit_bio_start, 837 extent_submit_bio_hook_t *submit_bio_done) 838 { 839 struct async_submit_bio *async; 840 841 async = kmalloc(sizeof(*async), GFP_NOFS); 842 if (!async) 843 return -ENOMEM; 844 845 async->inode = inode; 846 async->rw = rw; 847 async->bio = bio; 848 async->mirror_num = mirror_num; 849 async->submit_bio_start = submit_bio_start; 850 async->submit_bio_done = submit_bio_done; 851 852 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 853 run_one_async_done, run_one_async_free); 854 855 async->bio_flags = bio_flags; 856 async->bio_offset = bio_offset; 857 858 async->error = 0; 859 860 atomic_inc(&fs_info->nr_async_submits); 861 862 if (rw & REQ_SYNC) 863 btrfs_set_work_high_priority(&async->work); 864 865 btrfs_queue_work(fs_info->workers, &async->work); 866 867 while (atomic_read(&fs_info->async_submit_draining) && 868 atomic_read(&fs_info->nr_async_submits)) { 869 wait_event(fs_info->async_submit_wait, 870 (atomic_read(&fs_info->nr_async_submits) == 0)); 871 } 872 873 return 0; 874 } 875 876 static int btree_csum_one_bio(struct bio *bio) 877 { 878 struct bio_vec *bvec; 879 struct btrfs_root *root; 880 int i, ret = 0; 881 882 bio_for_each_segment_all(bvec, bio, i) { 883 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 884 ret = csum_dirty_buffer(root, bvec->bv_page); 885 if (ret) 886 break; 887 } 888 889 return ret; 890 } 891 892 static int __btree_submit_bio_start(struct inode *inode, int rw, 893 struct bio *bio, int mirror_num, 894 unsigned long bio_flags, 895 u64 bio_offset) 896 { 897 /* 898 * when we're called for a write, we're already in the async 899 * submission context. Just jump into btrfs_map_bio 900 */ 901 return btree_csum_one_bio(bio); 902 } 903 904 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 905 int mirror_num, unsigned long bio_flags, 906 u64 bio_offset) 907 { 908 int ret; 909 910 /* 911 * when we're called for a write, we're already in the async 912 * submission context. Just jump into btrfs_map_bio 913 */ 914 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 915 if (ret) 916 bio_endio(bio, ret); 917 return ret; 918 } 919 920 static int check_async_write(struct inode *inode, unsigned long bio_flags) 921 { 922 if (bio_flags & EXTENT_BIO_TREE_LOG) 923 return 0; 924 #ifdef CONFIG_X86 925 if (cpu_has_xmm4_2) 926 return 0; 927 #endif 928 return 1; 929 } 930 931 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 932 int mirror_num, unsigned long bio_flags, 933 u64 bio_offset) 934 { 935 int async = check_async_write(inode, bio_flags); 936 int ret; 937 938 if (!(rw & REQ_WRITE)) { 939 /* 940 * called for a read, do the setup so that checksum validation 941 * can happen in the async kernel threads 942 */ 943 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 944 bio, BTRFS_WQ_ENDIO_METADATA); 945 if (ret) 946 goto out_w_error; 947 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 948 mirror_num, 0); 949 } else if (!async) { 950 ret = btree_csum_one_bio(bio); 951 if (ret) 952 goto out_w_error; 953 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 954 mirror_num, 0); 955 } else { 956 /* 957 * kthread helpers are used to submit writes so that 958 * checksumming can happen in parallel across all CPUs 959 */ 960 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 961 inode, rw, bio, mirror_num, 0, 962 bio_offset, 963 __btree_submit_bio_start, 964 __btree_submit_bio_done); 965 } 966 967 if (ret) { 968 out_w_error: 969 bio_endio(bio, ret); 970 } 971 return ret; 972 } 973 974 #ifdef CONFIG_MIGRATION 975 static int btree_migratepage(struct address_space *mapping, 976 struct page *newpage, struct page *page, 977 enum migrate_mode mode) 978 { 979 /* 980 * we can't safely write a btree page from here, 981 * we haven't done the locking hook 982 */ 983 if (PageDirty(page)) 984 return -EAGAIN; 985 /* 986 * Buffers may be managed in a filesystem specific way. 987 * We must have no buffers or drop them. 988 */ 989 if (page_has_private(page) && 990 !try_to_release_page(page, GFP_KERNEL)) 991 return -EAGAIN; 992 return migrate_page(mapping, newpage, page, mode); 993 } 994 #endif 995 996 997 static int btree_writepages(struct address_space *mapping, 998 struct writeback_control *wbc) 999 { 1000 struct btrfs_fs_info *fs_info; 1001 int ret; 1002 1003 if (wbc->sync_mode == WB_SYNC_NONE) { 1004 1005 if (wbc->for_kupdate) 1006 return 0; 1007 1008 fs_info = BTRFS_I(mapping->host)->root->fs_info; 1009 /* this is a bit racy, but that's ok */ 1010 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 1011 BTRFS_DIRTY_METADATA_THRESH); 1012 if (ret < 0) 1013 return 0; 1014 } 1015 return btree_write_cache_pages(mapping, wbc); 1016 } 1017 1018 static int btree_readpage(struct file *file, struct page *page) 1019 { 1020 struct extent_io_tree *tree; 1021 tree = &BTRFS_I(page->mapping->host)->io_tree; 1022 return extent_read_full_page(tree, page, btree_get_extent, 0); 1023 } 1024 1025 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1026 { 1027 if (PageWriteback(page) || PageDirty(page)) 1028 return 0; 1029 1030 return try_release_extent_buffer(page); 1031 } 1032 1033 static void btree_invalidatepage(struct page *page, unsigned int offset, 1034 unsigned int length) 1035 { 1036 struct extent_io_tree *tree; 1037 tree = &BTRFS_I(page->mapping->host)->io_tree; 1038 extent_invalidatepage(tree, page, offset); 1039 btree_releasepage(page, GFP_NOFS); 1040 if (PagePrivate(page)) { 1041 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1042 "page private not zero on page %llu", 1043 (unsigned long long)page_offset(page)); 1044 ClearPagePrivate(page); 1045 set_page_private(page, 0); 1046 page_cache_release(page); 1047 } 1048 } 1049 1050 static int btree_set_page_dirty(struct page *page) 1051 { 1052 #ifdef DEBUG 1053 struct extent_buffer *eb; 1054 1055 BUG_ON(!PagePrivate(page)); 1056 eb = (struct extent_buffer *)page->private; 1057 BUG_ON(!eb); 1058 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1059 BUG_ON(!atomic_read(&eb->refs)); 1060 btrfs_assert_tree_locked(eb); 1061 #endif 1062 return __set_page_dirty_nobuffers(page); 1063 } 1064 1065 static const struct address_space_operations btree_aops = { 1066 .readpage = btree_readpage, 1067 .writepages = btree_writepages, 1068 .releasepage = btree_releasepage, 1069 .invalidatepage = btree_invalidatepage, 1070 #ifdef CONFIG_MIGRATION 1071 .migratepage = btree_migratepage, 1072 #endif 1073 .set_page_dirty = btree_set_page_dirty, 1074 }; 1075 1076 void readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize) 1077 { 1078 struct extent_buffer *buf = NULL; 1079 struct inode *btree_inode = root->fs_info->btree_inode; 1080 1081 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1082 if (!buf) 1083 return; 1084 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1085 buf, 0, WAIT_NONE, btree_get_extent, 0); 1086 free_extent_buffer(buf); 1087 } 1088 1089 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1090 int mirror_num, struct extent_buffer **eb) 1091 { 1092 struct extent_buffer *buf = NULL; 1093 struct inode *btree_inode = root->fs_info->btree_inode; 1094 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1095 int ret; 1096 1097 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1098 if (!buf) 1099 return 0; 1100 1101 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1102 1103 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1104 btree_get_extent, mirror_num); 1105 if (ret) { 1106 free_extent_buffer(buf); 1107 return ret; 1108 } 1109 1110 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1111 free_extent_buffer(buf); 1112 return -EIO; 1113 } else if (extent_buffer_uptodate(buf)) { 1114 *eb = buf; 1115 } else { 1116 free_extent_buffer(buf); 1117 } 1118 return 0; 1119 } 1120 1121 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 1122 u64 bytenr) 1123 { 1124 return find_extent_buffer(root->fs_info, bytenr); 1125 } 1126 1127 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1128 u64 bytenr, u32 blocksize) 1129 { 1130 if (btrfs_test_is_dummy_root(root)) 1131 return alloc_test_extent_buffer(root->fs_info, bytenr, 1132 blocksize); 1133 return alloc_extent_buffer(root->fs_info, bytenr, blocksize); 1134 } 1135 1136 1137 int btrfs_write_tree_block(struct extent_buffer *buf) 1138 { 1139 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1140 buf->start + buf->len - 1); 1141 } 1142 1143 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1144 { 1145 return filemap_fdatawait_range(buf->pages[0]->mapping, 1146 buf->start, buf->start + buf->len - 1); 1147 } 1148 1149 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1150 u64 parent_transid) 1151 { 1152 struct extent_buffer *buf = NULL; 1153 int ret; 1154 1155 buf = btrfs_find_create_tree_block(root, bytenr, root->nodesize); 1156 if (!buf) 1157 return NULL; 1158 1159 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1160 if (ret) { 1161 free_extent_buffer(buf); 1162 return NULL; 1163 } 1164 return buf; 1165 1166 } 1167 1168 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1169 struct extent_buffer *buf) 1170 { 1171 struct btrfs_fs_info *fs_info = root->fs_info; 1172 1173 if (btrfs_header_generation(buf) == 1174 fs_info->running_transaction->transid) { 1175 btrfs_assert_tree_locked(buf); 1176 1177 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1178 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1179 -buf->len, 1180 fs_info->dirty_metadata_batch); 1181 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1182 btrfs_set_lock_blocking(buf); 1183 clear_extent_buffer_dirty(buf); 1184 } 1185 } 1186 } 1187 1188 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1189 { 1190 struct btrfs_subvolume_writers *writers; 1191 int ret; 1192 1193 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1194 if (!writers) 1195 return ERR_PTR(-ENOMEM); 1196 1197 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL); 1198 if (ret < 0) { 1199 kfree(writers); 1200 return ERR_PTR(ret); 1201 } 1202 1203 init_waitqueue_head(&writers->wait); 1204 return writers; 1205 } 1206 1207 static void 1208 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1209 { 1210 percpu_counter_destroy(&writers->counter); 1211 kfree(writers); 1212 } 1213 1214 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize, 1215 struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1216 u64 objectid) 1217 { 1218 root->node = NULL; 1219 root->commit_root = NULL; 1220 root->sectorsize = sectorsize; 1221 root->nodesize = nodesize; 1222 root->stripesize = stripesize; 1223 root->state = 0; 1224 root->orphan_cleanup_state = 0; 1225 1226 root->objectid = objectid; 1227 root->last_trans = 0; 1228 root->highest_objectid = 0; 1229 root->nr_delalloc_inodes = 0; 1230 root->nr_ordered_extents = 0; 1231 root->name = NULL; 1232 root->inode_tree = RB_ROOT; 1233 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1234 root->block_rsv = NULL; 1235 root->orphan_block_rsv = NULL; 1236 1237 INIT_LIST_HEAD(&root->dirty_list); 1238 INIT_LIST_HEAD(&root->root_list); 1239 INIT_LIST_HEAD(&root->delalloc_inodes); 1240 INIT_LIST_HEAD(&root->delalloc_root); 1241 INIT_LIST_HEAD(&root->ordered_extents); 1242 INIT_LIST_HEAD(&root->ordered_root); 1243 INIT_LIST_HEAD(&root->logged_list[0]); 1244 INIT_LIST_HEAD(&root->logged_list[1]); 1245 spin_lock_init(&root->orphan_lock); 1246 spin_lock_init(&root->inode_lock); 1247 spin_lock_init(&root->delalloc_lock); 1248 spin_lock_init(&root->ordered_extent_lock); 1249 spin_lock_init(&root->accounting_lock); 1250 spin_lock_init(&root->log_extents_lock[0]); 1251 spin_lock_init(&root->log_extents_lock[1]); 1252 mutex_init(&root->objectid_mutex); 1253 mutex_init(&root->log_mutex); 1254 mutex_init(&root->ordered_extent_mutex); 1255 mutex_init(&root->delalloc_mutex); 1256 init_waitqueue_head(&root->log_writer_wait); 1257 init_waitqueue_head(&root->log_commit_wait[0]); 1258 init_waitqueue_head(&root->log_commit_wait[1]); 1259 INIT_LIST_HEAD(&root->log_ctxs[0]); 1260 INIT_LIST_HEAD(&root->log_ctxs[1]); 1261 atomic_set(&root->log_commit[0], 0); 1262 atomic_set(&root->log_commit[1], 0); 1263 atomic_set(&root->log_writers, 0); 1264 atomic_set(&root->log_batch, 0); 1265 atomic_set(&root->orphan_inodes, 0); 1266 atomic_set(&root->refs, 1); 1267 atomic_set(&root->will_be_snapshoted, 0); 1268 root->log_transid = 0; 1269 root->log_transid_committed = -1; 1270 root->last_log_commit = 0; 1271 if (fs_info) 1272 extent_io_tree_init(&root->dirty_log_pages, 1273 fs_info->btree_inode->i_mapping); 1274 1275 memset(&root->root_key, 0, sizeof(root->root_key)); 1276 memset(&root->root_item, 0, sizeof(root->root_item)); 1277 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1278 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1279 if (fs_info) 1280 root->defrag_trans_start = fs_info->generation; 1281 else 1282 root->defrag_trans_start = 0; 1283 init_completion(&root->kobj_unregister); 1284 root->root_key.objectid = objectid; 1285 root->anon_dev = 0; 1286 1287 spin_lock_init(&root->root_item_lock); 1288 } 1289 1290 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1291 { 1292 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1293 if (root) 1294 root->fs_info = fs_info; 1295 return root; 1296 } 1297 1298 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1299 /* Should only be used by the testing infrastructure */ 1300 struct btrfs_root *btrfs_alloc_dummy_root(void) 1301 { 1302 struct btrfs_root *root; 1303 1304 root = btrfs_alloc_root(NULL); 1305 if (!root) 1306 return ERR_PTR(-ENOMEM); 1307 __setup_root(4096, 4096, 4096, root, NULL, 1); 1308 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state); 1309 root->alloc_bytenr = 0; 1310 1311 return root; 1312 } 1313 #endif 1314 1315 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1316 struct btrfs_fs_info *fs_info, 1317 u64 objectid) 1318 { 1319 struct extent_buffer *leaf; 1320 struct btrfs_root *tree_root = fs_info->tree_root; 1321 struct btrfs_root *root; 1322 struct btrfs_key key; 1323 int ret = 0; 1324 uuid_le uuid; 1325 1326 root = btrfs_alloc_root(fs_info); 1327 if (!root) 1328 return ERR_PTR(-ENOMEM); 1329 1330 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1331 tree_root->stripesize, root, fs_info, objectid); 1332 root->root_key.objectid = objectid; 1333 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1334 root->root_key.offset = 0; 1335 1336 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1337 if (IS_ERR(leaf)) { 1338 ret = PTR_ERR(leaf); 1339 leaf = NULL; 1340 goto fail; 1341 } 1342 1343 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1344 btrfs_set_header_bytenr(leaf, leaf->start); 1345 btrfs_set_header_generation(leaf, trans->transid); 1346 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1347 btrfs_set_header_owner(leaf, objectid); 1348 root->node = leaf; 1349 1350 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(), 1351 BTRFS_FSID_SIZE); 1352 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1353 btrfs_header_chunk_tree_uuid(leaf), 1354 BTRFS_UUID_SIZE); 1355 btrfs_mark_buffer_dirty(leaf); 1356 1357 root->commit_root = btrfs_root_node(root); 1358 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1359 1360 root->root_item.flags = 0; 1361 root->root_item.byte_limit = 0; 1362 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1363 btrfs_set_root_generation(&root->root_item, trans->transid); 1364 btrfs_set_root_level(&root->root_item, 0); 1365 btrfs_set_root_refs(&root->root_item, 1); 1366 btrfs_set_root_used(&root->root_item, leaf->len); 1367 btrfs_set_root_last_snapshot(&root->root_item, 0); 1368 btrfs_set_root_dirid(&root->root_item, 0); 1369 uuid_le_gen(&uuid); 1370 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1371 root->root_item.drop_level = 0; 1372 1373 key.objectid = objectid; 1374 key.type = BTRFS_ROOT_ITEM_KEY; 1375 key.offset = 0; 1376 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1377 if (ret) 1378 goto fail; 1379 1380 btrfs_tree_unlock(leaf); 1381 1382 return root; 1383 1384 fail: 1385 if (leaf) { 1386 btrfs_tree_unlock(leaf); 1387 free_extent_buffer(root->commit_root); 1388 free_extent_buffer(leaf); 1389 } 1390 kfree(root); 1391 1392 return ERR_PTR(ret); 1393 } 1394 1395 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1396 struct btrfs_fs_info *fs_info) 1397 { 1398 struct btrfs_root *root; 1399 struct btrfs_root *tree_root = fs_info->tree_root; 1400 struct extent_buffer *leaf; 1401 1402 root = btrfs_alloc_root(fs_info); 1403 if (!root) 1404 return ERR_PTR(-ENOMEM); 1405 1406 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1407 tree_root->stripesize, root, fs_info, 1408 BTRFS_TREE_LOG_OBJECTID); 1409 1410 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1411 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1412 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1413 1414 /* 1415 * DON'T set REF_COWS for log trees 1416 * 1417 * log trees do not get reference counted because they go away 1418 * before a real commit is actually done. They do store pointers 1419 * to file data extents, and those reference counts still get 1420 * updated (along with back refs to the log tree). 1421 */ 1422 1423 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1424 NULL, 0, 0, 0); 1425 if (IS_ERR(leaf)) { 1426 kfree(root); 1427 return ERR_CAST(leaf); 1428 } 1429 1430 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1431 btrfs_set_header_bytenr(leaf, leaf->start); 1432 btrfs_set_header_generation(leaf, trans->transid); 1433 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1434 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1435 root->node = leaf; 1436 1437 write_extent_buffer(root->node, root->fs_info->fsid, 1438 btrfs_header_fsid(), BTRFS_FSID_SIZE); 1439 btrfs_mark_buffer_dirty(root->node); 1440 btrfs_tree_unlock(root->node); 1441 return root; 1442 } 1443 1444 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1445 struct btrfs_fs_info *fs_info) 1446 { 1447 struct btrfs_root *log_root; 1448 1449 log_root = alloc_log_tree(trans, fs_info); 1450 if (IS_ERR(log_root)) 1451 return PTR_ERR(log_root); 1452 WARN_ON(fs_info->log_root_tree); 1453 fs_info->log_root_tree = log_root; 1454 return 0; 1455 } 1456 1457 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1458 struct btrfs_root *root) 1459 { 1460 struct btrfs_root *log_root; 1461 struct btrfs_inode_item *inode_item; 1462 1463 log_root = alloc_log_tree(trans, root->fs_info); 1464 if (IS_ERR(log_root)) 1465 return PTR_ERR(log_root); 1466 1467 log_root->last_trans = trans->transid; 1468 log_root->root_key.offset = root->root_key.objectid; 1469 1470 inode_item = &log_root->root_item.inode; 1471 btrfs_set_stack_inode_generation(inode_item, 1); 1472 btrfs_set_stack_inode_size(inode_item, 3); 1473 btrfs_set_stack_inode_nlink(inode_item, 1); 1474 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize); 1475 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1476 1477 btrfs_set_root_node(&log_root->root_item, log_root->node); 1478 1479 WARN_ON(root->log_root); 1480 root->log_root = log_root; 1481 root->log_transid = 0; 1482 root->log_transid_committed = -1; 1483 root->last_log_commit = 0; 1484 return 0; 1485 } 1486 1487 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1488 struct btrfs_key *key) 1489 { 1490 struct btrfs_root *root; 1491 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1492 struct btrfs_path *path; 1493 u64 generation; 1494 int ret; 1495 1496 path = btrfs_alloc_path(); 1497 if (!path) 1498 return ERR_PTR(-ENOMEM); 1499 1500 root = btrfs_alloc_root(fs_info); 1501 if (!root) { 1502 ret = -ENOMEM; 1503 goto alloc_fail; 1504 } 1505 1506 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1507 tree_root->stripesize, root, fs_info, key->objectid); 1508 1509 ret = btrfs_find_root(tree_root, key, path, 1510 &root->root_item, &root->root_key); 1511 if (ret) { 1512 if (ret > 0) 1513 ret = -ENOENT; 1514 goto find_fail; 1515 } 1516 1517 generation = btrfs_root_generation(&root->root_item); 1518 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1519 generation); 1520 if (!root->node) { 1521 ret = -ENOMEM; 1522 goto find_fail; 1523 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1524 ret = -EIO; 1525 goto read_fail; 1526 } 1527 root->commit_root = btrfs_root_node(root); 1528 out: 1529 btrfs_free_path(path); 1530 return root; 1531 1532 read_fail: 1533 free_extent_buffer(root->node); 1534 find_fail: 1535 kfree(root); 1536 alloc_fail: 1537 root = ERR_PTR(ret); 1538 goto out; 1539 } 1540 1541 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1542 struct btrfs_key *location) 1543 { 1544 struct btrfs_root *root; 1545 1546 root = btrfs_read_tree_root(tree_root, location); 1547 if (IS_ERR(root)) 1548 return root; 1549 1550 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1551 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1552 btrfs_check_and_init_root_item(&root->root_item); 1553 } 1554 1555 return root; 1556 } 1557 1558 int btrfs_init_fs_root(struct btrfs_root *root) 1559 { 1560 int ret; 1561 struct btrfs_subvolume_writers *writers; 1562 1563 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1564 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1565 GFP_NOFS); 1566 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1567 ret = -ENOMEM; 1568 goto fail; 1569 } 1570 1571 writers = btrfs_alloc_subvolume_writers(); 1572 if (IS_ERR(writers)) { 1573 ret = PTR_ERR(writers); 1574 goto fail; 1575 } 1576 root->subv_writers = writers; 1577 1578 btrfs_init_free_ino_ctl(root); 1579 spin_lock_init(&root->ino_cache_lock); 1580 init_waitqueue_head(&root->ino_cache_wait); 1581 1582 ret = get_anon_bdev(&root->anon_dev); 1583 if (ret) 1584 goto free_writers; 1585 return 0; 1586 1587 free_writers: 1588 btrfs_free_subvolume_writers(root->subv_writers); 1589 fail: 1590 kfree(root->free_ino_ctl); 1591 kfree(root->free_ino_pinned); 1592 return ret; 1593 } 1594 1595 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1596 u64 root_id) 1597 { 1598 struct btrfs_root *root; 1599 1600 spin_lock(&fs_info->fs_roots_radix_lock); 1601 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1602 (unsigned long)root_id); 1603 spin_unlock(&fs_info->fs_roots_radix_lock); 1604 return root; 1605 } 1606 1607 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1608 struct btrfs_root *root) 1609 { 1610 int ret; 1611 1612 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1613 if (ret) 1614 return ret; 1615 1616 spin_lock(&fs_info->fs_roots_radix_lock); 1617 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1618 (unsigned long)root->root_key.objectid, 1619 root); 1620 if (ret == 0) 1621 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1622 spin_unlock(&fs_info->fs_roots_radix_lock); 1623 radix_tree_preload_end(); 1624 1625 return ret; 1626 } 1627 1628 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1629 struct btrfs_key *location, 1630 bool check_ref) 1631 { 1632 struct btrfs_root *root; 1633 int ret; 1634 1635 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1636 return fs_info->tree_root; 1637 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1638 return fs_info->extent_root; 1639 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1640 return fs_info->chunk_root; 1641 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1642 return fs_info->dev_root; 1643 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1644 return fs_info->csum_root; 1645 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1646 return fs_info->quota_root ? fs_info->quota_root : 1647 ERR_PTR(-ENOENT); 1648 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1649 return fs_info->uuid_root ? fs_info->uuid_root : 1650 ERR_PTR(-ENOENT); 1651 again: 1652 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1653 if (root) { 1654 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1655 return ERR_PTR(-ENOENT); 1656 return root; 1657 } 1658 1659 root = btrfs_read_fs_root(fs_info->tree_root, location); 1660 if (IS_ERR(root)) 1661 return root; 1662 1663 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1664 ret = -ENOENT; 1665 goto fail; 1666 } 1667 1668 ret = btrfs_init_fs_root(root); 1669 if (ret) 1670 goto fail; 1671 1672 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID, 1673 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL); 1674 if (ret < 0) 1675 goto fail; 1676 if (ret == 0) 1677 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1678 1679 ret = btrfs_insert_fs_root(fs_info, root); 1680 if (ret) { 1681 if (ret == -EEXIST) { 1682 free_fs_root(root); 1683 goto again; 1684 } 1685 goto fail; 1686 } 1687 return root; 1688 fail: 1689 free_fs_root(root); 1690 return ERR_PTR(ret); 1691 } 1692 1693 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1694 { 1695 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1696 int ret = 0; 1697 struct btrfs_device *device; 1698 struct backing_dev_info *bdi; 1699 1700 rcu_read_lock(); 1701 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1702 if (!device->bdev) 1703 continue; 1704 bdi = blk_get_backing_dev_info(device->bdev); 1705 if (bdi_congested(bdi, bdi_bits)) { 1706 ret = 1; 1707 break; 1708 } 1709 } 1710 rcu_read_unlock(); 1711 return ret; 1712 } 1713 1714 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1715 { 1716 int err; 1717 1718 bdi->capabilities = BDI_CAP_MAP_COPY; 1719 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1720 if (err) 1721 return err; 1722 1723 bdi->ra_pages = default_backing_dev_info.ra_pages; 1724 bdi->congested_fn = btrfs_congested_fn; 1725 bdi->congested_data = info; 1726 return 0; 1727 } 1728 1729 /* 1730 * called by the kthread helper functions to finally call the bio end_io 1731 * functions. This is where read checksum verification actually happens 1732 */ 1733 static void end_workqueue_fn(struct btrfs_work *work) 1734 { 1735 struct bio *bio; 1736 struct btrfs_end_io_wq *end_io_wq; 1737 int error; 1738 1739 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1740 bio = end_io_wq->bio; 1741 1742 error = end_io_wq->error; 1743 bio->bi_private = end_io_wq->private; 1744 bio->bi_end_io = end_io_wq->end_io; 1745 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1746 bio_endio_nodec(bio, error); 1747 } 1748 1749 static int cleaner_kthread(void *arg) 1750 { 1751 struct btrfs_root *root = arg; 1752 int again; 1753 1754 do { 1755 again = 0; 1756 1757 /* Make the cleaner go to sleep early. */ 1758 if (btrfs_need_cleaner_sleep(root)) 1759 goto sleep; 1760 1761 if (!mutex_trylock(&root->fs_info->cleaner_mutex)) 1762 goto sleep; 1763 1764 /* 1765 * Avoid the problem that we change the status of the fs 1766 * during the above check and trylock. 1767 */ 1768 if (btrfs_need_cleaner_sleep(root)) { 1769 mutex_unlock(&root->fs_info->cleaner_mutex); 1770 goto sleep; 1771 } 1772 1773 btrfs_run_delayed_iputs(root); 1774 btrfs_delete_unused_bgs(root->fs_info); 1775 again = btrfs_clean_one_deleted_snapshot(root); 1776 mutex_unlock(&root->fs_info->cleaner_mutex); 1777 1778 /* 1779 * The defragger has dealt with the R/O remount and umount, 1780 * needn't do anything special here. 1781 */ 1782 btrfs_run_defrag_inodes(root->fs_info); 1783 sleep: 1784 if (!try_to_freeze() && !again) { 1785 set_current_state(TASK_INTERRUPTIBLE); 1786 if (!kthread_should_stop()) 1787 schedule(); 1788 __set_current_state(TASK_RUNNING); 1789 } 1790 } while (!kthread_should_stop()); 1791 return 0; 1792 } 1793 1794 static int transaction_kthread(void *arg) 1795 { 1796 struct btrfs_root *root = arg; 1797 struct btrfs_trans_handle *trans; 1798 struct btrfs_transaction *cur; 1799 u64 transid; 1800 unsigned long now; 1801 unsigned long delay; 1802 bool cannot_commit; 1803 1804 do { 1805 cannot_commit = false; 1806 delay = HZ * root->fs_info->commit_interval; 1807 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1808 1809 spin_lock(&root->fs_info->trans_lock); 1810 cur = root->fs_info->running_transaction; 1811 if (!cur) { 1812 spin_unlock(&root->fs_info->trans_lock); 1813 goto sleep; 1814 } 1815 1816 now = get_seconds(); 1817 if (cur->state < TRANS_STATE_BLOCKED && 1818 (now < cur->start_time || 1819 now - cur->start_time < root->fs_info->commit_interval)) { 1820 spin_unlock(&root->fs_info->trans_lock); 1821 delay = HZ * 5; 1822 goto sleep; 1823 } 1824 transid = cur->transid; 1825 spin_unlock(&root->fs_info->trans_lock); 1826 1827 /* If the file system is aborted, this will always fail. */ 1828 trans = btrfs_attach_transaction(root); 1829 if (IS_ERR(trans)) { 1830 if (PTR_ERR(trans) != -ENOENT) 1831 cannot_commit = true; 1832 goto sleep; 1833 } 1834 if (transid == trans->transid) { 1835 btrfs_commit_transaction(trans, root); 1836 } else { 1837 btrfs_end_transaction(trans, root); 1838 } 1839 sleep: 1840 wake_up_process(root->fs_info->cleaner_kthread); 1841 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1842 1843 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1844 &root->fs_info->fs_state))) 1845 btrfs_cleanup_transaction(root); 1846 if (!try_to_freeze()) { 1847 set_current_state(TASK_INTERRUPTIBLE); 1848 if (!kthread_should_stop() && 1849 (!btrfs_transaction_blocked(root->fs_info) || 1850 cannot_commit)) 1851 schedule_timeout(delay); 1852 __set_current_state(TASK_RUNNING); 1853 } 1854 } while (!kthread_should_stop()); 1855 return 0; 1856 } 1857 1858 /* 1859 * this will find the highest generation in the array of 1860 * root backups. The index of the highest array is returned, 1861 * or -1 if we can't find anything. 1862 * 1863 * We check to make sure the array is valid by comparing the 1864 * generation of the latest root in the array with the generation 1865 * in the super block. If they don't match we pitch it. 1866 */ 1867 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1868 { 1869 u64 cur; 1870 int newest_index = -1; 1871 struct btrfs_root_backup *root_backup; 1872 int i; 1873 1874 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1875 root_backup = info->super_copy->super_roots + i; 1876 cur = btrfs_backup_tree_root_gen(root_backup); 1877 if (cur == newest_gen) 1878 newest_index = i; 1879 } 1880 1881 /* check to see if we actually wrapped around */ 1882 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1883 root_backup = info->super_copy->super_roots; 1884 cur = btrfs_backup_tree_root_gen(root_backup); 1885 if (cur == newest_gen) 1886 newest_index = 0; 1887 } 1888 return newest_index; 1889 } 1890 1891 1892 /* 1893 * find the oldest backup so we know where to store new entries 1894 * in the backup array. This will set the backup_root_index 1895 * field in the fs_info struct 1896 */ 1897 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1898 u64 newest_gen) 1899 { 1900 int newest_index = -1; 1901 1902 newest_index = find_newest_super_backup(info, newest_gen); 1903 /* if there was garbage in there, just move along */ 1904 if (newest_index == -1) { 1905 info->backup_root_index = 0; 1906 } else { 1907 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1908 } 1909 } 1910 1911 /* 1912 * copy all the root pointers into the super backup array. 1913 * this will bump the backup pointer by one when it is 1914 * done 1915 */ 1916 static void backup_super_roots(struct btrfs_fs_info *info) 1917 { 1918 int next_backup; 1919 struct btrfs_root_backup *root_backup; 1920 int last_backup; 1921 1922 next_backup = info->backup_root_index; 1923 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1924 BTRFS_NUM_BACKUP_ROOTS; 1925 1926 /* 1927 * just overwrite the last backup if we're at the same generation 1928 * this happens only at umount 1929 */ 1930 root_backup = info->super_for_commit->super_roots + last_backup; 1931 if (btrfs_backup_tree_root_gen(root_backup) == 1932 btrfs_header_generation(info->tree_root->node)) 1933 next_backup = last_backup; 1934 1935 root_backup = info->super_for_commit->super_roots + next_backup; 1936 1937 /* 1938 * make sure all of our padding and empty slots get zero filled 1939 * regardless of which ones we use today 1940 */ 1941 memset(root_backup, 0, sizeof(*root_backup)); 1942 1943 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1944 1945 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1946 btrfs_set_backup_tree_root_gen(root_backup, 1947 btrfs_header_generation(info->tree_root->node)); 1948 1949 btrfs_set_backup_tree_root_level(root_backup, 1950 btrfs_header_level(info->tree_root->node)); 1951 1952 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1953 btrfs_set_backup_chunk_root_gen(root_backup, 1954 btrfs_header_generation(info->chunk_root->node)); 1955 btrfs_set_backup_chunk_root_level(root_backup, 1956 btrfs_header_level(info->chunk_root->node)); 1957 1958 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1959 btrfs_set_backup_extent_root_gen(root_backup, 1960 btrfs_header_generation(info->extent_root->node)); 1961 btrfs_set_backup_extent_root_level(root_backup, 1962 btrfs_header_level(info->extent_root->node)); 1963 1964 /* 1965 * we might commit during log recovery, which happens before we set 1966 * the fs_root. Make sure it is valid before we fill it in. 1967 */ 1968 if (info->fs_root && info->fs_root->node) { 1969 btrfs_set_backup_fs_root(root_backup, 1970 info->fs_root->node->start); 1971 btrfs_set_backup_fs_root_gen(root_backup, 1972 btrfs_header_generation(info->fs_root->node)); 1973 btrfs_set_backup_fs_root_level(root_backup, 1974 btrfs_header_level(info->fs_root->node)); 1975 } 1976 1977 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1978 btrfs_set_backup_dev_root_gen(root_backup, 1979 btrfs_header_generation(info->dev_root->node)); 1980 btrfs_set_backup_dev_root_level(root_backup, 1981 btrfs_header_level(info->dev_root->node)); 1982 1983 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1984 btrfs_set_backup_csum_root_gen(root_backup, 1985 btrfs_header_generation(info->csum_root->node)); 1986 btrfs_set_backup_csum_root_level(root_backup, 1987 btrfs_header_level(info->csum_root->node)); 1988 1989 btrfs_set_backup_total_bytes(root_backup, 1990 btrfs_super_total_bytes(info->super_copy)); 1991 btrfs_set_backup_bytes_used(root_backup, 1992 btrfs_super_bytes_used(info->super_copy)); 1993 btrfs_set_backup_num_devices(root_backup, 1994 btrfs_super_num_devices(info->super_copy)); 1995 1996 /* 1997 * if we don't copy this out to the super_copy, it won't get remembered 1998 * for the next commit 1999 */ 2000 memcpy(&info->super_copy->super_roots, 2001 &info->super_for_commit->super_roots, 2002 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2003 } 2004 2005 /* 2006 * this copies info out of the root backup array and back into 2007 * the in-memory super block. It is meant to help iterate through 2008 * the array, so you send it the number of backups you've already 2009 * tried and the last backup index you used. 2010 * 2011 * this returns -1 when it has tried all the backups 2012 */ 2013 static noinline int next_root_backup(struct btrfs_fs_info *info, 2014 struct btrfs_super_block *super, 2015 int *num_backups_tried, int *backup_index) 2016 { 2017 struct btrfs_root_backup *root_backup; 2018 int newest = *backup_index; 2019 2020 if (*num_backups_tried == 0) { 2021 u64 gen = btrfs_super_generation(super); 2022 2023 newest = find_newest_super_backup(info, gen); 2024 if (newest == -1) 2025 return -1; 2026 2027 *backup_index = newest; 2028 *num_backups_tried = 1; 2029 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2030 /* we've tried all the backups, all done */ 2031 return -1; 2032 } else { 2033 /* jump to the next oldest backup */ 2034 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2035 BTRFS_NUM_BACKUP_ROOTS; 2036 *backup_index = newest; 2037 *num_backups_tried += 1; 2038 } 2039 root_backup = super->super_roots + newest; 2040 2041 btrfs_set_super_generation(super, 2042 btrfs_backup_tree_root_gen(root_backup)); 2043 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2044 btrfs_set_super_root_level(super, 2045 btrfs_backup_tree_root_level(root_backup)); 2046 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2047 2048 /* 2049 * fixme: the total bytes and num_devices need to match or we should 2050 * need a fsck 2051 */ 2052 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2053 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2054 return 0; 2055 } 2056 2057 /* helper to cleanup workers */ 2058 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2059 { 2060 btrfs_destroy_workqueue(fs_info->fixup_workers); 2061 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2062 btrfs_destroy_workqueue(fs_info->workers); 2063 btrfs_destroy_workqueue(fs_info->endio_workers); 2064 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2065 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2066 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2067 btrfs_destroy_workqueue(fs_info->rmw_workers); 2068 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2069 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2070 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2071 btrfs_destroy_workqueue(fs_info->submit_workers); 2072 btrfs_destroy_workqueue(fs_info->delayed_workers); 2073 btrfs_destroy_workqueue(fs_info->caching_workers); 2074 btrfs_destroy_workqueue(fs_info->readahead_workers); 2075 btrfs_destroy_workqueue(fs_info->flush_workers); 2076 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2077 btrfs_destroy_workqueue(fs_info->extent_workers); 2078 } 2079 2080 static void free_root_extent_buffers(struct btrfs_root *root) 2081 { 2082 if (root) { 2083 free_extent_buffer(root->node); 2084 free_extent_buffer(root->commit_root); 2085 root->node = NULL; 2086 root->commit_root = NULL; 2087 } 2088 } 2089 2090 /* helper to cleanup tree roots */ 2091 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2092 { 2093 free_root_extent_buffers(info->tree_root); 2094 2095 free_root_extent_buffers(info->dev_root); 2096 free_root_extent_buffers(info->extent_root); 2097 free_root_extent_buffers(info->csum_root); 2098 free_root_extent_buffers(info->quota_root); 2099 free_root_extent_buffers(info->uuid_root); 2100 if (chunk_root) 2101 free_root_extent_buffers(info->chunk_root); 2102 } 2103 2104 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2105 { 2106 int ret; 2107 struct btrfs_root *gang[8]; 2108 int i; 2109 2110 while (!list_empty(&fs_info->dead_roots)) { 2111 gang[0] = list_entry(fs_info->dead_roots.next, 2112 struct btrfs_root, root_list); 2113 list_del(&gang[0]->root_list); 2114 2115 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2116 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2117 } else { 2118 free_extent_buffer(gang[0]->node); 2119 free_extent_buffer(gang[0]->commit_root); 2120 btrfs_put_fs_root(gang[0]); 2121 } 2122 } 2123 2124 while (1) { 2125 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2126 (void **)gang, 0, 2127 ARRAY_SIZE(gang)); 2128 if (!ret) 2129 break; 2130 for (i = 0; i < ret; i++) 2131 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2132 } 2133 2134 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2135 btrfs_free_log_root_tree(NULL, fs_info); 2136 btrfs_destroy_pinned_extent(fs_info->tree_root, 2137 fs_info->pinned_extents); 2138 } 2139 } 2140 2141 int open_ctree(struct super_block *sb, 2142 struct btrfs_fs_devices *fs_devices, 2143 char *options) 2144 { 2145 u32 sectorsize; 2146 u32 nodesize; 2147 u32 stripesize; 2148 u64 generation; 2149 u64 features; 2150 struct btrfs_key location; 2151 struct buffer_head *bh; 2152 struct btrfs_super_block *disk_super; 2153 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2154 struct btrfs_root *tree_root; 2155 struct btrfs_root *extent_root; 2156 struct btrfs_root *csum_root; 2157 struct btrfs_root *chunk_root; 2158 struct btrfs_root *dev_root; 2159 struct btrfs_root *quota_root; 2160 struct btrfs_root *uuid_root; 2161 struct btrfs_root *log_tree_root; 2162 int ret; 2163 int err = -EINVAL; 2164 int num_backups_tried = 0; 2165 int backup_index = 0; 2166 int max_active; 2167 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2168 bool create_uuid_tree; 2169 bool check_uuid_tree; 2170 2171 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 2172 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 2173 if (!tree_root || !chunk_root) { 2174 err = -ENOMEM; 2175 goto fail; 2176 } 2177 2178 ret = init_srcu_struct(&fs_info->subvol_srcu); 2179 if (ret) { 2180 err = ret; 2181 goto fail; 2182 } 2183 2184 ret = setup_bdi(fs_info, &fs_info->bdi); 2185 if (ret) { 2186 err = ret; 2187 goto fail_srcu; 2188 } 2189 2190 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2191 if (ret) { 2192 err = ret; 2193 goto fail_bdi; 2194 } 2195 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE * 2196 (1 + ilog2(nr_cpu_ids)); 2197 2198 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2199 if (ret) { 2200 err = ret; 2201 goto fail_dirty_metadata_bytes; 2202 } 2203 2204 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2205 if (ret) { 2206 err = ret; 2207 goto fail_delalloc_bytes; 2208 } 2209 2210 fs_info->btree_inode = new_inode(sb); 2211 if (!fs_info->btree_inode) { 2212 err = -ENOMEM; 2213 goto fail_bio_counter; 2214 } 2215 2216 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2217 2218 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2219 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2220 INIT_LIST_HEAD(&fs_info->trans_list); 2221 INIT_LIST_HEAD(&fs_info->dead_roots); 2222 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2223 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2224 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2225 spin_lock_init(&fs_info->delalloc_root_lock); 2226 spin_lock_init(&fs_info->trans_lock); 2227 spin_lock_init(&fs_info->fs_roots_radix_lock); 2228 spin_lock_init(&fs_info->delayed_iput_lock); 2229 spin_lock_init(&fs_info->defrag_inodes_lock); 2230 spin_lock_init(&fs_info->free_chunk_lock); 2231 spin_lock_init(&fs_info->tree_mod_seq_lock); 2232 spin_lock_init(&fs_info->super_lock); 2233 spin_lock_init(&fs_info->qgroup_op_lock); 2234 spin_lock_init(&fs_info->buffer_lock); 2235 spin_lock_init(&fs_info->unused_bgs_lock); 2236 rwlock_init(&fs_info->tree_mod_log_lock); 2237 mutex_init(&fs_info->reloc_mutex); 2238 mutex_init(&fs_info->delalloc_root_mutex); 2239 seqlock_init(&fs_info->profiles_lock); 2240 2241 init_completion(&fs_info->kobj_unregister); 2242 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2243 INIT_LIST_HEAD(&fs_info->space_info); 2244 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2245 INIT_LIST_HEAD(&fs_info->unused_bgs); 2246 btrfs_mapping_init(&fs_info->mapping_tree); 2247 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2248 BTRFS_BLOCK_RSV_GLOBAL); 2249 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2250 BTRFS_BLOCK_RSV_DELALLOC); 2251 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2252 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2253 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2254 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2255 BTRFS_BLOCK_RSV_DELOPS); 2256 atomic_set(&fs_info->nr_async_submits, 0); 2257 atomic_set(&fs_info->async_delalloc_pages, 0); 2258 atomic_set(&fs_info->async_submit_draining, 0); 2259 atomic_set(&fs_info->nr_async_bios, 0); 2260 atomic_set(&fs_info->defrag_running, 0); 2261 atomic_set(&fs_info->qgroup_op_seq, 0); 2262 atomic64_set(&fs_info->tree_mod_seq, 0); 2263 fs_info->sb = sb; 2264 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2265 fs_info->metadata_ratio = 0; 2266 fs_info->defrag_inodes = RB_ROOT; 2267 fs_info->free_chunk_space = 0; 2268 fs_info->tree_mod_log = RB_ROOT; 2269 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2270 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64); 2271 /* readahead state */ 2272 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 2273 spin_lock_init(&fs_info->reada_lock); 2274 2275 fs_info->thread_pool_size = min_t(unsigned long, 2276 num_online_cpus() + 2, 8); 2277 2278 INIT_LIST_HEAD(&fs_info->ordered_roots); 2279 spin_lock_init(&fs_info->ordered_root_lock); 2280 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2281 GFP_NOFS); 2282 if (!fs_info->delayed_root) { 2283 err = -ENOMEM; 2284 goto fail_iput; 2285 } 2286 btrfs_init_delayed_root(fs_info->delayed_root); 2287 2288 mutex_init(&fs_info->scrub_lock); 2289 atomic_set(&fs_info->scrubs_running, 0); 2290 atomic_set(&fs_info->scrub_pause_req, 0); 2291 atomic_set(&fs_info->scrubs_paused, 0); 2292 atomic_set(&fs_info->scrub_cancel_req, 0); 2293 init_waitqueue_head(&fs_info->replace_wait); 2294 init_waitqueue_head(&fs_info->scrub_pause_wait); 2295 fs_info->scrub_workers_refcnt = 0; 2296 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2297 fs_info->check_integrity_print_mask = 0; 2298 #endif 2299 2300 spin_lock_init(&fs_info->balance_lock); 2301 mutex_init(&fs_info->balance_mutex); 2302 atomic_set(&fs_info->balance_running, 0); 2303 atomic_set(&fs_info->balance_pause_req, 0); 2304 atomic_set(&fs_info->balance_cancel_req, 0); 2305 fs_info->balance_ctl = NULL; 2306 init_waitqueue_head(&fs_info->balance_wait_q); 2307 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2308 2309 sb->s_blocksize = 4096; 2310 sb->s_blocksize_bits = blksize_bits(4096); 2311 sb->s_bdi = &fs_info->bdi; 2312 2313 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2314 set_nlink(fs_info->btree_inode, 1); 2315 /* 2316 * we set the i_size on the btree inode to the max possible int. 2317 * the real end of the address space is determined by all of 2318 * the devices in the system 2319 */ 2320 fs_info->btree_inode->i_size = OFFSET_MAX; 2321 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2322 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 2323 2324 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2325 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2326 fs_info->btree_inode->i_mapping); 2327 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2328 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2329 2330 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2331 2332 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2333 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2334 sizeof(struct btrfs_key)); 2335 set_bit(BTRFS_INODE_DUMMY, 2336 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2337 btrfs_insert_inode_hash(fs_info->btree_inode); 2338 2339 spin_lock_init(&fs_info->block_group_cache_lock); 2340 fs_info->block_group_cache_tree = RB_ROOT; 2341 fs_info->first_logical_byte = (u64)-1; 2342 2343 extent_io_tree_init(&fs_info->freed_extents[0], 2344 fs_info->btree_inode->i_mapping); 2345 extent_io_tree_init(&fs_info->freed_extents[1], 2346 fs_info->btree_inode->i_mapping); 2347 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2348 fs_info->do_barriers = 1; 2349 2350 2351 mutex_init(&fs_info->ordered_operations_mutex); 2352 mutex_init(&fs_info->ordered_extent_flush_mutex); 2353 mutex_init(&fs_info->tree_log_mutex); 2354 mutex_init(&fs_info->chunk_mutex); 2355 mutex_init(&fs_info->transaction_kthread_mutex); 2356 mutex_init(&fs_info->cleaner_mutex); 2357 mutex_init(&fs_info->volume_mutex); 2358 init_rwsem(&fs_info->commit_root_sem); 2359 init_rwsem(&fs_info->cleanup_work_sem); 2360 init_rwsem(&fs_info->subvol_sem); 2361 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2362 fs_info->dev_replace.lock_owner = 0; 2363 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2364 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2365 mutex_init(&fs_info->dev_replace.lock_management_lock); 2366 mutex_init(&fs_info->dev_replace.lock); 2367 2368 spin_lock_init(&fs_info->qgroup_lock); 2369 mutex_init(&fs_info->qgroup_ioctl_lock); 2370 fs_info->qgroup_tree = RB_ROOT; 2371 fs_info->qgroup_op_tree = RB_ROOT; 2372 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2373 fs_info->qgroup_seq = 1; 2374 fs_info->quota_enabled = 0; 2375 fs_info->pending_quota_state = 0; 2376 fs_info->qgroup_ulist = NULL; 2377 mutex_init(&fs_info->qgroup_rescan_lock); 2378 2379 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2380 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2381 2382 init_waitqueue_head(&fs_info->transaction_throttle); 2383 init_waitqueue_head(&fs_info->transaction_wait); 2384 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2385 init_waitqueue_head(&fs_info->async_submit_wait); 2386 2387 ret = btrfs_alloc_stripe_hash_table(fs_info); 2388 if (ret) { 2389 err = ret; 2390 goto fail_alloc; 2391 } 2392 2393 __setup_root(4096, 4096, 4096, tree_root, 2394 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2395 2396 invalidate_bdev(fs_devices->latest_bdev); 2397 2398 /* 2399 * Read super block and check the signature bytes only 2400 */ 2401 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2402 if (!bh) { 2403 err = -EINVAL; 2404 goto fail_alloc; 2405 } 2406 2407 /* 2408 * We want to check superblock checksum, the type is stored inside. 2409 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2410 */ 2411 if (btrfs_check_super_csum(bh->b_data)) { 2412 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n"); 2413 err = -EINVAL; 2414 goto fail_alloc; 2415 } 2416 2417 /* 2418 * super_copy is zeroed at allocation time and we never touch the 2419 * following bytes up to INFO_SIZE, the checksum is calculated from 2420 * the whole block of INFO_SIZE 2421 */ 2422 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2423 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2424 sizeof(*fs_info->super_for_commit)); 2425 brelse(bh); 2426 2427 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2428 2429 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2430 if (ret) { 2431 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n"); 2432 err = -EINVAL; 2433 goto fail_alloc; 2434 } 2435 2436 disk_super = fs_info->super_copy; 2437 if (!btrfs_super_root(disk_super)) 2438 goto fail_alloc; 2439 2440 /* check FS state, whether FS is broken. */ 2441 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2442 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2443 2444 /* 2445 * run through our array of backup supers and setup 2446 * our ring pointer to the oldest one 2447 */ 2448 generation = btrfs_super_generation(disk_super); 2449 find_oldest_super_backup(fs_info, generation); 2450 2451 /* 2452 * In the long term, we'll store the compression type in the super 2453 * block, and it'll be used for per file compression control. 2454 */ 2455 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2456 2457 ret = btrfs_parse_options(tree_root, options); 2458 if (ret) { 2459 err = ret; 2460 goto fail_alloc; 2461 } 2462 2463 features = btrfs_super_incompat_flags(disk_super) & 2464 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2465 if (features) { 2466 printk(KERN_ERR "BTRFS: couldn't mount because of " 2467 "unsupported optional features (%Lx).\n", 2468 features); 2469 err = -EINVAL; 2470 goto fail_alloc; 2471 } 2472 2473 /* 2474 * Leafsize and nodesize were always equal, this is only a sanity check. 2475 */ 2476 if (le32_to_cpu(disk_super->__unused_leafsize) != 2477 btrfs_super_nodesize(disk_super)) { 2478 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2479 "blocksizes don't match. node %d leaf %d\n", 2480 btrfs_super_nodesize(disk_super), 2481 le32_to_cpu(disk_super->__unused_leafsize)); 2482 err = -EINVAL; 2483 goto fail_alloc; 2484 } 2485 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2486 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2487 "blocksize (%d) was too large\n", 2488 btrfs_super_nodesize(disk_super)); 2489 err = -EINVAL; 2490 goto fail_alloc; 2491 } 2492 2493 features = btrfs_super_incompat_flags(disk_super); 2494 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2495 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2496 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2497 2498 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2499 printk(KERN_ERR "BTRFS: has skinny extents\n"); 2500 2501 /* 2502 * flag our filesystem as having big metadata blocks if 2503 * they are bigger than the page size 2504 */ 2505 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) { 2506 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2507 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n"); 2508 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2509 } 2510 2511 nodesize = btrfs_super_nodesize(disk_super); 2512 sectorsize = btrfs_super_sectorsize(disk_super); 2513 stripesize = btrfs_super_stripesize(disk_super); 2514 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2515 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2516 2517 /* 2518 * mixed block groups end up with duplicate but slightly offset 2519 * extent buffers for the same range. It leads to corruptions 2520 */ 2521 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2522 (sectorsize != nodesize)) { 2523 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes " 2524 "are not allowed for mixed block groups on %s\n", 2525 sb->s_id); 2526 goto fail_alloc; 2527 } 2528 2529 /* 2530 * Needn't use the lock because there is no other task which will 2531 * update the flag. 2532 */ 2533 btrfs_set_super_incompat_flags(disk_super, features); 2534 2535 features = btrfs_super_compat_ro_flags(disk_super) & 2536 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2537 if (!(sb->s_flags & MS_RDONLY) && features) { 2538 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2539 "unsupported option features (%Lx).\n", 2540 features); 2541 err = -EINVAL; 2542 goto fail_alloc; 2543 } 2544 2545 max_active = fs_info->thread_pool_size; 2546 2547 fs_info->workers = 2548 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI, 2549 max_active, 16); 2550 2551 fs_info->delalloc_workers = 2552 btrfs_alloc_workqueue("delalloc", flags, max_active, 2); 2553 2554 fs_info->flush_workers = 2555 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0); 2556 2557 fs_info->caching_workers = 2558 btrfs_alloc_workqueue("cache", flags, max_active, 0); 2559 2560 /* 2561 * a higher idle thresh on the submit workers makes it much more 2562 * likely that bios will be send down in a sane order to the 2563 * devices 2564 */ 2565 fs_info->submit_workers = 2566 btrfs_alloc_workqueue("submit", flags, 2567 min_t(u64, fs_devices->num_devices, 2568 max_active), 64); 2569 2570 fs_info->fixup_workers = 2571 btrfs_alloc_workqueue("fixup", flags, 1, 0); 2572 2573 /* 2574 * endios are largely parallel and should have a very 2575 * low idle thresh 2576 */ 2577 fs_info->endio_workers = 2578 btrfs_alloc_workqueue("endio", flags, max_active, 4); 2579 fs_info->endio_meta_workers = 2580 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4); 2581 fs_info->endio_meta_write_workers = 2582 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2); 2583 fs_info->endio_raid56_workers = 2584 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4); 2585 fs_info->endio_repair_workers = 2586 btrfs_alloc_workqueue("endio-repair", flags, 1, 0); 2587 fs_info->rmw_workers = 2588 btrfs_alloc_workqueue("rmw", flags, max_active, 2); 2589 fs_info->endio_write_workers = 2590 btrfs_alloc_workqueue("endio-write", flags, max_active, 2); 2591 fs_info->endio_freespace_worker = 2592 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0); 2593 fs_info->delayed_workers = 2594 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0); 2595 fs_info->readahead_workers = 2596 btrfs_alloc_workqueue("readahead", flags, max_active, 2); 2597 fs_info->qgroup_rescan_workers = 2598 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0); 2599 fs_info->extent_workers = 2600 btrfs_alloc_workqueue("extent-refs", flags, 2601 min_t(u64, fs_devices->num_devices, 2602 max_active), 8); 2603 2604 if (!(fs_info->workers && fs_info->delalloc_workers && 2605 fs_info->submit_workers && fs_info->flush_workers && 2606 fs_info->endio_workers && fs_info->endio_meta_workers && 2607 fs_info->endio_meta_write_workers && 2608 fs_info->endio_repair_workers && 2609 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2610 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2611 fs_info->caching_workers && fs_info->readahead_workers && 2612 fs_info->fixup_workers && fs_info->delayed_workers && 2613 fs_info->extent_workers && 2614 fs_info->qgroup_rescan_workers)) { 2615 err = -ENOMEM; 2616 goto fail_sb_buffer; 2617 } 2618 2619 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2620 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2621 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2622 2623 tree_root->nodesize = nodesize; 2624 tree_root->sectorsize = sectorsize; 2625 tree_root->stripesize = stripesize; 2626 2627 sb->s_blocksize = sectorsize; 2628 sb->s_blocksize_bits = blksize_bits(sectorsize); 2629 2630 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 2631 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id); 2632 goto fail_sb_buffer; 2633 } 2634 2635 if (sectorsize != PAGE_SIZE) { 2636 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) " 2637 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2638 goto fail_sb_buffer; 2639 } 2640 2641 mutex_lock(&fs_info->chunk_mutex); 2642 ret = btrfs_read_sys_array(tree_root); 2643 mutex_unlock(&fs_info->chunk_mutex); 2644 if (ret) { 2645 printk(KERN_WARNING "BTRFS: failed to read the system " 2646 "array on %s\n", sb->s_id); 2647 goto fail_sb_buffer; 2648 } 2649 2650 generation = btrfs_super_chunk_root_generation(disk_super); 2651 2652 __setup_root(nodesize, sectorsize, stripesize, chunk_root, 2653 fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2654 2655 chunk_root->node = read_tree_block(chunk_root, 2656 btrfs_super_chunk_root(disk_super), 2657 generation); 2658 if (!chunk_root->node || 2659 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2660 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n", 2661 sb->s_id); 2662 goto fail_tree_roots; 2663 } 2664 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2665 chunk_root->commit_root = btrfs_root_node(chunk_root); 2666 2667 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2668 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2669 2670 ret = btrfs_read_chunk_tree(chunk_root); 2671 if (ret) { 2672 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n", 2673 sb->s_id); 2674 goto fail_tree_roots; 2675 } 2676 2677 /* 2678 * keep the device that is marked to be the target device for the 2679 * dev_replace procedure 2680 */ 2681 btrfs_close_extra_devices(fs_info, fs_devices, 0); 2682 2683 if (!fs_devices->latest_bdev) { 2684 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n", 2685 sb->s_id); 2686 goto fail_tree_roots; 2687 } 2688 2689 retry_root_backup: 2690 generation = btrfs_super_generation(disk_super); 2691 2692 tree_root->node = read_tree_block(tree_root, 2693 btrfs_super_root(disk_super), 2694 generation); 2695 if (!tree_root->node || 2696 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2697 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n", 2698 sb->s_id); 2699 2700 goto recovery_tree_root; 2701 } 2702 2703 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2704 tree_root->commit_root = btrfs_root_node(tree_root); 2705 btrfs_set_root_refs(&tree_root->root_item, 1); 2706 2707 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2708 location.type = BTRFS_ROOT_ITEM_KEY; 2709 location.offset = 0; 2710 2711 extent_root = btrfs_read_tree_root(tree_root, &location); 2712 if (IS_ERR(extent_root)) { 2713 ret = PTR_ERR(extent_root); 2714 goto recovery_tree_root; 2715 } 2716 set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state); 2717 fs_info->extent_root = extent_root; 2718 2719 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2720 dev_root = btrfs_read_tree_root(tree_root, &location); 2721 if (IS_ERR(dev_root)) { 2722 ret = PTR_ERR(dev_root); 2723 goto recovery_tree_root; 2724 } 2725 set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state); 2726 fs_info->dev_root = dev_root; 2727 btrfs_init_devices_late(fs_info); 2728 2729 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2730 csum_root = btrfs_read_tree_root(tree_root, &location); 2731 if (IS_ERR(csum_root)) { 2732 ret = PTR_ERR(csum_root); 2733 goto recovery_tree_root; 2734 } 2735 set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state); 2736 fs_info->csum_root = csum_root; 2737 2738 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2739 quota_root = btrfs_read_tree_root(tree_root, &location); 2740 if (!IS_ERR(quota_root)) { 2741 set_bit(BTRFS_ROOT_TRACK_DIRTY, "a_root->state); 2742 fs_info->quota_enabled = 1; 2743 fs_info->pending_quota_state = 1; 2744 fs_info->quota_root = quota_root; 2745 } 2746 2747 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2748 uuid_root = btrfs_read_tree_root(tree_root, &location); 2749 if (IS_ERR(uuid_root)) { 2750 ret = PTR_ERR(uuid_root); 2751 if (ret != -ENOENT) 2752 goto recovery_tree_root; 2753 create_uuid_tree = true; 2754 check_uuid_tree = false; 2755 } else { 2756 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state); 2757 fs_info->uuid_root = uuid_root; 2758 create_uuid_tree = false; 2759 check_uuid_tree = 2760 generation != btrfs_super_uuid_tree_generation(disk_super); 2761 } 2762 2763 fs_info->generation = generation; 2764 fs_info->last_trans_committed = generation; 2765 2766 ret = btrfs_recover_balance(fs_info); 2767 if (ret) { 2768 printk(KERN_WARNING "BTRFS: failed to recover balance\n"); 2769 goto fail_block_groups; 2770 } 2771 2772 ret = btrfs_init_dev_stats(fs_info); 2773 if (ret) { 2774 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n", 2775 ret); 2776 goto fail_block_groups; 2777 } 2778 2779 ret = btrfs_init_dev_replace(fs_info); 2780 if (ret) { 2781 pr_err("BTRFS: failed to init dev_replace: %d\n", ret); 2782 goto fail_block_groups; 2783 } 2784 2785 btrfs_close_extra_devices(fs_info, fs_devices, 1); 2786 2787 ret = btrfs_sysfs_add_one(fs_info); 2788 if (ret) { 2789 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret); 2790 goto fail_block_groups; 2791 } 2792 2793 ret = btrfs_init_space_info(fs_info); 2794 if (ret) { 2795 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret); 2796 goto fail_sysfs; 2797 } 2798 2799 ret = btrfs_read_block_groups(extent_root); 2800 if (ret) { 2801 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret); 2802 goto fail_sysfs; 2803 } 2804 fs_info->num_tolerated_disk_barrier_failures = 2805 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2806 if (fs_info->fs_devices->missing_devices > 2807 fs_info->num_tolerated_disk_barrier_failures && 2808 !(sb->s_flags & MS_RDONLY)) { 2809 printk(KERN_WARNING "BTRFS: " 2810 "too many missing devices, writeable mount is not allowed\n"); 2811 goto fail_sysfs; 2812 } 2813 2814 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2815 "btrfs-cleaner"); 2816 if (IS_ERR(fs_info->cleaner_kthread)) 2817 goto fail_sysfs; 2818 2819 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2820 tree_root, 2821 "btrfs-transaction"); 2822 if (IS_ERR(fs_info->transaction_kthread)) 2823 goto fail_cleaner; 2824 2825 if (!btrfs_test_opt(tree_root, SSD) && 2826 !btrfs_test_opt(tree_root, NOSSD) && 2827 !fs_info->fs_devices->rotating) { 2828 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD " 2829 "mode\n"); 2830 btrfs_set_opt(fs_info->mount_opt, SSD); 2831 } 2832 2833 /* Set the real inode map cache flag */ 2834 if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE)) 2835 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE); 2836 2837 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2838 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2839 ret = btrfsic_mount(tree_root, fs_devices, 2840 btrfs_test_opt(tree_root, 2841 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2842 1 : 0, 2843 fs_info->check_integrity_print_mask); 2844 if (ret) 2845 printk(KERN_WARNING "BTRFS: failed to initialize" 2846 " integrity check module %s\n", sb->s_id); 2847 } 2848 #endif 2849 ret = btrfs_read_qgroup_config(fs_info); 2850 if (ret) 2851 goto fail_trans_kthread; 2852 2853 /* do not make disk changes in broken FS */ 2854 if (btrfs_super_log_root(disk_super) != 0) { 2855 u64 bytenr = btrfs_super_log_root(disk_super); 2856 2857 if (fs_devices->rw_devices == 0) { 2858 printk(KERN_WARNING "BTRFS: log replay required " 2859 "on RO media\n"); 2860 err = -EIO; 2861 goto fail_qgroup; 2862 } 2863 2864 log_tree_root = btrfs_alloc_root(fs_info); 2865 if (!log_tree_root) { 2866 err = -ENOMEM; 2867 goto fail_qgroup; 2868 } 2869 2870 __setup_root(nodesize, sectorsize, stripesize, 2871 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2872 2873 log_tree_root->node = read_tree_block(tree_root, bytenr, 2874 generation + 1); 2875 if (!log_tree_root->node || 2876 !extent_buffer_uptodate(log_tree_root->node)) { 2877 printk(KERN_ERR "BTRFS: failed to read log tree\n"); 2878 free_extent_buffer(log_tree_root->node); 2879 kfree(log_tree_root); 2880 goto fail_qgroup; 2881 } 2882 /* returns with log_tree_root freed on success */ 2883 ret = btrfs_recover_log_trees(log_tree_root); 2884 if (ret) { 2885 btrfs_error(tree_root->fs_info, ret, 2886 "Failed to recover log tree"); 2887 free_extent_buffer(log_tree_root->node); 2888 kfree(log_tree_root); 2889 goto fail_qgroup; 2890 } 2891 2892 if (sb->s_flags & MS_RDONLY) { 2893 ret = btrfs_commit_super(tree_root); 2894 if (ret) 2895 goto fail_qgroup; 2896 } 2897 } 2898 2899 ret = btrfs_find_orphan_roots(tree_root); 2900 if (ret) 2901 goto fail_qgroup; 2902 2903 if (!(sb->s_flags & MS_RDONLY)) { 2904 ret = btrfs_cleanup_fs_roots(fs_info); 2905 if (ret) 2906 goto fail_qgroup; 2907 2908 mutex_lock(&fs_info->cleaner_mutex); 2909 ret = btrfs_recover_relocation(tree_root); 2910 mutex_unlock(&fs_info->cleaner_mutex); 2911 if (ret < 0) { 2912 printk(KERN_WARNING 2913 "BTRFS: failed to recover relocation\n"); 2914 err = -EINVAL; 2915 goto fail_qgroup; 2916 } 2917 } 2918 2919 location.objectid = BTRFS_FS_TREE_OBJECTID; 2920 location.type = BTRFS_ROOT_ITEM_KEY; 2921 location.offset = 0; 2922 2923 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2924 if (IS_ERR(fs_info->fs_root)) { 2925 err = PTR_ERR(fs_info->fs_root); 2926 goto fail_qgroup; 2927 } 2928 2929 if (sb->s_flags & MS_RDONLY) 2930 return 0; 2931 2932 down_read(&fs_info->cleanup_work_sem); 2933 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2934 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2935 up_read(&fs_info->cleanup_work_sem); 2936 close_ctree(tree_root); 2937 return ret; 2938 } 2939 up_read(&fs_info->cleanup_work_sem); 2940 2941 ret = btrfs_resume_balance_async(fs_info); 2942 if (ret) { 2943 printk(KERN_WARNING "BTRFS: failed to resume balance\n"); 2944 close_ctree(tree_root); 2945 return ret; 2946 } 2947 2948 ret = btrfs_resume_dev_replace_async(fs_info); 2949 if (ret) { 2950 pr_warn("BTRFS: failed to resume dev_replace\n"); 2951 close_ctree(tree_root); 2952 return ret; 2953 } 2954 2955 btrfs_qgroup_rescan_resume(fs_info); 2956 2957 if (create_uuid_tree) { 2958 pr_info("BTRFS: creating UUID tree\n"); 2959 ret = btrfs_create_uuid_tree(fs_info); 2960 if (ret) { 2961 pr_warn("BTRFS: failed to create the UUID tree %d\n", 2962 ret); 2963 close_ctree(tree_root); 2964 return ret; 2965 } 2966 } else if (check_uuid_tree || 2967 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) { 2968 pr_info("BTRFS: checking UUID tree\n"); 2969 ret = btrfs_check_uuid_tree(fs_info); 2970 if (ret) { 2971 pr_warn("BTRFS: failed to check the UUID tree %d\n", 2972 ret); 2973 close_ctree(tree_root); 2974 return ret; 2975 } 2976 } else { 2977 fs_info->update_uuid_tree_gen = 1; 2978 } 2979 2980 fs_info->open = 1; 2981 2982 return 0; 2983 2984 fail_qgroup: 2985 btrfs_free_qgroup_config(fs_info); 2986 fail_trans_kthread: 2987 kthread_stop(fs_info->transaction_kthread); 2988 btrfs_cleanup_transaction(fs_info->tree_root); 2989 btrfs_free_fs_roots(fs_info); 2990 fail_cleaner: 2991 kthread_stop(fs_info->cleaner_kthread); 2992 2993 /* 2994 * make sure we're done with the btree inode before we stop our 2995 * kthreads 2996 */ 2997 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2998 2999 fail_sysfs: 3000 btrfs_sysfs_remove_one(fs_info); 3001 3002 fail_block_groups: 3003 btrfs_put_block_group_cache(fs_info); 3004 btrfs_free_block_groups(fs_info); 3005 3006 fail_tree_roots: 3007 free_root_pointers(fs_info, 1); 3008 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3009 3010 fail_sb_buffer: 3011 btrfs_stop_all_workers(fs_info); 3012 fail_alloc: 3013 fail_iput: 3014 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3015 3016 iput(fs_info->btree_inode); 3017 fail_bio_counter: 3018 percpu_counter_destroy(&fs_info->bio_counter); 3019 fail_delalloc_bytes: 3020 percpu_counter_destroy(&fs_info->delalloc_bytes); 3021 fail_dirty_metadata_bytes: 3022 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3023 fail_bdi: 3024 bdi_destroy(&fs_info->bdi); 3025 fail_srcu: 3026 cleanup_srcu_struct(&fs_info->subvol_srcu); 3027 fail: 3028 btrfs_free_stripe_hash_table(fs_info); 3029 btrfs_close_devices(fs_info->fs_devices); 3030 return err; 3031 3032 recovery_tree_root: 3033 if (!btrfs_test_opt(tree_root, RECOVERY)) 3034 goto fail_tree_roots; 3035 3036 free_root_pointers(fs_info, 0); 3037 3038 /* don't use the log in recovery mode, it won't be valid */ 3039 btrfs_set_super_log_root(disk_super, 0); 3040 3041 /* we can't trust the free space cache either */ 3042 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3043 3044 ret = next_root_backup(fs_info, fs_info->super_copy, 3045 &num_backups_tried, &backup_index); 3046 if (ret == -1) 3047 goto fail_block_groups; 3048 goto retry_root_backup; 3049 } 3050 3051 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3052 { 3053 if (uptodate) { 3054 set_buffer_uptodate(bh); 3055 } else { 3056 struct btrfs_device *device = (struct btrfs_device *) 3057 bh->b_private; 3058 3059 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to " 3060 "I/O error on %s\n", 3061 rcu_str_deref(device->name)); 3062 /* note, we dont' set_buffer_write_io_error because we have 3063 * our own ways of dealing with the IO errors 3064 */ 3065 clear_buffer_uptodate(bh); 3066 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3067 } 3068 unlock_buffer(bh); 3069 put_bh(bh); 3070 } 3071 3072 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3073 { 3074 struct buffer_head *bh; 3075 struct buffer_head *latest = NULL; 3076 struct btrfs_super_block *super; 3077 int i; 3078 u64 transid = 0; 3079 u64 bytenr; 3080 3081 /* we would like to check all the supers, but that would make 3082 * a btrfs mount succeed after a mkfs from a different FS. 3083 * So, we need to add a special mount option to scan for 3084 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3085 */ 3086 for (i = 0; i < 1; i++) { 3087 bytenr = btrfs_sb_offset(i); 3088 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3089 i_size_read(bdev->bd_inode)) 3090 break; 3091 bh = __bread(bdev, bytenr / 4096, 3092 BTRFS_SUPER_INFO_SIZE); 3093 if (!bh) 3094 continue; 3095 3096 super = (struct btrfs_super_block *)bh->b_data; 3097 if (btrfs_super_bytenr(super) != bytenr || 3098 btrfs_super_magic(super) != BTRFS_MAGIC) { 3099 brelse(bh); 3100 continue; 3101 } 3102 3103 if (!latest || btrfs_super_generation(super) > transid) { 3104 brelse(latest); 3105 latest = bh; 3106 transid = btrfs_super_generation(super); 3107 } else { 3108 brelse(bh); 3109 } 3110 } 3111 return latest; 3112 } 3113 3114 /* 3115 * this should be called twice, once with wait == 0 and 3116 * once with wait == 1. When wait == 0 is done, all the buffer heads 3117 * we write are pinned. 3118 * 3119 * They are released when wait == 1 is done. 3120 * max_mirrors must be the same for both runs, and it indicates how 3121 * many supers on this one device should be written. 3122 * 3123 * max_mirrors == 0 means to write them all. 3124 */ 3125 static int write_dev_supers(struct btrfs_device *device, 3126 struct btrfs_super_block *sb, 3127 int do_barriers, int wait, int max_mirrors) 3128 { 3129 struct buffer_head *bh; 3130 int i; 3131 int ret; 3132 int errors = 0; 3133 u32 crc; 3134 u64 bytenr; 3135 3136 if (max_mirrors == 0) 3137 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3138 3139 for (i = 0; i < max_mirrors; i++) { 3140 bytenr = btrfs_sb_offset(i); 3141 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3142 device->commit_total_bytes) 3143 break; 3144 3145 if (wait) { 3146 bh = __find_get_block(device->bdev, bytenr / 4096, 3147 BTRFS_SUPER_INFO_SIZE); 3148 if (!bh) { 3149 errors++; 3150 continue; 3151 } 3152 wait_on_buffer(bh); 3153 if (!buffer_uptodate(bh)) 3154 errors++; 3155 3156 /* drop our reference */ 3157 brelse(bh); 3158 3159 /* drop the reference from the wait == 0 run */ 3160 brelse(bh); 3161 continue; 3162 } else { 3163 btrfs_set_super_bytenr(sb, bytenr); 3164 3165 crc = ~(u32)0; 3166 crc = btrfs_csum_data((char *)sb + 3167 BTRFS_CSUM_SIZE, crc, 3168 BTRFS_SUPER_INFO_SIZE - 3169 BTRFS_CSUM_SIZE); 3170 btrfs_csum_final(crc, sb->csum); 3171 3172 /* 3173 * one reference for us, and we leave it for the 3174 * caller 3175 */ 3176 bh = __getblk(device->bdev, bytenr / 4096, 3177 BTRFS_SUPER_INFO_SIZE); 3178 if (!bh) { 3179 printk(KERN_ERR "BTRFS: couldn't get super " 3180 "buffer head for bytenr %Lu\n", bytenr); 3181 errors++; 3182 continue; 3183 } 3184 3185 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3186 3187 /* one reference for submit_bh */ 3188 get_bh(bh); 3189 3190 set_buffer_uptodate(bh); 3191 lock_buffer(bh); 3192 bh->b_end_io = btrfs_end_buffer_write_sync; 3193 bh->b_private = device; 3194 } 3195 3196 /* 3197 * we fua the first super. The others we allow 3198 * to go down lazy. 3199 */ 3200 if (i == 0) 3201 ret = btrfsic_submit_bh(WRITE_FUA, bh); 3202 else 3203 ret = btrfsic_submit_bh(WRITE_SYNC, bh); 3204 if (ret) 3205 errors++; 3206 } 3207 return errors < i ? 0 : -1; 3208 } 3209 3210 /* 3211 * endio for the write_dev_flush, this will wake anyone waiting 3212 * for the barrier when it is done 3213 */ 3214 static void btrfs_end_empty_barrier(struct bio *bio, int err) 3215 { 3216 if (err) { 3217 if (err == -EOPNOTSUPP) 3218 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 3219 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3220 } 3221 if (bio->bi_private) 3222 complete(bio->bi_private); 3223 bio_put(bio); 3224 } 3225 3226 /* 3227 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3228 * sent down. With wait == 1, it waits for the previous flush. 3229 * 3230 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3231 * capable 3232 */ 3233 static int write_dev_flush(struct btrfs_device *device, int wait) 3234 { 3235 struct bio *bio; 3236 int ret = 0; 3237 3238 if (device->nobarriers) 3239 return 0; 3240 3241 if (wait) { 3242 bio = device->flush_bio; 3243 if (!bio) 3244 return 0; 3245 3246 wait_for_completion(&device->flush_wait); 3247 3248 if (bio_flagged(bio, BIO_EOPNOTSUPP)) { 3249 printk_in_rcu("BTRFS: disabling barriers on dev %s\n", 3250 rcu_str_deref(device->name)); 3251 device->nobarriers = 1; 3252 } else if (!bio_flagged(bio, BIO_UPTODATE)) { 3253 ret = -EIO; 3254 btrfs_dev_stat_inc_and_print(device, 3255 BTRFS_DEV_STAT_FLUSH_ERRS); 3256 } 3257 3258 /* drop the reference from the wait == 0 run */ 3259 bio_put(bio); 3260 device->flush_bio = NULL; 3261 3262 return ret; 3263 } 3264 3265 /* 3266 * one reference for us, and we leave it for the 3267 * caller 3268 */ 3269 device->flush_bio = NULL; 3270 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3271 if (!bio) 3272 return -ENOMEM; 3273 3274 bio->bi_end_io = btrfs_end_empty_barrier; 3275 bio->bi_bdev = device->bdev; 3276 init_completion(&device->flush_wait); 3277 bio->bi_private = &device->flush_wait; 3278 device->flush_bio = bio; 3279 3280 bio_get(bio); 3281 btrfsic_submit_bio(WRITE_FLUSH, bio); 3282 3283 return 0; 3284 } 3285 3286 /* 3287 * send an empty flush down to each device in parallel, 3288 * then wait for them 3289 */ 3290 static int barrier_all_devices(struct btrfs_fs_info *info) 3291 { 3292 struct list_head *head; 3293 struct btrfs_device *dev; 3294 int errors_send = 0; 3295 int errors_wait = 0; 3296 int ret; 3297 3298 /* send down all the barriers */ 3299 head = &info->fs_devices->devices; 3300 list_for_each_entry_rcu(dev, head, dev_list) { 3301 if (dev->missing) 3302 continue; 3303 if (!dev->bdev) { 3304 errors_send++; 3305 continue; 3306 } 3307 if (!dev->in_fs_metadata || !dev->writeable) 3308 continue; 3309 3310 ret = write_dev_flush(dev, 0); 3311 if (ret) 3312 errors_send++; 3313 } 3314 3315 /* wait for all the barriers */ 3316 list_for_each_entry_rcu(dev, head, dev_list) { 3317 if (dev->missing) 3318 continue; 3319 if (!dev->bdev) { 3320 errors_wait++; 3321 continue; 3322 } 3323 if (!dev->in_fs_metadata || !dev->writeable) 3324 continue; 3325 3326 ret = write_dev_flush(dev, 1); 3327 if (ret) 3328 errors_wait++; 3329 } 3330 if (errors_send > info->num_tolerated_disk_barrier_failures || 3331 errors_wait > info->num_tolerated_disk_barrier_failures) 3332 return -EIO; 3333 return 0; 3334 } 3335 3336 int btrfs_calc_num_tolerated_disk_barrier_failures( 3337 struct btrfs_fs_info *fs_info) 3338 { 3339 struct btrfs_ioctl_space_info space; 3340 struct btrfs_space_info *sinfo; 3341 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3342 BTRFS_BLOCK_GROUP_SYSTEM, 3343 BTRFS_BLOCK_GROUP_METADATA, 3344 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3345 int num_types = 4; 3346 int i; 3347 int c; 3348 int num_tolerated_disk_barrier_failures = 3349 (int)fs_info->fs_devices->num_devices; 3350 3351 for (i = 0; i < num_types; i++) { 3352 struct btrfs_space_info *tmp; 3353 3354 sinfo = NULL; 3355 rcu_read_lock(); 3356 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3357 if (tmp->flags == types[i]) { 3358 sinfo = tmp; 3359 break; 3360 } 3361 } 3362 rcu_read_unlock(); 3363 3364 if (!sinfo) 3365 continue; 3366 3367 down_read(&sinfo->groups_sem); 3368 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3369 if (!list_empty(&sinfo->block_groups[c])) { 3370 u64 flags; 3371 3372 btrfs_get_block_group_info( 3373 &sinfo->block_groups[c], &space); 3374 if (space.total_bytes == 0 || 3375 space.used_bytes == 0) 3376 continue; 3377 flags = space.flags; 3378 /* 3379 * return 3380 * 0: if dup, single or RAID0 is configured for 3381 * any of metadata, system or data, else 3382 * 1: if RAID5 is configured, or if RAID1 or 3383 * RAID10 is configured and only two mirrors 3384 * are used, else 3385 * 2: if RAID6 is configured, else 3386 * num_mirrors - 1: if RAID1 or RAID10 is 3387 * configured and more than 3388 * 2 mirrors are used. 3389 */ 3390 if (num_tolerated_disk_barrier_failures > 0 && 3391 ((flags & (BTRFS_BLOCK_GROUP_DUP | 3392 BTRFS_BLOCK_GROUP_RAID0)) || 3393 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) 3394 == 0))) 3395 num_tolerated_disk_barrier_failures = 0; 3396 else if (num_tolerated_disk_barrier_failures > 1) { 3397 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3398 BTRFS_BLOCK_GROUP_RAID5 | 3399 BTRFS_BLOCK_GROUP_RAID10)) { 3400 num_tolerated_disk_barrier_failures = 1; 3401 } else if (flags & 3402 BTRFS_BLOCK_GROUP_RAID6) { 3403 num_tolerated_disk_barrier_failures = 2; 3404 } 3405 } 3406 } 3407 } 3408 up_read(&sinfo->groups_sem); 3409 } 3410 3411 return num_tolerated_disk_barrier_failures; 3412 } 3413 3414 static int write_all_supers(struct btrfs_root *root, int max_mirrors) 3415 { 3416 struct list_head *head; 3417 struct btrfs_device *dev; 3418 struct btrfs_super_block *sb; 3419 struct btrfs_dev_item *dev_item; 3420 int ret; 3421 int do_barriers; 3422 int max_errors; 3423 int total_errors = 0; 3424 u64 flags; 3425 3426 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3427 backup_super_roots(root->fs_info); 3428 3429 sb = root->fs_info->super_for_commit; 3430 dev_item = &sb->dev_item; 3431 3432 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3433 head = &root->fs_info->fs_devices->devices; 3434 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3435 3436 if (do_barriers) { 3437 ret = barrier_all_devices(root->fs_info); 3438 if (ret) { 3439 mutex_unlock( 3440 &root->fs_info->fs_devices->device_list_mutex); 3441 btrfs_error(root->fs_info, ret, 3442 "errors while submitting device barriers."); 3443 return ret; 3444 } 3445 } 3446 3447 list_for_each_entry_rcu(dev, head, dev_list) { 3448 if (!dev->bdev) { 3449 total_errors++; 3450 continue; 3451 } 3452 if (!dev->in_fs_metadata || !dev->writeable) 3453 continue; 3454 3455 btrfs_set_stack_device_generation(dev_item, 0); 3456 btrfs_set_stack_device_type(dev_item, dev->type); 3457 btrfs_set_stack_device_id(dev_item, dev->devid); 3458 btrfs_set_stack_device_total_bytes(dev_item, 3459 dev->commit_total_bytes); 3460 btrfs_set_stack_device_bytes_used(dev_item, 3461 dev->commit_bytes_used); 3462 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3463 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3464 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3465 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3466 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3467 3468 flags = btrfs_super_flags(sb); 3469 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3470 3471 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3472 if (ret) 3473 total_errors++; 3474 } 3475 if (total_errors > max_errors) { 3476 btrfs_err(root->fs_info, "%d errors while writing supers", 3477 total_errors); 3478 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3479 3480 /* FUA is masked off if unsupported and can't be the reason */ 3481 btrfs_error(root->fs_info, -EIO, 3482 "%d errors while writing supers", total_errors); 3483 return -EIO; 3484 } 3485 3486 total_errors = 0; 3487 list_for_each_entry_rcu(dev, head, dev_list) { 3488 if (!dev->bdev) 3489 continue; 3490 if (!dev->in_fs_metadata || !dev->writeable) 3491 continue; 3492 3493 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3494 if (ret) 3495 total_errors++; 3496 } 3497 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3498 if (total_errors > max_errors) { 3499 btrfs_error(root->fs_info, -EIO, 3500 "%d errors while writing supers", total_errors); 3501 return -EIO; 3502 } 3503 return 0; 3504 } 3505 3506 int write_ctree_super(struct btrfs_trans_handle *trans, 3507 struct btrfs_root *root, int max_mirrors) 3508 { 3509 return write_all_supers(root, max_mirrors); 3510 } 3511 3512 /* Drop a fs root from the radix tree and free it. */ 3513 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3514 struct btrfs_root *root) 3515 { 3516 spin_lock(&fs_info->fs_roots_radix_lock); 3517 radix_tree_delete(&fs_info->fs_roots_radix, 3518 (unsigned long)root->root_key.objectid); 3519 spin_unlock(&fs_info->fs_roots_radix_lock); 3520 3521 if (btrfs_root_refs(&root->root_item) == 0) 3522 synchronize_srcu(&fs_info->subvol_srcu); 3523 3524 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3525 btrfs_free_log(NULL, root); 3526 3527 if (root->free_ino_pinned) 3528 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3529 if (root->free_ino_ctl) 3530 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3531 free_fs_root(root); 3532 } 3533 3534 static void free_fs_root(struct btrfs_root *root) 3535 { 3536 iput(root->ino_cache_inode); 3537 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3538 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3539 root->orphan_block_rsv = NULL; 3540 if (root->anon_dev) 3541 free_anon_bdev(root->anon_dev); 3542 if (root->subv_writers) 3543 btrfs_free_subvolume_writers(root->subv_writers); 3544 free_extent_buffer(root->node); 3545 free_extent_buffer(root->commit_root); 3546 kfree(root->free_ino_ctl); 3547 kfree(root->free_ino_pinned); 3548 kfree(root->name); 3549 btrfs_put_fs_root(root); 3550 } 3551 3552 void btrfs_free_fs_root(struct btrfs_root *root) 3553 { 3554 free_fs_root(root); 3555 } 3556 3557 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3558 { 3559 u64 root_objectid = 0; 3560 struct btrfs_root *gang[8]; 3561 int i = 0; 3562 int err = 0; 3563 unsigned int ret = 0; 3564 int index; 3565 3566 while (1) { 3567 index = srcu_read_lock(&fs_info->subvol_srcu); 3568 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3569 (void **)gang, root_objectid, 3570 ARRAY_SIZE(gang)); 3571 if (!ret) { 3572 srcu_read_unlock(&fs_info->subvol_srcu, index); 3573 break; 3574 } 3575 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3576 3577 for (i = 0; i < ret; i++) { 3578 /* Avoid to grab roots in dead_roots */ 3579 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3580 gang[i] = NULL; 3581 continue; 3582 } 3583 /* grab all the search result for later use */ 3584 gang[i] = btrfs_grab_fs_root(gang[i]); 3585 } 3586 srcu_read_unlock(&fs_info->subvol_srcu, index); 3587 3588 for (i = 0; i < ret; i++) { 3589 if (!gang[i]) 3590 continue; 3591 root_objectid = gang[i]->root_key.objectid; 3592 err = btrfs_orphan_cleanup(gang[i]); 3593 if (err) 3594 break; 3595 btrfs_put_fs_root(gang[i]); 3596 } 3597 root_objectid++; 3598 } 3599 3600 /* release the uncleaned roots due to error */ 3601 for (; i < ret; i++) { 3602 if (gang[i]) 3603 btrfs_put_fs_root(gang[i]); 3604 } 3605 return err; 3606 } 3607 3608 int btrfs_commit_super(struct btrfs_root *root) 3609 { 3610 struct btrfs_trans_handle *trans; 3611 3612 mutex_lock(&root->fs_info->cleaner_mutex); 3613 btrfs_run_delayed_iputs(root); 3614 mutex_unlock(&root->fs_info->cleaner_mutex); 3615 wake_up_process(root->fs_info->cleaner_kthread); 3616 3617 /* wait until ongoing cleanup work done */ 3618 down_write(&root->fs_info->cleanup_work_sem); 3619 up_write(&root->fs_info->cleanup_work_sem); 3620 3621 trans = btrfs_join_transaction(root); 3622 if (IS_ERR(trans)) 3623 return PTR_ERR(trans); 3624 return btrfs_commit_transaction(trans, root); 3625 } 3626 3627 void close_ctree(struct btrfs_root *root) 3628 { 3629 struct btrfs_fs_info *fs_info = root->fs_info; 3630 int ret; 3631 3632 fs_info->closing = 1; 3633 smp_mb(); 3634 3635 /* wait for the uuid_scan task to finish */ 3636 down(&fs_info->uuid_tree_rescan_sem); 3637 /* avoid complains from lockdep et al., set sem back to initial state */ 3638 up(&fs_info->uuid_tree_rescan_sem); 3639 3640 /* pause restriper - we want to resume on mount */ 3641 btrfs_pause_balance(fs_info); 3642 3643 btrfs_dev_replace_suspend_for_unmount(fs_info); 3644 3645 btrfs_scrub_cancel(fs_info); 3646 3647 /* wait for any defraggers to finish */ 3648 wait_event(fs_info->transaction_wait, 3649 (atomic_read(&fs_info->defrag_running) == 0)); 3650 3651 /* clear out the rbtree of defraggable inodes */ 3652 btrfs_cleanup_defrag_inodes(fs_info); 3653 3654 cancel_work_sync(&fs_info->async_reclaim_work); 3655 3656 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3657 ret = btrfs_commit_super(root); 3658 if (ret) 3659 btrfs_err(root->fs_info, "commit super ret %d", ret); 3660 } 3661 3662 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3663 btrfs_error_commit_super(root); 3664 3665 kthread_stop(fs_info->transaction_kthread); 3666 kthread_stop(fs_info->cleaner_kthread); 3667 3668 fs_info->closing = 2; 3669 smp_mb(); 3670 3671 btrfs_free_qgroup_config(root->fs_info); 3672 3673 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3674 btrfs_info(root->fs_info, "at unmount delalloc count %lld", 3675 percpu_counter_sum(&fs_info->delalloc_bytes)); 3676 } 3677 3678 btrfs_sysfs_remove_one(fs_info); 3679 3680 btrfs_free_fs_roots(fs_info); 3681 3682 btrfs_put_block_group_cache(fs_info); 3683 3684 btrfs_free_block_groups(fs_info); 3685 3686 /* 3687 * we must make sure there is not any read request to 3688 * submit after we stopping all workers. 3689 */ 3690 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3691 btrfs_stop_all_workers(fs_info); 3692 3693 fs_info->open = 0; 3694 free_root_pointers(fs_info, 1); 3695 3696 iput(fs_info->btree_inode); 3697 3698 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3699 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3700 btrfsic_unmount(root, fs_info->fs_devices); 3701 #endif 3702 3703 btrfs_close_devices(fs_info->fs_devices); 3704 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3705 3706 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3707 percpu_counter_destroy(&fs_info->delalloc_bytes); 3708 percpu_counter_destroy(&fs_info->bio_counter); 3709 bdi_destroy(&fs_info->bdi); 3710 cleanup_srcu_struct(&fs_info->subvol_srcu); 3711 3712 btrfs_free_stripe_hash_table(fs_info); 3713 3714 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3715 root->orphan_block_rsv = NULL; 3716 } 3717 3718 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3719 int atomic) 3720 { 3721 int ret; 3722 struct inode *btree_inode = buf->pages[0]->mapping->host; 3723 3724 ret = extent_buffer_uptodate(buf); 3725 if (!ret) 3726 return ret; 3727 3728 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3729 parent_transid, atomic); 3730 if (ret == -EAGAIN) 3731 return ret; 3732 return !ret; 3733 } 3734 3735 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3736 { 3737 return set_extent_buffer_uptodate(buf); 3738 } 3739 3740 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3741 { 3742 struct btrfs_root *root; 3743 u64 transid = btrfs_header_generation(buf); 3744 int was_dirty; 3745 3746 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3747 /* 3748 * This is a fast path so only do this check if we have sanity tests 3749 * enabled. Normal people shouldn't be marking dummy buffers as dirty 3750 * outside of the sanity tests. 3751 */ 3752 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 3753 return; 3754 #endif 3755 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3756 btrfs_assert_tree_locked(buf); 3757 if (transid != root->fs_info->generation) 3758 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 3759 "found %llu running %llu\n", 3760 buf->start, transid, root->fs_info->generation); 3761 was_dirty = set_extent_buffer_dirty(buf); 3762 if (!was_dirty) 3763 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 3764 buf->len, 3765 root->fs_info->dirty_metadata_batch); 3766 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3767 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) { 3768 btrfs_print_leaf(root, buf); 3769 ASSERT(0); 3770 } 3771 #endif 3772 } 3773 3774 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 3775 int flush_delayed) 3776 { 3777 /* 3778 * looks as though older kernels can get into trouble with 3779 * this code, they end up stuck in balance_dirty_pages forever 3780 */ 3781 int ret; 3782 3783 if (current->flags & PF_MEMALLOC) 3784 return; 3785 3786 if (flush_delayed) 3787 btrfs_balance_delayed_items(root); 3788 3789 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 3790 BTRFS_DIRTY_METADATA_THRESH); 3791 if (ret > 0) { 3792 balance_dirty_pages_ratelimited( 3793 root->fs_info->btree_inode->i_mapping); 3794 } 3795 return; 3796 } 3797 3798 void btrfs_btree_balance_dirty(struct btrfs_root *root) 3799 { 3800 __btrfs_btree_balance_dirty(root, 1); 3801 } 3802 3803 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 3804 { 3805 __btrfs_btree_balance_dirty(root, 0); 3806 } 3807 3808 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3809 { 3810 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3811 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3812 } 3813 3814 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3815 int read_only) 3816 { 3817 struct btrfs_super_block *sb = fs_info->super_copy; 3818 int ret = 0; 3819 3820 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 3821 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n", 3822 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 3823 ret = -EINVAL; 3824 } 3825 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 3826 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n", 3827 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 3828 ret = -EINVAL; 3829 } 3830 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 3831 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n", 3832 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 3833 ret = -EINVAL; 3834 } 3835 3836 /* 3837 * The common minimum, we don't know if we can trust the nodesize/sectorsize 3838 * items yet, they'll be verified later. Issue just a warning. 3839 */ 3840 if (!IS_ALIGNED(btrfs_super_root(sb), 4096)) 3841 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n", 3842 sb->root); 3843 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096)) 3844 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n", 3845 sb->chunk_root); 3846 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096)) 3847 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n", 3848 btrfs_super_log_root(sb)); 3849 3850 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) { 3851 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n", 3852 fs_info->fsid, sb->dev_item.fsid); 3853 ret = -EINVAL; 3854 } 3855 3856 /* 3857 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 3858 * done later 3859 */ 3860 if (btrfs_super_num_devices(sb) > (1UL << 31)) 3861 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n", 3862 btrfs_super_num_devices(sb)); 3863 3864 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { 3865 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n", 3866 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 3867 ret = -EINVAL; 3868 } 3869 3870 /* 3871 * The generation is a global counter, we'll trust it more than the others 3872 * but it's still possible that it's the one that's wrong. 3873 */ 3874 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 3875 printk(KERN_WARNING 3876 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n", 3877 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb)); 3878 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 3879 && btrfs_super_cache_generation(sb) != (u64)-1) 3880 printk(KERN_WARNING 3881 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n", 3882 btrfs_super_generation(sb), btrfs_super_cache_generation(sb)); 3883 3884 return ret; 3885 } 3886 3887 static void btrfs_error_commit_super(struct btrfs_root *root) 3888 { 3889 mutex_lock(&root->fs_info->cleaner_mutex); 3890 btrfs_run_delayed_iputs(root); 3891 mutex_unlock(&root->fs_info->cleaner_mutex); 3892 3893 down_write(&root->fs_info->cleanup_work_sem); 3894 up_write(&root->fs_info->cleanup_work_sem); 3895 3896 /* cleanup FS via transaction */ 3897 btrfs_cleanup_transaction(root); 3898 } 3899 3900 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 3901 { 3902 struct btrfs_ordered_extent *ordered; 3903 3904 spin_lock(&root->ordered_extent_lock); 3905 /* 3906 * This will just short circuit the ordered completion stuff which will 3907 * make sure the ordered extent gets properly cleaned up. 3908 */ 3909 list_for_each_entry(ordered, &root->ordered_extents, 3910 root_extent_list) 3911 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 3912 spin_unlock(&root->ordered_extent_lock); 3913 } 3914 3915 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 3916 { 3917 struct btrfs_root *root; 3918 struct list_head splice; 3919 3920 INIT_LIST_HEAD(&splice); 3921 3922 spin_lock(&fs_info->ordered_root_lock); 3923 list_splice_init(&fs_info->ordered_roots, &splice); 3924 while (!list_empty(&splice)) { 3925 root = list_first_entry(&splice, struct btrfs_root, 3926 ordered_root); 3927 list_move_tail(&root->ordered_root, 3928 &fs_info->ordered_roots); 3929 3930 spin_unlock(&fs_info->ordered_root_lock); 3931 btrfs_destroy_ordered_extents(root); 3932 3933 cond_resched(); 3934 spin_lock(&fs_info->ordered_root_lock); 3935 } 3936 spin_unlock(&fs_info->ordered_root_lock); 3937 } 3938 3939 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 3940 struct btrfs_root *root) 3941 { 3942 struct rb_node *node; 3943 struct btrfs_delayed_ref_root *delayed_refs; 3944 struct btrfs_delayed_ref_node *ref; 3945 int ret = 0; 3946 3947 delayed_refs = &trans->delayed_refs; 3948 3949 spin_lock(&delayed_refs->lock); 3950 if (atomic_read(&delayed_refs->num_entries) == 0) { 3951 spin_unlock(&delayed_refs->lock); 3952 btrfs_info(root->fs_info, "delayed_refs has NO entry"); 3953 return ret; 3954 } 3955 3956 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 3957 struct btrfs_delayed_ref_head *head; 3958 bool pin_bytes = false; 3959 3960 head = rb_entry(node, struct btrfs_delayed_ref_head, 3961 href_node); 3962 if (!mutex_trylock(&head->mutex)) { 3963 atomic_inc(&head->node.refs); 3964 spin_unlock(&delayed_refs->lock); 3965 3966 mutex_lock(&head->mutex); 3967 mutex_unlock(&head->mutex); 3968 btrfs_put_delayed_ref(&head->node); 3969 spin_lock(&delayed_refs->lock); 3970 continue; 3971 } 3972 spin_lock(&head->lock); 3973 while ((node = rb_first(&head->ref_root)) != NULL) { 3974 ref = rb_entry(node, struct btrfs_delayed_ref_node, 3975 rb_node); 3976 ref->in_tree = 0; 3977 rb_erase(&ref->rb_node, &head->ref_root); 3978 atomic_dec(&delayed_refs->num_entries); 3979 btrfs_put_delayed_ref(ref); 3980 } 3981 if (head->must_insert_reserved) 3982 pin_bytes = true; 3983 btrfs_free_delayed_extent_op(head->extent_op); 3984 delayed_refs->num_heads--; 3985 if (head->processing == 0) 3986 delayed_refs->num_heads_ready--; 3987 atomic_dec(&delayed_refs->num_entries); 3988 head->node.in_tree = 0; 3989 rb_erase(&head->href_node, &delayed_refs->href_root); 3990 spin_unlock(&head->lock); 3991 spin_unlock(&delayed_refs->lock); 3992 mutex_unlock(&head->mutex); 3993 3994 if (pin_bytes) 3995 btrfs_pin_extent(root, head->node.bytenr, 3996 head->node.num_bytes, 1); 3997 btrfs_put_delayed_ref(&head->node); 3998 cond_resched(); 3999 spin_lock(&delayed_refs->lock); 4000 } 4001 4002 spin_unlock(&delayed_refs->lock); 4003 4004 return ret; 4005 } 4006 4007 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4008 { 4009 struct btrfs_inode *btrfs_inode; 4010 struct list_head splice; 4011 4012 INIT_LIST_HEAD(&splice); 4013 4014 spin_lock(&root->delalloc_lock); 4015 list_splice_init(&root->delalloc_inodes, &splice); 4016 4017 while (!list_empty(&splice)) { 4018 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4019 delalloc_inodes); 4020 4021 list_del_init(&btrfs_inode->delalloc_inodes); 4022 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 4023 &btrfs_inode->runtime_flags); 4024 spin_unlock(&root->delalloc_lock); 4025 4026 btrfs_invalidate_inodes(btrfs_inode->root); 4027 4028 spin_lock(&root->delalloc_lock); 4029 } 4030 4031 spin_unlock(&root->delalloc_lock); 4032 } 4033 4034 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4035 { 4036 struct btrfs_root *root; 4037 struct list_head splice; 4038 4039 INIT_LIST_HEAD(&splice); 4040 4041 spin_lock(&fs_info->delalloc_root_lock); 4042 list_splice_init(&fs_info->delalloc_roots, &splice); 4043 while (!list_empty(&splice)) { 4044 root = list_first_entry(&splice, struct btrfs_root, 4045 delalloc_root); 4046 list_del_init(&root->delalloc_root); 4047 root = btrfs_grab_fs_root(root); 4048 BUG_ON(!root); 4049 spin_unlock(&fs_info->delalloc_root_lock); 4050 4051 btrfs_destroy_delalloc_inodes(root); 4052 btrfs_put_fs_root(root); 4053 4054 spin_lock(&fs_info->delalloc_root_lock); 4055 } 4056 spin_unlock(&fs_info->delalloc_root_lock); 4057 } 4058 4059 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 4060 struct extent_io_tree *dirty_pages, 4061 int mark) 4062 { 4063 int ret; 4064 struct extent_buffer *eb; 4065 u64 start = 0; 4066 u64 end; 4067 4068 while (1) { 4069 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4070 mark, NULL); 4071 if (ret) 4072 break; 4073 4074 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 4075 while (start <= end) { 4076 eb = btrfs_find_tree_block(root, start); 4077 start += root->nodesize; 4078 if (!eb) 4079 continue; 4080 wait_on_extent_buffer_writeback(eb); 4081 4082 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4083 &eb->bflags)) 4084 clear_extent_buffer_dirty(eb); 4085 free_extent_buffer_stale(eb); 4086 } 4087 } 4088 4089 return ret; 4090 } 4091 4092 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 4093 struct extent_io_tree *pinned_extents) 4094 { 4095 struct extent_io_tree *unpin; 4096 u64 start; 4097 u64 end; 4098 int ret; 4099 bool loop = true; 4100 4101 unpin = pinned_extents; 4102 again: 4103 while (1) { 4104 ret = find_first_extent_bit(unpin, 0, &start, &end, 4105 EXTENT_DIRTY, NULL); 4106 if (ret) 4107 break; 4108 4109 /* opt_discard */ 4110 if (btrfs_test_opt(root, DISCARD)) 4111 ret = btrfs_error_discard_extent(root, start, 4112 end + 1 - start, 4113 NULL); 4114 4115 clear_extent_dirty(unpin, start, end, GFP_NOFS); 4116 btrfs_error_unpin_extent_range(root, start, end); 4117 cond_resched(); 4118 } 4119 4120 if (loop) { 4121 if (unpin == &root->fs_info->freed_extents[0]) 4122 unpin = &root->fs_info->freed_extents[1]; 4123 else 4124 unpin = &root->fs_info->freed_extents[0]; 4125 loop = false; 4126 goto again; 4127 } 4128 4129 return 0; 4130 } 4131 4132 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4133 struct btrfs_root *root) 4134 { 4135 btrfs_destroy_delayed_refs(cur_trans, root); 4136 4137 cur_trans->state = TRANS_STATE_COMMIT_START; 4138 wake_up(&root->fs_info->transaction_blocked_wait); 4139 4140 cur_trans->state = TRANS_STATE_UNBLOCKED; 4141 wake_up(&root->fs_info->transaction_wait); 4142 4143 btrfs_destroy_delayed_inodes(root); 4144 btrfs_assert_delayed_root_empty(root); 4145 4146 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 4147 EXTENT_DIRTY); 4148 btrfs_destroy_pinned_extent(root, 4149 root->fs_info->pinned_extents); 4150 4151 cur_trans->state =TRANS_STATE_COMPLETED; 4152 wake_up(&cur_trans->commit_wait); 4153 4154 /* 4155 memset(cur_trans, 0, sizeof(*cur_trans)); 4156 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4157 */ 4158 } 4159 4160 static int btrfs_cleanup_transaction(struct btrfs_root *root) 4161 { 4162 struct btrfs_transaction *t; 4163 4164 mutex_lock(&root->fs_info->transaction_kthread_mutex); 4165 4166 spin_lock(&root->fs_info->trans_lock); 4167 while (!list_empty(&root->fs_info->trans_list)) { 4168 t = list_first_entry(&root->fs_info->trans_list, 4169 struct btrfs_transaction, list); 4170 if (t->state >= TRANS_STATE_COMMIT_START) { 4171 atomic_inc(&t->use_count); 4172 spin_unlock(&root->fs_info->trans_lock); 4173 btrfs_wait_for_commit(root, t->transid); 4174 btrfs_put_transaction(t); 4175 spin_lock(&root->fs_info->trans_lock); 4176 continue; 4177 } 4178 if (t == root->fs_info->running_transaction) { 4179 t->state = TRANS_STATE_COMMIT_DOING; 4180 spin_unlock(&root->fs_info->trans_lock); 4181 /* 4182 * We wait for 0 num_writers since we don't hold a trans 4183 * handle open currently for this transaction. 4184 */ 4185 wait_event(t->writer_wait, 4186 atomic_read(&t->num_writers) == 0); 4187 } else { 4188 spin_unlock(&root->fs_info->trans_lock); 4189 } 4190 btrfs_cleanup_one_transaction(t, root); 4191 4192 spin_lock(&root->fs_info->trans_lock); 4193 if (t == root->fs_info->running_transaction) 4194 root->fs_info->running_transaction = NULL; 4195 list_del_init(&t->list); 4196 spin_unlock(&root->fs_info->trans_lock); 4197 4198 btrfs_put_transaction(t); 4199 trace_btrfs_transaction_commit(root); 4200 spin_lock(&root->fs_info->trans_lock); 4201 } 4202 spin_unlock(&root->fs_info->trans_lock); 4203 btrfs_destroy_all_ordered_extents(root->fs_info); 4204 btrfs_destroy_delayed_inodes(root); 4205 btrfs_assert_delayed_root_empty(root); 4206 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents); 4207 btrfs_destroy_all_delalloc_inodes(root->fs_info); 4208 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 4209 4210 return 0; 4211 } 4212 4213 static struct extent_io_ops btree_extent_io_ops = { 4214 .readpage_end_io_hook = btree_readpage_end_io_hook, 4215 .readpage_io_failed_hook = btree_io_failed_hook, 4216 .submit_bio_hook = btree_submit_bio_hook, 4217 /* note we're sharing with inode.c for the merge bio hook */ 4218 .merge_bio_hook = btrfs_merge_bio_hook, 4219 }; 4220