1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 #include "block-group.h" 42 #include "discard.h" 43 #include "space-info.h" 44 #include "zoned.h" 45 #include "subpage.h" 46 #include "fs.h" 47 #include "accessors.h" 48 #include "extent-tree.h" 49 #include "root-tree.h" 50 #include "defrag.h" 51 #include "uuid-tree.h" 52 #include "relocation.h" 53 #include "scrub.h" 54 #include "super.h" 55 56 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 57 BTRFS_HEADER_FLAG_RELOC |\ 58 BTRFS_SUPER_FLAG_ERROR |\ 59 BTRFS_SUPER_FLAG_SEEDING |\ 60 BTRFS_SUPER_FLAG_METADUMP |\ 61 BTRFS_SUPER_FLAG_METADUMP_V2) 62 63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 65 struct btrfs_fs_info *fs_info); 66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 67 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 68 struct extent_io_tree *dirty_pages, 69 int mark); 70 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 71 struct extent_io_tree *pinned_extents); 72 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 73 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 74 75 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 76 { 77 if (fs_info->csum_shash) 78 crypto_free_shash(fs_info->csum_shash); 79 } 80 81 /* 82 * async submit bios are used to offload expensive checksumming 83 * onto the worker threads. They checksum file and metadata bios 84 * just before they are sent down the IO stack. 85 */ 86 struct async_submit_bio { 87 struct btrfs_inode *inode; 88 struct bio *bio; 89 enum btrfs_wq_submit_cmd submit_cmd; 90 int mirror_num; 91 92 /* Optional parameter for used by direct io */ 93 u64 dio_file_offset; 94 struct btrfs_work work; 95 blk_status_t status; 96 }; 97 98 /* 99 * Compute the csum of a btree block and store the result to provided buffer. 100 */ 101 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 102 { 103 struct btrfs_fs_info *fs_info = buf->fs_info; 104 const int num_pages = num_extent_pages(buf); 105 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 106 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 107 char *kaddr; 108 int i; 109 110 shash->tfm = fs_info->csum_shash; 111 crypto_shash_init(shash); 112 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start); 113 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 114 first_page_part - BTRFS_CSUM_SIZE); 115 116 for (i = 1; i < num_pages; i++) { 117 kaddr = page_address(buf->pages[i]); 118 crypto_shash_update(shash, kaddr, PAGE_SIZE); 119 } 120 memset(result, 0, BTRFS_CSUM_SIZE); 121 crypto_shash_final(shash, result); 122 } 123 124 /* 125 * we can't consider a given block up to date unless the transid of the 126 * block matches the transid in the parent node's pointer. This is how we 127 * detect blocks that either didn't get written at all or got written 128 * in the wrong place. 129 */ 130 static int verify_parent_transid(struct extent_io_tree *io_tree, 131 struct extent_buffer *eb, u64 parent_transid, 132 int atomic) 133 { 134 struct extent_state *cached_state = NULL; 135 int ret; 136 137 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 138 return 0; 139 140 if (atomic) 141 return -EAGAIN; 142 143 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state); 144 if (extent_buffer_uptodate(eb) && 145 btrfs_header_generation(eb) == parent_transid) { 146 ret = 0; 147 goto out; 148 } 149 btrfs_err_rl(eb->fs_info, 150 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 151 eb->start, eb->read_mirror, 152 parent_transid, btrfs_header_generation(eb)); 153 ret = 1; 154 clear_extent_buffer_uptodate(eb); 155 out: 156 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 157 &cached_state); 158 return ret; 159 } 160 161 static bool btrfs_supported_super_csum(u16 csum_type) 162 { 163 switch (csum_type) { 164 case BTRFS_CSUM_TYPE_CRC32: 165 case BTRFS_CSUM_TYPE_XXHASH: 166 case BTRFS_CSUM_TYPE_SHA256: 167 case BTRFS_CSUM_TYPE_BLAKE2: 168 return true; 169 default: 170 return false; 171 } 172 } 173 174 /* 175 * Return 0 if the superblock checksum type matches the checksum value of that 176 * algorithm. Pass the raw disk superblock data. 177 */ 178 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 179 const struct btrfs_super_block *disk_sb) 180 { 181 char result[BTRFS_CSUM_SIZE]; 182 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 183 184 shash->tfm = fs_info->csum_shash; 185 186 /* 187 * The super_block structure does not span the whole 188 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 189 * filled with zeros and is included in the checksum. 190 */ 191 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 192 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 193 194 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 195 return 1; 196 197 return 0; 198 } 199 200 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 201 struct btrfs_key *first_key, u64 parent_transid) 202 { 203 struct btrfs_fs_info *fs_info = eb->fs_info; 204 int found_level; 205 struct btrfs_key found_key; 206 int ret; 207 208 found_level = btrfs_header_level(eb); 209 if (found_level != level) { 210 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 211 KERN_ERR "BTRFS: tree level check failed\n"); 212 btrfs_err(fs_info, 213 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 214 eb->start, level, found_level); 215 return -EIO; 216 } 217 218 if (!first_key) 219 return 0; 220 221 /* 222 * For live tree block (new tree blocks in current transaction), 223 * we need proper lock context to avoid race, which is impossible here. 224 * So we only checks tree blocks which is read from disk, whose 225 * generation <= fs_info->last_trans_committed. 226 */ 227 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 228 return 0; 229 230 /* We have @first_key, so this @eb must have at least one item */ 231 if (btrfs_header_nritems(eb) == 0) { 232 btrfs_err(fs_info, 233 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 234 eb->start); 235 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 236 return -EUCLEAN; 237 } 238 239 if (found_level) 240 btrfs_node_key_to_cpu(eb, &found_key, 0); 241 else 242 btrfs_item_key_to_cpu(eb, &found_key, 0); 243 ret = btrfs_comp_cpu_keys(first_key, &found_key); 244 245 if (ret) { 246 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 247 KERN_ERR "BTRFS: tree first key check failed\n"); 248 btrfs_err(fs_info, 249 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 250 eb->start, parent_transid, first_key->objectid, 251 first_key->type, first_key->offset, 252 found_key.objectid, found_key.type, 253 found_key.offset); 254 } 255 return ret; 256 } 257 258 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 259 int mirror_num) 260 { 261 struct btrfs_fs_info *fs_info = eb->fs_info; 262 u64 start = eb->start; 263 int i, num_pages = num_extent_pages(eb); 264 int ret = 0; 265 266 if (sb_rdonly(fs_info->sb)) 267 return -EROFS; 268 269 for (i = 0; i < num_pages; i++) { 270 struct page *p = eb->pages[i]; 271 272 ret = btrfs_repair_io_failure(fs_info, 0, start, PAGE_SIZE, 273 start, p, start - page_offset(p), mirror_num); 274 if (ret) 275 break; 276 start += PAGE_SIZE; 277 } 278 279 return ret; 280 } 281 282 /* 283 * helper to read a given tree block, doing retries as required when 284 * the checksums don't match and we have alternate mirrors to try. 285 * 286 * @check: expected tree parentness check, see the comments of the 287 * structure for details. 288 */ 289 int btrfs_read_extent_buffer(struct extent_buffer *eb, 290 struct btrfs_tree_parent_check *check) 291 { 292 struct btrfs_fs_info *fs_info = eb->fs_info; 293 int failed = 0; 294 int ret; 295 int num_copies = 0; 296 int mirror_num = 0; 297 int failed_mirror = 0; 298 299 ASSERT(check); 300 301 while (1) { 302 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 303 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check); 304 if (!ret) 305 break; 306 307 num_copies = btrfs_num_copies(fs_info, 308 eb->start, eb->len); 309 if (num_copies == 1) 310 break; 311 312 if (!failed_mirror) { 313 failed = 1; 314 failed_mirror = eb->read_mirror; 315 } 316 317 mirror_num++; 318 if (mirror_num == failed_mirror) 319 mirror_num++; 320 321 if (mirror_num > num_copies) 322 break; 323 } 324 325 if (failed && !ret && failed_mirror) 326 btrfs_repair_eb_io_failure(eb, failed_mirror); 327 328 return ret; 329 } 330 331 static int csum_one_extent_buffer(struct extent_buffer *eb) 332 { 333 struct btrfs_fs_info *fs_info = eb->fs_info; 334 u8 result[BTRFS_CSUM_SIZE]; 335 int ret; 336 337 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 338 offsetof(struct btrfs_header, fsid), 339 BTRFS_FSID_SIZE) == 0); 340 csum_tree_block(eb, result); 341 342 if (btrfs_header_level(eb)) 343 ret = btrfs_check_node(eb); 344 else 345 ret = btrfs_check_leaf_full(eb); 346 347 if (ret < 0) 348 goto error; 349 350 /* 351 * Also check the generation, the eb reached here must be newer than 352 * last committed. Or something seriously wrong happened. 353 */ 354 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) { 355 ret = -EUCLEAN; 356 btrfs_err(fs_info, 357 "block=%llu bad generation, have %llu expect > %llu", 358 eb->start, btrfs_header_generation(eb), 359 fs_info->last_trans_committed); 360 goto error; 361 } 362 write_extent_buffer(eb, result, 0, fs_info->csum_size); 363 364 return 0; 365 366 error: 367 btrfs_print_tree(eb, 0); 368 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 369 eb->start); 370 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 371 return ret; 372 } 373 374 /* Checksum all dirty extent buffers in one bio_vec */ 375 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info, 376 struct bio_vec *bvec) 377 { 378 struct page *page = bvec->bv_page; 379 u64 bvec_start = page_offset(page) + bvec->bv_offset; 380 u64 cur; 381 int ret = 0; 382 383 for (cur = bvec_start; cur < bvec_start + bvec->bv_len; 384 cur += fs_info->nodesize) { 385 struct extent_buffer *eb; 386 bool uptodate; 387 388 eb = find_extent_buffer(fs_info, cur); 389 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur, 390 fs_info->nodesize); 391 392 /* A dirty eb shouldn't disappear from buffer_radix */ 393 if (WARN_ON(!eb)) 394 return -EUCLEAN; 395 396 if (WARN_ON(cur != btrfs_header_bytenr(eb))) { 397 free_extent_buffer(eb); 398 return -EUCLEAN; 399 } 400 if (WARN_ON(!uptodate)) { 401 free_extent_buffer(eb); 402 return -EUCLEAN; 403 } 404 405 ret = csum_one_extent_buffer(eb); 406 free_extent_buffer(eb); 407 if (ret < 0) 408 return ret; 409 } 410 return ret; 411 } 412 413 /* 414 * Checksum a dirty tree block before IO. This has extra checks to make sure 415 * we only fill in the checksum field in the first page of a multi-page block. 416 * For subpage extent buffers we need bvec to also read the offset in the page. 417 */ 418 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec) 419 { 420 struct page *page = bvec->bv_page; 421 u64 start = page_offset(page); 422 u64 found_start; 423 struct extent_buffer *eb; 424 425 if (fs_info->nodesize < PAGE_SIZE) 426 return csum_dirty_subpage_buffers(fs_info, bvec); 427 428 eb = (struct extent_buffer *)page->private; 429 if (page != eb->pages[0]) 430 return 0; 431 432 found_start = btrfs_header_bytenr(eb); 433 434 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) { 435 WARN_ON(found_start != 0); 436 return 0; 437 } 438 439 /* 440 * Please do not consolidate these warnings into a single if. 441 * It is useful to know what went wrong. 442 */ 443 if (WARN_ON(found_start != start)) 444 return -EUCLEAN; 445 if (WARN_ON(!PageUptodate(page))) 446 return -EUCLEAN; 447 448 return csum_one_extent_buffer(eb); 449 } 450 451 static int check_tree_block_fsid(struct extent_buffer *eb) 452 { 453 struct btrfs_fs_info *fs_info = eb->fs_info; 454 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 455 u8 fsid[BTRFS_FSID_SIZE]; 456 u8 *metadata_uuid; 457 458 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 459 BTRFS_FSID_SIZE); 460 /* 461 * Checking the incompat flag is only valid for the current fs. For 462 * seed devices it's forbidden to have their uuid changed so reading 463 * ->fsid in this case is fine 464 */ 465 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 466 metadata_uuid = fs_devices->metadata_uuid; 467 else 468 metadata_uuid = fs_devices->fsid; 469 470 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) 471 return 0; 472 473 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 474 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 475 return 0; 476 477 return 1; 478 } 479 480 /* Do basic extent buffer checks at read time */ 481 static int validate_extent_buffer(struct extent_buffer *eb, 482 struct btrfs_tree_parent_check *check) 483 { 484 struct btrfs_fs_info *fs_info = eb->fs_info; 485 u64 found_start; 486 const u32 csum_size = fs_info->csum_size; 487 u8 found_level; 488 u8 result[BTRFS_CSUM_SIZE]; 489 const u8 *header_csum; 490 int ret = 0; 491 492 ASSERT(check); 493 494 found_start = btrfs_header_bytenr(eb); 495 if (found_start != eb->start) { 496 btrfs_err_rl(fs_info, 497 "bad tree block start, mirror %u want %llu have %llu", 498 eb->read_mirror, eb->start, found_start); 499 ret = -EIO; 500 goto out; 501 } 502 if (check_tree_block_fsid(eb)) { 503 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 504 eb->start, eb->read_mirror); 505 ret = -EIO; 506 goto out; 507 } 508 found_level = btrfs_header_level(eb); 509 if (found_level >= BTRFS_MAX_LEVEL) { 510 btrfs_err(fs_info, 511 "bad tree block level, mirror %u level %d on logical %llu", 512 eb->read_mirror, btrfs_header_level(eb), eb->start); 513 ret = -EIO; 514 goto out; 515 } 516 517 csum_tree_block(eb, result); 518 header_csum = page_address(eb->pages[0]) + 519 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum)); 520 521 if (memcmp(result, header_csum, csum_size) != 0) { 522 btrfs_warn_rl(fs_info, 523 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d", 524 eb->start, eb->read_mirror, 525 CSUM_FMT_VALUE(csum_size, header_csum), 526 CSUM_FMT_VALUE(csum_size, result), 527 btrfs_header_level(eb)); 528 ret = -EUCLEAN; 529 goto out; 530 } 531 532 if (found_level != check->level) { 533 btrfs_err(fs_info, 534 "level verify failed on logical %llu mirror %u wanted %u found %u", 535 eb->start, eb->read_mirror, check->level, found_level); 536 ret = -EIO; 537 goto out; 538 } 539 if (unlikely(check->transid && 540 btrfs_header_generation(eb) != check->transid)) { 541 btrfs_err_rl(eb->fs_info, 542 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 543 eb->start, eb->read_mirror, check->transid, 544 btrfs_header_generation(eb)); 545 ret = -EIO; 546 goto out; 547 } 548 if (check->has_first_key) { 549 struct btrfs_key *expect_key = &check->first_key; 550 struct btrfs_key found_key; 551 552 if (found_level) 553 btrfs_node_key_to_cpu(eb, &found_key, 0); 554 else 555 btrfs_item_key_to_cpu(eb, &found_key, 0); 556 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 557 btrfs_err(fs_info, 558 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 559 eb->start, check->transid, 560 expect_key->objectid, 561 expect_key->type, expect_key->offset, 562 found_key.objectid, found_key.type, 563 found_key.offset); 564 ret = -EUCLEAN; 565 goto out; 566 } 567 } 568 if (check->owner_root) { 569 ret = btrfs_check_eb_owner(eb, check->owner_root); 570 if (ret < 0) 571 goto out; 572 } 573 574 /* 575 * If this is a leaf block and it is corrupt, set the corrupt bit so 576 * that we don't try and read the other copies of this block, just 577 * return -EIO. 578 */ 579 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 580 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 581 ret = -EIO; 582 } 583 584 if (found_level > 0 && btrfs_check_node(eb)) 585 ret = -EIO; 586 587 if (!ret) 588 set_extent_buffer_uptodate(eb); 589 else 590 btrfs_err(fs_info, 591 "read time tree block corruption detected on logical %llu mirror %u", 592 eb->start, eb->read_mirror); 593 out: 594 return ret; 595 } 596 597 static int validate_subpage_buffer(struct page *page, u64 start, u64 end, 598 int mirror, struct btrfs_tree_parent_check *check) 599 { 600 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 601 struct extent_buffer *eb; 602 bool reads_done; 603 int ret = 0; 604 605 ASSERT(check); 606 607 /* 608 * We don't allow bio merge for subpage metadata read, so we should 609 * only get one eb for each endio hook. 610 */ 611 ASSERT(end == start + fs_info->nodesize - 1); 612 ASSERT(PagePrivate(page)); 613 614 eb = find_extent_buffer(fs_info, start); 615 /* 616 * When we are reading one tree block, eb must have been inserted into 617 * the radix tree. If not, something is wrong. 618 */ 619 ASSERT(eb); 620 621 reads_done = atomic_dec_and_test(&eb->io_pages); 622 /* Subpage read must finish in page read */ 623 ASSERT(reads_done); 624 625 eb->read_mirror = mirror; 626 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 627 ret = -EIO; 628 goto err; 629 } 630 ret = validate_extent_buffer(eb, check); 631 if (ret < 0) 632 goto err; 633 634 set_extent_buffer_uptodate(eb); 635 636 free_extent_buffer(eb); 637 return ret; 638 err: 639 /* 640 * end_bio_extent_readpage decrements io_pages in case of error, 641 * make sure it has something to decrement. 642 */ 643 atomic_inc(&eb->io_pages); 644 clear_extent_buffer_uptodate(eb); 645 free_extent_buffer(eb); 646 return ret; 647 } 648 649 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio, 650 struct page *page, u64 start, u64 end, 651 int mirror) 652 { 653 struct extent_buffer *eb; 654 int ret = 0; 655 int reads_done; 656 657 ASSERT(page->private); 658 659 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 660 return validate_subpage_buffer(page, start, end, mirror, 661 &bbio->parent_check); 662 663 eb = (struct extent_buffer *)page->private; 664 665 /* 666 * The pending IO might have been the only thing that kept this buffer 667 * in memory. Make sure we have a ref for all this other checks 668 */ 669 atomic_inc(&eb->refs); 670 671 reads_done = atomic_dec_and_test(&eb->io_pages); 672 if (!reads_done) 673 goto err; 674 675 eb->read_mirror = mirror; 676 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 677 ret = -EIO; 678 goto err; 679 } 680 ret = validate_extent_buffer(eb, &bbio->parent_check); 681 err: 682 if (ret) { 683 /* 684 * our io error hook is going to dec the io pages 685 * again, we have to make sure it has something 686 * to decrement 687 */ 688 atomic_inc(&eb->io_pages); 689 clear_extent_buffer_uptodate(eb); 690 } 691 free_extent_buffer(eb); 692 693 return ret; 694 } 695 696 static void run_one_async_start(struct btrfs_work *work) 697 { 698 struct async_submit_bio *async; 699 blk_status_t ret; 700 701 async = container_of(work, struct async_submit_bio, work); 702 switch (async->submit_cmd) { 703 case WQ_SUBMIT_METADATA: 704 ret = btree_submit_bio_start(async->bio); 705 break; 706 case WQ_SUBMIT_DATA: 707 ret = btrfs_submit_bio_start(async->inode, async->bio); 708 break; 709 case WQ_SUBMIT_DATA_DIO: 710 ret = btrfs_submit_bio_start_direct_io(async->inode, 711 async->bio, async->dio_file_offset); 712 break; 713 } 714 if (ret) 715 async->status = ret; 716 } 717 718 /* 719 * In order to insert checksums into the metadata in large chunks, we wait 720 * until bio submission time. All the pages in the bio are checksummed and 721 * sums are attached onto the ordered extent record. 722 * 723 * At IO completion time the csums attached on the ordered extent record are 724 * inserted into the tree. 725 */ 726 static void run_one_async_done(struct btrfs_work *work) 727 { 728 struct async_submit_bio *async = 729 container_of(work, struct async_submit_bio, work); 730 struct btrfs_inode *inode = async->inode; 731 struct btrfs_bio *bbio = btrfs_bio(async->bio); 732 733 /* If an error occurred we just want to clean up the bio and move on */ 734 if (async->status) { 735 btrfs_bio_end_io(bbio, async->status); 736 return; 737 } 738 739 /* 740 * All of the bios that pass through here are from async helpers. 741 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context. 742 * This changes nothing when cgroups aren't in use. 743 */ 744 async->bio->bi_opf |= REQ_CGROUP_PUNT; 745 btrfs_submit_bio(inode->root->fs_info, async->bio, async->mirror_num); 746 } 747 748 static void run_one_async_free(struct btrfs_work *work) 749 { 750 struct async_submit_bio *async; 751 752 async = container_of(work, struct async_submit_bio, work); 753 kfree(async); 754 } 755 756 /* 757 * Submit bio to an async queue. 758 * 759 * Retrun: 760 * - true if the work has been succesfuly submitted 761 * - false in case of error 762 */ 763 bool btrfs_wq_submit_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num, 764 u64 dio_file_offset, enum btrfs_wq_submit_cmd cmd) 765 { 766 struct btrfs_fs_info *fs_info = inode->root->fs_info; 767 struct async_submit_bio *async; 768 769 async = kmalloc(sizeof(*async), GFP_NOFS); 770 if (!async) 771 return false; 772 773 async->inode = inode; 774 async->bio = bio; 775 async->mirror_num = mirror_num; 776 async->submit_cmd = cmd; 777 778 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, 779 run_one_async_free); 780 781 async->dio_file_offset = dio_file_offset; 782 783 async->status = 0; 784 785 if (op_is_sync(bio->bi_opf)) 786 btrfs_queue_work(fs_info->hipri_workers, &async->work); 787 else 788 btrfs_queue_work(fs_info->workers, &async->work); 789 return true; 790 } 791 792 static blk_status_t btree_csum_one_bio(struct bio *bio) 793 { 794 struct bio_vec *bvec; 795 struct btrfs_root *root; 796 int ret = 0; 797 struct bvec_iter_all iter_all; 798 799 ASSERT(!bio_flagged(bio, BIO_CLONED)); 800 bio_for_each_segment_all(bvec, bio, iter_all) { 801 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 802 ret = csum_dirty_buffer(root->fs_info, bvec); 803 if (ret) 804 break; 805 } 806 807 return errno_to_blk_status(ret); 808 } 809 810 blk_status_t btree_submit_bio_start(struct bio *bio) 811 { 812 /* 813 * when we're called for a write, we're already in the async 814 * submission context. Just jump into btrfs_submit_bio. 815 */ 816 return btree_csum_one_bio(bio); 817 } 818 819 static bool should_async_write(struct btrfs_fs_info *fs_info, 820 struct btrfs_inode *bi) 821 { 822 if (btrfs_is_zoned(fs_info)) 823 return false; 824 if (atomic_read(&bi->sync_writers)) 825 return false; 826 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 827 return false; 828 return true; 829 } 830 831 void btrfs_submit_metadata_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num) 832 { 833 struct btrfs_fs_info *fs_info = inode->root->fs_info; 834 struct btrfs_bio *bbio = btrfs_bio(bio); 835 blk_status_t ret; 836 837 bio->bi_opf |= REQ_META; 838 bbio->is_metadata = 1; 839 840 if (btrfs_op(bio) != BTRFS_MAP_WRITE) { 841 btrfs_submit_bio(fs_info, bio, mirror_num); 842 return; 843 } 844 845 /* 846 * Kthread helpers are used to submit writes so that checksumming can 847 * happen in parallel across all CPUs. 848 */ 849 if (should_async_write(fs_info, inode) && 850 btrfs_wq_submit_bio(inode, bio, mirror_num, 0, WQ_SUBMIT_METADATA)) 851 return; 852 853 ret = btree_csum_one_bio(bio); 854 if (ret) { 855 btrfs_bio_end_io(bbio, ret); 856 return; 857 } 858 859 btrfs_submit_bio(fs_info, bio, mirror_num); 860 } 861 862 #ifdef CONFIG_MIGRATION 863 static int btree_migrate_folio(struct address_space *mapping, 864 struct folio *dst, struct folio *src, enum migrate_mode mode) 865 { 866 /* 867 * we can't safely write a btree page from here, 868 * we haven't done the locking hook 869 */ 870 if (folio_test_dirty(src)) 871 return -EAGAIN; 872 /* 873 * Buffers may be managed in a filesystem specific way. 874 * We must have no buffers or drop them. 875 */ 876 if (folio_get_private(src) && 877 !filemap_release_folio(src, GFP_KERNEL)) 878 return -EAGAIN; 879 return migrate_folio(mapping, dst, src, mode); 880 } 881 #else 882 #define btree_migrate_folio NULL 883 #endif 884 885 static int btree_writepages(struct address_space *mapping, 886 struct writeback_control *wbc) 887 { 888 struct btrfs_fs_info *fs_info; 889 int ret; 890 891 if (wbc->sync_mode == WB_SYNC_NONE) { 892 893 if (wbc->for_kupdate) 894 return 0; 895 896 fs_info = BTRFS_I(mapping->host)->root->fs_info; 897 /* this is a bit racy, but that's ok */ 898 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 899 BTRFS_DIRTY_METADATA_THRESH, 900 fs_info->dirty_metadata_batch); 901 if (ret < 0) 902 return 0; 903 } 904 return btree_write_cache_pages(mapping, wbc); 905 } 906 907 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 908 { 909 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 910 return false; 911 912 return try_release_extent_buffer(&folio->page); 913 } 914 915 static void btree_invalidate_folio(struct folio *folio, size_t offset, 916 size_t length) 917 { 918 struct extent_io_tree *tree; 919 tree = &BTRFS_I(folio->mapping->host)->io_tree; 920 extent_invalidate_folio(tree, folio, offset); 921 btree_release_folio(folio, GFP_NOFS); 922 if (folio_get_private(folio)) { 923 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info, 924 "folio private not zero on folio %llu", 925 (unsigned long long)folio_pos(folio)); 926 folio_detach_private(folio); 927 } 928 } 929 930 #ifdef DEBUG 931 static bool btree_dirty_folio(struct address_space *mapping, 932 struct folio *folio) 933 { 934 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 935 struct btrfs_subpage *subpage; 936 struct extent_buffer *eb; 937 int cur_bit = 0; 938 u64 page_start = folio_pos(folio); 939 940 if (fs_info->sectorsize == PAGE_SIZE) { 941 eb = folio_get_private(folio); 942 BUG_ON(!eb); 943 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 944 BUG_ON(!atomic_read(&eb->refs)); 945 btrfs_assert_tree_write_locked(eb); 946 return filemap_dirty_folio(mapping, folio); 947 } 948 subpage = folio_get_private(folio); 949 950 ASSERT(subpage->dirty_bitmap); 951 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) { 952 unsigned long flags; 953 u64 cur; 954 u16 tmp = (1 << cur_bit); 955 956 spin_lock_irqsave(&subpage->lock, flags); 957 if (!(tmp & subpage->dirty_bitmap)) { 958 spin_unlock_irqrestore(&subpage->lock, flags); 959 cur_bit++; 960 continue; 961 } 962 spin_unlock_irqrestore(&subpage->lock, flags); 963 cur = page_start + cur_bit * fs_info->sectorsize; 964 965 eb = find_extent_buffer(fs_info, cur); 966 ASSERT(eb); 967 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 968 ASSERT(atomic_read(&eb->refs)); 969 btrfs_assert_tree_write_locked(eb); 970 free_extent_buffer(eb); 971 972 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits); 973 } 974 return filemap_dirty_folio(mapping, folio); 975 } 976 #else 977 #define btree_dirty_folio filemap_dirty_folio 978 #endif 979 980 static const struct address_space_operations btree_aops = { 981 .writepages = btree_writepages, 982 .release_folio = btree_release_folio, 983 .invalidate_folio = btree_invalidate_folio, 984 .migrate_folio = btree_migrate_folio, 985 .dirty_folio = btree_dirty_folio, 986 }; 987 988 struct extent_buffer *btrfs_find_create_tree_block( 989 struct btrfs_fs_info *fs_info, 990 u64 bytenr, u64 owner_root, 991 int level) 992 { 993 if (btrfs_is_testing(fs_info)) 994 return alloc_test_extent_buffer(fs_info, bytenr); 995 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 996 } 997 998 /* 999 * Read tree block at logical address @bytenr and do variant basic but critical 1000 * verification. 1001 * 1002 * @check: expected tree parentness check, see comments of the 1003 * structure for details. 1004 */ 1005 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1006 struct btrfs_tree_parent_check *check) 1007 { 1008 struct extent_buffer *buf = NULL; 1009 int ret; 1010 1011 ASSERT(check); 1012 1013 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 1014 check->level); 1015 if (IS_ERR(buf)) 1016 return buf; 1017 1018 ret = btrfs_read_extent_buffer(buf, check); 1019 if (ret) { 1020 free_extent_buffer_stale(buf); 1021 return ERR_PTR(ret); 1022 } 1023 if (btrfs_check_eb_owner(buf, check->owner_root)) { 1024 free_extent_buffer_stale(buf); 1025 return ERR_PTR(-EUCLEAN); 1026 } 1027 return buf; 1028 1029 } 1030 1031 void btrfs_clean_tree_block(struct extent_buffer *buf) 1032 { 1033 struct btrfs_fs_info *fs_info = buf->fs_info; 1034 if (btrfs_header_generation(buf) == 1035 fs_info->running_transaction->transid) { 1036 btrfs_assert_tree_write_locked(buf); 1037 1038 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1039 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1040 -buf->len, 1041 fs_info->dirty_metadata_batch); 1042 clear_extent_buffer_dirty(buf); 1043 } 1044 } 1045 } 1046 1047 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1048 u64 objectid) 1049 { 1050 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1051 1052 memset(&root->root_key, 0, sizeof(root->root_key)); 1053 memset(&root->root_item, 0, sizeof(root->root_item)); 1054 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1055 root->fs_info = fs_info; 1056 root->root_key.objectid = objectid; 1057 root->node = NULL; 1058 root->commit_root = NULL; 1059 root->state = 0; 1060 RB_CLEAR_NODE(&root->rb_node); 1061 1062 root->last_trans = 0; 1063 root->free_objectid = 0; 1064 root->nr_delalloc_inodes = 0; 1065 root->nr_ordered_extents = 0; 1066 root->inode_tree = RB_ROOT; 1067 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1068 1069 btrfs_init_root_block_rsv(root); 1070 1071 INIT_LIST_HEAD(&root->dirty_list); 1072 INIT_LIST_HEAD(&root->root_list); 1073 INIT_LIST_HEAD(&root->delalloc_inodes); 1074 INIT_LIST_HEAD(&root->delalloc_root); 1075 INIT_LIST_HEAD(&root->ordered_extents); 1076 INIT_LIST_HEAD(&root->ordered_root); 1077 INIT_LIST_HEAD(&root->reloc_dirty_list); 1078 INIT_LIST_HEAD(&root->logged_list[0]); 1079 INIT_LIST_HEAD(&root->logged_list[1]); 1080 spin_lock_init(&root->inode_lock); 1081 spin_lock_init(&root->delalloc_lock); 1082 spin_lock_init(&root->ordered_extent_lock); 1083 spin_lock_init(&root->accounting_lock); 1084 spin_lock_init(&root->log_extents_lock[0]); 1085 spin_lock_init(&root->log_extents_lock[1]); 1086 spin_lock_init(&root->qgroup_meta_rsv_lock); 1087 mutex_init(&root->objectid_mutex); 1088 mutex_init(&root->log_mutex); 1089 mutex_init(&root->ordered_extent_mutex); 1090 mutex_init(&root->delalloc_mutex); 1091 init_waitqueue_head(&root->qgroup_flush_wait); 1092 init_waitqueue_head(&root->log_writer_wait); 1093 init_waitqueue_head(&root->log_commit_wait[0]); 1094 init_waitqueue_head(&root->log_commit_wait[1]); 1095 INIT_LIST_HEAD(&root->log_ctxs[0]); 1096 INIT_LIST_HEAD(&root->log_ctxs[1]); 1097 atomic_set(&root->log_commit[0], 0); 1098 atomic_set(&root->log_commit[1], 0); 1099 atomic_set(&root->log_writers, 0); 1100 atomic_set(&root->log_batch, 0); 1101 refcount_set(&root->refs, 1); 1102 atomic_set(&root->snapshot_force_cow, 0); 1103 atomic_set(&root->nr_swapfiles, 0); 1104 root->log_transid = 0; 1105 root->log_transid_committed = -1; 1106 root->last_log_commit = 0; 1107 root->anon_dev = 0; 1108 if (!dummy) { 1109 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1110 IO_TREE_ROOT_DIRTY_LOG_PAGES); 1111 extent_io_tree_init(fs_info, &root->log_csum_range, 1112 IO_TREE_LOG_CSUM_RANGE); 1113 } 1114 1115 spin_lock_init(&root->root_item_lock); 1116 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1117 #ifdef CONFIG_BTRFS_DEBUG 1118 INIT_LIST_HEAD(&root->leak_list); 1119 spin_lock(&fs_info->fs_roots_radix_lock); 1120 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 1121 spin_unlock(&fs_info->fs_roots_radix_lock); 1122 #endif 1123 } 1124 1125 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1126 u64 objectid, gfp_t flags) 1127 { 1128 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1129 if (root) 1130 __setup_root(root, fs_info, objectid); 1131 return root; 1132 } 1133 1134 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1135 /* Should only be used by the testing infrastructure */ 1136 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1137 { 1138 struct btrfs_root *root; 1139 1140 if (!fs_info) 1141 return ERR_PTR(-EINVAL); 1142 1143 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 1144 if (!root) 1145 return ERR_PTR(-ENOMEM); 1146 1147 /* We don't use the stripesize in selftest, set it as sectorsize */ 1148 root->alloc_bytenr = 0; 1149 1150 return root; 1151 } 1152 #endif 1153 1154 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 1155 { 1156 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 1157 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 1158 1159 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 1160 } 1161 1162 static int global_root_key_cmp(const void *k, const struct rb_node *node) 1163 { 1164 const struct btrfs_key *key = k; 1165 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 1166 1167 return btrfs_comp_cpu_keys(key, &root->root_key); 1168 } 1169 1170 int btrfs_global_root_insert(struct btrfs_root *root) 1171 { 1172 struct btrfs_fs_info *fs_info = root->fs_info; 1173 struct rb_node *tmp; 1174 1175 write_lock(&fs_info->global_root_lock); 1176 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 1177 write_unlock(&fs_info->global_root_lock); 1178 ASSERT(!tmp); 1179 1180 return tmp ? -EEXIST : 0; 1181 } 1182 1183 void btrfs_global_root_delete(struct btrfs_root *root) 1184 { 1185 struct btrfs_fs_info *fs_info = root->fs_info; 1186 1187 write_lock(&fs_info->global_root_lock); 1188 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1189 write_unlock(&fs_info->global_root_lock); 1190 } 1191 1192 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 1193 struct btrfs_key *key) 1194 { 1195 struct rb_node *node; 1196 struct btrfs_root *root = NULL; 1197 1198 read_lock(&fs_info->global_root_lock); 1199 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 1200 if (node) 1201 root = container_of(node, struct btrfs_root, rb_node); 1202 read_unlock(&fs_info->global_root_lock); 1203 1204 return root; 1205 } 1206 1207 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 1208 { 1209 struct btrfs_block_group *block_group; 1210 u64 ret; 1211 1212 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 1213 return 0; 1214 1215 if (bytenr) 1216 block_group = btrfs_lookup_block_group(fs_info, bytenr); 1217 else 1218 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 1219 ASSERT(block_group); 1220 if (!block_group) 1221 return 0; 1222 ret = block_group->global_root_id; 1223 btrfs_put_block_group(block_group); 1224 1225 return ret; 1226 } 1227 1228 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1229 { 1230 struct btrfs_key key = { 1231 .objectid = BTRFS_CSUM_TREE_OBJECTID, 1232 .type = BTRFS_ROOT_ITEM_KEY, 1233 .offset = btrfs_global_root_id(fs_info, bytenr), 1234 }; 1235 1236 return btrfs_global_root(fs_info, &key); 1237 } 1238 1239 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1240 { 1241 struct btrfs_key key = { 1242 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 1243 .type = BTRFS_ROOT_ITEM_KEY, 1244 .offset = btrfs_global_root_id(fs_info, bytenr), 1245 }; 1246 1247 return btrfs_global_root(fs_info, &key); 1248 } 1249 1250 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 1251 { 1252 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 1253 return fs_info->block_group_root; 1254 return btrfs_extent_root(fs_info, 0); 1255 } 1256 1257 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1258 u64 objectid) 1259 { 1260 struct btrfs_fs_info *fs_info = trans->fs_info; 1261 struct extent_buffer *leaf; 1262 struct btrfs_root *tree_root = fs_info->tree_root; 1263 struct btrfs_root *root; 1264 struct btrfs_key key; 1265 unsigned int nofs_flag; 1266 int ret = 0; 1267 1268 /* 1269 * We're holding a transaction handle, so use a NOFS memory allocation 1270 * context to avoid deadlock if reclaim happens. 1271 */ 1272 nofs_flag = memalloc_nofs_save(); 1273 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1274 memalloc_nofs_restore(nofs_flag); 1275 if (!root) 1276 return ERR_PTR(-ENOMEM); 1277 1278 root->root_key.objectid = objectid; 1279 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1280 root->root_key.offset = 0; 1281 1282 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 1283 BTRFS_NESTING_NORMAL); 1284 if (IS_ERR(leaf)) { 1285 ret = PTR_ERR(leaf); 1286 leaf = NULL; 1287 goto fail; 1288 } 1289 1290 root->node = leaf; 1291 btrfs_mark_buffer_dirty(leaf); 1292 1293 root->commit_root = btrfs_root_node(root); 1294 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1295 1296 btrfs_set_root_flags(&root->root_item, 0); 1297 btrfs_set_root_limit(&root->root_item, 0); 1298 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1299 btrfs_set_root_generation(&root->root_item, trans->transid); 1300 btrfs_set_root_level(&root->root_item, 0); 1301 btrfs_set_root_refs(&root->root_item, 1); 1302 btrfs_set_root_used(&root->root_item, leaf->len); 1303 btrfs_set_root_last_snapshot(&root->root_item, 0); 1304 btrfs_set_root_dirid(&root->root_item, 0); 1305 if (is_fstree(objectid)) 1306 generate_random_guid(root->root_item.uuid); 1307 else 1308 export_guid(root->root_item.uuid, &guid_null); 1309 btrfs_set_root_drop_level(&root->root_item, 0); 1310 1311 btrfs_tree_unlock(leaf); 1312 1313 key.objectid = objectid; 1314 key.type = BTRFS_ROOT_ITEM_KEY; 1315 key.offset = 0; 1316 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1317 if (ret) 1318 goto fail; 1319 1320 return root; 1321 1322 fail: 1323 btrfs_put_root(root); 1324 1325 return ERR_PTR(ret); 1326 } 1327 1328 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1329 struct btrfs_fs_info *fs_info) 1330 { 1331 struct btrfs_root *root; 1332 1333 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1334 if (!root) 1335 return ERR_PTR(-ENOMEM); 1336 1337 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1338 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1339 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1340 1341 return root; 1342 } 1343 1344 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 1345 struct btrfs_root *root) 1346 { 1347 struct extent_buffer *leaf; 1348 1349 /* 1350 * DON'T set SHAREABLE bit for log trees. 1351 * 1352 * Log trees are not exposed to user space thus can't be snapshotted, 1353 * and they go away before a real commit is actually done. 1354 * 1355 * They do store pointers to file data extents, and those reference 1356 * counts still get updated (along with back refs to the log tree). 1357 */ 1358 1359 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1360 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); 1361 if (IS_ERR(leaf)) 1362 return PTR_ERR(leaf); 1363 1364 root->node = leaf; 1365 1366 btrfs_mark_buffer_dirty(root->node); 1367 btrfs_tree_unlock(root->node); 1368 1369 return 0; 1370 } 1371 1372 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1373 struct btrfs_fs_info *fs_info) 1374 { 1375 struct btrfs_root *log_root; 1376 1377 log_root = alloc_log_tree(trans, fs_info); 1378 if (IS_ERR(log_root)) 1379 return PTR_ERR(log_root); 1380 1381 if (!btrfs_is_zoned(fs_info)) { 1382 int ret = btrfs_alloc_log_tree_node(trans, log_root); 1383 1384 if (ret) { 1385 btrfs_put_root(log_root); 1386 return ret; 1387 } 1388 } 1389 1390 WARN_ON(fs_info->log_root_tree); 1391 fs_info->log_root_tree = log_root; 1392 return 0; 1393 } 1394 1395 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1396 struct btrfs_root *root) 1397 { 1398 struct btrfs_fs_info *fs_info = root->fs_info; 1399 struct btrfs_root *log_root; 1400 struct btrfs_inode_item *inode_item; 1401 int ret; 1402 1403 log_root = alloc_log_tree(trans, fs_info); 1404 if (IS_ERR(log_root)) 1405 return PTR_ERR(log_root); 1406 1407 ret = btrfs_alloc_log_tree_node(trans, log_root); 1408 if (ret) { 1409 btrfs_put_root(log_root); 1410 return ret; 1411 } 1412 1413 log_root->last_trans = trans->transid; 1414 log_root->root_key.offset = root->root_key.objectid; 1415 1416 inode_item = &log_root->root_item.inode; 1417 btrfs_set_stack_inode_generation(inode_item, 1); 1418 btrfs_set_stack_inode_size(inode_item, 3); 1419 btrfs_set_stack_inode_nlink(inode_item, 1); 1420 btrfs_set_stack_inode_nbytes(inode_item, 1421 fs_info->nodesize); 1422 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1423 1424 btrfs_set_root_node(&log_root->root_item, log_root->node); 1425 1426 WARN_ON(root->log_root); 1427 root->log_root = log_root; 1428 root->log_transid = 0; 1429 root->log_transid_committed = -1; 1430 root->last_log_commit = 0; 1431 return 0; 1432 } 1433 1434 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1435 struct btrfs_path *path, 1436 struct btrfs_key *key) 1437 { 1438 struct btrfs_root *root; 1439 struct btrfs_tree_parent_check check = { 0 }; 1440 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1441 u64 generation; 1442 int ret; 1443 int level; 1444 1445 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1446 if (!root) 1447 return ERR_PTR(-ENOMEM); 1448 1449 ret = btrfs_find_root(tree_root, key, path, 1450 &root->root_item, &root->root_key); 1451 if (ret) { 1452 if (ret > 0) 1453 ret = -ENOENT; 1454 goto fail; 1455 } 1456 1457 generation = btrfs_root_generation(&root->root_item); 1458 level = btrfs_root_level(&root->root_item); 1459 check.level = level; 1460 check.transid = generation; 1461 check.owner_root = key->objectid; 1462 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1463 &check); 1464 if (IS_ERR(root->node)) { 1465 ret = PTR_ERR(root->node); 1466 root->node = NULL; 1467 goto fail; 1468 } 1469 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1470 ret = -EIO; 1471 goto fail; 1472 } 1473 1474 /* 1475 * For real fs, and not log/reloc trees, root owner must 1476 * match its root node owner 1477 */ 1478 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) && 1479 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1480 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1481 root->root_key.objectid != btrfs_header_owner(root->node)) { 1482 btrfs_crit(fs_info, 1483 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1484 root->root_key.objectid, root->node->start, 1485 btrfs_header_owner(root->node), 1486 root->root_key.objectid); 1487 ret = -EUCLEAN; 1488 goto fail; 1489 } 1490 root->commit_root = btrfs_root_node(root); 1491 return root; 1492 fail: 1493 btrfs_put_root(root); 1494 return ERR_PTR(ret); 1495 } 1496 1497 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1498 struct btrfs_key *key) 1499 { 1500 struct btrfs_root *root; 1501 struct btrfs_path *path; 1502 1503 path = btrfs_alloc_path(); 1504 if (!path) 1505 return ERR_PTR(-ENOMEM); 1506 root = read_tree_root_path(tree_root, path, key); 1507 btrfs_free_path(path); 1508 1509 return root; 1510 } 1511 1512 /* 1513 * Initialize subvolume root in-memory structure 1514 * 1515 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1516 */ 1517 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1518 { 1519 int ret; 1520 unsigned int nofs_flag; 1521 1522 /* 1523 * We might be called under a transaction (e.g. indirect backref 1524 * resolution) which could deadlock if it triggers memory reclaim 1525 */ 1526 nofs_flag = memalloc_nofs_save(); 1527 ret = btrfs_drew_lock_init(&root->snapshot_lock); 1528 memalloc_nofs_restore(nofs_flag); 1529 if (ret) 1530 goto fail; 1531 1532 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1533 !btrfs_is_data_reloc_root(root)) { 1534 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1535 btrfs_check_and_init_root_item(&root->root_item); 1536 } 1537 1538 /* 1539 * Don't assign anonymous block device to roots that are not exposed to 1540 * userspace, the id pool is limited to 1M 1541 */ 1542 if (is_fstree(root->root_key.objectid) && 1543 btrfs_root_refs(&root->root_item) > 0) { 1544 if (!anon_dev) { 1545 ret = get_anon_bdev(&root->anon_dev); 1546 if (ret) 1547 goto fail; 1548 } else { 1549 root->anon_dev = anon_dev; 1550 } 1551 } 1552 1553 mutex_lock(&root->objectid_mutex); 1554 ret = btrfs_init_root_free_objectid(root); 1555 if (ret) { 1556 mutex_unlock(&root->objectid_mutex); 1557 goto fail; 1558 } 1559 1560 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1561 1562 mutex_unlock(&root->objectid_mutex); 1563 1564 return 0; 1565 fail: 1566 /* The caller is responsible to call btrfs_free_fs_root */ 1567 return ret; 1568 } 1569 1570 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1571 u64 root_id) 1572 { 1573 struct btrfs_root *root; 1574 1575 spin_lock(&fs_info->fs_roots_radix_lock); 1576 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1577 (unsigned long)root_id); 1578 if (root) 1579 root = btrfs_grab_root(root); 1580 spin_unlock(&fs_info->fs_roots_radix_lock); 1581 return root; 1582 } 1583 1584 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1585 u64 objectid) 1586 { 1587 struct btrfs_key key = { 1588 .objectid = objectid, 1589 .type = BTRFS_ROOT_ITEM_KEY, 1590 .offset = 0, 1591 }; 1592 1593 if (objectid == BTRFS_ROOT_TREE_OBJECTID) 1594 return btrfs_grab_root(fs_info->tree_root); 1595 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 1596 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1597 if (objectid == BTRFS_CHUNK_TREE_OBJECTID) 1598 return btrfs_grab_root(fs_info->chunk_root); 1599 if (objectid == BTRFS_DEV_TREE_OBJECTID) 1600 return btrfs_grab_root(fs_info->dev_root); 1601 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 1602 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1603 if (objectid == BTRFS_QUOTA_TREE_OBJECTID) 1604 return btrfs_grab_root(fs_info->quota_root) ? 1605 fs_info->quota_root : ERR_PTR(-ENOENT); 1606 if (objectid == BTRFS_UUID_TREE_OBJECTID) 1607 return btrfs_grab_root(fs_info->uuid_root) ? 1608 fs_info->uuid_root : ERR_PTR(-ENOENT); 1609 if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID) 1610 return btrfs_grab_root(fs_info->block_group_root) ? 1611 fs_info->block_group_root : ERR_PTR(-ENOENT); 1612 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) { 1613 struct btrfs_root *root = btrfs_global_root(fs_info, &key); 1614 1615 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT); 1616 } 1617 return NULL; 1618 } 1619 1620 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1621 struct btrfs_root *root) 1622 { 1623 int ret; 1624 1625 ret = radix_tree_preload(GFP_NOFS); 1626 if (ret) 1627 return ret; 1628 1629 spin_lock(&fs_info->fs_roots_radix_lock); 1630 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1631 (unsigned long)root->root_key.objectid, 1632 root); 1633 if (ret == 0) { 1634 btrfs_grab_root(root); 1635 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1636 } 1637 spin_unlock(&fs_info->fs_roots_radix_lock); 1638 radix_tree_preload_end(); 1639 1640 return ret; 1641 } 1642 1643 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1644 { 1645 #ifdef CONFIG_BTRFS_DEBUG 1646 struct btrfs_root *root; 1647 1648 while (!list_empty(&fs_info->allocated_roots)) { 1649 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1650 1651 root = list_first_entry(&fs_info->allocated_roots, 1652 struct btrfs_root, leak_list); 1653 btrfs_err(fs_info, "leaked root %s refcount %d", 1654 btrfs_root_name(&root->root_key, buf), 1655 refcount_read(&root->refs)); 1656 while (refcount_read(&root->refs) > 1) 1657 btrfs_put_root(root); 1658 btrfs_put_root(root); 1659 } 1660 #endif 1661 } 1662 1663 static void free_global_roots(struct btrfs_fs_info *fs_info) 1664 { 1665 struct btrfs_root *root; 1666 struct rb_node *node; 1667 1668 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1669 root = rb_entry(node, struct btrfs_root, rb_node); 1670 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1671 btrfs_put_root(root); 1672 } 1673 } 1674 1675 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1676 { 1677 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1678 percpu_counter_destroy(&fs_info->delalloc_bytes); 1679 percpu_counter_destroy(&fs_info->ordered_bytes); 1680 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1681 btrfs_free_csum_hash(fs_info); 1682 btrfs_free_stripe_hash_table(fs_info); 1683 btrfs_free_ref_cache(fs_info); 1684 kfree(fs_info->balance_ctl); 1685 kfree(fs_info->delayed_root); 1686 free_global_roots(fs_info); 1687 btrfs_put_root(fs_info->tree_root); 1688 btrfs_put_root(fs_info->chunk_root); 1689 btrfs_put_root(fs_info->dev_root); 1690 btrfs_put_root(fs_info->quota_root); 1691 btrfs_put_root(fs_info->uuid_root); 1692 btrfs_put_root(fs_info->fs_root); 1693 btrfs_put_root(fs_info->data_reloc_root); 1694 btrfs_put_root(fs_info->block_group_root); 1695 btrfs_check_leaked_roots(fs_info); 1696 btrfs_extent_buffer_leak_debug_check(fs_info); 1697 kfree(fs_info->super_copy); 1698 kfree(fs_info->super_for_commit); 1699 kfree(fs_info->subpage_info); 1700 kvfree(fs_info); 1701 } 1702 1703 1704 /* 1705 * Get an in-memory reference of a root structure. 1706 * 1707 * For essential trees like root/extent tree, we grab it from fs_info directly. 1708 * For subvolume trees, we check the cached filesystem roots first. If not 1709 * found, then read it from disk and add it to cached fs roots. 1710 * 1711 * Caller should release the root by calling btrfs_put_root() after the usage. 1712 * 1713 * NOTE: Reloc and log trees can't be read by this function as they share the 1714 * same root objectid. 1715 * 1716 * @objectid: root id 1717 * @anon_dev: preallocated anonymous block device number for new roots, 1718 * pass 0 for new allocation. 1719 * @check_ref: whether to check root item references, If true, return -ENOENT 1720 * for orphan roots 1721 */ 1722 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1723 u64 objectid, dev_t anon_dev, 1724 bool check_ref) 1725 { 1726 struct btrfs_root *root; 1727 struct btrfs_path *path; 1728 struct btrfs_key key; 1729 int ret; 1730 1731 root = btrfs_get_global_root(fs_info, objectid); 1732 if (root) 1733 return root; 1734 again: 1735 root = btrfs_lookup_fs_root(fs_info, objectid); 1736 if (root) { 1737 /* Shouldn't get preallocated anon_dev for cached roots */ 1738 ASSERT(!anon_dev); 1739 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1740 btrfs_put_root(root); 1741 return ERR_PTR(-ENOENT); 1742 } 1743 return root; 1744 } 1745 1746 key.objectid = objectid; 1747 key.type = BTRFS_ROOT_ITEM_KEY; 1748 key.offset = (u64)-1; 1749 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1750 if (IS_ERR(root)) 1751 return root; 1752 1753 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1754 ret = -ENOENT; 1755 goto fail; 1756 } 1757 1758 ret = btrfs_init_fs_root(root, anon_dev); 1759 if (ret) 1760 goto fail; 1761 1762 path = btrfs_alloc_path(); 1763 if (!path) { 1764 ret = -ENOMEM; 1765 goto fail; 1766 } 1767 key.objectid = BTRFS_ORPHAN_OBJECTID; 1768 key.type = BTRFS_ORPHAN_ITEM_KEY; 1769 key.offset = objectid; 1770 1771 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1772 btrfs_free_path(path); 1773 if (ret < 0) 1774 goto fail; 1775 if (ret == 0) 1776 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1777 1778 ret = btrfs_insert_fs_root(fs_info, root); 1779 if (ret) { 1780 if (ret == -EEXIST) { 1781 btrfs_put_root(root); 1782 goto again; 1783 } 1784 goto fail; 1785 } 1786 return root; 1787 fail: 1788 /* 1789 * If our caller provided us an anonymous device, then it's his 1790 * responsibility to free it in case we fail. So we have to set our 1791 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1792 * and once again by our caller. 1793 */ 1794 if (anon_dev) 1795 root->anon_dev = 0; 1796 btrfs_put_root(root); 1797 return ERR_PTR(ret); 1798 } 1799 1800 /* 1801 * Get in-memory reference of a root structure 1802 * 1803 * @objectid: tree objectid 1804 * @check_ref: if set, verify that the tree exists and the item has at least 1805 * one reference 1806 */ 1807 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1808 u64 objectid, bool check_ref) 1809 { 1810 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1811 } 1812 1813 /* 1814 * Get in-memory reference of a root structure, created as new, optionally pass 1815 * the anonymous block device id 1816 * 1817 * @objectid: tree objectid 1818 * @anon_dev: if zero, allocate a new anonymous block device or use the 1819 * parameter value 1820 */ 1821 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1822 u64 objectid, dev_t anon_dev) 1823 { 1824 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1825 } 1826 1827 /* 1828 * btrfs_get_fs_root_commit_root - return a root for the given objectid 1829 * @fs_info: the fs_info 1830 * @objectid: the objectid we need to lookup 1831 * 1832 * This is exclusively used for backref walking, and exists specifically because 1833 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1834 * creation time, which means we may have to read the tree_root in order to look 1835 * up a fs root that is not in memory. If the root is not in memory we will 1836 * read the tree root commit root and look up the fs root from there. This is a 1837 * temporary root, it will not be inserted into the radix tree as it doesn't 1838 * have the most uptodate information, it'll simply be discarded once the 1839 * backref code is finished using the root. 1840 */ 1841 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1842 struct btrfs_path *path, 1843 u64 objectid) 1844 { 1845 struct btrfs_root *root; 1846 struct btrfs_key key; 1847 1848 ASSERT(path->search_commit_root && path->skip_locking); 1849 1850 /* 1851 * This can return -ENOENT if we ask for a root that doesn't exist, but 1852 * since this is called via the backref walking code we won't be looking 1853 * up a root that doesn't exist, unless there's corruption. So if root 1854 * != NULL just return it. 1855 */ 1856 root = btrfs_get_global_root(fs_info, objectid); 1857 if (root) 1858 return root; 1859 1860 root = btrfs_lookup_fs_root(fs_info, objectid); 1861 if (root) 1862 return root; 1863 1864 key.objectid = objectid; 1865 key.type = BTRFS_ROOT_ITEM_KEY; 1866 key.offset = (u64)-1; 1867 root = read_tree_root_path(fs_info->tree_root, path, &key); 1868 btrfs_release_path(path); 1869 1870 return root; 1871 } 1872 1873 static int cleaner_kthread(void *arg) 1874 { 1875 struct btrfs_fs_info *fs_info = arg; 1876 int again; 1877 1878 while (1) { 1879 again = 0; 1880 1881 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1882 1883 /* Make the cleaner go to sleep early. */ 1884 if (btrfs_need_cleaner_sleep(fs_info)) 1885 goto sleep; 1886 1887 /* 1888 * Do not do anything if we might cause open_ctree() to block 1889 * before we have finished mounting the filesystem. 1890 */ 1891 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1892 goto sleep; 1893 1894 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1895 goto sleep; 1896 1897 /* 1898 * Avoid the problem that we change the status of the fs 1899 * during the above check and trylock. 1900 */ 1901 if (btrfs_need_cleaner_sleep(fs_info)) { 1902 mutex_unlock(&fs_info->cleaner_mutex); 1903 goto sleep; 1904 } 1905 1906 btrfs_run_delayed_iputs(fs_info); 1907 1908 again = btrfs_clean_one_deleted_snapshot(fs_info); 1909 mutex_unlock(&fs_info->cleaner_mutex); 1910 1911 /* 1912 * The defragger has dealt with the R/O remount and umount, 1913 * needn't do anything special here. 1914 */ 1915 btrfs_run_defrag_inodes(fs_info); 1916 1917 /* 1918 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1919 * with relocation (btrfs_relocate_chunk) and relocation 1920 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1921 * after acquiring fs_info->reclaim_bgs_lock. So we 1922 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1923 * unused block groups. 1924 */ 1925 btrfs_delete_unused_bgs(fs_info); 1926 1927 /* 1928 * Reclaim block groups in the reclaim_bgs list after we deleted 1929 * all unused block_groups. This possibly gives us some more free 1930 * space. 1931 */ 1932 btrfs_reclaim_bgs(fs_info); 1933 sleep: 1934 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1935 if (kthread_should_park()) 1936 kthread_parkme(); 1937 if (kthread_should_stop()) 1938 return 0; 1939 if (!again) { 1940 set_current_state(TASK_INTERRUPTIBLE); 1941 schedule(); 1942 __set_current_state(TASK_RUNNING); 1943 } 1944 } 1945 } 1946 1947 static int transaction_kthread(void *arg) 1948 { 1949 struct btrfs_root *root = arg; 1950 struct btrfs_fs_info *fs_info = root->fs_info; 1951 struct btrfs_trans_handle *trans; 1952 struct btrfs_transaction *cur; 1953 u64 transid; 1954 time64_t delta; 1955 unsigned long delay; 1956 bool cannot_commit; 1957 1958 do { 1959 cannot_commit = false; 1960 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1961 mutex_lock(&fs_info->transaction_kthread_mutex); 1962 1963 spin_lock(&fs_info->trans_lock); 1964 cur = fs_info->running_transaction; 1965 if (!cur) { 1966 spin_unlock(&fs_info->trans_lock); 1967 goto sleep; 1968 } 1969 1970 delta = ktime_get_seconds() - cur->start_time; 1971 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1972 cur->state < TRANS_STATE_COMMIT_START && 1973 delta < fs_info->commit_interval) { 1974 spin_unlock(&fs_info->trans_lock); 1975 delay -= msecs_to_jiffies((delta - 1) * 1000); 1976 delay = min(delay, 1977 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1978 goto sleep; 1979 } 1980 transid = cur->transid; 1981 spin_unlock(&fs_info->trans_lock); 1982 1983 /* If the file system is aborted, this will always fail. */ 1984 trans = btrfs_attach_transaction(root); 1985 if (IS_ERR(trans)) { 1986 if (PTR_ERR(trans) != -ENOENT) 1987 cannot_commit = true; 1988 goto sleep; 1989 } 1990 if (transid == trans->transid) { 1991 btrfs_commit_transaction(trans); 1992 } else { 1993 btrfs_end_transaction(trans); 1994 } 1995 sleep: 1996 wake_up_process(fs_info->cleaner_kthread); 1997 mutex_unlock(&fs_info->transaction_kthread_mutex); 1998 1999 if (BTRFS_FS_ERROR(fs_info)) 2000 btrfs_cleanup_transaction(fs_info); 2001 if (!kthread_should_stop() && 2002 (!btrfs_transaction_blocked(fs_info) || 2003 cannot_commit)) 2004 schedule_timeout_interruptible(delay); 2005 } while (!kthread_should_stop()); 2006 return 0; 2007 } 2008 2009 /* 2010 * This will find the highest generation in the array of root backups. The 2011 * index of the highest array is returned, or -EINVAL if we can't find 2012 * anything. 2013 * 2014 * We check to make sure the array is valid by comparing the 2015 * generation of the latest root in the array with the generation 2016 * in the super block. If they don't match we pitch it. 2017 */ 2018 static int find_newest_super_backup(struct btrfs_fs_info *info) 2019 { 2020 const u64 newest_gen = btrfs_super_generation(info->super_copy); 2021 u64 cur; 2022 struct btrfs_root_backup *root_backup; 2023 int i; 2024 2025 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2026 root_backup = info->super_copy->super_roots + i; 2027 cur = btrfs_backup_tree_root_gen(root_backup); 2028 if (cur == newest_gen) 2029 return i; 2030 } 2031 2032 return -EINVAL; 2033 } 2034 2035 /* 2036 * copy all the root pointers into the super backup array. 2037 * this will bump the backup pointer by one when it is 2038 * done 2039 */ 2040 static void backup_super_roots(struct btrfs_fs_info *info) 2041 { 2042 const int next_backup = info->backup_root_index; 2043 struct btrfs_root_backup *root_backup; 2044 2045 root_backup = info->super_for_commit->super_roots + next_backup; 2046 2047 /* 2048 * make sure all of our padding and empty slots get zero filled 2049 * regardless of which ones we use today 2050 */ 2051 memset(root_backup, 0, sizeof(*root_backup)); 2052 2053 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 2054 2055 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 2056 btrfs_set_backup_tree_root_gen(root_backup, 2057 btrfs_header_generation(info->tree_root->node)); 2058 2059 btrfs_set_backup_tree_root_level(root_backup, 2060 btrfs_header_level(info->tree_root->node)); 2061 2062 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 2063 btrfs_set_backup_chunk_root_gen(root_backup, 2064 btrfs_header_generation(info->chunk_root->node)); 2065 btrfs_set_backup_chunk_root_level(root_backup, 2066 btrfs_header_level(info->chunk_root->node)); 2067 2068 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 2069 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 2070 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 2071 2072 btrfs_set_backup_extent_root(root_backup, 2073 extent_root->node->start); 2074 btrfs_set_backup_extent_root_gen(root_backup, 2075 btrfs_header_generation(extent_root->node)); 2076 btrfs_set_backup_extent_root_level(root_backup, 2077 btrfs_header_level(extent_root->node)); 2078 2079 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 2080 btrfs_set_backup_csum_root_gen(root_backup, 2081 btrfs_header_generation(csum_root->node)); 2082 btrfs_set_backup_csum_root_level(root_backup, 2083 btrfs_header_level(csum_root->node)); 2084 } 2085 2086 /* 2087 * we might commit during log recovery, which happens before we set 2088 * the fs_root. Make sure it is valid before we fill it in. 2089 */ 2090 if (info->fs_root && info->fs_root->node) { 2091 btrfs_set_backup_fs_root(root_backup, 2092 info->fs_root->node->start); 2093 btrfs_set_backup_fs_root_gen(root_backup, 2094 btrfs_header_generation(info->fs_root->node)); 2095 btrfs_set_backup_fs_root_level(root_backup, 2096 btrfs_header_level(info->fs_root->node)); 2097 } 2098 2099 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2100 btrfs_set_backup_dev_root_gen(root_backup, 2101 btrfs_header_generation(info->dev_root->node)); 2102 btrfs_set_backup_dev_root_level(root_backup, 2103 btrfs_header_level(info->dev_root->node)); 2104 2105 btrfs_set_backup_total_bytes(root_backup, 2106 btrfs_super_total_bytes(info->super_copy)); 2107 btrfs_set_backup_bytes_used(root_backup, 2108 btrfs_super_bytes_used(info->super_copy)); 2109 btrfs_set_backup_num_devices(root_backup, 2110 btrfs_super_num_devices(info->super_copy)); 2111 2112 /* 2113 * if we don't copy this out to the super_copy, it won't get remembered 2114 * for the next commit 2115 */ 2116 memcpy(&info->super_copy->super_roots, 2117 &info->super_for_commit->super_roots, 2118 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2119 } 2120 2121 /* 2122 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 2123 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 2124 * 2125 * fs_info - filesystem whose backup roots need to be read 2126 * priority - priority of backup root required 2127 * 2128 * Returns backup root index on success and -EINVAL otherwise. 2129 */ 2130 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 2131 { 2132 int backup_index = find_newest_super_backup(fs_info); 2133 struct btrfs_super_block *super = fs_info->super_copy; 2134 struct btrfs_root_backup *root_backup; 2135 2136 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 2137 if (priority == 0) 2138 return backup_index; 2139 2140 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 2141 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 2142 } else { 2143 return -EINVAL; 2144 } 2145 2146 root_backup = super->super_roots + backup_index; 2147 2148 btrfs_set_super_generation(super, 2149 btrfs_backup_tree_root_gen(root_backup)); 2150 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2151 btrfs_set_super_root_level(super, 2152 btrfs_backup_tree_root_level(root_backup)); 2153 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2154 2155 /* 2156 * Fixme: the total bytes and num_devices need to match or we should 2157 * need a fsck 2158 */ 2159 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2160 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2161 2162 return backup_index; 2163 } 2164 2165 /* helper to cleanup workers */ 2166 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2167 { 2168 btrfs_destroy_workqueue(fs_info->fixup_workers); 2169 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2170 btrfs_destroy_workqueue(fs_info->hipri_workers); 2171 btrfs_destroy_workqueue(fs_info->workers); 2172 if (fs_info->endio_workers) 2173 destroy_workqueue(fs_info->endio_workers); 2174 if (fs_info->rmw_workers) 2175 destroy_workqueue(fs_info->rmw_workers); 2176 if (fs_info->compressed_write_workers) 2177 destroy_workqueue(fs_info->compressed_write_workers); 2178 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2179 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2180 btrfs_destroy_workqueue(fs_info->delayed_workers); 2181 btrfs_destroy_workqueue(fs_info->caching_workers); 2182 btrfs_destroy_workqueue(fs_info->flush_workers); 2183 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2184 if (fs_info->discard_ctl.discard_workers) 2185 destroy_workqueue(fs_info->discard_ctl.discard_workers); 2186 /* 2187 * Now that all other work queues are destroyed, we can safely destroy 2188 * the queues used for metadata I/O, since tasks from those other work 2189 * queues can do metadata I/O operations. 2190 */ 2191 if (fs_info->endio_meta_workers) 2192 destroy_workqueue(fs_info->endio_meta_workers); 2193 } 2194 2195 static void free_root_extent_buffers(struct btrfs_root *root) 2196 { 2197 if (root) { 2198 free_extent_buffer(root->node); 2199 free_extent_buffer(root->commit_root); 2200 root->node = NULL; 2201 root->commit_root = NULL; 2202 } 2203 } 2204 2205 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 2206 { 2207 struct btrfs_root *root, *tmp; 2208 2209 rbtree_postorder_for_each_entry_safe(root, tmp, 2210 &fs_info->global_root_tree, 2211 rb_node) 2212 free_root_extent_buffers(root); 2213 } 2214 2215 /* helper to cleanup tree roots */ 2216 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 2217 { 2218 free_root_extent_buffers(info->tree_root); 2219 2220 free_global_root_pointers(info); 2221 free_root_extent_buffers(info->dev_root); 2222 free_root_extent_buffers(info->quota_root); 2223 free_root_extent_buffers(info->uuid_root); 2224 free_root_extent_buffers(info->fs_root); 2225 free_root_extent_buffers(info->data_reloc_root); 2226 free_root_extent_buffers(info->block_group_root); 2227 if (free_chunk_root) 2228 free_root_extent_buffers(info->chunk_root); 2229 } 2230 2231 void btrfs_put_root(struct btrfs_root *root) 2232 { 2233 if (!root) 2234 return; 2235 2236 if (refcount_dec_and_test(&root->refs)) { 2237 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2238 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 2239 if (root->anon_dev) 2240 free_anon_bdev(root->anon_dev); 2241 btrfs_drew_lock_destroy(&root->snapshot_lock); 2242 free_root_extent_buffers(root); 2243 #ifdef CONFIG_BTRFS_DEBUG 2244 spin_lock(&root->fs_info->fs_roots_radix_lock); 2245 list_del_init(&root->leak_list); 2246 spin_unlock(&root->fs_info->fs_roots_radix_lock); 2247 #endif 2248 kfree(root); 2249 } 2250 } 2251 2252 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2253 { 2254 int ret; 2255 struct btrfs_root *gang[8]; 2256 int i; 2257 2258 while (!list_empty(&fs_info->dead_roots)) { 2259 gang[0] = list_entry(fs_info->dead_roots.next, 2260 struct btrfs_root, root_list); 2261 list_del(&gang[0]->root_list); 2262 2263 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2264 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2265 btrfs_put_root(gang[0]); 2266 } 2267 2268 while (1) { 2269 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2270 (void **)gang, 0, 2271 ARRAY_SIZE(gang)); 2272 if (!ret) 2273 break; 2274 for (i = 0; i < ret; i++) 2275 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2276 } 2277 } 2278 2279 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2280 { 2281 mutex_init(&fs_info->scrub_lock); 2282 atomic_set(&fs_info->scrubs_running, 0); 2283 atomic_set(&fs_info->scrub_pause_req, 0); 2284 atomic_set(&fs_info->scrubs_paused, 0); 2285 atomic_set(&fs_info->scrub_cancel_req, 0); 2286 init_waitqueue_head(&fs_info->scrub_pause_wait); 2287 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2288 } 2289 2290 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2291 { 2292 spin_lock_init(&fs_info->balance_lock); 2293 mutex_init(&fs_info->balance_mutex); 2294 atomic_set(&fs_info->balance_pause_req, 0); 2295 atomic_set(&fs_info->balance_cancel_req, 0); 2296 fs_info->balance_ctl = NULL; 2297 init_waitqueue_head(&fs_info->balance_wait_q); 2298 atomic_set(&fs_info->reloc_cancel_req, 0); 2299 } 2300 2301 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2302 { 2303 struct inode *inode = fs_info->btree_inode; 2304 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 2305 fs_info->tree_root); 2306 2307 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2308 set_nlink(inode, 1); 2309 /* 2310 * we set the i_size on the btree inode to the max possible int. 2311 * the real end of the address space is determined by all of 2312 * the devices in the system 2313 */ 2314 inode->i_size = OFFSET_MAX; 2315 inode->i_mapping->a_ops = &btree_aops; 2316 2317 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2318 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2319 IO_TREE_BTREE_INODE_IO); 2320 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2321 2322 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2323 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID; 2324 BTRFS_I(inode)->location.type = 0; 2325 BTRFS_I(inode)->location.offset = 0; 2326 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2327 __insert_inode_hash(inode, hash); 2328 } 2329 2330 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2331 { 2332 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2333 init_rwsem(&fs_info->dev_replace.rwsem); 2334 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2335 } 2336 2337 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2338 { 2339 spin_lock_init(&fs_info->qgroup_lock); 2340 mutex_init(&fs_info->qgroup_ioctl_lock); 2341 fs_info->qgroup_tree = RB_ROOT; 2342 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2343 fs_info->qgroup_seq = 1; 2344 fs_info->qgroup_ulist = NULL; 2345 fs_info->qgroup_rescan_running = false; 2346 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL; 2347 mutex_init(&fs_info->qgroup_rescan_lock); 2348 } 2349 2350 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 2351 { 2352 u32 max_active = fs_info->thread_pool_size; 2353 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2354 2355 fs_info->workers = 2356 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 2357 fs_info->hipri_workers = 2358 btrfs_alloc_workqueue(fs_info, "worker-high", 2359 flags | WQ_HIGHPRI, max_active, 16); 2360 2361 fs_info->delalloc_workers = 2362 btrfs_alloc_workqueue(fs_info, "delalloc", 2363 flags, max_active, 2); 2364 2365 fs_info->flush_workers = 2366 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2367 flags, max_active, 0); 2368 2369 fs_info->caching_workers = 2370 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2371 2372 fs_info->fixup_workers = 2373 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2374 2375 fs_info->endio_workers = 2376 alloc_workqueue("btrfs-endio", flags, max_active); 2377 fs_info->endio_meta_workers = 2378 alloc_workqueue("btrfs-endio-meta", flags, max_active); 2379 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 2380 fs_info->endio_write_workers = 2381 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2382 max_active, 2); 2383 fs_info->compressed_write_workers = 2384 alloc_workqueue("btrfs-compressed-write", flags, max_active); 2385 fs_info->endio_freespace_worker = 2386 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2387 max_active, 0); 2388 fs_info->delayed_workers = 2389 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2390 max_active, 0); 2391 fs_info->qgroup_rescan_workers = 2392 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2393 fs_info->discard_ctl.discard_workers = 2394 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2395 2396 if (!(fs_info->workers && fs_info->hipri_workers && 2397 fs_info->delalloc_workers && fs_info->flush_workers && 2398 fs_info->endio_workers && fs_info->endio_meta_workers && 2399 fs_info->compressed_write_workers && 2400 fs_info->endio_write_workers && 2401 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2402 fs_info->caching_workers && fs_info->fixup_workers && 2403 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2404 fs_info->discard_ctl.discard_workers)) { 2405 return -ENOMEM; 2406 } 2407 2408 return 0; 2409 } 2410 2411 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2412 { 2413 struct crypto_shash *csum_shash; 2414 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2415 2416 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2417 2418 if (IS_ERR(csum_shash)) { 2419 btrfs_err(fs_info, "error allocating %s hash for checksum", 2420 csum_driver); 2421 return PTR_ERR(csum_shash); 2422 } 2423 2424 fs_info->csum_shash = csum_shash; 2425 2426 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2427 btrfs_super_csum_name(csum_type), 2428 crypto_shash_driver_name(csum_shash)); 2429 return 0; 2430 } 2431 2432 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2433 struct btrfs_fs_devices *fs_devices) 2434 { 2435 int ret; 2436 struct btrfs_tree_parent_check check = { 0 }; 2437 struct btrfs_root *log_tree_root; 2438 struct btrfs_super_block *disk_super = fs_info->super_copy; 2439 u64 bytenr = btrfs_super_log_root(disk_super); 2440 int level = btrfs_super_log_root_level(disk_super); 2441 2442 if (fs_devices->rw_devices == 0) { 2443 btrfs_warn(fs_info, "log replay required on RO media"); 2444 return -EIO; 2445 } 2446 2447 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2448 GFP_KERNEL); 2449 if (!log_tree_root) 2450 return -ENOMEM; 2451 2452 check.level = level; 2453 check.transid = fs_info->generation + 1; 2454 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2455 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2456 if (IS_ERR(log_tree_root->node)) { 2457 btrfs_warn(fs_info, "failed to read log tree"); 2458 ret = PTR_ERR(log_tree_root->node); 2459 log_tree_root->node = NULL; 2460 btrfs_put_root(log_tree_root); 2461 return ret; 2462 } 2463 if (!extent_buffer_uptodate(log_tree_root->node)) { 2464 btrfs_err(fs_info, "failed to read log tree"); 2465 btrfs_put_root(log_tree_root); 2466 return -EIO; 2467 } 2468 2469 /* returns with log_tree_root freed on success */ 2470 ret = btrfs_recover_log_trees(log_tree_root); 2471 if (ret) { 2472 btrfs_handle_fs_error(fs_info, ret, 2473 "Failed to recover log tree"); 2474 btrfs_put_root(log_tree_root); 2475 return ret; 2476 } 2477 2478 if (sb_rdonly(fs_info->sb)) { 2479 ret = btrfs_commit_super(fs_info); 2480 if (ret) 2481 return ret; 2482 } 2483 2484 return 0; 2485 } 2486 2487 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2488 struct btrfs_path *path, u64 objectid, 2489 const char *name) 2490 { 2491 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2492 struct btrfs_root *root; 2493 u64 max_global_id = 0; 2494 int ret; 2495 struct btrfs_key key = { 2496 .objectid = objectid, 2497 .type = BTRFS_ROOT_ITEM_KEY, 2498 .offset = 0, 2499 }; 2500 bool found = false; 2501 2502 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2503 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2504 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2505 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2506 return 0; 2507 } 2508 2509 while (1) { 2510 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2511 if (ret < 0) 2512 break; 2513 2514 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2515 ret = btrfs_next_leaf(tree_root, path); 2516 if (ret) { 2517 if (ret > 0) 2518 ret = 0; 2519 break; 2520 } 2521 } 2522 ret = 0; 2523 2524 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2525 if (key.objectid != objectid) 2526 break; 2527 btrfs_release_path(path); 2528 2529 /* 2530 * Just worry about this for extent tree, it'll be the same for 2531 * everybody. 2532 */ 2533 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2534 max_global_id = max(max_global_id, key.offset); 2535 2536 found = true; 2537 root = read_tree_root_path(tree_root, path, &key); 2538 if (IS_ERR(root)) { 2539 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2540 ret = PTR_ERR(root); 2541 break; 2542 } 2543 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2544 ret = btrfs_global_root_insert(root); 2545 if (ret) { 2546 btrfs_put_root(root); 2547 break; 2548 } 2549 key.offset++; 2550 } 2551 btrfs_release_path(path); 2552 2553 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2554 fs_info->nr_global_roots = max_global_id + 1; 2555 2556 if (!found || ret) { 2557 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2558 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2559 2560 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2561 ret = ret ? ret : -ENOENT; 2562 else 2563 ret = 0; 2564 btrfs_err(fs_info, "failed to load root %s", name); 2565 } 2566 return ret; 2567 } 2568 2569 static int load_global_roots(struct btrfs_root *tree_root) 2570 { 2571 struct btrfs_path *path; 2572 int ret = 0; 2573 2574 path = btrfs_alloc_path(); 2575 if (!path) 2576 return -ENOMEM; 2577 2578 ret = load_global_roots_objectid(tree_root, path, 2579 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2580 if (ret) 2581 goto out; 2582 ret = load_global_roots_objectid(tree_root, path, 2583 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2584 if (ret) 2585 goto out; 2586 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2587 goto out; 2588 ret = load_global_roots_objectid(tree_root, path, 2589 BTRFS_FREE_SPACE_TREE_OBJECTID, 2590 "free space"); 2591 out: 2592 btrfs_free_path(path); 2593 return ret; 2594 } 2595 2596 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2597 { 2598 struct btrfs_root *tree_root = fs_info->tree_root; 2599 struct btrfs_root *root; 2600 struct btrfs_key location; 2601 int ret; 2602 2603 BUG_ON(!fs_info->tree_root); 2604 2605 ret = load_global_roots(tree_root); 2606 if (ret) 2607 return ret; 2608 2609 location.type = BTRFS_ROOT_ITEM_KEY; 2610 location.offset = 0; 2611 2612 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2613 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2614 root = btrfs_read_tree_root(tree_root, &location); 2615 if (IS_ERR(root)) { 2616 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2617 ret = PTR_ERR(root); 2618 goto out; 2619 } 2620 } else { 2621 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2622 fs_info->block_group_root = root; 2623 } 2624 } 2625 2626 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2627 root = btrfs_read_tree_root(tree_root, &location); 2628 if (IS_ERR(root)) { 2629 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2630 ret = PTR_ERR(root); 2631 goto out; 2632 } 2633 } else { 2634 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2635 fs_info->dev_root = root; 2636 } 2637 /* Initialize fs_info for all devices in any case */ 2638 ret = btrfs_init_devices_late(fs_info); 2639 if (ret) 2640 goto out; 2641 2642 /* 2643 * This tree can share blocks with some other fs tree during relocation 2644 * and we need a proper setup by btrfs_get_fs_root 2645 */ 2646 root = btrfs_get_fs_root(tree_root->fs_info, 2647 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2648 if (IS_ERR(root)) { 2649 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2650 ret = PTR_ERR(root); 2651 goto out; 2652 } 2653 } else { 2654 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2655 fs_info->data_reloc_root = root; 2656 } 2657 2658 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2659 root = btrfs_read_tree_root(tree_root, &location); 2660 if (!IS_ERR(root)) { 2661 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2662 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2663 fs_info->quota_root = root; 2664 } 2665 2666 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2667 root = btrfs_read_tree_root(tree_root, &location); 2668 if (IS_ERR(root)) { 2669 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2670 ret = PTR_ERR(root); 2671 if (ret != -ENOENT) 2672 goto out; 2673 } 2674 } else { 2675 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2676 fs_info->uuid_root = root; 2677 } 2678 2679 return 0; 2680 out: 2681 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2682 location.objectid, ret); 2683 return ret; 2684 } 2685 2686 /* 2687 * Real super block validation 2688 * NOTE: super csum type and incompat features will not be checked here. 2689 * 2690 * @sb: super block to check 2691 * @mirror_num: the super block number to check its bytenr: 2692 * 0 the primary (1st) sb 2693 * 1, 2 2nd and 3rd backup copy 2694 * -1 skip bytenr check 2695 */ 2696 int btrfs_validate_super(struct btrfs_fs_info *fs_info, 2697 struct btrfs_super_block *sb, int mirror_num) 2698 { 2699 u64 nodesize = btrfs_super_nodesize(sb); 2700 u64 sectorsize = btrfs_super_sectorsize(sb); 2701 int ret = 0; 2702 2703 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2704 btrfs_err(fs_info, "no valid FS found"); 2705 ret = -EINVAL; 2706 } 2707 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2708 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2709 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2710 ret = -EINVAL; 2711 } 2712 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2713 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2714 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2715 ret = -EINVAL; 2716 } 2717 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2718 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2719 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2720 ret = -EINVAL; 2721 } 2722 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2723 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2724 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2725 ret = -EINVAL; 2726 } 2727 2728 /* 2729 * Check sectorsize and nodesize first, other check will need it. 2730 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2731 */ 2732 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2733 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2734 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2735 ret = -EINVAL; 2736 } 2737 2738 /* 2739 * We only support at most two sectorsizes: 4K and PAGE_SIZE. 2740 * 2741 * We can support 16K sectorsize with 64K page size without problem, 2742 * but such sectorsize/pagesize combination doesn't make much sense. 2743 * 4K will be our future standard, PAGE_SIZE is supported from the very 2744 * beginning. 2745 */ 2746 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { 2747 btrfs_err(fs_info, 2748 "sectorsize %llu not yet supported for page size %lu", 2749 sectorsize, PAGE_SIZE); 2750 ret = -EINVAL; 2751 } 2752 2753 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2754 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2755 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2756 ret = -EINVAL; 2757 } 2758 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2759 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2760 le32_to_cpu(sb->__unused_leafsize), nodesize); 2761 ret = -EINVAL; 2762 } 2763 2764 /* Root alignment check */ 2765 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2766 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2767 btrfs_super_root(sb)); 2768 ret = -EINVAL; 2769 } 2770 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2771 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2772 btrfs_super_chunk_root(sb)); 2773 ret = -EINVAL; 2774 } 2775 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2776 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2777 btrfs_super_log_root(sb)); 2778 ret = -EINVAL; 2779 } 2780 2781 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2782 BTRFS_FSID_SIZE)) { 2783 btrfs_err(fs_info, 2784 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2785 fs_info->super_copy->fsid, fs_info->fs_devices->fsid); 2786 ret = -EINVAL; 2787 } 2788 2789 if (btrfs_fs_incompat(fs_info, METADATA_UUID) && 2790 memcmp(fs_info->fs_devices->metadata_uuid, 2791 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) { 2792 btrfs_err(fs_info, 2793 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2794 fs_info->super_copy->metadata_uuid, 2795 fs_info->fs_devices->metadata_uuid); 2796 ret = -EINVAL; 2797 } 2798 2799 /* 2800 * Artificial requirement for block-group-tree to force newer features 2801 * (free-space-tree, no-holes) so the test matrix is smaller. 2802 */ 2803 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2804 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2805 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2806 btrfs_err(fs_info, 2807 "block-group-tree feature requires fres-space-tree and no-holes"); 2808 ret = -EINVAL; 2809 } 2810 2811 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2812 BTRFS_FSID_SIZE) != 0) { 2813 btrfs_err(fs_info, 2814 "dev_item UUID does not match metadata fsid: %pU != %pU", 2815 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2816 ret = -EINVAL; 2817 } 2818 2819 /* 2820 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2821 * done later 2822 */ 2823 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2824 btrfs_err(fs_info, "bytes_used is too small %llu", 2825 btrfs_super_bytes_used(sb)); 2826 ret = -EINVAL; 2827 } 2828 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2829 btrfs_err(fs_info, "invalid stripesize %u", 2830 btrfs_super_stripesize(sb)); 2831 ret = -EINVAL; 2832 } 2833 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2834 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2835 btrfs_super_num_devices(sb)); 2836 if (btrfs_super_num_devices(sb) == 0) { 2837 btrfs_err(fs_info, "number of devices is 0"); 2838 ret = -EINVAL; 2839 } 2840 2841 if (mirror_num >= 0 && 2842 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2843 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2844 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2845 ret = -EINVAL; 2846 } 2847 2848 /* 2849 * Obvious sys_chunk_array corruptions, it must hold at least one key 2850 * and one chunk 2851 */ 2852 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2853 btrfs_err(fs_info, "system chunk array too big %u > %u", 2854 btrfs_super_sys_array_size(sb), 2855 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2856 ret = -EINVAL; 2857 } 2858 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2859 + sizeof(struct btrfs_chunk)) { 2860 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2861 btrfs_super_sys_array_size(sb), 2862 sizeof(struct btrfs_disk_key) 2863 + sizeof(struct btrfs_chunk)); 2864 ret = -EINVAL; 2865 } 2866 2867 /* 2868 * The generation is a global counter, we'll trust it more than the others 2869 * but it's still possible that it's the one that's wrong. 2870 */ 2871 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2872 btrfs_warn(fs_info, 2873 "suspicious: generation < chunk_root_generation: %llu < %llu", 2874 btrfs_super_generation(sb), 2875 btrfs_super_chunk_root_generation(sb)); 2876 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2877 && btrfs_super_cache_generation(sb) != (u64)-1) 2878 btrfs_warn(fs_info, 2879 "suspicious: generation < cache_generation: %llu < %llu", 2880 btrfs_super_generation(sb), 2881 btrfs_super_cache_generation(sb)); 2882 2883 return ret; 2884 } 2885 2886 /* 2887 * Validation of super block at mount time. 2888 * Some checks already done early at mount time, like csum type and incompat 2889 * flags will be skipped. 2890 */ 2891 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2892 { 2893 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2894 } 2895 2896 /* 2897 * Validation of super block at write time. 2898 * Some checks like bytenr check will be skipped as their values will be 2899 * overwritten soon. 2900 * Extra checks like csum type and incompat flags will be done here. 2901 */ 2902 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2903 struct btrfs_super_block *sb) 2904 { 2905 int ret; 2906 2907 ret = btrfs_validate_super(fs_info, sb, -1); 2908 if (ret < 0) 2909 goto out; 2910 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2911 ret = -EUCLEAN; 2912 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2913 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2914 goto out; 2915 } 2916 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2917 ret = -EUCLEAN; 2918 btrfs_err(fs_info, 2919 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2920 btrfs_super_incompat_flags(sb), 2921 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2922 goto out; 2923 } 2924 out: 2925 if (ret < 0) 2926 btrfs_err(fs_info, 2927 "super block corruption detected before writing it to disk"); 2928 return ret; 2929 } 2930 2931 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2932 { 2933 struct btrfs_tree_parent_check check = { 2934 .level = level, 2935 .transid = gen, 2936 .owner_root = root->root_key.objectid 2937 }; 2938 int ret = 0; 2939 2940 root->node = read_tree_block(root->fs_info, bytenr, &check); 2941 if (IS_ERR(root->node)) { 2942 ret = PTR_ERR(root->node); 2943 root->node = NULL; 2944 return ret; 2945 } 2946 if (!extent_buffer_uptodate(root->node)) { 2947 free_extent_buffer(root->node); 2948 root->node = NULL; 2949 return -EIO; 2950 } 2951 2952 btrfs_set_root_node(&root->root_item, root->node); 2953 root->commit_root = btrfs_root_node(root); 2954 btrfs_set_root_refs(&root->root_item, 1); 2955 return ret; 2956 } 2957 2958 static int load_important_roots(struct btrfs_fs_info *fs_info) 2959 { 2960 struct btrfs_super_block *sb = fs_info->super_copy; 2961 u64 gen, bytenr; 2962 int level, ret; 2963 2964 bytenr = btrfs_super_root(sb); 2965 gen = btrfs_super_generation(sb); 2966 level = btrfs_super_root_level(sb); 2967 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2968 if (ret) { 2969 btrfs_warn(fs_info, "couldn't read tree root"); 2970 return ret; 2971 } 2972 return 0; 2973 } 2974 2975 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2976 { 2977 int backup_index = find_newest_super_backup(fs_info); 2978 struct btrfs_super_block *sb = fs_info->super_copy; 2979 struct btrfs_root *tree_root = fs_info->tree_root; 2980 bool handle_error = false; 2981 int ret = 0; 2982 int i; 2983 2984 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2985 if (handle_error) { 2986 if (!IS_ERR(tree_root->node)) 2987 free_extent_buffer(tree_root->node); 2988 tree_root->node = NULL; 2989 2990 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2991 break; 2992 2993 free_root_pointers(fs_info, 0); 2994 2995 /* 2996 * Don't use the log in recovery mode, it won't be 2997 * valid 2998 */ 2999 btrfs_set_super_log_root(sb, 0); 3000 3001 /* We can't trust the free space cache either */ 3002 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3003 3004 ret = read_backup_root(fs_info, i); 3005 backup_index = ret; 3006 if (ret < 0) 3007 return ret; 3008 } 3009 3010 ret = load_important_roots(fs_info); 3011 if (ret) { 3012 handle_error = true; 3013 continue; 3014 } 3015 3016 /* 3017 * No need to hold btrfs_root::objectid_mutex since the fs 3018 * hasn't been fully initialised and we are the only user 3019 */ 3020 ret = btrfs_init_root_free_objectid(tree_root); 3021 if (ret < 0) { 3022 handle_error = true; 3023 continue; 3024 } 3025 3026 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 3027 3028 ret = btrfs_read_roots(fs_info); 3029 if (ret < 0) { 3030 handle_error = true; 3031 continue; 3032 } 3033 3034 /* All successful */ 3035 fs_info->generation = btrfs_header_generation(tree_root->node); 3036 fs_info->last_trans_committed = fs_info->generation; 3037 fs_info->last_reloc_trans = 0; 3038 3039 /* Always begin writing backup roots after the one being used */ 3040 if (backup_index < 0) { 3041 fs_info->backup_root_index = 0; 3042 } else { 3043 fs_info->backup_root_index = backup_index + 1; 3044 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 3045 } 3046 break; 3047 } 3048 3049 return ret; 3050 } 3051 3052 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 3053 { 3054 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 3055 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 3056 INIT_LIST_HEAD(&fs_info->trans_list); 3057 INIT_LIST_HEAD(&fs_info->dead_roots); 3058 INIT_LIST_HEAD(&fs_info->delayed_iputs); 3059 INIT_LIST_HEAD(&fs_info->delalloc_roots); 3060 INIT_LIST_HEAD(&fs_info->caching_block_groups); 3061 spin_lock_init(&fs_info->delalloc_root_lock); 3062 spin_lock_init(&fs_info->trans_lock); 3063 spin_lock_init(&fs_info->fs_roots_radix_lock); 3064 spin_lock_init(&fs_info->delayed_iput_lock); 3065 spin_lock_init(&fs_info->defrag_inodes_lock); 3066 spin_lock_init(&fs_info->super_lock); 3067 spin_lock_init(&fs_info->buffer_lock); 3068 spin_lock_init(&fs_info->unused_bgs_lock); 3069 spin_lock_init(&fs_info->treelog_bg_lock); 3070 spin_lock_init(&fs_info->zone_active_bgs_lock); 3071 spin_lock_init(&fs_info->relocation_bg_lock); 3072 rwlock_init(&fs_info->tree_mod_log_lock); 3073 rwlock_init(&fs_info->global_root_lock); 3074 mutex_init(&fs_info->unused_bg_unpin_mutex); 3075 mutex_init(&fs_info->reclaim_bgs_lock); 3076 mutex_init(&fs_info->reloc_mutex); 3077 mutex_init(&fs_info->delalloc_root_mutex); 3078 mutex_init(&fs_info->zoned_meta_io_lock); 3079 mutex_init(&fs_info->zoned_data_reloc_io_lock); 3080 seqlock_init(&fs_info->profiles_lock); 3081 3082 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 3083 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 3084 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 3085 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 3086 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start, 3087 BTRFS_LOCKDEP_TRANS_COMMIT_START); 3088 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 3089 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 3090 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 3091 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 3092 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 3093 BTRFS_LOCKDEP_TRANS_COMPLETED); 3094 3095 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 3096 INIT_LIST_HEAD(&fs_info->space_info); 3097 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 3098 INIT_LIST_HEAD(&fs_info->unused_bgs); 3099 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 3100 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 3101 #ifdef CONFIG_BTRFS_DEBUG 3102 INIT_LIST_HEAD(&fs_info->allocated_roots); 3103 INIT_LIST_HEAD(&fs_info->allocated_ebs); 3104 spin_lock_init(&fs_info->eb_leak_lock); 3105 #endif 3106 extent_map_tree_init(&fs_info->mapping_tree); 3107 btrfs_init_block_rsv(&fs_info->global_block_rsv, 3108 BTRFS_BLOCK_RSV_GLOBAL); 3109 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 3110 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 3111 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 3112 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 3113 BTRFS_BLOCK_RSV_DELOPS); 3114 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 3115 BTRFS_BLOCK_RSV_DELREFS); 3116 3117 atomic_set(&fs_info->async_delalloc_pages, 0); 3118 atomic_set(&fs_info->defrag_running, 0); 3119 atomic_set(&fs_info->nr_delayed_iputs, 0); 3120 atomic64_set(&fs_info->tree_mod_seq, 0); 3121 fs_info->global_root_tree = RB_ROOT; 3122 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 3123 fs_info->metadata_ratio = 0; 3124 fs_info->defrag_inodes = RB_ROOT; 3125 atomic64_set(&fs_info->free_chunk_space, 0); 3126 fs_info->tree_mod_log = RB_ROOT; 3127 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 3128 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 3129 btrfs_init_ref_verify(fs_info); 3130 3131 fs_info->thread_pool_size = min_t(unsigned long, 3132 num_online_cpus() + 2, 8); 3133 3134 INIT_LIST_HEAD(&fs_info->ordered_roots); 3135 spin_lock_init(&fs_info->ordered_root_lock); 3136 3137 btrfs_init_scrub(fs_info); 3138 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3139 fs_info->check_integrity_print_mask = 0; 3140 #endif 3141 btrfs_init_balance(fs_info); 3142 btrfs_init_async_reclaim_work(fs_info); 3143 3144 rwlock_init(&fs_info->block_group_cache_lock); 3145 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 3146 3147 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 3148 IO_TREE_FS_EXCLUDED_EXTENTS); 3149 3150 mutex_init(&fs_info->ordered_operations_mutex); 3151 mutex_init(&fs_info->tree_log_mutex); 3152 mutex_init(&fs_info->chunk_mutex); 3153 mutex_init(&fs_info->transaction_kthread_mutex); 3154 mutex_init(&fs_info->cleaner_mutex); 3155 mutex_init(&fs_info->ro_block_group_mutex); 3156 init_rwsem(&fs_info->commit_root_sem); 3157 init_rwsem(&fs_info->cleanup_work_sem); 3158 init_rwsem(&fs_info->subvol_sem); 3159 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 3160 3161 btrfs_init_dev_replace_locks(fs_info); 3162 btrfs_init_qgroup(fs_info); 3163 btrfs_discard_init(fs_info); 3164 3165 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 3166 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 3167 3168 init_waitqueue_head(&fs_info->transaction_throttle); 3169 init_waitqueue_head(&fs_info->transaction_wait); 3170 init_waitqueue_head(&fs_info->transaction_blocked_wait); 3171 init_waitqueue_head(&fs_info->async_submit_wait); 3172 init_waitqueue_head(&fs_info->delayed_iputs_wait); 3173 3174 /* Usable values until the real ones are cached from the superblock */ 3175 fs_info->nodesize = 4096; 3176 fs_info->sectorsize = 4096; 3177 fs_info->sectorsize_bits = ilog2(4096); 3178 fs_info->stripesize = 4096; 3179 3180 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 3181 3182 spin_lock_init(&fs_info->swapfile_pins_lock); 3183 fs_info->swapfile_pins = RB_ROOT; 3184 3185 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 3186 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 3187 } 3188 3189 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 3190 { 3191 int ret; 3192 3193 fs_info->sb = sb; 3194 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 3195 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 3196 3197 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 3198 if (ret) 3199 return ret; 3200 3201 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 3202 if (ret) 3203 return ret; 3204 3205 fs_info->dirty_metadata_batch = PAGE_SIZE * 3206 (1 + ilog2(nr_cpu_ids)); 3207 3208 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 3209 if (ret) 3210 return ret; 3211 3212 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 3213 GFP_KERNEL); 3214 if (ret) 3215 return ret; 3216 3217 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 3218 GFP_KERNEL); 3219 if (!fs_info->delayed_root) 3220 return -ENOMEM; 3221 btrfs_init_delayed_root(fs_info->delayed_root); 3222 3223 if (sb_rdonly(sb)) 3224 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 3225 3226 return btrfs_alloc_stripe_hash_table(fs_info); 3227 } 3228 3229 static int btrfs_uuid_rescan_kthread(void *data) 3230 { 3231 struct btrfs_fs_info *fs_info = data; 3232 int ret; 3233 3234 /* 3235 * 1st step is to iterate through the existing UUID tree and 3236 * to delete all entries that contain outdated data. 3237 * 2nd step is to add all missing entries to the UUID tree. 3238 */ 3239 ret = btrfs_uuid_tree_iterate(fs_info); 3240 if (ret < 0) { 3241 if (ret != -EINTR) 3242 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 3243 ret); 3244 up(&fs_info->uuid_tree_rescan_sem); 3245 return ret; 3246 } 3247 return btrfs_uuid_scan_kthread(data); 3248 } 3249 3250 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 3251 { 3252 struct task_struct *task; 3253 3254 down(&fs_info->uuid_tree_rescan_sem); 3255 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 3256 if (IS_ERR(task)) { 3257 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3258 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 3259 up(&fs_info->uuid_tree_rescan_sem); 3260 return PTR_ERR(task); 3261 } 3262 3263 return 0; 3264 } 3265 3266 /* 3267 * Some options only have meaning at mount time and shouldn't persist across 3268 * remounts, or be displayed. Clear these at the end of mount and remount 3269 * code paths. 3270 */ 3271 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 3272 { 3273 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3274 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 3275 } 3276 3277 /* 3278 * Mounting logic specific to read-write file systems. Shared by open_ctree 3279 * and btrfs_remount when remounting from read-only to read-write. 3280 */ 3281 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 3282 { 3283 int ret; 3284 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 3285 bool clear_free_space_tree = false; 3286 3287 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3288 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3289 clear_free_space_tree = true; 3290 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3291 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3292 btrfs_warn(fs_info, "free space tree is invalid"); 3293 clear_free_space_tree = true; 3294 } 3295 3296 if (clear_free_space_tree) { 3297 btrfs_info(fs_info, "clearing free space tree"); 3298 ret = btrfs_clear_free_space_tree(fs_info); 3299 if (ret) { 3300 btrfs_warn(fs_info, 3301 "failed to clear free space tree: %d", ret); 3302 goto out; 3303 } 3304 } 3305 3306 /* 3307 * btrfs_find_orphan_roots() is responsible for finding all the dead 3308 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3309 * them into the fs_info->fs_roots_radix tree. This must be done before 3310 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3311 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3312 * item before the root's tree is deleted - this means that if we unmount 3313 * or crash before the deletion completes, on the next mount we will not 3314 * delete what remains of the tree because the orphan item does not 3315 * exists anymore, which is what tells us we have a pending deletion. 3316 */ 3317 ret = btrfs_find_orphan_roots(fs_info); 3318 if (ret) 3319 goto out; 3320 3321 ret = btrfs_cleanup_fs_roots(fs_info); 3322 if (ret) 3323 goto out; 3324 3325 down_read(&fs_info->cleanup_work_sem); 3326 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3327 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3328 up_read(&fs_info->cleanup_work_sem); 3329 goto out; 3330 } 3331 up_read(&fs_info->cleanup_work_sem); 3332 3333 mutex_lock(&fs_info->cleaner_mutex); 3334 ret = btrfs_recover_relocation(fs_info); 3335 mutex_unlock(&fs_info->cleaner_mutex); 3336 if (ret < 0) { 3337 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3338 goto out; 3339 } 3340 3341 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3342 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3343 btrfs_info(fs_info, "creating free space tree"); 3344 ret = btrfs_create_free_space_tree(fs_info); 3345 if (ret) { 3346 btrfs_warn(fs_info, 3347 "failed to create free space tree: %d", ret); 3348 goto out; 3349 } 3350 } 3351 3352 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3353 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3354 if (ret) 3355 goto out; 3356 } 3357 3358 ret = btrfs_resume_balance_async(fs_info); 3359 if (ret) 3360 goto out; 3361 3362 ret = btrfs_resume_dev_replace_async(fs_info); 3363 if (ret) { 3364 btrfs_warn(fs_info, "failed to resume dev_replace"); 3365 goto out; 3366 } 3367 3368 btrfs_qgroup_rescan_resume(fs_info); 3369 3370 if (!fs_info->uuid_root) { 3371 btrfs_info(fs_info, "creating UUID tree"); 3372 ret = btrfs_create_uuid_tree(fs_info); 3373 if (ret) { 3374 btrfs_warn(fs_info, 3375 "failed to create the UUID tree %d", ret); 3376 goto out; 3377 } 3378 } 3379 3380 out: 3381 return ret; 3382 } 3383 3384 /* 3385 * Do various sanity and dependency checks of different features. 3386 * 3387 * @is_rw_mount: If the mount is read-write. 3388 * 3389 * This is the place for less strict checks (like for subpage or artificial 3390 * feature dependencies). 3391 * 3392 * For strict checks or possible corruption detection, see 3393 * btrfs_validate_super(). 3394 * 3395 * This should be called after btrfs_parse_options(), as some mount options 3396 * (space cache related) can modify on-disk format like free space tree and 3397 * screw up certain feature dependencies. 3398 */ 3399 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3400 { 3401 struct btrfs_super_block *disk_super = fs_info->super_copy; 3402 u64 incompat = btrfs_super_incompat_flags(disk_super); 3403 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3404 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3405 3406 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3407 btrfs_err(fs_info, 3408 "cannot mount because of unknown incompat features (0x%llx)", 3409 incompat); 3410 return -EINVAL; 3411 } 3412 3413 /* Runtime limitation for mixed block groups. */ 3414 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3415 (fs_info->sectorsize != fs_info->nodesize)) { 3416 btrfs_err(fs_info, 3417 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3418 fs_info->nodesize, fs_info->sectorsize); 3419 return -EINVAL; 3420 } 3421 3422 /* Mixed backref is an always-enabled feature. */ 3423 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3424 3425 /* Set compression related flags just in case. */ 3426 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3427 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3428 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3429 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3430 3431 /* 3432 * An ancient flag, which should really be marked deprecated. 3433 * Such runtime limitation doesn't really need a incompat flag. 3434 */ 3435 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3436 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3437 3438 if (compat_ro_unsupp && is_rw_mount) { 3439 btrfs_err(fs_info, 3440 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3441 compat_ro); 3442 return -EINVAL; 3443 } 3444 3445 /* 3446 * We have unsupported RO compat features, although RO mounted, we 3447 * should not cause any metadata writes, including log replay. 3448 * Or we could screw up whatever the new feature requires. 3449 */ 3450 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3451 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3452 btrfs_err(fs_info, 3453 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3454 compat_ro); 3455 return -EINVAL; 3456 } 3457 3458 /* 3459 * Artificial limitations for block group tree, to force 3460 * block-group-tree to rely on no-holes and free-space-tree. 3461 */ 3462 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3463 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3464 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3465 btrfs_err(fs_info, 3466 "block-group-tree feature requires no-holes and free-space-tree features"); 3467 return -EINVAL; 3468 } 3469 3470 /* 3471 * Subpage runtime limitation on v1 cache. 3472 * 3473 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3474 * we're already defaulting to v2 cache, no need to bother v1 as it's 3475 * going to be deprecated anyway. 3476 */ 3477 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3478 btrfs_warn(fs_info, 3479 "v1 space cache is not supported for page size %lu with sectorsize %u", 3480 PAGE_SIZE, fs_info->sectorsize); 3481 return -EINVAL; 3482 } 3483 3484 /* This can be called by remount, we need to protect the super block. */ 3485 spin_lock(&fs_info->super_lock); 3486 btrfs_set_super_incompat_flags(disk_super, incompat); 3487 spin_unlock(&fs_info->super_lock); 3488 3489 return 0; 3490 } 3491 3492 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3493 char *options) 3494 { 3495 u32 sectorsize; 3496 u32 nodesize; 3497 u32 stripesize; 3498 u64 generation; 3499 u64 features; 3500 u16 csum_type; 3501 struct btrfs_super_block *disk_super; 3502 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3503 struct btrfs_root *tree_root; 3504 struct btrfs_root *chunk_root; 3505 int ret; 3506 int err = -EINVAL; 3507 int level; 3508 3509 ret = init_mount_fs_info(fs_info, sb); 3510 if (ret) { 3511 err = ret; 3512 goto fail; 3513 } 3514 3515 /* These need to be init'ed before we start creating inodes and such. */ 3516 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3517 GFP_KERNEL); 3518 fs_info->tree_root = tree_root; 3519 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3520 GFP_KERNEL); 3521 fs_info->chunk_root = chunk_root; 3522 if (!tree_root || !chunk_root) { 3523 err = -ENOMEM; 3524 goto fail; 3525 } 3526 3527 fs_info->btree_inode = new_inode(sb); 3528 if (!fs_info->btree_inode) { 3529 err = -ENOMEM; 3530 goto fail; 3531 } 3532 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 3533 btrfs_init_btree_inode(fs_info); 3534 3535 invalidate_bdev(fs_devices->latest_dev->bdev); 3536 3537 /* 3538 * Read super block and check the signature bytes only 3539 */ 3540 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3541 if (IS_ERR(disk_super)) { 3542 err = PTR_ERR(disk_super); 3543 goto fail_alloc; 3544 } 3545 3546 /* 3547 * Verify the type first, if that or the checksum value are 3548 * corrupted, we'll find out 3549 */ 3550 csum_type = btrfs_super_csum_type(disk_super); 3551 if (!btrfs_supported_super_csum(csum_type)) { 3552 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3553 csum_type); 3554 err = -EINVAL; 3555 btrfs_release_disk_super(disk_super); 3556 goto fail_alloc; 3557 } 3558 3559 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3560 3561 ret = btrfs_init_csum_hash(fs_info, csum_type); 3562 if (ret) { 3563 err = ret; 3564 btrfs_release_disk_super(disk_super); 3565 goto fail_alloc; 3566 } 3567 3568 /* 3569 * We want to check superblock checksum, the type is stored inside. 3570 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3571 */ 3572 if (btrfs_check_super_csum(fs_info, disk_super)) { 3573 btrfs_err(fs_info, "superblock checksum mismatch"); 3574 err = -EINVAL; 3575 btrfs_release_disk_super(disk_super); 3576 goto fail_alloc; 3577 } 3578 3579 /* 3580 * super_copy is zeroed at allocation time and we never touch the 3581 * following bytes up to INFO_SIZE, the checksum is calculated from 3582 * the whole block of INFO_SIZE 3583 */ 3584 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3585 btrfs_release_disk_super(disk_super); 3586 3587 disk_super = fs_info->super_copy; 3588 3589 3590 features = btrfs_super_flags(disk_super); 3591 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 3592 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 3593 btrfs_set_super_flags(disk_super, features); 3594 btrfs_info(fs_info, 3595 "found metadata UUID change in progress flag, clearing"); 3596 } 3597 3598 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3599 sizeof(*fs_info->super_for_commit)); 3600 3601 ret = btrfs_validate_mount_super(fs_info); 3602 if (ret) { 3603 btrfs_err(fs_info, "superblock contains fatal errors"); 3604 err = -EINVAL; 3605 goto fail_alloc; 3606 } 3607 3608 if (!btrfs_super_root(disk_super)) 3609 goto fail_alloc; 3610 3611 /* check FS state, whether FS is broken. */ 3612 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3613 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 3614 3615 /* 3616 * In the long term, we'll store the compression type in the super 3617 * block, and it'll be used for per file compression control. 3618 */ 3619 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3620 3621 3622 /* Set up fs_info before parsing mount options */ 3623 nodesize = btrfs_super_nodesize(disk_super); 3624 sectorsize = btrfs_super_sectorsize(disk_super); 3625 stripesize = sectorsize; 3626 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3627 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3628 3629 fs_info->nodesize = nodesize; 3630 fs_info->sectorsize = sectorsize; 3631 fs_info->sectorsize_bits = ilog2(sectorsize); 3632 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3633 fs_info->stripesize = stripesize; 3634 3635 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3636 if (ret) { 3637 err = ret; 3638 goto fail_alloc; 3639 } 3640 3641 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3642 if (ret < 0) { 3643 err = ret; 3644 goto fail_alloc; 3645 } 3646 3647 if (sectorsize < PAGE_SIZE) { 3648 struct btrfs_subpage_info *subpage_info; 3649 3650 /* 3651 * V1 space cache has some hardcoded PAGE_SIZE usage, and is 3652 * going to be deprecated. 3653 * 3654 * Force to use v2 cache for subpage case. 3655 */ 3656 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 3657 btrfs_set_and_info(fs_info, FREE_SPACE_TREE, 3658 "forcing free space tree for sector size %u with page size %lu", 3659 sectorsize, PAGE_SIZE); 3660 3661 btrfs_warn(fs_info, 3662 "read-write for sector size %u with page size %lu is experimental", 3663 sectorsize, PAGE_SIZE); 3664 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL); 3665 if (!subpage_info) 3666 goto fail_alloc; 3667 btrfs_init_subpage_info(subpage_info, sectorsize); 3668 fs_info->subpage_info = subpage_info; 3669 } 3670 3671 ret = btrfs_init_workqueues(fs_info); 3672 if (ret) { 3673 err = ret; 3674 goto fail_sb_buffer; 3675 } 3676 3677 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3678 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3679 3680 sb->s_blocksize = sectorsize; 3681 sb->s_blocksize_bits = blksize_bits(sectorsize); 3682 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3683 3684 mutex_lock(&fs_info->chunk_mutex); 3685 ret = btrfs_read_sys_array(fs_info); 3686 mutex_unlock(&fs_info->chunk_mutex); 3687 if (ret) { 3688 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3689 goto fail_sb_buffer; 3690 } 3691 3692 generation = btrfs_super_chunk_root_generation(disk_super); 3693 level = btrfs_super_chunk_root_level(disk_super); 3694 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3695 generation, level); 3696 if (ret) { 3697 btrfs_err(fs_info, "failed to read chunk root"); 3698 goto fail_tree_roots; 3699 } 3700 3701 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3702 offsetof(struct btrfs_header, chunk_tree_uuid), 3703 BTRFS_UUID_SIZE); 3704 3705 ret = btrfs_read_chunk_tree(fs_info); 3706 if (ret) { 3707 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3708 goto fail_tree_roots; 3709 } 3710 3711 /* 3712 * At this point we know all the devices that make this filesystem, 3713 * including the seed devices but we don't know yet if the replace 3714 * target is required. So free devices that are not part of this 3715 * filesystem but skip the replace target device which is checked 3716 * below in btrfs_init_dev_replace(). 3717 */ 3718 btrfs_free_extra_devids(fs_devices); 3719 if (!fs_devices->latest_dev->bdev) { 3720 btrfs_err(fs_info, "failed to read devices"); 3721 goto fail_tree_roots; 3722 } 3723 3724 ret = init_tree_roots(fs_info); 3725 if (ret) 3726 goto fail_tree_roots; 3727 3728 /* 3729 * Get zone type information of zoned block devices. This will also 3730 * handle emulation of a zoned filesystem if a regular device has the 3731 * zoned incompat feature flag set. 3732 */ 3733 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3734 if (ret) { 3735 btrfs_err(fs_info, 3736 "zoned: failed to read device zone info: %d", 3737 ret); 3738 goto fail_block_groups; 3739 } 3740 3741 /* 3742 * If we have a uuid root and we're not being told to rescan we need to 3743 * check the generation here so we can set the 3744 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3745 * transaction during a balance or the log replay without updating the 3746 * uuid generation, and then if we crash we would rescan the uuid tree, 3747 * even though it was perfectly fine. 3748 */ 3749 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3750 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3751 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3752 3753 ret = btrfs_verify_dev_extents(fs_info); 3754 if (ret) { 3755 btrfs_err(fs_info, 3756 "failed to verify dev extents against chunks: %d", 3757 ret); 3758 goto fail_block_groups; 3759 } 3760 ret = btrfs_recover_balance(fs_info); 3761 if (ret) { 3762 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3763 goto fail_block_groups; 3764 } 3765 3766 ret = btrfs_init_dev_stats(fs_info); 3767 if (ret) { 3768 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3769 goto fail_block_groups; 3770 } 3771 3772 ret = btrfs_init_dev_replace(fs_info); 3773 if (ret) { 3774 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3775 goto fail_block_groups; 3776 } 3777 3778 ret = btrfs_check_zoned_mode(fs_info); 3779 if (ret) { 3780 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3781 ret); 3782 goto fail_block_groups; 3783 } 3784 3785 ret = btrfs_sysfs_add_fsid(fs_devices); 3786 if (ret) { 3787 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3788 ret); 3789 goto fail_block_groups; 3790 } 3791 3792 ret = btrfs_sysfs_add_mounted(fs_info); 3793 if (ret) { 3794 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3795 goto fail_fsdev_sysfs; 3796 } 3797 3798 ret = btrfs_init_space_info(fs_info); 3799 if (ret) { 3800 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3801 goto fail_sysfs; 3802 } 3803 3804 ret = btrfs_read_block_groups(fs_info); 3805 if (ret) { 3806 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3807 goto fail_sysfs; 3808 } 3809 3810 btrfs_free_zone_cache(fs_info); 3811 3812 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3813 !btrfs_check_rw_degradable(fs_info, NULL)) { 3814 btrfs_warn(fs_info, 3815 "writable mount is not allowed due to too many missing devices"); 3816 goto fail_sysfs; 3817 } 3818 3819 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3820 "btrfs-cleaner"); 3821 if (IS_ERR(fs_info->cleaner_kthread)) 3822 goto fail_sysfs; 3823 3824 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3825 tree_root, 3826 "btrfs-transaction"); 3827 if (IS_ERR(fs_info->transaction_kthread)) 3828 goto fail_cleaner; 3829 3830 if (!btrfs_test_opt(fs_info, NOSSD) && 3831 !fs_info->fs_devices->rotating) { 3832 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3833 } 3834 3835 /* 3836 * For devices supporting discard turn on discard=async automatically, 3837 * unless it's already set or disabled. This could be turned off by 3838 * nodiscard for the same mount. 3839 */ 3840 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) || 3841 btrfs_test_opt(fs_info, DISCARD_ASYNC) || 3842 btrfs_test_opt(fs_info, NODISCARD)) && 3843 fs_info->fs_devices->discardable) { 3844 btrfs_set_and_info(fs_info, DISCARD_ASYNC, 3845 "auto enabling async discard"); 3846 btrfs_clear_opt(fs_info->mount_opt, NODISCARD); 3847 } 3848 3849 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3850 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3851 ret = btrfsic_mount(fs_info, fs_devices, 3852 btrfs_test_opt(fs_info, 3853 CHECK_INTEGRITY_DATA) ? 1 : 0, 3854 fs_info->check_integrity_print_mask); 3855 if (ret) 3856 btrfs_warn(fs_info, 3857 "failed to initialize integrity check module: %d", 3858 ret); 3859 } 3860 #endif 3861 ret = btrfs_read_qgroup_config(fs_info); 3862 if (ret) 3863 goto fail_trans_kthread; 3864 3865 if (btrfs_build_ref_tree(fs_info)) 3866 btrfs_err(fs_info, "couldn't build ref tree"); 3867 3868 /* do not make disk changes in broken FS or nologreplay is given */ 3869 if (btrfs_super_log_root(disk_super) != 0 && 3870 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3871 btrfs_info(fs_info, "start tree-log replay"); 3872 ret = btrfs_replay_log(fs_info, fs_devices); 3873 if (ret) { 3874 err = ret; 3875 goto fail_qgroup; 3876 } 3877 } 3878 3879 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3880 if (IS_ERR(fs_info->fs_root)) { 3881 err = PTR_ERR(fs_info->fs_root); 3882 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3883 fs_info->fs_root = NULL; 3884 goto fail_qgroup; 3885 } 3886 3887 if (sb_rdonly(sb)) 3888 goto clear_oneshot; 3889 3890 ret = btrfs_start_pre_rw_mount(fs_info); 3891 if (ret) { 3892 close_ctree(fs_info); 3893 return ret; 3894 } 3895 btrfs_discard_resume(fs_info); 3896 3897 if (fs_info->uuid_root && 3898 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3899 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3900 btrfs_info(fs_info, "checking UUID tree"); 3901 ret = btrfs_check_uuid_tree(fs_info); 3902 if (ret) { 3903 btrfs_warn(fs_info, 3904 "failed to check the UUID tree: %d", ret); 3905 close_ctree(fs_info); 3906 return ret; 3907 } 3908 } 3909 3910 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3911 3912 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3913 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3914 wake_up_process(fs_info->cleaner_kthread); 3915 3916 clear_oneshot: 3917 btrfs_clear_oneshot_options(fs_info); 3918 return 0; 3919 3920 fail_qgroup: 3921 btrfs_free_qgroup_config(fs_info); 3922 fail_trans_kthread: 3923 kthread_stop(fs_info->transaction_kthread); 3924 btrfs_cleanup_transaction(fs_info); 3925 btrfs_free_fs_roots(fs_info); 3926 fail_cleaner: 3927 kthread_stop(fs_info->cleaner_kthread); 3928 3929 /* 3930 * make sure we're done with the btree inode before we stop our 3931 * kthreads 3932 */ 3933 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3934 3935 fail_sysfs: 3936 btrfs_sysfs_remove_mounted(fs_info); 3937 3938 fail_fsdev_sysfs: 3939 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3940 3941 fail_block_groups: 3942 btrfs_put_block_group_cache(fs_info); 3943 3944 fail_tree_roots: 3945 if (fs_info->data_reloc_root) 3946 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3947 free_root_pointers(fs_info, true); 3948 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3949 3950 fail_sb_buffer: 3951 btrfs_stop_all_workers(fs_info); 3952 btrfs_free_block_groups(fs_info); 3953 fail_alloc: 3954 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3955 3956 iput(fs_info->btree_inode); 3957 fail: 3958 btrfs_close_devices(fs_info->fs_devices); 3959 return err; 3960 } 3961 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3962 3963 static void btrfs_end_super_write(struct bio *bio) 3964 { 3965 struct btrfs_device *device = bio->bi_private; 3966 struct bio_vec *bvec; 3967 struct bvec_iter_all iter_all; 3968 struct page *page; 3969 3970 bio_for_each_segment_all(bvec, bio, iter_all) { 3971 page = bvec->bv_page; 3972 3973 if (bio->bi_status) { 3974 btrfs_warn_rl_in_rcu(device->fs_info, 3975 "lost page write due to IO error on %s (%d)", 3976 btrfs_dev_name(device), 3977 blk_status_to_errno(bio->bi_status)); 3978 ClearPageUptodate(page); 3979 SetPageError(page); 3980 btrfs_dev_stat_inc_and_print(device, 3981 BTRFS_DEV_STAT_WRITE_ERRS); 3982 } else { 3983 SetPageUptodate(page); 3984 } 3985 3986 put_page(page); 3987 unlock_page(page); 3988 } 3989 3990 bio_put(bio); 3991 } 3992 3993 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3994 int copy_num, bool drop_cache) 3995 { 3996 struct btrfs_super_block *super; 3997 struct page *page; 3998 u64 bytenr, bytenr_orig; 3999 struct address_space *mapping = bdev->bd_inode->i_mapping; 4000 int ret; 4001 4002 bytenr_orig = btrfs_sb_offset(copy_num); 4003 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 4004 if (ret == -ENOENT) 4005 return ERR_PTR(-EINVAL); 4006 else if (ret) 4007 return ERR_PTR(ret); 4008 4009 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 4010 return ERR_PTR(-EINVAL); 4011 4012 if (drop_cache) { 4013 /* This should only be called with the primary sb. */ 4014 ASSERT(copy_num == 0); 4015 4016 /* 4017 * Drop the page of the primary superblock, so later read will 4018 * always read from the device. 4019 */ 4020 invalidate_inode_pages2_range(mapping, 4021 bytenr >> PAGE_SHIFT, 4022 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 4023 } 4024 4025 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 4026 if (IS_ERR(page)) 4027 return ERR_CAST(page); 4028 4029 super = page_address(page); 4030 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 4031 btrfs_release_disk_super(super); 4032 return ERR_PTR(-ENODATA); 4033 } 4034 4035 if (btrfs_super_bytenr(super) != bytenr_orig) { 4036 btrfs_release_disk_super(super); 4037 return ERR_PTR(-EINVAL); 4038 } 4039 4040 return super; 4041 } 4042 4043 4044 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 4045 { 4046 struct btrfs_super_block *super, *latest = NULL; 4047 int i; 4048 u64 transid = 0; 4049 4050 /* we would like to check all the supers, but that would make 4051 * a btrfs mount succeed after a mkfs from a different FS. 4052 * So, we need to add a special mount option to scan for 4053 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 4054 */ 4055 for (i = 0; i < 1; i++) { 4056 super = btrfs_read_dev_one_super(bdev, i, false); 4057 if (IS_ERR(super)) 4058 continue; 4059 4060 if (!latest || btrfs_super_generation(super) > transid) { 4061 if (latest) 4062 btrfs_release_disk_super(super); 4063 4064 latest = super; 4065 transid = btrfs_super_generation(super); 4066 } 4067 } 4068 4069 return super; 4070 } 4071 4072 /* 4073 * Write superblock @sb to the @device. Do not wait for completion, all the 4074 * pages we use for writing are locked. 4075 * 4076 * Write @max_mirrors copies of the superblock, where 0 means default that fit 4077 * the expected device size at commit time. Note that max_mirrors must be 4078 * same for write and wait phases. 4079 * 4080 * Return number of errors when page is not found or submission fails. 4081 */ 4082 static int write_dev_supers(struct btrfs_device *device, 4083 struct btrfs_super_block *sb, int max_mirrors) 4084 { 4085 struct btrfs_fs_info *fs_info = device->fs_info; 4086 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 4087 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 4088 int i; 4089 int errors = 0; 4090 int ret; 4091 u64 bytenr, bytenr_orig; 4092 4093 if (max_mirrors == 0) 4094 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 4095 4096 shash->tfm = fs_info->csum_shash; 4097 4098 for (i = 0; i < max_mirrors; i++) { 4099 struct page *page; 4100 struct bio *bio; 4101 struct btrfs_super_block *disk_super; 4102 4103 bytenr_orig = btrfs_sb_offset(i); 4104 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 4105 if (ret == -ENOENT) { 4106 continue; 4107 } else if (ret < 0) { 4108 btrfs_err(device->fs_info, 4109 "couldn't get super block location for mirror %d", 4110 i); 4111 errors++; 4112 continue; 4113 } 4114 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 4115 device->commit_total_bytes) 4116 break; 4117 4118 btrfs_set_super_bytenr(sb, bytenr_orig); 4119 4120 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 4121 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 4122 sb->csum); 4123 4124 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 4125 GFP_NOFS); 4126 if (!page) { 4127 btrfs_err(device->fs_info, 4128 "couldn't get super block page for bytenr %llu", 4129 bytenr); 4130 errors++; 4131 continue; 4132 } 4133 4134 /* Bump the refcount for wait_dev_supers() */ 4135 get_page(page); 4136 4137 disk_super = page_address(page); 4138 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 4139 4140 /* 4141 * Directly use bios here instead of relying on the page cache 4142 * to do I/O, so we don't lose the ability to do integrity 4143 * checking. 4144 */ 4145 bio = bio_alloc(device->bdev, 1, 4146 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 4147 GFP_NOFS); 4148 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 4149 bio->bi_private = device; 4150 bio->bi_end_io = btrfs_end_super_write; 4151 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 4152 offset_in_page(bytenr)); 4153 4154 /* 4155 * We FUA only the first super block. The others we allow to 4156 * go down lazy and there's a short window where the on-disk 4157 * copies might still contain the older version. 4158 */ 4159 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 4160 bio->bi_opf |= REQ_FUA; 4161 4162 btrfsic_check_bio(bio); 4163 submit_bio(bio); 4164 4165 if (btrfs_advance_sb_log(device, i)) 4166 errors++; 4167 } 4168 return errors < i ? 0 : -1; 4169 } 4170 4171 /* 4172 * Wait for write completion of superblocks done by write_dev_supers, 4173 * @max_mirrors same for write and wait phases. 4174 * 4175 * Return number of errors when page is not found or not marked up to 4176 * date. 4177 */ 4178 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 4179 { 4180 int i; 4181 int errors = 0; 4182 bool primary_failed = false; 4183 int ret; 4184 u64 bytenr; 4185 4186 if (max_mirrors == 0) 4187 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 4188 4189 for (i = 0; i < max_mirrors; i++) { 4190 struct page *page; 4191 4192 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 4193 if (ret == -ENOENT) { 4194 break; 4195 } else if (ret < 0) { 4196 errors++; 4197 if (i == 0) 4198 primary_failed = true; 4199 continue; 4200 } 4201 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 4202 device->commit_total_bytes) 4203 break; 4204 4205 page = find_get_page(device->bdev->bd_inode->i_mapping, 4206 bytenr >> PAGE_SHIFT); 4207 if (!page) { 4208 errors++; 4209 if (i == 0) 4210 primary_failed = true; 4211 continue; 4212 } 4213 /* Page is submitted locked and unlocked once the IO completes */ 4214 wait_on_page_locked(page); 4215 if (PageError(page)) { 4216 errors++; 4217 if (i == 0) 4218 primary_failed = true; 4219 } 4220 4221 /* Drop our reference */ 4222 put_page(page); 4223 4224 /* Drop the reference from the writing run */ 4225 put_page(page); 4226 } 4227 4228 /* log error, force error return */ 4229 if (primary_failed) { 4230 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 4231 device->devid); 4232 return -1; 4233 } 4234 4235 return errors < i ? 0 : -1; 4236 } 4237 4238 /* 4239 * endio for the write_dev_flush, this will wake anyone waiting 4240 * for the barrier when it is done 4241 */ 4242 static void btrfs_end_empty_barrier(struct bio *bio) 4243 { 4244 bio_uninit(bio); 4245 complete(bio->bi_private); 4246 } 4247 4248 /* 4249 * Submit a flush request to the device if it supports it. Error handling is 4250 * done in the waiting counterpart. 4251 */ 4252 static void write_dev_flush(struct btrfs_device *device) 4253 { 4254 struct bio *bio = &device->flush_bio; 4255 4256 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4257 /* 4258 * When a disk has write caching disabled, we skip submission of a bio 4259 * with flush and sync requests before writing the superblock, since 4260 * it's not needed. However when the integrity checker is enabled, this 4261 * results in reports that there are metadata blocks referred by a 4262 * superblock that were not properly flushed. So don't skip the bio 4263 * submission only when the integrity checker is enabled for the sake 4264 * of simplicity, since this is a debug tool and not meant for use in 4265 * non-debug builds. 4266 */ 4267 if (!bdev_write_cache(device->bdev)) 4268 return; 4269 #endif 4270 4271 bio_init(bio, device->bdev, NULL, 0, 4272 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 4273 bio->bi_end_io = btrfs_end_empty_barrier; 4274 init_completion(&device->flush_wait); 4275 bio->bi_private = &device->flush_wait; 4276 4277 btrfsic_check_bio(bio); 4278 submit_bio(bio); 4279 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 4280 } 4281 4282 /* 4283 * If the flush bio has been submitted by write_dev_flush, wait for it. 4284 */ 4285 static blk_status_t wait_dev_flush(struct btrfs_device *device) 4286 { 4287 struct bio *bio = &device->flush_bio; 4288 4289 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 4290 return BLK_STS_OK; 4291 4292 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 4293 wait_for_completion_io(&device->flush_wait); 4294 4295 return bio->bi_status; 4296 } 4297 4298 static int check_barrier_error(struct btrfs_fs_info *fs_info) 4299 { 4300 if (!btrfs_check_rw_degradable(fs_info, NULL)) 4301 return -EIO; 4302 return 0; 4303 } 4304 4305 /* 4306 * send an empty flush down to each device in parallel, 4307 * then wait for them 4308 */ 4309 static int barrier_all_devices(struct btrfs_fs_info *info) 4310 { 4311 struct list_head *head; 4312 struct btrfs_device *dev; 4313 int errors_wait = 0; 4314 blk_status_t ret; 4315 4316 lockdep_assert_held(&info->fs_devices->device_list_mutex); 4317 /* send down all the barriers */ 4318 head = &info->fs_devices->devices; 4319 list_for_each_entry(dev, head, dev_list) { 4320 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4321 continue; 4322 if (!dev->bdev) 4323 continue; 4324 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4325 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4326 continue; 4327 4328 write_dev_flush(dev); 4329 dev->last_flush_error = BLK_STS_OK; 4330 } 4331 4332 /* wait for all the barriers */ 4333 list_for_each_entry(dev, head, dev_list) { 4334 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4335 continue; 4336 if (!dev->bdev) { 4337 errors_wait++; 4338 continue; 4339 } 4340 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4341 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4342 continue; 4343 4344 ret = wait_dev_flush(dev); 4345 if (ret) { 4346 dev->last_flush_error = ret; 4347 btrfs_dev_stat_inc_and_print(dev, 4348 BTRFS_DEV_STAT_FLUSH_ERRS); 4349 errors_wait++; 4350 } 4351 } 4352 4353 if (errors_wait) { 4354 /* 4355 * At some point we need the status of all disks 4356 * to arrive at the volume status. So error checking 4357 * is being pushed to a separate loop. 4358 */ 4359 return check_barrier_error(info); 4360 } 4361 return 0; 4362 } 4363 4364 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 4365 { 4366 int raid_type; 4367 int min_tolerated = INT_MAX; 4368 4369 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 4370 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 4371 min_tolerated = min_t(int, min_tolerated, 4372 btrfs_raid_array[BTRFS_RAID_SINGLE]. 4373 tolerated_failures); 4374 4375 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4376 if (raid_type == BTRFS_RAID_SINGLE) 4377 continue; 4378 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 4379 continue; 4380 min_tolerated = min_t(int, min_tolerated, 4381 btrfs_raid_array[raid_type]. 4382 tolerated_failures); 4383 } 4384 4385 if (min_tolerated == INT_MAX) { 4386 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4387 min_tolerated = 0; 4388 } 4389 4390 return min_tolerated; 4391 } 4392 4393 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4394 { 4395 struct list_head *head; 4396 struct btrfs_device *dev; 4397 struct btrfs_super_block *sb; 4398 struct btrfs_dev_item *dev_item; 4399 int ret; 4400 int do_barriers; 4401 int max_errors; 4402 int total_errors = 0; 4403 u64 flags; 4404 4405 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4406 4407 /* 4408 * max_mirrors == 0 indicates we're from commit_transaction, 4409 * not from fsync where the tree roots in fs_info have not 4410 * been consistent on disk. 4411 */ 4412 if (max_mirrors == 0) 4413 backup_super_roots(fs_info); 4414 4415 sb = fs_info->super_for_commit; 4416 dev_item = &sb->dev_item; 4417 4418 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4419 head = &fs_info->fs_devices->devices; 4420 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4421 4422 if (do_barriers) { 4423 ret = barrier_all_devices(fs_info); 4424 if (ret) { 4425 mutex_unlock( 4426 &fs_info->fs_devices->device_list_mutex); 4427 btrfs_handle_fs_error(fs_info, ret, 4428 "errors while submitting device barriers."); 4429 return ret; 4430 } 4431 } 4432 4433 list_for_each_entry(dev, head, dev_list) { 4434 if (!dev->bdev) { 4435 total_errors++; 4436 continue; 4437 } 4438 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4439 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4440 continue; 4441 4442 btrfs_set_stack_device_generation(dev_item, 0); 4443 btrfs_set_stack_device_type(dev_item, dev->type); 4444 btrfs_set_stack_device_id(dev_item, dev->devid); 4445 btrfs_set_stack_device_total_bytes(dev_item, 4446 dev->commit_total_bytes); 4447 btrfs_set_stack_device_bytes_used(dev_item, 4448 dev->commit_bytes_used); 4449 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4450 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4451 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4452 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4453 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4454 BTRFS_FSID_SIZE); 4455 4456 flags = btrfs_super_flags(sb); 4457 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4458 4459 ret = btrfs_validate_write_super(fs_info, sb); 4460 if (ret < 0) { 4461 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4462 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4463 "unexpected superblock corruption detected"); 4464 return -EUCLEAN; 4465 } 4466 4467 ret = write_dev_supers(dev, sb, max_mirrors); 4468 if (ret) 4469 total_errors++; 4470 } 4471 if (total_errors > max_errors) { 4472 btrfs_err(fs_info, "%d errors while writing supers", 4473 total_errors); 4474 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4475 4476 /* FUA is masked off if unsupported and can't be the reason */ 4477 btrfs_handle_fs_error(fs_info, -EIO, 4478 "%d errors while writing supers", 4479 total_errors); 4480 return -EIO; 4481 } 4482 4483 total_errors = 0; 4484 list_for_each_entry(dev, head, dev_list) { 4485 if (!dev->bdev) 4486 continue; 4487 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4488 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4489 continue; 4490 4491 ret = wait_dev_supers(dev, max_mirrors); 4492 if (ret) 4493 total_errors++; 4494 } 4495 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4496 if (total_errors > max_errors) { 4497 btrfs_handle_fs_error(fs_info, -EIO, 4498 "%d errors while writing supers", 4499 total_errors); 4500 return -EIO; 4501 } 4502 return 0; 4503 } 4504 4505 /* Drop a fs root from the radix tree and free it. */ 4506 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4507 struct btrfs_root *root) 4508 { 4509 bool drop_ref = false; 4510 4511 spin_lock(&fs_info->fs_roots_radix_lock); 4512 radix_tree_delete(&fs_info->fs_roots_radix, 4513 (unsigned long)root->root_key.objectid); 4514 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4515 drop_ref = true; 4516 spin_unlock(&fs_info->fs_roots_radix_lock); 4517 4518 if (BTRFS_FS_ERROR(fs_info)) { 4519 ASSERT(root->log_root == NULL); 4520 if (root->reloc_root) { 4521 btrfs_put_root(root->reloc_root); 4522 root->reloc_root = NULL; 4523 } 4524 } 4525 4526 if (drop_ref) 4527 btrfs_put_root(root); 4528 } 4529 4530 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 4531 { 4532 u64 root_objectid = 0; 4533 struct btrfs_root *gang[8]; 4534 int i = 0; 4535 int err = 0; 4536 unsigned int ret = 0; 4537 4538 while (1) { 4539 spin_lock(&fs_info->fs_roots_radix_lock); 4540 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4541 (void **)gang, root_objectid, 4542 ARRAY_SIZE(gang)); 4543 if (!ret) { 4544 spin_unlock(&fs_info->fs_roots_radix_lock); 4545 break; 4546 } 4547 root_objectid = gang[ret - 1]->root_key.objectid + 1; 4548 4549 for (i = 0; i < ret; i++) { 4550 /* Avoid to grab roots in dead_roots */ 4551 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 4552 gang[i] = NULL; 4553 continue; 4554 } 4555 /* grab all the search result for later use */ 4556 gang[i] = btrfs_grab_root(gang[i]); 4557 } 4558 spin_unlock(&fs_info->fs_roots_radix_lock); 4559 4560 for (i = 0; i < ret; i++) { 4561 if (!gang[i]) 4562 continue; 4563 root_objectid = gang[i]->root_key.objectid; 4564 err = btrfs_orphan_cleanup(gang[i]); 4565 if (err) 4566 break; 4567 btrfs_put_root(gang[i]); 4568 } 4569 root_objectid++; 4570 } 4571 4572 /* release the uncleaned roots due to error */ 4573 for (; i < ret; i++) { 4574 if (gang[i]) 4575 btrfs_put_root(gang[i]); 4576 } 4577 return err; 4578 } 4579 4580 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4581 { 4582 struct btrfs_root *root = fs_info->tree_root; 4583 struct btrfs_trans_handle *trans; 4584 4585 mutex_lock(&fs_info->cleaner_mutex); 4586 btrfs_run_delayed_iputs(fs_info); 4587 mutex_unlock(&fs_info->cleaner_mutex); 4588 wake_up_process(fs_info->cleaner_kthread); 4589 4590 /* wait until ongoing cleanup work done */ 4591 down_write(&fs_info->cleanup_work_sem); 4592 up_write(&fs_info->cleanup_work_sem); 4593 4594 trans = btrfs_join_transaction(root); 4595 if (IS_ERR(trans)) 4596 return PTR_ERR(trans); 4597 return btrfs_commit_transaction(trans); 4598 } 4599 4600 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4601 { 4602 struct btrfs_transaction *trans; 4603 struct btrfs_transaction *tmp; 4604 bool found = false; 4605 4606 if (list_empty(&fs_info->trans_list)) 4607 return; 4608 4609 /* 4610 * This function is only called at the very end of close_ctree(), 4611 * thus no other running transaction, no need to take trans_lock. 4612 */ 4613 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4614 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4615 struct extent_state *cached = NULL; 4616 u64 dirty_bytes = 0; 4617 u64 cur = 0; 4618 u64 found_start; 4619 u64 found_end; 4620 4621 found = true; 4622 while (!find_first_extent_bit(&trans->dirty_pages, cur, 4623 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4624 dirty_bytes += found_end + 1 - found_start; 4625 cur = found_end + 1; 4626 } 4627 btrfs_warn(fs_info, 4628 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4629 trans->transid, dirty_bytes); 4630 btrfs_cleanup_one_transaction(trans, fs_info); 4631 4632 if (trans == fs_info->running_transaction) 4633 fs_info->running_transaction = NULL; 4634 list_del_init(&trans->list); 4635 4636 btrfs_put_transaction(trans); 4637 trace_btrfs_transaction_commit(fs_info); 4638 } 4639 ASSERT(!found); 4640 } 4641 4642 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4643 { 4644 int ret; 4645 4646 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4647 4648 /* 4649 * If we had UNFINISHED_DROPS we could still be processing them, so 4650 * clear that bit and wake up relocation so it can stop. 4651 * We must do this before stopping the block group reclaim task, because 4652 * at btrfs_relocate_block_group() we wait for this bit, and after the 4653 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4654 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4655 * return 1. 4656 */ 4657 btrfs_wake_unfinished_drop(fs_info); 4658 4659 /* 4660 * We may have the reclaim task running and relocating a data block group, 4661 * in which case it may create delayed iputs. So stop it before we park 4662 * the cleaner kthread otherwise we can get new delayed iputs after 4663 * parking the cleaner, and that can make the async reclaim task to hang 4664 * if it's waiting for delayed iputs to complete, since the cleaner is 4665 * parked and can not run delayed iputs - this will make us hang when 4666 * trying to stop the async reclaim task. 4667 */ 4668 cancel_work_sync(&fs_info->reclaim_bgs_work); 4669 /* 4670 * We don't want the cleaner to start new transactions, add more delayed 4671 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4672 * because that frees the task_struct, and the transaction kthread might 4673 * still try to wake up the cleaner. 4674 */ 4675 kthread_park(fs_info->cleaner_kthread); 4676 4677 /* wait for the qgroup rescan worker to stop */ 4678 btrfs_qgroup_wait_for_completion(fs_info, false); 4679 4680 /* wait for the uuid_scan task to finish */ 4681 down(&fs_info->uuid_tree_rescan_sem); 4682 /* avoid complains from lockdep et al., set sem back to initial state */ 4683 up(&fs_info->uuid_tree_rescan_sem); 4684 4685 /* pause restriper - we want to resume on mount */ 4686 btrfs_pause_balance(fs_info); 4687 4688 btrfs_dev_replace_suspend_for_unmount(fs_info); 4689 4690 btrfs_scrub_cancel(fs_info); 4691 4692 /* wait for any defraggers to finish */ 4693 wait_event(fs_info->transaction_wait, 4694 (atomic_read(&fs_info->defrag_running) == 0)); 4695 4696 /* clear out the rbtree of defraggable inodes */ 4697 btrfs_cleanup_defrag_inodes(fs_info); 4698 4699 /* 4700 * After we parked the cleaner kthread, ordered extents may have 4701 * completed and created new delayed iputs. If one of the async reclaim 4702 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4703 * can hang forever trying to stop it, because if a delayed iput is 4704 * added after it ran btrfs_run_delayed_iputs() and before it called 4705 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4706 * no one else to run iputs. 4707 * 4708 * So wait for all ongoing ordered extents to complete and then run 4709 * delayed iputs. This works because once we reach this point no one 4710 * can either create new ordered extents nor create delayed iputs 4711 * through some other means. 4712 * 4713 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4714 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4715 * but the delayed iput for the respective inode is made only when doing 4716 * the final btrfs_put_ordered_extent() (which must happen at 4717 * btrfs_finish_ordered_io() when we are unmounting). 4718 */ 4719 btrfs_flush_workqueue(fs_info->endio_write_workers); 4720 /* Ordered extents for free space inodes. */ 4721 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4722 btrfs_run_delayed_iputs(fs_info); 4723 4724 cancel_work_sync(&fs_info->async_reclaim_work); 4725 cancel_work_sync(&fs_info->async_data_reclaim_work); 4726 cancel_work_sync(&fs_info->preempt_reclaim_work); 4727 4728 /* Cancel or finish ongoing discard work */ 4729 btrfs_discard_cleanup(fs_info); 4730 4731 if (!sb_rdonly(fs_info->sb)) { 4732 /* 4733 * The cleaner kthread is stopped, so do one final pass over 4734 * unused block groups. 4735 */ 4736 btrfs_delete_unused_bgs(fs_info); 4737 4738 /* 4739 * There might be existing delayed inode workers still running 4740 * and holding an empty delayed inode item. We must wait for 4741 * them to complete first because they can create a transaction. 4742 * This happens when someone calls btrfs_balance_delayed_items() 4743 * and then a transaction commit runs the same delayed nodes 4744 * before any delayed worker has done something with the nodes. 4745 * We must wait for any worker here and not at transaction 4746 * commit time since that could cause a deadlock. 4747 * This is a very rare case. 4748 */ 4749 btrfs_flush_workqueue(fs_info->delayed_workers); 4750 4751 ret = btrfs_commit_super(fs_info); 4752 if (ret) 4753 btrfs_err(fs_info, "commit super ret %d", ret); 4754 } 4755 4756 if (BTRFS_FS_ERROR(fs_info)) 4757 btrfs_error_commit_super(fs_info); 4758 4759 kthread_stop(fs_info->transaction_kthread); 4760 kthread_stop(fs_info->cleaner_kthread); 4761 4762 ASSERT(list_empty(&fs_info->delayed_iputs)); 4763 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4764 4765 if (btrfs_check_quota_leak(fs_info)) { 4766 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4767 btrfs_err(fs_info, "qgroup reserved space leaked"); 4768 } 4769 4770 btrfs_free_qgroup_config(fs_info); 4771 ASSERT(list_empty(&fs_info->delalloc_roots)); 4772 4773 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4774 btrfs_info(fs_info, "at unmount delalloc count %lld", 4775 percpu_counter_sum(&fs_info->delalloc_bytes)); 4776 } 4777 4778 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4779 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4780 percpu_counter_sum(&fs_info->ordered_bytes)); 4781 4782 btrfs_sysfs_remove_mounted(fs_info); 4783 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4784 4785 btrfs_put_block_group_cache(fs_info); 4786 4787 /* 4788 * we must make sure there is not any read request to 4789 * submit after we stopping all workers. 4790 */ 4791 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4792 btrfs_stop_all_workers(fs_info); 4793 4794 /* We shouldn't have any transaction open at this point */ 4795 warn_about_uncommitted_trans(fs_info); 4796 4797 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4798 free_root_pointers(fs_info, true); 4799 btrfs_free_fs_roots(fs_info); 4800 4801 /* 4802 * We must free the block groups after dropping the fs_roots as we could 4803 * have had an IO error and have left over tree log blocks that aren't 4804 * cleaned up until the fs roots are freed. This makes the block group 4805 * accounting appear to be wrong because there's pending reserved bytes, 4806 * so make sure we do the block group cleanup afterwards. 4807 */ 4808 btrfs_free_block_groups(fs_info); 4809 4810 iput(fs_info->btree_inode); 4811 4812 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4813 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4814 btrfsic_unmount(fs_info->fs_devices); 4815 #endif 4816 4817 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4818 btrfs_close_devices(fs_info->fs_devices); 4819 } 4820 4821 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4822 int atomic) 4823 { 4824 int ret; 4825 struct inode *btree_inode = buf->pages[0]->mapping->host; 4826 4827 ret = extent_buffer_uptodate(buf); 4828 if (!ret) 4829 return ret; 4830 4831 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4832 parent_transid, atomic); 4833 if (ret == -EAGAIN) 4834 return ret; 4835 return !ret; 4836 } 4837 4838 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4839 { 4840 struct btrfs_fs_info *fs_info = buf->fs_info; 4841 u64 transid = btrfs_header_generation(buf); 4842 int was_dirty; 4843 4844 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4845 /* 4846 * This is a fast path so only do this check if we have sanity tests 4847 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4848 * outside of the sanity tests. 4849 */ 4850 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4851 return; 4852 #endif 4853 btrfs_assert_tree_write_locked(buf); 4854 if (transid != fs_info->generation) 4855 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4856 buf->start, transid, fs_info->generation); 4857 was_dirty = set_extent_buffer_dirty(buf); 4858 if (!was_dirty) 4859 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4860 buf->len, 4861 fs_info->dirty_metadata_batch); 4862 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4863 /* 4864 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4865 * but item data not updated. 4866 * So here we should only check item pointers, not item data. 4867 */ 4868 if (btrfs_header_level(buf) == 0 && 4869 btrfs_check_leaf_relaxed(buf)) { 4870 btrfs_print_leaf(buf); 4871 ASSERT(0); 4872 } 4873 #endif 4874 } 4875 4876 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4877 int flush_delayed) 4878 { 4879 /* 4880 * looks as though older kernels can get into trouble with 4881 * this code, they end up stuck in balance_dirty_pages forever 4882 */ 4883 int ret; 4884 4885 if (current->flags & PF_MEMALLOC) 4886 return; 4887 4888 if (flush_delayed) 4889 btrfs_balance_delayed_items(fs_info); 4890 4891 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4892 BTRFS_DIRTY_METADATA_THRESH, 4893 fs_info->dirty_metadata_batch); 4894 if (ret > 0) { 4895 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4896 } 4897 } 4898 4899 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4900 { 4901 __btrfs_btree_balance_dirty(fs_info, 1); 4902 } 4903 4904 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4905 { 4906 __btrfs_btree_balance_dirty(fs_info, 0); 4907 } 4908 4909 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4910 { 4911 /* cleanup FS via transaction */ 4912 btrfs_cleanup_transaction(fs_info); 4913 4914 mutex_lock(&fs_info->cleaner_mutex); 4915 btrfs_run_delayed_iputs(fs_info); 4916 mutex_unlock(&fs_info->cleaner_mutex); 4917 4918 down_write(&fs_info->cleanup_work_sem); 4919 up_write(&fs_info->cleanup_work_sem); 4920 } 4921 4922 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4923 { 4924 struct btrfs_root *gang[8]; 4925 u64 root_objectid = 0; 4926 int ret; 4927 4928 spin_lock(&fs_info->fs_roots_radix_lock); 4929 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4930 (void **)gang, root_objectid, 4931 ARRAY_SIZE(gang))) != 0) { 4932 int i; 4933 4934 for (i = 0; i < ret; i++) 4935 gang[i] = btrfs_grab_root(gang[i]); 4936 spin_unlock(&fs_info->fs_roots_radix_lock); 4937 4938 for (i = 0; i < ret; i++) { 4939 if (!gang[i]) 4940 continue; 4941 root_objectid = gang[i]->root_key.objectid; 4942 btrfs_free_log(NULL, gang[i]); 4943 btrfs_put_root(gang[i]); 4944 } 4945 root_objectid++; 4946 spin_lock(&fs_info->fs_roots_radix_lock); 4947 } 4948 spin_unlock(&fs_info->fs_roots_radix_lock); 4949 btrfs_free_log_root_tree(NULL, fs_info); 4950 } 4951 4952 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4953 { 4954 struct btrfs_ordered_extent *ordered; 4955 4956 spin_lock(&root->ordered_extent_lock); 4957 /* 4958 * This will just short circuit the ordered completion stuff which will 4959 * make sure the ordered extent gets properly cleaned up. 4960 */ 4961 list_for_each_entry(ordered, &root->ordered_extents, 4962 root_extent_list) 4963 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4964 spin_unlock(&root->ordered_extent_lock); 4965 } 4966 4967 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4968 { 4969 struct btrfs_root *root; 4970 struct list_head splice; 4971 4972 INIT_LIST_HEAD(&splice); 4973 4974 spin_lock(&fs_info->ordered_root_lock); 4975 list_splice_init(&fs_info->ordered_roots, &splice); 4976 while (!list_empty(&splice)) { 4977 root = list_first_entry(&splice, struct btrfs_root, 4978 ordered_root); 4979 list_move_tail(&root->ordered_root, 4980 &fs_info->ordered_roots); 4981 4982 spin_unlock(&fs_info->ordered_root_lock); 4983 btrfs_destroy_ordered_extents(root); 4984 4985 cond_resched(); 4986 spin_lock(&fs_info->ordered_root_lock); 4987 } 4988 spin_unlock(&fs_info->ordered_root_lock); 4989 4990 /* 4991 * We need this here because if we've been flipped read-only we won't 4992 * get sync() from the umount, so we need to make sure any ordered 4993 * extents that haven't had their dirty pages IO start writeout yet 4994 * actually get run and error out properly. 4995 */ 4996 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4997 } 4998 4999 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 5000 struct btrfs_fs_info *fs_info) 5001 { 5002 struct rb_node *node; 5003 struct btrfs_delayed_ref_root *delayed_refs; 5004 struct btrfs_delayed_ref_node *ref; 5005 int ret = 0; 5006 5007 delayed_refs = &trans->delayed_refs; 5008 5009 spin_lock(&delayed_refs->lock); 5010 if (atomic_read(&delayed_refs->num_entries) == 0) { 5011 spin_unlock(&delayed_refs->lock); 5012 btrfs_debug(fs_info, "delayed_refs has NO entry"); 5013 return ret; 5014 } 5015 5016 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 5017 struct btrfs_delayed_ref_head *head; 5018 struct rb_node *n; 5019 bool pin_bytes = false; 5020 5021 head = rb_entry(node, struct btrfs_delayed_ref_head, 5022 href_node); 5023 if (btrfs_delayed_ref_lock(delayed_refs, head)) 5024 continue; 5025 5026 spin_lock(&head->lock); 5027 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 5028 ref = rb_entry(n, struct btrfs_delayed_ref_node, 5029 ref_node); 5030 ref->in_tree = 0; 5031 rb_erase_cached(&ref->ref_node, &head->ref_tree); 5032 RB_CLEAR_NODE(&ref->ref_node); 5033 if (!list_empty(&ref->add_list)) 5034 list_del(&ref->add_list); 5035 atomic_dec(&delayed_refs->num_entries); 5036 btrfs_put_delayed_ref(ref); 5037 } 5038 if (head->must_insert_reserved) 5039 pin_bytes = true; 5040 btrfs_free_delayed_extent_op(head->extent_op); 5041 btrfs_delete_ref_head(delayed_refs, head); 5042 spin_unlock(&head->lock); 5043 spin_unlock(&delayed_refs->lock); 5044 mutex_unlock(&head->mutex); 5045 5046 if (pin_bytes) { 5047 struct btrfs_block_group *cache; 5048 5049 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 5050 BUG_ON(!cache); 5051 5052 spin_lock(&cache->space_info->lock); 5053 spin_lock(&cache->lock); 5054 cache->pinned += head->num_bytes; 5055 btrfs_space_info_update_bytes_pinned(fs_info, 5056 cache->space_info, head->num_bytes); 5057 cache->reserved -= head->num_bytes; 5058 cache->space_info->bytes_reserved -= head->num_bytes; 5059 spin_unlock(&cache->lock); 5060 spin_unlock(&cache->space_info->lock); 5061 5062 btrfs_put_block_group(cache); 5063 5064 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 5065 head->bytenr + head->num_bytes - 1); 5066 } 5067 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 5068 btrfs_put_delayed_ref_head(head); 5069 cond_resched(); 5070 spin_lock(&delayed_refs->lock); 5071 } 5072 btrfs_qgroup_destroy_extent_records(trans); 5073 5074 spin_unlock(&delayed_refs->lock); 5075 5076 return ret; 5077 } 5078 5079 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 5080 { 5081 struct btrfs_inode *btrfs_inode; 5082 struct list_head splice; 5083 5084 INIT_LIST_HEAD(&splice); 5085 5086 spin_lock(&root->delalloc_lock); 5087 list_splice_init(&root->delalloc_inodes, &splice); 5088 5089 while (!list_empty(&splice)) { 5090 struct inode *inode = NULL; 5091 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 5092 delalloc_inodes); 5093 __btrfs_del_delalloc_inode(root, btrfs_inode); 5094 spin_unlock(&root->delalloc_lock); 5095 5096 /* 5097 * Make sure we get a live inode and that it'll not disappear 5098 * meanwhile. 5099 */ 5100 inode = igrab(&btrfs_inode->vfs_inode); 5101 if (inode) { 5102 invalidate_inode_pages2(inode->i_mapping); 5103 iput(inode); 5104 } 5105 spin_lock(&root->delalloc_lock); 5106 } 5107 spin_unlock(&root->delalloc_lock); 5108 } 5109 5110 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 5111 { 5112 struct btrfs_root *root; 5113 struct list_head splice; 5114 5115 INIT_LIST_HEAD(&splice); 5116 5117 spin_lock(&fs_info->delalloc_root_lock); 5118 list_splice_init(&fs_info->delalloc_roots, &splice); 5119 while (!list_empty(&splice)) { 5120 root = list_first_entry(&splice, struct btrfs_root, 5121 delalloc_root); 5122 root = btrfs_grab_root(root); 5123 BUG_ON(!root); 5124 spin_unlock(&fs_info->delalloc_root_lock); 5125 5126 btrfs_destroy_delalloc_inodes(root); 5127 btrfs_put_root(root); 5128 5129 spin_lock(&fs_info->delalloc_root_lock); 5130 } 5131 spin_unlock(&fs_info->delalloc_root_lock); 5132 } 5133 5134 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 5135 struct extent_io_tree *dirty_pages, 5136 int mark) 5137 { 5138 int ret; 5139 struct extent_buffer *eb; 5140 u64 start = 0; 5141 u64 end; 5142 5143 while (1) { 5144 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 5145 mark, NULL); 5146 if (ret) 5147 break; 5148 5149 clear_extent_bits(dirty_pages, start, end, mark); 5150 while (start <= end) { 5151 eb = find_extent_buffer(fs_info, start); 5152 start += fs_info->nodesize; 5153 if (!eb) 5154 continue; 5155 wait_on_extent_buffer_writeback(eb); 5156 5157 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 5158 &eb->bflags)) 5159 clear_extent_buffer_dirty(eb); 5160 free_extent_buffer_stale(eb); 5161 } 5162 } 5163 5164 return ret; 5165 } 5166 5167 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 5168 struct extent_io_tree *unpin) 5169 { 5170 u64 start; 5171 u64 end; 5172 int ret; 5173 5174 while (1) { 5175 struct extent_state *cached_state = NULL; 5176 5177 /* 5178 * The btrfs_finish_extent_commit() may get the same range as 5179 * ours between find_first_extent_bit and clear_extent_dirty. 5180 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 5181 * the same extent range. 5182 */ 5183 mutex_lock(&fs_info->unused_bg_unpin_mutex); 5184 ret = find_first_extent_bit(unpin, 0, &start, &end, 5185 EXTENT_DIRTY, &cached_state); 5186 if (ret) { 5187 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5188 break; 5189 } 5190 5191 clear_extent_dirty(unpin, start, end, &cached_state); 5192 free_extent_state(cached_state); 5193 btrfs_error_unpin_extent_range(fs_info, start, end); 5194 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5195 cond_resched(); 5196 } 5197 5198 return 0; 5199 } 5200 5201 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 5202 { 5203 struct inode *inode; 5204 5205 inode = cache->io_ctl.inode; 5206 if (inode) { 5207 invalidate_inode_pages2(inode->i_mapping); 5208 BTRFS_I(inode)->generation = 0; 5209 cache->io_ctl.inode = NULL; 5210 iput(inode); 5211 } 5212 ASSERT(cache->io_ctl.pages == NULL); 5213 btrfs_put_block_group(cache); 5214 } 5215 5216 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 5217 struct btrfs_fs_info *fs_info) 5218 { 5219 struct btrfs_block_group *cache; 5220 5221 spin_lock(&cur_trans->dirty_bgs_lock); 5222 while (!list_empty(&cur_trans->dirty_bgs)) { 5223 cache = list_first_entry(&cur_trans->dirty_bgs, 5224 struct btrfs_block_group, 5225 dirty_list); 5226 5227 if (!list_empty(&cache->io_list)) { 5228 spin_unlock(&cur_trans->dirty_bgs_lock); 5229 list_del_init(&cache->io_list); 5230 btrfs_cleanup_bg_io(cache); 5231 spin_lock(&cur_trans->dirty_bgs_lock); 5232 } 5233 5234 list_del_init(&cache->dirty_list); 5235 spin_lock(&cache->lock); 5236 cache->disk_cache_state = BTRFS_DC_ERROR; 5237 spin_unlock(&cache->lock); 5238 5239 spin_unlock(&cur_trans->dirty_bgs_lock); 5240 btrfs_put_block_group(cache); 5241 btrfs_delayed_refs_rsv_release(fs_info, 1); 5242 spin_lock(&cur_trans->dirty_bgs_lock); 5243 } 5244 spin_unlock(&cur_trans->dirty_bgs_lock); 5245 5246 /* 5247 * Refer to the definition of io_bgs member for details why it's safe 5248 * to use it without any locking 5249 */ 5250 while (!list_empty(&cur_trans->io_bgs)) { 5251 cache = list_first_entry(&cur_trans->io_bgs, 5252 struct btrfs_block_group, 5253 io_list); 5254 5255 list_del_init(&cache->io_list); 5256 spin_lock(&cache->lock); 5257 cache->disk_cache_state = BTRFS_DC_ERROR; 5258 spin_unlock(&cache->lock); 5259 btrfs_cleanup_bg_io(cache); 5260 } 5261 } 5262 5263 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 5264 struct btrfs_fs_info *fs_info) 5265 { 5266 struct btrfs_device *dev, *tmp; 5267 5268 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 5269 ASSERT(list_empty(&cur_trans->dirty_bgs)); 5270 ASSERT(list_empty(&cur_trans->io_bgs)); 5271 5272 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 5273 post_commit_list) { 5274 list_del_init(&dev->post_commit_list); 5275 } 5276 5277 btrfs_destroy_delayed_refs(cur_trans, fs_info); 5278 5279 cur_trans->state = TRANS_STATE_COMMIT_START; 5280 wake_up(&fs_info->transaction_blocked_wait); 5281 5282 cur_trans->state = TRANS_STATE_UNBLOCKED; 5283 wake_up(&fs_info->transaction_wait); 5284 5285 btrfs_destroy_delayed_inodes(fs_info); 5286 5287 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 5288 EXTENT_DIRTY); 5289 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 5290 5291 btrfs_free_redirty_list(cur_trans); 5292 5293 cur_trans->state =TRANS_STATE_COMPLETED; 5294 wake_up(&cur_trans->commit_wait); 5295 } 5296 5297 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 5298 { 5299 struct btrfs_transaction *t; 5300 5301 mutex_lock(&fs_info->transaction_kthread_mutex); 5302 5303 spin_lock(&fs_info->trans_lock); 5304 while (!list_empty(&fs_info->trans_list)) { 5305 t = list_first_entry(&fs_info->trans_list, 5306 struct btrfs_transaction, list); 5307 if (t->state >= TRANS_STATE_COMMIT_START) { 5308 refcount_inc(&t->use_count); 5309 spin_unlock(&fs_info->trans_lock); 5310 btrfs_wait_for_commit(fs_info, t->transid); 5311 btrfs_put_transaction(t); 5312 spin_lock(&fs_info->trans_lock); 5313 continue; 5314 } 5315 if (t == fs_info->running_transaction) { 5316 t->state = TRANS_STATE_COMMIT_DOING; 5317 spin_unlock(&fs_info->trans_lock); 5318 /* 5319 * We wait for 0 num_writers since we don't hold a trans 5320 * handle open currently for this transaction. 5321 */ 5322 wait_event(t->writer_wait, 5323 atomic_read(&t->num_writers) == 0); 5324 } else { 5325 spin_unlock(&fs_info->trans_lock); 5326 } 5327 btrfs_cleanup_one_transaction(t, fs_info); 5328 5329 spin_lock(&fs_info->trans_lock); 5330 if (t == fs_info->running_transaction) 5331 fs_info->running_transaction = NULL; 5332 list_del_init(&t->list); 5333 spin_unlock(&fs_info->trans_lock); 5334 5335 btrfs_put_transaction(t); 5336 trace_btrfs_transaction_commit(fs_info); 5337 spin_lock(&fs_info->trans_lock); 5338 } 5339 spin_unlock(&fs_info->trans_lock); 5340 btrfs_destroy_all_ordered_extents(fs_info); 5341 btrfs_destroy_delayed_inodes(fs_info); 5342 btrfs_assert_delayed_root_empty(fs_info); 5343 btrfs_destroy_all_delalloc_inodes(fs_info); 5344 btrfs_drop_all_logs(fs_info); 5345 mutex_unlock(&fs_info->transaction_kthread_mutex); 5346 5347 return 0; 5348 } 5349 5350 int btrfs_init_root_free_objectid(struct btrfs_root *root) 5351 { 5352 struct btrfs_path *path; 5353 int ret; 5354 struct extent_buffer *l; 5355 struct btrfs_key search_key; 5356 struct btrfs_key found_key; 5357 int slot; 5358 5359 path = btrfs_alloc_path(); 5360 if (!path) 5361 return -ENOMEM; 5362 5363 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 5364 search_key.type = -1; 5365 search_key.offset = (u64)-1; 5366 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5367 if (ret < 0) 5368 goto error; 5369 BUG_ON(ret == 0); /* Corruption */ 5370 if (path->slots[0] > 0) { 5371 slot = path->slots[0] - 1; 5372 l = path->nodes[0]; 5373 btrfs_item_key_to_cpu(l, &found_key, slot); 5374 root->free_objectid = max_t(u64, found_key.objectid + 1, 5375 BTRFS_FIRST_FREE_OBJECTID); 5376 } else { 5377 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 5378 } 5379 ret = 0; 5380 error: 5381 btrfs_free_path(path); 5382 return ret; 5383 } 5384 5385 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 5386 { 5387 int ret; 5388 mutex_lock(&root->objectid_mutex); 5389 5390 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 5391 btrfs_warn(root->fs_info, 5392 "the objectid of root %llu reaches its highest value", 5393 root->root_key.objectid); 5394 ret = -ENOSPC; 5395 goto out; 5396 } 5397 5398 *objectid = root->free_objectid++; 5399 ret = 0; 5400 out: 5401 mutex_unlock(&root->objectid_mutex); 5402 return ret; 5403 } 5404