xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 61c581a4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46 
47 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
48 				 BTRFS_HEADER_FLAG_RELOC |\
49 				 BTRFS_SUPER_FLAG_ERROR |\
50 				 BTRFS_SUPER_FLAG_SEEDING |\
51 				 BTRFS_SUPER_FLAG_METADUMP |\
52 				 BTRFS_SUPER_FLAG_METADUMP_V2)
53 
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 				      struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59 					struct extent_io_tree *dirty_pages,
60 					int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62 				       struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65 
66 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
67 {
68 	if (fs_info->csum_shash)
69 		crypto_free_shash(fs_info->csum_shash);
70 }
71 
72 /*
73  * async submit bios are used to offload expensive checksumming
74  * onto the worker threads.  They checksum file and metadata bios
75  * just before they are sent down the IO stack.
76  */
77 struct async_submit_bio {
78 	struct inode *inode;
79 	struct bio *bio;
80 	extent_submit_bio_start_t *submit_bio_start;
81 	int mirror_num;
82 
83 	/* Optional parameter for submit_bio_start used by direct io */
84 	u64 dio_file_offset;
85 	struct btrfs_work work;
86 	blk_status_t status;
87 };
88 
89 /*
90  * Compute the csum of a btree block and store the result to provided buffer.
91  */
92 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
93 {
94 	struct btrfs_fs_info *fs_info = buf->fs_info;
95 	const int num_pages = num_extent_pages(buf);
96 	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
97 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
98 	char *kaddr;
99 	int i;
100 
101 	shash->tfm = fs_info->csum_shash;
102 	crypto_shash_init(shash);
103 	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
104 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
105 			    first_page_part - BTRFS_CSUM_SIZE);
106 
107 	for (i = 1; i < num_pages; i++) {
108 		kaddr = page_address(buf->pages[i]);
109 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
110 	}
111 	memset(result, 0, BTRFS_CSUM_SIZE);
112 	crypto_shash_final(shash, result);
113 }
114 
115 /*
116  * we can't consider a given block up to date unless the transid of the
117  * block matches the transid in the parent node's pointer.  This is how we
118  * detect blocks that either didn't get written at all or got written
119  * in the wrong place.
120  */
121 static int verify_parent_transid(struct extent_io_tree *io_tree,
122 				 struct extent_buffer *eb, u64 parent_transid,
123 				 int atomic)
124 {
125 	struct extent_state *cached_state = NULL;
126 	int ret;
127 
128 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
129 		return 0;
130 
131 	if (atomic)
132 		return -EAGAIN;
133 
134 	lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state);
135 	if (extent_buffer_uptodate(eb) &&
136 	    btrfs_header_generation(eb) == parent_transid) {
137 		ret = 0;
138 		goto out;
139 	}
140 	btrfs_err_rl(eb->fs_info,
141 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
142 			eb->start, eb->read_mirror,
143 			parent_transid, btrfs_header_generation(eb));
144 	ret = 1;
145 	clear_extent_buffer_uptodate(eb);
146 out:
147 	unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
148 		      &cached_state);
149 	return ret;
150 }
151 
152 static bool btrfs_supported_super_csum(u16 csum_type)
153 {
154 	switch (csum_type) {
155 	case BTRFS_CSUM_TYPE_CRC32:
156 	case BTRFS_CSUM_TYPE_XXHASH:
157 	case BTRFS_CSUM_TYPE_SHA256:
158 	case BTRFS_CSUM_TYPE_BLAKE2:
159 		return true;
160 	default:
161 		return false;
162 	}
163 }
164 
165 /*
166  * Return 0 if the superblock checksum type matches the checksum value of that
167  * algorithm. Pass the raw disk superblock data.
168  */
169 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
170 				  char *raw_disk_sb)
171 {
172 	struct btrfs_super_block *disk_sb =
173 		(struct btrfs_super_block *)raw_disk_sb;
174 	char result[BTRFS_CSUM_SIZE];
175 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
176 
177 	shash->tfm = fs_info->csum_shash;
178 
179 	/*
180 	 * The super_block structure does not span the whole
181 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
182 	 * filled with zeros and is included in the checksum.
183 	 */
184 	crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
185 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
186 
187 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
188 		return 1;
189 
190 	return 0;
191 }
192 
193 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
194 			   struct btrfs_key *first_key, u64 parent_transid)
195 {
196 	struct btrfs_fs_info *fs_info = eb->fs_info;
197 	int found_level;
198 	struct btrfs_key found_key;
199 	int ret;
200 
201 	found_level = btrfs_header_level(eb);
202 	if (found_level != level) {
203 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
204 		     KERN_ERR "BTRFS: tree level check failed\n");
205 		btrfs_err(fs_info,
206 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
207 			  eb->start, level, found_level);
208 		return -EIO;
209 	}
210 
211 	if (!first_key)
212 		return 0;
213 
214 	/*
215 	 * For live tree block (new tree blocks in current transaction),
216 	 * we need proper lock context to avoid race, which is impossible here.
217 	 * So we only checks tree blocks which is read from disk, whose
218 	 * generation <= fs_info->last_trans_committed.
219 	 */
220 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
221 		return 0;
222 
223 	/* We have @first_key, so this @eb must have at least one item */
224 	if (btrfs_header_nritems(eb) == 0) {
225 		btrfs_err(fs_info,
226 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
227 			  eb->start);
228 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
229 		return -EUCLEAN;
230 	}
231 
232 	if (found_level)
233 		btrfs_node_key_to_cpu(eb, &found_key, 0);
234 	else
235 		btrfs_item_key_to_cpu(eb, &found_key, 0);
236 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
237 
238 	if (ret) {
239 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
240 		     KERN_ERR "BTRFS: tree first key check failed\n");
241 		btrfs_err(fs_info,
242 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
243 			  eb->start, parent_transid, first_key->objectid,
244 			  first_key->type, first_key->offset,
245 			  found_key.objectid, found_key.type,
246 			  found_key.offset);
247 	}
248 	return ret;
249 }
250 
251 /*
252  * helper to read a given tree block, doing retries as required when
253  * the checksums don't match and we have alternate mirrors to try.
254  *
255  * @parent_transid:	expected transid, skip check if 0
256  * @level:		expected level, mandatory check
257  * @first_key:		expected key of first slot, skip check if NULL
258  */
259 int btrfs_read_extent_buffer(struct extent_buffer *eb,
260 			     u64 parent_transid, int level,
261 			     struct btrfs_key *first_key)
262 {
263 	struct btrfs_fs_info *fs_info = eb->fs_info;
264 	struct extent_io_tree *io_tree;
265 	int failed = 0;
266 	int ret;
267 	int num_copies = 0;
268 	int mirror_num = 0;
269 	int failed_mirror = 0;
270 
271 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
272 	while (1) {
273 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
274 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
275 		if (!ret) {
276 			if (verify_parent_transid(io_tree, eb,
277 						   parent_transid, 0))
278 				ret = -EIO;
279 			else if (btrfs_verify_level_key(eb, level,
280 						first_key, parent_transid))
281 				ret = -EUCLEAN;
282 			else
283 				break;
284 		}
285 
286 		num_copies = btrfs_num_copies(fs_info,
287 					      eb->start, eb->len);
288 		if (num_copies == 1)
289 			break;
290 
291 		if (!failed_mirror) {
292 			failed = 1;
293 			failed_mirror = eb->read_mirror;
294 		}
295 
296 		mirror_num++;
297 		if (mirror_num == failed_mirror)
298 			mirror_num++;
299 
300 		if (mirror_num > num_copies)
301 			break;
302 	}
303 
304 	if (failed && !ret && failed_mirror)
305 		btrfs_repair_eb_io_failure(eb, failed_mirror);
306 
307 	return ret;
308 }
309 
310 static int csum_one_extent_buffer(struct extent_buffer *eb)
311 {
312 	struct btrfs_fs_info *fs_info = eb->fs_info;
313 	u8 result[BTRFS_CSUM_SIZE];
314 	int ret;
315 
316 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
317 				    offsetof(struct btrfs_header, fsid),
318 				    BTRFS_FSID_SIZE) == 0);
319 	csum_tree_block(eb, result);
320 
321 	if (btrfs_header_level(eb))
322 		ret = btrfs_check_node(eb);
323 	else
324 		ret = btrfs_check_leaf_full(eb);
325 
326 	if (ret < 0)
327 		goto error;
328 
329 	/*
330 	 * Also check the generation, the eb reached here must be newer than
331 	 * last committed. Or something seriously wrong happened.
332 	 */
333 	if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
334 		ret = -EUCLEAN;
335 		btrfs_err(fs_info,
336 			"block=%llu bad generation, have %llu expect > %llu",
337 			  eb->start, btrfs_header_generation(eb),
338 			  fs_info->last_trans_committed);
339 		goto error;
340 	}
341 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
342 
343 	return 0;
344 
345 error:
346 	btrfs_print_tree(eb, 0);
347 	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
348 		  eb->start);
349 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
350 	return ret;
351 }
352 
353 /* Checksum all dirty extent buffers in one bio_vec */
354 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
355 				      struct bio_vec *bvec)
356 {
357 	struct page *page = bvec->bv_page;
358 	u64 bvec_start = page_offset(page) + bvec->bv_offset;
359 	u64 cur;
360 	int ret = 0;
361 
362 	for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
363 	     cur += fs_info->nodesize) {
364 		struct extent_buffer *eb;
365 		bool uptodate;
366 
367 		eb = find_extent_buffer(fs_info, cur);
368 		uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
369 						       fs_info->nodesize);
370 
371 		/* A dirty eb shouldn't disappear from buffer_radix */
372 		if (WARN_ON(!eb))
373 			return -EUCLEAN;
374 
375 		if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
376 			free_extent_buffer(eb);
377 			return -EUCLEAN;
378 		}
379 		if (WARN_ON(!uptodate)) {
380 			free_extent_buffer(eb);
381 			return -EUCLEAN;
382 		}
383 
384 		ret = csum_one_extent_buffer(eb);
385 		free_extent_buffer(eb);
386 		if (ret < 0)
387 			return ret;
388 	}
389 	return ret;
390 }
391 
392 /*
393  * Checksum a dirty tree block before IO.  This has extra checks to make sure
394  * we only fill in the checksum field in the first page of a multi-page block.
395  * For subpage extent buffers we need bvec to also read the offset in the page.
396  */
397 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
398 {
399 	struct page *page = bvec->bv_page;
400 	u64 start = page_offset(page);
401 	u64 found_start;
402 	struct extent_buffer *eb;
403 
404 	if (fs_info->nodesize < PAGE_SIZE)
405 		return csum_dirty_subpage_buffers(fs_info, bvec);
406 
407 	eb = (struct extent_buffer *)page->private;
408 	if (page != eb->pages[0])
409 		return 0;
410 
411 	found_start = btrfs_header_bytenr(eb);
412 
413 	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
414 		WARN_ON(found_start != 0);
415 		return 0;
416 	}
417 
418 	/*
419 	 * Please do not consolidate these warnings into a single if.
420 	 * It is useful to know what went wrong.
421 	 */
422 	if (WARN_ON(found_start != start))
423 		return -EUCLEAN;
424 	if (WARN_ON(!PageUptodate(page)))
425 		return -EUCLEAN;
426 
427 	return csum_one_extent_buffer(eb);
428 }
429 
430 static int check_tree_block_fsid(struct extent_buffer *eb)
431 {
432 	struct btrfs_fs_info *fs_info = eb->fs_info;
433 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
434 	u8 fsid[BTRFS_FSID_SIZE];
435 	u8 *metadata_uuid;
436 
437 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
438 			   BTRFS_FSID_SIZE);
439 	/*
440 	 * Checking the incompat flag is only valid for the current fs. For
441 	 * seed devices it's forbidden to have their uuid changed so reading
442 	 * ->fsid in this case is fine
443 	 */
444 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
445 		metadata_uuid = fs_devices->metadata_uuid;
446 	else
447 		metadata_uuid = fs_devices->fsid;
448 
449 	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
450 		return 0;
451 
452 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
453 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
454 			return 0;
455 
456 	return 1;
457 }
458 
459 /* Do basic extent buffer checks at read time */
460 static int validate_extent_buffer(struct extent_buffer *eb)
461 {
462 	struct btrfs_fs_info *fs_info = eb->fs_info;
463 	u64 found_start;
464 	const u32 csum_size = fs_info->csum_size;
465 	u8 found_level;
466 	u8 result[BTRFS_CSUM_SIZE];
467 	const u8 *header_csum;
468 	int ret = 0;
469 
470 	found_start = btrfs_header_bytenr(eb);
471 	if (found_start != eb->start) {
472 		btrfs_err_rl(fs_info,
473 			"bad tree block start, mirror %u want %llu have %llu",
474 			     eb->read_mirror, eb->start, found_start);
475 		ret = -EIO;
476 		goto out;
477 	}
478 	if (check_tree_block_fsid(eb)) {
479 		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
480 			     eb->start, eb->read_mirror);
481 		ret = -EIO;
482 		goto out;
483 	}
484 	found_level = btrfs_header_level(eb);
485 	if (found_level >= BTRFS_MAX_LEVEL) {
486 		btrfs_err(fs_info,
487 			"bad tree block level, mirror %u level %d on logical %llu",
488 			eb->read_mirror, btrfs_header_level(eb), eb->start);
489 		ret = -EIO;
490 		goto out;
491 	}
492 
493 	csum_tree_block(eb, result);
494 	header_csum = page_address(eb->pages[0]) +
495 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
496 
497 	if (memcmp(result, header_csum, csum_size) != 0) {
498 		btrfs_warn_rl(fs_info,
499 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
500 			      eb->start, eb->read_mirror,
501 			      CSUM_FMT_VALUE(csum_size, header_csum),
502 			      CSUM_FMT_VALUE(csum_size, result),
503 			      btrfs_header_level(eb));
504 		ret = -EUCLEAN;
505 		goto out;
506 	}
507 
508 	/*
509 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
510 	 * that we don't try and read the other copies of this block, just
511 	 * return -EIO.
512 	 */
513 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
514 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
515 		ret = -EIO;
516 	}
517 
518 	if (found_level > 0 && btrfs_check_node(eb))
519 		ret = -EIO;
520 
521 	if (!ret)
522 		set_extent_buffer_uptodate(eb);
523 	else
524 		btrfs_err(fs_info,
525 		"read time tree block corruption detected on logical %llu mirror %u",
526 			  eb->start, eb->read_mirror);
527 out:
528 	return ret;
529 }
530 
531 static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
532 				   int mirror)
533 {
534 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
535 	struct extent_buffer *eb;
536 	bool reads_done;
537 	int ret = 0;
538 
539 	/*
540 	 * We don't allow bio merge for subpage metadata read, so we should
541 	 * only get one eb for each endio hook.
542 	 */
543 	ASSERT(end == start + fs_info->nodesize - 1);
544 	ASSERT(PagePrivate(page));
545 
546 	eb = find_extent_buffer(fs_info, start);
547 	/*
548 	 * When we are reading one tree block, eb must have been inserted into
549 	 * the radix tree. If not, something is wrong.
550 	 */
551 	ASSERT(eb);
552 
553 	reads_done = atomic_dec_and_test(&eb->io_pages);
554 	/* Subpage read must finish in page read */
555 	ASSERT(reads_done);
556 
557 	eb->read_mirror = mirror;
558 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
559 		ret = -EIO;
560 		goto err;
561 	}
562 	ret = validate_extent_buffer(eb);
563 	if (ret < 0)
564 		goto err;
565 
566 	set_extent_buffer_uptodate(eb);
567 
568 	free_extent_buffer(eb);
569 	return ret;
570 err:
571 	/*
572 	 * end_bio_extent_readpage decrements io_pages in case of error,
573 	 * make sure it has something to decrement.
574 	 */
575 	atomic_inc(&eb->io_pages);
576 	clear_extent_buffer_uptodate(eb);
577 	free_extent_buffer(eb);
578 	return ret;
579 }
580 
581 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
582 				   struct page *page, u64 start, u64 end,
583 				   int mirror)
584 {
585 	struct extent_buffer *eb;
586 	int ret = 0;
587 	int reads_done;
588 
589 	ASSERT(page->private);
590 
591 	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
592 		return validate_subpage_buffer(page, start, end, mirror);
593 
594 	eb = (struct extent_buffer *)page->private;
595 
596 	/*
597 	 * The pending IO might have been the only thing that kept this buffer
598 	 * in memory.  Make sure we have a ref for all this other checks
599 	 */
600 	atomic_inc(&eb->refs);
601 
602 	reads_done = atomic_dec_and_test(&eb->io_pages);
603 	if (!reads_done)
604 		goto err;
605 
606 	eb->read_mirror = mirror;
607 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
608 		ret = -EIO;
609 		goto err;
610 	}
611 	ret = validate_extent_buffer(eb);
612 err:
613 	if (ret) {
614 		/*
615 		 * our io error hook is going to dec the io pages
616 		 * again, we have to make sure it has something
617 		 * to decrement
618 		 */
619 		atomic_inc(&eb->io_pages);
620 		clear_extent_buffer_uptodate(eb);
621 	}
622 	free_extent_buffer(eb);
623 
624 	return ret;
625 }
626 
627 static void run_one_async_start(struct btrfs_work *work)
628 {
629 	struct async_submit_bio *async;
630 	blk_status_t ret;
631 
632 	async = container_of(work, struct  async_submit_bio, work);
633 	ret = async->submit_bio_start(async->inode, async->bio,
634 				      async->dio_file_offset);
635 	if (ret)
636 		async->status = ret;
637 }
638 
639 /*
640  * In order to insert checksums into the metadata in large chunks, we wait
641  * until bio submission time.   All the pages in the bio are checksummed and
642  * sums are attached onto the ordered extent record.
643  *
644  * At IO completion time the csums attached on the ordered extent record are
645  * inserted into the tree.
646  */
647 static void run_one_async_done(struct btrfs_work *work)
648 {
649 	struct async_submit_bio *async =
650 		container_of(work, struct  async_submit_bio, work);
651 	struct inode *inode = async->inode;
652 	struct btrfs_bio *bbio = btrfs_bio(async->bio);
653 
654 	/* If an error occurred we just want to clean up the bio and move on */
655 	if (async->status) {
656 		btrfs_bio_end_io(bbio, async->status);
657 		return;
658 	}
659 
660 	/*
661 	 * All of the bios that pass through here are from async helpers.
662 	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
663 	 * This changes nothing when cgroups aren't in use.
664 	 */
665 	async->bio->bi_opf |= REQ_CGROUP_PUNT;
666 	btrfs_submit_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
667 }
668 
669 static void run_one_async_free(struct btrfs_work *work)
670 {
671 	struct async_submit_bio *async;
672 
673 	async = container_of(work, struct  async_submit_bio, work);
674 	kfree(async);
675 }
676 
677 /*
678  * Submit bio to an async queue.
679  *
680  * Retrun:
681  * - true if the work has been succesfuly submitted
682  * - false in case of error
683  */
684 bool btrfs_wq_submit_bio(struct inode *inode, struct bio *bio, int mirror_num,
685 			 u64 dio_file_offset,
686 			 extent_submit_bio_start_t *submit_bio_start)
687 {
688 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
689 	struct async_submit_bio *async;
690 
691 	async = kmalloc(sizeof(*async), GFP_NOFS);
692 	if (!async)
693 		return false;
694 
695 	async->inode = inode;
696 	async->bio = bio;
697 	async->mirror_num = mirror_num;
698 	async->submit_bio_start = submit_bio_start;
699 
700 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
701 			run_one_async_free);
702 
703 	async->dio_file_offset = dio_file_offset;
704 
705 	async->status = 0;
706 
707 	if (op_is_sync(bio->bi_opf))
708 		btrfs_queue_work(fs_info->hipri_workers, &async->work);
709 	else
710 		btrfs_queue_work(fs_info->workers, &async->work);
711 	return true;
712 }
713 
714 static blk_status_t btree_csum_one_bio(struct bio *bio)
715 {
716 	struct bio_vec *bvec;
717 	struct btrfs_root *root;
718 	int ret = 0;
719 	struct bvec_iter_all iter_all;
720 
721 	ASSERT(!bio_flagged(bio, BIO_CLONED));
722 	bio_for_each_segment_all(bvec, bio, iter_all) {
723 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
724 		ret = csum_dirty_buffer(root->fs_info, bvec);
725 		if (ret)
726 			break;
727 	}
728 
729 	return errno_to_blk_status(ret);
730 }
731 
732 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
733 					   u64 dio_file_offset)
734 {
735 	/*
736 	 * when we're called for a write, we're already in the async
737 	 * submission context.  Just jump into btrfs_submit_bio.
738 	 */
739 	return btree_csum_one_bio(bio);
740 }
741 
742 static bool should_async_write(struct btrfs_fs_info *fs_info,
743 			     struct btrfs_inode *bi)
744 {
745 	if (btrfs_is_zoned(fs_info))
746 		return false;
747 	if (atomic_read(&bi->sync_writers))
748 		return false;
749 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
750 		return false;
751 	return true;
752 }
753 
754 void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num)
755 {
756 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
757 	struct btrfs_bio *bbio = btrfs_bio(bio);
758 	blk_status_t ret;
759 
760 	bio->bi_opf |= REQ_META;
761 
762 	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
763 		btrfs_submit_bio(fs_info, bio, mirror_num);
764 		return;
765 	}
766 
767 	/*
768 	 * Kthread helpers are used to submit writes so that checksumming can
769 	 * happen in parallel across all CPUs.
770 	 */
771 	if (should_async_write(fs_info, BTRFS_I(inode)) &&
772 	    btrfs_wq_submit_bio(inode, bio, mirror_num, 0, btree_submit_bio_start))
773 		return;
774 
775 	ret = btree_csum_one_bio(bio);
776 	if (ret) {
777 		btrfs_bio_end_io(bbio, ret);
778 		return;
779 	}
780 
781 	btrfs_submit_bio(fs_info, bio, mirror_num);
782 }
783 
784 #ifdef CONFIG_MIGRATION
785 static int btree_migrate_folio(struct address_space *mapping,
786 		struct folio *dst, struct folio *src, enum migrate_mode mode)
787 {
788 	/*
789 	 * we can't safely write a btree page from here,
790 	 * we haven't done the locking hook
791 	 */
792 	if (folio_test_dirty(src))
793 		return -EAGAIN;
794 	/*
795 	 * Buffers may be managed in a filesystem specific way.
796 	 * We must have no buffers or drop them.
797 	 */
798 	if (folio_get_private(src) &&
799 	    !filemap_release_folio(src, GFP_KERNEL))
800 		return -EAGAIN;
801 	return migrate_folio(mapping, dst, src, mode);
802 }
803 #else
804 #define btree_migrate_folio NULL
805 #endif
806 
807 static int btree_writepages(struct address_space *mapping,
808 			    struct writeback_control *wbc)
809 {
810 	struct btrfs_fs_info *fs_info;
811 	int ret;
812 
813 	if (wbc->sync_mode == WB_SYNC_NONE) {
814 
815 		if (wbc->for_kupdate)
816 			return 0;
817 
818 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
819 		/* this is a bit racy, but that's ok */
820 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
821 					     BTRFS_DIRTY_METADATA_THRESH,
822 					     fs_info->dirty_metadata_batch);
823 		if (ret < 0)
824 			return 0;
825 	}
826 	return btree_write_cache_pages(mapping, wbc);
827 }
828 
829 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
830 {
831 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
832 		return false;
833 
834 	return try_release_extent_buffer(&folio->page);
835 }
836 
837 static void btree_invalidate_folio(struct folio *folio, size_t offset,
838 				 size_t length)
839 {
840 	struct extent_io_tree *tree;
841 	tree = &BTRFS_I(folio->mapping->host)->io_tree;
842 	extent_invalidate_folio(tree, folio, offset);
843 	btree_release_folio(folio, GFP_NOFS);
844 	if (folio_get_private(folio)) {
845 		btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
846 			   "folio private not zero on folio %llu",
847 			   (unsigned long long)folio_pos(folio));
848 		folio_detach_private(folio);
849 	}
850 }
851 
852 #ifdef DEBUG
853 static bool btree_dirty_folio(struct address_space *mapping,
854 		struct folio *folio)
855 {
856 	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
857 	struct btrfs_subpage *subpage;
858 	struct extent_buffer *eb;
859 	int cur_bit = 0;
860 	u64 page_start = folio_pos(folio);
861 
862 	if (fs_info->sectorsize == PAGE_SIZE) {
863 		eb = folio_get_private(folio);
864 		BUG_ON(!eb);
865 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
866 		BUG_ON(!atomic_read(&eb->refs));
867 		btrfs_assert_tree_write_locked(eb);
868 		return filemap_dirty_folio(mapping, folio);
869 	}
870 	subpage = folio_get_private(folio);
871 
872 	ASSERT(subpage->dirty_bitmap);
873 	while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
874 		unsigned long flags;
875 		u64 cur;
876 		u16 tmp = (1 << cur_bit);
877 
878 		spin_lock_irqsave(&subpage->lock, flags);
879 		if (!(tmp & subpage->dirty_bitmap)) {
880 			spin_unlock_irqrestore(&subpage->lock, flags);
881 			cur_bit++;
882 			continue;
883 		}
884 		spin_unlock_irqrestore(&subpage->lock, flags);
885 		cur = page_start + cur_bit * fs_info->sectorsize;
886 
887 		eb = find_extent_buffer(fs_info, cur);
888 		ASSERT(eb);
889 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
890 		ASSERT(atomic_read(&eb->refs));
891 		btrfs_assert_tree_write_locked(eb);
892 		free_extent_buffer(eb);
893 
894 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
895 	}
896 	return filemap_dirty_folio(mapping, folio);
897 }
898 #else
899 #define btree_dirty_folio filemap_dirty_folio
900 #endif
901 
902 static const struct address_space_operations btree_aops = {
903 	.writepages	= btree_writepages,
904 	.release_folio	= btree_release_folio,
905 	.invalidate_folio = btree_invalidate_folio,
906 	.migrate_folio	= btree_migrate_folio,
907 	.dirty_folio	= btree_dirty_folio,
908 };
909 
910 struct extent_buffer *btrfs_find_create_tree_block(
911 						struct btrfs_fs_info *fs_info,
912 						u64 bytenr, u64 owner_root,
913 						int level)
914 {
915 	if (btrfs_is_testing(fs_info))
916 		return alloc_test_extent_buffer(fs_info, bytenr);
917 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
918 }
919 
920 /*
921  * Read tree block at logical address @bytenr and do variant basic but critical
922  * verification.
923  *
924  * @owner_root:		the objectid of the root owner for this block.
925  * @parent_transid:	expected transid of this tree block, skip check if 0
926  * @level:		expected level, mandatory check
927  * @first_key:		expected key in slot 0, skip check if NULL
928  */
929 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
930 				      u64 owner_root, u64 parent_transid,
931 				      int level, struct btrfs_key *first_key)
932 {
933 	struct extent_buffer *buf = NULL;
934 	int ret;
935 
936 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
937 	if (IS_ERR(buf))
938 		return buf;
939 
940 	ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key);
941 	if (ret) {
942 		free_extent_buffer_stale(buf);
943 		return ERR_PTR(ret);
944 	}
945 	if (btrfs_check_eb_owner(buf, owner_root)) {
946 		free_extent_buffer_stale(buf);
947 		return ERR_PTR(-EUCLEAN);
948 	}
949 	return buf;
950 
951 }
952 
953 void btrfs_clean_tree_block(struct extent_buffer *buf)
954 {
955 	struct btrfs_fs_info *fs_info = buf->fs_info;
956 	if (btrfs_header_generation(buf) ==
957 	    fs_info->running_transaction->transid) {
958 		btrfs_assert_tree_write_locked(buf);
959 
960 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
961 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
962 						 -buf->len,
963 						 fs_info->dirty_metadata_batch);
964 			clear_extent_buffer_dirty(buf);
965 		}
966 	}
967 }
968 
969 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
970 			 u64 objectid)
971 {
972 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
973 
974 	memset(&root->root_key, 0, sizeof(root->root_key));
975 	memset(&root->root_item, 0, sizeof(root->root_item));
976 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
977 	root->fs_info = fs_info;
978 	root->root_key.objectid = objectid;
979 	root->node = NULL;
980 	root->commit_root = NULL;
981 	root->state = 0;
982 	RB_CLEAR_NODE(&root->rb_node);
983 
984 	root->last_trans = 0;
985 	root->free_objectid = 0;
986 	root->nr_delalloc_inodes = 0;
987 	root->nr_ordered_extents = 0;
988 	root->inode_tree = RB_ROOT;
989 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
990 
991 	btrfs_init_root_block_rsv(root);
992 
993 	INIT_LIST_HEAD(&root->dirty_list);
994 	INIT_LIST_HEAD(&root->root_list);
995 	INIT_LIST_HEAD(&root->delalloc_inodes);
996 	INIT_LIST_HEAD(&root->delalloc_root);
997 	INIT_LIST_HEAD(&root->ordered_extents);
998 	INIT_LIST_HEAD(&root->ordered_root);
999 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1000 	INIT_LIST_HEAD(&root->logged_list[0]);
1001 	INIT_LIST_HEAD(&root->logged_list[1]);
1002 	spin_lock_init(&root->inode_lock);
1003 	spin_lock_init(&root->delalloc_lock);
1004 	spin_lock_init(&root->ordered_extent_lock);
1005 	spin_lock_init(&root->accounting_lock);
1006 	spin_lock_init(&root->log_extents_lock[0]);
1007 	spin_lock_init(&root->log_extents_lock[1]);
1008 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1009 	mutex_init(&root->objectid_mutex);
1010 	mutex_init(&root->log_mutex);
1011 	mutex_init(&root->ordered_extent_mutex);
1012 	mutex_init(&root->delalloc_mutex);
1013 	init_waitqueue_head(&root->qgroup_flush_wait);
1014 	init_waitqueue_head(&root->log_writer_wait);
1015 	init_waitqueue_head(&root->log_commit_wait[0]);
1016 	init_waitqueue_head(&root->log_commit_wait[1]);
1017 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1018 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1019 	atomic_set(&root->log_commit[0], 0);
1020 	atomic_set(&root->log_commit[1], 0);
1021 	atomic_set(&root->log_writers, 0);
1022 	atomic_set(&root->log_batch, 0);
1023 	refcount_set(&root->refs, 1);
1024 	atomic_set(&root->snapshot_force_cow, 0);
1025 	atomic_set(&root->nr_swapfiles, 0);
1026 	root->log_transid = 0;
1027 	root->log_transid_committed = -1;
1028 	root->last_log_commit = 0;
1029 	root->anon_dev = 0;
1030 	if (!dummy) {
1031 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1032 				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1033 		extent_io_tree_init(fs_info, &root->log_csum_range,
1034 				    IO_TREE_LOG_CSUM_RANGE, NULL);
1035 	}
1036 
1037 	spin_lock_init(&root->root_item_lock);
1038 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1039 #ifdef CONFIG_BTRFS_DEBUG
1040 	INIT_LIST_HEAD(&root->leak_list);
1041 	spin_lock(&fs_info->fs_roots_radix_lock);
1042 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1043 	spin_unlock(&fs_info->fs_roots_radix_lock);
1044 #endif
1045 }
1046 
1047 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1048 					   u64 objectid, gfp_t flags)
1049 {
1050 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1051 	if (root)
1052 		__setup_root(root, fs_info, objectid);
1053 	return root;
1054 }
1055 
1056 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1057 /* Should only be used by the testing infrastructure */
1058 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1059 {
1060 	struct btrfs_root *root;
1061 
1062 	if (!fs_info)
1063 		return ERR_PTR(-EINVAL);
1064 
1065 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1066 	if (!root)
1067 		return ERR_PTR(-ENOMEM);
1068 
1069 	/* We don't use the stripesize in selftest, set it as sectorsize */
1070 	root->alloc_bytenr = 0;
1071 
1072 	return root;
1073 }
1074 #endif
1075 
1076 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1077 {
1078 	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1079 	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1080 
1081 	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1082 }
1083 
1084 static int global_root_key_cmp(const void *k, const struct rb_node *node)
1085 {
1086 	const struct btrfs_key *key = k;
1087 	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1088 
1089 	return btrfs_comp_cpu_keys(key, &root->root_key);
1090 }
1091 
1092 int btrfs_global_root_insert(struct btrfs_root *root)
1093 {
1094 	struct btrfs_fs_info *fs_info = root->fs_info;
1095 	struct rb_node *tmp;
1096 
1097 	write_lock(&fs_info->global_root_lock);
1098 	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1099 	write_unlock(&fs_info->global_root_lock);
1100 	ASSERT(!tmp);
1101 
1102 	return tmp ? -EEXIST : 0;
1103 }
1104 
1105 void btrfs_global_root_delete(struct btrfs_root *root)
1106 {
1107 	struct btrfs_fs_info *fs_info = root->fs_info;
1108 
1109 	write_lock(&fs_info->global_root_lock);
1110 	rb_erase(&root->rb_node, &fs_info->global_root_tree);
1111 	write_unlock(&fs_info->global_root_lock);
1112 }
1113 
1114 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1115 				     struct btrfs_key *key)
1116 {
1117 	struct rb_node *node;
1118 	struct btrfs_root *root = NULL;
1119 
1120 	read_lock(&fs_info->global_root_lock);
1121 	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1122 	if (node)
1123 		root = container_of(node, struct btrfs_root, rb_node);
1124 	read_unlock(&fs_info->global_root_lock);
1125 
1126 	return root;
1127 }
1128 
1129 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1130 {
1131 	struct btrfs_block_group *block_group;
1132 	u64 ret;
1133 
1134 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1135 		return 0;
1136 
1137 	if (bytenr)
1138 		block_group = btrfs_lookup_block_group(fs_info, bytenr);
1139 	else
1140 		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1141 	ASSERT(block_group);
1142 	if (!block_group)
1143 		return 0;
1144 	ret = block_group->global_root_id;
1145 	btrfs_put_block_group(block_group);
1146 
1147 	return ret;
1148 }
1149 
1150 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1151 {
1152 	struct btrfs_key key = {
1153 		.objectid = BTRFS_CSUM_TREE_OBJECTID,
1154 		.type = BTRFS_ROOT_ITEM_KEY,
1155 		.offset = btrfs_global_root_id(fs_info, bytenr),
1156 	};
1157 
1158 	return btrfs_global_root(fs_info, &key);
1159 }
1160 
1161 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1162 {
1163 	struct btrfs_key key = {
1164 		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
1165 		.type = BTRFS_ROOT_ITEM_KEY,
1166 		.offset = btrfs_global_root_id(fs_info, bytenr),
1167 	};
1168 
1169 	return btrfs_global_root(fs_info, &key);
1170 }
1171 
1172 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1173 				     u64 objectid)
1174 {
1175 	struct btrfs_fs_info *fs_info = trans->fs_info;
1176 	struct extent_buffer *leaf;
1177 	struct btrfs_root *tree_root = fs_info->tree_root;
1178 	struct btrfs_root *root;
1179 	struct btrfs_key key;
1180 	unsigned int nofs_flag;
1181 	int ret = 0;
1182 
1183 	/*
1184 	 * We're holding a transaction handle, so use a NOFS memory allocation
1185 	 * context to avoid deadlock if reclaim happens.
1186 	 */
1187 	nofs_flag = memalloc_nofs_save();
1188 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1189 	memalloc_nofs_restore(nofs_flag);
1190 	if (!root)
1191 		return ERR_PTR(-ENOMEM);
1192 
1193 	root->root_key.objectid = objectid;
1194 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1195 	root->root_key.offset = 0;
1196 
1197 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1198 				      BTRFS_NESTING_NORMAL);
1199 	if (IS_ERR(leaf)) {
1200 		ret = PTR_ERR(leaf);
1201 		leaf = NULL;
1202 		goto fail_unlock;
1203 	}
1204 
1205 	root->node = leaf;
1206 	btrfs_mark_buffer_dirty(leaf);
1207 
1208 	root->commit_root = btrfs_root_node(root);
1209 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1210 
1211 	btrfs_set_root_flags(&root->root_item, 0);
1212 	btrfs_set_root_limit(&root->root_item, 0);
1213 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1214 	btrfs_set_root_generation(&root->root_item, trans->transid);
1215 	btrfs_set_root_level(&root->root_item, 0);
1216 	btrfs_set_root_refs(&root->root_item, 1);
1217 	btrfs_set_root_used(&root->root_item, leaf->len);
1218 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1219 	btrfs_set_root_dirid(&root->root_item, 0);
1220 	if (is_fstree(objectid))
1221 		generate_random_guid(root->root_item.uuid);
1222 	else
1223 		export_guid(root->root_item.uuid, &guid_null);
1224 	btrfs_set_root_drop_level(&root->root_item, 0);
1225 
1226 	btrfs_tree_unlock(leaf);
1227 
1228 	key.objectid = objectid;
1229 	key.type = BTRFS_ROOT_ITEM_KEY;
1230 	key.offset = 0;
1231 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1232 	if (ret)
1233 		goto fail;
1234 
1235 	return root;
1236 
1237 fail_unlock:
1238 	if (leaf)
1239 		btrfs_tree_unlock(leaf);
1240 fail:
1241 	btrfs_put_root(root);
1242 
1243 	return ERR_PTR(ret);
1244 }
1245 
1246 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1247 					 struct btrfs_fs_info *fs_info)
1248 {
1249 	struct btrfs_root *root;
1250 
1251 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1252 	if (!root)
1253 		return ERR_PTR(-ENOMEM);
1254 
1255 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1256 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1257 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1258 
1259 	return root;
1260 }
1261 
1262 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1263 			      struct btrfs_root *root)
1264 {
1265 	struct extent_buffer *leaf;
1266 
1267 	/*
1268 	 * DON'T set SHAREABLE bit for log trees.
1269 	 *
1270 	 * Log trees are not exposed to user space thus can't be snapshotted,
1271 	 * and they go away before a real commit is actually done.
1272 	 *
1273 	 * They do store pointers to file data extents, and those reference
1274 	 * counts still get updated (along with back refs to the log tree).
1275 	 */
1276 
1277 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1278 			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1279 	if (IS_ERR(leaf))
1280 		return PTR_ERR(leaf);
1281 
1282 	root->node = leaf;
1283 
1284 	btrfs_mark_buffer_dirty(root->node);
1285 	btrfs_tree_unlock(root->node);
1286 
1287 	return 0;
1288 }
1289 
1290 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1291 			     struct btrfs_fs_info *fs_info)
1292 {
1293 	struct btrfs_root *log_root;
1294 
1295 	log_root = alloc_log_tree(trans, fs_info);
1296 	if (IS_ERR(log_root))
1297 		return PTR_ERR(log_root);
1298 
1299 	if (!btrfs_is_zoned(fs_info)) {
1300 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
1301 
1302 		if (ret) {
1303 			btrfs_put_root(log_root);
1304 			return ret;
1305 		}
1306 	}
1307 
1308 	WARN_ON(fs_info->log_root_tree);
1309 	fs_info->log_root_tree = log_root;
1310 	return 0;
1311 }
1312 
1313 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1314 		       struct btrfs_root *root)
1315 {
1316 	struct btrfs_fs_info *fs_info = root->fs_info;
1317 	struct btrfs_root *log_root;
1318 	struct btrfs_inode_item *inode_item;
1319 	int ret;
1320 
1321 	log_root = alloc_log_tree(trans, fs_info);
1322 	if (IS_ERR(log_root))
1323 		return PTR_ERR(log_root);
1324 
1325 	ret = btrfs_alloc_log_tree_node(trans, log_root);
1326 	if (ret) {
1327 		btrfs_put_root(log_root);
1328 		return ret;
1329 	}
1330 
1331 	log_root->last_trans = trans->transid;
1332 	log_root->root_key.offset = root->root_key.objectid;
1333 
1334 	inode_item = &log_root->root_item.inode;
1335 	btrfs_set_stack_inode_generation(inode_item, 1);
1336 	btrfs_set_stack_inode_size(inode_item, 3);
1337 	btrfs_set_stack_inode_nlink(inode_item, 1);
1338 	btrfs_set_stack_inode_nbytes(inode_item,
1339 				     fs_info->nodesize);
1340 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1341 
1342 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1343 
1344 	WARN_ON(root->log_root);
1345 	root->log_root = log_root;
1346 	root->log_transid = 0;
1347 	root->log_transid_committed = -1;
1348 	root->last_log_commit = 0;
1349 	return 0;
1350 }
1351 
1352 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1353 					      struct btrfs_path *path,
1354 					      struct btrfs_key *key)
1355 {
1356 	struct btrfs_root *root;
1357 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1358 	u64 generation;
1359 	int ret;
1360 	int level;
1361 
1362 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1363 	if (!root)
1364 		return ERR_PTR(-ENOMEM);
1365 
1366 	ret = btrfs_find_root(tree_root, key, path,
1367 			      &root->root_item, &root->root_key);
1368 	if (ret) {
1369 		if (ret > 0)
1370 			ret = -ENOENT;
1371 		goto fail;
1372 	}
1373 
1374 	generation = btrfs_root_generation(&root->root_item);
1375 	level = btrfs_root_level(&root->root_item);
1376 	root->node = read_tree_block(fs_info,
1377 				     btrfs_root_bytenr(&root->root_item),
1378 				     key->objectid, generation, level, NULL);
1379 	if (IS_ERR(root->node)) {
1380 		ret = PTR_ERR(root->node);
1381 		root->node = NULL;
1382 		goto fail;
1383 	}
1384 	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1385 		ret = -EIO;
1386 		goto fail;
1387 	}
1388 
1389 	/*
1390 	 * For real fs, and not log/reloc trees, root owner must
1391 	 * match its root node owner
1392 	 */
1393 	if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1394 	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1395 	    root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1396 	    root->root_key.objectid != btrfs_header_owner(root->node)) {
1397 		btrfs_crit(fs_info,
1398 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1399 			   root->root_key.objectid, root->node->start,
1400 			   btrfs_header_owner(root->node),
1401 			   root->root_key.objectid);
1402 		ret = -EUCLEAN;
1403 		goto fail;
1404 	}
1405 	root->commit_root = btrfs_root_node(root);
1406 	return root;
1407 fail:
1408 	btrfs_put_root(root);
1409 	return ERR_PTR(ret);
1410 }
1411 
1412 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1413 					struct btrfs_key *key)
1414 {
1415 	struct btrfs_root *root;
1416 	struct btrfs_path *path;
1417 
1418 	path = btrfs_alloc_path();
1419 	if (!path)
1420 		return ERR_PTR(-ENOMEM);
1421 	root = read_tree_root_path(tree_root, path, key);
1422 	btrfs_free_path(path);
1423 
1424 	return root;
1425 }
1426 
1427 /*
1428  * Initialize subvolume root in-memory structure
1429  *
1430  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1431  */
1432 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1433 {
1434 	int ret;
1435 	unsigned int nofs_flag;
1436 
1437 	/*
1438 	 * We might be called under a transaction (e.g. indirect backref
1439 	 * resolution) which could deadlock if it triggers memory reclaim
1440 	 */
1441 	nofs_flag = memalloc_nofs_save();
1442 	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1443 	memalloc_nofs_restore(nofs_flag);
1444 	if (ret)
1445 		goto fail;
1446 
1447 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1448 	    !btrfs_is_data_reloc_root(root)) {
1449 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1450 		btrfs_check_and_init_root_item(&root->root_item);
1451 	}
1452 
1453 	/*
1454 	 * Don't assign anonymous block device to roots that are not exposed to
1455 	 * userspace, the id pool is limited to 1M
1456 	 */
1457 	if (is_fstree(root->root_key.objectid) &&
1458 	    btrfs_root_refs(&root->root_item) > 0) {
1459 		if (!anon_dev) {
1460 			ret = get_anon_bdev(&root->anon_dev);
1461 			if (ret)
1462 				goto fail;
1463 		} else {
1464 			root->anon_dev = anon_dev;
1465 		}
1466 	}
1467 
1468 	mutex_lock(&root->objectid_mutex);
1469 	ret = btrfs_init_root_free_objectid(root);
1470 	if (ret) {
1471 		mutex_unlock(&root->objectid_mutex);
1472 		goto fail;
1473 	}
1474 
1475 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1476 
1477 	mutex_unlock(&root->objectid_mutex);
1478 
1479 	return 0;
1480 fail:
1481 	/* The caller is responsible to call btrfs_free_fs_root */
1482 	return ret;
1483 }
1484 
1485 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1486 					       u64 root_id)
1487 {
1488 	struct btrfs_root *root;
1489 
1490 	spin_lock(&fs_info->fs_roots_radix_lock);
1491 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1492 				 (unsigned long)root_id);
1493 	if (root)
1494 		root = btrfs_grab_root(root);
1495 	spin_unlock(&fs_info->fs_roots_radix_lock);
1496 	return root;
1497 }
1498 
1499 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1500 						u64 objectid)
1501 {
1502 	struct btrfs_key key = {
1503 		.objectid = objectid,
1504 		.type = BTRFS_ROOT_ITEM_KEY,
1505 		.offset = 0,
1506 	};
1507 
1508 	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1509 		return btrfs_grab_root(fs_info->tree_root);
1510 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1511 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1512 	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1513 		return btrfs_grab_root(fs_info->chunk_root);
1514 	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1515 		return btrfs_grab_root(fs_info->dev_root);
1516 	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1517 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1518 	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1519 		return btrfs_grab_root(fs_info->quota_root) ?
1520 			fs_info->quota_root : ERR_PTR(-ENOENT);
1521 	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1522 		return btrfs_grab_root(fs_info->uuid_root) ?
1523 			fs_info->uuid_root : ERR_PTR(-ENOENT);
1524 	if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID)
1525 		return btrfs_grab_root(fs_info->block_group_root) ?
1526 			fs_info->block_group_root : ERR_PTR(-ENOENT);
1527 	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1528 		struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1529 
1530 		return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1531 	}
1532 	return NULL;
1533 }
1534 
1535 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1536 			 struct btrfs_root *root)
1537 {
1538 	int ret;
1539 
1540 	ret = radix_tree_preload(GFP_NOFS);
1541 	if (ret)
1542 		return ret;
1543 
1544 	spin_lock(&fs_info->fs_roots_radix_lock);
1545 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1546 				(unsigned long)root->root_key.objectid,
1547 				root);
1548 	if (ret == 0) {
1549 		btrfs_grab_root(root);
1550 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1551 	}
1552 	spin_unlock(&fs_info->fs_roots_radix_lock);
1553 	radix_tree_preload_end();
1554 
1555 	return ret;
1556 }
1557 
1558 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1559 {
1560 #ifdef CONFIG_BTRFS_DEBUG
1561 	struct btrfs_root *root;
1562 
1563 	while (!list_empty(&fs_info->allocated_roots)) {
1564 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1565 
1566 		root = list_first_entry(&fs_info->allocated_roots,
1567 					struct btrfs_root, leak_list);
1568 		btrfs_err(fs_info, "leaked root %s refcount %d",
1569 			  btrfs_root_name(&root->root_key, buf),
1570 			  refcount_read(&root->refs));
1571 		while (refcount_read(&root->refs) > 1)
1572 			btrfs_put_root(root);
1573 		btrfs_put_root(root);
1574 	}
1575 #endif
1576 }
1577 
1578 static void free_global_roots(struct btrfs_fs_info *fs_info)
1579 {
1580 	struct btrfs_root *root;
1581 	struct rb_node *node;
1582 
1583 	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1584 		root = rb_entry(node, struct btrfs_root, rb_node);
1585 		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1586 		btrfs_put_root(root);
1587 	}
1588 }
1589 
1590 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1591 {
1592 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1593 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1594 	percpu_counter_destroy(&fs_info->ordered_bytes);
1595 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1596 	btrfs_free_csum_hash(fs_info);
1597 	btrfs_free_stripe_hash_table(fs_info);
1598 	btrfs_free_ref_cache(fs_info);
1599 	kfree(fs_info->balance_ctl);
1600 	kfree(fs_info->delayed_root);
1601 	free_global_roots(fs_info);
1602 	btrfs_put_root(fs_info->tree_root);
1603 	btrfs_put_root(fs_info->chunk_root);
1604 	btrfs_put_root(fs_info->dev_root);
1605 	btrfs_put_root(fs_info->quota_root);
1606 	btrfs_put_root(fs_info->uuid_root);
1607 	btrfs_put_root(fs_info->fs_root);
1608 	btrfs_put_root(fs_info->data_reloc_root);
1609 	btrfs_put_root(fs_info->block_group_root);
1610 	btrfs_check_leaked_roots(fs_info);
1611 	btrfs_extent_buffer_leak_debug_check(fs_info);
1612 	kfree(fs_info->super_copy);
1613 	kfree(fs_info->super_for_commit);
1614 	kfree(fs_info->subpage_info);
1615 	kvfree(fs_info);
1616 }
1617 
1618 
1619 /*
1620  * Get an in-memory reference of a root structure.
1621  *
1622  * For essential trees like root/extent tree, we grab it from fs_info directly.
1623  * For subvolume trees, we check the cached filesystem roots first. If not
1624  * found, then read it from disk and add it to cached fs roots.
1625  *
1626  * Caller should release the root by calling btrfs_put_root() after the usage.
1627  *
1628  * NOTE: Reloc and log trees can't be read by this function as they share the
1629  *	 same root objectid.
1630  *
1631  * @objectid:	root id
1632  * @anon_dev:	preallocated anonymous block device number for new roots,
1633  * 		pass 0 for new allocation.
1634  * @check_ref:	whether to check root item references, If true, return -ENOENT
1635  *		for orphan roots
1636  */
1637 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1638 					     u64 objectid, dev_t anon_dev,
1639 					     bool check_ref)
1640 {
1641 	struct btrfs_root *root;
1642 	struct btrfs_path *path;
1643 	struct btrfs_key key;
1644 	int ret;
1645 
1646 	root = btrfs_get_global_root(fs_info, objectid);
1647 	if (root)
1648 		return root;
1649 again:
1650 	root = btrfs_lookup_fs_root(fs_info, objectid);
1651 	if (root) {
1652 		/* Shouldn't get preallocated anon_dev for cached roots */
1653 		ASSERT(!anon_dev);
1654 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1655 			btrfs_put_root(root);
1656 			return ERR_PTR(-ENOENT);
1657 		}
1658 		return root;
1659 	}
1660 
1661 	key.objectid = objectid;
1662 	key.type = BTRFS_ROOT_ITEM_KEY;
1663 	key.offset = (u64)-1;
1664 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1665 	if (IS_ERR(root))
1666 		return root;
1667 
1668 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1669 		ret = -ENOENT;
1670 		goto fail;
1671 	}
1672 
1673 	ret = btrfs_init_fs_root(root, anon_dev);
1674 	if (ret)
1675 		goto fail;
1676 
1677 	path = btrfs_alloc_path();
1678 	if (!path) {
1679 		ret = -ENOMEM;
1680 		goto fail;
1681 	}
1682 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1683 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1684 	key.offset = objectid;
1685 
1686 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1687 	btrfs_free_path(path);
1688 	if (ret < 0)
1689 		goto fail;
1690 	if (ret == 0)
1691 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1692 
1693 	ret = btrfs_insert_fs_root(fs_info, root);
1694 	if (ret) {
1695 		if (ret == -EEXIST) {
1696 			btrfs_put_root(root);
1697 			goto again;
1698 		}
1699 		goto fail;
1700 	}
1701 	return root;
1702 fail:
1703 	/*
1704 	 * If our caller provided us an anonymous device, then it's his
1705 	 * responsibility to free it in case we fail. So we have to set our
1706 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1707 	 * and once again by our caller.
1708 	 */
1709 	if (anon_dev)
1710 		root->anon_dev = 0;
1711 	btrfs_put_root(root);
1712 	return ERR_PTR(ret);
1713 }
1714 
1715 /*
1716  * Get in-memory reference of a root structure
1717  *
1718  * @objectid:	tree objectid
1719  * @check_ref:	if set, verify that the tree exists and the item has at least
1720  *		one reference
1721  */
1722 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1723 				     u64 objectid, bool check_ref)
1724 {
1725 	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1726 }
1727 
1728 /*
1729  * Get in-memory reference of a root structure, created as new, optionally pass
1730  * the anonymous block device id
1731  *
1732  * @objectid:	tree objectid
1733  * @anon_dev:	if zero, allocate a new anonymous block device or use the
1734  *		parameter value
1735  */
1736 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1737 					 u64 objectid, dev_t anon_dev)
1738 {
1739 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1740 }
1741 
1742 /*
1743  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1744  * @fs_info:	the fs_info
1745  * @objectid:	the objectid we need to lookup
1746  *
1747  * This is exclusively used for backref walking, and exists specifically because
1748  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1749  * creation time, which means we may have to read the tree_root in order to look
1750  * up a fs root that is not in memory.  If the root is not in memory we will
1751  * read the tree root commit root and look up the fs root from there.  This is a
1752  * temporary root, it will not be inserted into the radix tree as it doesn't
1753  * have the most uptodate information, it'll simply be discarded once the
1754  * backref code is finished using the root.
1755  */
1756 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1757 						 struct btrfs_path *path,
1758 						 u64 objectid)
1759 {
1760 	struct btrfs_root *root;
1761 	struct btrfs_key key;
1762 
1763 	ASSERT(path->search_commit_root && path->skip_locking);
1764 
1765 	/*
1766 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1767 	 * since this is called via the backref walking code we won't be looking
1768 	 * up a root that doesn't exist, unless there's corruption.  So if root
1769 	 * != NULL just return it.
1770 	 */
1771 	root = btrfs_get_global_root(fs_info, objectid);
1772 	if (root)
1773 		return root;
1774 
1775 	root = btrfs_lookup_fs_root(fs_info, objectid);
1776 	if (root)
1777 		return root;
1778 
1779 	key.objectid = objectid;
1780 	key.type = BTRFS_ROOT_ITEM_KEY;
1781 	key.offset = (u64)-1;
1782 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1783 	btrfs_release_path(path);
1784 
1785 	return root;
1786 }
1787 
1788 static int cleaner_kthread(void *arg)
1789 {
1790 	struct btrfs_fs_info *fs_info = arg;
1791 	int again;
1792 
1793 	while (1) {
1794 		again = 0;
1795 
1796 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1797 
1798 		/* Make the cleaner go to sleep early. */
1799 		if (btrfs_need_cleaner_sleep(fs_info))
1800 			goto sleep;
1801 
1802 		/*
1803 		 * Do not do anything if we might cause open_ctree() to block
1804 		 * before we have finished mounting the filesystem.
1805 		 */
1806 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1807 			goto sleep;
1808 
1809 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1810 			goto sleep;
1811 
1812 		/*
1813 		 * Avoid the problem that we change the status of the fs
1814 		 * during the above check and trylock.
1815 		 */
1816 		if (btrfs_need_cleaner_sleep(fs_info)) {
1817 			mutex_unlock(&fs_info->cleaner_mutex);
1818 			goto sleep;
1819 		}
1820 
1821 		btrfs_run_delayed_iputs(fs_info);
1822 
1823 		again = btrfs_clean_one_deleted_snapshot(fs_info);
1824 		mutex_unlock(&fs_info->cleaner_mutex);
1825 
1826 		/*
1827 		 * The defragger has dealt with the R/O remount and umount,
1828 		 * needn't do anything special here.
1829 		 */
1830 		btrfs_run_defrag_inodes(fs_info);
1831 
1832 		/*
1833 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1834 		 * with relocation (btrfs_relocate_chunk) and relocation
1835 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1836 		 * after acquiring fs_info->reclaim_bgs_lock. So we
1837 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1838 		 * unused block groups.
1839 		 */
1840 		btrfs_delete_unused_bgs(fs_info);
1841 
1842 		/*
1843 		 * Reclaim block groups in the reclaim_bgs list after we deleted
1844 		 * all unused block_groups. This possibly gives us some more free
1845 		 * space.
1846 		 */
1847 		btrfs_reclaim_bgs(fs_info);
1848 sleep:
1849 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1850 		if (kthread_should_park())
1851 			kthread_parkme();
1852 		if (kthread_should_stop())
1853 			return 0;
1854 		if (!again) {
1855 			set_current_state(TASK_INTERRUPTIBLE);
1856 			schedule();
1857 			__set_current_state(TASK_RUNNING);
1858 		}
1859 	}
1860 }
1861 
1862 static int transaction_kthread(void *arg)
1863 {
1864 	struct btrfs_root *root = arg;
1865 	struct btrfs_fs_info *fs_info = root->fs_info;
1866 	struct btrfs_trans_handle *trans;
1867 	struct btrfs_transaction *cur;
1868 	u64 transid;
1869 	time64_t delta;
1870 	unsigned long delay;
1871 	bool cannot_commit;
1872 
1873 	do {
1874 		cannot_commit = false;
1875 		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1876 		mutex_lock(&fs_info->transaction_kthread_mutex);
1877 
1878 		spin_lock(&fs_info->trans_lock);
1879 		cur = fs_info->running_transaction;
1880 		if (!cur) {
1881 			spin_unlock(&fs_info->trans_lock);
1882 			goto sleep;
1883 		}
1884 
1885 		delta = ktime_get_seconds() - cur->start_time;
1886 		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1887 		    cur->state < TRANS_STATE_COMMIT_START &&
1888 		    delta < fs_info->commit_interval) {
1889 			spin_unlock(&fs_info->trans_lock);
1890 			delay -= msecs_to_jiffies((delta - 1) * 1000);
1891 			delay = min(delay,
1892 				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1893 			goto sleep;
1894 		}
1895 		transid = cur->transid;
1896 		spin_unlock(&fs_info->trans_lock);
1897 
1898 		/* If the file system is aborted, this will always fail. */
1899 		trans = btrfs_attach_transaction(root);
1900 		if (IS_ERR(trans)) {
1901 			if (PTR_ERR(trans) != -ENOENT)
1902 				cannot_commit = true;
1903 			goto sleep;
1904 		}
1905 		if (transid == trans->transid) {
1906 			btrfs_commit_transaction(trans);
1907 		} else {
1908 			btrfs_end_transaction(trans);
1909 		}
1910 sleep:
1911 		wake_up_process(fs_info->cleaner_kthread);
1912 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1913 
1914 		if (BTRFS_FS_ERROR(fs_info))
1915 			btrfs_cleanup_transaction(fs_info);
1916 		if (!kthread_should_stop() &&
1917 				(!btrfs_transaction_blocked(fs_info) ||
1918 				 cannot_commit))
1919 			schedule_timeout_interruptible(delay);
1920 	} while (!kthread_should_stop());
1921 	return 0;
1922 }
1923 
1924 /*
1925  * This will find the highest generation in the array of root backups.  The
1926  * index of the highest array is returned, or -EINVAL if we can't find
1927  * anything.
1928  *
1929  * We check to make sure the array is valid by comparing the
1930  * generation of the latest  root in the array with the generation
1931  * in the super block.  If they don't match we pitch it.
1932  */
1933 static int find_newest_super_backup(struct btrfs_fs_info *info)
1934 {
1935 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1936 	u64 cur;
1937 	struct btrfs_root_backup *root_backup;
1938 	int i;
1939 
1940 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1941 		root_backup = info->super_copy->super_roots + i;
1942 		cur = btrfs_backup_tree_root_gen(root_backup);
1943 		if (cur == newest_gen)
1944 			return i;
1945 	}
1946 
1947 	return -EINVAL;
1948 }
1949 
1950 /*
1951  * copy all the root pointers into the super backup array.
1952  * this will bump the backup pointer by one when it is
1953  * done
1954  */
1955 static void backup_super_roots(struct btrfs_fs_info *info)
1956 {
1957 	const int next_backup = info->backup_root_index;
1958 	struct btrfs_root_backup *root_backup;
1959 
1960 	root_backup = info->super_for_commit->super_roots + next_backup;
1961 
1962 	/*
1963 	 * make sure all of our padding and empty slots get zero filled
1964 	 * regardless of which ones we use today
1965 	 */
1966 	memset(root_backup, 0, sizeof(*root_backup));
1967 
1968 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1969 
1970 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1971 	btrfs_set_backup_tree_root_gen(root_backup,
1972 			       btrfs_header_generation(info->tree_root->node));
1973 
1974 	btrfs_set_backup_tree_root_level(root_backup,
1975 			       btrfs_header_level(info->tree_root->node));
1976 
1977 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1978 	btrfs_set_backup_chunk_root_gen(root_backup,
1979 			       btrfs_header_generation(info->chunk_root->node));
1980 	btrfs_set_backup_chunk_root_level(root_backup,
1981 			       btrfs_header_level(info->chunk_root->node));
1982 
1983 	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1984 		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1985 		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1986 
1987 		btrfs_set_backup_extent_root(root_backup,
1988 					     extent_root->node->start);
1989 		btrfs_set_backup_extent_root_gen(root_backup,
1990 				btrfs_header_generation(extent_root->node));
1991 		btrfs_set_backup_extent_root_level(root_backup,
1992 					btrfs_header_level(extent_root->node));
1993 
1994 		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1995 		btrfs_set_backup_csum_root_gen(root_backup,
1996 					       btrfs_header_generation(csum_root->node));
1997 		btrfs_set_backup_csum_root_level(root_backup,
1998 						 btrfs_header_level(csum_root->node));
1999 	}
2000 
2001 	/*
2002 	 * we might commit during log recovery, which happens before we set
2003 	 * the fs_root.  Make sure it is valid before we fill it in.
2004 	 */
2005 	if (info->fs_root && info->fs_root->node) {
2006 		btrfs_set_backup_fs_root(root_backup,
2007 					 info->fs_root->node->start);
2008 		btrfs_set_backup_fs_root_gen(root_backup,
2009 			       btrfs_header_generation(info->fs_root->node));
2010 		btrfs_set_backup_fs_root_level(root_backup,
2011 			       btrfs_header_level(info->fs_root->node));
2012 	}
2013 
2014 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2015 	btrfs_set_backup_dev_root_gen(root_backup,
2016 			       btrfs_header_generation(info->dev_root->node));
2017 	btrfs_set_backup_dev_root_level(root_backup,
2018 				       btrfs_header_level(info->dev_root->node));
2019 
2020 	btrfs_set_backup_total_bytes(root_backup,
2021 			     btrfs_super_total_bytes(info->super_copy));
2022 	btrfs_set_backup_bytes_used(root_backup,
2023 			     btrfs_super_bytes_used(info->super_copy));
2024 	btrfs_set_backup_num_devices(root_backup,
2025 			     btrfs_super_num_devices(info->super_copy));
2026 
2027 	/*
2028 	 * if we don't copy this out to the super_copy, it won't get remembered
2029 	 * for the next commit
2030 	 */
2031 	memcpy(&info->super_copy->super_roots,
2032 	       &info->super_for_commit->super_roots,
2033 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2034 }
2035 
2036 /*
2037  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2038  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2039  *
2040  * fs_info - filesystem whose backup roots need to be read
2041  * priority - priority of backup root required
2042  *
2043  * Returns backup root index on success and -EINVAL otherwise.
2044  */
2045 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2046 {
2047 	int backup_index = find_newest_super_backup(fs_info);
2048 	struct btrfs_super_block *super = fs_info->super_copy;
2049 	struct btrfs_root_backup *root_backup;
2050 
2051 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2052 		if (priority == 0)
2053 			return backup_index;
2054 
2055 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2056 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2057 	} else {
2058 		return -EINVAL;
2059 	}
2060 
2061 	root_backup = super->super_roots + backup_index;
2062 
2063 	btrfs_set_super_generation(super,
2064 				   btrfs_backup_tree_root_gen(root_backup));
2065 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2066 	btrfs_set_super_root_level(super,
2067 				   btrfs_backup_tree_root_level(root_backup));
2068 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2069 
2070 	/*
2071 	 * Fixme: the total bytes and num_devices need to match or we should
2072 	 * need a fsck
2073 	 */
2074 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2075 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2076 
2077 	return backup_index;
2078 }
2079 
2080 /* helper to cleanup workers */
2081 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2082 {
2083 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2084 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2085 	btrfs_destroy_workqueue(fs_info->hipri_workers);
2086 	btrfs_destroy_workqueue(fs_info->workers);
2087 	if (fs_info->endio_workers)
2088 		destroy_workqueue(fs_info->endio_workers);
2089 	if (fs_info->endio_raid56_workers)
2090 		destroy_workqueue(fs_info->endio_raid56_workers);
2091 	if (fs_info->rmw_workers)
2092 		destroy_workqueue(fs_info->rmw_workers);
2093 	if (fs_info->compressed_write_workers)
2094 		destroy_workqueue(fs_info->compressed_write_workers);
2095 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2096 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2097 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2098 	btrfs_destroy_workqueue(fs_info->caching_workers);
2099 	btrfs_destroy_workqueue(fs_info->flush_workers);
2100 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2101 	if (fs_info->discard_ctl.discard_workers)
2102 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
2103 	/*
2104 	 * Now that all other work queues are destroyed, we can safely destroy
2105 	 * the queues used for metadata I/O, since tasks from those other work
2106 	 * queues can do metadata I/O operations.
2107 	 */
2108 	if (fs_info->endio_meta_workers)
2109 		destroy_workqueue(fs_info->endio_meta_workers);
2110 }
2111 
2112 static void free_root_extent_buffers(struct btrfs_root *root)
2113 {
2114 	if (root) {
2115 		free_extent_buffer(root->node);
2116 		free_extent_buffer(root->commit_root);
2117 		root->node = NULL;
2118 		root->commit_root = NULL;
2119 	}
2120 }
2121 
2122 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2123 {
2124 	struct btrfs_root *root, *tmp;
2125 
2126 	rbtree_postorder_for_each_entry_safe(root, tmp,
2127 					     &fs_info->global_root_tree,
2128 					     rb_node)
2129 		free_root_extent_buffers(root);
2130 }
2131 
2132 /* helper to cleanup tree roots */
2133 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2134 {
2135 	free_root_extent_buffers(info->tree_root);
2136 
2137 	free_global_root_pointers(info);
2138 	free_root_extent_buffers(info->dev_root);
2139 	free_root_extent_buffers(info->quota_root);
2140 	free_root_extent_buffers(info->uuid_root);
2141 	free_root_extent_buffers(info->fs_root);
2142 	free_root_extent_buffers(info->data_reloc_root);
2143 	free_root_extent_buffers(info->block_group_root);
2144 	if (free_chunk_root)
2145 		free_root_extent_buffers(info->chunk_root);
2146 }
2147 
2148 void btrfs_put_root(struct btrfs_root *root)
2149 {
2150 	if (!root)
2151 		return;
2152 
2153 	if (refcount_dec_and_test(&root->refs)) {
2154 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2155 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2156 		if (root->anon_dev)
2157 			free_anon_bdev(root->anon_dev);
2158 		btrfs_drew_lock_destroy(&root->snapshot_lock);
2159 		free_root_extent_buffers(root);
2160 #ifdef CONFIG_BTRFS_DEBUG
2161 		spin_lock(&root->fs_info->fs_roots_radix_lock);
2162 		list_del_init(&root->leak_list);
2163 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2164 #endif
2165 		kfree(root);
2166 	}
2167 }
2168 
2169 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2170 {
2171 	int ret;
2172 	struct btrfs_root *gang[8];
2173 	int i;
2174 
2175 	while (!list_empty(&fs_info->dead_roots)) {
2176 		gang[0] = list_entry(fs_info->dead_roots.next,
2177 				     struct btrfs_root, root_list);
2178 		list_del(&gang[0]->root_list);
2179 
2180 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2181 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2182 		btrfs_put_root(gang[0]);
2183 	}
2184 
2185 	while (1) {
2186 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2187 					     (void **)gang, 0,
2188 					     ARRAY_SIZE(gang));
2189 		if (!ret)
2190 			break;
2191 		for (i = 0; i < ret; i++)
2192 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2193 	}
2194 }
2195 
2196 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2197 {
2198 	mutex_init(&fs_info->scrub_lock);
2199 	atomic_set(&fs_info->scrubs_running, 0);
2200 	atomic_set(&fs_info->scrub_pause_req, 0);
2201 	atomic_set(&fs_info->scrubs_paused, 0);
2202 	atomic_set(&fs_info->scrub_cancel_req, 0);
2203 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2204 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2205 }
2206 
2207 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2208 {
2209 	spin_lock_init(&fs_info->balance_lock);
2210 	mutex_init(&fs_info->balance_mutex);
2211 	atomic_set(&fs_info->balance_pause_req, 0);
2212 	atomic_set(&fs_info->balance_cancel_req, 0);
2213 	fs_info->balance_ctl = NULL;
2214 	init_waitqueue_head(&fs_info->balance_wait_q);
2215 	atomic_set(&fs_info->reloc_cancel_req, 0);
2216 }
2217 
2218 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2219 {
2220 	struct inode *inode = fs_info->btree_inode;
2221 	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
2222 					      fs_info->tree_root);
2223 
2224 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2225 	set_nlink(inode, 1);
2226 	/*
2227 	 * we set the i_size on the btree inode to the max possible int.
2228 	 * the real end of the address space is determined by all of
2229 	 * the devices in the system
2230 	 */
2231 	inode->i_size = OFFSET_MAX;
2232 	inode->i_mapping->a_ops = &btree_aops;
2233 
2234 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2235 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2236 			    IO_TREE_BTREE_INODE_IO, NULL);
2237 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2238 
2239 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2240 	BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
2241 	BTRFS_I(inode)->location.type = 0;
2242 	BTRFS_I(inode)->location.offset = 0;
2243 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2244 	__insert_inode_hash(inode, hash);
2245 }
2246 
2247 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2248 {
2249 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2250 	init_rwsem(&fs_info->dev_replace.rwsem);
2251 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2252 }
2253 
2254 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2255 {
2256 	spin_lock_init(&fs_info->qgroup_lock);
2257 	mutex_init(&fs_info->qgroup_ioctl_lock);
2258 	fs_info->qgroup_tree = RB_ROOT;
2259 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2260 	fs_info->qgroup_seq = 1;
2261 	fs_info->qgroup_ulist = NULL;
2262 	fs_info->qgroup_rescan_running = false;
2263 	fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
2264 	mutex_init(&fs_info->qgroup_rescan_lock);
2265 }
2266 
2267 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2268 {
2269 	u32 max_active = fs_info->thread_pool_size;
2270 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2271 
2272 	fs_info->workers =
2273 		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2274 	fs_info->hipri_workers =
2275 		btrfs_alloc_workqueue(fs_info, "worker-high",
2276 				      flags | WQ_HIGHPRI, max_active, 16);
2277 
2278 	fs_info->delalloc_workers =
2279 		btrfs_alloc_workqueue(fs_info, "delalloc",
2280 				      flags, max_active, 2);
2281 
2282 	fs_info->flush_workers =
2283 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2284 				      flags, max_active, 0);
2285 
2286 	fs_info->caching_workers =
2287 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2288 
2289 	fs_info->fixup_workers =
2290 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2291 
2292 	fs_info->endio_workers =
2293 		alloc_workqueue("btrfs-endio", flags, max_active);
2294 	fs_info->endio_meta_workers =
2295 		alloc_workqueue("btrfs-endio-meta", flags, max_active);
2296 	fs_info->endio_raid56_workers =
2297 		alloc_workqueue("btrfs-endio-raid56", flags, max_active);
2298 	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2299 	fs_info->endio_write_workers =
2300 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2301 				      max_active, 2);
2302 	fs_info->compressed_write_workers =
2303 		alloc_workqueue("btrfs-compressed-write", flags, max_active);
2304 	fs_info->endio_freespace_worker =
2305 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2306 				      max_active, 0);
2307 	fs_info->delayed_workers =
2308 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2309 				      max_active, 0);
2310 	fs_info->qgroup_rescan_workers =
2311 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2312 	fs_info->discard_ctl.discard_workers =
2313 		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2314 
2315 	if (!(fs_info->workers && fs_info->hipri_workers &&
2316 	      fs_info->delalloc_workers && fs_info->flush_workers &&
2317 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2318 	      fs_info->compressed_write_workers &&
2319 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2320 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2321 	      fs_info->caching_workers && fs_info->fixup_workers &&
2322 	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2323 	      fs_info->discard_ctl.discard_workers)) {
2324 		return -ENOMEM;
2325 	}
2326 
2327 	return 0;
2328 }
2329 
2330 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2331 {
2332 	struct crypto_shash *csum_shash;
2333 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2334 
2335 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2336 
2337 	if (IS_ERR(csum_shash)) {
2338 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2339 			  csum_driver);
2340 		return PTR_ERR(csum_shash);
2341 	}
2342 
2343 	fs_info->csum_shash = csum_shash;
2344 
2345 	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2346 			btrfs_super_csum_name(csum_type),
2347 			crypto_shash_driver_name(csum_shash));
2348 	return 0;
2349 }
2350 
2351 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2352 			    struct btrfs_fs_devices *fs_devices)
2353 {
2354 	int ret;
2355 	struct btrfs_root *log_tree_root;
2356 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2357 	u64 bytenr = btrfs_super_log_root(disk_super);
2358 	int level = btrfs_super_log_root_level(disk_super);
2359 
2360 	if (fs_devices->rw_devices == 0) {
2361 		btrfs_warn(fs_info, "log replay required on RO media");
2362 		return -EIO;
2363 	}
2364 
2365 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2366 					 GFP_KERNEL);
2367 	if (!log_tree_root)
2368 		return -ENOMEM;
2369 
2370 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2371 					      BTRFS_TREE_LOG_OBJECTID,
2372 					      fs_info->generation + 1, level,
2373 					      NULL);
2374 	if (IS_ERR(log_tree_root->node)) {
2375 		btrfs_warn(fs_info, "failed to read log tree");
2376 		ret = PTR_ERR(log_tree_root->node);
2377 		log_tree_root->node = NULL;
2378 		btrfs_put_root(log_tree_root);
2379 		return ret;
2380 	}
2381 	if (!extent_buffer_uptodate(log_tree_root->node)) {
2382 		btrfs_err(fs_info, "failed to read log tree");
2383 		btrfs_put_root(log_tree_root);
2384 		return -EIO;
2385 	}
2386 
2387 	/* returns with log_tree_root freed on success */
2388 	ret = btrfs_recover_log_trees(log_tree_root);
2389 	if (ret) {
2390 		btrfs_handle_fs_error(fs_info, ret,
2391 				      "Failed to recover log tree");
2392 		btrfs_put_root(log_tree_root);
2393 		return ret;
2394 	}
2395 
2396 	if (sb_rdonly(fs_info->sb)) {
2397 		ret = btrfs_commit_super(fs_info);
2398 		if (ret)
2399 			return ret;
2400 	}
2401 
2402 	return 0;
2403 }
2404 
2405 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2406 				      struct btrfs_path *path, u64 objectid,
2407 				      const char *name)
2408 {
2409 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2410 	struct btrfs_root *root;
2411 	u64 max_global_id = 0;
2412 	int ret;
2413 	struct btrfs_key key = {
2414 		.objectid = objectid,
2415 		.type = BTRFS_ROOT_ITEM_KEY,
2416 		.offset = 0,
2417 	};
2418 	bool found = false;
2419 
2420 	/* If we have IGNOREDATACSUMS skip loading these roots. */
2421 	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2422 	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2423 		set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2424 		return 0;
2425 	}
2426 
2427 	while (1) {
2428 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2429 		if (ret < 0)
2430 			break;
2431 
2432 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2433 			ret = btrfs_next_leaf(tree_root, path);
2434 			if (ret) {
2435 				if (ret > 0)
2436 					ret = 0;
2437 				break;
2438 			}
2439 		}
2440 		ret = 0;
2441 
2442 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2443 		if (key.objectid != objectid)
2444 			break;
2445 		btrfs_release_path(path);
2446 
2447 		/*
2448 		 * Just worry about this for extent tree, it'll be the same for
2449 		 * everybody.
2450 		 */
2451 		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2452 			max_global_id = max(max_global_id, key.offset);
2453 
2454 		found = true;
2455 		root = read_tree_root_path(tree_root, path, &key);
2456 		if (IS_ERR(root)) {
2457 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2458 				ret = PTR_ERR(root);
2459 			break;
2460 		}
2461 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2462 		ret = btrfs_global_root_insert(root);
2463 		if (ret) {
2464 			btrfs_put_root(root);
2465 			break;
2466 		}
2467 		key.offset++;
2468 	}
2469 	btrfs_release_path(path);
2470 
2471 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2472 		fs_info->nr_global_roots = max_global_id + 1;
2473 
2474 	if (!found || ret) {
2475 		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2476 			set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2477 
2478 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2479 			ret = ret ? ret : -ENOENT;
2480 		else
2481 			ret = 0;
2482 		btrfs_err(fs_info, "failed to load root %s", name);
2483 	}
2484 	return ret;
2485 }
2486 
2487 static int load_global_roots(struct btrfs_root *tree_root)
2488 {
2489 	struct btrfs_path *path;
2490 	int ret = 0;
2491 
2492 	path = btrfs_alloc_path();
2493 	if (!path)
2494 		return -ENOMEM;
2495 
2496 	ret = load_global_roots_objectid(tree_root, path,
2497 					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2498 	if (ret)
2499 		goto out;
2500 	ret = load_global_roots_objectid(tree_root, path,
2501 					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2502 	if (ret)
2503 		goto out;
2504 	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2505 		goto out;
2506 	ret = load_global_roots_objectid(tree_root, path,
2507 					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2508 					 "free space");
2509 out:
2510 	btrfs_free_path(path);
2511 	return ret;
2512 }
2513 
2514 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2515 {
2516 	struct btrfs_root *tree_root = fs_info->tree_root;
2517 	struct btrfs_root *root;
2518 	struct btrfs_key location;
2519 	int ret;
2520 
2521 	BUG_ON(!fs_info->tree_root);
2522 
2523 	ret = load_global_roots(tree_root);
2524 	if (ret)
2525 		return ret;
2526 
2527 	location.type = BTRFS_ROOT_ITEM_KEY;
2528 	location.offset = 0;
2529 
2530 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2531 		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2532 		root = btrfs_read_tree_root(tree_root, &location);
2533 		if (IS_ERR(root)) {
2534 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2535 				ret = PTR_ERR(root);
2536 				goto out;
2537 			}
2538 		} else {
2539 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2540 			fs_info->block_group_root = root;
2541 		}
2542 	}
2543 
2544 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2545 	root = btrfs_read_tree_root(tree_root, &location);
2546 	if (IS_ERR(root)) {
2547 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2548 			ret = PTR_ERR(root);
2549 			goto out;
2550 		}
2551 	} else {
2552 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2553 		fs_info->dev_root = root;
2554 	}
2555 	/* Initialize fs_info for all devices in any case */
2556 	btrfs_init_devices_late(fs_info);
2557 
2558 	/*
2559 	 * This tree can share blocks with some other fs tree during relocation
2560 	 * and we need a proper setup by btrfs_get_fs_root
2561 	 */
2562 	root = btrfs_get_fs_root(tree_root->fs_info,
2563 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2564 	if (IS_ERR(root)) {
2565 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2566 			ret = PTR_ERR(root);
2567 			goto out;
2568 		}
2569 	} else {
2570 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2571 		fs_info->data_reloc_root = root;
2572 	}
2573 
2574 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2575 	root = btrfs_read_tree_root(tree_root, &location);
2576 	if (!IS_ERR(root)) {
2577 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2578 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2579 		fs_info->quota_root = root;
2580 	}
2581 
2582 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2583 	root = btrfs_read_tree_root(tree_root, &location);
2584 	if (IS_ERR(root)) {
2585 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2586 			ret = PTR_ERR(root);
2587 			if (ret != -ENOENT)
2588 				goto out;
2589 		}
2590 	} else {
2591 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2592 		fs_info->uuid_root = root;
2593 	}
2594 
2595 	return 0;
2596 out:
2597 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2598 		   location.objectid, ret);
2599 	return ret;
2600 }
2601 
2602 /*
2603  * Real super block validation
2604  * NOTE: super csum type and incompat features will not be checked here.
2605  *
2606  * @sb:		super block to check
2607  * @mirror_num:	the super block number to check its bytenr:
2608  * 		0	the primary (1st) sb
2609  * 		1, 2	2nd and 3rd backup copy
2610  * 	       -1	skip bytenr check
2611  */
2612 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2613 			 struct btrfs_super_block *sb, int mirror_num)
2614 {
2615 	u64 nodesize = btrfs_super_nodesize(sb);
2616 	u64 sectorsize = btrfs_super_sectorsize(sb);
2617 	int ret = 0;
2618 
2619 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2620 		btrfs_err(fs_info, "no valid FS found");
2621 		ret = -EINVAL;
2622 	}
2623 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2624 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2625 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2626 		ret = -EINVAL;
2627 	}
2628 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2629 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2630 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2631 		ret = -EINVAL;
2632 	}
2633 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2634 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2635 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2636 		ret = -EINVAL;
2637 	}
2638 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2639 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2640 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2641 		ret = -EINVAL;
2642 	}
2643 
2644 	/*
2645 	 * Check sectorsize and nodesize first, other check will need it.
2646 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2647 	 */
2648 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2649 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2650 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2651 		ret = -EINVAL;
2652 	}
2653 
2654 	/*
2655 	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2656 	 *
2657 	 * We can support 16K sectorsize with 64K page size without problem,
2658 	 * but such sectorsize/pagesize combination doesn't make much sense.
2659 	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2660 	 * beginning.
2661 	 */
2662 	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2663 		btrfs_err(fs_info,
2664 			"sectorsize %llu not yet supported for page size %lu",
2665 			sectorsize, PAGE_SIZE);
2666 		ret = -EINVAL;
2667 	}
2668 
2669 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2670 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2671 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2672 		ret = -EINVAL;
2673 	}
2674 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2675 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2676 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2677 		ret = -EINVAL;
2678 	}
2679 
2680 	/* Root alignment check */
2681 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2682 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2683 			   btrfs_super_root(sb));
2684 		ret = -EINVAL;
2685 	}
2686 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2687 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2688 			   btrfs_super_chunk_root(sb));
2689 		ret = -EINVAL;
2690 	}
2691 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2692 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2693 			   btrfs_super_log_root(sb));
2694 		ret = -EINVAL;
2695 	}
2696 
2697 	if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2698 		   BTRFS_FSID_SIZE)) {
2699 		btrfs_err(fs_info,
2700 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2701 			fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2702 		ret = -EINVAL;
2703 	}
2704 
2705 	if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2706 	    memcmp(fs_info->fs_devices->metadata_uuid,
2707 		   fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2708 		btrfs_err(fs_info,
2709 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2710 			fs_info->super_copy->metadata_uuid,
2711 			fs_info->fs_devices->metadata_uuid);
2712 		ret = -EINVAL;
2713 	}
2714 
2715 	/*
2716 	 * Artificial requirement for block-group-tree to force newer features
2717 	 * (free-space-tree, no-holes) so the test matrix is smaller.
2718 	 */
2719 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2720 	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2721 	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2722 		btrfs_err(fs_info,
2723 		"block-group-tree feature requires fres-space-tree and no-holes");
2724 		ret = -EINVAL;
2725 	}
2726 
2727 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2728 		   BTRFS_FSID_SIZE) != 0) {
2729 		btrfs_err(fs_info,
2730 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2731 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2732 		ret = -EINVAL;
2733 	}
2734 
2735 	/*
2736 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2737 	 * done later
2738 	 */
2739 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2740 		btrfs_err(fs_info, "bytes_used is too small %llu",
2741 			  btrfs_super_bytes_used(sb));
2742 		ret = -EINVAL;
2743 	}
2744 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2745 		btrfs_err(fs_info, "invalid stripesize %u",
2746 			  btrfs_super_stripesize(sb));
2747 		ret = -EINVAL;
2748 	}
2749 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2750 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2751 			   btrfs_super_num_devices(sb));
2752 	if (btrfs_super_num_devices(sb) == 0) {
2753 		btrfs_err(fs_info, "number of devices is 0");
2754 		ret = -EINVAL;
2755 	}
2756 
2757 	if (mirror_num >= 0 &&
2758 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2759 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2760 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2761 		ret = -EINVAL;
2762 	}
2763 
2764 	/*
2765 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2766 	 * and one chunk
2767 	 */
2768 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2769 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2770 			  btrfs_super_sys_array_size(sb),
2771 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2772 		ret = -EINVAL;
2773 	}
2774 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2775 			+ sizeof(struct btrfs_chunk)) {
2776 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2777 			  btrfs_super_sys_array_size(sb),
2778 			  sizeof(struct btrfs_disk_key)
2779 			  + sizeof(struct btrfs_chunk));
2780 		ret = -EINVAL;
2781 	}
2782 
2783 	/*
2784 	 * The generation is a global counter, we'll trust it more than the others
2785 	 * but it's still possible that it's the one that's wrong.
2786 	 */
2787 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2788 		btrfs_warn(fs_info,
2789 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2790 			btrfs_super_generation(sb),
2791 			btrfs_super_chunk_root_generation(sb));
2792 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2793 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2794 		btrfs_warn(fs_info,
2795 			"suspicious: generation < cache_generation: %llu < %llu",
2796 			btrfs_super_generation(sb),
2797 			btrfs_super_cache_generation(sb));
2798 
2799 	return ret;
2800 }
2801 
2802 /*
2803  * Validation of super block at mount time.
2804  * Some checks already done early at mount time, like csum type and incompat
2805  * flags will be skipped.
2806  */
2807 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2808 {
2809 	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2810 }
2811 
2812 /*
2813  * Validation of super block at write time.
2814  * Some checks like bytenr check will be skipped as their values will be
2815  * overwritten soon.
2816  * Extra checks like csum type and incompat flags will be done here.
2817  */
2818 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2819 				      struct btrfs_super_block *sb)
2820 {
2821 	int ret;
2822 
2823 	ret = btrfs_validate_super(fs_info, sb, -1);
2824 	if (ret < 0)
2825 		goto out;
2826 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2827 		ret = -EUCLEAN;
2828 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2829 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2830 		goto out;
2831 	}
2832 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2833 		ret = -EUCLEAN;
2834 		btrfs_err(fs_info,
2835 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2836 			  btrfs_super_incompat_flags(sb),
2837 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2838 		goto out;
2839 	}
2840 out:
2841 	if (ret < 0)
2842 		btrfs_err(fs_info,
2843 		"super block corruption detected before writing it to disk");
2844 	return ret;
2845 }
2846 
2847 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2848 {
2849 	int ret = 0;
2850 
2851 	root->node = read_tree_block(root->fs_info, bytenr,
2852 				     root->root_key.objectid, gen, level, NULL);
2853 	if (IS_ERR(root->node)) {
2854 		ret = PTR_ERR(root->node);
2855 		root->node = NULL;
2856 		return ret;
2857 	}
2858 	if (!extent_buffer_uptodate(root->node)) {
2859 		free_extent_buffer(root->node);
2860 		root->node = NULL;
2861 		return -EIO;
2862 	}
2863 
2864 	btrfs_set_root_node(&root->root_item, root->node);
2865 	root->commit_root = btrfs_root_node(root);
2866 	btrfs_set_root_refs(&root->root_item, 1);
2867 	return ret;
2868 }
2869 
2870 static int load_important_roots(struct btrfs_fs_info *fs_info)
2871 {
2872 	struct btrfs_super_block *sb = fs_info->super_copy;
2873 	u64 gen, bytenr;
2874 	int level, ret;
2875 
2876 	bytenr = btrfs_super_root(sb);
2877 	gen = btrfs_super_generation(sb);
2878 	level = btrfs_super_root_level(sb);
2879 	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2880 	if (ret) {
2881 		btrfs_warn(fs_info, "couldn't read tree root");
2882 		return ret;
2883 	}
2884 	return 0;
2885 }
2886 
2887 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2888 {
2889 	int backup_index = find_newest_super_backup(fs_info);
2890 	struct btrfs_super_block *sb = fs_info->super_copy;
2891 	struct btrfs_root *tree_root = fs_info->tree_root;
2892 	bool handle_error = false;
2893 	int ret = 0;
2894 	int i;
2895 
2896 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2897 		if (handle_error) {
2898 			if (!IS_ERR(tree_root->node))
2899 				free_extent_buffer(tree_root->node);
2900 			tree_root->node = NULL;
2901 
2902 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2903 				break;
2904 
2905 			free_root_pointers(fs_info, 0);
2906 
2907 			/*
2908 			 * Don't use the log in recovery mode, it won't be
2909 			 * valid
2910 			 */
2911 			btrfs_set_super_log_root(sb, 0);
2912 
2913 			/* We can't trust the free space cache either */
2914 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2915 
2916 			ret = read_backup_root(fs_info, i);
2917 			backup_index = ret;
2918 			if (ret < 0)
2919 				return ret;
2920 		}
2921 
2922 		ret = load_important_roots(fs_info);
2923 		if (ret) {
2924 			handle_error = true;
2925 			continue;
2926 		}
2927 
2928 		/*
2929 		 * No need to hold btrfs_root::objectid_mutex since the fs
2930 		 * hasn't been fully initialised and we are the only user
2931 		 */
2932 		ret = btrfs_init_root_free_objectid(tree_root);
2933 		if (ret < 0) {
2934 			handle_error = true;
2935 			continue;
2936 		}
2937 
2938 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2939 
2940 		ret = btrfs_read_roots(fs_info);
2941 		if (ret < 0) {
2942 			handle_error = true;
2943 			continue;
2944 		}
2945 
2946 		/* All successful */
2947 		fs_info->generation = btrfs_header_generation(tree_root->node);
2948 		fs_info->last_trans_committed = fs_info->generation;
2949 		fs_info->last_reloc_trans = 0;
2950 
2951 		/* Always begin writing backup roots after the one being used */
2952 		if (backup_index < 0) {
2953 			fs_info->backup_root_index = 0;
2954 		} else {
2955 			fs_info->backup_root_index = backup_index + 1;
2956 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2957 		}
2958 		break;
2959 	}
2960 
2961 	return ret;
2962 }
2963 
2964 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2965 {
2966 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2967 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2968 	INIT_LIST_HEAD(&fs_info->trans_list);
2969 	INIT_LIST_HEAD(&fs_info->dead_roots);
2970 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2971 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2972 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2973 	spin_lock_init(&fs_info->delalloc_root_lock);
2974 	spin_lock_init(&fs_info->trans_lock);
2975 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2976 	spin_lock_init(&fs_info->delayed_iput_lock);
2977 	spin_lock_init(&fs_info->defrag_inodes_lock);
2978 	spin_lock_init(&fs_info->super_lock);
2979 	spin_lock_init(&fs_info->buffer_lock);
2980 	spin_lock_init(&fs_info->unused_bgs_lock);
2981 	spin_lock_init(&fs_info->treelog_bg_lock);
2982 	spin_lock_init(&fs_info->zone_active_bgs_lock);
2983 	spin_lock_init(&fs_info->relocation_bg_lock);
2984 	rwlock_init(&fs_info->tree_mod_log_lock);
2985 	rwlock_init(&fs_info->global_root_lock);
2986 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2987 	mutex_init(&fs_info->reclaim_bgs_lock);
2988 	mutex_init(&fs_info->reloc_mutex);
2989 	mutex_init(&fs_info->delalloc_root_mutex);
2990 	mutex_init(&fs_info->zoned_meta_io_lock);
2991 	mutex_init(&fs_info->zoned_data_reloc_io_lock);
2992 	seqlock_init(&fs_info->profiles_lock);
2993 
2994 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2995 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2996 	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2997 	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2998 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
2999 				     BTRFS_LOCKDEP_TRANS_COMMIT_START);
3000 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
3001 				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
3002 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
3003 				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
3004 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
3005 				     BTRFS_LOCKDEP_TRANS_COMPLETED);
3006 
3007 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
3008 	INIT_LIST_HEAD(&fs_info->space_info);
3009 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
3010 	INIT_LIST_HEAD(&fs_info->unused_bgs);
3011 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
3012 	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
3013 #ifdef CONFIG_BTRFS_DEBUG
3014 	INIT_LIST_HEAD(&fs_info->allocated_roots);
3015 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
3016 	spin_lock_init(&fs_info->eb_leak_lock);
3017 #endif
3018 	extent_map_tree_init(&fs_info->mapping_tree);
3019 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
3020 			     BTRFS_BLOCK_RSV_GLOBAL);
3021 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3022 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3023 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3024 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3025 			     BTRFS_BLOCK_RSV_DELOPS);
3026 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3027 			     BTRFS_BLOCK_RSV_DELREFS);
3028 
3029 	atomic_set(&fs_info->async_delalloc_pages, 0);
3030 	atomic_set(&fs_info->defrag_running, 0);
3031 	atomic_set(&fs_info->nr_delayed_iputs, 0);
3032 	atomic64_set(&fs_info->tree_mod_seq, 0);
3033 	fs_info->global_root_tree = RB_ROOT;
3034 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
3035 	fs_info->metadata_ratio = 0;
3036 	fs_info->defrag_inodes = RB_ROOT;
3037 	atomic64_set(&fs_info->free_chunk_space, 0);
3038 	fs_info->tree_mod_log = RB_ROOT;
3039 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
3040 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
3041 	btrfs_init_ref_verify(fs_info);
3042 
3043 	fs_info->thread_pool_size = min_t(unsigned long,
3044 					  num_online_cpus() + 2, 8);
3045 
3046 	INIT_LIST_HEAD(&fs_info->ordered_roots);
3047 	spin_lock_init(&fs_info->ordered_root_lock);
3048 
3049 	btrfs_init_scrub(fs_info);
3050 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3051 	fs_info->check_integrity_print_mask = 0;
3052 #endif
3053 	btrfs_init_balance(fs_info);
3054 	btrfs_init_async_reclaim_work(fs_info);
3055 
3056 	rwlock_init(&fs_info->block_group_cache_lock);
3057 	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
3058 
3059 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3060 			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
3061 
3062 	mutex_init(&fs_info->ordered_operations_mutex);
3063 	mutex_init(&fs_info->tree_log_mutex);
3064 	mutex_init(&fs_info->chunk_mutex);
3065 	mutex_init(&fs_info->transaction_kthread_mutex);
3066 	mutex_init(&fs_info->cleaner_mutex);
3067 	mutex_init(&fs_info->ro_block_group_mutex);
3068 	init_rwsem(&fs_info->commit_root_sem);
3069 	init_rwsem(&fs_info->cleanup_work_sem);
3070 	init_rwsem(&fs_info->subvol_sem);
3071 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
3072 
3073 	btrfs_init_dev_replace_locks(fs_info);
3074 	btrfs_init_qgroup(fs_info);
3075 	btrfs_discard_init(fs_info);
3076 
3077 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3078 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3079 
3080 	init_waitqueue_head(&fs_info->transaction_throttle);
3081 	init_waitqueue_head(&fs_info->transaction_wait);
3082 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
3083 	init_waitqueue_head(&fs_info->async_submit_wait);
3084 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
3085 
3086 	/* Usable values until the real ones are cached from the superblock */
3087 	fs_info->nodesize = 4096;
3088 	fs_info->sectorsize = 4096;
3089 	fs_info->sectorsize_bits = ilog2(4096);
3090 	fs_info->stripesize = 4096;
3091 
3092 	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
3093 
3094 	spin_lock_init(&fs_info->swapfile_pins_lock);
3095 	fs_info->swapfile_pins = RB_ROOT;
3096 
3097 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3098 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
3099 }
3100 
3101 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3102 {
3103 	int ret;
3104 
3105 	fs_info->sb = sb;
3106 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3107 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3108 
3109 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3110 	if (ret)
3111 		return ret;
3112 
3113 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3114 	if (ret)
3115 		return ret;
3116 
3117 	fs_info->dirty_metadata_batch = PAGE_SIZE *
3118 					(1 + ilog2(nr_cpu_ids));
3119 
3120 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3121 	if (ret)
3122 		return ret;
3123 
3124 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3125 			GFP_KERNEL);
3126 	if (ret)
3127 		return ret;
3128 
3129 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3130 					GFP_KERNEL);
3131 	if (!fs_info->delayed_root)
3132 		return -ENOMEM;
3133 	btrfs_init_delayed_root(fs_info->delayed_root);
3134 
3135 	if (sb_rdonly(sb))
3136 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3137 
3138 	return btrfs_alloc_stripe_hash_table(fs_info);
3139 }
3140 
3141 static int btrfs_uuid_rescan_kthread(void *data)
3142 {
3143 	struct btrfs_fs_info *fs_info = data;
3144 	int ret;
3145 
3146 	/*
3147 	 * 1st step is to iterate through the existing UUID tree and
3148 	 * to delete all entries that contain outdated data.
3149 	 * 2nd step is to add all missing entries to the UUID tree.
3150 	 */
3151 	ret = btrfs_uuid_tree_iterate(fs_info);
3152 	if (ret < 0) {
3153 		if (ret != -EINTR)
3154 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3155 				   ret);
3156 		up(&fs_info->uuid_tree_rescan_sem);
3157 		return ret;
3158 	}
3159 	return btrfs_uuid_scan_kthread(data);
3160 }
3161 
3162 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3163 {
3164 	struct task_struct *task;
3165 
3166 	down(&fs_info->uuid_tree_rescan_sem);
3167 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3168 	if (IS_ERR(task)) {
3169 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3170 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
3171 		up(&fs_info->uuid_tree_rescan_sem);
3172 		return PTR_ERR(task);
3173 	}
3174 
3175 	return 0;
3176 }
3177 
3178 /*
3179  * Some options only have meaning at mount time and shouldn't persist across
3180  * remounts, or be displayed. Clear these at the end of mount and remount
3181  * code paths.
3182  */
3183 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3184 {
3185 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3186 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3187 }
3188 
3189 /*
3190  * Mounting logic specific to read-write file systems. Shared by open_ctree
3191  * and btrfs_remount when remounting from read-only to read-write.
3192  */
3193 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3194 {
3195 	int ret;
3196 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3197 	bool clear_free_space_tree = false;
3198 
3199 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3200 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3201 		clear_free_space_tree = true;
3202 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3203 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3204 		btrfs_warn(fs_info, "free space tree is invalid");
3205 		clear_free_space_tree = true;
3206 	}
3207 
3208 	if (clear_free_space_tree) {
3209 		btrfs_info(fs_info, "clearing free space tree");
3210 		ret = btrfs_clear_free_space_tree(fs_info);
3211 		if (ret) {
3212 			btrfs_warn(fs_info,
3213 				   "failed to clear free space tree: %d", ret);
3214 			goto out;
3215 		}
3216 	}
3217 
3218 	/*
3219 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3220 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3221 	 * them into the fs_info->fs_roots_radix tree. This must be done before
3222 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3223 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3224 	 * item before the root's tree is deleted - this means that if we unmount
3225 	 * or crash before the deletion completes, on the next mount we will not
3226 	 * delete what remains of the tree because the orphan item does not
3227 	 * exists anymore, which is what tells us we have a pending deletion.
3228 	 */
3229 	ret = btrfs_find_orphan_roots(fs_info);
3230 	if (ret)
3231 		goto out;
3232 
3233 	ret = btrfs_cleanup_fs_roots(fs_info);
3234 	if (ret)
3235 		goto out;
3236 
3237 	down_read(&fs_info->cleanup_work_sem);
3238 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3239 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3240 		up_read(&fs_info->cleanup_work_sem);
3241 		goto out;
3242 	}
3243 	up_read(&fs_info->cleanup_work_sem);
3244 
3245 	mutex_lock(&fs_info->cleaner_mutex);
3246 	ret = btrfs_recover_relocation(fs_info);
3247 	mutex_unlock(&fs_info->cleaner_mutex);
3248 	if (ret < 0) {
3249 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3250 		goto out;
3251 	}
3252 
3253 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3254 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3255 		btrfs_info(fs_info, "creating free space tree");
3256 		ret = btrfs_create_free_space_tree(fs_info);
3257 		if (ret) {
3258 			btrfs_warn(fs_info,
3259 				"failed to create free space tree: %d", ret);
3260 			goto out;
3261 		}
3262 	}
3263 
3264 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3265 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3266 		if (ret)
3267 			goto out;
3268 	}
3269 
3270 	ret = btrfs_resume_balance_async(fs_info);
3271 	if (ret)
3272 		goto out;
3273 
3274 	ret = btrfs_resume_dev_replace_async(fs_info);
3275 	if (ret) {
3276 		btrfs_warn(fs_info, "failed to resume dev_replace");
3277 		goto out;
3278 	}
3279 
3280 	btrfs_qgroup_rescan_resume(fs_info);
3281 
3282 	if (!fs_info->uuid_root) {
3283 		btrfs_info(fs_info, "creating UUID tree");
3284 		ret = btrfs_create_uuid_tree(fs_info);
3285 		if (ret) {
3286 			btrfs_warn(fs_info,
3287 				   "failed to create the UUID tree %d", ret);
3288 			goto out;
3289 		}
3290 	}
3291 
3292 out:
3293 	return ret;
3294 }
3295 
3296 /*
3297  * Do various sanity and dependency checks of different features.
3298  *
3299  * This is the place for less strict checks (like for subpage or artificial
3300  * feature dependencies).
3301  *
3302  * For strict checks or possible corruption detection, see
3303  * btrfs_validate_super().
3304  *
3305  * This should be called after btrfs_parse_options(), as some mount options
3306  * (space cache related) can modify on-disk format like free space tree and
3307  * screw up certain feature dependencies.
3308  */
3309 int btrfs_check_features(struct btrfs_fs_info *fs_info, struct super_block *sb)
3310 {
3311 	struct btrfs_super_block *disk_super = fs_info->super_copy;
3312 	u64 incompat = btrfs_super_incompat_flags(disk_super);
3313 	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3314 	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3315 
3316 	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3317 		btrfs_err(fs_info,
3318 		"cannot mount because of unknown incompat features (0x%llx)",
3319 		    incompat);
3320 		return -EINVAL;
3321 	}
3322 
3323 	/* Runtime limitation for mixed block groups. */
3324 	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3325 	    (fs_info->sectorsize != fs_info->nodesize)) {
3326 		btrfs_err(fs_info,
3327 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3328 			fs_info->nodesize, fs_info->sectorsize);
3329 		return -EINVAL;
3330 	}
3331 
3332 	/* Mixed backref is an always-enabled feature. */
3333 	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3334 
3335 	/* Set compression related flags just in case. */
3336 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3337 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3338 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3339 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3340 
3341 	/*
3342 	 * An ancient flag, which should really be marked deprecated.
3343 	 * Such runtime limitation doesn't really need a incompat flag.
3344 	 */
3345 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3346 		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3347 
3348 	if (compat_ro_unsupp && !sb_rdonly(sb)) {
3349 		btrfs_err(fs_info,
3350 	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3351 		       compat_ro);
3352 		return -EINVAL;
3353 	}
3354 
3355 	/*
3356 	 * We have unsupported RO compat features, although RO mounted, we
3357 	 * should not cause any metadata writes, including log replay.
3358 	 * Or we could screw up whatever the new feature requires.
3359 	 */
3360 	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3361 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3362 		btrfs_err(fs_info,
3363 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3364 			  compat_ro);
3365 		return -EINVAL;
3366 	}
3367 
3368 	/*
3369 	 * Artificial limitations for block group tree, to force
3370 	 * block-group-tree to rely on no-holes and free-space-tree.
3371 	 */
3372 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3373 	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3374 	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3375 		btrfs_err(fs_info,
3376 "block-group-tree feature requires no-holes and free-space-tree features");
3377 		return -EINVAL;
3378 	}
3379 
3380 	/*
3381 	 * Subpage runtime limitation on v1 cache.
3382 	 *
3383 	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3384 	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3385 	 * going to be deprecated anyway.
3386 	 */
3387 	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3388 		btrfs_warn(fs_info,
3389 	"v1 space cache is not supported for page size %lu with sectorsize %u",
3390 			   PAGE_SIZE, fs_info->sectorsize);
3391 		return -EINVAL;
3392 	}
3393 
3394 	/* This can be called by remount, we need to protect the super block. */
3395 	spin_lock(&fs_info->super_lock);
3396 	btrfs_set_super_incompat_flags(disk_super, incompat);
3397 	spin_unlock(&fs_info->super_lock);
3398 
3399 	return 0;
3400 }
3401 
3402 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3403 		      char *options)
3404 {
3405 	u32 sectorsize;
3406 	u32 nodesize;
3407 	u32 stripesize;
3408 	u64 generation;
3409 	u64 features;
3410 	u16 csum_type;
3411 	struct btrfs_super_block *disk_super;
3412 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3413 	struct btrfs_root *tree_root;
3414 	struct btrfs_root *chunk_root;
3415 	int ret;
3416 	int err = -EINVAL;
3417 	int level;
3418 
3419 	ret = init_mount_fs_info(fs_info, sb);
3420 	if (ret) {
3421 		err = ret;
3422 		goto fail;
3423 	}
3424 
3425 	/* These need to be init'ed before we start creating inodes and such. */
3426 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3427 				     GFP_KERNEL);
3428 	fs_info->tree_root = tree_root;
3429 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3430 				      GFP_KERNEL);
3431 	fs_info->chunk_root = chunk_root;
3432 	if (!tree_root || !chunk_root) {
3433 		err = -ENOMEM;
3434 		goto fail;
3435 	}
3436 
3437 	fs_info->btree_inode = new_inode(sb);
3438 	if (!fs_info->btree_inode) {
3439 		err = -ENOMEM;
3440 		goto fail;
3441 	}
3442 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3443 	btrfs_init_btree_inode(fs_info);
3444 
3445 	invalidate_bdev(fs_devices->latest_dev->bdev);
3446 
3447 	/*
3448 	 * Read super block and check the signature bytes only
3449 	 */
3450 	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3451 	if (IS_ERR(disk_super)) {
3452 		err = PTR_ERR(disk_super);
3453 		goto fail_alloc;
3454 	}
3455 
3456 	/*
3457 	 * Verify the type first, if that or the checksum value are
3458 	 * corrupted, we'll find out
3459 	 */
3460 	csum_type = btrfs_super_csum_type(disk_super);
3461 	if (!btrfs_supported_super_csum(csum_type)) {
3462 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3463 			  csum_type);
3464 		err = -EINVAL;
3465 		btrfs_release_disk_super(disk_super);
3466 		goto fail_alloc;
3467 	}
3468 
3469 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3470 
3471 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3472 	if (ret) {
3473 		err = ret;
3474 		btrfs_release_disk_super(disk_super);
3475 		goto fail_alloc;
3476 	}
3477 
3478 	/*
3479 	 * We want to check superblock checksum, the type is stored inside.
3480 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3481 	 */
3482 	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3483 		btrfs_err(fs_info, "superblock checksum mismatch");
3484 		err = -EINVAL;
3485 		btrfs_release_disk_super(disk_super);
3486 		goto fail_alloc;
3487 	}
3488 
3489 	/*
3490 	 * super_copy is zeroed at allocation time and we never touch the
3491 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3492 	 * the whole block of INFO_SIZE
3493 	 */
3494 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3495 	btrfs_release_disk_super(disk_super);
3496 
3497 	disk_super = fs_info->super_copy;
3498 
3499 
3500 	features = btrfs_super_flags(disk_super);
3501 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3502 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3503 		btrfs_set_super_flags(disk_super, features);
3504 		btrfs_info(fs_info,
3505 			"found metadata UUID change in progress flag, clearing");
3506 	}
3507 
3508 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3509 	       sizeof(*fs_info->super_for_commit));
3510 
3511 	ret = btrfs_validate_mount_super(fs_info);
3512 	if (ret) {
3513 		btrfs_err(fs_info, "superblock contains fatal errors");
3514 		err = -EINVAL;
3515 		goto fail_alloc;
3516 	}
3517 
3518 	if (!btrfs_super_root(disk_super))
3519 		goto fail_alloc;
3520 
3521 	/* check FS state, whether FS is broken. */
3522 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3523 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3524 
3525 	/*
3526 	 * In the long term, we'll store the compression type in the super
3527 	 * block, and it'll be used for per file compression control.
3528 	 */
3529 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3530 
3531 
3532 	/* Set up fs_info before parsing mount options */
3533 	nodesize = btrfs_super_nodesize(disk_super);
3534 	sectorsize = btrfs_super_sectorsize(disk_super);
3535 	stripesize = sectorsize;
3536 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3537 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3538 
3539 	fs_info->nodesize = nodesize;
3540 	fs_info->sectorsize = sectorsize;
3541 	fs_info->sectorsize_bits = ilog2(sectorsize);
3542 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3543 	fs_info->stripesize = stripesize;
3544 
3545 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3546 	if (ret) {
3547 		err = ret;
3548 		goto fail_alloc;
3549 	}
3550 
3551 	ret = btrfs_check_features(fs_info, sb);
3552 	if (ret < 0) {
3553 		err = ret;
3554 		goto fail_alloc;
3555 	}
3556 
3557 	if (sectorsize < PAGE_SIZE) {
3558 		struct btrfs_subpage_info *subpage_info;
3559 
3560 		/*
3561 		 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3562 		 * going to be deprecated.
3563 		 *
3564 		 * Force to use v2 cache for subpage case.
3565 		 */
3566 		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3567 		btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3568 			"forcing free space tree for sector size %u with page size %lu",
3569 			sectorsize, PAGE_SIZE);
3570 
3571 		btrfs_warn(fs_info,
3572 		"read-write for sector size %u with page size %lu is experimental",
3573 			   sectorsize, PAGE_SIZE);
3574 		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3575 		if (!subpage_info)
3576 			goto fail_alloc;
3577 		btrfs_init_subpage_info(subpage_info, sectorsize);
3578 		fs_info->subpage_info = subpage_info;
3579 	}
3580 
3581 	ret = btrfs_init_workqueues(fs_info);
3582 	if (ret) {
3583 		err = ret;
3584 		goto fail_sb_buffer;
3585 	}
3586 
3587 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3588 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3589 
3590 	sb->s_blocksize = sectorsize;
3591 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3592 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3593 
3594 	mutex_lock(&fs_info->chunk_mutex);
3595 	ret = btrfs_read_sys_array(fs_info);
3596 	mutex_unlock(&fs_info->chunk_mutex);
3597 	if (ret) {
3598 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3599 		goto fail_sb_buffer;
3600 	}
3601 
3602 	generation = btrfs_super_chunk_root_generation(disk_super);
3603 	level = btrfs_super_chunk_root_level(disk_super);
3604 	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3605 			      generation, level);
3606 	if (ret) {
3607 		btrfs_err(fs_info, "failed to read chunk root");
3608 		goto fail_tree_roots;
3609 	}
3610 
3611 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3612 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3613 			   BTRFS_UUID_SIZE);
3614 
3615 	ret = btrfs_read_chunk_tree(fs_info);
3616 	if (ret) {
3617 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3618 		goto fail_tree_roots;
3619 	}
3620 
3621 	/*
3622 	 * At this point we know all the devices that make this filesystem,
3623 	 * including the seed devices but we don't know yet if the replace
3624 	 * target is required. So free devices that are not part of this
3625 	 * filesystem but skip the replace target device which is checked
3626 	 * below in btrfs_init_dev_replace().
3627 	 */
3628 	btrfs_free_extra_devids(fs_devices);
3629 	if (!fs_devices->latest_dev->bdev) {
3630 		btrfs_err(fs_info, "failed to read devices");
3631 		goto fail_tree_roots;
3632 	}
3633 
3634 	ret = init_tree_roots(fs_info);
3635 	if (ret)
3636 		goto fail_tree_roots;
3637 
3638 	/*
3639 	 * Get zone type information of zoned block devices. This will also
3640 	 * handle emulation of a zoned filesystem if a regular device has the
3641 	 * zoned incompat feature flag set.
3642 	 */
3643 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3644 	if (ret) {
3645 		btrfs_err(fs_info,
3646 			  "zoned: failed to read device zone info: %d",
3647 			  ret);
3648 		goto fail_block_groups;
3649 	}
3650 
3651 	/*
3652 	 * If we have a uuid root and we're not being told to rescan we need to
3653 	 * check the generation here so we can set the
3654 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3655 	 * transaction during a balance or the log replay without updating the
3656 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3657 	 * even though it was perfectly fine.
3658 	 */
3659 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3660 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3661 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3662 
3663 	ret = btrfs_verify_dev_extents(fs_info);
3664 	if (ret) {
3665 		btrfs_err(fs_info,
3666 			  "failed to verify dev extents against chunks: %d",
3667 			  ret);
3668 		goto fail_block_groups;
3669 	}
3670 	ret = btrfs_recover_balance(fs_info);
3671 	if (ret) {
3672 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3673 		goto fail_block_groups;
3674 	}
3675 
3676 	ret = btrfs_init_dev_stats(fs_info);
3677 	if (ret) {
3678 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3679 		goto fail_block_groups;
3680 	}
3681 
3682 	ret = btrfs_init_dev_replace(fs_info);
3683 	if (ret) {
3684 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3685 		goto fail_block_groups;
3686 	}
3687 
3688 	ret = btrfs_check_zoned_mode(fs_info);
3689 	if (ret) {
3690 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3691 			  ret);
3692 		goto fail_block_groups;
3693 	}
3694 
3695 	ret = btrfs_sysfs_add_fsid(fs_devices);
3696 	if (ret) {
3697 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3698 				ret);
3699 		goto fail_block_groups;
3700 	}
3701 
3702 	ret = btrfs_sysfs_add_mounted(fs_info);
3703 	if (ret) {
3704 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3705 		goto fail_fsdev_sysfs;
3706 	}
3707 
3708 	ret = btrfs_init_space_info(fs_info);
3709 	if (ret) {
3710 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3711 		goto fail_sysfs;
3712 	}
3713 
3714 	ret = btrfs_read_block_groups(fs_info);
3715 	if (ret) {
3716 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3717 		goto fail_sysfs;
3718 	}
3719 
3720 	btrfs_free_zone_cache(fs_info);
3721 
3722 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3723 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3724 		btrfs_warn(fs_info,
3725 		"writable mount is not allowed due to too many missing devices");
3726 		goto fail_sysfs;
3727 	}
3728 
3729 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3730 					       "btrfs-cleaner");
3731 	if (IS_ERR(fs_info->cleaner_kthread))
3732 		goto fail_sysfs;
3733 
3734 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3735 						   tree_root,
3736 						   "btrfs-transaction");
3737 	if (IS_ERR(fs_info->transaction_kthread))
3738 		goto fail_cleaner;
3739 
3740 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3741 	    !fs_info->fs_devices->rotating) {
3742 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3743 	}
3744 
3745 	/*
3746 	 * Mount does not set all options immediately, we can do it now and do
3747 	 * not have to wait for transaction commit
3748 	 */
3749 	btrfs_apply_pending_changes(fs_info);
3750 
3751 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3752 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3753 		ret = btrfsic_mount(fs_info, fs_devices,
3754 				    btrfs_test_opt(fs_info,
3755 					CHECK_INTEGRITY_DATA) ? 1 : 0,
3756 				    fs_info->check_integrity_print_mask);
3757 		if (ret)
3758 			btrfs_warn(fs_info,
3759 				"failed to initialize integrity check module: %d",
3760 				ret);
3761 	}
3762 #endif
3763 	ret = btrfs_read_qgroup_config(fs_info);
3764 	if (ret)
3765 		goto fail_trans_kthread;
3766 
3767 	if (btrfs_build_ref_tree(fs_info))
3768 		btrfs_err(fs_info, "couldn't build ref tree");
3769 
3770 	/* do not make disk changes in broken FS or nologreplay is given */
3771 	if (btrfs_super_log_root(disk_super) != 0 &&
3772 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3773 		btrfs_info(fs_info, "start tree-log replay");
3774 		ret = btrfs_replay_log(fs_info, fs_devices);
3775 		if (ret) {
3776 			err = ret;
3777 			goto fail_qgroup;
3778 		}
3779 	}
3780 
3781 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3782 	if (IS_ERR(fs_info->fs_root)) {
3783 		err = PTR_ERR(fs_info->fs_root);
3784 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3785 		fs_info->fs_root = NULL;
3786 		goto fail_qgroup;
3787 	}
3788 
3789 	if (sb_rdonly(sb))
3790 		goto clear_oneshot;
3791 
3792 	ret = btrfs_start_pre_rw_mount(fs_info);
3793 	if (ret) {
3794 		close_ctree(fs_info);
3795 		return ret;
3796 	}
3797 	btrfs_discard_resume(fs_info);
3798 
3799 	if (fs_info->uuid_root &&
3800 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3801 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3802 		btrfs_info(fs_info, "checking UUID tree");
3803 		ret = btrfs_check_uuid_tree(fs_info);
3804 		if (ret) {
3805 			btrfs_warn(fs_info,
3806 				"failed to check the UUID tree: %d", ret);
3807 			close_ctree(fs_info);
3808 			return ret;
3809 		}
3810 	}
3811 
3812 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3813 
3814 	/* Kick the cleaner thread so it'll start deleting snapshots. */
3815 	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3816 		wake_up_process(fs_info->cleaner_kthread);
3817 
3818 clear_oneshot:
3819 	btrfs_clear_oneshot_options(fs_info);
3820 	return 0;
3821 
3822 fail_qgroup:
3823 	btrfs_free_qgroup_config(fs_info);
3824 fail_trans_kthread:
3825 	kthread_stop(fs_info->transaction_kthread);
3826 	btrfs_cleanup_transaction(fs_info);
3827 	btrfs_free_fs_roots(fs_info);
3828 fail_cleaner:
3829 	kthread_stop(fs_info->cleaner_kthread);
3830 
3831 	/*
3832 	 * make sure we're done with the btree inode before we stop our
3833 	 * kthreads
3834 	 */
3835 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3836 
3837 fail_sysfs:
3838 	btrfs_sysfs_remove_mounted(fs_info);
3839 
3840 fail_fsdev_sysfs:
3841 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3842 
3843 fail_block_groups:
3844 	btrfs_put_block_group_cache(fs_info);
3845 
3846 fail_tree_roots:
3847 	if (fs_info->data_reloc_root)
3848 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3849 	free_root_pointers(fs_info, true);
3850 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3851 
3852 fail_sb_buffer:
3853 	btrfs_stop_all_workers(fs_info);
3854 	btrfs_free_block_groups(fs_info);
3855 fail_alloc:
3856 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3857 
3858 	iput(fs_info->btree_inode);
3859 fail:
3860 	btrfs_close_devices(fs_info->fs_devices);
3861 	return err;
3862 }
3863 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3864 
3865 static void btrfs_end_super_write(struct bio *bio)
3866 {
3867 	struct btrfs_device *device = bio->bi_private;
3868 	struct bio_vec *bvec;
3869 	struct bvec_iter_all iter_all;
3870 	struct page *page;
3871 
3872 	bio_for_each_segment_all(bvec, bio, iter_all) {
3873 		page = bvec->bv_page;
3874 
3875 		if (bio->bi_status) {
3876 			btrfs_warn_rl_in_rcu(device->fs_info,
3877 				"lost page write due to IO error on %s (%d)",
3878 				rcu_str_deref(device->name),
3879 				blk_status_to_errno(bio->bi_status));
3880 			ClearPageUptodate(page);
3881 			SetPageError(page);
3882 			btrfs_dev_stat_inc_and_print(device,
3883 						     BTRFS_DEV_STAT_WRITE_ERRS);
3884 		} else {
3885 			SetPageUptodate(page);
3886 		}
3887 
3888 		put_page(page);
3889 		unlock_page(page);
3890 	}
3891 
3892 	bio_put(bio);
3893 }
3894 
3895 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3896 						   int copy_num, bool drop_cache)
3897 {
3898 	struct btrfs_super_block *super;
3899 	struct page *page;
3900 	u64 bytenr, bytenr_orig;
3901 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3902 	int ret;
3903 
3904 	bytenr_orig = btrfs_sb_offset(copy_num);
3905 	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3906 	if (ret == -ENOENT)
3907 		return ERR_PTR(-EINVAL);
3908 	else if (ret)
3909 		return ERR_PTR(ret);
3910 
3911 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3912 		return ERR_PTR(-EINVAL);
3913 
3914 	if (drop_cache) {
3915 		/* This should only be called with the primary sb. */
3916 		ASSERT(copy_num == 0);
3917 
3918 		/*
3919 		 * Drop the page of the primary superblock, so later read will
3920 		 * always read from the device.
3921 		 */
3922 		invalidate_inode_pages2_range(mapping,
3923 				bytenr >> PAGE_SHIFT,
3924 				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3925 	}
3926 
3927 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3928 	if (IS_ERR(page))
3929 		return ERR_CAST(page);
3930 
3931 	super = page_address(page);
3932 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3933 		btrfs_release_disk_super(super);
3934 		return ERR_PTR(-ENODATA);
3935 	}
3936 
3937 	if (btrfs_super_bytenr(super) != bytenr_orig) {
3938 		btrfs_release_disk_super(super);
3939 		return ERR_PTR(-EINVAL);
3940 	}
3941 
3942 	return super;
3943 }
3944 
3945 
3946 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3947 {
3948 	struct btrfs_super_block *super, *latest = NULL;
3949 	int i;
3950 	u64 transid = 0;
3951 
3952 	/* we would like to check all the supers, but that would make
3953 	 * a btrfs mount succeed after a mkfs from a different FS.
3954 	 * So, we need to add a special mount option to scan for
3955 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3956 	 */
3957 	for (i = 0; i < 1; i++) {
3958 		super = btrfs_read_dev_one_super(bdev, i, false);
3959 		if (IS_ERR(super))
3960 			continue;
3961 
3962 		if (!latest || btrfs_super_generation(super) > transid) {
3963 			if (latest)
3964 				btrfs_release_disk_super(super);
3965 
3966 			latest = super;
3967 			transid = btrfs_super_generation(super);
3968 		}
3969 	}
3970 
3971 	return super;
3972 }
3973 
3974 /*
3975  * Write superblock @sb to the @device. Do not wait for completion, all the
3976  * pages we use for writing are locked.
3977  *
3978  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3979  * the expected device size at commit time. Note that max_mirrors must be
3980  * same for write and wait phases.
3981  *
3982  * Return number of errors when page is not found or submission fails.
3983  */
3984 static int write_dev_supers(struct btrfs_device *device,
3985 			    struct btrfs_super_block *sb, int max_mirrors)
3986 {
3987 	struct btrfs_fs_info *fs_info = device->fs_info;
3988 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3989 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3990 	int i;
3991 	int errors = 0;
3992 	int ret;
3993 	u64 bytenr, bytenr_orig;
3994 
3995 	if (max_mirrors == 0)
3996 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3997 
3998 	shash->tfm = fs_info->csum_shash;
3999 
4000 	for (i = 0; i < max_mirrors; i++) {
4001 		struct page *page;
4002 		struct bio *bio;
4003 		struct btrfs_super_block *disk_super;
4004 
4005 		bytenr_orig = btrfs_sb_offset(i);
4006 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
4007 		if (ret == -ENOENT) {
4008 			continue;
4009 		} else if (ret < 0) {
4010 			btrfs_err(device->fs_info,
4011 				"couldn't get super block location for mirror %d",
4012 				i);
4013 			errors++;
4014 			continue;
4015 		}
4016 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4017 		    device->commit_total_bytes)
4018 			break;
4019 
4020 		btrfs_set_super_bytenr(sb, bytenr_orig);
4021 
4022 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
4023 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
4024 				    sb->csum);
4025 
4026 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
4027 					   GFP_NOFS);
4028 		if (!page) {
4029 			btrfs_err(device->fs_info,
4030 			    "couldn't get super block page for bytenr %llu",
4031 			    bytenr);
4032 			errors++;
4033 			continue;
4034 		}
4035 
4036 		/* Bump the refcount for wait_dev_supers() */
4037 		get_page(page);
4038 
4039 		disk_super = page_address(page);
4040 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4041 
4042 		/*
4043 		 * Directly use bios here instead of relying on the page cache
4044 		 * to do I/O, so we don't lose the ability to do integrity
4045 		 * checking.
4046 		 */
4047 		bio = bio_alloc(device->bdev, 1,
4048 				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
4049 				GFP_NOFS);
4050 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4051 		bio->bi_private = device;
4052 		bio->bi_end_io = btrfs_end_super_write;
4053 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4054 			       offset_in_page(bytenr));
4055 
4056 		/*
4057 		 * We FUA only the first super block.  The others we allow to
4058 		 * go down lazy and there's a short window where the on-disk
4059 		 * copies might still contain the older version.
4060 		 */
4061 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
4062 			bio->bi_opf |= REQ_FUA;
4063 
4064 		btrfsic_check_bio(bio);
4065 		submit_bio(bio);
4066 
4067 		if (btrfs_advance_sb_log(device, i))
4068 			errors++;
4069 	}
4070 	return errors < i ? 0 : -1;
4071 }
4072 
4073 /*
4074  * Wait for write completion of superblocks done by write_dev_supers,
4075  * @max_mirrors same for write and wait phases.
4076  *
4077  * Return number of errors when page is not found or not marked up to
4078  * date.
4079  */
4080 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4081 {
4082 	int i;
4083 	int errors = 0;
4084 	bool primary_failed = false;
4085 	int ret;
4086 	u64 bytenr;
4087 
4088 	if (max_mirrors == 0)
4089 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4090 
4091 	for (i = 0; i < max_mirrors; i++) {
4092 		struct page *page;
4093 
4094 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4095 		if (ret == -ENOENT) {
4096 			break;
4097 		} else if (ret < 0) {
4098 			errors++;
4099 			if (i == 0)
4100 				primary_failed = true;
4101 			continue;
4102 		}
4103 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4104 		    device->commit_total_bytes)
4105 			break;
4106 
4107 		page = find_get_page(device->bdev->bd_inode->i_mapping,
4108 				     bytenr >> PAGE_SHIFT);
4109 		if (!page) {
4110 			errors++;
4111 			if (i == 0)
4112 				primary_failed = true;
4113 			continue;
4114 		}
4115 		/* Page is submitted locked and unlocked once the IO completes */
4116 		wait_on_page_locked(page);
4117 		if (PageError(page)) {
4118 			errors++;
4119 			if (i == 0)
4120 				primary_failed = true;
4121 		}
4122 
4123 		/* Drop our reference */
4124 		put_page(page);
4125 
4126 		/* Drop the reference from the writing run */
4127 		put_page(page);
4128 	}
4129 
4130 	/* log error, force error return */
4131 	if (primary_failed) {
4132 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4133 			  device->devid);
4134 		return -1;
4135 	}
4136 
4137 	return errors < i ? 0 : -1;
4138 }
4139 
4140 /*
4141  * endio for the write_dev_flush, this will wake anyone waiting
4142  * for the barrier when it is done
4143  */
4144 static void btrfs_end_empty_barrier(struct bio *bio)
4145 {
4146 	bio_uninit(bio);
4147 	complete(bio->bi_private);
4148 }
4149 
4150 /*
4151  * Submit a flush request to the device if it supports it. Error handling is
4152  * done in the waiting counterpart.
4153  */
4154 static void write_dev_flush(struct btrfs_device *device)
4155 {
4156 	struct bio *bio = &device->flush_bio;
4157 
4158 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4159 	/*
4160 	 * When a disk has write caching disabled, we skip submission of a bio
4161 	 * with flush and sync requests before writing the superblock, since
4162 	 * it's not needed. However when the integrity checker is enabled, this
4163 	 * results in reports that there are metadata blocks referred by a
4164 	 * superblock that were not properly flushed. So don't skip the bio
4165 	 * submission only when the integrity checker is enabled for the sake
4166 	 * of simplicity, since this is a debug tool and not meant for use in
4167 	 * non-debug builds.
4168 	 */
4169 	if (!bdev_write_cache(device->bdev))
4170 		return;
4171 #endif
4172 
4173 	bio_init(bio, device->bdev, NULL, 0,
4174 		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
4175 	bio->bi_end_io = btrfs_end_empty_barrier;
4176 	init_completion(&device->flush_wait);
4177 	bio->bi_private = &device->flush_wait;
4178 
4179 	btrfsic_check_bio(bio);
4180 	submit_bio(bio);
4181 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4182 }
4183 
4184 /*
4185  * If the flush bio has been submitted by write_dev_flush, wait for it.
4186  */
4187 static blk_status_t wait_dev_flush(struct btrfs_device *device)
4188 {
4189 	struct bio *bio = &device->flush_bio;
4190 
4191 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4192 		return BLK_STS_OK;
4193 
4194 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4195 	wait_for_completion_io(&device->flush_wait);
4196 
4197 	return bio->bi_status;
4198 }
4199 
4200 static int check_barrier_error(struct btrfs_fs_info *fs_info)
4201 {
4202 	if (!btrfs_check_rw_degradable(fs_info, NULL))
4203 		return -EIO;
4204 	return 0;
4205 }
4206 
4207 /*
4208  * send an empty flush down to each device in parallel,
4209  * then wait for them
4210  */
4211 static int barrier_all_devices(struct btrfs_fs_info *info)
4212 {
4213 	struct list_head *head;
4214 	struct btrfs_device *dev;
4215 	int errors_wait = 0;
4216 	blk_status_t ret;
4217 
4218 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
4219 	/* send down all the barriers */
4220 	head = &info->fs_devices->devices;
4221 	list_for_each_entry(dev, head, dev_list) {
4222 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4223 			continue;
4224 		if (!dev->bdev)
4225 			continue;
4226 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4227 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4228 			continue;
4229 
4230 		write_dev_flush(dev);
4231 		dev->last_flush_error = BLK_STS_OK;
4232 	}
4233 
4234 	/* wait for all the barriers */
4235 	list_for_each_entry(dev, head, dev_list) {
4236 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4237 			continue;
4238 		if (!dev->bdev) {
4239 			errors_wait++;
4240 			continue;
4241 		}
4242 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4243 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4244 			continue;
4245 
4246 		ret = wait_dev_flush(dev);
4247 		if (ret) {
4248 			dev->last_flush_error = ret;
4249 			btrfs_dev_stat_inc_and_print(dev,
4250 					BTRFS_DEV_STAT_FLUSH_ERRS);
4251 			errors_wait++;
4252 		}
4253 	}
4254 
4255 	if (errors_wait) {
4256 		/*
4257 		 * At some point we need the status of all disks
4258 		 * to arrive at the volume status. So error checking
4259 		 * is being pushed to a separate loop.
4260 		 */
4261 		return check_barrier_error(info);
4262 	}
4263 	return 0;
4264 }
4265 
4266 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4267 {
4268 	int raid_type;
4269 	int min_tolerated = INT_MAX;
4270 
4271 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4272 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4273 		min_tolerated = min_t(int, min_tolerated,
4274 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4275 				    tolerated_failures);
4276 
4277 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4278 		if (raid_type == BTRFS_RAID_SINGLE)
4279 			continue;
4280 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4281 			continue;
4282 		min_tolerated = min_t(int, min_tolerated,
4283 				    btrfs_raid_array[raid_type].
4284 				    tolerated_failures);
4285 	}
4286 
4287 	if (min_tolerated == INT_MAX) {
4288 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4289 		min_tolerated = 0;
4290 	}
4291 
4292 	return min_tolerated;
4293 }
4294 
4295 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4296 {
4297 	struct list_head *head;
4298 	struct btrfs_device *dev;
4299 	struct btrfs_super_block *sb;
4300 	struct btrfs_dev_item *dev_item;
4301 	int ret;
4302 	int do_barriers;
4303 	int max_errors;
4304 	int total_errors = 0;
4305 	u64 flags;
4306 
4307 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4308 
4309 	/*
4310 	 * max_mirrors == 0 indicates we're from commit_transaction,
4311 	 * not from fsync where the tree roots in fs_info have not
4312 	 * been consistent on disk.
4313 	 */
4314 	if (max_mirrors == 0)
4315 		backup_super_roots(fs_info);
4316 
4317 	sb = fs_info->super_for_commit;
4318 	dev_item = &sb->dev_item;
4319 
4320 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4321 	head = &fs_info->fs_devices->devices;
4322 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4323 
4324 	if (do_barriers) {
4325 		ret = barrier_all_devices(fs_info);
4326 		if (ret) {
4327 			mutex_unlock(
4328 				&fs_info->fs_devices->device_list_mutex);
4329 			btrfs_handle_fs_error(fs_info, ret,
4330 					      "errors while submitting device barriers.");
4331 			return ret;
4332 		}
4333 	}
4334 
4335 	list_for_each_entry(dev, head, dev_list) {
4336 		if (!dev->bdev) {
4337 			total_errors++;
4338 			continue;
4339 		}
4340 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4341 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4342 			continue;
4343 
4344 		btrfs_set_stack_device_generation(dev_item, 0);
4345 		btrfs_set_stack_device_type(dev_item, dev->type);
4346 		btrfs_set_stack_device_id(dev_item, dev->devid);
4347 		btrfs_set_stack_device_total_bytes(dev_item,
4348 						   dev->commit_total_bytes);
4349 		btrfs_set_stack_device_bytes_used(dev_item,
4350 						  dev->commit_bytes_used);
4351 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4352 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4353 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4354 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4355 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4356 		       BTRFS_FSID_SIZE);
4357 
4358 		flags = btrfs_super_flags(sb);
4359 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4360 
4361 		ret = btrfs_validate_write_super(fs_info, sb);
4362 		if (ret < 0) {
4363 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4364 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4365 				"unexpected superblock corruption detected");
4366 			return -EUCLEAN;
4367 		}
4368 
4369 		ret = write_dev_supers(dev, sb, max_mirrors);
4370 		if (ret)
4371 			total_errors++;
4372 	}
4373 	if (total_errors > max_errors) {
4374 		btrfs_err(fs_info, "%d errors while writing supers",
4375 			  total_errors);
4376 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4377 
4378 		/* FUA is masked off if unsupported and can't be the reason */
4379 		btrfs_handle_fs_error(fs_info, -EIO,
4380 				      "%d errors while writing supers",
4381 				      total_errors);
4382 		return -EIO;
4383 	}
4384 
4385 	total_errors = 0;
4386 	list_for_each_entry(dev, head, dev_list) {
4387 		if (!dev->bdev)
4388 			continue;
4389 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4390 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4391 			continue;
4392 
4393 		ret = wait_dev_supers(dev, max_mirrors);
4394 		if (ret)
4395 			total_errors++;
4396 	}
4397 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4398 	if (total_errors > max_errors) {
4399 		btrfs_handle_fs_error(fs_info, -EIO,
4400 				      "%d errors while writing supers",
4401 				      total_errors);
4402 		return -EIO;
4403 	}
4404 	return 0;
4405 }
4406 
4407 /* Drop a fs root from the radix tree and free it. */
4408 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4409 				  struct btrfs_root *root)
4410 {
4411 	bool drop_ref = false;
4412 
4413 	spin_lock(&fs_info->fs_roots_radix_lock);
4414 	radix_tree_delete(&fs_info->fs_roots_radix,
4415 			  (unsigned long)root->root_key.objectid);
4416 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4417 		drop_ref = true;
4418 	spin_unlock(&fs_info->fs_roots_radix_lock);
4419 
4420 	if (BTRFS_FS_ERROR(fs_info)) {
4421 		ASSERT(root->log_root == NULL);
4422 		if (root->reloc_root) {
4423 			btrfs_put_root(root->reloc_root);
4424 			root->reloc_root = NULL;
4425 		}
4426 	}
4427 
4428 	if (drop_ref)
4429 		btrfs_put_root(root);
4430 }
4431 
4432 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4433 {
4434 	u64 root_objectid = 0;
4435 	struct btrfs_root *gang[8];
4436 	int i = 0;
4437 	int err = 0;
4438 	unsigned int ret = 0;
4439 
4440 	while (1) {
4441 		spin_lock(&fs_info->fs_roots_radix_lock);
4442 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4443 					     (void **)gang, root_objectid,
4444 					     ARRAY_SIZE(gang));
4445 		if (!ret) {
4446 			spin_unlock(&fs_info->fs_roots_radix_lock);
4447 			break;
4448 		}
4449 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4450 
4451 		for (i = 0; i < ret; i++) {
4452 			/* Avoid to grab roots in dead_roots */
4453 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4454 				gang[i] = NULL;
4455 				continue;
4456 			}
4457 			/* grab all the search result for later use */
4458 			gang[i] = btrfs_grab_root(gang[i]);
4459 		}
4460 		spin_unlock(&fs_info->fs_roots_radix_lock);
4461 
4462 		for (i = 0; i < ret; i++) {
4463 			if (!gang[i])
4464 				continue;
4465 			root_objectid = gang[i]->root_key.objectid;
4466 			err = btrfs_orphan_cleanup(gang[i]);
4467 			if (err)
4468 				break;
4469 			btrfs_put_root(gang[i]);
4470 		}
4471 		root_objectid++;
4472 	}
4473 
4474 	/* release the uncleaned roots due to error */
4475 	for (; i < ret; i++) {
4476 		if (gang[i])
4477 			btrfs_put_root(gang[i]);
4478 	}
4479 	return err;
4480 }
4481 
4482 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4483 {
4484 	struct btrfs_root *root = fs_info->tree_root;
4485 	struct btrfs_trans_handle *trans;
4486 
4487 	mutex_lock(&fs_info->cleaner_mutex);
4488 	btrfs_run_delayed_iputs(fs_info);
4489 	mutex_unlock(&fs_info->cleaner_mutex);
4490 	wake_up_process(fs_info->cleaner_kthread);
4491 
4492 	/* wait until ongoing cleanup work done */
4493 	down_write(&fs_info->cleanup_work_sem);
4494 	up_write(&fs_info->cleanup_work_sem);
4495 
4496 	trans = btrfs_join_transaction(root);
4497 	if (IS_ERR(trans))
4498 		return PTR_ERR(trans);
4499 	return btrfs_commit_transaction(trans);
4500 }
4501 
4502 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4503 {
4504 	struct btrfs_transaction *trans;
4505 	struct btrfs_transaction *tmp;
4506 	bool found = false;
4507 
4508 	if (list_empty(&fs_info->trans_list))
4509 		return;
4510 
4511 	/*
4512 	 * This function is only called at the very end of close_ctree(),
4513 	 * thus no other running transaction, no need to take trans_lock.
4514 	 */
4515 	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4516 	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4517 		struct extent_state *cached = NULL;
4518 		u64 dirty_bytes = 0;
4519 		u64 cur = 0;
4520 		u64 found_start;
4521 		u64 found_end;
4522 
4523 		found = true;
4524 		while (!find_first_extent_bit(&trans->dirty_pages, cur,
4525 			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4526 			dirty_bytes += found_end + 1 - found_start;
4527 			cur = found_end + 1;
4528 		}
4529 		btrfs_warn(fs_info,
4530 	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4531 			   trans->transid, dirty_bytes);
4532 		btrfs_cleanup_one_transaction(trans, fs_info);
4533 
4534 		if (trans == fs_info->running_transaction)
4535 			fs_info->running_transaction = NULL;
4536 		list_del_init(&trans->list);
4537 
4538 		btrfs_put_transaction(trans);
4539 		trace_btrfs_transaction_commit(fs_info);
4540 	}
4541 	ASSERT(!found);
4542 }
4543 
4544 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4545 {
4546 	int ret;
4547 
4548 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4549 
4550 	/*
4551 	 * If we had UNFINISHED_DROPS we could still be processing them, so
4552 	 * clear that bit and wake up relocation so it can stop.
4553 	 * We must do this before stopping the block group reclaim task, because
4554 	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4555 	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4556 	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4557 	 * return 1.
4558 	 */
4559 	btrfs_wake_unfinished_drop(fs_info);
4560 
4561 	/*
4562 	 * We may have the reclaim task running and relocating a data block group,
4563 	 * in which case it may create delayed iputs. So stop it before we park
4564 	 * the cleaner kthread otherwise we can get new delayed iputs after
4565 	 * parking the cleaner, and that can make the async reclaim task to hang
4566 	 * if it's waiting for delayed iputs to complete, since the cleaner is
4567 	 * parked and can not run delayed iputs - this will make us hang when
4568 	 * trying to stop the async reclaim task.
4569 	 */
4570 	cancel_work_sync(&fs_info->reclaim_bgs_work);
4571 	/*
4572 	 * We don't want the cleaner to start new transactions, add more delayed
4573 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4574 	 * because that frees the task_struct, and the transaction kthread might
4575 	 * still try to wake up the cleaner.
4576 	 */
4577 	kthread_park(fs_info->cleaner_kthread);
4578 
4579 	/* wait for the qgroup rescan worker to stop */
4580 	btrfs_qgroup_wait_for_completion(fs_info, false);
4581 
4582 	/* wait for the uuid_scan task to finish */
4583 	down(&fs_info->uuid_tree_rescan_sem);
4584 	/* avoid complains from lockdep et al., set sem back to initial state */
4585 	up(&fs_info->uuid_tree_rescan_sem);
4586 
4587 	/* pause restriper - we want to resume on mount */
4588 	btrfs_pause_balance(fs_info);
4589 
4590 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4591 
4592 	btrfs_scrub_cancel(fs_info);
4593 
4594 	/* wait for any defraggers to finish */
4595 	wait_event(fs_info->transaction_wait,
4596 		   (atomic_read(&fs_info->defrag_running) == 0));
4597 
4598 	/* clear out the rbtree of defraggable inodes */
4599 	btrfs_cleanup_defrag_inodes(fs_info);
4600 
4601 	/*
4602 	 * After we parked the cleaner kthread, ordered extents may have
4603 	 * completed and created new delayed iputs. If one of the async reclaim
4604 	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4605 	 * can hang forever trying to stop it, because if a delayed iput is
4606 	 * added after it ran btrfs_run_delayed_iputs() and before it called
4607 	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4608 	 * no one else to run iputs.
4609 	 *
4610 	 * So wait for all ongoing ordered extents to complete and then run
4611 	 * delayed iputs. This works because once we reach this point no one
4612 	 * can either create new ordered extents nor create delayed iputs
4613 	 * through some other means.
4614 	 *
4615 	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4616 	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4617 	 * but the delayed iput for the respective inode is made only when doing
4618 	 * the final btrfs_put_ordered_extent() (which must happen at
4619 	 * btrfs_finish_ordered_io() when we are unmounting).
4620 	 */
4621 	btrfs_flush_workqueue(fs_info->endio_write_workers);
4622 	/* Ordered extents for free space inodes. */
4623 	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4624 	btrfs_run_delayed_iputs(fs_info);
4625 
4626 	cancel_work_sync(&fs_info->async_reclaim_work);
4627 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4628 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4629 
4630 	/* Cancel or finish ongoing discard work */
4631 	btrfs_discard_cleanup(fs_info);
4632 
4633 	if (!sb_rdonly(fs_info->sb)) {
4634 		/*
4635 		 * The cleaner kthread is stopped, so do one final pass over
4636 		 * unused block groups.
4637 		 */
4638 		btrfs_delete_unused_bgs(fs_info);
4639 
4640 		/*
4641 		 * There might be existing delayed inode workers still running
4642 		 * and holding an empty delayed inode item. We must wait for
4643 		 * them to complete first because they can create a transaction.
4644 		 * This happens when someone calls btrfs_balance_delayed_items()
4645 		 * and then a transaction commit runs the same delayed nodes
4646 		 * before any delayed worker has done something with the nodes.
4647 		 * We must wait for any worker here and not at transaction
4648 		 * commit time since that could cause a deadlock.
4649 		 * This is a very rare case.
4650 		 */
4651 		btrfs_flush_workqueue(fs_info->delayed_workers);
4652 
4653 		ret = btrfs_commit_super(fs_info);
4654 		if (ret)
4655 			btrfs_err(fs_info, "commit super ret %d", ret);
4656 	}
4657 
4658 	if (BTRFS_FS_ERROR(fs_info))
4659 		btrfs_error_commit_super(fs_info);
4660 
4661 	kthread_stop(fs_info->transaction_kthread);
4662 	kthread_stop(fs_info->cleaner_kthread);
4663 
4664 	ASSERT(list_empty(&fs_info->delayed_iputs));
4665 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4666 
4667 	if (btrfs_check_quota_leak(fs_info)) {
4668 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4669 		btrfs_err(fs_info, "qgroup reserved space leaked");
4670 	}
4671 
4672 	btrfs_free_qgroup_config(fs_info);
4673 	ASSERT(list_empty(&fs_info->delalloc_roots));
4674 
4675 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4676 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4677 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4678 	}
4679 
4680 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4681 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4682 			   percpu_counter_sum(&fs_info->ordered_bytes));
4683 
4684 	btrfs_sysfs_remove_mounted(fs_info);
4685 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4686 
4687 	btrfs_put_block_group_cache(fs_info);
4688 
4689 	/*
4690 	 * we must make sure there is not any read request to
4691 	 * submit after we stopping all workers.
4692 	 */
4693 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4694 	btrfs_stop_all_workers(fs_info);
4695 
4696 	/* We shouldn't have any transaction open at this point */
4697 	warn_about_uncommitted_trans(fs_info);
4698 
4699 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4700 	free_root_pointers(fs_info, true);
4701 	btrfs_free_fs_roots(fs_info);
4702 
4703 	/*
4704 	 * We must free the block groups after dropping the fs_roots as we could
4705 	 * have had an IO error and have left over tree log blocks that aren't
4706 	 * cleaned up until the fs roots are freed.  This makes the block group
4707 	 * accounting appear to be wrong because there's pending reserved bytes,
4708 	 * so make sure we do the block group cleanup afterwards.
4709 	 */
4710 	btrfs_free_block_groups(fs_info);
4711 
4712 	iput(fs_info->btree_inode);
4713 
4714 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4715 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4716 		btrfsic_unmount(fs_info->fs_devices);
4717 #endif
4718 
4719 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4720 	btrfs_close_devices(fs_info->fs_devices);
4721 }
4722 
4723 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4724 			  int atomic)
4725 {
4726 	int ret;
4727 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4728 
4729 	ret = extent_buffer_uptodate(buf);
4730 	if (!ret)
4731 		return ret;
4732 
4733 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4734 				    parent_transid, atomic);
4735 	if (ret == -EAGAIN)
4736 		return ret;
4737 	return !ret;
4738 }
4739 
4740 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4741 {
4742 	struct btrfs_fs_info *fs_info = buf->fs_info;
4743 	u64 transid = btrfs_header_generation(buf);
4744 	int was_dirty;
4745 
4746 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4747 	/*
4748 	 * This is a fast path so only do this check if we have sanity tests
4749 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4750 	 * outside of the sanity tests.
4751 	 */
4752 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4753 		return;
4754 #endif
4755 	btrfs_assert_tree_write_locked(buf);
4756 	if (transid != fs_info->generation)
4757 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4758 			buf->start, transid, fs_info->generation);
4759 	was_dirty = set_extent_buffer_dirty(buf);
4760 	if (!was_dirty)
4761 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4762 					 buf->len,
4763 					 fs_info->dirty_metadata_batch);
4764 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4765 	/*
4766 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4767 	 * but item data not updated.
4768 	 * So here we should only check item pointers, not item data.
4769 	 */
4770 	if (btrfs_header_level(buf) == 0 &&
4771 	    btrfs_check_leaf_relaxed(buf)) {
4772 		btrfs_print_leaf(buf);
4773 		ASSERT(0);
4774 	}
4775 #endif
4776 }
4777 
4778 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4779 					int flush_delayed)
4780 {
4781 	/*
4782 	 * looks as though older kernels can get into trouble with
4783 	 * this code, they end up stuck in balance_dirty_pages forever
4784 	 */
4785 	int ret;
4786 
4787 	if (current->flags & PF_MEMALLOC)
4788 		return;
4789 
4790 	if (flush_delayed)
4791 		btrfs_balance_delayed_items(fs_info);
4792 
4793 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4794 				     BTRFS_DIRTY_METADATA_THRESH,
4795 				     fs_info->dirty_metadata_batch);
4796 	if (ret > 0) {
4797 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4798 	}
4799 }
4800 
4801 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4802 {
4803 	__btrfs_btree_balance_dirty(fs_info, 1);
4804 }
4805 
4806 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4807 {
4808 	__btrfs_btree_balance_dirty(fs_info, 0);
4809 }
4810 
4811 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4812 {
4813 	/* cleanup FS via transaction */
4814 	btrfs_cleanup_transaction(fs_info);
4815 
4816 	mutex_lock(&fs_info->cleaner_mutex);
4817 	btrfs_run_delayed_iputs(fs_info);
4818 	mutex_unlock(&fs_info->cleaner_mutex);
4819 
4820 	down_write(&fs_info->cleanup_work_sem);
4821 	up_write(&fs_info->cleanup_work_sem);
4822 }
4823 
4824 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4825 {
4826 	struct btrfs_root *gang[8];
4827 	u64 root_objectid = 0;
4828 	int ret;
4829 
4830 	spin_lock(&fs_info->fs_roots_radix_lock);
4831 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4832 					     (void **)gang, root_objectid,
4833 					     ARRAY_SIZE(gang))) != 0) {
4834 		int i;
4835 
4836 		for (i = 0; i < ret; i++)
4837 			gang[i] = btrfs_grab_root(gang[i]);
4838 		spin_unlock(&fs_info->fs_roots_radix_lock);
4839 
4840 		for (i = 0; i < ret; i++) {
4841 			if (!gang[i])
4842 				continue;
4843 			root_objectid = gang[i]->root_key.objectid;
4844 			btrfs_free_log(NULL, gang[i]);
4845 			btrfs_put_root(gang[i]);
4846 		}
4847 		root_objectid++;
4848 		spin_lock(&fs_info->fs_roots_radix_lock);
4849 	}
4850 	spin_unlock(&fs_info->fs_roots_radix_lock);
4851 	btrfs_free_log_root_tree(NULL, fs_info);
4852 }
4853 
4854 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4855 {
4856 	struct btrfs_ordered_extent *ordered;
4857 
4858 	spin_lock(&root->ordered_extent_lock);
4859 	/*
4860 	 * This will just short circuit the ordered completion stuff which will
4861 	 * make sure the ordered extent gets properly cleaned up.
4862 	 */
4863 	list_for_each_entry(ordered, &root->ordered_extents,
4864 			    root_extent_list)
4865 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4866 	spin_unlock(&root->ordered_extent_lock);
4867 }
4868 
4869 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4870 {
4871 	struct btrfs_root *root;
4872 	struct list_head splice;
4873 
4874 	INIT_LIST_HEAD(&splice);
4875 
4876 	spin_lock(&fs_info->ordered_root_lock);
4877 	list_splice_init(&fs_info->ordered_roots, &splice);
4878 	while (!list_empty(&splice)) {
4879 		root = list_first_entry(&splice, struct btrfs_root,
4880 					ordered_root);
4881 		list_move_tail(&root->ordered_root,
4882 			       &fs_info->ordered_roots);
4883 
4884 		spin_unlock(&fs_info->ordered_root_lock);
4885 		btrfs_destroy_ordered_extents(root);
4886 
4887 		cond_resched();
4888 		spin_lock(&fs_info->ordered_root_lock);
4889 	}
4890 	spin_unlock(&fs_info->ordered_root_lock);
4891 
4892 	/*
4893 	 * We need this here because if we've been flipped read-only we won't
4894 	 * get sync() from the umount, so we need to make sure any ordered
4895 	 * extents that haven't had their dirty pages IO start writeout yet
4896 	 * actually get run and error out properly.
4897 	 */
4898 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4899 }
4900 
4901 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4902 				      struct btrfs_fs_info *fs_info)
4903 {
4904 	struct rb_node *node;
4905 	struct btrfs_delayed_ref_root *delayed_refs;
4906 	struct btrfs_delayed_ref_node *ref;
4907 	int ret = 0;
4908 
4909 	delayed_refs = &trans->delayed_refs;
4910 
4911 	spin_lock(&delayed_refs->lock);
4912 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4913 		spin_unlock(&delayed_refs->lock);
4914 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4915 		return ret;
4916 	}
4917 
4918 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4919 		struct btrfs_delayed_ref_head *head;
4920 		struct rb_node *n;
4921 		bool pin_bytes = false;
4922 
4923 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4924 				href_node);
4925 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4926 			continue;
4927 
4928 		spin_lock(&head->lock);
4929 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4930 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4931 				       ref_node);
4932 			ref->in_tree = 0;
4933 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4934 			RB_CLEAR_NODE(&ref->ref_node);
4935 			if (!list_empty(&ref->add_list))
4936 				list_del(&ref->add_list);
4937 			atomic_dec(&delayed_refs->num_entries);
4938 			btrfs_put_delayed_ref(ref);
4939 		}
4940 		if (head->must_insert_reserved)
4941 			pin_bytes = true;
4942 		btrfs_free_delayed_extent_op(head->extent_op);
4943 		btrfs_delete_ref_head(delayed_refs, head);
4944 		spin_unlock(&head->lock);
4945 		spin_unlock(&delayed_refs->lock);
4946 		mutex_unlock(&head->mutex);
4947 
4948 		if (pin_bytes) {
4949 			struct btrfs_block_group *cache;
4950 
4951 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4952 			BUG_ON(!cache);
4953 
4954 			spin_lock(&cache->space_info->lock);
4955 			spin_lock(&cache->lock);
4956 			cache->pinned += head->num_bytes;
4957 			btrfs_space_info_update_bytes_pinned(fs_info,
4958 				cache->space_info, head->num_bytes);
4959 			cache->reserved -= head->num_bytes;
4960 			cache->space_info->bytes_reserved -= head->num_bytes;
4961 			spin_unlock(&cache->lock);
4962 			spin_unlock(&cache->space_info->lock);
4963 
4964 			btrfs_put_block_group(cache);
4965 
4966 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4967 				head->bytenr + head->num_bytes - 1);
4968 		}
4969 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4970 		btrfs_put_delayed_ref_head(head);
4971 		cond_resched();
4972 		spin_lock(&delayed_refs->lock);
4973 	}
4974 	btrfs_qgroup_destroy_extent_records(trans);
4975 
4976 	spin_unlock(&delayed_refs->lock);
4977 
4978 	return ret;
4979 }
4980 
4981 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4982 {
4983 	struct btrfs_inode *btrfs_inode;
4984 	struct list_head splice;
4985 
4986 	INIT_LIST_HEAD(&splice);
4987 
4988 	spin_lock(&root->delalloc_lock);
4989 	list_splice_init(&root->delalloc_inodes, &splice);
4990 
4991 	while (!list_empty(&splice)) {
4992 		struct inode *inode = NULL;
4993 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4994 					       delalloc_inodes);
4995 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4996 		spin_unlock(&root->delalloc_lock);
4997 
4998 		/*
4999 		 * Make sure we get a live inode and that it'll not disappear
5000 		 * meanwhile.
5001 		 */
5002 		inode = igrab(&btrfs_inode->vfs_inode);
5003 		if (inode) {
5004 			invalidate_inode_pages2(inode->i_mapping);
5005 			iput(inode);
5006 		}
5007 		spin_lock(&root->delalloc_lock);
5008 	}
5009 	spin_unlock(&root->delalloc_lock);
5010 }
5011 
5012 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
5013 {
5014 	struct btrfs_root *root;
5015 	struct list_head splice;
5016 
5017 	INIT_LIST_HEAD(&splice);
5018 
5019 	spin_lock(&fs_info->delalloc_root_lock);
5020 	list_splice_init(&fs_info->delalloc_roots, &splice);
5021 	while (!list_empty(&splice)) {
5022 		root = list_first_entry(&splice, struct btrfs_root,
5023 					 delalloc_root);
5024 		root = btrfs_grab_root(root);
5025 		BUG_ON(!root);
5026 		spin_unlock(&fs_info->delalloc_root_lock);
5027 
5028 		btrfs_destroy_delalloc_inodes(root);
5029 		btrfs_put_root(root);
5030 
5031 		spin_lock(&fs_info->delalloc_root_lock);
5032 	}
5033 	spin_unlock(&fs_info->delalloc_root_lock);
5034 }
5035 
5036 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
5037 					struct extent_io_tree *dirty_pages,
5038 					int mark)
5039 {
5040 	int ret;
5041 	struct extent_buffer *eb;
5042 	u64 start = 0;
5043 	u64 end;
5044 
5045 	while (1) {
5046 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
5047 					    mark, NULL);
5048 		if (ret)
5049 			break;
5050 
5051 		clear_extent_bits(dirty_pages, start, end, mark);
5052 		while (start <= end) {
5053 			eb = find_extent_buffer(fs_info, start);
5054 			start += fs_info->nodesize;
5055 			if (!eb)
5056 				continue;
5057 			wait_on_extent_buffer_writeback(eb);
5058 
5059 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5060 					       &eb->bflags))
5061 				clear_extent_buffer_dirty(eb);
5062 			free_extent_buffer_stale(eb);
5063 		}
5064 	}
5065 
5066 	return ret;
5067 }
5068 
5069 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
5070 				       struct extent_io_tree *unpin)
5071 {
5072 	u64 start;
5073 	u64 end;
5074 	int ret;
5075 
5076 	while (1) {
5077 		struct extent_state *cached_state = NULL;
5078 
5079 		/*
5080 		 * The btrfs_finish_extent_commit() may get the same range as
5081 		 * ours between find_first_extent_bit and clear_extent_dirty.
5082 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5083 		 * the same extent range.
5084 		 */
5085 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
5086 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5087 					    EXTENT_DIRTY, &cached_state);
5088 		if (ret) {
5089 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5090 			break;
5091 		}
5092 
5093 		clear_extent_dirty(unpin, start, end, &cached_state);
5094 		free_extent_state(cached_state);
5095 		btrfs_error_unpin_extent_range(fs_info, start, end);
5096 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5097 		cond_resched();
5098 	}
5099 
5100 	return 0;
5101 }
5102 
5103 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
5104 {
5105 	struct inode *inode;
5106 
5107 	inode = cache->io_ctl.inode;
5108 	if (inode) {
5109 		invalidate_inode_pages2(inode->i_mapping);
5110 		BTRFS_I(inode)->generation = 0;
5111 		cache->io_ctl.inode = NULL;
5112 		iput(inode);
5113 	}
5114 	ASSERT(cache->io_ctl.pages == NULL);
5115 	btrfs_put_block_group(cache);
5116 }
5117 
5118 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
5119 			     struct btrfs_fs_info *fs_info)
5120 {
5121 	struct btrfs_block_group *cache;
5122 
5123 	spin_lock(&cur_trans->dirty_bgs_lock);
5124 	while (!list_empty(&cur_trans->dirty_bgs)) {
5125 		cache = list_first_entry(&cur_trans->dirty_bgs,
5126 					 struct btrfs_block_group,
5127 					 dirty_list);
5128 
5129 		if (!list_empty(&cache->io_list)) {
5130 			spin_unlock(&cur_trans->dirty_bgs_lock);
5131 			list_del_init(&cache->io_list);
5132 			btrfs_cleanup_bg_io(cache);
5133 			spin_lock(&cur_trans->dirty_bgs_lock);
5134 		}
5135 
5136 		list_del_init(&cache->dirty_list);
5137 		spin_lock(&cache->lock);
5138 		cache->disk_cache_state = BTRFS_DC_ERROR;
5139 		spin_unlock(&cache->lock);
5140 
5141 		spin_unlock(&cur_trans->dirty_bgs_lock);
5142 		btrfs_put_block_group(cache);
5143 		btrfs_delayed_refs_rsv_release(fs_info, 1);
5144 		spin_lock(&cur_trans->dirty_bgs_lock);
5145 	}
5146 	spin_unlock(&cur_trans->dirty_bgs_lock);
5147 
5148 	/*
5149 	 * Refer to the definition of io_bgs member for details why it's safe
5150 	 * to use it without any locking
5151 	 */
5152 	while (!list_empty(&cur_trans->io_bgs)) {
5153 		cache = list_first_entry(&cur_trans->io_bgs,
5154 					 struct btrfs_block_group,
5155 					 io_list);
5156 
5157 		list_del_init(&cache->io_list);
5158 		spin_lock(&cache->lock);
5159 		cache->disk_cache_state = BTRFS_DC_ERROR;
5160 		spin_unlock(&cache->lock);
5161 		btrfs_cleanup_bg_io(cache);
5162 	}
5163 }
5164 
5165 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
5166 				   struct btrfs_fs_info *fs_info)
5167 {
5168 	struct btrfs_device *dev, *tmp;
5169 
5170 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
5171 	ASSERT(list_empty(&cur_trans->dirty_bgs));
5172 	ASSERT(list_empty(&cur_trans->io_bgs));
5173 
5174 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5175 				 post_commit_list) {
5176 		list_del_init(&dev->post_commit_list);
5177 	}
5178 
5179 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
5180 
5181 	cur_trans->state = TRANS_STATE_COMMIT_START;
5182 	wake_up(&fs_info->transaction_blocked_wait);
5183 
5184 	cur_trans->state = TRANS_STATE_UNBLOCKED;
5185 	wake_up(&fs_info->transaction_wait);
5186 
5187 	btrfs_destroy_delayed_inodes(fs_info);
5188 
5189 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
5190 				     EXTENT_DIRTY);
5191 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
5192 
5193 	btrfs_free_redirty_list(cur_trans);
5194 
5195 	cur_trans->state =TRANS_STATE_COMPLETED;
5196 	wake_up(&cur_trans->commit_wait);
5197 }
5198 
5199 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
5200 {
5201 	struct btrfs_transaction *t;
5202 
5203 	mutex_lock(&fs_info->transaction_kthread_mutex);
5204 
5205 	spin_lock(&fs_info->trans_lock);
5206 	while (!list_empty(&fs_info->trans_list)) {
5207 		t = list_first_entry(&fs_info->trans_list,
5208 				     struct btrfs_transaction, list);
5209 		if (t->state >= TRANS_STATE_COMMIT_START) {
5210 			refcount_inc(&t->use_count);
5211 			spin_unlock(&fs_info->trans_lock);
5212 			btrfs_wait_for_commit(fs_info, t->transid);
5213 			btrfs_put_transaction(t);
5214 			spin_lock(&fs_info->trans_lock);
5215 			continue;
5216 		}
5217 		if (t == fs_info->running_transaction) {
5218 			t->state = TRANS_STATE_COMMIT_DOING;
5219 			spin_unlock(&fs_info->trans_lock);
5220 			/*
5221 			 * We wait for 0 num_writers since we don't hold a trans
5222 			 * handle open currently for this transaction.
5223 			 */
5224 			wait_event(t->writer_wait,
5225 				   atomic_read(&t->num_writers) == 0);
5226 		} else {
5227 			spin_unlock(&fs_info->trans_lock);
5228 		}
5229 		btrfs_cleanup_one_transaction(t, fs_info);
5230 
5231 		spin_lock(&fs_info->trans_lock);
5232 		if (t == fs_info->running_transaction)
5233 			fs_info->running_transaction = NULL;
5234 		list_del_init(&t->list);
5235 		spin_unlock(&fs_info->trans_lock);
5236 
5237 		btrfs_put_transaction(t);
5238 		trace_btrfs_transaction_commit(fs_info);
5239 		spin_lock(&fs_info->trans_lock);
5240 	}
5241 	spin_unlock(&fs_info->trans_lock);
5242 	btrfs_destroy_all_ordered_extents(fs_info);
5243 	btrfs_destroy_delayed_inodes(fs_info);
5244 	btrfs_assert_delayed_root_empty(fs_info);
5245 	btrfs_destroy_all_delalloc_inodes(fs_info);
5246 	btrfs_drop_all_logs(fs_info);
5247 	mutex_unlock(&fs_info->transaction_kthread_mutex);
5248 
5249 	return 0;
5250 }
5251 
5252 int btrfs_init_root_free_objectid(struct btrfs_root *root)
5253 {
5254 	struct btrfs_path *path;
5255 	int ret;
5256 	struct extent_buffer *l;
5257 	struct btrfs_key search_key;
5258 	struct btrfs_key found_key;
5259 	int slot;
5260 
5261 	path = btrfs_alloc_path();
5262 	if (!path)
5263 		return -ENOMEM;
5264 
5265 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5266 	search_key.type = -1;
5267 	search_key.offset = (u64)-1;
5268 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5269 	if (ret < 0)
5270 		goto error;
5271 	BUG_ON(ret == 0); /* Corruption */
5272 	if (path->slots[0] > 0) {
5273 		slot = path->slots[0] - 1;
5274 		l = path->nodes[0];
5275 		btrfs_item_key_to_cpu(l, &found_key, slot);
5276 		root->free_objectid = max_t(u64, found_key.objectid + 1,
5277 					    BTRFS_FIRST_FREE_OBJECTID);
5278 	} else {
5279 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5280 	}
5281 	ret = 0;
5282 error:
5283 	btrfs_free_path(path);
5284 	return ret;
5285 }
5286 
5287 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5288 {
5289 	int ret;
5290 	mutex_lock(&root->objectid_mutex);
5291 
5292 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5293 		btrfs_warn(root->fs_info,
5294 			   "the objectid of root %llu reaches its highest value",
5295 			   root->root_key.objectid);
5296 		ret = -ENOSPC;
5297 		goto out;
5298 	}
5299 
5300 	*objectid = root->free_objectid++;
5301 	ret = 0;
5302 out:
5303 	mutex_unlock(&root->objectid_mutex);
5304 	return ret;
5305 }
5306